## **THE D-AND F-BLOCK ELEMENTS**

## CHEMISTRY

## Single Correct Answer Type

| 1.       | On strongly heating AgNO                            | D <sub>3</sub> we get:        |                                          |                           |
|----------|-----------------------------------------------------|-------------------------------|------------------------------------------|---------------------------|
|          | a) AgNO <sub>2</sub>                                | b) Silver nitride             | c) Ag                                    | d) $Ag_20$                |
| 2.       | Transition metals in their                          | compounds show:               |                                          |                           |
|          | a) Ionic bonds                                      |                               |                                          |                           |
|          | b) Covalent bonds                                   |                               |                                          |                           |
|          | c) Ionic and covalent bon                           | lds                           |                                          |                           |
|          | d) Ionic and coordinate b                           | onds                          |                                          |                           |
| 3.       | $4K_2Cr_2O_7 \xrightarrow{\text{Heat}} 4K_2CrO_4 +$ | $+30_2 + X$ In the above rea  | ction, Xis                               |                           |
|          | a) CrO <sub>3</sub>                                 | b) $Cr_2O_7$                  | c) $Cr_2O_3$                             | d) CrO <sub>5</sub>       |
| 4.       | Cynaide process is used f                           | or the extraction of          | Ċ,                                       |                           |
|          | a) Au                                               | b) Ag                         | c) Cu                                    | d) Both (a) and (b)       |
| 5.       | The colour of zinc sulphic                          | de is:                        |                                          |                           |
|          | a) Yellow                                           | b) White                      | c) Brown                                 | d) Black                  |
| 6.       | The metal extracted by cy                           | vanide process is             |                                          |                           |
| •        | a) Silver                                           | h) Copper                     | c) Iron                                  | d) Sodium                 |
| 7.       | Which metal gives hydrog                            | gen gas on heating with hot   | concentrated alkali?                     | u) oourum                 |
| <i>.</i> | a) Ao                                               | h) Ni                         | c) 7n                                    | գ) Հո                     |
| 8        | Which of the following m                            | etal ions is not coloured?    |                                          | uj cu                     |
| 0.       | a) π;3+                                             | b) $E_0^{3+}$                 | c) $V^{2+}$                              | d) $7n^{2+}$              |
| 0        | a) II<br>The process of extraction                  | of Au and Ag area is based    | cj v                                     | uj zli                    |
| 9.       | a) NU                                               | b) UC                         | a) UNO                                   | A) I/CM                   |
| 10       | d) $\Pi_3$                                          |                               | $c_{3}$                                  | UJ KUN                    |
| 10.      | In the process of extraction                        | on ol gola,                   |                                          |                           |
|          | Roasted gold ore                                    |                               |                                          |                           |
|          | $+CN^- + H_2O \xrightarrow{O_2} [X] +$              | OH-                           |                                          |                           |
|          | [X] + Zn -                                          | $\rightarrow [Y] + Au$        |                                          |                           |
|          | Identify the complexes [X                           | [] and [Y]                    |                                          |                           |
|          | a) $X = [Au(CN)_2]^-, Y = [$                        | $Zn(CN)_4]^{2-}$              | b) $X = [Au(CN)_4]^{3-}, Y =$            | $[Zn(CN)_{4}]^{2-}$       |
|          | c) $X = [Au(CN)_2]^-, Y = [$                        | $Zn(CN)_6]^{4-}$              | d) $X = [Au(CN)_4]^-, Y = [X_4 - X_4]^-$ | $Zn(CN)_4]^{2-}$          |
| 11.      | To dissolve argentite ore                           | which of the following is us  | sed?                                     |                           |
|          | a) Na[Ag(CN) <sub>2</sub> ]                         | b) NaCN                       | c) NaCl                                  | d) HCl                    |
| 12.      | The magnetic moment $\mu$ ,                         | of transition metals is relat | ed to the number of unpair               | ed elelctrnos <i>n</i> as |
|          | $(1,2)^2$                                           | 1 $2$ $(12)$                  | n n                                      | 1                         |
|          | a) $\mu = n(n+2)^2$                                 | b) $\mu = n^2(n+2)$           | c) $\mu = \frac{1}{(n+2)}$               | d) $\mu = \sqrt{n(n+2)}$  |
| 13.      | Melting of Zn metal and t                           | hen pouring it into cold wa   | ter gives:                               |                           |
|          | a) Zn dust                                          | b) Granulated Zn              | c) Hard Zn metal                         | d) Soft Zn metal          |
| 14.      | Percentage of gold in Foo                           | l's gold is                   |                                          |                           |
|          | a) Zero                                             | b) 8                          | c) 16                                    | d) 30                     |
| 15.      | Copper sulphate is comm                             | ercially made from copper     | scrap by:                                |                           |
|          | a) Dissolving in hot conce                          | entrated sulphuric acid       |                                          |                           |
|          | b) Action of dilute sulphu                          | ric acid and air              |                                          |                           |
|          | c) Heating with sodium s                            | ulphate                       |                                          |                           |
|          | d) Heating with sulphur                             | •                             |                                          |                           |
| 16.      | Which of the following co                           | ompounds has colour but no    | o unpaired electrons?                    |                           |
|          |                                                     |                               | · · ·                                    |                           |

٠

|     | a) KMnO <sub>4</sub>                  |                                         |                                        |                           |
|-----|---------------------------------------|-----------------------------------------|----------------------------------------|---------------------------|
|     | b) K <sub>2</sub> MnO <sub>4</sub>    |                                         |                                        |                           |
|     | c) MnSO <sub>4</sub>                  |                                         |                                        |                           |
|     | d) MnCl <sub>2</sub>                  |                                         |                                        |                           |
| 17. | Mercury forms amalgams                | with all except:                        |                                        |                           |
|     | a) Al                                 | b) Zn                                   | c) Ni                                  | d) Fe                     |
| 18. | Granulated Zn is obtained             | l by:                                   | -                                      | -                         |
|     | a) Suddenly cooling molte             | en Zn                                   |                                        |                           |
|     | b) Adding molten Zn to w              | ater                                    |                                        | $\sim$                    |
|     | c) Heating Zn 100 to 150°             | °C                                      |                                        |                           |
|     | d) Dropping molten Zn dr              | op by drop                              |                                        |                           |
| 19. | In the first transition serie         | es. the differentiating elect           | ron enters:                            |                           |
|     | a) 5 <i>d-</i> orbital                | b) 4 <i>d</i> -orbital                  | c) 3 <i>d</i> -orbital                 | d) 2 <i>d-</i> orbital    |
| 20. | Identity the ore not conta            | ining iron.                             | ,                                      |                           |
|     | a) Limonite                           | b) Siderite                             | c) Carnallite                          | d) Chalcopyrites          |
| 21. | Purest form of iron is                | .,                                      | . <b>)</b>                             |                           |
|     | a) Cast iron                          | b) Pig form                             | c) Wrought iron                        | d) Steel                  |
| 22. | Which metal adsorbs hvd               | rogen?                                  | of moughtmen                           |                           |
|     | a) Pd                                 | b) K                                    | c) Al                                  | d) Zn                     |
| 23. | The most abundant ore of              | f iron is:                              |                                        | .,                        |
| _0. | a) Haematite                          | b) Limonite                             | c) Magnetite                           | d) Siderite               |
| 24. | Metallic silver may be obt            | ained from AgCl by                      | c) i mgitorio                          |                           |
|     | a) Heating it in the curren           | $t of H_2$                              | b) Fusing it with sand                 |                           |
|     | c) Treating with carbon n             | nonoxide                                | d) Fusing it with $Na_2CO_2$           |                           |
| 25. | Choose the correct statem             | nent.                                   | a) Fusing it with Ma2003               |                           |
| _0. | a) Transition elements ha             | ive low melting points.                 |                                        |                           |
|     | b) Transition elements do             | not have catalytic activity             | r.                                     |                           |
|     | c) Transition elements ex             | hibit variable oxidation sta            | ates.                                  |                           |
|     | d) Transition elements sh             | ow inert pair effect.                   |                                        |                           |
| 26. | Bessemer's converter is u             | sed in the manufacture of:              |                                        |                           |
| -   | a) Cast iron                          | b) Pig iron                             | c) Steel                               | d) Wrought iron           |
| 27. | Number of electrons pres              | ent in the outermost orbit              | of Fe atom is:                         |                           |
|     | a) 3                                  | b) 1                                    | c) 2                                   | d) 4                      |
| 28. | Which will reduce acidifie            | ed potassium dichromate s               | olution?                               |                           |
| -   | a) Potash alum                        | b) Mohr's salt                          | c) Chile saltpetre                     | d) White vitriol          |
| 29. | The lanthanoids contracti             | on relates to                           | .)                                     |                           |
|     | a) Atomic radii                       |                                         | b) Atomic as well as $M^{3+}$          | radii                     |
|     | c) Valence electrons                  |                                         | d) Oxidation states                    |                           |
| 30. | Transition metals show p              | aramagnetism due to                     | ·) · · · · · · · · · · · · · · · · · · |                           |
|     | a) High lattice energy                |                                         | b) Characteristics configu             | uration                   |
|     | c) Variable oxidation stat            | es                                      | d) Unpaired electrons                  |                           |
| 31. | 'Mercury' tree can be prei            | pared:                                  |                                        |                           |
|     | a) By mixing up mercuric              | thiocvanate and gum                     |                                        |                           |
|     | b) By adding Nessler's rea            | agent to a ammonium salt s              | solution                               |                           |
|     | c) By pouring little mercu            | rv into AgNO <sub>2</sub> solution      |                                        |                           |
|     | d) By heating mercuric ch             | lloride                                 |                                        |                           |
| 32. | When excess of SnCl <sub>2</sub> is a | dded to a solution of HgCl <sub>2</sub> | , a white ppt. turning to gro          | ey is obtained. This grev |
|     | colour is due to the forma            | tion of:                                | , IF                                   | ,,                        |
|     | a) Hg <sub>2</sub> Cl <sub>2</sub>    | b) SnCl₄                                | c) Sn                                  | d) $Hg_2$                 |
| 33. | Among the following, the              | compound that is both par               | amagnetic and coloured is              | ,                         |

|     | a) $(NH_4)_2(TiCl_6)$                                                                     | b) $K_2 Cr_2 O_7$                           | c) $K_3[Cu(CN)_4]$             | d) VOSO <sub>4</sub>       |
|-----|-------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------|----------------------------|
| 34. | All the metals form oxide                                                                 | s of the type <i>MO</i> except              |                                |                            |
|     | a) Copper                                                                                 | b) Barium                                   | c) Silver                      | d) Lead                    |
| 35. | Cinnabar is an ore of:                                                                    |                                             |                                |                            |
|     | a) Lead                                                                                   | b) Zinc                                     | c) Silver                      | d) Mercury                 |
| 36. | Heating mixture of Cu <sub>2</sub> O                                                      | and Cu <sub>2</sub> S will give             |                                |                            |
|     | a) $Cu_2SO_3$                                                                             | b) CuO + CuS                                | c) Cu + SO <sub>3</sub>        | d) Cu + SO <sub>2</sub>    |
| 37. | The substance that sublin                                                                 | nes on heating is:                          | , ,                            |                            |
|     | a) MgCl <sub>2</sub>                                                                      | b) AgCl                                     | c) HgCl <sub>2</sub>           | d) NaCl                    |
| 38. | Actinides                                                                                 |                                             |                                |                            |
|     | a) Have variable valency                                                                  |                                             | b) Include element 12          |                            |
|     | c) Are all synthetic eleme                                                                | nts                                         | d) Have only short lived is    | sotopes                    |
| 39. | The 3 <i>d</i> -transition series of                                                      | contains elements from ato                  | mic number:                    |                            |
|     | a) 22 to 30                                                                               | b) 21 to 30                                 | c) 21 to 31                    | d) 21 to 29                |
| 40. | Which of the following is                                                                 | not a characteristic of trans               | sition elements?               |                            |
|     | a) Variable oxidation stat                                                                | es                                          | b) Formation of coloured       | compounds                  |
|     | c) Formation of interstitia                                                               | al compounds                                | d) Natural radioactivity       |                            |
| 41. | An element which is high                                                                  | ly toxic for plants and anim                | als is:                        |                            |
|     | a) Au                                                                                     | b) Mn                                       | c) Hg                          | d) Ca                      |
| 42. | Native silver metal forms                                                                 | a water soluble complex w                   | rith a dilute aqueous solution | on of NaCN in presence of: |
|     | a) Nitrogen                                                                               | b) Oxygen                                   | c) CO <sub>2</sub>             | d) Ar                      |
| 43. | Calamine is                                                                               |                                             |                                |                            |
|     | a) CaCO <sub>3</sub>                                                                      | b) MgCO <sub>3</sub>                        | c) ZnCO <sub>3</sub>           | d) $CaCO_3 + CaO$          |
| 44. | Which series of elements                                                                  | have nearly the same atom                   | nic radii?                     |                            |
|     | a) F, Cl, Br, I                                                                           | b) Na, K, Rb, Cs                            | c) Li, Be, B, C                | d) Fe, Co, Ni, Cu          |
| 45. | Which transition element                                                                  | s exhibit +8 oxidation state                | es?                            |                            |
|     | a) Cu, Zn                                                                                 | b) Ru, Os                                   | c) Ag, Au                      | d) Cu, Cr                  |
| 46. | When $I^-$ is oxidized by M                                                               | $nO_4^-$ in alkaline medium, I <sup>-</sup> | convets into                   |                            |
|     | a) IO <sub>3</sub>                                                                        | b) I <sub>2</sub>                           | c) IO <sub>4</sub>             | d) IO <sup>-</sup>         |
| 47. | Which of the following co dichromate?                                                     | mpounds is used as the sta                  | rting material for the prepa   | aration of potassium       |
|     | a) K <sub>2</sub> SO <sub>4</sub> . Cr <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> . 24H | <sub>2</sub> 0 (Chrome alum)                |                                |                            |
|     | b) PbCrO <sub>4</sub> (Chrome yello                                                       | w)                                          |                                |                            |
|     | c) FeCr <sub>2</sub> O <sub>4</sub> (Chromite)                                            |                                             |                                |                            |
|     | d) PbCrO <sub>4</sub> . PbO (Chrome                                                       | red)                                        |                                |                            |
| 48. | Which metal makes steel                                                                   | suitable for cutting purpos                 | es by maintaining the cutti    | ng edge of the blade?      |
|     | a) Mn                                                                                     | b) Al                                       | c) W                           | d) C                       |
| 49. | Which form of iron is leas                                                                | t ductile?                                  |                                |                            |
|     | a) Hard steel                                                                             | b) Cast iron                                | c) Mild steel                  | d) Wrought steel           |
| 50. | Amalgams are:                                                                             |                                             |                                |                            |
|     | a) Always solid                                                                           |                                             |                                |                            |
| C   | b) Highly coloured alloys                                                                 |                                             |                                |                            |
|     | c) Alloys which contain m                                                                 | nercury as one of the conten                | nts                            |                            |
|     | d) Compounds of mercury                                                                   | У                                           |                                |                            |
| 51. | Which of the following is                                                                 | a poison?                                   |                                |                            |
|     | a) Hg <sub>2</sub> Cl <sub>2</sub>                                                        | b) BaSO <sub>4</sub>                        | c) HgCl <sub>2</sub>           | d) NaHCO <sub>3</sub>      |
| 52. | Addition of high proporti                                                                 | ons of manganese makes st                   | teel useful in making rails o  | f rail roads because       |
|     | manganese ;                                                                               |                                             |                                |                            |
|     | a) Gives hardness to steel                                                                | and can remove oxygen ar                    | nd sulphur                     |                            |
|     | b) Helps the formation of                                                                 | oxides of iron                              |                                |                            |
|     | c) Can show highest oxid                                                                  | ation state of +7                           |                                |                            |

 $\blacklozenge$ 

## d) None of the above

- 53. Pick out the correct statements from the following.
  - I. Cobalt (III) is more stable in octahedral complexes.
  - II. Zinc forms coloured ions or complexes.
  - III. Most of the *d*-block elements and their compounds are ferromagnetic.
  - IV. Osmium shows (VIII) oxidation state.
  - V. Cobalt (II) is more stable in octahedral complexes.

|     |                                                  | able in octaneural comple                                    | ilebi                            |                                                |
|-----|--------------------------------------------------|--------------------------------------------------------------|----------------------------------|------------------------------------------------|
|     | a) 1 and 2                                       | b) 1 and 3                                                   | c) 2 and 4                       | d) 1 and 4                                     |
| 54. | Ferrous sulphate on heat                         | ing gives:                                                   |                                  | · · · · · · · · · · · · · · · · · · ·          |
|     | a) SO <sub>3</sub>                               | b) SO <sub>2</sub>                                           | c) $Fe_2O_3$                     | d) All of these                                |
| 55. | Hydrometallurgy is based                         | d on                                                         |                                  |                                                |
|     | a) Calcination                                   | b) Roasting                                                  | c) Oxidation                     | d) Reduction                                   |
| 56. | In context with the trans                        | ition elements, which of th                                  | ne following statements is i     | ncorrect?                                      |
|     | a) In addition to the norm complexes.            | nal oxidation state, the zer                                 | ro oxidation state is also sh    | own by these elements in                       |
|     | b) In the highest oxidatio                       | on state, the transition met                                 | al shows basic character a       | nd form cationic complexes.                    |
|     | In the highest oxidatio                          | on state of the first five tra                               | nsition elements (Sc to Mn       | ), all the 4 <i>s</i> and 4 <i>d</i> electrons |
|     | are used for bonding.                            |                                                              |                                  | <b>)</b>                                       |
|     | $d$ Once the $d^5$ configurat                    | tion is exceeded, the tende                                  | ency to involve all the 3d el    | ectrons in bonding                             |
|     | decreases.                                       |                                                              |                                  |                                                |
| 57. | Which one of the following                       | ng pairs of elements is call                                 | ed 'chemical twins' becaus       | e of their very similar                        |
|     | chemical properties?                             |                                                              |                                  |                                                |
|     | a) Mn and W                                      | b) Mo and Tc                                                 | c) Fe and Re                     | d) Hf and Zr                                   |
| 58. | Which one of the following                       | ng exist in the oxidation st                                 | ate other than $+3?$             |                                                |
|     | a) B                                             | b) Al                                                        | c) Ce                            | d) Ga                                          |
| 59. | Excess of KI reacts with (                       | CuSO <sub>4</sub> solution and then N                        | $a_2S_2O_3$ solution is added to | o it. Which of the statement is                |
|     | incorrect for this reaction                      | n?                                                           |                                  |                                                |
|     | a) CuI <sub>2</sub> is formed                    | b) Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> is oxidised | c) $Cu_2I_2$ is formed           | d) Evolved I <sub>2</sub> is reduced           |
| 60. | Which is formed when ir                          | on reacts with carbon?                                       |                                  |                                                |
|     | a) FeC <sub>2</sub>                              | b) Fe <sub>3</sub> C                                         | c) FeC <sub>3</sub>              | d) Fe <sub>2</sub> C                           |
| 61. | From sodium agrentocya                           | nide Na[Ag(CN) <sub>2</sub> ], silver i                      | s precipitated by adding a       | powder of:                                     |
|     | a) Tin                                           | b) Zinc                                                      | c) Mercury                       | d) Calcium                                     |
| 62. | Which is used for electric                       | cal purposes?                                                |                                  |                                                |
|     | a) German silver                                 | b) Beryllium bronze                                          | c) Constantan                    | d) Fool's gold                                 |
| 63. | Monel metal is an alloy o                        | f?                                                           |                                  |                                                |
|     | a) Cu, Ni, Fe, Mn                                | b) Cu, Sn, Zn                                                | c) Cu, Sn, P                     | d) Cu, Zn                                      |
| 64. | Which metal is not used f                        | for making coins?                                            |                                  |                                                |
|     | a) Gold                                          | b) Silver                                                    | c) Nickel                        | d) Tungsten                                    |
| 65. | Which is not true?                               |                                                              |                                  |                                                |
|     | a) ZnS is white solid white                      | ch turns yellow on exposu                                    | re to light                      |                                                |
|     | b) ZnS is precipitated on                        | passing H <sub>2</sub> S to aqueous N                        | $a_2 ZnO_2$                      |                                                |
| C   | c) Basic zinc carbonate is                       | $SZnCO_3$ . $3Zn(OH)_2$                                      |                                  |                                                |
|     | d) HgCl <sub>2</sub> reacts with NH <sub>3</sub> | (g) to give $[Hg(NH_3)_4]Cl_2$                               |                                  |                                                |
| 66. | Gold is extracted by hydr                        | ometallurgical process, ba                                   | ased on its property             |                                                |
|     | a) Of being electropositiv                       | ие                                                           | b) Of being less reactive        |                                                |
|     | c) To form complexes wh                          | nich are water soluble                                       | d) To form salts which a         | are water soluble                              |
| 67. | Which is less reactive?                          |                                                              |                                  |                                                |
|     | a) Fe                                            | b) Ni                                                        | c) Pt                            | d) Co                                          |
| 68. | Thermal decomposition of                         | of zinc nitrate gives:                                       |                                  |                                                |
|     | a) Zn                                            | b) ZnO                                                       | c) $Zn(NO_2)_2$                  | d) NO                                          |
|     |                                                  |                                                              |                                  |                                                |

| 69.                                                                                                   | Copper nitrate on stro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ngly heating gives:                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                        |                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                       | a) Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b) Cupric oxide                                                                                                                                                                                                                                                                                                                                                                                             | c) Cuprous oxide                                                                                                                                                                       | d) cupric nitrate                                                                                                                                                                                                                             |
| 70.                                                                                                   | Which compound is us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sed as a purgative in medio                                                                                                                                                                                                                                                                                                                                                                                 | cine?                                                                                                                                                                                  |                                                                                                                                                                                                                                               |
|                                                                                                       | a) HgCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b) Hg <sub>2</sub> Cl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                          | c) CuCl                                                                                                                                                                                | d) CuCl <sub>2</sub>                                                                                                                                                                                                                          |
| 71.                                                                                                   | Correct formula of cale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | omel is                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                        |                                                                                                                                                                                                                                               |
|                                                                                                       | a) HgCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b) HgCl <sub>2</sub> .H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                      | c) Hg <sub>2</sub> Cl <sub>2</sub>                                                                                                                                                     | d) HgSO <sub>4</sub>                                                                                                                                                                                                                          |
| 72.                                                                                                   | The reaction of K <sub>2</sub> Cr <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O <sub>7</sub> with NaCl and conc H <sub>2</sub> S                                                                                                                                                                                                                                                                                                                                                          | 0 <sub>4</sub> gives                                                                                                                                                                   |                                                                                                                                                                                                                                               |
|                                                                                                       | a) CrO <sub>2</sub> Cl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | b) Cr <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                           | c) CrCl <sub>3</sub>                                                                                                                                                                   | d) CroCl <sub>2</sub>                                                                                                                                                                                                                         |
| 73.                                                                                                   | A compound in which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a metal ion $M^{x+}(Z=25)$ has                                                                                                                                                                                                                                                                                                                                                                              | as a spin only magnetic                                                                                                                                                                | moment of $\sqrt{24}$ BM. The number of                                                                                                                                                                                                       |
|                                                                                                       | unpaired electrons in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the compound and the oxi                                                                                                                                                                                                                                                                                                                                                                                    | dation state of the met                                                                                                                                                                | al ion are respectively.                                                                                                                                                                                                                      |
|                                                                                                       | a) 4 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b) 5 and 3                                                                                                                                                                                                                                                                                                                                                                                                  | c) 3 and 2                                                                                                                                                                             | d) 4 and 3                                                                                                                                                                                                                                    |
| 74.                                                                                                   | From an aqueous solu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tion of zinc sulphate, norm                                                                                                                                                                                                                                                                                                                                                                                 | al zinc carbonate may                                                                                                                                                                  | be precipitated by:                                                                                                                                                                                                                           |
|                                                                                                       | a) Passing $CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                        |                                                                                                                                                                                                                                               |
|                                                                                                       | b) Warming with NaH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                                                               |
|                                                                                                       | c) Adding $Na_2CO_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                                                               |
|                                                                                                       | d) Boiling with $CaCO_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                                                               |
| 75.                                                                                                   | The catalyst used for t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | he hydrogenation of veget                                                                                                                                                                                                                                                                                                                                                                                   | able oils for making m                                                                                                                                                                 | argarine is:                                                                                                                                                                                                                                  |
|                                                                                                       | a) Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b) Na                                                                                                                                                                                                                                                                                                                                                                                                       | c) Ni                                                                                                                                                                                  | d) Zn                                                                                                                                                                                                                                         |
| 76.                                                                                                   | Which of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g compound is expected to                                                                                                                                                                                                                                                                                                                                                                                   | be coloured?                                                                                                                                                                           |                                                                                                                                                                                                                                               |
|                                                                                                       | a) $Ag_2SO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b) CuF <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                         | c) MgF <sub>2</sub>                                                                                                                                                                    | d) CuCl                                                                                                                                                                                                                                       |
| 77.                                                                                                   | Copper can be extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed from:                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                        | ·                                                                                                                                                                                                                                             |
|                                                                                                       | a) Kupfer-nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b) Dolomite                                                                                                                                                                                                                                                                                                                                                                                                 | c) Malachite                                                                                                                                                                           | d) Galena                                                                                                                                                                                                                                     |
| 78.                                                                                                   | Refining of impure cop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oper with zinc impurity is                                                                                                                                                                                                                                                                                                                                                                                  | to be done by electroly                                                                                                                                                                | sis using electrodes as                                                                                                                                                                                                                       |
|                                                                                                       | Cathode Anode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                           | G.Y                                                                                                                                                                                    |                                                                                                                                                                                                                                               |
|                                                                                                       | a) Pure copper Pur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | re zinc                                                                                                                                                                                                                                                                                                                                                                                                     | b) Pure zinc                                                                                                                                                                           | Pure copper                                                                                                                                                                                                                                   |
|                                                                                                       | c) Pure connor Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nure conner                                                                                                                                                                                                                                                                                                                                                                                                 | d) Pure zinc                                                                                                                                                                           | Impure zinc                                                                                                                                                                                                                                   |
|                                                                                                       | cj rule copper mij                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pure copper                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                        | 1                                                                                                                                                                                                                                             |
| 79.                                                                                                   | Molten Ag absorbs abo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | but times of $O_2$ :                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                        |                                                                                                                                                                                                                                               |
| 79.                                                                                                   | Molten Ag absorbs abo<br>a) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b) 20                                                                                                                                                                                                                                                                                                                                                                                                       | c) 40                                                                                                                                                                                  | d) 80                                                                                                                                                                                                                                         |
| 79.<br>80.                                                                                            | Molten Ag absorbs abo<br>a) 10<br>Which of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b) 20<br>b) sion is diamagnetic?                                                                                                                                                                                                                                                                                                                                                                            | c) 40                                                                                                                                                                                  | d) 80                                                                                                                                                                                                                                         |
| 79.<br>80.                                                                                            | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) Nd <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | but times of $O_2$ :<br>b) 20<br>g ion is diamagnetic?<br>b) La <sup>3+</sup>                                                                                                                                                                                                                                                                                                                               | c) 40<br>c) Tb <sup>3+</sup>                                                                                                                                                           | d) 80<br>d) Er <sup>3+</sup>                                                                                                                                                                                                                  |
| 79.<br>80.<br>81.                                                                                     | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) Nd <sup>3+</sup><br>A red solid is insoluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | but copper<br>but times of O <sub>2</sub> :<br>b) 20<br>g ion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec                                                                                                                                                                                                                                                                         | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K                                                                                                                                 | d) 80<br>d) Er <sup>3+</sup><br>I is added to water. Heating the red                                                                                                                                                                          |
| 79.<br>80.<br>81.                                                                                     | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) Nd <sup>3+</sup><br>A red solid is insoluble<br>solid in a test tube rest                                                                                                                                                                                                                                                                                                                                                                                                                                                 | but times of O <sub>2</sub> :<br>b) 20<br>g ion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some v                                                                                                                                                                                                                                                       | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>riolet coloured fumes a                                                                                                      | d) 80<br>d) Er <sup>3+</sup><br>I is added to water. Heating the red<br>nd droplets of a metal appear on                                                                                                                                      |
| 79.<br>80.<br>81.                                                                                     | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) Nd <sup>3+</sup><br>A red solid is insoluble<br>solid in a test tube rest<br>the cooler parts of the                                                                                                                                                                                                                                                                                                                                                                                                                      | but copper<br>but times of O <sub>2</sub> :<br>b) 20<br>g ion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some v<br>test tube. The red solid is                                                                                                                                                                                                          | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>riolet coloured fumes a                                                                                                      | d) 80<br>d) Er <sup>3+</sup><br>I is added to water. Heating the red<br>nd droplets of a metal appear on                                                                                                                                      |
| 79.<br>80.<br>81.                                                                                     | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) $Nd^{3+}$<br>A red solid is insoluble<br>solid in a test tube rest<br>the cooler parts of the<br>a) $(NH_4)_2Cr_2O_7$                                                                                                                                                                                                                                                                                                                                                                                                     | but times of O <sub>2</sub> :<br>b) 20<br>g ion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some v<br>test tube. The red solid is<br>b) HgI <sub>2</sub>                                                                                                                                                                                                 | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>violet coloured fumes a<br>c) HgO                                                                                            | d) 80<br>d) $Er^{3+}$<br>If is added to water. Heating the red<br>nd droplets of a metal appear on<br>d) $Pb_3O_4$                                                                                                                            |
| <ol> <li>79.</li> <li>80.</li> <li>81.</li> <li>82.</li> </ol>                                        | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) $Nd^{3+}$<br>A red solid is insoluble<br>solid in a test tube rest<br>the cooler parts of the<br>a) $(NH_4)_2Cr_2O_7$<br>Of the following outer                                                                                                                                                                                                                                                                                                                                                                           | but times of O <sub>2</sub> :<br>b) 20<br>g ion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some v<br>test tube. The red solid is<br>b) HgI <sub>2</sub><br>electronic configurations                                                                                                                                                                    | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>riolet coloured fumes a<br>c) HgO<br>of atoms, the highest o                                                                 | d) 80<br>d) $Er^{3+}$<br>If is added to water. Heating the red<br>nd droplets of a metal appear on<br>d) $Pb_3O_4$<br>xidation state is achieved by which                                                                                     |
| <ol> <li>79.</li> <li>80.</li> <li>81.</li> <li>82.</li> </ol>                                        | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) $Nd^{3+}$<br>A red solid is insoluble<br>solid in a test tube rest<br>the cooler parts of the<br>a) $(NH_4)_2Cr_2O_7$<br>Of the following outer<br>one of them?                                                                                                                                                                                                                                                                                                                                                           | but times of O <sub>2</sub> :<br>b) 20<br>g ion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some v<br>test tube. The red solid is<br>b) HgI <sub>2</sub><br>electronic configurations                                                                                                                                                                    | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>riolet coloured fumes a<br>c) HgO<br>of atoms, the highest o                                                                 | d) 80<br>d) $Er^{3+}$<br>If is added to water. Heating the red<br>nd droplets of a metal appear on<br>d) $Pb_3O_4$<br>xidation state is achieved by which                                                                                     |
| <ol> <li>79.</li> <li>80.</li> <li>81.</li> <li>82.</li> </ol>                                        | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) Nd <sup>3+</sup><br>A red solid is insoluble<br>solid in a test tube rest<br>the cooler parts of the<br>a) (NH <sub>4</sub> ) <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub><br>Of the following outer<br>one of them?<br>a) $(n -)d^8, ns^2$                                                                                                                                                                                                                                                                                | but copper<br>but times of $O_2$ :<br>b) 20<br>g ion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some v<br>test tube. The red solid is<br>b) HgI <sub>2</sub><br>electronic configurations<br>b) $(n - 1)d^5, ns^1$                                                                                                                                      | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>riolet coloured fumes a<br>c) HgO<br>of atoms, the highest o<br>c) $(n - 1)d^3, ns^2$                                        | d) 80<br>d) $Er^{3+}$<br>If is added to water. Heating the red<br>nd droplets of a metal appear on<br>d) Pb <sub>3</sub> O <sub>4</sub><br>xidation state is achieved by which<br>d) $(n - 1)d^5, ns^2$                                       |
| <ul><li>79.</li><li>80.</li><li>81.</li><li>82.</li><li>83.</li></ul>                                 | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) Nd <sup>3+</sup><br>A red solid is insoluble<br>solid in a test tube rest<br>the cooler parts of the<br>a) (NH <sub>4</sub> ) <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub><br>Of the following outer<br>one of them?<br>a) $(n -)d^8, ns^2$<br>The oxidation number                                                                                                                                                                                                                                                        | but times of $O_2$ :<br>b) 20<br>g ion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some v<br>test tube. The red solid is<br>b) HgI <sub>2</sub><br>electronic configurations<br>b) $(n - 1)d^5$ , $ns^1$<br>of Mn in the product of al                                                                                                                   | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>violet coloured fumes a<br>c) HgO<br>of atoms, the highest of<br>c) $(n - 1)d^3, ns^2$<br>kaline oxidative fusion            | d) 80<br>d) $Er^{3+}$<br>If is added to water. Heating the red<br>nd droplets of a metal appear on<br>d) Pb <sub>3</sub> O <sub>4</sub><br>xidation state is achieved by which<br>d) $(n - 1)d^5, ns^2$<br>of MnO <sub>2</sub> is             |
| <ol> <li>79.</li> <li>80.</li> <li>81.</li> <li>82.</li> <li>83.</li> </ol>                           | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) Nd <sup>3+</sup><br>A red solid is insoluble<br>solid in a test tube rest<br>the cooler parts of the<br>a) (NH <sub>4</sub> ) <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub><br>Of the following outer<br>one of them?<br>a) $(n -)d^8, ns^2$<br>The oxidation number<br>a) 2                                                                                                                                                                                                                                                | but times of $O_2$ :<br>b) 20<br>g ion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some v<br>test tube. The red solid is<br>b) HgI <sub>2</sub><br>electronic configurations<br>b) $(n - 1)d^5$ , $ns^1$<br>of Mn in the product of al<br>b) 3                                                                                                           | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>riolet coloured fumes a<br>c) HgO<br>of atoms, the highest o<br>c) $(n - 1)d^3$ , $ns^2$<br>kaline oxidative fusion<br>c) 4  | d) 80<br>d) $Er^{3+}$<br>If is added to water. Heating the red<br>nd droplets of a metal appear on<br>d) $Pb_3O_4$<br>xidation state is achieved by which<br>d) $(n - 1)d^5$ , $ns^2$<br>of $MnO_2$ is<br>d) 6                                |
| <ul> <li>79.</li> <li>80.</li> <li>81.</li> <li>82.</li> <li>83.</li> <li>84.</li> </ul>              | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) Nd <sup>3+</sup><br>A red solid is insoluble<br>solid in a test tube rest<br>the cooler parts of the<br>a) (NH <sub>4</sub> ) <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub><br>Of the following outer<br>one of them?<br>a) $(n -)d^8, ns^2$<br>The oxidation number<br>a) 2<br>Iron sheets are galvan                                                                                                                                                                                                                      | but times of $O_2$ :<br>b) 20<br>g ion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some w<br>test tube. The red solid is<br>b) HgI <sub>2</sub><br>electronic configurations<br>b) $(n - 1)d^5$ , $ns^1$<br>of Mn in the product of al<br>b) 3<br>ized mainly to:                                                                                        | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>riolet coloured fumes a<br>c) HgO<br>of atoms, the highest of<br>c) $(n - 1)d^3, ns^2$<br>kaline oxidative fusion<br>c) 4    | d) 80<br>d) $Er^{3+}$<br>If is added to water. Heating the red<br>nd droplets of a metal appear on<br>d) Pb <sub>3</sub> O <sub>4</sub><br>xidation state is achieved by which<br>d) $(n - 1)d^5$ , $ns^2$<br>of MnO <sub>2</sub> is<br>d) 6  |
| <ol> <li>79.</li> <li>80.</li> <li>81.</li> <li>82.</li> <li>83.</li> <li>84.</li> </ol>              | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) Nd <sup>3+</sup><br>A red solid is insoluble<br>solid in a test tube rest<br>the cooler parts of the<br>a) $(NH_4)_2Cr_2O_7$<br>Of the following outer<br>one of them?<br>a) $(n -)d^8, ns^2$<br>The oxidation number<br>a) 2<br>Iron sheets are galvan<br>a) Harden the surface                                                                                                                                                                                                                                          | but times of $O_2$ :<br>b) 20<br>gion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some v<br>test tube. The red solid is<br>b) HgI <sub>2</sub><br>electronic configurations<br>b) $(n - 1)d^5$ , $ns^1$<br>of Mn in the product of al<br>b) 3<br>ized mainly to:                                                                                         | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>violet coloured fumes a<br>c) HgO<br>of atoms, the highest o<br>c) $(n - 1)d^3$ , $ns^2$<br>kaline oxidative fusion<br>c) 4  | d) 80<br>d) $Er^{3+}$<br>If is added to water. Heating the red<br>nd droplets of a metal appear on<br>d) Pb <sub>3</sub> O <sub>4</sub><br>xidation state is achieved by which<br>d) $(n - 1)d^5$ , $ns^2$<br>of MnO <sub>2</sub> is<br>d) 6  |
| <ul> <li>79.</li> <li>80.</li> <li>81.</li> <li>82.</li> <li>83.</li> <li>84.</li> </ul>              | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) Nd <sup>3+</sup><br>A red solid is insoluble<br>solid in a test tube rest<br>the cooler parts of the<br>a) (NH <sub>4</sub> ) <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub><br>Of the following outer<br>one of them?<br>a) $(n -)d^8, ns^2$<br>The oxidation number<br>a) 2<br>Iron sheets are galvan<br>a) Harden the surface<br>b) Increase lustre                                                                                                                                                                       | but times of $O_2$ :<br>b) 20<br>g ion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some w<br>test tube. The red solid is<br>b) HgI <sub>2</sub><br>electronic configurations<br>b) $(n - 1)d^5, ns^1$<br>of Mn in the product of al<br>b) 3<br>ized mainly to:                                                                                           | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>riolet coloured fumes a<br>c) HgO<br>of atoms, the highest of<br>c) $(n - 1)d^3, ns^2$<br>kaline oxidative fusion<br>c) 4    | d) 80<br>d) $Er^{3+}$<br>If is added to water. Heating the red<br>nd droplets of a metal appear on<br>d) Pb <sub>3</sub> O <sub>4</sub><br>xidation state is achieved by which<br>d) $(n - 1)d^5$ , $ns^2$<br>of MnO <sub>2</sub> is<br>d) 6  |
| <ul> <li>79.</li> <li>80.</li> <li>81.</li> <li>82.</li> <li>83.</li> <li>84.</li> </ul>              | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) Nd <sup>3+</sup><br>A red solid is insoluble<br>solid in a test tube rest<br>the cooler parts of the<br>a) $(NH_4)_2Cr_2O_7$<br>Of the following outer<br>one of them?<br>a) $(n -)d^8, ns^2$<br>The oxidation number<br>a) 2<br>Iron sheets are galvan<br>a) Harden the surface<br>b) Increase lustre<br>c) Prevent action of w                                                                                                                                                                                          | put copper<br>but times of $O_2$ :<br>b) 20<br>gion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some v<br>test tube. The red solid is<br>b) HgI <sub>2</sub><br>electronic configurations<br>b) $(n - 1)d^5$ , $ns^1$<br>of Mn in the product of al<br>b) 3<br>ized mainly to:                                                                           | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>violet coloured fumes a<br>c) HgO<br>of atoms, the highest o<br>c) $(n - 1)d^3$ , $ns^2$<br>kaline oxidative fusion<br>c) 4  | d) 80<br>d) $Er^{3+}$<br>If is added to water. Heating the red<br>nd droplets of a metal appear on<br>d) Pb <sub>3</sub> O <sub>4</sub><br>xidation state is achieved by which<br>d) $(n - 1)d^5$ , $ns^2$<br>of MnO <sub>2</sub> is<br>d) 6  |
| <ul> <li>79.</li> <li>80.</li> <li>81.</li> <li>82.</li> <li>83.</li> <li>84.</li> </ul>              | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) Nd <sup>3+</sup><br>A red solid is insoluble<br>solid in a test tube rest<br>the cooler parts of the<br>a) $(NH_4)_2Cr_2O_7$<br>Of the following outer<br>one of them?<br>a) $(n -)d^8, ns^2$<br>The oxidation number<br>a) 2<br>Iron sheets are galvan<br>a) Harden the surface<br>b) Increase lustre<br>c) Prevent action of w<br>d) Prevent action of ox                                                                                                                                                               | put cooppend<br>put times of $O_2$ :<br>b) 20<br>gion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some w<br>test tube. The red solid is<br>b) HgI <sub>2</sub><br>electronic configurations<br>b) $(n - 1)d^5, ns^1$<br>of Mn in the product of al<br>b) 3<br>ized mainly to:<br>ater<br>sygen and water                                                 | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>violet coloured fumes a<br>c) HgO<br>of atoms, the highest o<br>c) $(n - 1)d^3$ , $ns^2$<br>kaline oxidative fusion<br>c) 4  | d) 80<br>d) $Er^{3+}$<br>If is added to water. Heating the red<br>nd droplets of a metal appear on<br>d) Pb <sub>3</sub> O <sub>4</sub><br>xidation state is achieved by which<br>d) $(n - 1)d^5$ , $ns^2$<br>of MnO <sub>2</sub> is<br>d) 6  |
| <ol> <li>79.</li> <li>80.</li> <li>81.</li> <li>82.</li> <li>83.</li> <li>84.</li> <li>85.</li> </ol> | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) Nd <sup>3+</sup><br>A red solid is insoluble<br>solid in a test tube rest<br>the cooler parts of the<br>a) (NH <sub>4</sub> ) <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub><br>Of the following outer<br>one of them?<br>a) $(n -)d^8, ns^2$<br>The oxidation number<br>a) 2<br>Iron sheets are galvan<br>a) Harden the surface<br>b) Increase lustre<br>c) Prevent action of w<br>d) Prevent action of ox                                                                                                                  | but times of $O_2$ :<br>b) 20<br>gion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some v<br>test tube. The red solid is<br>b) HgI <sub>2</sub><br>electronic configurations<br>b) $(n - 1)d^5$ , $ns^1$<br>of Mn in the product of al<br>b) 3<br>ized mainly to:<br>ater<br>sygen and water<br>sed:                                                      | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>violet coloured fumes a<br>c) HgO<br>of atoms, the highest o<br>c) $(n - 1)d^3$ , $ns^2$<br>kaline oxidative fusion<br>c) 4  | d) 80<br>d) $Er^{3+}$<br>If is added to water. Heating the red<br>nd droplets of a metal appear on<br>d) Pb <sub>3</sub> O <sub>4</sub><br>xidation state is achieved by which<br>d) $(n - 1)d^5$ , $ns^2$<br>of MnO <sub>2</sub> is<br>d) 6  |
| <ol> <li>79.</li> <li>80.</li> <li>81.</li> <li>82.</li> <li>83.</li> <li>84.</li> <li>85.</li> </ol> | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) Nd <sup>3+</sup><br>A red solid is insoluble<br>solid in a test tube rest<br>the cooler parts of the<br>a) $(NH_4)_2Cr_2O_7$<br>Of the following outer<br>one of them?<br>a) $(n -)d^8, ns^2$<br>The oxidation number<br>a) 2<br>Iron sheets are galvan<br>a) Harden the surface<br>b) Increase lustre<br>c) Prevent action of w<br>d) Prevent action of w<br>a) In taps and water co                                                                                                                                     | pure copper<br>put times of $O_2$ :<br>b) 20<br>gion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some w<br>test tube. The red solid is<br>b) HgI <sub>2</sub><br>electronic configurations<br>b) $(n - 1)d^5, ns^1$<br>of Mn in the product of al<br>b) 3<br>ized mainly to:<br>ater<br>sygen and water<br>sed:<br>onnections                            | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>riolet coloured fumes a<br>c) HgO<br>of atoms, the highest o<br>c) $(n - 1)d^3$ , $ns^2$<br>kaline oxidative fusion<br>c) 4  | d) 80<br>d) $Er^{3+}$<br>If is added to water. Heating the red<br>and droplets of a metal appear on<br>d) Pb <sub>3</sub> O <sub>4</sub><br>xidation state is achieved by which<br>d) $(n - 1)d^5$ , $ns^2$<br>of MnO <sub>2</sub> is<br>d) 6 |
| <ol> <li>79.</li> <li>80.</li> <li>81.</li> <li>82.</li> <li>83.</li> <li>84.</li> <li>85.</li> </ol> | Molten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) Nd <sup>3+</sup><br>A red solid is insoluble<br>solid in a test tube rest<br>the cooler parts of the<br>a) (NH <sub>4</sub> ) <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub><br>Of the following outer<br>one of them?<br>a) $(n -)d^8, ns^2$<br>The oxidation number<br>a) 2<br>Iron sheets are galvan<br>a) Harden the surface<br>b) Increase lustre<br>c) Prevent action of w<br>d) Prevent action of ox<br>Copper metal is not us<br>a) In taps and water co<br>b) As an alloy in high s                                 | pure copper<br>put times of $O_2$ :<br>b) 20<br>gion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some v<br>test tube. The red solid is<br>b) HgI <sub>2</sub><br>electronic configurations<br>b) $(n - 1)d^5$ , $ns^1$<br>of Mn in the product of al<br>b) 3<br>ized mainly to:<br>ater<br>sygen and water<br>sed:<br>onnections<br>speed drills         | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>violet coloured fumes a<br>c) HgO<br>of atoms, the highest of<br>c) $(n - 1)d^3$ , $ns^2$<br>kaline oxidative fusion<br>c) 4 | d) 80<br>d) $Er^{3+}$<br>If is added to water. Heating the red<br>and droplets of a metal appear on<br>d) Pb <sub>3</sub> O <sub>4</sub><br>xidation state is achieved by which<br>d) $(n - 1)d^5$ , $ns^2$<br>of MnO <sub>2</sub> is<br>d) 6 |
| <ol> <li>79.</li> <li>80.</li> <li>81.</li> <li>82.</li> <li>83.</li> <li>84.</li> <li>85.</li> </ol> | Molten Ag absorbs above<br>a) 10<br>Which of the following<br>a) Nd <sup>3+</sup><br>A red solid is insoluble<br>solid in a test tube rest<br>the cooler parts of the<br>a) $(NH_4)_2Cr_2O_7$<br>Of the following outer<br>one of them?<br>a) $(n -)d^8, ns^2$<br>The oxidation number<br>a) 2<br>Iron sheets are galvan<br>a) Harden the surface<br>b) Increase lustre<br>c) Prevent action of w<br>d) Prevent action of w<br>d) Prevent action of w<br>d) Prevent action of w<br>d) As an alloy in high s<br>c) In electric motor co                                                   | pure copper<br>put times of $O_2$ :<br>b) 20<br>gion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some w<br>test tube. The red solid is<br>b) HgI <sub>2</sub><br>electronic configurations<br>b) $(n - 1)d^5$ , $ns^1$<br>of Mn in the product of al<br>b) 3<br>ized mainly to:<br>ater<br>sygen and water<br>red:<br>onnections<br>speed drills<br>ils  | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>violet coloured fumes a<br>c) HgO<br>of atoms, the highest o<br>c) $(n - 1)d^3$ , $ns^2$<br>kaline oxidative fusion<br>c) 4  | d) 80<br>d) $Er^{3+}$<br>If is added to water. Heating the red<br>and droplets of a metal appear on<br>d) Pb <sub>3</sub> O <sub>4</sub><br>xidation state is achieved by which<br>d) $(n - 1)d^5$ , $ns^2$<br>of MnO <sub>2</sub> is<br>d) 6 |
| <ul> <li>79.</li> <li>80.</li> <li>81.</li> <li>82.</li> <li>83.</li> <li>84.</li> <li>85.</li> </ul> | Nolten Ag absorbs abo<br>a) 10<br>Which of the following<br>a) Nd <sup>3+</sup><br>A red solid is insoluble<br>solid in a test tube rest<br>the cooler parts of the<br>a) $(NH_4)_2Cr_2O_7$<br>Of the following outer<br>one of them?<br>a) $(n -)d^8, ns^2$<br>The oxidation number<br>a) 2<br>Iron sheets are galvan<br>a) Harden the surface<br>b) Increase lustre<br>c) Prevent action of w<br>d) Prevent action of w<br>d) Prevent action of ox<br>Copper metal is not us<br>a) In taps and water co<br>b) As an alloy in high s<br>c) In electric motor co<br>d) In brass utensils | pure copper<br>but times of $O_2$ :<br>b) 20<br>gion is diamagnetic?<br>b) La <sup>3+</sup><br>e in water. However, it bec<br>ults in liberation of some v<br>test tube. The red solid is<br>b) HgI <sub>2</sub><br>electronic configurations<br>b) $(n - 1)d^5$ , $ns^1$<br>of Mn in the product of al<br>b) 3<br>ized mainly to:<br>ater<br>cygen and water<br>red:<br>connections<br>speed drills<br>ils | c) 40<br>c) Tb <sup>3+</sup><br>omes soluble if some K<br>violet coloured fumes a<br>c) HgO<br>of atoms, the highest of<br>c) $(n - 1)d^3$ , $ns^2$<br>kaline oxidative fusion<br>c) 4 | d) 80<br>d) $Er^{3+}$<br>If is added to water. Heating the red<br>and droplets of a metal appear on<br>d) Pb <sub>3</sub> O <sub>4</sub><br>xidation state is achieved by which<br>d) $(n - 1)d^5$ , $ns^2$<br>of MnO <sub>2</sub> is<br>d) 6 |

|       | $4M + 8CN^- + 2H_2O +$               | $0_2 \rightarrow 4[M(CN)_2]^- + 40$       | ОН-                             |                                 |
|-------|--------------------------------------|-------------------------------------------|---------------------------------|---------------------------------|
|       | Identify the metal M                 |                                           |                                 |                                 |
| ~-    | a) Copper                            | b) Iron                                   | c) Silver                       | d) Zinc                         |
| 87.   | Vapour phase refining of             | nickel is carried out by usir             | ng                              | 1) 60                           |
|       | a) $I_2$                             | b) Cl <sub>2</sub>                        | c) HCI                          | d) CO                           |
| 88.   | Lanthanide contraction is            | s due to increase in                      |                                 |                                 |
|       | a) Shielding by 4 <i>f</i> -electro  | ons                                       | b) Atomic number                |                                 |
|       | c) Effective nuclear charg           | ge                                        | d) Size of 4 <i>f</i> -orbitals |                                 |
| 89.   | Which of the following io            | ns is coloured?                           |                                 |                                 |
|       | a) Cu+                               | b) Cu <sup>2+</sup>                       | c) V <sup>5+</sup>              | d) Ti <sup>4+</sup>             |
| 90.   | Pig iron:                            |                                           |                                 |                                 |
|       | a) Contains carbon and o             | ther impurities                           |                                 |                                 |
|       | b) Is pure form of iron              |                                           |                                 |                                 |
|       | c) Is same as wrought iro            | n                                         |                                 |                                 |
|       | d) Is same as steel                  |                                           |                                 |                                 |
| 91.   | In aqueous solution Eu <sup>2+</sup> | ion acts as                               |                                 | X                               |
|       | a) An oxidizing agent                | b) A reducing agent                       | c) An acid                      | d) All of these                 |
| 92.   | Transition elements form             | or complexes because of:                  |                                 |                                 |
|       | a) Small cation size                 | b) Vacant <i>d</i> -orbitals              | c) Large ionic charge           | d) All are correct              |
| 93.   | Philosopher's wool on he             | ating with BaO at 1100° C p               | produce                         |                                 |
|       | a) Ba + ZnCl <sub>2</sub>            | b) BaCdO <sub>2</sub>                     | c) BaZnO <sub>2</sub>           | d) BaO <sub>2</sub> + Zn        |
| 94.   | Which of the following tr            | ivalent ion has the largest a             | tomic radii in the lanthanio    | le series?                      |
|       | a) Ce                                | b) Pm                                     | c) La                           | d) Lu                           |
| 95.   | Ferrous ion changes to <i>X</i>      | ion, on reacting with acidifi             | ied hydrogen peroxide. The      | e number of <i>d</i> -electrons |
|       | present in X and its magn            | etic moment (in BM) are, r                | espectively                     |                                 |
|       | a) 6 and 6.93                        | b) 5 and 5.92                             | c) 5 and 4.9                    | d) 4 and 5.92                   |
| 96.   | Which of the following is            | amphoteric oxide?                         |                                 |                                 |
| ~-    | a) $SO_2$                            | b) $B_2O_3$                               | c) ZnO                          | d) Na <sub>2</sub> O            |
| 97.   | The valence shell electron           | nic configuration of Cr <sup>2+</sup> ion | n is                            |                                 |
|       | a) $4s^0 3d^4$                       | b) $3p^{6}4s^{2}$                         | c) $4s^2 3d^2$                  | d) $4s^2 3d^0$                  |
| 98.   | Which of the following or            | e is an ore of copper?                    |                                 |                                 |
|       | a) Argentite                         | b) Haematite                              | c) Malachite                    | d) Calamine                     |
| 99.   | Chinese white is:                    |                                           |                                 |                                 |
|       | a) ZnS                               | b) ZnCO <sub>3</sub>                      | c) $ZnS + BaSO_4$               | d) ZnO                          |
| 100   | . Cerium ( $Z = 58$ ) is an im       | portant member of the lant                | thanides. Which of the follo    | wing statement about            |
|       | cerium is incorrect?                 |                                           | 1                               |                                 |
|       | a) The common oxidation              | 1  states of cerium are  +3  are          | nd +4                           |                                 |
|       | b) Cerium (IV) acts as an            | oxidizing agent                           | <b>.</b> .                      |                                 |
|       | c) The $+4$ oxidation state          | e of cerium is not known in               | solutions                       |                                 |
|       | d) The $+3$ oxidation state          | e of cerium is more stable th             | han the $+4$ oxidation state    |                                 |
| 101   | . If orange-red colour is ab         | sorbed from white light, th               | e observed colour is:           |                                 |
|       | a) Yellow                            | b) Orange                                 | c) Blue                         | d) Violet                       |
| 102   | Which forms interstitial o           | compounds?                                |                                 |                                 |
| 4.0.0 | a) Fe                                | b) Ni                                     | c) Co                           | d) All of these                 |
| 103   | . Steel that is resistant to a       | CIOS IS:                                  |                                 | 1) NY-1 -1 -1                   |
| 404   | a) Carbon steel                      | b) Molybdenum steel                       | cj Stainless steel              | aj Nickel alloy steel           |
| 104   | . Hardness of transition el          | ements is due to:                         |                                 |                                 |
|       | a) Large atomic size                 |                                           |                                 |                                 |
|       | b) Metallic bonding                  |                                           |                                 |                                 |
|       | cJ Covalent bonds                    |                                           |                                 |                                 |

