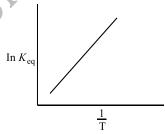
EQUILIBRIUM

CHEMISTRY


Single Correct Answer Type

1.	Which may be added to one litre of water to act as a buffer?				
	a) One mole of HC ₂ H ₃ O ₂ and one mole of HCl				
	b) One mole of NH ₄ OH and one mole of NaOH				
	c) One mole of NH ₄ Cl and one mole of HCl		A Y		
	d) One mole of HC ₂ H ₃ O ₂ and 0.5 mole of NaOH				
2.	An aqueous solution of 1 M NaCl and 1 M HCl is				
	a) not a buffer but pH < 7	b) not a buffer but pH 5	> 7		
	c) a buffer with pH < 7	d) a buffer with pH > 7			
3.	In the following reversible reaction,				
	$2SO_2 + O_2 \rightleftharpoons 2SO_3 + Q \text{ cal}$	18			
	Most suitable condition for the higher production of SO_3 is				
	a) Low temperature and high pressure	b) Low temperature and	_		
	c) High temperature and high pressure	d) High temperature and	low pressure		
4.	Select the pK_a value of the strongest acid from t	he following			
	a) 1.0 b) 3.0	c) 2.0	d) 4.5		
5.	The pH of a 0.1 M solution of NH_4OH (having K_b	$_{0} = 1.0 \times 10^{-5}$) is equal t	to		
	a) 10 b) 6	c) 11	d) 12		
6.	In the reaction, $H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$				
	a) $K_p \neq K_c$ b) $K_p = K_c$	c) $K_p > K_c$	$d) K_p < K_c$		
7.	The total number of different kind of buffers obtained	ed during the titration of H	₃ PO ₄ with NaOH are:		
	a) 3 b) 1	c) 2	d) Zero		
8.	Which will not affect the degree of ionisation?				
	a) Temperature b) Concentration	c) Type of solvent	d) Current		
9.	Which of the following has highest pH?				
	a) $\frac{M}{4}$ KOH b) $\frac{M}{4}$ NaOH	c) $\frac{M}{4}$ NH ₄ OH	d) $\frac{M}{4}$ Ca(OH) ₂		
10.	Solubility product constant $[K_{sp}]$ of salts of type	•	•		
	10^{-8} , 3.2×10^{-14} and 2.7×10^{-15} respectively. Solubilities (mol, dm ⁻³) of the salts at temperature				
	'T' are in the order				
	a) $MX > MX_2 > M_3X$ b) $M_3X > MX_2 > MX$	c) $MX_0 > M_0X > MX$	d) $MX > M_0X > MX_0$		
11.	Which of the following base is weakest?		a, mi > man > mi		
	a) NH ₄ OH; $K_b = 1.6 \times 10^{-6}$	b) $C_6H_5NH_2$; $K_b = 3$.	8×10^{-10}		
	c) $C_2H_5NH_2$; $K_b = 5.6 \times 10^{-4}$	d) C_9H_7N ; $K_b = 6.3$			
12	One litre of water contains 10^{-7} mole H ⁺ ions. Degree				
12.	a) $1.8 \times 10^{-7}\%$ b) $1.8 \times 10^{-9}\%$				
13.	A precipitate is formed when	c) 5.5 × 10 /0	aj 0.0 / 10 / /0		
	a) The ionic product is nearly equal to the solub	ility product			
	b) A solution becomes saturated	mij product			
	c) The ionic product exceeds the solubility prod	uct			
	e, The follie product exceeds the solubility prod	uci			

d) The ionic product is less than solubility product $% \left(1\right) =\left(1\right) \left(1\right)$

14.			on of HCl is added to an aqu	
4 =	a) NaNO ₂	b) Ba(NO ₃) ₂	c) ZnSO ₄	d) HgNO ₃
15.	Which of the following			D. v
4.5	a) NH ₃	b) H ₂ O	c) AlCl ₃	d) None of these
16.	Solubility of BaF ₂ in a sol	ution of Ba(NO_3) ₂ will be r	epresented by the concent	ration term
	a) [Ba ²⁺]	b) [F ⁻]	c) $\frac{1}{2}[F^{-}]$	d) $2[NO_3^-]$
17.	Which of the following is	a buffer?		
	a) $NaOH + CH_3COOH$	b) $NaOH + Na_2SO_4$	c) $K_2SO_4 + H_2SO_4$	d) NH ₄ OH + NaOH
18.	For the following three	reactions I, II and III, eq	uilibrium constants are g	iven
	I. $CO(g) + H_2O(g) \rightleftharpoons$	$CO_2(g) + H_2(g); K_1$		
	II. $CH_4(g) + H_2O(g) \rightleftharpoons$	$CO(g) + 3H_2(g); K_2$		
	III. $CH_4(g) + 2H_2O(g) =$	$\rightleftharpoons CO_2(g) + 4H_2(g); K_3$		
	Which of the following	relations is correct?		
	a) $K_1 \sqrt{K_2} = K_3$	b) $K_2K_3 = K_1$	c) $K_3 = K_1 K_2$	d) $K_3K_2^3 = K_1^2$
19.	0.1 mole of $N_2O_4(g)$ was	sealed in a tube under one	atmospheric conditions at	25°C. Calculate the number
			$(g) \rightleftharpoons 2NO_2(g)(K_p = 0.14)$	
	a) 0.036	b) 36.00	c) 360.0	d) 3.600
20.	A buffer solution is pre	pared by mixing 0.1 M ar	nmonia and 1.0 M ammo	nium chloride. At 298 K,
		O.The pH of the buffer is		
	a) 10.0	b) 9.0	c) 6.0	d) 8.0
21.	Which of the following m	olecules acts as a Lewis aci	d?	
	a) $(CH_3)_3N$	b) (CH ₃) ₃ B	c) $(CH_3)_2O$	d) $(CH_3)_3P$
22.	Which among the follow	wing is an electron defici	ent compound?	
	a) NF ₃	b) PF ₃	c) BF ₃	d) AsF ₃
23.	Identify the correct order	of acidic strength of CO_2 , CO_2	CuO, CaO, H ₂ O:	
	a) $CaO < CuO < H_2O < O$	20_2		
	b) $H_2O < CuO < CaO < H$	I_20		
	c) $CaO < H_2O < CuO < O$			
0.4	d) $H_2O < CO_2 < CaO < C$			
24.	Which of the following is	, , , , , , , , , , , , , , , , , , ,	-) IIIO	4) IIMO
25	a) HClO ₄	b) HBrO ₄ oncept the, strength of an a	c) HIO ₄	d) HNO ₃
23.	a) Hydrolysis	oncept tile, strength of an a	iciu depenus on.	
	b) Concentration of acid			
	c) H ⁺ ions furnished by a	cid		
	d) Number of mole of bas			
26.	$H_2 + I_2 \rightleftharpoons 2HI$			
	In the above equilibrium	system, if the concentration	n of the reactants at 25°C is	increased, the value of K_c
1	will			
	a) Increase		b) Decrease	
~	c) Remains the same		d) Depends on the nature	
27.			ed water. The pH of the solu	
20	a) 9	b) 10	c) 11	d) 12
28.	_		$P_4(s) + 5O_2(g) \rightleftharpoons P_4O_{10}(s)$	
	L 23	b) $K_c = [O_2]^5$	c) $K_c = \frac{[P_4O_{10}]}{5[P_4][O_2]}$	L- 41L - Z1
29.	When 10^{-8} mole of HCl is	s dissolved in one litre of w	ater, the pH of the solution	will be:
	a) 8	b) 7	c) Above 8	d) Below 7

- 30. A physician wishes to prepare a buffer solution at pH = 3.58 that efficiently resists a change in pH yet contains only small conc. of the buffering agents. Which one of the following weak acid together with its sodium salt would be best to use? a) *m*-chloro benzoic acid (p $K_a = 3.98$) b) *p*-chlorocinnamic acid (p $K_a = 4.41$) c) 2,5-dihydroxy benzoic acid (p $K_a = 2.97$) d) Acetoacetic acid (p $K_a = 3.58$) 31. The pH of 10^{-8} M HCl solution is a) 8 b) More than 8 c) Between 6 and 7 d) Slightly more than 7 32. A certain buffer solution contains equal concentration of X^- and HX. The K_a for HX is 10. The pH of the buffer is: a) 7 b) 8 33. 100 mL of 0.01 M solution of NaOH is diluted to 1 dm³. What is the pH of the diluted solution? d) 3 a) 12 b) 11 c) 2 34. Which of the following salt does not get hydrolysed in water? c) CH₃COONa b) NH₄Cl d) None of these a) KClO₄ 35. A higher value for equilibrium constant, *K* shows that: a) The reaction has gone to near completion towards right b) The reaction has not yet started c) The reaction has gone to near completion towards left d) None of the above 36. Which one is least basic? c) $C_2H_5NH_2$ a) CH₃NH₂ b) NH₃ d) $C_6H_5NH_2$ 37. The aqueous solution of disodium hydrogen phosphate is: b) Neutral c) Basic d) None of these a) Acidic 38. 3.2 moles of hydrogen iodide were heated in a sealed bulb at 444°C till the equilibrium state was reached. Its degree of dissociation at this temperature was found to be 22%. The number of moles of hydrogen iodide present at equilibrium are a) 1.876 b) 2.496 c) 3.235 d) 4.126 39. In the reactions, $PCl_5 \rightleftharpoons PCl_3 + Cl_2$, the amounts of PCl_5 , PCl_3 and Cl_2 at equilibrium are 2 mole each and the total pressure is 3 am. The equilibrium constant K_p is : b) 2.0 atm a) 1.0 atm c) 3.0 atm d) 6.0 atm 40. Which of the following is correct for the reaction? $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ a) $K_p = K_c$
 - b) $K_p < K_c$
 - c) $K_p > K_c$
 - d) Pressure is required to predict the correlation
- 41. The graph relates $\ln K_{eq} vs \frac{1}{T}$ for a reaction. The reaction must be :

- a) Exothermic
- b) Endothermic

	c) ΔH is negligible		
	d) Highly spontaneous at ordinary temperature		
42.	$0.1 \ millimole$ of $CdSO_4$ are present in $10 \ mL$ acid so	olution of 0.08 N HCl. Now	$\mathrm{H}_2\mathrm{S}$ is passed to precipitate
	all the Cd ²⁺ ions. The pH of the solution after fil	tering off precipitate, boil	ling of H ₂ S and making the
	solution 100 mL by adding H ₂ O is:		
	a) 2 b) 4	c) 6	d) 8
43.	Calculate the pH of a solution in which hydroge	n ion concentration is 0.0)05 g-equi/L?
	a) 2.3 b) 2.8	c) 2.9	d) 2.6
44.	In 1L saturated solution of AgCl [K_{sp} (AgCl)1.6 1	$\lfloor 0^{10} \rfloor$, 0.1 mole of CuCl [K	$_{\rm sp}({\rm CuCl})1.0~10^6$] is added.
	The resultant concentration of Ag in the solutio		•
	a) 3 b) 5	c) 7	d) 9
45.	Eight mole of a gas AB_3 attain equilibrium in a close		
10.	$3B_2(g)$. If at equilibrium 2 mole of A_2 are present th		
	a) $72 \text{ mol}^2 \text{L}^{-2}$ b) $36 \text{ mol}^2 \text{L}^{-2}$	c) $3 \text{ mol}^2 L^{-2}$	d) $27 \text{ mol}^2 \text{L}^{-2}$
46.	Which of the following is most soluble in water?	-, cc. <u>-</u>	
	a) $MnS(K_{sp} = 8 \times 10^{-37})$		
	b) $\text{ZnS}(K_{sp} = 7 \times 10^{-16})$	4 4	
	c) $Bi_2S_3(K_{sp} = 1 \times 10^{-70})$		
	d) $Ag_2S(K_{Sp} = 6 \times 10^{-51})$		
47	At a given temperature the K_c for the reaction, PCl ₅	$(g) \Rightarrow PCl_{\alpha}(g) + Cl_{\alpha}(g)$ is 2	2.4×10^{-3} At the same
1,.	temperature, the K_c for the reaction	(8) (1013(8) 1 012(8) 13 1	2.1 × 10 · He the same
	$PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$ is:		
	a) 2.4×10^{-3} b) -2.4×10^{-3}	c) 4.2×10^{-2}	d) 4.8×10^{-2}
48.	If the solubility of lithium sodium hexafluoroalumin		,
	is equal to:) 5 5 5 6 6 7 2	
	a) a^2	,	
	b) 12a ²		
	c) $18a^3$		
	d) 2916 <i>a</i> ⁸		
49.	Approximate relationship between dissociation	constant of water (K) and	nd ionic product of water
	(K_w) is		
	a) $K_w = K$ b) $K_w = 55.6 \times K$	c) $K_w = 18 \times K$	d) $K_w = 14 \times K$
50.	Degree of dissociation of 0.1 N $\mathrm{CH_{3}COOH}$ is (dissoci	ation constant = 1×10^{-5})	
	a) 10^{-5} b) 10^{-4}	c) 10^{-3}	d) 10^{-2}
51.	If the solubility of $Ca(OH)_2$ is $\sqrt{3}$. The solubility proof	duct of $Ca(OH)_2$ is:	
	a) 3		
	b) 27		
	c) √3		
	d) $12\sqrt{3}$		
52.	pH of $0.1M\mathrm{Na_2HPO_4}$ and $0.2M\mathrm{NaH_2PO_4}$ solution		or H_3PO_4 are 2.12, 7.21 and
	12.0 for respective dissociation to $H_2PO_4^-$, HPO_4^{2-} and	10^{10}PO_4^{3}	
	a) 4.67, 9.61 b) 9.61, 4.67	c) 4.67, 5.61	d) 5.61, 4.67
53.	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$		
	In the reaction given above, the addition of sma	ll amount of an inert gs a	t constant pressure will
	shift the equilibrium towards which side?		
	a) LHS (Left hand side)	b) RHS(Right hand side	2)
	c) Neither side	d) Either side	
54.	Which one is hard base?		

	a) Ag ⁺	b) Cr ³⁺	c) I ₂	d) F ⁻
55.	Which species acts as a	n acid and also a conjugate	e base of another acid?	
	a) HSO ₄	b) CO ₃ ²⁻	c) SO_4^{2-}	d) H ₃ O ⁺
56.	Predict the conditions f	for forward reaction on the	e basis of Le-Chatelier's pr	rinciple for : $2SO_2(g) + O_2(g) \rightleftharpoons$
	$2SO_3(g); \Delta H = -1981$	kJ.		
	a) Lowering the tempe	rature and increasing pres	sure	
	b) Any value of temper	ature and pressure		
	c) Lowering of tempera	ature as well as pressure		
	d) Increasing temperat			
57.		n water at 10° C is $6.2 \times 10^{\circ}$		
	a) $[6.2 \times 10^{-6}]^{1/2}$	b) $6.2 \times (10^{-6})^2$	c) $(6.2)^2 \times 10^{-6}$	d) $[6.2 \times 10^{-6}]^2$
58.	When pressure is app	olied to the equilibrium s	system ice r water. Whi	ch of the following
	phenomenon will hap	open?		*
	a) More ice will be for	rmed	b) Water will evapo	rate
	c) More water will be	formed	d) Equilibrium will	not be formed
59.	At constant temperatur	re in one litre vessel, when	-	
	$2SO_3(g) \rightleftharpoons 2SO_2(g) + 0$	$O_2(g)$ is at equilibrium, the	$e SO_2$ concentration is 0.0	$6M$, initial concentration of ${ m SO_3}$
	is 1 <i>M</i> . The equilibrium			
	a) 2.7	b) 1.36	c) 0.34	d) 0.675
60.	When 20g of CaCO ₃ we	ere put into 10 litre flask ar	nd heated to 800°C, 35%	of $CaCO_3$ remained unreacted at
	equilibrium. K_p for dec	omposition of $CaCO_3$ is :		
	a) 1.145 atm	b) 0.145 atm	c) 2.145 atm	d) 3.145 atm
61.	For the reaction equilib			
	$2NOBr(g) \rightleftharpoons 2NO(g) +$	$Br_2(g)$, if $P_{Br_2} = \frac{P}{2}$ at equil	ibrium and P is total pres	sure. The ratio K_p/P is equal to:
	a) 1/9	b) 1/81	c) 1/27	d) 1/3
62.		$_{2}SO_{4}(M^{+})$ is monovalent n	netal ion) at 298 K. The	maximum concentration of M^+
	•	ned in a saturated solution		
	a) $3.46 \times 10^{-3} M$	b) $7.0 \times 10^{-3} M$	c) $2.88 \times 10^{-2} M$	d) $14.4 \times 10^{-3} M$
63.	,	describes correct sequence	•	
		b) $BBr_3 > BCl_3 > BF_3$	_	
64.		H of solution to dissolve		
	[Given, $[Cr^{3+}] = 1.0$	mol/L , $K_{sp} = 6 \times 10^{-31}$)	
	a) 2.0	b) 3.0	c) 5.0	d) 4.0
65.		owing salts on being diss	•	•
00.	a) KCN	b) KNO ₃	c) NH ₄ Cl	d) NH ₄ CN
66		nich salt has the lowest pH	•	d) Wii4GW
00.	a) NaOH	b) NH ₄ Cl	c) Na ₂ CO ₃	d) NaCl
67.	In a gaseous reversib		c) Nazdo3	a) Naci
	$N_2 + O_2 \rightleftharpoons 2NO$			
7		ed then the equilibrium	conctant would be	
<u></u>		ed then the equilibrium	constant would be	
~	a) Unchanged			
	b) Increased			
	c) Decreased		,	
		sed, sometimes decrease	d	
68.	•			
	a) Arrhenius acid	b) Lewis base	c) Simplest amino ac	
69.	=	-		0, 0.10 and 0.10 mol/L. The
	equilibrium constant fo	or the reaction, $H_2 + I_2 \rightleftharpoons 2$	zhi, will be	

	a) 8 b) 16	c) 32	d) 64
70.	If pH of the solution is one, what weight of HCl prese		
	a) 3.65 g b) 36.5 g	c) 0.365 g	d) 0.0365 g
71.	The concentration of hydroxyl ion in a solution left a	after mixing 100 mL of 0.1 <i>l</i>	M MgCl ₂ and 100 mL of
	0.2 M NaOH $[K_{sp} \text{ of Mg}(OH_2) = 1.2 \times 10^{-11}]$ is:		_
	,	c) 2.8×10^{-4}	d) 2.8×10^{-5}
72.	For a reaction and equilibrium which of the following	owing is correct?	
	a) Concentration of reactant=concentration of p	oroduct	
	b) Concentration of reactant is always greater th	nan product	
	c) Rate of forward reaction=rate of backward r	eaction	Y
	$d) Q_c = k$		
73.	The correct order of increasing basic nature of the g	iven conjugate bases is:	A Y
	a) $RCO\overline{O} < HC \equiv \overline{C} < \overline{N}H_2 < \overline{R}$		
	b) $RCO\overline{O} < HC \equiv \overline{C} < \overline{R} < \overline{N}H_2$		
	c) $\overline{R} < HC \equiv \overline{C} < RCO\overline{O} < \overline{N}H_2$		
	d) $RCO\overline{O} < \overline{N}H_2 < HC \equiv \overline{C} < \overline{R}$		
74.	What is the equilibrium expression for the reaction	tion	
	$P_4(s) + 50_2(g) \rightleftharpoons P_40_{10}(s)$?		
	a) $K_c = \frac{[P_4O_{10}]}{[P_4][O_c]^5}$ b) $K_c = \frac{[P_4O_{10}]}{5[P_4][O_2]}$	c) $K_c = [0_2]^5$	d) $K_c = \frac{1}{[O_2]^5}$
	[1 4][05]		$u_{j} R_{c} - [0_{2}]^{5}$
75.	A characteristic feature of reversible reaction is that		
	a) They never proceed to completion		
	b) They proceed to completion	J C the subsequence of	and the state of t
	c) They are not complete unless the reactants are red) None of the above	emoved from the sphere of	reaction mixture
76	The concentration of CO_2 be in equilibrium with 2	5×10^{-2} mol litro ⁻¹ of CO	at 100°C for the reaction :
70.	FeO(s) + CO(g) \rightleftharpoons Fe(s) + CO ₂ (g); $K_c = 5.0$.5 × 10 mornine or co	Tat 100 C for the reaction.
	a) 5 <i>M</i> b) 1.25 <i>M</i>	c) 12.5 <i>M</i>	d) 0.125 <i>M</i>
77.	In the reaction, $H_2 + I_2 \rightleftharpoons 2HI$	-,	., .
	In a 2 I flask 0.4 moles of each H ₂ and I ₂ are take	en. At eauilibrium 0.5 mo	les of HI are formed.
	What will be the value of equilibrium constant <i>I</i>	_	
	a) 20.2 b) 25.4	c) 0.284	d) 11.1
78.	0.005 M acid solution has 5 pH. The percentage		
	a) 0.8% b) 0.6 %	c) 0.4 %	d) 0.2 %
79.	A solution of pH 8 is basic than a solution of pH 12		, , .
	a) Less b) More	c) Equally	d) None of these
80.	Which statement is/are correct?		
	a) All Arrhenius acids are Bronsted acids		
	b) All Arrhenius bases are not Bronsted base		
7	c) H^+ ion in solution exists as $H_9O_4^+$		
5	d) All of the above		
81.	The concentration of fluroacetic acid (K_a of acid =	$= 2.6 \times 10^{-3}$) which is req	puired to get $[H^+] = 1.50 \times$
	$10^{-3}M$ is:		
	a) 0.865 <i>M</i>		
	b) $2.37 \times 10^{-3} M$		
	c) $2.37 \times 10^{-4} M$		
റാ	d) $2.37 \times 10^{-2} M$		
٥۷.	Which among the following is the strongest acid?	c) H(ClO)O	ዓ) ከ(ClO)
	a) H(ClO)O ₂ b) H(ClO)O ₃	c) H(ClO)O	d) H(ClO)

83.	3. Which one of the following is not an amphoteric substance?				
	a) HNO ₃ b) HCO ₃	c) H ₂ O	d) NH ₃		
84.	For the chemical reaction $3X(g) + Y(g) \rightleftharpoons X_3Y(g)$	g), that amount of X_2Y at	- 0		
	by	3	•		
	a) Temperature and pressure	b) Temperature only			
	c) Pressure only	d) Temperature, pressu	ire and catalyst		
25	K_p/K_c for the reaction,	a) Temperature, pressu	ire and catalyst		
05.	•				
	$CO(g) + \frac{1}{2}O_2(g) \rightleftharpoons CO_2(g)$ is:				
	a) RT b) $1/\sqrt{RT}$	c) \sqrt{RT}	d) 1		
86.	Densities of diamond and graphite are 3.5 and				
	equilibrium $C_{diamond} \rightleftharpoons C_{graphite}$:	<i>5</i> , 1 <i>y</i>			
	a) Favours backward reaction		4		
	b) Favours forward reaction		4		
	c) Have no effect	4	0		
	d) Increases the reaction rate				
87.	The solubility product of $BaCl_2$ is 4×10^{-9} . Its se	olubility in mol/L is			
	a) 4×10^{-3} b) 4×10^{-9}	c) 1×10^{-3}	d) 1×10^{-9}		
88.	Addition of sodium acetate to 0.1 M acetic acid v				
	a) Increase in pH	b) Decrease in pH			
	c) No change in pH	d) Change in pH that ca	nnot be predicted		
89.	The solubility in water of a sparingly soluble salt A ₂ l	_	_		
07.	a) 4×10^{-9} b) 4×10^{9}	c) 1×10^9	d) 1×10^{-9}		
90.	NaHCO ₃ and NaOH can not co-exist in a solution bec		w) 1 · · · 10		
	a) Common ion effect				
	b) Acid-base neutralisation				
	c) Le – Chatelier's principle				
	d) Redox change				
91.	Formation of SO ₃ from SO ₂ and O ₂ is favoured by	,			
	a) Increase in pressure	b) Decrease in pressure			
	c) Increase in temperature	d) Decrease in tempera	ture		
92.	A definite amount of solid NH ₄ HS is placed in a flask	already containing NH ₃ ga	as at certain temperature		
	and 0.50 atm pressure. NH ₄ HS decomposes to give N	IH ₃ and H ₂ S and total equi	librium pressure in flask is		
	0.84 atm. The equilibrium constant for the reaction	is:			
	a) 0.30 b) 0.18	c) 0.17	d) 0.11		
93.	Hydroxyl ion concentration of 10^{-2} M HCl is				
	a) 1×10^{1} mol dm ⁻³ b) 1×10^{-12} mol dm ⁻³	c) $1 \times 10^{-1} \text{ mol dm}^{-3}$	d) $1 \times 10^{-14} \text{ mol dm}^{-3}$		
94.	For a reaction in equilibrium :				
	a) There is no volume change				
67	b) The reaction has stopped completely				
5	c) The rate of forward reaction is equal to the rate of				
~	d) The forward reaction is faster than reverse reacti	on			
95.	A solution of CuSO ₄ in water will:				
	a) Turn red litmus blue				
	b) Turn blue litmus red				
	c) Show no effect on litmus				
0.0	d) Decolourize litmus	V) for the decorres - iti	reaction N. O. (a)		
90.	At constant temperature, the equilibrium constant (κ_p) for the decomposition	$1 \text{ eaction } \text{N}_2 \text{U}_4(g) =$		

		$(4x^2n)$				
	2NO ₂ (g) is expressed by	$K_p = \frac{(4x p)}{(1-x^2)}$				
	Where, p = pressure, x =extent of decomposition. Which one of the following statements is true?					
	a) K_p increases with incr	ease of <i>p</i>	b) K_p remains constant w	with change in p and x		
	c) K_p increases with incr	ease of <i>x</i>	d) None of the above			
97.	The pH of a solution is 5.	0. To this solution sufficien	t acid is added to decrease	the pH to 2.0. The increase		
	in hydrogen ion concentr	ation is:				
	a) 1000 times	b) 5/2 times	c) 100 times	d) 5 times		
98.	Which of the following					
	a) AlCl ₃	b) Cl ⁻	c) CO	d) C_2H_2		
99.			ubility in 0.1 molar sodiu	m chloride solution is		
	a) 1×10^{-10}	b) 1×10^{-5}	c) 1×10^{-9}	d) 1×10^{-4}		
100.	In which of the following					
			$c) 2SO_3 \rightleftharpoons O_2 + 2SO_2$			
101.	K_{sp} for sodium chloride i	s 36 mol ² /litre ² . The solub	ility of sodium chloride is:	0 1		
	a) $\frac{1}{36}M$	b) $\frac{1}{6}M$	c) 6 M	d) 3600 M		
	30	U				
102.	_		\times 10 ⁻⁵ , then hydrolysis			
	a) 1.8×10^{-5}	b) 1.8×10^{-10}		d) 5.55×10^{-10}		
103.				05 M formic acid to produce		
		4.0 (p K_a of formic acid= 3				
	a) 39.0 mL	b) 39.62 mL	c) 40 mL	d) 40.62 mL		
104.	An acid H A ionises as					
	$HA \rightleftharpoons H^+ + A^-$					
		on is 5. Its dissociation co				
	a) 1×10^{-10}	b).5	c) 5×10^{-8}	d) 1×10^{-5}		
105.	Phosphorus pentachlo	ride dissociates as follow	rs, in a closed reaction ves	ssel,		
	$PCl_5(g) \rightleftharpoons PC$	$l_3(g) + Cl_2(g)$				
	If total pressure at equ	ilibrium of the reaction n	nixture is p and degree of	f dissociation of PCl_5 is x ,		
	the partial pressure of	PCl ₃ will be				
	a) $\left(\frac{x}{x+1}\right)p$	b) $\left(\frac{2x}{1-x}\right)p$	c) $\left(\frac{x}{x-1}\right)p$	d) $\left(\frac{x}{1-x}\right)p$		
100	(711)	(1-27)	(1)	(1 1/)		
106.	For the gaseous phase r $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$		H = - 43.5 Kcai moi ⁻¹ , wn	ich statement is correct for		
	a) K is independent of te					
	b) <i>K</i> increases as temper	_				
	c) <i>K</i> decreases as temper					
	d) <i>K</i> varies with addition					
107.			<i>I</i> solution of hydrochloric a	icid?		
	a) The addition of magne					
7	b) The addition of 25cm ³	0.02 <i>M</i> hydrochloric acid				
	c) The addition of 25 cm	30.005 <i>M</i> hydrochloric acid	l			
	d) None of the above	·				
108	Which is not a Lewis acid	!?				
	a) CCl ₄	b) SnCl ₂	c) AlCl ₃	d) BF ₃		
109.	Which is Lewis base?					
	a) HCl	b) HNO ₃	c) HF	d) NH ₃		
110.	-		ted to 347°C in a closed ves	-		
			mposed according to the ed			
	The vessel is such that th	e volume remains effective	ely constant whereas pressu	ire increases to 50 atm.		

	Calculate th	ne percentage (of NH ₃ actually	decomposed	l			
	a) 61.3%		b) 63.5%	•	c) 65.3%		d) 66.6%	
111.	For the syst	tem; $3A + 2B$	$\rightleftharpoons C$, the expre	ssion for equ	ilibrium constar	nt is	•	
							[C]	
	$a) \frac{[A]^3 [B]^2}{[C]}$		b) $\frac{[C]}{[A]^3[B]^2}$		c) $\frac{[3A][2B]}{[C]}$		$d) \frac{[C]}{[3A][2B]}$	-
112.	A monopro	tic acid in a 0.1	M solution io	nisesto 0.001	%. Its ionisation	n constant i	is	•
	a) 1×10^{-1}		b) 1×10^{-3}		c) 1×10^{-6}		d) 1×10^{-8}	3
	-		•	g), the princi	ple pressure of (CO ₂ and CO	•	
		y at equilibriu				L		
	a) 2.0	-	b) 4.0		c) 8.0		d) 1.6	KV
	•	density of con	,	ciated NH ₄ Cl	•		,	4
	=	ess than half o	= -	=				
		nat of ammoni						Y
	-	hat of ammoni						,
	-			nmonium ch	loride used in th	e experime	ent	
	Mg^{2+} is t	=					V	
	a) Strong L		b) Strong Lev	vis base	c) Weak Lewis	acid	d) Weak Le	wis base
			for the reactio	$n_1 N_2(g) + 0$	$_{2}(g) \rightleftharpoons 2NO(g)$ j	is 4×10^{-1}	⁴ at 2000 K.	In presence of
					. Therefore, the			
	catalyst, at						•	1
	a) 40×10^{-1}							
	b) 4 × 10 ⁻							
	c) $4 \times 10^{-}$	-3						
	d) Difficult	to compute wi	thout more da	ta	$\mathcal{G}_{\mathbf{A}}, \mathcal{V}'$			
	-	=			action: $A_2 + B_2$	≠ 2 <i>AB</i> are	180kJ mol ⁻¹	¹ and 200 kJ
					the activation e			
	backward)	reactions by 1	00 kJ mol^{-1} . T	he enthalpy	change of the rea	action in th	e presence o	of catalyst will
	be (in kJ mo		^					
	a) -20		4					
	b) -300							
	c) + 120							
	d) – 280	4						
118.	How will is	ncrease of pr	essure affect	the equation	1?			
	C(s) +	$-H_2O(g) \rightleftharpoons C$	$O(g) + H_2(g)$					
	a) Shift in	the forward d	lirection		b) Shift in the	reverse di	irection	
	c) Increase	e in the yield	of hydrogen		d) No effect			
				osed apparat	us is 100 atm ar	nd 20% of t	the mixture	then reacts, the
		the same tem						,
	a) 100		b) 90		c) 85		d) 80	
		cts as in C ₂ H	•		,		,	
	a) Strong a		b) Weak acid		c) Strong base		d) Weak ba	se
		of sodium bora	•				,	
	a) > 7		b) < 7	11	c) = 7		d) Between	4 and 5
	-	uffer solution o	•	concentratio	n of X^- and H X .	The K_a for	-	
	buffer is		•			u		•
	a) 3		b) 8		c) 11		d) 14	
	-	following tab	-		-		=	
	Buffer	Volume (in	Volume (in					
	solutio	mL) of 1 M	mL) of 0.1					
	n	weak acid	M sodium					

		salt of weak acid
I	4.0	4.0
II	4.0	40.0
III	40.0	4.0
IV	0.1	10.0

Which of the two sets of buffer solutions have least pH?

- a) I and II
- b) I and III
- c) II and III
- d) II and IV

- 124. Which indicator works in the pH range 8-9.8?
 - a) Phenolphthalein
- b) Methyl orange
- c) Methyl red
- d) Litmus
- 125. 100 mL of 0.015 M HCl solution is mixed with 100 mL of 0.005 M HCl. What is the pH of the resultant solution?
 - a) 2.5

b) 1.5

c) 2

d) 1

126. The solubility of A_2X_3 is y mol dm⁻³. Its solubility product is:

a) $6 y^4$

- b) $64 y^4$
- c) $36 y^5$

- d) $108 \, v^5$
- 127. The volume of water needed to dissolve 1 g of BaSO₄ ($K_{sp}=1.1\times10^{-10}$) at 25°C is:
 - a) 820 litre
 - b) 410 litre
 - c) 205 litre
 - d) None of these
- 128. In a vessel containing SO_3 , SO_2 , and O_2 at equilibrium, some helium gas in introduced so that, the total pressure increase, while temperature and volume remain constant. According to Le-Chatelier's principle the dissociation of SO_3 :
 - a) Increases
 - b) Decreases
 - c) Remains unaltered
 - d) Changes unpredictably
- 129. Given the equilibrium system

$$NH_4Cl(s) \rightleftharpoons NH_4^+(aq) + Cl^-(aq)$$

$$(\Delta H = +3.5 \text{ kcal/mol})$$
.

What change will shift the equilibrium to the right?

- a) Decreasing the temperature
- b) Increasing the temperature
- c) Dissolving NaCl crystals in the equilibrium mixture
- d) Dissolving NH₄NO₃ crystals in the equilibrium mixture
- 130. The solubility product of BaSO₄ is 1.5×10^{-9} . The precipitation in a 0.01 M Ba²⁺ solution will start, on adding H₂SO₄ of concentration
 - a) 10^{-9} M
- b) 10^{-8} M
- c) 10^{-7} M
- d) 10^{-6} M
- 131. The solubility of Pb(OH) $_2$ in water is 6.7 \times 10 $^{-6}$ M. Its solubility in a buffer solution of pH=8 would be
 - a) 1.2×10^{-2}
- b) 1.6×10^{-3}
- c) 1.6×10^{-2}
- d) 1.2×10^{-3}

- 132. In which of the following reactions is $K_p < K_c$?
 - a) $I_2(g) \rightleftharpoons 2I(g)$

- b) $2BrCl(g) \rightleftharpoons Cl_2(g) + Br_2(g)$
- c) $CO(g) + 3H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)$
- d) All of the above

- 133. Any precipitate is formed when
 - a) Solution becomes saturated
 - b) The value of ionic product is less than the value of solubility product
 - c) The value of ionic product is equal to the value of solubility product

d) The value of ionic prod	duct is greater than the valu	ie of solubility product	
134. At 25°C, K_b for a base BO	H is 1.0×10^{-12} . The [OH ⁻]	in $0.01M$ aqueous solution	of base is:
a) $1.0 \times 10^{-6} M$	b) $1.0 \times 10^{-7} M$	c) $1.0 \times 10^{-5} M$	d) $2.0 \times 10^{-6} M$
135. The pH of a 10^{-9} M solution	ion of HCl in water is		
a) 8	b) -8	c) Between 7 and 8	d) Between 6 and 7
136. If pH of a saturated soluti	ion of $Ba(OH)_2$ is 12, the va	lue of its K_{sp} is:	
a) $4.0 \times 10^{-6} M^3$	b) $4.0 \times 10^{-7} M^3$	c) $5.0 \times 10^{-6} M^3$	d) $5.0 \times 10^{-7} M^3$
137. Liquid ammonia ionises t	to a slight extent. At -50° C,	its self ionisation constant,	$K_{\rm NH_3} = [{\rm NH_4^+}][{\rm NH_2^-}] =$
10^{-30} . How many amide	ions, are present per cm³ o	f pure liquid ammonia? (As	sume $N = 6.0 \times 10^{23}$)
a) 6×10^6 ions	b) 6×10^5 ions	c) 6×10^{-5} ions	d) 6×10^{-6} ions
138. The first and second dis	ssociation constants of a	n acid	4 7
H_2A are $1.0 imes 10^{-5}$ and	d 5.0 $ imes$ 10 ⁻¹⁰ respectivel	y. The overall dissociatio	n constant of the acid
will be			40
a) 5.0×10^{-5}	b) 5.0×10^{15}	c) 5.0×10^{-15}	d) 0.2×10^5
139. Which is the strongest ac		4	
a) CH ₃ COOH	b) CH ₂ ClCOOH	c) CHCl ₂ COOH	d) CCl ₃ COOH
140. A 0.01 <i>M</i> ammonia soluti	_	entration of [OH ⁻] ion is:	
a) 0.005 <i>M</i>	b) 0.0001 <i>M</i>	c) 0.0005 M	d) 0.05 <i>M</i>
141. Nucleophiles are:			
a) Lewis acids	b) Lewis bases	c) Bronsted acids	d) Bronsted bases
142. Theory of ionisation was	given by		
a) Rutherford	b) Graham	c) Faraday	d) Arrhenius
143. 0.01 mole of lime (CaO) v		f water. Assuming the base	is completely ionised in the
solution, the pH of the so			
a) 13.3	b) 8.5	c) 6	d) 8
144. Consider the following		ntrations	
$A = NH_4Cl$	$B = CH_3COONa$		
$C = NH_4OH$	$D = CH_3COOH$		
A buffer solution can be	e obtained by mixing equ	al volumes of	
a) C and D	b) A and B	c) A and C	d) <i>C</i> and <i>D</i>
145. At 600°C, K_p for the following	owing reaction is 1 atm.		
$X(g) \rightleftharpoons Y$	Z(g) + Z(g)		
At equilibrium, 50% of	X(g) is dissociated. The	total pressure of the equi	librium system is p atm.
	ssure (in atm) of $X(g)$ at		
a) 1	b) 4	c) 2	d) 0.5
146. Equilibrium constants K_1	and K_2 for the following ed	quilibria are related as :	
$NO(g) + \frac{1}{2} O_2(g) \rightleftharpoons NO_2(g)$		•	
2			
$2NO_2(g) \rightleftharpoons 2NO_2(g)$ a) $K_2 = \frac{1}{K_1^2}$	$(g) + O_2(g), N_2$		К.
a) $K_2 = \frac{1}{K_2^2}$	b) $K_2 = \frac{1}{K_4}$	c) $K_2 = K_1^2$	d) $K_2 = \frac{K_1}{2}$
147. If K_1 and K_2 are equilibria	*		<u>.</u>
$N_2 + O_2 \rightleftharpoons 2NO \dots (i)$		(c) (c.)	,
1, 1			
$\frac{1}{2}N_2 + \frac{1}{2}O_2 \rightleftharpoons NO \dots (ii)$			
Then:			
a) $K_2 = K_1$	b) $K_2 = \sqrt{K_1}$	c) $K_1 = 2K_2$	d) $K_1 = \frac{1}{2}K_2$
148. All reactions which have	•		۷
a) Exothermic			

	b) Reversible			
	c) Reversible and exothe			
4.40	=	ble and endothermic or ex		S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
149			lt, the solubility (s) and solubility product (K_{sp})
	are related by the expr			
	a) BaSO ₄	b) $Ca_3(PO_4)_2$	c) Hg ₂ Cl ₂	d) Ag_3PO_4
150	For $PCl_5 \rightleftharpoons PCl_3 + Cl_2$,	initial concentration of e	each reactant and	product is 1 M. If $K_{\text{eq}} = 0.41$ ther
	a) More PCl ₃ will form	b) More Cl ₂ will form	c) More PCl ₅ wi	ll form d) No change
151	The exothermic format	tion of ClF ₃ is represente	ed by the equation	
	$Cl_2(g) + 3F_2(g) \rightleftharpoons 2Cl$			
	$\Delta H = -329 \text{ kJ}$			
	•	will increase the quanti	tv of ClF2 in an eq	uilibrium mixture of
	Cl ₂ , F ₂ and ClF ₃ ?	1	3 - 1	
	a) Adding F ₂		b) Increasing th	e volume of the container
	c) Removing Cl ₂		d) Increasing th	
152	, ,	σ reactions does the equil		pend on the units of concentration?
152	. For wineir of the followin	5 reactions, aces the equi		solid on the units of concentration.
	a) $NO(g) = \frac{1}{2}N_2(g) + \frac{1}{2}O(g)$) (a)		
	<u> </u>			
	b) $\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(aq) \rightleftharpoons 0$, , , , , , , , , , , , , , , , , , ,		
	c) $COCl_2(g) \rightleftharpoons CO(g) + C$	2 (0)	II 040	
150		$H(l) \rightleftharpoons CH_3COOC_2H_5(l) +$		
153		of lead iodide (PbI ₂) is 3.2°		
1 🗆 /	a) $2 \times 10^{-3} M$	b) $4 \times 10^{-4} M$		d) $1.8 \times 10^{-5} M$
154		$f Ag_2CO_3 (K_{sp} = 8 \times 10)$		
		b) 0.05 M AgNO ₃		
155			il inorganic analysis	after II group analysis due to:
	a) Their solubility in acid			
	b) Their solubility in alkac) Their insoluble nature			
	d) None of the above	in arkanne meurum		
156		s 5. Calculate the nH of t	he huffer solution	, 1 L of which contains 0.01 M
100	NH_4Cl and 0.10 M NH_4		ne buner solution,	, 1 L of which contains 0.01 M
	a) 4	b) 6	c) 8	d) 10
157		•	•	at room temperature 300 K is 2.85
137				e compound at room temperature is
	because:	. Hence the reason that i	ii caists as a stable	compound at room temperature is
		rly that equilibrium is not i	readily achieved	
	b) The HI bond has a larg	-		
7		room temperature is -5.3	31 kcal	
	d) It is uncatalytic reaction	-		
158			owed to react in a 1	0 L evacuated flask at 500°C. The
	reaction is $H_2 + I_2 \rightleftharpoons 2H$	I, the K is found to be 64. T	The amount of unrea	acted I ₂ at equilibrium is
	a) 0.03 mol	b) 0.06 mol	c) 0.09 mol	d) 3.6 mol
159	. In a solution of a weak el	ectrolyte at infinite dilutio	n we have:	
		rolyte in 10% dissociated		
	b) Only anions and electr			
	=	ns and electrolyte is 100%	dissociated	
	d) Cations, anions and un	iionised electrolyte		

160. In the reaction, $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, the equipmol/L respectively. If the value of K_c is 0.5 what is the		
a) 0.5 b) 1.0	c) 1.5	d) 2.0
161. The reaction that proceeds in the forward direction	,	u) 210
a) $SnCl_4 + Hg_2Cl_2 \rightarrow SnCl_2 + 2HgCl_2$		
b) $NH_4Cl + NaOH \rightarrow H_2O + NH_3 + NaCl$		
c) $Mn^{2+} + 2H_2O + Cl_2 \rightarrow MnO_2 + 4H^+ + 2Cl^-$		
d) $S_4O_6^{2-} + 2I^- \rightarrow 2S_2O_3^{2-} + I_2$		
162. Which is a Lewis base		
$I_2 + I^- \rightarrow I_3^-?$) I=	D.V. Call
a) I ₂ b) I ₃	c) I	d) None of these
163. A solution contains 10 mL of 0.1 N NaOH and 10		
a) Less than 7 b) 7	c) Zero	d) Greater than 7
164. The solubility of $PbCl_2$ in water is 0.01 M at 25°C. Its		
a) $2 \times 10^{-3} M$ b) $1 \times 10^{-4} M$		d) $4 \times 10^{-4} M$
165. HX is a weak acid ($K_a = 10^{-5}$). It forms a salt Na	$\mathbf{a}X$ (0.1 M on reacting with	th caustic soda. The
degree of hydrolysis of NaX is	.10	
a) 0.01% b) 0.0001 %	c) 0.1 %	d) 0.5 %
166. Which species acts as stronger acid than formic acid	in aqueous solution?	
a) CH_3COOH b) H_2SO_4	c) NH ₄ ⁺	d) HPO ₄ ²⁻
167. In a reaction at equilibrium X' mole of the reactar		
fraction of A decomposed at equilibrium is independ	lent of initial concentration	of A , then the value of X' is
:		15.4
a) 1 b) 3	c) 2	d) 4
168. Starting with 1 mole of N_2O_4 , if α is the degree of dis at equilibrium the total number of moles of N_2O_4 and		eaction, $N_2O_4 \rightleftharpoons 2NO_2$ then
a) 2 b) $(1 - \alpha)$	c) $(1-\alpha)^2$	d) $(1 + \alpha)$
169. A saturated solution of Mg(OH) ₂ in water at 25°	C contains $0.11 \mathrm{g Mg}(\mathrm{OH})_2$	per litre of solution. The
solubility product of Mg(OH) ₂ is:		
a) $(0.11)^2$ b) $(0.11)^3$	c) $4 \times (0.11)^3$	d) $4 \times (0.11)^3/(58)^3$
170. For the reaction,		
$2NO_3(g) \rightleftharpoons 2NO(g) + O_2(g)$		
$(K_c = 1.8 \times 10^{-6} \text{ at } 184^{\circ}\text{C})$		
(R = 0.00831 kJ/(mol K))		
When K_p and K_c are compared at 184°C, it is four	nd that	
Whether K_n is greater than less than or equal		
to K_c depends upon the total gas pressure	b) $K_p = K_c$	
c) K_p is less than K_c	d) K_p is greater than K_c	
171. Which is the best choice for weak base-strong as	•	
a) Methyl red b) Litmus	c) Phenol red	d) Dhanalahthalain
		d) Phenolphthalein
172. The value of the ionic product of water depends		
a) On volume of water	b) On temperature	4
c) Changes by adding acid or alkali	d) Always remain const	
173. The formation of SO_3 takes place according to the formation of SO_3 is forward by	$100 \text{ ming reaction, } 250_2 + 0$	$_2 \rightleftharpoons 250_3, \Delta H = -45.2 \text{ kcal.}$
The formation of SO_3 is favoured by	h) In angaga in managan	
a) Increase of volume	b) Increase in pressure	
c) Increase in temperature 174. Which one is strongest electrolyte in the following?	d) Removal of oxygen	

	a) NaCl	b) CH ₃ COOH	c) NH ₄ OH	d) $C_6H_{12}O_6$
175	For which of the followi	ing reactions, $K_p = K_c$?		
		b) $N_2 + O_2 \rightleftharpoons 2NO$	c) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$	d) $2SO_3 \rightleftharpoons 2SO_2 + O_2$
176		I solution is less than that i		, , ,
	a) AgI forms complex witl		b) Of common ion effect	
	c) Solubility product of Ag	gI is less	d) The temperature of the	e solution decreases
177	. The partial pressure of CH	H_3 OH(g), CO(g) and H_2 (g) is		
		2.0, 1.0 and 0.1 atm respect		
	of CH ₃ OH to CO and H ₂ is			
	a) 10 ² atm	b) $2 \times 10^2 \text{atm}^{-1}$	c) 50 atm ²	d) $5 \times 10^{-3} \text{ atm}^2$
178	. What happens to pH of a s	solution when NH ₄ Cl crysta	al is added to a dilute soluti	on of NH ₄ OH?
	a) Decreases	b) Increases	c) Remains unaffected	d) All of these
179	. What mole of $Ca(OH)_2$ is o	dissolved in 250 mL aqueor	us solution to given a solut	ion of pH 10.65, assuming
	full dissociation?			
	a) 0.47×10^{-4}	b) 0.48×10^{-4}	c) 0.56×10^{-4}	d) 0.58×10^{-4}
180	. The volume of the reactio	n vessel containing an equ	ilibrium mixture in the rea	ction, $SO_2Cl_2(g) \rightleftharpoons SO_2(g) +$
	,_,	equilibrium is reestablishe	d:	
	a) The amount of $SO_2(g)$ v			
	b) The amount of SO ₂ Cl ₂ (g	=-		
	c) The amount of Cl ₂ (g) w			
	d) The amount of Cl ₂ (g) v	-		
181		oxide is shown from the for		15 AV
100	a) NaZnO ₂	b) Na ₂ ZnO ₂	c) Na ₂ Zn ₂ O ₂	d) None of these
182	Consider the following	-	K)	
	$N_2(g) + 3H_2(g) \rightleftharpoons 2N$	$NH_3(g)$	> Y	
				rium state if, the number
	of moles of N ₂ is 0.6, wh	at is the total number of	moles of all gases presen	it in the flask?
	of moles of N_2 is 0.6, wh a) 0.8	at is the total number of b) 1.6	moles of all gases presence) 3.2	t in the flask? d) 6.4
183	of moles of N_2 is 0.6, wh a) 0.8 . If 0.1 mole of I_2 is intro-	at is the total number of b) 1.6	moles of all gases presence) 3.2	it in the flask?
183	of moles of N_2 is 0.6, wh a) 0.8 If 0.1 mole of I_2 is introcorrect?	at is the total number of b) 1.6 duced into 1.0 litre flask a	moles of all gases presence) 3.2 at 1000 K, at equilibrium	at in the flask? d) 6.4 $(K_c = 10^{-6})$, which one is
183	of moles of N_2 is 0.6, wh a) 0.8 If 0.1 mole of I_2 is introcorrect?	at is the total number of b) 1.6 duced into 1.0 litre flask a	moles of all gases presence) 3.2 at 1000 K, at equilibrium	at in the flask? d) 6.4 $(K_c = 10^{-6})$, which one is
	of moles of N ₂ is 0.6, wh a) 0.8 If 0.1 mole of I ₂ is introcorrect? a) [I ₂ (g)] > [I(g)]	at is the total number of b) 1.6 duced into 1.0 litre flask a b) $[I_2(g)] < [I(g)]$	moles of all gases present c) 3.2 at 1000 K , at equilibrium c) $[I_2(g)] = [I(g)]$	at in the flask? d) 6.4 $(K_c=10^{-6})$, which one is d) $[I_2(g)]=\frac{1}{2}[I(g)]$
	of moles of N_2 is 0.6, wh a) 0.8 If 0.1 mole of I_2 is intro- correct? a) $[I_2(g)] > [I(g)]$ The equilibrium constant	at is the total number of b) 1.6 duced into 1.0 litre flask a b) $[I_2(g)] < [I(g)]$ K_c for $A(g) \rightleftharpoons B(g)$ is 1.1, 0	moles of all gases present c) 3.2 at 1000 K, at equilibrium c) $[I_2(g)] = [I(g)]$ Gas B will have molar conce	at in the flask? d) 6.4 $(K_c=10^{-6})$, which one is d) $[I_2(g)]=\frac{1}{2}[I(g)]$ entration greater than 1 if :
184	of moles of N_2 is 0.6, wh a) 0.8 . If 0.1 mole of I_2 is intro- correct? a) $[I_2(g)] > [I(g)]$. The equilibrium constant a) $(A) = 0.91$	at is the total number of b) 1.6 duced into 1.0 litre flask a b) $[I_2(g)] < [I(g)]$ K_c for $A(g) \rightleftharpoons B(g)$ is 1.1, (b) $(A) > 0.91$	moles of all gases present c) 3.2 at 1000 K, at equilibrium c) $[I_2(g)] = [I(g)]$ Gas B will have molar concector $(A) > 1$	at in the flask? d) 6.4 $(K_c = 10^{-6})$, which one is d) $[I_2(g)] = \frac{1}{2}[I(g)]$ entration greater than 1 if : d) At all these
184	of moles of N_2 is 0.6, wh a) 0.8 If 0.1 mole of I_2 is intro- correct? a) $[I_2(g)] > [I(g)]$ The equilibrium constant a) $(A) = 0.91$ The equilibrium which res	at is the total number of b) 1.6 duced into 1.0 litre flask a b) $[I_2(g)] < [I(g)]$ K_c for $A(g) \rightleftharpoons B(g)$ is 1.1, 0 b) $(A) > 0.91$ mains unaffected by change	moles of all gases present c) 3.2 at 1000 K, at equilibrium c) $[I_2(g)] = [I(g)]$ Gas B will have molar concectors $(A) > 1$ e in pressure of the reactar	at in the flask? d) 6.4 $(K_c = 10^{-6})$, which one is d) $[I_2(g)] = \frac{1}{2}[I(g)]$ centration greater than 1 if : d) At all these ats is
184	of moles of N_2 is 0.6, wh a) 0.8 . If 0.1 mole of I_2 is intro- correct? a) $[I_2(g)] > [I(g)]$. The equilibrium constant a) $(A) = 0.91$. The equilibrium which results a) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$	at is the total number of b) 1.6 duced into 1.0 litre flask a b) $[I_2(g)] < [I(g)]$ K_c for $A(g) \rightleftharpoons B(g)$ is 1.1, 0 b) $(A) > 0.91$ mains unaffected by change	moles of all gases present c) 3.2 at 1000 K, at equilibrium c) $[I_2(g)] = [I(g)]$ Gas B will have molar concectors $(A) > 1$ at in pressure of the reactar b) $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_2(g)$	at in the flask? d) 6.4 $(K_c = 10^{-6})$, which one is d) $[I_2(g)] = \frac{1}{2}[I(g)]$ centration greater than 1 if : d) At all these ats is
184 185	of moles of N_2 is 0.6, wh a) 0.8 If 0.1 mole of I_2 is intro- correct? a) $[I_2(g)] > [I(g)]$ The equilibrium constant a) $(A) = 0.91$ The equilibrium which red a) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ c) $2O_3(g) \rightleftharpoons 3O_2(g)$	at is the total number of b) 1.6 duced into 1.0 litre flask a b) $[I_2(g)] < [I(g)]$ K_c for $A(g) \rightleftharpoons B(g)$ is 1.1, 0 b) $(A) > 0.91$ mains unaffected by change (g)	moles of all gases present c) 3.2 at 1000 K, at equilibrium c) $[I_2(g)] = [I(g)]$ Gas B will have molar concectors $(A) > 1$ e in pressure of the reactant $(A) = (A) + (A) (A) + (A) + (A) + (A) = (A) + (A) $	at in the flask? d) 6.4 $(K_c = 10^{-6})$, which one is d) $[I_2(g)] = \frac{1}{2}[I(g)]$ centration greater than 1 if : d) At all these ats is
184 185	of moles of N_2 is 0.6, wh a) 0.8 . If 0.1 mole of I_2 is intro- correct? a) $[I_2(g)] > [I(g)]$. The equilibrium constant a) $(A) = 0.91$. The equilibrium which red a) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ c) $2O_3(g) \rightleftharpoons 3O_2(g)$. The pH value of 0.001 M	at is the total number of b) 1.6 duced into 1.0 litre flask a b) $[I_2(g)] < [I(g)]$ K_c for $A(g) \rightleftharpoons B(g)$ is 1.1, 0 b) $(A) > 0.91$ mains unaffected by change (g)	moles of all gases present c) 3.2 at 1000 K, at equilibrium c) $[I_2(g)] = [I(g)]$ Gas B will have molar concectors $(A) > 1$ e in pressure of the reactant $(A) = (A) + (A) = (A) + (A) = (A) + (A) = (A) + (A) = (A) = (A) + (A) = (A) $	at in the flask? d) 6.4 $(K_c = 10^{-6})$, which one is d) $[I_2(g)] = \frac{1}{2}[I(g)]$ entration greater than 1 if : d) At all these ats is $O_3(g)$
184 185 186	of moles of N_2 is 0.6, whal 0.8 along the line of I_2 is introduced as I_2 is intro	at is the total number of b) 1.6 duced into 1.0 litre flask a b) $[I_2(g)] < [I(g)]$ K_c for $A(g) \rightleftharpoons B(g)$ is 1.1, 0 b) $(A) > 0.91$ mains unaffected by change (g) M aqueous solution of Nat b) 4	moles of all gases present c) 3.2 at 1000 K, at equilibrium c) $[I_2(g)] = [I(g)]$ Gas B will have molar concectors $(A) > 1$ e in pressure of the reactant $(A) = (A) + (A) (A) + (A) + (A) + (A) = (A) + (A) $	at in the flask? d) 6.4 $(K_c = 10^{-6})$, which one is d) $[I_2(g)] = \frac{1}{2}[I(g)]$ centration greater than 1 if : d) At all these ats is
184 185 186	of moles of N_2 is 0.6, where N_2 is 0.8. If 0.1 mole of N_2 is introduced correct? a) $[N_2(g)] > [N_2(g)]$ The equilibrium constant a) $N_2(g) + N_2(g) \Rightarrow N_2(g) \Rightarrow N_2(g)$ The equilibrium which real $N_2(g) + N_2(g) \Rightarrow N_2(g)$ The pH value of 0.001 M a) 7 The solution of AgCl is unstantal $N_2(g) + N_2(g) \Rightarrow N_2(g)$	at is the total number of b) 1.6 duced into 1.0 litre flask a b) $[I_2(g)] < [I(g)]$ K_c for $A(g) \Rightarrow B(g)$ is 1.1, 0 b) $(A) > 0.91$ mains unaffected by change (g) (g) (g) (g) (g) aqueous solution of Na0 b) 4 saturated if:	moles of all gases present c) 3.2 at 1000 K, at equilibrium c) $[I_2(g)] = [I(g)]$ Gas B will have molar concectors $(A) > 1$ at in pressure of the reactant $(A) = (A) + (A) = (A) + (A) = (A) + (A) = (A) = (A) + (A) = (A)$	at in the flask? d) 6.4 $(K_c = 10^{-6})$, which one is d) $[I_2(g)] = \frac{1}{2}[I(g)]$ entration greater than 1 if: d) At all these ats is $O_3(g)$
184 185 186 187	of moles of N_2 is 0.6, where A_2 is 0.8. If 0.1 mole of A_2 is introduced as A_2 is introduced as A_2 is introduced as A_3 is introduced as A_4 is introduced as A_4 is A_5 in A_6 in A_7 in A_8	at is the total number of b) 1.6 duced into 1.0 litre flask a b) $[I_2(g)] < [I(g)]$ K_c for $A(g) \rightleftharpoons B(g)$ is 1.1, 0 b) $(A) > 0.91$ mains unaffected by change (g) M aqueous solution of National b) 4 saturated if: b) $[Ag^+][Cl^-] > K_{sp}$	moles of all gases present c) 3.2 at 1000 K, at equilibrium c) $[I_2(g)] = [I(g)]$ Gas B will have molar concectors $(A) > 1$ e in pressure of the reactant $(A) = (A) + (A) = (A) = (A) + (A) = (A) $	at in the flask? d) 6.4 $(K_c = 10^{-6})$, which one is d) $[I_2(g)] = \frac{1}{2}[I(g)]$ entration greater than 1 if: d) At all these ats is $O_3(g)$ d) unpredictable d) None of these
184 185 186 187	of moles of N ₂ is 0.6, whal 0.8 a) 0.8 b. If 0.1 mole of I ₂ is introcorrect? a) $[I_2(g)] > [I(g)]$ The equilibrium constant a) $(A) = 0.91$ The equilibrium which real N ₂ (g) + O ₂ (g) \rightleftharpoons 2NO(c) 2O ₃ (g) \rightleftharpoons 3O ₂ (g). The pH value of 0.001 Ma) 7 b. The solution of AgCl is unsa) $[Ag^+][Cl^-] < K_{sp}$ A decimolar solution of ar	at is the total number of b) 1.6 duced into 1.0 litre flask a b) $[I_2(g)] < [I(g)]$ K_c for $A(g) \rightleftharpoons B(g)$ is 1.1, 0 b) $(A) > 0.91$ mains unaffected by change (g) M aqueous solution of Na0 b) (g) saturated if: b) (g)	moles of all gases present c) 3.2 at 1000 K, at equilibrium c) $[I_2(g)] = [I(g)]$ Gas B will have molar concectors $(A) > 1$ e in pressure of the reactant $(A) = (A) + (A) = (A) + (A) = (A) $	at in the flask? d) 6.4 $(K_c = 10^{-6})$, which one is d) $[I_2(g)] = \frac{1}{2}[I(g)]$ entration greater than 1 if: d) At all these ats is $O_3(g)$ d) unpredictable d) None of these
184 185 186 187	of moles of N_2 is 0.6, where N_2 is 0.8. If 0.1 mole of N_2 is introduced as N_2 is N_2 is introduced as N_2 is N_2 is N_2 is N_2 in	at is the total number of b) 1.6 duced into 1.0 litre flask a b) $[I_2(g)] < [I(g)]$ K_c for $A(g) \rightleftharpoons B(g)$ is 1.1, 0 b) $(A) > 0.91$ mains unaffected by change (g) M aqueous solution of Na0 b) 4 saturated if: b) $[Ag^+][Cl^-] > K_{sp}$ mmonium hydroxide is ionition?	moles of all gases present c) 3.2 at 1000 K, at equilibrium c) $[I_2(g)] = [I(g)]$ as B will have molar concectors C (A) > 1 at in pressure of the reactant C (A) =	at in the flask? d) 6.4 $(K_c = 10^{-6}), \text{ which one is}$ d) $[I_2(g)] = \frac{1}{2}[I(g)]$ entration greater than 1 if: d) At all these ats is $O_3(g)$ d) unpredictable d) None of these at I_3 for I_3 f
184 185 186 187	of moles of N_2 is 0.6, where N_2 is 0.8. If 0.1 mole of N_2 is introduced correct? a) $N_2(g) > N_2(g) > N_2(g)$	at is the total number of b) 1.6 duced into 1.0 litre flask a b) $[I_2(g)] < [I(g)]$ K_c for $A(g) \Rightarrow B(g)$ is 1.1, 0 b) $(A) > 0.91$ mains unaffected by change (g) M aqueous solution of Nathabata attracted if: b) $[Ag^+][Cl^-] > K_{sp}$ mmonium hydroxide is ionition? b) 9.11	moles of all gases present c) 3.2 at 1000 K, at equilibrium c) $[I_2(g)] = [I(g)]$ Gas B will have molar concectors $(A) > 1$ at in pressure of the reactant $(A) = (A) + ($	at in the flask? d) 6.4 $(K_c = 10^{-6})$, which one is d) $[I_2(g)] = \frac{1}{2}[I(g)]$ entration greater than 1 if: d) At all these ats is $O_3(g)$ d) unpredictable d) None of these if $\log 1.3$. If $\log 1.3 = 0.11$, d) Unpredictable
184 185 186 187	of moles of N_2 is 0.6, what is the pH of the solution of A_2 is introduced as A_2 is introduced as A_2 is introduced as A_2 is introduced as A_3 in A_4 is introduced as A_4 in A_5 i	at is the total number of b) 1.6 duced into 1.0 litre flask a b) $[I_2(g)] < [I(g)]$ K_c for $A(g) \rightleftharpoons B(g)$ is 1.1, 0 b) $(A) > 0.91$ mains unaffected by change (g) M aqueous solution of Na0 b) A saturated if: b) $[Ag^+][Cl^-] > K_{sp}$ mmonium hydroxide is ionition? b) 9.11 ace of $\frac{M}{32}$ solution of a weak	moles of all gases present c) 3.2 at 1000 K, at equilibrium c) $[I_2(g)] = [I(g)]$ Gas B will have molar concectors of the reactant of the reactant of the pressure of the reactant of $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_2(g) + O_2(g) \rightleftharpoons 2SO_2(g)$ Cl is c) 11 c) $[Ag^+][CI^-] = K_{sp}$ ased to the extent of 1.3%. If the complete of the second of the	at in the flask? d) 6.4 $(K_c = 10^{-6})$, which one is d) $[I_2(g)] = \frac{1}{2}[I(g)]$ entration greater than 1 if: d) At all these ats is $O_3(g)$ d) unpredictable d) None of these if $\log 1.3$. If $\log 1.3 = 0.11$, d) Unpredictable
184 185 186 187	of moles of N_2 is 0.6, where N_2 is 0.8. If 0.1 mole of N_2 is introduced and N_2 is N_2 in N_2 is N_2 in N_2	at is the total number of b) 1.6 duced into 1.0 litre flask a b) $[I_2(g)] < [I(g)]$ K_c for $A(g) \rightleftharpoons B(g)$ is 1.1, 0 b) $(A) > 0.91$ mains unaffected by change (g) M aqueous solution of Nathabase (g) M saturated if: b) $[Ag^+][Cl^-] > K_{sp}$ mmonium hydroxide is ionition? b) 9.11 are of $\frac{M}{32}$ solution of a weak. The dissociation constant of	moles of all gases present c) 3.2 at 1000 K, at equilibrium c) $[I_2(g)] = [I(g)]$ Gas B will have molar concectors $(A) > 1$ at in pressure of the reactant $(A) = (A) = (A)$	at in the flask? d) 6.4 $(K_c = 10^{-6})$, which one is d) $[I_2(g)] = \frac{1}{2}[I(g)]$ entration greater than 1 if: d) At all these ats is $O_3(g)$ d) unpredictable d) None of these f log 1.3. If log 1.3 = 0.11, d) Unpredictable s cm ² and at infinite
184 185 186 187 188	of moles of N_2 is 0.6, when a) 0.8. If 0.1 mole of I_2 is introduced correct? a) $[I_2(g)] > [I(g)]$. The equilibrium constant a) $(A) = 0.91$. The equilibrium which real $N_2(g) + O_2(g) \rightleftharpoons 2NO(g) \ge 2NO(g) \ge 3O_2(g)$. The pH value of 0.001 Ma) 7. The solution of AgCl is unstant a) $[Ag^+][Cl^-] < K_{sp}$. A decimolar solution of arwhat is the pH of the solution of 11.11. The equivalent conductant dilution is 400 mhos cm ² . a) 1.25×10^{-4}	at is the total number of b) 1.6 duced into 1.0 litre flask a b) $[I_2(g)] < [I(g)]$ K_c for $A(g) \Rightarrow B(g)$ is 1.1, 0 b) $(A) > 0.91$ mains unaffected by change (g) M aqueous solution of Nath (a) (g) M aqueous solution of Nath (b) (g) monium hydroxide is ionition? b) (g) b) (g) b) (g) The dissociation constant (g) b) (g) The dissociation constant (g)	moles of all gases present c) 3.2 at 1000 K, at equilibrium c) $[I_2(g)] = [I(g)]$ Gas B will have molar concectors of the reactant of the reactant of the pressure of the reactant of $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_2(g) + O_2(g) \rightleftharpoons 2SO_2(g)$ Cl is c) 11 c) $[Ag^+][CI^-] = K_{sp}$ ased to the extent of 1.3%. If the complete of the second of the	at in the flask? d) 6.4 $(K_c = 10^{-6})$, which one is d) $[I_2(g)] = \frac{1}{2}[I(g)]$ entration greater than 1 if: d) At all these ats is $O_3(g)$ d) unpredictable d) None of these if $\log 1.3$. If $\log 1.3 = 0.11$, d) Unpredictable
184 185 186 187 188	of moles of N_2 is 0.6, where N_2 is 0.8. If 0.1 mole of N_2 is introduced and N_2 is N_2 in N_2 is N_2 in N_2	at is the total number of b) 1.6 duced into 1.0 litre flask a b) $[I_2(g)] < [I(g)]$ K_c for $A(g) \Rightarrow B(g)$ is 1.1, 0 b) $(A) > 0.91$ mains unaffected by change (g) M aqueous solution of Nath (a) (g) M aqueous solution of Nath (b) (g) monium hydroxide is ionition? b) (g) b) (g) b) (g) The dissociation constant (g) b) (g) The dissociation constant (g)	moles of all gases present c) 3.2 at 1000 K, at equilibrium c) $[I_2(g)] = [I(g)]$ Gas B will have molar concectors $(A) > 1$ at in pressure of the reactant $(A) = (A) = (A)$	at in the flask? d) 6.4 $(K_c = 10^{-6})$, which one is d) $[I_2(g)] = \frac{1}{2}[I(g)]$ entration greater than 1 if: d) At all these ats is $O_3(g)$ d) unpredictable d) None of these f log 1.3. If log 1.3 = 0.11, d) Unpredictable s cm ² and at infinite

191. A weak acid H <i>X</i> has the dissoci		5 M. It forms a salt Na X on	reaction with alkali. The
degree of hydrolysis of 0.1 M so			
			d) 0.15%
192. The species among the following	_		
a) HSO ₄ b) So	Q_4^{2-}	c) H ₃ O ⁺	d) Cl ⁻
193. For the reactions,			
$A \rightleftharpoons B$; $K_c = 2$			
$B \rightleftharpoons C$; $K_c = 4$			
$C \rightleftharpoons D; K_c = 6$			
K_c for the reaction, $A \rightleftharpoons D$ is:			(V)
	* *	- ,	d) 2 × 4 × 6
194. 0.365 g of HCl gas was passe	d through 100 cm ³ of	f 0.2 M NaOH solution. T	he pH of the resulting
solution would be			A . Y
a) 1 b) 5	(c) 8	d) 13
195. The pH of a 0.0001 N solution of	of KOH will be		
a) 4 b) 6		c) 10	d) 12
196. The equilibrium constant for a			
reaction is:		at 500 III The standard of	obs energy enange for time
	115kJ	c) + 166 kJ	d) – 116 kJ
197. The equilibrium constant for th	•		uj 110 kj
	c reaction, 1 ₄ (3) 30	[P.0.a]	[P.O.a]
a) $K_c = \frac{1}{[0_2]^5}$ b) K	$c = [0_2]^5$	c) $K_c = \frac{[P_4 O_{10}]}{5[P_4][O_2]}$	d) $K_c = \frac{[P_4 O_{10}]}{[P_4][O_2]^5}$
198. The correct relation for hydroly		r 42	[14][02]
		15.	
a) $\frac{K_w}{K_w}$ b) –	$\frac{K_w}{a \times K_b}$	$\sqrt{K_H}$	d) $\frac{K_a}{K_b}$
a) $\sqrt{\frac{K_w}{K_a}}$ b) \overline{K}	$_{\alpha} \times K_{b}$	$\frac{c_{j}}{c}$	K_b
199. The gaseous reaction,	CY		
$A + B \rightleftharpoons 2C + D + Q$ is most	favoured at		
a) Low temperature and high		b) High temperature and	low high procesure
	•	•	.
c) High temperature and low		d) Low temperature and	low pressure
200. An aqueous solution of 0.1 M N	•		n = .
a) 9.1 b) 8		-	d) 5.1
201. If the concentration of OH			$OH^{-}(aq)$, is decreased by
$\frac{1}{4}$ times, then equilibrium conce	ntration of Fe ³⁺ will in	crease by :	
a) 16 times b) 6	4 times	c) 4 times	d) 8 times
$202. A(g) + 3B(g) \rightleftharpoons 4C(g).$,	,
Initially concentration of A is	equal to that of R T	he equilibrium concentr	ations of A and C are
	equal to that of B. T.	ne equinorium concenti	actions of 11 and 6 are
equal. K_c is	0.0	-) 0	1) 00
a) 0.08 b) 0			d) 80
203. 18 mL of mixture of acetic acid		=	
acid and 12 mL of 0.1 M HCl for	reaction with salt, sep	arately. If pK_a of the acid i	s 4.75, what is the pH of
the mixture?			
a) 5.05 b) 4			
204, 50 mL of 0.1 M HCl and 50 m			d) 4.6
		c) 4.5 mixed. The pH of the res	•
a) 1.30 b) 4	L of 0.2 M NaOH are	mixed. The pH of the res	•
	L of 0.2 M NaOH are 2	mixed. The pH of the res	ulting solution is d) 11.70
a) 1.30 b) 4 205. K_c for the reaction : [Ag(CN) ₂]	L of 0.2 M NaOH are 2 \rightarrow Ag ⁺ + 2CN ⁻ , the	mixed. The pH of the resc) 12.70 equilibrium constant at 2	ulting solution is d) 11.70 5°C is 4.0×10^{-19} , then the
a) 1.30 b) 4 205. K_c for the reaction : [Ag(CN) ₂] silver ion concentration in a so	L of 0.2 M NaOH are $2 \qquad \qquad$	mixed. The pH of the resc) 12.70 equilibrium constant at 25 hally 0.1 molar in KCN and	ulting solution is d) 11.70 5°C is 4.0×10^{-19} , then the

a) Acid A b) Acid B	c) Are equally strong	_
207. When 100 mL of 1 M NaOH solution is mixed with 10	$0 \mathrm{mL} \mathrm{of} 10 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$, the re	sulting mixture will be
a) Acidic b) Alkaline	c) HClO ₃	d) H_3PO_3
208. The $[H_3O^+]$ in the rain water of pH = 4.35 is:	_	_
a) $4.5 \times 10^{-5} M$ b) $6.5 \times 10^{-5} M$	_	d) $12.5 \times 10^{-5} M$
209. For which salt the pH of its solution does not change		D.M. C.I
a) NH ₄ Cl b) CH ₃ COONH ₄	c) CH ₃ COONa	d) None of these
210. When hydrogen molecules decomposed into it's	atoms which conditions	gives maximum yield of
H atom?	13.4	
a) High temperature and low pressure	b) Low temperature and	
c) High temperature and high pressure	d) Low temperature and	d low pressure
211. Which is not and acid salt?	.) N. H. DO	D.M. JUGO
a) NaH ₂ PO ₂ b) NaH ₂ PO ₃	c) NaH ₂ PO ₄	d) NaHSO ₃
212. Which is a Lewis base?	-> Alti	IN NUT
a) B ₂ H ₆ b) LiAlH ₄	c) AlH ₃	d) NH ₃
213. Final pressure is higher than initial pressure of a		ideal gas at constant
temperature. What will be the value of equilibrium		D. W 4.0
a) $K = 1.0$ b) $K = 10.0$	c) $K > 1.0$	d) $K < 1.0$
214. In which of the following cases, does not reaction go	_	D 17 1
a) $K = 10^3$ b) $K = 10^{-2}$	c) $K = 10$	d) K = 1
215. For the reaction, $H_2(g) + I_2(g) \rightarrow 2HI(g)$, the G		cnanges with
a) Total pressure	b) Catalyst	
c) The amount H ₂ and I ₂	d) Temperature	
216. The equilibrium constant for the reaction,		
$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$		
At temperature T is 4×10^{-4} . The value of K_c for	r the reaction	
$NO(g) \rightleftharpoons \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$		
at the same temperature is		
a) 2.5×10^2 b) 50	c) 4×10^{-4}	d) 0.02
217. The reaction, $2A_{(g)} + B_{(g)} \rightleftharpoons 3C_{(g)} + D_{(g)}$ is begun	with the concentration of	A and B both at an initial
value of 1.00 <i>M</i> . When equilibrium is reached, the co		
The value for the equilibrium constant for this reacti	on is given by the expressi	on:
a) $[(0.75)^3 (0.25)] \div [(1.00)^2 (1.00)]$		
b) $[(0.75)^3 (0.25)] \div [(0.50)^2 (0.75)]$		
c) $[(0.75)^3 (0.25)] \div [(0.50)^2 (0.25)]$		
d) $[(0.75)^3 (0.25)] \div [(0.75)^2 (0.25)]$		
218. In HS^- , I^- , $R - NH_2$, NH_3 order of proton accepting to	endency will be:	
a) $I^- > NH_3 > RNH_2 > HS^-$		
b) $NH_3 > RNH_2 > HS^- > I^-$		
c) $RNH_2 > NH_3 > HS^- > I^-$		
d) $HS^- > RNH_2 > NH_3 > I^-$		
219. Strong electrolytes are those which:		
a) Dissolve readily in non-polar solventb) Conduct electricity in aqueous solution		
c) Dissociate into ions at high concentration		
d) None of the above		
220. The pH of 0.1 <i>N</i> HCl solution is:		
a) 1.0 b) 7.0	c) 14.0	d) 4.0

