CHEMISTRY

Single Correct Answer Type

1.	van-Arker method of	purification of metals involv	ves converting the metal	to a
	a) Volatile stable com		b) Non-volatile stab	
	c) Volatile unstable co	=	d) None of the abov	_
2.	In the electrolysis of a	lumina, cryolite is added to	=	A . Y
	a) Lower the melting	point of alumina and to inci	rease the electrical condu	uctivity
	b) Minimise the anode			
	c) Remove impurities	from alumina		
	d) None of the above			
3.	The pyrolusite ore con	ntains:		
	a) Fe	b) Al	c) Mn	d) Cu
4.	Purest form of iron is			Y
	a) Pig iron	b) Wrought iron	c) Cast iron	d) Steel
5.	Pig iron is manufactur	red by:		
	a) An electric furnace	b) A blast furnace	c) An open hearth f	urnace d) None of these
6.	During the process of	electrolytic refining of copp	oer, some metals present	as impurity settle as 'anode
	mud'. These are	4		
	a) Fe and Ni	b) Ag and Au	c) Pb and Zn	d) Se and Ag
7.	By which process Pb a	and Sn are extracted respec	tively?	
	a) Carbon reduction-	-self reduction	,	
	b) Self reduction—car	bon reduction		
	c) Electrolytic reducti	on—cyanide process		
	d) Cyanide process—	electrolytic reduction		
8.	CO on passing over he			
	a) NiCO ₃	b) Ni(CO) ₄	c) $CO_2 + H_2$	d) $CO + H_2$
9.	Cassiterite is concenti	ated by		
	a) Liquation)	b) Floatation	
	c) Electromagnetic se	paration	d) Levigation	
10.		opper from its sulphide ore	, the metal is finally obta	ained by the reduction of cuprous
	oxide with:			
	a) Iron sulphide (FeS)			
	b) Carbon monoxide (
	c) Copper(I) sulphide			
	d) Sulphur dioxide (So			
11.	Which of the following	g metal is thrown as anode	mud during electrolytic	refining of copper?
	a) Zn	b) Fe	c) Ag	d) Ni
12.	-	d at room temperature?		
	a) Mercury	b) Potassium	c) Sodium	d) Titanium
13.		coloured precious stone. It		
	a) Sodium alumino sil	icate	b) Basic copper carl	oonate
	c) Zinc cobalt		d) Prussian blue	
14.		g factors is of no significanc		res to the oxides and not
	subjecting the sulphid	le ores to carbon reduction	directly?	

	a) Metal sulphides are the	rmodynamically more stab	le than CS ₂	
	b) CO ₂ is bthermodynamic	cally more stable than CS ₂		
		s stable than the correspon	ding oxides	
	d) CO ₂ is more volatile that	_		
15.	The inner lining of a blast			
	a) Graphite bricks	b) Silica bricks	c) Fire clay bricks	d) Basic bricks
16.	Which one is an ore of sod		ey i ii e elay arrena	u) 20010 2110113
10.	a) Sylvine	b) Siderite	c) Spodumene	d) Soda ash
17.	Titanium containing miner	•	e) spoudinene	u) 00 uu uu
	a) Bauxite	b) Chalcopyrites	c) Elmanite	d) dolomite
18	Argentite is a mineral of	b) diffacopylites	ej ililianice	u) dolollite
10.	a) Gold	b) Silver	c) Copper	d) Platinum
10	In blast furnace, iron oxide		c) dopper	u) i iatiliulii
1).	a) Silica	b) Carbon	c) Limestone	d) CO
20	Heating of ores with flux to	•	,	u) co
۷0.	_			d) Cupallation
21	a) Smelting	b) Calcination	c) Roasting	d) Cupellation
Z1.	Gold is extracted using:		4 (4	
	a) Amalgamation process			
	b) Carbon reduction proce	ess		
	c) Oxidation process			
	d) Electrolytic process			
22.	Which of the following me	-	-	
	a) Zn	b) Al	c) Hg	d) Pb
23.	The most malleable metal			
	a) Silver	b) sodium	c) Gold	d) Platinum
24.	Granulated zinc is obtaine	•		
	a) Suddenly cooling molte	en zinc		
	b) Adding molten zinc to v	vater		
	c) Heating zinc to 100-150	O _o C		
	d) Dropping molten zinc d	rop by drop		
25.	Most of the plants contains			
	a) Fe	b) Zn	c) Na	d) K
26.	Which of the following or	es does not represent the o	res of iron?	
	a) Cassiterite	b) Limonite	c) Haematite	d) Magnetite
27.	The metal obtained by self	f reduction process is:		
	a) Cu	b) Hg	c) Pb	d) All of these
28.	The cryolite is:	, ,		•
	a) Al ₂ O ₃	b) Na ₃ AlF ₆	c) KAlSi ₃ O ₈	d) Al ₃ O ₂ OH ₂ O
29.	Blanc fixe is:	, , ,	, , ,	, , , , , ,
	a) BaSO ₄	b) BaCl ₂	c) BaCO ₃	d) None of these
30.	Sulphide ores are generall	· =	0) 20003	a) Traine of these
	a) Hand picking	y concentration by	b) Forth floatation proces	\$
	c) Gravity separation		d) Magnetic separation	5
31.	Which pair of elements car	n form alloy?	a) Magnetie beparation	
J1.	a) Zn and Pb	b) Fe and Hg	c) Fe and C	d) C and Pt
22	Which ore can be best con		=	u) Gunu I t
J L .	a) Malachite	b) Cassiterite	c) Galena	d) Magnetite
33.	The mass of carbon anode	•	•	
JJ.		,= = -	bon aloxide) in the product	Little of 270 Kg UI
	aluminium metal from bau	ixite by the hall process is		
	(Atomic mass of $Al=27$)			

24	a) 180kg	b) 270 kg	c) 540 kg	d) 90 kg
34.		on process is used for the ϵ		15.77
~-	a) Cu	b) Ag	c) Na	d) K
35.	Load stone is one ore of			
	a) Iron	b) Lead	c) Silicon	d) Tin
36.	-	ls forms a volatile compou	nd and this property is take	en advantage for its
	extraction. This metals is			
	a) Cobalt	b) Iron	c) Tungsten	d) Nickel
37.	Carbon reduction is used	for the extraction of:		
	a) Fe	b) K	c) Al	d) None of these
38.	The phenomenon in which	h white transparent crysta	l changes into white powde	r is known as:
	a) Sublimation	b) Allotropy	c) Efflorescence	d) deliquescence
39.	Which is used for the extr	action of cadmium from ca	dmium sulphide?	
	a) Roasting	b) Reduction	c) Oxidation	d) Electrolysis
40.	Formula of magnetite is			
	a) Fe ₃ O ₄	b) Fe ₂ O ₃	c) FeS ₂	d) FeCO ₃
41.	When MnO ₂ is fused with	KOH, a coloured compoun	d is formed, the compound	and its colour is:
	a) K ₂ MnO ₄ , purple green	•	10	
	b) KMnO ₄ , purple			
	c) Mn ₂ O ₃ , brown			
	d) Mn ₃ O ₄ , black			
42.	Which is not a basic flux?			
	a) CaCO ₃	b) CaO	c) SiO ₂	d) MgO
43.	An ore of tin containing Fe	•		-, 8-
	a) Magnetic separation	b) Froth floatation	c) Electrostatic method	d) Gravity separation
44.	Orford process is used in			a) draving separation
	a) Pt	b) Co	c) Fe	d) Ni
45.	•	ely to be found in minerals	•	u) III
10.	a) Sulphate	b) Acetate	c) Chloride	d) Sulphide
46	The second most common		c) dinoride	a) sulpinae
10.	a) Silicon	b) Hydrogen	c) Nitrogen	d) Oxygen
4.7	An ore of tin containing Fe		c) Midogen	u) Oxygen
т/.	a) Electrostatic method		c) Magnetic separation	d) Forth floatation
1.Q		not found free in nature be		uj rorui iloatation
40.	a) Their high b. p.	not round if ce in nature be	cause of.	
	b) Their low b. p.			
	c) Thermal instability			
	d) Their great chemical ac	ativity.		
40	Alloy is an example of:	Livity		
47.	a) Gel	h) Agragal	a) Calid aal	d) Emulsion
ΕO		b) Aerosol	c) Solid sol	d) Emulsion
50.		b) 11~	a) C.,	d) 7 ₂₂
F1	a) Pb	b) Hg	c) Cu	d) Zn
51.	Which element occurs in f		a) Dt	J) M:
- 2	a) Fe	b) Co	c) Pt	d) Ni
52.	-	is used for the extraction of	metals, whose oxides are:	
	a) Fusible	1		
	b) Not easily reduced by c			
	c) Not easily reduced by h	nyarogen		
	d) Strongly basic			
53.	Bauxite ore is concentrate	ed by		
	a) Froth floatation		b) Electromagnetic separa	ation

	c) Chemical separation		d) Hydraulic separation	
54.	Which process is used for			
	a) Process of removal of in	-		
	b) Process of heating ore a	= = =		
	c) Extraction of metal from	n ore		
	d) None of the above			
55.	Extraction for zinc from zi	nc blende is achived by		
	a) Electrolytic reduction			
	b) Roasting following by r	eduction with carbon		
	c) Roasting followed by re	eduction with another meta	al	
	d) Roasting followed by se	elf-reduction		
56.	Auto-reduction process is	used in the extraction of		
	a) Cu and Hg	b) Zn and Hg	c) Cu and Al	d) Fe and Pb
57.	Thomas slag is			
	a) $Ca_3(PO_4)_2.2H_2O$	b) $Ca_3(PO_4)_2$. $CaSiO_3$	c) MgSiO ₃	d) CaSiO ₃
58.	Metals are good conductor	rs of electricity because the	ey contain	V
	a) Ionic bonds		b) A network structure	
	c) Very few valence electr	ons	d) Free electrons	
59.	Liquation is used to purify	7:	19	
	a) Hg	b) Sn	c) Bi	d) All of these
60.	The most abundant metal	in the earth crust is:		
	a) Na	b) Ca	c) Al	d) Fe
61.	Which of the elements list	ed below shows allotropic	forms?	
	a) Iodine	b) Copper	c) Sulphur	d) Silver
62.	Following method is not u	· · · · · · · · · · · · · · · · · · ·		
	a) Van Arkel	b) Serpeck	c) Baeyer	d) Hall-Heroult
63.	Indian saltpetre is:		, ,	,
	a) KNO ₂	b) KNO ₃	c) NaCl	d) Na ₂ CO ₃
64.	Poling process is used:		,	, , ,
	a) For the removal of Cu ₂ (O from Cu		
	b) For the removal of Al ₂ C			
	c) For the removal of Fe ₂ (
	d) In all of the above			
65.	Sperrylite is:			
	a) AgCl	b) PtAs ₂	c) Fe ₂ O ₃	d) SnO ₂
66.	The substance added in w	, -		, 2
	a) Pine oil	b) Coconut oil	c) Soap powder	d) None of these
67.	The region in which metal	=	= = =	,
	a) Atomophil	b) Lithophil	c) Calcophil	d) Sidrophil
68.	In the manufacture of iron			, 1
	a) Flux	b) Slag	c) A reducing agent	d) An oxidising agent
69.	On heating a mixture of Cu	, ,	, 0 0	, 00
	a) Cu + SO ₂	b) Cu + SO ₃	c) CuO + CuS	d) Cu ₂ SO ₃
70.	Cassiterite is an ore of	2) 22 . 223	·, · · · · · · · · · · · · · · · · · ·	1) 21/2003
,	a) Sb	b) Mn	c) Sn	d) Ni
71.	In the metallurgical extrac	•	•	- y - · -
	a) Nitric oxide	b) Sulphur dioxide	c) Carbon monoxide	d) Carbon dioxide
72.	Zinc blende (an ore) is:	, p	.,	. ,
	a) ZnO	b) ZnCO ₃	c) ZnS	d) Zn ₂ OCl ₂
73	From gold amalgam, gold	, ,	-,	,22
	a) Addition of Zn metal	. j = 1 = 100 + 01 04 0 j ·		

	b) Electrolytic refining			
	c) Distillation			
	d) Dissolving Hg in HNO ₃			
74.	The lightest metal is:			
	a) Li	b) Mg	c) Ca	d) Na
75.	Calamine is			
	a) CaCO ₃		b) MgCO ₃	
	c) ZnCO ₃		d) $CaCO_3 + CaO$	
76.	In the metallurgy of iron,	when lime stone is added to	o the blast furnace, the calc	rium ions are removed as
	a) Slag	b) Gangue	c) Metallic Ca	d) CaCO ₃
77.	Mond's process is used for	, ,		
	a) Ni	b) Ti	c) Zr	d) Hg
78.	Which contains both Ca an	•	,	, ,
	a) Lime stone	b) Dolomite	c) Chalk	d) Felspar
79	Calcination and roasting a	=	of chair.	w) i diapany
, , ,	a) Different names of the			
	b) Used for the purification	-		
	c) Usually carried out in r		4 \ 1	
	d) Employed for the conce	•		
on		the formation of thin film o	of on its surface	
ου.	a) Oxide	b) Carbonate	c) Nitride	d) Uudrovido
01		•	c) Nititue	d) Hydroxide
81.	Which of the following sta		h) What bloods are into some	
	a) Silver glance mainly co	-	b) Zinc blende mainly con	
00	c) Gold is found in native		d) Copper pyrites also cor	
82.			olysis of the aqueous soluti	
00	a) Cu	b) Ag	c) Mg and Al	d) Cr
83.	The sand stone in some ir		N. * .	
	a) Carbon filters	b) Compressed air	c) Lime stone	d) Sulphuric acid
84.	Copper pyrites is concent	rated by		
	a) Gravity method		b) Forth floatation proces	S
	c) Electromagnetic method		d) All of these	
85.	The chief impurity presen			
	a) SiO ₂	b) Fe ₂ O ₃	c) K_2SO_4	d) NaF
86.	Which does not contain al			
	a) Bauxite	b) Emery	c) Rutile	d) Corundum
87.		ances from which a metal c	an be profitably (or econor	mically) extracted are
	called			
	a) Ores	b) Mineral	c) Salts	d) Gangue
88.	Ferric oxide in blast furna	ce is reduced by:		
	a) C	b) H ₂	c) CO	d) CO ₂
89.		d in the metallurgy of:		
	a) Copper	b) Silver	c) Lead	d) Iron
90.	Which metal can be purifi	ed by distillation?		
	a) Cu	b) Ag	c) Fe	d) Hg
91.	Lepidolite is an ore of:			
	a) K	b) Na	c) Li	d) All of these
92.	Chalcogens are:			
	a) Hydrocarbons			
	b) Ore forming elements			
	c) Oxide forming element	S		
	d) Those having ability to			