٠

| d) High ionization energy             | 7                               |                                                            |                                                   |
|---------------------------------------|---------------------------------|------------------------------------------------------------|---------------------------------------------------|
| 105. Which does not possess a         | allotropic forms?               |                                                            |                                                   |
| a) C                                  | b) Sn                           | c) Fe                                                      | d) P                                              |
| 106. When hydrogen peroxide           | e is added to acidified potas   | sium dichromate, a blue co                                 | lour is produced due to                           |
| formation of                          |                                 |                                                            |                                                   |
| a) CrO <sub>3</sub>                   | b) $Cr_2O_3$                    | c) CrO <sub>5</sub>                                        | d) $CrO_4^{2-}$                                   |
| 107. In the extraction of Ag, Ag      | $g_2$ S is dissolved in:        |                                                            |                                                   |
| a) HCl                                | b) HNO <sub>3</sub>             | c) KCN                                                     | d) $H_2SO_4$                                      |
| 108. The meniscus of mercury          | in a glass tube is:             | 2                                                          |                                                   |
| a) Convex upwards                     | b) Concave                      | c) Plane                                                   | d) Convex inwards                                 |
| 109. The iron obtained from the       | he blast furnace is called:     | ,                                                          |                                                   |
| a) Pig iron                           | b) Cast iron                    | c) Wrought iron                                            | d) Steel                                          |
| 110. Which one of the following       | ng has strongest metallic bo    | onding?                                                    |                                                   |
| a) Fe                                 | b) Sc                           | c) V                                                       | d) Cr                                             |
| 111. The allov which contains         | nickel is:                      |                                                            |                                                   |
| a) Brass                              | b) Bell metal                   | c) Bronze                                                  | d) German silver                                  |
| 112. A hard and resistant allo        | v generally used in tip of nil  | b of pen is:                                               |                                                   |
| a) Os. Ir                             | b) Pt. Cr                       | c) V. Fe                                                   | d) Fe. Cr                                         |
| 113. The extraction of which of       | of the following metals invo    | lves bessemerization?                                      |                                                   |
| a) Fe                                 | h) Ag                           | c) Al                                                      | d) Cu                                             |
| 114. CuCl absorbs                     | ~)8                             |                                                            |                                                   |
|                                       | h) SO <sub>2</sub>              | c) H <sub>2</sub> SO <sub>4</sub>                          | d) CO                                             |
| $115. CrO_2$ dissolves in aqueou      | is NaOH to give                 | oj 112004                                                  | .,                                                |
| a) CrO <sup>2-</sup>                  | b) $Cr(OH)_{\overline{a}}$      | c) $CrO_{2}^{2-}$                                          | d) $Cr(OH)_{a}$                                   |
| 116 One of the following met          | als is obtained by leaching i   | its ore with dilute cyanide s                              | olution Identify it                               |
| a) Titanium                           | h) Vanadium                     | c) Silver                                                  | d) Zinc                                           |
| 117 German silver alloy cont          | ains                            | cj blivel                                                  |                                                   |
| a) Zinc silver and conner             | r                               | h) Nickel silver and conn                                  | er                                                |
| c) Germanium silver and               | l conner                        | d) Zinc nickel and conner                                  |                                                   |
| 118 Conner metal of high nur          | ity is obtained by              | aj Zine, meker and copper                                  |                                                   |
| a) Carbon reduction                   | h) Hydrogen reduction           | c) Flectrolytic method                                     | d) Thermite process                               |
| 119 The solubility of silver br       | comide in hypo solution is d    | lue to the formation of .                                  | aj mermice process                                |
| a) $A\sigma_2SO_2$                    | b) $Ag_{a}S_{a}O_{a}$           | c) $[Ag(S_2O_2)]$                                          | d) $[A\sigma(S_{\alpha}O_{\alpha})_{\alpha}]^{3}$ |
| 120 Which of the following is         | a ferrous allov?                | c) [18(0203)]                                              |                                                   |
| a) Invar                              | h) Solder                       | c) Magnalium                                               | d) Type metal                                     |
| 121 Consider the following st         | atements                        | c) Magnanum                                                | aj rype metar                                     |
| $(I)La(OH)_{2}$ is the least ba       | asic among hydroxides of la     | inthanides                                                 |                                                   |
| (II) $7r^{4+}$ and $Hf^{4+}$ posse    | iss almost the same ionic ra    | dii                                                        |                                                   |
| (III) $Ce^{4+}$ can act as an or      | xidizing agent                  |                                                            |                                                   |
| Which of the above is /ar.            | e true?                         |                                                            |                                                   |
| a) (I) and (III)                      | b) (II) and (III)               | c) (II) only                                               | d) (I) only                                       |
| 122 Iodide of Millon's base is        |                                 | c) (II) only                                               | u) (I) only                                       |
| 122. Tourde of Millon's base is       | • NH2                           |                                                            |                                                   |
| a) K <sub>2</sub> [Hgl <sub>4</sub> ] | b) Hg $\langle O_{Hg} - Hg - I$ | c) [Hg <sub>2</sub> 0.NH <sub>2</sub> 0H].H <sub>2</sub> 0 | d) $Hg(NH_2)I + Hg$                               |
| 123. The alloy of steel that is ı     | used for making automobile      | e parts and utensils is:                                   |                                                   |
| a) Stainless steel                    | b) Nickel steel                 | c) Tungsten steel                                          | d) Chromium steel                                 |
| 124. Which is used as substitu        | ite for platinum in jewellery   | y?                                                         |                                                   |
| a) Rolled gold                        | b) White gold                   | c) Purple of Cassius                                       | d) Faraday's gold                                 |
| 125. The highest oxidation sta        | te exhibited by transition n    | netals is                                                  |                                                   |
| a) +7                                 | b) +8                           | c) +6                                                      | d) +5                                             |
|                                       |                                 |                                                            |                                                   |

| a) $Cl_2O + HgCl$ b) $Cl_2O + HgCl_2$ c) $ClO + HgCl d)$ d) $ClO + HgCl_2$<br>127. The following two reactions HNO <sub>3</sub> with Zn are given as (equations are not balanced) Zn + conc. HNO <sub>3</sub> $\rightarrow$<br>Zn(NO <sub>3</sub> ) <sub>2</sub> + $[Z] + H_2O(A)$<br>Zn + dil. HNO <sub>3</sub> $\rightarrow$ Zn(NO <sub>3</sub> ) <sub>2</sub> + $[Z] + H_2O(B)$<br>In reactions A and B, the compounds X and Y respectively, are<br>a) NO <sub>2</sub> and NO b) NO <sub>2</sub> and NO <sub>2</sub> c) NO and NO <sub>2</sub> d) NO <sub>2</sub> and NH <sub>4</sub> NO <sub>3</sub><br>128. Which of the following electronic configurations belong to transition elements?<br>a) KL 3s <sup>2</sup> p <sup>6</sup> d <sup>10</sup> , 4s <sup>2</sup> d <sup>3</sup><br>c) KL 3s <sup>2</sup> p <sup>6</sup> d <sup>10</sup> , 4s <sup>2</sup> d <sup>3</sup><br>c) KL 3s <sup>2</sup> p <sup>6</sup> d <sup>10</sup> , 4s <sup>2</sup> d <sup>3</sup><br>c) KL 3s <sup>2</sup> p <sup>6</sup> d <sup>10</sup> , 4s <sup>2</sup> d <sup>3</sup><br>c) KL 3s <sup>2</sup> p <sup>6</sup> d <sup>10</sup> , 4s <sup>2</sup> d <sup>3</sup><br>c) KL 3s <sup>2</sup> p <sup>6</sup> d <sup>10</sup> , 4s <sup>2</sup> d <sup>3</sup><br>c) KL 3s <sup>2</sup> p <sup>6</sup> d <sup>10</sup> , 4s <sup>2</sup> d <sup>3</sup><br>c) KL 3s <sup>2</sup> p <sup>6</sup> d <sup>10</sup> , 4s <sup>2</sup> d <sup>3</sup><br>c) KL 3s <sup>2</sup> p <sup>6</sup> d <sup>10</sup> , 4s <sup>2</sup> d <sup>3</sup><br>c) KL 3s <sup>2</sup> p <sup>6</sup> d <sup>10</sup> , 4s <sup>2</sup> d <sup>3</sup><br>c) The magnetic moment of a transition metal ion is $\sqrt{15}$ BM. Therefore, the number of unpaired electrons<br>present in it, is<br>a) 3 b) 4 c) 1 d) 2<br>130. Which is not true in case of transition metals?<br>a) They are malleable and ductile<br>b) They have high melting and boiling points<br>c) They crystallise with body centred cubic and hexagonal close packed structure only<br>d) They show variable oxidation states although not always<br>131. Formation of coloured solution is possible when metal ion in the compound contains<br>a) Paired electrons b) Lone pair of electrons<br>c) Unpaired electrons b) Sc <sup>4</sup> c) 1 <sup>14+</sup> d) Ti <sup>3+</sup><br>132. Carbon in wrought iron is present as<br>a) Silicon carbide () Partly iron carbide and partly as graphite<br>133. An element is in M <sup>3+</sup> form. Its electronic configuration is $ A ^{2}d^{1}$ , the ion is<br>a) Ca <sup>2</sup> b) Sc <sup>4</sup> c) 1 <sup>14+</sup> d) Ti <sup>3+</sup><br>134. Each transition series contains:<br>a) 12 elements b) 10 elements c) 14 elements d) 8 elements<br>135. Lanthanide contraction is caused due to<br>a) The appreciable shielding on outer electrons by 5d-electrons from the nuclear charge.<br>b) The appreciable shielding on outer electrons by 5d-electrons from the nuclear charge.<br>b) The appreciable shielding o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $126. \text{ Cl}_2 + \text{HgO} \rightarrow ?$                                                                                                |                                                     |                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|
| 127. The following two reactions HNO <sub>3</sub> with Zn are given as (equations are not balanced) Zn + conc. HNO <sub>3</sub> → Zn(NO <sub>3</sub> ) <sub>2</sub> + [Z] + H <sub>2</sub> O(A)<br>Zn + dil . HNO <sub>3</sub> → Zn(NO <sub>3</sub> ) <sub>2</sub> + [Z] + H <sub>2</sub> O(B)<br>In reactions A and B, the compounds X and Y respectively, are<br>a) NO <sub>2</sub> and NO b) NO <sub>3</sub> and NO <sub>2</sub> c) NO and NO <sub>2</sub> d) NO <sub>2</sub> and NH <sub>4</sub> NO <sub>3</sub><br>128. Which of the following electronic configurations belong to transition elements?<br>a) KL 3s <sup>2</sup> p <sup>6</sup> d <sup>4</sup> , 4s <sup>2</sup><br>b) KL 3s <sup>2</sup> p <sup>6</sup> d <sup>4</sup> , 4s <sup>2</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>5</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) KLM 4s <sup>2</sup> p <sup>6</sup> d <sup>1</sup> , 4s <sup>2</sup> 4p <sup>1</sup><br>d) Lot qlut delectrons<br>e) They are malleable and ductile<br>b) They have high melting and boiling points<br>c) They show variable oxidation states although not always<br>131. Formation of coloured solution is possible when metal ion in the compound contains<br>a) Paired electrons<br>b) Ione of these<br>132. Carbon in wrought iron is present as<br>a) Silicon carbide<br>b) Ion carbide<br>c) Graphite<br>d) Partly iron carbide and partly as graphite<br>133. An element is in M <sup>3+</sup> form. Its electronic configuration is [Ar]3d <sup>1</sup> , the ion is<br>a) Ca <sup>2</sup> b) Sc <sup>4</sup> c) Th <sup>4+</sup> d) Ti <sup>3+</sup><br>134. Each transition series contains:<br>a) 12 elements<br>b) 10 elements<br>c) The appreciable shielding on outer electrons by 4f-electrons from the nuclear charge.<br>b) The appreciable shielding on outer electro | a) $Cl_2O + HgCl$ b) $Cl_2O + HgCl_2$                                                                                                         | c) ClO + HgCl                                       | d) ClO + HgCl <sub>2</sub>                             |
| $ \begin{array}{l} 2n(NO_3)_2 + \boxed{X} + H_2O(A) \\ Zn + dl. HNO_3 \rightarrow Zn(NO_3)_2 + \boxed{Y} + H_2O(B) \\ In reactions A and B, the compounds X and Y respectively, are \\ a) NO_2 and NO b) NO_2 and NO_2 c) NO and NO_2 d) NO_2 and NH_4NO_3 \\ \hline \\ 128. Which of the following electronic configurations belong to transition elements? \\ a) KL 3s^2p^6 d^{10}, 4s^2 p^3 \\ c) KL 3s^2p^6 d^{10}, 5s^2 5p^4 \\ \hline \\ 129. The magnetic moment of a transition metal ion is \sqrt{15} BM. Therefore, the number of unpaired electrons present in it, isa) They are maleable and ductileb) They have high melting and boiling pointsc) They are maleable and ductileb) They have high melting and boiling pointsc) They crystallise with body centred cubic and hexagonal close packed structure onlyd) They show variable oxidation states although not always131. Formation of coloured solution is possible when metal ion in the compound containsa) Paired electrons b) Lone pair of electronsc) Unpaired electrons d) None of these132. Carbon in wrought iron is present asa) Silicon carbide b) Sc + c) T T4+ d) TI3+134. Each transition series contains:a) 12 elements b) 10 elements c) 14 elements d) 8 elements135. Lanthanide contraction is caused due toa) The appreciable shielding on outer electrons by 4f-electrons from the nuclear charge.b) The appreciable shielding on outer electrons by 4f-electrons from the nuclear charge.b) The appreciable shielding on outer electrons by 4f-electrons from the nuclear charge.c) The same effective nuclear charge from C to Lu.d) The impercent shielding on outer electrons by 4f-electrons from the nuclear charge.136. The propreciable shielding on outer electrons by 4f-electrons from the nuclear charge.c) The same effective nuclear charge from C to Lu.d) Both belong to d-block b) B) Both belong to same group of Periodic Tablec) Both have similar radii d) Both have same number of electronsc) Both have similar radii d) Both have same number of electronsc) Both have similar radii $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 127. The following two reactions $HNO_3$ with Zn are give                                                                                     | en as (equations are not bal                        | anced) Zn + conc. HNO <sub>3</sub> $\rightarrow$       |
| $ \begin{array}{c} \operatorname{Zn} + \operatorname{di} \cdot \operatorname{HNO_3} \to \operatorname{Zn}(\operatorname{NO_3})_2 + [\overline{Y}] + \operatorname{H_2O}(B) \\ \operatorname{In \ reactions A \ and B, \ the \ compounds X \ and Y \ respectively, \ are \\ a) \operatorname{NO_2 \ and \ NO} \ b) \operatorname{NO_2 \ and \ NO_2} \ c) \operatorname{NO \ and \ NO_2} \ d) \operatorname{NO_2 \ and \ NH_4 \ NO_3} \\ \end{array}$ $ \begin{array}{c} \operatorname{Lex} \operatorname{Which} of \ the \ following \ electronic \ configurations \ belong \ to \ transition \ elements? \\ a) \ \operatorname{KL} \ 3s^2 p^6 d^{10}, \ 4s^2 p^3 \\ c) \ \operatorname{KL} \ 3s^2 p^6 d^{10}, \ 4s^2 p^3 \\ c) \ \operatorname{KL} \ 3s^2 p^6 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 p^1 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 \\ d) \ \operatorname{KLM} \ 4s^2 p^5 d^{10}, \ 5s^2 s^2 \\ d) \ \operatorname{KLM} \ 4s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $Zn(NO_3)_2 + X + H_2O(A)$                                                                                                                    |                                                     |                                                        |
| In reactions A and B, the compounds X and Y respectively, are<br>a) NO <sub>2</sub> and NO b) NO <sub>2</sub> and NO <sub>2</sub> c) NO and NO <sub>2</sub> d) NO <sub>2</sub> and NH <sub>4</sub> NO <sub>3</sub><br>128. Which of the following electronic configurations belong to transition elements?<br>a) KL $3s^2p^6d^{10}$ , $4s^2p^3$<br>c) KL $3s^2p^6d^{10}$ , $4s^2p^3$<br>c) KL $3s^2p^6d^{10}$ , $4s^2p^3$<br>c) KL $3s^2p^6d^{10}$ , $5s^25p^3$<br>c) KL $3s^2p^6d^{10}$ , $5s^25p^3$<br>c) KL $3s^2p^6d^{10}$ , $5s^25p^3$<br>c) KL $3s^2p^6d^{10}$ , $5s^25p^3$<br>129. The magnetic moment of a transition metal ion is $\sqrt{15}$ BM. Therefore, the number of unpaired electrons<br>present in it, is<br>a) 3 b) 4 c) 1 d) 2<br>130. Which is not true in case of transition metals?<br>a) They are malleable and ductile<br>b) They have high melting and boiling points<br>c) They crystallise with body centred cubic and hexagonal close packed structure only<br>d) They show variable oxidation states although not always<br>131. Formation of coloured solution is possible when metal ion in the compound contains<br>a) Paired electrons d) None of these<br>132. Carbon in wrought iron is present as<br>a) Silicon carbide b) Ion carbide d) Partly iron carbide and partly as graphite<br>133. An element is in M <sup>3+</sup> form. Its electronic configuration is $[Ar]3d^4$ , the ion is<br>a) $Ca^{2+}$ b) $Sc^+$ c) $Ti^{4+}$ d) $Ti^{3+}$<br>134. Each transition series contains:<br>a) 12 elements b) 10 elements c) 14 elements d) 8 elements<br>135. Lanthanide contraction is caused due to<br>a) The appreciable shielding on outer electrons by $5d$ -electrons from the nuclear charge.<br>b) The appreciable shielding on outer electrons by $5d$ -electrons from the nuclear charge.<br>c) The properties of Zr and Hf are similar because<br>a) Both belong to $d$ -block b) Both belong to same group of Periodic Table<br>c) Both have similar radii d) Both have same number of electrons<br>135. In hitroprusside ion, the iron and NO exist as $Fe^{11}$ and NO <sup>+</sup> rather than $Fe^{11}$ and NO. These forms can be<br>differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\operatorname{Zn} + \operatorname{dil}_{HNO_2} \rightarrow \operatorname{Zn}(\operatorname{NO}_2)_2 + \overline{Y} + \operatorname{H}_2O(B)$ |                                                     |                                                        |
| a) NO <sub>2</sub> and NO b) NO <sub>2</sub> and NO <sub>2</sub> c) NO and NO <sub>2</sub> d) NO <sub>2</sub> and NH <sub>4</sub> NO <sub>3</sub><br>128. Which of the following electronic configurations belong to transition elements?<br>a) KL $3s^2p^6d^{10}$ , $4s^2p^3$<br>c) KL $3s^2p^6d^{10}$ , $4s^2q^3$<br>c) KL $3s^2p^6d^{10}$ , $5s^25p^1$<br>129. The magnetic moment of a transition metal ion is $\sqrt{15}$ BM. Therefore, the number of unpaired electrons present in it, is<br>a) 3 b) 4 c) 1 d) 2<br>130. Which is not true in case of transition metals?<br>a) They are malleable and ductile<br>b) They have high melting and boiling points<br>c) They crystallise with body centred cubic and hexagonal close packed structure only<br>d) They show variable oxidation states although not always<br>131. Formation of coloured solution is possible when metal ion in the compound contains<br>a) Paired electrons b) Lone pair of electrons<br>c) Unpaired electrons d) None of these<br>132. Carbon in wrought iron is present as<br>a) Silicon carbide b) 10 ron carbide<br>c) Graphite d) Partly iron carbide and partly as graphite<br>133. An element is in $M^{3+}$ form. Its electronic configuration is $[Ar]3d^4$ , the ion is<br>a) $Ca^{2+}$ b) $Sc^+$ c) $Ti^{4+}$ d) $Ti^{3+}$<br>134. Each transition series contains:<br>a) 12 elements b) 10 elements c) 14 elements d) 8 elements<br>135. Lanthanide contraction is caused due to<br>a) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>b) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>c) The same effective nuclear charge from Ce to Lu.<br>d) The imperfect shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>136. The properties of Zr and Hf are similar because<br>a) Both belong to as me group of Periodic Table<br>c) Both have similar radii d) Both have same number of electrons<br>137. In nitroprusside ion, the iron and NO exist as Fe <sup>11</sup> and NO. These forms can be differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | In reactions A and B, the compounds X and Y resp                                                                                              | ectivelv. are                                       |                                                        |
| 128. Which of the following electronic configurations belong to transition elements?       a) KL $3s^2p^4d^5, 4s^1$ b) KL $3s^2p^6d^1, 4s^2p^3$ c) KL $3s^2p^6d^{10}, 4s^2p^3$ c) KL $3s^2p^6d^{10}, 4s^2p^3$ c) L $3s^2p^6d^{10}, 4s^2p^3$ d) KL $4s^2p^6d^{10}, 5s^25p^1$ l) KL $4s^2p^6d^{10}, 5s^25p^1$ 129. The magnetic moment of a transition metal ion is $\sqrt{15}$ BM. Therefore, the number of unpaired electrons present in it, is       a) They are malleable and ductile         b) They have high melting and boiling points       c) 1       d) 2         130. Which is not true in case of transition metals?       a) They are malleable and ductile         b) They have high melting and boiling points       c) They crystallise with body centred cubic and hexagonal close packed structure only         d) They show variable oxidation states although not always       131. Formation of coloured solution is possible when metal ion in the compound contains         a) Paired electrons       b) Lone pair of electrons       c) Unpaired electrons         d) None of these       132. Carbon in wrought iron is present as       a) Silicon carbide       b) Iron carbide         c) Graphite       d) Partly iron carbide and partly as graphite       133. An element is in $M^{3+}$ form. Its electronic configuration is $ Ar 3d^1$ , the ion is       a) $Ca^{2+}$ b) Sc^+       c) Ti 4^+       d) Ti 3^+         134. Each transition series contains:       a) 12 el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a) NO <sub>2</sub> and NO b) NO <sub>2</sub> and NO <sub>2</sub>                                                                              | c) NO and NO <sub>2</sub>                           | d) NO <sub>2</sub> and NH <sub>4</sub> NO <sub>3</sub> |
| a) KL $3s^2p^6d^5$ , $4s^4$<br>b) KL $3s^2p^6d^{10}$ , $4s^2p^3$<br>c) KL $3s^2p^6d^{10}$ , $4s^2p^3$<br>d) KLM $4s^2p^6d^{10}$ , $5s^25p^1$<br>129. The magnetic moment of a transition metal ion is $\sqrt{15}$ BM. Therefore, the number of unpaired electrons present in it, is<br>a) 3 b) 4 c) 1 d) 2<br>130. Which is not true in case of transition metals?<br>a) They are malleable and ductile<br>b) They are malleable and ductile<br>b) They have high melting and boiling points<br>c) They crystallise with body centred cubic and hexagonal close packed structure only<br>d) They show variable oxidation states although not always<br>131. Formation of coloured solution is possible when metal ion in the compound contains<br>a) Paired electrons b) Lone pair of electrons<br>c) Unpaired electrons d) None of these<br>132. Carbon in wrought iron is present as<br>a) Silicon carbide b) Iron carbide<br>c) Graphite d) Partly iron carbide and partly as graphite<br>133. An element is in $M^{3+}$ form. Its electronic configuration is [Ar] $3d^1$ , the ion is<br>a) $Ca^{2+}$ b) $Sc^+$ c) $Ti^{4+}$ d) $Ti^{3+}$<br>134. Each transition series contains:<br>a) $12$ elements b) 10 elements c) 14 elements d) 8 elements<br>135. Lanthanide contraction is caused due to<br>a) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>b) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>c) The same effective nuclear charge from C to Lu.<br>d) The imperfect shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>136. The properties of Zr and Hf are similar because<br>a) Both belong to asame group of Periodic Table<br>c) Both have similar radii d) Both have same number of electrons<br>137. In nitroprusside ion, the iron and NO exist as Fe <sup>11</sup> and NO <sup>+</sup> rather than Fe <sup>III</sup> and NO. These forms can be differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 128. Which of the following electronic configurations be                                                                                      | elong to transition elements                        | s?                                                     |
| b) KL $3s^2p^6d^{10}$ , $4s^2p^3$<br>c) KL $3s^2p^6d^{10}$ , $4s^2q^1$<br>d) KLM $4s^2p^6d^{10}$ , $5s^25p^1$<br>129. The magnetic moment of a transition metal ion is $\sqrt{15}$ BM. Therefore, the number of unpaired electrons<br>present in it, is<br>a) 3 b) 4 c) 1 d) 2<br>130. Which is not true in case of transition metals?<br>a) They are malleable and ductile<br>b) They have high melting and boiling points<br>c) They crystallise with body centred cubic and hexagonal close packed structure only<br>d) They show variable oxidation states although not always<br>131. Formation of coloured solution is possible when metal ion in the compound contains<br>a) Paired electrons b) Lone pair of electrons<br>c) Unpaired electrons d) None of these<br>132. Carbon in wrought iron is present as<br>a) Silicon carbide b) Iron carbide<br>c) Graphite d) Partly iron carbide and partly as graphite<br>133. An element is in $M^{3+}$ form. Its electronic configuration is $(Ar]3d^1$ , the ion is<br>a) $Ca^{2+}$ b) $Sc^+$ c) $Ti^{4+}$ d) $Ti^{3+}$<br>134. Each transition series contains:<br>a) $12$ elements b) $10$ elements c) $14$ elements d) 8 elements<br>135. Lanthanide contraction is caused due to<br>a) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>b) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>c) The same effective nuclear charge from Ce to Lu.<br>d) The imperfect shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>136. The properties of $2r$ and H f are similar because<br>a) Both belong to $d$ -block b) Both helong to same group of Periodic Table<br>c) Both have same number of electrons<br>137. In nitroprusside ion, the iron and NO exist as Fe <sup>11</sup> and NO <sup>+</sup> rather than Fe <sup>III</sup> and NO. These forms can be differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a) KL $3s^2p^6d^5$ , $4s^1$                                                                                                                   |                                                     |                                                        |
| c) KL $3s^2p^6d^{10}$ , $4s^24p^1$<br>d) KLM $4s^2p^6d^{10}$ , $5s^25p^1$<br>129. The magnetic moment of a transition metal ion is $\sqrt{15}$ BM. Therefore, the number of unpaired electrons present in it, is<br>a) 3 b) 4 c) 1 d) 2<br>130. Which is not true in case of transition metals?<br>a) They are malleable and ductile<br>b) They have high melting and boiling points<br>c) They crystallise with body centred cubic and hexagonal close packed structure only<br>d) They show variable oxidation states although not always<br>131. Formation of coloured solution is possible when metal ion in the compound contains<br>a) Paired electrons b) Lone pair of electrons<br>c) Unpaired electrons d) None of these<br>132. Carbon in wrought iron is present as<br>a) Silicon carbide b) fron carbide<br>c) Graphite d) Cart configuration is [Ar]3d <sup>1</sup> , the ion is<br>a) Ca <sup>2+</sup> b) Sc <sup>+</sup> c) Ti <sup>4+</sup> d) Ti <sup>3+</sup><br>134. Each transition series contains:<br>a) 12 elements b) 10 elements c) 14 elements d) 8 elements<br>135. Lanthanide contraction is caused due to<br>a) The appreciable shielding on outer electrons by 4f-electrons from the nuclear charge.<br>b) The appreciable shielding on outer electrons by 4f-electrons from the nuclear charge.<br>c) The appreciable shielding on outer electrons by 4f-electrons from the nuclear charge.<br>a) Both belong to <i>d</i> -block b) Both have same number of electrons<br>137. In nitroprusside ion, the iron and NO exist as Fe <sup>11</sup> and NO <sup>+</sup> rather than Fe <sup>III</sup> and NO. These forms can be differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b) KL $3s^2p^6d^{10}$ , $4s^2p^3$                                                                                                             |                                                     | $\langle \nabla \rangle$                               |
| d) KLM $4s^2p^6d^{10}$ , $5s^25p^1$<br>129. The magnetic moment of a transition metal ion is $\sqrt{15}$ BM. Therefore, the number of unpaired electrons<br>present in it, is<br>a) 3 b) 4 c) 1 d) 2<br>130. Which is not true in case of transition metals?<br>a) They are malleable and ductile<br>b) They have high melting and boiling points<br>c) They crystallise with body centred cubic and hexagonal close packed structure only<br>d) They show variable oxidation states although not always<br>131. Formation of coloured solution is possible when metal ion in the compound contains<br>a) Paired electrons b) Lone pair of electrons<br>c) Unpaired electrons b) Lone pair of electrons<br>c) Unpaired electrons b) Lone pair of electrons<br>c) Unpaired electrons b) fron carbide<br>c) Graphite b) from. Its electronic configuration is [Ar]3d <sup>1</sup> , the ion is<br>a) $2a^{24}$ b) $5c^{+}$ c) $Ti^{4+}$ d) $Ti^{3+}$<br>134. Each transition series contains:<br>a) 12 elements b) 10 elements c) $14$ elements d) 8 elements<br>135. Lanthanide contraction is caused due to<br>a) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>b) The appreciable shielding on outer electrons by $5d$ -electrons from the nuclear charge.<br>c) The same effective nuclear charge from Ce to Lu.<br>d) The imperfect shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>a) Both belong to $d$ -block b) Both belong to same group of Periodic Table<br>c) Both have similar radii d) Both have same number of electrons<br>137. In nitroprusside ion, the iron and NO exist as $Fe^{11}$ and NO <sup>+</sup> rather than $Fe^{III}$ and NO. These forms can be differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c) KL $3s^2p^6d^{10}$ , $4s^24p^1$                                                                                                            |                                                     |                                                        |
| 129. The magnetic moment of a transition metal ion is $\sqrt{15}$ BM. Therefore, the number of unpaired electrons present in it, is         a) 3       b) 4       c) 1       d) 2         130. Which is not true in case of transition metals?       a) They are malleable and ductile       b) They have high melting and boiling points         c) They crystallise with body centred cubic and hexagonal close packed structure only       d) They show variable oxidation states although not always         131. Formation of coloured solution is possible when metal ion in the compound contains       a) Paired electrons       b) Lone pair of electrons         a) Nupaired electrons       b) Ione of these       d) None of these         132. Carbon in wrought iron is present as       a) Silicon carbide       c) Ti <sup>4+</sup> d) Ti <sup>3+</sup> 133. An element is in $M^{3+}$ form. Its electronic configuration is [Ar]3d <sup>1</sup> , the ion is       a) Ca <sup>2+</sup> b) Sc <sup>+</sup> c) Ti <sup>4+</sup> d) Ti <sup>3+</sup> 134. Each transition series contains:       a) 12 elements       b) 10 elements       c) 14 elements       d) 8 elements         135. Lanthanide contraction is caused due to       a) The appreciable shielding on outer electrons by 4f-electrons from the nuclear charge.       c) The same effective nuclear charge from Ce to Lu.       d) The imperfect shielding on outer electrons by 4f-electrons from the nuclear charge.         136. The properties of Zr and Hf are similar because       a) Both belong to d-block       b) Both h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d) KLM $4s^2p^6d^{10}$ . $5s^25p^1$                                                                                                           |                                                     |                                                        |
| International internation in the norm of the number of a planet electron electron of a planet electron of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 129. The magnetic moment of a transition metal ion is a                                                                                       | $\sqrt{15}$ BM Therefore the num                    | ber of unpaired electrons                              |
| a) 3b) 4c) 1d) 2130. Which is not true in case of transition metals?<br>a) They are malleable and ductile<br>b) They have high melting and boiling points<br>c) They crystallise with body centred cubic and hexagonal close packed structure only<br>d) They show variable oxidation states although not always131. Formation of coloured solution is possible when metal ion in the compound contains<br>a) Paired electrons<br>c) Unpaired electronsb) Lone pair of electrons<br>d) None of these132. Carbon in wrought iron is present as<br>a) Silicon carbide<br>c) Graphiteb) Iron carbide<br>d) Partly iron carbide and partly as graphite133. An element is in $M^{3+}$ form. Its electronic configuration is [Ar] $3d^1$ , the ion is<br>a) $Ca^{2+}$<br>b) $Sc^+$<br>c) $Ti^{4+}$<br>d) $Ti^{3+}$ 134. Each transition series contains:<br>a) 12 elements<br>b) 10 elements<br>c) 14 elements<br>d) 8 elementsd) 8 elements135. Lanthanide contraction is caused due to<br>a) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>c) The same effective nuclear charge from Ce to Lu.<br>d) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.136. The properties of Zr and Hf are similar because<br>a) Both belong to $d$ -block<br>b) Both belong to asme group of Periodic Table<br>c) Both have similar radiib) Both have same number of electrons137. In nitroprusside ion, the iron and NO exist as $Fe^{11}$ and NO <sup>+</sup> rather than $Fe^{III}$ and NO. These forms can be<br>differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nresent in it is                                                                                                                              |                                                     |                                                        |
| <ul> <li>130. Which is not true in case of transition metals? <ul> <li>a) They are malleable and ductile</li> <li>b) They have high melting and boiling points</li> <li>c) They crystallise with body centred cubic and hexagonal close packed structure only</li> <li>d) They show variable oxidation states although not always</li> </ul> </li> <li>131. Formation of coloured solution is possible when metal ion in the compound contains <ul> <li>a) Paired electrons</li> <li>b) Lone pair of electrons</li> <li>c) Unpaired electrons</li> <li>d) None of these</li> </ul> </li> <li>132. Carbon in wrought iron is present as <ul> <li>a) Silicon carbide</li> <li>c) Graphite</li> <li>d) Partly iron carbide and partly as graphite</li> </ul> </li> <li>133. An element is in M<sup>3+</sup> form. Its electronic configuration is [Ar]3d<sup>1</sup>, the ion is <ul> <li>a) Ca<sup>2+</sup></li> <li>b) Sc<sup>+</sup></li> <li>c) Ti<sup>4+</sup></li> <li>d) Ti<sup>3+</sup></li> </ul> </li> <li>134. Each transition series contains: <ul> <li>a) 12 elements</li> <li>b) 10 elements</li> <li>c) 14 elements</li> <li>d) 8 elements</li> </ul> </li> <li>135. Lanthanide contraction is caused due to <ul> <li>a) The appreciable shielding on outer electrons by 4f -electrons from the nuclear charge.</li> <li>b) The appreciable shielding on outer electrons by 5d-electrons from the nuclear charge.</li> <li>c) The same effective nuclear charge from Ce to Lu.</li> <li>d) The imperfect shielding on outer electrons by 4f -electrons from the nuclear charge.</li> </ul> </li> <li>136. The properties of Zr and Hf are similar because <ul> <li>a) Both belong to <i>d</i>-block</li> <li>b) Both belong to same group of Periodic Table</li> <li>c) Both have same number of electrons</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a) 3 b) 4                                                                                                                                     | c) 1                                                | d) 2                                                   |
| a) They are malleable and ductile<br>b) They have high melting and boiling points<br>c) They crystallise with body centred cubic and hexagonal close packed structure only<br>d) They show variable oxidation states although not always<br>131. Formation of coloured solution is possible when metal ion in the compound contains<br>a) Paired electrons b) Lone pair of electrons<br>c) Unpaired electrons d) None of these<br>132. Carbon in wrought iron is present as<br>a) Silicon carbide b) Iron carbide<br>c) Graphite d) Partly iron carbide and partly as graphite<br>133. An element is in $M^{3+}$ form. Its electronic configuration is $[Ar]3d^1$ , the ion is<br>a) $Ca^{2+}$ b) Sc <sup>+</sup> c) Ti <sup>4+</sup> d) Ti <sup>3+</sup><br>134. Each transition series contains:<br>a) 12 elements b) 10 elements c) 14 elements d) 8 elements<br>135. Lanthanide contraction is caused due to<br>a) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>b) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>c) The same effective nuclear charge from Ce to Lu.<br>d) The imperfect shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>136. The properties of Zr and Hf are similar because<br>a) Both belong to $d$ -block b) Both belong to same group of Periodic Table<br>c) Both have similar radii d) Both have same number of electrons<br>137. In nitroprusside ion, the iron and NO exist as Fe <sup>11</sup> and NO <sup>+</sup> rather than Fe <sup>III</sup> and NO. These forms can be<br>differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 130. Which is not true in case of transition metals?                                                                                          |                                                     |                                                        |
| b) They have high melting and boiling points<br>c) They raystallise with body centred cubic and hexagonal close packed structure only<br>d) They show variable oxidation states although not always<br>131. Formation of coloured solution is possible when metal ion in the compound contains<br>a) Paired electrons b) Lone pair of electrons<br>c) Unpaired electrons d) None of these<br>132. Carbon in wrought iron is present as<br>a) Silicon carbide b) Iron carbide<br>c) Graphite d) Partly iron carbide and partly as graphite<br>133. An element is in $M^{3+}$ form. Its electronic configuration is $[Ar]3d^{1}$ , the ion is<br>a) $Ca^{2+}$ b) $Sc^{+}$ c) $Ti^{4+}$ d) $Ti^{3+}$<br>134. Each transition series contains:<br>a) $12$ elements b) 10 elements c) 14 elements d) 8 elements<br>135. Lanthanide contraction is caused due to<br>a) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>b) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>c) The same effective nuclear charge from Ce to Lu.<br>d) The imperfect shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>136. The properties of Zr and Hf are similar because<br>a) Both belong to $d$ -block b) Both belong to same group of Periodic Table<br>c) Both have similar radii d) Both have same number of electrons<br>137. In nitroprusside ion, the iron and NO exist as $Fe^{11}$ and NO <sup>+</sup> rather than $Fe^{111}$ and NO. These forms can be<br>differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a) They are malleable and ductile                                                                                                             | C                                                   |                                                        |
| c) They intering intering better output cubic and hexagonal close packed structure only<br>d) They show variable oxidation states although not always<br>131. Formation of coloured solution is possible when metal ion in the compound contains<br>a) Paired electrons b) Lone pair of electrons<br>c) Unpaired electrons d) None of these<br>132. Carbon in wrought iron is present as<br>a) Silicon carbide b) fron carbide<br>c) Graphite d) Partly iron carbide and partly as graphite<br>133. An element is in $M^{3+}$ form. Its electronic configuration is $[Arr]3d^1$ , the ion is<br>a) $Ca^{2+}$ b) $Sc^+$ c) $Ti^{4+}$ d) $Ti^{3+}$<br>134. Each transition series contains:<br>a) $12$ elements b) 10 elements c) $14$ elements d) 8 elements<br>135. Lanthanide contraction is caused due to<br>a) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>b) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>c) The same effective nuclear charge from Ce to Lu.<br>d) The imperfect shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>136. The properties of Zr and Hf are similar because<br>a) Both belong to $d$ -block b) Both belong to same group of Periodic Table<br>c) Both have similar radii d) Both have same number of electrons<br>137. In nitroprusside ion, the iron and NO exist as $Fe^{11}$ and NO <sup>+</sup> rather than $Fe^{11}$ and NO. These forms can be<br>differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | b) They have high melting and boiling points                                                                                                  |                                                     |                                                        |
| d) They show variable oxidation states although not always<br>131. Formation of coloured solution is possible when metal ion in the compound contains<br>a) Paired electrons b) Lone pair of electrons<br>c) Unpaired electrons d) None of these<br>132. Carbon in wrought iron is present as<br>a) Silicon carbide b) Iron carbide<br>c) Graphite d) Partly iron carbide and partly as graphite<br>133. An element is in $M^{3+}$ form. Its electronic configuration is $[Ar]3d^1$ , the ion is<br>a) $Ca^{2+}$ b) $Sc^+$ c) $Ti^{4+}$ d) $Ti^{3+}$<br>134. Each transition series contains:<br>a) $12$ elements b) 10 elements c) 14 elements d) 8 elements<br>135. Lanthanide contraction is caused due to<br>a) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>b) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>c) The same effective nuclear charge from Ce to Lu.<br>d) The imperfect shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>136. The properties of Zr and Hf are similar because<br>a) Both belong to $d$ -block b) Both belong to same group of Periodic Table<br>c) Both have similar radii d) Both have same number of electrons<br>137. In nitroprusside ion, the iron and NO exist as Fe <sup>11</sup> and NO <sup>+</sup> rather than Fe <sup>III</sup> and NO. These forms can be diifferentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c) They crystallise with body centred cubic and he                                                                                            | xagonal close nacked struct                         | ure only                                               |
| 131. Formation of coloured solution is possible when metal ion in the compound containsa) Paired electronsb) Lone pair of electronsc) Unpaired electronsd) None of these132. Carbon in wrought iron is present asa) Silicon carbidea) Silicon carbideb) Iron carbidec) Graphited) Partly iron carbide and partly as graphite133. An element is in $M^{3+}$ form. Its electronic configuration is $[Ar]3d^1$ , the ion isa) Ca <sup>2+</sup> b) Sc <sup>+</sup> c) Ti <sup>4+</sup> d) Ti <sup>3+</sup> 134. Each transition series contains:a) 12 elementsb) 10 elementsc) The appreciable shielding on outer electrons by $4f$ electrons from the nuclear charge.b) The appreciable shielding on outer electrons by $4f$ electrons from the nuclear charge.c) The same effective nuclear charge from Ce to Lu.d) The imperfect shielding on outer electrons by $4f$ electrons from the nuclear charge.136. The properties of Zr and Hf are similar becausea) Both belong to $d$ -blockb) Both belong to same group of Periodic Tablec) Both have similar radiid) Both have same number of electrons137. In nitroprusside ion, the iron and NO exist as Fe <sup>11</sup> and NO <sup>+</sup> rather than Fe <sup>III</sup> and NO. These forms can be differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d) They show variable oxidation states although no                                                                                            | nagonal clobe pachea on act                         |                                                        |
| 10 For Hormatic Construction of potential in the point of the entropya) Paired electronsb) Lone pair of electronsc) Unpaired electronsd) None of these132. Carbon in wrought iron is present asa) Silicon carbidea) Silicon carbideb) Iron carbidec) Graphited) Partly iron carbide and partly as graphite133. An element is in $M^{3+}$ form. Its electronic configuration is $[Ar]3d^1$ , the ion isa) $Ca^{2+}$ b) Sc^+c) Ti^{4+}d) Ti^{3+}134. Each transition series contains:a) 12 elementsb) 10 elementsc) 14 elementsd) 8 elements135. Lanthanide contraction is caused due toa) The appreciable shielding on outer electrons by 5d-electrons from the nuclear charge.b) The appreciable shielding on outer electrons by 5d-electrons from the nuclear charge.c) The same effective nuclear charge from Ce to Lu.d) The imperfect shielding on outer electrons by 4f-electrons from the nuclear charge.136. The properties of Zr and Hf are similar becausea) Both belong to d-blockb) Both belong to same group of Periodic Tablec) Both have similar radiid) Both have same number of electrons137. In nitroprusside ion, the iron and NO exist as Fe <sup>11</sup> and NO <sup>+</sup> rather than Fe <sup>III</sup> and NO. These forms can be differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 131. Formation of coloured solution is possible when m                                                                                        | etal ion in the compound co                         | ontains                                                |
| c) Unpaired electrons d) None of these<br>c) Unpaired electrons d) None of these<br>132. Carbon in wrought iron is present as<br>a) Silicon carbide b) Iron carbide<br>c) Graphite d) Partly iron carbide and partly as graphite<br>133. An element is in $M^{3+}$ form. Its electronic configuration is $[Ar]3d^1$ , the ion is<br>a) $Ca^{2+}$ b) $Sc^+$ c) $Ti^{4+}$ d) $Ti^{3+}$<br>134. Each transition series contains:<br>a) $12$ elements b) 10 elements c) 14 elements d) 8 elements<br>135. Lanthanide contraction is caused due to<br>a) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>b) The appreciable shielding on outer electrons by $5d$ -electrons from the nuclear charge.<br>c) The same effective nuclear charge from Ce to Lu.<br>d) The imperfect shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>136. The properties of Zr and Hf are similar because<br>a) Both belong to $d$ -block b) Both belong to same group of Periodic Table<br>c) Both have similar radii d) Both have same number of electrons<br>137. In nitroprusside ion, the iron and NO exist as Fe <sup>11</sup> and NO <sup>+</sup> rather than Fe <sup>III</sup> and NO. These forms can be differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a) Paired electrons                                                                                                                           | h) Lone pair of electrons                           | Sincarito                                              |
| 132. Carbon in wrought iron is present asa) Silicon carbideb) Iron carbidec) Graphiteb) Iron carbided) Partly iron carbide and partly as graphite133. An element is in $M^{3+}$ form. Its electronic configuration is $[Ar]3d^1$ , the ion isa) $Ca^{2+}$ b) Sc^+c) Ti^{4+}d) Ti^{3+}134. Each transition series contains:a) 12 elementsb) 10 elementsc) 14 elementsd) 8 elements135. Lanthanide contraction is caused due toa) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.b) The appreciable shielding on outer electrons by $5d$ -electrons from the nuclear charge.c) The same effective nuclear charge from Ce to Lu.d) The imperfect shielding on outer electrons by $4f$ -electrons from the nuclear charge.136. The properties of Zr and Hf are similar becausea) Both belong to $d$ -blockb) Both belong to same group of Periodic Tablec) Both have similar radiid) Both have same number of electrons137. In nitroprusside ion, the iron and NO exist as Fe <sup>11</sup> and NO <sup>+</sup> rather than Fe <sup>III</sup> and NO. These forms can be differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c) Unnaired electrons                                                                                                                         | d) None of these                                    |                                                        |
| 132. Solution in introduct to its presenteda) Silicon carbideb) Iron carbidec) Graphited) Partly iron carbide and partly as graphite133. An element is in $M^{3+}$ form. Its electronic configuration is $[Ar]3d^1$ , the ion isa) $Ca^{2+}$ b) Sc^+c) Ti <sup>4+</sup> d) Ti <sup>3+</sup> 134. Each transition series contains:a) 12 elementsb) 10 elementsc) 14 elementsd) 8 elements135. Lanthanide contraction is caused due toa) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.b) The appreciable shielding on outer electrons by $5d$ -electrons from the nuclear charge.c) The same effective nuclear charge from Ce to Lu.d) The imperfect shielding on outer electrons by $4f$ -electrons from the nuclear charge.136. The properties of Zr and Hf are similar becausea) Both belong to $d$ -blockb) Both have similar radiid) Both have same number of electrons137. In nitroprusside ion, the iron and NO exist as Fe <sup>11</sup> and NO <sup>+</sup> rather than Fe <sup>III</sup> and NO. These forms can be differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 132. Carbon in wrought iron is present as                                                                                                     |                                                     |                                                        |
| c) Graphite d) Partly iron carbide and partly as graphite<br>133. An element is in $M^{3+}$ form. Its electronic configuration is [Ar] $3d^1$ , the ion is<br>a) $Ca^{2+}$ b) $Sc^+$ c) $Ti^{4+}$ d) $Ti^{3+}$<br>134. Each transition series contains:<br>a) 12 elements b) 10 elements c) 14 elements d) 8 elements<br>135. Lanthanide contraction is caused due to<br>a) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>b) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>c) The same effective nuclear charge from Ce to Lu.<br>d) The imperfect shielding on outer electrons by $4f$ -electrons from the nuclear charge.<br>136. The properties of Zr and Hf are similar because<br>a) Both belong to $d$ -block b) Both belong to same group of Periodic Table<br>c) Both have similar radii d) Both have same number of electrons<br>137. In nitroprusside ion, the iron and NO exist as Fe <sup>11</sup> and NO <sup>+</sup> rather than Fe <sup>III</sup> and NO. These forms can be differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a) Silicon carbide                                                                                                                            | b) Iron carbide                                     |                                                        |
| In the particular particul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c) Graphite                                                                                                                                   | d) Partly iron carbide ar                           | nd partly as graphite                                  |
| a) $Ca^{2+}$ b) $Sc^{+}$ c) $Ti^{4+}$ d) $Ti^{3+}$<br>134. Each transition series contains:<br>a) 12 elements b) 10 elements c) 14 elements d) 8 elements<br>135. Lanthanide contraction is caused due to<br>a) The appreciable shielding on outer electrons by 4 <i>f</i> -electrons from the nuclear charge.<br>b) The appreciable shielding on outer electrons by 5 <i>d</i> -electrons from the nuclear charge.<br>c) The same effective nuclear charge from Ce to Lu.<br>d) The imperfect shielding on outer electrons by 4 <i>f</i> -electrons from the nuclear charge.<br>136. The properties of Zr and Hf are similar because<br>a) Both belong to <i>d</i> -block b) Both belong to same group of Periodic Table<br>c) Both have similar radii d) Both have same number of electrons<br>137. In nitroprusside ion, the iron and NO exist as Fe <sup>11</sup> and NO <sup>+</sup> rather than Fe <sup>III</sup> and NO. These forms can be differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 133. An element is in $M^{3+}$ form. Its electronic configura                                                                                 | tion is $[Ar]3d^1$ , the ion is                     | a partif as graphice                                   |
| <ul> <li>134. Each transition series contains:</li> <li>a) 12 elements</li> <li>b) 10 elements</li> <li>c) 14 elements</li> <li>d) 8 elements</li> <li>135. Lanthanide contraction is caused due to <ul> <li>a) The appreciable shielding on outer electrons by 4<i>f</i> -electrons from the nuclear charge.</li> <li>b) The appreciable shielding on outer electrons by 5<i>d</i>-electrons from the nuclear charge.</li> <li>c) The same effective nuclear charge from Ce to Lu.</li> <li>d) The imperfect shielding on outer electrons by 4<i>f</i> -electrons from the nuclear charge.</li> </ul> </li> <li>136. The properties of Zr and Hf are similar because <ul> <li>a) Both belong to <i>d</i>-block</li> <li>b) Both belong to same group of Periodic Table</li> <li>c) Both have similar radii</li> <li>d) Both have same number of electrons</li> </ul> </li> <li>137. In nitroprusside ion, the iron and NO exist as Fe<sup>11</sup> and NO<sup>+</sup> rather than Fe<sup>III</sup> and NO. These forms can be differentiated by :</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a) $(a^{2+})$ b) Sc <sup>+</sup>                                                                                                              | c) Ti <sup>4+</sup>                                 | d) Ti <sup>3+</sup>                                    |
| <ul> <li>a) 12 elements</li> <li>b) 10 elements</li> <li>c) 14 elements</li> <li>d) 8 elements</li> </ul> 135. Lanthanide contraction is caused due to <ul> <li>a) The appreciable shielding on outer electrons by 4<i>f</i>-electrons from the nuclear charge.</li> <li>b) The appreciable shielding on outer electrons by 5<i>d</i>-electrons from the nuclear charge.</li> <li>c) The same effective nuclear charge from Ce to Lu.</li> <li>d) The imperfect shielding on outer electrons by 4<i>f</i>-electrons from the nuclear charge.</li> </ul> 136. The properties of Zr and Hf are similar because <ul> <li>a) Both belong to <i>d</i>-block</li> <li>b) Both belong to same group of Periodic Table</li> <li>c) Both have similar radii</li> <li>d) Both have same number of electrons</li> </ul> 137. In nitroprusside ion, the iron and NO exist as Fe <sup>11</sup> and NO <sup>+</sup> rather than Fe <sup>III</sup> and NO. These forms can be differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 134 Each transition series contains:                                                                                                          |                                                     |                                                        |
| <ul> <li>135. Lanthanide contraction is caused due to <ul> <li>a) The appreciable shielding on outer electrons by 4<i>f</i>-electrons from the nuclear charge.</li> <li>b) The appreciable shielding on outer electrons by 5<i>d</i>-electrons from the nuclear charge.</li> <li>c) The same effective nuclear charge from Ce to Lu.</li> <li>d) The imperfect shielding on outer electrons by 4<i>f</i>-electrons from the nuclear charge.</li> </ul> </li> <li>136. The properties of Zr and Hf are similar because <ul> <li>a) Both belong to <i>d</i>-block</li> <li>b) Both belong to same group of Periodic Table</li> <li>c) Both have similar radii</li> <li>d) Both have same number of electrons</li> </ul> </li> <li>137. In nitroprusside ion, the iron and NO exist as Fe<sup>11</sup> and NO<sup>+</sup> rather than Fe<sup>III</sup> and NO. These forms can be differentiated by :</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a) 12 elements b) 10 elements                                                                                                                 | c) 14 elements                                      | d) 8 elements                                          |
| <ul> <li>a) The appreciable shielding on outer electrons by 4<i>f</i> -electrons from the nuclear charge.</li> <li>b) The appreciable shielding on outer electrons by 5<i>d</i>-electrons from the nuclear charge.</li> <li>c) The same effective nuclear charge from Ce to Lu.</li> <li>d) The imperfect shielding on outer electrons by 4<i>f</i> -electrons from the nuclear charge.</li> <li>136. The properties of Zr and Hf are similar because <ul> <li>a) Both belong to <i>d</i>-block</li> <li>b) Both belong to same group of Periodic Table</li> <li>c) Both have similar radii</li> <li>d) Both have same number of electrons</li> </ul> </li> <li>137. In nitroprusside ion, the iron and NO exist as Fe<sup>11</sup> and NO<sup>+</sup> rather than Fe<sup>III</sup> and NO. These forms can be differentiated by :</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 135. Lanthanide contraction is caused due to                                                                                                  |                                                     |                                                        |
| <ul> <li>b) The appreciable shielding on outer electrons by 5<i>d</i>-electrons from the nuclear charge.</li> <li>c) The same effective nuclear charge from Ce to Lu.</li> <li>d) The imperfect shielding on outer electrons by 4<i>f</i>-electrons from the nuclear charge.</li> <li>136. The properties of Zr and Hf are similar because <ul> <li>a) Both belong to <i>d</i>-block</li> <li>b) Both belong to same group of Periodic Table</li> <li>c) Both have similar radii</li> <li>d) Both have same number of electrons</li> </ul> </li> <li>137. In nitroprusside ion, the iron and NO exist as Fe<sup>11</sup> and NO<sup>+</sup> rather than Fe<sup>III</sup> and NO. These forms can be differentiated by :</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a) The appreciable shielding on outer electrons by                                                                                            | 4 <i>f</i> -electrons from the nucl                 | ear charge.                                            |
| <ul> <li>c) The same effective nuclear charge from Ce to Lu.</li> <li>d) The imperfect shielding on outer electrons by 4<i>f</i>-electrons from the nuclear charge.</li> <li>136. The properties of Zr and Hf are similar because <ul> <li>a) Both belong to <i>d</i>-block</li> <li>b) Both belong to same group of Periodic Table</li> <li>c) Both have similar radii</li> <li>d) Both have same number of electrons</li> </ul> </li> <li>137. In nitroprusside ion, the iron and NO exist as Fe<sup>11</sup> and NO<sup>+</sup> rather than Fe<sup>III</sup> and NO. These forms can be differentiated by :</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b) The appreciable shielding on outer electrons by                                                                                            | 5d-electrons from the nucl                          | ear charge.                                            |
| <ul> <li>d) The imperfect shielding on outer electrons by 4<i>f</i> -electrons from the nuclear charge.</li> <li>136. The properties of Zr and Hf are similar because <ul> <li>a) Both belong to <i>d</i>-block</li> <li>b) Both belong to same group of Periodic Table</li> <li>c) Both have similar radii</li> <li>d) Both have same number of electrons</li> </ul> </li> <li>137. In nitroprusside ion, the iron and NO exist as Fe<sup>11</sup> and NO<sup>+</sup> rather than Fe<sup>III</sup> and NO. These forms can be differentiated by :</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c) The same effective nuclear charge from Ce to Lu                                                                                            |                                                     |                                                        |
| <ul> <li>136. The properties of Zr and Hf are similar because <ul> <li>a) Both belong to <i>d</i>-block</li> <li>b) Both belong to same group of Periodic Table</li> <li>c) Both have similar radii</li> <li>d) Both have same number of electrons</li> </ul> </li> <li>137. In nitroprusside ion, the iron and NO exist as Fe<sup>11</sup> and NO<sup>+</sup> rather than Fe<sup>III</sup> and NO. These forms can be differentiated by :</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d) The imperfect shielding on outer electrons by 4                                                                                            | f-electrons from the nuclea                         | r charge.                                              |
| <ul> <li>a) Both belong to <i>d</i>-block</li> <li>b) Both belong to same group of Periodic Table</li> <li>c) Both have similar radii</li> <li>b) Both belong to same group of Periodic Table</li> <li>d) Both have same number of electrons</li> <li>137. In nitroprusside ion, the iron and NO exist as Fe<sup>11</sup> and NO<sup>+</sup> rather than Fe<sup>III</sup> and NO. These forms can be differentiated by :</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 136. The properties of Zr and Hf are similar because                                                                                          |                                                     |                                                        |
| <ul> <li>c) Both have similar radii</li> <li>d) Both have same number of electrons</li> <li>137. In nitroprusside ion, the iron and NO exist as Fe<sup>11</sup> and NO<sup>+</sup> rather than Fe<sup>III</sup> and NO. These forms can be differentiated by :</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a) Both belong to $d$ -block                                                                                                                  | b) Both belong to same s                            | group of Periodic Table                                |
| 137. In nitroprusside ion, the iron and NO exist as Fe <sup>11</sup> and NO <sup>+</sup> rather than Fe <sup>III</sup> and NO. These forms can be differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c) Both have similar radii                                                                                                                    | d) Both have same num                               | ber of electrons                                       |
| differentiated by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 137. In nitroprusside ion, the iron and NO exist as $Fe^{11}$                                                                                 | and NO <sup>+</sup> rather than Fe <sup>III</sup> a | nd NO. These forms can be                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | differentiated by:                                                                                                                            |                                                     |                                                        |
| (New York, 1997) States and the concentration of iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a) Estimating the concentration of iron                                                                                                       |                                                     |                                                        |
| b) Measuring the concentration of $CN^-$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b) Measuring the concentration of CN <sup>-</sup> .                                                                                           |                                                     |                                                        |
| c) Measuring the solid state magnetic moment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c) Measuring the solid state magnetic moment                                                                                                  |                                                     |                                                        |
| d) Thermally decomposing the compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d) Thermally decomposing the compound                                                                                                         |                                                     |                                                        |
| 138. Railway wagon axles are made by heating rods of iron embedded in charcoal powder. The process is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 138. Railway wagon axles are made by heating rods of i                                                                                        | ron embedded in charcoal r                          | powder. The process is                                 |
| known as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | known as                                                                                                                                      | <u>-</u>                                            | r                                                      |
| a) Case hardening b) Tempering c) Sheradizing d) Annealing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a) Case hardening b) Tempering                                                                                                                | c) Sheradizing                                      | d) Annealing                                           |
| 139. A substance which is not paramagnetic is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 139. A substance which is not paramagnetic is:                                                                                                | , 0                                                 | , 0                                                    |
| a) $Cr(ClO_4)_3$ b) $KMnO_4$ c) $TiCl_3$ d) $VOBr_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a) $Cr(ClO_4)_3$ b) $KMnO_4$                                                                                                                  | c) TiCl <sub>3</sub>                                | d) VOBr <sub>2</sub>                                   |
| 140. Which pair of compounds is expected to show similar colour in aqueous medium?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 140. Which pair of compounds is expected to show simi                                                                                         | lar colour in aqueous medi                          | um?                                                    |