221. A solution of FeCl ₃ in water acts as acidic due to:		
a) Acidic impurities b) Ionisation	c) Hydrolysis of Fe ³⁺	d) Dissociation
222. The concept that an acid is a proton donor and a base	e is a proton acceptor was i	introduced by:
a) Arrhenius b) Bronsted-Lowry	c) Lewis	d) Faraday
223. Which is decreasing order of strength of bases?		
$\overline{O}H$, $\overline{N}H_2$, $HC \equiv C^-$ and $CH_3CH_2^-$		
a) $H_3CCH_2^- > NH_2^- > HC \equiv C^- > OH^-$	b) $HC \equiv C^- > CH_3CH_2^-$	> NH ₂ > OH ⁻
c) $OH^- > NH_2^- > CH \equiv C^- > H_3CCH_2^-$	d) $NH_2^- > HC \equiv C^- > 0$	
224. The strength of an acid depends on its tendency to	u) 11112 > 110 = 0 > 0	11 > 11300112
a) Accept protons b) Donate protons	c) Accept electrons	d) Donate electrons
225. The following reactions are known to occur in the bo		a) Donate electrons
$CO_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$	۵,	
If CO ₂ escapes from the system, then:		
a) pH will decrease		
b) Hydrogen ion concentration will diminish		
c) H ₂ CO ₃ concentration will be unaltered		
d) The forward reaction will be promoted	, (4	Y
226. The common ion effect is shown by which of the following the follow	owing sets of solutions?	
a) BaCl ₂ + BaNO ₃ b) NaCl + HCl	c) $NH_4OH + NH_4Cl$	d) None of these
227. In the reaction, $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$, the equilib	orium pressure is 12 atm. l	If 50% of CO_2 reacts, K_p for
the change is :		- r
a) 12 atm b) 16 atm	c) 20 atm	d) 6 atm
228. For a given solution pH = 6.9 at 60°C, where $K_w = 10^{-3}$	0^{-12} . The solution is:	
a) Acidic b) Basic	c) Neutral	d) Unpredictable
229. A quantity of PCl ₅ was heated in a 10 litre vessel at 2	250° C to show $PCl_5(g) \rightleftharpoons P$	$Cl_3(g) + Cl_2(g)$. At
equilibrium the vessel contains 0.1 mole of PCl ₅ , 0.20		
constant of the reaction is:	Ü	
a) 0.02 b) 0.05	c) 0.04	d) 0.025
230. One mole of ethyl alcohol was treated with one mo	le of acetic acid at 25°C. 2	3/3 of the acid changes into
ester at equilibrium. The equilibrium constant for the	e reaction will be:	
a) 1 b) 2	c) 3	d) 4
231. 9.2 g of $N_2O_4(g)$ is taken in a closed 1 L vessel and he	eated till the following equi	librium is reached
$N_2O_4(g) \rightleftharpoons 2NO_2(g)$		
At equilibrium, $50\% N_2 O_4(g)$ is dissociated. What is	the equilibrium constant (i	n molL ⁻¹)? (Molecular
weight of $N_2O_4 = 92$)		
a) 0.1 b) 0.2	c) 0.3	d) 0.4
232. Assuming complete dissociation which of the following	ng aqueous solutions will l	nave the same pH value?
(i)100 mL of 0.01 M HCl		
(ii) 100 mL of $0.01 \text{ MH}_2 \text{SO}_4$		
(iii)50 mL of 0.01 M HCl		
(iv)Mixture of 50 mL of 0.02 M H_2SO_4 and 50 mL of 0.02 M H_2SO_4		
a) (i), (ii) b) (i), (iii)	c) (ii), (iv)	d) (i), (iv)
233. At 3000 K, the equilibrium pressure of CO ₂ , CO and O	θ_2 are 0.6, 0.4 and 0.2 atm r	espectively. K_p for the
reaction $2CO_2 \rightleftharpoons 2CO + O_2$, is		
a) 0.089 b) 0.098	c) 0.189	d) 0.198
234. The p K_a of weak acid H_A is 4.5. The pOH of an aqueous	us buffer solution of HA in	which 50% of the acid is
ionised:		
a) 7.0 b) 4.5	c) 2.5	d) 9.5
235. An amphoteric buffer solution in which conc. of l	H^+ and HX is same. The	value of K_a of HX is 10^{-8} ,
then pH of buffer solution is		

	a) 3	b) 8	c) 10	d) 14
236	In the reaction, $3A + 2$	$B \rightarrow 2C$, the equilibrium	constant K_c is given by	
	a) $\frac{[3A]\times[2B]}{[C]}$	b) $\frac{[A]^3 \times [B]}{[C]}$	c) $\frac{[C]^2}{[A]^3 \times [B]^2}$	d) $\frac{[C]}{[3A][2B]}$
237	. Which reaction is not aff	ected by change in pressure	e?	
	a) $H_2 + I_2 \rightleftharpoons 2HI$		b) $N_2 + 3H_2 \rightleftharpoons 2NH_3$	
	c) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$		d) $2C + O_2 \rightleftharpoons 2CO$	
238	Three reactions involv	ing $\rm H_2PO_4^-$ are given belo)W	
	$(i)H_3PO_4 + H_2O \rightarrow H_3O$	$O^{+} + H_{2}PO_{4}^{-}$		
	$(ii)H_2PO_4^- + H_2O \rightarrow HI$	$PO_4^{2-} + H_3O^+$		
	$(iii)H_2PO_4^- + OH^- \rightarrow H$	$1_3PO_4 + O^{2-}$		
	, , = .	loes $H_2PO_4^-$ act as an acid	1 ?	
	a) (ii) only	b) (i)and (ii)	c) (iii) only	d) (i) only
239	• •	t undergoing anionic hydro	- ()	
	4			
	a) pH = $\frac{1}{2}$ [p K_w + p K_a +	log c]		X
	b) pH = $\frac{1}{2}$ [p K_w + p K_a -	log cl	4 4	
	c) pH = $\frac{1}{2}$ [p K_w + p K_b -	$\log c$		
	d) None of the above			
240	=	$+ 0 \rightleftharpoons C + D$, if the temper	rature is increased then con	ncentration of the products
	will	, , , , , , , , , , , , , , , , , , , ,		P
	a) Increase	b) Decrease	c) Remains the same	d) Become zero
241	. Under what conditions o	f temperature and pressure	e, the formation of atomic h	nydrogen from molecular
	hydrogen will be favoure			
	a) High temperature and	high pressure	b) High temperature and	low pressure
	c) Low temperature and	low pressure	d) Low temperature and	high pressure
242	. Mohr's salt is a:			
	a) Normal salt	b) Acid salt	c) Basic salt	d) Double salt
243	. pH of $0.05 M Mg(OH)_2$ is			
	a) 13	b) 10	c) 1	d) Zero
244				er than the concentration
	-	um?(K = equilibrium co		
		b) $M \rightleftharpoons N$; $K = 10$		
245	. The values of dissociat	ion constant of bases are	given below. Which is th	ne weakest base?
	a) 1.8×10^{-5}	b) 4.8×10^{-10}	c) 7.2×10^{-11}	d) 7.07×10^{-7}
246	. The dissociation equilibr	ium of a gas AB ₂ can be rep	oresented as :	
	$2AB_2(g) \rightleftharpoons 2AB_2(g)$			
				sion relating the degree of
7		illibrium constant K_p and to	otal pressure <i>p</i> is :	
	a) $(2K_p/P)^{1/3}$	b) $(2K_p/P)^{1/2}$	c) (K_p/P)	d) $(2K_p/P)$
247	. In which one of the follow	wing gaseous equilibria, K_p	is less than K_c ?	
		b) $2SO_2 + O_2 \rightleftharpoons 2SO_3$		d) $N_2 + O_2 \rightleftharpoons 2NO$
248	$K_{\rm sp}$ for $Cr(OH)_3$ is 2.7	$ imes$ 10^{-31} . What is its solul	bility in mol/L?	
	a) 1×10^{-8}	b) 8×10^{-8}	c) 1.1×10^{-8}	d) 0.18×10^{-8}
249	. N_2O_4 is dissociated to 33	% and 40% at total pressu	re P_1 and P_2 atm respective	ely. Then the ratio P_1/P_2 is:
	a) 7/4	b) 7/3	c) 8/3	d) 8/5
250	In the reactions, $A + 2B$	$\rightleftharpoons 2C$, if 2 moles of A , 3.0 m	oles of B and 2.0 moles of o	C are placed in a 2 L flask
		centration of C is 0.5 mol/L		

a) 0.21	b) 0.50	c) 0.75	d) 0.025
251. The pH value of 1/100	0 N KOH solution is		
a) 3	b) 10^{-11}	c) 2	d) 11
252. The pH of tears coming o	ut of a person's eye is:		
a) 7.4	b) 6.4	c) 7.0	d) 2.36
253. The solubility of CaF ₂ is 2	$2 imes 10^{-4}$ mol/L. Its solubilit	y product (K_{sp}) is	
a) 2.0×10^{-4}	b) 4.0×10^{-3}	c) 8.0×10^{-12}	d) 3.2×10^{-11}
254. The solubility product of	a salt having general formu	la MX_2 in water is 4×10^{-1}	¹² . The concentration of
M^{2+} ions in the aqueous	solution of the salt is		
a) 2.0×10^{-6} M	b) 1.0×10^{-4} M	c) $1.6 \times 10^{-4} M$	d) 4.0×10^{-10} M
255. The solubility product	of barium sulphate is 1.5	\times 10 ⁻⁹ at 18°C. Its solub	ility in water at 18°C is
a) 1.5×10^{-9}	b) 1.5×10^{-5}	c) 3.9×10^{-9}	d) 3.9×10^{-5}
256. The strongest Bronstee	d base is		4
a) ClO ₃	b) ClO ₂	c) ClO ₄	d) ClO ⁻
257. The reaction quotient (<i>Q</i>	, ,	5) 4154	0,40
a) = 1	b) = K	c) > K	d) < <i>K</i>
258. The concentration of o	•	-	•
	is the pH of $'x'$ M oxolic a		765 WIGH 10 IND 01 0105 II
	id dissociates completely		
a) 1.3	b) 1.699	c) 1	d) 2
		() 1	u) Z
259. Metal ions like Ag ⁺ , Cu			D. r 1
a) Bronsted acids	b) Bronsted bases	c) Lewis acids	d) Lewis bases
260. The pK_a of acetylsalicylic			stomach is about $2-3$ and
-	ine is about 8. Aspirin will b		
•	intestine and in the stomac		
	the small intestine and in th		
	n and almost unionised in th		
•	testine and almost unionise	d in the stomach	
261. A solution is called satura			
•	oduct < solubility product		
-	roduct > solubility product		
d) None of the above	oduct ≥ solubility product		
262. The auto protonation cor	estant of H. Olice		
a) 1×10^{-14}	b) 3.23×10^{-18}	c) 1.8×10^{-18}	d) 3.23×10^{-20}
$263. K_c \text{ for } m_1 A + m_2 B = n_1 C$	-	C) 1.0 × 10	u) 5.25 × 10
		$[C]^{n_1}[D]^{n_2}$	$[C]^{m_1} \times [D]^{m_2}$
a) $K_c = \frac{[L_1] \cdot [L_2]}{[C] \times [D]}$	b) $K_c = \frac{[A]^{n_1} [B]^{n_2}}{[C]^{m_1} [D]^{m_2}}$	c) $K_c = \frac{[G] [B]}{[A]m_1[R]m_2}$	d) $K_c = \frac{[C] \times [B]}{[A]n_1 \times [B]n_2}$
264. The pH of millimolar H	. , . ,	[n] $[D]$ $[n]$	$[H] \stackrel{?}{\sim} [D] \stackrel{?}{\sim}$
a) 1	b) 3	c) 2	d) 4
	, -		
265. Partial pressure of A, B, C 0.10, $C = 0.30$ and $D = 0$	50 atm. The numerical valu		
a) 3.75	b) 18.75	c) 17.85	d) 15.87
266. Which equilibrium can be	,		•
a) $H_2O + CH_3COOH \rightleftharpoons H_2O$		ase reaction but not bronst	eu aciu-base reaction:
b) $2NH_3 + H_2SO_4 \rightleftharpoons 2NH_3$	-		
c) $NH_3 + CH_3COOH \rightleftharpoons N$	•		
, ,	$A = [Cu(NH_3)_4]^{2+} + 4H_2O$		
$267. \text{ SnCl}_2 \text{ and HgCl}_2 \text{ cannot c}$		e of:	

	c) Conc. of Cl ⁻ increases t	o precipitate both		
	d) Redox change			
268.	-	a Lewis but not a Bronsted		
	a) NH ₂	b) 0 ² -	c) BF ₃	d) OH ⁻
269.	-	_	ccurs when $Na_2O(s)$ is d	issolved in water?
	a) Oxidation number of	sodium decreases		
	b) Oxide ion accepts sha	ring in a pair of electron	S	
	c) Oxide ion donates a p	air of electrons		\wedge
	d) Oxidation number of	oxygen increases		
270.	pH of 0.005 M calcium a	icetate is		
	$(pK_a \text{ of } CH_3COOH = 4.7)$	4)		4
	a) 7.04	b) 9.37	c) 9.26	d) 8.2195
271.	-	olvsis constant and dissoc	ciation constant are giver	. Which is the correct
	formula for MgCl ₂ ?	, 5.5 05.15 00.10 01.10 01.55 0	61.01.01.01.01.01.01.01.01.01.01.01.01.01	
	K	К	K	K _b
	a) $K_h = \frac{1-W}{K}$	b) $K_h = \frac{1-W}{K_1}$	c) $K_h = \frac{K_w}{K_a \times K_b}$	d) $K_w = \frac{1-h}{K_*}$
			ical reaction is directly pro	
<i>,</i> .	a) Equilibrium constant	icates that the rate of chem	b) Volume of apparatus	portional to the
	c) Properties of reactants		d) Concentration of reacta	nts
273.		reactions, the value of K_p w		
_, _,			c) $H_2 + I_2 \rightleftharpoons 2HI$	d) $2SO_0 + O_0 \Rightarrow 2SO_0$
274.			base, the hydrolysis con	
_,				
	a) $\frac{K_w}{K_h}$	b) $\frac{K_w}{K_a}$	c) $\frac{K_w}{K_a, K_b}$	d) K_a . K_b
275.	In which reaction ammon	u	11a.11p	
_, _,	a) $NH_3 + HCl \rightarrow NH_4Cl$			
	b) $NH_3 + H^+ \rightarrow NH_4^+$			
	c) $NH_3 + Na \rightarrow NaNH_2 +$	1		
	d) NH ₃ cannot act as an ac	zid		
276.	-	-		products, $A + B \rightleftharpoons C + D$.
	At equilibrium, one thir	$d ext{ of } A ext{ and } B ext{ are consume}$	ed. The equilibrium cons	tant for the reaction is
	a) 0.5	b) 4.0	c) 2.5	d) 0.25
277.		-		ng to the equation, $N_2(g)$ +
		nstant temperature and pr	essure. Then the ratio of th	e final volume to the initial
	volume of gases is:			
	a) 4:5	b) 5:4	c) 7:10	d) 8:5
278.		ains a substance which yiel	ds 4×10^{-3} mol litre ⁻¹ ion	of H_3O^+ . If $\log 2 = 0.3010$,
	the pH of the solution is:	1) 0000		N 0 4
~-~	a) 1.5	b) 2.398	c) 3.0	d) 3.4
279.			lium acetate and acetic acid	l, the ration of
		acid ($K_a = 10^{-5}$) should be		1) 4 400
200	a) 1:10	b) 10 : 1	c) 100:1	d) 1 : 100
Z8U.		rogen ion [H ⁺] and pH in 10		J) 101 1
201	a) 10 ¹ , zero	b) 10 ¹ , -1	c) 10 ² , 1	d) 10 ¹ , 1
∠81.		$\mathfrak{g}(OH)_2$ at ordinary temper	erature is 1.96 × 10 11. p	H of a saturated solution
	of Mg(OH) ₂ will be			
				Page 20

a) Common ion effect

b) Le — Chatelier's principle

a) 10.53	b) 8.47	c) 6.94	d) 3.47
282. For the reaction H	$_2 + I_2 \rightleftharpoons 2HI :$		
a) $K_c = 2K_p$	b) $K_c > K_p$	c) $K_c = K_p$	d) $K_c < K_p$
283. When CaCO ₃ is he	ated at a constant tem	perature in a closed contain	er, the pressure due to ${\rm CO_2}$ produced
will:			
a) Change with the	e amount of CaCO ₃ tak	en	
b) Change with the	e size of the container		
c) Remain constar	nt so long as temperatu	ire is constant	
d) Remain constar	nt even if temperature	is changed	
284. Four species are	listed below		
IV. HCO ₃			
$V. H_3O^+$			
VI. HSO ₄			
VII.HSO ₃ F			
· ·	following is the corr	rect sequence of their acid	strongth?
		b) (ii) < (iii) <	
a) (iv) < (ii) < (
c) (i) $<$ (iii) $<$ (i	, , ,	d) (iii) < (i) <	
	_		ons is treated with 10 ⁴ moles of
		ving observation is made?	
$[K_s]$	$_{\rm sp}{\rm Ag_2CrO_4}$ 4	10^{12}]	
	$_{\mathrm{Sp}}\mathrm{Ag}_{2}\mathrm{CrO}_{4}$ 4 $[K_{\mathrm{sp}}\mathrm{AgCl}$ 1	10 ¹⁰]	
a) Precipitation o			
-	te gets precipitated f	irst	
	gets precipitated fir		
		loride start precipitating si	imultaneously
286. Which is a basic sa		for the start precipitating s	infurcaneously
a) PbS	b) PbCO ₃	c) PbSO ₄	d) $2PbCO_3Pb(OH)_2$
=	, ,	-	α If the same reaction is carried out in
	equilibrium constant		an the same reaction is carried out in
a) Doubled	b) Decreased	c) Halved	d) Same
			centration of Ca ²⁺ ions 4 times will
	tum concentration of F		decirration of Ga Tons 1 times win
a) ¼ of the initial		ions to change to .	
b) ½ of the initial			
c) 2 times of the ir			
d) None of the abo			
		a solution of $pH = 5.4$ will be	<u>a</u>
a) 3.98×10^8	b) 3.88×10^6		d) 3.98×10^{-6}
290. The strongest co	•	0) 0.00 11 20	u, 5.75 15
a) NO_3^-	b) Cl ⁻	c) SO_4^{2-}	d) CH ₃ COO ⁻
	•	-	a) Gli3GOO
291. In the reaction I_2 - a) I_2	b) I ⁻	c) I ₃	d) None of these
	,	· ·	s reached, HI was found to be 22%
	equilibrium constant f	-	s reactied, iii was found to be 2270
-	b) 0.0796		d) 1.99
a) 0.282293. Which one is ampl	•	c) 0.0199	uj 1.99
a) SO_2	b) B_2O_3	c) ZnO	d) Na ₂ O
	·	C) LIIO	uj iva ₂ 0
294. For which reaction	inp is iess than ne:		

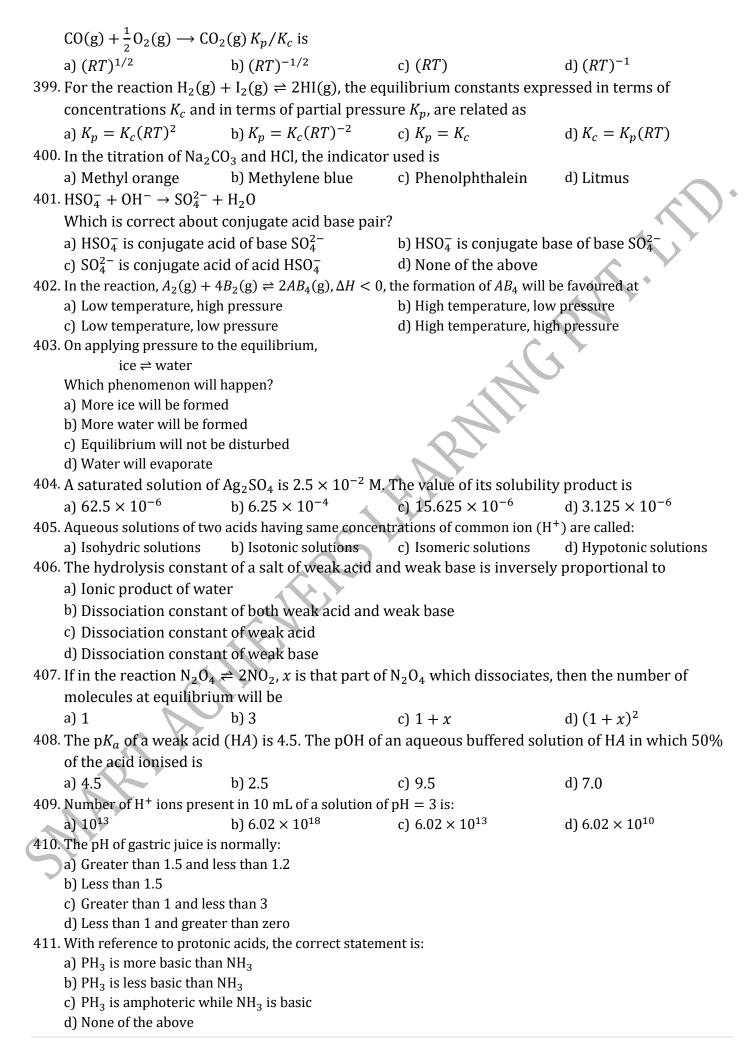
	· - · -		c) $2SO_2 + O_2 \rightleftharpoons 2SO_3$,
295.) if the initial concentration	of $[H_2] = [CO_2]$ and x
	mol/L of hydrogen is cons	sumed at equilibrium, the o	correct expression of K_p is	
	a) $\frac{x^2}{(1-x)^2}$	b) $\frac{x^2}{(2+x)^2}$	c) $\frac{x^2}{1-x^3}$	d) $\frac{(1+x)^2}{(1-x)^2}$
	$\frac{dJ}{(1-x)^2}$	$(2+x)^2$	$\frac{1-x^3}{1-x^3}$	$(1-x)^2$
296.	In the given reaction,			
	$2X(g) + Y(g) \rightleftharpoons 2$	2Z(g) + 80 kcal,		
	Which combination of p	ressure and temperatur	e will give the highest yie	eld of Z at equilibrium?
	a) 1000 atm and 200°C	P	b) 500 atm and 500°C	1
	c) 1000 atm and 100°C		d) 500 atm and 100°C	
207	•	o following word propaga	d in water separately. Whi	ch and of the colutions wil
297.	record the highest pH?	le following were prepare	u III water separately. Will	cii one of the solutions wil
	a) BaCl ₂	b) MgCl ₂	c) CaCl ₂	d) \$201
200	. Which is not correct for Le	, , ,	c) caci ₂	u) Stul
290.				
	a) They contain at least or			V ·
	b) They have a tendency t	-	. (4	Y
	c) The smaller ion has gre	eater actuic strength ngth of acid is inversely pr	anartianal ta ita aharaa	
200		•	•	go dissociation of N.O. at
299.		D ₄ at a certain temperature	is 30. What is the percenta	ge dissociation of N ₂ O ₄ at
	this temperature?	b) 36.2%	c) 53.3%	d) 64.2%
200	a) 46.5%	,	C) 33.370	u) 04.270
300.	For which reaction $K_p \neq K_0$ a) $2NO_2(g) \rightleftharpoons N_2(g) + O_2(g)$			
	b) $SO_2(g) + NO_2(g) \rightleftharpoons SO_3$	<u>.</u>	CA N	
	c) $I_2(g) + H_2(g) \rightleftharpoons 2HI(g)$	(6)		
	d) $2C(s) + O_2(g) \rightarrow 2CO(g)$		>	
201			te has $pH = 5.24$. The ratio	of [CH COO=]/[CH COOH
301.	in this buffer is, $(pK_a = 4)$		te has pri – 5.24. The ratio	01 [6113600]/[611360011]
	a) $3:1$	b) 1:3	c) 1:1	d) 1:2
302			•	•
302.			CH_3COONa is 0.01 M. The	
200		b) 4.37	c) 4.74	d) 0.474
303.	. If 1 M CH ₃ COONa is added			
	a) pH of the solution incre	eases		
	b) pH decreases			
	c) pH does not change			
004	d) None of the above			2
304.	\cdot 2.5 mL of $\frac{2}{5}$ M weak more	noacidic base $(K_b = 1 \times$	10^{-12} at 25°C) is titrated	with $\frac{2}{15}$ M HCl in water
	at 25°C. The concentrati	ion of H ⁺ at equivalence	point is	
	$(K_w = 1 \times 10^{-14} \text{ at } 25^{\circ})$		1	
			c) $3.2 \times 10^{-2} \text{ M}$	d) 2.7×10^{-2} M
305	-	=	a solution in which the co	=
303.				
			centration of B^- ions is leads to B^-	
	a) Between 10^{-8} to 10^{-}	′ M	b) Between 10^{-7} M to 10)-0 M
	c) $> 10^{-5} \text{ M}$		d) $< 10^{-8} \text{ M}$	
306.	For the gaseous reaction	$n, C_2H_4 + H_2 \rightleftharpoons C_2H_6, \Delta H_6$	$I = -130 \text{ kJ mol}^{-1} \text{ carrie}$	d in a closed vessel, the
	equilibrium concentrati	on of the C_2H_6 can defin	itely be increased by	
	a) Increasing tempera	ature and decreasin	gb) Decreasing temperat	ure and increasing

pressure

pressure

- c) Increasing temperature and pressure both d) Decreasing temperature and pressure only 307. Chemical equilibrium is dynamic in nature because: a) The equilibrium is maintained rapidly b) The concentration of reactants and products become same at equilibrium c) The concentration of reactants and products decrease with time d) Both forward and backward reactions occur at all times with same speed 308. What happens to the yield on application of high pressure in the Haber's synthesis of ammonia? a) Increases b) Decreases c) Unaffected d) Reaction stops 309. The buffering action of an acidic buffer is maximum when its pH is equal to b) 7 c) 1 310. HA is a weak acid. The pH of 0.1 M HA solution is 2. What is the degree of dissociation (α) of HA? a) 0.5 b) 0.2 c) 0.1 d) 0.301 311. Which of the following is a wrong statement about equilibrium state? a) Rate of forward reaction = Rate of backward reaction b) Equilibrium is dynamic c) Catalysts increase value of equilibrium constant d) Free energy change is zero 312. In an experiment to determine the enthalpy of neutralization of sodium hydroxide with sulphuric acid, 50 cm³ of 0.4 *M* sodium hydroxide were titrated thermometrically with 0.25 *M* sulphuric acid. Which of the following plots gives the correct representation? a) b)
- 313. H⁺ ion produces common ion effect in the wet analysis of:
 - a) Group I metals
- b) Group II metals
- c) Group III metals
- d) Group IV metals

314.	15 moles of H ₂ and 5.2	moles of I_2 are mixed an	d allowed to attain equili	brium at 500°C. At
	equilibrium, the concer	ntration of HI is found to	be 10 moles. The equilib	rium constant for the
	formation of HI is			
	a) 50	b) 15	c) 100	d) 25
315.	$10^{-6}M$ HCl is diluted to 1	00 times. Its pH is:		
	a) 6.0	b) 8.0	c) 6.95	d) 9.5
	_	$+ \operatorname{Cl}_2(g) \rightleftharpoons \operatorname{PCl}_5(g)$, the po	sition of equilibrium can be	e shifted to the right by
	a) Doubling the volume	- 1-1	-	
	b) Increasing the tempera	ature		A()'
	c) Addition of Cl ₂ at cons	tant volume		\wedge
	d) Addition of equimolar	quantities of PCl ₃ and PCl ₅		4 7
317.	The pH of an aqueous s	olution containing [H ⁺]	concentration $=3.0 \times 10$	⁻³ M. The pH of the
	solution is			4
	a) 2.523	b) 3.0	c) 2.471	d) None of these
318.	The addition of which sal	t will decrease the H ⁺ cond	centration of HCN solution?	
	a) NH ₄ Cl	b) $Al_2(SO_4)_3$	c) AgNO ₃	d) NaCN
319.	The pH of the solution ob	tained by mixing 10 mL of	$10^{-1}N$ HCl and 10 mL of 10	O ⁻¹ N NaOH is:
	a) 8	b) 2	c) 7	d) None of these
320.	The solubility product of	of PbCl ₂ is 2.3×10^{-32} . It	ts solubility will be	
			c) 3.42×10^{-9} g/L	d) 4.95×10^{-9} g/L
				H of about 9. The salt would
	be:	O .		
	a) NH ₄ NO ₃	b) CH ₃ COONa	c) CH ₃ COONH ₄	d) CaCO ₃
			The hydrolysis constant of N	, ,
	a) 1.8×10^{-19}		c) 5.55×10^{-5}	
			barium hydroxide soluti	
	resulting solution?		,	1
	a) 3.0	b) 3.3	c) 11.0	d) 11.7
		ation of oxalic acid with ca	•) 1111
	a) Methyl orange	b) Methyl red	c) Fluorescein	d) Phenolphthalein
	, ,		What happens to the equili	-
			ftc) It remains unchanged	
		a characteristic of a revers		•
	a) It can never proceed to			
	b) It can be influenced by			
		actants and products are e	qual	
	d) None of the above			
327.	An aqueous solution of hy	drogen sulphide shows th	e equilibrium,	
	$H_2S \rightleftharpoons$	$H^+ + HS^-$		
1	If dilute hydrochloric aci	d is added to an aqueous	solution of hydrogen sulp	hide without any change in
C)	temperature, then:			
	a) The equilibrium consta	ant will change		
	b) The concentration of H			
		ndissociated hydrogen sul	phide will decrease	
	d) The concentration of H			
	Le-Chatelier's principle is	= =		
	a) Homogeneous reaction			
	b) Heterogeneous reactio			
	c) Homogeneous or heter	ogeneous systems in equi	librium	


	d) Systems not in equilibr	rium		
329.	If p K_a values of four aci	ds are given below at 25	°C, the strongest acid is	
	a) 2.0	b) 2.5	c) 3.0	d) 4.0
330.	Weakest base among the	following is:		
	a) NaOH	b) Ca(OH) ₂	c) $Zn(OH)_2$	d) KOH
	_	e thousand times as basic a	- · · · · · -	
	a) 6	b) 7	c) 4	d) 10
332.	Aprotic solvent is:			
	a) CCl ₄	b) C ₆ H ₆	c) SO ₂	d) All of these
333.	The hydroxide with highe		· -	(X)
	a) $Al(OH)_3$	b) Co(OH) ₂	c) $Cr(OH)_3$	d) Fe(OH) ₃
334.	In the absence of formati	on of complex ions by the	addition of a common ion,	the solubility of a given salt
	is:			
	a) Increased			
	b) Decreased			
	c) Unaffected			V
	d) First increased and the	n decreased	, (4	Y
335.	The pH of $0.1 M$ NaHS is,	K_{a_1} and K_{a_2} for H_2S are 1.3	\times 10 ⁻⁷ and 7.1 \times 10 ⁻¹⁵ re	spectively:
	a) 10.52	b) 9.52	c) 12.52	d) 13.52
336.	$A + B \rightleftharpoons C + D$			
	Initially moles of A and	B are equal. At equilibri	um, moles of Care three	times that of <i>A</i> . the
	equilibrium constant of			
	a) 1	b) 3	c) 4	d) 9
	The strongest acid among			
	a) $ClO_3(OH)$, the following is.		
	b) ClO ₂ (OH)			
	c) SO(OH ₂)			
	d) $SO_2(OH)_2$			
		in a reversible reaction at	a given temperature	
	a) Does not depend on the		9	
		concentrations of the react	ants	
	· -	ntration of the products at o		
	d) It is not characteristic		1	
	·		K, the value of equilibr	ium constant is 50, when
			K_p under the same condit	
	a) 0.02	b) 0.2	c) 50	d) 50 <i>RT</i>
	-	,		. The mass produced would
	be:			•
	a) 16 g	b) 17 g	c) 20 g	d) 68 g
341.	The conjugate acid of CO ₃	is:	, ,	, ,
	a) H ₂ 0	b) H ₂ CO ₃	c) OH ⁻	d) HCO ₃
	, <u>-</u>	, - ,	de from the following da	-
	$CaCO_3C \xrightarrow{\Delta} CaO(g) + CO$		O .	
		•		
	$O_2(g) + C(s) \to 2CO(g)$	$K_p = 2$		
	a) 0.2	b) 0.4	c) 1.6	d) 4
343.	In aqueous solution, the $K_1 = 4.2 \times 10^{-7}$ and	e ionisation constants for $K_2 = 4.8 \times 10^{-11}$	carbonic acid are,	
	=	-	34 M solution of the carbo	onic acid.

a) The concentration of CO_3^{2-} is 0.034 M	b) The concentration of HCO ₃	of CO_3^{2-} is greater than that
The concentration of H^+ and HCO_3^- are approximately equal	The concentration of CO_3^{2-}	of H ⁺ is double that of
344. The rapid change of pH near the stoichiometric		ration is the basis of
indicator detection. pH of the solution is related	=	
acid (HIn) and base (In ⁻) forms of the indicator		· -
a) $\log \frac{[\text{In}^-]}{[\text{HIn}]} = pK_{\text{In}} - pH$	b) $\log \frac{[HIn]}{[In^-]} = pK_{In} - pK_{In}$	
c) $\log \frac{[HIn]}{[In^-]} = PH - pK_{In}$	d) $\log \frac{[In^-]}{[HIn]} = pH - pK_I$	n
345. The number of mole of hydroxide [OH ⁻] ion in 0.3 li		
a) 0.0075 b) 0.0015	c) 0.0030	d) 0.0050
346. 4.5 moles each of hydrogen and iodine heated in a s	-	ibrium 3 moles of HI were
found. The equilibrium constant for $H_2(g) + I_2(g) =$		1) 6 5
a) 1 b) 5	c) 10	d) 0.5
347. The degree of hydrolysis in hydrolytic equilibrium of 0.001 M is $(K_a = 1 \times 10^{-5})$	$\operatorname{um} A + \operatorname{H}_2 0 \rightleftharpoons \operatorname{H} A + 0$	H at salt concentration
a) 1×10^{-3} b) 1×10^{-4}	c) 5×10^{-4}	d) 1×10^{-6}
348. For a hypothetical equilibrium:		-, -
$4A + 5B \rightleftharpoons 4x + 6y$; the equilibrium constant K_c ha	s the unit:	
a) mol ² litre ⁻² b) litre mol ⁻¹	c) litre ² mol ⁻²	d) mol litre $^{-1}$
349. Salting out action of soap is based on:	(A,)-	
a) Complex ion formation		
b) Common ion effect		
c) Solubility product		
d) Acid-base neutralization		
350. The equilibrium constant for the reaction,		
$SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$ is 5×10^{-2} atm. The	e equilibrium constant c	of the reaction
$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$ would be		
a) 100 atm b) 200 atm	c) 4×10^2 atm	d) 6.25×10^4 atm
351. Which can be explained as applications of Le-Chatel		, 0.20 20 0.0
a) Transport of oxygen by haemoglobin in blood		
b) Removal of CO ₂ from tissues by blood		
c) Tooth decay due to use of sweet substances		
d) All of the above		
352. Which equilibrium in gaseous phase would be unaff	fected by an increase in pr	essure?
a) $N_2O_4 \rightleftharpoons 2NO_2$ b) $N_2 + O_2 \rightleftharpoons 2NO$	c) $N_2 + 3H_2 \rightleftharpoons 2NH_3$	d) $CO + \frac{1}{2}O_2 \rightleftharpoons CO_2$
353. The aqueous solution of AlCl ₃ is acidic due to the hy		L
a) Aluminum ion	b) Chloride ion	
c) Both aluminium and chloride ion	d) None of the above	
354. The percentage error in [H ⁺] made by neglecting th	•	$0 \times 10^{-6} M$ NaOH is:
a) 1% b) 2%	c) 3%	d) 4%
355. The colour of CuCr ₂ O ₇ solution in water is green be	cause:	
a) Cu ²⁺ ions is green		
b) $Cr_2O_7^{2-}$ ion is green		
c) Both the ions are green		
d) Cu^{2+} ion is blue and $Cr_2O_7^{2-}$ ion is yellow		

356. Ammonium carbonate decomposes as $\mathrm{NH_2COONH_4}(s) \rightleftharpoons 2\mathrm{NH_3}(g) + \mathrm{CO_2}(g)$ For the reaction, $K_p = 2.9 \times 10^{-5} \mathrm{\ atm^{-3}}$. If we start vequilibrium would be	with 1 mole of the compour	nd, the total pressure at
a) 0.0766 atm b) 0.0582 atm 357. Ionic product of water increases if	c) 0.388 atm	d) 0.0194 atm
a) Pressure is reduced	b) H ⁺ is added	
c) OH ⁻ is added	d) Temperature increase	
358. In which of the following reactions, increases in the v	olume at constant tempera	ature do not affect the
number of moles at equilibrium?		(Y
a) $2NH_3 \rightleftharpoons N_2 + 3H_2$	b) $C(s) + \frac{1}{2}O_2(g) \to CO(g)$	
c) $H_2(g) + O_2(g) \rightarrow H_2O_2(g)$	d) None of the above	
359. Which one of the following is least likely to act a	s a Lewis base?	
a) I ⁺ b) I	c) SCl ₂	d) PCl ₃
360. An aqueous solution of ammonium acetate is:		V
a) Faintly acidic b) Fair acidic	c) Faintly alkaline	d) Almost neutral
361. The strongest Lewis base in the following is		
a) CH ₃ b) F ⁻	c) NH ₂	d) OH ⁻
362. For anionic hydrolysis, pH is given by		
a) $pH = \frac{1}{2}pK_w - \frac{1}{2}pK_b - \frac{1}{2}\log C$ c) $pH = \frac{1}{2}pK_w + \frac{1}{2}pK_a + \frac{1}{2}\log C$	b) $pH = \frac{1}{2}pK_w + \frac{1}{2}pK_a - d$ d) $pH = -\frac{1}{2}(pK_w - pK_a - d)$	$\frac{1}{2}$ p K_b
c) pH = $\frac{1}{2}$ p $K_w + \frac{1}{2}$ p $K_a + \frac{1}{2}$ log C	d) pH = $-\frac{1}{2}$ (p K_w – p K_a -	$-pK_b$)
363. Which of the following is a conjugated acid-base pair	?	
a) HCl, NaOH b) NH ₄ Cl, NH ₄ OH	c) H_2SO_4 , HSO_4	d) KCN, HCN
364. In the hydrolytic equilibrium,		
$A^- + H_2 O \rightleftharpoons HA + OH^-$		
$K_a = 1.0 \times 10^{-5}$. The degree of hydrolysis of 0.001 M		
a) 10 ⁻³ b) 10 ⁻⁴	c) 10^{-5}	d) 10^{-6}
365. The equilibrium constant (K_c) for the reaction, $N_2(g)$		m temperature T is 4 \times
10^{-4} . The value of K_c for $NO(g) \Rightarrow \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$	at the same T is :	
a) 0.02 b) 50	c) 4×10^{-4}	d) 2.5×10^{-2}
366. For the reaction,		
$CuSO_4 \cdot 5H_2O(s) \rightleftharpoons CuSO_4 \cdot 3H_2O(s) + 2H_2O(v)$ whi	ch one is correct represent	ation?
a) $K_p = (P_{H_2O})^2$ b) $K_c = [H_2O]^2$	c) $K_p = K_c (RT)^2$	d) All of these
367. The correct order of increasing $[H_3O^+]$ in the following		
a) $0.01 M H_2 S < 0.01 M H_2 S O_4 < 0.01 M NaCl < 0.0$		
b) $0.01 M \text{ NaCl} < 0.01 M \text{ NaNO}_2 < 0.01 M \text{ H}_2 \text{S} < 0.01 M \text{ H}_2 \text{S}$		
c) $0.01 M \text{ NaNO}_2 < 0.01 M \text{ NaCl} < 0.01 M H_2 \text{S} < 0.01 M H_2 \text{S}$		
d) $0.01 M H_2 S < 0.01 M NaNO_2 < 0.01 M NaCl < 0.0$		
368. K_C for $A + B \rightleftharpoons C + D$ is 10 at 25°C. If a container	contains 1, 2, 3 and 4 mo	le per litre of <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i>
respectively at 25°C, the reaction shall:		
a) Proceed from left to right		
b) Proceed from right to left		
c) Be at equilibrium		
d) None of the above		
369. The compound whose 0.1 M solution is basic is		
a) Ammonium acetate	b) Ammonium chloride	
c) Ammonium sulphate	d) Sodium acetate	

a) An amino acid becomes a	as the pH at which: acidic				
	b) An amino acid becomes basic				
c) Zwitter ion has positive o	=				
d) Zwitter ion has zero char	•				
371. The equilibrium constant	t of a reaction is 300. If	the volume of reaction fl	ask is tripled, the		
equilibrium constant is					
a) 300	b) 600	c) 900	d) 100		
372. The oxoacid of SO_2 is:			A\)'		
, = 0	·	c) $H_2S_2O_8$	d) None of these		
373. The solubility of CaF_2 in p					
a) 4.8×10^{-18}	b) 48.66×10^{-18}	c) 4.9×10^{-11}	d) 48.66×10^{-15}		
374. pH value of which one of	the following is not equ	al to one?	41		
a) $0.1~\mathrm{M~HNO_3}$		b) 0.05 M H ₂ SO ₄			
c) 0.1 M CH ₃ COOH		d) 50 cm ³ of 0.4 M HCl 4	- 50 cm ³ of 0.2 M NaOH		
375.50 mL of 2 N acetic mixed	l with 10 mL of 1N sodi	um acetate solution will h	nave an approximate pH of		
$(K_a = 10^{-5})$:		.10			
a) 4	b) 5	c) 6	d) 7		
376. The solubility of AgCl in (
$(K_{sp} \text{ of AgCl} = 1.8 \times 10^{-3})$	¹⁰)				
a) $1.8 \times 10^{-11} \mathrm{M}$	b) $9 \times 10^{-10} \text{ M}$	c) $6.5 \times 10^{-12} \text{ M}$	d) $5.6 \times 10^{-11} \text{ M}$		
377. The dissociation of water	at 25°C is 1.9×10^{-7} g	percent and the density	of water is 1.0 g/cm ³ . The		
ionisation constant of water					
-	b) 3.42×10^{-8}	c) 1.00×10^{-14}	d) 2.00×10^{-16}		
$378. N_2 + 3H_2 \rightleftharpoons 2NH_3 + heat$	t. What is the effect of tl	ne increase of temperatu	re on the equilibrium of		
.1					
the reaction?	00				
the reaction? a) Equilibrium is shifted t	to the left	b) Equilibrium is shifted	d to the right		
a) Equilibrium is shifted tc) Equilibrium is unaltere	ed	d) Reaction rate does no			
a) Equilibrium is shifted t	ed	d) Reaction rate does no			
a) Equilibrium is shifted toc) Equilibrium is unaltered379. The expression for the so	ed	d) Reaction rate does no			
a) Equilibrium is shifted to c) Equilibrium is unaltered 379. The expression for the so a) K_{sp} s^2	ed blubility product of ${ m Ag}_2$ (b) K_{sp} ${ m 4}s^3$	d) Reaction rate does not CO_3 will be	ot change		
a) Equilibrium is shifted to c) Equilibrium is unaltered 379. The expression for the so a) K_{sp} s^2 at 380. The solubility of AgCl in Contraction S_{sp} S_{sp} S_{sp} S_{sp} S_{sp} S_{sp} S_{sp}	ed blubility product of ${ m Ag_2}$ b) K_{sp} $4s^3$ 0.2 M NaCl solution is	d) Reaction rate does not CO_3 will be	ot change		
a) Equilibrium is shifted to c) Equilibrium is unaltered 379. The expression for the so a) K_{sp} s^2 at 380. The solubility of AgCl in (K_{sp} of AgCl 1.2 1	ed blubility product of ${ m Ag_20}$ b) K_{sp} ${ m 4}s^3$ 0.2 M NaCl solution is ${ m 0}^{10}$	d) Reaction rate does not CO_3 will be $CO_3 = 27s^4$	ot change d) K_{sp} s		
a) Equilibrium is shifted to c) Equilibrium is unaltered 379. The expression for the so a) K_{sp} s^2 at 380. The solubility of AgCl in (K_{sp} of AgCl 1.2 1 a) 6.0 10^{10} M	ed blubility product of Ag_20 b) K_{sp} $4s^3$ 0.2 M NaCl solution is 0^{10} b) 0.2 M	d) Reaction rate does not consider the constant of the consta	ot change		
a) Equilibrium is shifted to c) Equilibrium is unaltered 379. The expression for the so a) K_{sp} s ² at 380. The solubility of AgCl in (K_{sp} of AgCl	ed blubility product of Ag_20 b) K_{sp} $4s^3$ 0.2 M NaCl solution is 0^{10} b) 0.2 M	d) Reaction rate does not consider the constant of the consta	ot change d) K_{sp} s		
a) Equilibrium is shifted to c) Equilibrium is unaltered 379. The expression for the so a) K_{sp} s ² at 380. The solubility of AgCl in (K_{sp} of AgCl 1.2 1 a) 6.0 10 10 M 381. Which of the following will (i) NaCl and NaOH	ed blubility product of Ag_20 b) K_{sp} $4s^3$ 0.2 M NaCl solution is 0^{10} b) 0.2 M	d) Reaction rate does not consider the constant of the consta	ot change d) K_{sp} s		
a) Equilibrium is shifted to c) Equilibrium is unaltered 379. The expression for the so a) K_{sp} s ² at 380. The solubility of AgCl in (K_{sp} of AgCl	ed blubility product of Ag_20 b) K_{sp} $4s^3$ 0.2 M NaCl solution is 0^{10} b) 0.2 M	d) Reaction rate does not consider the constant of the consta	ot change d) K_{sp} s		
a) Equilibrium is shifted to c) Equilibrium is unaltered 379. The expression for the so a) K_{sp} s ² at 380. The solubility of AgCl in (K_{sp} of AgCl 1.2 1 a) 6.0 10 10 M 381. Which of the following will (i) NaCl and NaOH (ii) NaOH and NH ₄ OH	ed blubility product of Ag_20 b) K_{sp} $4s^3$ 0.2 M NaCl solution is 0^{10} b) 0.2 M	d) Reaction rate does not consider the constant of the consta	ot change d) K_{sp} s		
a) Equilibrium is shifted to c) Equilibrium is unaltered 379. The expression for the so a) K_{sp} s ² at 380. The solubility of AgCl in (K_{sp} of AgCl 1.2 1 a) 6.0 10 10 M at 381. Which of the following will (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii)	ed blubility product of $Ag_2G_2G_3$ b) K_{sp} $4s^3$ 0.2 M NaCl solution is 0^{10}] b) 0.2 M not function as a buffer so b) (ii), (iii), (iv)	d) Reaction rate does not consider the constant of the constan	ot change d) K_{sp} s d) 0.2 10^{10} M		
a) Equilibrium is shifted to c) Equilibrium is unaltered 379. The expression for the so a) K_{sp} s ² at 380. The solubility of AgCl in C [K_{sp} of AgCl 1.2 1 a) 6.0 10 10 M at 381. Which of the following will (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) at 382. K_{SP} of salts AB , AB_2 and A_3 .	ed blubility product of Ag_2G_0 b) K_{sp} $4s^3$ 0.2 M NaCl solution is 0^{10} b) 0.2 M not function as a buffer so b) (ii), (iii), (iv) B are 4.0×10^{-8} , 3.2×10^{-8}	d) Reaction rate does not CO ₃ will be c) K_{sp} 27 s^4 c) 1.2 10 10 M olution?	ot change d) K_{sp} s d) 0.2 10^{10} M		
a) Equilibrium is shifted to c) Equilibrium is unaltered 379. The expression for the so a) K_{sp} s ² at 380. The solubility of AgCl in (K_{sp} of AgCl 1.2 1 a) 6.0 10 10 M at 381. Which of the following will (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii)	ed blubility product of Ag_2G_0 b) K_{sp} $4s^3$ 0.2 M NaCl solution is 0^{10} b) 0.2 M not function as a buffer so b) (ii), (iii), (iv) B are 4.0×10^{-8} , 3.2×10^{-8}	d) Reaction rate does not CO ₃ will be c) K_{sp} 27 s^4 c) 1.2 10 10 M olution?	ot change d) K_{sp} s d) 0.2 10^{10} M		
a) Equilibrium is shifted to c) Equilibrium is unaltered 379. The expression for the so a) K_{sp} s^2 380. The solubility of AgCl in (K_{sp} of AgCl 1.2 1 a) 6.0 10^{10} M 381. Which of the following will (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) K_{sp} of salts K_{sp} and K_{sp} of salts K_{sp} and K_{sp} of salts K_{sp} and K_{sp}	ed blubility product of Ag_2G_5 b) K_{sp} $4s^3$ 0.2 M NaCl solution is 0^{10} b) 0.2 M not function as a buffer so b) (ii), (iii), (iv) B are 4.0×10^{-8} , 3.2×10^{-8} e salts in water at temper b) $A_3B > AB_2 > AB$	d) Reaction rate does not CO_3 will be c) K_{sp} 27 s^4 c) 1.2 10 10 M olution?	ot change d) K_{sp} s d) 0.2 10^{10} M d) (i), (ii), (iii), (iv) ctively at temperature T .		
a) Equilibrium is shifted to c) Equilibrium is unaltered 379. The expression for the so a) K_{sp} s^2 t^2 380. The solubility of AgCl in (t^2 t^2 t^2 t^2 381. Which of the following will (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) t^2 382. t^2 t^2 of salts t^2	ed blubility product of $Ag_2G_2G_3$ b) $K_{sp} = 4s^3$ 0.2 M NaCl solution is 0^{10}] b) 0.2 M not function as a buffer selection of the s	d) Reaction rate does not CO_3 will be CO_4 will be CO_5 wi	ot change d) K_{sp} s d) 0.2 10^{10} M d) (i), (ii), (iii), (iv) ctively at temperature T .		
a) Equilibrium is shifted to c) Equilibrium is unaltered 379. The expression for the so a) K_{sp} s^2 380. The solubility of AgCl in C $[K_{sp}$ of AgCl 1.2 1 a) 6.0 10^{10} M 381. Which of the following will (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) 382. K_{SP} of salts AB , AB_2 and A_3 . The solubility order of thes a) $AB > AB_2 > A_3B$ 383. Which does not act as Brom a) NH ₄ ⁺	ed blubility product of Ag_2G_5 b) K_{sp} $4s^3$ 0.2 M NaCl solution is 0^{10}] b) 0.2 M not function as a buffer solution as a	d) Reaction rate does not CO_3 will be CO_3 wi	ot change d) K_{sp} s d) 0.2 10^{10} M d) (i), (ii), (iii), (iv) ctively at temperature T .		
a) Equilibrium is shifted to c) Equilibrium is unaltered 379. The expression for the so a) K_{sp} s^2 t^2 380. The solubility of AgCl in (t^2 t^2 t^2 t^2 381. Which of the following will (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) t^2 382. t^2 t^2 of salts t^2	ed blubility product of $Ag_2G_2G_3$ $Ag_3G_2G_3$ $Ag_3G_2G_3$ $Ag_3G_2G_3$ $Ag_3G_3G_3$ Ag_3G_3 Ag_3 Ag_3 Ag_3 Ag_3 Ag_3 Ag_3 Ag_3 Ag_3 Ag_3 A	d) Reaction rate does not CO_3 will be CO_3 wi	ot change d) K_{sp} s d) 0.2 10^{10} M d) 0.2 10^{10} M d) 0.3 0.2 0.3		
a) Equilibrium is shifted to c) Equilibrium is unaltered 379. The expression for the so a) K_{sp} s^2 380. The solubility of AgCl in (K_{sp} of AgCl 1.2 1 a) 6.0 10^{10} M 381. Which of the following will (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) (iii) 382. K_{SP} of salts AB , AB ₂ and A ₃ . The solubility order of these a) $AB > AB$ ₂ AB ₃ B 383. Which does not act as Broma NH ₄ 4 384. Which of the following so a) 1×10^{-9} M HCl solution	ed colubility product of $Ag_2G_2G_3$ $K_{sp} = 4s^3$ $0.2 \text{ M NaCl solution is}$ 0^{10}	d) Reaction rate does not CO_3 will be CO_3 at 298 K? b) CO_3 by CO_3 will be CO_3 will be CO_3 at 298 K? b) CO_3 will be CO_3 will be CO_3 will be CO_3 at 298 K? b) CO_3 will be	ot change d) K_{sp} s d) 0.2 10^{10} M d) 0.2 10^{10} M d) 0.3 0.2 0.3		
a) Equilibrium is shifted to c) Equilibrium is unaltered 379. The expression for the so a) K_{sp} s^2 t^2 380. The solubility of AgCl in (t^2 t^2 t^2 t^2 381. Which of the following will (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) t^2 382. t^2 t^2 of salts t^2	ed blubility product of $Ag_2G_2G_3$ b) $K_{sp} + 4s^3$ 0.2 M NaCl solution is 0^{10}] b) 0.2 M not function as a buffer so b) (ii), (iii), (iv) B are 4.0×10^{-8} , 3.2×10^{-8} e salts in water at temper b) $A_3B > AB_2 > AB$ sted acid? b) CH_3COO^- blutions will have $pH=9$ on ion	d) Reaction rate does not CO_3 will be CO_3 wi	ot change d) K_{sp} s d) 0.2 10^{10} M d) 0.2 10^{10} M d) 0.3 0.2 0.3		

386.	a) Falls below 7.35 b) Rises above 7.45 Which statement is false? (Assume complete	e dissociation in each case)	d) None of these
	a) If 2.0 L of a solution of H_2SO_4 contains 0.1 b) The concentration of OH^- in 0.005 M HNC	_	on is 2
	c) The pH of 0.01 M KOH is 12 d) In a 0.001 M solution of NaOH the concent	tration of H ⁺ is 10 ⁻³ mol/I	
387.	10 mL of a solution contains $0.1 M \text{ NH}_4\text{Cl} + 0.0$	-	would not change the pH of
	the solution?	•	
	a) Adding 1 mL water b) Adding 5 mL of 0.1 <i>M</i> NH ₄ Cl		
	c) Adding 5 mL of $0.1 M \text{ NH}_4\text{CH}$		
	d) Adding 10 mL of 0.1 M NH ₄ Cl		
388.	Arrhenius theory of acid-base is not valid for:		40
	a) Aqueous solution		
	b) In presence of water		
	c) Non-aqueous solution		
200	d) None of these The collability in custom of a graningly collable	solt 4D is 1 v 1075 mol 1	1 Ita aaluhilitu muaduat
307.	The solubility in water of a sparingly soluble number will be	Sait AD ₂ IS 1 × 10 Intol L	. its solubility product
	a) 4×10^{-15} b) 4×10^{-10}	c) 1×10^{-15}	d) 1×10^{-10}
390	The equilibrium constant (K_p) for the reaction, F		•
370.	container is reduced to one half its original voluments (\mathbf{n}_p) for the reaction, \mathbf{r}_p		
	temperature will be	ne, the value of higher the reac	ction at the same
	a) 8 b) 16	c) 32	d) 64
391.	The indicators used in the titration of iodine again	inst sodium thiosulphate is	,
	a) Starch b) K ₃ Fe(CN) ₆	c) K ₂ CrO ₄	d) Potassium
392.	For the reaction,		
	$2HI(g) \rightleftharpoons H_2(g) + I_2(g) - Q \ kJ$, the equilibri	um constant depends upon	
	a) Temperature b) Pressure	c) Catalyst	d) Volume
393.	In the dissociation of 2HI \rightleftharpoons H ₂ + I ₂ , the degree of	of dissociation will be influenc	ed by the:
	a) Addition of inert gas at constant volumeb) Addition of inert gas at constant pressure		
	c) Increase of temperature		
	d) Increase of pressure		
394.	If pressure increases then its effect on given	equilibrium	
	$2NO(g) \rightleftharpoons N_2(g) + O_2(g)$ is shift in		
	a) Forward direction	b) Backward direction	
	c) No effect	d) None of these	
395.	Which one of the molecular hydride acts as Lewi	s acid?	
	a) NH ₃ b) H ₂ O	c) B ₂ H ₆	d) CH ₄
396.	For the reversible reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2I$		•
	partial pressure is measured in atmospheres. Th	e corresponding value of K_c w	rith concentration in
	mol L^{-1} , is 1.44×10^{-5} 1.44×10^{-5}	1 44 × 10-5	1 44 × 10-5
	a) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$ b) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^2}$	c) $\frac{1.44 \times 10^{-2}}{(9.314 \times 772)^{-2}}$	d) $\frac{1.44 \times 10^{-2}}{(0.082 \times 500)^{-2}}$
397.	The compound that does not act as Lewis acid, is	•	(0.002 \ 300)
•	a) AlCl ₃ b) BF ₃	c) NH ₃	d) FeCl ₃
398	For the following reaction in gaseous phase		

412	. In a $500 \mathrm{mL}$ flask, the d	egree of dissociation of P	${ m Cl_5}$ at equilibrium is 40%	6 and the initial amount
	is 5 moles. The value of	equilibrium constant in	$\mathrm{mol}\ \mathrm{L}^{-1}$ for the decompo	sition of PCl ₅ is
	a) 2.33	b) 2.66	c) 5.32	d) 4.66
413	. The unit of ionic product			
	a) mol ⁻¹ litre ⁻¹	b) mol ⁻¹ litre ⁻²	c) mol ⁻² litre ⁻¹	d) mol ² litre ⁻²
414	,	two substance are in equ	•	•
	doubled, the equilibrium			
	a) Reduced to one fourt		b) Reduced to half of its	original value
		ii oi its oi igiliai value		original value
445	c) Constant	1: 11 1 .	d) Doubled	
415	. Le-Chatelier principle is a	pplicable only to a	120	
	a) System in equilibrium		b) System not in equilibri	
416	c) Homogeneous reaction		d) Heterogeneous reactio	
416		nt of a substituted benzo	acid at 25°C is 1.0×10	J ⁻⁴ . The pH of 0.01 M
	solution of its sodium sa	alt is		
	a) 3	b) 7	c) 8	d) 6
417	. A mixture of sodium ox	ide and calcium oxide are	e dissolved in water and	saturated with excess
	carbon dioxide gas. The	resulting solution is	.It contains	
	a) Basic; NaOH and Ca($OH)_2$	b) Neutral; Na ₂ CO ₃ and	CaCO ₃
	c) Basic; Na ₂ CO ₃ and Ca	100_{2}	d) Acidic; NaOH and CaO	
418	. Conjugate acid of HF ₂ is			3
	a) H ⁺	b) HF	c) F ₂	d) H ₂ F ₂
419	•			ch of CH ₃ COOH and C ₂ H ₅ OH
71)		e of little concentrated H_2SO		
	a) 1 mole of ethyl acetate		04. On equinorium.	
	b) 2 mole of ethyl acetate		> '	
	c) 1/2 mole of ethyl aceta			
	d) 2/3 mole of ethyl aceta			
420	K_b for the hydrolysis reac			
420	~	1.0×10^{-6} , the hydrolysis	constant of the salt is:	
	a) 10^{-6}	b) 10 ⁻⁷	c) 10^{-8}	d) 10 ⁻⁹
121	. The pH of a 0.001 M NaOl		c) 10	u) 10
441	a) 3	b) 2	c) 11	d) 12
122	-	reaction. $CaCO_3$ (s) \rightleftharpoons CaO_3	-	
722	a) Of high temperature	$c_1 \in C_2(S_1)$	$f(s) + co_2(g)$ proceeds to t	completion because.
	b) CO ₂ escapes out			
	c) CaO is removed			
	d) Of low temperature			
1.23		ally dissolved in a 1.0 ×	10-4 M No. CO. colution	At what concentration
423		-	10 M Na ₂ CO ₃ Solution	At what concentration
	of Ba ²⁺ will a precipitat	_		
	$(K_{sp} \text{ for BaCO}_3 = 5.1 \times$		_	_
	•	•	c) $8.1 \times 10^{-8} \text{ M}$	d) $8.1 \times 10^{-7} \text{ M}$
424		.0015 g/litre. The solubility		
	a) 2×10^{-10}	b) 1.1×10^{-10}	c) 3.1×10^{-10}	d) 4.1×10^{-10}
425	. Although CO is neutral bu	t it shows acidic nature on	reaction with high P and T	:
	a) Ca(OH) ₂	b) NaOH	c) $Mg(OH)_2$	d) LiOH
426		r for given oxy-acids of halo	=	
	=	b) HOI > HOBr > HOCl	c) $HOBr > HOCl > HOI$	d) HOI > HOCl > HOBr
427	. The stronger Bronsted ba	se is:		

	a) ClO ⁻	b) ClO ₂	c) ClO ₃	d) ClO ₄	
428	. The indicator used in the	titration of sodium carbon	ate with sulphuric acid is		
	a) Potassium ferrocyanide				
	b) Potassium ferricyanide				
	c) Methyl orange				
	d) Phenolphthalein				
429	•	novable piston contains li	quid water in equilibrium	with water vapour at 25°C.	
		a decrease in the equilibri		•	
	a) Moving the piston dow	-	• •		
	b) Removing a small amo	unt of vapour		\sim	
	c) Removing a small amo	unt of the liquid water			
	d) Dissolving salt in the w	rater			
430	. If acetic acid is mixed with	h sodium acetate then H ⁺ i	on concentration will		
	a) Increase	b) Decrease	c) Remain unchanged	d) pH decrease	
431	. The reverse process of ne	utralization is:			
	a) Hydrolysis	b) Decomposition	c) Dehydration	d) Synthesis	
432	. The hydrogen ion concen	tration of a $10^{-8}M$ HCl aqu	ueous solution at 298 K (K_{ν}	$_{\rm v} = 10^{-14}$) is:	
	a) $9.525 \times 10^{-8} M$				
	b) $1.0 \times 10^{-8} M$				
	c) $1.0 \times 10^{-6} M$				
	d) $1.0525 \times 10^{-7} M$				
433	. The number of ions forme	ed when cuprammonium s	ulphate dissolves in water i	is:	
	a) One	b) Two	c) Four	d) Zero	
434	. A reversible chemical rea	ction have two reactants in	equilibrium. If the concen	trations of the reactants are	
	doubled then the equilibr	ium constant will			
	a) Be halved	b) Also be doubled	c) Remains the same	d) None of these	
435	. According to Arrhenius co	oncept, base is a substance	that:		
	a) Gives a pair of protons				
	b) Donates a proton				
	c) Accepts an electron pa				
	d) Gives OH ⁻ ions in aque				
436		V =	dissociation of PCl ₅ accor	rding to the equation?	
	$PCl_5(g) \rightleftharpoons PCl_3(g)$	= 137			
	a) Dissociation decrease	/	b) Dissociation increase	es	
	c) Dissociation does no	t change	d) None of the above		
437	. Which is Lewis acid?				
	a) BF ₃	b) NF ₃	c) Cl ⁻	d) H ₂ O	
438	. Which one of the followin	g substances has the highe	est proton affinity?		
	a) H ₂ O	b) H ₂ S	c) NH ₃	d) CH ₃ COOH	
439	. The solubility product of	a salt AB_2 is 4×10^{-9} at 37	3 K. The solubility of AB_2 in	n boiling water will be:	
~~	a) $4 \times 10^{-3} M$	b) $4 \times 10^{-4} M$	c) $1 \times 10^{-10} M$	d) $1 \times 10^{-3} M$	
440	. Which pair will show com	imon ion effect?			
~	a) $BaCl_2 + Ba(NO_3)_2$	b) NaCl + HCl	c) $NH_4OH + NH_4Cl$	d) AgCN + KCN	
441	. In the case of gaseous hor	nogeneous reaction, the co	ncentrations of the reactan	its may be given by:	
	a) $\frac{PV}{RT}$	b) $\frac{P}{RT}$	c) $\frac{n}{V}RT$	d) $\frac{RT}{P}$	
		***	V	Ī	
442			rcent. Hence, its hydrolysis		
	a) 2.5×10^{-5}	b) 1.25×10^{-5}	c) 3.125×10^{-6}	d) 6.25×10^{-6}	
443				298 K. The concentration of	
	Pb ²⁺ ions in a saturated s	olution containing MgCO ₃	and PbCO ₃ is:		

a) $1.5 \times 10^{-4} M$	b) $3 \times 10^{-8} M$	c) $2 \times 10^{-8} M$	d) $2.5 \times 10^{-8} M$	
444. The [H ⁺] ion conce	ntration in 0.001 M acetic a	cid is $1.34 imes 10^{-4}$ g ion/litre	. The $[H^+]$ ion concentration of	
0.164 g of CH $_3$ COONa is added to a litre of $0.001~M$ CH $_3$ COOH will be:				
a) 9×10^{-6}	b) 18×10^{-6}	c) 4.5×10^{-6}	d) 5×10^{-6}	
445. pH scale was intro	duced by			
a) Arrhenius	b) Sorensen	c) Lewis	d) Lowry	
446. 28 g N ₂ and 6 g H	$ m I_2$ were mixed. At equilibr	rium 17g NH ₃ was formed	. The weight of N_2 and H_2 of	
equilibrium are res	=			
a) 11 g, zero	b) 1 g, 3 g	c) 14 g, 3 g	d) 11 g, 3 g	
			mole H ₂ S, 0.10 mole H ₂ and 0.4	
	el. The value of equilibrium c		D 0 022	
a) 0.004	b) 0.008	c) 0.016	d) 0.032	
			It is heated to 600 K when	
	$_2O_4(g)$ decomposes to NO			
a) 1.2 atm	b) 2.4 atm	c) 2.0 atm	d) 1.0 atm	
			librium is obtained. If 80%	
	an be converted to H, the <i>E</i>			
a) 64	b) 16	c) 0.25	d) 4	
			mole of solid NaCl is added,	
	Ag ⁺], assuming no volume			
a) More	b) Less	c) Equal	d) Zero	
			ensity decreases to 24.5 due to	
	O_2 . The per cent dissociation			
a) 87	b) 60	c) 40	d) 70	
	gCl is formed when equal v -101	volumes of the following a	ire mixed	
$[K_{\rm sp} \text{for AgCl} = 10]$				
a) 10^{-4} M AgNO ₃ a		b) 10^{-5} M AgNO ₃ and		
c) 10^{-5} M AgNO ₃ a		d) 10^{-6} M AgNO ₃ an	d 10 ⁻⁶ M HCl	
453. For the reaction				
	$\rightarrow CO_2(g) K_p/K_c$ is equal	to		
a) \sqrt{RT}	b) $\frac{1}{\sqrt{p_T}}$	c) 1	d) RT^2	
	a complex or a cation acts a	S:		
a) Lewis base	b) Lewis acid	c) Bronsted acid	d) Arrhenius acid	
	ciation of CH ₃ COOH is influe	•		
a) HCl	b) CH ₃ COONa	c) NH ₄ OH	d) Either of these	
456. Solubility of Ca(Ol	$(H)_2$ is a s mol L^{-1} . The solu	ubility product $(K_{\rm sp})$ unde	er the same condition is	
a) 4s ³	b) 3s ⁴	c) $4s^2$	d) s^3	
457. Which one of the f	following substances has t	he highest proton affinity	?	
a) H ₂ 0	b) H ₂ S	c) NH ₃	d) PH ₃	
· -	wing is not a conjugate aci	, ,	- 7 3	
	b) H ₂ PO ₄ , HPO ₄ ²⁻		d) $H_2PO_4^-$, PO_3^{3-}	
	eaction, if $\Delta G^{\circ} = 0$ the equilib			
a) 0	b) 1	c) 2	d) 10	
•	•	•	d to make the hydrogen ion	
= -	t 0.01 mol/litre. The pH of th	= -		
a) 0.01	b) 1	c) 2	d) 14	
461 At 550 K the K fo	or the following reaction is	$10^4 \text{ mol}^{-1} \text{L}$		