93.	In the Hall's process for ex	straction of Al, the ore is fu	sed with:	
	a) NaHCO ₃	b) Na ₂ CO ₃	c) NaF	d) Na ₃ AlF ₆
94.	Antimony occurs mainly in	n form of:		
	a) Sulphide	b) Stibnite	c) Realgar	d) Fluoropatite
95.	An important ore of iron is	S	, ,	
	a) Pyrites	b) Malachite	c) haematite	d) Siderite
96.	Barytes, an ore is:			,
	a) BeSO ₄	b) BeCl ₂	c) BaSO ₄	d) BaCl ₂
97.	Thermite is a mixture of	, 2	, ,	
	a) Fe powder and Al ₂ O ₃		b) Al powder and Fe ₂ O ₃	
	c) Cu powder and Fe ₂ O ₃		d) Zn powder and Cr ₂ O ₃	
98.		l, carbon dioxide is given of		ırgy is known as:
	a) Smelting	b) Ore-dressing	c) Calcination	d) Roasting
99.	Heating mixture of Cu ₂ O a	,	-,	,
	a) Cu ₂ SO ₃	b) CuO + CuS	c) $Cu + SO_3$	d) $Cu + SO_2$
100.	, - 0	s of an element. One gram of	,	2
100.	a) Oxidation number	o or an element one gram (or in will diller from one gre	
	b) Chemical composition		4//	
	c) Total number of atoms			
	d) Atomic arrangement			
101	Which represents calcinat	ion?		
101.	a) $2Ag + 2HCl + [0] \rightarrow 2$			
	b) $2\text{Zn} + 0_2 \rightarrow 2\text{Zn}0$	ngur ingu		
	c) $2ZnS + 3O_2 \rightarrow 2ZnO +$. 250	A. V.	
	d) $MgCO_3 \rightarrow MgO + CO_2$	2302	X Y Y	
102		ance obtained during extra	action of	
102.	a) Cu	b) Fe	c) Pb	d) Al
103		presents a method of purifi		u) Ai
103.			ication of micker by,	
	$Ni + 2CO \xrightarrow{320K} Ni(CO)_4 \xrightarrow{42}$			
	Impure	Pure		
	This method is:			
	a) Cupellation	b) Mond's process	c) Van Arkel method	d) Zone refining
104.	Softening of lead means:	X Y		
	a) Conversion of lead into	PbO		
	b) Conversion of lead into	Pb_3O_4		
	c) Removal of metallic im	purities from lead		
	d) Washing lead with HNO) ₃ followed by dilute alkali	solution	
105.	Which is not a mineral of a	aluminium?		
	a) Corundum	b) Anhydrite	c) Diaspore	d) Bauxite
106.	A common metal used as a	eductant for the extraction	of metals from their oxide	es is:
1	a) Cr	b) Al	c) Co	d) Fe
107.	Extraction of Ag from com	mercial lead is possible by	:	
	a) Parke's process	b) Clarke's process	c) Pattinson's process	d) Electrolytic process
108.	Which set of elements is c	alled chalcogens?		
	a) Cl, Br, I	b) 0, S, Se	c) N, P, As	d) C, Si, Ge
109.	Apatite is an ore of			
	a) Fluorine	b) Chlorine	c) Bromine	d) iodine
110.	Pentalandite is an ore of:	-	-	-
	a) Fe	b) Co	c) Cu	d) Ni
	Which element is present		-	-

a) U	b) Ce	c) Ba	d) Mg
112. In alumino-thermite proc			
a) Reducing agent	b) Oxidizing agent	c) Solder	d) Flux
113. The existence of two or m			
a) Polymorphism	b) Isomerism	c) Homologues	d) Isomorphism
114. Forth floatation process f			= = = =
a) Adsorption	b) Sedimentation	c) Coagulation	d) Absorption
115. In blast furnace, the cup a	-	ed:	
a) To escape the gases du			
b) Not to allow the escape	-		\wedge
c) To heat the charge with	n tne gases		4 7
d) None of the above	. J		A
116. Stainless steel has iron an		a) Ca	d) 7%
a) Cr	b) Cu	c) Co	d) Zn
117. Blood haemoglobin conta		a) Cu	d) Fo
a) Al	b) Mg	c) Cu	d) Fe
118. Cyanide process is used in a) Au	b) Cu	c) Ag	d) Both (a) and (c)
119. Alloy formation gives rise	•	C) Ag	(u) both (a) and (c)
a) Decrease in corrosion	: 10.		
b) Increase in hardness			
c) Decrease in conductivi	tv		
d) All are correct	cy		
120. Which metal occurs in fre	e state?		
a) Ag	b) Au	c) Pt	d) All of these
121. Platinum, palladium, indi	,	etals because:	.,
a) Alfred nobel discovere			
b) They are inert towards			
	ous and pleasing to look at		
d) They are found in nativ	ve state		
122. Match the extraction prod	cess listed in column I with	metals listed in column II.	
Column I	Column II		
A. Self reduction	(P) Lead		
B. Carbon reduction	(Q) Silver		
C. Complex formation and	l (R) Copper		
displacement by metal			
D. Decomposition of iodic			
a) $A - P$, R ; $B - R$, Q ; $C -$			
b) $A - P, R; B - P, R; C -$			
c) $A - P, R; B - S; C - P;$			
d) $A - P, Q; B - R, P; C -$			
123. Mercury is transported in		=	
a) Fe	b) Pb	c) Zn	d) Sn
124. Which is not a mineral?			
a) Mica	b) Peat	c) Quartz	d) Felspar
125. Slag coming out at the both		=	=
a) Roads	b) Fertilizers	c) Plastics	d) Glass moulds
126. The process in which ore		= =	J) D:-#11-#
a) Roasting	b) Calcination	c) Reduction	d) Distillation
127. When pyrolusite is fused	-		d) Dla als
a) Pink	b) Green	c) Red	d) Black

128.	•	the purification of Al meta		17 11 .11/2	
120	a) Hoop's process Which is incorrect as the	b) Baeyer's processuses of lime stone in indust	c) Serpek's process	d) Hall's process	
149.	a) For making cement	uses of fiffie stoffe in fiffuust	ries are concerneu:		
	b) In the extraction of Sn from its ore				
	c) In the extraction of Fe				
	d) In the manufacture of g				
130	•	ing of metals is based on th	e nrincinle of		
150.		er of the solid metal than tha	= =		
	=	e impurity in the molten sta	-		
		pure metal than that of im			
	-	f the impurity that of the pu	= -		
131.	. Main ore of aluminium is:	= = =		A . Y	
	a) Cryolite	b) Kaolin	c) Bauxite	d) Felspar	
132.	Which of the following is	•			
	a) Pyrolusite	b) Diaspore	c) Cassiterite	d) Malachite	
133.	Which of the following m	ineral does not contain Al?			
	a) Fluorspar	b) Cryolite	c) Mica	d) Feldspar	
134.	. An essential constituent o	of amalgam is:	18		
	a) Au	b) Ag	c) Al	d) Hg	
135.	Mispickel is the ore of:				
	a) Sb	b) Bi	c) P	d) As	
136.	Forth floatation method i	s successful in separating ir	npurities from ores becaus	se	
	a) The pure ore is soluble	e in water containing additi	ves like pine oil, cresylic ac	rid etc	
	b) The pure ore is lighter	than water containing addi	tives like pine oil, cresylic	acid, etc	
	c) The impurities are solu	uble in water containing ad	ditives like pine oil, cresyli	c acid, etc	
	d) The pure ore is not eas	sily wetted by water as by p	ine oil, cresylic acid, etc		
137.	. Which among the following	ng has highest electrical co	nductivity?		
	a) Zn	b) Fe	c) Ag	d) Cu	
138.		atements regarding the me	tallurgy of magnesium usin	ng electrolytic method is not	
	correct?				
		um chloride containing a lit	tle of NaCl and NaF		
	b) Air tight iron pot acts a				
	,	the atmosphere of coal gas			
400		néavier than the electrolyte			
139.		e ore strongly in excess of a	ar so that the volatile impu	irities are removed and the	
	ore is changed to oxide is		a) Calabarda a	D.F. and G. and C.	
140	a) Leaching	b) Roasting	c) Calcinations	d) Froth floatation	
140.		of copper, the reaction takin	ig place in the bessemer co	invertor is:	
	a) $Cu_2S + 2Cu_2O \rightarrow 6Cu$ b) $Cu_2O + FeS \rightarrow Cu_2S +$	-			
7		reo			
	c) FeO + SiO ₂ \rightarrow FeSiO ₃ d) None of the above				
141		the extraction of metals fro	om thair culphida orac?		
141.	a) Electrolysis	b) Metal displacement	c) Smelting	d) Roasting	
142	•	pasted in excess if air, a mix	, 0	, ,	
174.		emoved as slag during reduce		=	
	a) SiO ₂ which is an acid fl		b) Lime stone, which is a	=	
	c) SiO ₂ , which is basic flux		d) CaO, which is basic flux		
143	. CaO act as flux	•	a, dao, winen is basic llus		
_ 10	a) Neutral	b) Acidic	c) Basic	d) Both (a) and (b)	
				• • • • • • • • • • • • • • • • • • • •	

144.	Electrolysis of fused carna	allite gives:		
	a) Mg	b) K	c) K and CO ₂	d) K, Mg and Cl ₂
145.	Wolframite ore is separat	ed from tin stone ore by th	e process of	
	a) Calcination	b) Electromagnetic	c) Roasting	d) Smelting
146.	Iron ores are dressed by:			
	a) Froth floatation proces	SS		
	b) Magnetic separation			
	c) Hand picking			
	d) All of the above			
147.	The electrolytic reduction	technique is used in the ex	xtraction of:	(V
	a) Highly electronegative	elements		
	b) Highly electropositive	elements		
	c) Metalloids			
	d) Transition metals			
148.	Iron is obtained on large s	scale from Fe ₂ O ₃ by:		
	a) Reduction with CO	b) Reduction with Al	c) Calcination	d) Passing H ₂
149.	The lining in blast furnace	e are made up of:	. (4	Y
	a) Graphite	b) Silica	c) Fireclay bricks	d) CaCO ₃
150.	The cyanide process is us	ed for obtaining		
	a) Cu	b) Na	c) Zn	d) Ag
151.	Refractory materials are u	used for the construction of	f furnaces because they:	
	a) Are light in weight			
	b) Can stand with high ter	mperature		
	c) Are leak proof	4		
	d) Do not require to be re	-		
152.	-		er pyrite in Bessemer conv	
	a) $Cu_2S + 2Cu_2O \rightarrow 6Cu$		b) $4Cu_2O + FeS \rightarrow 8Cu +$	•
	c) $2Cu_2O + FeS \rightarrow 4Cu +$	_	d) $Cu_2S + 2FeO \rightarrow 2Cu +$	$2FeCO + SO_2$
153.	Beryl is an important ore			
	a) Boron	b) Beryllium	c) Lead	d) Lithium
154.	Smelting is done in:			
	a) Blast furnace	b) Muffle furnace	c) Open hearth furnace	d) Electric furnace
155.		iferrous lead is purified by:		
	a) Distillation	b) Froth floatation	c) Cupellation	d) Reacting with KCN
156.			ntaining oxides that cannot	be reduced by carbon to
	give the respective metals) T. O. T. O.	
455	a) Cu ₂ O, K ₂ O	b) PbO, Fe ₃ O ₄	c) Fe ₂ O ₃ , ZnO	d) CaO, K ₂ O
15/.	Which metal can be found		.) C.	D г.
150	a) Na	b) Al	c) Ca	d) Fe
158.		irs of metals is purified by		d) A = d A
150	a) Ni and Fe	b) Ga and In	c) Zr and Ti	d) Ag and Au
159.	Which of the following is		.) pl.	1) II
160	a) U	b) Ra	c) Pb	d) Hg
160.	Iron is made inactive or p		.) C II CO	Del IINO
1.61	a) H ₃ PO ₄	b) Conc. HNO ₃	c) Conc. H ₂ SO ₄	d) Dil. HNO ₃
161.	Kiesserite is an ore of:	15.41) M	D II
1(2	a) Cu	b) Al	c) Mg	d) Fe
162.	Smelting is the reduction		a) II	d) Eleatric august
162	a) C	b) Al	c) H	d) Electric current
163.	Which of the following is		a) Di	4) CP
	a) P	b) As	c) Bi	d) Sb