| a) FeCl <sub>3</sub> and CuCl <sub>2</sub> | b) VOCl <sub>2</sub> and CuCl <sub>2</sub> | c) $VOCl_2$ and $FeCl_2$         | d) $FeCl_2$ and $MnCl_2$                 |
|--------------------------------------------|--------------------------------------------|----------------------------------|------------------------------------------|
| 141. Lunar caustic is chem                 | ically:                                    |                                  |                                          |
| a) Silver chloride                         | b) Silver nitrate                          | c) Sodium hydroxide              | d) Potassium nitrate                     |
| 142. Lanthanoids and actin                 | oids resembles in:                         |                                  |                                          |
| a) Electronic configur                     | ation                                      |                                  |                                          |
| b) Oxidation state                         |                                            |                                  |                                          |
| c) Ionisation energy                       |                                            |                                  |                                          |
| d) Formation of comp                       | lex                                        |                                  |                                          |
| 143. Horn silver is:                       |                                            |                                  |                                          |
| a) AgCl                                    | b) Ag <sub>2</sub> S                       | c) SnS                           | d) AgNO <sub>3</sub>                     |
| 144. Silver nitrate solution               | gives a red precipitate with:              |                                  |                                          |
| a) Sodium iodide                           | b) Potassium chloride                      | c) Calcium nitrate               | d) Sodium chromate                       |
| 145. Of the following outer                | electronic configurations of               | atoms, the highest oxidation     | on state is achieved by which            |
| one of them?                               |                                            |                                  |                                          |
| a) $(n-1)d^8 ns^2$                         | b) $(n-1)d^5 ns^1$                         | c) $(n-1)d^3 ns^2$               | d) $(n-1)d^5 ns^2$                       |
| 146. Powdered silver ore is                | s treated with NaCN solution               | and air is bubbled through       | the mixture to give:                     |
| a) AgCN                                    | b) Ag                                      | c) $Ag(CN)_2$                    | d) Na $[Ag(CN)_2]$                       |
| 147. Chromium has most s                   | table oxidation state of:                  |                                  | <b>&gt;</b>                              |
| a) +5                                      | b) +3                                      | c) +2                            | d) +4                                    |
| 148. Cuprous salts are gene                | erally colourless while cupro              | us oxide is:                     |                                          |
| a) Green                                   | b) Blue                                    | c) Red                           | d) Yellow                                |
| 149. Which of the following                | g manganese oxide is ampho                 | teric?                           |                                          |
| a) MnO <sub>2</sub>                        | b) Mn <sub>2</sub> O <sub>3</sub>          | c) $Mn_2O_7$                     | d) MnO                                   |
| 150. Impurities of Cu and A                | Ag from gold are removed by                | S.Y                              |                                          |
| a) Boiling impure gold                     | d with dil.H <sub>2</sub> SO <sub>4</sub>  | b) Boiling impure gold           | with conc.H <sub>2</sub> SO <sub>4</sub> |
| c) Electrolytically                        |                                            | d) Both (b) and (c)              |                                          |
| 151. Identify the incorrect                | statement among the followi                | ng                               |                                          |
| d-block elements s                         | how irregular and erratic                  | La and Lu have parti             | ally filled <i>d</i> -orbitals and no    |
| a) chemical propertie                      | s among themselves.                        | other partially filled           | orbital.                                 |
| c) The chemistry of va                     | arious lanthanoids is very                 | d) $Af$ and $5f$ orbitals a      | ce equally shielded                      |
| similar.                                   |                                            | uj 4j aliu 5j •01 bitais al      | e equally sineided.                      |
| 152. Which of the following                | g ions form most stable comp               | olex compound?                   |                                          |
| a) Mn <sup>2+</sup>                        | b) Ni <sup>2+</sup>                        | c) Fe <sup>2+</sup>              | d) Cu <sup>2+</sup>                      |
| 153. Silver halides are used               | d in photography because the               | ey are:                          |                                          |
| a) Photosensitive                          | <i>S</i> ′                                 |                                  |                                          |
| b) Soluble in hyposolı                     | ition                                      |                                  |                                          |
| c) Soluble in NH <sub>4</sub> OH           |                                            |                                  |                                          |
| d) Insoluble in acids                      |                                            |                                  |                                          |
| 154. $(NH_4)_2 Cr_2 O_7$ on heati          | ng gives a gas which is also g             | given by                         |                                          |
| a) Heating NH <sub>4</sub> NO <sub>2</sub> | b) Heating NH <sub>4</sub> NO <sub>3</sub> | c) $Mg_3N_2 + H_2O$              | d) Na(Comp.)+ $H_2O_2$                   |
| 155. Gold dissolves in aqua                | a regia forming:                           |                                  |                                          |
| a) Auric chloride                          | b) Aurous chloride                         | c) Chloroauric acid              | d) Aurous nitrate                        |
| 156. Essential constituent                 | of an amalgam is:                          |                                  |                                          |
| a) Fe                                      | b) An alkali metal                         | c) Silver                        | d) Mercury                               |
| 157. In blast furnace, iron o              | oxide is reduced by                        |                                  |                                          |
| a) Hot blast of air                        | b) Carbon monoxide                         | c) Carbon                        | d) Silica                                |
| 158. In <i>M</i> is element of acti        | inoids series, the degree of co            | omplex formation decrease        | s in the order                           |
| a) $M^{4+} > M^{3+} > MO_2^2$              | $E_2^+ > MO_2^+$                           | b) $MO_2^+ > MO_2^{2+} > M^{3+}$ | $^{-} > M^{4+}$                          |
| c) $M^{4+} > MO_2^{2+} > M^3$              | $^{B^+} > M0_2^+$                          | d) $MO_2^{2+} > MO_2^+ > MO_2^+$ | $^{-} > M^{3+}$                          |
| 159. Stainless steel has iro               | n and                                      |                                  |                                          |

|    | a) Cr                                                    | b) Cu                                                                      | c) Co                                                      | d) Zn                      |  |  |
|----|----------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------|----------------------------|--|--|
| 16 | 0. The correct statement(s)                              | among the following is/are                                                 | е;                                                         |                            |  |  |
|    | (i) All the $d$ and $f$ -block elements are metals       |                                                                            |                                                            |                            |  |  |
|    | (ii) All $d$ and $f$ -block elements                     | nents form coloured ions                                                   |                                                            |                            |  |  |
|    | (iii) All $d$ and $f$ -block elements                    | ments are paramagnetic                                                     |                                                            |                            |  |  |
|    | a) (i) only                                              | b) (i) and (ii)                                                            | c) (ii) and (ii)                                           | d) All of these            |  |  |
| 16 | 51. Which of the following pa                            | air will have effective magn                                               | etic moment equal?                                         | ,                          |  |  |
| -  | a) $Ti^{2+}$ and $V^{2+}$                                | b) $Cr^{2+}$ and $Fe^{2+}$                                                 | c) $Cr^{3+}$ and $Mn^{2+}$                                 | d) $V^{2+}$ and $Sc^{3+}$  |  |  |
| 16 | 2. Which of the following co                             | mpounds volatises on heat                                                  | ing?                                                       |                            |  |  |
| -  | a) FeCl <sub>2</sub>                                     | b) HgCl <sub>2</sub>                                                       | c) CaCl <sub>2</sub>                                       | d) MgCl <sub>2</sub>       |  |  |
| 16 | 3. Aufbau law is not valid fo                            | r:                                                                         | -) <u>2</u>                                                |                            |  |  |
|    | a) Cu and Ar                                             | b) Cu and Cr                                                               | c) Cr and Ar                                               | d) Fe and Ag               |  |  |
| 16 | 4. Which of the following st                             | atements is not true for Mo                                                | hr's salt?                                                 |                            |  |  |
|    | a) It decolourises KMnO <sub>4</sub>                     | solution                                                                   |                                                            |                            |  |  |
|    | b) It is a double salt                                   |                                                                            |                                                            |                            |  |  |
|    | c) Oxidation state of iron                               | is +3                                                                      |                                                            |                            |  |  |
|    | d) It is a primary standar                               | d                                                                          | Ć,                                                         |                            |  |  |
| 16 | 5. The $3d$ -block element the                           | -<br>at exhibits maximum numb                                              | er of oxidation states is                                  |                            |  |  |
|    | a) Sc                                                    | b) Ti                                                                      | c) Mn                                                      | d) Zn                      |  |  |
| 16 | 6. Number of electrons in 3                              | <i>d</i> -orbital of V <sup>2+</sup> . Cr <sup>2+</sup> . Mn <sup>2+</sup> | + and Fe <sup>2+</sup> are 3. 4. 5 and 6                   | respectively. Which of the |  |  |
|    | following ions will have la                              | argest value of magnetic m                                                 | oment (µ)?                                                 |                            |  |  |
|    | a) $V^{2+}$                                              | h) Cr <sup>2+</sup>                                                        | c) $Mn^{2+}$                                               | d) Fe <sup>2+</sup>        |  |  |
| 16 | 57. Identify the reaction that                           | does not take place during                                                 | the smelting process of cou                                | oper extraction            |  |  |
| 10 | a) $2\text{FeS} + 30_{\text{o}} \rightarrow 2\text{FeO}$ | $+ 2SO_{2}$ 1                                                              | h) $Cu_{2}O + FeS \rightarrow Cu_{2}S +$                   | - FeO                      |  |  |
|    | c) $2Cu_2S + 3O_2 \rightarrow 2Cu_2$                     | $10 + 250_2$                                                               | d) FeO + SiO <sub>2</sub> $\rightarrow$ FeSiO <sub>2</sub> | 100                        |  |  |
| 16 | 8 Which of the following is                              | most stable?                                                               |                                                            |                            |  |  |
| 10 | a) $V^{3+}$                                              | h) Ti <sup>3+</sup>                                                        | c) Mn <sup>3+</sup>                                        | d) Cr <sup>3+</sup>        |  |  |
| 16 | 9 The white anhydrous con                                | oper sulphate on heating de                                                | composes to give                                           |                            |  |  |
| 10 | a) $CuSO_{1}$ , $5H_{2}O_{2}$                            | b) CuSO. H <sub>2</sub> O                                                  | $c$ ) $CuO + SO_{a}$                                       | d) SO-                     |  |  |
| 17 | 0 NH <sub>2</sub> does not form comp                     | lex with                                                                   |                                                            | 4,503                      |  |  |
| 17 | a) Agi                                                   | h) AgBr                                                                    | c) AgCl                                                    | d) None of these           |  |  |
| 17 | '1 Which sulphide has a vell                             | ow colour?                                                                 |                                                            | uj none or these           |  |  |
| 1, | a) CuS                                                   | h) PhS                                                                     | c) 7nS                                                     | d) CdS                     |  |  |
| 17 | 2 Which of the following is                              | not a property of transition                                               | r elements?                                                |                            |  |  |
| 1, | a) Fixed valency                                         | h) Catalytic property                                                      | c) Paramagnetism                                           | d) Colour                  |  |  |
| 17 | $^{2}$ . Fe <sup>2+</sup> ion can be distinguis          | shed by Fe <sup>3+</sup> ion by:                                           | ej i aramagneatin                                          |                            |  |  |
|    | a) BaCla                                                 | h) AgNO <sub>2</sub>                                                       | c) NH <sub>4</sub> SCN                                     | d) None of these           |  |  |
| 17 | 4. Which one of the followir                             | g transition metal ions is d                                               | iamagnetic?                                                |                            |  |  |
| 1, | a) $Co^{2+}$                                             | h) Ni <sup>2+</sup>                                                        | c) $Cu^{2+}$                                               | d) $Zn^{2+}$               |  |  |
| 17 | 75 Elements of group 11 and                              | 12 are                                                                     |                                                            |                            |  |  |
| 11 | a) Normal elements                                       | h) Transition elements                                                     | c) Alkaline earth metals                                   | d) Alkali metals           |  |  |
| 17 | 6 Hard steel contains:                                   | by fransition clements                                                     | ej mikanne earth metals                                    |                            |  |  |
|    | a) No carbon                                             | h) 0.6-1.5% carbon                                                         | c) 5% carbon                                               | d) 0 5-0 2% carbon         |  |  |
| 17 | 7 Iron once dinned in conc                               | entrated $H_{a}SO_{4}$ does not d                                          | lisplace conner from sulpha                                | te solution because:       |  |  |
| 1/ | a) It is less reactive than                              | conner                                                                     | asplace copper nom salplic                                 | te solution, because.      |  |  |
|    | h) A layer of sulnhate is d                              | lenosited on it                                                            |                                                            |                            |  |  |
|    | c) A layer of oxide is den                               | osited on it                                                               |                                                            |                            |  |  |
|    | d) None of the above                                     |                                                                            |                                                            |                            |  |  |
| 17 | 8 Which shows a jump in s                                | econd ionization notential?                                                |                                                            |                            |  |  |
| 1/ | a) Co                                                    | h) Ni                                                                      | c) 7n                                                      | ժ) Հա                      |  |  |
|    | uj 00                                                    | 6 J 111                                                                    |                                                            | uj uu                      |  |  |

| 179. Manganese steel co        | ntains:                                                   |                            |                                       |
|--------------------------------|-----------------------------------------------------------|----------------------------|---------------------------------------|
| a) Fe + C + Mn                 | b) Fe + C + Al                                            | c) Fe + Mn                 | d) Fe + Mn+ Cr                        |
| 180. Which sets are the t      | ransition elements?                                       |                            |                                       |
| a) Ti, Zr, Hf                  | b) V, Nb, Ta                                              | c) Rh, Rb, Pd              | d) All of these                       |
| 181. The extraction of ni      | ckel involves:                                            |                            |                                       |
| a) The formation of            | Ni(CO) <sub>4</sub>                                       |                            |                                       |
| b) The decompositi             | on of Ni(CO) <sub>4</sub>                                 |                            |                                       |
| c) The formation ar            | nd thermal decomposition of                               | f Ni(CO) <sub>4</sub>      |                                       |
| d) The formation ar            | nd catalytic decomposition o                              | of $Ni(CO)_4$              |                                       |
| 182. Cu <sub>2</sub> 0 is:     |                                                           |                            |                                       |
| a) Black oxide of co           | pper b) Copper(II) oxide                                  | c) Red oxide of copp       | er d) Cupric oxide                    |
| 183. Number of electron        | s transferred in each case w                              | hen KMnO4 acts as an oxid  | lising agent to give                  |
| $MnO_2$ , $Mn^{2+}$ , $Mn(OI)$ | $H_{3}$ and MnO <sub>4</sub> <sup>2-</sup> , are respecti | vely:                      |                                       |
| a) 3, 5, 4 and 1               | b) 4, 3, 1 and 5                                          | c) 1, 3, 4 and 5           | d) 5, 4, 3 and 1                      |
| 184. When metallic copp        | er comes in contact with mo                               | pisture, a green power/pas | ty coating can be seen over it.       |
| This is chemically k           | nown as                                                   |                            |                                       |
| a) Copper carbonat             | e-copper sulphate                                         | b) Copper carbonate        | e-copper hydroxide                    |
| c) Copper sulphate             | copper sulphide                                           | d) Copper sulphide-        | copper carbonate                      |
| 185. German silver is an       | allov of:                                                 | .,                         | · · · · · · · · · · · · · · · · · · · |
| a) Copper. zinc and            | nickel                                                    |                            | ,                                     |
| b) Copper, and silve           | r                                                         |                            |                                       |
| c) Copper and tin              | -                                                         |                            |                                       |
| d) Copper. zinc and            | silver                                                    |                            |                                       |
| 186. Incorrect statement       | is                                                        |                            |                                       |
| a) Atomic radii of Z           | r and Hf are same because o                               | f lanthanide contraction   |                                       |
| b) Zn and Hg do not            | show variable valency                                     |                            |                                       |
| c) Across the lantha           | nides series, the basicity of                             | lanthanide hydroxides dec  | reases                                |
| d) Protactinium is t           | ransuranic element                                        |                            |                                       |
| 187is the best cond            | luctor of electricity among c                             | coinage metals:            |                                       |
| a) Ag                          | b) Cu                                                     | c) Au                      | d) All of these                       |
| 188. $Cu^{2+}$ jons give preci | initate with K <sub>4</sub> Fe(CN) <sub>4</sub> . The     | colour of precipitate is:  | -,                                    |
| a) Blue                        | b) Green                                                  | c) Red                     | d) Brown                              |
| 189. Across the lanthani       | de series, the basicity of lant                           | hanide hydroxides          |                                       |
| a) Increases                   |                                                           | b) Decreases               |                                       |
| c) First increases a           | nd then decreases                                         | d) First decreases ar      | nd then increases                     |
| 190. A blue colouration i      | s not obtained when:                                      |                            |                                       |
| a) Ammonium hydr               | oxide dissolves in conner su                              | Inhate                     |                                       |
| b) Copper sulphate             | solution reacts with K <sub>4</sub> [Fe()                 | CN) <sub>c</sub> ]         |                                       |
| c) Ferric chloride re          | eacts with sodium ferrocvan                               | ide                        |                                       |
| d) Anhydrous white             | $\sim CuSO_4$ is dissolved in water                       | r                          |                                       |
| 191. Useful lanthanoid m       | ember is:                                                 | •                          |                                       |
| a) Cerium                      | h) Lanthanum                                              | c) Neodymium               | d) Lutetium                           |
| 192. Which of the follow       | ing has got incompletely fill                             | ed <i>f</i> -subshell?     | a) Internation                        |
| a) Gadolinium                  | h) Lutetium                                               | c) Lawrencium              | d) Tantalum                           |
| 193. Silver nitrate is usu     | ally supplied in coloured bo                              | ttles because it is:       |                                       |
| a) Oxidized in air             | J                                                         |                            |                                       |
| h) Decomposed in s             | unlight                                                   |                            |                                       |
| c) Explodes in sunli           | ght                                                       |                            |                                       |
| d) Reactive towards            | s air in sunlight                                         |                            |                                       |
| 194. Mercurv is nurified       | hv:                                                       |                            |                                       |
| is purified                    | ~,.                                                       |                            |                                       |

|                        | a) Solidifying                                    |                                                               |                                                   |                                         |
|------------------------|---------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|
|                        | b) Distillation in vacuum                         | _                                                             |                                                   |                                         |
|                        | c) Treatment with dil. HN                         | 03                                                            |                                                   |                                         |
| 405                    | d) Electrolytic method                            |                                                               |                                                   |                                         |
| 195                    | . Pt black is                                     | 0                                                             |                                                   |                                         |
|                        | a) Pt metal mixed with Mi                         | nO <sub>2</sub>                                               | 1 1                                               |                                         |
|                        | b) Velvety black power ob                         | tained by reduction of PtC                                    | I <sub>4</sub> with glucose or sodium f           | formate                                 |
|                        | c) Pt metal coated with bl                        | ack colour                                                    |                                                   |                                         |
| 100                    | d) None of the above                              |                                                               | . J' . T. J. J. J.                                |                                         |
| 196                    | . Hydride gap is referred t                       | o which region of the Perio                                   | Daic Table?                                       | d) Current 7, 0 and 0                   |
| 107                    | a) Groups 3, 4 and 5                              | b) Groups 5, 6 and 7                                          | c) Groups 4, 5 and 6                              | a) Groups 7, 8 and 9                    |
| 197                    | . which of the following ele                      | ectronic configuration repr                                   | esents the maximum magn $d^8$                     | etic moment?                            |
| 100                    | aj a <sup>o</sup><br>Veletile metele 7n. Cel en d | D) $a^{-}$                                                    |                                                   | a) a                                    |
| 198                    | . Volatile metals Zn, Cd and                      | hg are purified by:                                           | a) Cupallation                                    | d) Electrolycia                         |
| 100                    | a) Liquation                                      |                                                               | c) cupenation                                     | u) Electrolysis                         |
| 199                    | a) d block elements                               | h) n block elements                                           | a) a black alamanta                               | d) f block elements                     |
| 200                    | a) <i>u</i> -DIOCK elements                       | DJ p-DIOCK elements                                           | c) s-block elements                               | d) j -block elements                    |
| 200                    | a) The last electron enter                        | s in the d orbital                                            | ents                                              | /                                       |
|                        | a) The last electron enters                       | between a and $n$ block all                                   | monto                                             |                                         |
|                        | c) Scandium is the transit                        | ion element with smallest                                     | atomic radii                                      |                                         |
|                        | d) Their common evidation                         | $\frac{1011}{1011} = 1011 = 1111 = 11111 = 111111 = 11111111$ |                                                   |                                         |
| 201                    | Which of the following tw                         | $\frac{1}{10}$ state is $\pm 3$                               | t officient catalysts?                            |                                         |
| 201                    | a) Allzali metals                                 | Jes of metals form the mos                                    | b) Alkaling earth metals                          |                                         |
|                        | c) Transition metals                              |                                                               | d) All of these                                   |                                         |
| 202                    | In the reaction $SnCl_{2} + 2F$                   | $4\sigma(l_{a} \rightarrow A + Sn(l_{a}, A is))$              | uj Ali ol ulese                                   |                                         |
| 202                    | a) $H\sigma_{a}(l_{a})$                           | h) H $\sigma$                                                 | c) HoCl                                           | գ) հգԵլ՝                                |
| 203                    | Mohr salt is made up of w                         | hich combination of salt?                                     |                                                   | u) 116013                               |
| 200                    | a) Ammonium sulphate a                            | nd notash                                                     | h) Ammonium sulphate a                            | nd ferrous sulphate                     |
|                        | c) Ammonium sulphate a                            | nd copper sulphate.                                           | d) Ammonium sulphate a                            | nd magnesium sulphate.                  |
| 204                    | . Maximum oxidation state                         | is presented by:                                              | «) «) «) «                                        |                                         |
|                        | a) $CrO_2Cl_2$ and $MnO_4$                        | b) MnO <sub>2</sub>                                           | c) [Fe(CN) <sub>€</sub> ] <sup>3−</sup> and [Co(C | Nd) MnO                                 |
| 205                    | . Lanthanides are                                 | - <b>7</b> - 2                                                | .)[::(::)8][::(:                                  |                                         |
|                        | a) 14 elements in the sixtl                       | h period (atomic no. = 90 t                                   | to 103) that are filling 4 <i>f</i> su            | ıb level.                               |
|                        | b) 14 elements in the seve                        | enth period (atomic no. $=$                                   | 90 to 103) that are filling 5                     | f sub level.                            |
|                        | c) 14 elements in the sixtl                       | h period (atomic no. $= 58$ t                                 | to 71) that are filling $4f$ sul                  | o-level.                                |
|                        | d) 14 elements in the seve                        | enth period (atomic no. $= 5$                                 | 58 to 71) that are filling $4f$                   | sub-level.                              |
| 206                    | . By annealing, steel                             |                                                               | ,                                                 |                                         |
|                        | a) Becomes soft                                   |                                                               | b) Becomes liquid                                 |                                         |
|                        | c) Becomes hard and brit                          | tle                                                           | d) Is covered with a thin f                       | film of Fe <sub>3</sub> O <sub>4</sub>  |
| 207                    | . Which chromium compou                           | nd is widely used in tannir                                   | ng of leather?                                    |                                         |
| $\hat{\boldsymbol{C}}$ | a) $Cr_2O_3$                                      | b) CrO <sub>2</sub> Cl <sub>2</sub>                           | c) CrCl <sub>3</sub>                              | d) $K_2SO_4$ . $Cr_2(SO_4)_3$ . $24H_2$ |
| 208                    | . Purple of cassius is                            |                                                               |                                                   |                                         |
|                        | a) Copper solution                                | b) Platinum solution                                          | c) Gold solution                                  | d) Copper solution                      |
| 209                    | . Which is obtained when S                        | 0 <sub>2</sub> is bubbled through a so                        | lution of CuCl <sub>2</sub> ?                     |                                         |
|                        | a) Cu                                             | b) Cu <sub>2</sub> Cl <sub>2</sub>                            | c) CuSO <sub>4</sub>                              | d) CuS                                  |
| 210                    | . Substance which do not re                       | eact with cold water but re                                   | act with steam are:                               |                                         |
|                        | a) C , Ca , SO <sub>2</sub>                       | b) Fe, Al, Cl <sub>2</sub>                                    | c) CO <sub>2</sub> , Na, Mg                       | d) C, Fe, Mg                            |
| 211                    | . Which metal has the highe                       | est melting point?                                            |                                                   |                                         |
|                        | a) Pt                                             | b) W                                                          | c) Pd                                             | d) Au                                   |

| 212. Choose the correct rea                                     | action to prepare mercurous              | chloride (calomel)                                                    |                                    |
|-----------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------|------------------------------------|
| a) HgCl <sub>2</sub> + Hg $\xrightarrow{\Delta}$                | b) Hg + $Cl_2 \rightarrow$               | c) $HgCl_2 + SnCl_2 \rightarrow$                                      | d) Both (a) and (c)                |
| 213. Density, malleability a                                    | nd ductility in coinage metals           | s increase in the order:                                              |                                    |
| a) Cu, Ag, Au                                                   | b) Au, Ag, Cu                            | c) Ag, Au, Cu                                                         | d) Ag, Cu, Au                      |
| 214. An acidified solution of                                   | of KMnO₄ oxidizes:                       |                                                                       |                                    |
| a) Sulphates                                                    | b) Sulphites                             | c) Nitrates                                                           | d) Ferric salts                    |
| 215. Magnetite is:                                              |                                          | ,                                                                     | 2                                  |
| a) $2Fe_2O_3$ . $3H_2O$                                         | b) FeS <sub>2</sub>                      | c) $Fe_{3}O_{4}$                                                      | d) $Fe_2O_3$                       |
| 216. Least paramagnetic p                                       | operty is shown by                       |                                                                       |                                    |
| a) Fe                                                           | b) Mn                                    | c) Ni                                                                 | d) Cu                              |
| 217. Platinum, Palladium, i                                     | rridium, etc., are called noble          | metals because:                                                       |                                    |
| a) Alfred Nobel discov                                          | rered them                               |                                                                       |                                    |
| b) They are inert towa                                          | rds many common reagents                 |                                                                       |                                    |
| c) They are shining, lu                                         | strous and pleasing to look              |                                                                       |                                    |
| d) They are found in n                                          | ative state                              |                                                                       | $\sim$                             |
| 218. Silver obtained from a                                     | rgentiferous lead is purified            | by:                                                                   | ×.                                 |
| a) Distillation                                                 | b) Froth floatation                      | c) Cupellation                                                        | d) Reaction with KCN               |
| 219. Paris green is:                                            |                                          |                                                                       |                                    |
| a) $Cu(CH_3COO)_2$                                              | b) $Cu_3(AsO_3)_2 \cdot 2H_2O$           | c) $Cu(CH_3COO)_2$ . $3Cu(A)$                                         | $sOd) Co(AlO_2)_2$                 |
| 220. Variable valency is she                                    | own by                                   |                                                                       |                                    |
| a) Normal elements                                              | b) Transition elements                   | c) Typical elements                                                   | d) None of these                   |
| 221. Which statement abou                                       | it Hg is correct?                        |                                                                       |                                    |
| a) Hg is the only liquid                                        | I metal                                  |                                                                       |                                    |
| b) Hg <sup>2+</sup> salts are more                              | e stable than $Hg_2^2$ ' salts           | $\mathcal{N}_{\mathcal{N}}$                                           |                                    |
| c) Hg forms no amalga                                           | am with iron and platinum                | () <sup>Y</sup>                                                       |                                    |
| d) All of the above                                             | S.                                       | Y                                                                     |                                    |
| 222. Most abundant transit                                      | ion element is:                          | -) O-                                                                 |                                    |
| a) re                                                           | DJ SC                                    | CJ US                                                                 | a) None of these                   |
| 223. Which one of the folio                                     | wing acts as an oxidizing age.           | $E_{\rm H}^{2+}$                                                      | $d$ ) $Vh^{2+}$                    |
| a) NP <sup></sup><br>224 Which of the owide of the              | DJ SIII-                                 | C) EU <sup>-1</sup>                                                   | d) fb-                             |
| 224. Which of the oxide of $1$                                  | h) Mn O                                  | c) Mn O                                                               | d) MpO                             |
| 225 Which one of the follo                                      | $M_2O_3$<br>wing reactions will occur on | $C_{1} M H_{2} O_{7}$                                                 | elting point?                      |
| a) $2\Delta \sigma N \Omega_{a} \rightarrow 2\Delta \sigma + 1$ | $2NO_2 + O_2$                            | h) $2 \Delta \sigma N \Omega_{a} \rightarrow 2 \Delta \sigma + N_{a}$ | $+ 30_{-}$                         |
| c) $2AgNO_3 \rightarrow 2AgNO_2$                                | $2102 + 0_2$                             | d) $2AgNO_{2} \rightarrow 2Ag + 2Ng$                                  | $10 + 20_{2}$                      |
| 226. Which of the following                                     | z is paramagnetic?                       |                                                                       |                                    |
| a) CuCl <sub>2</sub>                                            | b) CaCl <sub>2</sub>                     | c) CdCl <sub>2</sub>                                                  | d) None of these                   |
| 227. Which does not give a                                      | precipitate with excess of Na            | 0H?                                                                   |                                    |
| a) HgCl <sub>2</sub>                                            | b) HgNO <sub>3</sub>                     | c) FeSO₄                                                              | d) ZnSO4                           |
| 228. Thermite is a mixture                                      | of iron oxide and:                       | у <u>т</u>                                                            | у т<br>Т                           |
| a) Zn powder                                                    | b) K metal                               | c) Na–Hg                                                              | d) Al powder                       |
| 229. Ruby copper is:                                            | ·                                        | , ,                                                                   |                                    |
| a) Cu <sub>2</sub> O                                            | b) Cu(OH) <sub>2</sub>                   | c) CuCl <sub>2</sub>                                                  | d) Cu <sub>2</sub> Cl <sub>2</sub> |
| 230. The actinoids showing                                      | g +7 oxidation state are                 |                                                                       |                                    |
| a) U, Np                                                        | b) Pu, Am                                | c) Np, Pu                                                             | d) Am, Cm                          |
| 231. Which match is incorr                                      | ect?                                     |                                                                       |                                    |
| a) Ammonia soda pro                                             | cess – manufacture of potassi            | ium carbonate                                                         |                                    |
| b) Bessemer's process                                           | – manufacture of steel                   |                                                                       |                                    |
| c) Mac Arthur and For                                           | est process – extraction of si           | lver                                                                  |                                    |
| d) Dow's process – ma                                           | nufacture of phenol                      |                                                                       |                                    |

| 232. Carbon conte                      | ent of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                        |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|--|--|--|
| a) Steel is in                         | a) Steel is in between those of cast iron and wrought iron.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                        |  |  |  |
| b) Cast iron i                         | b) Cast iron is in between those of steel and wrought iron.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                        |  |  |  |
| c) Wrought i                           | c) Wrought iron is in between those of steel and cast iron.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                        |  |  |  |
| d) Steel is hig                        | her than that of pig iron.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                                        |  |  |  |
| 233. Which of the                      | following pair is coloured in aque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ous solution?                          |                                        |  |  |  |
| a) Sc <sup>3+</sup> , Co <sup>2+</sup> | b) Ni <sup>2+</sup> , Cu <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c) Ni <sup>2+</sup> , Ti <sup>3+</sup> | d) Sc <sup>3+</sup> , Ti <sup>3+</sup> |  |  |  |
| 234. ZnSO <sub>4</sub> on hea          | iting to 800°C gives:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                        |  |  |  |
| a) $ZnO + SO_2$                        | $+0_2$ b) $Zn + SO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c) $ZnS + O_2$                         | d) $Zn + SO_2 + O_2$                   |  |  |  |
| 235. The ionizatio                     | n potential of transition metals is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | than <i>p</i> -block elements.         |                                        |  |  |  |
| a) Less                                | b) More                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c) Equal                               | d) None of these                       |  |  |  |
| 236. Spiegeleisn is                    | s an alloy of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |  |  |  |
| a) Fe, Co and                          | Cr b) Fe, Co and Mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c) Fe, Mg and C                        | d) Fe, C and Mn                        |  |  |  |
| 237. Which of the                      | following group of transition meta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | als is called coinage metals?          |                                        |  |  |  |
| a) Cu, Ag, Au                          | b) Ru, Rh, Pd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c) Fe, CO, Ni                          | d) Os, Ir, Pt                          |  |  |  |
| 238. Cadmipone is                      | s a mixture of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                        |  |  |  |
| a) CdS and Ba                          | aSO <sub>4</sub> b) CaSO <sub>4</sub> and BaS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c) CaS and $ZnSO_4$                    | d) CaSO₄ and ZnS                       |  |  |  |
| 239. Which one of                      | the following does not correctly r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | represent the correct order of         | the property indicated against         |  |  |  |
| it?                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                        |  |  |  |
| a) Ti < V < C                          | r < Mn : increasing number of oxid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dation states                          |                                        |  |  |  |
| b) $Ti^{3+} < V^{3-}$                  | $^{+}$ < Cr <sup>3+</sup> < Mn <sup>3+</sup> : increasing mag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | netic moment                           |                                        |  |  |  |
| c) Ti < V < C                          | r < Mn : increasing melting points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                        |  |  |  |
| d) Ti < V < M                          | 1n < Cr: increasing 2 <sup>nd</sup> ionization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | enthalpy                               |                                        |  |  |  |
| 240. In chromite c                     | pre, the oxidation number of iron a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and chromium are respectivel           | V                                      |  |  |  |
| (2 + 3) + 3 + 2                        | (h) $+3 +6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c) + 2 + 6                             | d) +2 +3                               |  |  |  |
| 241. The compour                       | nd which gives oxygen on moderat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | te heating is:                         | aj + 2, + 0                            |  |  |  |
| a) Zinc oxide                          | b) Mercuric oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c) Aluminium oxide                     | d) Ferric oxide                        |  |  |  |
| 242. The form of i                     | ron having the highest carbon con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tent is                                |                                        |  |  |  |
| a) Cast iron                           | b) Wrought iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c) Stainless steel                     | d) Mild steel                          |  |  |  |
| 243. An ore of silv                    | er is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0) 0 00000 00000                       |                                        |  |  |  |
| a) Argentite                           | b) Stibnite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c) Haematite                           | d) Bauxite                             |  |  |  |
| 244. Roasting of H                     | gS in air produces:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0) 1100110000                          |                                        |  |  |  |
| a) HgO                                 | b) HgSO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c) HgSO4                               | d) Hg                                  |  |  |  |
| 245. Transuranic                       | elements begins with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0) 119004                              | a) 11g                                 |  |  |  |
| a) Nn                                  | b) Cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c) Pu                                  | d) II                                  |  |  |  |
| 246 A solution wi                      | and hold with $H_2O$ and hold given by the second | ives a white ppt. On addition (        | of excess NH (C)/NH (OH the            |  |  |  |
| volume of pro                          | ecipitate decreases due to dissolut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion leaving behind a white ge         | latinous precipitate. The              |  |  |  |
| precipitate w                          | hich dissolves in NH <sub>4</sub> OH/NH <sub>4</sub> Cl is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S:                                     |                                        |  |  |  |
| a) $Zn(OH)_{a}$                        | b) $Al(OH)_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c) $Mg(OH)_{2}$                        | d) $Ca(OH)_{a}$                        |  |  |  |
| 247 Which of the                       | following is not correct about trar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $r_{1}$ sition metals?                 |                                        |  |  |  |
| a) Their com                           | nounds are generally coloured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b) They can form ionic                 | or covalent compounds                  |  |  |  |
| c) Their melt                          | ing and hoiling points are high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d) They do not exhibit                 | variable valency                       |  |  |  |
| 248 Which one of                       | the following does not decolouris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e an acidified KMnO, solution          | 1 <sup>2</sup>                         |  |  |  |
|                                        | h) Fe(]_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c) $H_2 O_2$                           | d) FeSO.                               |  |  |  |
| 249 Which of the                       | following pairs of elements canno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $r_2 \sigma_2$                         | 4)10004                                |  |  |  |
| a) 7n Cu                               | h) Fe Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c) Fe C                                | d) Hø Na                               |  |  |  |
| 250 Which is kno                       | wn as nurnle of Cassius?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | aj 116, 114                            |  |  |  |
| a) Colloidal a                         | ilver solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                        |  |  |  |
| h) Colloidal a                         | rold solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |  |  |  |
|                                        | olution of soon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                        |  |  |  |
| cj Aqueous s                           | oracion or soap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                        |  |  |  |

| d) As <sub>2</sub> S <sub>3</sub> colloidal solu                                     | ition                                              |                                                    |                                             |  |
|--------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------|--|
| 251. Which of the following ionic species will impart colour to an aqueous solution? |                                                    |                                                    |                                             |  |
| a) Cu <sup>+</sup>                                                                   | b) Zn <sup>2+</sup>                                | c) Cr <sup>3+</sup>                                | d) Ti <sup>4+</sup>                         |  |
| 252. The outer electronic o                                                          | onfiguration of Gd (At. No 6                       | 54) is                                             |                                             |  |
| a) 4f <sup>3</sup> 5d <sup>5</sup> 6s <sup>2</sup>                                   | b) 4f <sup>8</sup> 5d <sup>0</sup> 6s <sup>2</sup> | c) 4f <sup>4</sup> 5d <sup>4</sup> 6s <sup>2</sup> | d) $4f^{7}5d^{1}s^{2}$                      |  |
| 253. Mercury is a liquid me                                                          | etal because                                       |                                                    |                                             |  |
| a) It has a completely                                                               | filled s-orbital.                                  |                                                    |                                             |  |
| b) It has a small atom                                                               | ic size.                                           |                                                    |                                             |  |
| c) It has a completely                                                               | filled <i>d</i> -orbital that prevent              | ts $d - d$ overlapping of orbi                     | tals.                                       |  |
| d) It has a completely                                                               | filled <i>d</i> - orbital that causes              | d-d overlapping.                                   |                                             |  |
| 254. Composition of azurit                                                           | e mineral is                                       |                                                    |                                             |  |
| a) CuCO <sub>3</sub> . CuO                                                           | b) Cu(HCO <sub>3</sub> ) <sub>2</sub> . Cu(OH)     | $_{2}$ c) 2CuCO <sub>3</sub> . Cu(OH) <sub>2</sub> | d) CuCO <sub>3</sub> . 2Cu(OH) <sub>2</sub> |  |
| 255. What would happen v                                                             | vhen a solution of potassiur                       | n chromate is treated with a                       | in excess of dilute nitric acid?            |  |
| a) $Cr^{3+}$ and $Cr_2O_7^{2-}$ ar                                                   | e formed                                           |                                                    |                                             |  |
| b) $Cr_2 O_7^{2-}$ and $H_2 O$ are                                                   | e formed                                           |                                                    |                                             |  |
| c) $CrO_4^{2-}$ is reduced to                                                        | o + 3 state of Cr                                  |                                                    |                                             |  |
| d) None of the above                                                                 |                                                    | C                                                  |                                             |  |
| 256. Zn gives H <sub>2</sub> gas with H                                              | $H_2SO_4$ and HCl but not with                     | HNO <sub>3</sub> because:                          | <b>&gt;</b>                                 |  |
| a) Zn acts as an oxidis                                                              | ing agent when react with I                        | HNO <sub>3</sub>                                   |                                             |  |
| b) HNO <sub>3</sub> is weaker ac                                                     | id than $H_2SO_4$ and $HCl$                        | 5                                                  |                                             |  |
| c) In electrochemical                                                                | series Zn is above hydroger                        |                                                    |                                             |  |
| d) NO $_{\overline{2}}$ ion is reduced                                               | in preference to hydronium                         | n ion                                              |                                             |  |
| 257. Which of the followin                                                           | g is also known as "Fools go                       | ld"?                                               |                                             |  |
| a) Wurtzite                                                                          | b) Iron pyrites                                    | c) Chalcocite                                      | d) Silver glance                            |  |
| 258. When steam is passed                                                            | l over heated iron, one of th                      | e products is:                                     |                                             |  |
| a) FeO                                                                               | b) $Fe_2O_2$                                       | c) $Fe_2 O_4$                                      | d) FeSO₄                                    |  |
| 259. In the electrolytic refi                                                        | ning of zinc                                       | 0) 10304                                           | a) 10004                                    |  |
| a) Graphite is at the a                                                              | node.                                              | b) The impure metal is                             | at the cathode.                             |  |
| c) The metal ion get r                                                               | educed at the anode.                               | d) Acidified zinc sulpha                           | te is the electrolyte.                      |  |
| 260. Which pair of lanthan                                                           | ides is used in glass, blower                      | s. goggles?                                        |                                             |  |
| a) Np. Pu                                                                            | b) Pu. Gd                                          | c) Fm. Ho                                          | d) Pr. Ho                                   |  |
| 261. One of the following n                                                          | netals forms a volatile comr                       | ound and this property is t                        | aken advantage for its                      |  |
| extraction. This metal                                                               | is                                                 |                                                    |                                             |  |
| a) Iron                                                                              | b) Nickel                                          | c) Cobalt                                          | d) Tungsten                                 |  |
| 262. Pig iron is converted i                                                         | nto steel by reducing the ar                       | nount of carbon contained i                        | n it. in a:                                 |  |
| a) Blast furnace                                                                     | b) Pyrite hurner                                   | c) Bessemer's converte                             | er d) None of these                         |  |
| 263. Which one of the follo                                                          | wing forms a complex of co                         | ordination number 2 with e                         | excess of CN <sup>-</sup> ions?             |  |
| a) Cu+                                                                               | b) Ag <sup>+</sup>                                 | c) Ni <sup>2+</sup>                                | d) $Fe^{2+}$                                |  |
| 264. The radius of $La^{3+}$ (A)                                                     | tomic number of La = 57) is                        | s 1.06 Å. Which one of the fo                      | llowing given values will be                |  |
| closest to the radius of                                                             | f Lu <sup>3+</sup> ?                               |                                                    |                                             |  |
| (Atomic number of Li                                                                 | (=71)                                              |                                                    |                                             |  |
| a) 1 60 Å                                                                            | b) 1 40 Å                                          | c) 1.06 Å                                          | d) 0.85 Å                                   |  |
| 265 When oxyhaemoglobi                                                               | n changes to deoxyhaemog                           | lohin Fe <sup>2+</sup> ion changes from            | 1                                           |  |
| a) Diamagnetic to par                                                                | amagnetic                                          | h) Paramagnetic to dia                             | magnetic                                    |  |
| c) Diamagnetic to fer                                                                | romagnetic                                         | d) Paramagnetic to ferr                            | romagnetic                                  |  |
| 266 Which statement is in                                                            | correct?                                           | uj i aramagnetie to ien                            | omagnetie                                   |  |
| a) Silver alance main                                                                | v contains eilver eulphide                         |                                                    |                                             |  |
| b) Gold is found in not                                                              | y contains silver sulpillue                        |                                                    |                                             |  |
| c) 7inc blanda mainly                                                                | contains zinc chlorida                             |                                                    |                                             |  |
| d) Conner nuritae alac                                                               | contains zinc cinoi lue                            |                                                    |                                             |  |
| uj copper pyrites alst                                                               | $re_2 s_3$                                         |                                                    |                                             |  |

| 267. Amongst $TiF_6^{2-}$ , $CoF_6^{3-}$ , $Cu_2Cl_2$ and $NiCl_4^{2-}$    |                                                                        |                                                                       |  |  |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|
| (atomic no Ti=22, Co=27, Cu=29,Ni=28) the color                            | (atomic no Ti=22, Co=27, Cu=29,Ni=28) the colourless species are       |                                                                       |  |  |  |
| a) $CoF_6^{3-}$ and $NiCl_4^{2-}$ b) $TiF_6^{2-}$ and $CoF_6^{3-}$ ,       | c) Cu <sub>2</sub> Cl <sub>2</sub> and NiCl <sub>4</sub> <sup>2–</sup> | d) TiF <sub>6</sub> <sup>2–</sup> and Cu <sub>2</sub> Cl <sub>2</sub> |  |  |  |
| 268. Among the following series of transition metal ions                   | s, the one where all metal io                                          | ns have $3d^2$ electronic                                             |  |  |  |
| configuration is:                                                          |                                                                        |                                                                       |  |  |  |
| a) $Ti^{3+}, V^{2+}, Cr^{3+}, Mn^{4+}$                                     |                                                                        |                                                                       |  |  |  |
| b) Ti <sup>+</sup> , V <sup>4+</sup> , Cr <sup>6+</sup> , Mn <sup>7+</sup> |                                                                        |                                                                       |  |  |  |
| c) $Ti^{4+}, V^{3+}, Cr^{2+}, Mn^{3+}$                                     |                                                                        |                                                                       |  |  |  |
| d) $Ti^{2+}$ , $V^{3+}$ , $Cr^{4+}$ , $Mn^{5+}$                            |                                                                        |                                                                       |  |  |  |
| 269. Calomel $(Hg_2Cl_2)$ on reaction with ammonium hyd                    | roxide gives                                                           | $\langle \nabla \rangle$                                              |  |  |  |
| a) HgO                                                                     | b) $Hg_2O$                                                             |                                                                       |  |  |  |
| c) $NH_2 - Hg - Hg - Cl$                                                   | d) HgNH <sub>2</sub> Cl                                                |                                                                       |  |  |  |
| 270. Steel resistant to acid is:                                           | , , , , , , , , , , , , , , , , , , , ,                                |                                                                       |  |  |  |
| a) Carbon steel b) Molybdenum steel                                        | c) Stainless steel                                                     | d) Nickel steel                                                       |  |  |  |
| 271. Non-stoichiometric compounds are formed by:                           | ,                                                                      |                                                                       |  |  |  |
| a) Alkali metals                                                           |                                                                        | <b>X</b>                                                              |  |  |  |
| b) Transition elements                                                     | C                                                                      | Y                                                                     |  |  |  |
| c) Noble gases                                                             |                                                                        |                                                                       |  |  |  |
| d) More than one of the above elements                                     |                                                                        |                                                                       |  |  |  |
| 272. $d$ -block elements generally form:                                   |                                                                        |                                                                       |  |  |  |
| a) Covalent hydrides b) Metallic hydrides                                  | c) Interstitial hydrides                                               | d) Salt-like hydrides                                                 |  |  |  |
| 273. The element present in red blood cells of human bl                    | ood is:                                                                |                                                                       |  |  |  |
| a) Fe b) Ra                                                                | c) Co                                                                  | d) All of these                                                       |  |  |  |
| 274. The element which exhibit both vertical and horizo                    | ontal similarities are:                                                |                                                                       |  |  |  |
| a) Inert gas elements                                                      | N N                                                                    |                                                                       |  |  |  |
| b) Representative elements                                                 |                                                                        |                                                                       |  |  |  |
| c) Rare elements                                                           |                                                                        |                                                                       |  |  |  |
| d) Transition elements                                                     |                                                                        |                                                                       |  |  |  |
| 275. Which occurs in nature in free state?                                 |                                                                        |                                                                       |  |  |  |
| a) Fe b) Co                                                                | c) Ni                                                                  | d) Pt                                                                 |  |  |  |
| 276. $H_2S$ is passed in aqueous solution of to give a w                   | hite precipitate of ZnS.                                               |                                                                       |  |  |  |
| a) $ZnCl_2$ b) $Zn(NO_3)_2$                                                | c) (CH <sub>3</sub> COO) <sub>2</sub> Zn                               | d) None of these                                                      |  |  |  |
| 277. Which of the following are <i>d</i> -block elements but no            | ot regarded as transition ele                                          | ments?                                                                |  |  |  |
| a) Cu, Ag, Au b) Zn, Cd, Hg                                                | c) Fe, Co, Ni                                                          | d) Ru, Rh, Pd                                                         |  |  |  |
| 278. Which is the least soluble in water?                                  |                                                                        |                                                                       |  |  |  |
| a) AgCl b) Ag <sub>2</sub> S                                               | c) AgI                                                                 | d) AgBr                                                               |  |  |  |
| 279. Which of the following elements is alloyed with co                    | oper to form brass?                                                    |                                                                       |  |  |  |
| a) Bismuth b) Zinc                                                         | c) Lead                                                                | d) Antimony                                                           |  |  |  |
| 280. When $KMnO_4$ reacts with acidified $FeSO_4$ :                        |                                                                        |                                                                       |  |  |  |
| a) Only FeSO <sub>4</sub> is oxidized                                      |                                                                        |                                                                       |  |  |  |
| b) Only KMnO <sub>4</sub> is oxidized                                      |                                                                        |                                                                       |  |  |  |
| c) FeSO <sub>4</sub> is oxidized and KMnO <sub>4</sub> is reduced          |                                                                        |                                                                       |  |  |  |
| d) None of the above                                                       |                                                                        |                                                                       |  |  |  |
| 281. The nitrate of which metal leaves metallic globule                    | on heating strongly?                                                   |                                                                       |  |  |  |
| a) $Cu(NO_3)_2$ b) $AgNO_3$                                                | c) NaNO <sub>3</sub>                                                   | d) $Pb(NO_3)_2$                                                       |  |  |  |
| 282. Mond process is used in the extraction of:                            |                                                                        |                                                                       |  |  |  |
| a) Co b) Ni                                                                | c) Mo                                                                  | d) Zn                                                                 |  |  |  |
| 283. Blue colour/precipitate will be obtained when $K_4$ []                | Fe(CN) <sub>6</sub> ] reacts with:                                     |                                                                       |  |  |  |
| a) Fe(II) ions b) Cu(II) ions                                              | c) Fe(III) ions                                                        | d) Cu(I) ions                                                         |  |  |  |
| 284. Two of the constituents of German silver are                          |                                                                        |                                                                       |  |  |  |

| a) Ag + Cu                              | b) A                                      | g + Zn                                                                             | c) Cu + Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d) Cu + Sn                     |
|-----------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 285. A metal is left                    | exposed to air fo                         | r sometime. It becom                                                               | nes coated with basic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | green carbonate. The metal is: |
| a) K                                    | b) C                                      | u                                                                                  | c) Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d) Al                          |
| 286. Zn and Cd do r                     | ot show variable                          | e valency, because:                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| a) They have o                          | only two electron                         | s in outermost subs                                                                | hells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |
| b) Their <i>d</i> -sub                  | shells are compl                          | ete                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| c) Their <i>d</i> -sub                  | shells are incom                          | plete                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| d) They are re                          | latively soft meta                        | ls                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 287 One of the imm                      | ortant uses of fe                         | rrous sulphate is in                                                               | the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frown$                       |
| a) Manufactur                           | e of blue-black ir                        | nk                                                                                 | uic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
| h) Manufactur                           | e of chalks                               |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| c) Preparation                          | of hydrogen cul                           | nhida                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| d) Proparation                          | of culphur diovi                          | do                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 200 Pluo vitriol ici                    | i of sulphur uloxi                        | ue                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 200. Dive viti 101 is.                  | ე                                         |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| a) $CuSO_4$ . / $H_2$                   | J DJZ.                                    | $1150_4.7H_20$                                                                     | $C_{1} C_{1} C_{1} C_{4} C_{1} C_{1$ | $d$ $FeSO_4$ . $7H_2O$         |
| 289. Zh does not sh                     | ow variable vale                          | ncy because of                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| a) Complete d                           | -subshell b) Ir                           | iert pair effect                                                                   | c) 4s <sup>2</sup> -subshell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d) None of these               |
| 290. Which of the formula $\frac{1}{2}$ | ollowing stateme                          | ent (s) is/are correct                                                             | t with reference to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ferrous and ferric ions?       |
| a) Fe <sup>s+</sup> given l             | prown colour wit                          | th ammonium thioc                                                                  | yanate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |
| b) Fe <sup>3+</sup> gives b             | orown colour wit                          | h potassium ferricy                                                                | anide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Y                              |
| c) Fe <sup>3+</sup> gives r             | ed colour with p                          | otassium thiocyana                                                                 | te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |
| d) Fe <sup>2+</sup> gives r             | ed precipitate w                          | ith potassium ferric                                                               | yanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |
| 291. In vapour state                    | e Cu(NO <sub>3</sub> ) <sub>2</sub> and ( | $\operatorname{Cu}_2(\operatorname{CH}_3\operatorname{COO})_4.2\operatorname{H}_2$ | 0 exist as:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
| a) Dimer, mon                           | omer b) M                                 | lonomer, dimer                                                                     | c) Monomer, mono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mer d) Dimer, dimer            |
| 292. Which oxide is                     | least stable at ro                        | oom temperature?                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| a) CuO                                  | b) A                                      | g <sub>2</sub> 0                                                                   | c) ZnO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d) $Sb_2O_3$                   |
| 293. Which of the fo                    | ollowing metal is                         | correctly matched                                                                  | with its ore?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |
| Metal                                   | Ore                                       |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| a) Zinc                                 | Calamine                                  |                                                                                    | b) Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ilmenite                       |
| c) Magnesium                            | Cassiterite                               | 9                                                                                  | d) Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Azurite                        |
| 294. Iron is obtaine                    | d on large scale f                        | from haematite(Fe <sub>2</sub>                                                     | $0_3$ ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| a) By reductio                          | n                                         | $\mathbf{\hat{\mathbf{C}}}$                                                        | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |
| b) By oxidation                         | n                                         |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| c) By reductio                          | n followed by ox                          | idation                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| d) By oxidatio                          | n followed by rec                         | luction                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 295. Which oxide o                      | f manganese is a                          | mphoteric?                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| a) MnO                                  | h) M                                      | $\ln \Omega_{2}$                                                                   | c) $Mn_2O_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d) $Mn_2O_2$                   |
| 296 Which among                         | the following me                          | tals does not dissolv                                                              | ve in aqua regia?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a) im203                       |
| a) Pt                                   | h) P                                      | d                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d) Ir                          |
| 297 The one which                       | bas lowest ox n                           | o of Hay                                                                           | CJ Hu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ujn                            |
| 2 $J$ $J$ $J$ $J$ $J$ $J$ $J$ $J$ $J$   | וומא וטעפגנ טג. וו<br>ה) נו               | acl                                                                                | $a) H_{\alpha}(NO)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d) Ha Cl                       |
| 200 The fraction of                     | bj 11<br>Echlorino procini                | tated by AgNO colu                                                                 | tion from $[C_0(NH)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |
| 290. The fraction of $290.$             |                                           | 1 $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$                                              | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $d_{1} = 1/4$                  |
| dJ 1/2                                  | DJ 2                                      | ./3                                                                                | C) 1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uj 1/4                         |
| 299. Which stateme                      | ent is correct?                           |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| a) La rods are                          | used in atomic r                          | eactors to slow dow                                                                | in nuclear reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
| b) Cd is a good                         | absorber of neu                           | trons                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| c) CdS is used                          | as pigment                                |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| d) All of the ab                        | ove                                       |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 300. Acidified solut                    | ion of chromic a                          | cid on treatment wit                                                               | th hydrogen peroxide y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | yields                         |
| a) $CrO_5 + H_2O_5$                     | )                                         |                                                                                    | b) $H_2Cr_2O_7 + H_2O_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $+ 0_2$                        |