	$X(g) + Y(g) \rightleftharpoons$	Z(g)		
	At equilibrium, it was o	bserved that		
	$[X] = \frac{1}{2}[Y] = \frac{1}{2}[$			
	L L	(in mol L^{-1}) at equilibriu	ım?	
	a) 2×10^{-4}	b) 10 ⁻⁴	c) 2×10^4	d) 10 ⁴
		,	of 0.5 atm. Some of the (,
			at equilibrium is 0.8 atm	
	a) 1.8 atm	b) 3 atm	c) 0.3 atm	d) 0.18 atm
	Ammonium carbonate	-	c) 0.5 atm	u) 0.10 dtill
100.		$\Rightarrow 2NH_3(g) + CO_2(g)$		
			art with 1 mole of the cor	nnound the total
	•		art with I mole of the cor	iipouliu, tile total
	pressure at equilibrium		a) 0.0200 atm	d) 0.0104 atm
	a) 0.766 atm	b) 0.0582 atm	c) 0.0388 atm	d) 0.0194 atm
			weak base, <i>B</i> OH is 4.78.	The pH of an aqueous
	solution of the correspo	_	2.7.01	d) 9.22
	a) 9.58	b) 4.79	c) 7.01	ra) 9.22
		following, which can act		n
	a) HSO ₄	b) SO ₄ ²	c) H ₃ 0 ⁺	d) Cl ⁻
			0.1 M aqueous solution. W	that is the equilibrium
	constant for its ionisati			
	$HA(aq) + H_2O(l) \rightleftharpoons H_2$			
	a) 2.63×10^4	b) 2.63×10^3	c) 2.63×10^{-4}	d) 2.63×10^{-3}
	Strongest acid is		>	
	a) C ₂ H ₆	b) CH ₃ OH	c) HC ≡ HC	d) C_6H_6
		will have maximum pH?		
	a) M HCl	b) M HCl	c) $\frac{M}{10}$ NaOH	d) $\frac{M}{100}$ NaOH
469.	The pH of 1.0 <i>M</i> aqueous		is 6.0. Its dissociation cons	200
	a) 10^{-6}	b) 10 ⁻¹²	c) 1.0	d) 6.0
470.	In which of the following,	the reaction proceeds tow	ards completion?	
	a) $K = 1$	b) $K = 10$	c) $K = 10^2$	d) $K = 10^3$
471.	The mixed salt among the	e following is:		
	CHOHCOOK	h) NaVCO	a) CaOCl	d) All of these
	a) CHOHCOONa	b) NaKSO ₄	c) CaOCl ₂	
472.		NaOH added in 50 mL, M	1/10 acetic acid solution	to get a buffer solution
	having highest buffer ca		•	· ·
	a) 50 mL	b) 25 mL	c) 10 mL	d) 40 mL
			n is 1 M. What is the valu	-
	a) 10^{-7}	b) 10^{-5}	c) 10^{-10}	d) 10^{-8}
- 1		er sample is 6.5. Then th	=	-,
	a) is 25°C		b) is more than 25°C	
	c) is less than 25°C		d) can be more or less t	han 25°C
	•	ene is represented as. CO -	•	on is carried out in 500 mI
				re present. The equilibrium
	constant of the reaction is		2 2 2 3-2 3	1 1 2 2
	a) 30	b) 15	c) 5	d) 3
476.	In qualitative analysis.	in order to detect second	group basic redical, H ₂ S	gas is passed in the

	presence of dilute HCl to		
	a) Increase the dissociation of H ₂ S	b) Decrease the dis	ssociation of salt solution
	c) Decrease the dissociation of H ₂ S	d) Increase the dis	sociation of salt solution
1 77.	For two acids A and $pK_a = 1.2$, and 2.8 respect		
	a) A and B both are equally acidic	b) A is stronger than	
	c) B is stronger than A	d) Neither A nor B is	
478.	The weakest base among the following is:	,	
	a) H ⁻ b) CH ₃ ⁻	c) CH ₃ O ⁻	d) Cl ⁻
1 79.	The hydrogen ion concentration in mol/litre of	, ,	
	a) Zero b) 10 ⁻⁷	c) 1 <i>M</i>	d) None of these
480.	For which reaction is $K_p = K_c$?	,	
	a) $2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$		
	b) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$		
	c) $H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$		
	d) $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$		
1 81.	For the reaction,		
	$H_2(g) + CO_2(g) \rightleftharpoons CO(g) + H_2O(g)$, if the in	nitial concentration of	
	$[H_2] = [CO_2]$ and $x \text{ mol/L of hydrogen is co}$		he correct expression of K is
	a) $\frac{x^2}{(1-x)^2}$ b) $\frac{(1+x)^2}{(1-x)^2}$	c) $\frac{x^2}{x^2}$	d) $\frac{x^2}{1-x^2}$
		` '	- "
482.	$K_{sp} = [A]^3 [B]^2$ for the salt where A and B are t	the cation and anion as the	case may be stand true for:
	a) $Ca_3(PO_4)_2$ b) As_2S_3	c) Bi ₂ S ₃	d) All are correct
483.	The dissociation constant for acetic acid and H	ICN at 25°C are 1.5×10^{-3}	and 4.5×10^{-10} respectively. the
	equilibrium constant for the equilibrium,		
	$CN^- + CH_3COOH \rightleftharpoons HCN + CH_3COO^-$ would be		
	a) 3.0×10^4 b) 3.0×10^5	c) 3.0×10^{-5}	d) 3.0×10^{-4}
1 84.	The pH of the solution		
	$5 \text{ mL } \frac{M}{5} \text{ HCl} + 10 \text{ mL of } \frac{M}{10} \text{ NaOH is}$		
	a) 5 b) 3	c) 7	d) 8
105	In the reaction, $AlCl_3 + Cl^- \rightarrow [AlCl_4]^-$, $AlCl_3$ a	,	u) o
105.	a) Salt b) Lewis base	c) Lewis acid	d) Bronsted acid
1.06		_	
100.	A weak acid HX has dissociation constant 1		
407	a) 2 b) 3	c) 4	d) 5
487.	The pK_a of HCN is 9.30. The pH of a solution pr		
	and 2.5 moles of HCN in water and making up t		
400	a) 9.30 b) 7.30	c) 10.30	d) 8.30
488.	30 cc of $\frac{M}{3}$ HCl, 20 cc of $\frac{M}{2}$ HNO ₃ and 40 cc of	of $\frac{M}{4}$ NaOH solutions are	mixed and the volume was
	made up to 1 dm ³ . The pH of the resulting s	solution is	
1	a) 8 b) 2	c) 1	d) 3
	A solution contains 10 mL 0.1 N NaOH and	•	•
	a) Less than 7	b) 7	ir or ans solution is
	c) Zero	d) Greater than 7	
100			m If the concentration of the
±7U.	A reversible chemical reaction is having tw	•	m. If the concentration of the
	reactants are doubled then the equilibrium		D.D
	a) Bo doubled b) Become one fou	rth c) Be halved	d) Remain the same
491.	Conjugate bade of H ₂ PO ₄ is		_
	a) H_3PO_4 b) P_2O_5	c) PO_4^{3-}	d) HPO_4^{2-}

492	. The equilibrium constant fo	or the reaction $N_2 + 3H_2$	\rightleftharpoons 2NH ₃ is K then the equ	uilibrium constant for the
	$NH_3 \rightleftharpoons \frac{1}{2}N_2 + \frac{3}{2}H_2$ is			
	1	o) \sqrt{K}	c) $\frac{1}{K^2}$	d) $\frac{1}{\sqrt{K}}$
493	. An acid type indicator HIn of colour differences only who the minimum change in the a) 4	en the ratio $[In^-]/[HIn]$ is	greater than 10 or small	er than 0.1. What should be
494	. Which is an example of Lew	vis acid?	•	
	a) HCl	o) H ₂ SO ₄	c) SO ₂	d) HNO ₃
495	. A student wants to prepare	a saturated solution of A	g ⁺ ion. He has got three s	$\operatorname{camples} \operatorname{AgCl}(K_{sp} =$
	10^{-10}), AgBr($K_{sp} = 10^{-13}$)	and $Ag_2CrO_4(K_{sp} = 10^-$	12). Which of the above c	ompound will be used by him
	using minimum weight to p	=		d) All of these
106	, ,	o) AgBr	c) Ag_2CrO_4	
490				^{1–5} respectively at a certain neutralized by NaOH. How is
	the ratio of the contents of		_	-
	a) $\left(\frac{\alpha}{1-\alpha}\right) = \frac{1.75}{1.3} \times \left(\frac{\beta}{1-\beta}\right)$, 0 v			es and the molarity:
	b) The ratio is unrelated to			
	c) The ratio is unrelated to			
	d) The ratio is unrelated to	=		
497	. The equivalent conductance		cm ² ohm ^{–1} eq. ^{–1} at 298 K	while λ_{∞} is
	$390 \text{ cm}^2 \text{ohm}^{-1} \text{eq.}^{-1}$. The d			
		0) 0.013	c) 0.13	d) 0.5
498	. Raising the temperature of	a reversible chemical rea	ction:	-
	a) Favours the forward rate			
	b) Favours the backward ra	nte only		
	c) Favours both the forwar	d and backward rates as t	the case may be	
	d) Favours neither the forw	ard nor backward rates		
499	. Zn salt is mixed with (NH_4) of this solution (K_{sp}) of ZnS			ns unprecipitated in 12 mL
	a) 1.677×10^{-22} g			d) None of these
500	. Pure ammonia is placed in			_
	equilibrium,	F		(a) a approximate
	a) K_p does not change signi	ficantly with pressure		
	b) α does not change with p			
	c) Concentration of NH ₃ do		ure	
	d) Concentration of H ₂ is le			
501	. A chemical reaction $A \rightleftharpoons B$	=	m when:	
	a) Complete conversion of A	=		
~	b) Conversion of A to B is o	nly 50% complete		
	c) Only 10% conversion of	A to B has taken place		
	d) The rate of transformation	on of A and B is just equa	l to the rate of transform	ation of B to A in the system
502	. As the temperature increas	es, the pH of a KOH soluti	on	
	a) Will decrease			
	b) Will increase			
	c) Remains constant			
	d) Depends upon the conce	ntration of KOH solution		

503. Tribasic acid furnishestype of anions.		
a) 2 b) 1	c) 3	d) 4
504. Which of the following pairs constitutes buffer?	Juno Juno	D M · OH · · · I M · Cl
a) HNO ₃ and NH ₄ NO ₃ b) HCl and KCl	c) HNO ₂ and NaNO ₂	d) NaOH and NaCl
505. What will be the pH and % α respectively for the s	sait <i>BA</i> of 0.1 M concentratio	in? Given, K_a for $HA = 10^{\circ}$
and K_b for $BOH = 10^{-6}$ a) 7, 10% b) 5, 10%	c) 5, 0.1%	d) 7, 1%
506. The indicator used in titrating oxalic acid with cau	•	u) /, 1%
a) Methyl orange b) Methyl red	c) Fluorescein	d) Phenolphthalein
507. The pH of a 0.02 <i>M</i> solution of hydrochloric acid i	•	uj i nenoipiicilalein
a) 2.0 b) 1.7	c) 0.3	d) 2.2
508. For the reaction, $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2O(g)$,	he equilibrium amount of
$CO_2(g)$ can be increased by		
a) Increasing the amount of CO(g)	b) Decreasing the volum	e of the container
c) Adding a suitable catalyst	d) Adding an inert gas	
509. $Ag^+ + NH_3 \rightleftharpoons [Ag(NH_3)]^+$; $K_1 = 3.5 \times 10^{-3}$		
$[Ag(NH3)]^+ + NH3 \rightleftharpoons [Ag(NH3)2]^+;$, (Y
$K_2 = 1.7 \times 10^{-3}$		•
Then the formation constant of $[Ag(NH_3)_2]^+$	is	
a) 6.08×10^{-6} b) 6.08×10^{6}	c) 6.08×10^{-9}	d) None of these
510. 1 mL of 0.1 N HCl is added to 999 mL solution of N	NaCl. The pH of the resulting	solution will be:
a) 7 b) 4	c) 2	d) 1
511. The role of catalyst in reversible reaction is :		
a) To increase the rate of forward reaction	X, 1,	
b) Decrease the rate after equilibrium	\	
c) Allow equilibrium to be achieved quickly	Y	
d) None of the above		
512. Which one is correct representation for,		
$2SO_3 \rightleftharpoons 2SO_2 + O_2?$		
a) $K_p = \frac{(p_{SO_2})^2 (p_{O_2})}{(p_{SO_3})^2}$		
$(p_{SO_3})^2$		
b) $K_c = \frac{[SO_2]^2[O_2]}{[SO_3]^2}$		
$DJ K_c = \frac{ISO_3}{ISO_3}$		
c) $K_p = \frac{(\text{mole of SO}_2)^2 \times (\text{mole of O}_2)}{(\text{mole of SO}_3)^2} \times \left[\frac{1}{\text{total mole of SO}_3}\right]$	<i>P</i> 1	
(mole of SO_3) ² $\times \frac{1}{\text{total mol}}$	ole at equilibrium	
d) All of the above		
513. The solubility of $Ca_3(PO_4)_2$ in water is y mole	es/litre. Its solubility produ	uct is
a) 6 y ⁴ b) 36 y ⁴	c) 64 y ⁵	d) $108 y^5$
514. For the reaction $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$, the eq	quilibrium constant is K_1 , the	e equilibrium constant is K_2 ,
for the reaction $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$. What	t is K . for the reaction $NO_2(g)$	$g) \rightleftharpoons 1/2N_2(g) + O_2(g)?$
a) $\frac{1}{(K_1K_2)}$ b) $\frac{1}{(2K_1K_2)}$	c) $\frac{1}{(4K_1K_2)}$	d) $\left(\frac{1}{(K_1 K_2)}\right)^{1/2}$
(1 2)	(1 2)	(M1M2)/
515. The equilibrium constant for the reaction $N_2(g)$ +	$-0_2(g) \rightleftharpoons 2NO(g)$ at tempera	ature <i>T</i> is 4×10^{-4} . The value
of K_c for the reaction $NO(g) \rightleftharpoons \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$ a	t the same temperature is	
a) 25 b) 50	c) 75	d) 100
516. If the value of K_c for an equilibrium reaction i	s 10^{-4} , then the reaction is	•
a) Backward direction	b) Forward direction	
c) Equilibrium	d) Reaction is not poss	ible
) — q v	, itemotion is not poss	

formed. The equi	mixed with 3 moles of Y . A silibrium constant for the x	-	$x, X + Y \rightleftharpoons Z, 2 \text{ moles of } Z \text{ are}$
a) 2	b) $\frac{1}{2}$	c) $\frac{3}{2}$	d) $\frac{1}{4}$
U	~	4	4
equilibrium will	be:		en the number of molecules at
a) 3	b) 1	c) $(1 - \alpha)^2$	d) $(1 + \alpha)$
519. The hydroxide ha	aving the lowest value of A	K_{sp} at 25°C is:	
a) $Mg(OH)_2$	b) Ca(OH) ₂	c) Ba(OH) ₂	d) Be(OH) ₂
520. The effect of incr	easing the pressure on th	e equilibrium $2A + 3B \rightleftharpoons 3A$	+ 2 <i>B</i> is
a) Forward react	tion is favoured	b) Backward reac	tion is favoured
c) No effect		d) None of the abo	ove
521. Conjugate base o	f hydrazoic acid is:		, Y
a) HN ₃	b) N ₃	c) N ³⁻	d) N ₂
522. A reaction is, $A +$	$B \rightarrow C + D$. Initially we s	start with equal concentration	as of A and B . At equilibrium, we
		at is the equilibrium constant	
a) 2	b) 4	4	1
,	,	c) $\frac{1}{2}$	$\frac{d}{4}$
523. Which of the follo	owing is the strongest cor	njugate base?	
a) Cl ⁻	b) CH ₃ COO ⁻	c) SO ₄ ²⁻	d) NO ₂
524. Consider the following $N_2O_4(g) \rightleftharpoons 0$	llowing equilibrium in a 2NO ₂ (g)	a closed container	Y
1 1 (O)	1 (0)	he reaction container is ha	lved. For this change which of
=			_
		arding the equilibrium con	stant (N_p) and degree of
dissociation (α)			
a) Neither K_p no	or α changes	b) Both K_p and α	changes
c) K_p changes b	ut α does not	d) K_p does not cl	nange but α changes
525. If K_a for a weak a	acid is 10^{-5} . p K_b value of i	ts conjugate base is:	
a) 5	b) 6	c) 7	d) 9
	of mass action, for the re		-
$2A + B \rightarrow Produc$			
a) Rate = $k[A][B]$		$^{2}[B]$ c) Rate = $k[A][B]$	d) Rate = $k[A]^{1/2}[B]$
			.25 litre mol ⁻¹ . What would be the
		mole of X and 3.0 mole of Z is	
a) 1.0 M	b) 2.25 M	c) 2.0 M	d) 4.0 M
		,	of AB is formed when each A and B
	ole. How much of A chang		
a) 20%	b) 40%	c) 60%	d) 4%
	•	th ions of sparingly soluble sa	-
a) Increases	b) Decreases	c) Is unaffected	d) Either of these
	ution containing 0.1 N Na	•	a) littler of these
a) 1	b) 7	c) 2	d) 13
•	•	e following has its pH value	-
a) $CH_3COOH +$	CH ₃ COONa	b) HCOOH + HCO	
c) CH ₃ COONH ₄		d) $NH_4OH + NH_4$	₄ Cl
	owing behaves as both Le		
a) BF ₃	1.3 (21-	a) CO	15 M C . l
	b) Cl ⁻	c) CO	d) None of these
533. If solubility of c	•	then its solubility product	

	vessel and it remains expo	sed to atmospheric ${ m CO_2}$ wh	ich is absorbed. Then the pH
will be:			
a) Greater than 7			
b) Less than 7 c) 7			
d) Depends on ionic pro	duct of water		
535. The decomposition of N		t 280 K in chloroform. Whe	n equilibrium has been
		fNO ₂ are present in 2 L solu	
constant for reaction N ₂		2 1	
a) 1×10^{-2}	b) 1×10^{-3}	c) 1×10^{-4}	d) 1×10^{-5}
536. The most favourable of	condition for the manufac	cture of NH ₃ is	
a) high temperature a	nd high pressure	b) low temperature an	d low pressure
c) high temperature a	nd low pressure	d) low temperature an	d high pressure
537. The value of K_p for the f	following reaction $2H_2S(g)$	\Rightarrow 2H ₂ (g) + S ₂ (g), is 1.2 ×	10^{-2} at 106.5°C. The value of
K_c for this reaction is			0 1
	b) $< 1.2 \times 10^{-2}$	-	d) None of these
	weak acid and strong base	$A^- + H_2O \rightleftharpoons HA + OH^-$, th	e hydrolysis constant (K_h) is
equal to			
a) $\frac{K_w}{K_a}$	b) $\frac{K_w}{\kappa}$	K_a	d) $\frac{K_w}{K_a \times K_b}$
K_a	K_b	\sqrt{c}	$K_a \times K_b$
539. The pH of $7 \times 10^{-8} M$ CF	H ₃ COOH is:		
a) 8.1	b) 7.9	c) 7.1	d) 6.85
540. Water acts as an acid in	- A		
a) NH ₃	b) H ₂ SO ₄	c) C ₆ H ₆	d) HCl
541. Which statement is/are		Y	
a) All Bronsted bases arb) All Bronsted acids are			
c) All cations are acids a			
d) All of the above	and an amons are bases		
542. Three moles of PCl ₅ , t	hree moles of PCl ₃ and tw	vo moles of Cl ₂ are taken	in a closed vessel. If at
		ne number of moles of PC	
a) 5	b) 3	c) 6	d) 4.5
543. Ice and water are in equ	ilibrium at 273 K, which of	the following statements is	correct?
a) $G_{(ice)} > G_{(H_2O)}$	b) $G_{\text{(ice)}} < G_{(H_2O)}$	c) $G_{(ice)} = G_{(H_2O)} = 0$	d) $G_{(ice)} = G_{(H_2O)} \neq 0$
544. For an equilibrium reac	tion involving gases, the fo	rward reaction is 1st order	while the reverse reaction is
	K_P for the forward equilibr		
a) atm	b) atm ²	c) atm ⁻¹	d) atm $^{-2}$
545. A buffer solution has 6	equal volumes of 0.2 M N	H_4OH and 0.02 M NH_4CI .	The pK_b of the base is 5.
The pH is	13.0	2.4	D 5
a) 10	b) 9	c) 4	d) 7
546. Which of the following v			
a) NaCl547. The Henderson's equati	b) HCl on used to calculate the nO	c) KCl H of basic buffer is:	d) Unpredictable
		if of basic buffer is.	
a) pOH = p $K_b + \log \frac{[Co]}{}$	[Base]		
h) nOH = nV	njugate acid]		
$\text{if } hou = hv^p - \log m$	[Base]		
b) pOH = p $K_b - \log \frac{[Co]}{C}$ c) pOH = p $K_b + \log \frac{[Co]}{[Co]}$	[Base]		
[Co	njugate acid]		

	d) pOH = $pK_b - log \frac{[Base]}{[Conjugate acid]}$		
	1 , 3		
548.	Which of the following is the weakest acid?	\	
	a) HCl b) HF	c) H_2SO_4	d) HNO ₃
549.	How many gram of NaOH must be present in one litr		
	a) $0.20 \text{ g litre}^{-1}$ b) 0.4 g litre^{-1}	c) 4.0 g litre^{-1}	d) 0.10 g litre ⁻¹
550.	Approximate pH of 0.10 M aqueous H_2S solution have	ring K_1 and K_2 for H_2S at 25	$5^{\circ}\text{C } 10^{-7} \text{ and } 10^{-13}$
	respectively, is:		
	a) 4 b) 5	c) 9	d) 8
551.	An aqueous solution whose pH is zero will be ca		Y
	a) Acidic b) Basic	c) Neutral	d) Amphoteric
552.	The concentration of KI and KCl in a certain solu	tion containing both is 0	.001 M each. If 20 mL of
	this solution is added to 20 mL of a saturated so	lution of AgI in water. Wl	hat will happen?
	$(K_{\rm sp} {\rm AgCl} = 10^{-10}, K_{\rm sp} {\rm AgI} = 10^{-16})$		4
	a) AgI will be precipitated	b) AgCl will be precipita	ited
	c) There will be no precipitate	d) Both AgCl and AgI wi	
553	The equilibrium reaction that is not influenced by		
000.	a) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$	b) $N_2(g) + 3H_2(g) \rightleftharpoons 2N$	-
	a) $H_2(g) + H_2(g) \leftarrow 2HH(g)$ c) $N_2O_4(g) \rightleftharpoons 2NO_2(g)$	d) $2NO(g) + O_2 \rightleftharpoons 2NO_2$	
 1	2 1 (6)		2(8)
554.	Group IA metals react violently with water to produce		J) Mandaral
	a) Acidic b) Basic	c) Amphoteric	d) Neutral
<u></u>	A + B = C + D. If initially the concentration of A		
	concentration of <i>D</i> will be twice of that of <i>A</i> , then	n what will be the equilib	orium constant of
	reaction?		
	a) $\frac{4}{9}$ b) $\frac{9}{4}$	c) $\frac{1}{9}$	d) 4
556.	The phenomenon of interaction of anions and cation	s furnished by a electrolyte	e with the H ⁺ and OH ⁻ ions
	of water to produce acidic nature or alkalinity is kno	wn as hydrolysis. In hydrol	lysis:
	a) The pH may either increase or decrease		
	b) All the salts (except those made up with strong ac	id and base) undergo hydro	olysis
	c) The variation of pH depends upon the nature of sa	alts as well as on the tempe	rature
	d) All of the above		
557.	$A_2(g) + B_2(g) \rightleftharpoons 2AB(g), \Delta H = -ve$		
	The reaction		
	a) Remains unaffected by pressure	b) Occurs at 1000 atm pre	essure
	c) Occurs at high temperature	d) Occurs at high pressure	e and high temperature
558.	20 mL of 0.5 N HCl and 35 mL of 0.1 N NaOH are	mixed. The resulting sol	ution will
	a) Be neutral	b) Be basic	
	c) Turn phenolphthalein solution pink	d) Turn methyl orange r	red
559.	A solution which is 10^{-3} M each in Mn ²⁺ , Fe ²⁺ , Zn	n^{2+} and Hg^{2+} is treated v	vith 10 ⁻¹⁶ M sulphide
	ion. If $K_{\rm sp}$ of MnS, FeS, ZnS and HgS are 10^{-15} ,	G	•
	10^{-23} , 10^{-20} and 10^{-54} respectively, which one	razill	
		VV 111	
	precipitate first?	-) II-C	1) 7C
T (0	a) FeS b) MgS	c) HgS	d) ZnS
560.	Ostwald's dilution law is applicable for	1.20	
	a) Weak electrolyte	b) Strong electrolyte	
	c) Both weak and strong electrolyte	d) Non-electrolyte	
561	The equilibrium $PCl_{\sigma}(g) \rightleftharpoons PCl_{\sigma}(g) + Cl_{\sigma}(g)$ shows the	hat K is 24.63 times the va	due of K at a particular

	temperature T . Then T (in K) is:			
	a) 200 b) 100		c) 300	d) 400
562	. At 90°C, pure water has $[H^+] = 1$	0^{-6} M, if 100 mL or	f 0.2 M HCl is added to 200	mL of 0.1 M KOH at 90°C
	then pH of the resulting solution	will be		
	a) 7 b) 8		c) 4	d) 6
563	. In a reaction, the rate of reactions	s is proportional to	its active mass. This states	ment is known as
	a) Law of mass-action		b) Le-Chatelier principle	
	c) Faraday law of electrolysis		d) Law of constant propo	ortion
564	. The values of K_{p_1} and K_{p_2} for the	reactions		
		(1)		$\langle V \rangle$
	and $A \rightleftharpoons 2B$	(2)		
	are in the ration 9:1. If degree of	of dissociation of X	and A be equal, then total	l pressure at equilibrium (1
	and (2) are in the ratio:			
	a) 1:9 b) 36:	1	c) 1:1	d) 3:1
565	. Which of the following is not a	characteristic pr	operty of chemical equil	ibrium?
	a) Rate of forward reaction is e	equal to rate of ba	ickward reaction at equi	librium
	b) After reaching the chemical	-		
	unchanged with time	oquinorium, uno)
	For $A(g) \rightleftharpoons B(g), K_c$ is 10^{-2} .	If this reaction is	carried out in the prese	nce of catalyst the value
		ii tilis reaction is	carried out in the prese	ince of catalyst, the value
	of K_c decreases			
	d) After reaching the equilibriu		and backward reactions	continue to take place
566	. Which molecule is an electron			
	a) NH ₃ b) BF ₃		c) PF ₅	d) AsF ₅
567	. The correct expression for the		_	
	a) $108 s^5$ b) 27 s	s^5	c) $16 s^4$	d) 81 s ⁴
568	. pH of solution can be expressed a	S	*	
	a) $-\log_e[H^+]$ b) $-\log_e[H^+]$	g ₁₀ [H ⁺]	c) $\log_e[\mathrm{H}^+]$	d) $\log_{10}[H^+]$
569	. Which aqueous solution will have	e pH less than 7?		
	a) KNO ₃ b) NaO		c) NaCN	d) FeCl ₃
570	. If the salts M_2X , QY_2 and PZ_3 have		ties, K_{sp} values are related	as:
	a) $K_{sp}(M_2X) = K_{sp}(QY_2) < K_{sp}(P_2)$	PZ_3)		
	b) $K_{sp}(M_2X) > K_{sp}(QY_2) = K_{sp}(R_2X)$	PZ_3)		
	c) $K_{sp}(M_2X) = K_{sp}(QY_2) = K_{sp}(R_2X)$	PZ_3)		
	d) $K_{sp}(M_2X) > K_{sp}(QY_2) > K_{sp}(R_2X)$	PZ_3)		
571	The pH values of 0.1 M solution	n of HCl, CH ₃ COO	H, NH ₄ Cl and CH ₃ COONa	will have the order
	a) $HCl < CH_3COOH < NH_4Cl <$			
	c) $NH_4Cl < CH_3COONa < CH_3$	-	-	-
572	. When rain is accompanied by a th			•
372	a) Uninfluenced by occurrence of		meeted fam water win hav	e a pii vaide.
~~	b) Depending on the amount of d	ust in air		
<u></u>	c) Slightly lower than that of rain	water without thu	ınderstorm	
~	d) Slightly higher than that when			
573	. Ammonia gas dissolves in water t			
	_	on-polar solvent	c) An acid	d) A base
574	. pH scale was introduced by	P	-,	.,
	a) Arrhenius b) Sor	ensen	c) Lewis	d) Lowry
575	Given: $[Ag(NH_3)_2]^+ \rightleftharpoons Ag(NH_3)$		-	, ,
	$Ag(NH_3)^+ \rightleftharpoons Ag^+ + NH_3$			
	The instability constant of the con	_		
	,	. 0 \ 3/2 -	4	

a) 7.14×10^3	b) 2.33×10^3	c) 6.02×10^{-8}	d) 1.66×10^7
576. An aqueous solution c	ontains Ni ²⁺ , Co ²⁺ and Pb	o ²⁺ ions at equal concent	rations. The solubility
	d CoS in water at 25°C are		
-	which of these ions will b		
•	essively increased from z	• •	when surpline
• •			J) Dl.C and NiC
a) NiS and PbS	b) NiS and CoS	c) CoS and NiS	d) PbS and NiS
577. 10^{-6} M NaOH is dilute	•		
a) Between 7 and 8	b) Between 5 and 6	c) Between 6 and 7	d) Between 10 and 11
578. An acid with molecular f	formula $C_7H_6O_3$ forms three	e types of sodium salts, i.e.	, $C_7H_5O_3Na$, $C_7H_4O_3Na_2$ and
$C_7H_3O_3Na_3$. The basicity	of the acid is:		
a) One	b) Two	c) Three	d) Four
579. If the concentration of C	$r0_4^{2-}$ ion in a saturated solu	tion of silver chromate be 2	$2 \times 10^{-4} M$, solubility
product of silver chroma	ate will be:		41
a) 4×10^{-8}	b) 8×10^{-12}	c) 32×10^{-12}	d) 6×10^{-12}
580. What would be the effe	ect on addition of CaCO ₃ or	n the equilibrium of CaCO	$g(s) \rightleftharpoons CaO(s) + CO_2(g)$ in a
closed container:	3		2(0)
a) conc. of CO ₂ increases	3	4 4	
b) conc. of CO ₂ decrease			
c) Remains unaffected			
d) Cannot be predicted			
581. In a chemical equilibrium	n the rate constant of the h	ackward reaction is 7.5 × 1	0^{-4} and the equilibrium
	ate constant of the forward		and the equilibrium
a) 1.125×10^{-3}		c) 3.335×10^{-5}	d) 1.125×10^{-1}
•	•		•
582. 0.1 <i>M</i> acetic acid solution			and be the difference in ph
	ages of neutralization of acid		4) 212
a) 2 log 3/4	b) 2 log 1/4	c) log 1/3	d) 2 log 3
583. For a concentrated sol		te $A_x B_y$ of concentration	'L', the degree of
dissociation α' is give	n as		
$\alpha = \sqrt{K/(K+N)}$		b) $\alpha = \sqrt{\frac{V - C/(xy)}{xy}}$	
a) $\alpha = \sqrt{K_{\text{eq}}/C(x+y)}$ c) $\alpha = (K_{\text{eq}}/C^{x+y-1}x^{x})$		b) $\alpha = \sqrt{K_{\rm eq}C/(xy)}$	
c) $\alpha = (K_{eq}/C^{x+y-1} x^{x})$	$(x,y)^{1/(x+y)}$	d) $\alpha = (K_{eq}/Cxy)$	
584. The values of dissociation			ne strongest acid in water is:
	b) 1.6×10^{-4}	c) 4.4×10^{-10}	d) 4.3×10^{-7}
585. In a mixture of acetic a		,	•
			of the sait to the acid is
	hen, the pH of the solution		
	b) Decreases by one	c) Decreases ten fold	d) Increased ten fold
586. Which of the following	g salts is most soluble?		
a) $Bi_2S_3(K_{sp} = 1 \times 10^{-6})$	⁻¹⁷)	b) MnS($K_{\rm sp} = 7 \times 10^{-1}$	¹⁶)
c) $CuS(K_{sp} = 8 \times 10^{-3})$		d) $Ag_2S(K_{sp} = 6 \times 10^-)$	
587. van't Hoff's equation giv		•	
a) $\frac{d \ln F}{dT} = \frac{\Delta H}{RT^2}$	b) $\frac{a \operatorname{H} K_p}{dT} = \frac{\Delta H T}{R}$	c) $\frac{d \prod K_p}{dT} = \frac{\Delta \Pi}{DT^2}$	d) $\frac{a \operatorname{III} K_p}{a \operatorname{III}} = \frac{KI}{AII}$
588. Hydrogen and oxygen			
	Were heated together in a Vhich is responsible for this	=	briain constant is lound to
a) Backward reaction pr	•	•	
•			
b) Forward reaction pre	นบบบบนสเร		

c) Both forward and backward reactions have same rate

d) It is a property of the system, hence no reason for lower value

589. The dissociation co	nstant of HCN is 1.3×10^{-9} .		stant of KCN will be:
a) 1.3×10^{-9}	b) 10 ⁻¹⁴	c) 7.7×10^{-5}	d) 0.77×10^{-5}
590. Solubility product	of silver bromide is 5.0 10	0^{13} . The quantity of potas	ssium bromide (molar mass
taken as 120 g mo	l^1) to be added to 1 L of 0.	05 M solution of silver ni	trate to start the
precipitation of Ag			
a) 1.2 10 ¹⁰ g		c) 6.2 10 ⁵ g	d) 5.0 10 ⁸ g
	mposition of potassium chlo	-	5
a) Can be applied	poorworr or postuorium como	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	or i dog, iaw or made addon
b) Cannot be applie	d		
c) Can be applied at			
	t high temperature and press	sure	
592. The solubility produ	uct of a sparingly soluble salt	<i>AB</i> at room temperature is	s 1.21×10^{-6} . Its molar
solubility is			4
a) 1.21×10^{-6}	b) 1.21×10^{-3}	c) 1.1×10^{-4}	d) 1.1×10^{-3}
593. What is the correct	representation for the solub	ility product of SnS ₂ ?	0 7
a) $[Sn^{2+}][S^{2-}]^2$	b) [Sn ⁴⁺][S ²⁻] ²	c) [Sn ²⁺][2S ²⁻]	d) [Sn ⁴⁺][2S ²⁻] ²
594. Which of the follo	wing p K_a values, represen	t the strongest acid?	
a) 10^{-4}	b) 10^{-8}	c) 10^{-5}	d) 10^{-2}
595. An electrolyte			
a) Gives complex io	ns in solution	b) Dissolves in water	to give ions
c) Is ionised in the	solid state	d) Generates ions on	passing electric current
596. The strongest base	among the following is:		
a) CH ₃	b) F ⁻	c) NH ₂	d) OH ⁻
597. Given the reaction	between 2 gases represented	d by A_2 and B_2 to give the co	ompound $AB_{(g)}$.
$A_{2(g)} + B_2$	$_{(g)} \rightleftharpoons 2AB_{(g)}$		
At equilibrium, the	concentration	,	
of $A_2 = 3.0 \times 10^{-3}$			
of $B_2 = 4.2 \times 10^{-3}$	A V		
of $AB = 2.8 \times 10^{-3}$	M		
	s place in a sealed vessel at 52		vill be :
a) 2.0	b) 1.9	c) 0.62	d) 4.5
			are equal, but the equilibrium
	s twice that of equilibrium co		
a) 4	b) 9	c) 1/4	d) 1/9
599. For the reaction,			
	$\stackrel{\triangle}{=} PCl_5(g)$ the position of e	quilibrium can be shifted	to the right by
a) Doubling the vo			
b) Increasing the t	emperature		
c) Addition of equ	imolar quantities of PCl_3 a	ind PCl ₅	
d) Addition of Cl ₂	at constant volume		
600. The solubility of Ag	$Cl(K_{sp} = 1.2 \times 10^{-10})$ in a 0	0.10 M NaCl solution is:	
a) 0.1 <i>M</i>	b) $1.2 \times 10^{-6} M$	c) $1.2 \times 10^{-9} M$	d) $1.2 \times 10^{-10} M$
601. The following equil	ibrium exists in aqueous solı	ution $CH_3COOH \rightleftharpoons H^+ + CH$	$ m H_3COO^-$. If dilute HCl is added to
this solution:			
a) The equilibrium	constant will increase		
b) The equilibrium	constant will decrease		
=	entration will increase		
	entration will decrease		
602. What is the solubili	ty product of CaF ₂ , if its satu	rated solution contains 0.03	17 g of CaF ₂ per litre?

c) 4.14×10^{-18}	d) 41.4×10^{-24}			
503. Which of the following will occur if a 0.1 M solution of weak acid is diluted to 0.01 M at constant temperature?				
1377 11 1				
- **				
•				
Cu ² and Hg ² lons in an aci	diffed aqueous solution			
) M. G 1 M. G.	David Law d			
	J			
2 2	•			
d) $\frac{1}{2}pK_w + \frac{1}{2}pK_a + \frac{1}{2}$	log C			
f $[OH^-]$ of a 0.1 M aqueous s	olution of 2% ionised weak ac	id		
	0 1			
4				
e ratio of concentration of	acid and salt in pH 5.8			
c) 9	d) 0.1			
introduced into the vessel t	hen at the new equilibrium the	he		
) '				
at 200 V is 2.2 × 10-11 M	that will be the concentration	\n		
	That will be the concentration	on		
g ₂ CrO ₄ ?		on		
$g_2 CrO_4?$ c) $5.7 \times 10^{-6} M$	d) 3.2×10^{-11} M			
${\rm g_2CrO_4?}$ c) $5.7 \times 10^{-6} {\rm M}$ th solid sulphur to form	d) 3.2×10^{-11} M polyvalent sulphide ions. The	he		
${\rm g_2CrO_4?}$ c) 5.7×10^{-6} M th solid sulphur to form and ${\rm S_3^{2-}}$ from S and ${\rm S^{2-}}$ io	d) 3.2×10^{-11} M	he		
$ m g_2CrO_4?$ c) 5.7×10^{-6} M th solid sulphur to form and S_3^{2-} from S and S^{2-} io from S_2^{2-} and S is:	d) 3.2×10^{-11} M polyvalent sulphide ions. Thus are 1.7 and 5.3 respective	he		
$g_2 CrO_4$? c) 5.7×10^{-6} M th solid sulphur to form and S_3^{2-} from S and S_2^{2-} io from S_2^{2-} and S is: c) 4.21	d) 3.2×10^{-11} M polyvalent sulphide ions. The same 1.7 and 5.3 respective d) 1.63	he		
$ m g_2CrO_4?$ c) 5.7×10^{-6} M th solid sulphur to form and S_3^{2-} from S and S^{2-} io from S_2^{2-} and S is:	d) 3.2×10^{-11} M polyvalent sulphide ions. The same 1.7 and 5.3 respective d) 1.63	he		
$g_2 CrO_4$? c) 5.7×10^{-6} M th solid sulphur to form and S_3^{2-} from S and S_2^{2-} io from S_2^{2-} and S is: c) 4.21	d) 3.2×10^{-11} M polyvalent sulphide ions. The same 1.7 and 5.3 respective d) 1.63	he		
$g_2 CrO_4$? c) 5.7×10^{-6} M th solid sulphur to form and S_3^{2-} from S and S_2^{2-} io from S_2^{2-} and S is: c) 4.21	d) 3.2×10^{-11} M polyvalent sulphide ions. The same 1.7 and 5.3 respective d) 1.63	he		
$g_2 CrO_4$? c) 5.7×10^{-6} M th solid sulphur to form and S_3^{2-} from S and S_2^{2-} io from S_2^{2-} and S is: c) 4.21	d) 3.2×10^{-11} M polyvalent sulphide ions. The same 1.7 and 5.3 respective d) 1.63	he		
$g_2 CrO_4$? c) 5.7×10^{-6} M th solid sulphur to form and S_3^{2-} from S and S_2^{2-} io from S_2^{2-} and S is: c) 4.21	d) 3.2×10^{-11} M polyvalent sulphide ions. The same 1.7 and 5.3 respective d) 1.63	he		
$g_2 CrO_4$? c) 5.7×10^{-6} M th solid sulphur to form and S_3^{2-} from S and S^{2-} io from S_2^{2-} and S is: c) 4.21 to 50° C, which of the followi	d) 3.2×10^{-11} M polyvalent sulphide ions. Thus are 1.7 and 5.3 respective d) 1.63 ng should be true?	he		
$g_2 CrO_4$? c) 5.7×10^{-6} M th solid sulphur to form and S_3^{2-} from S and S^{2-} io from S_2^{2-} and S is: c) 4.21 to 50° C, which of the followi	d) 3.2×10^{-11} M polyvalent sulphide ions. The same 1.7 and 5.3 respective d) 1.63	he		
$g_2 CrO_4$? c) 5.7×10^{-6} M th solid sulphur to form and S_3^{2-} from S and S^{2-} io from S_2^{2-} and S is: c) 4.21 to 50° C, which of the followi	d) 3.2×10^{-11} M polyvalent sulphide ions. Thus are 1.7 and 5.3 respective d) 1.63 ng should be true?	he		
$g_2 CrO_4$? c) 5.7×10^{-6} M th solid sulphur to form and S_3^{2-} from S and S^{2-} io from S_2^{2-} and S is: c) 4.21 to 50° C, which of the following the following constant of	d) 3.2×10^{-11} M polyvalent sulphide ions. Thus are 1.7 and 5.3 respective d) 1.63 ng should be true?	he ly.		
$g_2 CrO_4$? c) 5.7×10^{-6} M th solid sulphur to form and S_3^{2-} from S and S^{2-} io from S_2^{2-} and S is: c) 4.21 to 50° C, which of the following the following constant of	d) 3.2×10^{-11} M polyvalent sulphide ions. The sare 1.7 and 5.3 respective d) 1.63 ng should be true? d) NH ₃ d) None of these	he ly.		
	b) K_a will decrease d) % ionisation will in Cu^2 and Hg^2 ions in an aciccolor and Hg^2 ions in aciccolor and Hg^2 ions	b) K_a will decrease d) % ionisation will increase Cu^2 and Hg^2 ions in an acidified aqueous solution c) MnS and NiS d) NiS and HgS Ia of concentration $C(M)$ is given by b) $\frac{1}{2}pK_w + \frac{1}{2}pK_b + \frac{1}{2}\log C$ d) $\frac{1}{2}pK_w + \frac{1}{2}pK_a + \frac{1}{2}\log C$ f $[OH^-]$ of a 0.1 M aqueous solution of 2% ionised weak action of 20 concentration of acid and salt in pH 5.8		

615.		$(l) \rightleftharpoons CH_3COOC_2H_5(l) + H_2$ e mole of each of acetic acid	, ,	the presence of little
	conc.H ₂ SO ₄ . On equilibriu			•
	a) 1 mole of ethyl acetate	-	b) 2 mole of ethyl acetat	e is formed
	c) $\frac{2}{3}$ mole of ethyl acetate	is formed	d) $\frac{1}{2}$ mole of ethyl acetate	e is formed
616	3	n is 2, the hydrogen ion cor	4	
010.	a) $1 \times 10^{-14} M$	b) $1 \times 10^{-2} M$	c) $1 \times 10^{-7} M$	d) $1 \times 10^{-12} M$
617	•	•	•	uilibrium concentration of <i>A</i>
017.		ilibrium concentration of B		ambitain concentration of 71
	a) 1/2 of its original valu		Would become !	
	b) 1/4 of its original valu			
	c) 1/8 of its original valu			
	d) Twice of its original va			
618.	=	will not affect the equili	brium constant for	
		b) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$		d) All of these
619.				The equilibrium constant for
	the reaction, $I_2 + H_2 \rightleftharpoons 2$, 1
	a) 0.36	b) 36	c) 49	d) 0.49
620.	The dissociation consta	ant of acetic acid K_a is 1.7	74×10^{-5} at 298 K. The	pH of a solution of 0.1 M
	acetic acid is	u		•
	a) 2.88	b) 3.6	c) 4.0	d) 1.0
621.	•	easing pressure on the diss		
0_1.	$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$		A V Y U S U U U U U U U U U U U U U U U U U	oo ono oquanon
	a) Dissociation decreases	=-	b) Dissociation increases	S
	c) Dissociation does not		d) None of the above	
622.		er at 60° C is 9.61×10^{-14} . T		
	a) 6.51	b) 6.70	c) 9.61	d) 7.0
623.	For the reaction equilibri	um, $N_2O_4(g) \rightleftharpoons 2NO_2(g)$, t	he concentration of N_2O_4 a	and NO ₂ at equilibrium are
		² mol/L respectively. The v		
		b) 3.3×10^{-3} mol/L		
624.		$(OH)_3$ is 100% where as sec		
	negligible then the pH of	$4 \times 10^{-3} \text{ M } X(\text{OH})_3 \text{ is}$		
	a) 7.5	b) 9.54	c) 11.78	d) 13.25
625.	The equilibrium constant	for the reaction, $3C_2H_2 =$	$\stackrel{\triangle}{=} C_6 H_6$ is 4.0 at T K . If the	equilibrium concentration of
	C_2H_2 is 0.5 mol/litre, the	concentration of C_6H_6 is :		
	a) 0.5 <i>M</i>	b) 1.5 <i>M</i>	c) 5 x 10 ⁻² <i>M</i>	d) 0.25 <i>M</i>
626.		$+2O_2(g) \rightleftharpoons CO_2(g) + 2H_2O(g)$	(l),	
		$V = -170.8 \text{ kJ mol}^{-1}$		
	Which of the following st		1.0	
1	a) Addition of CH₄(g) or 0b) The reaction is exothe	O_2 (g) at equilibrium will ca	ause a shift to the right	
			11.0(1)	
		ncentrations of CO_2 (g) and		
	d) The equilibrium const	ant for the reaction is giver	1 by $K_p = \frac{[CO_2]}{[CH_4][O_2]}$	
627.	The law of mass action w	as enunciated by		
	a) Graham	b) Bodestein	c) Rutherford	d) Guldberg and Waage
628.	The correct statement ab	out buffer solution is:		
	a) It contains a weak acid	l and its conjugate base		
	b) It contains a weak base	e and its conjugate acid		
	c) It shows little change i	n pH on adding small amou	unt of an acid or base	

d) All of the above		
629. Which reaction has $\Delta n = 2$?		
a) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$		
b) $3\text{Fe}(s) + 4\text{H}_2\text{O}(g) \rightleftharpoons \text{Fe}_3\text{O}_4(s) + 4\text{H}_2(g)$		
c) $NH_4Cl(g) \rightleftharpoons NH_3(g) + HCl(g)$		
d) $CuSO_4 \cdot 5H_2O(s) \rightleftharpoons CuSO_4 \cdot 3H_2O(s) + 2H_2O(g)$		
630. In the reaction, $N_2O_4 \rightleftharpoons 2NO_2$, α is that part of N_2O_4	which dissociates, then the	e number of moles at
equilibrium will be	,	
a) 1 b) 3	c) $(1 + \alpha)$	d) $(1 - \alpha)^2$
631. Decreasing acid strengths of HI, HBr, HCl and HF is:	0) (1 / 0)	
a) HF > HCl > HBr > HI		
b) HI > HBr > HCl > HF		
c) HI > HCl > HBr > HF		A Y
d) HI > HF > HCl > HBr		41
	10 ⁻⁵ The degree of discosi	ation acid is
632. A monoprotic acid in 0.1 M solution has $K_a = 1.0 \times a$ a) 1.0% b) 99.9%	c) 0.1%	d) 99%
	,	u) 99%
633. In what manner will increase of pressure affect the f	ollowing equation?	
$C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2O(g)$	L) Chick in the Control di	,
a) Shift in the reverse direction	b) Shift in the forward di	rection
c) Increase in the yield of hydrogen	d) No effect	
634. Which one of the following pair shows buffer's s		0.11
a) NaCl + NaOH	b) $CH_3COONa + CH_3CO$	ОН
c) $CH_3COOH + CH_3COONH_4$	d) $H_2SO_4 + CuSO_4$	
635. A buffer solution is prepared in which the concentration	ation of NH_3 is 0.30 M and	the concentration of NH ₄ ⁺ is
$0.20~M.$ If the equilibrium constant, K_b for $\mathrm{NH_3}$ equal	ls 1.8×10^{-5} what is the pl	H of this solution?
$(\log 2.7 = 0.43)$		
a) 8.73 b) 9.08	c) 9.43	d) 11.72
636. The degree of ionisation of a compound depends		
a) Size of solute molecules	b) Nature of solute molec	rules
c) Nature of vessel used	d) Quantity of electricity	passed
637. Amongst the following, the total number of com	pounds whose aqueous s	solution turns red litmus
paper blue is		
KCN K_2SO_4 $(NH_4)_2C_2O_4$ NaCl		
$Zn(NO_3)_2$ $FeCl_3$ K_2CO_3 NH_4NO_3		
LiCN		
a) 1 b) 2	c) 3	d) 4
	•	u) 4
638. The aqueous solution of a salt is alkaline. This shows	s that sait is made from:	
a) A strong acid and strong base		
b) A strong acid and weak base		
c) A weak acid and weak base		
d) A weak acid and strong base		
639. Which of the following solutions cannot act as a buff		
a) $NaH_2PO_4 + H_3PO_4$	b) $CH_3COOH + CH_3COON$	la
c) HCl + NH ₄ Cl	d) $H_3PO_4 + Na_2HPO_4$	
640. The relation for calculating pH of a solution containi	ng weak acid and its salt is	:
a) pH = p K_a + log [Conjugate base] [Acid] [Conjugate base]		
[Acid]		
b) pH = p $K_a - \log \frac{[\text{Conjugate base}]}{[\text{Acid}]}$		
[Acid]		

c) $pH = pK_a + log \frac{[Conjugate base]}{[Conjugate base]}$		
[Salt]		
c) pH = p K_a + log $\frac{[\text{Conjugate base}]}{[\text{Salt}]}$ d) pOH = p K_a - log $\frac{[\text{Acid}]}{[\text{Conjugate base}]}$		
641. The pH of a 0.01 <i>M</i> solution of acetic acid having		
a) 4.509 b) 3.723	c) 2.903	d) 5.623
642. Which one is more acidic in aqueous solution?		
a) NiCl ₂ b) FeCl ₃	c) AlCl ₃	d) BeCl ₂
643. In any chemical reaction, equilibrium is suppo	sed to be establish when	A 1) '
a) Mutual opposite reactions undergo		
b) Velocity of mutual reactions become equal		4 , 7
c) Concentration of reactants and resulting pr	=	
d) The temperature of mutual opposite reaction	-	
644. Of the following which change will shift the real	action towards the product?	~\ \ \
$I_2(g) \rightleftharpoons 2I(g), \Delta H^{\circ}_r(298 \text{ K}) = +150 \text{ kJ}$		04
a) Increase in temperature	b) Increase in total pres	
c) Increase in concentration of I	d) Decrease in concentr	ration of I ₂
645. Electrophiles are:		<i>J</i>
a) Lewis acids b) Lewis bases	c) Bronsted acids	d) Bronsted bases
646. Buffer solutions have constant acidity and alka	alinity because:	
a) They have large excess of H ⁺ or OH ⁻ ions		
b) They have fixed value of pH		
c) These give unionised acid or base on reaction		
d) Acids and alkalies in these solutions are shi		
647. A precipitate of AgCl is formed when equal vol		
a) 10^{-4} M AgNO ₃ and 10^{-7} M HCl	b) 10^{-5} M AgNO ₃ and 1	
c) 10^{-5} M AgNO ₃ and 10^{-4} M HCl	d) 10^{-6} M AgNO ₃ and 1	0 ⁻⁶ M HCl
648. When different types of salts have nearly sam	e solubility product constant <i>F</i>	X_{sp} but less than one the most
soluble salt is that:		
a) Which produces maximum number of ions		
b) Which produces minimum number of ions		
c) Which produces more charge on ion		
d) None of the above		
649. In a flask, colourless $N_2 O_4$ is in equilibrium wi		
heated at 100°C the brown colour deepens and	d on cooling it becomes less col	oured. The change in
enthalpy ΔH , for the system is :		
a) Negative b) Positive	c) Zero	d) Undefined
650. 56 g of nitrogen and 8 g of hydrogen gas heate		
present. The equilibrium number of moles of r		
a) 1, 1, 2 b) 1, 2, 2	c) 2, 1, 1	d) 2, 2, 1
651. Calculate pOH of 0.001 M NH ₄ OH, when it		
a) 5 b) 2.96	c) 9.04	d) 11.4
652. On addition of an inert gas at constant volume	to the reaction, $N_2 + 3H_2 \rightleftharpoons 2I$	NH ₃ at equilibrium:
a) The reaction halts		
b) Forward reaction is favoured		
c) The reaction remains unaffected		
d) Backward reaction is favoured	. ,	
653. The reaction quotient (Q) for the reaction is gi	iven by:	
$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3; Q = \frac{[NH_3]^2}{[N_2][H_2]^3}$		
$[N_2][\Pi_2]^3$		

	The reaction will proceed	from right to left if:		
	a) $Q = 0$	b) $Q = K_c$	c) $Q < K_c$	d) $Q > K_c$
654.	Sulphuric acid is a dibasic	acid. Hence, it forms:		
	a) Acidic salt			
	b) Basic and acidic salt			
	c) Acidic and normal salt			
	d) Double salt			
655.	Solubility of AgCl at 20°	C is 1.435×10^{-3} g/L . T	The solubility product of A	AgCl is
	a) 1×10^{-5}	b) 1×10^{-10}	c) 1.435×10^{-5}	d) 108×10^{-3}
656.	Le-Chatelier's principle is	not applicable to:		
	a) $Fe(s) + S(s) \rightleftharpoons FeS(s)$	• •		
	b) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$)		
	c) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH$	$H_3(g)$		
	d) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$	(g)		
657.	4 moles each of SO ₂ and	10_2 gases are allowed to	react to form SO ₃ in a clo	osed vessel. At
			ber of moles of all the ga	
	a) 6.5	b) 7.0		d) 2.0
658.	-	ous solution of sulphuric a		,
	a) 0.005	b) 2	c) 1	d) 0.01
659.			solution, the pH of the re	•
	a) Increased	b) Seven	c) Decreased	d) Unchanged
660			⁻⁵ changes colour when the	· ·
000.	$1 \times 10^{-3} M$, is:	indicator with na 1 × 10	changes colour when the	marcator concentration is
	a) 4	b) 5	0 6	d) 3
661.		$+ O_2(g) \rightleftharpoons 2SO_3(g)$ shifts	forward if:	<i>a, 5</i>
001.	a) A catalyst is used	1 02(8) (2003(8) 011110		
	•	remove SO ₃ as soon as it	is formed	
	c) Small amounts of react			
	d) None of the above			
662.	=	of hydrogen gas are hea	ted in a closed vessel. At	equilibrium 34 g of
			of moles of nitrogen, hyd	
	respectively			
	a) 1, 2, 2	b) 2, 2, 1	c) 1, 1, 2	d) 2, 1, 2
663		ng alkaline nature in solu		w, z, i, z
005.	a) NaNO ₃	b) NH ₄ Cl	c) Na ₂ CO ₃	d) Fo O
661		•	$c_1 ra_2 co_3$	d) Fe_2O_3
004.	Which of the following is		OON -	
		$OH + 50 \text{ mL } 0.1 \text{ M } CH_3C$		
		OH + 50 mL 0.1 M NaOH		
		OH + 100 mL 0.1 M NaOH		
^	d) $100 \mathrm{mL} 0.1 \mathrm{M} \mathrm{NH_4OH}$			
665.	/	$O_2(g) \rightleftharpoons 2CO(g)$, the partia	al pressure of CO ₂ and CO a	re 4 and 8 atm respectively
	K_p for the reaction is :			
	a) 16 atm	b) 2 atm	c) 5 atm	d) 4 atm
666.	For the reaction, $H_2 + I_2$	≓ 2HI, the equilibrium con	cetratio of $\rm H_2$, $\rm I_2$ and HI are	8.0, 3.0 and 28.0 mol/L
	• •	ium constant of the reactio		
	a) 32.66	b) 34.33	c) 22.44	d) 11.22
667.			at is the concentration of Cr	
	a) $2 \times 10^{-4} M$	b) 16×10^{-4} M	c) $8 \times 10^{-4} M$	d) $8 \times 10^{-8} M$
668.	The equilibrium consta	nt for the reaction,		

	$2NO_2(g) \rightleftharpoons 2NO(g)$	(g) + 0_2 (g) is 2×10^{-6} at	∴ 185°C.	
	Then the equilibrium c	onstant for the reaction,		
	$4NO(g) + 2O_2(g) \rightleftharpoons 4N$	$10_2(g)$ at the same tempe	rature would be	
	a) 2.5×10^{-5}	b) 4×10^{-12}	c) 2.5×10^{11}	d) 2×10^6
669.	At 25°C, the solubility p	product of $Mg(OH)_2$ is 1.0	0.10^{11} . At which pH, will	Mg ² ions start
		m of Mg(OH) ₂ from a solu		
	a) 9	b) 10	c) 11	d) 8
670	•	lace when the product of co	•	u) 0
0,0.	a) Equals their solubility		incentiation of fono.	A1)
	b) Exceeds their solubility	•		\wedge
	c) Is less than their solub	•		4 7
	d) Is negligible	J P		A
671.	, , ,	the titration of strong acid	and weak base is	40
	a) Methyl orange	b) Methyl red	c) Phenol red	d) Phenolphthalein
672.	Tetramine copper (II) su	, ,		
	a) Simple salt	b) Double salt	c) Complex salt	d) Normal salt
673.	•	ant for pure formic acid, K		• /
		nge of formic acid molecules		/
	a) 0.002%	b) 0.004%	c) 0.006%	d) 0.008%
674.	The pH of blood is mainta	ained by CO_2 and H_2CO_3 in	the body and chemical cons	stituents of blood. This
	phenomenon is called:			
	a) Colloidal	b) Buffer action	c) Acidity	d) Salt balance
675.	Weak electrolytes are or	nly partly dissociated in sol	lutions. The extent to which	ch they are dissociated in a
	given solution is known a	s the 'Degree of dissociatio	n'. Which of the following s	tatements for this degree o
	dissociation in aqueous s	olution is true?	>	
		onal to the square root of in		electrolyte
		nal to the initial concentrat		
		e initial concentration of the	-	
		librium concentration of the		
676.	_	re, the dissociation consta		
		spectively. The concentra		
	ion has the same conce	ntration as in 0.001 M for	rmic acid solution is equa	al to
	a) 0.01 M	b) 0.001 M	c) 0.1 M	d) 0.0001 M
677.	Partial pressure of O ₂ i	n the reaction		
	$2Ag_2O(s) \rightleftharpoons 4Ag$	$f(s) + O_2(g)$ is		
	a) K_p	b) $\sqrt{K_n}$	c) $3\sqrt{K_p}$	d) $2K_p$
		of a salt having general fo	• •	•
070.		ons in the aqueous solution		A 10 . THE
		b) 1.6×10^{-4} M		d) 2.0×10^{-6} M
770			•	,
		ther yield of ${\rm CO_2}$, the mea		
V	a) To remove CaO		b) To add more CaCO ₃	
	c) To maintain high ten	•	d) To pump out CO ₂	
680.		a Bronsted acid as well as E		D DE
	a) Na ₂ CO ₃	b) H ₂ O	c) NH ₃	d) BF ₃
681.		ward reaction and backwar		ester are 1.1×10^{-2} and
		spectively. Equilibrium con	stant for the reaction is	
	$CH_3COOC_2H_5 + H_2O \rightleftharpoons C$		a) E 22	d) 22 2
	a) 33.7	b) 7.33	c) 5.33	d) 33.3

682.	Which acid is involved in	digestion process?		
	a) HF	b) HCl	c) HBr	d) HI
683.	For $NH_4HS(s) \rightleftharpoons NH_3(g)$ at $106^{\circ}C$. The value of K_p		essure for reaction mixtur	e in equilibrium is 1.12 atm
			a) 21 26 abov 2	1) 6 002
604	a) 3.136 atm ²	b) 0.3136 atm ²	c) 31.36 atm ²	d) 6.98 atm ²
684.		act with atmosphere has a	=	1) 1.4
60 5	a) 3.2	b) 5.4	c) 7.0	d) 14
685.	Amines behave as			
	a) Lewis acid	b) Lewis base	c) Aprotic acid	d) Neutral compound
686.	The two Bronsted bases in			Y
	$HC_2O_4^- + PO_4^{3-} \longrightarrow HPO_4^{2-}$			
		b) HPO_4^{3-} and $C_2O_4^{3-}$	= = = = = = = = = = = = = = = = = = = =	d) $HC_2O_4^-$ and HPO_4^{2-}
687.		present in an aqueous solu		41
	a) Not a buffer solution w	-	b) Not a buffer solution w	
	c) A buffer solution with p		d) A buffer solution with	
688.	, ,	e as an indicator in the vo	olumetric determination of	f the equivalent weight of a
	weak acid would lead to:		4/4	
	a) A low value for the equ	-		/
	b) A high value for the equ	uivalent weight		
	c) No error in the value			
	d) Improved accuracy			
689.			sing order of acidic natur	
	a) $H_3O^+ < NH_4^+ < HF <$	_	b) $NH_4^+ < HF < H_3O^+ <$	
	c) $OH^- < H_2O < NH_4^+ < H_2O < H_2O < NH_4^+ < H_2O < H_2$	$< HF < H_3O^+$	d) $H_30^+ > HF > H_20 >$	$NH_4^+ > OH^-$
690.	Which of the following is	a Lewis base?)	
	a) CH ₄	b) C ₂ H ₅ OH	c) Acetone	d) Secondary
691.	An aqueous solution of so	dium carbonate is alkaline	because sodium carbonate	e is a salt of
	a) Weak acid and weak ba	ase	b) Strong acid and weak l	oase
	c) Weak acid and strong b	oase	d) Strong acid and strong	base
692.	Which of the following is	least likely to behave as Le	wis acid?	
	a) OH ⁻	b) H ₂ O	c) NH ₃	d) BF ₃
693.	. Which statement is false i	n case of equilibrium state	?	
		hange in properties with ti	me	
	b) It is dynamic in nature			
		either side of the reaction		
		the side of the reactants o		
694.		f KCl in a 3 L flask would be		
	a) 0.20	b) 2.0	c) 3	d) 4
695.			tion if 1.0×10^{-4} mole of s	olid NaCl is added, what
	will be the [Ag ⁺] assumin			
	a) More	b) Less	c) Equal	d) Zero
696.	$9.2g N_2O_4$ is heated in a	ı 1L vessel till equilibriu	n state is established	
	$N_2O_4(g) \rightleftharpoons 2N$	$10_2(g)$		
	In equilibrium state 500	$\% N_2O_4$ was dissociated,	Equilibrium constant wi	ll be (mol. wt. of $N_2O_4 =$
	92)			
	a) 0.1	b) 0.4	c) 0.3	d) 0.2
697.	=		O_2 , CO and O_2 are 0.6, 0.4	
		reaction, $2CO_2 \rightleftharpoons 2CO +$		
	•			d) 0 177
	a) 0.088	b) 0.0533	c) 0.133	d) 0.177

	Aqueous solution of sodi	um cyanide is			
	a) Acidic	b) Amphoteric	c) Basic	d) Neutral	
699.	A mixture of N ₂ and H ₂	in the mole ratio 1:3 is all	owed to attain equilibriun	n when 50% of mixture has	
	reacted. If P is the equilib	orium pressure, then partia	l pressure of $\mathrm{NH_3}$ formed is	5:	
	a) <i>P</i> /6	b) <i>P</i> /2	c) P/3	d) P/4	
700.	CH ₃ COOH is weaker ac	id than $\rm H_2SO_4$. It is due to	0		
	a) More ionisation	b) Less ionisation	c) Covalent bond	d) Electrovalent bond	
701.	Equal volume of three ac	id solutions of pH 3,4 and 5	are mixed in a vessel. Wha	it will be the H ⁺ ion	
	concentration in the mixt			A()	
	a) $3.7 \times 10^{-4} \text{ M}$	b) $3.7 \times 10^{-3} \text{ M}$	c) $1.11 \times 10^{-3} \text{ M}$	d) 1.11×10^{-4} M	
702.	The ionisation of strong	g electrolytes in acetic ac	rid, compared to in water	, is	
	a) Weak, low		b) Strong, more	A	
	c) Medium, the same		d) No ionisation, 100%	4	
703.	A saturated solution of	CaF_2 is 2×10^{-4} mol/L.	Its solubility product cor	istant is	
	a) 2.6×10^{-9}	b) 4×10^{-8}	c) 4×10^{-12}	d) 3.2×10^{-11}	
		l_5 is 104.16, but when heat	ed at 230°C. Its vapour den	sity is reduced to 62. The	
	=	n of PCl ₅ at this temperatu	-		
	a) 6.8%	b) 68%	c) 46%	d) 64%	
705.	Which is not amphoteric?	?			
	a) HSO ₄	b) HCO ₃	c) H_2PO_4	d) HCOO ⁻	
706.	An amount of solid NH	4HS is placed in a flask al	ready containing ammor	iia gas at a certain	
	temperature and 0.50 a	atm pressure. Ammoniun	n hydrogen sulphide dec	omposes to yield	
	NH ₃ and H ₂ S gases in the	he flask. When the decon	nposition reaction reache	es equilibrium the total	
	pressure in the flask ris	ses to 0.84 atm? The equi	ilibrium constant for NH	HS decomposition at this	
	temperature is		<i>></i> ′	•	
	a) 0.11	b) 0.17	c) 0.18	d) 0.30	
	The correct order of acet		•		
	a) $Cl_2O_7 > SO_2 > P_4O_{10}$				
	b) $CO_2 > N_2O_5 > SO_2$				
	b) $CO_2 > N_2O_5 > SO_3$				
	c) $Na_2O > MgO > Al_2O_3$				
	c) $Na_20 > Mg0 > Al_20_3$				
708.	c) $Na_2O > MgO > Al_2O_3$ d) $K_2O > CaO > MgO$	ant K_p for the reaction,			
708.	c) $Na_2O > MgO > Al_2O_3$ d) $K_2O > CaO > MgO$ The equilibrium consta	ant K_p for the reaction,	c) Equal to K_c	d) Zero	
708.	c) $Na_2O > MgO > Al_2O_3$ d) $K_2O > CaO > MgO$ The equilibrium constated $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$	ant K_p for the reaction,) is b) Less than one	c) Equal to K_c	d) Zero	
708. 709.	c) $Na_2O > MgO > Al_2O_3$ d) $K_2O > CaO > MgO$ The equilibrium constated $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ a) More than one Which of the following is	ant K_p for the reaction, is b) Less than one least soluble?	c) Equal to K_c	d) Zero	
708. 709.	c) Na ₂ 0 > Mg0 > Al ₂ 0 ₃ d) K_2 0 > Ca0 > Mg0 The equilibrium constated $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ a) More than one Which of the following is a) MnS($K_{sp} = 7 \times 10^{-16}$)	ant K_p for the reaction, is b) Less than one least soluble?	c) Equal to K_c	d) Zero	
708. 709.	c) Na ₂ 0 > Mg0 > Al ₂ 0 ₃ d) K ₂ 0 > Ca0 > Mg0 The equilibrium constated H ₂ (g) + I ₂ (g) \rightleftharpoons 2HI(g) a) More than one Which of the following is a) MnS($K_{sp} = 7 \times 10^{-16}$) b) FeS($K_{sp} = 7 \times 10^{-19}$)	ant K_p for the reaction, is b) Less than one least soluble?	c) Equal to K_c	d) Zero	
708. 709.	c) Na ₂ O > MgO > Al ₂ O ₃ d) K_2 O > CaO > MgO The equilibrium constated $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ a) More than one Which of the following is a) MnS($K_{sp} = 7 \times 10^{-16}$) b) FeS($K_{sp} = 7 \times 10^{-19}$) c) PtS($K_{sp} = 8 \times 10^{-73}$)	ant K_p for the reaction, is b) Less than one least soluble?	c) Equal to K_c	d) Zero	
708.	c) Na ₂ 0 > Mg0 > Al ₂ 0 ₃ d) K_2 0 > Ca0 > Mg0 The equilibrium constated $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ a) More than one Which of the following is a) MnS($K_{sp} = 7 \times 10^{-16}$) b) FeS($K_{sp} = 7 \times 10^{-19}$) c) PtS($K_{sp} = 8 \times 10^{-73}$) d) NiS($K_{sp} = 3 \times 10^{-12}$)	ant K_p for the reaction,) is b) Less than one least soluble?		d) Zero	
708. 709.	c) Na ₂ O > MgO > Al ₂ O ₃ d) K_2 O > CaO > MgO The equilibrium constated $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ a) More than one Which of the following is a) MnS($K_{sp} = 7 \times 10^{-16}$) b) FeS($K_{sp} = 7 \times 10^{-19}$) c) PtS($K_{sp} = 8 \times 10^{-73}$) d) NiS($K_{sp} = 3 \times 10^{-12}$) The best explanation for	ant K_p for the reaction,) is b) Less than one least soluble?) the solubility of MnS in dil.	HCl is that:	d) Zero	
708. 709.	c) Na ₂ 0 > Mg0 > Al ₂ 0 ₃ d) K ₂ 0 > Ca0 > Mg0 The equilibrium constated $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ a) More than one Which of the following is a) MnS($K_{sp} = 7 \times 10^{-16}$) b) FeS($K_{sp} = 7 \times 10^{-19}$) c) PtS($K_{sp} = 8 \times 10^{-73}$) d) NiS($K_{sp} = 3 \times 10^{-12}$) The best explanation for a) Solubility product of M	ant K_p for the reaction,) is b) Less than one least soluble? the solubility of MnS in dil. InCl ₂ is less than that of Mr	HCl is that:		
708. 709.	c) Na ₂ O > MgO > Al ₂ O ₃ d) K ₂ O > CaO > MgO The equilibrium constant $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ a) More than one Which of the following is a) MnS($K_{sp} = 7 \times 10^{-16}$) b) FeS($K_{sp} = 7 \times 10^{-19}$) c) PtS($K_{sp} = 8 \times 10^{-73}$) d) NiS($K_{sp} = 3 \times 10^{-12}$) The best explanation for a) Solubility product of Mb) Concentration of Mn ²⁺¹	the solubility of MnS in dil. In Cl ₂ is less than that of Mr	HCl is that: nS on of complex ions with chl		
708. 709.	c) Na ₂ 0 > Mg0 > Al ₂ 0 ₃ d) K ₂ 0 > Ca0 > Mg0 The equilibrium constated $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ a) More than one Which of the following is a) MnS($K_{sp} = 7 \times 10^{-16}$) b) FeS($K_{sp} = 7 \times 10^{-19}$) c) PtS($K_{sp} = 8 \times 10^{-73}$) d) NiS($K_{sp} = 3 \times 10^{-12}$) The best explanation for a) Solubility product of Mb) Concentration of Mn ²⁺ c) Concentration of sulph	ant K_p for the reaction,) is b) Less than one least soluble? the solubility of MnS in dil. InCl ₂ is less than that of Mn is lowered by the formation of the solubility of the solubility of the formation of the solubility of the solubility of the formation of the solubility of	HCl is that: nS on of complex ions with chl lation to free sulphur	oride ions	
708. 709.	c) Na ₂ 0 > Mg0 > Al ₂ 0 ₃ d) K ₂ 0 > Ca0 > Mg0 The equilibrium constated $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ a) More than one Which of the following is a) MnS($K_{sp} = 7 \times 10^{-16}$) b) FeS($K_{sp} = 7 \times 10^{-19}$) c) PtS($K_{sp} = 8 \times 10^{-73}$) d) NiS($K_{sp} = 3 \times 10^{-12}$) The best explanation for a) Solubility product of Mb) Concentration of Mn ²⁺ c) Concentration of sulph	the solubility of MnS in dil. InCl ₂ is less than that of Mr is lowered by the formation ide ions is lowered by formation idea.	HCl is that: nS on of complex ions with chl	oride ions	
708. 709. 710.	c) Na ₂ O > MgO > Al ₂ O ₃ d) K ₂ O > CaO > MgO The equilibrium constant $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ a) More than one Which of the following is a) MnS($K_{sp} = 7 \times 10^{-16}$) b) FeS($K_{sp} = 7 \times 10^{-16}$) c) PtS($K_{sp} = 8 \times 10^{-73}$) d) NiS($K_{sp} = 3 \times 10^{-12}$) The best explanation for a) Solubility product of M b) Concentration of sulph d) Concentration of sulph	the solubility of MnS in dil. InCl ₂ is less than that of Mr is lowered by the formation ide ions is lowered by formation idea.	HCl is that: nS on of complex ions with chl lation to free sulphur	oride ions	
708.709.710.711.	c) Na ₂ 0 > Mg0 > Al ₂ 0 ₃ d) K ₂ 0 > Ca0 > Mg0 The equilibrium constated $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ a) More than one Which of the following is a) MnS($K_{sp} = 7 \times 10^{-16}$) b) FeS($K_{sp} = 7 \times 10^{-19}$) c) PtS($K_{sp} = 8 \times 10^{-73}$) d) NiS($K_{sp} = 3 \times 10^{-12}$) The best explanation for a) Solubility product of Mb) Concentration of Mn ²⁺ c) Concentration of sulph d) Concentration of sulph If the pOH of a solution is	the solubility of MnS in dil. InCl ₂ is less than that of MnS is lowered by the formation ide ions is lowered by form a 6.0, then pH is: b) 8	HCl is that: aS on of complex ions with chl lation to free sulphur nation of the weak acid H_2S	oride ions	

713	. The pH of solution, whose	e hydrogen ion concentrati	on is one mole per litre, wi	ll be:
	a) 1.0	b) 0.1	c) Zero	d) 1.5
714	. Consider the reaction equ			
	$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$	· - ·		
		= =	n favourable for the forwar	d reaction is
	a) Lowering of temperatu	-		
		ture and increasing the pre	ssure	
	c) Increasing the tempera			
715	d) Any value of temperatu	-		~\)`
/15	. NH ₄ Cl is acidic because			Y
		gives weak base NH ₄ OH	and strong acid HCI	
	b) Nitrogen donates a p			A Y
	c) It is a salt of weak act	ŭ	1 . 1	
5 4.6		gives strong base and w		
716		-	· =	f concentration of conjugate
		enfold; then the pH of the		d) Dogwood towfold
717	a) Increase by oneThe solubility in water of	b) Increase tenfold	c) Decrease by one	d) Decrease tenfold
/1/	a) 1×10^{-15}	b) 1×10^{-10}	c) 4×10^{-15}	d) 4×10^{-10}
718	I. If ClO_3^- is chlorate ion, the	•	C) 4 × 10	u) 4 × 10
710	a) Hydrochloride acid	b) Chlorous acid	c) Chloric acid	d) Chlorate acid
719	Which of the following	•	e) dinorie dela	a) dinorate acia
	a) H ₂ O	b) Ag ⁺	c) NH ₃	d) OH ⁻
720	. For a system in equilibriu			u) 011
0	a) Temperature and press		b) Energy and volume	
	c) Temperature and volume		d) Pressure and volume	
721	. In 100 mL of an aqueous	HCl of pH 1.0, 900 mL of dis	stilled water is added, the p	oH of the resultant solution
	becomes:			
	a) 1.0	b) 2.0	c) 4.0	d) 7.0
722	. 20 mL of a 0.1 <i>N</i> HCl is mi	ixed with 20 mL of a 0.1 N		
	a) Zero	b) 7	c) 2	d) 9
723				is increased by a factor 2, it
		oncentration of B to char	nge to:	
	a) Two times of its originalb) One half of its original			
	c) $2\sqrt{2}$ times of its original			
	d) $\frac{1}{2\sqrt{2}}$ times of its original			
724	. The Bronsted acid which			
	a) HF	b) H ₂ S	c) H ₂ 0	d) HCl
725	. How much sodium acetat		solution of CH ₃ COOH to gi	ve a solution of pH =
<u></u>	5.5 (p K_a of CH ₃ COOH = 4		-) 1 0 M	J) 10 0 M
726	a) 0.1 M	b) 0.01 M	c) 1.0 M	d) 10.0 M
/20	Which solution has pH	_	.) 40=10 M HCl	1) 40-4 M HCl
727	a) 10 ⁻⁴ M KOH	•	c) 10 ⁻¹⁰ M HCl	=
127		area by dissolved $CaF_2(s)$	in water, has $[Ca^2] = 3.3$	$ imes 10^{-4}$ M. What is the $K_{ m sp}$ of
	CaF ₂ ?	L) 2 24 40=8	-) 1 50 10=8	1) 1 (7 \ 10-8
720	•		c) 1.58×10^{-8}	d) 1.67×10^{-8}
/ 48	 When 1.0 mL of dil. HCl ac a) Becomes 7 		c) Becomes 2	
	a i DCCOIIICS /	o i doco not challet	C) DCCOIIICS 4	al peconico to