sulphide ores offers an exception and is concentrated by leaching? a) Galena b) Copper pyrite c) Sphalerite d) Argentite 165. Which consists of only one element?	
165. Which consists of only one element?	
· · · · · · · · · · · · · · · · · · ·	
a) Markla b) Cand a) Diamand d) Class	
a) Marble b) Sand c) Diamond d) Glass	
166. Impurities physically associated with minerals are:	
a) Slag b) Flux c) Alloy d) Matrix	
167. One of the fertilizer is:	
a) CaC ₂ b) CaCO ₃ c) CaCN ₂ d) CaSO ₄	
168. In the commercial electrochemical process for aluminium extraction, electrolyte used is: a) Al(OH) ₃ in NaOH solution	
b) An aqueous solution of $Al_2(SO_4)_3$	
c) A molten mixture of Al_2O_3 and Na_3AlF_6	
d) A molten mixture of Al_2O_3 and $Al(OH)_3$	
169. Which element is found in human body?	
a) Pb b) Fe c) Cd d) Al	
170. Flux is used to remove	
a) Acidic impurities b) Basic impurities	
c) All impurities from ores d) From ores	
171. Which statement is correct?	
a) Slag are carefully choosen to combine with the slag present in the ore to produce easily fusible gang	gue
to carry away the impurities	
b) Gangues are carefully choosen to combine with the slag present in the ore to produce easily fusible	flux
to carry away the impurities	
c) Gangues are carefully choosen to combine with flux present in the ore to produce easily fusible slag	to
carry away the impurities	
d) Fluxes are carefully choosen to combine with the gangue present in the ore to produce easily fusible	е
slag to carry away the impurities	
172. Thermite process is used in reduction of	
a) Crl ₂ O ₃ b) Al ₂ O ₃ c) pbo ₂ d) CuO	
173. Froth floatation process for the concentration of ores is a practical application of:	
a) Adsorption b) Absorption c) Coagulation d) Sedimentation	
174. The main constituent of steel in India are:	
a) Ni and Mg b) V and Co c) Al and Zn d) Mn and Cr	
175. Which is not employed for refining of metal?	
a) Poling b) Leaching c) Electrolysis d) Liquation	
1/6. In electroffning of copper, some gold is deposited as	
176. In electrofining of copper, some gold is deposited as a) Cathode	
a) Cathode b) Electrode c) Cathode mud d) Anode mud	
a) Cathode b) Electrode c) Cathode mud d) Anode mud 177. Electric furnaces are lined with magnesia because:	
a) Cathode b) Electrode c) Cathode mud d) Anode mud 177. Electric furnaces are lined with magnesia because: a) It is not affected by acids	
a) Cathode b) Electrode c) Cathode mud d) Anode mud 177. Electric furnaces are lined with magnesia because: a) It is not affected by acids b) It liberates oxygen on heating	
a) Cathode b) Electrode c) Cathode mud d) Anode mud 177. Electric furnaces are lined with magnesia because: a) It is not affected by acids b) It liberates oxygen on heating c) It melts at very high temperature	
a) Cathode b) Electrode c) Cathode mud d) Anode mud 177. Electric furnaces are lined with magnesia because: a) It is not affected by acids b) It liberates oxygen on heating c) It melts at very high temperature d) It has no effect of electricity	'e:
 a) Cathode b) Electrode c) Cathode mud d) Anode mud 177. Electric furnaces are lined with magnesia because: a) It is not affected by acids b) It liberates oxygen on heating c) It melts at very high temperature d) It has no effect of electricity 178. When the sample of Cu with Zn impurity is to be purified by electrolysis, the appropriate electrodes at the control of the cont	e:
 a) Cathode b) Electrode c) Cathode mud d) Anode mud 177. Electric furnaces are lined with magnesia because: a) It is not affected by acids b) It liberates oxygen on heating c) It melts at very high temperature d) It has no effect of electricity 178. When the sample of Cu with Zn impurity is to be purified by electrolysis, the appropriate electrodes at Cathode Anode 	·e:
a) Cathode b) Electrode c) Cathode mud d) Anode mud 177. Electric furnaces are lined with magnesia because: a) It is not affected by acids b) It liberates oxygen on heating c) It melts at very high temperature d) It has no effect of electricity 178. When the sample of Cu with Zn impurity is to be purified by electrolysis, the appropriate electrodes at Cathode Anode a) Pure Zn Pure Cu	·e:
a) Cathode b) Electrode c) Cathode mud d) Anode mud 177. Electric furnaces are lined with magnesia because: a) It is not affected by acids b) It liberates oxygen on heating c) It melts at very high temperature d) It has no effect of electricity 178. When the sample of Cu with Zn impurity is to be purified by electrolysis, the appropriate electrodes at Cathode Anode a) Pure Zn Pure Cu b) Impure sample Pure Cu	'e:
a) Cathode b) Electrode c) Cathode mud d) Anode mud 177. Electric furnaces are lined with magnesia because: a) It is not affected by acids b) It liberates oxygen on heating c) It melts at very high temperature d) It has no effect of electricity 178. When the sample of Cu with Zn impurity is to be purified by electrolysis, the appropriate electrodes at Cathode Anode a) Pure Zn Pure Cu b) Impure sample Pure Cu c) Impure Zn Impure sample	·e:
a) Cathode b) Electrode c) Cathode mud d) Anode mud 177. Electric furnaces are lined with magnesia because: a) It is not affected by acids b) It liberates oxygen on heating c) It melts at very high temperature d) It has no effect of electricity 178. When the sample of Cu with Zn impurity is to be purified by electrolysis, the appropriate electrodes at Cathode Anode a) Pure Zn Pure Cu b) Impure sample Pure Cu	'e:

180. Correct statement is				
a) van-Arkel method is used for extraction of Zr	b) Limestone is acidic flu	ux		
c) Dolomite is an ore of Al	d) Willemite is carbonat	e ore		
181. Which one of the following ores is best concentrate	d by forth-floatation metho	od?		
a) Magnetite b) Cassiterite	c) Galena	d) Malachite		
182. Boron is found in form of:	-	-		
a) Borax b) Colemanite	c) Both (a) and (b)	d) None of these		
183. Extraction of silver from its ore ore involving NaCN	, , , , ,	-		
a) Pattinson's method	,			
b) Amalgamation method				
c) Mc Arthur-Forest method				
d) Parke's method				
184. Heating of ore in presence of air to remove impurit	v of sulphur is called:	A Y		
a) Calcination b) Roasting	c) Smelting	d) None of these		
185. The ore concentrated by electromagnetic separatio	,	d) None of these		
a) Wolframite b) Haematite	c) Casseterite	d) All of these		
-	c) casseterne	u) An of these		
186. Which process represents the change,				
$Ti + 2I_2 \rightarrow TiI_4 \rightarrow Ti + 2I_2$?	a) Dalina	1) 7		
a) Cupellation b) Van Arkel	c) Poling	d) Zone refining		
187. Liquid crystals are best used in:) T .	15 / 1		
a) Colour TV b) Crystallization	c) Extraction	d) e/m determination		
188. In the metallurgy of zinc, the zinc dust obtained	from roasting and reducti	on of zinc sulphide contains		
some ZnO. It is removed by:				
a) Absorbance of ultraviolet light and reemission of				
b) Shock cooling by contact with a shower of molte	n lead			
c) X-ray method				
d) Smelting				
189. High purity copper metal is obtained by:				
a) Carbon reduction b) Hydrogen reduction	c) Electrolytic reduction	d) Thermite process		
190. In metallurgy, flux is a substance used to convert				
 a) Soluble impurities to insoluble impurities 	b) Infusible impurities to	o fusible material		
c) Fusible impurities to infusible impurities	d) Mineral into silicate			
191. Gold is found usually nearmineral.				
a) Mica b) Felspar	c) Quartz	d) Galena		
192. The smelting of iron in a blast furnace involves all t	he steps except:			
a) Reduction b) Fusion	c) Decomposition	d) Sublimation		
193. The metal that is extracted from sea water is:				
a) Na b) Ca	c) Mg	d) Sn		
194. Wulfenite (a yellow-red mineral) having waxy lustr	re occur in lead ores, is an i	mportant source of:		
a) Sulphur b) Molybdenum	c) Helium	d) Lead		
195. The forth-floatation process is based upon				
a) The difference in the specific gravity of ore and g	gangue particles			
b) The magnetic properties of gangue and ore				
c) Preferential wetting of gangue perticles by oil				
d) The solubility of ore particles in suitable regent				
196. Pig iron is converted into steel by decreasing the ar	nount of carbon contained	in it. in a:		
a) Blast furnace b) Pyrite burner	c) Bessemer converter	d) None of these		
197. Plumbo-solvency refers to:	,	,		
a) Oxidation of lead to lead oxide				
b) Oxidation of lead to red lead				
c) Dissolution of lead in water containing air				
-, -10001401011 01 1044 111 Tracer containing an				

	d) Making lead wires by forcing heated metal through a die				
198.	Zinc is obtained on large s	-			
	a) Electrolysis of ZnCl ₂	b) Reduction of ZnO	c) Precipitation with Ag	d) All are correct	
199.	Which of the following sub	ostances can be used for dr	ying gases?		
	a) CaO	b) NaHCO ₃	c) CaCO ₃	d) Na ₂ CO ₃	
200.	Refractory materials are g	enerally used in furnaces b	oecause		
	a) They can withstand hig	h temperature	b) They are chemically ine	ert	
	c) They do not require rep	olacement	d) They possess great stru	ctural strength	
201.	Presence of small impurity	y usually makes a metal qu	ite hard because the impur	ities:	
	a) Change the lattice struc	ture of metals			
	b) Reduce the number of s	slide planes			
	c) Reduce the number of r	nobile electrons			
	d) Reduce the crystal sym	metry			
202.	Willemite is				
	a) Zn ₂ SiO ₄	b) H ₂ ptCl ₆	c) ZnO	d) ZnOFe ₂ O ₃	
203.	The least stable oxide at re	oom temperature is:			
	a) ZnO	b) CuO	c) Sb_2O_3	d) Ag ₂ 0	
204.	The process of removal of	gangue particles from ores	s is known as:		
	a) Concentration	b) Refining	c) Smelting	d) None of these	
205.	The process of calcination	and roasting are carried o	ut in:		
	a) Blast furnace	G			
	b) Muffle furnace				
	c) Reverberatory furnace				
	d) Open hearth furnace				
206.	Which is not essential for	rusting?			
	a) Oxygen	b) Water	c) Carbon dioxide	d) Iron	
207.	Which of the following do	•			
	a) Kaoline	b) Agate	c) Ruby	d) Quartz	
208.	The salt which is least like	ly to be found in minerals i	is:		
	a) Chloride	b) Sulphate	c) Sulphide	d) Nitrate	
209.	Heating of pyrite ores in a		own as:		
		b) Fluxing	c) Smelting	d) Roasting	
210.	Leaching is a process of:				
	a) Reduction	b) Concentration	c) Refining	d) Oxidation	
211.	Colemanite is	Y			
	a) $Ca[B_3O_4(OH)_2].2H_2O$		b) $Ca_2B_6O_{11}$. $5H_2O$		
	c) Ca(OH) ₂		d) $Na_2B_4O_7$. $2H_2O$		
212.	The ore that is concentrat	ed by forth floatation proc	ess is		
	a) Zincite	b) Cinnabar	c) Bauxite	d) malachite	
213.	Which one of the following	g ores is a chloride?	•	•	
	a) Bauxite	b) Horn silver	c) Zincite	d) Felspar	
214.	An example of an oxide is	•	•		
	a) Zinc blende	b) Bauxite	c) Feldspar	d) Malachite	
215.	The chemical composition	=			
	a) KCl·MgCl ₂ ·6H ₂ O	b) MgSO ₄ · 7H ₂ O	c) $MgCO_3 \cdot 7H_2O$	d) MgCO ₃	
216.	Which is not a silver ore?	, , , ,	, , , , , , , , , , , , , , , , , , , ,	, 0 3	
	a) Argentite	b) Siderite	c) Horn silver	d) Ruby silver	
217.	Blast furnace is used in the		-		
	a) Al	b) Fe	c) Gold	d) Ag	
218.	Corundum is			-	
	a) Cu ₂ Cl ₂	b) CaCl ₂	c) SrO ₂	d) Al ₂ O ₃	