| c) $Cr_2O_3 + H_2O + O_2$                                            | d) $CrO_3 + H_2O + O_2$                 |                                |
|----------------------------------------------------------------------|-----------------------------------------|--------------------------------|
| 301. Substance used in glazing pottery is:                           | , , , , , , , , , , , , , , , , , , , , |                                |
| a) $ZnO$ b) $ZnCl_2$                                                 | c) Alum                                 | d) Calome                      |
| 302. The brown ring complex compound is formulated as                | $Fe(H_2O)_{\epsilon}(NO)]SO_{4}$ . The  | oxidation state of iron is:    |
| a) $+1$ b) $+2$                                                      | c) +3                                   | d) +4                          |
| 303. For the four successive transition elements (Cr. Mn.            | Fe and Co), the stability of            | +2 oxidation state will be     |
| there in which of the following order?                               | ,                                       |                                |
| a) $Cr > Mn > Co > Fe$                                               |                                         |                                |
| b) $Mn > Fe > Cr > Co$                                               |                                         | $\frown$                       |
| c) Fe > Mn > Co > Cr                                                 |                                         |                                |
| d) $Co > Mn > Fe > Cr$                                               |                                         |                                |
| (At. Nos. $Cr = 24$ , $Mn = 25$ , $Fe = 26$ , $Co = 27$ )            |                                         |                                |
| 304. Which of the following methods can't be used to pre             | pare anhydrous zinc chlori              | de?                            |
| a) Passing dry chlorine over heated zinc                             | F J                                     |                                |
| b) Passing dry hydrogen chloride over heated zinc                    |                                         |                                |
| c) Heating the crystal of $ZnCl_2 \cdot 2H_2O$                       | A                                       |                                |
| d) Distilling metallic zinc with mercury (II) chloride               | Ċ.                                      |                                |
| 305. Prussian blue is due to formation of                            |                                         |                                |
| a) $Fe[Fe(CN)_{2}]_{2}$ b) $Fe_{2}[Fe(CN)_{2}]_{2}$                  | c) $Fe_{4}[Fe(CN)_{c}]_{c}$             | d) $Fe_2[Fe(CN)_2]$            |
| 306 For which one of the following ions the colour is not            | t due to a $d - d$ transition?          |                                |
| a) $CrO^{2-}$ b) $Cu(NH_2)^{2+}$                                     | c) $Ti(H_2O)^{3+}$                      | d) $CoF_{3}^{3-}$              |
| 307 Which of the following statement is not correct?                 | c) II(II20) <sub>6</sub>                |                                |
| a) $L_{a}(OH)_{a}$ is less basic than $L_{u}(OH)_{a}$                |                                         |                                |
| b) In lanthanide series ionic radius of $In^{3+}$ ions deci          | 0360                                    |                                |
| c) 7n Cd. Hg are colourless and are diamagnetic                      | Case                                    |                                |
| d) Mn shows maximum oxidation state is $\pm 7$                       | Y                                       |                                |
| 200 Which of the following lenthanide is commonly used               | 2                                       |                                |
| a) Lanthanum b) Nobolium                                             | c) Thorium                              | d) Corium                      |
| a) Lanuianum D) Nobelium                                             |                                         | u) certuin                     |
| a) Mixture of notaccium forrigranida and ammonium                    | n forria citrato or forria ova          | lata                           |
| a) Mixture of potassium ferricyanide and ammonium                    |                                         | nate                           |
| c) Prussion blue                                                     |                                         |                                |
| d) None of the above                                                 |                                         |                                |
| 210. Colour in transition motal compounds is attributed t            |                                         |                                |
| a) Small sized metal ions                                            | .0.                                     |                                |
| a) Shian sized metal folis                                           |                                         |                                |
| c) Complete ng subshell                                              |                                         |                                |
| d) d d transition                                                    |                                         |                                |
| $\frac{u}{u} = u \text{ transition}$                                 |                                         |                                |
| a) Fe                                                                | c) Ni                                   | d) V                           |
| a) re DJ CO<br>212 Various methods have been employed for protecting | U INI                                   | uj v                           |
| 512. Various methods have been employed for protecting               | ing                                     | of the following is incorrect? |
| a) Zinc plating is more permanent than chrome plat.                  | ing                                     |                                |
| c) Tin plating is sheap but uproliable                               |                                         |                                |
| d) None of the choice                                                |                                         |                                |
| a) None of the above                                                 | aan auddanler nlun aad inta             | cold water This treatment      |
| sis. A clock spring is neared to a night temperature and the         | ien suudeniy plunged into               | colu water. This treatment     |
| will cause the metal to become:                                      |                                         |                                |
| a) Soft and ductile                                                  |                                         |                                |
| DJ More springy than before                                          |                                         |                                |
| c) Hard and brittle (case hardening)                                 |                                         |                                |

|    | d) Strongly magnetic                 |                                                |                                         |                               |
|----|--------------------------------------|------------------------------------------------|-----------------------------------------|-------------------------------|
| 31 | 4. Which has the lowest me           | lting point?                                   |                                         |                               |
|    | a) Cs                                | b) Na                                          | c) Hg                                   | d) Sn                         |
| 31 | 15. The temperature of the s         | lag zone in the metallurgy o                   | of iron using blast furnace i           | S                             |
|    | a) 1200-1500°c                       | b) 1500-1600°c                                 | c) 400-700°c                            | d) 800-1000°c                 |
| 31 | l 6. Oxygen is absorbed by m         | olten Ag, which is evolved                     | on cooling and the silver pa            | articles are scattered; the   |
|    | phenomenon is known as               | S:                                             |                                         |                               |
|    | a) Silvering of mirror               | b) Spitting of silver                          | c) Frosting of silver                   | d) Hairing of silver          |
| 31 | 17. Which of the following st        | atements regarding copper                      | r salts is not true?                    |                               |
|    | a) Copper(I) Disproporti             | onates into Cu and Cu(II) in                   | n aqueous solution                      | $\sim$                        |
|    | Copper(I) can be stabi               | lised by the formation of in                   | isoluble complex compoun                | ds such as $CuCl_{2}^{-}$ and |
|    | $^{\text{b}}$ Cu(CN) <sub>2</sub>    | -                                              |                                         |                               |
|    | c) Copper(I) oxide is red            | powder                                         |                                         |                               |
|    | d) Hydrated CuSO <sub>4</sub> is Cu( | $(H_20)_4$ ]SO <sub>4</sub> . H <sub>2</sub> O |                                         |                               |
| 31 | 18. Which compound cannot            | be prepared?                                   |                                         |                               |
|    | a) $Zn(OH)_2$                        | b) $Cd(OH)_2$                                  | c) $Hg(OH)_2$                           | d) HgCl <sub>2</sub>          |
| 31 | 19. The colour of solution ob        | tained by adding excess of                     | KI in the solution of HgCl <sub>2</sub> | is:                           |
|    | a) Orange                            | b) Brown                                       | c) Red                                  | d) Colourless                 |
| 32 | 20. Which of the following is        | the correct sequence of ato                    | omic weights of given elem              | ents?                         |
|    | a) Co > $Ni$ > $Fe$                  | b) Fe > <i>Co</i> > <i>NI</i>                  | c) Fe > Ni > Co                         | d) Ni > $Co > Fe$             |
| 32 | 21. Which of the following is        | known as lunar caustic wh                      | ien in the fused state?                 | ,                             |
|    | a) Silver nitrate                    | b) Silver sulphate                             | c) Silver chloride                      | d) Sodium sulphate            |
| 32 | 22. Silver chloride dissolves        | in a solution of ammonia b                     | ut not in water because:                | <b>y</b>                      |
|    | a) Ammonia is a better so            | olvent than water                              |                                         |                               |
|    | b) Silver ion forms a com            | plex ion with ammonia                          | $\mathbf{\nabla}$                       |                               |
|    | c) Ammonia is a stronger             | r base than water                              |                                         |                               |
|    | d) The dipole moment of              | water molecule is higher the                   | han that of ammonia molec               | ule                           |
| 32 | 23. Which metal is ferromage         | netic?                                         |                                         |                               |
|    | a) Cr                                | b) Fe                                          | c) Zn                                   | d) Al                         |
| 32 | 24. Which of the following is        | called white vitriol?                          | ,                                       | ,<br>,                        |
|    | a) ZnCl <sub>2</sub>                 | b) MgSO <sub>4</sub> $\cdot$ 7H <sub>2</sub> O | c) $Al_2(SO_4)_3$                       | d) $ZnSO_4 \cdot 7H_2O$       |
| 32 | 25. The process of heating of        | steel to temperature much                      | below redness and then s                | lowly cooling is called:      |
|    | a) Annealing                         | b) Hardening                                   | c) Tempering                            | d) Case hardening             |
| 32 | 26. "925 fine silver" means a        | n alloy of                                     |                                         | ý <u> </u>                    |
|    | a) 7.5 % of Ag and 92.5 %            | 6 Cu                                           | b) 92.5 % Ag and 7.5% C                 | u                             |
|    | c) 80% Ag and 20% Cu                 |                                                | d) 90% Ag and 10% Cu                    |                               |
| 32 | 27. The compound used in p           | reservation of wood is:                        | <i>,</i> 0                              |                               |
|    | a) NaCl                              | b) HgCl <sub>2</sub>                           | c) ZnCl <sub>2</sub>                    | d) $CaCl_2$                   |
| 32 | 28. In photography we use            | , , , ,                                        | , 2                                     | <i>y</i> 2                    |
|    | a) AgI                               | b) NH <sub>3</sub>                             | c) AgCl                                 | d) AgBr                       |
| 32 | 29. Brass, bronze and Germa          | in silver have one common                      | metal. This is                          | , ,                           |
| Ċ  | a) Zn                                | b) Fe                                          | c) Al                                   | d) Cu                         |
| 33 | 30. Transition metal used for        | r making joins in jewellery                    | is                                      | 5                             |
|    | a) Zn                                | b) Cu                                          | c) Ag                                   | d) Cd                         |
| 33 | 31. Which of the following el        | ements has the maximum f                       | first ionization potential?             | ,                             |
|    | a) V                                 | b) Ti                                          | c) Mn                                   | d) Cr                         |
| 33 | 32. Fulminating gold is:             | ,                                              | ,                                       | ,                             |
|    | a) CuFeS <sub>2</sub>                |                                                |                                         |                               |
|    | b) FeS <sub>2</sub>                  |                                                |                                         |                               |
|    | c) $Au(NH_2) = NH \text{ or } AuN$   | V2H3                                           |                                         |                               |
|    | d) AuCl <sub>3</sub>                 | ل ـ                                            |                                         |                               |
|    | <i>, , , ,</i>                       |                                                |                                         |                               |

| 333. | The transition metal pres               | sent in vitamin B <sub>12</sub> is:                          |                              |                                 |
|------|-----------------------------------------|--------------------------------------------------------------|------------------------------|---------------------------------|
|      | a) Fe                                   | b) Co                                                        | c) Ni                        | d) Na                           |
| 334. | The most convenient met                 | thod to protect bottom of s                                  | hip made of iron is          |                                 |
|      | a) Coating with red lead                | oxide                                                        | b) Connecting with 'Pb' b    | lock                            |
|      | c) Connecting with 'Mg' b               | olock                                                        | d) White tin plating         |                                 |
| 335. | The reaction $MnO_4^- + e -$            | $\rightarrow$ MnO <sub>4</sub> <sup>2-</sup> takes place in: |                              |                                 |
|      | a) Basic medium                         |                                                              |                              |                                 |
|      | b) Acidic medium                        |                                                              |                              |                                 |
|      | c) Neutral medium                       |                                                              |                              |                                 |
|      | d) Both acidic and basic r              | nedium                                                       |                              |                                 |
| 336. | Which metal is used in m                | aking cathode containers o                                   | of dry cell?                 |                                 |
|      | a) Zn                                   | b) Bi                                                        | c) Cr                        | d) Fe                           |
| 337. | Railway wagon axles are                 | made by heating iron rods                                    | embedded in charcoal pow     | vder. This process is known     |
|      | as                                      | , 0                                                          | Ĩ                            |                                 |
|      | a) Tempering                            | b) Case hardening                                            | c) Sherardising              | d) Annealing                    |
| 338. | The methods chiefly used                | l for the extraction of lead a                               | and tin from their ores are  | respectively                    |
|      | a) Self reduction and carl              | bon reduction                                                | b) Self reduction and eleg   | ctrolytic reduction             |
|      | c) carbon reduction and                 | self reduction                                               | d) Cyanide process and c     | arbon reduction                 |
| 339. | The most stable oxidation               | n state of lanthanides is                                    |                              |                                 |
|      | a) +2                                   | b) +4                                                        | c) 0                         | d) +3                           |
| 340. | In context of the lanthand              | oids, which of the following                                 | statements is not correct?   | - )                             |
|      | a) There is a gradual deci              | rease in the radii of the me                                 | mbers with increasing ator   | nic number in the series.       |
|      | b) All the members exhib                | it $+3$ oxidation state.                                     |                              |                                 |
|      | c) Because of similar pro               | perties the separation of la                                 | nthanoids is not easy.       |                                 |
|      | . A vailability of 4 <i>f</i> -elec     | trons results in the format                                  | ion of compounds in $+4$ sta | te for all members of the       |
|      | d) series.                              |                                                              |                              |                                 |
| 341. | . The matte obtained in the             | e extraction of copper cont                                  | ains:                        |                                 |
|      | a) FeSiO <sub>2</sub>                   | b) SiO <sub>2</sub> + FeS                                    | c) FeS + $Cu_2S$             | d) $CuS + SiO_2 + FeO$          |
| 342. | The electronic configurat               | ion of actinoids can to be a                                 | ssigned with degree of cert  | tainty because of               |
|      | a) Overlapping of inner o               | orbitals                                                     | 0 0                          | 5                               |
|      | b) Free movement of elec                | ctrons over all the orbitals                                 |                              |                                 |
|      | c) Small energy difference              | e between 5 <i>f</i> and 6 <i>d</i> level                    | S                            |                                 |
|      | d) None of the above                    |                                                              |                              |                                 |
| 343. | In Mac Arthur forrest me                | thod, silver is extracted fro                                | om the solution of Na[Ag(CI  | N) <sub>2</sub> ] by the use of |
|      | a) Fe                                   | b) Mg                                                        | c) Cu                        | d) Zn                           |
| 344. | Transition elements are o               | coloured                                                     | ,                            | ,                               |
|      | a) Due to unpaired <i>d</i> -elle       | ectrons                                                      | b) Due to small size         |                                 |
|      | c) Due to metallic nature               |                                                              | d) All of the above          |                                 |
| 345. | Which one of the element                | ts with the following outer                                  | orbital configurations may   | exhibit the largest number      |
|      | of oxidation states?                    | 5                                                            | 5 ,                          | 5                               |
|      | a) $3d^2 4s^2$                          | b) $3d^34s^2$                                                | c) $3d^54s^1$                | d) $3d^54s^2$                   |
| 346. | Lanthanide contraction o                | ccurs because                                                | <b>)</b>                     | , - ··· -                       |
|      | a) <i>f</i> -orbitals are incompl       | etelv filled                                                 |                              |                                 |
|      | b) <i>f</i> -orbital electrons are      | easily lost                                                  |                              |                                 |
|      | c) <i>f</i> -orbital do not come        | out on the surface of atom                                   | and are buried inside        |                                 |
|      | d) <i>f</i> -orbital electron are       | poor shielders of nuclear cl                                 | harge                        |                                 |
| 347  | Silver nitrate produces a               | black stain on skin due to:                                  | <b>U</b> <sup>-</sup>        |                                 |
|      | a) Its corrosive action                 |                                                              |                              |                                 |
|      | b) Its reduction to metall              | ic silver                                                    |                              |                                 |
|      | c) Its strong reducing act              | ion                                                          |                              |                                 |
|      | , , , , , , , , , , , , , , , , , , , , |                                                              |                              |                                 |

| d) The formation of a complex compound                                          |                                      |                                      |
|---------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|
| a) $Mr^{2+}$ b) $Ce^{4+}$                                                       | a) $E_{a}^{2+}$                      | d) $Mr^{3+}$                         |
| a) $M\Pi^{-1}$ D) SC <sup>-1</sup>                                              | CJ Fe <sup>-1</sup>                  | u) Mh <sup>2</sup>                   |
| $349$ . The $\pm 3$ for of which one of the following has half-if               | ned 4/ sunshell?                     |                                      |
| aj La Dj Lu                                                                     | C) GO                                | d) Le                                |
| 350. Calomel may be freed from traces of metallic mercu                         | iry by wasning with:                 |                                      |
| a) dil. HNO <sub>3</sub> b) dil. H <sub>2</sub> SO <sub>4</sub>                 | c) Water                             | d) Aqua regia                        |
| 351. One of the following is false for Hg:                                      |                                      |                                      |
| a) It can evolve hydrogen from $H_2S$                                           |                                      |                                      |
| b) It is metal                                                                  |                                      |                                      |
| c) It has high specific heat                                                    |                                      |                                      |
| d) It is less reactive than $H_2$                                               |                                      |                                      |
| 352. Brass is an alloy of:                                                      |                                      |                                      |
| a) Zn and Cu b) Cu and Sn                                                       | c) Zn and Sn                         | d) Cu, Zn and sn                     |
| 353. Maximum paramagnetism in 3 <i>d</i> -series is shown by                    | :                                    |                                      |
| a) Mn b) Co                                                                     | c) Ni                                | d) Fe                                |
| 354. The metal used for making armoured steel for tank                          | s and domestic safes is:             |                                      |
| a) Manganese b) Aluminium                                                       | c) Lead                              | d) Chromium                          |
| 355. Which of the following metals has been used in mal                         | king boats because it has i          | resistance to corrosion by           |
| seawater?                                                                       |                                      |                                      |
| a) W b) Cu                                                                      | c) Ni                                | d) Ti                                |
| 356. Which ore contains both iron and copper?                                   |                                      |                                      |
| a) Cuprite b) Chalcocite                                                        | c) Chalcopyrite                      | d) Malachite                         |
| 357. K Cr $0 \xrightarrow{\Delta} K$ Cr $0 \rightarrow K$ Ln the above reaction | Vic                                  |                                      |
| $R_2 G_2 G_7 \rightarrow R_2 G G_4 + G_2 + \lambda$ . In the above reaction     | a) (r, 0)                            | d) CrO                               |
| a) $GO_3$ b) $G_2O_7$<br>250 Plood red colour colution is produced when forming | $C_{12}C_{3}$                        | $d_{1}$ $c_{1}$ $O_{5}$              |
| a) KCN                                                                          |                                      | $d W [E_{\alpha}(CN)]$               |
| a) KUN D) KSUN                                                                  | CJ KUNU                              | $U_3 K_3 [Fe(CN)_6]$                 |
| a) Fa Ca Ni                                                                     | als is:                              | d) Cra Mra Cra                       |
| a) Fe, Co, NI D) Ku, Kn, Pu                                                     | cj Us, Ir, Pt                        | aj cr, mn, cu                        |
| 360. In the chemical reaction;                                                  |                                      |                                      |
| $Ag_20 + H_20 + 2e \rightarrow 2Ag + 20H$                                       |                                      |                                      |
| a) Water is oxidised b) Electrons are reduced                                   | c) Silver is oxidised                | d) Silver is reduced                 |
| 361. Which is not correct for transition metals?                                |                                      |                                      |
| a) Variable oxidation states                                                    |                                      |                                      |
| b) Complex formation                                                            |                                      |                                      |
| c) Partially filled <i>d</i> -orbitals                                          |                                      |                                      |
| d) All the ions are colourless                                                  |                                      |                                      |
| 362. Magnetic moment of $[Ag(CN)_2]^-$ is zero. How many                        | y unpaired electrons are t           | here?                                |
| a) Zero b) 4                                                                    | c) 3                                 | d) 1                                 |
| 363. The first man-made atom is:                                                |                                      |                                      |
| a) Os b) Na                                                                     | c) Zr                                | d) Tc                                |
| 364. Amongst the following, the lowest degree of param                          | agnetism per mole of the             | compound at 298 K will be            |
| shown by                                                                        |                                      |                                      |
| a) $MnSO_4 .4H_2O$ b) $NiSO_4 .6H_2O$                                           | c) $FeSO_4 .6H_2O$                   | d) $CuSO_4$ .5H <sub>2</sub> O       |
| 365. Which compound does not dissolve in hot, dil. HNO                          | 3?                                   |                                      |
| a) HgS b) PbS                                                                   | c) CuS                               | d) CdS                               |
| 366. Heteropoly acids are formed by:                                            |                                      | -                                    |
| a) Be b) Fe                                                                     |                                      |                                      |
|                                                                                 | c) Mo                                | d) Cr                                |
| 367. When mercury (I) chloride is heated and the vapou                          | c) Mo<br>Ir so evolved are cooled. t | d) Cr<br>he substance on sublimation |

| a) Mercury and mer                                  | cury (II) chloride                       | b) Mercury (II) chlori                    | de                                      |
|-----------------------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------|
| c) Mercury (I) and n                                | ıercury (II) chloride                    | d) Mercury                                |                                         |
| 368. Steel contains:                                |                                          |                                           |                                         |
| a) 2.5–4.5%C                                        | b) 0.5–1.5%C                             | c) 0.12-0.25%C                            | d) 1–2%C                                |
| 369. Silver halides are use                         | ed in photography because t              | hey are:                                  |                                         |
| a) Photosensitive                                   |                                          |                                           |                                         |
| b) Soluble in hypo so                               | olution                                  |                                           |                                         |
| c) Soluble in NH <sub>4</sub> OH                    |                                          |                                           |                                         |
| d) Insoluble in acids                               |                                          |                                           | × ) *                                   |
| 370. A lady's 18 carat gold                         | d wedding ring has become of             | discoloured with some min                 | ute drops of mercury from a             |
| broken thermometer                                  | c. Which of the following trea           | atments would restore it to               | its original condition?                 |
| a) Place it in hot stro                             | ng nitric acid                           |                                           |                                         |
| b) Place it in cold dif                             | ute hydrochloric acid                    |                                           | A +                                     |
| c) Heat it gently in a                              | sand-bath                                |                                           |                                         |
| a) Heat it in chlorine                              | in amalaam ia                            |                                           |                                         |
| 3/1. Oxidation state of Hg                          | h) One                                   | a) Tura                                   | d) Three                                |
| a) Lero                                             | DJ Ulle<br>of iron from an iron avida ar | CJ IWO<br>Limostono is added becau        | d) Three                                |
| a) An ovidizing agon                                | t b) A roducing agent                    | c) A flux                                 | d) A procipitating agent                |
| 373 The coordination nu                             | mber of conner in the compl              | ev formed by adding evces                 | s of NH to CuSO solution is:            |
| 373. The coordination in                            | h) 2                                     | c) 6                                      | d) 5                                    |
| 374 In order to refine "hl                          | ister conner" it is melted in :          | a furnace and is stirred wit              | h green logs of wood The                |
| nurnose is:                                         | ister copper neis meret me               | a fulfilitee und 15 stiffed wit           | in green togs of wood. The              |
| a) To expel the disso                               | lved gases in the blister con            | ner                                       |                                         |
| b) To bring the impu                                | rities to surfaces and oxidis            | e them                                    |                                         |
| c) To increase the ca                               | rbon content of copper                   |                                           |                                         |
| d) To reduce the me                                 | tallic oxide impurities with h           | ydrocarbon gases liberate                 | d from the wood                         |
| 375. Permanent magnets                              | are generally made of alloys             | of                                        |                                         |
| a) Mn                                               | b) Co                                    | c) Pb                                     | d) Zn                                   |
| 376. Which metal sulphid                            | e is not black?                          | -                                         | -                                       |
| a) NiS                                              | b) CoS                                   | c) CuS                                    | d) ZnS                                  |
| 377. The white solid that                           | turns black on addition of N             | H <sub>4</sub> OH is:                     |                                         |
| a) AgCl                                             | b) PbCl <sub>2</sub>                     | c) Hg <sub>2</sub> Cl <sub>2</sub>        | d) $Hg_2I_2$                            |
| 378. Which of the following                         | ng represents ammonium m                 | olybdate?                                 |                                         |
| a) (NH <sub>4</sub> ) <sub>2</sub> MoO <sub>4</sub> | b) (NH <sub>4</sub> )MoO <sub>2</sub>    | c) $(NH_4)_2 MoO_3$                       | d) NH <sub>4</sub> . 12MoO <sub>3</sub> |
| 379. Gold and silver are c                          | alled noble metals, because:             |                                           |                                         |
| a) They do not norm                                 | ally react                               |                                           |                                         |
| b) Even acids cannot                                | dissolve them                            |                                           |                                         |
| c) They are used in j                               | ewellery                                 |                                           |                                         |
| d) They are worn by                                 | noble men                                |                                           |                                         |
| 380. The colour of $_{62}$ Sm <sup>3</sup>          | + is yellow. The expected co             | lour of <sub>66</sub> Dy <sup>3+</sup> is |                                         |
| a) Yellow                                           | b) Red                                   | c) Blue                                   | d) Green                                |
| 381. Which is not an ore o                          | of iron?                                 |                                           |                                         |
| a) Haematite                                        | b) Magnetite                             | c) Cassiterite                            | d) Limonite                             |
| 382. On adding excess of                            | $NH_3$ solution to $LuSU_4$ solution     | $rac{1}{10}$ ion, the dark blue colour is | due to                                  |
| aj $[UU(NH_3)]'$                                    | DJ $[UU(NH_3)_4]^4$                      | $C_{J} [Cu(NH_{3})_{2}]^{2}$              | a) none of these                        |
| sos. Ouler forms of from (                          | an be produced from:                     | a) Diginan                                | d) Stool                                |
| aj Last Iron<br>204 The variaty of iron h           | UJ Wrought from                          |                                           | uj steel                                |
| a) Digiron                                          | aving ingriest meiting point i           | a) Wraughtinan                            | d) Stool                                |
| a) rig 11011                                        | UJ GAST II OII                           | cj wrought from                           | uj steel                                |

| 385. Most of the transition m          | etals are paramagnetic due                     | to the presence of:                  |                                                     |
|----------------------------------------|------------------------------------------------|--------------------------------------|-----------------------------------------------------|
| a) Completed <i>d</i> -orbitals        | b) Completed <i>f</i> -orbitals                | c) Unpaired electrons                | d) None of these                                    |
| 386. Spelter is:                       |                                                | <b>y</b> 1                           | ,                                                   |
| a) Impure Cu                           | b) Impure zinc                                 | c) ZnO                               | d) CuO                                              |
| 387. Which of the following is         | s philosopher's wool?                          | ,                                    | ,                                                   |
| a) ZnO                                 | b) HgO                                         | c) $Ag_20$                           | d) CuO                                              |
| 388. The density of transition         | metalsin a series.                             | ) 02                                 | ,                                                   |
| a) Gradually increases                 | b) Gradually decreases                         | c) Remains constant                  | d) None of these                                    |
| 389. Silver containing lead as         | impurity is purified by                        | ,                                    |                                                     |
| a) Poling                              | b) Cupellation                                 | c) Lavigation                        | d) Distillation                                     |
| 390. Which of the following e          | lements is present as the in                   | purity to the maximum ex             | tent in the pig iron?                               |
| a) Phosphorus                          | b) Manganese                                   | c) Carbon                            | d) Silicon                                          |
| 391. The magnetic moment o             | $f Cu^{2+}$ ion is                             | of carbon                            |                                                     |
| a) 2.73                                | h) Zero                                        | c) 1 93                              | d) 1 73                                             |
| 392 Percentage of nickel in n          | ickel steel is                                 | 0 100                                | uj 1.10                                             |
| a) 1 5%                                | h) 3 5%                                        | c) 6 5%                              | d) 8 5%                                             |
| 393 The formula of mercuro             | is ion is:                                     |                                      | 4, 0.5 /0                                           |
| a) Hg <sup>+</sup>                     | b) $Hg^+$                                      | c) $Ha^{2+}$                         | d) None of these                                    |
| 204 Which pair consists only           | of fig2                                        | c) lig <sub>2</sub>                  | uj none or these                                    |
| 2) (r0 Mn 0                            | b) $7n0$ Al 0                                  | c) $C_{2}$ $O$ $T_{n}$ $O$           |                                                     |
| 305 The extraction of which            | of the following metals invo                   | lyos bessemerization?                | u) Na <sub>2</sub> 0, M <sub>2</sub> 0 <sub>3</sub> |
|                                        | b) Ag                                          |                                      | d) ( u                                              |
| a) re<br>206 Nosslar's reagant is:     | DJ Ag                                          | CJ AI                                | u) cu                                               |
| a) Klig                                | b) V. Ugi                                      | a) $V$ Hal $+$ NaOH                  | d) Kura – NaQu                                      |
| a) Kngl <sub>4</sub>                   | $U \int K_2 \Pi g I_4$                         | $C_{1} K_{2} \Pi g I_{4} + Na U \Pi$ | $u_J \operatorname{Kngl}_4 + \operatorname{NaOn}$   |
| sy. Mac Arthur and Forest c            | h) Ag and Au                                   |                                      | 4) (                                                |
| a) Cu<br>200 Which is the shief are of | b) Ag and Au                                   | c) re                                | u) cr                                               |
| 398. Which is the chief ofe of         | h) Connor numitor                              | a) Cabalarita                        | d) Cidovita                                         |
| a) Galena                              | b) Copper pyrites                              | c) Sphalerite                        | d) Siderite                                         |
| 399. Spiegeleisen is an alloy o        |                                                |                                      |                                                     |
| a) Fe and Mn                           | b) Fe, Min and C                               | c) Fe, Mn and Cr                     | d) Fe and Cr                                        |
| 400. Among the following ion           | s (hydrated), the colourless $1 \times C^{2+}$ | s metal ion is                       | N N 2+                                              |
| a) Cu'                                 | $b \int C u^{2} $                              | c) Fe <sup>2</sup>                   | d) Mn <sup>2</sup>                                  |
| 401. Transition elements exh           | ibit positive oxidation state                  | s only. This is because of:          |                                                     |
| a) Their large size of the             | atoms                                          |                                      |                                                     |
| b) Their electropositive               | nature                                         |                                      |                                                     |
| c) Their electronegative               | nature                                         |                                      |                                                     |
| d) Their paramagnetic n                | ature                                          |                                      |                                                     |
| 402. I ransition metal with lo         | w oxidation number will ac                     | tas                                  |                                                     |
| a) An oxidizing agent                  | b) A base                                      | c) An acid                           | d) None of these                                    |
| 403. The composition of bell           | metal is                                       |                                      |                                                     |
| a) $Cu + Sn$                           | b) $Cu + Ni$                                   | c) $Lu + Zn$                         | d) Cu + Ag                                          |
| 404. The most correct statem           | ent for transition metals is:                  |                                      |                                                     |
| a) They possess low b.p.               | <i>cc</i> .                                    |                                      |                                                     |
| b) They exhibit inert pai              | r effect                                       |                                      |                                                     |
| cj They exhibit variable               | oxidation states                               |                                      |                                                     |
| d) They do not possess c               | atalytic property                              | . 1                                  |                                                     |
| 405. During the process of ele         | ectrolytic refining of copper                  | , some metals present as in          | npurity settle as 'anode                            |
| muď.                                   |                                                |                                      |                                                     |
| These are                              |                                                |                                      |                                                     |
| a) Fe and Ni                           | b) Ag and Au                                   | c) Pb and Zn                         | d) Se and Ag                                        |

| 406. A compound of a metal ic                                    | on $M^{x+}$ (Z = 24) has a spin          | only magnetic moment of                                                                                                               | $\sqrt{15}$ Bohr Magnetons. The                       |
|------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| number of unpaired elect                                         | trons in the compound are                | :                                                                                                                                     |                                                       |
| a) 2                                                             | b) 4                                     | c) 5                                                                                                                                  | d) 3                                                  |
| 407. Lightest transition eleme                                   | nt is:                                   |                                                                                                                                       |                                                       |
| a) Fe                                                            | b) Sc                                    | c) Os                                                                                                                                 | d) Co                                                 |
| 408. AuCl <sub>3</sub> when heated in air                        | gives:                                   |                                                                                                                                       |                                                       |
| a) Gold oxide                                                    | b) Gold perchlorate                      | c) Gold nitride                                                                                                                       | d) AuCl                                               |
| 409. White vitriol is:                                           |                                          |                                                                                                                                       |                                                       |
| a) CuSO <sub>4</sub> . 5H <sub>2</sub> O                         | b) FeSO <sub>4</sub> . 7H <sub>2</sub> O | c) ZnSO <sub>4</sub> .7H <sub>2</sub> O                                                                                               | d) NiSO <sub>4</sub> . 5H <sub>2</sub> O              |
| 410. The metal which liberate                                    | s hydrogen from hot NaOH                 | I solution is:                                                                                                                        |                                                       |
| a) Zn                                                            | b) Cu                                    | c) Ag                                                                                                                                 | d) Fe                                                 |
| 411. A yellow precipitate will                                   | be obtained if AgNO <sub>3</sub> is ad   | ded to a solution of:                                                                                                                 |                                                       |
| a) KIO <sub>3</sub>                                              | b) KI                                    | c) CHI <sub>3</sub>                                                                                                                   | d) $CH_2I_2$                                          |
| 412. Which form of iron has lo                                   | west percentage of carbor                | 1?                                                                                                                                    |                                                       |
| a) Cast iron                                                     |                                          |                                                                                                                                       |                                                       |
| b) Wrought iron                                                  |                                          | •                                                                                                                                     |                                                       |
| c) Steel                                                         |                                          |                                                                                                                                       |                                                       |
| d) All have same percent                                         | age                                      |                                                                                                                                       | <i>J</i>                                              |
| 413. The element that does no                                    | ot form a nitride is:                    |                                                                                                                                       |                                                       |
| a) Al                                                            | b) Mg                                    | c) Ag                                                                                                                                 | d) Ca                                                 |
| 414. When dil. $H_2SO_4$ is added                                | l to aqueous solution of po              | tassium chromate, yellow o                                                                                                            | colour of solution turns to                           |
| orange colour. It indicate                                       | S                                        |                                                                                                                                       |                                                       |
| a) Chromate ions are red                                         | uced.                                    |                                                                                                                                       |                                                       |
| b) Chromate ions are oxid                                        | dised.                                   |                                                                                                                                       |                                                       |
| c) Mono centric complex                                          | is converted into dicentric              | c complex.                                                                                                                            |                                                       |
| d) Oxygen gets removed                                           | from chromate ions.                      |                                                                                                                                       |                                                       |
| 415. Copper exhibits only $+2$                                   | oxidation state in its stable            | e compounds. Why?                                                                                                                     |                                                       |
| a) Copper is transition m                                        | etal in $+2$ state.                      | .1                                                                                                                                    |                                                       |
| b) $+2$ state compounds o                                        | f copper are formed by exe               | othermic reactions.                                                                                                                   |                                                       |
| c) Electron configuration                                        | of copper in $+2$ state is [A            | $r_{3a}^{3a}$ 4s°.                                                                                                                    |                                                       |
| a) copper gives coloured                                         | compounds in $+2$ state.                 |                                                                                                                                       |                                                       |
| 416. In blast furnace the highe                                  | b) Classens                              | a) Combustion zono                                                                                                                    | d) Euclos zono                                        |
| a) Reduction zone                                                | b) Slag zone                             | c) combustion zone                                                                                                                    | d) Fusion zone                                        |
| 417. Annyarous terric chioria                                    | e is prepared by                         | h) Dissoluting Eq(OU) in                                                                                                              | dilute UC                                             |
| a) Dissolving $re(OI)_3$ in<br>a) Descing dry $HCl aver h$       | concentrated fici.                       | d) Dissolving $re(On)_3$ in                                                                                                           | runute fici.                                          |
| 418 Green witrial is                                             | leateu ii oli scrap.                     | uj rassing ury ci <sub>2</sub> gas ov                                                                                                 | er heateu non scrap.                                  |
| 410. dreen vitrioris                                             |                                          |                                                                                                                                       | 1                                                     |
| a) FeSO <sub>4</sub> .7H <sub>2</sub> O                          | b) $ZnSO_4$ . $7H_2O$                    | c) CuSO <sub>4</sub> . 5H <sub>2</sub> O                                                                                              | d) CaSO <sub>4</sub> . $\frac{1}{2}$ H <sub>2</sub> O |
| 419. Photographic films or pla                                   | ites have as an essential                | ingredient.                                                                                                                           | 2                                                     |
| a) Silver bromide                                                | b) Silver oxide                          | c) Silver thiosulphate                                                                                                                | d) Silver nitrate                                     |
| 420. During the extraction of                                    | gold the following reaction              | ns take place                                                                                                                         |                                                       |
| $A_{11} + CN^{-} + H_{10}O_{2}^{0}[V]$                           |                                          |                                                                                                                                       |                                                       |
| $\begin{bmatrix} X \\ -X \\$ |                                          |                                                                                                                                       |                                                       |
| $[X] + ZII \rightarrow$                                          | [I] + Au                                 |                                                                                                                                       |                                                       |
| $\Lambda$ and $I$ are respectively                               | N 14-                                    | b) $[Ay(CN)]^{2-and}[7n(CN)]^{2-and}[7n(CN)]$                                                                                         | CNI) 12-                                              |
| a) $[Au(CN)]^3$ and $[Zn(CN)]^3$                                 | יאני<br>12-                              | D [Au(UN) <sub>4</sub> ] <sup>2</sup> and [Zn(UN) <sub>4</sub> ] <sup>2</sup><br>d) [Au(CN) ] <sup>2</sup> and [Zn(CN) ] <sup>2</sup> |                                                       |
| 421 Second series of transition                                  | un alamanta atarta with                  | uj [ $Au(UV)_2$ ] allu [ $Ln(U)_2$ ]                                                                                                  | 11/4]                                                 |
| - +21. Second series of transitio                                | h) Chromium                              | c) Zinc                                                                                                                               | d) Scandium                                           |
| aj iuliuiii<br>122 The electronic configurat                     | ion of chromium ic                       | CJ ZIIIC                                                                                                                              | uj stanululli                                         |
| 422. The electronic conligurat                                   | IOII OI CIII OIIIIUIII IS                |                                                                                                                                       |                                                       |

|   |     | a) [Ne] $3s^23p^63d^44s^2$                                              |          | b) [Ne] $3s^23p^63d^54s^1$       |                                                        |
|---|-----|-------------------------------------------------------------------------|----------|----------------------------------|--------------------------------------------------------|
|   |     | c) [Ne] $3s^23p^53d^54s^2$                                              |          | d) [Ne] $3s^23p^53d^64s^1$       |                                                        |
| 4 | 123 | . Which of the following belongs to the actinoid s                      | series   | of elements?                     |                                                        |
|   |     | a) Y b) Ta                                                              |          | c) U                             | d) Lu                                                  |
| 4 | 124 | . Which of the following statements is not true in                      | n regai  | rd to transition elemen          | ts?                                                    |
|   |     | a) All their ions are colourless                                        | -0-      |                                  |                                                        |
|   |     | b) They show variable valency                                           |          |                                  |                                                        |
|   |     | c) They readily form complex compounds                                  |          |                                  |                                                        |
|   |     | d) Their ions contain partially filled <i>d</i> -electron               | ı level  | \$                               |                                                        |
| 4 | 125 | Sterling silver:                                                        | 10000    |                                  |                                                        |
| - |     | a) Is an allow of $Ag + Cu$                                             |          |                                  |                                                        |
|   |     | b) Contains 80% Ag $\pm$ 20% Cu                                         |          |                                  |                                                        |
|   |     | c) Is used in jewellery                                                 |          |                                  |                                                        |
|   |     | d) All of the above                                                     |          |                                  |                                                        |
| 4 | 126 | . The impurity of sulphur makes the iron:                               |          |                                  |                                                        |
|   |     | a) Fibrous b) Red short                                                 |          | c) Cold short                    | d) Malleable                                           |
| 4 | 127 | In $C_{11}(Z = 29)$ :                                                   |          | ej dola bilore                   | u) maneuble                                            |
|   | /   | a) 13 electrons have spin in one direction and $\hat{a}$                | 16 eleo  | ctrons in other directio         | n                                                      |
|   |     | b) 14 electrons have spin in one direction and                          | 15 elec  | ctrons in other directio         | n                                                      |
|   |     | c) All the electrons have spin in one direction                         | 10 0100  |                                  |                                                        |
|   |     | d) None of the above                                                    |          |                                  |                                                        |
| 4 | 128 | Which of the following has the maximum numb                             | her of i | unnaired <i>d</i> -elelments?    |                                                        |
|   | 20  | a) $Fe^{2+}$ b) $Cu^+$                                                  | 501 01 0 | c) Zn                            | d) Ni <sup>3+</sup>                                    |
| 4 | 129 | 7n cannot displace the following ions from thei                         | ir aque  | ous solutions:                   |                                                        |
|   |     | a) $A\sigma^+$ b) $Cu^{2+}$                                             | n aqut   | c) $Fe^{2+}$                     | d) Na <sup>+</sup>                                     |
| 4 | 130 | The lanthanide contraction is responsible for the                       | he fact  | that                             | u) Hu                                                  |
|   | 150 | a) Zr and Zn have the same oxidation state                              |          | b) Zr and Hf have abou           | it the same radius                                     |
|   |     | c) 7r and Nh have similar oxidation state                               |          | d) 7r and Y have about           | t the same radius                                      |
| 4 | 131 | Prussian blue is formed when:                                           |          |                                  | t the sume radius                                      |
|   | 101 | a) Ferrous sulphate reacts with FeCla                                   |          |                                  |                                                        |
|   |     | b) Ferric sulphate reacts with $K_4$ [Fe(CN) <sub>2</sub> ]             |          |                                  |                                                        |
|   |     | c) Ferrous ammonium subhate reacts with Fe                              | Cla      |                                  |                                                        |
|   |     | d) Ammonium sulphate reacts with FeCla                                  | 013      |                                  |                                                        |
| 4 | 132 | On the extraction of iron the slag produced is                          |          |                                  |                                                        |
|   | 102 | a) (0 b) FeSiO <sub>2</sub>                                             |          | c) MgSiO2                        | d) CaSiOa                                              |
| 4 | 133 | In the nurification of copper by electrolysis, wh                       | nich is  | incorrect?                       | u) dubio3                                              |
|   |     | a) Acidic solution of Cu(II) subhate is used                            |          |                                  |                                                        |
|   |     | b) $H_2O^+$ ion is discharged at cathode                                |          |                                  |                                                        |
|   |     | c) Anode is made of Impure copper                                       |          |                                  |                                                        |
|   |     | d) $OH^{-}$ is discharged at anode                                      |          |                                  |                                                        |
| 4 | 134 | HgCl <sub>a</sub> is reduced to $Hg_2Cl_a$ by:                          |          |                                  |                                                        |
| Ċ |     | a) $CH_2COOH$ b) $CCL_2$                                                |          | c) HCOOH                         | d) NH <sub>2</sub>                                     |
| 4 | 135 | Among the following the compound that is both                           | h nara   | magnetic and coloured            | is                                                     |
|   |     | a) $K_2Cr_2O_7$ b) (NH <sub>4</sub> ) <sub>2</sub> [TiCl <sub>2</sub> ] | ruiu     | c) VOSO4                         | d) $K_2[Cu(CN)_4]$                                     |
| 4 | 136 | Ferrous sulphate (FeSO $_{\star}$ , 7H <sub>2</sub> O) is known as      |          | -, 4                             | ~,···;[ <sup>3</sup> ( <sup>3</sup> ,·) <sub>4</sub> ] |
|   |     | a) Vermillion b) Glauber's salt                                         |          | c) Green vitriol                 | d) Mohr's salt                                         |
| 4 | 137 | . Identify the reaction that does not take place in                     | ı a bla  | st furnace.                      | aj mom o buit                                          |
|   |     | a) $CaCO_2 \rightarrow CaO + CO_2$                                      | 510      | b) $CaO + SiO_2 \rightarrow CaS$ | i0a                                                    |
|   |     | c) $2Fe_2O_2 + 3C \rightarrow 4Fe + 3CO_2$                              |          | d) $CO_2 + C \rightarrow 2CO$    |                                                        |
| 4 | 138 | . The number of incomplete orbitals in inner tra                        | nsitio   | n elements is:                   |                                                        |
|   |     |                                                                         |          |                                  |                                                        |

| a) 3                                                 | b) 4                                         | c) 2                                       | d) 1                     |  |  |
|------------------------------------------------------|----------------------------------------------|--------------------------------------------|--------------------------|--|--|
| 439. The final step in the r                         | netallurgical extraction of Cu               | metal from Cu pyrites tak                  | xes place in a Bessemer  |  |  |
| converter. The reaction taking place is:             |                                              |                                            |                          |  |  |
| a) $Cu_2S + O_2 \rightarrow 2Cu$                     | a) $Cu_2S + O_2 \rightarrow 2Cu + SO_2$      |                                            |                          |  |  |
| b) $4Cu_20 + FeS \rightarrow 8$                      | $Cu + FeSO_4$                                |                                            |                          |  |  |
| c) $2Cu_20 + Cu_2S \rightarrow$                      | $6Cu + SO_2$                                 |                                            |                          |  |  |
| d) $Cu_2S + 2FeO \rightarrow 2$                      | $CuO + 2Fe + SO_2$                           |                                            |                          |  |  |
| 440. The smelting of iron i                          | in a blast furnace involves the              | e following processes:                     |                          |  |  |
| a) Combustion                                        | b) Reduction                                 | c) Slag formation                          | d) All of these          |  |  |
| 441. The flux used in the s                          | melting of copper is:                        |                                            | $\langle \nabla \rangle$ |  |  |
| a) Limestone                                         | b) Magnesia                                  | c) Silica                                  | d) Coke                  |  |  |
| 442. The magnetic momer                              | nt of a salt containing Zn <sup>2+</sup> ion | ı is                                       |                          |  |  |
| a) 0                                                 | b) 1.87                                      | c) 5.92                                    | d) 2                     |  |  |
| 443. The common metal in                             | n brass, bronze and german si                | lver is:                                   |                          |  |  |
| a) Cu                                                | b) Mg                                        | c) Al                                      | d) Zn                    |  |  |
| 444. Which of the followin                           | ig is not a member of 3 <i>d</i> -tran       | sition series?                             |                          |  |  |
| a) Fe                                                | b) Co                                        | c) Au                                      | d) Cu                    |  |  |
| 445. The formula of azurit                           | e is                                         |                                            |                          |  |  |
| a) CuCO <sub>3</sub> .Cu(OH) <sub>2</sub>            | b) 2CuCO <sub>3</sub> . Cu(OH) <sub>2</sub>  | c) CuCO <sub>3</sub> .2Cu(OH) <sub>2</sub> | d) $CuSO_4$ . $Cu(OH)_2$ |  |  |
| 446. The formula of haem                             | atite is :                                   |                                            |                          |  |  |
| a) Fe <sub>3</sub> O <sub>4</sub>                    | b) $Fe_2O_3$                                 | c) FeCO <sub>3</sub>                       | d) FeS <sub>2</sub>      |  |  |
| 447. A substance which tu                            | rns blue when treated with w                 | vater is:                                  |                          |  |  |
| a) CuSO4                                             | b) $CuSO_4 . 5H_2O$                          | c) CoSO <sub>4</sub>                       | d) $Au_2(SO_4)_3$        |  |  |
| 448. Which metal does no                             | t form amalgam?                              |                                            |                          |  |  |
| a) Fe                                                | b)Cu                                         | c) Ag                                      | d) Zn                    |  |  |
| 449. Which of the followin                           | ig is correct?                               | $\mathbf{V}$                               |                          |  |  |
| a) Calomel is mercur                                 | ic chloride                                  |                                            |                          |  |  |
| b) Calomel is widely                                 | used as an antiseptic                        |                                            |                          |  |  |
| c) Calomel is used me                                | edically as purgative                        |                                            |                          |  |  |
| d) Calomel is freely s                               | oluble in water                              |                                            |                          |  |  |
| 450. The process used in c                           | obtaining metallic silver from               | argentite is:                              |                          |  |  |
| a) Fused mixture of A                                | Ag <sub>2</sub> S and KCl is electrolysed    |                                            |                          |  |  |
| b) $Ag_2S$ is reduced w                              | ith CO                                       | _                                          |                          |  |  |
| c) $Ag_2S$ is roasted to                             | $Ag_20$ which is reduced with (              |                                            |                          |  |  |
| d) Treating with NaC                                 | N solution followed by metal                 | displacement with zinc                     |                          |  |  |
| 451. Which one of the follo                          | owing pairs of substances on                 | reaction will not evolve H                 | l <sub>2</sub> gas?      |  |  |
| a) Iron and $H_2SO_4$ (a                             | <i>q</i> )                                   |                                            |                          |  |  |
| b) Iron and steam                                    |                                              |                                            |                          |  |  |
| c) copper and HCI(g)                                 |                                              |                                            |                          |  |  |
| 452 Which statement she                              | alcollol                                     | ູ                                          |                          |  |  |
| 452. Which statement abo                             | suith connor                                 | lg:                                        |                          |  |  |
| a) Zille for first all alloy $h$ $7n^{2+}$ is stable | with copper                                  |                                            |                          |  |  |
| c) Morgury gives com                                 | nounde with 11 and 12 vale                   | ncioc                                      |                          |  |  |
| d) Hais a liquid alom                                | opt                                          | licies                                     |                          |  |  |
| 4.52 Which of the following                          | cin                                          | to protect iron from corre                 | asion?                   |  |  |
| a) Daint                                             | b) Zing motal                                | c) Tin motol                               | d) All of those          |  |  |
| aj raint<br>454. The gas obtained by                 | uj Line metal                                | $c_{j}$ minimetar                          |                          |  |  |
| a) H <sub>2</sub> S                                  | h) CO                                        | c) NO.                                     | d) (O-                   |  |  |
| 455 Blister copportie                                | 0,00                                         | CJ 1102                                    | uj 002                   |  |  |
| 199. Duster copper is                                |                                              |                                            |                          |  |  |

| a) Impure Cu                                                                             | b) Cu alloy                           |                        |
|------------------------------------------------------------------------------------------|---------------------------------------|------------------------|
| c) Pure Cu                                                                               | d) Cu having 1% impu                  | ırity                  |
| 456. Effective magnetic moment of Sc <sup>3+</sup> ion is                                |                                       |                        |
| a) 1.73 b) 0                                                                             | c) 5.92                               | d) 2.83                |
| 457. ZnS containing minute traces of MnS becomes:                                        |                                       |                        |
| a) Deliquescent b) Phosphorescent                                                        | c) Hygroscopic                        | d) None of these       |
| 458. Platinum metal can be dissolved in:                                                 |                                       |                        |
| a) Hot concentrated hydrochloric acid                                                    |                                       |                        |
| b) Hot concentrated nitric acid                                                          |                                       | •                      |
| c) Hot dilute sulphuric acid                                                             |                                       |                        |
| d) A mixture of hydrochloric and nitric acids                                            |                                       |                        |
| 459. Ruthenium carbonyl is:                                                              |                                       |                        |
| a) $Ru(CO)_4$ b) $Ru(CO)_5$                                                              | c) Ru(CO) <sub>8</sub>                | d) Ru(CO) <sub>6</sub> |
| 460. Preparation of looking mirrors involves the use of                                  |                                       |                        |
| a) Red lead                                                                              |                                       |                        |
| b) Ammoniacal silver nitrate                                                             |                                       |                        |
| c) Ammoniacal $AgNO_3$ +red lead                                                         |                                       |                        |
| d) Ammoniacal $AgNO_3$ +red lead + HCHO                                                  |                                       | 0                      |
| 461. In the dichromate dianion :                                                         |                                       |                        |
| a) 4 Cr—O bonds are equivalent                                                           |                                       |                        |
| b) 6 Cr—O bonds are equivalent                                                           |                                       |                        |
| c) all Cr—O bonds are equivalent                                                         |                                       |                        |
| d) all Cr—O bonds are non-equivalent                                                     |                                       |                        |
| 462. In the electrolytic purification of copper some gold                                | d is found in the:                    |                        |
| a) Cathode b) Cathode mud                                                                | c) Anode mud                          | d) None of these       |
| 463. Percentage of gold in 21.6 carat gold is:                                           |                                       | 1) 70                  |
| a) 21.6 b) 90                                                                            | c) 10                                 | d) 70                  |
| 464. An explosion takes place when conc. $H_2SO_4$ is add                                | ed to $KMnO_4$ . Which of the         | e following is formed? |
| a) $MI_2O_7$ b) $MIO_2$                                                                  | $CJ MIISO_4$                          | $M_1 M_2 O_3$          |
| 465. Which statement is not correct?                                                     |                                       |                        |
| a) $Fe(CO)_5$ reacts with $BF_2CI_4$<br>b) Carbonyl complexes are usually formed with tr | ancition motals                       |                        |
| c) All transition metals form mono metallic carbo                                        | ansition metals                       |                        |
| d) The decomposition of Ni( $CO$ ) to give Ni is used                                    | liyis<br>d in the extraction of Ni by | Mond's process         |
| 466 Which is the common ovidation state of the first t                                   | cansition series of elemen            | te?                    |
| a) +2 b) +6                                                                              | c) + 8                                | d) +4                  |
| 467 Which of the following is correct?                                                   | 0                                     |                        |
| a) Duralumin : Al + Cu + Mg + Ag                                                         | h) German silver: Cu                  | + Zn $+$ C             |
| c) Gun metal: $Cu + Zn + Sn$                                                             | d) Solder : Pb $+$ Al                 |                        |
| 468. As percentage of carbon increase in iron, its hardr                                 | less:                                 |                        |
| a) Decreases b) Increases                                                                | c) Remains same                       | d) None of these       |
| 469. Which oxide of Mn is acidic in nature?                                              | ,                                     | 5                      |
| a) MnO b) $Mn_2O_7$                                                                      | c) $Mn_2O_3$                          | d) $MnO_2$             |
| 470. Corrosive sublimate (HgCl <sub>2</sub> ) can be used to distin                      | guish between                         | , <u>,</u>             |
| a) Formic acid and acetic acid                                                           | b) Acetaldehyde and I                 | outanone               |
| c) Formaldehyde and propanone                                                            | d) All of the above                   |                        |
| 471. KMnO <sub>4</sub> in basic medium is used as                                        |                                       |                        |
| a) Strong oxidising agent                                                                | b) Strong reducing ag                 | ent                    |
| c) Strong hydrogenating agent                                                            | d) Poor reducing ager                 | it                     |
| 472. d-block elements are arranged inof periodic tal                                     | ole.                                  |                        |