729. Tł	he pH of blood is:						
a)) Less than 6						
b)	b) Greater than 7 and less than 8						
c)	Greater than 8 and less	than 9					
d)) Greater than 10						
730. Tł	he unit of equilibrium co	onstant, K for the reaction,	$A + B \rightleftharpoons C$, would be				
a)) mol L ⁻¹	b) mol L	c) L mol ⁻¹	d) Dimensionless			
731. W	hich statement is correc	t?					
-	, , ,	te base react to form salt a	nd water				
-) The acid H_2O is its own	, ,					
-	· -	weak acid is a strong base	•				
-	· -	strong acid is strong base					
				l pH 7.0, 9.0, 10.0 and 11.0			
	• •	olution was 0.1 <i>M</i> , the stro	ngest acid is:				
-) HW						
-) HX			X			
-) HY		4 (4				
,) HZ	alatain ad from I a Chatalia	المالية منسية والمالية	r			
		obtained from Le-Chatelie					
_	= =	ition on changing P , T and	concentration				
_) Dissociation constant o) Energy change in a read						
_) Equilibrium constant of						
_	he solubility product of F		A. V.				
	$(Hg_2^{2+})[I^-]$	b) [Hg ²⁺][I ⁻]	c) [Hg ₂ ²⁺][I ⁻] ²	d) [Hg ²⁺] ² [I ⁻] ²			
		, - 0 - 1 1	M HCl and 10 mL of 0.45 M				
) 5	b) 8	c) 12	d) 10			
_		etween K_c and K_p in gaseo	•	u) 10			
	$K_{\rm c} = K_{\rm p} (\rm RT)^{\Delta n}$	our con in a data in plan gasoo	uo oquiiorrum io i				
-	$K_{p} = K_{c} (RT)^{\Delta n}$						
	$\int_{RT}^{K_c} = (K_p)^{\Delta n}$						
d)	$)\frac{K_P}{RT} = (K_c) \Delta n$						
			of salt to acid concentration	is increased by ten folds.			
	he pH of the solution will						
-) Zero	b) 1	c) 2	d) 3			
			ch is 10^{-3} M. Their pH will				
-) 10, 6, 2	b) 11, 3, 7	c) 10, 2, 6	d) 3, 4, 7			
		K_1, K_2 and K_3 of three react	tions are :				
	$t_2 + 3H_2 \rightleftharpoons 2NH_3; K_1$						
N:	$_2 + O_2 \rightleftharpoons 2NO; K_2$ $_2 + \frac{1}{2}O_2 \rightleftharpoons H_2O; K_3$						
H.	$\frac{1}{2} + \frac{1}{2} O_2 \rightleftharpoons H_2 O; K_3$						
		for the oxidation of NH ₃ b	w ovugen to give NO is:				
) K_3^2/K_1	b) $K_2^2 K_3 / K_1$	c) K_1K_2/K_3	d) $K_2K_3^3/K_1$			
-	N_{1} N_{2} hich of the following is t	, , , ,	$C_1 R_1 R_2 / R_3$	$u_1 \kappa_2 \kappa_3 / \kappa_1$			
) $C_2H_5^-$	b) $C_2H_5COO^-$	c) C ₂ H ₅ O ⁻	d) H ₂ PO ₄			
_	he equilibrium constant,		C) C21150	uj 11 <u>2</u> 1 04			
	$HI(g) \rightleftharpoons H_2(g) + I_2(g)$	1. 101 the reaction					
		85 and that at 698 K litic 1	$.4 \times 10^{-2}$. This implies tha	t			
) HI is resonance stabilise		b) HI is exothermic comp				

	t room temperature	d) HI is less stable tha				
742. If the solubility	product of BaSO ₄ is 1.5×10^{-10}	in water. Its solubility, in m	oles per litre, is			
a) 1.5×10^{-9}	b) 3.9×10^{-5}	c) 7.5×10^{-5}	d) 1.5×10^{-5}			
743. Soda water has	a pH value:					
a) Less than 7	b) More than 7	c) 7	d) Greater than 14			
744. According to Le	-Chatelier's principle, if heat is §	given to solid-liquid system,	then			
a) Quantity of so	olid will reduce	b) Quantity of liquid	will reduce			
c) Temperature	will increase	d) Temperature will o	decrease			
745. The salt that do	es not hydrolyse, is:					
a) SnCl ₂	b) FeCl ₃	c) SnCl ₄	d) CaCl ₂			
	dicator has $K_a = 3.0 \times 10^{-5}$. Th					
	equired to change the indicator					
a) $8 \times 10^{-5} M$	b) $9 \times 10^{-5} M$	c) $1 \times 10^{-5} M$	d) $3 \times 10^{-4} M$			
	m chloride is added to a solution	-				
	of NH ₄ OH increases	b) Concentration of O				
	n of NH ⁺ and OH ⁻ increases	d) Concentration of N	•			
748. The pH of an a	queous solution having hydr	oxide ion concentration a	s 1×10^{-5} is			
a) 5	b) 9	c) 4.5	d) 11			
749. In the manufact	ure of NH ₃ by Haber's process,	the condition which would g	give maximum yield is			
$N_2 + 3H_2 \rightleftharpoons 2N$	$H_3 + Q$ kcal					
a) Low tempera	ture and high pressure					
b) Low tempera	b) Low temperature, low pressure and low concentration of H_2					
c) High tempera	ature, low pressure and low con	centration				
	ature, high pressure and high co					
750. In water, the ac	id $\mathrm{HClO_4}$, HCl , $\mathrm{H_2SO_4}$ and $\mathrm{HNO_3}$	exhibit the same strength a	s they are completely ionised in			
water (a base).	This is called of the solvent w	rater.				
a) Strength	b) Capacity	c) Buffer effect	d) Levelling effect			
	lowing solutions will have pH c					
a) 100 mL of $\frac{M}{4.0}$	$HCl + 100 \text{ mL of } \frac{M}{10} \text{ NaOH}$	b) 55 mL of $\frac{M}{10}$ HCl +	$45 \text{ mL of } \frac{M}{40} \text{ NaOH}$			
10 M	M 10	10 M	10 M			
c) 10 mL of $\frac{11}{10}$	$HCl + 90 \text{ mL of } \frac{M}{10} \text{ NaOH}$	d) 75 mL of $\frac{M}{5}$ HCl +	25 mL of $\frac{M}{5}$ NaOH			
752. For the reaction	$n N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$); $\Delta H = -93.6 \text{ kJ mol}^{-1}$	1 , the concentration of NH $_{3}$ at			
equilibrium ca	n be increased by					
(I) lowering th	e temperature					
(II)low pressu	re					
(III)excess of N	N_2					
(IV)excess of H	-					
a) (II) and (IV)		b) (II) only is correc	et e			
	(III) are correct	d) (III) and (IV) are				
		` ' ' '	or only one of them in solution.			
Such salts are:	ough containing two unicities	inclaime ciements give test i	or only one or them in solution.			
a) Double salts	b) Normal salts	c) Complex salts	d) None of these			
754. Which statemen	•	c) complex saits	d) None of these			
a) NH ₄ OH is a si						
	iven acidic solution in water					
c) CH ₃ COOH is						
	alkaline solution in water					
	he following species acts as b	ooth Bronsted acid and ba	se?			
a) $H_2PO_2^-$	b) HPO $_3^{2-}$	c) HPO ₄ ²⁻	d) All of these			
αι ΠοΓ Ο ο	$\nu_J \text{Hr} \nu_3$	$U_1 \Pi \Gamma U_4$	uj Ali Ul UlESE			

/56	o. Which one is the stronges	st base?		
	a) OH ⁻	b) <i>RO</i> ⁻	c) NH ₂	d) <i>R</i> ⁻
757	. To a mixture of acetic acid	d and sodium acetate a furt	her amount of sodium acet	ate is added. The pH of the
	mixture:			-
	a) Increases	b) Decreases	c) Remains unchanged	d) Not predictable
758	3. Ionisation constant of CH	-	$[4^+]$ ions is 3.4×10^{-4} . Then	i, initial concentration of
	CH ₃ COOH molecules is		,	,
	a) 6.8×10^{-3}	b) 2.5×10^{-4}	c) 3.5×10^{-3}	d) 4.5×10^{-3}
759	0.023 g of sodium meta	•	•	
	a) 10	b) 11	c) 9	d) 12
760	For the reaction, $N_2 + 3H$,	,	
700		ed. Which of the following is		inder of more of N ₂ and m ₂
	a) $[H_2] = [N_2]$	b) $[H_2] < [N_2]$		d) $[H_2] > [NH_3]$
761	1.1 mole of A are mixed			, , , , , , , , , , , , , , , , , , , ,
701			_	re formed. The equilibriun
	constant of the reaction is		quinorium 0.2 mole of C a	re formed. The equilibrium
	a) 0.001	b) 0.002	c) 0.003	d) 0.004
762	. 50% neutralization of a so	-	,	-
702	having a hydrogen ion coi		- 2 × 10) WILLINGOIT WO	uiu resuit iii a soiutioii
	a) 2×10^{-4}	b) 3.7	c) 2.7	d) 1.85
762	=	U) 3.7	C) 2.7	u) 1.05
703	s. pH of K_2S solution is: a) > 7	b) < 7	c) 7	d) 7oro
764	•	•		d) Zero
704	. If pressure is applied to the		_	= = =
765	a) Will decrease	b) Will increase	c) May not change	d) Will not change
765	The extent of ionisation in	ngentration	h) On addition of average v	vator to the colution
	a) With the increase in co	ncentration	b) On addition of excess w	vater to the solution
766	c) On decreasing the temp		d) On stirring the solution	•
700	Which one of the follow			=
	a) NH ₄ Cl	b) Na ₂ CO ₃	c) NaNO ₃	d) Na ₂ SO ₄
767	. Which addition would not		f dilute hydrochloric acid?	
	a) 20 mL of the same dilu			
	b) 5 mL of pure water			
	c) 20 mL of pure water			
	d) 10 mL of concentrated			
768	8. Which does not contribut			
	a) SO ₃	b) NO ₂	c) CO ₂	d) CO
769	. Given that the equilibriun			
	$2SO_{2(g)} + O_{2(g)}$	(0)		
		= =	hat is the value of the ed	quilibrium constant for the
	following reaction at the s	="		
	$SO_{3(g)} \rightleftharpoons SO_{2(g)} + \frac{1}{2}$	$0_{2(g)}$		
	a) 1.8×10^{-3}		c) 6.0×10^{-2}	d) 1.3×10^{-5}
770	. The equilibrium constant			
	the equilibrium constant			
	a) CN ⁻ is stronger base th	= =		
	b) HCN is stronger acid th			
	c) ONO is the conjugate			
	d) The conjugate acid of C			
771	. A buffer solution contai		etate dissolved in 1000 o	cm ³ of 0.1 M acetic acid.

	the resulting buffer is			
	a) pK_a	b) $pK_a + 2$	c) $pK_a - \log 2$	d) $pK_a + \log 2$
772.	Some chemists at ISRO	wished to prepare a satu	rated solution of a silver	compound and they
	wanted it to have the h	ighest concentration of si	ilver ion possible. Which	of the following
	compounds, would the	y use?		
	$K_{\rm sp}({\rm AgCl}) = 1.8 \times 10^{-2}$	10		
	$K_{\rm sp}({\rm AgBr}) = 5.0 \times 10^{-}$			
	$K_{\rm sp}(Ag_2CrO_4) = 2.4 \times$	10-12		
			a) A a CrO	d) None of these
772	a) AgCl	b) AgBr	c) Ag ₂ CrO ₄	d) None of these
//3.	a) CH ₃ COOH	applicable in the case of the b) NaCl	c) NaOH	d) H ₂ SO ₄
774	_	dm ³ of a solution contain	•	, <u>r</u>
, , 1.	- -	tion reaches 8.1 10 ¹⁰ mo	_	
	true?	don reaches 0.1 10 mil	oles. Which one of the for	lowing statements is
	$[K_{\rm sp}]$ of Zn and CuS are 3	2 1022 and 0 1036	. (4	Y
	•	3 10 and 6 10		
	respectively]	D 41		J) NI
	a) Only ZnS precipitate	Both s b)	c) Only CuS precipitates	d) No precipitation
		cus and zns precipit	a	occurs
775.		n of 0.1 M HCN solution is 0		
776	a) 10^{-3}	b) 10 ⁻⁵	c) 10^{-7}	d) 10 ⁻⁹
//6.	Solubility of a gas in liqui	d increases on:	V	
	a) Addition of a catalystb) Increasing the pressur	70	Y	
	c) Decreasing the pressur		Y	
	d) Increasing the tempera			
777.		B, the system will be know	vn in equilibrium when	
	a) 50% of A changes to B			
	b) <i>A</i> completely changes			
	c) Only 10% of A changes			
		A to B and B to A on both th	e sides are same	
778.	For a polyprotic acid say	H ₃ PO ₄ , its three dissociatio	on constant K_1 , K_2 and K_3 are	e in the order:
		b) $K_1 > K_2 > K_3$		
779.				which was 1.5 times that of
				he K_c for the equilibrium is :
	a) 4	b) 8	c) 6	d) 0.32
		olubility product of Al ₂ (SO ₄)		
		b) $K_{\rm sp} = [Al^{3+}]^2 [SO_4^{2-}]^3$	-	-
_ \		nt of an acid HA is 1×10^{-5}	the pH of a 0.1 <i>M</i> solution	of the acid HA will be
	approximately:	125	2.4	D.C.
702	a) 3	b) 5	c) 1	d) 6
/ 8Z.		lution at 25°C that contains		
792	a) 4 When a strong acid-stron	b) 9	c) 1	d) 7 mpletely ionised. If a strong
703.	-	_	_	inpletely lomsed. If a strong ions of the latter forming
				energy and the reaction is
	vvacci. The formation of	cach water molecule moel	aces a certain quantity of	chergy and the reaction is

exothermic. The heat liberated when one mole of water is formed by combining hydrochloric acid and sodium hydroxide is 13.7 kcal. The heat liberated when one mole of water is formed by combining

To the above buffer solution, 0.1 mole of sodium acetate is further added and dissolved. The pH of

	sulphuric acid and sodium	n hydroxide	is:		
	a) 34 kcal	b) 13.7 kca		c) 8.5 kcal	d) 25.5 kcal
784.	K_a for HCN is 5×10^{-10} at	25°C. For m	aintaining a co	nstant pH = 9, the volume	of 5 M KCN solution
	required to be added to 10	0 mL of 2 M	HCN solution is	S	
	a) 2 mL	b) 4 mL		c) 8.2 mL	d) 6.4 mL
785.	. The equilibrium constants		ctions are:		
	H_3PO_4 K_1 $H^+ + 1$	H_2PO_4 ;	K_1		
	H_2PO_4 K_2 $H^+ + 1$	H ₂ PO ₄ ²⁻ ;	K_2		
	$HPO_4^{2-} \qquad \begin{array}{c} K_3 \\ \hline \end{array} H^+ + 1$	PO_4^{3-} ;	K_3		
	The equilibrium constant				
	$H_3PO_4 \rightleftharpoons 3H^+ + PO_4^{3-}$ wil				
	a) K_1/K_2K_3		$\times K_3$		d) $K_1 + K_2 + K_3$
786.	Four moles of PCl ₅ are h				
		_s is dissocia	ated. What is t	the value of K_c for the di	ssociation of PCl ₅ into
	PCl ₃ and Cl ₂ at 400 K?)
	a) 0.50	b) 1.00		c) 1.15	d) 0.05
787.	. Favourable conditions for			by the reaction.	
	$N_2 + 3H_2 \rightleftharpoons 2NH_3; \Delta H =$				
	a) Low temperature, low	=	-		
	b) Low temperature, high	=	· ·		
	c) High temperature, low	=	-		
700	d) High temperature, high	=		11 Machutian of No. Car	ll ha
700.	If K_{sp} of Ag_2S is 10^{-17} , t				
5 00	a) 10^{-8}	-	-9		d) 10^{-16}
789.	. 5 moles of SO_2 and 5 mole				
	stage 60% of 50_2 is used table 8.5			oles of SO_2 , O_2 and SO_3 in the condition of SO_3 in the conditi	
700					,
790.	and its molecular weight i		ive in one nue i	of Saturated Solution: K_{sp}	of CaC_2O_4 is $2.5 \times 10^{-9} M^{-2}$
	a) 0.0064 g	b) 0.0128 s	σ	c) 0.0032 g	d) 0.0640 g
791	In the iodometric estimates	,	5	,	u) 0.0010 g
,,,1					$Mn^{2+} + I$
	a) $Cr_2O_7^{2-} + H^+ + I^- \rightarrow I_2 + S_2O_3^{2-} \rightarrow I_3$	$S \cdot \Omega^{2-} + I$	2 -	b) $MnO_4^- + H^+ + I^- \rightarrow I_2 + S_2O_3^{2-} - I_3$	$\rightarrow S.O^{2-} + I_{-}$
	$M_{12} + 3_{2} + 3_{3} = 7$	$Mn0. \pm I$		$Cr_1O^{2-} \perp OH^- \perp I^-$	$\rightarrow 2Cr^{3+} \perp I$
	c) $\frac{\text{MnO}_{4}^{-} + \text{OH}^{-} + \text{I}^{-}}{\text{I}_{2} + \text{S}_{2}\text{O}_{3}^{2-}}$	$\sim 100^{2} + 100^{2}$	2 	d) $\frac{\text{Cr}_2\text{O}_7^{2-} + \text{OH}^- + \text{I}^-}{\text{I}_2 + \text{S}_2\text{O}_3^{2-}}$	$\sim 201 + 12$
702	$1_2 + 3_2 0_3$ Equilibrium constant K_1 a				7 340 ₆ T 1
		nu n ₂ ioi tii	ie ionowing equ	ambria	
	$NO(g) + \frac{1}{2}O_2 \stackrel{K_1}{\longleftrightarrow} NO_2(g)$				
	and, $2NO_2(g) \stackrel{K_2}{\longleftrightarrow} 2NO(g)$	$+ O_2(g)$ ar	e related as		
				1	1
	a) $K_1 = \frac{1}{K_2}$	b) $K_2 = \frac{1}{K_1}$	-	$c) K_2 = \frac{1}{K_1^2}$	$d) K_1 = \frac{1}{K_2^2}$
793.	A sample of Na ₂ CO ₃ ·H ₂ O the resulting solution?	weighing 0	.62 g is added t	to 100 mL of 0.1 N (NH ₄) ₂ S	50_4 solution. What will be
	J				

c) Basic

a) Acidic b) Neutral c) 794. For which one of the following reactions $K_p = K_c$?

Page | **57**

d) None of these

795. K_{sp} of AgCl a		10^{-10} . If Ag ⁺ of sodium is	c) $N_2 + 3H_2 \rightleftharpoons 2NH_3$ s 4×10^{-3} mol/litre the Cl ⁻¹	
a) 4.5×10^{-1}				
b) 7.2×10^{-1}				
c) 4.0×10^{-1}	=			
d) 4.5×10^{-1}	•			
		It (K_p) for the decompositions	sition of gaseous H ₂ O	
	$(g) \rightleftharpoons H_2(g) \dashv$	L	nungarina n ia airran har	
is related to	o aegree of al	ssociation (α) at a total	pressure p is given by	o3/2m1/2
a) $K_p = \frac{1}{(1+e^{-1})^n}$	$\frac{\alpha^{2}p^{-1}}{\alpha(2+\alpha)^{1/2}}$	b) $K_p = \frac{\alpha^2 p^{3/2}}{(1-\alpha)(2+\alpha)^{1/2}}$	c) $K_p = \frac{\alpha^{3/2} p^2}{(1-\alpha)(2+\alpha)^{1/2}}$	d) $K_p = \frac{\alpha^{3/2}p^{3/2}}{(1-\alpha)(2+\alpha)^{1/2}}$
797. A monopro	tic acid in 1.0	00 M solution is 0.01 % i	onised. The dissociation	constant of this acid is
a) 1×10^{-8}		b) 1×10^{-4}	c) 1×10^{-6}	d) 1×10^{-5}
798. pH of 1 M N			4	
$(K_b = 1.8 > $. C4	
a) 11.13		b) 12.5	c) 13.42	d) 11.55
799. K_a for formi	c acid and ace	tic acid are 2.1×10^{-4} and	1.1×10^{-5} respectively. T	he relative strength of acids
is:				· ·
a) 2:1		b) 2.3:1	c) 1:2.1	d) 4.36:1
800. Would gase	ous HCl be c	onsidered as an Arrheni	us acid?	
a) Yes			b) Nor	
c) Not know	vn		d) Gaseous HCl does not	t exist
801. According t	to Le-Chatelie	er's principle, the addition	on of temperature to the	following reaction
$CO_2(g) +$	$-2H_2O(g) \rightarrow$	$CH_4(g) + 2O_2(g)$		
will cause	it to the right	. This reaction is, therefo	ore	
a) Exotherr		b) Unimolecular	c) Endothermic	d) Spontaneous
		of $PCl_5(\alpha)$ obeying the eq		
$PCl_5(g) \rightleftharpoons P$			to the pressure at equilibr	_
a) $\alpha \propto P$		b) $\alpha \propto \frac{1}{\sqrt{P}}$	c) $\alpha \propto \frac{1}{P^2}$	d) $\alpha \propto \frac{1}{P^4}$
803 Solubility pr		V I	iis temperature concentrat	_
mol per litre		at 270 K is 1 × 10 . At th	ns temperature concentrat	1011 01 141 1011 111
a) 2×10^{-6}		b) $1 \times 10^{-4} M$	c) $1.6 \times 10^{-4} M$	d) $4 \times 10^{-6} M$
,		•	y change accompanying the	
a) Positive a	and large	b) Zero	c) Negative and large	d) Negative and small
805. $NH_4HS(s)$	$\rightleftharpoons NH_3(g) + l$	$H_2S(g)$		
In the abov	e reaction, if	the pressure at equilibri	um and at 300 K is 100 a	tm then what will be the
equilibrium	n constant K_p	?		
a) 2500 atn	n^2	b) 50 atm ²	c) 100 atm ²	d) 200 atm ²
806. The solubil	ity product o	f a sparingly salt AX_2 is 3	3.2×10^{-11} . Its solubility	(in mol/L) is
a) $5.6 \times 10^{\circ}$			c) 2×10^{-4}	d) 4×10^{-4}
807. If the solubi	lity product of	f AgBrO ₃ and Ag ₂ SO ₄ are 2	2×10^{-5} and 5.5×10^{-5} re	espectively, the relationship
		these can be correctly rep		
a) sAgBrO ₃	$> sAg_2SO_4$	b) $sAgBrO_3 < sAg_2SO_4$	c) $sAgBrO_3 = sAg_2SO_4$	d) $sAgBrO_3 \equiv sAg_2SO_4$
808. The conjuga	te acid of HPO	²⁻ is:		
a) $H_2PO_4^-$		b) PO ₄ ³⁻	c) H ₃ PO ₄	d) H_3PO_3
809. The colour o	of an electrolyt	e solution depends on:		

	a) The nature of the anion	า		
	b) The nature of the catio	n		
	c) The nature of both the	ions		
	d) The nature of the solve	ent		
810	The resultant pH of a solu	ition on mixing 200 mL of a	n aqueous solution of HCl ((pH = 2.0) is mixed with
	300 mL of an aqueous sol	ution of NaOH (pH = 12.0)	is:	
	a) 11.0310	b) 11.3010	c) 10.000	d) None of these
811	If ΔG^0 for the reaction given	en below is 1.7 kJ; the equi	librium constant of the rea	ction, $2HI(g) \rightleftharpoons H_2(g) +$
	$I_2(g)$ at 25°C is:			
	a) 24.0	b) 3.9	c) 2.0	d) 0.5
812	In a reaction, $A + B \rightleftharpoons C$	+ D , the concentrations of A	A, B, C and D (in mol/L) are	e 0.5, 0.8, 0.4 and 1.0
	respectively. The equilibr	ium constant is		
	a) 0.1	b) 1.0	c) 0.5	d) 5.0
813	The solvent which is neith	ner proton donor nor proto	n acceptor is called:	
	a) Amphoteric	b) Neutral	c) Aprotic	d) Protonic
814	The equilibrium constant	of a reaction is 20.0. At equ	iilibrium, the rate constant	of forward reaction is 10.0.
	The rate constant for back	kward reaction is :	, (4	Y
	a) 0.5	b) 2.0	c) 10.0	d) 200.0
815	For the reversible react	tion,		
	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH$	$f_3(g)$ at 500°C, the value of	of K_p is 1.44×10^{-5} . Whe	n partial pressure is
	measured in atmospher	res. The corresponding v	alue of K_c with concentra	ation in mol L^{-1} is
	a) $1.44 \times 10^{-5} / (0.082)$		b) $1.44 \times 10^{-5} / (0.082)$	
	c) $1.44 \times 10^{-5} / (8.314)$	•	d) $1.44 \times 10^{-5}/(0.082)$	
816	- , ,			is mixed with equal volume
010	of an aqueous solution of		olution of strong acid pir 5	is inixed with equal volume
	a) 3.3	b) 3.5	c) 4.5	d) 4.0
817	·		c) 1.5	u) 1.0
017	Given, HF + $H_2O \xrightarrow{K_a} H_3O^+$			
	$F^- + H_2O \xrightarrow{K_b} HF +$	OH-		
	Which relation is correct?			
	a) $K_b = K_w$	b) $K = \frac{1}{k}$	c) $K_a \times K_b = K_w$	$d)\frac{K_a}{K_b} = K_w$
	$A_{b} = K_{W}$	$K_b - K_w$	$C_j R_a \times R_b - R_W$	$K_b = K_W$
818		The hydrogen ion concentr		
		b) 10 ⁻⁴	c) 10^4	d) 10^{-2}
819	Which one of the following	=		
	a) The conjugate base of l	= = =		
	b) $pH + pOH = 14$ for all	= -		
	c) The pH of 1×10^{-8} M l			
	96,500 C of electricity	when passed through a CuS	50_4 solution deposits 1 g eq	juivalent of copper at the
	cathode			
820		on for the solubility product		
		b) [Ag ⁺][CrO ₄ ²⁻]	,	
821			forward reaction is $2.38 \times$	10-4 and for the backward
	reaction is 8.15×10^{-5} . Th	*		
	a) 0.342	b) 2.92	c) 0.292	d) 3.42
822	-	3.82. Its H ⁺ ion concentration		_
	= -	b) 1.96×10^{-3} mol/litre	c) 1.5×10^{-4} mol/litre	d) $1.96 \times 10^{-1} \text{ mol/litre}$
823	The decreasing order of s			
	OH^- , NH_2^- , $H-C \equiv C^-$ an	J		
	a) $CH_3 - CH_2^- > NH_2^- > H$	$H-C \equiv C^- > OH^-$		

824. The metallic sulphide r	oot precipitated if H ₂ S gas th chloride, mercuric chlorid		queous solution containing
a) CuS	b) Bi ₂ SO ₃	c) HgS	d) Na ₂ S
825. pH of 1×10^{-8} M nitric a	, = 5	c) 11go	uj Na ₂ 5
a) 6	b) 6.96	c) 7.96	d) 8
826. Indicate the correct answ	•	•	u) o
$NH_4Cl + H_2O \rightleftharpoons NH_4OH$	-	ine reaction,	
	ed by the addition of KOH		
	ed by the addition of NH_4OI	Н	
•	ed by the addition of hydrog		A Y
d) None of the above		,	
827. The salt of strong acid an	d weak base (FeCl ₂) is		
a) Acidic	b) Basic	c) Neutral	d) None of these
828. For the following react	ion in gaseous phase		
1		10	
$CO + \frac{1}{2}O_2 \longrightarrow CO_2$			
K_c/K_p is			
a) $(RT)^{1/2}$			
b) $(RT)^{-1/2}$			
c) (<i>RT</i>)			
d) $(RT)^{-1}$			
	V the ferrigand reaction is	forway wad by	
829. For a reaction if $K_p > R$			Dy
a) Low pressure	b) High pressure	c) High temperature	d) Low temperature
830. What will be the pH va			
a) 12	b) 13	c) 1	d) 12.96
831. pH of a saturated solutio			
a) 4.0×10^{-6}	b) 5.0×10^{-6}	c) 3.3×10^{-7}	d) 5.0×10^{-7}
832. The conjugate base of l	H ₂ SO ₄ is		
a) SO ₄ ²	b) HSO ₄	c) HSO ₄ ⁺	d) H_3SO_4
833. For the reaction, $PCl_3(g)$	$+ \operatorname{Cl}_2(g) \rightleftharpoons \operatorname{PCl}_5(g)$, the val	ue of K_c at 250°C is 26. The	e value of K_p at this
temperature will be			
a) 0.41	b) 0.51	c) 0.61	d) 0.71
834. The pH of a 10^{-10} M NaC	H solution is nearest to		
a) 10	b) 7	c) 4	d) -10
835. Which can act as buffer?			
a) $NH_4CI + NH_4OH$			
b) CH ₃ COOH + CH ₃ COON			
c) 40 mL of 0.1 <i>M</i> NaCN	+ 20 mL of 0.1 <i>M</i> HCl		
d) All of the above			
836. The pH indicators are	1 . 1		1.1
a) Salts of strong acids an	-	b) Salts of weak acid and	
c) Either weak acids or v	veak bases	d) Either strong acid or st	trong bases
837. Phenolphthalein is a:	h) Waalt baga	a) Ctrong agid	d) Ctrong haso
a) Weak acid	b) Weak base	c) Strong acid	d) Strong base
838. The solubility product		a) [11~2][1]2	a) [11~2][1 12
a) [Hg ₂][I]	b) [Hg ²][I]	c) [Hg ₂ ²][I] ²	d) [Hg ²][I] ²
			P a g e 60

b) H— C \equiv C⁻ > CH₃— CH₂⁻ > NH₂⁻ > OH⁻ c) $OH^- > NH_2^- > H - C \equiv C^- > CH_3 - CH_2^$ d) $NH_2^- > H - C \equiv C^- > OH^- > CH_3 - CH_2^-$

839. The rate at which a su	bstance reacts depends o	on its	
a) Atomic weight	b) Atomic number	c) Molecular weight	d) Active mass
840. The compound HCl beha	eves as in the reaction,		
$HCl + HF \longrightarrow H_2^+Cl + F^-$			
a) Strong acid	b) Strong base	c) Weak acid	d) Weak base
841. At temperature T , a con-			
with a degree of dissoci	ation x , which is small con	npared with unity. The exp	ression for K_p , in terms of x
and the total pressure P			
a) $\frac{Px^3}{2}$	b) $\frac{Px^2}{3}$	c) $\frac{Px^3}{3}$	d) $\frac{Px^2}{2}$
L	J	3	2
842. Which of the following			
a) BF ₃	b) AlCl ₃	c) SO ₂	d) H ₂ O
843. The pH of a 0.1 molar so			
a) 1×10^{-3}	b) 1×10^{-5}	c) 1×10^{-7}	d) 3×10^{-1}
844. For the precipitation of		solution is made acidic so t	that:
a) The sulphide ion cond	<u>-</u>		
 b) The sulphide ion conc c) The H⁺ ion concentra 			
d) The cations concentra	=		
845. Let the solubility of an a		$_{2}$ he X then its K_{m} is	
a) $4x^3$	b) $108x^5$	c) $27x^4$	d) 9 <i>x</i>
	•		0_2 and SO_3 are 0.662, 0.101
			gen so that the equilibrium
concentration of SO ₂ and		, , , , , , , , , , , , , , , , , , ,	8
a) 0.4 atm	b) 1.0 atm	c) 0.8 atm	d) 0.25 atm
847. In the following reacti	on,		
$AgCl + KI \rightleftharpoons KCl + AgCl$			
as KI is added, the equ	ilibrium is shifted towar	ds right giving more AgI	precipitate. because
a) Both AgCl and AgI a			•
b) The $K_{\rm sp}$ of AgI is low			
c) The $K_{\rm sp}$ of AgI is hig	•		
•	ave same solubility prod	uct	
848. Which of the following		uct	
a) NaOH	b) NH ₃	c) BCl ₃	d) All of these
849. The ionisation constant	, ,	, ,	
			tant for proton transfer from
water to NH_3 is:	10 11 ₂ 0 at 23 C 18 3.4 × 10	Lillor 5 . The rate cons	tant for proton transfer from
	b) $6.07 \times 10^{-10} \text{ s}^{-1}$	c) $6.07 \times 10^{-5} \text{ s}^{-1}$	d) $6.07 \times 10^{10} \text{s}^{-1}$
850. K_{sp} for AgCl in water at	•	,	•
a) 1.8×10^{-16}	b) 1.8×10^{-10}		d) None of these
851. The reaction which prod	,	,	a) None of these
a) $Fe_2O_3 + 6HCl = 2FeO_3$			
b) $SnCl_4 + Hg_2Cl_2 = SnCl_4$			
c) $NH_3 + H_2O + NaCl =$			
d) $2CuI + I_2 + 4K^+ = 2$	$Cu^{2+} + 3KI$		
852. The chemical equilibri		on is not influenced by	
a) Pressure		b) Catalyst	
c) Concentration of th	e reactants	d) Temperature	

853	3. A 0.01 M ammonia solu	ition is 5 % ionised, its pl	H will be	
	a) 11.80	b) 10.69	c) 7.22	d) 12.24
854	l. For the decomposition re	action		
	$NH_2COONH_4(s) \rightleftharpoons 2NH_3$			
	•		es at equilibrium when 1 m	ole of NH ₂ COONH ₄ (g) was
	taken to start with would			
	a) 0.0766 atm	b) 0.0582 atm	c) 0.0388 atm	d) 0.0194 atm
855			er and allowed to come in	ito equilibrium according
	to the following reactio			
	$3A(g) + 4B(g) \rightleftharpoons$	(0)		
	-	ached, there is 1 mole of	<i>C</i> .	
	The equilibrium extent		4	
	a) $\frac{1}{4}$	b) $\frac{1}{2}$	c) $\frac{1}{2}$	d) 1
05/	4	3	2	
030	5. For the reaction, C_2H_4	$+\Pi_2 = C_2\Pi_6$		
	The correct relation is	ואס ע גע	ν ν [pπ]=2	d) $K_p = K_c [RT]^{-1}$
055		b) $K_p = K_c[RT]$	c) $K_p = K_c [RT]^{-2}$	$K_p = K_c[RI]^{-1}$
857	7. Which solution will have		,	
	b) 55 mL of $(M/10)$ HCl	+ 100 mL of (M/10) NaOH		
	c) 10 mL of $(M/10)$ HCl +	i i		
	d) 75 mL of $(M/5)$ HCl +	· •		
858	B. Which of the following		C, Y	
	a) Cl ⁻	b) H ₃ 0 ⁺	c) PF ₂	d) C ₂ H ₅ OH
859	9. A buffer solution can be p	, ,	3	7 2 3
	(i)sodium acetate and ace		v	
	(ii) sodium acetate and h	ydrochloric acid in water		
	(iii) ammonia and ammor	nium chloride in water		
	(iv) ammonia and sodium			
0.64	a) (i), (ii)	b) (ii), (iii)	c) (iii), (iv)	d) (i), (iii)
860	· · · · · · · · · · · · · · · · · · ·			0.120 mole of NO_2 , 0.080
	at this temperature is:	the of O_2 in a 4 litre flask at	constant temperature. The	value of K_c for the reaction
	a) 14	b) 24	c) 7	d) 28
861	For the reaction,	0) 2 1	c) i	u) 20
001		g) the value of K_{\star} at 800	0°C is 0.1. When the equil	ihrium concentration of
			of K_p at the same temper	
	a) 0.5	b) 0.1	c) 0.01	d) 0.025
862	2. The equilibrium,	5) 0.1	c) 0.01	u) 0.023
00.		(σ) attained by mixing (equal moles of P ₄ and Cl ₂	in a evacuated vessel
	Then, at equilibrium,	3(6) accumed by mixing (equal moles of 14 and oiz	in a cyacaacca yessen
-		h) [Cl _a] > [P ₄]	c) $[P_4] > [Cl_2]$	d) [PC] _c] > [P.]
863			$\stackrel{\circ}{=} C(g) + Q \text{ kJ would be high}$	_
000	a) High temperature and		b) High temperature and	
	c) Low temperature and	= =	d) Low temperature and l	-
864	L. According to law of mass	= =		1
	a) Molar concentration of		b) Concentration of reacta	ants
	c) Concentration of produ	ucts	d) Molar concentration of	products

865. If NaOH is added to	o a solution of acetic acid:		
a) H ⁺ ions increase		c) $[C_2H_3O_2]^-$ increases d) $[HC_2H_3O_2]$	O ₂ l increases
=		bling the volume on the following sy	_
500°C?	t of having the pressure by doe	ioning the volume on the ronowing by	Stelli dt
	$(a) \rightarrow 2 \Pi(a)$		
	$(g) \rightleftharpoons 2HI(g)$	b) Chift is a set of a constitution	
a) Shift to reactar		b) Shift to product formation	
c) Liquefaction of		d) No effect	
867. The solubility pro	oduct $(K_{\rm sp})$ of the following co	mpounds are given at 25°C	
Compound	$K_{\rm sp}$		
AgCl	$1.1 \ 10^{10}$		
AgI	$1.0 \ 10^{16}$		1),
PbCrO ₄	4.0 10 ¹⁴		
Ag_2CO_3	$8.0 \ 10^{12}$		•
The most soluble	and least soluble compounds	are	
	O ₄ b) AgI and Ag ₂ CO ₃	c) AgCl and Ag ₂ CO ₃ d) Ag ₂ CO ₃	and AgI
_	M NaOH solution is nearest to	7 82 - 3	3
a) -4	b) -10	c) 4 d) 7	
869. The conjugate base	•	C) 4	
		c) PO ₄ ³⁻ d) HPO ₄ ²⁻	
a) H_3PO_4	b) P ₂ O ₅		ant of
		1.77×10^{-5} at 298 K. Hydrolysis consta	int of
ammonium chloric		c) 6.50×10^{-12} d) 5.65×1	0-13
•	b) 5.65×10^{-10}		
	acid has a pH of 5. Which of the	e following is the most reasonable expl	anation for this
acid?		Y	
a) The acid is too d			
b) It is a strong aci			
	ater to produce a high concentrat	ion of nyaronium ions	
d) It is a weak acid		. A 10 10=8	
	-	t AgIO $_3$ is 1.0×10^{-8} at a given tempera	iture. What is
		00 mL solution at this temperature is:	7
	b) 28.3×10^{-2} g		•
		olal concentration of a weak base and	l its chloride
$(K_b \text{ for weak bas})$	$se = 2 \times 10^{-5}$) is		
a) 5	b) 9	c) 4.7 d) 9.3	
874. In qualitative and	alysis, in III group NH ₄ Cl is add	ed before NH₄OH because	
		b) To increase the concentration of	f Cl ⁻ ions
		d) To increase the concentration of	
		ibility of this compound in water is	10115
			20
a) $\sqrt[2]{1.6 \ 10^{30}}$	b) $\sqrt[4]{1.6}$ 10 ³⁰	c) $\sqrt[4]{1.6 \ 10^{30}/27}$ d) 1.6 10 ³	30/27
876. ΔG^0 for the reaction a) 100	on $X + Y \rightleftharpoons Z$ is -4.606 kcal. The b) 10	e equilibrium constant for the reaction a c) 2 d) 0.01	nt 227°C is :
•	$2A(g) \rightleftharpoons 3C(g) + D(s)$, the va	,	
			f those
a) $K_p(RT)$	b) K_p/RT	r	i uiese
	barium chloride and sodium sulp	nate goes to completion because:	
=	e is almost insoluble		
b) The reaction is i			
ct The solubility of	f harium chloride decreases		

	d) None of the above			
879.	Which of the following car			
	a) BF ₃	b) AlCl ₃	c) SnCl ₄	d) CCl ₄
880.	Consider the reaction,			
	$NO_2 \rightleftharpoons \frac{1}{2}N_2 + O_2,$	K_1 ; $N_2O_4 \rightleftharpoons 2NO_2$, K_2		
			of N_2O_4 from N_2 and O_2 .	
	a) $\frac{1}{K_1^2} + \frac{1}{K_2}$	b) $\frac{1}{K_1 K_2}$	c) $\sqrt{\frac{1}{K_1K_2}}$	$d)\frac{K_2}{K_1}$
881.	A weak monobasic acid	is 1% ionised in 0.1 M so	olution at 25°C. The perc	entage of ionisation in its
	0.025 M solution is			
	a) 1	b) 2	c) 3	d) 4
882.	In $K_p = K_c[RT]^{\Delta n}$, Δn may	have:		
	a) +ve values			
	b) -ve values			
	c) Integer of fractional val	lues		
	d) Either of the above		4 (4	Y
883.	The conjugate acid of H ⁻ i			
	a) H ₃ 0 ⁺	b) H ₂	c) OH ⁻	d) H ₂ O
884.	The addition of HCl does r			D II 00
005	a) Acetic acid	b) Benzoic acid	c) H ₂ S	d) H ₂ SO ₄
885.	a) Basic	rates CO ₂ gas when added b b) Acidic	to a metal bicarbonate. The c) Amphoteric	d) Neutral
886	Which one of the follow	-	/ · V - y	uj Neutrai
000.	a) The conjugate base o	4		
			>	
	b) $pH + pOH = 14$ for a			
	c) The pH of 1×10^{-8} M		Cuco colution domosit	l a caujualant of common
	d) at the cathode	when passed through a	CuSO ₄ solution deposit 1	i g equivalent of copper
887.	Two moles of PCl ₅ is he	eated in a closed vessel o	f 2 L capacity. When the	equilibrium is attained
	40% of it has been foun	d to be dissociated. Wha	t is the K_c in mol/dm ³ ?	
	a) 0.532	b) 0.266	c) 0.133	d) 0.174
888.	A liquid is in equilibriur	n with its vapour at it's b	ooiling point. On the aver	age, the molecules in two
	phases have equal	7		
	a) Inter-molecular force	es	b) Potential energy	
	c) Kinetic energy		d) Total energy	
889.	At equilibrium, the amour	nt of HI in a 3 litre vessel w	as 12.8 g. Its equilibrium co	oncentration is :
	a) 4.267 <i>M</i>	b) 0.033 <i>M</i>	c) 0.1 <i>M</i>	d) 0.2 <i>M</i>
890.	Which one of the follow	ring salts give an acidic s	olution in water?	
7	a) CH ₃ COONa	b) NH ₄ Cl	c) NaCl	d) CH ₃ COONH ₄
891.		——————————————————————————————————————	epend on the units of concer	ntration?
	a) NO(g) $\rightleftharpoons \frac{1}{2}N_2(g) + \frac{1}{2}0$	₂ (g)		
	b) $Zn(s) + Cu^{2+}(aq) \rightleftharpoons Cu$	$u(s) + Zn^{2+}(aq)$		
	c) $C_2H_5OH(l) + CH_3COOH$	$H(l) \rightleftharpoons CH_3COOC_2H_5(l) + l$	$H_2O(l)$	
	d) $COCl_2(g) \rightleftharpoons CO(g) + Cl$			
892.		of As_2S_3 is 2.8×10^{-72} . W	What is the solubility of As	S_2S_3 ?
	a) $1.92 \times 10^{-15} \text{ mol/L}$		b) $1.72 \times 10^{-15} \text{ mol/L}$	
	c) $2.3 \times 10^{-16} \text{ mol/L}$		d) $1.65 \times 10^{-36} \text{ mol/L}$	

893. When CO_2 dissolves in water, the followhich the equilibrium constant is 3.8 a) 3.8×10^{-18} b) 3.8		
894. The blood buffers are most often invo	•	
		d) None of these
,	c) Salts	
895. If concentration of N_2 , H_2 and NH_3 ar	e 1, 2 and 5 respectively, then	concentrations at equilibrium win be:
$N_2 + 3H_2 \rightleftharpoons 2NH_3$ a) $(1 - x)$ $(2 - 3x)$ 2b) $(1 - x/$	2) (2 %) 240) (1 %)	(2 x) (24) (1 x) (2 2x) (
896. For the reaction, $N_2 + 3H_2 \rightleftharpoons 2NH_3$		$4 \times 10^{\circ}$. What will be the value of N_p at
low pressure where the gases are bel		, () Y
	\times 773) ² 1.44 \times 10	$^{-5}$ 1.44 × 10 ⁻⁵
a) 1.44×10^{-5} b)	$\begin{array}{c} \times \ 1.44 \times 10 \\ \times \ 10^{-5} \end{array} \times \begin{array}{c} 1.44 \times 10 \\ \times \ 10^{-5} \end{array}$	$^{-5}$ d) $^{1.44} \times 10^{-5}$ $\times (0.082 \times 773)^3$
007 The words of all in which mother and	X 10 °	
897. The range of pH in which methyl oran a) 3-4 b) 10-12	c) 8-10	d) 6-8
, ,	,	u) 0-0
898. For the reaction : $CO(g) + \frac{1}{2}O_2(g) \rightleftharpoons 0$		
a) RT b) $(RT)^{-1}$	c) $(RT)^{-1/2}$	d) $(RT)^{1/2}$
899. K_{sp} of CuS, Ag_2S and HgS are 10^{-3}	1 , 10^{-44} and 10^{-54} respective	rely. Select the correct order for their
solubility in water:		
a) $Ag_2S > HgS > CuS$ b) $HgS > C$	$CuS > Ag_2S$ c) $HgS > Ag_2$	$S > CuS$ d) $Ag_2S > CuS > HgS$
900. pH of a 0.0001 M HCl solution is		7
a) 4.0 b) 2.0	c) 6.0	d) 7.0
901. The pH of $0.1 M$ HCl is approximately	$\sqrt{1}$. The approximate pH of 0.0	5 <i>M</i> H ₂ SO ₄ is:
a) 0.05 b) 0.5	c) 1	d) 2
902. Phenolphthalein shows in acid med	lium.	
a) Red colour b) Yellow	colour c) Pink colou	r d) No colour
903. The $[OH^-]$ in 100 mL of 0.015 M HCl		
a) $5 \times 10^{-12} M$ b) $3 \times 10^{-12} M$	c) 6.7×10^{-1}	³ M d) $2.0 \times 10^{-9} M$
904. For an equilibrium reaction if the	value of $K_c >> 1$, then the re	action favoured more towards
a) Backward	b) Forward	
c) Equilibrium will be obtained	d) Reaction v	will stop
905. K_c for $A + B \Rightarrow 3C$ is 20 at 25°C. If a	2 litre vessel contains 1,2 an	d 4 mole of A , B and C respectively, the
reaction at 25°C shall :		
a) Proceed from left to right		
b) Proceed from right to left		
c) Be at equilibrium		
d) Not occur		
906. Solution prepared by dissolving equa	l number of mole of $HOCl(K_a)$	$=3.2\times10^{-8}$) and NaOCl is a buffer of
pH:		
a) 8.0 b) 3.2	c) 7.5	d) 4.8
907. An increase in the temperature of an	equilibrium system:	
a) Favours the exothermic reaction		
b) Favours the endothermic reaction		
c) Favours both the exothermic and e	endothermic reactions	
d) Favours neither the exothermic no	r endothermic reactions	
908. Which of these is a Lewis acid?		
a) AlCl ₃ b) NCl ₃	c) HCl	d) <i>ROR</i>
909. The pH of a solution is 4. The hydroge	en ion concentration of the sol	ution if pH is to be increased to 5 is:
a) Halved		

	b) Doubled			
	c) Decreased by 10 times			
		original value of concentra	ition	
910.	The oxo-acid of anhydride	- 0) HP0	DAN C.I
011	a) H ₃ PO ₄	b) H ₄ P ₂ O ₇	c) HPO ₃	d) All of these
911.		of the sparingly soluble s	trong electrolyte $AglO_3$ (molecular mass=283)
	the equilibrium which s			
	0 0 ,	$g^+(aq) + IO_3^-(aq)$		
	If the solubility product	constant K_{sp} of AgIO ₃ at	a given temprature is 1.0	$0 imes 10^{-8}$, what is the
	mass of $AgIO_3$ containe	d in 100 mL of its saturat		
	a) 28.3×10^{-2} g	b) 2.83×10^{-3} g	c) 1.0×10^{-7} g	d) 1.0×10^{-4} g
912.	H ₃ BO ₃ is:			A Y
	a) Monobasic and weak	b) Monobasic and weak	c) Monobasic and strong	d) Tribasic and weak
	Lewis acid	Bronsted acid	Lewis acid	Bronsted acid
913.	All Lewis acids are not ne	•		
	a) Proton donor	b) Bronsted acids	c) Arrhenius acids	d) All of these
914.	In the reaction,		. 10	
	$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$. Which of the following		
	a) $K_p = K_c$	b) $K_p > K_c$	c) $K_p < K_c$	d) $K_p \geq K_c$
915.	Which of the following is	most soluble in water?		
	a) Bi_2S_3 ($K_{sp} = 10^{-70}$)	b) $MnS(K_{sp} = 7 \times 10^{-16})$	c) $CuS(K_{sp} = 8 \times 10^{-37})$	d) $Ag_2S(K_{sp} = 6 \times 10^{-51})$
916.	The equilibrium consta	nt for the reaction		•
	$SO_3(g) \rightleftharpoons SO_2(g) +$	$-\frac{1}{2}O_{\alpha}(g)$		
		<u> </u>		
		value of K_c for the reacti	on	
	$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_2(g)$			12.4.0 4.0=2
045	a) 416	b) 2.40×10^{-3}	c) 9.8×10^{-2}	d) 4.9×10^{-2}
	pK_a or a weak acid is de		1	1
	a) $\log K_a$	b) $\frac{1}{\log K_a}$	c) $\log \frac{1}{K_a}$	d) $-\log \frac{1}{K_a}$
		A + B, if the equilibrium co		u
	concentration of B would			•
	a) Half	b) Twice	c) $\frac{1}{4}$ th	d) $\frac{1}{8}$ th
			T	U
919.	Two moles of PCl ₅ were	e heated in a closed vesse	el of 2 L. At equilibrium 4	0% of PCl ₅ is dissociated
	into PCl ₃ and Cl ₂ . The v	alue of equilibrium const	ant is	
	a) 0.53	b) 0.267	c) 2.63	d) 5.3
920.	When NaOH is dissolved i	n water, heat is evolved. If	the temperature is raised,	the solubility of NaOH:
	a) Increases			
	b) Decreasesc) Remains the samed) Cannot be predicted			
	c) Remains the same			
	d) Cannot be predicted			
921.			ime of the system does not	alter the number of moles?
	a) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$	· - ·		
	b) $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_3(g)$			
	c) $N_2(g) + 3H_2(g) \rightleftharpoons 2NI$	- ·-·		
922	d) $SOCl_2(g) \rightleftharpoons SO_2(g) + C$	=		
944.	Conjugate base of HSO ₄ is a) SO ₄ ²	b) H ₂ SO ₄	c) H ₃ SO ₄ ⁺	d) None of these
923	- •	ard reaction in a chemical ϵ		a, mone of these
, <u>.</u>			A	

	a) Increasing the concentration of one of the reactants				
	b) Removal of at least one of the products at regular intervalsc) Increasing the concentration of one or more of the products				
	d) None of the above	ation of one or more of the	e products		
924	•	10 ⁻⁵) on reaction with No	nOH gives NaY For 0.1 M a	queous solution of NaX, the	
724.	% hydrolysis is:	10) on reaction with Na	ion gives Naz. For 0.1 M at	queous solution of Nax, the	
	a) 0.001%	b) 0.01%	c) 0.15%	d) 1%	
925.			= 1.8×10^{-6} at 184° C and		
, = 0.			compared at 184°C, it is fou		
	a) $K_p > K_c$	b) $K_p < K_c$	c) $K_p = K_c$	d) $K_p \ge K_c$	
926	. Mg(OH)Cl is an example o	- •	CJ Rp - Rc	$u_j n_p < n_c$	
720.	a) Acidic salt	b) Basic salt	c) Neutral salt	d) Amphoteric salt	
927.	•	•	t 0.1 <i>M</i> concentration. Its di	, ,	
	a) 8×10^{-6}	b) 1.79×10^{-5}	c) 0.182×10^{-5}	d) 8×10^{-5}	
928.	In the reaction $HCl + H_2O$		0, 0.102 11 20		
	a) H_2O is the conjugate ba	_	b) Cl ⁻ is the conjugate bas	e of HCl acid	
	c) Cl ⁻ is the conjugate acid		d) H ₃ 0 ⁺ is the conjugate b		
929.	Slope and intercepts of the	-			
	Λμ° Λς°	$-\Lambda H^{\circ} \qquad \Lambda C^{\circ}$	$-\Lambda \mu^{\circ} \qquad \Lambda C^{\circ}$	$\Lambda H^{\circ} - \Lambda C^{\circ}$	
	a) $=\frac{\Delta H}{R}$, $\frac{\Delta S}{R}$	b) $\frac{-\Delta H}{2.202 p}$, $\frac{\Delta S}{2.202}$	c) $\frac{-\Delta H^{\circ}}{2.303R}$, $\frac{\Delta S^{\circ}}{2.303R}$	d) $\frac{\Delta H}{2.202}$, $\frac{-\Delta S}{2.202}$	
			Ca ²⁺]in a Na ₂ SO ₄ solutio		
	precipitated is	each of [11 6]) [2a]) [da jii a razoo4 soracio	n, opecies mac	
	$[K_{\rm sp} {\rm BaSO}_4 = 10^{-11}, K_{\rm sp}]$	$_{0}$ CaSO ₄ = 10^{-6} , $K_{\rm sn}$ AgS	$0_4 = 10^{-5}$		
	-	b) BaSO ₄		d) All of these	
931.	K for the synthesis of HI is				
	a) 0.2	b) 0.02	c) 0.4	d) 0.04	
932.	•		e reaction in a chemical equ		
	a) Increase in the concent		-		
	b) Increase in the concent	ration of one or more prod	lucts		
	c) Removal of at least one	of the product at regular t	ime intervals		
	d) None of the above				
933.	The anhydride of HNO_3 is				
	a) P ₂ O ₅	b) N ₂ O ₃	c) NO	d) N_2O_5	
934.	-		a solid and liquid in equi	ilibrium will cause the	
	a) Amount of solid to de	crease	b) Amount of liquid to d	lecrease	
	c) Temperature to rise		d) Temperature to fall		
935.	What is the conjugate ba	ase of OH ⁻ ?			
	a) 0^{2}	b) 0 ⁻	c) H ₂ O	d) 0_2	
936	The solubility of $Al(OH)_3$	s $'s'$ mol per litre, the solul	bility product of $Al(OH)_3$ is	:	
7	a) s^3	b) 27s ⁴	c) s^2	d) $4s^2$	
937.	The pH of 0.1 M solution	n of the following salts in	icreases in the order		
	a) NaCl $<$ NH ₄ Cl $<$ NaC	N < HCl	b) $HCl < NH_4Cl < NaCl$	l < NaCN	
	c) $NaCN < NH_4Cl < Na$	Cl < HCl	d) $HCl < NaCl < NaCN$	< NH ₄ Cl	
938.	For the Haber's process fo	r the formation of NH ₃ at 2	298 <i>K</i> is :		
	$N_2 + 3H_2 \rightleftharpoons 1$	$2NH_3$; $\Delta H = -460 \text{ kJ}$			
	Which of the following is o				
	The condition for equilia	brium is $G_{N_2} + 3G_{H_2} = 2G$	$G_{ m NH_3}$, where G is Gibbs energian	gy per mole of gaseous	
	species measured at that partial pressure				

	On addition N ₂ , the equilibrium will shi	ift to forwa	rd direction becau	se accord	ling to II law of	
	thermodynamics the entropy must decrease in the direction of spontaneous reaction.					
	c) The catalyst will increase the rate of for	rward reac	tion by 2 times and	l that of l	oackward reactio	n by 1.5
	times					
	d) Name of the above					
939	Consider the reversible reaction,					
	$HCN(aq) \rightleftharpoons H^+(aq) + CN^-(aq)$					
	At equilibrium, the addition of $CN^-(aq)$ w	ould:				
	a) Reduce HCN(aq) concentration					
	b) Decrease the $H^+(aq)$ ion concentration	l				Y
	c) Increase the equilibrium constant					
0.40	d) Decrease the equilibrium constant		4.640=39.1617.1	.1 1	1 111 (01	***
940	The solubility product of iron (III) hyd					III)
	hydroxide, which one of the following	expressio		calculate		
	a) $K_{sp} = X^4$ b) $K_{sp} = 9X^4$		c) $K_{sp} = 27X^3$	_	$d) K_{sp} = 27X^4$	
941	Baking soda is a/an:					
	a) Basic salt b) Double salt		c) Complex salt	()	d) Acidic salt	
942	An aqueous solution of sodium carbon	ate has a _l	pH greater than 7	becaus	e	
	a) It contains more carbonate ions that	100 mo	lecules	-		
	b) Contains more hydroxide ions than	carbonate	ions			
	c) Na ⁺ ions react with water					
	d) Carbonate ions react with H ₂ O					
943	The pH of a solution obtained by mixing $\boldsymbol{1}$	0 mL of 0.1		of 0.2 M	H ₂ SO ₄ is:	
	a) 1.4865 b) 0.4865	4	c) 0.4685		d) 3	
944	Just before a reversible reaction attains ed					
	a) The velocity of both forward reaction a				•	
	b) The velocity of the forward reaction is	_		ard react	ion in increasing	
	c) The velocity of both forward and backy	vard reacti	ons is decreasing			
0.45	d) All of the above		1:. C.1 CC	1 (N. CN	
945	How many mole of HCl are required to j			olution (containing Nach	+ HCI) 01
	pH 8.5 using 0.01 g formula weight of NaC a) 8.85×10^{-3} b) 8.75×10^{-2}				J) 0 0	
016	a) 8.85×10^{-3} b) 8.75×10^{-2} For the reaction $A + B \neq 3C$ at 25°C, a 3				d) 8.85×10^{-2}	ivolv If V
740	for the reaction is 10, the reaction will pro-		i contains 1, 2, 4 ii	iole of A,	D and C respect	ivery. If K
	a) Forward direction b) Backward di		c) In either direct	ion	d) In equilibrium	า
947	What is the pH of a $1MCH_3COONa$ solution		,		, ,	
717	a) 2.4 b) 3.6	ii. N _a or acc	c) 4.8	$, n_W -$	d) 9.4	•
948	Formaldehyde polymerizes to form glu	icose acco	•	tion	u) 7.1	
, 10	$6 \text{ HCHO} \rightleftharpoons C_6 H_{12} O_6$	acose acce	raing to the reac	cioii,		
	The theoretically computed equilibrium	m constan	at for this reaction	ic foun	d to be 6 × 10 ²²	2 If 1 M
	solution of glucose dissociates accordi					. 11 1 1/1
	_	ing to the a	above equilibrium	i, the co	iiceiiti atioii oi	
	formaldehyde in the solution will be	M	-) 1 C \ 10=6 M		J) 1 C × 10=8 N	л
040	a) 1.6×10^{-2} M b) 1.6×10^{-4}	IvI	c) $1.6 \times 10^{-6} \text{ M}$		u) 1.0 X 10 ~ N	I
749	The polyprotic acid is:					
	a) HCl b) HClO ₄					
	c) H ₃ PO ₄					
	CJ 1131 O4					

950. The solubility of $\mathrm{Sb_2S_3}$ in water is 1.0×10^{-5} mol/L at 298 K. What will be its solubility product?

d) HNO₃

	,	b) 1.0×10^{-25}	c) 144×10^{-25}	d) 126×10^{-24}
951.	The pH of 1/1000 <i>N</i> KOH			
	a) 10^{-11}	b) 3	c) 2	d) 11
952.	Which acts both as Lowry			
	a) OH ⁻	b) Na ₂ CO ₃	c) NH ₃	d) HSO ₄
953.		s action, the equilibrium of	constant, K for the reacti	on
		$I_30^+ + A^-$, is given as		
	$_{2}) K = \frac{[HA][H_{2}0]}{[HA][H_{2}0]}$	b) $K = \frac{[H_3O^+][A^-]}{[HA][H_2O]}$	$(1) K - \frac{[H_3 O^+][H_2 O]}{[H_3 O^+][H_3 O]}$	d) $K = \frac{[HA][A^-]}{[A^-]}$
	$^{a)} K = [H_3 O^+][A^-]$	$[HA][H_20]$	$[A^{-}][HA]$	$[H_20][H_30^+]$
954.	The Haber's process for the	ne manufacture of ammonia	a is usually carried out at al	bout 500°C. If a
	temperature of about 250	°C was used instead of 500	°C:	
	a) Ammonia would not be	e formed at all		A Y
		nonia in the equilibrium mix		
	•	no use at all at this tempera		
	•	of ammonia would be too slo		
955.				10^{0} C. If 1.0 mole of H ₂ and
		d in one litre flask, the final		
	a) 0.573 <i>M</i>	b) 0.385 <i>M</i>	c) 5.73 <i>M</i>	d) 0.295 <i>M</i>
956.				s 50. If 0.5 moles each of
	H ₂ and I ₂ is added to the	e system the value of equ	ilibrium constant will be	}
	a) 40	b) 60	c) 50	d) 30
957.	Among BMe ₃ , BF ₃ , BCl ₃	and B ₂ H ₆ which one will	be the best Lewis acid?	
	a) BCl ₃	b) BMe ₃	c) B ₂ H ₆	d) BF ₃
958.	Potassium ferrocyanide	is a		
	a) Mixed salt	b) Normal salt	c) Complex salt	d) Double salt
959.	The pH of pure water at 2	5°C and 35°C are 7 and 6 re	espectively. The heat of forr	nation of water from H ⁺
	and OH ⁻ is:			
	a) $84.55 \text{ kcal mol}^{-1}$			
	b) $-84.55 \text{ kcal mol}^{-1}$			
	c) $74.55 \text{ kcal mol}^{-1}$			
	d) $-74.55 \text{ kcal mol}^{-1}$			
960.	The pH of solution A, B, C,	D are 9.5, 2.5, 3.5 and 5.5 r	espectively. The most acidi	c solution is:
	,	b) <i>B</i>	c) C	d) <i>D</i>
961.		el theory of strong electroly	tes, increase in conductivi	ty on dilution is due to:
	a) Increase in number of i			
	b) Increase in the mobility			
	c) Decrease in the numbe			
0.60	d) Decrease in the mobilit	•		
962.	If K_1 and K_2 are the respe	ctive equilibrium constants	for the two reactions,	
7	$XeF_6(g) + H_2O(g) \rightleftharpoons XeO(g)$	$F_4(g) + 2HF(g)$		
	$XeO_4(g) + XeF_6(g) \rightleftharpoons XeO_4(g)$			
	The equilibrium constant $Y_0O_1(g) + 2HF(g) \rightarrow Y_0O_1(g)$			
	$XeO_4(g) + 2HF(g) \rightleftharpoons XeO$		a) V /V	4) V /V
0 62	a) K_1K_2	b) K_1/K_2^2	c) K_2/K_1 side is 2×10^{-4} moles per l	d) K_1/K_2
	is:	ed solution of calcium fluor	iue is 4 × 10 moies per i	ici e. its solubility product
	a) 32×10^{-10}	b) 32×10^{-8}	c) 32×10^{-14}	d) 32×10^{-12}
964	•	$Br_2 \rightleftharpoons 2Br \text{ at } 500 \text{ K and } 70$		•
, UT.	a) Endothermic	b) Exothermic	c) Fast	d) Slow
	a, machiernic	o, induicinic	c _j i ust	a) 010 W

065 Feedballaness						
965. For the homogenous						
-	$O_2 \rightleftharpoons 4NO + 6H_2O$					
the equilibrium cons		.)1	d) It is discountiable a			
a) conc. ⁺¹⁰	b) conc. ⁺¹	c) conc. ⁻¹	d) It is dimensionless			
	966. 1 mole of H_2 and 2 moles of I_2 are taken initially in a 2 L vessel. The number of moles of H_2 at equilibrium is 0.2. Then, the number of moles of I_2 and H_1 at equilibrium are					
-		-				
a) 1.2, 1.6	b) 1.8, 1.0	c) 0.4, 2.4	d) 0.8, 2.0			
967. If the ionic product o						
a) 1.96×10^{-14}	b) 3.92×10^{-14}	c) 2.95×10^{-15}				
		ed with 0.08 mole of HCI c	liluted to 1 L. What will be			
the H ⁺ concentration		2.4.640=11.14	D 0 . 40=5 M			
,	b) $8 \times 10^{-11} \text{ M}$	c) $1.6 \times 10^{-11} \text{ M}$	d) $8 \times 10^{-5} \text{ M}$			
969. The conjugate base of I		c) HBO ₃ ²⁻	A) II. BO+			
a) B(OH) ₄ 970. For the reaction, CO(g)	b) $H_2BO_3^-$, ,	d) $H_4BO_3^+$			
970. For the reaction, CO(g)	$+ ci_2(g) \leftarrow coci_2(g)$ the		1			
a) 1.0	b) <i>RT</i>	c) \sqrt{RT}	d) $\frac{1}{RT}$			
971. One mole of nitrogen	is mixed with 3 mole o	f hydrogen in a closed 3 li	tre vessel. 20% of nitrogen is			
converted into NH ₃ . Th	$\lim K_c$ for the $\frac{1}{2}$ N ₂ + $\frac{3}{2}$ H	$_2 \rightleftharpoons NH_3$ is:				
a) 0.36 litre mol ⁻¹	b) 0.46 litre mol ⁻¹	c) $0.5 \text{ litre mol}^{-1}$	d) 0.2 litre mol ⁻¹			
972. Which is a reversible re		ey old maje mor	aj 012 ma 0 mon			
a) $H_2 + I_2 \rightarrow 2HI$						
b) $H_2SO_4 + Ba(OH)_2 -$	\rightarrow BaSO ₄ \downarrow +2H ₂ O					
c) NaCl + AgNO ₃ \rightarrow Na	$1NO_3 + AgCl \downarrow$	Y				
d) $2KClO_3 \rightarrow 2KCl + 30$	_	Y				
973. $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$	(g)					
The equilibrium cons	stant of the above react	ion is 6.4 at 300 K. If 0.25	mole each of H ₂ and I ₂ are			
added to the system,	the equilibrium consta	nt will be				
a) 6.4	b) 0.8	c) 3.2	d) 1.6			
974. Would gaseous HCl be	considered as an Arrheni					
a) Yes		b) No				
c) Not known	11	d) Gaseous HCl does n	ot exsit			
975. Buffer solution is pre		1-) TA71 1 1 - 1 - 1	eli ef e el lece			
a) Strong acid + its sa	=	b) Weak acid + its sa				
c) Strong acid + its sa		d) Weak acid + its sa	alt of strong base			
976. Which of the following	ig acids will have lowes					
A) CIV CIV COOU		CH₃CHCOOH				
a) CH ₃ CH ₂ COOH		b)				
Ch chcoon		Br				
CH ₃ CHCOOH		D ECH CH COOH				
c)		d) FCH ₂ CH ₂ COOH				
F		CO I and a second of the secon	. 400/ . CDCl '- l'' l			
977. 2 moles of PCl ₅ were h			140% of PCI ₅ is dissociated			
a) 0.266	alue of equilibrium const b) 0.366	c) 2.66	d) 3.66			
978. p K_a of a weak acid is d	•	C) 2.00	uj 3.00			
	4	., 1	1			
a) $\log_{10} K_a$	b) $\frac{1}{\log_{10} K_a}$	c) $\log_{10} \frac{1}{K_a}$	$d) - \log_{10} \frac{1}{K_a}$			

979.	For a reaction equilibriu	$\text{um, } N_2O_4(g) \rightleftharpoons 2NO_2(g),$, the concentrations of N_2	$_{2}O_{4}$ and NO_{2} at		
	equilibrium are 4.8×10^{-2} and 1.2×10^{-2} mol/L respectively. The value of K_c for the reaction is					
	a) $3 \times 10^{-3} \text{ mol/L}$ b) $3.3 \times 10^{-3} \text{ mol/L}$ c) $3 \times 10^{-1} \text{ mol/L}$ d) $3.3 \times 10^{-1} \text{ mol/L}$					
980.	If α is the degree of ionisa	tion, $\mathcal C$ the concentration o	f a weak electrolyte and K_a	-		
	constant then the correct	relationship between α, C	and K_a is			
	V.	\overline{C}	V.	\overline{C}		
	a) $\alpha^2 = \sqrt{\frac{\kappa_a}{C}}$	b) $\alpha^2 = \sqrt{\frac{C}{K_a}}$	c) $\alpha = \sqrt{\frac{\kappa_a}{C}}$	d) $\alpha = \sqrt{\frac{C}{K_a}}$		
981.	Which of the following b	oehaves as Lewis acid an	d not as Bronsted acid?			
	a) HCl	b) H_2SO_4	c) HSO_3^-	d) SO ₃		
982.	If little heat is added to ice	$e \rightleftharpoons liquid equilibrium in a$	sealed container, then:			
	a) Pressure will rise		c) Temperature will fall			
983.	An aqueous solution in	which the H ⁺ ion concen	tration is greater than 10	0^{-7} M is said to be		
	a) Acidic	b) Alkaline	c) Neutral	d) None of these		
984.	The conjugate base of H ₂ S	50_4 in the following reaction	n is:			
	$H_2SO_4 + H_2O \rightleftharpoons H_3O^+ + H_3O^+$					
	a) H ₂ 0	b) HSO ₄		d) SO_4^{2-}		
985.	For the reaction, $H_2 + I_2$	$_2 \rightleftharpoons 2$ HI, the equilibrium	concentration of H_2 , I_2 a	nd HI are 8.0, 3.0 and		
	28.0 mol/L respectively	. The equilibrium consta	nt is			
	a) 28.34	b) 32.66	c) 34.78	d) 38.88		
986.	HClO is a weak acid. The c	oncentrations of [H ⁺] ions	in $0.1M$ solution of HClO ($K_a = 5 \times 10^{-8}$) will be		
	equal to:					
	a) $7.07 \times 10^{-5} M$	b) $5 \times 10^{-7} M$	c) $6 \times 10^{-7} M$	d) $7 \times 10^{-4} M$		
987.	At a certain temperature,	$2HI \rightleftharpoons H_2 + I_2 \text{ only } 50\% \text{ H}$	II is dissociated at equilibri	um. The equilibrium		
	constant is:		>			
	a) 1.0	b) 3.0	c) 0.5	d) 0.25		
988.	Aqueous solution of CH ₃ C			N av acces av acces		
000	a) CH ₃ COOH, H ⁺		Oc) CH_3COO^-, H_3O^+, H^+	d) CH_3COOH , CH_3COO^- , H^+		
989.		mmonia by Haber's proc	ess,			
	$N_2(g) + 3H_2 \rightleftharpoons 2NH_3(g)$					
		condition is unfavourable	e?			
	a) Increasing the tempe					
	b) Increasing the pressu	ire				
	c) Reducing the temperature	ature				
	d) Removing ammonia a	as it is formed				
990.	If $CuSO_4.5H_2O(s) \rightleftharpoons CuSO_4$	$O_4.3H_2O(s) + 2H_2O(v) K_p$	$= 1.086 \times 10^{-4} \text{ atm}^2 \text{ at } 25$	5°C. The efflorescent nature		
	of CuSO ₄ . 5H ₂ O can be not	ticed when vapour pressur	e of H_2O in atmosphere is :			
	a) > 7.92 mm	b) < 7.92 mm	c) ≥ 7.92 mm	d) None of these		
991.	Conjugate acid-base pair of	differs by a/an:				
7	a) Electron	b) Electron pair	c) Proton	d) Neutron		
992.		tration in a solution of wea	ak acid of dissociation cons	tant K_a and concentration c		
	is nearly equal to:					
	K_{a}	C	-) <i>V</i> -	4) \(\bar{v}\).		
	a) $\sqrt{\frac{K_a}{c}}$	b) $\frac{c}{K_a}$	c) <i>K_ac</i>	d) $\sqrt{K_a c}$		
993	For the liquefaction of gas	, the favourable conditions	s are:			
	a) Low T and high P	, 12., 0 21 4510 0011411410116	V.			
	b) Low T and low P					
	c) Low <i>T</i> and high <i>P</i> and a	catalyst				
	-					