219. An alloy is:		
a) Intermetallic compound		
b) A solid substance containing two or more elections	ments	
c) A solid which contains one non-metal		
d) A solid which contains more than one non-me	etal	
220. Which of the following is not ore?		
a) Zinc blende b) Malachite	c) Bauxite	d) Pig iron
221. Cryolite is		, 0
a) Sodium borofluride	b) Magnesium silicate	
c) Aluminium	d) Sodium aluminium f	luoride
222. In the thermite process the reducing agent is:	.,	
a) C b) Al	c) Na	d) Mg
223. Which is not an ore of lead?	,	
a) Galena b) Cassiterite	c) Anglesite	d) Cerussite
224. Which is not an ore of nickel?	e, mg.ee.ee	2) 00 200 10
a) Nickel glance b) Garnerite	c) Haematite	d) Pentlandite
225. The ore magnesite is:	ej maemaeree	a) i entianate
a) $MgCO_3 \cdot CaCO_3$ b) $MgCl_2 \cdot KCl \cdot 6H_2O$	c) MgSO ₄ · 7H ₂ O	d) MgCO ₃
226. In blast furnace, the highest temperature is in	c) 11g504 71120	uj Mgdog
a) Fusion zone b) Reduction zone	c) Combustion zone	d) Slag zone
227. Which one of the following is correct?	c) combustion zone	u) Slag Zolic
a) All minerals are ores	b) All ores cannot be a	minoral
c) A mineral cannot be an ore	d) All ores are minerals	
228. Furnaces are lined with calcium oxide because:	uj Ali oles ale lililerais)
a) It gives off oxygen on heating		
b) It gives bill oxygen bill heating		
c) It is refractory and basic		
d) It is not affected by acids		
229. Lepidolite, a lithium ore, also contains:		
a) Ru b) MgSO ₄	c) Na	d) Cs
230. Gold when dissolved in aqua-regia gives:	C) Na	u) Cs
a) Auric chloride b) Aurous chloride	c) Chloroauric acid	d) Tempering
231. Specific gravity of slag is:	c) chiloroadi ic acid	u) Tempering
a) Always higher than molten metal		
b) Always ligher than molten metal		
c) Same as that of molten metal		
d) None of the above		
232. The correct statement is:		
a) Dolomite is the ore of zinc		
b) Galena is the ore of mercuryc) Pyrolusite is the ore of iron		
d) Cassiterite is the ore of tin		
233. Which is known as blister copper?	a) Ore of corner	d) Allow of goppor
a) Pure copper b) 98% copper	c) Ore of copper	d) Alloy of copper
234. Which of the following ore is not concentrated b	= =	d) Connor numitos
a) Pyrolusite b) Pentlandite	c) Zinc blende	d) Copper pyrites
235. The metal extracted by leaching with cyanide is:		d) No
a) Mg b) Ag	c) Cu	d) Na
236. Dollucite is an ore of:	-) W	4) C-
a) Li b) Rb	c) K	d) Cs
237. Which is statement is incorrect?		

	a) Galena is an ore of Pb			
	b) Electrostatic separation	-		
		above its melting point in r	oasting	
	d) Silica acts as acidic flux	, ,		
238.	Anglesite is an ore of:			
	a) Cd	b) Ni	c) Sb	d) Pb
239.	Froth floatation process is	s based on:		
	a) Wetting properties of o	ore particles		
	b) Specific gravity of ore p	particles		
	c) Magnetic properties or	ore particles		
	d) Electrical properties of	ore particles		
240.	In froth floatation process	s many chemicals (frother, o	collector, activator and dep	pressant) are used. Which is
	called a frother?			
	a) CuSO ₄	b) NaCN + alkali	c) Pine oil	d) Potassium xanthate
241.	Which metal is used as a r	educing agent in smelting?		
	a) C	b) Al	c) Zn	d) None of these
242.	Calamine is an ore of:		CA	Y
	a) Hg	b) Zn	c) Cd	d) Ca
243.	The furnace which provid	es the highest temperature	is:	
	a) Blast furnace			
	b) Reverberatory furnace			
	c) Electrical furnace			
	d) Muffle furnace			
244.	After partial roasting, the	sulphide of copper is reduc	ed by:	
	a) Cyanide process			
	b) Electrolysis		>	
	c) Reduction with carbon			
	d) Self reduction	.0.7		
245.	Roasting is used in the ext	traction of:		
	a) Galena	b) Iron pyrite	c) Copper glance	d) All of these
246.	An ore of potassium is		, ,,	
	a) Cryolite	b) Bauxite	c) Carnallite	d) Dolomite
247.	Metals occur in the native		•	
	a) High electronegativity			
	b) High reactivity	Y		
	c) Low reactivity			
	d) Low density			
248.	Purpose of smelting of an	ore is		
	a) To oxidize it		b) To remove vaporisation	n impurities
	c) To reduce it		d) To obtain an alloy	-
	Oxidation method is used	for refining of:		
~	a) Pb	b) Cu	c) Hg	d) All of these
250.	From which form of iron,	other forms of iron can be j		,
	a) Cast iron	b) Wrought iron	c) Pig iron	d) Steel
251.	Aluminium is extracted by	, ,	, 0	
	a) Bauxite	, ,		
	b) Alumina			
	c) Molten cryolite			
	d) Alumina mixed with cry	volite		
252	The most abundant eleme			
	a) 0	b) Si	c) H	d) C
	_	_	_	-

253	. Among the following stat	ements, the incorrect one is	5	
	a) Calamine and siderite	are carbonates	b) Malachite and azurite a	are ores of copper
	c) Argentite and cuprite	are oxides	d) Zinc blende and pyrites	s are sulphides
254	. Roasting is generally cari	ried out in case of:		
	a) Oxide ores	b) Sulphide ores	c) Silicate ores	d) Carbonate ores
255	. Chile saltpetre is the ore	of:		
	a) Mg	b) K	c) Na	d) Ca
256	. Nickel is purified by ther	mal decomposition of its:		
	a) Hydride	b) Chloride	c) Azide	d) Carbonyl
257	. Which element occurs fre	eely in nature?		\sim
	a) Iodine	b) Sulphur	c) Phosphorus	d) Magnesium
258	. To dissolve argentite ore	which of the following is us	sed?	
	a) Na[Ag(CN) ₂	b) NaCN	c) NaCl	d) HCl
259	. The metal used in storage	e batteries is:		
	a) Cu	b) Sn	c) Pb	d) Ni
260	. The process of Zinc -plat	ing on iron sheet is known a	as	V
	a) Annealing	b) Roasting	c) Galvanization	d) smelting
261	. Bronze is a mixture of			
	a) Pb+ Sn	b) Cu+ Sn	c) Cu+Zn	d) Pb+ Zn
262	. Electrolytic reduction of	alumina to aluminium by Ha	all-Heroult process is carri	ed out
	a) In the presence of NaC	1		
	b) In the presence of fluo	rite		
	c) In the presence of cryo	olite which forms a melt wit	h lower melting point	
	d) In the presence of cryo	olite which forms a melt wit	h high melting point	
263	. Bauxite ore is made up of	$fAl_2O_3 + SiO_2 + TiO_2 + Fe_2$	O ₃ This ore is treated with	conc NaOH solution at 500
	K and 35 bar pressure for	r few hours and filtered who	en hot. In the filtrate, the sp	oecies present are
	a) NaAl(OH) ₄ only		b) Na ₂ Ti(OH) ₆ only	
	c) NaAl(OH) ₄ snd Na ₂ SiO	0 ₃ both	d) Na ₂ SiO ₃ only	
264	. In India thorium deposits	s are found mainly in the for	ms of:	
	a) Lignite	b) Rutile	c) Monazite	d) None
265	. The luster of a metal is d	ue to		
	a) Its high polishing		b) Its high density	
	c) Its chemical inertness	X Y '	d) Presence of free electro	ons
266	. Which is the salt of an or	ganic acid?		
	a) Rochelle salt	b) Microcosmic salt	c) Mohr's salt	d) Glauber's salt
267	. An element A dissolves b	oth in acid and alkali. It is a	n example of:	
	a) Allotropic nature of <i>A</i>			
	b) Dimorphic nature of A			
	c) Amorphous nature of A	A		
	d) Amphoteric nature of	A		
268	. Which of the following st	atements about the advanta	ages of roasting of sulphide	e ore before reduction is not
	true?			
	a) $\Delta \mathring{G}_f$ of the sulphide is	greater than CS ₂ and H ₂ S		
	0	sting of sulphide ore to oxid	de	
	,	de to oxide is thermodynam		
	,	are suitable reducing agent	5	
269		nt is more abundant in Indi	=	
20)	a) Thorium	b) Uranium	c) Radium	d) Radon
270	. Which ore contain both in	•	o, manum	u, 1
_,0	a) Cuprite	b) Chalococite	c) Chalcopyrite	d) malachite
	,	-,	-,	,

2/1.	Galella is all ofe of:			
	a) Zn	b) Pb	c) Sn	d) Ca
272.	The process of extraction	of sodium on a commercia	al scale by the electrolysis	of fused sodium chloride is
	called:			
	a) Down's process	b) Solvay process	c) Nelson process	d) Castner process
273.	Before introducing FeO in	blast furnace, it is converte	ed to Fe ₂ O ₃ by roasting so	that:
	a) It may not be removed	as slag with silica		
	b) It may not evaporate in	the furnace		
	c) Presence of it may incre	ease the m. p. of charge		
	d) None of the above			
274.	_	tion is represented by the fo	ollowing equation?	
	$Ti(s) + 2I_2(g) \xrightarrow{523K} TiI_4(g)$	$1 \xrightarrow{1700 \text{K}} \text{Ti}(s) + 2\text{I}_2(g)$		
	a) Cupellation	b) Poling	c) Van Arkel	d) Zone refining
275.	Diaspore is:	, ,		
	a) Al_2O_3 . H_2O	b) Al ₂ O ₃ . 2H ₂ O	c) Al ₂ O ₃	d) Al_2O_3 . $3H_2O$
276.	Formula for agate is	, 2 5 2	, 2 3	, , , ,
	a) Na ₂ SiO ₃	b) K ₂ 0. SiO ₂ . Al ₂ O ₂	c) SiO_2	d) CaF ₂
277.	Spelter is:			, 2
	a) Impure zinc	b) Impure iron	c) Pure zinc	d) Impure Al
278.	. Chloride ore among the fo	•		, 1
	a) Malachite	b) Magnesite	c) Magnetite	d) Rock salt
279.	•	ed for increasing concentra	, , ,	,
	a) Calcite	b) Horn silver	c) Magnesite	d) Haematite
280.	. Ore pitch blende is main s		À	,
	a) Ra	b) Th	c) Mg	d) Ce
281.	. Which one of the following	g is a mineral of iron?		
	a) Pyrolusite	b) Magnetite	c) Malachite	d) Cassiterite
282.	, ,	ted from all the three dolor	•	•
	a) Na	b) K	c) Mg	d) Ca
283.	. A metal which is refined \		, 0	,
	a) Silver		c) Blister copper	d) Zinc
284.	•	hydrated alumina into anh	, ,,	,
	a) Roasting	b) Smelting	c) Dressing	d) Calcination
285.	Sulphide ore is:		3, 333 8	· ,
	a) Copper pyrites	b) Malachite	c) Carnallite	d) Magnetite
286.	Which metal is sometimes		o) durinumo	a) i iagnotito
	a) Al	b) Cu	c) Fe	d) Mg
287.		he flux used for removing a	_	w)0
207	a) Silica	b) Sodium chloride	c) Lime stone	d) Sodium carbonate
288	Which of the following is a		ej mine stone	aj souram car sonace
4	a) Malachite	b) Calamine	c) Satellite	d) Cerussite
289	Thomas slag is:	b) datamine	c) batchite	u) dei ussite
20).	a) Calcium silicate			
	b) Calcium phosphate			
	c) Tricalcium phosphate a	and calcium silicate		
	d) Calcium ammonium ph			
200	. Leaching process is used t			
∠ yU.	a) Ag	b) Au	c) Both (a) and (b)	d) None of these
201	The mineral of copper is:	oj nu	c, both (a) and (b)	a) None of these
<i>□</i> / 1.	a) Azurite	b) Malachite	c) Copper pyrites	d) All of these
	u j 1144111C	D , 1'1414C111C	of anabler barres	4 1 1 111 01 1111111