| a) Three ser             | ies b) Six se              | ries c)                        | Two series                      | d) Four series               |
|--------------------------|----------------------------|--------------------------------|---------------------------------|------------------------------|
| 473. Which one o         | f the following metals i   | s extracted by a carb          | on reduction process?           |                              |
| a) Copper                | b) Iron                    | c)                             | Aluminium                       | d) Magnesium                 |
| 474. The spin onl        | y magnetic moment of       | Mn <sup>4+</sup> ion is nearly |                                 |                              |
| a) 3 BM                  | b) 6 BM                    | c)                             | 4 BM                            | d) 5 BM                      |
| 475. Coinage allo        | y has the composition      | of:                            |                                 |                              |
| a) Ag + Cu +             | - Ni b) Au +               | Ag + Cu c)                     | Au + Zn + Ag                    | d) Ag + Fe + Cu              |
| 476. Which of the        | e following is used for s  | terilization of surgica        | al instruments?                 |                              |
| a) HgCl <sub>2</sub>     | b) ZnCl <sub>2</sub>       | c)                             | Hg <sub>2</sub> Cl <sub>2</sub> | d) ZnO                       |
| 477. Rusting of ir       | on in moist air involve    | S:                             |                                 |                              |
| a) Loss of el            | ectrons by Fe              |                                |                                 |                              |
| b) Gain of el            | ectrons by Fe              |                                |                                 |                              |
| c) Neither g             | ain nor loss of electron   | S                              |                                 |                              |
| d) Hydration             | n of Fe                    |                                |                                 |                              |
| 478. A chocolate         | brown coloured compo       | ound with acetic acid          | and potassium ferrocya          | nide is obtained from a salt |
| solution con             | taining:                   |                                |                                 |                              |
| a) Cu                    | b) Cd                      | c)                             | Sn                              | d) Hg                        |
| 479. What is the         | oxidation state of iron i  | n Mohr's salt?                 |                                 |                              |
| a) +3                    | b) 0                       | c)                             | +2                              | d) +1                        |
| 480. Chrome gree         | en is                      |                                |                                 |                              |
| a) Chromiur              | n nitrate b) Chror         | nium sulphate c)               | Chromium oxide                  | d) Chromium chloride         |
| 481. Which lanth         | anoid compound is use      | d as a most powerful           | liquid lasers after disso       | olving it in selenium        |
| oxychloride              | 2                          | •                              |                                 |                              |
| a) Cerium o              | kide b) Neod               | ymium oxide ()                 | Promethium sulphate             | d) Ceric sulphate            |
| 482. A transition        | metal ion exists in its h  | ighest oxidation stat          | e. It is expected to behave     | ve as                        |
| a) A chelatir            | ig agent                   | b)                             | A central metal in a coo        | rdination compound           |
| c) An oxidis             | ing agent                  | d)                             | A reducing agent                |                              |
| 483. For <i>d</i> -block | elements the first ionis   | ation potential is of t        | he order                        |                              |
| a) Zn <i>&gt; Fe</i>     | > Cu > Cr                  | b)                             | Sc = Ti < V = Cr                |                              |
| c) Zn < <i>Cu</i> ·      | < Ni < Co                  | d)                             | V > Cr > Mn > Fe                |                              |
| 484. Metallic bon        | d is stronger in transiti  | on metals than alkali          | i and alkaline earth meta       | als because of:              |
| a) More nun              | iber of electrons includ   | ling <i>d</i> -electrons       |                                 |                              |
| b) Large size            | e of the atoms             |                                |                                 |                              |
| c) Paramagr              | ietism                     |                                |                                 |                              |
| d) Diamagne              | etism                      |                                |                                 |                              |
| 485. Automobile          | engine blocks are mad      | e up of:                       |                                 |                              |
| a) Stainless             | steel                      |                                |                                 |                              |
| b) Nickel-ch             | romium steel               |                                |                                 |                              |
| c) Cast iron             |                            |                                |                                 |                              |
| d) Wrought               | iron                       |                                |                                 |                              |
| 486. Silver amalg        | am is used in:             |                                |                                 |                              |
| a) Silvering             | of mirror b) Filling       | g of teeth c)                  | Both (a) and (b)                | d) None of these             |
| 487. Which state         | ment is not correct?       |                                |                                 |                              |
| a) Potassiun             | n dichromate oxidises a    | a secondary alcohol in         | nto a ketone                    |                              |
| b) Potassiun             | n permanagnate is a we     | eaker oxidising subst          | tance than potassium di         | chromate                     |
| c) Potassiun             | n permanganate is a sti    | onger oxidizing subs           | tance                           |                              |
| d) All of the            | above statement are co     | orrect                         |                                 |                              |
| 488. The pair of r       | netals which dissolve in   | n NaUH( $aq$ .) is:            |                                 |                              |
| a) Al, Cu                | b) Zn, Co                  | 1 c)                           | Pb, Sn                          | d) Zn, Al                    |
|                          | a attivity of the transiti | on motals and their c          | omnounds is ascribed to         | n thair                      |

| a) Ag                                                                         | b) Fe                                                                                                                      | c) Cu                                     | d) V                                      |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| 508. Transition metals form                                                   | n complexes in their zero o                                                                                                | xidation state. The examp                 | le of the above fact is:                  |
| a) Mn <sub>2</sub> (CO) <sub>10</sub>                                         | b) [Cu(NH <sub>3</sub> ) <sub>4</sub> ]Cl <sub>2</sub>                                                                     | c) $Zn_2[Fe(CN)_6]$                       | d) [Ag(NH <sub>3</sub> ) <sub>2</sub> ]OH |
| 509. Which one of the follo                                                   | wing properties would you                                                                                                  | not expect copper to exhi                 | ibit?                                     |
| a) Malleability                                                               |                                                                                                                            |                                           |                                           |
| b) High thermal condu                                                         | ıctivity                                                                                                                   |                                           |                                           |
| c) Low electrical cond                                                        | uctivity                                                                                                                   |                                           |                                           |
| d) Ductility                                                                  |                                                                                                                            |                                           |                                           |
| 510. Calomel is:                                                              |                                                                                                                            |                                           |                                           |
| a) Hg <sub>2</sub> Cl <sub>2</sub> and Hg                                     | b) HgCl <sub>2</sub>                                                                                                       | c) Hg + HgCl <sub>2</sub>                 | d) Hg <sub>2</sub> Cl <sub>2</sub>        |
| 511. Which of the following                                                   | g reactions represents deve                                                                                                | eloping in photography?                   |                                           |
| a) $AgNO_3 + NaBr \rightarrow A$                                              | AgBr + NaNO <sub>3</sub>                                                                                                   |                                           |                                           |
| b) AgBr + $2NH_3 \rightarrow [A]$                                             | $(NH_3)_2]Br$                                                                                                              |                                           |                                           |
| c) AgBr + $2Na_2S_2O_3$ ·                                                     | $\rightarrow \operatorname{Na}_{3}[\operatorname{Ag}(\operatorname{S}_{2}\operatorname{O}_{3})_{2}] + \operatorname{NaBr}$ | ſ                                         |                                           |
| d) $C_6H_4(OH)_2 + 2AgB$                                                      | $r^{x} \rightarrow C_{6}H_{4}O_{2} + 2HBr + 2A$                                                                            | Ag                                        |                                           |
| 512. Extraction for zinc from                                                 | m zinc blende is achieved b                                                                                                | у                                         |                                           |
| a) Electrolytic reduction                                                     | on                                                                                                                         |                                           |                                           |
| b) Roasting followed b                                                        | y reduction with carbon                                                                                                    |                                           |                                           |
| c) Roasting followed b                                                        | by reduction with another r                                                                                                | netal                                     |                                           |
| d) Roasting followed b                                                        | oy self reduction                                                                                                          |                                           |                                           |
| 513. Chromium compound                                                        | used in tanning of leather                                                                                                 | is:                                       |                                           |
| a) $Cr_2O_3$                                                                  | b) CrO <sub>2</sub> Cl <sub>2</sub>                                                                                        | c) CrCl <sub>3</sub>                      | d) $K_2SO_4$ . $Cr_2(SO_4)_3$ . $24H_2$   |
| 514. FeSO <sub>4</sub> . (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> . 6H | $I_2$ 0 is called                                                                                                          |                                           |                                           |
| a) Green salt                                                                 | b) Glauber's salt                                                                                                          | c) Mohr's salt                            | d) Alum                                   |
| 515. When $MnO_2$ is fused w                                                  | vith KOH, a coloured compo                                                                                                 | ound formed, the product                  | and its colour is                         |
| a) K <sub>2</sub> MnO <sub>4</sub> , purple col                               | our b) KMnO <sub>4</sub> , purple                                                                                          | c) Mn <sub>2</sub> O <sub>3</sub> , brown | d) Mn <sub>3</sub> O <sub>4</sub> , black |
| 516. Anhydrous CuCl <sub>2</sub> and                                          | CuBr <sub>2</sub> exist as:                                                                                                |                                           |                                           |
| a) Monomer                                                                    | b) Dimer                                                                                                                   | c) Trimer                                 | d) polymer                                |
| 517. From a solution of CuS                                                   | $50_4$ , the metal used to recov                                                                                           | ver copper is :                           |                                           |
| a) Na                                                                         | b) Ag                                                                                                                      | c) Hg                                     | d) Fe                                     |
| 518. When $MnO_4$ is fused w                                                  | vith KOH, a coloured compo                                                                                                 | ound is formed. The produ                 | ict and its colour is                     |
| a) K <sub>2</sub> MnO <sub>4</sub> , purple col                               | lour                                                                                                                       | b) Mn <sub>2</sub> O <sub>3</sub> , brown |                                           |
| c) Mn <sub>2</sub> O <sub>4</sub> , black                                     |                                                                                                                            | d) KMnO <sub>4</sub> , purple             |                                           |
| 519. Cerium ( $Z = 58$ ) is an                                                | important member of the l                                                                                                  | anthanides. Which of the f                | following statements about                |
| cerium is incorrect?                                                          |                                                                                                                            | _                                         |                                           |
| a) The common oxidat                                                          | tion state of cerium are $+3$                                                                                              | and +4.                                   |                                           |
| b) The +3 oxidation st                                                        | tate of cerium is more stabl                                                                                               | le than the $+4$ oxidation s              | tate.                                     |
| c) The $+4$ oxidation st                                                      | tate of cerium is not known                                                                                                | in solutions.                             |                                           |
| d) Cerium (IV) acts as                                                        | an oxidizing agent.                                                                                                        |                                           |                                           |
| 520. Which metal is used fo                                                   | or filament of electric bulb?                                                                                              |                                           |                                           |
| a) Pt                                                                         | b) Fe                                                                                                                      | c) W                                      | d) Cu                                     |
| 521. Zinc does not show va                                                    | riable valency like <i>d</i> -block                                                                                        | elements because                          |                                           |
| a) It is low melting                                                          |                                                                                                                            |                                           |                                           |
| b) <i>a</i> -orbital is complet                                               | te                                                                                                                         |                                           |                                           |
| c) It is a soft metal                                                         | ······································                                                                                     | L:L                                       |                                           |
| d) I wo electrons are p                                                       | bresent in the outermost or                                                                                                | DIC                                       |                                           |
| 522. In naemoglobin the iro                                                   | bill snows oxidation state :                                                                                               | a) + 1                                    | 4 - 4                                     |
| aj $\pm 2$                                                                    | DJ +3                                                                                                                      | CJ +1                                     | aj +4                                     |
| 523. The term fool's gold' 1                                                  | s used for a mineral which                                                                                                 | sinnes like gold. It is:                  |                                           |
| a) iron pyrite                                                                | b) copper giance                                                                                                           | cj unnabar                                | aj cadmium sulphide                       |
| 524. An aqueous solution o                                                    | $1 \text{ CuSO}_4$ and $\text{NH}_4$ OH gives a                                                                            | a deep blue complex of:                   |                                           |

| a) Cuprammonium su                     | lphate                                        |                                                     |                           |
|----------------------------------------|-----------------------------------------------|-----------------------------------------------------|---------------------------|
| b) Cuprammonium hy                     | droxide                                       |                                                     |                           |
| c) Sodium hexametap                    | hosphate                                      |                                                     |                           |
| d) None of the above                   |                                               |                                                     |                           |
| 525. Blow holes of steel are           | e removed by adding:                          |                                                     |                           |
| a) C                                   | b) Ni                                         | c) Sand                                             | d) Spiegeleisen           |
| 526. A mixture of $TiO_2$ and          | BaSO <sub>4</sub> is called                   |                                                     |                           |
| a) Titanox                             | b) Lithopone                                  | c) White pigment                                    | d) None of these          |
| 527. Which of the following            | g has highest b.p.?                           |                                                     |                           |
| a) Cr                                  | b) Ti                                         | c) Fe                                               | d) Co                     |
| 528. Which group of metals             | s is known as Pt-metals?                      |                                                     |                           |
| a) Fe, Co, Ni                          | b) Ag, Au, Cu                                 | c) Zn, Cd, Hg                                       | d) Ru, Rh, Pd             |
| 529. The compound $ZnFe_2$             | 0 <sub>4</sub> is                             |                                                     |                           |
| a) A normal spinel con                 | npound                                        | b) Interstitial compound                            |                           |
| c) Coordination comp                   | ound                                          | d) Double salt compound                             | 1                         |
| 530. Iron exhibits +2 and -            | +3 oxidation states. Which                    | of the following statements al                      | oout iron is incorrect?   |
| a) Ferrous compound                    | s are relatively more ionic                   | than the corresponding ferric                       | compounds.                |
| b) Ferrous compound                    | s are less volatile than the                  | corresponding ferric compou                         | nds.                      |
| c) Ferrous compound                    | s are more easily hydrolys                    | ed than the corresponding fer                       | ric compounds.            |
| d) Ferrous oxide is mo                 | ore basic in nature than the                  | e ferric oxide.                                     |                           |
| 531. Iron is manufactured              | from the ore                                  |                                                     |                           |
| a) Haematite                           | b) Cryolite                                   | c) Bauxite                                          | d) Chalcopyrite           |
| 532. After partial roasting            | the sulphide ore of copper                    | is reduced by:                                      |                           |
| a) Reduction by carbo                  | n b) Electrolysis                             | c) Self reduction                                   | d) Cyanide process        |
| 533. The bonds presents in             | the structure of dichroma                     | te ion are                                          |                           |
| a) Four equivalent Cr-                 | — O bonds only.                               |                                                     |                           |
| b) Six equivalent Cr —                 | -0 bonds and one $0-0$ bo                     | nd                                                  |                           |
| c) Six equivalent Cr _                 | 0 bonds and one Cr - Cr l                     | hond                                                |                           |
| d) Six equivalent Cr                   | -0 bounds and one Ci $-0$                     | Crhord                                              |                           |
| a) Six equivalent $Cr =$               | -0 bonds and one $Cr - 0 - 0$                 | – Cr bond.                                          |                           |
| 534. Cu <sup>-+</sup> lons would be re | auced to cuprous ion if the                   | er solutions are mixed with an                      | aqueous:                  |
| a) KI solution                         | D) KUI Solution                               | $C_{\rm J}$ K <sub>2</sub> CO <sub>3</sub> solution | a) $K_2 SO_4$ solution    |
| 535. Which one of the folio            | wing elements constitutes                     | a major impurity in pig iron?                       |                           |
| a) Silicon                             | b) Oxygen                                     | c) Sulphur                                          | d) Graphite               |
| 536. Percentage of silver in           | German silver is:                             | -) 100/                                             |                           |
| a) 1.5%                                | DJ 2.5%                                       | c) 10%                                              | d) zero percent           |
|                                        | a in extraction of:                           | -) D4                                               | זא רג:                    |
| a) Fe                                  | DJ LO                                         | CJ Pt                                               | a) N1                     |
| 538. One of the product for            | med when $K_2 Cr_2 O_7$ reacts                | with conc $H_2SO_4$ in cold is                      |                           |
| a) $CrO_3$                             | b) $Cr_2(SO_4)_3$                             | $c_{1}C_{2}C_{3}$                                   | d) $LrU_4Ll_2$            |
| 539. Addition of $K_4$ [Fe(CN]         | $_{6}$ solution to FeCl <sub>3</sub> solution | on gives:                                           |                           |
| a) Ferro-ferricyanide                  | b) Ferri – ferrocyanid                        | e c) Ferri-ferricyanide                             | d) None of these          |
| 540. The reaction between              | copper and hot concentral                     | ted sulphuric acid produces:                        |                           |
| $\sim$ a) SO <sub>2</sub>              | b) $SO_3$                                     | c) H <sub>2</sub>                                   | d) Cu <sup>+</sup> ions   |
| 541. Red hot steel rod on s            | uddenly immersing in wate                     | er becomes:                                         |                           |
| a) Soft and malleable                  | b) Hard and brittle                           | c) Tough and ductile                                | d) Fibrous                |
| 542. Which of the following            | g is obtained when auric ch                   | loride reacts with sodium chl                       | oride?                    |
| a) Na[AuCl]                            | b) Na[AuCl <sub>2</sub> ]                     | c) Na[AuCl <sub>3</sub> ]                           | d) Na[AuCl <sub>4</sub> ] |
| 543. Lanthanum is grouped              | 1 with <i>f</i> -block elements be            | cause                                               |                           |
| a) It has partially fille              | d <i>f</i> -orbitals                          |                                                     |                           |
| b) It has both partially               | filled f and d-orbitals                       |                                                     |                           |

| c) The properties of lanthanum are very similar to t<br>d) It is just before Ce in the Periodic Table | he elements of 4 <i>f</i> -block       |                               |  |  |
|-------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------|--|--|
| 544 The point of dissimilarity between lanthanides and actinides is                                   |                                        |                               |  |  |
| a) Three outermost shells are partially filled                                                        | h) They show oxidation s               | tate of $+3$ (common)         |  |  |
| c) They are called inner transition elements                                                          | d) They are radioactive in             | nature                        |  |  |
| 545 Which of the following is called white vitriol?                                                   | aj mej are radioactive n               | i natur c                     |  |  |
| a) $2\pi$ (l <sub>2</sub> b) MgSQ, $7H_2$ Q                                                           | c) $Al_{\alpha}(SO_{\alpha})_{\alpha}$ | d) $7nSO$ , $7H_{2}O$         |  |  |
| 546 Which metal is nurified by Pattinson's process?                                                   | c) m <sub>2</sub> (504)3               | uj 20004. / 1120              |  |  |
| $3 \ \Delta \sigma$ b) Au                                                                             | c) Fe                                  | d) Sh                         |  |  |
| 547 Which of the following have highest melting points?                                               | c) i c                                 | uj 50                         |  |  |
| a) n-block elements b) s- block elements                                                              | c) $d_{-}$ block elements              | d) None of the above          |  |  |
| 549. Forric ovide in furnace is reduced by:                                                           | cj u <sup>-</sup> block cicilicitis    | uj ivone of the above         |  |  |
| a) C b) H                                                                                             | c) (()                                 | d) CO                         |  |  |
| 549 Which statement is incorrect?                                                                     |                                        | u) co <sub>2</sub>            |  |  |
| a) Iron belongs to $3d$ -transition series of the period                                              | ic table                               |                               |  |  |
| b) Iron belongs to $f_{\rm c}$ -block of the periodic table                                           |                                        |                               |  |  |
| c) Iron belongs to first transition series                                                            | <u> </u>                               |                               |  |  |
| d) Iron belongs to group VIII of the periodic table                                                   |                                        |                               |  |  |
| 550. In India, iron is obtained from the area                                                         |                                        |                               |  |  |
| a) Cassitarita b) Agurita                                                                             | a) Uzamatita                           | d) (muolita                   |  |  |
| a) Cassilence $D$ Azume                                                                               | c) naematite                           | d) ci yolite                  |  |  |
| 551. The Fe <sup>-+</sup> Ion IS:                                                                     |                                        |                               |  |  |
| a) Blue b) Light green                                                                                | c) very dark green                     | a) renow                      |  |  |
| 552. Which ion in aqueous medium has orange colour?                                                   |                                        | $0.00 - 2^{-1}$               |  |  |
| a) $\operatorname{Cr}_2 \operatorname{O}_7^{-1}$ b) $\operatorname{Cr}_3^{-1}$                        | c) MnO <sub>4</sub>                    | d) $MnO_4^2$                  |  |  |
| 553. The compound widely used in making reference ele                                                 | ctrode is:                             |                               |  |  |
| a) $ZnCl_2$ b) $CuSO_4$                                                                               | c) $Hg_2Cl_2$                          | d) HgCl <sub>2</sub>          |  |  |
| 554. Which statement is incorrect about transition eleme                                              | ents                                   |                               |  |  |
| a) All elements form complexes                                                                        |                                        |                               |  |  |
| b) All are paramagnetic                                                                               |                                        |                               |  |  |
| c) All show variable valency                                                                          |                                        |                               |  |  |
| d) All are not coloured ions                                                                          |                                        |                               |  |  |
| 555. The magnetic moment of a transition metal ion is 3.                                              | 87 BM. The number of unpa              | aired electrons present in it |  |  |
| is                                                                                                    |                                        |                               |  |  |
| a) 2 b) 3                                                                                             | c) 4                                   | d) 5                          |  |  |
| 556. Which of the following is a lanthanoid?                                                          |                                        |                               |  |  |
| a) Ta b) Rh                                                                                           | c) Th                                  | d) Lu                         |  |  |
| 557. The flux used in soldering is:                                                                   |                                        |                               |  |  |
| a) HgO b) ZnO                                                                                         | c) CdO                                 | d) None of these              |  |  |
| 558. Ferric sulphate on heating gives:                                                                |                                        |                               |  |  |
| a) $SO_2$ and $SO_3$ b) $SO_2$ only                                                                   | c) SO <sub>3</sub> only                | d) S only                     |  |  |
| 559. The raw materials fed into the blast furnace for mak                                             | ting iron are:                         |                               |  |  |
| a) FeO, CaCO <sub>3</sub> and coke                                                                    |                                        |                               |  |  |
| b) $Fe_2O_3$ , CaO and coke                                                                           |                                        |                               |  |  |
| c) $Fe_2O_3$ , CaCO <sub>3</sub> and coke                                                             |                                        |                               |  |  |
| d) $Fe_3O_4$ , Ca(OH) <sub>2</sub> and coke                                                           |                                        |                               |  |  |
| 560. Which statement about corrosive sublimate is incor                                               | rect?                                  |                               |  |  |
| a) It is prepared by heating mercury in chlorine                                                      |                                        |                               |  |  |
| b) It reduces stannic chloride                                                                        |                                        |                               |  |  |
| c) It oxidizes stannous chloride                                                                      |                                        |                               |  |  |
| d) It sublimes readily                                                                                |                                        |                               |  |  |

| 561. Chalcopyrites is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ore of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                        |                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) Gallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b) Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c) Calcium                                                                                                                                                                                             | d) Magnesium                                                                                                                                             |
| 562. Siderite is an ore of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                        |                                                                                                                                                          |
| a) Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b) Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c) Ag                                                                                                                                                                                                  | d) Fe                                                                                                                                                    |
| 563. Which one of the fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ollowing metals, is extracted o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n smelting of its ore in blast                                                                                                                                                                         | furnace?                                                                                                                                                 |
| a) Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b) Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c) Potassium                                                                                                                                                                                           | d) Magnesium                                                                                                                                             |
| 564. Chromium is used i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in making:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                        |                                                                                                                                                          |
| a) Bronze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b) Brass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c) Stainless steel                                                                                                                                                                                     | d) Electrodes                                                                                                                                            |
| 565. Which lanthanide o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | compound is used as a pigmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt?                                                                                                                                                                                                    | × ) *                                                                                                                                                    |
| a) CeO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b) $Ce(OH)_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c) $Lu(OH)_3$                                                                                                                                                                                          | d) Tb(OH) <sub>3</sub>                                                                                                                                   |
| 566. In the extraction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Zn, the formation of blue flam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne is due to the burning of:                                                                                                                                                                           |                                                                                                                                                          |
| a) ZnO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c) Zn                                                                                                                                                                                                  | d) CO                                                                                                                                                    |
| 567. Among the followi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ng the coloured compound is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                        |                                                                                                                                                          |
| a) CuCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b) $K_3[Cu(CN)_4]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c) $\operatorname{CuF}_2$                                                                                                                                                                              | d) $[Cu(CH_3CN)_4]BF_4$                                                                                                                                  |
| 568. What is the correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | order of spin only magnetic r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | noment (in BM) of Mn <sup>2+</sup> , $Cr^2$                                                                                                                                                            | $v^{-1}$ and $v^{-1}$ ?                                                                                                                                  |
| a) $Mn^{2+} > V^{2+} > C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $hr^{2}$ b) $V^{2}$ > $hr^{2}$ > $Mn^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ' c) $Mn^{2} > Cr^{2} > V^{2}$                                                                                                                                                                         | d) $Cr^{2+} > V^{2+} > Mn^{2+}$                                                                                                                          |
| 569. Stainless steel cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ains:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2.140/C                                                                                                                                                                                               | 1) 20/ C                                                                                                                                                 |
| a) $50\%$ Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b) 2.5%Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c) 14%Cr                                                                                                                                                                                               | d) 2%Lr                                                                                                                                                  |
| 5/0. KMINU <sub>4</sub> (actuic/aik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aline) is not decolourized by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a) Danmana                                                                                                                                                                                             | d) Dronono                                                                                                                                               |
| a) Monr Sait                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D) Uxalic aciu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c) Belizelle                                                                                                                                                                                           | u) Propene                                                                                                                                               |
| 571. A Solution of CI (NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $J_3 J_2$ slowly turns green when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | concentrated nor is added to                                                                                                                                                                           | it. It is due to the formation                                                                                                                           |
| $\frac{01}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b) Cr. O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c) $CrO^{2-}$                                                                                                                                                                                          | d) Chloro complexes                                                                                                                                      |
| 572 Which is not an ore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $b_1 c_2 c_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $c_{1}c_{1}c_{4}$                                                                                                                                                                                      | u) chioro complexes                                                                                                                                      |
| a) Swanite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | h) Calaverite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c) Covellite                                                                                                                                                                                           | d) Bismuth aurite                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c) dovenite                                                                                                                                                                                            | uj Disiliuti aurite                                                                                                                                      |
| 573 Silver indide is use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d to produce artificial rain be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cause:                                                                                                                                                                                                 |                                                                                                                                                          |
| 573. Silver iodide is use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d to produce artificial rain bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cause:                                                                                                                                                                                                 |                                                                                                                                                          |
| 573. Silver iodide is used<br>a) It is easily prepa<br>b) Its structure is id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d to produce artificial rain beo<br>red<br>ce-like                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cause:                                                                                                                                                                                                 |                                                                                                                                                          |
| 573. Silver iodide is used<br>a) It is easily prepa<br>b) Its structure is id<br>c) It can easily be s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cause:                                                                                                                                                                                                 |                                                                                                                                                          |
| 573. Silver iodide is used<br>a) It is easily prepa<br>b) Its structure is id<br>c) It can easily be s<br>d) It is insoluble in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cause:                                                                                                                                                                                                 |                                                                                                                                                          |
| 573. Silver iodide is used<br>a) It is easily prepa<br>b) Its structure is id<br>c) It can easily be s<br>d) It is insoluble in<br>574. The chemical form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cause:                                                                                                                                                                                                 |                                                                                                                                                          |
| <ul> <li>573. Silver iodide is used</li> <li>a) It is easily prepa</li> <li>b) Its structure is id</li> <li>c) It can easily be s</li> <li>d) It is insoluble in</li> <li>574. The chemical formula</li> <li>a) Cu(OH)<sub>2</sub>. 2CuCO</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>b) CuSO <sub>4</sub> . 3Cu(OH) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c) Cu(OH) <sub>2</sub> . CuCO <sub>3</sub>                                                                                                                                                             | d) CuFeS2                                                                                                                                                |
| <ul> <li>573. Silver iodide is used</li> <li>a) It is easily prepa</li> <li>b) Its structure is id</li> <li>c) It can easily be s</li> <li>d) It is insoluble in</li> <li>574. The chemical formula</li> <li>a) Cu(OH)<sub>2</sub>. 2CuCO</li> <li>575. The magnetic mom</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>$B_3$ b) CuSO <sub>4</sub> . 3Cu(OH) <sub>2</sub><br>ent (in BM) of Zn <sup>2+</sup> ion accord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c) Cu(OH) <sub>2</sub> . CuCO <sub>3</sub><br>ding to spin-only formula is                                                                                                                             | d) CuFeS <sub>2</sub>                                                                                                                                    |
| <ul> <li>573. Silver iodide is used</li> <li>a) It is easily prepa</li> <li>b) Its structure is id</li> <li>c) It can easily be s</li> <li>d) It is insoluble in</li> <li>574. The chemical forma</li> <li>a) Cu(OH)<sub>2</sub>. 2CuCO</li> <li>575. The magnetic moma) Zero</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>b) CuSO <sub>4</sub> . 3Cu(OH) <sub>2</sub><br>ent (in BM) of Zn <sup>2+</sup> ion accord<br>b) 1.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cause:<br>c) $Cu(OH)_2$ . $CuCO_3$<br>ding to spin-only formula is<br>c) 2.84                                                                                                                          | d) CuFeS <sub>2</sub><br>d) 3.87                                                                                                                         |
| <ul> <li>573. Silver iodide is used</li> <li>a) It is easily prepa</li> <li>b) Its structure is id</li> <li>c) It can easily be s</li> <li>d) It is insoluble in</li> <li>574. The chemical formula</li> <li>a) Cu(OH)<sub>2</sub>. 2CuCO</li> <li>575. The magnetic momula</li> <li>a) Zero</li> <li>576. Zinc reacts with ves</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>$B_3$ b) CuSO <sub>4</sub> . 3Cu(OH) <sub>2</sub><br>ent (in BM) of Zn <sup>2+</sup> ion accord<br>b) 1.73<br>ry dilute nitric acid to produce                                                                                                                                                                                                                                                                                                                                                                                                                                                | c) Cu(OH) <sub>2</sub> . CuCO <sub>3</sub><br>ding to spin-only formula is<br>c) 2.84<br>e:                                                                                                            | d) CuFeS <sub>2</sub><br>d) 3.87                                                                                                                         |
| <ul> <li>573. Silver iodide is used</li> <li>a) It is easily prepa</li> <li>b) Its structure is id</li> <li>c) It can easily be s</li> <li>d) It is insoluble in</li> <li>574. The chemical forma</li> <li>a) Cu(OH)<sub>2</sub>. 2CuCO</li> <li>575. The magnetic moma</li> <li>a) Zero</li> <li>576. Zinc reacts with vera</li> <li>a) NO</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>3 b) CuSO <sub>4</sub> . 3Cu(OH) <sub>2</sub><br>ent (in BM) of Zn <sup>2+</sup> ion accord<br>b) 1.73<br>ry dilute nitric acid to produce<br>b) NH <sub>4</sub> NO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                              | c) Cu(OH) <sub>2</sub> . CuCO <sub>3</sub><br>ding to spin-only formula is<br>c) 2.84<br>e:<br>c) NO <sub>2</sub>                                                                                      | d) CuFeS <sub>2</sub><br>d) 3.87<br>d) H <sub>2</sub>                                                                                                    |
| <ul> <li>573. Silver iodide is used <ul> <li>a) It is easily prepa</li> <li>b) Its structure is id</li> <li>c) It can easily be s</li> <li>d) It is insoluble in</li> </ul> </li> <li>574. The chemical formulation a) Cu(OH)2. 2CuCO</li> <li>575. The magnetic momulation a) Zero</li> <li>576. Zinc reacts with veraily NO</li> <li>577. Which of the follow</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>$B_3$ b) CuSO <sub>4</sub> . 3Cu(OH) <sub>2</sub><br>ent (in BM) of Zn <sup>2+</sup> ion accord<br>b) 1.73<br>ry dilute nitric acid to produce<br>b) NH <sub>4</sub> NO <sub>3</sub><br>ring may be colourless?                                                                                                                                                                                                                                                                                                                                                                               | c) Cu(OH) <sub>2</sub> . CuCO <sub>3</sub><br>ding to spin-only formula is<br>c) 2.84<br>e:<br>c) NO <sub>2</sub>                                                                                      | d) CuFeS <sub>2</sub><br>d) 3.87<br>d) H <sub>2</sub>                                                                                                    |
| <ul> <li>573. Silver iodide is used<br/>a) It is easily prepa</li> <li>b) Its structure is id</li> <li>c) It can easily be s</li> <li>d) It is insoluble in</li> <li>574. The chemical forma</li> <li>a) Cu(OH)<sub>2</sub>. 2CuCO</li> <li>575. The magnetic moma</li> <li>a) Zero</li> <li>576. Zinc reacts with ve</li> <li>a) NO</li> <li>577. Which of the follow</li> <li>a) Fe<sup>3+</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>a b) CuSO <sub>4</sub> . 3Cu(OH) <sub>2</sub><br>ent (in BM) of Zn <sup>2+</sup> ion accord<br>b) 1.73<br>ry dilute nitric acid to produce<br>b) NH <sub>4</sub> NO <sub>3</sub><br>ring may be colourless?<br>b) Cr <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                            | c) Cu(OH) <sub>2</sub> . CuCO <sub>3</sub><br>ding to spin-only formula is<br>c) 2.84<br>e:<br>c) NO <sub>2</sub><br>c) Cu <sup>2+</sup>                                                               | d) CuFeS <sub>2</sub><br>d) 3.87<br>d) H <sub>2</sub><br>d) Cu <sup>+</sup>                                                                              |
| <ul> <li>573. Silver iodide is used <ul> <li>a) It is easily prepade</li> <li>b) Its structure is identified to a construct of the structure is identified to a construction of the structure is identified to a construction.</li> <li>578. Fe ore is concentrated to a constructure is identified to a constructure is in the structure is in the struct</li></ul></li></ul> | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>a b) CuSO <sub>4</sub> . 3Cu(OH) <sub>2</sub><br>ent (in BM) of Zn <sup>2+</sup> ion accord<br>b) 1.73<br>ry dilute nitric acid to produce<br>b) NH <sub>4</sub> NO <sub>3</sub><br>ring may be colourless?<br>b) Cr <sup>3+</sup><br>ted by:                                                                                                                                                                                                                                                                                                                                                 | c) Cu(OH) <sub>2</sub> . CuCO <sub>3</sub><br>ding to spin-only formula is<br>c) 2.84<br>e:<br>c) NO <sub>2</sub><br>c) Cu <sup>2+</sup>                                                               | d) CuFeS <sub>2</sub><br>d) 3.87<br>d) H <sub>2</sub><br>d) Cu <sup>+</sup>                                                                              |
| <ul> <li>573. Silver iodide is used <ul> <li>a) It is easily prepading</li> <li>b) Its structure is identified to a construct of the structure is in the structure</li></ul></li></ul> | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>a b CuSO <sub>4</sub> . 3Cu(OH) <sub>2</sub><br>ent (in BM) of Zn <sup>2+</sup> ion accord<br>b) 1.73<br>ry dilute nitric acid to produce<br>b) NH <sub>4</sub> NO <sub>3</sub><br>ring may be colourless?<br>b) Cr <sup>3+</sup><br>ted by:<br>ent b) Froth floatation                                                                                                                                                                                                                                                                                                                       | c) Cu(OH) <sub>2</sub> . CuCO <sub>3</sub><br>ding to spin-only formula is<br>c) 2.84<br>e:<br>c) NO <sub>2</sub><br>c) Cu <sup>2+</sup><br>c) Electrolysis                                            | <ul> <li>d) CuFeS<sub>2</sub></li> <li>d) 3.87</li> <li>d) H<sub>2</sub></li> <li>d) Cu<sup>+</sup></li> <li>d) Roasting</li> </ul>                      |
| <ul> <li>573. Silver iodide is used <ul> <li>a) It is easily prepading</li> <li>b) Its structure is idic</li> <li>c) It can easily be side in the singering of the singering of</li></ul></li></ul>  | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>a b) CuSO <sub>4</sub> . 3Cu(OH) <sub>2</sub><br>ent (in BM) of Zn <sup>2+</sup> ion accord<br>b) 1.73<br>ry dilute nitric acid to produce<br>b) NH <sub>4</sub> NO <sub>3</sub><br>ring may be colourless?<br>b) Cr <sup>3+</sup><br>ted by:<br>ent b) Froth floatation<br>f copper, the metal formed in t                                                                                                                                                                                                                                                                                   | c) Cu(OH) <sub>2</sub> . CuCO <sub>3</sub><br>ding to spin-only formula is<br>c) 2.84<br>e:<br>c) NO <sub>2</sub><br>c) Cu <sup>2+</sup><br>c) Electrolysis<br>the Bessemer's converter is d           | d) $CuFeS_2$<br>d) 3.87<br>d) $H_2$<br>d) $Cu^+$<br>d) Roasting<br>lue to the reaction:                                                                  |
| 573. Silver iodide is used<br>a) It is easily prepa<br>b) Its structure is id<br>c) It can easily be s<br>d) It is insoluble in<br>574. The chemical formulation<br>a) Cu(OH) <sub>2</sub> . 2CuCO<br>575. The magnetic momulation<br>a) Zero<br>576. Zinc reacts with velow<br>a) NO<br>577. Which of the follow<br>a) Fe <sup>3+</sup><br>578. Fe ore is concentration<br>a) Magnetic treatom<br>579. In the extraction of<br>a) Cu <sub>2</sub> S → 2Cu + S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>a b) CuSO <sub>4</sub> . 3Cu(OH) <sub>2</sub><br>ent (in BM) of Zn <sup>2+</sup> ion accord<br>b) 1.73<br>ry dilute nitric acid to produce<br>b) NH <sub>4</sub> NO <sub>3</sub><br>ring may be colourless?<br>b) Cr <sup>3+</sup><br>ted by:<br>ent b) Froth floatation<br>f copper, the metal formed in t                                                                                                                                                                                                                                                                                   | c) Cu(OH) <sub>2</sub> . CuCO <sub>3</sub><br>ding to spin-only formula is<br>c) 2.84<br>e:<br>c) NO <sub>2</sub><br>c) Cu <sup>2+</sup><br>c) Electrolysis<br>the Bessemer's converter is d           | d) $CuFeS_2$<br>d) 3.87<br>d) $H_2$<br>d) $Cu^+$<br>d) Roasting<br>lue to the reaction:                                                                  |
| 573. Silver iodide is used<br>a) It is easily prepa<br>b) Its structure is id<br>c) It can easily be s<br>d) It is insoluble in<br>574. The chemical formulation<br>a) Cu(OH) <sub>2</sub> . 2CuCO<br>575. The magnetic momulation<br>a) Zero<br>576. Zinc reacts with version<br>a) NO<br>577. Which of the follow<br>a) Fe <sup>3+</sup><br>578. Fe ore is concentration<br>a) Magnetic treatm<br>579. In the extraction of<br>a) Cu <sub>2</sub> S $\rightarrow$ 2Cu + S<br>b) 2Cu <sub>2</sub> O $\rightarrow$ 4Cu +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>b) $CuSO_4$ . $3Cu(OH)_2$<br>ent (in BM) of $Zn^{2+}$ ion accord<br>b) $1.73$<br>ry dilute nitric acid to produce<br>b) $NH_4NO_3$<br>ving may be colourless?<br>b) $Cr^{3+}$<br>ted by:<br>ent b) Froth floatation<br>copper, the metal formed in t                                                                                                                                                                                                                                                                                                                                          | c) Cu(OH) <sub>2</sub> . CuCO <sub>3</sub><br>ding to spin-only formula is<br>c) 2.84<br>e:<br>c) NO <sub>2</sub><br>c) Cu <sup>2+</sup><br>c) Electrolysis<br>the Bessemer's converter is d           | d) $CuFeS_2$<br>d) 3.87<br>d) $H_2$<br>d) $Cu^+$<br>d) Roasting<br>lue to the reaction:                                                                  |
| 573. Silver iodide is used<br>a) It is easily prepa<br>b) Its structure is id<br>c) It can easily be s<br>d) It is insoluble in<br>574. The chemical formulation<br>a) Cu(OH) <sub>2</sub> . 2CuCO<br>575. The magnetic momulation<br>a) Zero<br>576. Zinc reacts with velow<br>a) NO<br>577. Which of the follow<br>a) Fe <sup>3+</sup><br>578. Fe ore is concentration<br>a) Magnetic treatm<br>579. In the extraction of<br>a) Cu <sub>2</sub> S $\rightarrow$ 2Cu + S<br>b) 2Cu <sub>2</sub> O $\rightarrow$ 4Cu +<br>c) 2Cu <sub>2</sub> S + 3O <sub>2</sub> $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>a b) CuSO <sub>4</sub> . 3Cu(OH) <sub>2</sub><br>ent (in BM) of Zn <sup>2+</sup> ion accord<br>b) 1.73<br>ry dilute nitric acid to produce<br>b) NH <sub>4</sub> NO <sub>3</sub><br>ring may be colourless?<br>b) Cr <sup>3+</sup><br>ted by:<br>ent b) Froth floatation<br>f copper, the metal formed in the<br>copper, the metal formed in the<br>copper and copper                                                                                                                                                                                                                         | c) Cu(OH) <sub>2</sub> . CuCO <sub>3</sub><br>ding to spin-only formula is<br>c) 2.84<br>e:<br>c) NO <sub>2</sub><br>c) Cu <sup>2+</sup><br>c) Electrolysis<br>the Bessemer's converter is d           | <ul> <li>d) CuFeS<sub>2</sub></li> <li>d) 3.87</li> <li>d) H<sub>2</sub></li> <li>d) Cu<sup>+</sup></li> <li>d) Roasting lue to the reaction:</li> </ul> |
| 573. Silver iodide is used<br>a) It is easily prepa<br>b) Its structure is id<br>c) It can easily be s<br>d) It is insoluble in<br>574. The chemical formulation<br>a) Cu(OH) <sub>2</sub> . 2CuCO<br>575. The magnetic momulation<br>a) Zero<br>576. Zinc reacts with version<br>a) NO<br>577. Which of the follow<br>a) Fe <sup>3+</sup><br>578. Fe ore is concentration<br>a) Magnetic treatm<br>579. In the extraction off<br>a) Cu <sub>2</sub> S $\rightarrow$ 2Cu + S<br>b) 2Cu <sub>2</sub> O $\rightarrow$ 4Cu + S<br>c) 2Cu <sub>2</sub> S + 3O <sub>2</sub> $\rightarrow$<br>d) 2Cu <sub>2</sub> O + Cu <sub>2</sub> S $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>b) CuSO <sub>4</sub> . $3Cu(OH)_2$<br>ent (in BM) of $Zn^{2+}$ ion accord<br>b) $1.73$<br>ry dilute nitric acid to produce<br>b) NH <sub>4</sub> NO <sub>3</sub><br>ring may be colourless?<br>b) Cr <sup>3+</sup><br>ted by:<br>ent b) Froth floatation<br>copper, the metal formed in the<br>Co2<br>$2Cu_2O + 2SO_2$<br>$\rightarrow 6Cu + SO_2$                                                                                                                                                                                                                                            | c) Cu(OH) <sub>2</sub> . CuCO <sub>3</sub><br>ding to spin-only formula is<br>c) 2.84<br>e:<br>c) NO <sub>2</sub><br>c) Cu <sup>2+</sup><br>c) Electrolysis<br>the Bessemer's converter is d           | <ul> <li>d) CuFeS<sub>2</sub></li> <li>d) 3.87</li> <li>d) H<sub>2</sub></li> <li>d) Cu<sup>+</sup></li> <li>d) Roasting lue to the reaction:</li> </ul> |
| 573. Silver iodide is used<br>a) It is easily prepa<br>b) Its structure is id<br>c) It can easily be s<br>d) It is insoluble in<br>574. The chemical formulation<br>a) Cu(OH) <sub>2</sub> . 2CuCO<br>575. The magnetic momulation<br>a) Zero<br>576. Zinc reacts with velow<br>a) NO<br>577. Which of the follow<br>a) Fe <sup>3+</sup><br>578. Fe ore is concentration<br>a) Magnetic treatm<br>579. In the extraction of<br>a) Cu <sub>2</sub> S $\rightarrow$ 2Cu + S<br>b) 2Cu <sub>2</sub> O $\rightarrow$ 4Cu +<br>c) 2Cu <sub>2</sub> S + 3O <sub>2</sub> $\rightarrow$<br>d) 2Cu <sub>2</sub> O + Cu <sub>2</sub> S $\rightarrow$<br>580. In the case of <i>d</i> -blo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>a b) CuSO <sub>4</sub> . $3Cu(OH)_2$<br>ent (in BM) of $Zn^{2+}$ ion accord<br>b) $1.73$<br>ry dilute nitric acid to produce<br>b) NH <sub>4</sub> NO <sub>3</sub><br>ring may be colourless?<br>b) Cr <sup>3+</sup><br>ted by:<br>ent b) Froth floatation<br>f copper, the metal formed in the<br>S-O <sub>2</sub><br>$2Cu_2O + 2SO_2$<br>$\rightarrow 6Cu + SO_2$<br>ck elements:                                                                                                                                                                                                           | cause:<br>c) Cu(OH) <sub>2</sub> . CuCO <sub>3</sub><br>ding to spin-only formula is<br>c) 2.84<br>e:<br>c) NO <sub>2</sub><br>c) Cu <sup>2+</sup><br>c) Electrolysis<br>the Bessemer's converter is d | <ul> <li>d) CuFeS<sub>2</sub></li> <li>d) 3.87</li> <li>d) H<sub>2</sub></li> <li>d) Cu<sup>+</sup></li> <li>d) Roasting lue to the reaction:</li> </ul> |
| 573. Silver iodide is used<br>a) It is easily prepa<br>b) Its structure is id<br>c) It can easily be s<br>d) It is insoluble in<br>574. The chemical formulation<br>a) Cu(OH) <sub>2</sub> . 2CuCO<br>575. The magnetic momulation<br>a) Zero<br>576. Zinc reacts with version<br>a) NO<br>577. Which of the follow<br>a) Fe <sup>3+</sup><br>578. Fe ore is concentration<br>a) Magnetic treatm<br>579. In the extraction of<br>a) Cu <sub>2</sub> S $\rightarrow$ 2Cu + S<br>b) 2Cu <sub>2</sub> O $\rightarrow$ 4Cu +<br>c) 2Cu <sub>2</sub> S + 3O <sub>2</sub> $\rightarrow$<br>d) 2Cu <sub>2</sub> O + Cu <sub>2</sub> S $\rightarrow$<br>580. In the case of <i>d</i> -bloo<br>a) Outermost and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>b) CuSO <sub>4</sub> . $3Cu(OH)_2$<br>ent (in BM) of $Zn^{2+}$ ion accord<br>b) $1.73$<br>ry dilute nitric acid to produce<br>b) NH <sub>4</sub> NO <sub>3</sub><br>ring may be colourless?<br>b) Cr <sup>3+</sup><br>ted by:<br>ent b) Froth floatation<br>f copper, the metal formed in the<br>$S-O_2$<br>$2Cu_2O + 2SO_2$<br>$\rightarrow 6Cu + SO_2$<br>ck elements:<br>penultimate shells are incomp                                                                                                                                                                                     | cause:<br>c) Cu(OH) <sub>2</sub> . CuCO <sub>3</sub><br>ding to spin-only formula is<br>c) 2.84<br>e:<br>c) NO <sub>2</sub><br>c) Cu <sup>2+</sup><br>c) Electrolysis<br>the Bessemer's converter is d | <ul> <li>d) CuFeS<sub>2</sub></li> <li>d) 3.87</li> <li>d) H<sub>2</sub></li> <li>d) Cu<sup>+</sup></li> <li>d) Roasting lue to the reaction:</li> </ul> |
| 573. Silver iodide is used<br>a) It is easily prepa<br>b) Its structure is id<br>c) It can easily be s<br>d) It is insoluble in<br>574. The chemical formulation<br>a) Cu(OH) <sub>2</sub> . 2CuCO<br>575. The magnetic momulation<br>a) Zero<br>576. Zinc reacts with version<br>a) NO<br>577. Which of the follow<br>a) Fe <sup>3+</sup><br>578. Fe ore is concentration<br>a) Magnetic treatm<br>579. In the extraction of<br>a) Cu <sub>2</sub> S $\rightarrow$ 2Cu + S<br>b) 2Cu <sub>2</sub> O $\rightarrow$ 4Cu +<br>c) 2Cu <sub>2</sub> S + 3O <sub>2</sub> $\rightarrow$<br>d) 2Cu <sub>2</sub> O + Cu <sub>2</sub> S $\rightarrow$<br>580. In the case of <i>d</i> -bloo<br>a) Outermost and p<br>b) Both penultimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>a b) CuSO <sub>4</sub> . 3Cu(OH) <sub>2</sub><br>ent (in BM) of Zn <sup>2+</sup> ion accord<br>b) 1.73<br>ry dilute nitric acid to produce<br>b) NH <sub>4</sub> NO <sub>3</sub><br>ring may be colourless?<br>b) Cr <sup>3+</sup><br>ted by:<br>ent b) Froth floatation<br>f copper, the metal formed in the<br>solution of the shells are incomple<br>e and prepenultimate shells are incompleted<br>is in completed                                                                                                                                                                        | c) Cu(OH) <sub>2</sub> . CuCO <sub>3</sub><br>ding to spin-only formula is<br>c) 2.84<br>e:<br>c) NO <sub>2</sub><br>c) Cu <sup>2+</sup><br>c) Electrolysis<br>the Bessemer's converter is d           | <ul> <li>d) CuFeS<sub>2</sub></li> <li>d) 3.87</li> <li>d) H<sub>2</sub></li> <li>d) Cu<sup>+</sup></li> <li>d) Roasting lue to the reaction:</li> </ul> |
| 573. Silver iodide is used<br>a) It is easily prepa<br>b) Its structure is id<br>c) It can easily be s<br>d) It is insoluble in<br>574. The chemical formulation<br>a) Cu(OH) <sub>2</sub> . 2CuCO<br>575. The magnetic momulation<br>a) Zero<br>576. Zinc reacts with version<br>a) NO<br>577. Which of the follow<br>a) Fe <sup>3+</sup><br>578. Fe ore is concentral<br>a) Magnetic treatm<br>579. In the extraction of<br>a) Cu <sub>2</sub> S $\rightarrow$ 2Cu + S<br>b) 2Cu <sub>2</sub> O $\rightarrow$ 4Cu + S<br>b) 2Cu <sub>2</sub> O $\rightarrow$ 4Cu + S<br>c) 2Cu <sub>2</sub> S + 3O <sub>2</sub> $\rightarrow$<br>d) 2Cu <sub>2</sub> O + Cu <sub>2</sub> S $-$<br>580. In the case of <i>d</i> -blool<br>a) Outermost and p<br>b) Both penultimatic<br>c) Outermost shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d to produce artificial rain bed<br>red<br>ce-like<br>prayed at high altitude<br>rain water<br>ula of azurite is:<br>$a 	 b) CuSO_4. 3Cu(OH)_2$<br>ent (in BM) of $Zn^{2+}$ ion accord<br>b) 1.73<br>ry dilute nitric acid to produce<br>b) NH <sub>4</sub> NO <sub>3</sub><br>ring may be colourless?<br>b) Cr <sup>3+</sup><br>ted by:<br>ent b) Froth floatation<br>copper, the metal formed in the<br>copper, the metal formed in the<br>copper state shells are incomplete<br>is incomplete | cause:<br>c) Cu(OH) <sub>2</sub> . CuCO <sub>3</sub><br>ding to spin-only formula is<br>c) 2.84<br>e:<br>c) NO <sub>2</sub><br>c) Cu <sup>2+</sup><br>c) Electrolysis<br>the Bessemer's converter is d | <ul> <li>d) CuFeS<sub>2</sub></li> <li>d) 3.87</li> <li>d) H<sub>2</sub></li> <li>d) Cu<sup>+</sup></li> <li>d) Roasting lue to the reaction:</li> </ul> |

| 581. In electrorefining of copper, some gold is deposited                                                                                           | as                                          |                                       |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|--|--|
| a) Cathode b) Electrode                                                                                                                             | c) Cathode mud                              | d) Anode mud                          |  |  |
| 582. What effect is noticed on shaking dilute sulphuric acid with a small quantity of anhydrous copper sulphate?                                    |                                             |                                       |  |  |
| a) The white solid dissolves to form a colourless sol                                                                                               | ution                                       |                                       |  |  |
| b) The white solid dissolves to form a green solution                                                                                               |                                             |                                       |  |  |
| c) The white solid turns blue but does not dissolve                                                                                                 |                                             |                                       |  |  |
| d) The white solid dissolves to form a blue solution                                                                                                |                                             |                                       |  |  |
| 583. A magnetic moment of 1.73 BM will be shown by on                                                                                               | e among the following com                   | pounds:                               |  |  |
| a) $[Cu(NH_3)_4]^{2+}$ b) $[Ni(CN)_4]^{2-}$                                                                                                         | c) TiCl <sub>4</sub>                        | d) [CoCl <sub>6</sub> ] <sup>4–</sup> |  |  |
| 584. In general, the transition elements exhibit their high                                                                                         | est oxidation states in their               | r compounds with elements             |  |  |
| like:                                                                                                                                               |                                             |                                       |  |  |
| a) C b) S                                                                                                                                           | c) S and P                                  | d) F and O                            |  |  |
| 585. Silver, mercury and lead have been placed in same g                                                                                            | roup of qualitative analysis                | s, because they form:                 |  |  |
| a) Carbonates soluble in dilute $HNO_3$                                                                                                             |                                             |                                       |  |  |
| b) Nitrates                                                                                                                                         |                                             |                                       |  |  |
| c) Insoluble chlorides                                                                                                                              | Ċ                                           |                                       |  |  |
| d) Same type of coloured compounds                                                                                                                  |                                             |                                       |  |  |
| 586. $K_2Cr_2O_7$ on strong heating gives:                                                                                                          |                                             |                                       |  |  |
| a) $K_2$ CrO <sub>4</sub> b) Cr <sub>2</sub> O <sub>2</sub>                                                                                         | $c$ ) $O_2$                                 | d) All of these                       |  |  |
| 587  KMnO, on heating above 200°C gives:                                                                                                            |                                             |                                       |  |  |
| a) $K_{a}Mn\Omega_{a} + \Omega_{a} + Mn\Omega_{a}$ b) $K_{a}Mn\Omega_{a} + Mn\Omega_{a} + \Omega_{a}$                                               | c) Mn $0_{2} \pm 0_{2}$                     | d) None of the above                  |  |  |
| $13 \text{ K}_2 \text{ Milo}_3 + \text{O}_2 + \text{Milo}_2 + \text{O}_2 \text{ K}_2 \text{Milo}_4 + \text{Milo}_2 + \text{O}_2 \text{ Solution}_4$ | $C_1 M M C_2 + C_2$                         |                                       |  |  |
| $_{2}$ $_{4}$ b) 5                                                                                                                                  | c) 2                                        | d                                     |  |  |
| dJ + DJ J                                                                                                                                           | cj 5<br>on of the following compou          | ujo                                   |  |  |
| 589. Actual nature of $Zn(OH)_2$ is shown from the formation                                                                                        | on of the following compou                  | d) None of these                      |  |  |
| a) $Na_2 L n U_2$ b) $Na_2 U U_3$                                                                                                                   | cj NaZnO <sub>2</sub>                       | d) None of these                      |  |  |
| 590. The reason for the stability of Gd <sup>o+</sup> ion is                                                                                        |                                             |                                       |  |  |
| a) Half-filled 4f sunshell                                                                                                                          |                                             |                                       |  |  |
| b) Completely filled 4f subshell                                                                                                                    |                                             |                                       |  |  |
| c) Possesses the general electronic configuration of                                                                                                | noble gases                                 |                                       |  |  |
| d) Empty 4 <i>f</i> subshell                                                                                                                        |                                             |                                       |  |  |
| 591. Rio Tinto process is used for extraction of:                                                                                                   |                                             |                                       |  |  |
| a) Cu b) Ag                                                                                                                                         | c) Al                                       | d) Au                                 |  |  |
| 592. An alloy of Co, Ni and Fe used in permanent magnet                                                                                             | s is:                                       |                                       |  |  |
| a) Invar b) Nichrome                                                                                                                                | c) Alnico                                   | d) None of these                      |  |  |
| 593. Bordeaux mixture consists of lime and:                                                                                                         |                                             |                                       |  |  |
| a) FeSO <sub>4</sub> b) CuSO <sub>4</sub>                                                                                                           | c) $Cu(NO_3)_2$                             | d) AgNO <sub>3</sub>                  |  |  |
| 594. Larger number of oxidation states are exhibited by t                                                                                           | he actinoides than those by                 | v the lanthanoides, the main          |  |  |
| reason being                                                                                                                                        |                                             |                                       |  |  |
| a) $4f$ - orbitals more diffused than the $5f$ -orbitals                                                                                            |                                             |                                       |  |  |
| b) Lesser energy difference between 5f and 6d thar                                                                                                  | between $4f$ and $5d$ -orbita               | lls                                   |  |  |
| c) More energy difference between 5f and 6d than                                                                                                    | between 4 <i>f</i> and 5 <i>d</i> -orbitals | 5.                                    |  |  |
| ) More reactive nature of the actinoides than the la                                                                                                | nthanoides                                  |                                       |  |  |
| 595. $F_2$ is formed by reacting $K_2MnF_6$ with                                                                                                    |                                             |                                       |  |  |
| a) MnF <sub>4</sub> b) SbF <sub>5</sub>                                                                                                             | c) KSbF <sub>6</sub>                        | d) MnF <sub>3</sub>                   |  |  |
| 596. A reducing in atomic size with increase in atomic nu                                                                                           | mber is a characteristic of e               | elements of                           |  |  |
| a) <i>f</i> -block b) <i>d</i> -block                                                                                                               | c) High atomic masses                       | d) Radioactive series                 |  |  |
| 597. Which method is based on distribution law?                                                                                                     |                                             |                                       |  |  |
| a) Mond's process b) Parkes process                                                                                                                 | c) Cupellation process                      | d) Poling process                     |  |  |
| 598. Schweitzer's reagent used for dissolving cellulose in                                                                                          | the manufacture of artifici                 | al silk is:                           |  |  |