- d) Low Tand catalyst 994. 0.5 M ammonium benzoate is hydrolysed to 0.25 percent, hence, its hydrolysis constant is b) 1.5×10^{-4} a) 2.5×10^{-5} c) 3.125×10^{-6} d) 6.25×10^{-6} 995. For the equilibrium, $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$, which of the following expression is correct? K_{v} a) $K_p = \frac{K_p}{[CaO][CO_2]/[CaCO_3]}$ b) $K_p = (p_{CaO} + p_{CO_2}) / P_{CaCO_3}$ c) $K_p = p_{CO_2}$ $d) = (p_{CaO})$ $+p_{\mathrm{CO}_2}/p_{\mathrm{CaCO}_3}$
- 996. When NaNO₃ is heated in a closed vessel, O₂ is liberated and NaNO₂ is left behind. At equilibrium,
 - (i)Addition of NaNO₃ favours forward reaction
 - (ii) Addition of NaNO₂ favours backward reaction
 - (iii) Increasing pressure favours reverse reaction
 - (iv) Increasing temperature favours forward reaction

Correct option is

- a) (i), (ii), (iii)
- b) (ii), (iii), (iv)
- c) (i), (iii), (iv)
- d) (i), (ii) (iii), (iv)
- 997. Given pH of a solution A is 3 and it is mixed with another solution B having pH 2. After mixing are resultant pH of the solution will be
 - a) 3.2

b) 1.9

c) 3.4

- 998. To neutralise completely 20 mL of 0.1 M aqueous solution of phosphorus acid H₃PO₃, the volume of 0.1 *M* KOH solution required is:
 - a) 60 mL
- c) 40 mL
- d) 10 mL

- 999. The relation between equilibrium constant K_p and K_c is
 - a) $K_p = K_c (RT)^{\Delta n_g}$
- b) $K_c = K_p (RT)^{\Delta n_g}$
- d) $K_p K_c = (RT)^{\Delta n_g}$
- 100 On mixing equal volumes of two buffer solutions of pH value 3 and 5, the pH of the resultant solution will be
 - a) 3.3

b) 4.0

d) 5.3

ACTIVE SITE TUTORIALS

 Date
 : 23-07-2019

 Time
 : 16:40:00

 CHEMISTRY

Marks: 4000

7.EQUILIBRIUM

					i	ANS	W	ER K	EΥ	:					
1)	d	2)	a	3)	a	4)	a	165)	a	166)	b	167)	С	168)	d
5)	c	6)	b	7)	a	8)	d	169)	d	170)	d	171)	a	172)	b
9)	d	10)	d	11)	b	12)	a	173)	b	174)	a	175)	b	176)	b
13)	c	14)	d	15)	c	16)	c	177)	d	178)	a	179)	c .	180)	c
17)	a	18)	c	19)	a	20)	d	181)	b	182)	c	183)	a	184)	d
21)	b	22)	c	23)	a	24)	a	185)	a	186)	a	187)	a	188)	a
25)	c	26)	c	27)	b	28)	a	189)	b	190)	b	191)	b	192)	a
29)	d	30)	d	31)	c	32)	b	193)	d	194)	d	195)	C	196)	a
33)	b	34)	a	35)	a	36)	d	197)	a	198)	b	199)	d	200)	d
37)	C	38)	b	39)	a	40)	b	,	b	202)	C	203)	a	204)	C
41)	a	42)	a	43)	a	44)	c	205)	b,	206)	b	207)	a	208)	a
45)	d	46)	b	47)	C	48)	d	,	b	210)	a	211)	a	212)	d
49)	b	50)	d	51)	d	52)	a	213)	d	214)	b	215)	d	216)	b
53)	a	54)	d	55)	a	56)	a		b	218)	C	219)	b	220)	a
57)	d	58)	C	59)	d	60)	a	221)	c	222)	b	223)	a	224)	b
61)	b	62)	C	63)	b	64)	C	225)	b	226)	C	227)	b	228)	b
65)	a	66)	b	67)	a	68)	d	229)	C	230)	d	231)	b	232)	d
69)	d	70)	a	71)	d	72)	c	233)	a	234)	d	235)	b	236)	c
73)	a	74)	d	75)	a	76)	d	,	a	238)	a	239)	a	240)	a
77)	d	78)	d	79)	a	80)	d	,	b	242)	d	243)	a	244)	b
81)	b	82)	b	83)	a	84)	a	245)	c	246)	a	247)	b	248)	a
85)	b	86)	C	87)	C	88)	a	,	d	250)	a	251)	d	252)	a
89)	a	90)	b	91)	a	92)	d	253)	d	254)	b	255)	d	256)	d
93)	b	94)	С	95)	b	96)	b	,	b	258)	a	259)	C	260)	d
97)	a	98)	a	99)	C	100)	C	261)	C	262)	b	263)	C	264)	b
101)	C	102)	d	103)	b	104)	a	,	b	266)	d	267)	d	268)	C
105)	a	106)	C	107)	b	108)	a	,	C	270)	d	271)	b	272)	d
109)	d	110)	a	111)	b	112)	a	,	C	274)	C	275)	C	276)	C
113)	C	114)	b	115)	C	116)		277)	a	278)	b	279)	b	280)	a
117)	a	118)	b	119)	b	120)		281)	a	282)	C	283)	C	284)	C
121)	a	122)	b	123)	b	124)		285)	C	286)	d	287)	d	288)	b
125)	C	126)	d	127)	b	128)		289)	d	290)	d	291)	b	292)	C
129)		130)	C	131)	d	132)		293)	C	294)	C	295)	a	296)	C
133)	d	134)	a	135)	d	136)		297)	a	298)	d	299)	С	300)	d
137)	b	138)	C	139)	d	140)		301)	a	302)	a	303)	a	304)	d
141)	b	142)	d	143)	a	144)		305)	c	306)	b	307)	d	308)	a
145)	a	146)	a	147)	b	148)		309)	d	310)	C	311)	С	312)	d
149)	C	150)	C	151)	a	152)		313)	b	314)	a	315)	С	316)	c
153)	a	154)	d	155)	С	156)		317)	a	318)	d	319)	С	320)	d
157)	C	158)	b	159)	c	160)		321)	b	322)	d	323)	C	324)	d
161)	b	162)	С	163)	d	164)	d	325)	a	326)	a	327)	d	328)	d

329)	a	330)	c	331)	a	332)	d	533)	d	534)	b	535) d	d	536)	d
333)	b	334)	b	335)	a	336)	d	537)	b	538)	a	539) (d	540)	a
337)	a	338)	a	339)	c	340)	d	541)	d	542)	d	543) (d	544)	a
341)	d	342)	b	343)	c	344)	d	545)	a	546)	b	547) a	a	548)	b
345)	C	346)	a	347)	a	348)	d	549)	b	550)	a	551) a	a	552)	a
349)	C	350)	c	351)	d	352)	b	553)	a	554)	b	555) (d	556)	d
353)	a	354)	a	355)	d	356)	b	557)	a	558)	c	559) (С	560)	a
357)	d	358)	d	359)	a	360)	d	561)	c	562)	d	563) a	a	564)	b
361)	a	362)	c	363)	C	364)	a	565)	C	566)	a	567) a	a	568)	b
365)	b	366)	d	367)	c	368)	a	569)	d	570)	a	571) a	a	572)	c
369)	d	370)	d	371)	a	372)	a	573)	C	574)	b	575)	C	576)	d
373)	b	374)	c	375)	a	376)	b	577)	b	578)	c	579) (С	580)	c
377)	d	378)	a	379)	b	380)	a	581)	a	582)	d	583)	С	584)	a
381)	a	382)	d	383)	b	384)	b	585)	a	586)	a	587)	C	588)	d
385)	a	386)	d	387)	a	388)	С	589)	d	590)	b	591) l	b	592)	d
389)	a	390)	b	391)	a	392)	a	593)	b	594)	b	595) l	b	596)	a
393)	C	394)	c	395)	c	396)	a	597)	C	598)	a	599)	d	600)	c
397)	C	398)	b	399)	c	400)	a	601)	d	602)	b	603)	d	604)	a
401)	a	402)	a	403)	b	404)	a	605)	d	606)	C	607)	d	608)	c
405)	a	406)	b	407)	c	408)	С	609)	a	610)	b	611) a	a	612)	d
409)	b	410)	c	411)	b	412)	b	613)	a	614)	b	615)	С	616)	b
413)	d	414)	c	415)	a	416)	С	617)	a	618)	d	619)	С	620)	a
417)	c	418)	d	419)	d	420)	С	621)	a	622)	a	623) a	a	624)	c
421)	C	422)	b	423)	b	424)	b	625)	a	626)	d	62 7) (d	628)	d
425)	b	426)	a	427)	a	428)	С	629)	d	630)	c	631) l	b	632)	a
429)	d	430)	b	431)	a	432)	d	633)	a	634)	b	635)	С	636)	b
433)	b	434)	c	435)	d	436)	a	637)	c	638)	d	639) (С	640)	a
437)	a	438)	c	439)	d	440)	c	641)	c	642)	c	643) l	b	644)	a
441)	b	442)	c	443)	b	444)	a	645)	a	646)	c	647)	С	648)	a
445)	b	446)	c	447)	c	448)	b	649)	b	650)	a	651) a	a	652)	c
449)	a	450)	b	451)	a	452)	c	653)	d	654)	c	655) l	b	656)	a
453)	b	454)	b	455)	d	456)	a	657)	a	658)	b	6 59) (С	660)	b
457)	c	458)	d	459)	b	460)	c	661)	b	662)	c	663)	С	664)	c
461)	a	462)	a	463)	b	464)	С	665)	a	666)	a	667) a	a	668)	c
465)	a	466)	c	467)	b	468)	c	669)	b	670)	a	671) a	a	672)	c
469)	b	470)	d	471)	d	472)	b	673)	b	674)	b	675) a	a	676)	a
473)	c	474)	b	475)	b	476)	С	677)	a	678)	c	679)	d	680)	b
477)	b	478)	d	479)	c	480)	С	681)	b	682)	b	683) l	b	684)	c
481)	a	482)	d	483)	a	484)	c	685)	b	686)	c	687) a	a	688)	a
485)	c	486)	b	487)	a	488)	b	689)	c	690)	b	691) <i>(</i>	С	692)	d
489)	b	490)	d	491)	d	492)	d	693)	d	694)	a	695) l	b	696)	d
493)	b	494)	c	495)	b	496)	a	697)	a	698)	c	699) (С	700)	b
497)	b	498)	c	499)	a	500)	d	701)	a	702)	a	703)	d	704)	b
501)	d	502)	b	503)	c	504)	С	705)	d	706)	a	707) a	a	708)	c
505)	a	506)	d	507)	b	508)	a	709)	c	710)	d	711) l	b	712)	d
509)	a	510)	b	511)	c	512)	d	713)	C	714)	b	715) a	a	716)	a
513)	d	514)	d	515)	b	516)	a	717)	c	718)	c	719) l	b	720)	a
517)	a	518)	d	519)	d	520)	С	721)	b	722)	b	723) (d	724)	d
521)	b	522)	b	523)	b	524)	d	725)	c	726)	a	727) a	a	728)	b
525)	d	526)	b	527)	a	528)	b	729)	b	730)	c	731)	С	732)	a
529)	a	530)	d	531)	d	532)	b	733)	a	734)	c	735)	С	736)	b
-				-		-				<u> </u>		-		Dago I	74

737)	b	738)	b	739)	d	740)	a	873)	d	874)	c	875)	c	876)	a
741)	d	742)	b	743)	a	744)	a	877)	b	878)	a	879)	d	880)	a
745)	d	746)	c	747)	b	748)	b	881)	b	882)	d	883)	b	884)	d
749)	a	750)	d	751)	d	752)	c	885)	b	886)	c	887)	b	888)	c
753)	c	754)	c	755)	c	756)	d	889)	b	890)	b	891)	d	892)	a
757)	a	758)	a	759)	d	760)	b	893)	C	894)	a	895)	d	896)	a
761)	a	762)	a	763)	a	764)	b	897)	a	898)	c	899)	d	900)	a
765)	b	766)	b	767)	a	768)	d	901)	C	902)	d	903)	C	904)	b
769)	c	770)	b	771)	d	772)	c	905)	a	906)	b	907)	b	908)	a
773)	a	774)	b	775)	d	776)	b	909)	C	910)	d	911)	b	912)	a
777)	d	778)	b	779)	d	780)	b	913)	d	914)	a	915)	b	916)	a
781)	a	782)	a	783)	b	784)	a	917)	c	918)	a	919)	b	920)	a
785)	b	786)	a	787)	b	788)	b	921)	a	922)	a	923)	С	924)	b
789)	a	790)	a	791)	b	792)	c	925)	a	926)	b	927)	b	928)	b
793)	a	794)	b	795)	a	796)	d	929)	C	930)	b	931)	b	932)	b
797)	a	798)	a	799)	d	800)	b	933)	d	934)	a	935)	a	936)	b
801)	c	802)	b	803)	b	804)	b	937)	b	938)	a	939)	b	940)	d
805)	a	806)	C	807)	b	808)	a	941)	d	942)	b	943)	C	944)	b
809)	c	810)	b	811)	d	812)	b	945)	a	946)	b	947)	d	948)	b
813)	c	814)	a	815)	d	816)	a	949)	С	950)	a	951)	d	952)	d
817)	C	818)	b	819)	C	820)	a	953)	b	954)	d	955)	a	956)	C
821)	b	822)	C	823)	a	824)	d	957)	a	958)	c	959)	b	960)	b
825)	b	826)	C	827)	a	828)	a	961)	b	962)	c	963)	d	964)	a
829)	a	830)	b	831)	d	832)	b	965)	b	966)	a	967)	C	968)	b
833)	C	834)	a	835)	d	836) 🗸	C	969)	a	970)	d	971)	a	972)	a
837)	a	838)	C	839)	d	840)	d	973)	a	974)	b	975)	d	976)	a
841)	a	842)	d	843)	b	844)	b	977)	a	978)	C	979)	a	980)	c
845)	a	846)	a	847)	b	848)	b	981)	d	982)	d	983)	a	984)	b
849)	a	850)	b	851)	a	852)	b	985)	b	986)	a	987)	d	988)	b
853)	b	854)	b	855)	c	856)	d	989)	a	990)	b	991)	C	992)	d
857)	d	858)	b	859)				993)	a	-	C	-	C	996)	
861)	b	862)	C	863)		864)		997)	b	998)	c	999)	a	1000) a
865)	C	866)	d	867)		868)	d								
869)	d	870)	b	871)	d	872)	b								
C7															

ACTIVE SITE TUTORIALS

 Date
 : 23-07-2019

 Time
 : 16:40:00

 Marks
 : 4000

7.EQUILIBRIUM

: HINTS AND SOLUTIONS :

1 **(d)** $HC_2H_3O_2 + NaOH \rightarrow C_2H_3O_2Na + H_2O$ $1 \quad 0.5 \quad 0 \quad 0$ $0.5 \quad 0 \quad 0.5 \quad 0.5$

The solution contains weak acid + its conjugate base

0.5 Mol 0.5 Mol

and thus, acts as buffer.

2 **(a**)

Aqueous solution of 1M NaCl and 1M HCl is not a buffer but pH<7.

3 **(a**)

Reaction is exothermic and volume is decreasing from left to right, so for higher production of SO_3 , there should be low temperature and high pressure

4 (a)

The acid is called strong acid when it ionise up to great extent

i.e., if its K_a value is large.

We know that $pK_a = \log \frac{1}{\kappa}$

$$[OH^{-}] = \sqrt{K_b \times C}$$

$$= \sqrt{1 \times 10^{-5} \times 10^{-1}}$$

$$= \sqrt{10^{-6}} = 10^{-3}$$

 $K_w = [\mathrm{H}^+][\mathrm{OH}^-]$

$$10^{-14} = [H^+][10^{-3}]$$

 $[H^+] = 10^{-11}$

Hence, $pH = -\log H^+$

 $= -\log(1 \times 10^{-11}) = 11$

6 **(b)**

 $H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$

We know that,

$$K_p = K_c. (RT)^{\Delta n_g}$$

 $\Delta n_g = \text{no. of moles of gaseous products} - \text{no.}$ of moles of gaseous reactants

$$=2-2=0$$

$$K_n = K_c \cdot (RT)^0$$

$$K_p = K_c$$

7 **(a)**

 $NaH_2PO_4 + H_3PO_4$; $NaH_2PO_4 + Na_2HPO_4$; $Na_2HPO_4 + Na_3PO_4$.

9 **(d**)

pH of a solution $\propto [OH^-] \frac{M}{4} Ca(OH)_2$ solution will give highest concentration of $[OH^-]$. Hence, it has highest pH.

10 **(d)**

	(u)		
	Salt	Solubility	Solubility
		product	
	MX	$S_1^2 = 4.0 \times$	$S_1 = 2 \times 10^{-4}$
1		10^{-8}	10^{-4}
	MX_2	$4S_2^3 = 3.2 \times$	$S_2 = 2 \times$
)	10^{-14}	10^{-5}
	M_3X	$27S_3^4 = 2.7 \times 10^{-15}$	$S_3 = 1 \times 10^{-4}$
		10^{-15}	10^{-4}

Thus, solubility order= $MX > M_3X > MX_2$

11 **(b)**

Basic strength \propto dissociation constant of base (K_h) .

So, smaller the value of K_b weaker will be the base.

The weakest base will have smallest value of K_h .

 $\cdot\cdot$ C₆H₅NH₂ (aniline) has smallest value of K_b

∴ It is weakest base.

12 **(a)**

$$\alpha = \frac{\text{number of mole dissociated}}{\text{total mole present}}$$

$$= \frac{10^{-7}}{1000/18} = 1.8 \times 10^{-9} = 1.8 \times 10^{-7}\%$$

Total mole of H₂O in 1 litre = $\frac{1000}{18}$

13 **(c)**

A precipitate is formed when the ionic product exceeds the solubility product.

i.e.,
$$[A^+][B^-] > K_{\rm sp}$$

14 (d)

 $2 \text{HgNO}_3 + 2 \text{HCl} \rightarrow \text{Hg}_2 \text{Cl}_2 + 2 \text{HNO}_3$; $\text{Hg}_2 \text{Cl}_2$ in insoluble in water.

15 **(c)**

Lewis bases are electrons rich compounds.

- (i) NH_3 and H_2 are Lewis bases because they have lone pair of electron.
- (ii) $AlCl_3$ is Lewis acid because it can accept electrons.

16 **(c)**

Ba(NO₃)₂givesNO₃⁻, Ba²⁺ ions, hence Ba²⁺ ion increases. To keep $K_{\rm sp}$ constant, [F⁻] decreases. Thus, it is represented as $\frac{1}{2}$ [F⁻]

18 **(c)**

As equation 'III' is obtained on adding equation 'I' and equation 'II', so $K_3 = K_1 \cdot K_2 \cdot K_3 \cdot K_3 \cdot K_4 \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_4 \cdot K_5 \cdot K_5 \cdot K_5 \cdot K_6 \cdot K$

19 **(a)**

$$\begin{array}{ll} \mathrm{N}_2\mathrm{O}_4 & \rightleftharpoons & 2\mathrm{NO}_2 \\ 0.1 & 0 & \mathrm{initialy} \\ (0.1-\alpha) & 2\alpha & \mathrm{at\ equilibrium} \\ 0.1-\alpha & 2\alpha \\ \hline 0.1+\alpha & 2\alpha \\ \hline 0.1+\alpha & 0.1+\alpha \end{array}$$

$$\frac{2\alpha}{0.1+\alpha} p & \mathrm{at} p_i \\ K_p = \frac{[\mathrm{NO}_2]^2}{[\mathrm{N}_2\mathrm{O}_4]}$$

$$0.14 = \left(\frac{2\alpha \times p}{0.1 + \alpha}\right)^2 \times \left(\frac{0.1 + \alpha}{0.1 - \alpha}\right) p$$

$$= \frac{4\alpha^2}{(0.1 + \alpha)(0.1 - \alpha)} p$$

$$= \frac{4\alpha}{0.01 - \alpha^2} \times 1$$
or $\alpha = 0.018$

Thus, $[NO_2] = 2 \times 0.018 = 0.036 \text{ mol}$

20 (d

From Henderson equation

$$pOH = pK_b + log \frac{[salt]}{[base]}$$

$$pH + pOH = 14$$

$$pOH = 5.0 + log \frac{[1.0]}{[0.1]} = 5 + log 10 = 5 + 1$$

$$pOH = 6$$

$$pH + pOH = 14$$

$$pH + 6 = 14$$

$$pH = 14 - 6 = 8$$

21 **(b)**

It has sextet of electron and can accept lone pair of electron.

22 **(c)**

 BF_3 is electron deficient compound because B has six electrons in outermost orbit. It has

incomplete octet. So, it is an electron deficient molecule.

23 **(a)**

Metal oxides are basic, non-metal oxides are acidic. CaO is more basic than CuO. Water $(\rm H_2O)$ is amphoteric.

24 **(a)**

The acidic character of oxy-acids decreases down the group and increases along the period. Also higher ox.no. of non-metal in oxy-acid shows more acidic nature.

25 **(c)**

Follow Arrhenius concept.

27 **(b**

$$N_{\text{NaOH}} = \frac{0.04}{40 \times 10} = 10^{-4} N$$

28 (a)

$$P_4(s) + 50_2(g) \rightleftharpoons P_4 O_{10}(s)$$

$$K_c = \frac{[P_4 O_{10}(s)]}{[P_4(s)][O_2(g)]^5}$$

We know that concentration of a solid component is always taken as unity

$$K_c = \frac{1}{[0_2]^5}$$

Ž9 (d

[HCl] = 10^{-8} *M*, Being very dilute pH < 7. New concentration of,

HCl =
$$\frac{10^{-6}}{100}$$
 = $10^{-8} M$
∴ [H⁺] = $10^{-18} + 10^{-7}$
= $1.1 \times 10^{-7} M$
∴ pH ≈ 7

30 **(d)**

A buffer solution is more effective in the pH range of $pK_a \pm 1$.

31 **(c)**

From
$$H_2O$$
, $[H^+] = 1 \times 10^{-7} M$
From $HCl[H^+] = 1 \times 10^{-8} M$
Total $[H^+] = (1 \times 10^{-7} + 1 \times 10^{-8}) M$
 $= (1 \times 10^{-7} + 0.1 \times 10^{-7}) M$
 $= 1.1 \times 10^{-7} M$
 $pH = -log(1.1 \times 10^{-7}) = 6.9586$

32 **(b**)

$$pH = -\log K_a + \log \frac{[Conjugate base]}{[Acid]}$$

33 **(b)**

100 mL of 0.01 M NaOH solution is diluted to 1 dm^3 (*i.e.*, 10 times diluted hence, the

resultant solution will be 0.001 M)

$$[OH^{-}] = 0.001 = 10^{-3}$$

$$[H^{+}] = \frac{10^{-14}}{[OH^{-}]} = \frac{10^{-14}}{10^{-3}} = 10^{-11}$$

$$pH = -\log[H^{+}]$$

$$= -\log[10^{-11}]$$

$$pH=11$$

34 **(a)**

Only salts of (weak acid+ strong base) and (strong acid + weak base) get hydrolysed (i. e., show alkalinity or acidity in water). KClO₄ a salt of strong acid and strong base, therefore, it does not get hydrolysed in water.

$$KClO_4 \rightleftharpoons K^+ + ClO_4^ H_2O \longrightarrow OH^- + H^+$$
 $KOH \quad HClO_4$
 $strong \quad strong$
 $base \quad acid$

35 **(a)**

Higher is the value of K_c or K_p more is feasibility for reaction to show forward reaction.

36 **(d)**

A +ve inductive effect of C₆H₅ intensifies +ve charge on N atom and thus, availability of coordination for electron pair decreases; The basic character order is

$$C_2H_5NH_2 > CH_3NH_2 > NH_3 > C_6H_5 - NH_2$$

37 **(c)**

Na₂HPO₄ on hydrolysis of HPO₄²⁻ ion produces free OH⁻ ion in solution.

38 (b)

$$2HI \rightleftharpoons H_2 + I_2$$

$$\begin{array}{cccc} 2 \text{HI} &\rightleftarrows & \text{H}_2 + \text{I}_2 \\ 3.2 & 0 & 0 & \text{initially} \end{array}$$

$$3.2 - x \times x = x$$
 at equilibrium

x = 22% of 3.2

$$=\frac{22\times3.2}{1.00}$$

100

= 0.704

Hence, number of moles of HI present at equilibrium

$$= 3.2 - x$$

$$= 3.2 - 0.704$$

= 2.496

39

$$K_p = \frac{{}^{n}\text{Cl}_2 \times {}^{n}\text{PCl}_3}{{}^{n}\text{PCl}_5} \times \left[\frac{p}{\sum n}\right]^{1}$$

$$= 2 \times \frac{2}{2} \times \left[\frac{3}{6}\right]^{1}$$
$$= 1 \text{ atm}$$

40 **(b)**

$$N_{2}(g) + 3H_{2}(g) \rightleftharpoons 2NH_{3}(g)$$

$$\Delta n = n_{p} - n_{r}$$

$$= 2 - 4$$

$$= -2$$

$$\therefore K_{p} = K_{c}(RT)^{-2}$$
or
$$K_{p} = \frac{K_{c}}{(RT)^{2}}$$

 $K_n < K_c$ 41 (a)

 $In\frac{K_2}{K_1} = \frac{\Delta H}{R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$ K increase with $\frac{1}{T}$ or decreases with T it is decided

Here, *K* decrease with *T*. Thus, $\Delta H = -ve$.

42

$$\begin{array}{c} \text{CdSO}_4 + \underset{10\times0.08}{\text{HCl}} + \text{H}_2\text{S} \longrightarrow \text{CdS} + \text{H}_2\text{SO}_4 \\ \text{Millimole} & = 0.8 \\ \text{Millimole} & 0.8 \\ \end{array}$$

after reaction : Millimole of H⁺ left = $0.8 + 0.1 \times 2$ = 1.0

Total volume = 100 mL

$$: [H^+] = \frac{1}{100} = 10^{-2}M$$

$$\therefore$$
 pH = 2

43 (a)

$$pH = -\log[H^+] = -\log[0.005]$$
$$= -\log[5 \times 10^{-3}] = 2.3$$

44 (c)

> It is a case of simultaneous solubility of salts with a common ion. Here solubility product of CuCl is much greater than that of AgCl, it can be assumed that Cl⁻ in solution comes mainly from CuCl.

$$\Rightarrow \quad [Cl^-] = \sqrt{K_{\rm sp}(CuCl)} = 10^{-3} \,\mathrm{M}$$

Now for AgCl : $K_{\rm sp} = 1.6 \times 10^{-10}$

=
$$[Ag^+][Cl^-]$$

= $[Ag^+] \times 10^{-3}$

$$\Rightarrow \qquad [Ag^+] = 1.6 \times 10^{-7}$$

45 (d)

$$\begin{array}{ccc} 2AB_3(\mathbf{g}) \rightleftharpoons A_2(\mathbf{g}) + 3B_2(\mathbf{g}) \\ \mathbf{t} = 0 & 8 & 0 & 0 \\ \text{At-eqilibrium:} & 8 & a/2 & \frac{3a}{2} \end{array}$$

Thus,
$$K_c = \frac{[A_2][B_2]^3}{[AB_3]^2}$$
; Also, $\frac{a}{2} = 2 \div a = 4$

$$\therefore [AB_3] = \frac{4}{1}; [A_2] = \frac{2}{1}; [B_2] = \frac{6}{1}$$

Thus,
$$K_c = \frac{2 \times 6^3}{4^2} = 27 \text{ mol}^2 \text{L}^{-2}$$

46 **(b)**

Find solubility for each separately by $s^2 = K_{sp}$ for MnS and ZnS, $108s^5 = K_{sp}$ for Bi₂S₃ and $4s^3 = K_{sp}$ for Ag₂S.

47 **(c)**

$$K_{c_1} = \frac{1}{K_{c_2}} = \frac{1}{2.4 \times 10^{-3}} = 4.2 \times 10^2$$

48 (d)

Li₃Na₃(AlF₆)₂ = 3Li⁺ + 3Na⁺ + 2AlF₆³⁻

$$K_{sp} = (3a)^3(3a)^3(2a^2) = 2916a^8.$$

49 **(b)**

Dissociation constant

$$H_2O \rightleftharpoons H^+ + OH^-: [H^+] = OH^- = 1 \times 10^{-7} M$$

And
$$[H_2O]=1 \text{ g/mL} = 1000 \text{ gL}^{-1}$$

 $= \frac{1000}{18} \text{ mol L}^{-1} = 55.56 \text{ M}$
 $K = \frac{[H^+][OH^-]}{H_2O} = \frac{10^{-14}}{55.6}$
 $K_w = 1 \times 10^{-14}$

So,
$$K_w = 55.6 \times K$$

50 (d)

$$K_a = C\alpha^2 \text{ and } \alpha = \sqrt{\frac{K_a}{C}}$$

 $\alpha = \sqrt{\frac{10^{-5}}{10^{-1}}} = 10^{-2}$

51 **(d**)

$$K_{sp} = 4s^3 = 4 \times (\sqrt{3})^3 = 12\sqrt{3}.$$

52 **(a**)

$$pH = \frac{1}{2} [pK_{a_1} + pK_{a_2}] \text{ and } pH = \frac{1}{2} [pK_{a_2} + pK_{a_3}].$$

53 (a)

In the given equilibrium reaction, if inert gas is added at constant pressure, it will result in increased volume. Due to which, the equilibrium will shift towards the left hand side (LHS) *i.e.*, reaction goes in back direction.

54 (d)

Hard base is that anion which is small and difficult to polarise.

55 **(a)**

HSO₄ is an acid and conjugate base of H₂SO₄.

56 **(a**)

An increase in temperature favours endothermic reaction whereas an increase in pressure favours the reaction showing decrease in mole or volume.

57 **(d)**

$$K_{sp}$$
 for AgCl = s^2 .

58 **(c)**

According to Le-Chatelier's principle when a system at equilibrium is subjected to change in pressure, temperature or concentration then the equilibrium is disturbed and shifts in a direction where the effect of change is annuled.

When pressure is increased in this system, the melting point of ice is decreased *i.e.*, more ice melts and more water is formed.

59 (d)

60 **(a**)

$$\begin{array}{c} \text{CaCO}_3(s) \rightleftharpoons \text{CaO}(s) + \text{CO}_2(g) \\ \text{Mole before} \quad & \underline{20} \\ \text{dissociation} \quad & \underline{100} \\ \text{Mole after} \quad & \underline{\left[\frac{20}{100} \times \frac{35}{100}\right]} \quad \left[\frac{\frac{20}{100} \times \frac{65}{100}\right]}{\left[\frac{20}{100} \times \frac{65}{100}\right]} \\ \text{Mole of CO}_2 \text{ formed} = & \underline{\frac{20 \times 65}{10^4}} = 1.3 \times 10^{-1} \end{array}$$

DV = nDT

$$p_{\text{CO}_2} = \frac{1.3 \times 10^{-1}}{10} \times 0.0821 \times 1073$$

= 1.145 atm

Now, $K_p = p_{CO_2} = 1.145$ atm

61 **(b)**

2NOBr(g)
$$\Rightarrow$$
 2NO + Br₂
 $\frac{6P}{9}$ $\frac{2P}{9}$ $\frac{P}{9}$
Total pressure $=\frac{6P}{9} + \frac{2P}{9} + \frac{P}{9} = P$
 $K_P = \frac{(P_{\text{NO}})^2 (P_{\text{Br}_2})}{(P_{\text{NOBr}})^2} = \frac{(2P/9)^2 (P/9)}{\left(\frac{6P}{9}\right)^2} = \frac{P}{81}$

62 **(c)**

$$K_{sp} = 4s^3$$

or $s = \left[\frac{1.2 \times 10^{-5}}{4}\right]^{1/3} = 1.44 \times 10^{-2}$
 $\therefore [M^+] = 1.44 \times 10^{-2} \times 2$
 $= 2.88 \times 10^{-2} M$.

63 **(b)**

Due to back bonding (BF₃ shows maximum tendency due to small size of F).

64 **(c)** $Cr(OH)_3 \rightleftharpoons Cr^{3+} + 3OH^-$ For precipitate to be dissolved, $K_{sp} \le [Cr^{3+}][OH^-]^3$

or
$$6 \times 10^{-31} \le [0.1][0H^{-}]^{3}$$

 $\therefore [0H^{-}] \ge 1.79 \times 10^{-10}$
So, $[H^{+}] \le \frac{10^{-14}}{1.79 \times 10^{-10}} \le 5.59 \times 10^{-5}$
 $pH \ge -\log(5.59 \times 10^{-5})$ or $pH \ge 4.253$

65 **(a)**

KCN is a salt of weak acid and strong base hence, on being dissolved in water gives basic solution i.e., pH > 7 at 25°C.

66 **(b)**

 NH_4Cl is acidic due to hydrolysis of NH_4^+ ; $NH_4^+ + H_2O \rightleftharpoons NH_4OH + H^+$; pH < 7.

67 **(a)**

When the number of moles of gaseous reactants and products is same, then equilibrium is not affected by pressure and hence, the equilibrium constant is unaffected.

68 **(d)**

Glycine, the simplest amino acid (CH_2NH_2COOH) has the tendency to donate H^+ by -COOH gp. and the tendency to donate lone pair by N-atom of $-NH_2$ gp. and also exists as **Zwitter ion**. $H_2NCH_2 \cdot COOH \Rightarrow H_3N^+CH_2COO^-$

69 **(d)**

$$H_2 + I_2 \rightleftharpoons 2HI$$

 $[HI] = 0.80, [H_2] = 0.10, [I_2] = 0.10$
 $K_c = \frac{[HI]^2}{[H_2][I_2]} = \frac{0.80 \times 0.80}{0.10 \times 0.10} = 64$

70 **(a)**

$$[H^+] = 10^{-1} M$$

$$\therefore \frac{w}{36.5} = 10^{-1}$$
or $w = 36.5 \times 10^{-1} = 3.65 \text{ g}$

71 **(d)**

(d)
$$\begin{array}{c} \text{mM before reaction} \\ \text{mM after reaction} \\ \text{mM of the reaction} \end{array} \stackrel{\text{MgCl}_2}{\underset{0}{\text{od}}} + 2\text{NaOH} \longrightarrow \text{Mg(OH)}_2 + 3\text{NaOH} \\ \underset{0}{\text{od}} \qquad 0 \qquad 0 \qquad 0 \qquad 0 \\ \text{MgCl}_2 + 2\text{NaOH} \longrightarrow \text{Mg(OH)}_2 + 3\text{NaOH} \\ \underset{0}{\text{od}} \qquad 0 \qquad 0 \qquad 0 \\ \text{MgCl}_2 + 2\text{NaOH} \longrightarrow \text{Mg(OH)}_2 + 3\text{NaOH} \\ \text{MgCl}_2 + 3\text{NaOH} \longrightarrow \text{Mg(OH)}_2 + 3\text{NaOH} \\ \text{MgCl}_2 + 3\text{NaOH}$$

Thus, 10 m mole of Mg(OH)₂ are formed. The product of [Mg²⁺][OH⁻]² is therefore

 $\left[\frac{10}{200}\right] \times \left[\frac{20}{200}\right]^2 = 5 \times 10^{-4}$ which is more than K_{sp} of Mg(OH)₂. Now, solubility (s) of Mg(OH)₂ can be derived by $K_{sp} = 4s^3$

72 **(c)**

At chemical equilibrium, rate of forward reaction is equal to the rate of backward reaction.

73 **(a)**

Acidic nature is

 $RCOOH > CH \equiv CH > NH_3 > RH$ Stronger is acid, weaker is its conjugate base.

74 **(d)**

In the expression for equilibrium constant $(K_p \text{ or } K_c)$ species in solid state are not written (i.e., their molar concentrations are taken as 1)

$$P_4(s) + 5O_2(g) \rightleftharpoons P_4O_{10}(s)$$

Thus, $K_c = \frac{1}{[O_2]^5}$

75 **(a)**

Reversible reaction always attains equilibrium and never go for completion.

76 **(d)**

$$K_c = \frac{[\text{CO}_2]}{[\text{CO}]}$$

$$\therefore 5 = \frac{[\text{CO}_2]}{2.5 \times 10^{-2}}$$

$$\therefore [\text{CO}_2] = 0.125 \text{ M}$$

77 **(d)**

$$\begin{array}{cccc} & H_2 & + I_2 & \rightleftharpoons 2HI \\ \text{Initial} & 0.4 & 0.4 & 0 \\ \text{At equilibrium} & 0.4\text{-}0.25 & 0.4\text{-}0.25 & 0.05 \\ & = 0.15 & = 0.15 \\ & K_c = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} \\ & = \frac{\left(\frac{0.50}{2}\right)^2}{\left(\frac{0.15}{2}\right)\left(\frac{0.15}{2}\right)} = \frac{0.5\times0.5}{0.15\times0.15} = 11.11 \end{array}$$

78 **(d)**

We know that,

$$[H^+] = 10^{-pH} = 10^{-5}$$

$$\alpha = \frac{\text{actual concentration}}{\text{molar concentration}}$$

$$= \frac{10^{-5}}{0.005} = 0.2 \times 10^{-2}$$

∴ Percentage ionisation =
$$0.2 \times 10^{-2} \times 100$$

= 0.2%

79 **(a)**

More is pH, more basic is solution.

80 (d)

Both Arrhenius and Bronsted bases are source of

 $\mathrm{H^+}$ Arrhenius base (OH⁻ furnish) may not be capable of accepting proton (*i.e.*, Bronsted based). $\mathrm{H^+}$ exists as $\mathrm{H_9^+O_4}$.

81 **(b)**

Mole before dissociation Mole after dissociation

$$H_2FCOOH = CH_2FCOO^- + H_1^+$$

 $\begin{pmatrix} 1 & 0 & 0 \\ (1-\alpha) & \alpha & \alpha \end{pmatrix}$

Given, $[H^+] = c\alpha = 1.5 \times 10^{-3} \text{ mol litre}^{-1}$

$$K_a = \frac{(c\alpha)(c\alpha)}{c(1-\alpha)} = \frac{c\alpha^2}{(1-\alpha)}$$
$$2.6 \times 10^{-3} = \frac{1.5 \times 10^{-3} \times \alpha}{(1-\alpha)}$$

$$\alpha = 0.634$$

Now, $c\alpha = 1.50 \times 10^{-3}$

$$\therefore \quad c = \frac{1.50 \times 10^{-3}}{0.634} = 2.37 \times 10^{-3} M$$

Note: Since K_a is of the order of $10^{-3}M$ and thus, it is not advisable to use $K_a = c\alpha^2$. Because $(1 - \alpha)$ is not equal to 1 since α is not small.

82 **(b)**

For oxoacids of the same element, the acidic strength increases with increase in the oxidation number of the element

$$^{+1} \hspace{0.2cm} \stackrel{+3}{\leftarrow} \hspace{0.2cm} \stackrel{+5}{\leftarrow} \hspace{0.2cm} \stackrel{+7}{\leftarrow} \hspace{0.2cm} \text{HClO}_{2} \hspace{0.2cm} \stackrel{+7}{\leftarrow} \hspace{0.2cm} \text{HClO}_{3} \hspace{0.2cm} \stackrel{+7}{\leftarrow} \hspace{0.2cm} \text{HClO}_{4}$$

83 **(a)**

 HNO_3 (nitric acid) is generally not an amphoteric substance. It is a strong acid (proton-donating) though sometimes, in presence of stronger acid, it also acts as a base (*e.g.*, in nitration of atomic compounds, it acts as a base and accept proton from $\mathrm{H}_2\mathrm{SO}_4$). However HCO_3^- , $\mathrm{H}_2\mathrm{O}$ and NH_3 frequently act both as an acid as well as a base (*i.e.*, amphoteric in nature).

$$K_p = K_c (RT)^{-1/2}$$

$$\because \Delta n = -1/2$$

86 (c)

Le-Chatelier's principle is not valid for solid-solid equilibrium.

87 **(c)**

$$BaCl_2 \rightarrow Ba^{2+} + 2Cl^{-}$$

Let the solubility of BaCl₂ is x mol/L

$$K_{sp} = [Ba^{2+}][Cl^{-}]^{2}$$

$$= (x) \times (2x)^{2}$$

$$= x \times 4x^{2} = 4x^{3}$$

or solubility of BaCl₂ =

(solubility product of BaCl₂)^{1/3}

4

$$= \frac{(4 \times 10^{-9})^{1/3}}{4}$$
$$= 10^{-3} \text{ mol/L}$$

88 **(a**)

Addition of sodium acetate in acetic acid solution, due to common ion NH₄⁺ the ionisation of acetic acid is supressed so concentration of [H⁺] decreases. Hence, pH of solution increases.

89 (a)

$$AB_2 \rightleftharpoons A^+ + 2B^-$$

 $1 \times 10^{-3} \ 2 \times 10^{-3}$
 $K_{SD} = [1 \times 10^{-3}][2 \times 10^{-3}]^2 = 4 \times 10^{-9}$

90 **(b**)

$$NaHCO_3 + NaOH \rightarrow Na_2CO_3 + H_2O.$$
Acid salt Base

91 (a

$$2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$$
3 mol 2 mol

Formation of

 SO_3 (sulphur trioxide) from SO_2 and O_2 is accompanied by decrease in volume. So, increase in pressure favours SO_3 formation (also due to Le-Chatelier's principle).

92 **(d)**

$$\begin{aligned} \text{NH}_4 \text{HS(s)} &\rightleftharpoons \text{NH}_3(\text{g}) + \text{H}_2 \text{S(g)} \\ \text{at} & & \text{t} = 0 & 0.5 & 0 \\ & & \text{t} = eq. & 0.5 + P & P \end{aligned}$$

$$P_T &= 0.5 + P + P = 0.84 \\ \therefore P = 0.17 \text{ atm}$$

$$K_p = P_{\text{NH}_3} \times P_{\text{H}_2 \text{S}} = (0.5 + 0.17) \times 0.17 \\ = 0.11 \text{ atm}$$

$$[H^+][OH^-] = 10^{-14}$$

$$[10^{-2}][OH^-] = 10^{-14}$$

$$[OH^-] = \frac{10^{-14}}{10^{-2}}$$

$$= 10^{-12} \text{ mol dm}^{-3}$$

94 **(c)**

It is condition for chemical equilibrium.

95

Solution of $CuSO_4$ is acidic due to hydrolysis of $|_{103}$ (b) Cu²⁺ ion.

97 **(a)**

$$\begin{split} [H^+]_I &= 10^{-5} \\ [H^+]_{II} &= 10^{-2} \end{split}$$

Thus, increase in [H⁺] = $\frac{10^{-2}}{10^{-5}}$ = 1000 times.

98 (a)

According to Lewis acid is any species (molecule, radial or ion) that can accept an electron pair to form a coordinate covalent bond. Thus, acid is an electron deficient species e.g., BF₃, AlCl₃, SO₃ and all cations etc.

$$AlCl_3 + Cl_3 - Cl_3 Al - Cl_3$$
Lewis acid Lewis base Adduct

Or AlCl₄

99 (c)

$$K_{\rm sp}$$
 of AgCl = (solubility of AgCl)²
= $(1 \times 10^{-5})^2 = 1 \times 10^{-10}$

Suppose its solubility in 0.1 M

NaCl is $x \mod L$

$$AgCl \rightleftharpoons Ag^{+} + Cl^{-}$$

$$x \qquad x$$

$$NaCl \Rightarrow Na^{+} + Cl^{-}$$

$$NaCl \rightleftharpoons Na^{+} + Cl^{-}$$

$$0.1 \text{ M} \qquad 0.1 \text{ M}$$

$$[Cl^-] = (x + 0.1) M$$

$$K_{\rm sp}$$
 of AgCl = [Ag⁺][Cl⁻]
= $x \times (x + 0.1)$

$$1 \times 10^{-10} = x^2 + 0.1x$$

Higher power of x are neglecated

$$1 \times 10^{-10} = 0.1x$$

 $x = 1 \times 10^{-9} \text{ M}$

100 (c)

For reaction, $2SO_3 \rightleftharpoons O_2 + 2SO_2$ Here, $\Delta n_g = 3 - 2 = 1$, ie, +ve, thus, K_p is more than K_c [: $K_p = K_c(RT)^{\Delta n_g}$]

101 (c)

$$s = \sqrt{K_{sp}} = \sqrt{36} = 6M.$$

102 (d)

$$K_h = \frac{K_W}{K_h}$$

where K_w =ionic product of water

$$= 1 \times 10^{-14}$$

 K_b =degree of dissociation of NH₄OH =

$$1.8 \times 10^{-5}$$

$$K_h = \frac{1 \times 10^{-14}}{1.8 \times 10^{-5}}$$
$$= 0.555 \times 10^{-9}$$
$$= 5.55 \times 10^{-10}$$

Let V mL of 0.1 M HCOONa be mixed to 50 mL of 0.05 M HCOOH.

$$\left[\because [\] = \frac{\text{Total millimole}}{\text{Total volume}} \right]$$

∴ In mixture [HCOONa] =

$$\therefore [HCOOH] = \frac{50 \times 0.05}{V + 50}$$

$$\forall + 50$$

$$\forall + 60$$

$$\text{[Conjugate base]}$$

$$\text{[Acid]}$$

$$4.0 = 3.80 + \log \frac{(0.1 \times V)(V + 50)}{2.5/(V + 50)}$$

∴ V = 39.62 mL.

104 (a)

HA (a weak acid) ionises as

$$HA \Rightarrow H^{+} + A^{-}$$

$$1 \qquad 0 \qquad 0$$

$$(1-10^{-5}) \qquad 10^{-5} \qquad 10^{-5}$$

$$[A^{-}] = [H^{+}] = 10^{-pH} = 10^{-5}M$$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} = \frac{10^{-5} \times 10^{-5}}{(1-10^{-5})} = \frac{10^{-10}}{1}$$

$$(\therefore 1 >>> 10^{-5})$$

$$= 1 \times 10^{-10} M$$

105 (a)

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

 $(1-x) \quad x \quad x$

Total number of moles at equilibrium

$$= (1 - x) + x + x$$
$$= 1 + x$$
$$p_{PCl_3} = \left(\frac{x}{1 + x}\right) \times p$$

106 (c)

$$2.303 \log \frac{K_2}{K_1} = \frac{\Delta H}{R} \frac{[T_2 - T_1]}{T_1 T_2},$$

 $\Delta H = +$ ve for the reaction,

 $N_2 + O_2 \rightleftharpoons 2NO$.

107 **(b)**

Now [H⁺] =
$$\frac{25 \times 0.01 + 25 \times 0.02}{50}$$

= $\frac{0.75}{50}$ = 0.015 M

and thus, pH will decrease, as [H⁺] increases.

108 (a)

Carbon cannot expand its octet.

109 (d)

N of NH₃ possesses lone pair of electron available for donation.

110 (a)

$$2NH_3 \rightleftharpoons N_2 + 3H_2$$

Initial moles a

At equilibrium (a - 2x) x 3x

Initial pressure of NH_3 of 'a'mole =

15 atm at 27°C. The pressure of 'a' mole of $NH_3 =$ p atm at 347°C

$$\therefore \frac{15}{300} = \frac{p}{620}$$

$$p = 31 \text{ atm}$$

At constant volume and at 347°C,

mole ∝ pressure

 $a \propto 31$ (before equilibrium)

 \therefore $(a-2x) \propto 50$ (after equilibrium)

$$\therefore \frac{(a-2x)}{a} = \frac{50}{31}$$
$$\therefore x = \frac{19}{62}a$$

∴ % of NH₃ decomposed =
$$\frac{2x}{a}$$
 × 100

$$= \frac{2 \times 19a}{62 \times a} \times 100$$
$$= 61.33\%$$

111 **(b)**

Equilibrium constant for the reaction,

$$3A + 2B \rightleftharpoons C$$
, is

$$K = \frac{[C]}{[A]^3 [B]^2}$$

112 (a)

$$HA \rightleftharpoons H^+ + A^-$$

$$K = C\alpha^2$$

$$=0.1\times(10^{-5})^2$$

$$= 0.1 \times 10^{-10} \text{ or } 1 \times 10^{-11}$$

113 (c)

$$K_p = \frac{p_{\text{CO}}^2}{p_{\text{CO}}} = \frac{4 \times 4}{2} = 8$$

$$\frac{\text{normal.mol.wt.}}{\text{exp.mol.wt.}} = 1 + \alpha$$

For, $NH_4Cl \rightleftharpoons NH_3 + HCl$;

$$\alpha = 1$$

$$\therefore \text{ Exp. Mol.wt.} = \frac{\text{normal.mol.wt.}}{2}$$

115 (c)

 $Al(OH)_3$ is weak base than $Mg(OH)_2$. Hydroxides of I and II group metals are strong base, stronger is base, weaker is its conjugate acid.

116 **(b)**

 K_p and K_c values do not change with catalyst.

117 (a)

$$\Delta H = E_{a_{(f)}} - E_{a_{(b)}} = 180 - 200$$

 $= -20 \text{ kJ mol}^{-1}$ (in absence of

catalyst)

$$\therefore \Delta H = E_{a_{(f)}} - E_{a_{(b)}}$$

$$= [180 - 100] - [200 - 100]$$

$$= -20 \text{ kJ mol}^{-1}$$
 (in presence of catalyst)

Catalyst's have no influence on ΔH

$$C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$$
; Here, $\Delta n > 1$

Hence, decrease of pressure shifts the equilibrium in forward direction and increase of pressure shift the equilibrium in backward (reverse) direction.

119 **(b)**

20% mixture reacts to form 10% NH₃;

Thus, 80% mixture and 10% NH₃ left or total pressure left = 90 atm, since 100% mixture has 100 atm.

120 (c)

 $C_2H_5O^-$ is conjugate strong base of C_2H_5OH .

121 (a)

Borate ions are hydrolysed to develop alkaline nature in solution.

123 **(b)**

For a buffer solution, pH is given by Henderson equation.

$$pH = pK_a + log \frac{[salt]}{[acid]}$$

hence, pH is least when concentration of acid is higher than that of salt.

124 (a)

Phenolphthalein is good indicator in the range of pH 8 to 9.8.

125 (c)

$$N = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2}$$

(: for
$$HCl N = M$$
)

$$= \frac{0.015 \times 100 + 0.005 \times 100}{100 + 100}$$
$$= \frac{1.5 + 1.5}{200} = \frac{1}{100} = 10^{-2}$$

Resulting solution is acidic in nature.

Then,
$$[H^+] = 10^{-2}$$

 $pH = -\log[H^+]$
 $= \log \frac{1}{[H^+]} = \log \frac{1}{10^{-2}}$
 $= 2 \log 10$

$$= 2$$

$$K_{sp} = [A^{3+}]^2 [X^{2-}]^3 = (2y)^2 (3y)^3 = 108 y^5$$

127 **(b**)

Solubility of BaSO₄ =
$$\sqrt{K_{sp}}$$

= $\sqrt{1.1 \times 10^{-10}}$
= $1.05 \times 10^{-5} M$

$$\therefore$$
 wt. of BaSO₄ = 1.05 × 10⁻⁵ × 233

or
$$w_{\text{BaSO}_4} = 244.37 \times 10^{-5} \text{ g/litre}$$

 \therefore Volume of water needed to dissolve 1 g.

BaSO₄ is equal to $\frac{1}{244.37 \times 10^{-5}} = 410$ litre.

128 (c)

Addition of inert gas at constant volume does not influence the equilibrium concentration.

129 **(b)**

$$H_4Cl(s) \rightleftharpoons NH_4^+(aq) + Cl^-(aq); \quad \Delta H = +3.5 \text{ kcal/mol}$$

This is the endothermic reaction hence, increasing the temperature will shift the equilibrium to the right.

130 (c)

$$K_{\rm sp}$$
 of BaSO₄ = 1.5 × 10⁻⁹: [Ba²⁺] = 0.01 M
 $[SO_4^{2-}] = \frac{1.5 \times 10^{-9}}{0.01} = 1.5 \times 10^{-7}$

131 (d)

Pb(OH)₂
$$\rightleftharpoons$$
 Pb²⁺ + 2OH⁻
 $K_{\rm sp} = [{\rm Pb^{2+}}][{\rm OH^{-}}]^2 = S \times (2S)^2$
 $K_{\rm sp} = 4s^3 = 4 \times (6.7 \times 10^{-6})^3$
 $= 1.20 \times 10^{-15}$

In a solution with pH=8

$$[H^{+}] = 10^{-8}$$

$$[OH^{-}] = 10^{-6}$$

$$1.20 \times 10^{-15} = [Pb^{2+}][10^{-6}]^{2}$$

$$[Pb^{2+}] = \frac{1.2 \times 10^{-15}}{[10^{-6}]^{2}}$$

$$= 1.2 \times 10^{-3} M$$

132 **(c)**

and

$$\Delta n = n_p - n_r$$

$$= 2 - 1 = 1$$

$$K_p = K_c(RT)$$

$$(g) \rightleftharpoons Cl_2(g) + Br$$

$$2BrCl(g) \rightleftharpoons Cl_2(g) + Br_2(g)$$

$$\Delta n = 0$$

$$K_p = K_c (RT)^0$$

 $K_p = K_c$

$$CO(g) + 3H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)$$

 $\Delta n = 2 - 4 = -2$

$$\begin{split} K_p &= K_c (RT)^{-2} \\ K_p &< K_c \end{split}$$

133 (d)

When the value of ionic product is greater than the solubility product, precipitation takes place

134 (a)

BOH
$$\rightleftharpoons B_{c \alpha}^{+} + OH_{c \alpha}^{-}$$

$$K_{b} = \frac{[B^{+}][OH^{-}]}{BOH} = [OH^{-}]^{2}$$
∴ $[OH^{-}] = 1.0 \times 10^{-6} M$.

135 (d)

As the solution is acidic pH < 7. This is because [H⁺] from H₂O[10^{-7}]M cannot be neglected in comparison to 10^{-9} M

136 **(d)**

$$pH = 12$$

$$pOH = 2$$

or
$$[OH^{-}] = 10^{-2}$$
; $\therefore [Ba^{2+}] = \frac{10^{-2}}{2}$
 $K_{sp}Ba(OH)_2 = [Ba^{2+}][OH^{-}]^2 = \frac{10^{-2}}{2} \times (10^{-2})^2$
 $= 5 \times 10^{-7} M^3$.

137 **(b)**

$$2NH_3 \rightleftharpoons NH_4^+ + NH_2^-$$
 (self ionisation)
and $K = [NH_4^+][NH_2^-]$

$$: [NH_4^+] = [NH_2^-]$$

$$[NH_2^-] = \sqrt{K} = \sqrt{10^{-30}} = 10^{-15}M$$

Number of amide ions in $10^3 \text{cm}^3 = 10^{-15} \times 6 \times 10^{23}$

∴ Number of amide ions in one cm³ =
$$\frac{10^{-15} \times 6 \times 10^{23}}{10^3}$$

$$= 6 \times 10^5$$
 ions

138 **(c)**

$$K = k_1 \times k_2$$

= 1.8 × 10⁻⁵ × 5.0 × 10⁻¹⁰
= 5 × 10⁻¹⁵

139 (d)

Trichloroacetic acid is almost of same strength as HCl due to inductive effect of Cl-atoms.

140 **(c)**

$$[OH^{-}] = c \cdot \alpha = 0.01 \times \frac{5}{100} \times 5 \times 10^{-5}.$$

141 **(b)**

Nucleophiles are electron rich species and donate electron pair.

143 (a)

 $[Ca(OH)_2] = 0.01 \text{ mol}/100 \text{ cc} = 0.1 \text{ mol L}^{-1}$ Assuming complete ionisation,

$$[OH^-] = 0.2 \text{ M}, [H^+] = \frac{10^{-14}}{0.2} = 5 \times 10^{-14}$$

$$pH = -\log[H^+]$$
= -\log(5 \times 10^{-14})
= 14 - 0.669 = 13.3

144 (c)

A solution with reverse acidity or basically is known as buffer solution. It is of two types :

(I)Acidic buffer solution : A mixture of weak acid and its salt with strong base

e.g., $CH_3COOH + CH_3COONa$

(II)Basic buffer solution : A mixture of a weak base and its salt with strong acid.

e.g., $NH_4OH + NH_4Cl$

145 (a)

(u)			
	X(g)	\rightleftharpoons	
Y(g)	Z(g)		
Initial	1		0
0			
At equilibrium	0.5		0.5
0.5	2.5		۰.
Partial pressure	$\frac{0.5}{1.5} p$		$\frac{0.5}{1.5} p$
$\frac{0.5}{1.5} p$			
1.5 ••	K_p	$p_Y.p_Z$	
•	$^{\mathbf{n}}p$	p_{χ}	
	1	$\frac{p}{3}$ $\frac{p}{3}$	
	1	$\frac{\underline{p}}{3} \frac{\underline{p}}{3}$ $\frac{\underline{p}}{3}$	
	p	3 atm	

Partial pressure of $X = \frac{p}{3} = \frac{3}{3} = 1$ atm

146 (a)

$$K_1 = \frac{[NO_2]}{[NO][O_2]}$$
 and $K_2 = \frac{[NO]^2[O_2]}{[NO_2]^2}$
 $\therefore K_2 = \frac{1}{\kappa^2}$

147 **(b)**

$$K_{1} = \frac{[NO]^{2}}{[N_{2}][O_{2}]};$$

$$K_{2} = \frac{[NO]}{[N_{2}]^{1/2}[O_{2}]^{1/2}};$$

$$\therefore K_{1} = K_{2}^{2}.$$

149 (c)

$$Hg_{2}Cl_{2} \rightleftharpoons Hg_{2}^{2+} + 2Cl^{-}$$

$$S_{sp} = [Hg_{2}^{2+}][Cl^{-}]^{2}$$

$$K_{sp} = (s)(2s)^{2}$$

$$K_{sp} = 4s^{3}$$

$$S = \left(\frac{K_{sp}}{4}\right)^{1/3}$$

150 (c)

$$K_c = \frac{[\text{product}]}{[\text{reactant}]}$$

$$0.41 = \frac{[\text{product}]}{[\text{reactant}]}$$

$$\Rightarrow$$
 [product] = 0.41 × [reactant]

Therefore, reaction proceeds in backward direction, *i.e.*, more PCl₅ will be formed.

151 (a)

Reaction is exothermic. By Le-Chatelier's principle, a reaction is spontaneous in forward side (in the direction of formation of more ClF_3) if F_2 is added, temperature is lowered and ClF_3 is removed.

152 (c)

 $\Delta ng = 1$ for this change, so the equilibrium constant depends on the units of concentration

153 (a)

$$K_{sp} = 4s^{3}$$

$$\therefore 4s^{3} = 3.2 \times 10^{-8}$$

$$\therefore s = 2 \times 10^{-3}M$$

154 (d)

$$Ag_2CO_3 \rightleftharpoons 2Ag^+ + CO_3^{2-}$$

Due to the common ion effect, the solubility decreases, so the solubility of Ag_2CO_3 would be greatest 1 L of 0.05 M NH $_3$ due to the absence of common ion either Ag^+ or CO_3^{2-} . Ag^+ form complex with NH $_3$.

$$Ag^+ + 2NH_3 \rightleftharpoons [Ag(NH_3)_2]^+$$

155 **(c)**

The interferring radicals are PO_4^{3-} , BO_3^{3-} , $C_2O_4^{2-}$ and F^- give insoluble matter in alkaline medium.

156 (d)

pOH =
$$K_b + \log \frac{[\text{salt}]}{[\text{base}]}$$

given, p $K_b = 5$, [Base] = 0.10 M,
[salt] = 0.01 M

$$\therefore \quad \text{pOH} = 5 + \log \frac{0.01}{0.10} = 4$$

$$\text{pH} + \text{pOH} = 14$$

$$\therefore \quad \text{pH} = 14 - 4 = 10$$

157 **(c**)

$$2.303 \log \frac{K_2}{K_1} = \frac{\Delta H}{R} \frac{[T_2 - T_1]}{T_1 T_2}$$
; find ΔH .

158 **(b)**

$$K_c = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]}$$

$$\therefore 64 = \frac{x^2}{0.03 \times 0.03}$$

$$\therefore x^2 = 64 \times 9 \times 10^{-4}$$
or, $x = 8 \times 3 \times 10^{-2}$
 x is the amount of HI
At equilibrium, amount of I₂ will be $0.30 - 0.24 = 0.06$

159 (c)

Weak electrolytes are completely ionised at infinite dilution.

160 **(b)**

$$K_c = \frac{[PCl_3][Cl_2]}{[PCl_5]} = \frac{0.2 \times x}{0.4} = 0.5$$

161 **(b)**

Rest all occur in backward direction.

162 (c)

Electron donors are Lewis base.

In the reaction $I_2 + I^- \rightarrow I_3^-$, I^- donates a pair of electron and I_2 accepts it to form I_3^- .

 \therefore 1⁻ is Lewis base.

163 (d)

Number of milliequivalents of

$$NaOH = 10 \times 0.1 = 1$$

Number of milliequivalents of

$$H_2SO_4 = 10 \times 0.05 = 0.5$$

Milliequivalent of H_2SO_4 will neutralise NaOH so, that (1-0.5)=0.5 millieq. Of NaOH is left unneutralised.

Hence, pH of the resulting solution will be greater than seven (pH>7).

164 (d)

$$K_{sp}$$
PbCl₂ = $4s^3 = 4 \times (0.01)^3 = 4 \times 10^{-6}$

In NaCl solution for $PbCl_2$;

$$K_{sp} = [pb^{2+}][Cl^{-}]^{2}$$

or
$$4 \times 10^{-6} = [pb^{2+}][0.1]^2$$

 $\therefore [Pb^{2+}] = 4 \times 10^{-4} M$.

165 (a)

$$aX + H_2O \rightleftharpoons NaOH + HX$$

In it HX is weak acid, so NaX is a salt of weak acid and strong base.

∴ Hydrolysis constant of NaX

$$K_h = \frac{K_w}{K_a} = \frac{1 \times 10^{-14}}{10^{-5}} = 1 \times 10^{-9}$$

For this type of salt

$$K_h = \frac{h^2}{V} = Ch^2$$

h =degree of hydrolysis

$$\therefore 1 \times 10^{-9} = 0.1 \times h^2$$

or
$$h^2 = \frac{1 \times 10^{-9}}{0.1} = 1 \times 10^{-8}$$
$$h = 1 \times 10^{-4}$$

 $\div~\%$ of degree of hydrolysis on NaX salt

$$= 1 \times 10^{-4} \times 100 = 1 \times 10^{-2} = 0.01\%$$

166 **(b)**

H₂SO₄ is almost completely ionised in aqueous

solution.

167 **(c)**

$$XA \rightleftharpoons C + D$$

$$a(1-\alpha) \qquad \frac{a\alpha}{x} \qquad \frac{a\alpha}{x}$$

$$\therefore K = \frac{[C][D]}{[A]^X} = \left[\frac{a^2\alpha^2}{x^2V^2}\right] / \left[\frac{a(1-\alpha)}{V}\right]^X$$

$$= \frac{\alpha^2 \cdot a^{2-x}}{x^2(1-\alpha)^X V^{2-X}}$$

If α is independent of a, then 2 - X = 0 Or X = 2

168 **(d)**

$$N_2O_4 \rightleftharpoons 2NO_2$$

$$(1-\alpha)$$
 2α

Total number of moles = $1 - \alpha + 2\alpha = 1 + \alpha$

169 (d)

$$K_{\rm sn} = 4s^3$$

Also,
$$s = \frac{0.11}{58}$$
 mol litre⁻¹

$$\therefore K_{sp} = 4 \times \left(\frac{0.11}{58}\right)^3$$

170 **(d)**

$$2NO_3(g) \rightleftharpoons 2NO(g) + O_2(g)$$

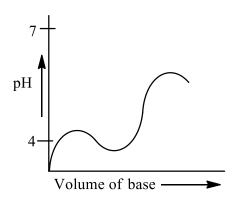
$$K_c = 1.8 \times 10^{-6} \text{ at } 184^{\circ}\text{C} (= 457\text{K})$$

$$R = 0.00831 \text{ kJ mol}^{-1} \text{K}^{-1}$$

$$K_p = K_c (RT)^{\Delta n_g}$$

Where,

 $\Delta n_{\rm g} = ({
m gaseous products - gaseous})$


reactants)

$$=3-2=1$$

Thus, $K_p > K_c$

171 (a)

pH curve of strong acid with weak base is vertical over the pH range of 4 to 7.

The indicator that shows colour change

within this range is suitable. Methyl red (pH range 4.4 to 6.5) is suitable indicator for titration of weak base *vs* strong acid.

172 **(b)**

The value of the ionic product of water depends on temperature.

173 **(b)**

In this reaction, ΔH is negative, so reaction moves forward by decrease in temperature while value of $\Delta n_{\rm g}=2-3=-1$, ie, negative, so the reaction moves in forward direction by increase in pressure

175 **(b)**

$$K_p = K_c (RT)^{\Delta n}$$

For the reaction,

$$N_2 + O_2 \rightleftharpoons 2NO$$

$$\Delta n = 2 - 2 = 0$$

$$\therefore K_p = K_c(RT)^0$$

$$K_p = K_c$$

176 **(b)**

Solubility is decreased due to common ion effect

$$AgI \Longrightarrow Ag^{+} + I^{-}$$
 $NaI \Longrightarrow Na^{+} + I^{-}$ common ion

177 **(d)**

$$K_p = \frac{p_{\text{CH}_3\text{OH}}}{p_{\text{CO}} \times p_{\text{H}_2}^2} = \frac{2}{1 \times (0.1)^2} = 200$$

 K_n for reverse reaction is

$$= \frac{1}{K_p} = \frac{1}{200} = 5 \times 10^{-3} \text{ atm}^2$$

178 (a)

Due to common ion effect, dissociation of $\mathrm{NH_4OH}$ decreases and thus, pOH increases or pH decreases.

179 (c)

$$pOH = 14 - pH = 14 - 10.65 = 3.35$$

$$pOH = -\log[OH^{-}]$$

$$-3.35 = \log[OH^{-}]$$

$$[OH^{-}] = 4.447 \times 10^{-4} M$$

$$Ca(OH)_2 = Ca^{2+} + 2OH^{-}$$

$$4.447 \times 10^{-4} \text{ M}$$

$$\frac{[OH^-]}{2} = [Ca(OH)_2] = 2.2235 \times 10^{-4} M$$

Hence, in 250 mL, moles of

$$Ca(OH)_2 = \frac{2.2235 \times 10^{-4} \times 250}{1000}$$

$$= 0.56 \times 10^{-4}$$

180 (c)

An increase in volume for the equilibrium having,

$$K_{c} = \frac{[\mathrm{SO}_{2}][\mathrm{Cl}_{2}]}{[\mathrm{SO}_{2}\mathrm{Cl}_{2}]} = \frac{[\mathrm{mole\ of\ SO}_{2}][\mathrm{mole\ of\ Cl}_{2}]}{[\mathrm{mole\ of\ SO}_{2}\mathrm{Cl}_{2}] \times \mathrm{volume}}$$

Will increase the mole of Cl_2 or SO_2 to maintain K_c values constant.

181 **(b)**

$$Z_{Acid}$$
 + Z_{Base} $\rightarrow Na_2Z_1O2_2 + H_2$.

182 (c)

$$N_2(g) +$$

$$3H_2(g) \rightleftharpoons 2NH_3(g)$$

(Initially) 1 mole 3 mo

0 moles(2L)

(At equilibrium) 0.6 or (3-3x)

2x moles

(1-x) moles moles

Number of moles of $N_2 = 0.6 = 1 - x$

$$x = 1 - 0.6 = 0.4$$

So,
$$3-3x=3-3\times0.4=1.8$$
,

and $2x = 2 \times 0.4 = 0.8$

Therefore, the total number of moles at equilibrium.

$$= (1 - x) + (3 - 3x) + 2x$$
$$= 0.6 + 1.8 + 0.8$$
$$= 3.2 \text{ mol}$$

183 (a)

$$I_2 \rightleftharpoons 2I^-$$
;

Find *x*, using $K_c = 10^{-6} = \frac{4x^2}{(1-x)}$, find *x* and notice 2x < (1-x).

184 (d)

$$K_c = \frac{[B]}{[A]} = 1.1$$

185 **(a**)

In the reaction, $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$, the number of moles of reactants and products are equal, thus it remain unaffected by change in pressure

186 (a)

Aqueous solution of NaCl is neutral. So, its pH value is 7.

187 (a)

If saturated solution $[Ag^+][Cl^-] = K_{sp}$ if the product of ionic concentration is lower than K_{sp} , solution is unsaturated.

188 (a)

$$NH_4OH \rightleftharpoons NH_4^+ + OH^-$$

At
$$t = 00.1$$
 M

At equilibrium
$$(0.1 -$$

$$\frac{1.3\times0.1}{100}$$
 M) 0.0013 M(0.0013 M)

= 0.1 M
=
$$[OH^{-}] = 0.0013 \text{ M} = 13 \times 10^{-4} \text{ M}$$

 $pOH = -\log[OH^{-}] = -\log(13 \times 10^{-4}) = 2.89$
 $pH = 14 - 2.89 = 11.11$

189 **(b)**

$$\alpha = \frac{\Lambda_v}{\Lambda_\infty} = \frac{8}{400} = 0.02$$
Now $K_a = c\alpha^2 = \frac{1}{32} \times (0.02)^2$

$$= 1.25 \times 10^{-5}.$$

190 **(b)**

$$0^{2-} + H_2 O \rightarrow 20 H^-.$$

191 **(b)**

$$X^- + H_2O \rightleftharpoons HX + OH^-$$

$$K_h = \frac{10^{-14}}{10^{-5}}$$
 so, $h = \sqrt{\frac{K_h}{C}} = \sqrt{\frac{10^{-9}}{10^{-1}}} = 10^{-4}$
= $100 \times 10^{-4} = 10^{-2}$

So, degree of hydrolysis is 0.01%

192 (a)

The species which can accept as well as donate H⁺ can act both as an acid and a base

$$HSO_4^- + H^+ \rightleftharpoons H_2SO_4$$

base

$$HSO_4^- \rightleftharpoons SO_4^{2-} + H^+$$

acid

193 (d)

$$2 = \frac{[B]}{[A]}$$
; $4 = \frac{[C]}{[B]}$ and $6 = \frac{[D]}{[C]}$

Thus, on multiplying

$$2 \times 4 \times 6 = \frac{[D]}{[A]}$$
, i.e., K_c for the reaction

194 (d)

Moles of HCl =
$$\frac{0.365}{36.5}$$
 = 0.01

Moles of NaOH in $100\ cm^3$ of $0.2\ M$ NaOH

$$0.2 = \frac{n \times 1000}{100} = 0.02$$

Moles of NaOH left=0.02-0.01=0.01

Moles of NaOH per litre

$$\frac{0.01 \times 1000}{100} = 0.1$$

$$[H^+] = \frac{10^{-14}}{0.1} = 10^{-13}; \quad (K_w = [H^+]. [OH^-])$$

$$pH = -\log[H^+] = -\log[10^{-13}]$$

$$pH = 13$$

195 (c)

$$[OH^{-}] = 0.0001N, pOH = 4$$

$$pH + pOH = 14$$

$$pH = 14 - pOH = 14 - 4 = 10$$

196 (a)

$$\Delta G^0 = -2.303RT \log K_p$$

= -2.303 \times 8.314 \times 300 \log 10^{20}

$$= -114.88 \text{ kJ}$$

197 (a)

 $K_c = \frac{1}{[O_2]^5}$; note that the expression does not involve the concentration terms of solid species.

198 **(b)**

NH₄CN Is a salt of weak acid and weak base and thus, for it,

$$K_H = \frac{K_w}{K_a \times K_b}$$

199 (d)

The forward reaction is exothermic and an increase in volume is taking place, Hence, according to Le-Chatelier's principle, forward reaction will be favoured by low temperature and low pressure.

200 **(d)**

NH₄Cl on hydrolysis gives acidic nature.

201 **(b)**

$$K_c = [\text{Fe}^{3+}][\text{OH}^-]^3$$

If
$$[OH^{-}] = \frac{1}{4} \times [OH^{-}]_{initial}$$
, than $[Fe^{3+}] =$

64 [Fe³⁺]_{initial} to have K_c constant

202 **(c)**

$$A(g) + 3B(g) \rightleftharpoons 4C(g)$$

concentration

$$(1-x) \qquad (1-3x) \qquad 4x \qquad \qquad \text{Final}$$

concentration

(at equilibrium)

According to question, 1 - x = 4x

$$\therefore x = \frac{1}{5}$$

For above reaction,

$$K_C = \frac{[C]^4}{[A][B]^3} = \frac{(4x)^4}{(1-x)(1-3x)^3}$$

$$K = \frac{\left(4 \times \frac{1}{5}\right)^4}{1-x^2} = 0.0$$

$$K_c = \frac{\left(4 \times \frac{1}{5}\right)^4}{\left(1 - \frac{1}{5}\right)\left(1 - 3 \times \frac{1}{5}\right)^3} = 8.0$$

203 (a)

$$m$$
 Mole of acid = $6 \times 0.1 = 0.6$

$$m$$
 Mole of salt = $12 \times 0.1 = 1.2$

$$\therefore pH = 4.75 + \log_{0.6}^{1.2} = 4.75 + 0.3010 = 5.05.$$

204 (c)

50 mL of 0.1 M HCl =
$$\frac{0.1 \times 50}{1000}$$
 = 5 × 10⁻³

50 mL of 0.2 M NaOH =
$$\frac{0.2 \times 50}{1000}$$
 = 10×10^{-3}

Hence, after neutralisation NaOH is left

$$= 10 \times 10^{-3} - 5 \times 10^{-3}$$
$$= 5 \times 10^{-3}$$

Total volume = 100 cc

The concentration of NaOH

$$= \frac{5 \times 10^{-3} \times 1000}{100} = 0.05 \text{ M}$$

$$[OH^{-}] = 0.05 \text{ M} = 5 \times 10^{-2} \text{M}$$

$$pOH = -\log [OH^{-}]$$

$$= -\log [5 \times 10^{-2}]$$

$$= 1.3010$$

$$pH + pOH = 14$$

 $pH = 14 - 1.3010 = 12.699$

205 **(b)**

∴
$$[Ag(CN)_{2}^{-}] = 0.03$$

Now, $Ag(CN)_{2}^{-} \rightleftharpoons Ag^{+} + 2CN^{-}$
 $0.03_{(0.03-a)}$ 0 0.04 (left from KCN)
 K_{C} is small ∴ 0.03 - $a \approx 0.03$ and 0.04 + $a \approx 0.04$

$$\therefore K_c = 4 \times 10^{-19} = \frac{(0.04)^2 \times a}{0.03}; \ \therefore a = 7.5 \times 10^{-18}$$

206 **(b)**

Higher $pK_a(-\log K_a)$ means lower K_a for acid.