292. In Goldschmidt aluminothermic process, thermite m a) 3 parts Fe ₂ O ₃ and 2 parts Al b) 3 parts Al ₂ O ₃ and 4 parts Al c) 1 part Fe ₂ O ₃ and 3 parts Al	ixture contains:	
d) 3 parts Fe ₂ O ₃ and 1 part Al	d l Cl	
293. Two compounds having the same crystal structures and large an	-	
a) Isomorphous b) Isotopes	c) Isomers	d) Isobars
294. When a metal is to be extracted from its ore, if the ga	•	
a) A basic flux is needed	b) An acidic flux is needed	
c) Both basic and acidic flux are needed	d) Neither of them is need	iea
295. Blister copper is obtained by:	a) Dalina	d) DaGining
a) Bessemerisation b) Roasting	c) Poling	d) Refining
296. Which is not an ore of magnesium?	-) C	D 14.
a) Carnallite b) Dolomite	c) Gypsum	d) Magnesite
297. Which of the following metal is sometimes found nat		IV II
a) Mg b) Cu	c) Al	d) Fe
298. Match list I with List II and select the correct answer	using the codes given belo	w the lists
List I List II (example)		7
1. Oxide ore A. Feldspar		
2. Sulphide ore B. Barytes		
3. Sulphate ore C. Fluorspar		
4. Halide ore D. Galena		
E. Corundum		
a) 1-A, 2-E, 3-B,4-C b) 1-B,2-D,3-C,4-A	c) 1-B,2-D,3-E,4-A	d) 1-E, 2-D, 3-B,4-C
299. To obtain chromium from chromic oxide (Cr_2O_3), the	e method used is:	
a) Carbon reduction		
b) Carbon monoxide reduction		
c) Alumino thermic process		
d) Electrolytic reduction		
300. In order to refine blister copper, it is melted in a furr	nace and is stirred with gre	en logs of wood. The
purpose is		
a) To expel the dissolved gases in blister copper		
b) To bring the impurities to surface and oxidize the	m	
c) To increase the carbon content of copper		
d) To reduce the metallic oxide impurities with hydr	ocarbon gases liberated fro	om the wood
301. Hydrometallurgy is useful in the extraction of:		
a) Sn b) Al	c) Hg	d) Ag
302. Which is not an iron ore?		
a) Haematite b) Limonite	c) Cassiterite	d) Magnetite
303. In the modern blast furnaces, the charge consists of a	a mixture of	
a) Iron pyrites + bituminous coal	b) Hydrated iron oxides +	-dolomite + coke
c) Calcined iron oxides + limestone + coke	d) Calcined iron oxides +	lime + anthracite coal
304. A substance which reacts with gangue to form fusible	e material is called	
a) Flux b) Slag	c) Catalyst	d) Ore
305. Which process is not used in purification of bauxite?		
a) Hall's method b) Baeyer's method	c) Serpek's method	d) Frankland's method
306. Gallium arsenide is purified by		
a) van-Arkel method	b) Zone-refining method	
c) Electrolytic method	d) Liquation	
307. Which metal is not silver white?	-	

a) Ni	b) Cu	c) Na	d) Sn
308. In the reverberatory fu	rnace:		
a) The flames do not co	ome in contact with the charg	e	
b) The flames come in	contact with the charge		
c) Only hot gases come	e in contact with the charge		
d) The flames are not t	here at all		
309. Silicon is the main cons			
a) Rocks	b) Alloys	c) Animals	d) Plants
310. The grey cast iron cont			
a) Iron carbide	b) Silicon carbide	c) Silicon dioxide	d) Graphite
311. Carnallite is a mineral	_		, 1
a) Na	b) Zn	c) Cd	d) Mg
•	d from its ore galena, an impo	•	
a) Au	b) Ag	c) Cr	d) C
313. Chile salt petre is an or	, ,	- , -	
a) Magnesium	b) Bromine	c) Sodium	d) Iodine
	ms a water soluble complex w		
of	mo a water berabie complem w	Terr a arrace aqueous sorae.	on or waarv in the presence
a) Nitrogen	b) Oxygen	c) Carbon dioxide	d) argon
, ,	while all minerals are not ores		aj argon
a) Minerals are comple		because	
b) The minerals are ob	-		
	e extracted economically from	all the minerals	
d) All of the above are		an the minerals	
•	ities of ores are removed by a	dding	
a) Flux	b) Slag	c) Gangue	d) None of these
=	n stone by heating it in a furn	, ,	d) None of these
a) CaCO ₃	b) CaO	c) Steam	d) Coal
318. Wolframite ore contain		c) steam	uj coai
a) Zn	b) W	c) Hf	d) Au
	product obtained in the puri	_	u) Au
a) Al_2O_3	b) N ₂	c) NH ₃	d) None
320. Copper can be extracte		c) 11113	d) None
a) Dolomite	b) Malachite	c) Galena	d) Kupfer nickel
321. Which element is purif		c) dalella	u) Kupiei mekei
a) Ge	b) Ge and Si	c) Si	d) None of these
322. An important characte	•	c) 31	d) None of these
a) Their hardness	ristic property of illetals is:		
	luat ala atrigity		
b) Their ability to cond	fuct electricity		
c) To form oxides	a common do		
d) The stability of their	_	laga hvv	
	e transformed into metallic g	iass by:	
a) Alloying	-1		
b) Pressing into thin pl			
c) Slow cooling of molt			
	f a spray of the molten metal		
324. Metallurgy is the proce		3.8	15 A 1 10
a) Concentrating the o	re b) Roasting the ore	c) Extracting the metal	d) Adding carbon to the
00 F m)		from the ore	ore in blast furnace
325. The substance not like	-	> 17	D. G. L. L. J.
a) Sea shells	b) Dolomite	c) Marble statue	d) Calcined gypsum

326.	In the formation of Al_2O_3	large amount of heat is evo	olved. This property is used	in:
	a) Deoxidation	b) Confectionary	c) Indoor photography	d) Thermite welding
327.	CO is used in the metallurg	gy of:		
	a) Cu	b) Ni	c) Cr	d) Pt
328.	The electrolytic method of	f reduction is employed for	the preparation of metals	that
	a) Are strongly electropos	itive	b) Are weakly electroposi	tive
	c) Are moderately electro	positive	d) From oxides	
329.	Which substance can be us	=		
	a) CaCO ₃	b) Na ₂ CO ₃	c) CaHCO ₃	d) CaO
330.	, ,		om copper pyrites is compo	
	a) Cu ₂ S	b) SiO ₂	c) CuSiO ₃	d) FeSiO ₃
331.	Matte contains mainly	, 2	, ,	
	a) Cu ₂ S and FeS	b) Cu ₂ S	c) CuS and Fe ₂ S ₃	d) Fe
332.	Which statement is correct	, <u>-</u>	2 3	
	a) All minerals are ores			
	b) A mineral cannot be an	ore	4	
	c) An ore cannot be a min			
	d) All ores are minerals		4/0	
333.	=	ving layers of basic oxides	from metals before electro	plating is called:
	a) Galvanising	b) Anodising	c) Pickling	d) Poling
334.	Radium is obtained from:	,		, 0
	a) Pitch blende	b) Haematite	c) Monazite	d) None of these
335.	Main function of roasting i	•		.,
	a) Oxidation		b) Reduction	
	c) Slag formation		d) To remove volatile sub	stance
336.	Zinc metal is refined by:)	
	a) Crystallisation	b) Sublimation	c) Heating	d) Distillation
337.	Rutile is an ore of:		, 0	,
	a) Ti	b) Zr	c) Mn	d) V
338.	The incorrect statement is		,	,
	a) Calamine and siderite a			
	b) Argentite and and cupr			
	c) Zinc blende and iron py			
	d) Malachite and azurite a	=		
339.	Electrometallurgical proce		alt) is employed to extract:	
	a) Iron	b) Lead	c) Sodium	d) Silver
340.	Which of the following is o	correct?		
	a) Tin stone is magnetic in	n nature	b) Wolframite is non-mag	netic in nature
	c) Wolframeite is FeWO ₄		d) Cassiterite and rutile an	
341.	Which substance is used a	s basic refractory material	in furnace?	
	a) Al_2O_3	b) SiO ₂	c) CaO	d) Fe_2O_3
342.	Cinnabar is:			
	a) CuS	b) Ag ₂ S	c) ZnS	d) HgS
343.	Metal occur in the native f		•	,
	a) High electronegativity		b) High reactivity	
	c) Low reactivity		d) Low density	
344.	•	ing the ore which makes us	se of the difference in densi	ty between ore and
	impurities is called			
	a) Leaching	b) Liquation	c) Levigation	d) Magnetic separation
345.	=		allurgical process of zinc is	
	a) Roasting	b) Smelting	c) Cupellation	d) Calcinations

346.	_	-	_	of pure metal, the cathode,
	=	an aqueous solution of a	complex metal salt. This i	nethod cannot be used for
	refining of:			
	a) Silver	b) Copper	c) Aluminium	d) Sodium
347.	Which metal is extracted by	y electrolytic reduction m	ethod?	
	a) Cu	b) Al	c) Ag	d) Fe
348.	The cheap and high meltin	ng point compound used in	furnace lining is:	
	a) PbO	b) CaO	c) HgO	d) ZnO
349.	In the metallurgy of iron, v	when $CaCO_3$ is added to bla	st furnace, calcium ion app	ears as
	a) Slag	b) Gangue	c) CaO	d) Metallic Ca
350.	Alloys of which metal are	light and strong and are us	ed in the manufacture of ac	eroplanes?
	a) Cr	b) Sn	c) Fe	d) Mg
351.	Which of the following pro	ocesses involves the roasting	ng process?	
	a) $ZnCO_3 \rightarrow ZnO + CO_2$			
	b) $Fe_2O_3 + 3C \rightarrow 2Fe + 3$	CO		
	c) $2PbS + 3O_2 \rightarrow 2PbO +$		4	
	d) Al_2O_3 . $2H_2O \rightarrow Al_2O_3$		Ĉ.	
352.	Which of the following ore	=	action of aluminium in Indi	a?
	a) Corundum	b) Cryolite	c) Bauxite	d) Kaolin
353.	Pb and Sn are extracted from	, ,		
	a) Electrolysis and self red	•	b) Self reduction and elect	rolysis
	c) Carbon reduction and s		d) Self reduction and carb	
354.	Heating of carbonate ores			onreduction
	a) Roasting	b) Calcination	c) Smelting	d) Fluxing
355	Coating of zinc on iron obj			a) Hamig
000.	a) Electroplating	b) Surface coating	c) Galvanising	d) Sheardising
356	The temperature of the sla	,	,	,
330.	a) 1200 – 1500°C	b) 1500 – 1600°C	c) 400 – 700°C	
257	•	DJ 1300 — 1000 G	C) 400 - 700 C	d) 800 – 1000°C
აა/.	Sapphire is a mineral of:	h) Cu	a) II.a	4) (1)
	a) Zn	b) Cu	c) Hg	d) Al

CHEMISTRY

						: ANS	W	ER K	ΕY	:				
1)	a	2)	a	3)	С	4)		173)	a	174)	d	175)	b	176) d
5)	b	6)	b	7)	b	8)	b	177)	С	178)	d	179)	С	180) a
9)	c	10)	c	11)	c	12)	a	181)	c	182)	c	183)	c	184) b
13)	a	14)	c	15)	c	16)	d	185)	d	186)	b	187)	a	188) b
17)	c	18)	b	19)	d	20)	a	189)	c	190)	b	191)	c	192) c
21)	a	22)	b	23)	c	24)	b	193)	c	194)	b	195)	d.	196) c
25)	d	26)	a	27)	d	28)	b	197)	c	198)	b	199)	a	200) a
29)	a	30)	b	31)	c	32)	c	201)	b	202)	a	203)	d	204) a
33)	d	34)	a	35)	a	36)	d	205)	c	206)	C	207)	c	208) d
37)	a	38)	C	39)	b	40)	a	209)	d	210)	b	211)	b	212) b
41)	a	42)	C	43)	a	44)	d	213)	b	214)	b	215)	a	216) b
45)	b	46)	a	47)	c	48)	d	217)	b	218)	C	219)	b	220) d
49)	C	50)	b	51)	C	52)	b	221)	d	222)	b	223)	b	224) c
53)	C	54)	a	55)	b	56)	a	225)	d	226)	C	227)	d	228) c
57)	b	58)	d	59)	d	60)	C	229)	c	230)	C	231)	b	232) d
61)	C	62)	a	63)	b	64)	a	233)	b	234)	a	235)	b	236) d
65)	b	66)	a	67)	b	68)	a	237)	C	238)	d	239)	a	240) c
69)	a	70)	C	71)	C	72)	C	241)	a	242)	b	243)	C	244) d
73)	c	74)	a	75)	C	76)	a	Ž45)	d	246)	c	247)	C	248) c
77)	a	78)	b	79)	c	80)	a	249)	d	250)	c	251)	d	252) a
81)	b	82)	C	83)	C	84)	b	,	c	254)	b	255)	c	256) d
85)	b	86)	C	87)	a	88)	C	257)	b	258)	b	259)	c	260) c
89)	b	90)	d	91)	d	92)	b	,	b	262)	C	263)	a	264) c
93)	b	94)	b	95)	C	96)	C	265)	d	266)	a	267)	d	268) d
97)	b	98)	C	99)	d	100)	d		a	270)	C	271)	b	272) a
101)	d	102)	a	103)	b	104)	C	273)	a	274)	C	275)	a	276) c
105)	b	106)	b	107)	a	108)	b	_	a	278)	d	279)	d	280) a
109)	a	110)	d	111)	a	112)		281)	b	282)	C	283)	С	284) d
113)	a	114)	a	115)	C	116)	a	_	a	286)	C	287)	C	288) c
117)	d	118)	d	119)	d	120)		289)	С	290)	c	291)	d	292) d
121)	b	122)	b	123)	a	124)		293)	a	294)	a	295)	a	296) c
125)	a	126)	a	127)	a	128)		297)	b	298)	d	299)	C	300) d
129)	b	130)	b	131)	c	132)		301)	d	302)	c	303)	c	304) a
133)	a	134)	d	135)	d	136)		305)	d	306)	b	307)	b	308) c
137)	C	138)	d	139)	b	140)		309)	a	310)	d	311)	d	312) b
141)	d	142)	a	143)	C	144)		313)	C	314)	b	315)	С	316) a
145)	b	146)	b	147)	b	148)		317)	d	318)	b	319)	c	320) b
149)	C	150)	d	151)	b	152)		321)	b	322)	b	323)	d	324) c
153)	b	154)	a	155)	С	156)		325)	d	326)	d	327)	b	328) a
157)	d	158)	С	159)	a	160)		329)	d	330)	d	331)	a	332) d
161)	C	162)	a	163)	C	164)		333)	С	334)	a	335)	d	336) d
165)	C	166)	d	167)	C	168)		337)	a	338)	b	339)	C	340) c
169)	b	170)	d	171)	d	172)	a	341)	С	342)	d	343)	С	344) c

```
345)
            346) d
                        347) b
                                    348)
                                         b
    a
349)
            350)
                        351)
                                    352)
                                          c
                  d
                              C
353)
            354)
                        355) c
                                    356)
                                          d
      d
357)
      d
```

SWART ACHIEVERS LEARNING RIVE. LITT

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (a)

$$\begin{array}{ccc} Ti + 2I_2 & \xrightarrow{500 \text{ K}} & TiI_4 & \xrightarrow{1700 \text{ K}} & Ti \\ & & \text{stable compound} & & \\ & & + 2I_2 & & \end{array}$$

2 **(a)**

Cryolite has these two functions during electrolysis of alumina.