| a) CuSO <sub>4</sub> . 5H <sub>2</sub> O | b) CuI                                    | c) Cu(NH <sub>3</sub> ) <sub>4</sub> SO <sub>4</sub> | d) $Cu(CH_3COO)_2$ . $Cu(OH)_2$          |  |  |
|------------------------------------------|-------------------------------------------|------------------------------------------------------|------------------------------------------|--|--|
| 599. Formation of coloured i             | ons by transition metals si               | gnifies                                              |                                          |  |  |
| a) Absorption of light from UV range     |                                           |                                                      |                                          |  |  |
| b) Emission of light                     |                                           |                                                      |                                          |  |  |
| c) Presence of unpaired                  | electrons in <i>s</i> and <i>p</i> orbita | als                                                  |                                          |  |  |
| d) Complimentary color                   | irs to the absorbed light                 |                                                      |                                          |  |  |
| 600. Invar steel, which is ver           | y little affected by tempera              | ature changes, contains 369                          | %:                                       |  |  |
| a) Co                                    | b) Ni                                     | c) Cu                                                | d) Al                                    |  |  |
| 601. Which of the following p            | pair of transition metal ion              | s, have the same calculated                          | lvalues                                  |  |  |
| of magnetic moment?                      |                                           |                                                      |                                          |  |  |
| a) $Ti^{2+}$ and $V^{2+}$                | b) Fe <sup>2+</sup> and Cu <sup>2+</sup>  | c) Cr <sup>2+</sup> and Fe <sup>2+</sup>             | d) Co <sup>2+</sup> and Ti <sup>2+</sup> |  |  |
| 602. Which of the following i            | s not an actinide?                        | -                                                    |                                          |  |  |
| a) Curium                                | b) Californium                            | c) Erbium                                            | d) Americium                             |  |  |
| 603. Philosopher's wool whe              | n heated with BaO at 1100                 | 0°C gives the compound :                             |                                          |  |  |
| a) $BaZnO_2$                             | b) Ba + ZnO <sub>2</sub>                  | c) BaCdO <sub>2</sub>                                | d) $BaO_2 + Zn$                          |  |  |
| 604. Brass is an alloy of Cu w           | ith                                       | <i>y</i> 2                                           |                                          |  |  |
| a) Al                                    | b) Sn                                     | c) Ag                                                | d) Zn                                    |  |  |
| 605. Actinides and lanthanid             | es resemble in                            | - , 0                                                |                                          |  |  |
| a) Formation of comple                   | xes                                       | b) Oxidation state                                   |                                          |  |  |
| c) Ionization energy                     |                                           | d) Electronic configura                              | tion                                     |  |  |
| 606 Cuprous chloride is obt              | ained from cupric chloride                | ,                                                    |                                          |  |  |
| a) By heating cupric chl                 | oride with chlorine                       |                                                      |                                          |  |  |
| b) By the electrolysis of                | cupric chloride containing                | HC]                                                  |                                          |  |  |
| c) By heating cupric ch                  | oride with conc. HCl and co               | onner turnings                                       |                                          |  |  |
| d) By passing H <sub>2</sub> over C      |                                           | opper turnings                                       |                                          |  |  |
| 607 The properties of cast in            | on wrought iron and stee                  | l are different because they                         | have                                     |  |  |
| a) Different contents of                 | sulnhur                                   | Tare unterent because they                           | nave.                                    |  |  |
| b) Different contents of                 | carbon                                    |                                                      |                                          |  |  |
| c) Traces of different el                | ements                                    |                                                      |                                          |  |  |
| d) Traces of different in                | on ovides                                 |                                                      |                                          |  |  |
| 608 Variable valency is a get            | peral feature of element                  | -c                                                   |                                          |  |  |
| a) s-block                               | h) n-block                                | c) <i>d</i> -block                                   | d) All of these                          |  |  |
| 609 The inner transition ele             | ments are the elements in                 | which the added electrons                            | go to:                                   |  |  |
| a) $(n-1) d$ -orbitals                   | ments are the clements m                  | which the added cleet ons                            | go to.                                   |  |  |
| b) $(n - 2)$ f-orbitals                  |                                           |                                                      |                                          |  |  |
| c) $(n-1)$ d-orbitals and                | d(n-1) f-orbitals                         |                                                      |                                          |  |  |
| d) $(n-1)$ d-orbitals and                | d(n-1) of bitals                          |                                                      |                                          |  |  |
| 610 The compound insoluct                | lo in water is                            |                                                      |                                          |  |  |
| a) Morgurous pitrato                     | ne ni water is                            | h) Morcurous chlorido                                |                                          |  |  |
| a) Mercurica nitrate                     |                                           | d) Morgurous parchlar                                |                                          |  |  |
| c) Mercuric intrate                      |                                           | u) Mercurous percinora                               | ate                                      |  |  |
| off. A carboliate of e is                | h) Limonito                               | a) Cidamita                                          | d) Horr cilvor                           |  |  |
| a) Carnainte                             | D) Limonite                               | c) siderite                                          | d) Horn sliver                           |  |  |
| 612. Near the top of a blast ft          | imace employed for the ex                 | xtraction of from the metal (                        | brides are reduced to spongy             |  |  |
| Iron by:                                 |                                           |                                                      |                                          |  |  |
| aj carbon                                | DJ LU                                     | $c_{1}$ $c_{2}$                                      | a) Limestone                             |  |  |
| 613. Black Jack is an ore of             |                                           |                                                      |                                          |  |  |
| aj ur                                    | DJ Sn                                     | cj Zn                                                | aj Ni                                    |  |  |
| 614. Which of the following s            | tatements is correct?                     |                                                      |                                          |  |  |
| a) Manganese salt gives                  | violet borax bead test in t               | ne reducing flame                                    | 1                                        |  |  |
| b) Ferric ions give a dee                | p green precipitate on add                | ling potassium ferricyanide                          | solution                                 |  |  |

|   | c) On boiling a solution h                                                          | having $K^+$ , $Ca^{2+}$ , $HCO_3^-$ ions,                            | we get a precipitate of K <sub>2</sub> C    | $Ca(CO_3)_2$                                |  |
|---|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|--|
|   | d) From a mixed precipitate of AgCl and AgI, ammonia solution dissolves only AgCl   |                                                                       |                                             |                                             |  |
|   | 615. The element showing oxidation states of $+2$ , $+3$ , $+4$ , $+6$ and $+7$ is: |                                                                       |                                             |                                             |  |
|   | a) Cr                                                                               | b) Mn                                                                 | c) Co                                       | d) V                                        |  |
|   | 616. When $H_2S$ is passed thro                                                     | ugh HgCl <sub>2</sub> we get:                                         |                                             |                                             |  |
|   | a) HgS                                                                              | b) HgS + Hg <sub>2</sub> S                                            | c) $Hg_2S + Hg$                             | d) Hg <sub>2</sub> S                        |  |
|   | 617. Which gas is absorbed by                                                       | y CuCl?                                                               |                                             |                                             |  |
|   | a) $CO_2$                                                                           | b) CO                                                                 | c) $SO_2$                                   | d) SO <sub>3</sub>                          |  |
|   | 618. Standard reduction pote                                                        | ntial of most of the transitio                                        | on elements is generally:                   |                                             |  |
|   | a) Negative                                                                         | b) Positive                                                           | c) Zero                                     | d) None of these                            |  |
|   | 619. Auric chloride on reactio                                                      | on with ferrous sulphate cha                                          | anges to:                                   |                                             |  |
|   | a) Au                                                                               | b) AuCl                                                               | c) Au₂SO₄                                   | d) $Au_2(SO_4)_2$                           |  |
|   | 620. Which of the following is                                                      | deliquescent?                                                         | -)24                                        |                                             |  |
|   | a) ZnCl <sub>2</sub>                                                                | h) Hg <sub>2</sub> Cl <sub>2</sub>                                    | c) HgCla                                    | d) CdCla                                    |  |
|   | 621 Which of the following is                                                       | correct?                                                              | c) 118012                                   |                                             |  |
|   | a) Duralumin · Al + $Cu$ +                                                          | $M\sigma + A\sigma$                                                   | h) German silver $\cdot Cu + 7$             | n + C                                       |  |
|   | c) Gun metal : CII + $7n$ +                                                         | - Sn                                                                  | d) Solder $\cdot$ Ph + Al                   |                                             |  |
|   | 622 A certain metal will liber                                                      | on<br>ate hydrogen from dilute a                                      | rids It will react with water               | r to form hydrogen only                     |  |
|   | when the metal is heated                                                            | are nyurogen nom unute at<br>l and water is in the form of            | etus. it will react with watch              | hly                                         |  |
|   | a) Iron                                                                             | b) Potassium                                                          | c) Copper                                   | d) Mercury                                  |  |
|   | 622 Calomal reacts with amp                                                         | b) i otassium<br>ponium hydrovido to form:                            | cj copper                                   | u) Mercury                                  |  |
|   | $\sigma_{\rm e}$ Hg(NH )C                                                           | b) U N Ug Ug Cl                                                       |                                             | d) UgO                                      |  |
|   | 624 An example of double co                                                         | $D_{1} \Pi_{2} \Pi = \Pi_{2} \Pi_{2} \Pi_{2} \Pi_{2} \Pi_{2} \Pi_{2}$ | $c_{\rm J}$ $ng_2 0$                        | u) HgO                                      |  |
|   | ol Placebing neuroden                                                               | $H = \frac{1}{1000} \left[ E_{\rm e}(CN) \right]$                     |                                             | d) Detech close                             |  |
|   | a) Bleaching powder                                                                 | $b \int K_4 [Fe(CN)_6]$                                               | сј нуро                                     | d) Potash alum                              |  |
|   | 625. Bronze is a mixture of                                                         |                                                                       |                                             |                                             |  |
|   | a) $Pb + Sn$                                                                        | b) $Cu + Sn$                                                          | c) Cu + Zn                                  | d) $Pb + 2n$                                |  |
|   | 626. The element present in g                                                       | gun metal is                                                          |                                             |                                             |  |
|   | a) Co                                                                               | b) Cu                                                                 | c) Sc                                       | d) Ti                                       |  |
|   | 627. Pure conc. $HNO_3$ makes                                                       | iron passive as the surface i                                         | s covered with protective l                 | ayer of:                                    |  |
|   | a) $Fe(NO_3)_3$                                                                     | b) Fe <sub>3</sub> 0 <sub>4</sub>                                     | c) FeO                                      | d) $Fe_2O_3$                                |  |
|   | 628. Thermite process is used                                                       | l in reduction of                                                     |                                             |                                             |  |
|   | a) $Cr_2O_3$                                                                        | b) $Al_2O_3$                                                          | c) PbO <sub>2</sub>                         | d) CuO                                      |  |
|   | 629. The slag obtained during                                                       | g the smelting process in the                                         | e extraction of copper from                 | copper pyrites is composed                  |  |
|   | mainly of:                                                                          |                                                                       |                                             |                                             |  |
|   | a) Cu <sub>2</sub> S                                                                | b) FeSiO <sub>3</sub>                                                 | c) CuSiO <sub>3</sub>                       | d) SiO <sub>2</sub>                         |  |
|   | 630. The mineral from which                                                         | copper is manufactured is:                                            |                                             |                                             |  |
|   | a) Galena                                                                           | b) Pyrite                                                             | c) Malachite                                | d) Chalcopyrite                             |  |
|   | 631. Metal oxides which deco                                                        | mposes on heating is                                                  |                                             |                                             |  |
|   | a) ZnO                                                                              | b) CuO                                                                | c) Al <sub>2</sub> O <sub>3</sub>           | d) HgO                                      |  |
|   | 632. The correct formula for o                                                      | liammine silver (I) chloride                                          | e is:                                       |                                             |  |
|   | a) [Ag, (NH <sub>3</sub> ) ]Cl                                                      | b) [Ag, (NH <sub>3</sub> ) <sub>2</sub> ]Cl                           | c) [Ag, (NH <sub>2</sub> ) <sub>2</sub> ]Cl | d) [Ag, (NH <sub>4</sub> ) <sub>2</sub> ]Cl |  |
| 6 | 633. Which metal is used to a                                                       | dd to gold to make it hard?                                           |                                             |                                             |  |
|   | a) Cu                                                                               | b) Ag                                                                 | c) Ni                                       | d) Zn                                       |  |
|   | 634. On igniting $Fe_2O_3$ at 140                                                   | 00°C, the product obtained                                            | is                                          | 2                                           |  |
|   | a) Fe <sub>2</sub> O <sub>2</sub> melt                                              | b) FeO                                                                | c) $Fe_2O_2$                                | d) Metallic iron                            |  |
|   | 635. Cosmetic powders and z                                                         | inc ointments contain:                                                | 5 2 5                                       | ,<br>,                                      |  |
|   | a) ZnCl <sub>2</sub>                                                                | b) ZnO                                                                | c) ZnCO2                                    | d) ZnSO4                                    |  |
|   | 636. An aqueous solution of F                                                       | $eSO_4$ , Al <sub>2</sub> (SO <sub>4</sub> ) <sub>2</sub> and chrom   | e alum is heated with exces                 | and filtered. The                           |  |
|   | materials obtained are                                                              | 4, 2(4)3 3114 0111                                                    |                                             | - 2 - 2                                     |  |
|   | a) A colourless filtrate a                                                          | nd a green residue                                                    |                                             |                                             |  |
|   | .,                                                                                  | 0                                                                     |                                             |                                             |  |
| b) A yellow filtrate and a green residue                    |                                           |                                 |
|-------------------------------------------------------------|-------------------------------------------|---------------------------------|
| c) A yellow filtrate and a brown residue                    |                                           |                                 |
| d) A green filtrate and a brown residue                     |                                           |                                 |
| 637. A transition element X has the configuration           | $[Ar]d^4$ in its +3 oxidation state       | . Its atomic number is          |
| a) 25 b) 26                                                 | c) 22                                     | d) 19                           |
| 638. The carbon content of:                                 |                                           |                                 |
| a) Cast iron is in between that of steel and w              | rought iron                               |                                 |
| b) Pig iron is in between that of steel and wr              | ought iron                                |                                 |
| c) Steel is in between that of cast iron and w              | rought iron                               |                                 |
| d) Wrought iron is in between that of steel a               | nd cast iron                              |                                 |
| 639. If a compound absorbs violet colour from lig           | ht, it will be :                          |                                 |
| a) Yellow b) Orange                                         | c) Blue                                   | d) Green                        |
| 640. Which of the two have almost similar size?             |                                           |                                 |
| a) $_{22}$ Ti and $_{40}$ Zr b) $_{41}$ Nb and $_{73}$ Ta   | a c) <sub>39</sub> Y and <sub>57</sub> La | d) $_{20}$ Ca and $_{31}$ Ir    |
| 641. A white precipitate is formed on adding KI to          | o CuSO <sub>4</sub> solution. It is of    |                                 |
| a) Cu <sub>2</sub> I <sub>2</sub> b) CuI <sub>2</sub>       | c) Cu <sub>2</sub> S                      | d) $Cu_2SO_4$                   |
| 642. Which of the following is coloured compound            | d?                                        |                                 |
| a) CuF <sub>2</sub> b) CuI                                  | c) NaCl                                   | d) MgCl <sub>2</sub>            |
| 643. Addition of NaOH on Zn <sup>2+</sup> ion gives a white | ppt. which on adding excess of N          | AOH dissolves. In this solution |
| Zn exists in:                                               |                                           |                                 |
| a) Cationic part b) Anionic part                            | c) Both (a) and (b)                       | d) None of these                |
| 644. $MnO_4^-$ reacts with bromide ion in alkaline me       | edium to give                             |                                 |
| a) MnBr <sub>4</sub> b) MnOBr <sub>2</sub>                  | c) $MnO_2$ , $BrO_3^-$                    | d) MnO, BrO                     |
| 645. Cyanide process is used to extraction of               |                                           |                                 |
| a) Ag b) Ni                                                 | c) Pt                                     | d) Zn                           |
| 646. Which of the following weights less when we            | eighted in magnetic field?                |                                 |
| a) ScCl <sub>3</sub> b) FeCl <sub>3</sub>                   | c) TiCl <sub>3</sub>                      | d) VCl <sub>3</sub>             |
| 647. The process of nitriding used in the treatment         | nt of steel is:                           |                                 |
| a) Heating steel in an atmosphere of ammon                  | lia                                       |                                 |
| b) Heating steel to a bright redness and then               | a cooling                                 |                                 |
| c) Heating steel to bright redness and then c               | cooling by plunging in air                |                                 |
| d) None of the above                                        |                                           |                                 |
| 648. Duraluminium is an alloy contains:                     |                                           |                                 |
| a) Mg + Al                                                  |                                           |                                 |
| b) $Mg + Cu + Al + Mn + Si$                                 |                                           |                                 |
| c) Mg + Cu                                                  |                                           |                                 |
| d) Cu + Al                                                  |                                           |                                 |
| 649. Gun metal is                                           |                                           |                                 |
| a) $Cu + Zn$ b) $Cu + Sn + Zn$                              | c) Cu + Sn                                | d) Zn + Sn                      |
| 650. The tempering of steel makes it:                       |                                           |                                 |
| a) Hard b) Soft                                             | c) Heavy                                  | d) Brittle                      |
| 651. Copper sulphate solution reacts with KCN to            | give                                      |                                 |
| a) CuCN b) $Cu(CN)_2$                                       | c) $K_3[Cu(CN)_4]$                        | d) $K_2[Cu(CN)_4]$              |
| 652. The metallic oxide which impart purple colo            | ur to pottery is                          |                                 |
| a) Copper oxide b) Chromium oxid                            | de c) Lead oxide                          | d) Manganese oxide              |
| 653. Formation of interstitial compounds makes              | the transition metal:                     |                                 |
| a) More soft b) More ductile                                | c) More metallic                          | d) More brittle                 |
| 654. The purest zinc is made by                             |                                           |                                 |
| a) Electrolytic refining                                    | b) Zone refining                          |                                 |
| c) The van- Arkel method                                    | d) The Mond process                       |                                 |

| 65 | 55. Which of the following io                                                                                                           | ns has a magnetic moment                                      | of 5.93 BM?                                |                                           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|-------------------------------------------|
|    | (At. no. V=23, Cr=24, Mn                                                                                                                | =25, Fe=26)                                                   |                                            |                                           |
|    | a) Mn <sup>2+</sup>                                                                                                                     | b) Fe <sup>2+</sup>                                           | c) Cr <sup>2+</sup>                        | d) V <sup>3+</sup>                        |
| 65 | $\overline{56}$ . K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> $\xrightarrow{\Delta}$ K <sub>2</sub> CrO <sub>4</sub> + O <sub>2</sub> | +X                                                            |                                            |                                           |
|    | In the above reaction X is                                                                                                              | S                                                             |                                            |                                           |
|    | a) $CrO_3$                                                                                                                              | b) $Cr_2 O_7$                                                 | c) $Cr_2O_3$                               | d) CrO <sub>5</sub>                       |
| 65 | 57. Soft and pliable steel is ol                                                                                                        | otained by:                                                   | , 2, 3                                     | y 5                                       |
|    | a) Tempering                                                                                                                            | b) Nitriding                                                  | c) Annealing                               | d) None of these                          |
| 65 | 58. The highest magnetic mo                                                                                                             | ment is shown by the trans                                    | sition metal ion with the ou               | ter electronic configuration              |
|    | a) $3d^2$                                                                                                                               | b) 3 <i>d</i> <sup>7</sup>                                    | c) 3 <i>d</i> <sup>5</sup>                 | d) 3 <i>d</i> <sup>9</sup>                |
| 65 | 59. Which substance can be ι                                                                                                            | used in the preparation of r                                  | naking ink?                                |                                           |
|    | a) Ag                                                                                                                                   | b) AgNO <sub>3</sub>                                          | c) AgBr                                    | d) PbCO <sub>3</sub> .Pb(OH) <sub>2</sub> |
| 66 | 60. Which of the following co                                                                                                           | mpounds volatilises on he                                     | ating?                                     |                                           |
|    | a) MgCl <sub>2</sub>                                                                                                                    | b) HgCl <sub>2</sub>                                          | c) CaCl <sub>2</sub>                       | d) FeCl <sub>3</sub>                      |
| 66 | 61. Identify the statement wh                                                                                                           | nich is not correct regardin                                  | g copper sulphate                          | $\sim$                                    |
|    | a) It reacts with NaOH an                                                                                                               | d glucose to give Cu <sub>2</sub> O                           | b) It gives CuO on strong                  | heating in air                            |
|    | c) It reacts with KCl to give                                                                                                           | ve Cu <sub>2</sub> Cl <sub>2</sub>                            | d) It reacts with KI to giv                | e iodine                                  |
| 66 | 62. In solid CuSO <sub>4</sub> . 5H <sub>2</sub> O, cop                                                                                 | per is coordinated to:                                        |                                            |                                           |
|    | a) 4 water molecules                                                                                                                    | b) 5 water molecules                                          | c) 1 sulphate molecule                     | d) 1 water molecule                       |
| 66 | 63. The grey cast iron contain                                                                                                          | ns:                                                           |                                            |                                           |
|    | a) Iron carbide                                                                                                                         | b) Silicon carbide                                            | c) Silicon dioxide                         | d) Graphite                               |
| 66 | 64. When excess of sodium th                                                                                                            | niosulphate is added to dil.                                  | $AgNO_3$ solution a soluble c              | compound <i>X</i> is formed.              |
|    | However, when dil. Na <sub>2</sub> S <sub>2</sub>                                                                                       | $_2O_3$ solution is added to com                              | ne. AgNO <sub>3</sub> solution a white     | ppt. turning yellow and                   |
|    | finally blac ppt. of Y is ob                                                                                                            | tained. Which is correct pa                                   | ir?                                        |                                           |
|    | a) X is $Ag_2S$ and Y is $Na_3$                                                                                                         | $[\operatorname{Ag}(\operatorname{S}_2\operatorname{O}_3)_2]$ | JY IIII                                    |                                           |
|    | b) X is $Na_3[Ag(S_2O_3)_2]$ and                                                                                                        | nd Y is $Ag_2S$                                               | Y                                          |                                           |
|    | c) X is $Ag_2S_2O_3$ and Y is A                                                                                                         | Ag <sub>2</sub> S                                             |                                            |                                           |
|    | d) X is $Ag_2S_2O_3$ and Y is f                                                                                                         | $Na_3[(S_2O_3)_2]$                                            |                                            |                                           |
| 66 | 55. Which of the following is                                                                                                           | an acidic oxide?                                              |                                            |                                           |
| ~  | a) $Mn_2O_3$                                                                                                                            | b) $MnO_2$                                                    | c) $Mn_2O_7$                               | d) MnO                                    |
| 66 | 56. A developer used in phot                                                                                                            | ograpny is:                                                   |                                            |                                           |
| () | a) A weak acid                                                                                                                          | D) A Weak base                                                | c) A mild reducing agent                   | d) An oxidizing agent                     |
| 00 | VMnO in the two conditions                                                                                                              | e acts as an oxidant in aikar                                 | ine and actuic media. The n                | inal products formed from                 |
|    | $KMHO_4$ In the two conditions) $MnO_2^{2-}$ and $Mn^{3+}$                                                                              | b) $Mn^{3+}$ and $Mn^{2+}$                                    | a) $Mn^{2+}$ and $Mn^{3+}$                 | d) $MnO_{n}$ and $Mn^{2+}$                |
| 61 | a) MIIO allu MII                                                                                                                        | DJ MIL <sup>*</sup> and MIL<br>nfiguration of transition of   | c) MIL and MIL                             | $u_1 \text{ MHO}_2$ and $\text{MH}$       |
| 00 | bo. The general electronic co                                                                                                           | b) $(n - 1)d^{1-10} nc^{1}$                                   | c) $(n - 1)d^{1-10} nc^{0-2}$              | d) None of these                          |
| 61 | a) $(n - 1)u$<br>59 Mohr's solt is a:                                                                                                   | b j (n-1) u n s                                               | $c_{j}(n-1)u$ its                          | uj None of these                          |
| 00 | a) Normal salt                                                                                                                          | h) Acid salt                                                  | c) Basic salt                              | d) Double salt                            |
| 6' | 70 Gun metal is an alloy of:                                                                                                            | DJ Aciu Sait                                                  | cj basic sait                              | uj Double salt                            |
| 0. | a) Cu and Al                                                                                                                            | h) Cu. Sn and 7n                                              | c) Cu. Zn and Ni                           | d) Cu and Sn                              |
| 6  | 71 A metal gives two chlorid                                                                                                            | es 'A and 'B' 'A' gives black                                 | k precipitate with NH.OH a                 | nd ' <i>B</i> ' gives white With KI       |
| 0. | (B') gives a red precipitate                                                                                                            | soluble in excess of KL 'A'                                   | and ' $B$ ' are respectively.              | ind D gives white, with Ki                |
|    | a) HgCl <sub>2</sub> and Hg <sub>2</sub> Cl <sub>2</sub>                                                                                | h) Hg <sub>a</sub> Cl <sub>a</sub> and HgCl <sub>a</sub>      | c) HgCl <sub>2</sub> and ZnCl <sub>2</sub> | d) ZnCla and HgCla                        |
| 67 | 72. Which of the following tr                                                                                                           | ansition metal ions will have                                 | ve definite value of magneti               | ic moment?                                |
| 0. | a) $Sc^{3+}$                                                                                                                            | h) Ti <sup>3+</sup>                                           | c) Cu <sup>3+</sup>                        | d) $Zn^{2+}$                              |
| 67 | 73. In comparison to ferrous                                                                                                            | salts, ferric salts are:                                      | -,                                         |                                           |
| 01 | a) More stable                                                                                                                          | b) Less stable                                                | c) Equally stable                          | d) None of these                          |
| 67 | 74. Fool's gold is                                                                                                                      | - , 2000 Studio                                               | -) -quality studie                         |                                           |
|    | a) CuFeS <sub>2</sub>                                                                                                                   | b) FeS <sub>2</sub>                                           | c) CuS <sub>2</sub>                        | d) $Cu_2O$                                |
|    |                                                                                                                                         |                                                               |                                            |                                           |

| 675. The material used for             | the lining of Bessemer's conv      | verter in the extraction of   | f copper is:                 |
|----------------------------------------|------------------------------------|-------------------------------|------------------------------|
| a) Silica                              | b) Lime                            | c) Iron                       | d) Cu                        |
| 676. Articles made of copp             | er and bronze slowly tarnish       | in air and turn green. Th     | e green colour is due to the |
| formation of:                          |                                    |                               |                              |
| a) Copper oxide                        |                                    |                               |                              |
| b) Copper sulphide                     |                                    |                               |                              |
| c) Copper oxalate                      |                                    |                               |                              |
| d) Basic copper carbo                  | nate                               |                               |                              |
| 677. Which of the following            | g statements concerning tran       | sition elements is false?     |                              |
| a) They are all metals.                |                                    |                               |                              |
| b) They easily form co                 | mplex coordination compou          | nds.                          |                              |
| c) Compounds contain                   | ning their ions are mostly col     | oured.                        |                              |
| d) They show multiple                  | e oxidation states always diff     | ering by units of two.        |                              |
| 678. Among Sc(III), Ti(IV),            | Pd(II) and Cu(II) ions             |                               |                              |
| a) All are paramagnet                  | IC                                 |                               |                              |
| b) All are diamagnetic                 |                                    |                               |                              |
| c) Sc (III), II (IV) are $d$           | paramagnetic and Pd(II), Cu(       | (II) are diamagnetic          |                              |
| $u_{\rm J}$ SC (III), II (IV) are      | ulainagnetic and Pu(II), Cu(I      | i) are paramagnetic           |                              |
| o/ 9. Nessier S reagenit is            | b) K Hal + KOH                     | c) K Hal + Ha                 | d) K Hal + KOH               |
| 680 The spin only magneti              | $c$ moment of $Ee^{2+}$ ion (in BM | () is approximately           |                              |
| a) 4                                   | h) 7                               | c) 5                          | d) 6                         |
| 681 Which of the following             | is not correct about transiti      | on metals?                    | 4,50                         |
| a) Their compounds a                   | re generally coloured              | b) They can form ioni         | c or covalent compounds      |
| c) Their melting and h                 | oiling points are high             | d) They do not exhibit        | t variable valency           |
| 682. In the metallurgy of ir           | on, when limestone is added        | to the blast furnace, the     | calcium ion ends up as :     |
| a) Slag                                | b) Gangue                          | c) Metallic calcium           | d) Calcium carbonate         |
| 683. KI and CuSO <sub>4</sub> solution | s on mixing produce                |                               |                              |
| a) $Cu_2I_2 + K_2SO_4$                 | b) $Cu_2I_2 + I_2 + K_2SO_4$       | c) $CuI_2 + K_2SO_4$          | d) $CuI_2 + I_2 + K_2SO_4$   |
| 684. Which one of the follo            | wing statements is false?          |                               |                              |
| a) During roasting, mo                 | oisture is removed from the o      | ore.                          |                              |
| b) The ore is freed fro                | m almost all nonmetallic imp       | ourities.                     |                              |
| c) Calcination of ore is               | s carried out in the absence o     | f any blast of air.           |                              |
| d) The concentrated z                  | ince blend is subjected to cal     | cination during its extrac    | ction by pyrometallurgy.     |
| 685. Knowing that the cher             | nistry of lanthanoids (Ln) is      | dominated by its +3 oxid      | lation state, which of the   |
| following statements i                 | s incorrect?                       |                               |                              |
| a) Because of the large                | e size of the Ln (III) ions the    | bonding in its compound       | s is predominantly ionic in  |
| character.                             |                                    |                               |                              |
| b) The ionic sizes of L                | n (III) decrease in general wi     | th increasing atomic nun      | nber.                        |
| c) Ln (III) compounds                  | are generally colourless.          |                               |                              |
| d) Lh(iii) hydroxide a                 | re mainly basic in character.      |                               |                              |
| obo. Bell metal is an alloy (          | h) Coppor and nickel               | c) Zinc and load              | d) Conner and tin            |
| 697 Chamical name of yor               | nilion is:                         | cj zinc and leau              | uj copper and thi            |
| a) Mercuric sulphide                   | h) Mercurous sulphide              | c) Zinc sulphide              | d) Cadmium sulphide          |
| 688 The stainless steel dev            | reloped in India contains the      | following special compo       | nents:                       |
| a) Vanadium and coh                    | lt                                 | istic in the operation compo- |                              |
| b) Nickel and magnesi                  | um                                 |                               |                              |
| c) Manganese and chr                   | omium                              |                               |                              |
| d) Aluminium and zin                   | С                                  |                               |                              |
|                                        |                                    |                               |                              |

689. Maximum number of oxidation states of the transition metals is derived from the following configuration: a) ns-electrons b) (n-1)d-electrons c) (n + 1)d-electrons d) ns + (n-1)d-electrons 690. It is always advisable not to cover egg yolk or mustard with silver cutlery because: a) Silver reacts with water of egg yolk to form AgOH b) Silver reacts with sulphur of egg yolk forming black Ag<sub>2</sub>S c) Silver reacts with egg yolk forming Ag<sub>2</sub>SO<sub>4</sub> which is a poisonous substance d) Silver attracts UV light of the atmosphere, thereby spoiling the food 691. Which of the following is not oxidized by  $O_3$ ? d)  $K_2MnO_4$ a) FeSO<sub>4</sub> b) KMnO<sub>4</sub> c) KI 692. Mercury is transported in metal containers made of: d) Aluminium a) Silver b) Lead c) Iron 693. Which may be consumed in the elemental form by human beings? b) Cu c) Ag and Cu d) Fe a) Zn 694. Which one of the elements is a *d*-block element? b) Pt c) Pb d) Ra a) As 695. Which metal does not react with CuSO<sub>4</sub> solution? a) Fe b) Zn d) Ag c) Mg 696. Transition metal ions show colour because a) They absorb light b) They emit light c) They are paramagnetic d) They exhibit d - d transition 697. Rinnmann's green is: a) ZnO.CoO b) A green pigment 🔺 c) Both (a) and (b) d) None of these

698. Which of the following ions is colourless in solution? a) V<sup>3+</sup> b) Cr<sup>3+</sup> c) Co<sup>2+</sup> d)  $Sc^{3+}$ 699. Pig iron is manufactured using: a) An electric furnace

b)  $CuSO_4 \cdot 5H_2O$ 

b) A blast furnace c) An open hearth furnace

d) None of the above

700. Blue vitriol is a)  $CuSO_4$ 

701. Each coinage metal has: a) 18 electrons in their penultimate shell

b) 8 electrons in the outermost shell

c) 2 electrons in the outermost shell

d) 8 electrons in penultimate shell

702. Gold exhibits the variable oxidation states of:

a) +2, +3b) +1, +3c) +2, +4d) +1, +2703. Transition metals and their oxides are used in industrial processes as: a) Detergents b) Insecticides c) Catalysis d) None of these 704. Gravity separation process is used for the concentration of a) Calamine b) Haematite c) Chalcopyrite d) Bauxite

705. The composition of malachite is a) CuFeS<sub>2</sub> b)  $CuCO_3$ c)  $CuCO_3$ .  $Cu(OH)_2$ d)  $Cu(OH)_2$ 706. The atomic numbers of vanadium (V), chromium (Cr), manganese(Mn), and iron (Fe) are respectively 23, 24, 25 and 26. Which one of these may be expected to have the highest second ionisation enthalpy? a) V d) Fe b) Cr c) Mn

c)  $Cu_2SO_4$ 

d) CuSO<sub>4</sub>  $\cdot$  H<sub>2</sub>O

| 707. Zinc white is a better w                            | white pigment than lead white                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e because it:                  |                                             |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------|
| a) Has more covering                                     | power than lead white                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                             |
| b) Is not blackened by                                   | the action of H <sub>2</sub> S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                                             |
| c) Is soluble in water                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                             |
| d) Becomes yellow wh                                     | nen heated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                             |
| 708. A vellow ppt. is forme                              | d when H <sub>2</sub> S is passed through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n an acidified solution of:    |                                             |
| a) $Co^{2+}$ ions                                        | b) $Cd^{2+}$ ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c) Cu <sup>2+</sup> ions       | d) Ni <sup>2+</sup> ions                    |
| 709. Which metal does not                                | react with water or steam?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>,</b>                       | ,                                           |
| a) K                                                     | b) Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c) Ca                          | d) Cu                                       |
| 710. Verdigris is                                        | - )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -)                             |                                             |
| a) Basic lead                                            | b) Basic copper acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c) Basic lead acetate          | d) None of the above                        |
| 711. The percentage of car                               | bon is same in:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | u)                                          |
| a) Cast iron and nig in                                  | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                             |
| b) Cast iron and steel                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                             |
| c) Pig iron and steel                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                             |
| d) Pig iron and wroug                                    | ht iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | $\langle \rangle$                           |
| 712 FeSO $(NH_{\ell})_{a}$ SO $(\cdot 6)$                | $H_2O$ is called:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ċ                              |                                             |
| a) Green salt                                            | h) Glauber's salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c) Mohr's salt                 | d) Alum                                     |
| 713 Which do not decolou                                 | rise KMnO, aqueous solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ?                              | ujmum                                       |
| 2) $C_{-}\Omega^{2-}$                                    | h) HSOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . c) $(0^{2-})$                | d) $SO_{2}^{-}$                             |
| $a_1 C_2 C_4$<br>714 Among the following r               | b) 11503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $c_{1}$ $c_{3}$                | $u_{1}^{3}$ $u_{3}^{3}$                     |
| 714. Among the following p<br>a) $V^{2+}$ $V\Omega^{2+}$ | b) $Cr^{2+}$ $Cr^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c) T;+ T;3+                    | $d) Cu^+ Cu^{2+}$                           |
| a) V , VO                                                | by Ci , Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CJ 11 , 11                     | uj cu , cu                                  |
| 713. Green victor is formed                              | $\frac{1}{2} \frac{1}{2} \frac{1}$ |                                | d = c + c + c + c + c + c + c + c + c + c   |
| a) $res_2 + n_20 + 0_2$<br>716 Densities of transition   | $DJ FeS_2 + H_2O + CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $10 \text{ FeS}_2 + 10 + 10_2$ | $u_{1} res_{2} + c_{0}$                     |
| 716. Defisities of transition                            | h) Vorm low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a) Uiah                        | d) Vorrehigh                                |
| a) LOW                                                   | b) very low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c) High                        | d) very nigh                                |
| /1/. Mercury supplied on r                               | had used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\rightarrow$ $U_{\alpha}(NO)$ |                                             |
| a) $\operatorname{Hg}(\operatorname{NO}_3)_2$            | DJ HgCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $C_{1} Hg(NO_{2})_{2}$         | a) $\operatorname{Hg}_2\operatorname{Cl}_2$ |
| / 18. All metal chlorides are                            | e soluble in water except thos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                                             |
| a) Ag, Pb, Hg                                            | b) Na, K, Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c) Zn, Cu, Cd                  | d) Ba, Sr, Li                               |
| /19. $K_3[CO(NO_2)_6]$ 1S:                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                             |
| a) Fischer's salt                                        | b) Thenard's blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c) Rinnmann's green            | d) Blue vitriol                             |
| /20. Group 11 or IB elemen                               | its are commonly known as:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                             |
| a) Coinage metals                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                             |
| b) Transition metals                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                             |
| c) Typical elements                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                             |
| d) Representative eler                                   | nents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                             |
| 721. Most common oxidatio                                | on states of Ce (cerium) are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -) - 2 - 4                     | N + 2 + F                                   |
| $a_{j} + 3, +4$                                          | bJ + 2, + 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CJ +2, +4                      | a) +3, +5                                   |
| /22. The metal present in i                              | nsulin is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                             |
|                                                          | b) Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c) Zn                          | d) Mg                                       |
| 723. Transition elements fo                              | orm alloys easily because they                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | / have:                        |                                             |
| a) Same atomic numb                                      | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                             |
| b) Same electronic col                                   | inguration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                             |
| c) Nearly same atomic                                    | c size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                             |
| d) None of the above                                     | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                             |
| /24. Muntz metal is an allo                              | y of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                             |
| a) Cu and Sn                                             | b) Cu and Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c) Ag and Zn                   | d) Zn and Mn                                |
| 725. A metal forms a volati<br>metal is:                 | Ie carbonyl compound and th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | is property is taken advan     | tages of its extraction. The                |

| a) Iron                                              | b) Nickel                                                       | c) Cobalt                        | d) Titanium                        |
|------------------------------------------------------|-----------------------------------------------------------------|----------------------------------|------------------------------------|
| 726. The temperature o                               | f blast furnace to produce in                                   | on from its ore $Fe_2O_3$ varies | s from 500°C at the top of the     |
| furnace to about 19                                  | 900°C at the bottom of the fu                                   | Irnace. The reaction betwee      | en the ore $Fe_2O_3$ and CO at the |
| lowest temperatur                                    | e (~ 500°C) is:                                                 |                                  |                                    |
| a) 3Fe₂O₃ + CO →                                     | $\rightarrow 2Fe_3O_4 + CO_2$                                   |                                  |                                    |
| b) $Fe_2O_3 + CO \rightarrow C$                      | $2FeO + CO_2$                                                   |                                  |                                    |
| c) $Fe_2O_3 + 3CO \rightarrow$                       | $\rightarrow$ 2Fe + 3CO <sub>2</sub>                            |                                  |                                    |
| d) Fe <sub>2</sub> O <sub>2</sub> + CO $\rightarrow$ | $2Fe + CO_2 + \frac{1}{-}O_2$                                   |                                  |                                    |
| 727 Adam'a antalwatia                                | 2 2 2                                                           |                                  |                                    |
| a) Pt and PtO                                        | h) Pt                                                           | c) Pt and Pt().                  | d) Pt O and PtO                    |
| 728 Which one of the fo                              | ollowing statement is not true                                  | $c_1 r t and r to_2$             | elements?                          |
| a) They readily for                                  | m complex compounds.                                            | b) They show variab              | le oxidation states.               |
| c) All their ions are                                | e colourless.                                                   | d) Their ions contair            | $\mathbf{d}_{\mathbf{d}}$          |
| 729. The element which                               | forms a coloured chloride i                                     | S:                               |                                    |
| a) Sb                                                | b) Na                                                           | c) Zn                            | d) Cr                              |
| 730. In which of the foll                            | owing metallic bond is stron                                    | igest?                           |                                    |
| a) V                                                 | b) Fe                                                           | c) Cr                            | d) Sc                              |
| 731. Which metal catior                              | n forms stronger complex sa                                     | lt?                              |                                    |
| a) Zn <sup>2+</sup>                                  | b) Cd <sup>2+</sup>                                             | c) Hg <sup>2+</sup>              | d) All of same strength            |
| 732. The equilibrium Cr                              | $T_2 0_7^{2-} + 2e \rightleftharpoons 2 \mathrm{Cr} 0_4^{2-}$ : |                                  |                                    |
| <ul> <li>a) Exists in acidic r</li> </ul>            | nedium                                                          |                                  |                                    |
| b) Exists in basic m                                 | nedium                                                          |                                  |                                    |
| c) Exists in neutral                                 | medium                                                          | S.Y                              |                                    |
| d) Does not exist                                    |                                                                 | $\checkmark \mathbf{Y}$          |                                    |
| 733. Atomic radii of Ti, 2                           | Zr and Hf vary                                                  |                                  |                                    |
| a) Ti $> Zr > Hf$                                    | b) Ti $< 2r < Hf$                                               | c) Ti $< Hf < Zr$                | d) $Ti < 2r = HF$                  |
| /34. The basic characte                              | r of the transition metal mor                                   | ioxide follows the order         |                                    |
| (At. no of $11 = 22, V$                              | Y = 23, $Cr = 24$ , $Fe = 26$ )                                 | $h$ $VO > C_{TO} > T(O)$         | E E O                              |
| a) $110 > V0 > CrC$                                  | 0 > FeO                                                         | d) $TiO > FoO > VO >$            | > FeU                              |
| 735 MnO dissolves in                                 | 0 > 110<br>water to give an acid. The co                        | lour of the acid is              |                                    |
| a) Green                                             | h) Rhie                                                         | c) Violet                        | d) Red                             |
| 736 Which of the follow                              | ving is used as indelible ink?                                  |                                  | uj reu                             |
| a) Aqueous CuSO                                      | solution                                                        | b) Aqueous AgNO <sub>2</sub> s   | solution                           |
| c) Aqueous NaCl s                                    | olution                                                         | d) Aqueous NaOH so               | olution                            |
| 737. Which belongs to t                              | he actinides series?                                            | .,                               |                                    |
| a) Ce                                                | b) Cf                                                           | c) Ca                            | d) Cs                              |
| 738. Pudding process is                              | used in the manufacture of:                                     | -                                | -                                  |
| a) Steel                                             | b) Cast iron                                                    | c) Wrought iron                  | d) Pig iron                        |
| 739. Which method is u                               | sed to remove lead impuriti                                     | es from silver?                  |                                    |
| a) Leaching with d                                   | ilute NaCN solution                                             |                                  |                                    |
| b) Parkes process                                    |                                                                 |                                  |                                    |
| c) Leaching with d                                   | ilute NaCN in presence of air                                   |                                  |                                    |
| d) Electrolytic puri                                 | fication using AgNO <sub>3</sub>                                |                                  |                                    |
| 740. Which of the follow                             | ving is the green coloured po                                   | owder produced when amm          | ionium dichromate is used in fire  |
| works?                                               |                                                                 |                                  |                                    |
| a) Cr                                                | b) $CrU_3$                                                      | c) $Cr_2O_3$                     | d) $CrU(U_2)$                      |
| 2) V O                                               | wing is amphoteric?                                             |                                  |                                    |
| a) $v_2 v_3$<br>742. NH <sub>2</sub> forms complete  | x with                                                          | $v_2 v_5$                        | uj mo                              |
|                                                      |                                                                 |                                  |                                    |

| a) CuSO4                                             | b) CdSO <sub>4</sub>                                                    | c) AgCl                                                   | d) All of these                         |
|------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|
| 743. Transition metals a                             | are less reactive because of the                                        | eir:                                                      |                                         |
| a) High ionization                                   | potential and low melting poir                                          | nt                                                        |                                         |
| b) High ionization                                   | potential and high melting poi                                          | nt                                                        |                                         |
| c) Low ionization p                                  | ootential and low melting poin                                          | ıt                                                        |                                         |
| d) Low ionization r                                  | otential and high melting point                                         | nt                                                        |                                         |
| 744. The metal that doe                              | s not displace hydrogen from                                            | an acid is:                                               |                                         |
| a) Hg                                                | b) Zn                                                                   | c) Al                                                     | d) Ca                                   |
| 745. Percentage of gold                              | in 18 carat gold is                                                     | 2                                                         |                                         |
| a) 75.0%                                             | b) 20.0%                                                                | c) 80.0%                                                  | d) 38.67%                               |
| 746. The correct order of                            | of ionic radii of Y <sup>3+</sup> , La <sup>3+</sup> , Eu <sup>3+</sup> | and Lu <sup>3+</sup> is                                   |                                         |
| a) Y <sup>3+</sup> < La <sup>3+</sup> < E            | $u^{3+} < Lu^{3+}$                                                      | b) Lu <sup>3+</sup> < Eu <sup>3+</sup> < La <sup>3-</sup> | $^{+} < Y^{3+}$                         |
| c) $La^{3+} < Eu^{3+} < I$                           | $Lu^{3+} < Y^{3+}$                                                      | d) $Y^{3+} < Lu^{3+} < Eu^{3+}$                           | < La <sup>3+</sup>                      |
| 747. Coinage metals sho                              | ow the properties of                                                    | ,                                                         |                                         |
| a) Inert elements                                    | b) Normal elements                                                      | c) Typical elements                                       | d) Transitional elements                |
| 748. When steel is heate                             | ed red hot and then slowly coc                                          | oled, the process is known a                              | s:                                      |
| a) Annealing                                         | b) Hardening                                                            | c) Tempering                                              | d) Nitriding                            |
| 749. Which form contain                              | ns the maximum percentage o                                             | f carbon?                                                 | <b>S</b> <sup>'</sup>                   |
| a) Wrought iron                                      | b) Cast iron                                                            | c) Malleable iron                                         | d) Steel                                |
| 750. During the extracti                             | on of copper, the impurity (Fe                                          | eS) is removed as slag by mi                              | xing the contaminated copper            |
| ore with silica and                                  | coke. The molecular formula                                             | of slag is                                                | 5 · · · · · · · · · · · · · · · · · · · |
| a) FeSiO <sub>2</sub>                                | b) $Fe_2O_2$                                                            | c) FeSi (solid)                                           | d) FeSi (vapour)                        |
| 751. The correct order of                            | of $E^{\circ}_{M^{2+}/M}$ values with negative                          | ve sign for the four successiv                            | ve elements Cr. Mn. Fe and Co           |
| ic                                                   |                                                                         |                                                           |                                         |
| a) $Mn > Cr > E\rho$                                 | $> C_0$                                                                 | b) $Cr > F_{\theta} > Mn > 0$                             | <u>î</u>                                |
| a) MII $> CT > Te$<br>c) Fe $> Mn > Cr$              |                                                                         | d) $Cr > Mn > Fe > 1$                                     |                                         |
| 752 Which of the follow                              | ving is the chief are of conner?                                        |                                                           | 20                                      |
|                                                      | h) Cu O                                                                 | c) CuEoS                                                  | d) Cu(C) Cu(OH)                         |
| a) $Uu_2 S$<br>752 The catalytic activi              | $D_{\rm J} Cu_2 O$                                                      | U CUFES <sub>2</sub>                                      | $u_j CuCO_3. Cu(OH)_2$                  |
| a) Their magnetic                                    | behavior                                                                | ii compounds is ascribed ii                               |                                         |
| b) Their unfilled d                                  | orbitals                                                                |                                                           |                                         |
| c) Their ability to $c$                              | dont variable ovidation states                                          |                                                           |                                         |
| d) Their chemical r                                  | conctivity                                                              |                                                           |                                         |
| 754. Which is used for s                             | topping blooding?                                                       |                                                           |                                         |
| 2) Ferric chloride                                   | b) Mobr's salt                                                          | c) Green vitrial                                          | d) Sodium nitronrussida                 |
| 755 On beating $7nCl$                                | I the compound obtained is                                              |                                                           | uj sourum meroprusside                  |
| 755.0111catting 211012.1                             | b) 7p(OH)Cl                                                             | c) 7n(OH)                                                 | d) 7n0                                  |
| 756 Vellow morcury (II                               | ) oxide is obtained when                                                | $C_{J}$ $\Sigma II(011)_{2}$                              | u) 2110                                 |
| 2) Hais hosted in c                                  | y coss of air at 622 K                                                  | b) HaCl is treated wit                                    | h NaOH solution                         |
| a) HgS is reacted in e                               | Access of all at 025 K                                                  | d) $H_{g}(NO_{a})$ is heated with                         | in procence of Hg                       |
| 757 From gold aurocya                                | nide Na[Au(CN)] gold can be                                             | $u_1 lig(10_3)_2$ is lieated                              | in presence of fig                      |
| 757. From goid autocya                               | h) $H_{\alpha}$                                                         | c) Ag                                                     | d) None of these                        |
| $7EQ$ Arrange $Co^{3+}$ $Lo^{3+}$                    | D J Hg                                                                  | CJ Ag                                                     | u) None of these                        |
| 730, All alige Ce , La<br>a) $Vh^{3+} < Dm^{3+} < r$ | $C_{0}^{3+} < L_{0}^{3+}$                                               | b) $C_{a}^{3+} \prec V_{b}^{3+} \prec D_{m}^{3+}$         | $3^{+} < 1_{2}^{3^{+}}$                 |
| a) $Vh^{3+} < Dm^{3+} < C$                           | $Le^{3+} < Ce^{3+}$                                                     | d) $Dm^{3+} < Lo^{3+} < Co^{3+}$                          | $\leq Ld$<br>$B^+ < Vh^{3+}$            |
| $C_{\rm J}$ ID $\sim$ PIII $\sim$                    | La <sup>*</sup> < Ce <sup>*</sup>                                       | $u$ $P$ $III^{-} < La^{-} < Ce^{-}$                       | < 10                                    |
| / 57. BIACK HgS:                                     | a UCI on hailing                                                        |                                                           |                                         |
| a) Dissolves in con                                  | ing UCL L a sweetel of VCLO                                             |                                                           |                                         |
| D) Dissolves in boil                                 | $H_{1}$ HUI + a crystal of KUU <sub>3</sub>                             |                                                           |                                         |
| cj Dissolves in Nat                                  | л                                                                       |                                                           |                                         |
| aJ None of the abov                                  | 7e                                                                      |                                                           |                                         |