207 (a)

$$N_{\text{NaOH}} = 1 \times 1 = 1 \text{ N}$$

 $N_{\text{H}_2\text{SO}_4} = 2 \times 10 = 20 \text{ N}$
Millieq. of NaOH = $1 \times 100 = 100$

Millieq. of $H_2SO_4 = 20 \times 10 = 200$ Thus, Millieq. of acid are left and therefore pH <

7. So, the resulting mixture will be acidic

208 (a)

pH = 4.35
∴ 4.35 =
$$-\log[H^+]$$

or [H⁺] = antilog of (-4.35
= $4.5 \times 10^{-5}M$

209 **(b)**

pH of salts of weak acid and weak base is derived by the relation : [H⁺] = $\sqrt{K_H} = \sqrt{\frac{K_W}{K_G \cdot K_h}}$

210 (a)

$$H_2 \xrightarrow[2000^{\circ}C]{\text{Electric arc}} 2H - 104.5 \text{ kcal}$$
hydrogen atomic

hydrogen atomic molecule hydroge

The reaction is endothermic. For endothermic reaction increase in temperature shift the equilibrium in forward direction. To proceed forward the pressure must be low because for the above reaction, increase of pressure will favoured backward reaction. So, for maximum yield the conditions are high

temperature and low pressure.

211 (a)

 H_3PO_2 is monobasic acid and thus, it forms only one normal salt.

212 **(d)**

According to Lewis, "A base is a species which can donate an electron pair." In NH₃, N has one lone pair. Thus, NH₃ is a Lewis base.

213 (d)

214 **(b)**

Higher is the value of K, more is the probability for a reaction to go for completion.

215 (d)

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

The equilibrium constant (K_p) changes with the change in temperature.

Note: Variation of equilibrium constant with temperature can be express as:

$$\log \frac{K_2}{K_1} = \frac{\Delta H}{2.303R} \left[\frac{T_2 - T_1}{T_1 \cdot T_2} \right]$$

216 **(b)**

$$N_{2}(g) + O_{2}(g) \rightleftharpoons 2NO(g)$$

$$K_{c} = \frac{[NO]^{2}}{[N_{2}][O_{2}]} = 4 \times 10^{-4}$$

$$NO \rightleftharpoons \frac{1}{2}N_{2}(g) + \frac{1}{2}O_{2}(g)$$

$$K'_{c} = \frac{[N_{2}]^{1/2}[O_{2}]^{1/2}}{[NO]}$$

$$= \sqrt{\frac{1}{K_{c}}} = \sqrt{\frac{1}{4 \times 10^{-4}}} = 50$$

217 **(b)**

$$ZA_{(g)} + B_{(g)} \rightleftharpoons 3C_{(g)} + D_{(g)}$$
Initial 1.0 1.0 0 0
$$_{0.75} \quad _{0.75} \quad _{0.25}$$

$$K_c = \frac{(0.25) \times (0.75)^3}{(0.5)^2 \times 0.75}$$

218 **(c)**

*R*NH₂ is stronger base than NH₃. Also HI is strong acid and thus, I⁻ is weak base.

219 **(b)**

Due to ionisation in water.

220 (a)

$$[H^+] = 10^{-1}$$

 $\therefore pH = 1$

221 (c)

$$Fe^{3+} + 3H_2O \rightarrow Fe(OH)_3 + 3H^+$$
.

222 **(b)**

This is Bronsted-Lowry concept of acid base.

223 **(a)**

The conjugate acids of $\overline{O}H$, $\overline{N}H_2$, $HC \equiv$

C⁻ and CH₃CH₂⁻ are H₂O, NH₃, HC = CH and CH₃ - CH₃respectively. Their acidic strength is as HOH > $HC \equiv CH > N$ H₃ > CH₃CH₃ A strong acid has a weak conjugate base, hence the decreasing order of basic strength is

$$CH_3CH_2^- > NH_2^- > HC \equiv C^- > OH^-$$

225 **(b)**

On removal of CO₂ (one of the reaction), reaction will proceed in backward direction.

226 **(c)**

Common ion effect includes two necessary points; one presence of common ion and the other a weak electrolyte.

227 **(b)**

$$C(s) + CO_2 \rightleftharpoons 2CO(g)$$

Gaseous mole before - 1 0 dissociation

Gaseous mole after - $\left(1 - \frac{50}{100}\right) \left(\frac{2 \times 50}{100}\right)$

dissociation

1. 0.5

∴ Total mole = 1.5 and $\Delta n = 1$

Total pressure given at equilibrium = 12 atm

$$K_p = \frac{(n_{\text{CO}})^2}{(n_{\text{CO}_2})} \times \left[\frac{P}{\sum n}\right]^{\Delta n} = \frac{(1)^2}{0.5} \times \left(\frac{12}{1.5}\right)^1$$

$$K_p = \frac{12}{1.5 \times 0.5} = 16$$
 atm

228 **(b)**

If $K_w = 10^{-12}$, then [H⁺] for neutral scale = 10^{-6} or pH = 6; thus, pH 6.9 refers for alkaline nature.

229 (c)

$$K_c = \frac{[\text{Cl}_2][\text{PCl}_3]}{[\text{PCl}_5]} = \frac{\frac{0.2}{10} \times \frac{0.2}{10}}{\frac{0.1}{10}} = 0.04$$

230 (d)

 $\begin{array}{ccc} CH_{3}COOH + C_{2}H_{5}OH & \rightleftharpoons CH_{3}COOC_{2}H_{5} + H_{2}O \\ & 1 & 1 & 0 & 0 \\ & (1-2/3) & 1 & 2/3 & 2/3 \end{array}$

$$\therefore K_c = \frac{\frac{2}{3} \times \frac{2}{3}}{\frac{1}{3} \times \frac{1}{3}} = 4$$

231 **(h**)

$$K_c = \frac{[\text{NO}_2]^2}{[\text{N}_2\text{O}_4]} = \frac{4 \times (0.05)^2}{0.05} = 4 \times 0.05 = \mathbf{0}.\mathbf{2}$$

232 (d

Millieq. of 0.01 M HCl = $\frac{0.01 \times 100}{1000} = 1 \times 10^{-3}$

$$\therefore pH = 3$$

Millieq. of 0.02 M H₂SO₄ = $\frac{0.04 \times 50}{1000}$ = 2 × 10⁻³ Millieq. of 0.02 M NaOH = $\frac{0.02 \times 50}{1000}$ = 1 × 10⁻³ Left [H⁺] = 2 × 10⁻³ - 1 × 10⁻³; : pH = 3

233 **(a)**

$$K_p = \frac{p_{\text{CO}}^2 p_{\text{O}_2}}{p_{\text{CO}_2}^2} = \frac{[0.4]^2 \times [0.2]}{(0.6)^2} = 0.0888$$

234 (d)

pH =
$$4.5 + log \frac{[Conjugate base]}{[Acid]}$$
Salt = [Acid] since [A⁻] = [H₁]

 \therefore [Salt] = [Acid], since $[A^-]$ = $[H_A]$

$$\therefore \quad pH = 4.5 \ \therefore pOH = 9.5$$

235 **(b)**

We know that,

pH = p
$$K_a$$
 + log $\frac{\text{[salt]}}{\text{[acid]}}$
or pH = $-\log 10^{-8} + \log \frac{1}{1}$

or
$$pH = -\log 10^{\circ} + \log \frac{1}{1}$$

$$(\because [salt] = [acid])$$
or pH = 8

$$3A + 2B \rightarrow 2C$$

$$K_{c} = \frac{\text{concentration of products}}{\text{concnetration of reactants}}$$
$$= \frac{[C]^{2}}{[A]^{3} \times [B]^{2}}$$

Ž38 **(a)**

Only in reaction (ii) $H_2PO_4^-$, gives H^+ to H_2O , thus behaves as an acid.

239 (a)

 $CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$

$$\therefore \quad [OH^{-}] = c \cdot h = c \sqrt{\frac{K_{H}}{c}} = \sqrt{K_{H} \cdot c} = \sqrt{\frac{K_{w}}{K_{a}} \cdot c}$$

or
$$-\log OH = -\frac{1}{2}[\log K_w + \log c - \log K_a]$$

or
$$pOH = \frac{1}{2}[pK_w - \log c - pK_a]$$

Now, $pH + pOH = pK_w$

$$\therefore \qquad pH = \frac{1}{2} [pK_w + \log c + pK_a].$$

240 **(a)**

$$\underbrace{A+B}_2 + Q \rightleftharpoons \underbrace{C+D}_2$$

The reaction is endothermic so, on increase temperature concentration of product will increase

242 (d)

It is $FeSO_4 \cdot (NH_4)_2SO_4 \cdot 10H_2O$.

243 (a)

$$[OH^{-}] = 2 \times 0.05 = 0.1$$

 \therefore pOH = 1 and pH = 13.

244 **(b)**

For a reaction, $K_c = \frac{[product]}{[reactant]}$

Hence,

if $K_c > 1$, then [Product]>[Reactant]

245 (c)

For base BOH

$$BOH \rightleftharpoons B^+ + OH^-$$

Dissociation constant $K_b = \frac{[B^+][OH^-]}{[BOH]}$

 \therefore Higher the value of K_b , more will be dissociation of base and stronger will be base and vice-versa.

∴ Weakest base among given choices is having $K_b = 7.2 \times 10^{-11}$.

246 (a)

$$2AB_2(g) \rightleftharpoons 2AB(g) + B_2(g)$$

$$K_p = \frac{x^2 \cdot x}{2(1-x)^2} \cdot \left[\frac{P}{1+\frac{x}{2}} \right]^1 = \frac{x^3 \cdot P}{2}$$

$$\left(1-x \approx 1 \text{ and } 1+\frac{x}{2} \approx 1, \text{ since } x \ll 1\right)$$

Or
$$P = \frac{3\sqrt{2K_p}}{P}$$

247 **(b)**

$$K_p = K_c (RT)^{\Delta ng}$$

 $\Delta ng = -1$ (For the reaction, $2SO_2 + O_2 \rightleftharpoons 2SO_3$). Thus, for this reaction, K_p is less than K_c

248 (a)

$$Cr(OH)_3 \rightleftharpoons Cr^{3+} + 3OH^-$$

$$(s)$$
 $(3s)$

$$K_{\rm sp} = s \times (3s)$$

$$= 27s$$

$$K_{\rm sp} = s \times (3s)^3$$

= 27s⁴
2.7 × 10⁻³¹ = 27s⁴

$$s = \sqrt[4]{\frac{K_{\rm sp}}{27}} = \sqrt[4]{\frac{2.7 \times 10^{-31}}{27}}$$

$$=\sqrt[4]{10^{-32}}$$

$$= 10^{-8} \, \text{mol/L}$$

$$N_2O_4 \rightleftharpoons 2NO_2$$

$$\frac{1}{1-\alpha}$$

$$K_p = \frac{\left(n_{\text{NO}_2}\right)^2}{n_{\text{NO}_2}} \times \left[\frac{P}{\Sigma n}\right]^1$$

For 33% dissociation: $K_p = \frac{(2 \times 0.33)^2}{0.67} \times \left[\frac{P}{1.33} \right]$

For 40% dissociation: $K_p = \frac{(2 \times 0.40)^2}{0.60} \times \left[\frac{P}{1.40} \right]$

$$\therefore \frac{P_1}{P_2} = 1.56 \approx 1.60 = \frac{8}{5}$$

250 (a)

$$A + 2B \rightleftharpoons 2C$$

$$(2-0.5)(3-0.5)(2 \times 0.5)$$
 at equilibrium

Molar concentration of $A = \frac{1.5}{2}$

Molar concentration of $B = \frac{2.5}{2}$

Molar concentration of C =

$$K = \frac{[C]^2}{[A][B]^2} = \frac{1 \times 1 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 1.5 \times 2.5 \times 2.5}$$

$$= \frac{2}{1.5 \times 2.5 \times 2.5} = 0.21$$

251 (d)

In
$$\frac{N}{1000}$$
 KOH solution, $[OH^-] = 10^{-3}$ M

$$pOH = -\log[OH^{-}] = -\log[10^{-3}]$$

$$= +3\log 10 = 3$$

$$pH + pOH = 14$$

$$pH = 14 - pOH$$

$$= 14 - 3$$

$$= 11$$

252 (a)

Tears are alkaline in nature.

$$MX_2 = M^{2+} + 2X^{-}$$

$$K_{\rm sp} = (2s)^2(s) = 4s^3$$

$$\Rightarrow s = \sqrt[3]{\frac{K_{\rm sp}}{4}} = \sqrt[3]{\frac{4 \times 10^{-12}}{4}} = 1.0 \times 10^{-4} \text{M}$$

255 (d)

Let solubility of $BaSO_4 = mol L^{-1}$

$$BaSO_4 \rightleftharpoons Ba^{2+} + SO_4^{2-}$$

$$\boldsymbol{x}$$

∴ Ions at equilibrium

$$K_{\rm sp} = [Ba^{2+}][SO_4^{2-}]$$
$$= x \times x$$

$$r^2$$

Given,
$$K_{\rm sp} = 1.5 \times 10^{-9}$$

$$(1.5 \times 10^{-9}) = x^2$$

or
$$\sqrt{1.5 \times 10^{-9}} = x$$

$$x = 3.9 \times 10^{-5} \text{ mol/L}$$

256 (d)

Strongest Bronsted base is that which has weakest conjugate acid.

Base	Conjugate acid (base + H ⁺)
ClO-	HClO
ClO ₂	HClO ₂
ClO ₃	HClO ₃
ClO ₄	HClO ₄

: HClO is weak conjugate acid.

∴ ClO⁻ is strongest Bronsted base.

257 **(b)**

At equilibrium $Q = K_c$ (or $Q = K_p$)

258 (a)

Oxalic acid = x mol/L

Oxalic acid KMnO₄

$$M_1V_1 = M_2V_2$$

 $40 \text{ mL} \times x = 16 \text{ mL} \times 0.05$
 $x = \frac{16 \times 0.05}{40} = \frac{1}{50}$
 $x = \frac{1}{50} \text{ M}$

Now, convert molarity into normality $N \times \text{eq. wt} = M \times \text{mol. wt. of oxalic acid}$

$$N \times 45 = \frac{1}{50} \times 90$$
$$N = \frac{1}{25}$$

This normality represents the hydrogen ion concentration.

So,
$$[H^+] = \frac{1}{25}$$

 $pH = \log \frac{1}{[H^+]}$
 $= \log 25 = 1.3$

259 (c)

Simple cations such as Ag⁺, Cu²⁺, Fe³⁺ etc. can accept pairs of electrons and hence are Lewis acids.

260 **(d)**

Aspirin is a weak acid. Due to common ion effect, it is unionised in acid medium but completely ionised in alkaline medium

261 (c)

For a saturated solution product of ionic concentrations $\geq K_{sp}$.

262 **(b)**

$$H_2O + H_2O = H_3O^+ + OH^-$$

$$K_{S.I} = \frac{K_w}{[H_2O]^2} = \frac{10^{-14}}{(55.6)^2} = 3.23 \times 10^{-18}$$

263 **(c)**

Follow the method to write K_c or K_p values. It is

the ratio of concentrations of products with suitable powers to concentration of reactants e.g.,

$$3A(g) + 2B(g) \rightleftharpoons 4C(g) + 5D(g)$$

$$K_c = \frac{[C]^4 [D]^5}{[A]^3 [B]^2}$$

$$K_p = \frac{[P_C]^4 . [P_D]^5}{[P_A]^3 . [P_B]^2}$$

264 **(b)**

(i)Millimolar= 10^{-3} M

(ii)pH =
$$-\log[H^+]$$

pH = $-\log(10^{-3}) = 3$.

265 **(b)**

$$A + 2B \rightleftharpoons C + 3D$$

$$K_C = \frac{p_C p_D^3}{p_A p_B^2} = \frac{0.30 \times (0.50)^3}{0.20 \times (0.10)^2}$$
= 18.75

266 (d)

(d)
It involves gain and loss of electron pair (Lewis concept).

267 **(d)**

$$SnCl_2 + 2HgCl_2 \rightarrow SnCl_4 + Hg_2Cl_2$$
(white ppt.)
$$SnCl_2 + Hg_2Cl_2 \rightarrow SnCl_4 + Hg_2$$
(Grey ppt.)

268 (c)

 ${\rm BF_3}$ can accept a pair of electrons, but it cannot give ${\rm H^+}$ ions in the aqueous solution, hence ${\rm BF_3}$ acts as Lewis acid but not as a Bronsted acid

269 **(c)**

$$Na_2O + H_2O \rightarrow 2NaOH$$
 \uparrow

Oxidation number of Na
 $+1$
 $+1$

Oxygen
 -2
 -2

No change in oxidation number, so (a) and (d) are not true.

(b) is also not true.

Oxide ion donates a pair of electrons, thus changes to OH⁻

270 (d)

$$pH = \frac{1}{2}pK_w + \frac{1}{2}\log C + \frac{1}{2}pK_a$$

$$= \frac{14}{2} + \frac{1}{2}\log(5 \times 10^{-3}) + \frac{1}{2} \times 4.74$$

$$= 7 + \frac{1}{2}[0.6990 - 3] + 2.3$$

$$pH = 8.2195$$

271 **(b)**

For a salt of weak base and strong acid like MgCl₂ the relation is as

$$K_h = \frac{K_W}{K_h}$$

272 (d)

Theory of active mass indicates that the rate of chemical reaction is directly proportional to the concentration of reactants

273 **(c)**

If $n_P = n_R$, then $K_p = K_c$ where, $n_p =$ number of moles of products $n_R =$ number of moles of reactants

274 (c)

$$K_h = \frac{K_w}{K_a \times K_b}$$

275 (c)

N— H bond behaves as an acid.

276 (c)

$$A + B \rightleftharpoons C +$$

D

Initial x mol x molAt equilibrium $x - \frac{x}{3} = \frac{2x}{3}$ $\frac{2x}{3}$ $\frac{x}{3}$ Hence,

$$K_c = \frac{[C][D]}{[A][B]} = \frac{\left(\frac{x}{3V}\right)\left(\frac{x}{3V}\right)}{\left(\frac{2x}{2V}\right)\left(\frac{2x}{2V}\right)} = \frac{1}{4} = 0.25$$

277 (a)

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

Initially at eq. $0.2 \atop (0.2-a) \atop (0.6-3a) \atop (0.6-3a) \atop 2a}$

Total mixture is 0.8; 40% of it reacts, i.e., $\frac{0.8 \times 40}{100}$ reacts to give $\frac{0.8 \times 40}{100} \times \frac{1}{2}$ mole of NH₃

or NH₃ formed is 0.16 mole

0r

$$2a = 0.16$$

:.

$$a = 0.08$$

 \therefore initial mole = 0.8

Final mole =
$$(0.2 - 0.08) + (0.6 - 0.24) + 0.16$$

= $0.12 + 0.36 + 0.16 = 0.64$

∴ Ratio of final to initial mole = $\frac{0.64}{0.8}$ = $0.8 = \frac{4}{5}$

278 **(b)**

[H⁺] =
$$4 \times 10^{-3} M$$

∴ pH = $-\log 4 \times 10^{-3} = 2.398$.

279 **(b)**

$$\begin{aligned} \mathrm{pH} &= \mathrm{p} K_a + \log \frac{\mathrm{[Salt]}}{\mathrm{[Acid]}} \\ &= 5 + \log \frac{10}{1} \ \mathrm{if} \frac{\mathrm{[Salt]}}{\mathrm{[Acid]}} = 10:1, \mathrm{Then,} \\ \mathrm{pH} &= 6. \end{aligned}$$

280 (a)

10 *M* HCl will give $[H^+] = 10^1$; pH of such solution = 0.

281 (a)

$$Mg(OH)_{2} \rightleftharpoons Mg^{2+} + 2OH^{-}$$

$$S = 2S$$

$$K_{sp}Mg(OH)_{2} = [Mg^{2+}][OH^{-}]^{2}$$

$$\Rightarrow K_{sp}Mg(OH)_{2} = 4S^{3}$$

$$1.96 \times 10^{-11} = 4S^{3}$$

or
$$S = \left[\frac{1.96 \times 10^{-11}}{4}\right]^{1/3}$$
or
$$S = (4.9 \times 10^{-12})^{1/3}$$

$$\therefore S = 1.96 \times 10^{-4}$$

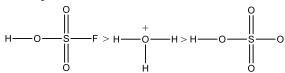
So, concentration of $[OH^{-}] = 2S$

 10^{-4}]

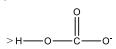
$$pOH = 3.471$$

 $pH = 14 - pOH$
 $= 14 - 3.471$
 $pH=10.529$

282 **(c)**


$$K_p = K_c (RT)^{\Delta n}$$
;

283 (c)


 K_c is characteristic constant for a given reaction at a temperature; $K_p = P_{CO_2}$.

284 (c)

Acidity order

(Conjugate anion decreases acidity)

285 **(c)**

For precipitation, ionic product > solubility product (K_{sp})

For, Ag₂CrO₄

ionic product =
$$[Ag^+]^2[CrO_4^-]$$

= $(10^{-4})^2(10^{-5}) = 10^{-13}$

$$K_{\rm sp}$$
 of $Ag_2CrO_4 = 4 \times 10^{-12}$

Here,
$$K_{\rm sp} > {\rm IP}$$

This, no precipitate is obtained.

For AgCl, ionic product =
$$[Ag^+][Cl^-]$$
 =

$$[10^{-4}][10^{-5}]$$

$$= 10^{-9}$$

$$K_{\rm sp}(AgCl) = 1 \times 10^{-10}$$
Here

Here.

 $IP > K_{sp}$

So, precipitate will form.

Thus, silver chloride gets precipitated first.

286 (d)

It is basic lead carbonate.

287 (d)

 K_p or K_c are characteristic constants for a given reaction.

288 **(b)**

$$K_c = [Ca^{2+}][F^-]^2;$$

If $[Ca^{2+}] = 4 \times [Ca^{2+}];$

To have K_c constant [F⁻] should be $\frac{[F^-]}{2}$.

290 (d)

Strong conjugate base has a weak conjugate acid. Weakest conjugate acid is CH₃COOH.

291 **(b)**

I⁻ is electron pair donor.

292 (c)

2HI
$$\rightleftharpoons$$
 H₂ + I₂;

$$K_c = \frac{\alpha^2}{4(1-\alpha)^2}$$

Where α is degree of dissociation,

Also,
$$\alpha = \frac{22}{100}$$

$$K_c = 0.0199$$

293 **(c)**

ZnO reacts with acid and alkalies both.

$$\Delta n = -1$$
 and $K_p = K_c \times (RT)^{\Delta n}$

295 (a)

$$H_2(g) + CO_2(g) \rightleftharpoons CO(g) + H_2O(l)$$

Initial conc.

At equilibrium (1-x)(1-x)

$$K_p = \frac{p_{\text{CO}} \cdot p_{\text{H}_2\text{O}}}{p_{\text{H}_2} \cdot p_{\text{CO}_2}} = \frac{x \cdot x}{(1 - x)(1 - x)} = \frac{x^2}{(1 - x)^2}$$

296 **(c)**

In this equation, volume is decreasing and the reaction is exothermic. So, for the highest vield of Z, pressure should be high and temperature should be low.

297 (a)

The pH of salt $BaCl_2 = 7$ whereas $SrCl_2$ and $CaCl_2 \simeq 7$ and $MgCl_2 < 7$.

298 (d)

Lewis definition suggests that an acid must be capable of accepting lone pair in its vacant orbital. Smaller ion shows more attraction towards lone pair of electron.

299 (c)

Degree of dissociation,
$$\alpha = \frac{D-d}{d}$$

$$= \frac{46-30}{30}$$
= 0.533 or 53.3%

300 (d)

$$\Delta n = 0$$
 then, $K_p = K_c$
For $(d)\Delta n = 1$

301 (a)

$$pH = pK_a + log \frac{[Conjugate base]}{[Acid]}$$
or $5.24 = 4.74 + log \frac{[Conjugate base]}{[Acid]}$

$$\therefore \frac{[Conjugate base]}{[base]} = 3.$$

302 (a)

$$[H^{+}] = C\alpha = \sqrt{K_a \cdot C}$$

$$pH = -\log(K_a \cdot C)^{1/2}$$

$$= \frac{1}{2} [-\log K_a - \log C]$$

$$= \frac{1}{2} [4.74 - \log 10^{-2}]$$

$$= \frac{1}{2} [4.74 + 2] = 3.37$$

303 (a)

1M solution of CH₃COONa on addition to acid shows a decrease in dissociation of acid due to common ion effect.

304 (d)

Weak monoacidic base e.g., BOH is neutralised as follows

$$BOH + HCl \rightarrow BCl + H_2O$$

At equivalence point all BOH gets converted into salt and remember! The concentration of H⁺ (or pH of solution) is due to hydrolysis of resultant salt (BCl, cationic, hydrolysis here)

$$B^+ + H_2O \rightleftharpoons BOH + H^+$$

 $C(1-h)$ Ch Ch

Volume of HCl used up

$$V_a = \frac{N_b V_b}{N_a} = \frac{2.5 \times 2 \times 15}{2 \times 5} = 7.5 \text{ mL}$$

Concentration of salt

[BCl] =
$$\frac{\text{conc.of base}}{\text{total volume}} = \frac{2 \times 2.5}{5(7.5 + 2.5)} = \frac{1}{10} = 0.1$$

 $K_h = \frac{Ch^2}{1 - h} = \frac{K_W}{K_h}$

(h should be estimated whether that can be neglected or not)

on calculating h=0.27 (significant, not

$$[H^+] = Ch = 0.1 \times 0.27 = 2.7 \times 10^{-2}M$$

305 **(c)**

A salt is precipitated only when the product of ionic concentration is more than its solubility product.

$$K_{\rm sp} = 1 \times 10^{-8}$$

 $[A^+] = 10^{-3} \text{ M}$
 $[B^-] = \frac{1 \times 10^{-8}}{10^{-3}} = 10^{-5} \text{ M}$

So, AB will be more precipitated only when the concentration of $[B^-]$ is more than 10^{-5} M.

306 **(b)**

According to Le-Chatelier's principle exothermic reactions are favourable at low pressure. The reaction in which number of moles decreases are favourable at high pressure or low volume.

$$C_2H_4 + H_2 \rightleftharpoons C_2H_6, \Delta H = -130 \text{ kJ mol}^{-1}$$

- : The reaction is exothermic and number of moles of reactants are decreasing.
- : The reaction rate is increased by decreasing temperature and increasing pressure.

307 (d)

The reaction does not cease up but goes in both directions with same speed.

308 (a)

Haber's process of synthesis of ammonia

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

$$N_2 + 3H_2 = Fe, Mo$$
 750 K
 2000 atm

Since, the number of molecules of gaseous products are less than the number of molecules of gaseous reactants, thus according to Le-Chatelier's principle, high pressure favours the forward reaction *i.e.*, more ammonia will be obtained.

309 (d)

Buffer capacity of an acidic buffer is maximum when the ratio of H*A* to A^- is unity. Since, pH of acidic buffer = p K_a + log $\frac{[A^-]}{[HA]}$

For maximum buffer capacity, $[A^-] = [HA]$

$$\therefore$$
 pH = p K_a

310 **(c)**

$$\therefore$$
 pH = 2

$$\begin{aligned} \vdots & \qquad [H^+] = 10^{-2} \\ [H^+] &= N. \, \alpha \\ 10^{-2} &= 0.1 \times \alpha \\ \alpha &= \frac{10^{-2}}{0.1} \\ \alpha &= 0.1 \end{aligned}$$

311 (c)

Since, catalyst increases the rate of forward reaction as well as the rate of backward reaction, it does not affect the equilibrium constant.

312 (d)

Meq. of H_2SO_4 needed for 20 Meq. of NaOH = 20 Thus, volume of H_2SO_4 needed = V_{mL}

or
$$V \times 0.25 \times 2 = 20$$

$$\therefore$$
 $V = 40 \text{ mL}$

Also, temperature increases during neutralization and then decreases after neutralization on further addition of acid.

313 **(b)**

The dissociation of H_2S decreases in presence of acid (or H^+ a common ion furnished by an acid).

314 **(a)**

$$H_2 + I_2 \rightleftharpoons 2HI$$
15 5.2 0
(15-5) (5.2-5) 10

Equilibrium constant

$$(K_c) = \frac{[HI]^2}{[H_2][I_2]} = \frac{10 \times 10}{10 \times 0.2} =$$

50

315 (c)

New concentration of,

HCl =
$$\frac{10^{-6}}{100}$$
 = $10^{-8} M$
∴ [H⁺] = $10^{-18} + 10^{-7}$
= $1.1 \times 10^{-7} M$
∴ pH ≈ 7

317 (a)

$$pH = -\log[H^{+}]$$

$$= -\log(3 \times 10^{-3})$$

$$= 3 - \log 3$$

$$= 3 - 0.4771$$

$$= 2.5229$$

318 (d)

The dissociation of HCN will decrease in presence of NaCN due to common ion effect.

319 (c)

Meq. of HCl =
$$10 \times 10^{-1} = 1$$

Meq. of NaOH = $10 \times 10^{-1} = 1$

Thus, both are neutralized and 1 Meq. Of NaCl (a salt of strong acid and strong base) which does not hydrolyse and thus, pH = 7.

320 (d)

PbCl₂
$$\rightleftharpoons$$
 Pb²⁺ + 2I⁻
 $s \text{ mol/L}$ s 2 s
Hence, $K_{sp} = [Pb^{2+}][I^{-}]^{2}$
 $= (s)(2s)^{2}$
 $= 4s^{3}$
 \therefore $s = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{2.3 \times 10^{-32}}{10}}$
 $= 1.78 \times 10^{-11} \text{ mol/L}$
 $= 1.78 \times 10^{-11} \times 278 \text{ g/L}$
 $= 4.95 \times 10^{-9} \text{ g/L}$

321 **(b)**

Hydrolysis of CH_3COO^- give alkaline solution.

322 (d)

For hydrolysis of NH₄⁺;

$$K_H = \frac{K_w}{K_n} = \frac{10^{-14}}{1.8 \times 10^{-5}} = 5.5 \times 10^{-10}$$

323 (c)

In water, barium hydroxide is hydrolysed as followers

Ba(OH)₂
$$\rightleftharpoons$$
 Ba²⁺ + 2OH⁻
Conc. Of Ba²⁺ = 1 × 10⁻³M
Conc. of [OH⁻] = 2 × 1 × 10⁻³M
= 2 × 10⁻³M

$$pOH = -log[OH^{-}]$$

= $-log(2 \times 10^{-3})$
= 2.69

$$pH + pOH = 14$$

 $pH = 14 - pOH$
 $= 14 - 2.69$
 $= 11.3$
 ≈ 11.0

324 (d)

In the titrationof weak acid with strong base, phenolphthalein is used

326 (a)

In a reversible reaction some amount of the reactants remains unconverted into products and it never go for completion

327 (d)

$$K_a$$
 for $H_2S = \frac{[H^+][HS^-]}{[H_2S]}$;

An increase in $[H^+]$ will show a decrease in $[HS^-]$ to maintain constant K_a value.

328 (d)

Le-Chatelier proposed a principle to explain the

effect of *P*, *T* and *C* on systems in equilibrium.

329 **(a)**

$$pK_a = -\log K_a$$

Higher the value of pK_a , weaker is the acid. Among given choices 2.0, 2.5, 3.0 and 4.0 the value 2.0 is lowest so this acid is strongest.

330 (c)

Alkali and alkaline earth metal hydroxides are strong base.

331 **(a)**

$$pH = 9 : [H^+] = 10^{-9}$$

 $pH = 6 : [H^+] = 10^{-6}$

332 (d)

Aprotic solvents are those from which hydrogen ion or OH⁻ cannot be derived.

333 **(b)**

 $Co(OH)_2$ is not precipitated in III gp. or it more soluble and thus, has high K_{sp} .

334 **(b)**

$$[A^+][B^-] > K_{\rm sp}$$

335 (a)

$$pH = \frac{1}{2} [pK_{a_1} + pK_{a_2}] = \frac{1}{2} [14.15 + 6.89] = 10.52$$

336 (d)

$$A + B \rightleftharpoons C + D$$

1 1 0 0 Initially
 $(1-3x)(1-3x) = 3x = 3x$ At
equilibrium (given)

At equilibrium, the remaining moles of A is x, because 3x moles of C are produced.

$$\Rightarrow$$
 1 - 3 $x = x$

$$x = \frac{1}{4}$$

Equilibrium constant,

$$K_C = \frac{[C][D]}{[A][B]} = \frac{3x.3x}{(1-3x)^2}$$

On putting the value of x, we get,

$$K_c = \frac{9 \times \frac{1}{16}}{1 + \frac{9}{16} - \frac{6}{4}} = \frac{9}{1} = 9$$

337 (a)

The acidic character of $\mathrm{HClO_4}$ is maximum. The order is

$$HClO_4 > HClO_3 > H_2SO_4 > H_2SO_3$$
.

339 (c)

 K_p is independent of initial concentration.

340 (d)

20% yield of NH_3 and thus, 20% of 340~g is

$$=\frac{20\times340}{100}=68$$
 g

341 **(d)**

 $CO_3^{2-} + H^+ \rightarrow HCO_3^-$ (acid).

342 **(b)**

2.
$$\operatorname{CaCO}_3(s) \xrightarrow{\Delta} \operatorname{CaO}(g)(s) + \operatorname{CO}_2(g) \uparrow$$

 $K_p = 8 \times 10^{-2}$

$$K_p = \frac{p_{\text{CaO(s)}} \times p_{\text{CO}_2(g)}}{p_{\text{CaCO}_3(s)}}$$

(Heterogenous

equilibrium)

$$K_p = p_{\text{CO}_2}$$

 $p_{\text{CO}_2} = 8 \times 10^{-2}$

3.
$$CO_2(g) + C(s) \rightarrow 2CO(g), K_p = 2$$

$$K_p = \frac{p_{\text{CO(g)}}^2}{p_{\text{CO_2}} \times p_{\text{C(s)}}}$$

(Heterogenous

equilibrium)

$$K_p = \frac{p_{\text{CO}}^2}{p_{\text{CO}_2}}$$

$$2 = \frac{p_{\text{CO}}^2}{8 \times 10^{-2}}$$

$$p_{\text{CO}}^2 = 2 \times 8 \times 10^{-2}$$

$$p_{\text{CO}} = 0.4 \text{ atm}$$

343 (c)

$$H_2CO_3 \rightleftharpoons H^+ + HCO_3^-;$$
 $K_1 = 4.2 \times 10^{-7}$
 $HCO_3^- \rightleftharpoons H^+ + CO_3^{2^-};$ $K_2 = 4.8 \times 10^{-1}$
 $K_1 >> K_2$
 $\therefore [H^+] = [HCO_3^-]$
 $K_2 = \frac{[H^+][CO_3^{2^-}]}{[HCO_3^-]}$

So,
$$[CO_3^{2-}] = K_2 = 4.8 \times 10^{-1}$$

344 (d)

Acid indicators are generally weak acid. The dissociation of indicator HIn takes place as follows

$$K_{\text{In}} = \frac{[H^+][\ln^-]}{[H \text{In}]}$$
or
$$[H^+] = K_{\text{In}} \frac{[H \text{In}]}{[\Pi^-]}$$

$$pH = -\log[H^+]$$

$$= -\log\left(K_{\text{In}} \frac{[H \text{In}]}{[\Pi^-]}\right)$$

$$= -\log K_{\text{In}} + \log\frac{[\Pi^-]}{[H \text{In}]}$$

$$= pK_{\text{In}} + \log\frac{[\Pi^-]}{[H \text{In}]}$$
or
$$\log\frac{[\Pi^-]}{[H \text{In}]} = pH - pK_{\text{In}}$$

345 (c)

Mole $OH^- = M \times V_{\text{in litre}}$

 \therefore No of OH⁻ = 0.3 × 0.005 × 2 = 0.0030.

346 **(a)**

Initial concentration
$$H_2 + I_2 \rightleftharpoons 2HI$$

 $4.5 \quad 4.5 \quad 0$
 $(4.5 - x)(4.5 - x) 2x$

From equation, 2x = 3

$$\therefore x = \frac{3}{2} = 1.5$$

So, concentration at equilibrium

$$[H_2] = 4.5 - 1.5 = 3$$

$$[I_2] = 4.5 - 1.5 = 3$$

$$[HI] = 3$$

$$\therefore K_c = \frac{[HI]^2}{[H_2][I_2]} = \frac{3 \times 3}{3 \times 3} = 1$$

347 **(a)**

Given,
$$K_w = 10^{-14}$$
, $K_a = 10^{-5}$
Concentration of salt = 0.001 M

$$\therefore K_h = \frac{K_w}{K_a} = \frac{10^{-14}}{10^{-5}} = 10^{-9}$$

According to equation

$$A^- + H_2 O \rightleftharpoons HA + OH^-$$

Let degree of hydrolysis=*h*

$$\begin{array}{ll} & 0.001(1-h)(0.001\times h)(0.001\times h) \\ & K_h = \frac{[\text{HA}][\text{OH}^-]}{[\text{A}^-]} = \frac{(0.001\times h)(0.001\times h)}{0.001(1-h)} \\ & \text{or} \qquad 10^{-9} = (0.001h)^2 \quad [\because 0.001(1-h) = 1] \\ & \text{or} \qquad 10^{-6} = h^2 \\ & \therefore \qquad 10^{-3} = h \end{array}$$

348 **(d)**

Unit of $K_c = []^{\Delta n} \cdot \Delta n = +1$.

349 (c)

To precipitate soap from its saturated solution on addition of salt is called salting out action of soap. $RCOONa \rightleftharpoons RCOO^- + Na^+$

$$K_{sp} = [RCOO^-][Na^+]$$

In presence of NaCl, [Na⁺] increases and thus, the product of [Na⁺][$RCOO^-$] exceeds in K_{sp} to show precipitation of soap.

350 **(c)**

$$SO_{2} + \frac{1}{2}O_{2} \rightleftharpoons SO_{3}$$

$$K_{1} = \frac{[SO_{3}]}{[SO_{2}][O_{2}]^{1/2}}$$
...(i)
$$2SO_{3} \rightleftharpoons 2SO_{2} + O_{2}$$

$$K_{2} = \frac{[SO_{2}]^{2}[O_{2}]}{[SO_{3}]^{2}}$$

...(ii)

From Eqs. (i) and (ii)

$$K_2 = \frac{1}{K_1^2}$$

$$= \frac{1}{(5 \times 10^{-2})^2} = \frac{1}{25 \times 10^{-4}}$$

$$= \frac{100 \times 10^2}{25}$$

$$= 4 \times 10^2 \text{ atm}$$

351 (d)

(i) The haemoglobin of RBC combines with oxygen in lungs following the equilibrium,

$$H_h(s) + O_2(g) \rightleftharpoons H_hO_2(s)$$

When these are at lungs, the partial pressure of O_2 being appreciable to show forward reaction, however, when they pass to tissues, the partial pressure of O_2 decreases to favour backward reaction releasing O_2 .

(ii) Removal of CO₂ from blood is based on the equilibrium,

$$CO_2(g) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

In tissues CO_2 gets dissolved in H_2O due to high pressure whereas in lungs, the CO_2 is released out because of low pressure of CO_2 .

(iii) Tooth enamel substance (hydroxyapatite) Ca₅(PO₄)₃OH shows the following equilibrium,

$$Ca_5(PO_4)_3OH \xrightarrow{Demineralization} 5Ca^{2+}(aq) + 3PO_4^{3-}(aq) + OH^{-}(aq)$$

The use of sweet material or fermentation produces H⁺, which combines with OH⁻ to favour demineralization of enamel causing tooth decay.

352 **(b)**

Pressure has no effect on equilibrium if $\Delta n = 0$

353 (a)

Aqueous solution of AlCl₃ is acidic due to the hydrolysis of aluminium ion

$$AlCl_3 \xrightarrow{Hydrolysis} Al(OH)_3 + H^+$$

354 (a)

$$H^+ = 1.0 \times 10^{-8} = 10 \times 10^{-9}$$

Also, if ionisation is not neglected

$$H_2 0 \rightleftharpoons H_{10^{-8}+a}^+ + 0H_a^-$$

$$a \times (10^{-8} + a) = 10^{-14}$$

$$\therefore \qquad a = 9.9 \times 10^{-9}$$

$$\therefore \qquad \% \text{ emr} = \frac{10 \times 10^{-9} - 9.9 \times 10^{-9}}{10 \times 10^{-9}}$$

$$= 1\%$$

355 (d

Thus, a solution of blue and yellow ions appears green.

356 **(b)**

$$NH_2COONH_4(g) \rightleftharpoons 2NH_3(g) + CO_2(g)$$

At eq. if partial pressure of $CO_2 = p$
Then that of $NH_3 = 2p$
 $K_p = p_{NH_3}^2 \times p_{CO_2} = (2p)^2 \times p = 4p^3$

=
$$2.9 \times 10^{-5}$$
 or $p^3 = 0.725 \times 10^{-5}$ or $p = 1.935 \times 10^{-2}$ Hence, total pressure = $p = 5.81 \times 10^{-2} = 0.0581$ atm

357 (d)

 K_w increases with increase in temperature

358 (d)

In all the given reactions, equilibrium is affected by the increase in volume at constant temperature

359 (a)

Lewis bases are electron pair donor. I⁺ is electron deficient, hence do not act as Lewis base.

360 (d)

 ${\rm CH_3COONH_4}$ is a salt of weak acid and weak base and

$$K_{\rm acid} \approx K_{\rm base}$$

CH₃COOH NH₄OH

361 **(a)**

 CH_4 has almost no acidic nature and thus, CH_3^- is the strongest base

363 **(c)**

$$H_2SO_4 \rightleftharpoons H^+ + HSO_4^-$$

364 (a)

$$h = \sqrt{\left[\frac{K_h}{c}\right]} = \sqrt{\left[\frac{K_w}{K_a \cdot c}\right]}$$
$$= \sqrt{\left[\frac{10^{-14}}{10^{-5} \times 0.001}\right]} = 10^{-3}$$

365 **(b)**

$$K_{c_1} = \frac{[\text{NO}]^2}{[\text{N}_2][\text{O}_2]} = 4 \times 10^{-4}$$

$$K_{c_2} = \frac{[\text{N}_2]^{1/2}[\text{O}_2]^{1/2}}{[\text{NO}]}$$

$$\therefore K_{c_2} = \sqrt{\frac{1}{K_{c_1}}} = \sqrt{\frac{1}{4 \times 10^{-4}}} = 50$$

366 **(d)**

 $K_p = (P_{\rm H_2O})^2$ and $K_c = [{\rm H_2O}]^2$; the solid species are not used in writing K_c or K_p

367 **(c)**

 $\rm H_2SO_4$ is strong acid having pH < 7. NaNO₂ on hydrolysis gives alkaline solution of pH > 7. NaCl is neutral and $\rm H_2S$ is weak acid.

368 (a)

$$A + B \rightleftharpoons C + D;$$

$$Q = \frac{[C][D]}{[A][B]} = \frac{3 \times 4}{1 \times 2} = 6$$

But $K_c = 10$;

Thus, to increase the value of Qto K_c , forward reaction should occur.

369 (d)

$$(A)CH_3COONH_4 + H_2O \rightarrow CH_3COOH + NH_4OH$$

Ammonium acetate

Although both (CH₃COOH and NH₄OH) of them are weak still CH₃COOH is slightly more acidic.

: Solution is acidic in nature.

(B)NH₄Cl + H₂O \longrightarrow NH₄OH + HCl ammonium chloride weak base strong acid

: Solution is acidic in nature.

(C)
$$(NH_4)_2SO_4 + H_2O \rightarrow 2NH_4OH + H_2SO_4$$

ammonium sulphate weak base strong base

: Solution is acidic in nature.

(D)CH
$$_3$$
COONa + H $_2$ O \rightarrow CH $_3$ COOH + NaOH

weak acid

sodium acetate strong base

: Solution is basic in nature.

370 (d)

Isoelectric point is the condition when Zwitter ions or sol particles do not move under the influence of electric field, *i. e.*, they lose their charge.

371 **(a)**

The value of equilibrium constant is independent of volume of container.

∴ Value of equilibrium constant will remain same (300) if volume of reaction flask is tripled.

372 **(a)**

S has +4 ox.no. in H_2SO_3 and SO_2 both.

373 **(b)**

CaF₂
$$\rightleftharpoons$$
 Ca²⁺ + 2F⁻

$$K_{sp} = s(2s)^{2} = 4s^{3}$$

$$K_{sp} = 4(2.3 \times 10^{-6})^{3}$$

$$= 48.668 \times 10^{-18} \text{ (mol dm}^{-3})^{3}$$

374 (c)

Among the given, pH of 0.1M CH₃COOH is not equal to one as CH₃COOH is a weak acid, thus does not ionise completely.

375 (a)

Meq. of acetic acid =
$$50 \times 2 = 100$$

Meq. of CH₃COONa = $10 \times 1 = 10$
pH = $-\log K_a + \log \frac{\text{[Conjugate base]}}{\text{[Acid]}}$

or
$$pH = -\log 10^{-5} + \log \frac{10^{-5}}{100} = 4$$

376 **(b)**

Let the solubility of AgCl is *S*

$$AgCl = Ag^{+} + Cl^{-}$$

 $[Cl^{-}]$ from NaCl=0.2

Concentration of $Cl^- = S + 0.2$

$$K_{\rm sp} = S(S + 0.2)$$

$$1.8 \times 10^{-10} = S^2 + 0.2S$$

(S is very small as AgCl is sparingly soluble in water, thus $S^2 <<<1$)

$$1.8 \times 10^{-10} = 0.2S$$

$$S = \frac{1.8 \times 10^{-10}}{0.2}$$
$$= 9.0 \times 10^{-10} \text{ M}$$

$$\alpha = 1.9 \times 10^{-9}; c = \frac{1000}{18}$$

$$K = \frac{[H^+][0H^-]}{[H_20]} = c\alpha^2$$

$$= 1.9 \times 10^{-9} \times 1.9 \times 10^{-9} \times \frac{1000}{18}$$

$$= 2.0 \times 10^{-16}$$

378 (a)

$$N_2 + 3H_2 \rightleftharpoons 2NH_3 + heat$$

It is an exothermic reaction, so high

temperature favours backward reaction.

Hence, equilibrium is shifted towards the left.

379 **(b)**

Ag₂CO₃(s)
$$\rightleftharpoons$$
 2Ag⁺ + CO₃²⁻
s
$$K_{sp} = [Ag^+]^2[CO_3^{2-}] = (2s)^2.s$$
∴ $K_{sp} = 4s^3$

380 (a)

Given, concentration of NaCl = 0.2 M

$$K_{\rm sp}({\rm AgCl}\,) = 1.20 \times 10^{-10}$$

Let the solubility of AgCl in NaCl = x

$$AgCl \rightarrow Ag^{+} + Cl^{-}$$

$$x \qquad x \qquad x$$
Solubility NaCl \rightarrow Na^{+} + Cl^{-}
$$0.2 \qquad 0.2 \qquad 0.2$$

$$\therefore \qquad [Ag^{+}] = x \text{ and } [Cl^{-}] = (x + 0.2)$$

$$\therefore \qquad K_{sp}(AgCl) = [Ag^{+}][Cl^{-}]$$

$$= x(x + 0.2)$$

$$= x^{2} + 0.2x$$

$$\therefore \qquad K_{sp} = 0.2x(x^{2} \ll 1)$$

$$K_{\rm sp} = 0.2x(x^2 \ll 1)$$

or
$$1.2 \times 10^{-10} = 0.2x$$

$$\therefore \qquad x = 6 \times 10^{-10}$$

Because buffer solutions are mixture of weak acid or weak base and their salt

382 (d)

Let solubility be S_1 , S_2 , S_3 for AB, AB_2 and A_3B respectively.

$$S_1 = \sqrt{K_{\text{Sp}}} = \sqrt{4 \times 10^{-8}} = 2 \times 10^{-4} M$$

$$S_2 = \sqrt[3]{\frac{K_{\text{Sp}}}{4}} = \sqrt[3]{\frac{3.2 \times 10^{-14}}{4}} = 2 \times 10^{-5} M$$

$$S_3 = \sqrt[4]{\frac{K_{\rm Sp}}{27}} = \sqrt[4]{\frac{2.7 \times 10^{-15}}{27}} = 1 \times 10^{-4} M$$

383 **(b)**

It is Bronsted base and can accept H⁺ only.

(a)pH of 10^{-9} M HCl will be < 7

(b)pOH of 10^{-5} M NaOH

$$= -\log[OH^{-}]$$

$$= -\log[1 \times 10^{-5}] = 5$$

$$pH + pOH = 14$$

$$pH = 14 - 5 = 9$$

(c)pH of 10^{-9} M KOH will be slightly greater than 7.

385 (a)

The loss in pH of blood is called acidosis.

386 **(d)**

In 0.001 M NaOH,

$$[OH^{-}] = 0.001 = 10^{-3}$$

 $[H^{+}] = \frac{10^{-14}}{[OH^{-}]} = \frac{10^{-14}}{10^{-3}} = 10^{-11}$

387 **(a)**

Both NH₄Cl and NH₄OH are diluted to same extent;

$$pOH = -\log K_b + \log \frac{[Conjugate base]}{[Base]}$$

388 (c)

According to Arrhenius concept-Acids are the substances which furnish H+ ions in water and a base is a substance which furnishes OH⁻ ions in water.

389 **(a)**

$$AB_{2} \rightleftharpoons A^{2+} + 2B^{-}$$

$$s \qquad 2s$$

$$K_{sp} = [A^{2+}][B^{-}]^{2}$$

$$= (S)(2S)^{2} = 4S^{3}$$

$$= 4(1 \times 10^{-5})^{3}$$

$$= 4 \times 10^{-15}$$

390 **(b)**

$$pV = nRT$$

Volume become $\frac{1}{2}V$ then pressure become 2p,

So,
$$2p \times \frac{1}{2}V = pV = nRT$$

Hence, there is no effect on K_p

391 (a)

Starch is used as an indicator in the titration of iodine against sodium thiosulphate

392 (a)

$$2HI(g) \rightleftharpoons H_2(g) + I_2(g); -QkJ$$

 n_g No. of moles of gaseous products – No. of moles of gaseous reactants

$$2 - 2 \quad 0$$

As the number of moles of products and reactants are equal, so equilibrium constant is not affected by any change in pressure and volume. Catalyst also does not affect the equilibrium constant. It is an endothermic reaction, hence equilibrium constant depends only upon the temperature.

393 (c)

An increase in temperature will change K_c . Addition of inert gas has no effect in $\Delta n = 0$. Also increase in pressure has no effect if $\Delta n = 0$.

394 (c)

According to Le-Chatelier principle the reactions in which number of moles of reactants is equal to number of moles of products, is not effected by change in pressure.

$$2NO(g) \rightleftharpoons N_2(g) + O_2(g)$$
Moles of reactants =2
Moles of products =

2

- : There is no change in number of moles of reactants and products.
- ∵The reaction is not effected by change in pressure.

395 **(c)**

 B_2H_6 is electron deficient and thus electron pair acceptor or Lewis acid.

396 (a)

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

$$\underbrace{1 \quad 3}_{4} \quad 2$$

$$\Delta n_g = 2 - 4 = -2$$

$$K_p = K_c (RT)^{\Delta n_g}$$

$$\therefore K_p = K_c (RT)^{-2}$$

$$\therefore K_c = \frac{K_p}{(RT)^{-2}} = \frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$$

397 (c)

NH₃ is Lewis base.

398 **(b)**

$$K_p \quad K_c(RT)^{n_g}$$

Where, n_g No. of moles of gaseous products – No. of moles of gaseous reactants

$$CO(g) = \frac{1}{2}O_{2}(g) \quad CO_{2}(g)$$

$$n_{g} = 1 - 1.5 - \frac{1}{2}$$

$$K_{p} \quad K_{c}(RT)^{n_{g}}$$

$$K_{p} \quad K_{c}(RT)^{-1/2}$$

$$\frac{K_{p}}{\kappa} \quad (RT)^{-1/2}$$

399 (c)

For the reaction.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

$$K_p = K_c(RT)^{\Delta n}$$

$$\Delta n = 2 - 2 = 0$$
 so,
$$K_p = K_c$$

(where, K_p and K_c are equilibrium constants in terms of partial pressures and concentrations.)

400 (a)

pH of the solution at the equivalence point is on the acidic side due to dissolution of $\rm CO_2$ formed. A slight excess of strong acid lowers pH to 3.5 when methyl orange produces red colour.

401 (a)

The residual part of the acid after removal of a proton from the molecule of an acid, is called its conjugate base. Thus, conjugate base=Acid $-H^+$ and a base after accepting a proton gets converted into its conjugate acid. Thus, HSO_4^- is conjugate acid of base SO_4^{2-} .

403 **(b)**

Volume of ice>volume of water and thus, increase in pressure favours forward reaction showing decrease in volume.

404 (a)

Ag₂SO₄
$$\rightarrow$$
 2Ag⁺ + SO₄²⁻
Ag₂SO₄ is a 2:1 type electrolyte *i. e.*, it gives
two Ag⁺ ions and one SO₄²⁻ion on ionisation.
Given, $s = 2.5 \times 10^{-2}$ M
Hence, its $K_{\rm sp} = 4s^3$
(where, $s = {\rm molar\ solubility}$)
 $K_{\rm sp} = 4(2.5 \times 10^{-2})^3$

 $= 4 \times 15.63 \times 10^{-6}$

$$= 62.5 \times 10^{-6}$$

405 (a)

Isohydric solutions of two acids contains same $[H^+]$ ion in them.

406 **(b)**

$$K_h = \frac{K_w}{K_a \times K_b}$$

From this, it is clear that hydrolysis constant of a salt of weak and weak base is inversely proportional to dissociation constant of both weak acid and weak base.

407 (c)

$$N_2O_4 \rightleftharpoons 2NO_2$$

0

Before dissociation

2x1-x

After dissociation

Total number of moles at equilibrium

$$= 1 - x + 2x = 1 + x$$

408 (c)

From the aqueous buffered solution of HA, 50% HA is ionised

$$[HA] = [A^{-}]$$

Buffer solution of weak acid $HA \rightarrow acidic$ buffer

or
$$pH = pK_a + log \frac{[A^+]}{[HA]}$$

or $pH = pK_a = 4.5$
 $pOH = pK_w - pH$
 $pOH = 14 - 4.5 = 9.5$

409 **(b)**

Meq. of H⁺ =
$$10^{-3} \times 10 = 10^{-2}$$

 \therefore No. of H⁺ = $\frac{10^{-2} \times 6.02 \times 10^{23}}{1000} = 6.02 \times 10^{18}$

410 (c)

pH of gastric juice is in between 1 and 3.

The basic character of hydrides decreases down the group.

412 **(b)**

40%

equilibrium

$$K_c = \frac{[PCl_3][Cl_2]}{[PCl_3]}$$

$$\frac{\frac{5}{0.5} \frac{0.4}{0.5}}{\frac{\frac{5}{0.5} \frac{0.6}{0.5}}{0.5}} \frac{\frac{16}{6}}{6}$$

$$\frac{2.66 \text{ mol/L}}{}$$

413 (d)

$$K_w = [\mathrm{H}^+][\mathrm{OH}^-].$$

414 (c)

The equilibrium constant does not depend on concentration, when reversible reaction at equilibrium hence, equilibrium constant will be constant.

416 (c)

The hydrolysis reaction of conjugate base of

$$A^{-}(aq) + H_2O \rightarrow HO^{-} + HA$$

$$K_h = \frac{K_w}{K_a} = \frac{10^{-14}}{10^{-4}} = 10^{-10}$$

Since, degree of hydrolysis is negligible;

$$[OH^-] = \sqrt{K_h C} = 10^{-6} \cdot p[OH] = 6$$

pH=14-6=8

417 (c)

and

 $Na_2O + CaO + H_2O + CO_2 \rightarrow Na_2CO_3 + CaCO_3$ Solution is basic. It can be proved as

$$CO_3^{2-} + 2H_2O \rightarrow H_2CO_3 + 2OH^-$$

418 (d)

When a base accepts a proton, then an acid is formed. This acid is known as conjugated acid of that base. For example:

$$NH_3 + H^+ \rightleftharpoons NH_4^+$$

base

conjugated acid

The conjugated acid of HF_2^- is H_2F_2 .

$$HF_2^- + H^+ \rightleftharpoons H_2F_2$$
base conjugated acid

419 (d)

2/3 rd of alcohol and acid react to form ester at equilibrium.

420 (c)

For hydrolysis of

$$B^+; K_H = \frac{K_W}{K_b} = \frac{10^{-14}}{10^{-6}} = 10^{-8}$$

421 (c)

 $0.001 \text{ M} \text{ of NaOH means } [OH^{-}] = 0.001$ $= 10^{-3} \text{M} \Rightarrow \text{pOH} = 3$ $pH + pOH = 14 \Rightarrow pH = 14 - 3 = 11$

422 **(b)**

Removal of product always favours forward reaction.

423 **(b)**

$$K_{\rm sp}[{\rm BaCO_3}] = [{\rm Ba^{2+}}][{\rm CO_3^{2-}}]$$

 $[{\rm Ba^{2+}}] = \frac{K_{\rm sp}}{[{\rm CO_3^{2-}}]} = \frac{5.1 \times 10^{-9}}{1 \times 10^{-4}}$
 $[{\rm Ba^{2+}}] = 5.1 \times 10^{-5} \text{ M}$

424 **(b)**

$$K_{sp} = s^2 = \left(\frac{0.0015}{143.5}\right)^2 = 1.1 \times 10^{-10}.$$

425 **(b)**

$$\underset{Acid}{\text{CO}} + \underset{Base}{\text{NaOH}} \stackrel{P,T}{\rightarrow} \underset{Salt}{\text{HCOONa}}.$$

426 (a)

The acidic character has been explained in term of 437 (a) electronegativity of halogens.

427 (a)

Higher is the ox. no. of central atom in oxy-acid, e.g., acid (HClO₄), more is its acidic nature and weaker is its conjugate base, (e.g., ClO_4^-).

428 (c)

Methyl orange is used for strong acid titration; Alkali may be weak or strong.

429 (d)

Addition of salt always lowers the vapour pressure. Also, vapour pressure of a liquid is its characteristic pressure and depends only temperature.

430 **(b)**

 $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$ On adding CH₃COONa, [H⁺] decreases

431 (a)

Neutralization is exothermic whereas hydrolysis is endothermic.

432 (d)

$$HCl \rightarrow H^+_{10^{-8}} + Cl^-$$

 $H_2O \rightleftharpoons H_1^+ + OH_2^-$ is suppressed due to common ion effect

or
$$10^{-14} = (10^{-8} + a) \times a$$

$$\therefore \qquad a = 0.95 \times 10^{-7}$$

$$\therefore$$
 [H⁺] = $10^{-8} + 0.95 \times 10^{-7} = 1.05 \times 10^{-7} M$.

433 **(b)**

 $Cu(NH_3)_4SO_4 \rightleftharpoons Cu(NH_3)_4^{2+} + SO_4^{2-}$.

 K_c is a characteristic constant for the given reaction

435 (d)

According to Arrhenius concept-Acids are the substances which furnish H⁺ ions in water and a base is a substance which furnishes OH⁻ ions in water.

436 (a)

According to Le-chatelier principle the reactions in which number of moles are increasing in forward reaction are favoured at low pressure or high volume.

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

: Number of moles are increasing in the forward reaction in above reaction.

: Reaction is favoured at low pressure.

: At high pressure, rate of dissociation of PCl₅ decreases.

Electron acceptors are Lewis acids. They are electron deficient compounds. BF3 is Lewis acid because B has only 6 electrons in its valence shell and it can accept electrons. NF₃, Cl⁻ and H₂O have lone pair of electrons. Thus, they are electron donors and Lewis bases.

438 **(c)**

Stronger the base, higher the tendency to accept protons. Among the given, CH₃COOH and H₂S both are acids, thus have very low tendency to accept a proton. Between NH₃ and H₂O, NH₃ is a stronger base (due to less electronegativity of N as compared to 0) and hence, it has the highest tendency to accept a proton among the given. Moreover, the conjugate base formed by it also stable one

$$NH_3 + H^+ \rightarrow NH_4^+$$
 (stable)

439 (d)

$$K_{sp} = 4s^3$$

$$\therefore s^3 = \frac{4 \times 10^{-9}}{4} = 10^{-9}$$

$$s = 10^{-3} M$$

441 **(b)**

$$PV = nRT : \frac{n}{V} = \frac{P}{RT}$$

442 (c)

$$K_h = Ch^2$$
= 0.5 × $\left(\frac{0.25}{100}\right)^2$
= 3.125 × 10⁻⁶

443 **(b)**

PbCO₃
$$\rightleftharpoons$$
 Pb²⁺ + CO₃²⁻
 s $x+y$
MgCO₃ \rightleftharpoons Mg²⁺ + CO₃²⁻
 y $x+y$

(Since both are present in same solutes)

$$\frac{K_{sp} \text{ PbCO}_3}{K_{sp} \text{ MgCO}_3} = \frac{x}{y}$$

$$\frac{x}{y} = \frac{1.5 \times 10^{-15}}{1 \times 10^{-15}}$$
or $x = 1.5 y$
Now, $x(x + y) = 1.5 \times 10^{-15}$
or $1.5 y(1.5 y + y) = 1.5 \times 10^{-15}$
or $y = \left[\frac{1.5 \times 10^{-15}}{3.75}\right]^{1/2}$

$$= 2 \times 10^{-8}$$

$$\therefore \qquad x = 1.5 \times 2 \times 10^{-8}$$

$$= 3.0 \times 10^{-8} M.$$

444 (a)

$$[H^{+}] = c\alpha = 1.34 \times 10^{-4}$$

$$\therefore \quad \alpha = 1.34 \times 10^{-1}$$

$$\therefore \quad K_c = c\alpha^2 = 1.8 \times 10^{-5}$$

$$pH = -\log 1.8 \times 10^{-5} + \log \frac{0.164/82}{0.001}$$

$$= +4.7447 + 0.3010 = 5.0457$$

$$\therefore \quad [H^{+}] = 9 \times 10^{-6}.$$

Sorensen in 1909 gave pH scale to indicate the strength of the hydrogen ion concentration expressed in g/L. Here *p* stands for potenz meaning strength.

446 **(c)** $N_2 + 3H_2 \rightleftharpoons 2NH_3$ $\frac{28}{28} = 1 \qquad \frac{6}{2} = 3 \qquad 0 \quad \text{mole before reaction}$

$$1 - \frac{1}{2}$$
 $3 - \frac{3}{2}$ $\frac{17}{17} = 1$ mole after reaction

∴ Mole of $N_2 = \frac{1}{2}$ ∴ wt. of $N_2 = 14g$ Mole of $H_2 = \frac{3}{2}$

∴ wt. of $H_2 = \frac{3}{2} \times 2 = 3g$

447 **(c)** $K_c = \frac{[H_2]^2[S_2]}{[H_2S]^2} = \frac{[0.10]^2[0.4]}{[0.5]^2} = 0.016$

N₂O₄ \rightleftharpoons 2NO₂
Initial 1 mol 0
At eqm 1-0.20 0.40 mol pV = nRT $1 \times V = 1 \times R \times 300$...(i)

...(i) $p \times V = 1.2 \times R \times 600$...(ii)

On dividing (ii) by (i) p = 2.4 atm

449 (a)

$$H_2 + I_2 \rightleftharpoons 2HI$$

1 1 0
(1-0.8) (1-0.8) 2×0.8
 $=0.2 =0.2 =1.6$

$$K_c = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]}$$
$$= \frac{1.6 \times 1.6}{0.2 \times 0.2}$$
$$K_c = 64$$

According to common ion effect, dissociation of weak electrolyte is further suppressed in presence of strong electrolyte having

common ion.

∴ AgCl is weak electrolyte and NaCl is strong

electrolyte having common anion.

∴ Solubility as well as concentration of Ag⁺ and Cl⁻ will decrease.

451 (a) $\frac{\text{normal mol.wt.}}{\text{exp.mol.wt.}} = 1 + \alpha; \text{ (Mol. wt = 2 \times VD)}$ $\frac{92}{49} = 1 + \alpha$ $\alpha = 0.87$

452 **(c)**A precipitation of AgCl is formed when equal volumes of 10^{-5} M AgNO₃ and 10^{-4} M HCl are mixed, because ionic product will be 10^{-9} which is greater than $K_{\rm sp}(10^{-10})$. For the precipitation of an electrolyte, it is necessary that the ionic product must exceed its solubility product.

453 **(b)** $CO(g) + 0.5O_{2}(g) \rightarrow CO_{2}(g)$ $\Delta n_{g} = n_{p} - n_{r} = 1 - 1.5 = -0.5$ $K_{p} = K_{c}(RT)^{\Delta n} = K_{c}(RT)^{-0.5}$ $\frac{K_{p}}{K_{c}} = \frac{1}{\sqrt{RT}}$ 454 **(b)**

Metal cation possesses the tendency to accept electron pair from ligands.

Any acid or salt having an ion common (due to common ion effect) or any base (due to acid-base reaction) will influence degree of dissociation of

weak acid.

$$Ca(OH)_2 \rightleftharpoons Ca^{2+} + 2OH^-$$

 $K_{sp} = [Ca^{2+}][OH^-]^2$
 $= (s)(2s)^2 = 4s^3$

457 **(c)**

Proton affinity means affinity for proton *i.e.*, basicity. In NH₃ nitrogen has pair of electron to donate as well as higher tendency to donate due to lower electronegativity. In PH₃, P is not suitable as that has large size.

458 (d)

Acid₁ + Base₂
$$\rightleftharpoons$$
 Acid₂ + Base₁
HPO₃²⁻ + H₂O \rightleftharpoons H₃O⁺ + PO₃³⁻
H₂PO₄⁻ + H₂O \rightleftharpoons H₃O⁺ + HPO₄²⁻
H₃PO₄ + H₂O \rightleftharpoons H₃O⁺ + H₂PO₄⁻

$$\Delta G^0 = -RT \ln K_p \text{ if } \Delta G^\circ = 0; \ln K_p = 0 \text{ or } K_p = 1$$

460 (c)

$$[H^+] = 10^{-2} M$$

 $\therefore pH = 2.$

461 (a)

$$X(g) + Y(g) \rightleftharpoons Z(g)$$
 $K_c = \frac{[Z]}{[X][Y]}$ or $10^4 = \frac{[Z]}{[X][Y]}$
 $\therefore [Z] = 10^4 [X][Y]$
 $= 10^4 \times \frac{1}{2} [Z][Z]$
(Given, $[X] = \frac{1}{2} [Y] = \frac{1}{2} [Z]$)

$$\therefore [Z] = 2 \times 10^{-4} \text{ mol L}^{-1}$$

462 (a)

$$CO_2(g) + C(s) \rightleftharpoons 2CO(g)$$

Initial

: (0.5 - p)At equili 2p atm

This is a case of heterogeneous equilibrium.

C(s) being solid is not considered

Total pressure of CO_2 and CO gases.

$$p_{\text{CO}_2} + p_{\text{CO}} = p_{\text{total}}$$
 $0.5 - p + 2p = 0.8$
 $p = 0.3 \text{ atm}$

$$p_{\text{CO}_2} = 0.5 - 0.3 = 0.2 \text{ atm}$$

$$p_{\text{CO}_2} = 2p = 0.6 \text{ atm}$$

$$K_p = \frac{p_{\text{CO}_2}^2}{p_{\text{CO}_2}} = \frac{0.6 \times 0.6}{0.2}$$

$$= 1.8 \text{ atm}$$

463 **(b)**

$$NH_2COONH_4(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$$

At equilibrium if partial pressure of CO_2 p

then that of $NH_3 2p$

$$K_p$$
 $p_{\mathrm{NH_3}}^2$ $p_{\mathrm{CO_2}}$ $(2p)^2$ p $4p^3$ 2.9 10^{-5} $4p^3$ p^3 0.725 10^{-5} or p^3 7.25 10^{-6} or p 1.935 10^{-2} hence, total pressure p $3p$ 5.81 10^{-2} 0.0581 atm.

464 (c)

For salt of weak acid and weak base

$$pH = \frac{1}{2} [\log K_a + \log K_w - \log K_b]$$

$$= \frac{1}{2} pK_a + \frac{1}{2} pK_w - \frac{1}{2} pK_b$$

$$= \frac{1}{2} \times 4.80 + 7 - \frac{1}{2} \times 4.78$$

$$= 7.01$$

465 (a)

The species which can accept as well as donate H⁺ can act both as an acid and a base.

$$HSO_4^- + H^+ \rightleftharpoons H_2SO_4$$

base
 $HSO_4^- \rightleftharpoons SO_4^{2-} + H^+$

466 (c)

$$HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) +$$

 $A^{-}(aq)$ Initial 0.1 M $-\frac{0.1\times5}{100}$ $+\frac{0.1\times5}{100}$ Change Equi conc. 0.095

$$K_c = \frac{[\text{H}_3\text{O}^+][A^-]}{[\text{H}A]} = \frac{0.005 \times 0.005}{0.095}$$

= 2.63 × 10⁻⁴

467 **(b)**

Acetylene is more acidic than both ethane and benzene but methyl alcohol is slightly more acidic (p K_a < 25) than acetylene.

468 (c)

$$pH = -\log[H^+]$$
$$pH = 14 - pOH$$

Calculate pH of all the solution to find which will have maximum pH.

(A)M/10 HCl

(B)M/100 HCl

∴
$$[H^+] = 10^{-2}$$

 $pH = -\log[H^+]$

$$= -\log[10^{-2}]$$

= 2

(C)M/10 NaOH

(D)M/100 NaOH

∴ M/100 NaOH solution has highest pH.

469 **(b)**

$$[H^+] = 10^{-6} \text{ or } c\alpha = 10^{-6}; \text{ also, } c = 1.0 \ M \ \therefore \alpha = 10^{-6}$$

$$K_a = c\alpha^2 = 10^{-6} \times 10^{-6} = 10^{-12}$$

470 (d)

Those reactions which have high value of *K*, proceeds towards completion

471 (d)

A mixed salt is one which furnishes two types of cations or anions.

472 **(b)**

Buffer capacity of a buffer solution is maximum when the concentration of the weak acid and its salt or weak base and its salt are equal, i.e., for highest buffer capacity $pH = pK_a$

For this [salt] = [acid]

Thus, 25 mL.

473 (c)

By using pH=
$$-\log \sqrt{K_a \cdot C}$$

$$5 = -\log \sqrt{K_a \times 1} = -\frac{1}{2}\log K_a$$

$$\log K_a = -10$$

$$K_a = 10^{-10}$$

Hence, dissociation constant $(K_a) = 10^{-10}$.

474 (b)

pH varies inversely with temperature. Thus, if the pH of neutral water is 6.5, the temperature of water is more than 25°C.

475 **(b)**

$$[CO] = \frac{0.1}{0.5}$$

$$[Cl_2] = \frac{0.1}{0.5}$$

$$[COCl_2] = \frac{0.3}{0.5}$$

$$\therefore K_c = \frac{0.3/0.5}{\frac{0.1}{0.5} \times \frac{0.1}{0.5}} = 15$$

476 (c)

In qualitative analysis, in order to detect IInd group radicals, H_2S gas is passed in the presence of dilute HCl to decrease the dissociation of H_2S by common-ion effect so that less S^{2-} ions are obtained and only IInd group radical could precipitate.

477 **(b)**

The value of pK_a for strong acid is less

478 **(d)**HCl a mineral acid is strong acid and thus, Cl⁻ is weak base.

479 (c)
$$[H^+] = 10^0 = 1 M$$

480 **(c)** $\Delta n = 0$ and thus, $K_p = K_c$.