3 **(c)**

Pyrolusite is an ore of Mn containing MnO₂.

4 **(b**)

Wrought or malleable iron is the purest form of iron

5 **(b)**

___do___

6 **(b)**

During electrolysis, noble metals (inert metals) like Ag, Au and Pt are not affected band separate as anode mud from the impure anode

7 **(b)**

PbS + 2PbO
$$\rightarrow$$
 3Pb + SO₂ (Self reduction)
SnO + C \rightarrow Sn + CO (Carbon reduction)

8 **(b)**

At about 330 K nickel is attacked by carbon monoxide with the formation of a volatile nickel carbonyl $Ni(CO)_4$.

10 (c)

It involves auto-reduction.

$$2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$$

11 (c)

In electrolytic refining of Cu, impurities of Fe, Ni, and Zn pass into solution and others like Au and Ag fall down, as anode mud.

12 (a)

Mercury is the only metal which is liquid at room temperature.

13 **(a)**

Lapis lazuli is the sodium alumino silicate present in earth rocks as blue stone

14 **(c)**

$$2MS + C \rightarrow 2M + CS_2$$
 ΔG_1 =positive $2MO + C \rightarrow 2M + CO_2$ ΔG_2 =negative The value of ΔG for the 9 formation of CO_2 is

negative, *ie*, it is thermodynamically more than CS_2 . Also metal sulphides are thermodynamically more stable than CS_2 . Metal sulphides are more stable than the corresponding oxides, so they are roasted to convert into less stable oxides

15 **(c)**

It is a fact.

16 **(d)**

Soda ash (Na₂CO₃) is an ore of sodium

17 **(c**)

Titanium is quite abundant in nature and mainly occurs as elmanite, FeO. TiO_2

20 **(a)**

It is a fact.

21 **(a)**

It is a fact.

22 **(b)**

Al is highly electropositive. It can be obtained only by electrolytic reduction

23 **(c)**

Malleable nature (*i.e.*, can be pressed out into sheets) is maximum in gold.

24 **(b)**

It is a fact.

25 **(d)**

It is a fact.

26 **(a)**

Cassiterite is an ore of tin

27 **(d)**

$$2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$$

 $PbS + 2PbO \rightarrow 3Pb + SO_2$

28 **(b)**

Cryolite is an ore of Al containing Na₃AlF₆.

29 (a)

Blanc fixe is BaSO₄.

30 **(b)**

Forth floatation method is based on the fact that the surface of sulphide ores is preferentially wetted by oil while that of gangue is wetted by water

31 **(c)**

Fe-C form alloy.

32 **(c**)

Galena is PbS; Sulphide ores are concentrated by froth floatation process.

33 **(d)**

In Hall and Heroult process,

$$2Al_2O_3 \rightarrow 4Al + 3O_2$$

 $4C + 3O_2 \rightarrow 2CO_2 + 2CO \uparrow$

$$2Al_2O_3 + 4C \rightarrow 4Al + 2CO_2 + 2CO$$

Only for removal of CO₂, following equation is possible

$$2Al_2O_3 + 3C \rightarrow 4Al + 3CO_2$$

 $3 \times 12 = 36$ $4 \times 27 = 108$

∵For 108 g of Al, required amount of C = 36g

∴ For 270 g of required amount of $C = \frac{36}{108} \times 270 = 90g$

34 **(a)**

$$CuO + CO \xrightarrow{\Delta} Cu + CO_2 \uparrow$$

35 **(a)**

Load stone (magnetite, Fe₃O₄) is an ore of iron

36 **(d**)

Mond's process for refining of Ni is an example of vapour phase refining

37 **(a)**

Carbon reduction process is used for extraction of less electropositive metals like Pb, Fe, Zn, Sb, Cu, etc., from their ores.

38 **(c)**

The phenomenon of efflorescence involves spontaneous loss of water molecules from a crystal.

39 **(b)**

Cd is found as traces in most Zn ores, and is extracted from these.

$$Zn_{(solid)} + Cd_{(solution)}^{2+} \rightarrow Zn_{(solution)}^{2+} + Cd_{(solid)}; E^{c}$$

= 0.36 V

41 **(a)**

$$2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$$

Purple green

42 **(c)**

SiO₂ is an acidic flux.

43 (a)

FeCrO₄ is magnetic impurity.

44 (d)

Extraction of Ni involves Electrolytic Process, Oxford Process, Mond's Process and German Process.4

45 **(b**

Acetate of all metals are soluble in water.

46 **(a)**

47 **(c)**

Electromagnetic separation is used when either the ore or the impurities associated with it, are magnetic in nature

48 **(d)**

Alkaline earth metals are very reactive and are found in combined state only in nature.

49 **(c)**

Dispersion of solid in solid is called solid sol.

51 **(c)**

Pt is noble metal, other noble metals are Au, Ag.

52 **(b)**

Alumino-thermic process is commonly used for those metals which have very high m.pt. and are to be extracted from their oxides and their reduction with carbon is not satisfactory.

53 **(c)**

Bauxite ore is concentrated by chemical separation or leaching. In this, powdered ore is treated with a suitable reagent which can dissolve the ore but not the impurities

54 (a)

Dressing or benefication of ore involves removal of impurities from ore.

55 **(b)**

Zinc blende is roasted and then treated with coke for the reduction

$$3ZnS + 3O_0 \xrightarrow{\Delta} 2ZnO + 2SO_2 \uparrow$$

$$ZnO + C \xrightarrow{\Delta} Zn + CO \uparrow$$

56 **(a)**

$$2HgS + 3O_2 \rightarrow 2HgO + 3SO_2$$

$$2 \text{HgO} \stackrel{\Delta}{\rightarrow} 2 \text{Hg} + 0_2$$

$$2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$$

$$2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$$

57 **(b)**

Mixture of calcium phosphate and calcium silicate is known as Thomas slag

58 **(d)**

Metals are good conductor of electricity because they contain free electrons

59 **(d)**

Purification of Hg, Sn and Bi involves liquation.

60 **(c)**

The abundance of elements in earth crust follow the order 0 > Si > Al > Fe.

61 **(c)**

Sulphur exists in various allotropic forms such as rhombic, monoclinic, plastic forms.

62 **(a)**

Van-Arkel method is not used for extraction of Al.

it is used in the purification of Ti

63 **(b)**

Indian saltpetre is a nitrate ore of K containing 83 KNO_3 .

64 **(a)**

It is a fact.

65 **(b)**

It is an ore of Pt.

66 **(a)**

Pine oil is foaming agent. An another substance called collector such as potassium ethyl xanthate or amyl xanthate is also added

67 **(b)**

It is a fact.

68 **(a)**

Lime stone is used as basic flux to fuse acidic impurities of Silica.

$$CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2 \uparrow$$

Flux Gangue Slag

69 **(a)**

Auto reduction occurs

$$Cu_2S + 2Cu_2O \longrightarrow 6Cu + SO_2$$

70 **(c)**

Cassiterite is an ore of tin

71 **(c)**

$$ZnO + CO \rightarrow CO_2 + Zn$$

72 **(c)**

Zinc blende is an ore of Zn containing ZnS.

73 **(c**)

Hg having low b.pt. is easily distilled off.

74 (a)

Density increases with increasing atomic number.

75 (c

Calamine is the carbonate ore zinc (ZnCO₃)

76 (a)

$$CaCO_3 + SiO_2 \rightarrow CaSiO_3$$

Sla

77 (a)

Mond's process is used for the purification of Ni Ni + 4C0 $\xrightarrow{\text{Heat}}$ [Ni(CO)₄] $\xrightarrow{\text{Decompose}}$ Ni + 4C0

78 **(b)**

Dolomite is an ore containing, $CaCO_3 \cdot MgCO_3$.

79 **(c)**

___do___

80 **(a)**

It is a fact.

81 **(b)**

Zinc blende is ZnS not ZnCl₂

82 **(c)**

Mg and Al cannot be obtained by the electrolysis

of aqueous solution of their salts because instead of metal, $\rm H_2$ gas is liberated at cathode

83 **(c**)

Lime stone acts as basic flux for sandstone (SiO_2).

85 **(b)**

The main impurity in red bauxite is ferrite (Fe_2O_3) and the main impurity in white bauxite is silica (SiO_2)

86 **(c)**

Rutile is TiO₂.

88 **(c**)

$$FeO + CO \xrightarrow{1000^{\circ}C} Fe + CO_2$$

89 **(b**

Silver is recovered from the alloy (lead-silver alloy) by cupellation.

90 **(d**)

Hg has low b. pt. and is purified by distillation.

91 **(d)**

Lepidolite is $(Li, Na, K)_2$; $Al_2(SiO_3)_3$, $(F, OH)_2$.

92 **(b)**

VIA group member or oxygen family is known as chalcogens.

93 **(b)**

$$Al_2O_3 + Na_2CO_3 \rightarrow 2NaAlO_2 + CO_2$$

94 **(b**

Stibnite is an ore of Sb containing Sb_2S_3 .

96 **(c)**

Baryte is an ore of Barium having formula BaSO₄.

97 **(b**

Thermite is a mixture of Al and F_2O_3 in 1:3 ratio

98 **(c**

It is definiton of calcination.

99 **(d**

Following reaction takes place during bessemerisation

$$2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$$

101 (d)

Calcination involves decomposition of ore to remove volatile impurities.

102 (a)

$$FeO + SiO_2 \rightarrow FeSiO_3$$
 (Fusible slag)

$$Cu_2O + FeS \rightarrow Cu_2S + FeO$$

Slag is removed from the slag hole while a molten mass containing mostly cuprous sulphide with a little ferrous sulphide called matte.

103 **(b)**

Mond's process is used for the purification of Ni.

104 **(c)**

It is a fact.

105 **(b)**

Bauxite $(Al_2O_3.2H_2O)$

Corundum (Al₂O₃)

Diaspore (Al_2O_3 . H_2O)

106 **(b)**

Extraction of less electropositive metals say Cr, Mn, Cu, Ca, Ni, etc., can be done by heating their 124 **(b)** oxides with strong reducing agents, e.g., CO, CO + H + Na, Al, Mg, etc.

107 (a)

Lead extracted from argentiferrous galena contains small quantities of silver. Recovery of 126 (a) silver from argentiferrous lead is an economical proposition and is carried out by Parke's process.

108 **(b)**

Oxygen family is known as chalcogens.

109 (a)

Apatite is CaF_2 . $3Ca_3(pO_4)_2$

: It is ore of fluorine with calcium

110 (d)

A bronze sulphide mineral (Fe, Ni) $_9$ S₈, a chief ore c | 130 **(b)**

111 (a)

Pitch blende is an ore of uranium containing $U_{3}O_{8}$.

112 (a)

In alumino-thermic process, aluminium is used as reducing agent

113 (a)

do

114 (a)

The adsorption phenomenon is involved in the forth floatation process

115 (c)

It is a fact.

116 (a)

Stainless steel is an alloy of iron with chromium and nicl Its composition is 82% Fe and 18% (Cr+Ni). It res corrosion and used for making automobile parts and utensils

117 (d)

It is a fact.

118 (d)

Cyanide process is used in the extraction of both silver and gold because these form complex salts with CN⁻ ion due to presence of lone pair of electron on nitrogen atom

119 (d)

All are characteristic features of alloy.