760. The actinoids exhibit more number of oxidation states in general than the lanthanoids. This is because a) The 5*f*-orbitals are more buried than the 4*f*-orbitals. b) There is a similarity between 4*f* and 5*f*-orbitals in their angular part of the wave function. c) The actinoids are more reactive than the lanthanoids. d) The 5*f*-orbitals extend further from the nucleus than the 4*f*-orbitals. 761. Hair dyes contain a) Copper nitrate b) Gold chloride c) Silver nitrate d) Copper sulphate 762. A scarlet red precipitate is obtained on treating mercuric chloride solution with: a)  $H_2S$ b) KI c) NaOH d) NH<sub>4</sub>OH 763. Which of the following statements is wrong? a) An acidified solution of  $K_2Cr_2O_7$  liberates iodine from iodides b) In acidic solution dichromate ions are converted to chromate ions c) Ammonium dichromate on heating undergoes exothermic decomposition to give Cr<sub>2</sub>O<sub>3</sub> d) Potassium dichromate is used as a titrant for Fe<sup>2+</sup> ions 764. In the electroplating of gold the electrolyte used is: a) Gold chloride b) Gold nitrate c) Gold sulphate d) Potassium aurocyanide 765. Silver is extracted from argentiferous lead by: a) Mond's process b) Parkes process c) Haber's process d) Bergius process 766. Aqua regia reacts with Pt to yield: a)  $Pt(NO_3)_4$ c) PtCl₄ d) PtCl<sub>2</sub> b)  $H_2$  PtCl<sub>6</sub> 767. Agrentite is an ore of a) Fe b) Al c) Cu d) Ag 768. Transition elements exhibits variable valencies because they release electrons from the following orbits a) ns b) ns and np c) (n-1)d and nsd) (n - 1)d769. For making good quality mirrors, plates of float glasses are used. These are obtained by floating molten glass over a liquid metal which does not solidify before glass. The metal can be: d) Sn a) Na b) Mg c) Hg 770. How is limestone used in Fe extraction? a) Oxidation of Fe ore b) Reduction of Fe ore d) Purification of Fe formed c) Formation of slag 771. When copper pyrites is roasted in excess of air, a mixture of CuO + FeO is formed. FeO is present as impurities. This can be removed as slag during reduction of CuO. The flux added to form slag is a) SiO<sub>2</sub> which is an acid flux b) Lime stone, which is a basic flux c)  $SiO_2$ , which is a basic flux d) CaO, which is a basic flux 772. The 'spin –only' magnetic moment [in units of Bohr magneton,  $(\mu_{\beta})$  ]of Ni<sup>2+</sup> in aqueous solution would be (Atomic number of Ni=28) a) 2.84 b) 4.90 c) 0 d) 1.73 773. Which of the following is used as purgative? a) HgS c) HgCl<sub>2</sub> b)  $Hg_2Cl_2$ d) ZnSO<sub>4</sub> 774. The formula of sodium nitroprusside is: b)  $Na_2[Fe(CN)_5NO]$ c) NaFe[Fe(CN)<sub>6</sub>] a)  $Na_4[Fe(CN)_5NOS]$ d)  $Na_2[Fe(CN)_6NO_2]$ 775. Which set represents an example of non typical transition elements? a) Zn, Cd, Hg b) Sc, Ti, V c) Cu, Ag, Au d) Cr, Fe, Mn 776. When calomel reacts with NH<sub>4</sub>OH solution, the compound formed is a)  $NH_2 - Hg - Cl$ b)  $Hg_2Cl_2NH_3$ c)  $Hg(NH_3)_2Cl_2$ d)  $HgCl_2NH_3$ 777. The highest magnetic moment is shown by the transition metal ion with the configuration a)  $3d^2$ b) 3*d*<sup>5</sup> c) 3*d*<sup>7</sup> d) 3d<sup>9</sup>

| 778. Identify the alloy containing a non-metal as a consti                                           | tuent in it:                                   |                                    |
|------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------|
| a) Bell metal b) Bronze                                                                              | c) Invar                                       | d) Steel                           |
| 779. Chemical name of corrosive sublimate is:                                                        |                                                |                                    |
| a) Mercurous chloride b) Zinc chloride                                                               | c) Mercuric chloride                           | d) Aluminium chloride              |
| 780. Excess of KI reacts with $CuSO_4$ solution and then Na                                          | $a_2S_2O_3$ solution is added to               | it. Which of the statements        |
| is incorrect for this reaction?                                                                      |                                                |                                    |
| a) Cu <sub>2</sub> I <sub>2</sub> formed                                                             | b) Cul <sub>2</sub> is formed                  |                                    |
| c) $Na_2S_2O_3$ is oxidised                                                                          | d) Evolved I <sub>2</sub> is reduced           |                                    |
| 781. Cuprous ion is colourless, while cupric ion is colour                                           | ed because                                     |                                    |
| a) Both have half-filled <i>p</i> and <i>d</i> -orbiatls                                             |                                                |                                    |
| b) Cuprous ion has a completed <i>d</i> -orbital and cupri-                                          | c ion has incomplete <i>d</i> -orbi            | ital                               |
| c) Cuprous ion has incomplete <i>d</i> -orbital and cupric                                           | ion has a complete <i>d</i> -orbit             | al                                 |
| d) Both have unpaired electrons in <i>d</i> -orbital                                                 |                                                |                                    |
| 782. Which one of the following is a diamagnetic ion?                                                | N N C 2 L                                      | 21                                 |
| a) $Co^{2+}$ b) $Cu^{2+}$                                                                            | c) Mn <sup>2+</sup>                            | d) Sc <sup>3+</sup>                |
| 783. Which of the following oxides of chromium is amph                                               | oteric in nature?                              |                                    |
| a) $CrO$ b) $Cr_2O_3$                                                                                | c) $CrO_3$                                     | d) $CrO_5$                         |
| 784. Cast iron is manufactured by remelting:                                                         |                                                | 5                                  |
| a) Pig iron and pouring into moulds                                                                  |                                                |                                    |
| b) Steel and pouring into moulds                                                                     |                                                |                                    |
| c) wrought from and pouring into moulds                                                              |                                                |                                    |
| a) from one and pouring into moulds $70^{\circ}$ . The number of 2 d electrons in $Cu^{\pm}$ ion is: |                                                |                                    |
| 785. The number of $3a$ -electrons in Cu <sup>+</sup> ion is:                                        |                                                | 4) 12                              |
| $a_{\rm J}$ 8 DJ 10 $a_{\rm J}$                                                                      |                                                | u) 12                              |
| 780. In the extraction of Fe from $Fe_2O_3$ , the reducing age                                       | a) Electrolytic reduction                      | d) (                               |
| a) C DJ AI                                                                                           |                                                | u) cu                              |
| a) They are metals                                                                                   | because.                                       |                                    |
| b) They are all solids                                                                               |                                                |                                    |
| c) They have free electrons in outer energy orbits                                                   |                                                |                                    |
| d) All of the above                                                                                  |                                                |                                    |
| 788. A compound is vellow when hot and white when co                                                 | ld. The compound is :                          |                                    |
| a) $Al_2O_2$ b) PbO                                                                                  | c) CaO                                         | d) ZnO                             |
| 789. A solid (A) which has photographic effect reacts with                                           | th the solution of a sodium                    | salt ( $B$ ) to give a pale vellow |
| ppt. (C). Sodium salt on heating gives brown vapou                                                   | ſS.                                            |                                    |
| Identify <i>A</i> , <i>B</i> and <i>C</i> .                                                          |                                                |                                    |
| a) AgNO <sub>3</sub> , NaBr, AgBr b) AgNO <sub>3</sub> , NaCl, AgCl <sub>2</sub>                     | c) AgNO <sub>3</sub> , NaBr, AgCl <sub>2</sub> | d) AgCl, NaBr, AgBr <sub>2</sub>   |
| 790. Silver possesses metallic lustre because:                                                       |                                                |                                    |
| a) It is a noble metal                                                                               |                                                |                                    |
| b) It is coated with the oxide of silver                                                             |                                                |                                    |
| c) Valency electrons absorb white light completely                                                   |                                                |                                    |
| d) Valency electrons absorb and eject white light                                                    |                                                |                                    |
| 791. Magnetic moment of manganese in $(NH_4)_2 MnBr_2$ is                                            |                                                |                                    |
| a) 3.87 BM b) 5.91 BM                                                                                | c) 4.89 BM                                     | d) 2.82 BM                         |
| 792. Which transition metal is used for the reduction of s                                           | steam to hydrogen?                             |                                    |
| a) Mg b) Fe                                                                                          | c) Sc                                          | d) Pt                              |
| 793. The transition elements are more metallic than the                                              | representative elements be                     | ecause they have                   |
| a) Electron pairs in <i>d</i> -orbitals                                                              | b) Availability of <i>d</i> -orbita            | als for bonding                    |
| c) The electron in <i>d</i> -orbitals                                                                | d) Unpaired electron in n                      | netallic orbitals                  |
| 794. Cerium can show the oxidation state of +4 becauses                                              |                                                |                                    |

a) It resembles alkali metals

b) It has very low value of *IE* 

- c) Of its tendency to attain noble gas configuration of xenon
- d) Of its tendency to attain  $f^{\circ}$  configuration

# **THE D-AND F-BLOCK ELEMENTS**

# CHEMISTRY

|              |        |              |        |              |        | ANS           | W      | ER K         | EY :   |              |        |              |        |              |        |
|--------------|--------|--------------|--------|--------------|--------|---------------|--------|--------------|--------|--------------|--------|--------------|--------|--------------|--------|
| 1)           | С      | 2)           | С      | 3)           | С      | 4)            | d      | 177)         | С      | 178)         | d      | 179)         | а      | 180)         | d      |
| 5)           | b      | 6)           | а      | 7)           | с      | 8)            | d      | 181)         | С      | 182)         | С      | 183)         | а      | 184)         | b      |
| 9)           | d      | 10)          | а      | 11)          | b      | 12)           | d      | 185)         | а      | 186)         | d      | 187)         | а      | 188)         | d      |
| 13)          | b      | 14)          | а      | 15)          | b      | 16)           | a      | 189)         | b      | 190)         | b      | 191)         | a      | 192)         | а      |
| 17)          | d      | 18)          | b      | 19)          | с      | 20)           | С      | 193)         | b      | 194)         | b      | 195)         | b      | 196)         | d      |
| 21)          | С      | 22)          | а      | 23)          | а      | 24)           | d      | 197)         | d      | 198)         | а      | 199)         | a      | 200)         | С      |
| 25)          | С      | 26)          | С      | 27)          | с      | 28)           | b      | 201)         | С      | 202)         | а      | 203)         | b      | 204)         | а      |
| 29)          | b      | 30)          | d      | 31)          | С      | 32)           | d      | 205)         | С      | 206)         | а      | 207)         | d      | 208)         | С      |
| 33)          | d      | 34)          | С      | 35)          | d      | 36)           | d      | 209)         | b      | 210)         | d      | 211)         | b      | 212)         | d      |
| 37)          | С      | 38)          | а      | 39)          | b      | 40)           | d      | 213)         | а      | 214)         | b      | 215)         | С      | 216)         | d      |
| 41)          | С      | 42)          | b      | 43)          | С      | 44)           | d      | 217)         | b      | 218)         | C 🗸    | 219)         | С      | 220)         | b      |
| 45)          | b      | 46)          | а      | 47)          | С      | 48)           | С      | 221)         | d      | 222)         | a      | 223)         | а      | 224)         | а      |
| 49)          | b      | 50)          | С      | 51)          | С      | 52)           | a      | 225)         | С      | 226)         | а      | 227)         | d      | 228)         | d      |
| 53)          | d      | 54)          | d      | 55)          | d      | 56)           | b      | 229)         | a      | 230)         | С      | 231)         | а      | 232)         | а      |
| 57)          | d      | 58)          | С      | 59)          | а      | 60)           | b      | 233)         | С      | 234)         | а      | 235)         | а      | 236)         | d      |
| 61)          | b      | 62)          | С      | 63)          | а      | 64)           | d      | 237)         | a      | 238)         | а      | 239)         | С      | 240)         | d      |
| 65)          | d      | 66)          | b      | 67)          | С      | 68)           | b      | 241)         | b      | 242)         | а      | 243)         | а      | 244)         | d      |
| 69)          | b      | 70)          | b      | 71)          | С      | 72)           | а      | 245)         | а      | 246)         | а      | 247)         | d      | 248)         | b      |
| 73)          | d      | 74)          | b      | 75)          | С      | 76)           | b      | 249)         | b      | 250)         | b      | 251)         | С      | 252)         | d      |
| 77)          | С      | 78)          | С      | 79)          | b      | 80)           | b      | 253)         | С      | 254)         | С      | 255)         | b      | 256)         | d      |
| 81)          | b      | 82)          | d      | 83)          | d      | 84)           | d      | 257)         | b      | 258)         | С      | 259)         | d      | 260)         | b      |
| 85)          | b      | 86)          | С      | 87)          | d      | 88)           | С      | 261)         | b      | 262)         | С      | 263)         | b      | 264)         | d      |
| 89)          | b      | 90)          | а      | 91)          | b      | 92)           | d      | 265)         | а      | 266)         | С      | 267)         | d      | 268)         | d      |
| 93)          | С      | 94)          | С      | 95)          | b      | 96)           | С      | 269)         | d      | 270)         | b      | 271)         | b      | 272)         | С      |
| 97)          | а      | 98)          | С      | 99)          | d      | 100)          | С      | 273)         | а      | 274)         | d      | 275)         | d      | 276)         | С      |
| 101)         | С      | 102)         | d      | 103)         | b      | 104)          | С      | 277)         | b      | 278)         | b      | 279)         | b      | 280)         | С      |
| 105)         | С      | 106)         | C      | 107)         | С      | 108)          | a      | 281)         | b      | 282)         | b      | 283)         | С      | 284)         | С      |
| 109)         | a      | 110)         | d      | 111)         | d      | 112)          | b      | 285)         | b      | 286)         | b      | 287)         | a      | 288)         | C      |
| 113)         | d      | 114)         | d      | 115)         | a      | 116)          | С      | 289)         | а      | 290)         | C      | 291)         | b      | 292)         | b      |
| 117)         | d      | 118)         | C      | 119)         | d      | 120)          | a      | 293)         | a      | 294)         | b      | 295)         | b      | 296)         | d      |
| 121)         | a<br>L | 122)         | D<br>L | 123)         | a      | 124)          | a      | 297)         | a      | 298J         | b      | 299)         | a<br>L | 300)         | а      |
| 125)         | D      | 126)         | D      | 127)         | a      | 128)          | a<br>J | 301)         | a      | 302J         | a      | 303)         | D      | 304J         | C<br>J |
| 129)         | a      | 130)         | C<br>h | 131)<br>125) | C<br>d | 132)          | a      | 305)         | C      | 306J         | a<br>d | 307)         | a<br>d | 308)         | a<br>h |
| 133)         | a      | 134)         | D      | 135)         | u<br>h | 130J          | C<br>h | 309)         | a      | 310J<br>214) | a      | 311)<br>215) | a<br>d | 312J         | D<br>h |
| 137)         | C<br>h | 138)         | a      | 139)         | D      | 140J<br>144)  | D<br>d | 313)         | C      | 314J<br>210) | C      | 315J<br>210) | a<br>d | 310)         | D      |
| 141)         | d      | 142J<br>146) | a<br>d | 143J<br>147) | a<br>h | 144J<br>140)  | a      | 31/J<br>221) | C      | 318J<br>222) | C<br>h | 319)         | u<br>h | 320J<br>224) | a<br>d |
| 145)         | a      | 140J<br>150) | u<br>d | 147J<br>151) | D<br>d | 148J<br>152)  | C<br>d | 321)<br>225) | a      | 322J<br>226) | D<br>h | 323J<br>227) | D      | 324J<br>220) | u<br>d |
| 149J<br>152) | a      | 150J<br>154) | u      | 151J<br>155) | u      | 154J<br>156)  | u<br>d | 323J<br>220) | C<br>d | 320J<br>220) | d<br>d | 347J<br>221) | C      | 320J<br>222) | u      |
| 153J<br>157) | a<br>h | 154J<br>159) | a<br>h | 120)<br>120) | ι<br>ο | 120J          | u      | 349J<br>3221 | u<br>h | 33UJ<br>2241 | u<br>d | 33E)<br>33E) | ι<br>ο | 334J<br>326) | C      |
| 137J<br>161) | u<br>h | 130J<br>167) | u<br>h | 192)<br>193) | a<br>h | 16 <i>1</i> ) | d<br>C | 333J<br>327) | U<br>2 | 334J<br>2201 | u<br>a | 330J<br>332J | a<br>d | 330J<br>37U) | d<br>d |
| 101J<br>165) | U<br>C | 104J<br>166) | U<br>C | 103J<br>167) | b<br>h | 104J<br>169)  | с<br>d | 3373         | a<br>C | 330J<br>3421 | a<br>C | 337J<br>342) | u<br>d | 340J<br>244) | u<br>a |
| 160)<br>160) | c<br>c | 100J<br>170) | с<br>а | 107J<br>171) | d      | 100J<br>172)  | u<br>a | 345)         | L<br>d | 344J<br>346) | с<br>d | 343J<br>347) | u<br>h | 377J<br>349) | a<br>2 |
| 172)         | c<br>c | 174)         | a<br>d | 175)         | u<br>h | 176)          | a<br>h | 340)         | u<br>C | 340J<br>350) | u<br>a | 37/J<br>351) | d      | 350)         | a<br>n |
| 1/3]         | L      | 1/7)         | u      | 1/3)         | U      | 1/0]          | U      | 577          | L      | 5505         | u      | 331)         | u      | 554J         | a      |

| 353         | 3)             | a | 354) | а | 355) | d | 356) | С | 557)         | С | 558) | С | 559)   | С  | 560) | b |
|-------------|----------------|---|------|---|------|---|------|---|--------------|---|------|---|--------|----|------|---|
| 357         | 7)             | С | 358) | b | 359) | а | 360) | d | 561)         | b | 562) | d | 563) a | a  | 564) | С |
| 361         | L)             | d | 362) | а | 363) | d | 364) | d | 565)         | а | 566) | d | 567)   | С  | 568) | С |
| 365         | 5)             | а | 366) | С | 367) | а | 368) | b | 569)         | С | 570) | С | 571)   | d  | 572) | С |
| 369         | )              | а | 370) | С | 371) | а | 372) | с | 573)         | b | 574) | а | 575) a | a  | 576) | b |
| <b>37</b> 3 | s)             | а | 374) | d | 375) | b | 376) | d | 577)         | d | 578) | а | 579)   | d  | 580) | а |
| 377         | <i>7</i> )     | с | 378) | а | 379) | а | 380) | a | 581)         | d | 582) | d | 583) a | a  | 584) | d |
| 381         | ĺ)             | С | 382) | b | 383) | С | 384) | с | 585)         | С | 586) | d | 587) a | a  | 588) | b |
| 385         | 5)             | с | 386) | b | 387) | а | 388) | a | 589)         | а | 590) | а | 591) a | a  | 592) | С |
| 389         | ý              | b | 390) | с | 391) | d | 392) | b | 593)         | b | 594) | b | 595) I | b  | 596) | a |
| <b>39</b> 3 | Ś              | с | 394) | а | 395) | d | 396) | с | 597)         | b | 598) | С | 599)   | d  | 600) | b |
| 397         | <b>7</b> )     | b | 398) | b | 399) | b | 400) | a | 601)         | с | 602) | С | 603) a | a  | 604) | d |
| 401         | Ú)             | b | 402) | а | 403) | а | 404) | с | 605)         | d | 606) | С | 607    | b. | 608) | С |
| 405         | 5)             | b | 406) | d | 407) | b | 408) | d | 609)         | b | 610) | b | 611)   | с. | 612) | b |
| 409         | ý              | с | 410) | а | 411) | b | 412) | b | 613)         | С | 614) | d | 615)   | b  | 616) | а |
| 413         | Ś              | с | 414) | с | 415) | b | 416) | с | 617)         | b | 618) | а | 619) a | a  | 620) | а |
| 417         | Ŋ              | d | 418) | а | 419) | а | 420) | d | 621)         | С | 622) | a | 623)   | a  | 624) | d |
| 421         | Ú              | a | 422) | b | 423) | С | 424) | с | 625)         | b | 626) | b | 627)   | b  | 628) | а |
| 425         | 5)             | d | 426) | b | 427) | b | 428) | a | 629)         | b | 630) | d | 631)   | d  | 632) | b |
| 429         | ý              | d | 430) | b | 431) | b | 432) | d | 633)         | а | 634) | d | 635)   | b  | 636) | С |
| <b>43</b> 3 | Ś              | b | 434) | с | 435) | С | 436) | с | 637)         | a | 638) | С | 639)   | b  | 640) | b |
| 437         | <i>y</i> )     | с | 438) | а | 439) | С | 440) | d | <i>6</i> 41) | a | 642) | а | 643)   | b  | 644) | С |
| 441         | Ú)             | с | 442) | а | 443) | а | 444) | с | 645)         | а | 646) | а | 647) a | a  | 648) | b |
| 445         | 5)             | b | 446) | b | 447) | а | 448) | a | 649)         | b | 650) | b | 651)   | С  | 652) | d |
| 449         | ý              | с | 450) | d | 451) | С | 452) | b | 653)         | d | 654) | b | 655) a | a  | 656) | С |
| <b>45</b> 3 | s)             | d | 454) | b | 455) | d | 456) | b | 657)         | с | 658) | С | 659) 1 | b  | 660) | b |
| 457         | 7)             | b | 458) | d | 459) | b | 460) | d | 661)         | С | 662) | а | 663)   | d  | 664) | b |
| 461         | L)             | b | 462) | С | 463) | b | 464) | a | 665)         | С | 666) | С | 667)   | d  | 668) | С |
| 465         | 5)             | С | 466) | а | 467) | С | 468) | b | 669)         | d | 670) | b | 671) I | b  | 672) | b |
| 469         | <i>)</i>       | b | 470) | а | 471) | a | 472) | d | 673)         | а | 674) | b | 675) I | b  | 676) | d |
| <b>47</b> 3 | 3)             | b | 474) | С | 475) | a | 476) | a | 677)         | d | 678) | d | 679) I | b  | 680) | b |
| 477         | 7)             | a | 478) | а | 479) | С | 480) | С | 681)         | d | 682) | а | 683) I | b  | 684) | b |
| 481         | l)             | b | 482) | С | 483) | a | 484) | a | 685)         | С | 686) | d | 687) a | a  | 688) | С |
| <b>48</b> 5 | 5)             | С | 486) | С | 487) | b | 488) | d | 689)         | d | 690) | b | 691) l | b  | 692) | С |
| 489         | <del>)</del> ) | С | 490) | b | 491) | а | 492) | с | 693)         | С | 694) | b | 695) ( | d  | 696) | d |
| <b>49</b> 3 | <b>B</b> )     | a | 494) | С | 495) | С | 496) | b | 697)         | С | 698) | d | 699) I | b  | 700) | b |
| 497         | 7)             | С | 498) | b | 499) | b | 500) | С | 701)         | а | 702) | b | 703)   | С  | 704) | b |
| 501         | l)             | a | 502) | С | 503) | b | 504) | с | 705)         | С | 706) | b | 707) l | b  | 708) | b |
| 505         | 5)             | a | 506) | b | 507) | а | 508) | a | 709)         | d | 710) | b | 711) a | a  | 712) | С |
| 509         | <b>)</b> )     | с | 510) | d | 511) | d | 512) | b | 713)         | С | 714) | С | 715) a | a  | 716) | d |
| 513         | 3)             | d | 514) | С | 515) | а | 516) | d | 717)         | b | 718) | а | 719) a | a  | 720) | а |
| 517         | 7)             | d | 518) | a | 519) | С | 520) | с | 721)         | а | 722) | С | 723)   | С  | 724) | b |
| 521         | )              | b | 522) | b | 523) | а | 524) | a | 725)         | b | 726) | С | 727) a | a  | 728) | С |
| 525         | 5)             | d | 526) | а | 527) | b | 528) | d | 729)         | d | 730) | С | 731)   | С  | 732) | b |
| 529         | <b>)</b> )     | a | 530) | С | 531) | а | 532) | с | 733)         | d | 734) | а | 735)   | С  | 736) | b |
| <b>53</b> 3 | <b>B)</b>      | d | 534) | а | 535) | d | 536) | d | 737)         | b | 738) | С | 739) I | b  | 740) | С |
| 537         | 7)             | d | 538) | а | 539) | b | 540) | a | 741)         | b | 742) | d | 743) I | b  | 744) | a |
| 541         | L)             | b | 542) | d | 543) | С | 544) | d | 745)         | а | 746) | d | 747)   | d  | 748) | а |
| <b>54</b> 5 | 5)             | d | 546) | а | 547) | С | 548) | С | 749)         | b | 750) | а | 751) a | a  | 752) | С |
| 549         | <b>)</b> )     | b | 550) | С | 551) | b | 552) | a | 753)         | с | 754) | а | 755) l | b  | 756) | b |
| 553         | <b>B)</b>      | С | 554) | b | 555) | b | 556) | d | 757)         | а | 758) | а | 759) l | b  | 760) | d |

| <ul> <li>761) c</li> <li>765) b</li> <li>769) c</li> <li>773) b</li> <li>777) b</li> </ul> | 762)<br>766)<br>770)<br>774)<br>778) | b<br>b<br>c<br>b<br>d | 763)<br>767)<br>771)<br>775)<br>779) | b<br>d<br>a<br>c | 764)<br>768)<br>772)<br>776)<br>780) | d 781)<br>c 785)<br>a 789)<br>a 793)<br>b | b<br>b<br>a<br>b | 782)<br>786)<br>790)<br>794) | d<br>a<br>d<br>d | 783)<br>787)<br>791) | b<br>d<br>b | 784) a<br>788) d<br>792) b |
|--------------------------------------------------------------------------------------------|--------------------------------------|-----------------------|--------------------------------------|------------------|--------------------------------------|-------------------------------------------|------------------|------------------------------|------------------|----------------------|-------------|----------------------------|
|                                                                                            |                                      |                       |                                      |                  |                                      |                                           |                  |                              |                  |                      |             |                            |
|                                                                                            |                                      |                       |                                      |                  |                                      |                                           |                  |                              | C                | 25                   |             |                            |
|                                                                                            |                                      |                       |                                      |                  |                                      | E.                                        | R                |                              |                  |                      |             |                            |
|                                                                                            |                                      |                       |                                      |                  |                                      |                                           |                  |                              |                  |                      |             |                            |
|                                                                                            |                                      |                       | Ś                                    |                  |                                      |                                           |                  |                              |                  |                      |             |                            |
|                                                                                            | 2                                    |                       |                                      |                  |                                      |                                           |                  |                              |                  |                      |             |                            |
| SMA                                                                                        | 85                                   |                       |                                      |                  |                                      |                                           |                  |                              |                  |                      |             |                            |

# **THE D-AND F-BLOCK ELEMENTS**

# CHEMISTRY

|    | : HINTS AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SO | LUTIONS :                                                                                 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------|
| 1  | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | complex.                                                                                  |
|    | $AgNO_3 \rightarrow Ag + NO_2 + \frac{1}{2}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | $Ag_2S + 4NaCN \rightarrow 2Na[Ag(CN)_2] + NaCl$<br>∴ NaCN is used to dissolve argentite. |
| 2  | (c)<br>Transition elements show covalency as well as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12 | (d)<br>Magnetic moment of transition metal is                                             |
|    | ionic valency, e. g., $Mn^{2+}$ ionic, $Mn^{7+}$ covalent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | Magnetic moment of transition metal is $u = \sqrt{m(m+2)}$                                |
| 3  | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 | $\mu = \sqrt{n(n+2)}$                                                                     |
|    | Potassium dichromate on heating gives oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15 | U)<br>It is a fact                                                                        |
|    | and chromic oxide $(Cr_2O_3)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14 | (a)                                                                                       |
|    | $4K_2Cr_2O_7 \xrightarrow{\Delta} 4K_2CrO_4 + 3O_2 + 2Cr_2O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | Fool's gold is $CuFeS_2$ which does not contain Au at                                     |
| 4  | (a)<br>Guanida process is used for the extraction of silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15 |                                                                                           |
|    | and gold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12 |                                                                                           |
| 5  | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | $Cu + H_2SO_4 + \frac{1}{2}O_2 \rightarrow CuSO_4 + H_2O$                                 |
|    | ZnS is white in colour.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 | (d)                                                                                       |
| 6  | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | Hg does not form amalgam with iron.                                                       |
|    | Silver metal is extracted by cyanide process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18 | (b)                                                                                       |
|    | $Ag_2S + 4NaCN \rightleftharpoons 2Na[Ag(CN)_2] + Na_2S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 | It is a process to get Zn granules.                                                       |
|    | Argentite sodium argentocyanide<br>$2N_2[Ag(CN)] + 7n \longrightarrow N_2[7n(CN)] + 2Ag[$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | Filling of differentiating electrons takes place in                                       |
|    | $2 \operatorname{Na}[\operatorname{Rg}(\operatorname{CN})_2] + 2 \operatorname{II} \longrightarrow \operatorname{Na}_2[2 \operatorname{II}(\operatorname{CN})_4] + 2 \operatorname{Rg} \downarrow$<br>Sodium tetracyano not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 3 <i>d</i> in first transition series.                                                    |
|    | Zincate (II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 | (c)                                                                                       |
| 7  | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | Limonite $Fe_2O_3.3H_2O$                                                                  |
|    | $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | Siderite $FeCO_3$                                                                         |
| _  | $\therefore$ Zn liberates hydrogen with hot conc. alkali.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | Carnallite KCl. $MgCl_2$ . $6H_2O$                                                        |
| 8  | (d) $7x^{2+}$ i.e. $x^{2+}$ i | 21 | (c)                                                                                       |
|    | $2n^{-1}$ ion possess $(n-1)a^{-2}$ configuration. There are no uppaired electrons in $(n-1)d_{-1}$ subshell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21 | Wrought iron is the purest form of iron and                                               |
|    | due to which $d - d$ transitions are not possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | contains carbon and other impurities from 0.2%                                            |
|    | Hence, Zn <sup>2+</sup> ions are colourless.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | to 0.5%.                                                                                  |
| 9  | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22 | (a)                                                                                       |
|    | Au and Ag salts are soluble in KCN due to complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22 | Pd, Pt absorb $H_2$ in considerable amount.                                               |
| 10 | formation others not.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23 | (a)<br>It is a fact                                                                       |
| 10 | <b>(a)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24 | (d)                                                                                       |
| C  | $Au + 4CN^{-} + H_2O + \frac{1}{2}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | On fusing AgCl with $Na_2CO_3$ , metallic silver is                                       |
|    | $\rightarrow 2[Au(CN_2)]^- + 2OH^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | obtained.                                                                                 |
|    | From gold ore (X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | $2AgCl + Na_2CO_3 \xrightarrow{Fuse} 2Ag$                                                 |
|    | $2[\operatorname{Au}(\operatorname{CN})_2]^- + \operatorname{Zn} \longrightarrow [\operatorname{Zn}(\operatorname{CN})_2]^- + 2\operatorname{Au}(X)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | $\downarrow$ + 2NaCl + CO <sub>2</sub> + $\frac{1}{2}$ O <sub>2</sub>                     |
|    | Hence, $[X] = [Au(CN)_2]^-, Y = [Zn(CN)_4]^{2-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | metallic                                                                                  |
| 11 | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | silver                                                                                    |
|    | Argentite is an ore of Ag having composition $Ag_2S$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25 | (c)                                                                                       |
|    | It dissolves in NaUN due to formation of soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | Transition metals exhibit variable oxidation states                                       |

due to particitization of (n - 1)d-electron in bond formation. 26 (c) In Bessemer's converter impurities of C, Mn, Si, P in pig iron are oxidized to produce steel. 27 (c) 41 (c) <sub>26</sub>Fe has the configuration  $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^6, 4s^2$ . 28 **(b)** Fe<sup>2+</sup>gets oxidized to Fe<sup>3+</sup>and Cr<sub>2</sub><sup>6+</sup> gets reduced to  $Cr^{3+}$ . poisonous. 29 **(b)** 42 **(b)** Lanthanide contraction relates to decrease in atomic as well as ionic size of M<sup>3+</sup> ions 31 (c) 43 (c) It is a fact. The idea is used in chemical exhibitions. 44 (d) 32 (d)  $SnCl_2 + 2HgCl_2 \rightarrow SnCl_4 + Hg_2Cl_2$ White Due to shielding effect.  $Hg_2Cl_2 + SnCl_2 \rightarrow SnCl_4 + Hg_2$ Gray 45 (b) 46 (a) 33 (d)  $V^{4+} \rightarrow 3d^1.4s^0$  $I^-$  converts into  $IO_3^-$ . One unpaired electron, therefore, it is paramagnetic and coloured compound 34 (c) All bivalent metal cations form oxide of type *MO*. Copper forms two types of oxides *i.e.*, Cu<sub>2</sub>O, CuO Hence, Barium forms BaO Silver forms Ag<sub>2</sub>0 47 Lead forms PbO, PbO<sub>2</sub> (c) Hence, silver cannot form *MO* type of oxide because it forms monovalent cation (Ag<sup>+</sup>).  $2Fe_2O_3 + 8CO_2$ . 35 (d) 48 **(c)** Cinnabar is HgS. 36 (d) Following reaction takes place during bessemerisation blade.  $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$ 49 (b) 37 **(c)** Corrosive sublimate is HgCl<sub>2</sub> because it has corrosion nature and sublimation nature. 38 (a) 50 (c) Actinides have variable valency due to very small difference in energies of 5*f*, 6*d* and 7*s* orbitals 51 (c) 39 **(b)** 3d-series contains  $_{21}$ Sc to  $_{30}$ Zn in all 10 elements. 40 (d) the system and is eliminated by the system with Natural radioactivity is not a characteristic of transition elements. salts absorbed in it, also Hg itself is very

General properties of transition elements are (i) Formation of coloured salts (ii) Formation of complex salts (iii) Magnetic properties (iv) Formation of interstitial compounds (v) Formation of alloys etc. HgCl<sub>2</sub> is dangerous poison; the antidote being white of an egg which is coagulated by the salt in the system and is eliminated by the system with salts absorbed in it, also Hg itself is very  $4Ag + 8NaCN + 2H_2O + O_2$  $\rightarrow$  4Na[Ag(CN)<sub>2</sub>] + 4NaOH Calamine is the carbonate ore of zinc  $(ZnCO_3)$ . Both show +8 oxidation states. When  $I^-$  is oxidised by MnO<sub>4</sub><sup>-</sup> in alkaline medium  $2KMnO_4 + 2KOH \longrightarrow 2K_2MnO_4 + H_2O + [O]$  $2KMnO_4 + 2H_2O \longrightarrow 2MnO_2 + 3KOH + 2[O]$  $2KMnO_4 + H_2O \xrightarrow{alkaline} 2MnO_2 + 2KOH + 3[O]$  $KI + 3[O] \longrightarrow KIO_3$  $2KMnO_4 + KI + H_2O \longrightarrow 2KOH + 2MnO_2 + KIO_3$  $4Fe(CrO_2)_2 + 8K_2CO_3 + 7O_2 \rightarrow 8K_2CrO_4 +$  $2K_2CrO_4 + H_2SO_4 \longrightarrow K_2Cr_2O_7 + K_2SO_4 + H_2O_4$ Tungsten steel contains 14–20% W, 3–8% Cr; used for high speed tools as well as for cutting purposes and maintain the cutting edge of the Cast iron or pig iron contains 2 to 4.5% of carbon. It is least ductile and least pure form of iron. It is brittle and cannot be welded. Hg-alloys with other metals are called amalgams. HgCl<sub>2</sub> is dangerous poison, the antidote being white of an egg which is coagulated by the salt in

poisonous.

| 52 | (a)<br>It is characteristic of Mn steel.                                                  | 63     | <b>(a)</b><br>Monel m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----|-------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 53 | (d)                                                                                       |        | Fe, Mn.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | $CO^{3+}$ have higher charge density than $CO^{2+}$ , so                                  | 64     | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | $CO^{3+}$ is more stable in octahedral complexes.                                         |        | It is a fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | (ii) Zn exhibits only $+2$ oxidation state. So,                                           | 65     | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | $Zn^{2+} = [Ar]3d^{10}, 4s^{0}$                                                           |        | $HgCl_2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | Since, it does not contain any unpaired electron.                                         | 66     | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | its compounds are colourless.                                                             |        | Hydrome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | (iii) $d$ -block elements are generally paramagnetic                                      |        | metal or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | and sometimes diamagnetic, but not                                                        |        | chemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | ferromagnetic.                                                                            |        | metal eit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | (iv) Osmium and ruthenium are VIII group                                                  |        | suitable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | elements, so can exhibit the highest oxidation                                            |        | 4Au + 8I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | state +8 in their oxides, <i>e.g.</i> , 0s0 <sub>4</sub> .                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | Hence, statement 1 and 4 are correct.                                                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 54 | (d)                                                                                       |        | 2K[Au(C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | $2\text{FeSO}_4 \xrightarrow{\Delta} \text{Fe}_2\text{O}_2 + \text{SO}_2 + \text{SO}_2$ . | 67     | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 55 | (d)                                                                                       |        | Pt is nob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | Hydrometallurgy is based on reduction. In this                                            | 68     | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | process, more electropositive Zn metal is used to                                         |        | $Zn(NO_3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | precipitate gold, silver etc. from their complex salt                                     | 60     | (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | solutions.                                                                                | 09     | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | $2K \operatorname{Au}(CN)_2 + Zn \longrightarrow K_2 Zn(CN)_4 + 2Au$                      | $\sim$ | $Cu(NO_3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | $2Na Ag(CN)_2 + Zn \rightarrow Na_2Zn(CN)_4 + 2Ag$                                        | 70     | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | Alkali metals or aluminium can also reduce 🦳                                              |        | It is a pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | complex salts.                                                                            | 72     | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | $K_2 TiF_6 + 4K \rightarrow 6KF + Ti$                                                     |        | NaCl + H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | $K_2ZrF_6 + 2Al \rightarrow 2AlF_3 + 2K + Zr$                                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 56 | (b)                                                                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | As oxidation state increases, electronegativity                                           | 73     | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | increases thus acidic characteristic increases not                                        |        | Spin only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 57 | Dasic.                                                                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 57 | (u)<br>Zr and Hf possess similar atomic size and honce                                    |        | $\Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | are called twins of Periodic Table. It is due to                                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | lanthanide contraction                                                                    |        | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 58 |                                                                                           |        | [∵ <i>n</i> =−                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 00 | Boron(B), aluminium(Al) and gallium, (Ga) are                                             |        | Here, <i>n</i> is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | present in IIIA group. They show $+3$ oxidation                                           |        | The elect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | state. While cerium(Ce) is a lanthanoid. It is                                            |        | 1S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | present in lanthanide series. It shows $+3$ and $+4$                                      |        | Z(25) = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | oxidation states.                                                                         |        | Since, for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 60 | (b)                                                                                       |        | • 73+(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | Iron carbide or Fe <sub>3</sub> C.                                                        | 71     | $\frac{1}{2} \frac{1}{2} \frac{1}$ |
| 61 | (b)                                                                                       | 14     | נש <b>ו</b><br>7ח≎∩ ⊥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | $2Na[Ag(CN)_2] + Zn \rightarrow Na_2Zn(CN)_4 + 2Ag$                                       |        | 211304 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | This is extraction of Ag by cyanide process.                                              | 75     | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 62 | (c)                                                                                       | , 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | Constantan is an alloy of Cu and Ni.                                                      |        | Uil<br>(Unsaturat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

etal or constantan is an alloy of Cu, Ni, ct. Rest all are coinage metals.  $2NH_3 \rightarrow Hg(NH_3)_2Cl_2$ . etallurgy is the process of dissolving the its ore by the action of a suitable reagent followed by recovery of the ther by electrolysis or by the use of a precipitating agent.  $KCN + 2H_2O + O_2$  $\rightarrow$  4K[Au(CN)<sub>2</sub>] + 4KOH air  $(2N)_2 + Zn \rightarrow 2Au + K_2[Zn(CN)_4]$ le metal.  $D_2 \rightarrow ZnO + 2NO_2 + \frac{1}{2}O_2$  $)_2 \rightarrow CuO + 2NO_2 + \frac{1}{2}O_2$ operty of calomel.  $H_2SO_4 + K_2Cr_2O_7$  $\rightarrow$  CrO<sub>2</sub>Cl<sub>2</sub> + K<sub>2</sub>SO<sub>4</sub> + Na<sub>2</sub>SO<sub>4</sub> chromyl chloride y magnetic moment.  $\mu = \sqrt{n(n+2)} = \sqrt{24}$  $n^2 + 2n - 24 = 0$ (n+6)(n-4)=0n = 46not possible.] s the number of unpaired electrons. tronic configuration of the metal ion  $M^{x+}$  $1s^2$ ,  $2s^2$ ,  $2p^6$ ,  $3s^2$ ,  $3p^6$ ,  $4s^2$ ,  $3d^5$ ur unpaired electrons are present, the n state must be +3.  $(25) = 1s^2 , 2s^2 , 2p^6 , 3s^2 , 3p^6 , 3d^4$  $2NaHCO_3$  $\rightarrow$  ZnCO<sub>3</sub> + CO<sub>2</sub> + H<sub>2</sub>O + Na<sub>2</sub>SO<sub>4</sub>  $\underset{(\text{Unsaturated})}{\text{Oil}} + \text{H}_2 \xrightarrow{\text{Ni}} \underset{(\text{Saturated})}{\text{Saturated}}$ 

| 76       | (b)                                                                                                            |        | This process is called Mond's process.                                    |
|----------|----------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------|
|          | $Ag_2SO_4$ contains $Ag^+(4d^{10})$ and is colourless.                                                         | 88     | (c)                                                                       |
|          | $CuF_2$ contains $Cu^{2+}$ (3 $d^9$ ) and is coloured due to                                                   |        | Lanthanide contraction is due to the imperfect                            |
|          | the presence of one unpaired electron in $d$ -orbital                                                          |        | shielding of <i>f</i> -electrons due to the diffused shape                |
|          | of Cu <sup>2+</sup> .                                                                                          |        | of <i>f</i> -orbitals. Therefore, as the atomic number                    |
|          | $MgF_2$ contains $Mg^{2+}$ and is colourless $n/2$ CuCl                                                        |        | increases effective nuclear charge increases and                          |
|          | contains $Cu^+$ (3 $d^{10}$ ) and is colourless.                                                               |        | this results in contraction of size of the $4f$ -                         |
| 77       | (c)                                                                                                            |        | subshell."                                                                |
|          | Malachite is an ore of Cu containing                                                                           | 90     | (a)                                                                       |
|          | CuCO <sub>3</sub> . Cu(OH) <sub>2</sub> (green colour)                                                         |        | In Bessemer's converter impurities of C, Mn, Si, P                        |
| 78       | (c)                                                                                                            |        | in pig iron are oxidized to produce steel.                                |
|          | Pure copper as a cathode and impure copper as                                                                  | 92     | (d)                                                                       |
|          | anode is used in refining of impure copper.                                                                    |        | These are reasons for the given fact.                                     |
| 79       | (b)                                                                                                            | 93     | (c)                                                                       |
|          | It is a fact.                                                                                                  |        | Philosopher's wool on heating with BaO at 1100°                           |
| 80       | (b)                                                                                                            |        | C produce BaZnO <sub>2</sub> .                                            |
|          | Paramagnetism is shown by the positive ions of                                                                 |        | $BaO + ZnO \xrightarrow{1100 \circ C} Ba ZnO_2$                           |
|          | lanthanides except $La^{3+}(4f^0)$ and $Lu^{3+}(4f^{14})$ .                                                    | 95     | (b)                                                                       |
|          | These ions are diamagnetic                                                                                     |        | Ferrous ion (Fe <sup>2+</sup> ) changes to ferric ion Fe <sup>3+</sup> on |
| 81       | (b)                                                                                                            |        | reacting with acidified $H_2O_2$ as.                                      |
|          | $HgI_2 + 2KI \rightarrow K_2HgI_4$                                                                             |        | $2K_4[Fe(CN)_6] + H_2SO_4 H_2O_2 \rightarrow$                             |
|          | soluble                                                                                                        |        | $2K_3[Fe(CN)_6] + K_2SO_4 + 2H_2O$                                        |
|          | $HgI_2 \xrightarrow{\Delta} Hg + I_2$                                                                          |        | Electronic configuration of $Fe^{3+} =$                                   |
| 82       | (d)                                                                                                            | $\sim$ | $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5$                                      |
|          | Maximum oxidation state exhibited by <i>d</i> -block                                                           |        | Number of <i>d</i> -electrons =5                                          |
|          | elements (0.S.) = no of $ns$ electrons + no. of $(n - 1)$                                                      |        | Magnetic moment= $\sqrt{n(n+2)}$                                          |
|          | 1) <i>d</i> electrons.                                                                                         |        | $=\sqrt{5(5+2)}=5.92BM$                                                   |
|          | (a) $0.5.=2+2=4$ (b) $0.5.=5+1=6$                                                                              | 96     | (c)                                                                       |
|          | (c) $0.S.=3+2=5$ (d) $0.S=5+2=7$                                                                               |        | It reacts with alkalies and acids both.                                   |
|          | $(n-1) d^3 ns^2$ configuration will achieve the                                                                | 98     | (c)                                                                       |
| 00       | highest oxidation state.                                                                                       |        | Argentite Ag <sub>2</sub> S                                               |
| 83       |                                                                                                                |        | Haematite Fe <sub>2</sub> O <sub>3</sub>                                  |
|          | $2MnO_2 + 4KOH + O_2$<br>Fusion                                                                                |        | Malachite $Cu(OH)_2$ . $CuCO_3$                                           |
|          | $\xrightarrow{\text{Hallow}} 2\text{K}_2\text{MnO}_4 + 2\text{H}_2\text{O}$                                    |        | Calamine ZnCO <sub>3</sub>                                                |
|          | Oxidation number of Mn in K <sub>2</sub> MnO <sub>4</sub> is                                                   | 99     | (d)                                                                       |
|          | $2 \times (1) + x + 4(-2) = 0$                                                                                 |        | ZnO is also called Chinese white.                                         |
| <u> </u> | x = +6                                                                                                         | 101    | (c)                                                                       |
| 84       | (d)                                                                                                            |        | do                                                                        |
|          | The process is called galvanisation and it protects                                                            | 102    | (d)                                                                       |
|          | iron from corrosion against the action of water                                                                |        | The transition metals form a large number of                              |
| 05       | and $U_2$ .                                                                                                    |        | interstitial compounds in which small atoms like                          |
| 85       | (D)<br>Dest all are used of Cu and its allows                                                                  |        | nyarogen, carbon, boron and nitrogen occupy                               |
| 06       | (c)                                                                                                            | 102    | (h)                                                                       |
| 00       | (L)                                                                                                            | 105    | (D)<br>It is a fact                                                       |
|          | TAS FOUN $\pm 2\Pi_2 \cup \mp U_2$<br>$\longrightarrow \Lambda[\Lambda_{\sigma}(CN)]^{-} \pm \Lambda_{OH^{-}}$ | 104    | 1 ( 15 a latt.                                                            |
|          | This process is called evanide process. It is used                                                             | 104    | The presence of unfilled $d_{\rm orbitals}$ favours                       |
|          | in the extraction of silver from argentite $(Ag_{-}S)$                                                         |        | covalent honding                                                          |
| 87       | (d)                                                                                                            | 105    | (c)                                                                       |
| 07       | The refining of nickel is carried out by using CO.                                                             | 100    | Fe does not show allotrony.                                               |
|          |                                                                                                                | I      |                                                                           |

| 106 | (c)                                                                                         | 117               | (d)                                                                         |
|-----|---------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------|
|     | Acidified potassium dichromate is oxidized to                                               |                   | German silver alloy contains zinc, copper and                               |
|     | unstable blue chromium peroxide, which is                                                   |                   | nickel.                                                                     |
|     | soluble in ether and produces blue coloured                                                 | 118               | (c)                                                                         |
|     | solution.                                                                                   |                   | Follow electrorefining of Cu to get 100% pure Cu.                           |
|     | $K_2Cr_2O_7 + H_2SO_4 + 4H_2O_2$                                                            | 119               | (d)                                                                         |
|     | $\rightarrow 2 \text{CrO}_5 + \text{K}_2 \text{SO}_4 + 5 \text{H}_2 \text{O}$               |                   | $AgBr + 2Na_2S_2O_3 \rightarrow Na_3[Ag(S_2O_3)_2] + NaBr.$                 |
|     | blue colour                                                                                 | 120               | Soluble                                                                     |
| 107 | (c)                                                                                         | 120               | Invar is Ni-Fe allow used in clock pendulum                                 |
|     | $Ag_2S + 4KCN(aq.)$                                                                         | 121               | (d)                                                                         |
|     | $\rightarrow 2K[Ag(CN)_2](aq.) + K_2S(aq.)$                                                 | 121               | The basic character of hydroxides decreases from                            |
| 108 | (a)                                                                                         |                   | $La(OH)_{2}$ to $Lu(OH)_{2}$ . Due to smaller size of Lu, the               |
|     | It is a fact.                                                                               |                   | Lu— OH bond attains more covalent character.                                |
| 109 | (a)                                                                                         | 122               | (b)                                                                         |
|     | It is a fact.                                                                               |                   | It is called iodide of Millon's base.                                       |
| 110 | (d)                                                                                         | 123               | (a)                                                                         |
|     | Strength of metallic bond depends upon number                                               |                   | It is a fact.                                                               |
|     | of unpaired electrons. As number of unpaired                                                | 124               | (a)                                                                         |
|     | electrons increase, the bond strength also                                                  |                   | It is a fact.                                                               |
|     | increases. So, Cr, Mo, show stronger bonding due                                            | 125               | (b)                                                                         |
|     | to maximum number of unpaired electrons.                                                    |                   | Maximum oxidation state of transition metals                                |
| 111 | (d)                                                                                         |                   | =number of electrons in $(n-1)d$ orbitals +                                 |
|     | German silver contains Cu, Zn and Ni.                                                       |                   | number of electrons in <i>ns</i> orbital.                                   |
| 112 | (b)                                                                                         | $\langle \rangle$ | The electronic configuration of                                             |
|     | It is a fact.                                                                               |                   | $0s = [xe] 4f^{14}, 5d^6.6s^2$                                              |
| 113 |                                                                                             |                   | $\therefore$ Maximum oxidation state 6+2=8                                  |
|     | The extraction to Cu metal involves                                                         |                   | $\therefore$ The highest oxidation state exhibited by                       |
|     | bessemerisation. In this process, copper matte                                              |                   | transition metal is $+8 e. g., 0sO_4$ .                                     |
|     | obtained from smelting transfered to a Bessemer                                             | 126               | (b)                                                                         |
|     | converter (lined with silica) and a not air blast is                                        |                   | $2\text{Cl}_2 + \text{HgO} \rightarrow \text{Cl}_2\text{O} + \text{HgCl}_2$ |
| 111 | brown to obtain bister copper.                                                              |                   | mercuric mercuric                                                           |
| 114 | (u)                                                                                         |                   | oxide chloride                                                              |
| 115 | $\operatorname{Cucl} + \operatorname{CO} \rightarrow \operatorname{Cucl} \operatorname{CO}$ | 128               | (a)                                                                         |
| 115 | (a)<br>CrO. dissolves in aqueous NaOH to give sodium                                        |                   | 3 <i>d</i> is partially filled.                                             |
|     | chromate                                                                                    | 129               | (a)                                                                         |
|     | $CrO_{+} \pm 2N_{2}OH \longrightarrow N_{2}CrO_{+} \pm H_{+}O$                              |                   | $\mu = \sqrt{n(n+2)}$                                                       |
|     | Sodium chromate                                                                             |                   | $\Rightarrow \sqrt{15} = \sqrt{n(n+2)}$                                     |
| 116 |                                                                                             |                   | $\therefore$ $n=3$                                                          |
| 110 | Silver metal is obtained by Mac-Arthur Forrest                                              | 130               | (c)                                                                         |
|     | process which is called cyanide process. The                                                |                   | These show fcc, hep and bcc structures.                                     |
|     | concentrated ore of argentite is treated with                                               | 131               | (c)                                                                         |
|     | dilute NaCN solution and a current of $O_2$ is                                              |                   | Formation of coloured solution is possible when                             |
|     | continuously passed. Silver sulphide goes into                                              |                   | metal ion in the compound contains unpaired                                 |
|     | solution in the form of soluble complex sodium                                              |                   | electrons <i>e</i> . <i>g</i> .,                                            |
|     | argentocyanide.                                                                             |                   | $Cu^+:3d^{10} 4s^0$ colourless                                              |
|     | $2Ag_2S + 8NaCN + O_2 + 2H_2O \rightarrow$                                                  |                   | $Cu^{2+}:3d^9 4s^0$ blue                                                    |
|     | $4Na[Ag(CN)_2] + 4NaOH + 2S$                                                                | 132               | (d)                                                                         |
|     | The soluble complex is treated with zinc dust.                                              |                   | In wrought iron, carbon is present as Fe <sub>3</sub> C                     |
|     | when silver gets precipitated.                                                              |                   | (cementite) <i>ie</i> , iron carbide and graphite                           |
|     | $2Na[Ag(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4 + 2Ag \downarrow$                             | 133               | (d)                                                                         |

|     | $[Ar]3s^1 + 3 = Ti$ , it means $M^{3+}$ from $Ti^{3+}$ ion |
|-----|------------------------------------------------------------|
| 134 | (b)                                                        |

From  $(n-1)d^1$  to  $(n-1)d^{10}$ .

135 **(d)** 

Lanthanoid contraction is due to ineffective shielding produced by larger *f*-subshell.

136 **(c)** 

Zr and Hf have similar radii, therefore they show similar properties

137 **(c)** 

 $Fe^{2+}(3d^6)$  and  $Fe^{3+}(3d^5)$  will show different magnetic moment.

138 **(a)** 

The process of hardening the surface of wrought iron by depositing a surface layer of steel on it is called case-hardening. It is done by heating wrought iron in contact with potassium ferricyanide

Alternatively, case hardening can also be done by heating wrought iron with charcoal and then plunging it in a suitable oil

# 139 **(b)**

 $\rm KMnO_4$  has no unpaired electron. Rest all have unpaired electrons.

#### 140 **(b)**

Colour of transition metal ion salt is due to d - d transition of unpaired electrons of d -orbital. Metal ion salt having similar number of unpaired electrons in d-orbitals shows similar colour in aqueous medium.

In VOCl<sub>2</sub> vanadium is present as  $V^{4+}$  and in CuCl<sub>2</sub>, copper is present as Cu<sup>2+</sup>.

So, 
$${}_{23}V=1s^2$$
,  $2s^2 2p^6$ ,  $3s^2 3p^6 3d^3$ ,  $4s^2$   
 $V^{4+} = 1s^2$ ,  $2s^2 2p^6$ ,  $3s^2 3p^6 3d^1$   
 $3d^1$ 

54

Number of unpaired electrons =1 and  ${}_{29}Cu = 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}, 4s^1$  $Cu^{2+} = 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^9$  $3d^9$ 

 $11 \quad 11 \quad 11 \quad 11 \quad 1$ 

Number of unpaired electron =1Hence, VOCI<sub>2</sub> and CuCI<sub>2</sub> show similar colour.

141 **(b)** 

 $Ag^+ + e \rightarrow Ag$ ; finely divided Ag is black in colour and thus.AgNO<sub>3</sub> causes black stain on skin. It is therefore, called lunar caustic.

142 **(a)** 

Rest all properties are different.

143 **(a)** 

AgCl is called in ore form as horn silver.

144 **(d)** Na<sub>2</sub>Cr



146 **(d)** 

4NaCN + Ag<sub>2</sub>S  $\rightarrow$  2NaAg(CN)<sub>2</sub> + Na<sub>2</sub>S 147 **(b)** 

 $Cr^{3+}$  is a more stable state ( $3d^3$ -configuration).

148 **(c)** 

 $Cu_2O$  is red oxide.

149 **(a)** 

MnO and  $Mn_2O_3$  are basic,  $MnO_2$  is amphoteric,  $Mn_2O_7$  basic.

# 150 **(d)**

Impurities of Cu and Ag from gold are removed by boiling impure gold with conc.  $H_2SO_4$  and also by electrolytic method.

 $\begin{array}{l} Cu+2H_2SO_4 \xrightarrow{Heat} CuSO_4 + SO_2 + 2H_2O\\ 2Ag+2H_2SO_4 \xrightarrow{Heat} Ag_2SO_4 + SO_2 + 2H_2O\\ This method is called parting. Conc. HNO_3 can also\\ be used for this purpose. \end{array}$ 

# 151 **(d)**

4f and 5f-belongs to different shell, experience different amount of shielding.