481 **(a)**

H₂(g) + CO₂(g)
$$\rightleftharpoons$$
 CO(g) + H₂O(g)
Initial conc. 1 1 0 0
At equilibrium (1 − x) (1 − x) x x
∴ $K_p = \frac{p_{\text{CO}} \cdot p_{\text{H}_2\text{O}}}{p_{\text{H}_2} \cdot p_{\text{CO}_2}}$

$$= \frac{x \cdot x}{(1 - x)(1 - x)} = \frac{x^2}{(1 - x)^2}$$

482 (d)

For each case $K_{sp} = [A^{2+}]^3 [B^{3-}]^2$.

483 (a)

$$CH_{3}COOH \rightleftharpoons CH_{3}COO^{-} + H^{+}$$

$$K_{a_{1}} = 1.5 \times 10^{-5}$$

$$= \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{2}COOH]} \dots (i)$$

$$HCN \rightleftharpoons H^{+} + CN^{-}$$
 $K_{a_{2}} = 4.5 \times 10^{-10}$

$$= \frac{[H^{+}][CN^{-}]}{[HCN]} \qquad ... (ii)$$

By (i)/(ii) $K = \frac{K_{a_1}}{K_{a_2}} = \frac{[\text{HCN}][\text{CH}_3\text{COO}^-]}{[\text{CN}^-][\text{CH}_3\text{COOH}]} = \frac{1.5 \times 10^{-5}}{4.5 \times 10^{-10}}$ $= 3 \times 10^4$

484 (c)
Given, vol. of HCl = 5 mL, molarity =M/5
Vol. of NaOH = 10 mL, molarity =M/10

Mulliequivalents of HCl = $5 \times \frac{1}{5} = 1$ Mulliequivalents of NaOH = $10 \times \frac{1}{10} = 1$ HCl + NaOH \rightarrow NaCl + H₂O

- ∵ Mulliequivalents of HCl = Mulliequivalents of NaOH
- \therefore Solution is neutral and pH=7.
- 485 **(c)**

AlCl₃ accepts electron pair.

486 **(b)**

$$[H^+] = \sqrt{K_a \times C}$$

$$= \sqrt{10^{-5} \times 0.1}$$

$$= \sqrt{10^{-6}} = 10^{-3}$$

$$pH = -\log[H^+] = -\log 10^{-3} = 3$$

487 (a)

$$pH = pK_a + log \frac{[KCN]}{[HCN]} = 9.3 + log \frac{2.5}{2.5} = 9.30$$

488 **(b)**

Total milliequivalent of H+

$$= 30 \times \frac{1}{3} + 20 \times \frac{1}{2} = 20$$

Total milliequivalent of OH-

$$=40 \times \frac{1}{4} = 10$$

Milliequivalent of H⁺ left

$$= 20-10=10$$

∴
$$[H^+] = \frac{10}{1000}$$
 g ions/dm³ = 10⁻²
∴ pH=2

489 **(b)**

Given, for NaOH, V=10 mL, N=0.1 N For H_2SO_4 , V=10 mL, N=0.05 N Miliequivalents of NaOH = $10\times0.1=1$ Miliequivalents of $H_2SO_4=10\times0.05=0.5$ $H_2SO_4+2NaOH\rightarrow Na_2SO_4+$ H_2O

1 equivalent 2 equivalent

- $\because 0.5$ equivalent of H_2SO_4 will react with 1 equivalent of NaOH
- ∴ The pH of solution = 7 (neutral)

491 (d)

$$H_2PO_4^- + H_2O \to H_3O^+$$
 HPO_4^{2-}

acid conjugated base

H₂PO₄⁻ gives HPO₄²⁻ (conjugated base) in aqueous solution. It acts as proton donor.

492 **(d)**

$$K_1$$
 for, $N_2 + 3H_2 \rightleftharpoons 2NH_3$

$$K_2 \text{ for, NH}_3 \rightleftharpoons \frac{1}{2} N_2 + \frac{3}{2} H_2$$

$$\therefore K_1 \times K_2 = \frac{[NH_3]^2}{[N_2][H_2]^3} \times \frac{[N_2]^{1/2} [H_2]^{3/2}}{[NH_3]}$$
or, $K_1 \times K_2 = \frac{1}{K_2}$

$$\therefore K_2 = \frac{1}{\sqrt{K_1}}$$

493 **(b)**

The two conditions when colour of indicator will be visible are derived by

$$pH = pK_a + \log \frac{[In^-]}{[HIn]}$$

(i) pH = 5 + log 10 = 6

(ii)
$$pH = 5 + \log 0.1 = 4$$

Thus, minimum change in pH = 2

495 (b)

- (s) or mole of AgCl needed = $\sqrt{K_{sp}} = 10^{-5}$
- (s) or mole of AgBr needed = $\sqrt{K_{sp}}$ = 3.16 × 10⁻⁷
- (s) or mole of Ag₂CrO₄ needed = $\sqrt[3]{\frac{K_{sp}}{4}}$ = 0.62 ×
- : Weight of AgCl = $10^{-5} \times 143.5 = 1.435 \times 10^{-3}$ g
- : Weight of AgBr = $3.16 \times 10^{-7} \times 188 = 5.94 \times 10^{-5}$ g
- ∴ Weight of $Ag_2CrO_4 = 6.2 \times 10^{-5} \times 332 = 2.058 \times 10^{-2}g$

496 (a)

In a given mixture, the ionisation of two acids can be written as: Let α , β be degree of ionisation at same concentration.

$$CH_{3}COOH \rightleftharpoons CH_{3}COO^{-} + H^{+}_{\alpha+\beta}$$

$$C_{2}H_{5}COOH \rightleftharpoons C_{2}H_{5}COO^{-} + H^{+}_{\alpha+\beta}$$

$$[\alpha][\alpha + \beta] : c$$

$$K_{AA} = \frac{[\alpha][\alpha + \beta] \cdot c}{[1 - \alpha]}$$
$$K_{PA} = \frac{[\beta][\alpha + \beta] \cdot c}{[1 - \beta]}$$

$$\therefore \frac{K_{AA}}{K_{PA}} = \frac{\alpha}{1 - \alpha} \times \frac{(1 - \beta)}{\beta}$$

or
$$\frac{\alpha}{1-\alpha} = \frac{1.75}{1.3} \times \left[\frac{\beta}{1-\beta} \right]$$

497 **(b)**

$$\alpha = \frac{\lambda_u}{\lambda_\infty} = \frac{5}{390} = 0.013$$

498 (c)

Follow Le-Chatelier's principle.

499 (a)

$$[(NH_4)_2S] = 0.021 M$$

 $\therefore [S^{2-}] = 0.021 M$

: At equilibrium $[Zn^{2+}][S^{2-}] = K_{sp}$ of ZnS

$$\therefore \qquad [Zn^{2+}] = \frac{4.51 \times 10^{-24}}{0.021} = 2.15 \times 10^{-22} M$$

 \therefore [Zn²⁺] left in solution = 2.15 × 10⁻²² × 65 g/litre

$$= \frac{2.15 \times 10^{-22} \times 65 \times 12}{1000} \text{ g/12 mL}$$
$$= 1.677 \times 10^{-22} \text{ g/12 mL}.$$

500 (d)

 K_p is a constant and does not change with pressure

501 **(d)**

A chemical equilibrium is the state when concentration of reactants and products do not change with time. It is attained when rate of forward reaction becomes equal to rate of backward reaction.

503 (c)

 H_3PO_4 furnishes $H_2PO_4^-$, HPO_4^{2-} and PO_4^{3-} anions.

504 (c)

The mixture containing a weak acid (HNO_2) and its conjugate base (NO_2^-) acts as acidic buffer.

505 (a)

506 (d)

Phenolphthalein is used for strong alkali titrations; Acid may be weak or strong.

507 **(b)**

[H⁺] = 2 × 10⁻²
∴ pH =
$$-\log 2 \times 10^{-2}$$

i. e., in between 1 and 2.

509 (a)

(i)Ag⁺ + NH₃
$$\rightleftharpoons$$
 [Ag(NH₃)]⁺;
 $K_1 = 3.5 \times 10^{-3}$

(ii)[Ag(NH₃)]⁺ + NH₃ → [Ag(NH₃)₂]⁺;

$$K_2 = 1.7 \times 10^{-3}$$

On the basis of above reaction,

$$K_1 = \frac{[Ag(NH_3)]^+}{[Ag^+][NH_3]}$$
 ...(i)

$$K_2 = \frac{[Ag(NH_3)_2]^+}{[Ag(NH_3)]^+[NH_3]}$$
 ...(ii)

For the formation of $[Ag(NH_3)_2]^+$

$$Ag^+ + 2NH_3 \rightleftharpoons [Ag(NH_3)_2]^+$$

Formation constant (K)

$$= \frac{[Ag(NH_3)_2]^+}{[Ag^+][NH_3]^2} \qquad ...(iii)$$

From Eqs. (i) and (ii)

$$K = K_1 \times K_2$$

= 3.5 × 10⁻³ × 1.7 × 10⁻³
= 5.95 × 10⁻⁶ ≈ 6.08 × 10⁻⁶

510 **(b)**

0.1 × 1 =
$$N$$
 × 1000
∴ N dilute acid = 10^{-4}
or [H⁺] = 10^{-4} and so ph = 4.

511 (c)

Catalyst provides a new pathway to attain equilibrium earlier.

512 (d)

Follow law of mass action equations.

513 (d)

$$Ca_{3}(PO_{4})_{2}(s) \rightleftharpoons 3Ca^{2+}(aq) + 2PO_{4}^{3-}(aq)$$

$$K_{sp} = [Ca^{2+}]^{3} \cdot [PO_{4}^{3-}]^{2}$$

$$= (3y)^{3} \cdot (2y)^{2}$$

$$= 27y^{3} \times 4y^{2}$$

$$= 109y^{5}$$

514 (d)

$$N_{2} + O_{2} \rightleftharpoons 2NO; K_{1}$$

$$= \frac{[NO]^{2}}{[N_{2}][O_{2}]} ...(1)$$

$$2NO + O_{2} \rightleftharpoons 2NO_{2}; K_{2}$$

$$= \frac{[NO_{2}]^{2}}{[NO]^{2}[O_{2}]} ...(2)$$

$$NO_{2} \rightarrow \frac{1}{2}N_{2} + O_{2}; \rightleftharpoons K_{3}$$

$$= \frac{[N_{2}]^{1/2}[O_{2}]}{[NO_{2}]} ...(3)$$

By observation $K_3 = \frac{\sqrt{1}}{V_1 V_2}$

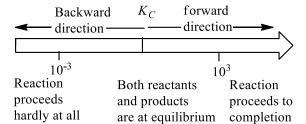
515 **(b)**

$$N_{2}(g) + O_{2}(g) \rightleftharpoons 2NO(g)$$

$$K_{c} = \frac{[NO]^{2}}{[N_{2}][O_{2}]} = 4 \times 10^{-4}$$

$$NO(g) \rightleftharpoons \frac{1}{2}N_{2}(g) + \frac{1}{2}O_{2}(g)$$

$$K'_{c} = \frac{[N_{2}]^{\frac{1}{2}}[O_{2}]^{\frac{1}{2}}}{[NO]}$$


$$= \frac{1}{\sqrt{K_{c}}} = \frac{1}{\sqrt{4 \times 10^{-4}}}$$

$$= \frac{1}{2 \times 10^{-2}} = \frac{100}{2} = 50$$

516 (a)

From the value of K_c , the direction of the

reaction may be predicated as follows:

Since, for given reaction $K_c = 10^{-4}$ therefore, the reaction proceeds in backward direction.

517 (a)

$$X + Y \rightleftharpoons Z$$

Initial conc., 5 3 0
At equilibrium $(5-2)(3-2)$ 2

Equilibrium constant $(K_c) = \frac{[Z]}{[X][Y]}$

$$=\frac{2}{3\times 1}=\frac{2}{3}$$

518 (d)

$$N_2O_4 \rightleftharpoons 2NO_2$$

$$\begin{array}{ccc}
1 & 0 \\
1-\alpha & 2\alpha
\end{array}$$

: Total mole at equilibrium

$$= 1 - \alpha + 2\alpha = 1 + \alpha$$

519 (d)

The solubility order of alkaline earth metal hydroxides is

 $Ba(OH)_2 > Ca(OH)_2 > Mg(OH)_2 > Be(OH)_2$.

521 **(b)**

$$N_3H \xrightarrow{-H^+} N_3^-$$
.

522 **(b)**

$$A + B \rightleftharpoons C + D$$

a a 2a 2a at equilibrium

$$K_c = \frac{[C][D]}{[A][B]}$$

$$2a \times 2a$$

$$=\frac{2a \times 2a}{a \times a} = 4$$

523 **(b)**

CH₃COO⁻, because it is the conjugate base of weak acid

 $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$

524 **(d)**

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

Given, volume is halved

- ∴ Pressure is doubled
- \therefore Equilibrium will shift backeard and degree of dissociation (α) will decreases.

 K_p is constant at constant temperature.

525 (d)

$$pK_a = 5$$
; Also, $pK_a + pK_b = 14$
 $\therefore pK_b = 9$.

$$K_c = \frac{[Z]^2}{[X]^2[Y]} = \frac{(3)^2}{(2)^2(Y)} = 2.25, \therefore [Y] = 1M$$

$$A + B \rightleftharpoons AB;$$

$$1 \atop (1-x) \qquad 1 \atop (1-x) \qquad x$$
Given, $x = 0.4$

∴ Percentage of *A* changing to
$$AB = \frac{0.4 \times 100}{1}$$

= 40%

529 **(a)**

$$I_{\text{ion}}^- + I_{2} \longrightarrow I_{3}^-$$
; It is therefore I_2 is more soluble in KI.

530 (d)

If strong base is present in a solution, then pH is calculated from its concentration.

$$\therefore$$
 [OH⁻] = 10⁻¹ or pOH = 1

$$\therefore pH = 13.$$

531 **(d)**

 $NH_4OH + NH_4Cl$ is an example of basic buffer. Its pH value is greater than 7.

533 **(d)**

$$Ca(OH)_2 \rightleftharpoons Ca^{2+} + 2OH^-$$

 $S_{SD} = [S][2S]^2$ (where

$$K_{\rm sp} = 4S^3$$

$$K_{\rm sp} = 4. \left(\sqrt{3}\right)^3$$

$$= 12\sqrt{3}$$

534 **(b)**

 ${\rm CO_2}$ is acidic oxide which on dissolution in water develops acidic nature.

535 (d)

$$K_c = \frac{[\text{NO}_2]^2}{[\text{N}_2\text{O}_4]} = \frac{\left[2 \times \frac{10^{-3}}{2}\right]^2}{\left[\frac{0.2}{2}\right]}$$
$$= \frac{10^{-6}}{10^{-1}} = 10^{-5}$$

536 (d)

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3$$
; ΔH = -92.38 kJ mol⁻¹

Forward reaction, the volume decreases and it is exothermic reaction. According to Le-Chatelier principle, such reactions are favoured at low temperature and high pressure.

$$K_p = K_c (RT)^{\Delta n_g}$$

Here, $\Delta ng = 1$

Thus, K_c will be less than K_p

Acetic acid is weak acid and only pH in given range is 6.85 for acids.

540 (a)

NH₃ is proton acceptor and thus, H₂O behaves as proton donor.

541 (d)

Bronsted bases are proton acceptor and each Lewis base contains one or more electron pair and thus, accept proton. On the other hand, 550 (a) Bronsted acids are proton donor and may or may not be capable of accepting lone pair of electron, e.g., H₂SO₄ is Bronsted acid not Lewis acid; BF₃ is Lewis acid but not Bronsted acid. Also each cation is acid and each anion is base.

542 (d)

PCl₅ $\rightleftharpoons PCl_3$ + Cl_2 3 mol 3 mol 2 mol initially (3-x) mol (3 x)mol (2 x)mol at equilibrium

$$\begin{array}{ccc} : & 3 - x & 1.5 \\ & x & 1.5 \end{array}$$

Number of moles of PCl₃ 3 x

1.5

543 (d)

At equilibrium, $\Delta G = 0$, *ie*, $G_{ice} = G_{H_2O} \neq 0$

544 (a)

$$K = \frac{K_f}{K_b} = \frac{[P_{\text{product}}]^2}{[P_{\text{reaction}}]^1}$$

$$K = \text{atm.}$$

545 (a)

$$pOH = pK_b + log \frac{[salt]}{[base]}$$

(Henderson's equation)
=
$$5 + \log \frac{0.02}{0.2} = 5 + \log \frac{1}{10}$$

= $5 + (-1) = 4$

$$pH = 14 - pOH = 14 - 4 = 10$$

HCl provides common H⁺ ions to CH₃COOH $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$

547 (a)

This is Henderson equation for basic buffer mixtures.

548 **(b)**

Higher the tendency to give H^+ ion (i. e., to undergo ionisation), stronger will be the acid or vice-versa.

HF has poor tendency to give H⁺ ion, hence it is the weakest acid among the given.

The order of acidity of given acids is

$$H_2SO_4 > HNO_3 > HCl > HF$$
.

549 **(b)**

$$[H^+] = 10^{-12}$$
$$[OH^-] = 10^{-2}$$
$$\frac{w}{40} = 10^{-2}$$

or
$$w = 0.4 \text{ g litre}^{-1}$$

pH of 0.1 M H₂S solution can be derived as:

$$H_2S = H^+ + HS^-; K_a = 10^{-7}$$

 $[H^+] = c \cdot \alpha = \sqrt{K.c} = \sqrt{10^{-7} \times 0.1} = 10^{-4}$

551 (a)

pH=0 means $[H^{+}] = 10^{\circ} = 1$ M. hence, solution is strongly acidic.

552 (a)

The saturated solution of AgI means that

$$[Ag^+][I^-] = K_{sp} AgI$$

Hence, in this solution, if a mixture of KI + KCl is added, then the concentration of [I⁻] ions will increase quite a bit in the solution. Hence, now the ionic product of AgI will be more than its solubility product and therefore, AgI will precipitate out.

553 (a)

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

Here,
$$\Delta n = 2 - 2 = 0$$

Hence, this equilibrium reaction is not influenced by volume change at constant temperature.

554 **(b)**

$$2Na + 2H_2O \rightarrow 2NaOH + H_2$$
.

555 (d)

$$A + B = C + D$$

$$x \quad x \quad 0 \quad 0$$

At initial

$$2x$$
 $2x$ At equilibrium
$$K_c = \frac{[C][D]}{[A][B]} = \frac{2x \times 2x}{x \times x} = 4$$

556 (d)

These are characteristics of salt hydrolysis.

558 (c)

(i)20 mL of 0.5 N HCl

 $0.5N \Rightarrow 1000 \text{ mL of } 0.5 \text{ mol of HCl}$

HCl present in 20 mL= $\frac{20\times0.5}{1000}$ = 1.0 × 10⁻²

(ii)35mL of 0.1 N NaOH

 $0.1 \text{ N} \Rightarrow 1000 \text{ mL of } 0.1 \text{ mol of NaOH}$

$$\Rightarrow$$
 NaOH present in 35 mol = $\frac{3.5 \times 0.1}{1000}$
= 0.35×10^{-2}

Total volume = 20+35=55 mL

⇒ Resulting mole in solution,

$$(1.0 - 0.35)10^{-2} = 0.65 \times$$

 10^{-2} mol HCl

$$HCl = H^{+} + Cl^{-}$$

 $[HCl] = [H^{+}] + [Cl^{-}]$

55 mL contains 0.65×10^{-2} mole of H⁺ ions

$$1000 \text{ mL} = \frac{0.65 \times 10^{-2} \times 10^{3}}{55} = \frac{6.5}{55}$$

$$pH = -\log[H^{+}] = -\log(6.5/55)$$

$$= \log 55 - \log 6.5 = 0.92$$

Due to acidic nature of solution the colour of phenolphthalein becomes pink.

559 (c)

On the basis of precipitation concept an electrolyte will be precipitated firstly whose ionic product is exceeded to its solubility product. In similar ionic conc. of cations, an electrolyte is precipitated firstly for which $K_{\rm sp}$ is lower. In these electrolytes MnS, FeS, ZnS and HgS, HgS is precipitated firstly.

560 (a)

Ostwald's dilution law is applicable for weak electrolyte

561 (c)

$$\frac{K_p}{K_c} = (RT)^{\Delta n}$$

$$24.63 = (0.0821 \times T)^1$$

$$\therefore T = 300K$$

562 **(d)**

20 M eq. of HCl reacts completely with 20 Meq. Of KOH. Hence, the final solution is neutral. Thus, at 90° C, pH = 6

564 **(b)**

$$K_{P_{1}} = \frac{n_{Y} \cdot n_{Z}}{n_{X}} \left[\frac{P_{1}}{\sum_{n_{1}}} \right]^{1} K_{P_{2}} - \frac{(n_{B})^{2}}{n_{A}} \times \left[\frac{P_{2}}{\sum_{n_{2}}} \right]^{1}$$
For $X \rightleftharpoons Y + Z$ for $A \rightleftharpoons 2B$

$$\begin{array}{cccc} 1 & 0 & 0 & 1 & 0 \\ 1 - \alpha & \alpha & \alpha & 1 - \alpha & 2\alpha \end{array}$$

$$\therefore \frac{K_{P_{1}}}{K_{P_{2}}} = \frac{P_{1}}{P_{2}} \times \frac{n_{Y} \cdot n_{Z}}{n_{X}} \times \frac{(n_{A})}{(n_{B})^{2}} \times \left[\frac{\sum_{n_{2}}}{\sum_{n_{1}}} \right]$$

$$9 = \frac{P_{1}}{P_{2}} \times \frac{\alpha \cdot \alpha}{1 - \alpha} \times \frac{(1 - \alpha)}{(2\alpha)^{2}} \times \frac{(1 + \alpha)}{(1 + \alpha)}$$

$$\therefore \frac{P_1}{P_2} = 4 \times 9 = 36$$

565 **(c)**

There will be no effect on equilibrium constant (K_c) in presence of catalyst. So, statement (c) is wrong.

566 (a)

NH₃ (ammonia) possess an unshared electron pair on N-atom hence, it can donate electron pair. Such species are called Lewis bases. BF₃ acts as Lewis acid.

567 (a)

Ca₃(PO₄)₂ = 3Ca²⁺ + 2PO₄³⁻
^{5 mol/L} 3s 2s

$$K_{sp} = [Ca^{2+}]^3[PO_4^{3-}]^2$$

$$= (3s)^3(2s)^2$$

$$K_{sp} = 108s^5$$

569 (d)

Fe³⁺ ions are hydrolysed to develop acidic nature in solution.

570 (a)

$$K_{sp}$$
 of $M_2X = 4s^3$
 K_{sp} of $QY_2 = 4s^3$
 K_{sp} of $PZ_3 = 27s^4$

571 (a)

Strong acids have low pH value while strong bases have high pH value. Hence, the order of pH is

HCl $< CH_3COOH < NH_4Cl$ CH_3COONa

strong weak (salt of weak base (salt of weak acid
Acid acid and strong acid)
and strong base)

572 (c)

Thunderstorm produces acidic oxides of N, S which produce acidic rain on dissolution in water.

573 (c)

$$H_2O + NH_3 \rightleftharpoons NH_4^+ + OH^-$$

In this reaction, H_2O acts as an acid because it donates a proton

575 **(c)**

K°for
$$[Ag(NH_3)_2]^+ \rightleftharpoons Ag^+ + 2NH_3$$

$$K^\circ = \frac{[Ag^+][NH_3]^2}{[Ag(NH_3)_2]^+}$$
Also, $K_1^0 = 1.4 \times 10^{-4} = \frac{[Ag(NH_3)]^+[NH_3]}{[Ag(NH_3)_2]^{+2}}$

<

and
$$K_2^0 = 4.3 \times 10^{-4} = \frac{[\text{Ag}^+][\text{NH}_3]}{[\text{Ag}(\text{NH}_3)]^+}$$

$$\therefore K^0 = K_1^0 \times K_2^0 = 1.4 \times 10^{-4} \times 4.3 \times 10^{-4}$$

$$= 6.02 \times 10^{-8}$$

576 (d)

For precipitation, ionic product > solubility product

 \therefore The metal sulphide with lowest $K_{\rm sp}({\rm PbS})$ will precipitate out first because its inonic product will exceed its $K_{\rm sp}$ first and the metal sulphide with highest $K_{\rm sp}({\rm NiS})$ will precipitate out at last.

577 **(b)**

[OH⁻] in the diluted base =
$$\frac{10^{-6}}{10^2}$$
 = 10^{-8}
Total [OH⁻] = 10^{-8} + [OH⁻] of water
= $(10^{-8} + 10^{-7})$ M
= $10^{-8}(1 + 10)$ M
= 11×10^{-8} M
pOH = $-\log 11 \times 10^{-8}$
= $-\log 11 + 8\log 10$
= 6.9586
pH = $14 - 6.9586$
= 7.0414

578 (c)

The molecule shows three H-atoms are replaceable, *i. e.*, basicity of acid.

579 (c)

$$K_{sp}$$
 of $Ag_2CrO_4 = [Ag^+]^2[CrO_4^{2-}]$
Also, if $CrO_4^{2-} = 2 \times 10^{-4}$
Then $Ag^+ = 2 \times 2 \times 10^{-4}$
 $K_{sp} = (4 \times 10^{-4})^2(2 \times 10^{-4})$
 $= 32 \times 10^{-12}$.

580 (c)

$$K_p = P_{\text{CO}_2}$$

581 (a)

$$K_c = \frac{k_f}{k_b}$$

 $\therefore k_f = K_c \times k_b = 1.5 \times 7.5 \times 10^{-4}$
 $= 1.125 \times 10^{-3}$

582 **(d**

CH₃COOH + NaOH
$$\rightarrow$$
 CH₃COONH₄ + H₂O
$$\frac{0.3}{4} \qquad \qquad \frac{0.1}{4}(14 \text{ neutralization})$$

$$\therefore \text{ pH}_1 = \text{p}K_a + \log \frac{1}{3}$$

$$\text{CH}_3\text{COOH} + \text{NaOH} \rightarrow \text{CH}_3\text{COONH}_4 + \text{H}_2\text{O}$$

$$\frac{0.1}{4} \qquad \qquad \frac{0.3}{4}$$

$$\therefore \text{ pH}_2 = \text{p}K_a + \log 3$$

$$\therefore \text{ pH}_1 \sim \text{pH}_2 = \log \frac{1}{3} \sim \log 3 = 2 \log 3$$

583 **(c)**

The weak electrolyte $A_x B_y$ dissociates as follows

$$A_x B_y \rightleftharpoons x A^{y+} + y B^{x-}$$

$$C \qquad 0 \qquad 0$$

$$C(1-\alpha) \quad x C_\alpha \qquad y C_\alpha$$

Where, α = degree of dissociation

C = concentration

$$K_{\text{eq}} = \frac{[A^{y+}]^x [B^{x-}]^y}{[A_x B_y]}$$

$$= \frac{[x C \alpha]^x [y C \alpha]^y}{C(1-\alpha)}$$

$$= \frac{x^x . C^x \alpha^x . y^y . C^y . a^y}{C(1-\alpha)}$$

$$[\because 1 - \alpha \approx 1]$$

$$= x^{x}.y^{y}.\alpha^{x+y}.C^{x+y-1}$$

$$\alpha^{x+y} = \frac{K_{\text{eq}}}{x^{x}.y^{y}.C^{x+y-1}}$$

$$\alpha = \left(\frac{K_{\text{eq}}}{x^{x}.y^{y}.C^{x+y-1}}\right)^{\left(\frac{1}{x+y}\right)}$$

584 **(a)**

585 (a)

Mixture of acetic and sodium acetate is an acidic buffer. Hence, from Henderson equation,

$$pH = pK_a + \log \frac{[\text{salt}]}{[\text{acid}]}$$

On increasing [salt] ten times of that of [acid], the pH will increase by one.

586 (a)

Bi₂S₃
$$\rightleftharpoons 2Bi^{3+} + 3S^{2-}$$

$$2s \quad 3s$$

$$K_{sp} = (2s)^{2}(3s)^{3} = 108s^{5}$$

$$108s^{5} = 1 \times 10^{-17}$$

$$s = \left(\frac{1 \times 10^{-17}}{108}\right)^{1/5} = 1.56 \times 10^{-4}$$
MnS $\rightleftharpoons Mn^{2+} + S^{2-}$

$$K_{sp} = s^{2}$$

$$s = \sqrt{K_{sp}} = \sqrt{7 \times 10^{-16}}$$

$$= 2.64 \times 10^{-8}$$
CuS $\rightleftharpoons Cu^{2+} + S^{2-}$

$$s \quad s$$

$$K_{sp} = s^{2}$$

$$8 \times 10^{-37} = s^{2}$$

$$s = \sqrt{8 \times 10^{-37}} = 0.89 \times 10^{-18}$$
Ag₂S $\rightleftharpoons 2Ag^{+} + S^{2-}$

$$K_{\rm sp} = 4s^3 \text{ or } 4s^3 = 6 \times 10^{-51}$$

 $s = \sqrt[3]{\frac{6 \times 10^{-51}}{4}}$
 $= \sqrt[3]{1.5 \times 10^{-51}} = 1.14 \times 10^{-17}$

The solubility of Bi₂S₃ is maximum. Hence, it is the most soluble.

587 (c)

The variation of equilibrium constant with temperature is given by van't Hoff isochore as:

$$\frac{d}{dt} \operatorname{In} K_{c} = \frac{\Delta H}{RT^{2}}$$

588 (d)

It is the characteristic of reaction.

589 (d)

$$K_h = \frac{K_w}{K_a} = \frac{10^{-14}}{1.3 \times 10^{-9}} = 7.7 \times 10^{-6}$$

590 (b)

$$K_{\rm sp} = [{\rm Ag^+}][{\rm Br^-}] = 5.0 \times 10^{-13}$$

$$[{\rm Ag^+}] = 0.05 \text{ M}$$

$$[{\rm Br^-}] = \frac{5.0 \times 10^{-13}}{0.05} = 1 \times 10^{-11} \text{ M}$$

Moles of KBr = $1 \times 10^{-11} \times 1 = 1 \times 10^{-11}$ Weight of KBr = $1 \times 10^{-11} \times 120 = 1.2 \times 10^{-11}$ 10^{-9} g

591 **(b)**

Thermal decomposition of potassium chlorate is irreversible. So, law of mass action cannot be applied on this reaction

592 (d)

AB is binary electrolyte,

$$s = \sqrt{K_{\rm sp}} = \sqrt{1.21 \times 10^{-6}} = 1.1 \times 10^{-3} \,\mathrm{M}$$

$$SnS_2 = Sn^{4+} + 2S^{2-}$$
.
594 **(b)**

$$pK_a = -\log K_a$$

Where, K_a = ionisation constant of weak acid. Smaller the value of pK_a , stronger will be the acid. So, $pK_a = 10^{-8}$ is strongest acid.

596 **(a)**

 CH_4 has almost no acidic nature and thus, CH_3^- is strongest base.

597 (c)

$$K_c = \frac{[AB]^2}{[A_2][B_2]}$$

$$K_c = \frac{(2.8 \times 10^{-3})^2}{3 \times 10^{-3} \times 4.2 \times 10^{-3}} = 0.62$$

598 (a)

$$\begin{array}{ccccc} A & + & B & \rightleftharpoons & C + D \\ a & & a & 0 & 0 \\ (a-x) & & (a-x) & & x & x \end{array}$$

Given,
$$x = 2(a - x)$$
 or $x = \frac{2a}{3}$
 $K_c = \frac{x^2}{(a - x)^2} = \frac{(2a/3)^2}{(a - 2a/3)^2} = 4$

599 (d)

$$PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$$

According to Le-Chatelier's principle, on increasing volume of a reactant, the reaction proceeds in forward direction. Hence, on addition of Cl₂ to above reaction, the equilibrium will shift to the right.

600 (c)

 $K_{sp} \text{ AgCl} = 1.2 \times 10^{-10} = [\text{Ag}^+][\text{Cl}^-] = [s][s +$ 0.1] where, *s* is solubility of AgCl

$$K_{sp} = s \times 0.1 = 1.2 \times 10^{-10}$$

$$s = 1.2 \times 10^{-9} M$$

601 (d)

Dissociation weak acid decreases in presence of common ion.

$$K_{sp} = 4s^3$$

Also,
$$s = \frac{0.017}{78} M$$

$$\therefore K_{sp} = 4 \times \left(\frac{0.017}{78}\right)^3 = 4.14 \times 10^{-11}$$

603 (d)

For weak acid,

$$\alpha = \sqrt{\frac{K_a}{C}}$$

As C' decreases, α increases therefore, percentage ionisation will increase

604 (a)

In acidic medium, H₂S is very feebly ionised giving very small concentration of sulphide ion for precipitation. Therefore, the most insoluble salts CuS and HgS are precipitated only.

605 (d)

In case of hydrolysis of salt of weak acid and strong base, the pH is given by

$$\frac{1}{2}pK_w + \frac{1}{2}pK_a + \frac{1}{2}\log C$$

606 (c)

$$[H^+] = c\alpha = 0.1 \times \frac{2}{100} = 2 \times 10^{-3} M$$

Also, $[H^+] \times [OH^-] = 10^{-14}$.

607 (d)

$$\therefore \quad pH = pK_a + \log \frac{[\text{salt}]}{[\text{acid}]}$$

or
$$5.8 = 4.8 + \log \frac{[\text{salt}]}{[\text{acid}]}$$

or $\log \frac{[\text{salt}]}{[\text{acid}]} = 1.0$
 $\frac{[\text{salt}]}{[\text{acid}]} = \text{anti} - \log 1.0 = 10$
 $\therefore \frac{[\text{acid}]}{[\text{salt}]} = \frac{1}{10} = 0.1$

608 (c)

$$PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g); K_{p} = \frac{p_{PCl_{3}} \times p_{Cl_{2}}}{p_{PCl_{5}}}$$

$$COCl_{2}(g) \rightleftharpoons CO(g) + Cl_{2}(g); K_{p} = \frac{p_{CO} \times p_{Cl_{2}}}{p_{COCl_{2}}}$$

If CO is introduced, the dissociation of COCl_2 will decrease and p_{Cl_2} will decrease. This will favour dissociation of p_{Cl_5} , because both reactions are attained in same vessel.

609 (a)

For saturated solution of Ag_2CrO_4 , if solubility is 's' mol L^{-1} . Then

$$Ag_{2}CrO_{4} \rightleftharpoons 2Ag^{+}(aq) + CrO_{4}^{2-}(aq)$$

$$S \qquad 2s \qquad S$$

$$K_{sp} = (2s)^{2}(s) = 4s^{3}$$

$$K_{sp} = 3.2 \times 10^{-11} \text{ (given)}$$

$$3.2 \times 10^{-11} = 4s^{3}$$

$$s^{3} = \frac{3.2 \times 10^{-11}}{4} = 8 \times 10^{-12}$$

$$\therefore \qquad s = \sqrt{8 \times 10^{-12}} = 2 \times 10^{-4} \text{ M}$$

610 **(b)**

::

Given,
$$S(s) + S^{2-} \rightleftharpoons S_2^{2-}$$
 $K_{c_1} = 1$
 $2S(s) + S^{2-} \rightleftharpoons S_3^{2-}$ $K_{c_2} = 5$
 $\therefore K_{c_1} = \frac{[S_2^{2-}]}{[S^{2-}]} = 1.7$...(i)
 $K_{c_2} = \frac{[S_3^{2-}]}{[S^{2-}]} = 5.3$...(ii)

$$K_{c_2} = \frac{[S_3^2]}{[S^2]} = 5.3$$

Now for, $S_2^2(s) + S(s) \rightleftharpoons S_3^{2-1}$
 $K_c = \frac{[S_3^{2-1}]}{[S_2^{2-1}]}$

∴ By Eqs. (ii) and (i),
$$\frac{K_{c_2}}{K_{c_1}} = \frac{\left[S_3^{2^-}\right]}{\left[S_2^{2^-}\right]} = K_c$$

∴ $K_c = 3.11$

611 (a)

pH will decrease as K_w will increase and [H⁺] will increase but [H⁺] = [OH⁻] and thus, solution will be neutral or we can say scale of pH will change.

612 (d)

The conjugate acid of NH_2^- is NH_3 .

$$NH_2^- + H^+ \rightleftharpoons NH_3$$
 base conjugate acid

613 (a)

If strong acid is present in a solution, then pH is calculated from its concentration.

$$\therefore [OH^{-}] = 10^{-1} \text{ or pH} = 1.$$

614 **(b)**

pH = pK_a + log
$$\frac{\text{[Conjugate base]}}{\text{[Acid]}}$$

[Conjugate base] = $\frac{20 \times 0.5}{30}$; [Acid] = $\frac{10 \times 1}{30}$
 \therefore pH = 4.76 + log $\frac{1}{1}$ = 4.76

615 (c)

In the presence of little H_2SO_4 (as catalyst) about 2/3 mole of each of CH_3COOH and C_2H_5OH to form $\frac{2}{3}$ mole of the product at equilibrium

616 **(b)**

$$pH = 2$$

 $\therefore [H^+] = 10^{-pH} = 10^{-2}M$

617 (a)

$$K_c = \frac{[A][B]}{[AB]};$$
If $[A] = 2 \times [A];$

To have K_c constant [B] should be [B] $\times \frac{1}{2}$

618 (d)

The change in pressure will not affect the equilibrium constant. Equilibrium constant changes with change in temperature.

619 (c)

$$K_c = \frac{[HI]^2}{[H_2][I_2]} = \frac{0.7 \times 0.7}{0.1 \times 0.1} = 49$$

620 (a)

For 0.1 M acetic acid, or $C=0.1 \text{ mol L}^{-1}$ $K_a=1.74\times 10^{-5}$ pH=?

According to Ostwald dilution formula,

$$[H^{+}] = \sqrt{K_a \times C}$$

$$= \sqrt{1.7 \times 10^{-5} \times 0.1}$$

$$= \sqrt{0.017 \times 10^{-4}}$$

$$pH = -\log_{10}[H^{+}]$$

$$= -\log_{10}\sqrt{0.017 \times 10^{-4}}$$

$$pH = 2.88$$

621 (a)

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

For this reaction, $\Delta n_g = 2 - 1 = 1$
Value of Δn_g is positive, so the dissociation of PCl_5
increases by decrease in pressure and by increase
in pressure, the dissociation of PCl_5 decreases

622 **(a)**

pH =
$$-\log[H^+]$$
 and $[H^+] = \sqrt{9.61 \times 10^{-14}}$
∴ pH = 6.51

624 **(c)**

First dissociation

$$X(OH)_3 \to X(OH)_2^+ + OH^-$$

Second dissociation

$$X(OH)_2^+ \to X(OH)^{2+} + OH^-$$

Total
$$[OH^-] = 4 \times 10^{-3} + 2 \times 10^{-3}$$

$$= 6 \times 10^{-3}$$

$$pOH = 3 - \log 6$$

$$= 3 - 0.78 = 2.22$$

$$pH = 14 - 2.22 = 11.78$$

625 (a)

$$K_c = \frac{[\mathsf{C}_6\mathsf{H}_6]}{[\mathsf{C}_2\mathsf{H}_2]}$$

Or
$$4 = \frac{[C_6 H_6]}{(0.5)^3}$$
;

$$\therefore [C_6 H_6] = 0.5 M$$

626 **(d)**

$$K_p$$
 of the reaction is : $K_p = \frac{P'_{CO_2}}{(P'_{CH_4})(P'_{O_2})}$.

628 (d)

Buffer is
$$CH_3COOH + CHCOO^-$$
 and has $Acid$ Conjugate base

pH fixed.

629 **(d)**

 Δn = Mole of product - Mole of reactant; count only gaseous phase reactants.

630 (c)

$$N_2O_4 \rightleftharpoons 2NO_2$$

1 0 initially

 $(1-\alpha)$ 2 α at equilibrium

Total moles at equilibrium = $(1 - \alpha) + 2\alpha$

 $= 1 + \alpha$

631 **(b)**

Larger is bond length, more is acidic nature.

632 (a

$$K_a = c\alpha^2 \text{ or } 1.0 \times 10^{-5} = 0.1 \times \alpha^2$$

 $\therefore \alpha = 10^{-2} \text{ or } 1\%$

633 **(a)**

By Le-Chatelier principle

 $n_p > n_r$ (gaseous)

So, reaction shift in the backward direction

634 **(b)**

The buffer solutions are those solutions which resists the change in its pH value on addition of small amount of a base or an acid. CH₃COOH and CH₃COONa solution is buffer solution because it is a solution of weak acid and its salt with strong base.

646 (c)

Consider a buffer of CH₃COOH + CH₃COONa

635 **(c)**

pOH = p
$$K_b$$
 + log [Conjugate acid]
[base]
= -log 1.8 × 10⁻⁵ + log $\frac{0.2}{0.3}$
= -log 1.8 × 10⁻⁵ + log 0.66
= 4.744 - 0.176 = 4.567
∴ pH = 14 - 4.567 = 9.423.

637 **(c)**

The aqueous solution of KCN, K₂CO₃ and LiCN turn red litmus blue because of alkaline nature.

The anionic hydrolysis turns the solution alkaline.

638 **(d)**

$$CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$$
.

640 (a)

This is Henderson equation for acidic buffer mixtures.

641 **(c)**

$$[H^+] = c. \alpha = 0.01 \times \frac{12.5}{100}$$

= 1.25 × 10⁻³

∴ Thus, pH = $-\log 1.25 \times 10^{-3}$

i.e., in between 2 and 3.

642 (c)

AlCl₃ on hydrolysis gives weak base and strong acid.

643 **(b)**

When rate of forward reaction is equal to the rate of backward reaction then equilibrium is supposed to be established

644 (a)

 ΔH is positive, so it will shift toward the product by increasing temperature

645 (a)

Electrophiles are electron deficient compounds and accept pair of electron.

Addition of Acid : $H^+ + CH_3COO^- \rightarrow CH_3COOH$

Addition of alkali:

$$OH^- + CH_3COOH \rightarrow H_2O + CH_3COO^-$$
(Weak electrolyte)

Thus addition of acid or alkali does not cause any change in pH.

647 (c)

For the precipitation of an electrolyte, it is necessary that the ionic product must exceed its solubility product

648 (a)

For different salts such as AB, AB₂, AB₃ ... etc. $K_{sp} = s^2, 4s^3, 27s^4$... respectively. If K_{sp} is same for different salts, then s is more for the salt in which is more number of ions.

649 **(b)**

An increase in temperature favours forward reaction, if $\Delta H = +ve$,

$$N_2O_4 \rightleftharpoons 2NO_2$$
; $\Delta H = +ve$

650 **(a)**

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

 $56 g 8 g 0 g$
 $(= 2 \text{ mol})(= 4 \text{ mol}) (0 \text{ mol}) \text{ initially}$
 $(2 - 1)(4 - 3) 34 g \text{ at equilibrium}$
 $= 1 = 1 (= 2 \text{ mol})$

According to Eq.(1) 2 moles of ammonia are present a produce 2 moles of NH₃, we need 1 mole of N_2 and 3 of H_2 , hence 2 - 1 = 1 mole of N_2 and 4 - 3 = 1 mole are present at equilibrium in vessel

651 (a)

[OH⁻]in NH₄OH solution =
$$C\alpha$$

= 0.001 × $\frac{1}{100}$ = 1 × 10⁻⁵
pOH = $-\log[OH^{-}]$
pOH = $-\log[1 \times 10^{-5}]$
pOH = 5

652 (c)

Addition of inert gas at constant volume condition to an equilibrium has no effect.

653 **(d)**

 $Q > K_c$ thus, Q must decrease so that [NH₃] may decrease to have backward reaction.

654 (c)

NaHSO₄ (acidic salt) and Na₂SO₄ normal salt.

655 **(b)**

$$AgCl \rightleftharpoons Ag^+ + Cl^-$$

$$K_{sp} = [Ag^+][Cl^-]$$

$$K_{sp} = S^2$$
(S-solubility in mol/L)

(S=solubility in mol/L)

$$S = \frac{1.435 \times 10^{-3} \text{ g/L}}{143.5} = 1 \times 10^{-10} \text{ mol/L}$$

656 (a)

Le-Chatelier's principle is not applicable to solidsolid heterogeneous equilibrium.

657 (a)

$$2SO_2 + O_2 \rightleftharpoons 2SO_3$$
Initially 4 4 0
At equili. 4(1-0.25) 4(1-0.25) 0.25 × 2

Total number of moles at equilibrium

$$4(1-0.25)$$
 $4(1-0.25)$ 0.5
 $4-1$ $4-1$ 0.5 6.5

658 **(b)**

0.005
$$M$$
 H₂SO₄ = 2 × 0.005 N H₂SO₄
= 0.01 N H₂SO₄;
Thus, [H⁺] = 10⁻² M
 \therefore pH = 2.

659 **(c)**

Due to common ion effect, rate of ionisation of NH₄OH decreases, so power

[OH⁻] is obtained. Hence, pH value decrease.

660 **(b)**

For indicator dissociation equilibrium; being an acid

$$HIn_{Colour A} \rightleftharpoons H^{+} + In^{-}_{Colour B}$$

$$K_{In} = \frac{[H^{+}][In^{-}]}{[HIn]}$$

The mid point of the colour range of an indicator HIn is the point at which $[In^{-}] = [HIn]$.

∴
$$K_{\text{In}} = [\text{H}^+] = 1 \times 10^{-5}$$

∴ $[\text{H}^+] = 1 \times 10^{-5}$
or $\text{pH} = 5$.

661 **(b)**

Follow Le-Chatelier's principle

662 **(c)**

Initial
$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

$$\frac{56}{28} = 2 \qquad \frac{8}{2} = 4$$
At $(2-x) \qquad (4-3x) \qquad 2x = \frac{34}{17} = 2$

moles

equilibrium mole mole

Hence, x = 1 mole

Hence, number of moles of N₂ at equilibrium

$$=2-1=1$$
 mole

Number of moles of H₂ at equilibrium

=4-3=1 mole

Number of moles of NH₃ at equilibrium=2 moles

663 (c)

Na₂CO₃, on hydrolysis gives alkaline solution as the solution contains strong base and weak acid.

$$Na_2CO_3 \xrightarrow{2H_2O} 2NaOH + H_2CO_3$$

strong base weak

acid

664 (c)

Acidic buffer is a mixture of weak acid and its salt with strong base. Similarly, basic buffer is a mixture of weak base and its salt with strong acid. Hence, 50 mL 0.1 M CH₃COOH + 100 mL 0.1 M NaOH does not constitute a buffer solution because in this case millimoles of acid are less than that of strong base, which after reaction with strong base gives salt. Now, the solution contains only strong base and salt but no weak acid. Hence, no buffer is formed.

665 (a)

$$K_p = \frac{(p_{\text{CO}})^2}{(p_{\text{CO}_2})} = \frac{8 \times 8}{4} = 16 \text{ atm.}$$

(a)

$$Ag_2CrO_4 \rightarrow 2Ag^+ + CrO_4^{2-}$$

 s $2s$ s
 $K_{sp} = (2s)^2 s = 4s^3$
 $s = \left(\frac{K_{sp}}{4}\right)^{1/3} = \left(\frac{32 \times 10^{-12}}{4}\right)^{1/3} = 2 \times 10^{-4} M$

668 (c)

$$2NO_2(g) \rightleftharpoons 2NO(g) + O_2(g)$$

$$K = \frac{[NO]^2[O_2]}{[NO_2]^2} = 2 \times 10^{-6}$$

 $4NO(g) + O_2(g) \rightleftharpoons 4NO_2(g)$

$$K' = \frac{[\text{NO}_2]^4}{[\text{NO}]^4 [\text{O}_2]^2}$$
$$= \frac{1}{(K)^2} = \frac{1}{(2 \times 10^{-6})^2}$$

Equilibrium constant $K' = 0.25 \times 10^{12}$ $= 2.5 \times 10^{11}$

669 **(b)**

$$Mg(OH)_2 \rightleftharpoons Mg^{2+} + 2OH^-$$

 $K_{SD} = [Mg^{2+}][OH^-]^2$

$$[OH^-] = \sqrt{\frac{K_{sp}}{[Mg^{2+}]}}$$

$$[OH^-] = \sqrt{\frac{1.0 \times 10^{-11}}{0.001}} = 10^{-4}$$
 pOH=4 and pH=10

670 (a)

Precipitation just starts when the product of ionic concentration is equal to K_{sp} .

 $[Ag^+][Cl^-] = K_{spAgCl}$. This is the limiting case at which precipitation just starts or no precipitation up to this limit.

671 (a)

Such solutions are acidic and methyl orange act on acidic pH

672 (c)

 $[Cu(NH_3)_4]SO_4 \rightarrow [Cu(NH_3)_4]^{2+} + SO_4^{2-}$; The complex ion is not ionised.

673 **(b)**

Given density of formic acid = 1.22 g/cm^3 ∴ Weight of formic acid in 1 litre solution = $1.22 \times 10^{3} \text{ g}$

Thus, [HCOOH] =
$$\frac{1.22 \times 10^3}{46}$$
 = 26.5 M

Since in case of auto ionisation $[HCOOH_2^+] =$ [HCOO⁻]

and
$$[HCOO^{-}][HCOOH_{2}^{+}] = 10^{-6}$$

:.
$$[HCOO^-] = 10^{-3}$$

Now % dissociation of HCOOH

$$= \frac{[HCOO^-] \times 100}{[HCOOH]} = \frac{10^{-3}}{26.5} \times 100 = 0.004\%$$

674 **(b)**

A buffer of H_2CO_3 and HCO_3^- is formed.

675 (a)

$$c\alpha^2 = K_a$$
 $\therefore \alpha = \sqrt{\left[\frac{K_a}{c}\right]} \text{ or } \alpha = \frac{1}{\sqrt{c}}.$

676 **(a)**

$$[H^{+}] = K_{a}.C$$

Given,
$$[H^+]_{HCOOH} = [H^+]_{CH_3COOH}$$

$$K_a$$
. $C = K'_a C'$
⇒ $1.8 \times 10^{-4} \times 0.001 = 1.8 \times 10^{-5} \times C'$
∴ $C' = 0.01$ M

677 (a)

$$2Ag_2O(s) \rightleftharpoons 4Ag(s) + O_2(g)$$

$$K_p = p_{O_2}$$

(: Ag and Ag₂O are solids)

678 (c)

(c)

$$MX_2 \rightleftharpoons M^{2+} + 2X^-$$

 $S_{sp} = [M^{2+}][X^-]^2$

If solubility be s then

$$K_{\rm sp} = (s)(2s)^2 = 4s^3$$

 $4s^3 = 4 \times 10^{-12}$
 $\therefore \qquad s = 1 \times 10^{-4} \,\text{M}$
 $\therefore \qquad M^{2+} = s = 1 \times 10^{-4} \,\text{M}$

679 (d)

$$CaCO(s) \rightleftharpoons CaO(s) + CO_2(g)$$

The equilibrium constant for this reaction is given by $K = [CO_2]$ (as $CaCO_3$ and CaO are solid).

Hence, to get more CO_2 , we need to pump out continuously the CO₂ gas.

680 **(b)**

 H_2O can accept H^+ or donate H^- .

681 **(b)**

$$k_f = 1.1 \times 10^{-2}, k_b = 1.5 \times 10^{-3}$$

$$K_c = \frac{k_f}{k_b} = \frac{1.1 \times 10^{-2}}{1.5 \times 10^{-3}} = 7.33$$

682 **(b)**

HCl is metabolically produced in human body.

683 **(b)**

$$NH_4HS(s)$$
Pressure at equilibrium
 $\Rightarrow NH_3(g) + H_2S(g)$
P

 \therefore Total pressure at equilibrium = 2P = 1.12 atm

$$P = 1.12/2$$
 atm

$$: K_p = P'_{NH_3} \times P'_{H_2S}$$

$$: K_p = \frac{1.12}{2} \times \frac{1.12}{2} = 0.3136 \text{ atm}^2$$

684 **(c)**

NaCl does not hydrolyse.

685 **(b)**

The substance which can donate a pair of electrons is called Lewis base.

Amines contain lone pair of electron on nitrogen atom, so behave as Lewis base.

686 **(c)**

Both possess the tendency to accept proton.

687 (a)

It is an acidic solution with pH < 7 as NaCl solution is neutral but HCl is a strong acid

688 (a)

Methyl orange will give colour only when more of weak acid is used, i.e., more milli equivalents are added. Thus, $\frac{w}{E} \times 1000 = \text{Meq. Thus}$, E will belower if Meg. are more.

689 (c)

Among the given species, correct order of increasing acidic, strength is

$$0H^{-} < H_{2}O < NH_{4}^{+} < HF < H_{3}O^{+}$$

OH is a basic (i.e., it tends to gain a proton) and hence is least acidic. H2O is neutral species. H₃0⁺is most acidic as it readily lose proton.

690 **(b)**

Presence of lone pair of electron and they donate two electron pairs

691 (c)

 $Na_2CO_3 + 2H_2O \rightleftharpoons 2NaOH + H_2CO_3$. It is a salt of strong base and weak acid, so it is basic

692 **(d)**

BF₃ has incomplete octet and will act as Lewis acid NH₃ has lone pair of electron available for donation and thus Lewis base.

693 (d)

These are the characteristics of a reaction in equilibrium.

695 **(b)**

$$AgCl \rightarrow Ag^{+} + Cl^{-}$$

After NaCl is added $X + 1 \times 10^{-4}$ That is why Ag⁺ will be less

696 **(d)**

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

Molar concentration of

$$[N_2O_4] = \frac{9.2}{92} = 0.1 \text{ mol/L}$$

In equilibrium state,

(When it 50% dissociates)

$$[N_2O_4] = 0.05 \text{ M}$$

$$[NO_2] = 0.1 M$$

$$K_c = \frac{[\text{NO}_2]^2}{[\text{N}_2\text{O}_4]}$$
$$K_c = \frac{0.1 \times 0.1}{0.05}$$

$$K_c = \frac{0.1 \times 0.1}{0.05}$$

$$= 0.2$$

697 (a)

··

$$2CO_2 \rightleftharpoons 2CO + O_2$$

At equili. 0.6 atm 0.4 atm 0.2 atm

$$K_p = \frac{p_{CO}^2 \times p_{O_2}}{p_{CO_2}^2}$$
$$= \frac{(0.4)^2 (0.2)}{(0.6)^2} = 0.088$$

698 (c)

Aqueous solution of NaCN is basic because it is a salt of strong base and weak acid

699 (c)

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$
 $1 \atop 1-x 3 0 2x$

∴ 50% mixture reacts

$$\therefore 1 - x + 3 - 3x = \frac{4}{2} = 2$$

$$x = 0.5$$

$$\therefore P_{NH_3}^1 = P_T \times mf \text{ of NH}_3$$

$$= \frac{P \times 2 \times 0.5}{(4 - 0.5 \times 2)} = \frac{P}{3}$$

700 **(b)**

The CH_3COOH is weaker acid than H_2SO_4 . The reason is that CH_3COOH is weakly ionised in comparison with H_2SO_4 .

701 (a)

The problem is valid only if strong acids are mixed. After mixing equal volumes of three acids, total volume = 3 V

∴ [H⁺] after mixing

$$= \frac{10^{-3} \times V}{3V} + \frac{10^{-4} \times V}{3V} + \frac{10^{-5} \times V}{3V} + \frac{10^{-5} \times V}{3V} = \frac{1.11 \times 10^{-3}}{3} = 3.7 \times 10^{-4}$$

702 (a)

The ionisation of strong electrolytes in acetic acid, compared to water, is weak and low because acetic acid is a non-polar solvent.

703 (d)

Solubility of $CaF_2 = 2 \times 10^{-4}$ mol/L Each mole of CaF_2 dissolving in H_2O gives one mole of Ca^{2+} and two moles of F^- ions.

$$CaF_2 \rightleftharpoons Ca^{2+} + 2F^ 2 \times 10^{-4} \text{ M} 2 \times 2 \times 10^{-4} \text{ M}$$
 $K_{sp} = [Ca^{2+}][F^-]^2$
 $= [2 \times 10^{-4}][2 \times 2 \times 10^{-4}]^2$
 $K_{sp} = 3.2 \times 10^{11}$

704 **(b)**

(b)

$$\alpha = \frac{D-d}{d} = \frac{104.16-62}{62}$$

= 0.68 = 68%

705 (d)

HCOO⁻ is base having conjugate acid HCOOH (a monobasic acid).

706 (a)

::

$$NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$$
Initially 1 0.5 0
At equilibrium $(1-x)$ $(0.5+x)$ x
Total pressure at equilibrium
$$= p_{NH_2} + p_{H_2S}$$

$$= p_{NH_3} + p_{H_2S}$$

= 0.5 + x + x = 0.84
x = 0.17 atm

$$p_{NH_3} = 0.50 + 0.17 = 0.67 \text{ atm}$$

$$p_{H_2S} = 0.17 \text{ atm}$$

$$K_p = p_{NH_3}. p_{H_2S}$$
= 0.67 × 0.17 = 0.114 atm

707 (a)

The acidic character of non-metallic oxides increases along the period.

708 **(c)** $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ We know that, $K_p = K_c(RT)^{\Delta n_g}$ Here, $\Delta n_g = 2 - 2 = 0$ $K_p = K_c(RT)^0 = K_c$

709 **(c)**

Lower is K_{sp} , lower is solubility of salt.

710 **(d)** $MnS + 2HCl \longrightarrow MnCl_2 + H_2S;$ The dissociation of H_2S (formed) is suppressed due to the presence of HCl.

711 **(b)** pH + pOH = 14

712 (d)

The problem does not have suggests about the nature of acid, *i. e.*, weak or strong. The normality will be 10^{-2} for strong acid. If weak acid, normality can be obtained only if K_a is known.

713 (c) $[H^+] = 1$ $\therefore pH = -\log 1 = 0.$

714 **(b)**

It is an exothermic reaction, hence low temperature and increasing pressure will favour forward reaction

715 (a)

 $\mathrm{NH_4Cl}$ is acidic because it is a salt of weak base $\mathrm{NH_4OH}$ and a strong acid HCl. Thus, on hydrolysis, it gives strong acid HCl and weak base $\mathrm{NH_4OH}$.

$$NH_4Cl + H_2O \rightarrow NH_4OH + HCl$$

716 (a)

$$pH = -\log K_a + \log \frac{[C. B]}{[Acid]}; \therefore pH$$
$$= pK_a \left[\frac{[C. B]}{[Acid]} = 1 \right]$$

Find pH by $\frac{[C. B]}{[Acid]} = 10, i. e., pH = pK_a + 1$

For $AB_2: K_{sp} = 4s^3 = 4 \times (1.0 \times 10^{-5})^3 = 4 \times 10^{-15}$.

718 **(c)**

 $HClO_3$ is called chloride acid.

719 **(b)**

Ag⁺ is not a Lewis base as it has no lone pair of electron.

721 **(b)**

$$100 \times 10^{-1} = 1000 \times N$$

:
$$N_{\text{HCl}} = 10^{-2}$$
 :: pH = 2.

722 **(b)**

Meq. of
$$HCl = 20 \times 0.1 = 2$$

Meq. of KOH =
$$20 \times 0.1 = 2$$

Both are neutralized to give 2 Meq. of KCl (a salt of strong acid + strong base) and thus, does not hydrolyse and shows pH = 7.

723 **(d)**

For
$$A(s) \rightleftharpoons 2B(g) + 3C(g)$$

$$: K_c = [C]^3 [B]^2$$
; if $[C]$ becomes twice,

Then let conc. of B becomes B', then

$$K_c = [2C]^3 [B']^2$$

Or
$$[C]^3$$
. $[B]^2 = [2C]^3$. $[B']^2$

$$\therefore \qquad \frac{\left[B'\right]}{\left[B\right]} = \frac{1}{8} = \frac{1}{2\sqrt{2}}$$

724 (d)

The acidic character is $HCl > HF > H_2S > H_2O$ and thus, basic character of conjugate base will be $Cl^- < F^- < HS^- < OH^-$.

725 **(c)**

We know that,

$$pH = pK_a + \log \frac{[salt]}{[acid]}$$

$$5.5 = 4.5 + \log \frac{[\text{salt}]}{[0.1]}$$

$$[salt] = 1.0 M$$

727 (a)

$$CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2F^{-}(aq)$$

$$[F^{-}] = 2[Ca^{2+}]$$

$$= 2 \times 3.3 \times 10^{-4}$$

$$= 6.6 \times 10^{-4} \text{ M}$$

$$K_{\rm sp} = [{\rm Ca^{2+}}][{\rm F^{-}}]^2$$

$$= (3.3 \times 10^{-4})(6.6 \times 10^{-4})^2$$

$$= 1.44 \times 10^{-10}$$

728 **(b)**

Buffer solutions do not change their pH on addition of small amount of acid or base.

729 **(b**)

Blood is alkaline having pH between 7.0 to 7.4.

730 **(c)**

$$A + B \rightleftharpoons C$$

$$K = \frac{[C]}{[A][B]}$$

$$= \frac{\text{mol } L^{-1}}{\text{mol } L^{-1} \times \text{mol } L^{-1}} = (\text{mol } L^{-1})^{-1} = \text{mol}^{-1}L$$

731 (c)

Stronger is acid, weaker is its conjugate base and *vice-versa*.

732 **(a)**

The salt hydrolysis in each case occurs except NaW because its pH = 7. Thus, HW is strongest acid. More is the pH of salt solution, weaker is its acid part.

733 **(a)**

Follow Le-Chatelier's principle.

734 (c)

Hg exist as Hg_2^{2+} and not as Hg^+ . Thus $K_{sp} = [Hg_2^{2+}][I^-]^2$.

735 **(c)**

Meq. of
$$HCl = 40 \times 0.1 = 4$$

Meq. of NaOH =
$$10 \times 0.45 = 4.5$$

$$\therefore$$
 Meq. of NaOH left = 0.5

Now,
$$[OH^+] = \frac{0.5}{50} = 10^{-2}$$

$$pOH = 2$$
 and $pH = 12$

736 **(b)**

$$K_p = K_c \times (RT)^{\Delta n}$$
.

Where Δn = mole of products – mole of reactants.

737 **(b)**

pH = pK_a + log
$$\frac{\text{[Salt]}}{\text{[Acid]}}$$
 if $\frac{\text{[Salt]}}{\text{[Acid]}}$ increases by 10 times pH = pK_a + 1.

738 **(b)**

$$NaOH = [OH^{-}] = 10^{-3}$$

$$[H^+][OH^-] = 10^{-14}$$

$$[H^+] = 10^{-11}$$

$$pH = -\log[H^+]$$

$$= -\log[10^{-11}] = 11$$

$$HCl(ag) = [H^+] = 10^{-3}$$

$$pH = -\log[10^{-3}] = 3$$

$$NaCl(aq) = Neutral; [H^+] = [OH^-] = 10^{-7}$$

$$ie, pH = 7$$

739 (d)

$$K_{1} = \frac{[\text{NH}_{3}]^{2}}{[\text{N}_{2}][\text{H}_{2}]^{3}}$$

$$K_{2} = \frac{[\text{NO}]^{2}}{[\text{N}_{2}][\text{O}_{2}]}$$

$$[\text{H}_{2}\text{O}]$$

$$K_3 = \frac{[H_2O]}{[H_2][O_2]^{1/2}}$$

$$K = \frac{[\text{NO}]^2 [\text{H}_2 \text{O}]^3}{[\text{NH}_2]^2 [\text{O}_2]^{5/2}} = \frac{K_2 K_3^3}{K_1}$$

741 **(d)**

Decrease of *K* with rise of temperature means

that the forward reaction is exothermic. As the given reaction is exothermic, energy of HI is greater or stability is less than $\rm H_2$ and $\rm I_2$

742 **(b)**

BaSO₄
$$\rightleftharpoons$$
 Ba²⁺ + SO₄²⁻
Solubility product = $s \times s$
15 × 10⁻¹⁰ = s^2 : $s = \sqrt{15 \times 10^{-10}}$: $s = 3.0 \times 10^{-5}$

743 (a)

 ${\rm CO_2}$ is present in soda water bottle which increases ${\rm H^+}$ in solution,

$$H_2O + CO_2 \rightarrow H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$$
.

744 (a)

On increasing temperature, equilibrium will shift in forward direction due to decrease in intermolecular forces of solid

745 (d)

CaCl₂ is a salt of strong acid and strong base.

746 (c)

$$K_a = \frac{[H^+][In^-]}{[HIn]}$$

or $3 \times 10^{-5} = \frac{[H^+] \times 75}{25}$
 $\therefore [H^+] = 1 \times 10^{-5} M$

748 **(b)**

$$[OH^{-}] = 1 \times 10^{-5}$$

$$pOH = -\log[OH^{-}]$$

$$= -\log[1 \times 10^{-5}]$$

$$pOH = 5$$

$$pH + pOH = 14$$

$$pH = 14 - pOH$$

$$= 14 - 5$$

$$pH = 9$$

750 (d)

It is definition of Levelling effect.

751 (d)

$$N = \frac{75 \times \frac{1}{5} - 25 \times \frac{1}{5}}{100} = 15 - 5 = \frac{10}{100} = 0.1$$

pH = $-\log[H^+] = -\log[0.1] = 1$

752 (c)

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g);$$

 $\Delta H = -93.6 \text{ kJ mol}^{-1}$

This reaction is exothermic therefore the concentration of NH_3 can be increased by lowering the temperature, high pressure $(\Delta n < 0)$ excess N_2 and H_2 .

753 **(c)**

e. g., K_4 Fe(CN)₆ does not give test for Fe³⁺ ions.

754 **(c)**

 ${\rm CH_3COONa}$ in water gives alkaline solution due to hydrolysis of acetate ions. ${\rm NH_4Cl}$ gives acidic solution due to hydrolysis of ${\rm NH_4^+}$ ions. Also ${\rm NH_4OH}$ is a weak base due to less dissociation.

755 **(c)**

$$HPO_4^{2-} + H_2O \rightleftharpoons H_2PO_4^{2-} + OH^-$$

 $HPO_4^{2-} + H_2O \rightleftharpoons PO_4^{3-} + H_3O^+$
 $H_2PO_2^-$ is a conjugate base of H_3PO_2 (a
monobasic acid) and does not give H^+ , HPO_3^{2-}
is a conjugate base of $H_2PO_3^-$ and does not
ionise further, since H_3PO_3 is a dibasic acid.

756 **(d)**

Alkanes are not acidic and thus, R^- is strongest base.

757 (a)

$$pH = -\log K_a + \log \frac{[Conjugate base]}{[Acid]}$$

758 **(a)**

$$[H^+] = \sqrt{K_a \cdot C}$$

Where, C =initial concentration of the weak acid

$$C = \frac{[H^+]^2}{K_a}$$

$$= \frac{(3.4 \times 10^{-4})^2}{1.7 \times 10^{-5}}$$

$$C = 6.8 \times 10^{-3} \text{ M}$$

759 **(d)**

2Na
$$+ 2H_2O \rightarrow 2NaOH + H_2$$

2 mol 2 mol 2 mol
Given, $\frac{0.023}{23}$ mol $\frac{100}{22400}$ mol
 $= 1 \times 10^{-3}$ mol $= 4.46 \times 10^{-3}$ mol

Thus, Na is the limiting reagent and decide the amount of NaOH formed.

∴ 1 mole Na give NaOH = 1 mol

∴
$$1 \times 10^{-3}$$
 mole Na will give NaOH
= 1×10^{-3} mol

Concentration of

$$[0H^{-}] = \frac{1 \times 10^{-3} \times 1000}{100} = 1 \times 10^{-2}$$

$$pOH = -\log[OH^{-}]$$

$$= -\log(1 \times 10^{-2})$$

$$= 2$$

$$pH = 14 - 2 = 12$$

760 **(b)**

1 mole of N₂ reacts with 3 mole of H₂ thus, for
N₂ + 3H₂
$$\rightleftharpoons$$
 2NH₃; $(a - x) > (a - 3x)$

$$(a-x)$$
 $(a-3x)$ $2x$

761 (a)

$$A + 2B \rightleftharpoons 2C + D$$

a b 0 0 0

$$(a-x)$$
 $(b-2x)$ $2x$ x
Given, $2x = 0.2$, Also, $a=1.1$
 $x = 0.1$ $b = 2.2$

$$\therefore K_c = \frac{2 x^2}{(a-x)(b-2x)}$$

$$(2 \times 0.1)^2 \times 0.1$$

$$= \frac{(2 \times 0.1)^2 \times 0.1}{(1.1 - 0.1)(2.2 - 0.2)^2} = 0.001$$

762 **(a)**

pH = p
$$K_a$$
 + log [Conjugate base]
[Acid]
pH = p K_a + log 1 (\because 50% neutralization)
 \therefore log H⁺ = -log 2 × 10⁻⁴
or H⁺ = 2 × 10⁻⁴

763 (a)

 K_2S shows alakaline nature due to hydrolysis of S^{2-} ions,

$$S^{2-} + H_2O \rightleftharpoons HS^- + OH^-$$
.

764 **(b)**

B.pt. increases with increase in pressure.

766 **(b)**

Na₂CO₃ salt gives strong base and weak acid on dissolving in water. Hence, it produces an alkaline solution.

$$Na_2CO_3 + H_2O \rightarrow NaOH$$
 + H_2CO_3
Strong base Weak acid

767 (a)

Addition of some concentration HCl does not change pH.

768 **(d)**

CO is neutral.

769 **(c)**

$$2SO_2 + O_2 \rightleftharpoons 2SO_3$$
; $K = 278$
 $SO_3 \rightleftharpoons SO_2 + \frac{1}{2}O_2$; $K' = \frac{1}{\sqrt{K}}$
 $K' = \frac{1}{\sqrt{K}} = \frac{1}{\sqrt{278}} = 6 \times 10^{-2}$

770 **(b)**

The reaction shows lower $K_{eq.}$ value in forward direction, *i. e.*, more $K_{eq.}$ in backward direction or HCN decomposes salt of HNO₂.

771 **(d)**

Initially
$$[CH_3COONa] = 0.1 \text{ mol}$$
 $[CH_3COOH] = 0.1 \text{ mol}$
when $0.1 \text{ mol } CH_3COONa \text{ is added.}$
 $[CH_3COONa] = 0.1 + 0.1 = 0.2 \text{ mol}$
 $pH = pK_a + \log \frac{[\text{salt}]}{[\text{acid}]}$
 $= pK_a + \log \frac{0.2}{0.1}$
 $= pK_a + \log 2$

772 **(c)**

For binary salts (like AgCl, AgBr).

$$s = \sqrt{K_{\rm sp}}$$

∴ Solubility of AgCl =
$$\sqrt{1.8 \times 10^{-10}}$$

= 1.35×10^{-7} mol/L

Solubility of AgBr =
$$\sqrt{5.0 \times 10^{-13}}$$

= 7.1×10^{-7} mol/L

For, Ag_2CrO_4 , $K_{sp} = 4s^3$

∴ Solubility of Ag₂CrO₄

$$= \sqrt[3]{\frac{K_{sp}}{4}}$$

$$= \sqrt[3]{\frac{2.4 \times 10^{-12}}{4}}$$

$$= \sqrt[3]{600 \times 10^{-15}}$$

$$= 8.44 \times 10^{-5} \text{ mol/L}$$

As Ag₂CrO₄ has maximum solubility, it will give maximum Ag⁺ ions in solution. Hence, it will be used.

773 **(a)**

Ostwald's dilution law is valid only for weak electrolytes.

774 **(b)** $[Zn^{2+}][S^{2-}] = 10^{-1} \times 8.1 \times 10^{-19} = 8.1 \times 10^{-20} > K_{sp} \text{ of } ZnS \ (3 \times 10^{-22})$ $[Cu^{2+}][S^{2-}] = 10^{-2} \times 8.1 \times 10^{-19} = 8.1 \times 10^{-21} > K_{sp} \text{ of } CuS \ (8 \times 10^{-36})$

776 **(b)**

Gas + Liquid \rightleftharpoons Solution. An increase in P will favour forward reaction.

778 **(b)**

$$K_{a_1} > K_{a_2}.$$

779 (d)

$$A + 2B \rightleftharpoons 2C + D$$

$$a \frac{3}{2}a \quad 0 \quad 0$$

$$(a-x) \left(\frac{3}{2}a-2x\right)$$

Given,
$$a - x = 2x$$

$$\therefore x = a/3$$

Now,
$$K_c = \frac{[C]^2[D]}{[A][B]^2} = \frac{\left(\frac{2a}{3}\right)^2 \times \frac{a}{3}}{\left(a - \frac{a}{3}\right)\left(\frac{3a}{2} - \frac{2a}{3}\right)^2} = 0.32$$

780 **(b)**

$$Al_2(SO_4)_3 \rightleftharpoons 2Al^{3+} + 3SO_4^{2-}$$

 $K_{sp} = [Al^{3+}]^2[SO_4^{2-}]^3$

781 **(a**)

[H⁺] from weak acid,

$$= c \cdot \alpha = c \sqrt{\frac{K_a}{c}} = \sqrt{K_a c} = \sqrt{10^{-5} \times 0.1}$$

$$= 10^{-3}$$

$$\therefore \qquad s = 5 \times 10^{-9} \text{ mol } L^{-1}$$

$$789 \text{ (a)}$$

$$SO_2 + \frac{1}{2}O_2 \implies SO_3$$

$$\therefore$$
 pH = 3

782 (a)

:.

$$[H^+] = 10^{-10}M$$

pH = 10

$$\therefore$$
 pOH = 4

783 **(b)**

$$H^+ + OH^- \rightarrow H_2O$$

 $\Delta H = -13.7 \text{ kcal.}$

784 (a)

$$pH = -\log(5 \times 10^{-10}) + \log\left[\frac{5 \times V}{V + 10} / \frac{10 \times 2}{V + 10}\right]$$
$$9 = -\log(5 \times 10^{-10}) + \log\frac{V}{4}$$

On solving, V = 2 mL

785 **(b)**

$$K_1 = \frac{[H^+][H_2PO_4^-]}{[H_3PO_4]}; K_2 = \frac{[H^+][HPO_4^{2^-}]}{[H_2PO_4^-]}$$

$$K_3 = \frac{[\mathrm{H}^+][\mathrm{PO}_4^{3^-}]}{[\mathrm{HPO}_4^{2^-}]}$$
 Multiplying these three

$$K_1 \times K_2 \times K_3 = \frac{[H^+]^3 [PO_4^{3-}]}{[H_3 PO_4]}$$

786 (a)

$$PCl_{5} \rightleftharpoons PCl_{3} + Cl_{2}$$
Initial conc.
$$\frac{4}{4} = 0 = 0$$
Equili. conc.
$$\frac{2}{4} = \frac{2}{4} = \frac{2}{4}$$

$$K = \frac{[PCl_{3}][Cl_{2}]}{[PCl_{5}]}$$

$$= \frac{2 \times 2 \times 4}{4 \times 4 \times 2} = \frac{1}{3} = 0$$

787 **(b)**

Follow Le-Chatelier's principle.