120 **(d)**

All are noble metals.

121 **(b)**

Metals which are inert towards many common

reagents are called noble metals.

122 **(b)**

Follow text.

123 **(a)**

Fe does not form amalgam with Hg.

Peat is an early stage in the formation of coal from vegetable matter.

125 (a)

It is a fact.

It is definition of roasting.

127 (a)

Due to the formation of K₂MnC

128 **(a)**

Other methods are used for extraction of Al from its ores.

129 **(b)**

It is a fact.

The method of zone refining of metals is based on the principle of greater solubility of the impurity in the molten state than in the solid. Elements which are used as semiconductors like Si, Ge, Ga etc are refined by this method

131 (c)

Bauxite is $Al_2O_3 \cdot 2H_2O$.

132 (d)

Pyrolusite – MnO₂

Malachite $-CuCO_3.Cu(OH)_2$

Diaspore $-Al_2O_3$. H_2O

Cassiterite -SnO₂

133 **(a)**

Fluorspar (CaF₂),

Cryolite (na₃AlF₆)

Feldspar (KAlSi₃O₃),

 $Mica (K_2O.3Al_2O_3.6SiO_2.2H_2O)$

134 **(d)**

Alloys of metals with Hg are called amalgams.

135 (d)

A natural sulphide of iron and arsenic, FeAsS.

136 **(d)**

In froth floatation method, the pure ore is not easily wetted by water but wetted by pine oil, so it is successfully separated from impurities

137 **(c)**

Metallic character increases down the group.

138 **(d)**

Molten magnesium is lighter than ore.

140 (a)

This is auto reduction of copper sulphide.

141 **(d)**

Sulphide ores on roasting forms oxide and give 156 (d) SO_2 .

142 **(a)**

The compounds which combine with impurities preseore (at high temperature) and remove them as a fls substance (slag) are known as flux. When basic impurities are present, an acidic flux is used and vice – versa

Fe₀ + SiO_2 FeSiO₃ Basic impurity acidic flux slag

144 (d)

It is a fact.

145 **(b)**

Wolframite ore [FeWO₄] is present in tin stone as impurities and it has same mass per unit volume as that of tin stone. So, it is separated by electromagnetic separator because wolframite is magnetic in nature, hence it gets attached by magnet while tin stone does not

146 **(b)**

Fe ores are magnetic in nature.

147 **(b)**

Because reduction of highly electropositive 163 (c) elements, (e.g., alkali metals, alkaline earth metals and Al) cannot be made by other metals.

148 **(a)**

In blast furnace, at the top is the zone of 165 (c) reduction. Here Fe₂O₃ is reduced to spongy iron by CO rising up.

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

149 (c)

It is a fact.

150 (d)

Cyanide process is used for obtaining silver. This process is also called as Mac Arthur and Forest process

151 **(b)**

It is a fact.

152 **(a)**

In Bessemer converter, copper sulphide is partially oxidised to cuprous oxide which further reacts with remaining copper sulphide to form copper and sulphur dioxide.

$$Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$$

153 **(b)**

Beryl is $3BeO \cdot Al_2O_3 \cdot 6SiO_2$.

154 (a)

It is a fact.

155 (c)

Lead present as impurity in the silver obtained by

argentiferous lead is purified by cupellation.

CaO, K₂O cannot reduced by carbon reduction method

158 (c)

The method is used for purification of Zr and Ti in which these metals on heating with I2 forms vapours of metal iodide which on decomposition gives pure metals.

159 (a)

Mass number of uranium is highest, i.e., U²³⁸.

160 **(b)**

Iron is made inactive or passive by oxidizing agents like conc. Nitric acid, chromic acid, acidified KMnO₄, etc., the cause of this is the formation of a thin film of oxide on the surface of the metal.

161 (c)

Kiesserite is an ore of Mg containing, MgSO₄ ⋅ H₂O

162 (a)

In smelting carbon is used for the reduction of oxide to metal.

Metallic character increases down the gp.

164 (d)

Ag, Au are obtained by complex formation.

Diamond consists of carbon atoms only.

166 **(d)**

Impurities are known as matrix or gangue.

167 (c)

CaCN₂ is used as a fertilizer.

168 (c)

It is a fact.

169 **(b)**

It is found in human body as haemoglobin.

170 **(d)**

Flux is used to fuse non-fusible impurities (both acidic and basic) present in the ore

171 (d)

Flux is a substance with combine with gangue that present in the roasted or calcined ore to form fusible product, called slag

172 (a)

Oxides of less electropositive metals such as Cr₂O₃,Mn etc are reduced by using Al. This process is called them process $Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr + Head$

173 (a)

Gangue particles are wetted up by water and 190 (b) adsorbed.

174 (d)

Composition of various alloy of steels are as- 191 (c) Nickel steel -3.5% Ni, Chrome steel-1.5-2% Cr, Chrome-vanadium -0.15% V, I % Cr, Manganese 192 (c) steel-1.2-15% Mn, Tungsten steel 14-20% W, 3-8% Cr, Invar 36% Ni, Stainless steel 11.5% Cr.

175 **(b)**

Leaching is used to make insoluble ore in soluble 194 **(b)** form.

176 **(d)**

In electroefining of copper, some gold is deposited as anode mud

177 **(c)**

Thus, furnace material can withstand high temperature.

178 **(d)**

Anode: $Cu \rightarrow Cu^{2+} + 2e$

(Impure sample)

Cathode : $Cu^{2+} + 2e \rightarrow Cu$

(Pure Cu)

179 (c)

Ag₂S forms soluble complex with KCN.

180 (a)

Van-Arkel method is used to purify metals such asZr, Ti, V, Th, etc, limestone is basic flux. Dolomite (CaCO₃) is an ore of Ca. Willemite (Zn₂SiO₄) is a silicate ore

181 (c)

Forth-floatation is used to concentrated sulphide ores [Galena pbS)]

182 **(c)**

Borax and Colemanite both are the ores of Boron containing $Na_2B_4O_7 \cdot 10H_2O$ and $Ca_2B_6O_{11} \cdot 5H_2O$ respectively.

183 **(c)**

Follow Mc Arthur-Forest process for Ag.

S is oxidised to SO_2 (g).

185 **(d)**

All are magnetic ores.

186 **(b)**

A method for purification of titanium metal.

187 (a)

It is fact.

188 **(b)**

Follow extraction of Zn.

189 (c)

It is a fact.

Flux is mixed with concentrated ore which is not soluble in molten metal

It is a fact.

It is a fact.

193 (c)

Magnesium chloride is present in sea water.

Wulfenite is a molybdate containing Pb, Mo, O₄.

195 (d)

The fourth -floatation process is based upon the preferential wetting of ore particle by oil

196 (c)

It is a fact.

197 (c)

Lead dissolves in water containing dissolved air, due to the formation of lead hydroxide. This solvent action of water on lead is called plumbo solvency.

198 **(b)**

 $\xrightarrow{\text{Reduction}} Zn$ Zn0 -

200 (a)

Refractory materials are the substances which can withstand very high temperature without melting or becoming salt

201 **(b)**

It is a fact.

202 (a)

Willemite, a rare zinc silicate mineral, isZn₂SiO₄. It has trigonal symmetry and is strongly fluorescent green

203 **(d)**

Ag₂O is decomposed on simple heating.

204 (a)

It is a fact.

205 (c)

do

206 **(c)**

Although presence of CO₂ enhances rusting due to formation of more H_3^+0 ions.

207 **(c)**

Ruby in mineral of aluminium, ie, Al₂O₃. It does not contain silicon

208 (d)

Because all nitrates are water soluble.

209 (d)

Roasting is a process in which ore is heated in air to remove Sulphur impurities.

210 **(b)**

Leaching is a chemical method for the concentration of an ore.

212 **(b)**

Cinnabar (HgS) is a sulphide ore, hence it is concentrated by forth floatation process

214 **(b)**

Bauxite $(Al_2O_3.2H_2O)$ is an oxide ore of aluminium

215 (a)

Carnallite is an ore of magnesium containing KCl· $MgCl_2 \cdot 6H_2O$.

216 **(b)**

Siderite is FeCO₃.

217 **(b)**

It is a fact.

218 (c)

Corundum (Al_2O_3) is the combined state of aluminium

219 **(b)**

____do___

220 (d)

Pig iron is the most impure from of iron and contains highest proportion of carbon (2.5-4%) Malachite \rightarrow Cu(OH)₂. CuCO₃ (Cu ore) Zinc blende \rightarrow ZnS (Zn ore) Bauxite \rightarrow Al₂O₃. 2H₂O (Al ore)

222 **(b)**

Al acts as strong reducing agent and converts 242 (b) many metal oxides (excepts I and II gp) to metals.

223 **(b)**

Cassiterite is an ore of tin.

224 **(c)**

Haematite is an ore of Fe.

225 **(d)**

It is an ore of Mg containing MgCO₃.

226 (c)

Combustion zone 1800 K Fusion zone 1600 K Slag zone 1300 K Reduction zone 800 K

227 (d)

All minerals are not suitable for the extraction for the extraction of metals commercially. Thus, all ores are minerals, but all minerals are not ores

228 (c)

It is a fact.

229 (c)

Lepidolite is (Li, K, Na)₂ Al₂(SiO₃)₃ · (F · OH)₂.

230 (c)

 $Au + 3HNO_3 + 4HCl \rightarrow HAuCl_4 + 3NO_2 + 3H_2O$

231 **(b)**

The slag float over molten mass.

232 (d)

Cassiterite is a principal ore of tin containing SnO_2 .

233 **(b)**

It is a fact.

234 (a)

Pyrolusite (MnO_2) is not a sulphide ore, so it is not concentrated by forth floatation process

235 **(b)**

Follow text.

236 (d)

Dollucite is caesium aluminium silicate containing about 30% of caesium.

237 (c)

Roasting is the process in which the ore is heated strongly below its melting point is presence of air

238 **(d)**

Anglesite is PbSO₄.

239 (a)

It is a fact

240 **(c)**

Pine oil reduces the surface tension of water and the solution forms froths.

241 (a)

In smelting, powerful reducing agents like C, H₂, CO etc are used

Calamine is an ore of Zn containing ZnCO₃.

243 (c)

On striking the electric are between the electrodes, high temperature is produced due to which the charge melts.

244 (d)

$$2CuO + CuS \rightarrow 3Cu + SO_2 \uparrow$$

245 (d)

Roasting is mainly used in the extraction of sulphide ores. Galena—PbS, Iron pyrite-FeS, Copper glance-Cu₂S.

247 (c)

It is a fact.

248 (c)

Smelting is a process of reducing metal oxide to metal by means of coke or CO

$$Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$$

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

249 **(d)**

Pb, Cu, and Hg all are refined by Oxidation method.

250 (c)

Cast iron, wrought iron and steel may be produced from pig iron.

251 (d)

Follow text.

252 (a)

The abundance ratio : 0 > Si > Al > Fe.

253 (c)

Cuprite (Cu₂0) is oxide but argentite (Ag₂S) is not oxide

254 **(b)**

To convert ores into oxides and remove Sulphur as volatile SO₂.

255 (c)

Chile saltpetre is NaNO₃.

256 (d)

$$Ni(CO)_4 \xrightarrow{\Delta} Ni + 4CO$$

257 **(b)**

Sulphur occurs in native state while iodine, phosphorus and magnesium are found in 272 (a) combined state.

258 **(b)**

Argentite is an ore of Ag having composition Ag₂S.It dissolves in NaCN due to formation of soluble complex

 $Ag_2S + 4NaCN \rightarrow 2Na[Ag(CN)_2] + NaCl$ ∴NaCN is used to dissolve argentite

259 (c)

It is one use of lead.

260 (c)

The process of zinc -plating on iron-sheet is known is known as galvanisation

261 **(b)**

Bronze is mixture of Cu and Sn

262 **(c)**

In the extraction of Al, Al_2O_3 is melted with cryolite[Na₃(AlF₆)]. Cryolite improves the electrical conductivity of the alumina and lowers the m.p. of the mixture to about 950°C

263 (a)

In bauxite ore, only Al₂O₃ reacts with conc NaNO and fo sodium meta aluminate. This, further dissolves in water

$$Al_2O_3 + 2H_2O + 2NaOH \xrightarrow{500 \text{ K}} 2NaAlO_2 + 3H_2O$$

 $NaAlO_2 + 2H_2O \rightarrow 2NaAl(OH))4$

264 **(c)**

A mineral containing phosphates oscerium, thorium and other rare earths, with some 283 (c) occluded helium.

265 (d)

Luster of metals is due to the presence of mobile

electrons

266 (a)

267 (d)

Amphoteric compounds are soluble in both alkali and acid.

Rochelle salt is potassium, sodium tartarate.

268 (d)

 ΔG_f for sulphides $> \Delta G_f$ of CS_2 and thus, C and H₂ cannot reduce metal sulphide.

269 (a)

It is a fact.

270 (c)

Among cuprite [Cu₂O], chalcocite [Cu₂S], chalcopyrite [CuFeS₂] and malachite [Cu(OH)₂. CuCO₃]; only chalcopyrite is an ore which contains both Fe and Cu

271 **(b)**

Galena is an ore of Pb containing SnO_2 .