788 **(b)**

Let the solubility of Ag₂S is s.

$$Ag_2S \rightleftharpoons 2Ag^+ + S^{2-}$$

$$S = 2S = S$$

Na₂S, being a strong electrolyte, dissociates completely and provides

$$[S^{2-}]=0.1 \text{ M}$$

[: Higher powers are neglected.]

$$\therefore \qquad s = 5 \times 10^{-9} \text{ mol L}^{-1}$$

$$SO_2 + \frac{1}{2}O_2 \rightleftharpoons SO_3$$

5 mol 5 mol 0 initially

$$(5-x)\left(5-\frac{1}{2}x\right)x$$
 at equilibrium

$$x = \frac{60}{100} \times 5 = 3$$

Total number of moles = (5 - x) + (5 - x)

$$= (5-3) + \left(5 - \frac{1}{2} \times 3\right) + 3$$

= 8.5

790 **(a)**

$$s = \sqrt{K_{sp}} = (2.5 \times 10^{-9})^{1/2}$$

$$= 5 \times 10^{-5} \text{ mol litre}^{-1}$$

$$\therefore \frac{w}{128} = 5 \times 10^{-5}$$

$$\therefore w = 6.4 \times 10^{-3} \text{ g.}$$

$$w = 6.4 \times 10^{-3} \text{ g}$$

In the iodometric estimation in laboratory, this process is involved

$$MnO_4^- + H^+ + I^- \rightarrow Mn^{2+} + I_2$$

 $I_2 + S_2O_3^{2-} \rightarrow S_4O_6^{2-} + I^-$

792 **(c)**

$$K_1 = \frac{[\text{NO}_2]}{[\text{NO}][\text{O}_2]^{1/2}} \dots (i)$$

$$K_2 = \frac{[\text{NO}]^2[\text{O}_2]}{[\text{NO}_2]^2}$$
 ...(ii)

$$\therefore \frac{1}{K_2} = \frac{[NO_2]^2}{[NO]^2[O_2]}$$

$$\frac{1}{K_2} = \frac{[NO_2]^2}{[NO]^2[O_2]}$$
or,
$$\frac{1}{\sqrt{K_2}} = \frac{[NO_2]}{[NO][O_2]^{1/2}} ...(iii)$$

From Eqs.(i) and (iii),

$$K_1 = \frac{1}{\sqrt{K_2}}$$

$$\therefore K_2 = \frac{1}{K_1^2}$$

793 **(a)**

g equivalent of
$$(NH_4)_2SO_4 = \frac{100}{1000} \times \frac{1}{10} \times 66 =$$

g equivalent of Na₂CO₃ · H₂O =
$$\frac{0.62}{62}$$
 = 0.01

left
$$(NH_4)_2SO_4$$
 is $0.66 - 0.01 = 0.65$

(NH₄)₂SO₄ is a salt of strong acid and weak base

794 (b)

$$K_n = K_c(RT)^{\Delta n}$$

$$K_p = K_c$$
 only when $(RT)^{\Delta n} = 0$

$$(a)PCl_5 \rightleftharpoons PCl_3 + Cl_2$$

$$\Delta n = n_p - n_R$$
$$= 2 - 1$$

$$= 1$$

$$\therefore \quad \Delta K_p \neq K_c$$

$$(b)N_2 + O_2 \rightleftharpoons 2NO$$

$$\Delta n = 2 - 2$$

$$= 0$$

$$\therefore \quad K_p = K_c$$

$$(c)N_2 + 3H_2 \rightleftharpoons 2NH_3$$

$$\Delta n = 2 - 4$$

$$= -2$$

$$\therefore \quad \Delta K_p \neq K_c$$

$$(d)2SO_3 \rightleftharpoons 2SO_2 + O_2$$

$$\Delta n = 3 - 2 = 1$$

$$\Delta K_n \neq K_c$$

$$K_{sp} = 1.8 \times 10^{-10} = 4 \times 10^{-3} \times [\text{Cl}^-]$$

 $[\text{Cl}^-] = 4.5 \times 10^{-8} \text{ mol litre}^{-1}$.

796 (d)

$$\begin{array}{lll} H_2O(g)\rightleftharpoons H_2(g)+\frac{1}{2}O_2(g)\\ \\ 1&0&0&\text{Initial}\\ (1-\alpha)&\alpha&\alpha/2&\text{At}\\ \\ \text{equilibrium} \end{array}$$

Total moles =
$$(1 - \alpha) + \alpha + \frac{\alpha}{2} = 1 + \frac{\alpha}{2}$$

Partial pressure of
$$H_2O = p\left(\frac{1-\alpha}{1+\frac{\alpha}{2}}\right)$$

Partial pressure of $H_2 = p\left(\frac{\alpha}{1+\frac{\alpha}{2}}\right)$

Partial pressure of $O_2 = p\left(\frac{\alpha}{2+\alpha}\right)$

$$K_p = \frac{pH_2 \cdot pO_2^{1/2}}{pH_2O}$$

$$K_p = \frac{\alpha^{3/2} p^{1/2}}{(1-\alpha)(2+\alpha)^{1/2}}$$

797 (a)

For weak electrolytes, according to Ostwald's dilution law

$$\alpha = \sqrt{KV}$$

Here,
$$\alpha = 0.01\% = 0.0001 = 1 \times 10^{-4}$$
 $V = \frac{1}{c} = \frac{1}{1.0} = 1$ L

$$K_a = \frac{\alpha^2}{V} = \frac{(1 \times 10^{-4})^2}{1} = 1 \times 10^{-8}$$

798 (a)

Given,
$$K_b = 1.8 \times 10^{-5}$$
, $[NH_3] = 0.1 \text{ M}$
 $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$

Let concentration of $[NH_4^+] = [OH^-] = x$

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$$

= $\frac{x \times x}{0.1}$

or
$$1.8 \times 10^{-5} = \frac{x^2}{0.1}$$

or $x^2 = 1.8 \times 10^{-6}$
 $\therefore x = 1.35 \times 10^{-3}$
 $\therefore [OH^-] = 1.35 \times 10^{-3}$
 $pOH = -\log[OH^-]$
 $= -\log(1.35 \times 10^{-3})$
 $= 2.87$
 $pH = 14 - pOH = 14 - 2.87 = 11.13$

799 (d

: Relative strength of weak acids = $\sqrt{\left(\frac{K_{a_1}}{K_{a_2}} \times \frac{c_1}{c_2}\right)}$

Assume c_1 and c_2 are same (Although not given)

$$\therefore \text{ Relative strength} = \sqrt{\left(\frac{K_{a_1}}{K_{a_2}}\right)} = \sqrt{\left(\frac{2.1 \times 10^{-4}}{1.1 \times 10^{-5}}\right)}$$

Relative strength for HCOOH to $CH_3COOH = 4.36:1$.

800 **(b)**

According to Arrhenius concepts acids are those substances which give proton in aqueous solution.

∴ Gaseous HCl is not an Arrhenius acid.

801 (c)

$$CO_2(g) + 2H_2O(g) \rightarrow CH_4(g) + 2O_2(g)$$

According to Le-Chatelier's principle, addition

of temperature shifts a endothermic reaction towards right. The addition of temperature to the above reaction will cause it to right, hence it is an endothermic reaction. ($\Delta H = +ve$).

802 **(b)**

$$PCl_5 \rightleftharpoons PCl_3 + Cl_2$$

$$1 \quad 0 \quad 0$$

$$1-\alpha \quad \alpha \quad \alpha$$

$$\therefore K_p = \frac{\alpha^2}{(1-\alpha)} \left[\frac{P}{1+\alpha} \right] = \frac{\alpha^2 P}{1-\alpha^2}$$

Or
$$\alpha = \sqrt{\frac{K_p}{P}}$$
 if $1 - \alpha^2 = 1$

803 **(b)**

$$K_{sp} = 4s^3 \text{ or } s = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{4 \times 10^{-12}}{4}} = 10^{-4}$$

804 **(b)**

$$\Delta G = 0$$
 at equilibrium

$$NH4HS(s) \rightleftharpoons NH3(g) + H2S(g)$$
1 0 0

p p At

equilibrium

Given,

$$p + p = 100 \text{ atm}$$

 $2p = 100 \text{ atm}$
 $p = 50 \text{ atm}$
 $K_p = p_{\text{NH}_3}. p_{\text{H}_2\text{S}}$
 $= 50 \times 50 = 2500 \text{atm}^2$

806 (c)

 AX_2 is ionised as follows

$$\begin{array}{ccccc} AX_2 & \rightleftharpoons & A^{2+} + & 2X^{-} \\ S \bmod L^{-1} & S & & 2S \end{array}$$

Solubility product of AX_2

$$(K_{\rm sp}) = [A^{2+}][X^{-}]^2 = S \times (2S)^2 = 4S^3$$

$$\therefore K_{\rm sp} \text{ of } AX_2 = 3.2 \times 10^{-11}$$

$$\therefore 3.2 \times 10^{-11} = 4S^3$$

$$S^3 = 0.8 \times 10^{-11} = 8 \times 10^{-11}$$

Solubility = 2×10^{-4} mol/L

807 **(b)**

s of
$$Ag_2SO_4 = \left[\frac{K_{sp}}{4}\right]^{1/3}$$

$$= \left[\frac{5.5 \times 10^{-5}}{4}\right]^{1/3}$$

$$= 2.39 \times 10^{-2} M$$
s of $AgBrO_3 = \sqrt{K_{sp}} = (2 \times 10^{-5})^{1/2}$

$$= 4.4 \times 10^{-3} M.$$

808 (a)

Base $+ H^+ \rightarrow$ Conjugate acid.

809 (c)

 $e.\,g.$, CuSO $_4$ is blue because Cu $^{2+}$ ions are blue; CuCr $_2$ O $_7$ is green because Cu $^{2+}$ is blue and Cr $_2$ O $_7^{2-}$ is orange yellow.

810 **(b)**

$$\begin{array}{l} \text{pH of HCl} = 2 \ \ \, \text{`[HCl]} = 10^{-2} M \\ \text{pH of NaOH} = 12 \ \ \, \text{`[NaOH]} = 10^{-2} M \\ \\ \text{Meq.before} \quad & \text{200} \times 10^{-2} \\ \text{reaction} \quad & \text{200} \times 10^{-2} \\ \text{reaction} \quad & \text{200} \times 10^{-2} \\ \text{Meq.after reaction 0} & \text{200} \end{array} \longrightarrow \begin{array}{l} \text{NaOH} \\ \text{300} \times 10^{-2} \\ \text{200} \times 10^$$

 $\therefore [OH^-] \text{ left from NaOH} = \frac{1}{500} = 2 \times 10^{-3} M$

$$pOH = -\log OH^{-} = -\log 2 \times 10^{-3}$$

 \therefore pOH = 2.6989

pH = 11.3010

811 (d)

$$\Delta G^0 = -2.303 \, RT \log K_p;$$

 $1.7 = -2.303 \times 8.314 \times 10^{-3} \times 298 \log K_p$
 $\therefore K_p = 0.5$

813 **(c)**

Aprotic solvents are those from which hydrogen

ion or OH⁻ cannot be derived.

814 (a)

$$K_c = \frac{k_f}{k_b}$$

$$\therefore 20 = \frac{10}{K_b}$$

$$\therefore k_b = \frac{1}{2} = 0.5$$

815 (d)

For the reversible reaction,

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

 $\Delta n_g = 2 - (1+3)$
 $= 2 - 4 = -2$

$$R = 0.0821 \text{ L atm K}^{-1} \text{mol}^{-1}$$
 $T = 500 + 273 = 773 \text{ K}$
 $K_p = K_c (RT)^{\Delta n_g}$
 $K_n = K_c \times (RT)^{-2}$

or
$$K_c = \frac{K_p}{(RT)^{-2}}$$

= $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$

or $1.44 \times 10^{-5}/(0.082 \times 773)^{-2}$

816 (a)

$$[H^{+}] = \frac{10^{-5} \times V + 10^{-3} \times V}{2V}$$
$$= \frac{1.01 \times 10^{-3}}{2}$$
$$\therefore pH = 3.2967$$

817 (c)

$$K_{a} = \frac{[H_{3}O^{+}][F^{-}]}{[HF][H_{2}O]}$$
and
$$K_{b} = \frac{[HF][OH^{-}]}{[F^{-}][H_{2}O]}$$

$$\therefore K_{a} \times K_{b} = [H_{3}O^{+}][OH^{-}] = K_{w}.$$

818 **(b)**

$$[H^+] = 10^{-pH} = 10^{-4} M$$

819 (c)

Because pH = 8 shows basic nature but HCl is a strong acid

820 (a)

$$[Ag^+]^2[CrO_4^2] = K_{sp} \text{ or } K_{sp} = (2S)^2 \times S = 4S^3.$$

821 **(b)**

$$K_c = \frac{K_f}{K_h} = \frac{2.38 \times 10^{-4}}{8.15 \times 10^{-5}} = 2.92$$

822 **(c)**

$$pH = 3.82 = -\log[H^+]$$

 $\therefore [H^+] = 1.5 \times 10^{-4} M.$

823 (a)

CH₃— CH₃ is neutral or least acidic and thus, its conjugate base should be strongest.

824 (d)

 K_{sp} of Na₂S is very high.

826 (c)

An increase H⁺ favours the backward reaction.

828 (a)

$$K_p = K_c (RT)^{\Delta n_g}$$

 $\Delta n_g = 1 - 1.5 = -0.5$
 $K_p = K_c (RT)^{-1/2} = \frac{K_c}{(RT)^{1/2}}$
 $\therefore \frac{K_c}{K_n} = (RT)^{1/2}$

829 (a)

For the reaction, we know that

$$K_n = K_c (RT)^{\Delta n_g}$$

where, $\Delta n_{\rm g}=$ Number of gaseous moles of product – Number of gaseous moles of reactant

Hence, if $K_p > K_c$, then Δn must be positive. It means that there is a decrease in volume of reaction, hence low pressure will favour the forward reaction.

830 **(b)**

0.05 M Ba(OH)₂ solution

$$\cong 2 \times 0.05 \text{ N Ba(OH)}_2$$

 $\cong 0.10 \text{ N Ba(OH)}_2$
 $\therefore \text{ pOH} = -\log[\text{OH}^-]$
 $= -\log(0.10) = 1$
 $\text{pH} = 14 - \text{pOH}$
 $= 14 - 1 = 13$

831 **(d)**

pH = 12 :: pOH = 2
:: [OH⁻] = 10⁻²
Now Ba(OH)₂ = Ba²⁺ + 2OH⁻
::
$$K_{sp} = [Ba^{2+}][OH^{-}]^{2}$$

= $\left[\frac{10^{-2}}{2}\right][10^{-2}]^{2}$:: $[Ba^{2+}]$
= $\frac{1}{2} \times [OH^{-}]$
= 5 × 10⁻⁷

832 **(b)**

 HSO_4^- is the conjugate base of H_2SO_4 . $HSO_4^- \rightleftharpoons HSO_4^- + H^+$ acid conjugate
base

833 (c)

835 (d)

$$K_p = K_c (RT)^{\Delta ng}$$

Here, $\Delta n_g = -1$ and $K_c = 26$
 $R = 0.0812, T = 250 + 273 = 523 \text{ K}$
 $K_p = 26 \times (0.0812 \times 523)^{-1} = 0.605 = 0.61$

NaCN (4 millimole) and HCl (2 millimole) on reaction give 2 millimole of HCN and 2 millimole of NaCN are left which acts as buffer.

837 (a)

Phenolphthalein furnishes H⁺ and phenolphthalein anion is solution.

838 (c)

$$Hg_2I_2 \rightleftharpoons Hg_2^{2+} + 2I^ K_{sp} = [Hg_2^{2+}][I^-]^2$$

839 (d)

According to law of mass action, at a given temperature the rate of reaction at a particular instant is proportional to the product of active masses of the reactants at that instant raised to powers which are numerically equal to the numbers of their respective molecules.

840 (d)

HCl is accepting proton in HF medium and acts as weak base .

841 (a)

$$2AB_{2}(g) \rightleftharpoons 2AB(g) + B_{2}(g)$$

$$1 \qquad 0 \qquad \frac{0}{\frac{x}{2}}$$

$$K_{p} = \frac{x^{2} \cdot x}{2(1-x)^{2}} \left[\frac{P}{1+\frac{x}{2}}\right]^{1}$$

$$x \text{ being small } \therefore 1 - x \approx 1 \text{ and } 1 + \frac{x}{2} \approx 1$$

$$\therefore K_p = \frac{x^{3.P}}{2}$$

842 (d)

According to Lewis, electron deficient species are called acids while bases are the substances which have unshared pair of electron and can donate the electron pair to the formation of coordinate bond. Hence, $H_2\ddot{O}$: is a Lewis base while BF_3 , $AlCl_3$ and SO_2 are Lewis acids.

843 **(b)**

0.1 M weak acid (HQ) has pH = 3

$$\therefore [\mathrm{H}^+] = C\alpha = 10^{-3}$$

$$\alpha = 10^{-2}$$
 (: $C = 10^{-1}$)

Now for weak acid,

$$K_a = C\alpha^2 = C\alpha \cdot \alpha = 10^{-3} \times 10^{-2} = 10^{-5}$$

844 **(b)**

So that only II group radicals are precipitated, otherwise III group also get precipitated.

$$Mg(OH)_2 \rightleftharpoons Mg^{2+} + 2OH^{-}$$

 $(x)(2x)^2$

$$K_{\rm sp} = 4x^3$$

846 (a)

$$K_p = \frac{(p_{SO_3})^2}{(p_{SO_2})^2(p_{O_2})} = \frac{(0.331)^2}{(0.662)^2(0.101)} = 2.5$$

Now,
$$K_p = \frac{(p_{SO_3})^2}{(p_{SO_2})^2 P_{O_2}}$$
;

$$If p_{SO_3} = p_{SO_3}$$

Then,
$$p_{O_2} = \frac{1}{K_p} = \frac{1}{2.5} = 0.4$$
 atm

847 **(b)**

The salt with lower solubility product (AgI) will precipitate first from the solution by adding KI.

848 **(b)**

The species which can donate a lone pair of electron, are called Lewis base e.g., NH_3 , H_2O , Cl^- etc.

849 (a)

$$NH_3 + H_2O \xrightarrow{K_f} NH_4^+ + OH^-$$
; $K_b = 3.4 \times 10^{10}$
 $NH_4^+ + H_2O \xrightarrow{K_b} NH_4OH + H^+$; $K_a = 5.6 \times 10^{10}$

$$K_{\text{base NH}_3} = \frac{K_f}{K_b} = \frac{K_w}{K_{\text{acid NH}_4^+}} (\because K_{\text{acid}} \times K_{\text{base}})$$

$$= K_w$$

or
$$K_f = K_w$$

or $\frac{K_f}{3.4 \times 10^{10}} = \frac{10^{-14}}{5.6 \times 10^{-10}}$
or $K_f = 6.07 \times 10^5 \text{ s}^{-1}$.

or
$$K_f = 6.07 \times 10^5 \text{s}^{-1}$$
.

850 **(b)**

 K_{Sp} is characteristic constant for given electrolyte.

851 (a)

It is an acid-base reaction;

Rest all occurs in reverse direction.

852 **(b)**

Catalyst affect both the forward and backward reactions upto same extent, hence it, overall does not affect the equilibrium state. However, it brings equilibrium state quickly.

853 **(b)**

Given, aqueous solution of NH_3 (weak base)C = 0.01 M

$$\alpha = 5\% = \frac{5}{100}$$

$$[OH^{-}] = C\alpha = 0.01 \times \frac{5}{100} = 5 \times 10^{-4}$$

$$pOH = -\log[OH^{-}]$$

$$= \log(5 \times 10^{-4})$$

$$= 4 \log 10 - \log 5$$

$$= 4 - 0.6989$$

$$= 3.3010$$

$$pH = 14 - pOH = 14 - 3.3010 = 10.6990$$

854 **(b)**

$$NH2COONH4(s) \rightleftharpoons 2NH3(g) + CO2(g)$$
1 2 4

If p is the total pressure at equilibrium

$$K_p = \frac{[\mathrm{NH_3}]^2[\mathrm{CO_2}]}{[\mathrm{NH_2COONH_4}]}$$

$$2.9 \times 10^{-5} = \frac{\left(\frac{2p}{3}\right)^2 \times \frac{p}{3}}{1}$$

$$2.9 \times 10^{-5} = \frac{4 \times p^3}{27}$$

$$\Rightarrow p^3 = \frac{27 \times 2.9 \times 10^{-5}}{4}$$

$$= 1.9575$$

$$= 1.9575$$

$$p = \sqrt[3]{1.9575} = 0.058$$

855 (c)

$$3A + 4B \rightleftharpoons 2C + 3D$$

$$\Rightarrow K_1 = \frac{[C]^2 [D]^3}{[A]^3 [B]^4} \qquad ...(i)$$

When moles of C=1, the equation becomes

$$\frac{3}{2}A + 2B \rightleftharpoons C + \frac{3}{2}D$$

$$\Rightarrow K_2 = \frac{[C][D]^{3/2}}{[A]^{3/2}[B]^2} \qquad ...(ii)$$

On comparing Eq.(i) with Eq.(ii), we get

$$K_{2}^{2} = K_{4}$$

$$K_2^2 = K_1$$
 or $K_2 = (K_1)^{1/2}$

Hence, equilibrium extent = $\frac{1}{2}$

856 (d)

$$C_2H_2 + H_2 \rightleftharpoons C_2H_6$$

$$K_p = K_c(RT)^{\Delta n}$$

$$\Delta n = 1 - 2 = -1$$

$$K_n = K_c(RT)^{-1}$$

857 (d)

Meq. of HCl =
$$75 \times \frac{1}{5} = 15$$

Meq. of NaOH = $25 \times \frac{1}{5} = 5$

$$\therefore \text{ Meq. of HCl left} = 15 - 5 = 10$$

Now [HCl]left =
$$\frac{10}{100}$$
 = 10^{-1}

$$\therefore$$
 pH = 1

858 **(b)**

A Lewis acid is a substance, which can accept a pair of electrons, e.g., H₃0⁺.

860 (a)

$$K_c = \frac{[\text{NO}_2]^2}{[\text{NO}]^2[\text{O}_2]} = \frac{[0.120/4]^2}{\left(\frac{0.080}{4}\right)^2 \left(\frac{0.64}{4}\right)} = 14.06$$

861 (b)

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

 $K_c = 0.1, K_p = K_c(RT)^{\Delta n}$

 Δn =Number of gaseous product – Number of gaseous reactants

$$\Delta n = 2 - 2 = 0$$

$$\Delta n = 0$$

$$K_p = K_c = 0.1$$

862 (c)

For the reaction,

$$P_4(s) + 6Cl_2(g) \rightleftharpoons 4PCl_3(g)$$

At $t=0$ 1 1 0
At eq. $(1-x) (1-6x)$ 4x
As $(1-x) > (1-6x)$
Hence, at equilibrium $[P_4] > [Cl_2]$

865 (c)

Dissociation of acetic acid increases as, $CH_3COOH + NaOH \rightarrow CH_3COONa + H_2OOONa + H_2$

866 (d)

The reaction in which number of moles of reactants= number of moles of products are not effected by change in pressure or volume. $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

∴ Number of moles of reactant = number of moles of products

$$2 = 2$$

∴ This reaction is not effected by change in pressure or volume.

867 **(d)**

AgCl
$$\rightleftharpoons$$
 Ag⁺ + Cl⁻
 $K_{sp} = [Ag^+][Cl^-] = s^2$
 $s = \sqrt{K_{sp}} = 1.1 \times 10^{-10} = 10^{-5}$
Similarly a far AgLia 10^{-8}

Similarly s for AgI is 10^{-8} ,

s for PbCrO₄is 2

 $\times 10^{-7}$ and s for Ag₂CO₃ is 1.26 $\times 10^{-4}$.

 $Most soluble - Ag_2CO_3$, least soluble AgI

868 (d)

Given, concentration of NaOH = 10^{-10} M

NaOH
$$\rightarrow$$
 Na⁺ + OH⁻
10⁻¹⁰ 10⁻¹⁰ 10⁻¹⁰

: $[OH^{-}]$ from NaOH = 10^{-10}

$$\therefore$$
 Total [OH⁻] = $10^{-7} + 10^{-10}$

$$= 10^{-7}(1 + 0.001)$$

$$= 10^{-7} \left(\frac{1001}{1000}\right)$$

$$= 10^{-10} \times 1001$$

$$pOH = -\log[OH^{-}]$$

$$= -\log(1001 \times 10^{-10})$$

$$= -3.004 + 10$$

$$= 6.9996$$

$$\therefore pH + pOH = 14$$

$$\therefore pH = 14 - 6.9996$$

$$= 7.0004 = 7$$

870 **(b)**

(b)
$$K_H = \frac{K_W}{K_b} = \frac{10^{-14}}{1.77 \times 10^{-5}} = 5.65 \times 10^{-10}$$

871 (d)

1M solution of strong acid must have pH = 1. Since, pH = 5 which is possible only when acid is weak [H⁺] = $c \cdot \alpha$.

872 **(b)**

$$K_{sp} = s^2$$

 $\therefore s = 1.0 \times 10^{-4} m/l$
 $= 1.0 \times 10^{-4} \times 283 \times \frac{100}{1000} \text{ mL}$
 $= 28.3 \times 10^{-2} \text{ g/}100 \text{ mL}$

873 (d)

For basic buffer,

pOH = pK_b + log
$$\frac{[\text{salt}]}{[\text{base}]}$$

Given, $[\text{salt}]=[\text{base}]=1$
 $K_b = 2 \times 10^{-5}$
∴ $pOH = pK_b = -\log(2 \times 10^{-5})$
 $= 5 - \log 2$
 $= 5 - 0.30 = 4.70$
pH = 14 - pOH
 $= 14 - 4.70 = 9.30$

874 (c)

NH₄Cl being a strong electrolyte, dissociates as

$$NH_4Cl \rightarrow NH_4^+ + Cl^-$$

and NH_4OH as,

$$NH_4OH \rightleftharpoons NH_4^+ + OH^-$$

weak electrolyte common ion

Due to the presence of common ion, the degree of dissociation of NH₄OH decreases. Thus, less OH⁻ ions are produced which are sufficient only for the precipitation of hydroxides if III group radicals and not of higher group radicals.

875 (c)

Let molar solubility of
$$Cr(OH)_3 = s \text{ mol } L^{-1}$$

 $Cr(OH)_3(s) \rightleftharpoons Cr^{3+}(aq) + 3OH^{-}(aq)$
 $S_{sp} = 1.6 \times 10^{-30} = [Cr^{3+}][OH^{-}]^3$
 $= (s)(3s)^3 = 27s$

$$s^{4} = \frac{1.6 \times 10^{-30}}{27}$$

$$s = \sqrt[4]{\frac{1.6 \times 10^{-30}}{27}}$$

876 (a)

$$\Delta G^0 = -2.303 \, RT \log K$$

 $-4.606 \times 10^3 = -2.303 \times 2 \times 500 \log K$
 $\therefore K = 100$

877 **(b)**

$$2A(g) \rightleftharpoons 3C(g) + D(s)$$

For this reaction, $\Delta n_g = 3 - 2 = 1$

$$K_p = K_c (RT)^1$$
or
$$K_c = \frac{K_p}{RT}$$

878 (a)

$$BaCl_2 + Na_2SO_4 \rightarrow BaSO_4 \downarrow +2NaCl$$

879 (d)

 CCl_4 is not a Lewis or Bronsted acid as it does not contain H^+ and has complete ocetet

880 (a)

Given,
$$NO_2 \rightleftharpoons \frac{1}{2}N_2 + O_2$$
, K_1

...(i)

$$N_2O_4 \rightleftharpoons 2NO_2$$
,

...(ii)

Required reaction

$$N_2 + 2O_2 \rightleftharpoons N_2O_4, \qquad K$$

...(iii)

By squaring Eq. (i) we get,

$$2NO_2 \rightleftharpoons N_2 + 2O_2, \qquad K_1^2$$

...(iv)

Now, Eq (iii) is obtained by inverting Eq. (ii) and Eq. (iv) and by adding them as.

$$N_2 + 2O_2 \rightleftharpoons 2NO_2,$$
 $\frac{1}{K_1^2}$
 $2NO_2 \rightleftharpoons N_2O_4,$ $\frac{1}{K_2}$
 $N_2 + 2O_2 \rightleftharpoons N_2O_4,$ $\frac{1}{K_1^2} + \frac{1}{K_2}$

$$C_1\alpha_1^2 = C_2\alpha_2^2$$

 $0.1 \times 1^2 = 0.025 \times \alpha_2^2$
 $\alpha_2^2 = 4$

$$\alpha = 2$$

882 (d)

 Δn may be zero, positive or negative integers or fractional depending upon nature of reaction. $\Delta n = \text{No.}$ of mole of products – No. of mole of reactants.

883 **(b)**

$$H^-_{Base} + H^+ \longrightarrow H_2_{Conjugate acid}$$

884 (d)

Common ion effect is noticed only for weak electrolyte dissociation $\rm H_2SO_4$ is strong electrolyte.

885 **(b)**

Acids liberate CO₂ from bicarbonates.

886 (c)

 1×10^{-8} M HCl solution H_2O is also present there which also undergoes self ionisation.

$$H_2O \rightleftharpoons H^+ + OH^-$$

 10^{-7} M at 25°C

If it is taken simply even without common ion effect, higher concentration must be considered which is 10^{-7} M but H⁺ from HCl decreases self ionisation which further decreases self ionisation, hence [H⁺] from H₂O.

Hence, net concentration must be smaller than 10^{-7} M.

887 **(b)**

Number of moles of PCl₅ dissociated at equilibrium

$$= 2 \times 40/100 = 0.8$$

$$PCl_5 \rightleftharpoons PCl_3 + Cl_2$$
(Initial) 2 0 0

(At equilibrium) (2-0.8) mol 0.8 mol 0.8

$$[PCl_5] = \frac{1.2}{2} = 0.6 \text{ ML}^{-1}$$

$$[PCl_3] = [Cl_2] = \frac{0.8}{2} = 0.4 \text{ ML}^{-1}$$

$$\therefore K_c = \frac{[PCl_3][Cl_2]}{[PCl_5]} = \frac{0.4 \times 0.4}{0.6}$$

$$= 0.267 \text{ mol/dm}^3$$

888 (c)

In liquid

vapour, equilibrium the rate at which molecules escape from the liquid surface to gaseous phase equals to rate at which molecules in the gas phase strike the surface and becomes the part of liquid. Hence, the molecules in the two phases have equal

kinetic energy.

889 **(b)**

$$[HI] = \frac{12.8}{128 \times 3} = 0.033M$$

890 **(b)**

NH₄Cl salt gives an acidic solution in water

$$NH_4Cl \rightleftharpoons NH_4^+ + Cl^ H_2O + H_2O \longrightarrow OH^- + H_3O^ NH_4OH \quad HCl + H_2O$$
weakly ionised strongly ionised

891 (d)

 $\Delta n = 1$ for this change; Unit of $K_p = (atm)^{\Delta n}$; Unit of $K_c = (\text{mol litre}^{-1})^{\Delta n}$

892 (a)

$$As_{2}S_{3} \rightleftharpoons 2As^{3+} + 3S^{2-}$$

$$5 \text{ mol/L} \quad 2s \quad 3s$$

$$K_{sp} = [As^{3+}]^{2}[S^{2-}]^{3}$$

$$= (2s)^{2}(3s)^{3}$$

$$= 108s^{5}$$

$$\therefore \quad s = \sqrt[5]{\frac{K_{sp}}{108}} \text{ or } \left(\frac{K_{sp}}{108}\right)^{\frac{1}{5}}$$

$$= \sqrt[5]{\frac{2.8 \times 10^{-72}}{108}}$$
$$= \sqrt[5]{25.93 \times 10^{-75}}$$
$$= 1.92 \times 10^{-15} \text{ mol/L}$$

893 (c)

$$K_p = \frac{[\text{HCO}_3^-][\text{H}_3\text{O}^+]}{[\text{CO}_2]};$$
Given, $K_p = 3.8 \times 10^{-7}$
and $[\text{H}_3\text{O}^+] = 10^{-6}$

$$\therefore \frac{[\text{HCO}_3^-]}{[\text{CO}_2]} = \frac{3.8 \times 10^{-7}}{10^{-6}} = 3.8 \times 10^{-1}$$

894 (a)

Blood buffer controls the pH change by acidic components present metabolically.

895 (d)

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

2 3 : Before reaction (1-x)(2-3x)(3+2x): After reaction

x mole of N_2 will react with 3x mole of H_2 to give 2x mole of NH₃. Notice the stoichiometry of change.

896 (a)

 K_n is independent of pressure.

897 (a)

Methyl orange is good indicator in the range of pH 3 to 4. Actually working range of good

indicator can be derived as,

 $MeOH \rightleftharpoons Me^+ + OH^-$

$$K_b = \frac{[\text{Me}^+][\text{OH}^-]}{[\text{MeOH}]}$$
; Taking logarithm

$$\log K_b = \log \frac{[\text{Me}^+]}{[\text{MeOH}]} + \log \text{OH}^-$$

or
$$pK_b = \log \frac{[MeOH]}{[Me^+]} + \log pOH$$

The indicator is more effective when

$$\frac{[MeOH]}{[Me^+]} \text{ or } \frac{[Me^+]}{[MeOH]} = 1$$

Thus, pOH = p K_b ; Thus, working range is pOH \pm

898 (c)

$$\Delta n = 1 - 1 - \frac{1}{2} = -\frac{1}{2}$$

$$\therefore K_p = K_c (RT)^{-1/2}$$
899 **(d)**

Find solubility by $4s^3 = K_{sp}$ for Ag₂S and $s^2 =$ K_{sp} for CuS and HgS.

$$pH = -\log[H^+]$$

$$[H^+] = 0.0001 = 1 \times 10^{-4}$$

$$pH = -\log[1 \times 10^{-4}] = 4$$

901 (c)

$$N \text{ H}_2\text{SO}_4 = 0.05 \times 2 = 0.1$$

 $\therefore \text{ [H+]} = 0.1 \text{ and pH} = 1.$

902 (d)

Phenolphthalein exists as HPh, i.e., undissociated molecule in acid medium and thus, shown no colour.

903 (c)

$$[H^+] = 1.5 \times 10^{-2}$$

 $\therefore [OH^-] = \frac{10^{-14}}{1.5 \times 10^{-2}} = 6.7 \times 10^{-13} M.$

904 **(b)**

$$K_c = \frac{[product]}{[reactant]}$$
if $K_c >> 1$

⇒ [product]>>[reactant]

⇒ Reaction favoured more towards forward.

905 **(a)**

$$Q = \frac{[C]^3}{[A][B]} = \frac{(4/2)^3}{(1/2)(2/2)} = 16;$$

Given, $K_c = 20$;

Thus, to have $Q = K_c$;

The concentration of C must increase, i.e., reaction should proceed from left to right

906 (b)

 $pH = pK_a$ if [Conjugate base] = [Acid].

907 **(b)**

An increase in temperature favours endothermic reaction.

908 (a)

Lewis acids are those species which can accept a lone pair of electron.

BF₃, AlCl₃, SnCl₄, FeCl₃ etc. are Lewis acids. NCl₃ and ROR are Lewis bases. HCl is acid according to the concept of Arrhenius and Bronsted-Lowry.

909 (c)

$$pH = 4 : [H^+]_I = 10^{-4}$$

 $pH = 5 : [H^+]_{II} = 10^{-5} : [H^+]_{II} = [H^+]_I \times 10^{-1}$. 917 (c)

Each acid has P of +5 oxidation state as in P_2O_5 .

911 (b)

$$AgIO_3(s) \rightleftharpoons Ag^+(aq) + IO_3^-(aq)$$

Let solubility of AgIO₃ be S

$$K_{\rm sp} = [\mathrm{Ag^+}][\mathrm{IO_3^-}]$$

$$1.0 \times 10^{-8} = S^2$$
 or $S = 1 \times 10^{-4} \text{ mol/L}$

In 1000 mL of mol of AgIO₃ dissolved = $1 \times$ $10^{-4} \, \text{mol}$

In 100 mL of mol of AgIO₃ dissolved = $1 \times$ 10^{-5} mol

Mass of AgIO₃ in 100 mL = $1 \times 10^{-5} \times 283$ $= 2.83 \times 10^{-1}$

912 (a)

H₃BO₃ accepts OH⁻ ions to act as weak monobasic Lewis acid.

$$H_3BO_3 + H_2O \rightarrow B(OH)_4^- + H^+; K_a = 10^{-9}$$

913 (d)

e.g., BCl3 is a Lewis acid as it accepts lone pair of electron but not Lowry-Bronsted acid as it cannot furnish H_3O^+ in solution.

914 (a)

For equation $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$, the value of

$$\Delta n = 2 - (1+1) = 0$$

Hence, by using formulae $K_n = K_c (RT)^{\Delta n}$

$$K_p = K_c (RT)^0$$
$$K_p = K_c$$

915 (b)

Solubility =
$$\sqrt[5]{\frac{K_{sp}}{108}} = \sqrt[5]{\frac{10^{-70}}{108}} = 9.8 \times 10^{-13}$$

= $\sqrt{7 \times 10^{-16}} = 2.64 \times 10^{-8}$
= $\sqrt{K_{sp}} = \sqrt{8 \times 10^{-37}} = 8.94 \times 10^{-19}$

$$=\sqrt[3]{\frac{K_{sp}}{4}}=\sqrt[3]{\frac{6\times10^{-51}}{4}}=1.1\times10^{-17}$$

916 (a)

Equilibrium constant for the reaction,

$$SO_2(g) + \frac{1}{2}O_2 \rightleftharpoons SO_3(g)$$

$$K_{c} = \frac{1}{4.9 \times 10^{-2}}$$

and for $2SO_2 + O_2 \rightleftharpoons 2SO_3(g)$

$$K_c = \left(\frac{1}{4.9 \times 10^{-2}}\right)^2$$
$$= \frac{10^4}{(4.9)^2} = 416.49$$

$$pK_a = -\log K_a = \log \frac{1}{K_a}$$

918 (a)

$$AB \rightleftharpoons A + B$$

$$AB \rightleftharpoons A + B$$

$$K = \frac{[A][B]}{[AB]}$$

If concentration of A is doubled, the equilibrium concentration of B becomes half

919 **(b)**

Degree of dissociation=0.4

PCl₅
$$\Rightarrow$$
 PCl₃ + Cl₂
 $a(1-x)$ ax ax
 $a = 2, x = 0.4, V = 2$
[PCl₅] = $\frac{2(1-0.4)}{2}$ = 0.6 mol/L
[PCl₃] = $\frac{2\times0.4}{2}$ = 0.4 mol/L

$$[Cl_2] = \frac{2 \times 0.4}{2} = 0.4 \text{ mol/L}$$

$$K_{c} = \frac{[PCl_{3}][Cl_{2}]}{[PCl_{5}]}$$

$$= \frac{0.4 \times 0.4}{0.6} = 0.267$$

920 (a)

An increase in temperature favours endothermic reaction, however, in case of NaOH it is an exception and solubility of NaOH increase in temperature.

921 **(a)**

$$\Delta n = 0$$

922 (a)

$$HSO_4^- \to H^+ + SO_4^{2-}$$

923 (c)

An increase in the concentration of products always brings in backward reaction.

924 **(b)**

$$X^{-}_{1-h} + H_2O \rightleftharpoons HX + OH^{-}_{h}$$

$$\therefore h = \sqrt{\frac{K_H}{c}} = \sqrt{\frac{K_w}{K_a \cdot c}} = \sqrt{\frac{10^{-14}}{10^{-5} \times 0.1}}$$
$$= \sqrt{10^{-8}} = 10^{-4}$$

$$\therefore$$
 % $h = 10^{-4} \times 100 = 10^{-2} = 0.01$

$$\Delta n = 2 + 1 - 2 = +1$$
 $\therefore K_p = K_c(RT)^1$ $\therefore K_p > K_c$

926 **(b)**

A basic salt has one or more replaceable OH in it.

927 **(b)**

$$K_a = C\alpha^2 = 0.1 \times (1.34 \times 10^{-2})^2 = 1.79 \times 10^{-5}.$$

928 (b)

HCl is a strong acid and its conjugate base is a very weak base Cl-

929 **(c)**

$$2.303 \log_{10} K = -\frac{\Delta G^{\circ}}{RT}$$

$$2.303 \log_{10} K = \frac{-\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$$

930 **(b)**

The compound which is having least solubility will be precipitated first.

BaSO₄ : Given, $K_{\rm sp} = 10^{-11}$

Let the solubility=x mol/L

 $BaSO_4 \rightarrow Ba^2 + SO_4^{2-}$

:
$$K_{\rm sp} = [{\rm Ba^{2+}}][{\rm SO_4^{2-}}]$$

or
$$K_{\rm sp} = x \times x$$

$$\therefore K_{\rm sp} = x^2$$

or
$$x = \sqrt{K_{\rm sp}}$$

= $\sqrt{10^{-11}}$
= 3.16×10^{-6} mol/L

 $CaSO_3$: Given, $K_{sp} = 10^{-6}$

Let the solubility= $x \mod L$

$$CaSO_4 \rightarrow [Ca^{2+}][SO_4^{2-}]$$

$$\therefore K_{\rm sp} = [\mathrm{Ca^{2+}}][\mathrm{So_4^{2-}}]$$

or
$$K_{\rm sp} = x \times x$$

$$\therefore K_{\rm sp} = x^2$$

or
$$x = \sqrt{K_{sp}}$$
$$= \sqrt{10^{-6}}$$
$$= 1 \times 10^{-3} \text{ mol/L}$$

AgSO₄ : Given, $K_{\rm sp} = 10^{-5}$

Let the solubility= $x \mod L$

$$Ag_2SO_4 \rightarrow 2Ag^+ + SO_4^{2-}$$

$$2x \qquad x$$

$$K_{\rm sp} = [{\rm Ag}^+]^2 [{\rm SO}_4^{2-}]$$

or
$$= (2x)^{2}(x)$$
or
$$K_{sp} = 4x^{3}$$
or
$$x = \frac{\sqrt[3]{K_{sp}}}{4}$$

$$= \frac{\sqrt{10^{-5}}}{4}$$

$$= 10^{-2} \text{ mol/L}$$

∵ BaSO₄ has least solubility.

: It will precipitated first.

931 (b)

$$K_{C_1}$$
 for $H_2 + I_2 \rightleftharpoons 2HI$ is 50

$$K_{C_2}$$
 for 2HI \rightleftharpoons H₂ + I₂

$$K_{C_1} = \frac{[HI]^2}{[H_2][I_2]}$$
 ...(i)

$$K_{C_1} = \frac{[HI]^2}{[H_2][I_2]}$$
 ...(i)
 $K_{C_2} = \frac{[H_2][I_2]}{[HI]^2}$...(ii)

On reversing Eq.(i)

$$\frac{1}{K_{c_1}} = \frac{[H_2][I_2]}{[HI]^2} \qquad ...(iii)$$

From Eqs. (ii) and (iii)

$$K_{c_2} + \frac{1}{K_{c_1}} = \frac{1}{50} = 0.02$$

932 **(b)**

A reaction which is in equilibrium, will shift in reverse or backward direction when we increase the concentration of one or more products (from Le-Chatelier'sprinciple)

933 **(d)**

 N_2O_5 and HNO₃ both have ox.no. of N = +5.

934 (a)

Fusion of solid is an endothermic process, so addition of heat is favoured for the forward reaction (solid to melt), the amount of solid become decrease.

935 (a)

Conjugate base is formed by loss of H⁺.

$$0H^- \rightarrow 0^{2-} + H^+$$

Conjugate base

O²⁻ is the conjugate base of OH⁻.

936 **(b)**

$$Al(OH)_3 \rightleftharpoons Al^{3+}_s + 3OH^-_{3s}$$

$$\therefore K_{sp} = [Al^{3+}][OH^-]^3 = s \times (3s)^3 = 27s^4$$

937 **(b)**

HCl is strong acid. In its 0.1 M solution, $[H^+] = 0.1 \text{ M}$ and hence, $pH = 1 \text{ NH}_4 \text{Cl}(aq)$ hydrolysis in solution and give acidic solution which is less than 0.1 M HCl. NaCl is not hydrolysed in aqueous solutions. Its pH=7. NaCN undergoes hydrolysis in solution to give alkaline solution. So, the pH increases in the

order

$$HCl < NH_4Cl < NaCl < NaCN$$

938 (a)

 $\Delta G = 0$; at equilibrium

939 **(b)**

$$K_a = \frac{[\mathrm{H}^+][\mathrm{CN}^-]}{[\mathrm{HCN}]};$$

An increase in $[CN^-]$ will decrease $[H^+]$ to maintain K_a constant.

940 (d)

The solubility product (K_{sp}) of a sparingly soluble salt at a given temperature may be defined as the product of the molar concentrations of its ions each raised to the power equal to its number of ions present in the equation representing the dissociation of one molecule of the salt.

$$Fe(OH)_3 \rightleftharpoons Fe^{3+} + 3OH^-$$

$$X \qquad X \qquad 3X$$

$$K_{sp} = [Fe^{3+}][OH^-]^3$$

$$\therefore \qquad K_{sp} = X(3X)^3 = 27X^4$$

941 (d)

Baking soda (NaHCO₃) has one replaceable H.

942 **(b)**

 $Na_2CO_3 + H_2O \rightarrow 2NaOH + H_2CO_3$

- : NaOH is strong base.
- \therefore It will be more ionised and number of Na⁺ and OH⁻ ions will be more.
- $: H_2CO_3$ is weak acid.
- ∴ It will be less ionised and number of H^+ and CO_3^{2-} will be less.
- ∴ The solution will have more hydroxide ions than carbonate ions.

943 (c)

Milli equivalent of H⁺ from HCl = $10 \times 0.1 = 1$ Milli equivalent of H⁺ from H₂SO₄ = $40 \times 0.2 \times 2 = 16$

Total Meq. of H⁺ in solution = 1 + 16 = 17 $\therefore [H^+] = \frac{17}{50} = 3.4 \times 10^{-1} \quad \left(\because [H^+] = \frac{\text{Meq.}}{V_{\text{in mL}}}\right)$ $\therefore \text{ pH} = -\log[H^+] = -\log 0.34$ pH = 0.4685.

944 **(b)**

Before attaining the equilibrium, the rate of forward reaction decreases due to decrease in concentration of reactant with time and the rate of backward reaction increases due to increase in concentration of products with time.

945 (a)

NaCN + HCl is not a buffer but if HCl is in less amount then, it gives a buffer as it produces HCN.

 $\begin{array}{c} \text{Mole added} & \text{NaCN} + \text{HCl} \longrightarrow \text{NaCl} + \text{HCN} \\ \text{Mole after reaction} & \begin{array}{cccc} 0.01 & \alpha & 0 & \alpha \\ 0.01-\alpha) & 0 & \alpha & \alpha \end{array}$

This is buffer of HCN + NaCN.

Let *a* mole of HCl be used for this purpose

$$\therefore \text{ pH} = -\log K_a + \log \frac{0.01 - a}{a}$$
$$8.5 = -\log 4.1 \times 10^{-10} + \log \frac{0.01 - a}{a}$$

 \therefore $a = 8.85 \times 10^{-3}$ mole of HCl.

946 **(b)**

Quotient
$$Q = \frac{[C]^3}{[A][B]} = \frac{4^3 \times 3 \times 3}{3^3 \times 1 \times 2} = 10.66$$

$$\left[[C] = \frac{4}{3}; [A] = \frac{1}{3}; [B] = \frac{2}{3} \right]$$

Since, $K_c = 10$, Thus, Q must decrease to attain value of K_c and therefore, [C] must decrease or [A] or [B] must increase, i.e., backward direction.

947 (d

 $CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$

$$\therefore [OH^{-}] = c \cdot h = c \sqrt{\left[\frac{K_h}{c}\right]}$$

$$= \sqrt{\left[\frac{K_w}{K_a} \cdot c\right]}$$

$$= \sqrt{\frac{10^{-14} \times 1}{1.8 \times 10^{-5}}} = 2.35 \times 10^{-5}$$

pOH = 4.6289

$$\therefore$$
 pH = 9.3710

948 **(b)**

A very high value of *K* for the given equilibrium shows that dissociation of glucose to form HCHO is very-very small. Hence, at equilibrium, we can take,

$$[C_6H_{12}O_6] = 1 \text{ M}$$

$$K = \frac{[C_6H_{12}O_6]}{[HCHO]^6}, \qquad i.e., 6 \times 10^{22} = \frac{1}{[HCHO]^6}$$
or $[HCHO] = \left(\frac{1}{6 \times 10^{22}}\right)^{1/6} = 1.6 \times 10^{-4} \text{ M}$

949 (c)

Polyprotic acids furnishes more than one H⁺ ion in solution.

950 (a)

$$Sb_2S_3 \rightleftharpoons 2Sb^{3+} + 3S^{2-}$$

 $s \text{ mol/L} \quad 2s \quad 3s$
Solubility product $(K_{sp}) = [Sb^{3+}]^2[S^{2-}]^3$
 $= (2s)^2(3s)^3 =$

$$108s^{5}$$

$$= 108 \times$$

$$(1.0 \times 10^{-5})^5 = 108 \times 10^{-25}$$

951 (d)

 $10^{-3}N$ KOH will give $[OH^{-}] = 10^{-3}$

$$pOH = 3$$

Also,
$$pH + pOH = 14$$

$$pH = 11.$$

952 (d)

:

HSO₄ can accept a proton (forms H₂SO₄) or can donate a proton (forms SO_4^{2-}).

953 **(b)**

$$HA + H_2O \rightleftharpoons H_3O^+ + A^-$$

$$K = \frac{[H_3O^+][A^-]}{[HA][H_2O]}$$

954 (d)

The minimum temperature at which combination of N2 and H2 occurs at measurable rate is 500°C in Haber's process. No doubt if temperature is raised up, above 500°C, it will favour backward reaction, because the reaction is exothermic.

955 (a)

$$CO_2 + H_2 \rightleftharpoons H_2O + CO$$

$$\frac{1}{(1-x)} \frac{1}{(1-x)} \frac{0}{x} \frac{0}{x}$$

$$\therefore K_c = \frac{x^2}{(1-x)^2}$$

$$K_a = \frac{x^2}{x^2}$$

$$\operatorname{Or} \frac{x}{1-x} = \sqrt{K_c} = \sqrt{1.8};$$

$$\therefore \frac{x}{1-x} = 1.34,$$

$$\therefore x = 0.573 M.$$

956 (c)

The equilibrium constant does not change when concentration of reactant is changed as the concentration of product also get changed accordingly.

957 (a)

(i)BF₃ and BCl₃ are better Lewis acid than BMe_3 and B_2H_6 due to -I-effect of Cl and F.

(ii)Between BCl₃ and BF₃, BCl₃ is better Lewis acid due to lesser extent of $p\pi - p\pi$ back bonding in it.

958 (c)

Potassium ferrocyanide is a complex salt because in it ferrocyanide $[Fe(CN)_6]^{4-}$ is the complex ion. It does not give test for ferric and cyanide ions.

959 (b)

At 25°C; [H⁺] =
$$10^{-7}$$
 : $K_{w_1} = 10^{-14}$

At 35°C; [H⁺] =
$$10^{-6}$$
 : $K_{w_2} = 10^{-12}$

$$\therefore 2.303 \log \frac{K_{w_2}}{K_{w_1}} = \frac{\Delta H}{R} \left[\frac{T_2 - T_1}{T_1 \times T_2} \right]$$

$$2.303 \log \frac{10^{-12}}{10^{-14}} = \frac{\Delta H}{2} \left[\frac{10}{298 \times 308} \right]$$

$$\Delta H = 84551.4 \text{ cal/mol}$$
$$= 84.551 \text{ kcal/mol}$$

Thus,
$$H_2O = H^+ + OH^-; \Delta H =$$

84.551 kcal/mol

$$\therefore \qquad \qquad H^+ + OH^- = H_2O; \Delta H =$$

-84.551 kcal/mol.

960 **(b)**

Lesser is the pH, more is acidic nature.

961 **(b)**

Strong electrolyte are 100% ionised in solution state and thus number of ions present in solution becomes constant at normal dilution. On further increasing dilution, the mobility of ion increase due to relaxation and electrophoretic effect.

962 **(c)**

$$K_1 = \frac{[\text{XeOF}_4][\text{HF}]^2}{[\text{XeF}_6][\text{H}_2\text{O}]}$$

$$K_2 = \frac{[\text{XeOF}_4][\text{XeO}_3\text{F}_2]}{[\text{XeO}_4][\text{XeF}_6]}$$

By Eq.(ii)/(i) we have
$$\frac{K_2}{K_1} = \frac{[XeO_3F_2][H_2O]}{[XeO_4][HF]^2} = K_c$$

963 **(d)**

$$K_{sp}$$
 of $CaF_2 = 4s^3 = 4 \times (2 \times 10^{-4})^3 = 32 \times 10^{-12}$.

964 (a)

$$2.303 \log \frac{K_{p2}}{K_{p1}} = \frac{\Delta H}{R} \frac{[T_2 - T_1]}{T_1 T_2}$$

Thus, if $K_{P2} > K_{P1}$; $T_2 > T_1$, then $\Delta H = +ve$

965 **(b)**

$$4NH_3 + 5O_2 \rightleftharpoons 4NO + 6H_2O$$

$$K_c = \frac{[\text{NO}]^2 [\text{H}_2 \text{O}]^6}{[\text{NH}_3]^4 [\text{O}_2]^5}$$

Hence, units of $K_c = \text{Conc}^{+1}$

966 (a)

Amount of H_2 (and hence I_2) consumed

$$1 - 0.2$$
 0.8

967 (c)

Ionic product ∝ temperature So, if the temperature is decreased, the value of ionic product will definitely be less than

before.

968 **(b)**

 CH_3NH_2 (base) on reaction with HCl (acid) to give a salt of weak base and strong acid as $CH_3NH_3^+Cl^-$

$$\begin{array}{cccc} & CH_3NH_2 + HCl \rightarrow & CH_3NH_3^+Cl^- \\ \text{At=0} & 0.1 \text{ mol} & 0.8 \text{ mol} & 0.08 \text{ mol} \\ \text{After reaction} & (0.1\text{-}0.08) \\ & = 0.02 \text{ mol} \end{array}$$

So, it acts as basic buffer solution due to presence of base and salt in solution of 1 L.

$$pOH = -\log_{10} K_b + \log_{10} \frac{[\text{salt}]}{[\text{base}]}$$

$$pOH = -\log_{10} K_b + \log_{10} \frac{[\text{CH}_3\text{NH}_3^+\text{Cl}^-]}{[\text{CH}_3\text{NH}_2]}$$

$$= -\log_{10} 5 \times 10^{-4} + \log_{10} \frac{[0.08]}{[0.02]}$$

$$= -\log_{10} 5 + 4\log_{10} 10 +$$

$$\log_{10} \frac{[0.08]}{[0.02]}$$

$$= -0.699 + 4 + 0.602 = 3.903$$

$$pH = 14 - pOH$$

$$= 14 - 3.903$$

$$= 10.097 = -\log_{10} [\text{H}^+]$$

$$\therefore [\text{H}^+] = 8.0 \times 10^{-11}$$

969 (a)

 H_3BO_3 accepts OH^- to form its conjugate base $B(OH)_4^-$,

$$H_3BO_3 + H_2O \rightleftharpoons B(OH)_4^- + H^+$$

970 (d)

$$\Delta n = 1 - 2 = -1$$

$$\therefore K_p = K_c (RT)^{\Delta n}$$

$$K_p = K_c (RT)^{-1}$$

971 (a)

$$\frac{1}{2} N_2 + \frac{3}{2} H_2 \rightleftharpoons NH_3$$

$$\left(1 - \frac{20}{100}\right) \left(3 - \frac{3 \times 20}{100}\right) \left(\frac{20 \times 2}{100}\right) \text{ mole at eq.}$$

$$K_c = \frac{[NH_3]}{[N_2]^{1/2} [H_2]^{3/2}} = \frac{[20 \times 2/(100 \times 3)]}{\left[\frac{80}{100 \times 3}\right]^{1/2} \left[\frac{240}{100 \times 3}\right]^{3/2}}$$

$$= 0.36 \text{ L. mol}^{-1}$$

972 (a)

An irreversible reaction is one in which either of the product is separated out as solid or escapes out as gas.

973 (a)

The value of equilibrium constant remains constant for a given reaction of constant temperature.

974 **(b)**

Gaseous HCl does not give H⁺ but liquid HCl givesH⁺ in aqueous solution, therefore gaseous HClis not an Arrhenius acid due to covalent bonding in gaseous condition

975 (d)

Buffer solution consists of weak acid and its salt with strong base. And a basic buffer solution is a mixture of weak base and its salt with strong acid.

976 (a)

$$pK_a \propto \frac{1}{K_a}$$

Stronger the acid, higher the K_a value and lower the p K_a value.

The order of acidity of given acids is as $CH_3CHCOOH > CH_3CHCOOH$ > CH_3CH_2COOH > CH_3CH_2COOH

Since, CH_3CH_2COOH is the weakest acid among the given, its pK_a value will be highest.

977 **(a)**

$$PCl_5 \rightleftharpoons PCl_3 + Cl_2$$

 $0 \qquad 0 \qquad 0$ initially
 $\frac{2\times60}{100} \frac{2\times40}{100} \frac{2\times40}{100}$ at equilibrium
Volume of container = 2L

$$K_c = \frac{\frac{2\times40}{100\times2} \times \frac{2\times40}{100\times2}}{\frac{2\times60}{100\times2}} = 0.266$$

979 (a)

According to law of mass action

$$K_c = \frac{[\text{NO}_2]^2}{[\text{N}_2\text{O}_4]} = \frac{[1.2 \times 10^{-2}]^2}{4.8 \times 10^{-2}} = 0.3 \times 10^{-2} = 3 \times 10^{-3} \text{ mol/L}$$

981 (d)

Lewis acid have a tendency to accept electrons while Bronsted acids have a tendency to donate proton.

$$\rightarrow$$
 H⁺ + Cl⁻

Bronsted acid

$$(B)H_2SO_4 \rightarrow H^+ + HSO_4^-$$

Bronsted acid

$$(C)HSO_3^- \rightarrow H^+ + SO_3^{2-}$$

Bronsted acid

(D)

$$SO_3 + O_4^2 - SO_4^2$$

Lewis acid

982 (d)

Heat will be used to melt ice.

983 (a)

In an acidic solution $[H^+] > 10^{-7}$ pH is less than 7.

In an alkaline solution $[H^+] < 10^{-7}$, pH is greater than 7.

984 **(b)**

 $H_2SO_4(acid) \xrightarrow{-H^+} HSO_4^-(Conjugate base).$

985 **(b)**

Given,
$$[H_2] = 8.0 \text{ mol/L}$$

 $[I_2] = 3.0 \text{ mol/L}$
 $[HI] = 28 \text{ mol/L}$
 $K = ?$
 $H_2 + I_2 \rightleftharpoons 2HI$

$$K = \frac{[HI]^2}{[H_2][I_2]} = \frac{(28)^2}{(8)\times(3)}$$

$$= \frac{28 \times 28}{24}$$

$$= 32.66$$

986 (a)

$$[H^+] = c\alpha = \sqrt[c]{\left[\frac{K_a}{c}\right]} = \sqrt{K_a c} = \sqrt{5 \times 10^{-8} \times 0.1}$$
$$= 7.07 \times 10^{-5} M$$

987 **(d)**

$$K_c = \frac{x^2}{4(1-x)^2};$$
If, $x = 0.5;$
 $K_c = \frac{0.5 \times 0.5}{4 \times (0.5)^2} = \frac{1}{4} = 0.25$

988 **(b**)

 CH_3COOH is weak acid and thus, partially ionised, $CH_3COOH + H_2O \rightleftharpoons H_3O^+ + CH_3COO^-$.

989 (a)

 $N_2(g) + 3H_2(g) \rightleftharpoons 3NH_3(g) + 92.3$ kJ According to Le-Chatelier's principle, the favourable conditions for the reaction are 1.Low temperature (as the reaction is exothermic)

2. High pressure (volume is decreasing)

3.Constant removal of ammonia gas as it is formed.

990 **(b)**

An efflorescent salt is one that loses H_2O to atmosphere. For the reaction, $CuSO_4$. $5H_2O(s) \rightleftharpoons CuSO_4$. $3H_2O(s) + 2H_2O(v)$

$$K_p = \left(P'_{\rm H_2O}\right)^2 = 1.086 \times 10^{-4}$$
 $P'_{\rm H_2O} = 1.042 \times 10^{-2} \ {\rm atm} = 7.92 \ {\rm mm}$ \because If $P'_{\rm H_2O}$ AT 25°C < 7.92 mm only then, reaction will proceed in forward direction.

991 (c)

Acid $\xrightarrow{-H^+}$ conjugate base;

Base $\stackrel{\text{+H}^+}{\longrightarrow}$ conjugate acid.

992 (d)

$$[H^+] = c \cdot \alpha = \sqrt[c]{\left[\frac{K_a}{c}\right]} = \sqrt{K_a c}$$

993 **(a)**

Gas \rightleftharpoons Liquid; $\Delta H = -ve$;

Apply Le-Chatelier's principle

994 (c)

$$h = \sqrt{\frac{K_h}{C}}$$

where, K_h = hydrolysis constant =?

h = degree of hydrolysis = 0.25% =

0.25/100

$$C = \text{concentration} = 0.5 \text{ M}$$

$$\therefore \quad \frac{0.25}{100} = \sqrt{\frac{K_h}{0.5}}$$

or
$$\left(\frac{0.25}{100}\right)^2 = \frac{K_h}{0.5}$$

$$\therefore K_h = \frac{0.25 \times 0.25 \times 0.5}{100 \times 100}$$

$$= 3.125 \times 10^{-6}$$

995 (c)

Only CO_2 is gas at equilibrium and K_p , K_c formula does not involve solid state.

996 (d)

$$2NaNO_3 \rightleftharpoons 2NaNO_2 + O_2$$

According to Le-Chatelier principle, low pressure, high temperature and addition of NaNO₃ favour forward reaction

997 **(b)**

pH of the solution
$$A = 3$$

 $[H^+]_A = 10^{-3} \text{ M}$
pH of the solution $B = 2$
 $[H^+]_B = 10^{-2} \text{ M}$
 $[H^+] = 10^{-3} + 10^{-2} = 11 \times 10^{-3}$
pH = $-\log(11 \times 10^{-3}) = 3 - \log 11$
= $3 - 1.04 = 1.9$

998 (c)

Meq. of KOH = Meq. of
$$H_3PO_3$$

 $0.1 \times v = 20 \times 0.1 \times 2$ (H_3PO_3 is dibasic)
 $\therefore v = 40 \text{ mL}$

100 (a)

[H⁺]for the solution of pH $3 = 1 \times 10^{-3}$ [H⁺] for the solution of pH $5 = 1 \times 10^{-5}$ Let *V* volumes of both the solutions are added, then concentration of H+ in final mixture

$$= \frac{1 \times 10^{-3} \times V + 1 \times 10^{-5} \times V}{V + V}$$

$$= \frac{V(1 \times 10^{-3} + 1 \times 10^{-5})}{2V}$$

$$= \frac{1.01 \times 10^{-3}}{2}$$

$$= 5.05 \times 10^{-4}$$

$$= \frac{\frac{V(1 \times 10^{-3} + 1 \times 10^{-5})}{2V}}{\frac{1.01 \times 10^{-3}}{2}}$$

$$= \frac{5.05 \times 10^{-4}}{1.00 \times 10^{-3}}$$
pH of resultant solution = $-\log[H^{+}]$

$$= -\log(5.05 \times 10^{-4})$$

$$= 3.29$$

$$\approx 3.3$$

EQUILIBRIUM

CHEMISTRY

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

- **Statement 1:** On cooling in a freezing mixture, colour of the mixture turns to pink from deep blue for a
 - reaction. $CO(H_2O)_6^{2+}(aq) + 4Cl^-(aq) \rightleftharpoons COCl_4^{2-}(aq) + 6H_2O(I)$
- **Statement 2:** Reaction is endothermic, so on cooling the reaction moves to backward direction.

2

- **Statement 1:** The pH of a buffer solution containing equal moles of acetic acid and sodium
 - acetate is 4.8 (p K_a of acetic acid is 4.8)
- **Statement 2:** The ionic product of water at 25° C is 10^{-14} mol² L⁻². The correct answer is

3

- Statement 1: Buffer system of carbonic acid and sodium bicarbonate is used for the precipitation of
 - hydroxides of third group elements
- **Statement 2:** It maintains the pH to a constant value, about 7.4

4

- **Statement 1:** Catalyst affects the final state of the equilibrium.
- **Statement 2:** It enables the system to attain a new equilibrium state by complexing with the reagents.

5

- **Statement 1:** Addition of neon to $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ equilibrium at constant volume does not
 - affect this equilibrium
- **Statement 2:** Active masses of reactants and products do not change when volume remains constant

6

- **Statement 1:** The value of *K* gives us a relative idea about the extent to which a reaction proceeds
- **Statement 2:** The value of *K* is independent of the stochiometry of reactants and products at the point of equilibrium

Statement 1: The reaction, $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ is favoured in the forward direction with

increase of pressure

Statement 2: The reaction is exothermic

8

Statement 1: The aqueous solution of CH₃COONa is alkaline in nature.

Statement 2: Acetate ion undergoes anionic hydrolysis.

9

Statement 1: NaCl solution can be purified by passage of hydrogen chloride through brine.

Statement 2: This type of purification is based on Le- Chatelier principle.

10

Statement 1: Solubility of BaSO₄ in 0.1 M Na₂SO₄ is 10^{-9} M, hence its $K_{\rm sp}$ is 10^{-18}

Statement 2: Because for BaSO₄, $K_{sp} = S^2$

11

Statement 1: Dry HCl shall not act as an acid

Statement 2: For the acidic or basic properties, the presence of water is absolutely necessary

12

Statement 1: Increase of temperature favour the formation of NH₃ by Haber's process

Statement 2: Increase of pressure and addition of catalyst favour the formation of NH₃

13

Statement 1: For the reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ Unit of $K_c L^2 \text{mol}^{-2}$

Statement 2: For the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ Equilibrium constant $K_c = \frac{[NH_3]^2}{[N_3][H_2]^3}$

14

Statement 1: Methyl orange is used as indicator in Na₂CO₃ titrating against HCl solution

Statement 2: The pH range of methyl orange is 3.1 to 4.5

15

Statement 1: Effect of temperature on K_c and K_p depends on enthalpy change.

Statement 2: Increase in temperature shifts the equilibrium in exothermic direction and decrease in

temperature shifts the equilibrium position in endothermic direction.

16

Statement 1: For gaseous reaction when $\Delta n = 0$, $K_P = K_c$, $\Delta n =$ change n the number fo gas moles.

Statement 2: For gaseous reaction $K_p = K_c(RT)\Delta n$

Statement 1: Ice \rightleftharpoons Water, if pressure is applied water will evaporate

Statement 2: Increase of pressure pushes the equilibrium towards the side in which umber of gaseous

mole decrease

18

Statement 1: A solution of FeCl₃ in water produce brown precipitate on standing

Statement 2: Hydrolysis of FeCl₃ takes place in water

19

Statement 1: Addition of an inert gas to the equilibrium mixture has no effects on the states of

equilibrium at constant volume or at constant pressure.

Statement 2: The addition of inert gas at constant volume will not alter the concentration of the

reactants as well as products of a reaction mixture.

20

Statement 1: On opening a sealed soda bottle dissolved CO₂ escapes

Statement 2: Gas escapes to reach the new equilibrium condition of lower pressure.

EQUILIBRIUM

CHEMISTRY

						: ANS	WE
1) 5)	a a	2) 6)	b c	3) 7)	d b	4) 8)	d a
9)	a C	10)	d	11)	a	12)	d
13)	a	14)	a	15)	c	16)	a
17)	d	18)	a	19)	a	20)	a
							(
						C	
						· Q-	
			.(,,,,			
		\sim	,				
		4					
		Y					
6	7 7						

EQUILIBRIUM

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (a)

 $CO(H_2O)_6^{2+}$ (pink) while $CoCl_4^{2-}$ (blue); so on cooling because of Le-Chatelier's principle the reaction tries to overcome the effect the temperature.

2 **(b)**

Both Assertion and Reason are true statement but Reason is not the correct explanation of Assertion. pH of a buffer solution is given by Henderson-Haselbalch equation.

$$pH = pK_a + log \frac{[salt]}{[acid]}$$

 \therefore pH = p K_a (when [salt]=[acid])

3 **(d)**

In biological systems buffer system of carbonic acid and sodium bicarbonate is found in our blood. It maintains the pH of blood to a constant value of about 7.4

5 **(a)**

The state of equilibrium is not affected by the addition of noble gases, at constant volume

6 **(c)**

The value of *K* depends on the stoichiometry of reactants and products at the point of equilibrium. For example if the reaction is multiplied by 2, the equilibrium constant is squared

7 **(b)**

According to Le-Chatelier's principle with increase of pressure, equilibrium shifts in that direction in which lesser number of gaseous moles are produced

8 (a)

 $CH_3COONa + H_2O \rightarrow CH_3COOH + NaOH$ The above process takes place in following steps

 $CH_{3}COONa \xrightarrow{\mbox{Ionisation}} CH_{3}COO^{-} + Na^{+}$ in aqueous solution Strong base

 ${\rm CH_3COO^-} + {\rm H_2O} \longrightarrow {\rm CH_3COOH} + {\rm OH^-}$ Acetate ion undergoes anionic hydrolysis and the resulting solution is slightly basic due to excess of OH⁻ ions. Hence, both Assertion and Reason are true and Reason is the correct explanation of Assertion.

9 **(c)**

This is based on common ion effect

$$HCl \hookrightarrow H^+ + Cl^-$$

Concentration of Cl⁻ ions increases due to ionization of HCl which increases the ionic product[Na⁺][Cl⁻]. This results in the precipitation of pure NaCl.

10 **(d)**

$$BaSO_4(s) \rightleftharpoons Ba^{2+} + SO_4^{2-}$$

$$s + 0.1$$

$$K_{\rm sp} = (s)(s + 0.1)$$

$$s < 10^{-9}$$

11 (a)

HCl is regarded as an acid only when dissolved in water and not in any other solvent

12 **(d)**

$$N_2 + 3H_2 \rightleftharpoons 2NH_3 + Heat$$

This reaction is favoured by decrease of temperature, increase of pressure, addition of catalyst and promoter

13 **(a)**

$$K_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$$

$$K_{c} = \frac{\text{mol}^{2} \times L \times L^{3}}{L^{2} \times \text{mol} \times \text{mol}^{3}}$$

$$= L^2 \text{ mol}^{-2}$$

14 **(a)**

The pH of the solution at the neutralisation point region is about 3.5 to 7 and methyl orange gives

its colour change between pH 3.1 to 4.4

15 **(c)**

According to Le-chateliers principle endothermic reaction favours increase in in temperature . However exothermic reaction favour decrease in temperature.

16 **(a)**

According to formula $K_P = K_C(RT)^{\Delta n}$

 $\Delta n = 0$

 $K_P = K_c(RT)^0$

 $K_P = K_C$

17 **(d)**

Increase in pressure favours melting of ice into water because at higher pressure melting point of ice is lowered

18 **(a)**

Aqueous solution of FeCl₃ on standing produce brown ppt. Due to hydrolysis, it produces ppt of

 $Fe(OH)_3$ which is of brown colour. Hence, both are correct and reason is a correct explanation

19 **(a)**

If volume is not constant the addition of inert gas affect the equilibrium constant. Both at constant volume, the addition of inert gas has no effect on the state of equilibrium.

20 **(a)**

According to Henry's law, "the mass of gas dissolved in a given mass of a solvent at any temperature is directly proportional to the pressure of the gas above the solvent."