It is a fact.

273 (a)

FeO can form slag with SiO₂, $SiO_2 + FeO \rightarrow FeSiO_3$.

274 (c)

This is Van-Arkel method for purification of Ti.

275 (a)

Diaspore is an ore of aluminium containing $Al_2O_3 \cdot H_2O$.

276 **(c)**

Quartz is found in many varieties which have different colour due to impurities, eg, amelthyst (purple), opel (white) carnelian and agate ∴Agate is SiO₂

277 (a)

In the metallurgy of zinc, reduction of roasted ore (ZnO) gives impure zinc (in fire-clay retort) called spelter.

278 (d)

Rock salt is NaCl.

280 (a)

Ore pitch blende is main source of radium

281 **(b)**

Magnetite is Fe₃O₄.

282 (c)

Dolomite MgCO₃. CaCO₃ Magnesite $MgCO_3$ Carnallite KCl. MgCl₂. 6H₂O

Poling is used for purification of metal which contain their own oxide as impurity, eg, Cu2O in Cu; SnO₂ in Sn

284 (d)

$$Al_2O_3 \cdot 2H_2O \xrightarrow{\Delta} Al_2O_3$$

The process is known as calcination, *i.e.*, to heat a mineral below its m.pt. in absence of air in order to remove moisture, organic impurities and volatile impurities.

285 (a)

Copper pyrite is CuFeS₂.

286 **(c)**

Small quantity of iron occur in native state while Al, Cu and Mg are found in combined state.

287 **(c)**

$$SiO_2 + CaCO_3 \rightarrow CaSiO_3 + CO_2$$

Impurity (acidic) Flux (basic) Slag

289 (c)

Thomas slag is tricalcium phosphate and calcium silicate.

290 (c)

Leaching process involves the treatment of the ore with a suitable reagent so as to make it soluble while impurities remain insoluble. It is used to get Ag and Au both.

291 (d)

All are the mineral of copper.

Azurite- $Cu(OH)_2 \cdot 2CuCO_3$, $Cu(OH)_2 \cdot CuCO_3$,

Malachite-

Copper pyrites-CuFeS₂.

292 (d)

It is a fact.

293 (a)

do

294 (a)

 $SiO_2 + CaO \rightarrow CaSiO_3$ acidic impurity basic flux slag

295 (a)

In Bessemerisation, the molten mass is run into sand moulds and allowed to solidify, when it gives out dissolved SO_2 leaving blister type appearance on copper which is popularly known as blister copper.

296 (c)

Gypsum is $CaSO_4 \cdot 2H_2O$.

297 **(b**)

Copper is found in native as well as in combined state

298 (d)

List I	List II
(Types of ore)	(Example)
Oxide ore	Corundum (Al ₂ O ₃

Sulphide ore	Galena (pbS)
Sulphate ore	Barytes (BaSO ₄)
Halide ore	Fluorsper (CaF ₂)
	Feldspar

299 (c)

$$Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr;$$
 $\Delta H = -ve$

300 **(d)**

$$2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$$

 $3Cu_2O + CH_4 \rightarrow 6Cu + 2H_2O + CO$
(from green
logs of wood)

301 **(d)**

Extraction of silver and gold is done by hydrometallurgical process or complex salt formation method.

302 **(c)**

Cassiterite is SnO₂.

306 **(b)**

Gallium arsenide is purified by zone refining method

307 **(b)**

Copper metal is reddish brown in colour.

308 **(c)**

_do__

309 (a)

All the rocks contains silicates.

310 (d)

It is a fact.

312 **(b)**

Lead extracted from galena contains little Ag. Recovery of Ag from argentiferous lead is made by Parke's process.

313 **(c)**

Chile salt petre (NaNO₃) is the nitrate ore of sodium

314 **(b)**

A water soluble complex of silver with a dilute aqueous solution of NaCN is sodium argentocyanide, in the cyanide process, the native from is crushed and treated with 0.1-0.2% solution of NaCN and aerated

$$4Ag + 8NaCN + 2H_2O + O_2$$

$$\rightarrow$$
 4Na[Ag(CN)₂] + 4NaOH

Argentocyanide is soluble metal is recovered from the complex by reduction with zinc

315 (c)

Metals can not be extracted from all the minerals that is why all minerals are not ores

316 (a)

Flux is used to fuse non-fusible impurities present in ore.

317 (d)

 $SnO_2 + 2C \rightarrow Sn + 2CO$

318 **(b)**

Wolframite is FeWO₄.

319 (c)

$$SiO_2 + 2C \rightarrow Si + 2CO \uparrow$$

$$Al_2O_3 + 3C + N_2 \rightarrow 2AlN + 3CO$$

 $AlN + 3H_2O \rightarrow Al(OH)_3 + NH_3$

321 **(b)**

Ge and Si both the elements are purified by Zone refining.

322 **(b)**

It is a fact.

323 (d)

It is a fact.

324 (c)

It is a fact.

325 **(d)**

Gypsum is $CaSO_4 \cdot 2H_2O$.

326 (d)

It is a fact.

327 **(b)**

For purification of Ni in Mond's process.

328 (a)

In electrolytic reduction, the oxides of highly electropositive metals are reduced at very high temperature

329 (d)

CaO is hygroscopic agent.

330 **(d)**

The slag obtained during the extraction of copper from copper pyrites is of FeSiO₃. It is carried out in smelting.

$$\text{FeO} + \text{SiO}_2 \rightarrow \text{FeSiO}_3$$

(slag)

331 (a)

Matte is a mixture of Cu₂S containing little FeS

332 **(d)**

An ore is a mineral or aggregate of mineral from 350 (d) which a valuable constituent, especially a metal, can be profitably mined or extracted. All ores are 351 (c) minerals but all minerals are not ore.

333 **(c)**

It is a fact.

334 (a)

Pitch blende contains traces of radium.

335 (d)

Roasting is mainly employed to remove volatile substances

$$S_8 + 80_2 \rightarrow 8S0_2 \uparrow$$

$$P_4 + 50_2 \rightarrow P_40_{10} \uparrow$$

 $4As + 3O_2 \rightarrow 2As_2O_3 \uparrow$

336 **(d)**

Zn, Cd, Hg have low b.pt.

337 (a)

Rutile is TiO₂.

338 **(b)**

Argentite is Ag₂S.

339 (c)

Alkali metals, alkaline earth metals and Al are extracted by electrolytic reduction.

340 (c)

Wolframite is ferrous tungstate (FeWO₄) which is magnetic in nature

341 (c)

CaO is a basic flux.

342 **(d)**

Cinnabar is an ore of Hg(HgS).

343 (c)

Less reactive metals are found in native state (free state)

344 **(c)**

Levigation (gravity separation) in based on the difference in the specific gravities of the gangue particles and the ore particles.

346 (d)

Sodium has high reactivity towards water.

347 **(b)**

Metals like, Na, K, Mg, Ca, Al etc are reduced by electrolytic reduction

348 **(b)**

It is a fact.

349 (a)

In the metallurgy of iron, when CaCO₃ is added to balst furnace, it removes impurities from ore and forms slag.

$$CaCO_3 \rightarrow CaO + CO_2$$
 (1070-1170 K)

$$CaO + SiO_2 \rightarrow CaSiO_3$$
 (1470 K)

$$3CaO + P_2O_5 \rightarrow Ca_3(PO_4)_2$$

Mg alloys are lighter.

It is definition of roasting.

352 (c)

Aluminium is mainly isolated from bauxite $(Al_2O_3.2H_2O)$ ore which is generally contaminated with ferric oxide and silica

353 (d)

PbO and PbSO₄ get reduced by PbS itself which is already present in mixture, because the reduction takes place by mixture itself, hence is known as self reduction

2PbO + PbS
$$\xrightarrow{\Delta}$$
 3Pb + SO₂ ↑
PbSO₄ + PbS $\xrightarrow{\Delta}$ 2Pb + 2SO₂ ↑

354 **(b)**

Calcination is a process in which the ore is heated 357 (d) strongly in the absence of air.

- (i) It removes the volatile impurities like CO_2 , SO_2 , organic matter, moisture from the ore.
- (ii) It removes water from the hydrated ore.
- (iii)It removes carbon as ${\rm CO}_2$ from a carbonate ore.

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$

Lime stone

355 **(c)**

It is a fact.

356 (d)

The temperature of the slag zone in the metallurgy of iron using blast furnace is 800-1000°C

A natural crystalline form of blue, transparent corundum (Al₂O₃). The colour being due to traces of cobalt and other metals.

CHEMISTRY

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

different layers. These layers remain intact even in electrolytic reduction

Statement 1: In the Hoop's process of purification of aluminium, the fused materials remains in three

Statement 2: All the layers have different densities

Statement 1: Gold occurs in native state

2

3

4

Statement 2: Gold dissolves in aqua-regia

Statement 1: Alkaline earth metals are not easy to produce by chemical reduction

Statement 2: Their aqueous solutions can not be used for displacing one metal by another

Statement 1: The reduction of a metal oxide is easier if the metal formed is in liquid state at the temperature of reduction

Statement 2: The value of entropy change of the reduction process is more on positive side when the

metal formed is in liquid state

Statement 1: Forth-floatation process is used to Concentrate sulphide ores

Statement 2: There is no difference in the wettability of different minerals

CHEMISTRY

						: AN	SWER	KEY:		
1) 5)	a b	2)	b	3)	b	4)	a		, Š	
								R		
						i.P.)		
	A									

CHEMISTRY

: HINTS AND SOLUTIONS :

5

- 1 **(a**)
 - Upper most layer of pure molten aluminium, middle layer of molten fluorides of Na^+ , Ba^{2+} and Al^{3+} and lower layer of molten impure aluminium have different densities
- 2 **(b)**

Being less reactive, gold occurs in native state. All metals including gold dissolve in aqua-regia

3 **(b)**

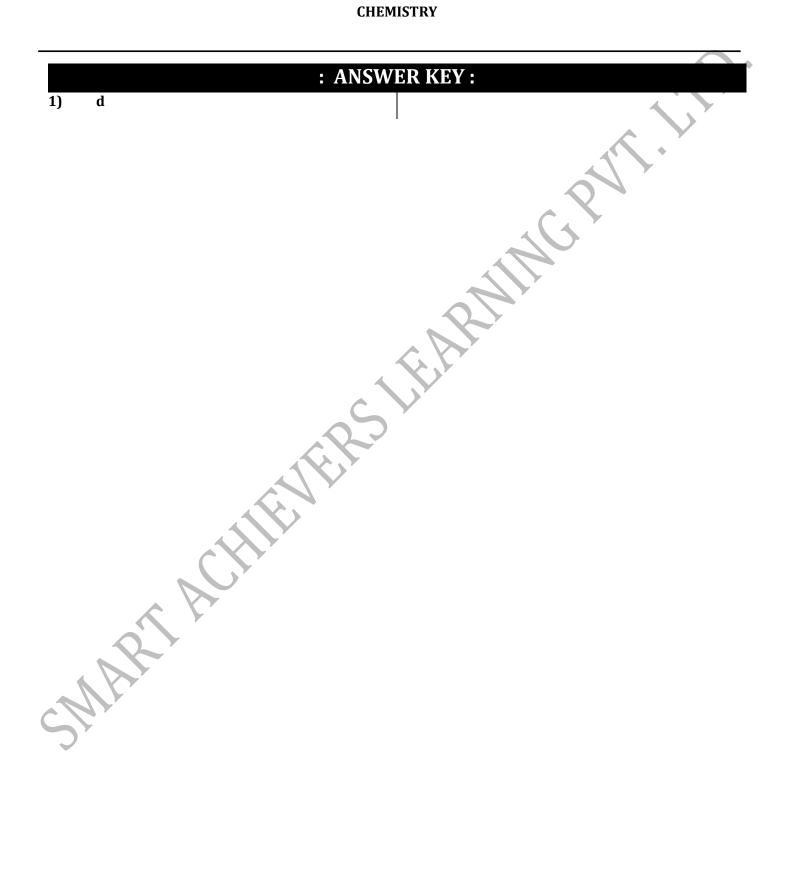
Alkaline earth metals are strong reducing agents so they cann't be produced by reduction method. Aqueous solution of alkaline earth metals cann't

be used for displacing one metal by another

(b)

Forth-flotation process is used to concentrate sulphide ores. This process is based upon the wettability of differen minerals

CHEMISTRY


Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

1. Match List I with List II and select the correct answer using the codes given below the list

		Co	olumn-I	Column- II
(A)	Ti			(p) Bauxite
(B)	Si			(q) Cerussite
(C)	Al			(r) van-Arkel method
(D)	Pb			(s) Zone refining
CODES:				
	A	В	C	D
a)	b	a	С	d
b)	b	c	a	b
c)	c	a	b	d
d)	С	d	a	b
SIN				

CHEMISTRY

CHEMISTRY

: HINTS AND SOLUTIONS :

- 1 (d)
 - Ti- van-Arkel method
 - Si- Zone refining method
 - Al- Bauxite (Al_2O_3)
 - Pb- Cerussite (PbCO₂)