# 152 **(d)**

The magnitude of stability constants for some divalent metal ions of the first transition series with oxygen or nitrogen donor ligands increases in the order

$$\label{eq:Mn2+} Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+} < Cu^{2+} < Zn^{2+}$$
 153 (a)

Silver halides are photosensitive and are easily

165 (c) reduced to Ag by mild reducing agent (hydroquinone, ferrous oxalate, etc.) Mn exhibits the maximum number of oxidation 154 (a) states. Ammounium dichromate on heating gives  $N_2$  gas  $Mn(Z=25)[Ar]3d^5, 4s^2$ which is also given by heating of  $NH_4NO_2$ . It can show +2, +3, +4, +5, +6 and +7 oxidation  $(\mathrm{NH}_4)_2\mathrm{Cr}_2\mathrm{O}_7 \xrightarrow{\Delta} \mathrm{Cr}_2\mathrm{O}_3 + 4\mathrm{H}_2\mathrm{O} + \mathrm{N}_2 \uparrow$ states. 166 (c)  $NH_4NO_2 \xrightarrow{\Delta} 2H_2O + N_2 \uparrow$ Magnetic moment ( $\mu$ ) =  $\sqrt{n(n+2)}$  BM where, 'n' 155 (c) is the number of unpaired electrons.  $2Au + 3HNO_3 + 11HCl$  $_{23}V^{2+}=[Ar]3d^{3}$ (n=3) $\rightarrow$  2HAuCl<sub>4</sub> + 3NOCl + 6H<sub>2</sub>O  $_{24}Cr^{2+}=[Ar]3d^4$ (n=4)156 (d)  $_{25}$ Mn<sup>2+</sup>=[Ar]3d<sup>5</sup> (n=5)Hg-alloys with other metals are called amalgams.  $_{26}$ Fe<sup>2+</sup>=[Ar]3d<sup>6</sup> (n=4)157 **(b)** Hence magnetic moment will be maximum for In the blast furnace, iron oxide is reduced by  $Mn^{2+}$  (equal to 5.92 BM).  $3Fe_2O_3 + CO \xrightarrow{300-400^{\circ}C} 2Fe_3O_4 + CO_2$  $Fe_3O_4 + CO \xrightarrow{500-600^{\circ}C} 3FeO + CO_2$ 167 **(b)** The reaction,  $FeO + CO \xrightarrow{700^{\circ}C} Fe + CO_2$  $2\text{FeS} + 30_2 \rightarrow 2\text{FeO} + 2\text{SO}_2^{\uparrow}$ Occurs during roasting of pyrites ore. Roasting is 158 (b) the process of heating concentrated ore in the The higher the charge on the metal ion, smaller is stream of air to convert it into oxide. the ionic size and more is the complex forming 168 (d) ability. Thus, the degree of complex formation Mn<sup>2+</sup>, V<sup>4+</sup>, Ti<sup>4+</sup> and Cr<sup>3+</sup> are stable oxidation decreases in the order state of respective elements.  $M^{4+} > MO_2^{2+} > M^{3+} > MO_2^{+}$ 169 (c) The higher tendency of complex formation of  $CuSO_4 \xrightarrow{1000 \text{ K}} CuO + SO_3 \uparrow$  $MO_2^{2+}$  as compared to  $M^{3+}$  is due to high concentration of charge on metal atom M in  $MO_2^{2+}$ 170 (a) AgI is insoluble in NH<sub>3</sub>. 159 (a) 171 (d) Stainless steel is an alloy of iron with chromium CdS is yellow in colour (Follow II gp qualitative and nickel. Its composition is 82% Fe and 18% Cr analysis). +Ni. It resists corrosion and used for making 173 (c) automobile parts and utensils.  $Fe(CNS)_3$  is a red-coloured substance. 160 (a) 174 (d) It is a fact. Zn<sup>2+</sup> ions have all paired electrons so, it is 161 **(b)** Cr<sup>2+</sup> and Fe<sup>2+</sup> diamagnetic.  $Cr^{2+} - 3d^4$ 175 (b) Elements belonging to gp.3 to gp.12 are *d*-block 1 1 1 1 elements. (4 unpaired electrons) 176 (b)  $Fe^{2+} - 3d^6$ It is a fact. (4 unpaired electrons) 177 (c) The formation of thin layer of oxide makes it 162 **(b)** passive. HgCl<sub>2</sub> is easily volatile. It is insoluble in water and soluble in acids 178 (d) Cu; Removal of next electron takes place from 4s-163 **(b)** In Cu configuration is  $3d^{10}$ ,  $4s^1$  and not  $3d^9$ ,  $4s^2$ . subshell and the removal of next electron takes place from completely filled  $3d^{10}$ . In Cr configuration is  $3d^5$ ,  $4s^1$  and not  $3d^4$ ,  $4s^2$ . 179 (a) 164 **(c)** Fe is in +2 oxidation state in Mohr's salt. It is a fact.

180 (d) Hg has low b.p. like other members of gp. 12. All are transition elements. 196 (d) 181 (c) Elements having electronegativity in the range of Mond's process involves extraction of Ni. 1.35 - 1.82 do not form stable hydride. Thus,  $Ni + 4CO \xrightarrow{335K} Ni(CO)_4$  (Volatile); leads to hydride gap. These are present in the middle of the Periodic Table *i.e.*, belongs to groups  $Ni(CO)_4 \xrightarrow{450K} Ni + 4CO$ 7, 8 and 9. 182 (c) 197 (d) Cu<sub>2</sub>O is red oxide of Cu.CuO is black oxide of Cu. Magnetic moment depends upon the number of 183 (a) unpaired electron.  $Mn^{7+} + 3e \rightarrow Mn^{4+}$  $d^3$ : 3 Unpaired electron  $Mn^{7+} + 5e \rightarrow Mn^{2+}$  $d^2$ : 2 Unpaired electron  $Mn^{7+} + 4e \rightarrow Mn^{3+}$ *d*<sup>8</sup>: 2 Unpaired electron  $Mn^{7+} + e \rightarrow Mn^{6+}$  $d^6$ : 4 Unpaired electron 184 **(b)** 198 (a)  $Cu + O_2 + CO_2 + H_2O \rightarrow Cu(OH)_2 \cdot CuCO_3$ The b.p. of Zn, Cd, Hg are 1193, 1040, 1129.7K, 185 (a) comparatively lower values, and are called German silver is an alloy of Cu + Zn + Ni (2:1:1 volatile metals. These are therefore, purified by respectively). distillation. 187 (a) 199 (a) Ag is best conductor of electricity among all The differentiating electrons enter the ns-orbital metals. but they have configuration  $(n-1)d^{10}ns^2$ . 188 (d) 201 (c)  $Cu^{2+} + Fe(CN)_6^{4-} \rightarrow Cu_2[Fe(CN)_6]$ Reddish brown ppt. Many of the *d*-block (transition) elements and their compounds act as catalyst. Catalytic 189 **(b)** property is probably due to the utilisation of (n - n)Basicity of lanthanide hydroxides decreases along 1) *d*-orbitals or formation of interstitial the lanthanides series from left to right compounds. 190 (b)  $CuSO_4 + 4NH_4OH \rightarrow Cu(NH_3)_4SO_4 + 4H_2O_{Blue}$ 202 (a)  $2HgCl_2 + SnCl_2 \rightarrow SnCl_4 + Hg_2Cl_2$  (white) 4FeCl<sub>3</sub> + 3Na<sub>4</sub>Fe(CN)<sub>6</sub>  $Hg_2Cl_2 + SnCl_2 \rightarrow SnCl_4 + Hg_2$  (Grey)  $\rightarrow$  Fe<sub>4</sub>[Fe(CN)<sub>6</sub>]<sub>3</sub> + 12NaCl 203 (b) Mohr salt is FeSO<sub>4</sub>. (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>. 6H<sub>2</sub>O  $\underset{White}{\text{CuSO}_4} + aq. \longrightarrow \underset{Hydrated(blue)}{\text{CuSO}_4}.5\text{H}_2\text{O}$  $\therefore$  It is double salt having FeSO<sub>4</sub> and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>.  $2CuSO_4 + K_4Fe(CN)_6 \rightarrow Cu_2Fe(CN)_6 + 2K_2SO_4$ Brown 204 (a) Mn in  $MnO_4^-$  has +7 and Cr in  $CrO_2Cl_2$  has +6 191 (a) oxidation state, the highest for Mn and Cr Cerium is used in gas mantles, glass polishing and respectively. in pyrophasic alloys for lighter flints. 205 (c) 192 (a) Lanthanides are the 14 elements of IIIB group and Gadolinium (Z=64) [Xe]  $4f^7$ ,  $5d^1$ ,  $6s^2$ sixth period (At. no.=58 to 71) that are filling 4f-Lutetium(Z=71)[Xe]  $4f^{14}$ ,  $5d^1$ ,  $6s^2$ subshell of antipenultimate shell from 1 to 14. Lawrencium(Z=103)[Rn]  $5f^{14}$ ,  $6d^1$ ,  $7s^2$ Actually, they are placed below the Periodic Table Tantalum(Z=73) [Xe] $4f^{14}$ ,  $5d^3$ ,  $6s^2$ in horizontal row as lanthanide series. Hence, gadolinium has got incompletely filled f-206 (a) subshell. When the quenched steel is heated to 193 (b) temperature below red hot and then allowed to  $AgNO_3 \xrightarrow{hv} Ag + NO_2 + \frac{1}{2}O_2$ ; brown coloured cool slowly. It becomes soft. This process is known as annealing bottles cut the passage of light through it. 207 (d) 194 **(b)** 

| It is a use of chrome alum.                                                                                                                               | The most abundant transition metal is Fe.                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 208 (c)                                                                                                                                                   | 223 (a)                                                                                         |
| We know that by reducing auric chloride by                                                                                                                | All those inner-transition elements having $+2$                                                 |
| stannous chloride, the colloidal solution of go                                                                                                           | old is $x$ oxidation state, changes to +3, and act as                                           |
| obtained. It is known as purple of cassius                                                                                                                | reducing agents. While those having +4 tend to                                                  |
| 209 <b>(b)</b>                                                                                                                                            | change to $+3$ and act as oxidizing agents.                                                     |
| $2\mathrm{CuCl}_2 + \mathrm{SO}_2 + 2\mathrm{H}_2\mathrm{O} \longrightarrow \mathrm{Cu}_2\mathrm{Cl}_2 + 2\mathrm{H}\mathrm{Cl} + \mathrm{H}_2\mathrm{O}$ | $_2$ SO <sub>4</sub> Therefore, Np <sup>4+</sup> acts as an oxidizing agent                     |
| 210 <b>(d)</b>                                                                                                                                            | 224 (a)                                                                                         |
| C, Fe, Mg react with hot water to give $H_2$ .                                                                                                            | Oxide of Mn in its intermediate oxidation state <i>i.e.</i> ,                                   |
| 211 <b>(b)</b>                                                                                                                                            | +4 is MnO <sub>2</sub> . This is amphoteric in character.                                       |
| Tungsten is the highest m.p. metal (3410°C).                                                                                                              | 225 (c)                                                                                         |
| 212 <b>(d)</b>                                                                                                                                            | Silver nitrate decomposes to silve nitrite on                                                   |
| Mercurous chloride (calomel) is prepared by                                                                                                               | heating above its melting point (212°C).                                                        |
| heating HgCl <sub>2</sub> and Hg in iron vessel.                                                                                                          | $2 \text{AgNO}_2 \xrightarrow{> 212^{\circ}\text{C}} 2 \text{AgNO}_2 + 0_2$                     |
| $H\sigma C_{l_{\alpha}} + H\sigma \xrightarrow{\Delta} H\sigma_{\alpha} C_{l_{\alpha}}$                                                                   | On heating above $450^{\circ}$ C (red hot), silver nitrate                                      |
| It can also be prepared by the reduction of                                                                                                               | decomposes to metallic silver oxide of nitrogen                                                 |
| mercury (II) chloride by tin (II) chloride in a                                                                                                           | and oxygen                                                                                      |
| limited quantity                                                                                                                                          | >450°C                                                                                          |
| Δ                                                                                                                                                         | $2AgNO_3 \longrightarrow 2Ag + 2NO_2 + O_2$                                                     |
| $2\text{HgCl}_2 + \text{SnCl}_2 \rightarrow \text{Hg}_2\text{Cl}_2 + \text{SnCl}_4$                                                                       | 226 (a)                                                                                         |
| 213 <b>(a)</b>                                                                                                                                            | Cu <sup>2+</sup> has one unpaired electron.                                                     |
| It is a fact.                                                                                                                                             | 227 (d)                                                                                         |
| 214 <b>(b)</b>                                                                                                                                            | ZnSO <sub>4</sub> forms soluble zincates.                                                       |
| $SO_3^{2-} + H_2O \longrightarrow SO_4^{2-} + 2H^+ + 2e$                                                                                                  | 228 (d)                                                                                         |
| $\mathrm{MnO}_{4}^{-} + 8\mathrm{H}^{+} + 5e \longrightarrow \mathrm{Mn}^{2+} + 4\mathrm{H}_{2}\mathrm{O}.$                                               | Thermite is $Fe_2O_3 + Al$ used for welding.                                                    |
| 215 <b>(c)</b>                                                                                                                                            | 229 (a)                                                                                         |
| It is a fact.                                                                                                                                             | $Cu_2O$ is called ruby copper.                                                                  |
| 216 (d)                                                                                                                                                   | 230 (c)                                                                                         |
| The element having unpaired electron is                                                                                                                   | Np and Pu in Np $O_3^+$ and Pu $O_3^+$ oxocations show +7                                       |
| paramagnetic. More the number of unpaired                                                                                                                 | oxidation state which are not so stable                                                         |
| electrons, more will be paramagnetic charact                                                                                                              | rer. 231 (a)                                                                                    |
| Mn (25)= $1s^2$ , $2s^2$ , $2p^6$ , $3s^2$ , $3p^6$ , $4s^2$ , $3d^5$                                                                                     | Ammonia soda process is for manufacture of                                                      |
| ∴ 5 unpaired electrons                                                                                                                                    | Na <sub>2</sub> CO <sub>3</sub> .                                                               |
| Fe (26) = $1s^2$ , $2s^2$ , $2p^6$ , $3s^2$ , $3p^6$ , $4s^2$ , $3d^6$                                                                                    | 232 <b>(a)</b>                                                                                  |
| ∴ 4 unpaired electrons                                                                                                                                    | Steel is the most important commercial variety of                                               |
| Ni (28)= $1s^2$ , $2s^2$ , $2p^6$ , $3s^2$ , $3p^6$ , $4s^2$ , $3d^8$                                                                                     | iron having percentage of carbon $0.25 - 2$                                                     |
| ∴ 2 unpaired electrons                                                                                                                                    | (between cast iron wrought iron).                                                               |
| Cu (29)= $1s^2$ , $2s^2$ , $2p^6$ , $3s^2$ , $3p^6$ , $4s^2$ , $3d^{10}$                                                                                  | 233 <b>(c)</b>                                                                                  |
| ∴ 1 unpaired electrons                                                                                                                                    | <sub>28</sub> Ni <sup>2+</sup> has two unpaired electrons, <sub>22</sub> Ti <sup>3+</sup> , has |
| Mn has maximum and Cu has least                                                                                                                           | one unpaired electron.                                                                          |
| paramagnetic property.                                                                                                                                    | 235 <b>(a)</b>                                                                                  |
| 217 <b>(b)</b>                                                                                                                                            | Ionization energy increases along the period and                                                |
| It is a reason for the given fact.                                                                                                                        | therefore, they have lesser values than <i>p</i> -block                                         |
| 218 <b>(c)</b>                                                                                                                                            | and more value of <i>IE</i> than <i>s</i> -block elements.                                      |
| The cupellation step in Parke's process is use                                                                                                            | ed to 237 (a)                                                                                   |
| purify Ag from lead.                                                                                                                                      | Cu, Ag, Au group of element are called coinage                                                  |
| 219 <b>(c)</b>                                                                                                                                            | metals as these are used in minting coins.                                                      |
| It is a fact.                                                                                                                                             | 238 <b>(a)</b>                                                                                  |
| 221 <b>(d)</b>                                                                                                                                            | Cadmipone is $CdS + BaSO_4$ .                                                                   |
| All are facts about Hg.                                                                                                                                   | 239 <b>(c)</b>                                                                                  |
| 222 (a)                                                                                                                                                   | Correct order of melting points is                                                              |
|                                                                                                                                                           |                                                                                                 |

| Actual composition of chromite ore(FeCr <sub>2</sub> O <sub>4</sub> ) is<br>FeO.Cr <sub>2</sub> O <sub>3</sub> . In FeO, the oxidation state of Fe is +2<br>while in Cr <sub>2</sub> O <sub>3</sub> , the oxidation state of Cr is +3. | 253 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $\Delta$ 1                                                                                                                                                                                                                             |     |
| $HgO \rightarrow Hg + \frac{1}{2}O_2$                                                                                                                                                                                                  |     |
| (a)                                                                                                                                                                                                                                    | 254 |
| Cast iron has the highest percentage of carbon. It                                                                                                                                                                                     |     |
| contains 2 to 4.5 % of carbon along with                                                                                                                                                                                               |     |
| impurities such as sulphur, silicon, phosphorus                                                                                                                                                                                        | 255 |
| etc. It is the least pure form of iron.                                                                                                                                                                                                |     |
| (a)<br>Argontito io Ag. S                                                                                                                                                                                                              | 256 |
| (d) Algentite is $Ag_2 S$ .                                                                                                                                                                                                            |     |
| $2H_{gS} + 3O_{s} \rightarrow 2H_{gO} + 2SO_{s}$                                                                                                                                                                                       |     |
| $2Hg0 + HgS \rightarrow 3Hg + SO_2$                                                                                                                                                                                                    |     |
| (a)                                                                                                                                                                                                                                    |     |
| Transuranic elements start after uranium and                                                                                                                                                                                           |     |
| begin with Np (Neptunium)                                                                                                                                                                                                              | 257 |
| (a)                                                                                                                                                                                                                                    |     |
| All these compounds are less soluble in water                                                                                                                                                                                          |     |
| and only $Zn(OH)_2$ is soluble in $NH_4Cl + NH_4OH$                                                                                                                                                                                    |     |
| due to formation of tetramine zinc (II) complex.                                                                                                                                                                                       | 258 |
| $\operatorname{Zn}^{2+} + 4\operatorname{NH}_4\operatorname{OH} \longrightarrow [\operatorname{Zn}(\operatorname{NH}_3)_4]^{2+} + 2\operatorname{H}_2\operatorname{O}$                                                                 | 250 |
| (d)                                                                                                                                                                                                                                    | Z59 |
| Transition metals can form ionic or covalent                                                                                                                                                                                           |     |
| compounds and their melting and boiling points                                                                                                                                                                                         |     |
| are high. Their compounds are generally coloured                                                                                                                                                                                       |     |
| and they usually                                                                                                                                                                                                                       |     |
| ch)                                                                                                                                                                                                                                    |     |
| Both $KMnO_{1}$ and $FeCl_{2}$ are oxident and thus no                                                                                                                                                                                 |     |
| reaction                                                                                                                                                                                                                               |     |
| (b)                                                                                                                                                                                                                                    |     |
| Alloy is a homogeneous mixture of two or more                                                                                                                                                                                          |     |
| metals. Mercury forms amalgams (alloy) with                                                                                                                                                                                            |     |
| gold, silver and tin. But it does not react with iron                                                                                                                                                                                  | 261 |
| or platinum.                                                                                                                                                                                                                           |     |
| (b)                                                                                                                                                                                                                                    |     |
|                                                                                                                                                                                                                                        | 1   |

 $Mn(1246^{\circ} C) < Ti(1668^{\circ} C) < V \approx Cr(1907^{\circ} C)$ 

240 (d)

241

242

243

244

245

246

247

248

249

250

Purple of Cassius is the trade name for gold sol. in water.

#### 252 (d)

#### Gd(64) $[Xe]_{54}$



Thus, Gd(64) has EC as  $[Xe]_{54} 4f^7 5d^1 6s^2$ Instead of  $[Xe]_{54} 4f^8 6s^2$ 

# (c)

The electronic configuration of mercury (80) is [Xe] $4f^{10}$ ,  $5d^{10}$ ,  $6s^2$ . Its *d*-subshell is completely filled, thus it prevents the overlapping of *d*orbitals (d - d overlapping).

Hence, it is liquid metal at room temperature.

## (c)

Azurite is the ore of copper, its molecular formula is  $Cu(OH)_2$ .  $2CuCO_3$ .

# **(b)**

 $CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$ (d)

 $Zn + 2HCl \rightarrow ZnCl_2 + H_2$ 

 $\begin{array}{cc} Zn + H_2SO_4 & \longrightarrow ZnSO_4 + H_2 \\ & \text{Dil.} \end{array}$  $4\text{Zn} + 10\text{HNO}_3 \rightarrow 4\text{Zn}(\text{NO}_3)_2 + \text{N}_2\text{O} + 5\text{H}_2\text{O}$ Thus,  $NO_3^-$  ions are reduced to  $N_2O$  whereas in first two reactions  $H^+$  is reduced to  $H_2$ .

# (b)

Siderite —  $FeCO_3$ , calcite (or limestone) —  $CaCO_3$ , silver glance(or argentite) —Ag<sub>2</sub>S, fool's gold (or iron pyrites) —FeS<sub>2</sub>.

# (c)

 $3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$ 

(d)

In the electrolytic refining of zinc, anode is made up of impure zinc while a strip of pure zinc acts as cathode. An acidified solution of zinc sulphate acts as electrolyte. When electricity is passed,

following reactions occur.

At cathode

$$\operatorname{Zn}^{2+} + 2e^- \longrightarrow \operatorname{Zn}$$
 pure

At anode

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$
  
impure

# (b)

Ni combines with CO to form volatile Ni(CO)<sub>4</sub> which decomposes to give pure Ni metal and CO on heating.

$$Ni(CO)_4 \xrightarrow{Heat} Ni + 4CO \uparrow$$
  
Volatile metal

262 (c)

In Bessemer's converter impurities of C, Mn, Si, P in pig iron are oxidized to produce steel.

263 (b)

 $[Ag(CN)_2]^-$ 

Due to lanthanide contraction there occurs net

decrease in size. Only one 0.85 Å is smaller one. 279 (b) 265 (a) Brass is an alloy of copper and zinc (60-80% Cu When oxyhaemoglobin changes to and 40-20% Zn). deoxyhaemoglobin, Fe<sup>2+</sup> ion changes from 280 (c)  $Fe^{2+} \rightarrow Fe^{3+} + e; Mn^{7+} + 5e \rightarrow Mn^{2+}$ diamagnetic to paramagnetic. 266 (c) 281 **(b)** Zn blende is ZnS. Ag salts on strong heating form Ag. 267 (d) 282 (b) Mond's process involves extraction of Ni. Transitional metal ion having unpaired electrons Ni + 4C0  $\xrightarrow{335K}$  Ni(CO)<sub>4</sub> (Volatile); are coloured while those which have no unpaired electron are colourless.  $Ni(CO)_4 \xrightarrow{450K} Ni + 4CO$  $TiF_6^{2-}$ 283 (c)  $Ti^{4+}$  : [Ar] $3d^{0}$ ;0 unpaired electrons; colourless  $2Fe_2(SO_4)_3 + 3K_4[Fe(CN)_6] \rightarrow$  Fe<sub>4</sub>[Fe(CN)<sub>6</sub>]<sub>3</sub> +  $Cu_2Cl_2$ (Prussian blue  $Cu^+$ : [Ar]  $3d^{10}$ ; 0 unpaired electrons; colourless 6K<sub>2</sub>SO<sub>4</sub>.  $CoF_6^{3-}$ 284 (c)  $CO^{3+}$ : [Ar]  $3d^6$ ; 4 unpaired electrons; coloured German silver is an alloy of copper, zinc and NiCl<sub>4</sub><sup>2-</sup> nickel. It is used in utensils and resistance wire.  $Ni^{2+}$ : [Ar]  $3d^8$ ; 2 unpaired electrons; coloured 285 (b) 268 (d) Due to the formation of  $CuCO_3$ .  $Cu(OH)_2$ ; green Ti :  $3d^2 4s^2$ ; V:  $3d^3 4s^2$ ; Cr:  $3d^5 4s^1$ ; 286 (b) Mn:  $3d^5 4s^2$ ; It is a reason for the given fact.  $V^{3+}: 3d^2;$   $Cr^{4+}: 3d^2;$  $Ti^{2+}: 3d^2;$ 287 (a)  $Mn^{5+}: 3d^2$ FeSO<sub>4</sub> is mostly used in manufacture of blue-black 269 (d) ink, as a mordant in dyeing and tanning  $Hg_2Cl_2 + 2NH_3 \rightarrow HgNH_2Cl + Hg + NH_4Cl$ industries. 288 (c) white black 270 **(b)** It is a trade name for  $CuSO_4$ .  $5H_2O$ . Molybdenum steel is resistant to acid. 289 (a) 271 **(b)** The elements having incomplete *d*-orbital can A characteristic of transition elements. show variable oxidation state (because the electrons move the two levels of *d* itself) 272 (c) A characteristic hydride formation by *d*-block  $\therefore$  Zn has completely filled *d*-orbital. : It does not show variable oxidation state. It elements. always show +2 oxidation state. 273 (a) RBCs contain Fe in haemoglobin. 291 (b) It is a fact. 275 (d) 292 (b) Pt is a noble metal. 276 (c)  $Ag_20 \xrightarrow{\Delta} 2Ag + \frac{1}{2}O_2$ ZnS (white), is precipitated in weak acidic medium  $ZnCl_2$  (aq.) and  $Zn(NO_3)_2$  (aq.) give 293 (a) strongly acidic solution. Calamine  $(ZnCO_3)$  is an ore of zinc. 277 **(b)** 294 (b) Zn, Cd, Hg are *d*-block elements but not regarded Haematite ( $Fe_2O_3$ ) having FeO is first oxidized to as transition elements because these do not have  $Fe_2O_3$  and then reduced to Fe by Co. partially filled *d*-orbitals in their most common 295 **(b)** oxidation states MnO<sub>2</sub> forms amphoteric oxide due to 278 **(b)** intermediate oxidation state The solubility order is AgF > AgCl > AgBr >296 (d)  $AgI > Ag_2S$ Ir does not dissolve in aqua regia as it is much

more noble than Au and Pt The temperature of the slag zone in the metallurgy of iron using blast furnace is 800-297 (d) 1000°C. Hg has +1 oxidation state in Hg<sub>2</sub>Cl<sub>2</sub>. 298 **(b)** 316 (b) [Co(NH<sub>3</sub>)<sub>5</sub>Cl]Cl<sub>2</sub> ionizes to [Co(NH<sub>3</sub>)<sub>5</sub>Cl]<sup>2+</sup> and The phenomenon is called spitting of Ag. Cl<sup>-</sup>. These 2Cl<sup>-</sup> react with Ag<sup>+</sup> to form white ppt. 317 (c) of AgCl.  $Cu_2O$  has completely filled d –orbitals in  $Cu^+$  and thus, does not show (d - d) transition. 299 (d) All are facts. 318 (c) 300 (a)  $Hg(OH)_2$  does not exist.  $K_2Cr_2O_7 + H_2SO_4 + 4H_2O_2$ 319 (d)  $\rightarrow$  K<sub>2</sub>SO<sub>4</sub> + 2CrO<sub>5</sub> + 5H<sub>2</sub>O  $K_2$ HgI<sub>4</sub>, a colourless complex, is formed, 301 (a)  $4\text{KI} + \text{HgCl}_2 \rightarrow \text{K}_2\text{HgI}_4 + 2\text{KCI}$ White vitriol is  $ZnSO_4$ . 7H<sub>2</sub>O. 320 (a) 302 (a) The atomic weight of Co, Ni and Fe are 59.90, 58.60, 55.85 respectively. Therefore, Co > Ni > Fe No in iron complex has +1 oxidation number. 303 (b) is the correct sequence of atomic weights  $Mn^{2+}$  is most stable as it has half-filled *d*-orbitals. 321 (a) Silver nitrate is commercially known as lunar 304 (c)  $\operatorname{ZnCl}_2 \cdot 2\operatorname{H}_2\operatorname{O} \xrightarrow{\Delta} \operatorname{Zn}(\operatorname{OH})\operatorname{Cl} + \operatorname{HCl} + \operatorname{H}_2\operatorname{O}$ caustic. 322 (b)  $Zn(OH)Cl \rightarrow ZnO + HCl$ The complex formed is Ag(NH<sub>3</sub>)<sub>2</sub>Cl which ionizes 305 (c) in  $Ag(NH_3)_2^+$  and  $Cl^-$ .  $3Fe(CN)_2 + 4Fe(CN)_3 \rightarrow Fe_4[Fe(CN)_6]_3$  or 323 (b) Fe<sub>7</sub>C<sub>18</sub>N<sub>18</sub> Fe is ferromagnetic, *i.e.*, retains magnetic Prussian blue properties if field is removed 306 (a) 324 (d)  $CrO_4^{2-}$  has no unpaired *d* –electron. Zinc sulphate  $(ZnSO_4 \cdot 7H_2O)$  is called white 307 (a) vitriol. It when heated with barium sulphide,  $La(OH)_3$  is more basic than  $Lu(OH)_3$ . This is forms a white pigment lithopone because ionic size of  $La^{3+}$  ion is more than  $Lu^{3+}$ 325 (c) ion This is definition of tempering of steel. The 308 (d) product obtained is neither so hard nor so brittle. Cerium is commonly used in manufacture of It is softer than steel. alloys of lanthanide. It is also used in dying cotton 326 **(b)** or fabrics, for scavenging oxygen and sulphur "925 fine silver" means 925, parts of pure Ag in from other metals and also used as catalyst. 1000 parts of an alloy. Therefore, in percentage it 309 (a) will be 92.5% Ag and 7.5% Cu -do-327 (c) 310 (d) It is a property of  $ZnCl_2$ . It is a reason for the given fact. 328 (d) 311 (d) AgBr, silver bromide is used in photography. It is a fact. 329 (d) 312 **(b)** Brass is an alloy of Cu and Zn. Zn does not show corrosion. Bronze is an alloy of Cu and Sn. 313 (c) German silver is an alloy of Cu, Zn and Ni. The process is called hardening of steel and it Hence, Cu is the common metal in brass, bronze develops hard and brittle nature in steel. and German silver. 314 (c) 331 (c) Lowest m.p. among all metals is of Hg  $(-38.9^{\circ}C)$ . Among the given, manganese has the most stable 315 (d) electronic configuration, thus it is very hard to

remove an electron from is outer shell. Hence, a large amount of energy is required. Therefore, manganese has the maximum first ionization potential

#### 332 **(c)**

It is a fact.

333 **(b)** 

Vitamin  $B_{12}$  is  $C_{63}H_{88}CoN_{14}O_{14}P$ .

334 **(d)** 

By white tin plating, iron can be protected by water

#### 335 (a)

 $\begin{aligned} 2\text{KMnO}_4 + 2\text{KOH} &\longrightarrow 2\text{K}_2\text{MnO}_4 + \text{H}_2\text{O} + \text{O} \\ \text{or} \qquad \text{MnO}_4^- + e &\rightarrow \text{MnO}_4^{2-}. \end{aligned}$ 

336 **(a)** 

Zn acts as cathode and carbon as anode in dry cells.

#### 337 (a)

Annealing is the process of cooling a hot molten metal slowly. Railway wagon axles are made by heating iron rods embeded in charcoal powder (annealing) so that those might not break due to sudden change in temperature.

#### 338 (a)

The methods chiefly used for the extraction of lead and tin from their ores are respectively self reduction and carbon reduction. (Because the process of heating the ore strongly in the presence of excess of air is called roasting. It is mainly used in case of sulphide ores and the process of extracting a metal by fusion of the oxide ore with carbon is known as smelting.)

#### 339 **(d)**

The general electronic configuration for lanthanides is

 $[Xe](n-2)f^{1-14}(n-1)d^{1}ns^{2}.$ 

 $\therefore$  After the loss of both of the 6*s*-electrons and also the solitary *d*-electrons, the lanthanoids gain stable configurations.

 $\therefore$  (+3) oxidation state is most common among lanthanides.

# 340 (d)

A) There is gradual decrease in the radii of the lanthanoids with increasing atomic number-a case of lanthanide contraction, thus true.
B) Ionization potential for the formation of Lu<sup>3+</sup> is comparatively low, hence +3 state is

favourable, thus true.

C) Due to lanthanide contraction -Zr and Hf; Nb and Ta, Mo and W have the same size and thus

similar propertites and thus separation is not easy , thus true.

D) Formation of +4 state requires very high energy, thus incorrect.

#### 341 **(c)**

After smelting in blast furnace, the slag is removed from slag hole of the furnace while a molten mass containing mostly  $Cu_2S$  + little FeS is called matte; it contains 80% metal.

#### 342 **(c)**

There is very small difference in energies of 5f, 6d and 7s orbitals of actinoids, therefore their electronic configuration cannot assigned with a degree of certainty

#### 343 (d)

In Mac-Arthur-Forrest method silver is extracted from the solution of sodium argentocyanide by using zinc.

 $2Na[Ag(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4] + 2Ag \downarrow$ 

#### 345 **(d)**

It is Mn and exhibits +7 oxidation state.

#### 346 **(d)**

The size of lanthanides are smaller than expected. This is associated with the filling with the filling up of 4f orbitals which must be filled before the 5d orbitals. The electrons in f-orbitals are not effective in screening other electrons from the nuclear charge

#### 347 **(b)**

 $Ag^+ + e \rightarrow Ag$ ; finely divided Ag is black in colour and thus.AgNO<sub>3</sub> causes black stain on skin. It is therefore, called lunar caustic.

#### 348 **(a)**

Due to  $3d^5$  configuration.

349 **(c)** 

 $Gd = [Xe]4f^{7}5d^{1}6s^{2},$  $Gd^{3+} = [Xe]4f^{7} \text{ (half-filled)}$ 

```
350 (a)
```

$$3 \text{Hg} + 8 \text{HNO}_3(\text{dil.}) \rightarrow 3 \text{Hg}(\text{NO}_3)_2 + 2 \text{NO} + \text{Soluble and washed away}$$

 $4H_2O$ 

#### 351 **(d)**

 $E^{\circ}_{OP \text{ of Hg}} > E^{\circ}_{OP \text{ of H}}$ . Thus, Hg is less reactive than H<sub>2</sub>.

352 **(a)** 

Brass is an alloy of Cu + Zn (60-80% + 40-20% respectively).

353 **(a)** 

Maximum number of unpaired electrons are in Mn.

355 **(d)** 

It is a use of Ti alloys. 356 (c) Ore Chemical composition Cuprite  $Cu_2O$ Chalcocite  $Cu_2S$ Chalcopyrite CuFeS<sub>2</sub>  $Cu(OH)_2$ .  $CuCO_3$ Malachite In these ores, chalcopyrite (CuFeS<sub>2</sub>) Contains both iron and copper. 357 (c) Potassium dichromate, on heating give oxygen and chromic oxide  $(Cr_2O_3)$  $4\mathrm{K}_{2}\mathrm{Cr}_{2}\mathrm{O}_{7} \xrightarrow{\Delta} 4\mathrm{K}_{2}\mathrm{Cr}_{2}\mathrm{O}_{4} + 3\mathrm{O}_{2} + 2\mathrm{Cr}_{2}\mathrm{O}_{3}$ 358 (b)  $3\text{KCNS} + \text{FeCl}_3 \rightarrow 3\text{KCl} + \frac{\text{Fe}(\text{CNS})_3}{\text{Blood}-\text{red colo}}$ 359 (a) Fe, Co, Ni are called ferrous metals. 360 (d)  $Ag^+ + e \rightarrow Ag$ , *i.e.*,  $Ag^+$  is reduced. 361 (d) Most of the transition metal cations are coloured. 362 (a)  $Ag(CN)_2^-$  does not contain unpaired electrons. 363 (d) It is a fact. 364 (d) In MnSO<sub>4</sub> .4H<sub>2</sub>O, Mn is present as Mn<sup>2-</sup>  $Mn^{2+} =$  $3d^5$ 1 1 (Unpaired electrons = 5) In CuSO<sub>4</sub>. 5H<sub>2</sub>O, Cu is present as Cu<sup>2+</sup>  $Cu^{2+} =$  $3d^9$  $4s^0$ 11 11 11 11 1 (Unpaired electrons =1) In FeSO<sub>4</sub>.  $6H_2O$ , Fe is present as Fe<sup>2+</sup>  $3d^6$ 4s<sup>0</sup>  $Fe^{2+} =$ 11 1 (Unpaired electrons =4) In NiSO<sub>4</sub>. 6H<sub>2</sub>O Ni is present as Ni<sup>2+</sup>  $Ni^{2+} =$  $4s^{0}$  $3d^{8}$ 11 11 11 1 1 (Unpaired electrons = 2) Since, paramagnetic character ∝ unpaired electrons. Thus,  $CuSO_4$ . 5H<sub>2</sub>O has the lowest degree of paramagnetism among the given at 298 K.

365 (a) HgS is insoluble in hot dil.HNO<sub>3</sub>. 366 (c) A number of molybdic acids are known  $H_2MoO_4, H_6Mo_7O_{24}.$ 367 (a)  $Hg_2Cl_2 \xrightarrow{\Delta} Hg + HgCl_2$ 368 (b) It is a fact. 369 (a) AgBr decomposes on exposure to light 370 (c) Hg is volatile metal. 371 (a) In amalgam, Hg has zero oxidation state. 372 (c) Haematite contains SiO<sub>2</sub> (acidic) non-fusible impurity and this basic flux  $CaCO_3$  is used.  $CaCO_3 \rightarrow CaO + CO_2$ ,  $CaO + SiO_2 \rightarrow CaSiO_3$ 373 (a) Cu forms  $Cu(NH_3)_4^{2+}$  complex. 374 (d) It is a reason for given fact. 375 (b) Permanent magnets are generally made up of alloys of Al, Ni and Co 376 (d) ZnS is white. (Follow II gp. qualitative analysis). 377 (c)  $Hg_2cl_2 + 2NH_4OH$  $\rightarrow \underbrace{\text{Hg} + \text{Hg}(\text{NH}_2)\text{Cl}}_{\text{Black}} + \text{NH}_4\text{Cl}$  $+ 2H_20$ 378 (a) The chemical formula for ammonium molybdate is  $(NH_4)_2MoO_4$ . 379 (a) It is a reason for the given fact. 380 (a) The electronic configuration of  $_{62}$ Sm<sup>3+</sup> is 4 $f^4$  and that of  $_{66}$ Dy<sup>3+</sup> is  $4f^9$ . The colour of  $f^n$  and  $f^{14-n}$ are often identical 381 (c) Cassiterite is an ore of Sn. 382 (b)  $CuSO_4 + 4NH_3 \rightarrow [Cu(NH_3)_4]^{2+}SO_4^{2-}$ 383 (c)

Pig iron is formed during metallurgical

operations. All other forms are then prepared by using it.

384 (c) -do-385 (c) An element is paramagnetic if it has unpaired electron. 386 (b) Commercial zinc, about 97% pure containing lead and other impurities is called spelter. 387 (a) ZnO is known as philosopher's wool because it is very light, white, soft wooly powder. 388 (a) The density of transition elements gradually increases along the period or in a series, e.g., 3dseries: 21 Sc(3.0g/mL) to 29 Cu(8.9g/ mL).  $_{30}$ Zn has 7.1 g/mL. 389 **(b)** Silver containing lead as impurity is purified by cupellation process. 390 (c) Pig iron contains about 4% carbon. P, Mn and Si are in less percentage. 391 (d) The electronic configurations of Cu<sup>2+</sup> is  $Cu^{2+}:[Ar] 3d^9$ Hence, it has one unpaired electron. Magnetic moment( $\mu$ )= $\sqrt{n(n+2)}$  $\sqrt{1(1+2)}$ 392 (b) Ni-steel contains 3.5% Ni and is used in making cables, automobiles and aeroplane parts, armour plates, propeller shafts, etc. 393 (c) Hg exists as  $Hg_2^{2+}$  and not  $Hg^+$ . 394 (a)  $CrO_3$  and  $Mn_2O_7$  are acidic oxide. Since, they react with water and form the acids. e.g.,  $CrO_3 + H_2O \rightarrow H_2CrO_4$ chromic acid  $Mn_2O_7 + H_2O \rightarrow 2HMnO_4$ permanganic acid 395 (d) Copper metallurgy involves bessmerization. In Bessemer convertor, the impurities of ferric oxide

forms slag with silica and copper oxide is reduced to give blister copper.  $FeO + SiO_2 \rightarrow FeSiO_3$ 

411 (b)

 $KI + AgNO_3 \rightarrow AgI + KNO_3$ 

slag  $Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$ 396 (c) It is a fact. 397 (b) It is a fact  $4Au + 8KCN + 2H_2O + O_2$  $\rightarrow$  4K[Au(CN)<sub>2</sub>] + 4KOH  $2K[Au(CN)_2] + Zn \rightarrow K_2[Zn(CN)_4] + 2Au$ 398 (b) The chief ore of copper is copper pyrite,  $CuFeS_2$ . 400 (a) Transitional metal ions having electronic configuration  $(n-1)d^0$  or  $(n-1)d^{10}$  are colourless while those have  $(n-1)d^{1-9}$  are coloured.  $Cu^+$ : [Ar]  $3d^{10}$  : colourless  $Cu^{2+}$ : [Ar]  $3d^9$  : coloured Fe<sup>2+</sup>: [Ar]  $3d^6$  : coloured Mn<sup>2+</sup>: [Ar]  $3d^5$  : coloured 401 **(b)** It is a reason for the given fact. 402 (a) Transition metal which have low oxidation number acts as reducing agent because of greater tendency to lose the electron. Moreover, they behave like a base 403 (a) The composition of bell metal is Cu (80%) and Sn (20%). 404 (c) The main characteristic feature of transition elements. 406 (d)  $\mu = \sqrt{n(n+2)} = \sqrt{15}$  $\therefore$  n = 3 Thus, 3 unparied electron in  $_{24}M$ , *i.e.*,  $_{24}M^{3+}$ , or  $1s^2$ ,  $2s^22p^6$ ,  $3s^23p^63d^3$  for  $Cr^{3+}$ . 407 (b) Density of transition elements increases along the period. 408 (d)  $\operatorname{AuCl}_3 \xrightarrow{hv \text{ or } \Delta} \operatorname{AuCl} + \operatorname{Cl}_2$ 409 (c) White vitriol is  $ZnSO_4$ .  $7H_2O$ . 410 (a)  $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$ 

```
412 (b)
```

Wrought iron is the purest form of iron.

#### 413 **(c)**

Rest all form nitrides as AlN,  $Mg_3N_2$ ,  $Ca_3N_2$ .

#### 414 **(c)**

Yellow colour of the potassium chromate changes to orange on acidification. It is due to the formation of dichromate ions

$$2\operatorname{CrO}_{4}^{2^{-}} + 2\operatorname{H}^{+} \underbrace{\operatorname{acid}}_{alkali} \operatorname{Cr}_{2}\operatorname{O}_{7}^{2^{-}} + 2\operatorname{H}_{2}\operatorname{O}_{alkali}$$

# 415 **(b)**

The Stability of  $\operatorname{Cu}^{2+}(aq)$  rather than  $\operatorname{Cu}^+(aq)$  is due to much more negative  $\Delta_{\rm hyd}H^0$  of  $\operatorname{Cu}^{2+}(aq)$ than  $\operatorname{Cu}^+$ , which more than compensates for 2nd ionization enthalpy of Cu.

#### 416 **(c)**

At the bottom: 1775K.

417 **(d)** 

 $2Fe + 3Cl_2 \xrightarrow{\Delta} 2FeCl_3$ 

418 **(a)** 

Green vitriol is  $FeSO_4$ .  $7H_2O$ .

419 **(a)** 

It is a fact.

```
420 (d)
```

$$4Au + 8CN^{-} + 2H_2O + O_2$$
  

$$\rightarrow 4[Au(CN)_2]^{-} + 4OH^{-}$$
  
soluble  

$$2[Au(CN)_2]^{-} + Zn \rightarrow 2Au(s)$$
  

$$\downarrow + [Zn(CN)_4]^{2-}$$

421 **(a)** 

3*d*-series conatins  $_{21}$ Sc to  $_{30}$ Zn; 4*d*-series contains  $_{39}$ Y to  $_{48}$ Cd and 5*d*-series contains  $_{57}$ La and  $_{72}$ Hg to  $_{80}$ Hg; 6*d*-series contains  $_{89}$ Ac,  $_{104}$ Ku and  $_{105}$ Ha.

423 **(c)** 

<sub>92</sub>U is a member of actinoid series (90 to 103). 424 **(c)** 

"All their ions are colourless" this sentence is false because they are 90% coloured and only few are colourless

# 425 (d)

These are facts about sterling silver.

# 426 **(b)**

Steel or iron containing excessive quantities of S is brittle while hot (hot or red short), whereas excessive quantities of phosphorus make it brittle white cold (cold short).

#### 427 **(b)**

<sub>29</sub>Cu: 1s<sup>2</sup>, 2s<sup>2</sup>2p<sup>6</sup>, 3s<sup>2</sup>3p<sup>6</sup>3d<sup>10</sup>, 4s<sup>1</sup> i.e., 14

electrons have spin in one direction and 15 in other direction.

#### 428 (a) $Fe^{2+} = [Ar] 3d^64s^0 \Rightarrow 4$ unpaired electrons $Cu^+ = [Ar] 3d^{10}4s^0 \Rightarrow 0$ unpaired electrons $Zn = [Ar] 3d^{10}4s^2 \Rightarrow 0$ unpaired electrons $Ni^{3+} = [Ar] 3d^7 4s^0 \Rightarrow 3$ unpaired electrons 429 (d) $E^{\circ}_{OP \text{ of } Na} > E^{\circ}_{OP \text{ of } Zn}$ 430 (b) Lanthanide contraction, cancels almost exactly the normal size increase on descending a group of transition elements, thus Nb and Ta, Zr and Hf have same covalent and ionic radii. 431 (b) $2Fe_2(SO_4)_3 + 3K_4[Fe(CN)_6] \rightarrow Fe_4[Fe(CN)_6]_3 + (Prussian blue) + (Prussian blue)$ $6K_2SO_4$ 432 (d) In the iron silica is present as impurity, so for the removal of impurity of silica limestone is used. $CaCO_3 \xrightarrow{\Delta} CaO + CO_2$ $CaO + SiO_2 \rightarrow CaSiO_3$ slag 433 (b) Cu<sup>2+</sup> is discharged at cathode. 434 (c) HCOOH is a reducing agent. $HCOOH + 2HgCl_2 \rightarrow Hg_2Cl_2 + 2HCl + CO_2$ 435 (c) VOSO<sub>4</sub> is paramagnetic as well as coloured compound. The oxidation state of vanadium in $VOSO_4$ is +4. $V[Z=23]=[Ar]3d^3 4s^2$ $V^{4+}[Z=23]=[Ar] 3d^1 4s^0$ It has one unpaired electron hence, it is paramagnetic in nature. 436 (c) Ferrous sulphate (FeSO<sub>4</sub>. 7H<sub>2</sub>O) is known as green vitriol. 437 (c) The reaction takes place in blast furnace are $3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO_2$ $CaCO_3 \rightarrow CaO + CO_2$ $C + CO_2 \rightarrow 2CO$ $CaO + SiO_2 \rightarrow CaSiO_3$ $2C + O_2 \rightarrow 2CO$ Hence, the reaction $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$ does not take place in blast furnace. 438 (a)

Inner transition elements or *f*-block elements have 3 incomplete shells,

*i.e.*,  $(n-2)s^2p^6d^{10}f^{1-14}$ ,  $(n-1)s^2p^6$ ,  $ns^{1-2}$ .

439 **(c)** 

This involves auto reduction.

440 (d)

Follow extraction of iron.

441 **(c)** 

The gangue of FeO comes out as slag with acidic flux  $SiO_2$ .

#### 442 **(a)**

Magnetic moment of  $Zn^{2+} \mu_{effctive} = \sqrt{n(n+2)} BM$ Where, *n*=number of unpaired electrons  $_{30} Zn = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}, 4s^2$   $Zn^{2+} = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}$   $3d^{10}$ 11 11 11 11 11

$$n = 0$$

So, magnetic moment of  $Zn^{2+}$ =zero.

443 **(a)** 

Cu is present in all these alloys.

444 **(c)** 

Au is a number of 5*d*-series. Fe, Co and Cu all are the members of 3*d*-series.

#### 445 **(b)**

Azurite  $[2CuCO_3. Cu(OH)_2]$  is an ore of copper.

#### 446 **(b)**

It is a fact.

#### 447 **(a)**

 $CuSO_4(anhydrous) + aq. \rightarrow CuSO_4.5H_2O(aq.).$ White
Blue

# 448 **(a)**

Fe and Pt do not form amalgam with Hg.

#### 449 **(c)**

Rest all are wrong reporting.

450 (d)

 $Ag_2S + 4NaCN \rightarrow 2Na[Ag(CN)_2] + Na_2S$  $2Na[Ag(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4] + 2Ag$ 

451 **(c)** 

Cu is placed below H in electrochemical series. 452 **(b)** 

Zn forms only Zn<sup>2+</sup> ion.

453 (d)

All these protect iron against corrosion.

454 **(b)** 

 $K_{4}[Fe(CN)_{6}] + 6H_{2}SO_{4} + 6H_{2}O \xrightarrow{\Delta} 2K_{2}SO_{4}$ +FeSO<sub>4</sub> + 3(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> + 6CO ↑

455 **(d)** 

Blister copper is obtained by the process of

bessemerisation from the copper matte in the metallurgy of Cu. It is impure. Blister copper contains about 98 to 99% pure copper and 1 to 2% impurities like Ag, Au, Zn, Ni etc.

#### 456 **(b)**

Magnetic moment depends upon number of unpaired electrons. In  $Sc^{3+}$ , there is no unpaired electron. So, its effective magnetic moment is zero.

#### 457 **(b)**

An impure sample of ZnS containing traces of MnS, CuS or  $Ag_2S$ , etc., is phosphorescent.

#### 458 **(d)**

Pt dissolves in aqua regia (HNO<sub>3</sub> + HCl ) 3HCl + HNO<sub>3</sub>  $\rightarrow$  2H<sub>2</sub>O + NOCl + 2Cl

 $Pt + 4Cl \rightarrow PtCl_4;$ 

 $PtCl_4 + 2HCl \rightarrow H_2PtCl_6.$ 

459 **(b)** 

Ru forms penta carbonyl.

#### 460 **(d)**

The process of depositing a thin uniform layer of silver on clean glass surface is called silvering of mirror. The thin film is protected by coating of red lead and turpentine mixture.

 $2AgNO_3 + 2NH_4OH \rightarrow Ag_2O + 2NH_4NO_3 + H_2O$  $Ag_2O + HCHO \rightarrow 2Ag + HCOOH.$ 

461 **(b)** 

 $Cr_2O_7^{2-}$  has the structures.



462 **(c)** 

Anode mud left during electrolytic purification of Cu contains Au and Ag.

463 **(b)** 

24 carat gold means 100% Au.

464 **(a)** 

$$2KMnO_4 + 2H_2SO_4 \rightarrow Mn_2O_7 + 2KHSO_4 + H_2C$$

465 **(c)** 

Polymetallic carbonyls are also known for transition metals, . g.,  $Co_2(CO)_3$ .

# 466 **(a)**

Due to loss of  $ns^2$ -electrons.

- 467 (c) Gun metal has a composition of Cu=88% Sn=10%, Zn=2%
- 468 **(b)**

```
It is a fact.
```

469 **(b)** 

In water it gives  $HMnO_4$  (an acid).

# 470 **(a)**

Corrosive sublimate gives black ppt. of calomel with formic acid but it does not react with acetic acid.

# 471 **(a)**

In basic medium, the following reaction takes place

 $2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + [O]$ Due to the presence of nascent oxygen [O], KMnO\_4 (in basic medium) behaves like an strong oxidizing agent.

# 472 **(d)**

3*d*, 4*d* and 5*d*-series are complete and 6*d*-series incomplete.

# 473 **(b)**

The less electropositive metals such as Fe, Zn, Sn etc are extracted from their oxides by reduction with carbon or coal.

 $\begin{array}{l} \mathrm{Fe_2O_3} + \mathrm{3C} \longrightarrow \mathrm{2Fe} + \mathrm{3CO} \\ \mathrm{Fe_2O_3} + \mathrm{3CO} \longrightarrow \mathrm{2Fe} + \mathrm{3CO_2} \\ & \mathrm{iron} \end{array}$ 

# 474 **(c)**

The electronic configuration of Mn is  $_{25}$ Mn =[Ar]  $3d^5 4s^2$ Mn<sup>4+</sup> =[Ar] $3d^3$ 

 $MII^{+} = [AI] 3u^{-}$ 

Thus, three unpaired electrons are present.

Spin only magnetic moment ,  $\mu = \sqrt{n(n+2)}$ 

n=3  $\mu = \sqrt{3(3+2)}$   $= \sqrt{15} = 3.87$   $\approx 4 \text{ BM}$ 

#### ≈4B

475 **(a)** 

It is a fact.

476 (a)
 Due to poisonous nature of HgCl<sub>2</sub>, its 0.1% solution is used as antiseptic for sterilizing hands and instruments in surgery.

# 477 (a)

 $Fe \rightarrow Fe^{2+} + 2e$ 

#### 478 (a)

 $Cu^{2+}$  salts form chocolate brown ppt. of  $Cu_2Fe(CN)_6$  with  $K_4Fe(CN)_6$ .

# 479 **(c)**

Mohr salt =  $(NH_4)_2SO_4$ . FeSO<sub>4</sub>.  $6H_2O$ Here, Fe is present as FeSO<sub>4</sub>. Therefore, its oxidation state can be calculated with in only FeSO<sub>4</sub>.

$$x+(-2)=0$$
  
 $x=+2$ 

#### 481 **(b)**

Neodymium oxide  $(Nd_2O_3)$  dissolved in selenium oxychloride is one of the most powerful liquid lasers known so far

#### 482 **(c)**

A transition metal ion exists in its highest oxidation state. It is expected to behave as an oxidizing agent.

#### 483 **(a)**

The ionisation energies increase with increasing atomic number. The trend is irregular among *d*-block elements.

| Ele | S | Т | V | С | М | Fe | С | Ν | С | Ζ |
|-----|---|---|---|---|---|----|---|---|---|---|
| me  | С | i |   | r | n |    | 0 | i | u | n |
| nt  |   |   |   |   |   |    |   |   |   |   |
| IE  | 6 | 6 | 6 | 6 | 7 | 76 | 7 | 7 | 7 | 9 |
| (   | 3 | 5 | 5 | 5 | 1 | 2  | 5 | 3 | 4 | 0 |
| kJ/ | 1 | 6 | 0 | 2 | 7 |    | 8 | 6 | 5 | 5 |
| mol |   |   |   |   |   |    |   |   |   |   |

 $\therefore$  Zn > Fe > Cu > Cr is correct order.

484 **(a)** 

> It is a reason for the given fact.

485 **(c)** 

—do—

486 **(c)** 

These are uses of Ag.

#### 487 **(b)**

In acidic medium,  $KMnO_4$  gives 5 oxygen while, acidic  $K_2Cr_2O_7$  gives 3 oxygen

#### 488 **(d)**

 $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2;$  $2Al + 2NaOH + 2H_2O \rightarrow 2NaAlO_2 + 3H_2$ 

#### 489 **(c)**

The ability of transition elements to adopt multiple oxidation states and complexing ascribed their catalytic activity

#### 490 **(b)**

$$6e + Cr_2^{6+} \rightarrow 2Cr^{3+}; S^{2-} \rightarrow S^0 + 2e$$

491 **(a)** 

$$Zn + 2H_2SO_4 \rightarrow ZnSO_4 + 2H_2O + SO_2$$
  
(Conc.)

492 **(c)** 

Carbon is generally used for the reduction of oxides of moderately reactive metals like Fe, Zn, etc. *e.g.*,

 $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$ 

**Note** Highly reactive metals like Na are produced by electrolytic reduction while less reactive metals like Ag and Hg are obtained by

autoreduction. because of absence of unpaired electrons 493 (a) 505 (a) Except Au all other metals, *i.e.*, Ag, Hg and Cu are Zn gets dissolved in NaOH, forming Na<sub>2</sub>ZnO<sub>2</sub>. dissolved in conc. H<sub>2</sub>SO<sub>4</sub> or conc. HNO<sub>3</sub>. The 506 (b) compound *X* is AuCl<sub>3</sub> which forms a complex with In basic medium potassium permanganate is HCl. reduced to first manganate and than to manganese dioxide (colourless).  $AuCl_3 + HCl \rightarrow H[AuCl_4]$ It is used for toning in photography.  $2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$ 494 (c)  $2K_2MnO_4 + 2H_2O \rightarrow 2MnO_2 + 4KOH + 2O$  $2KMnO_4 + H_2O \rightarrow 2MnO_2 + 2KOH + 3[O]$ Lithopone is used as white pigment and contains 507 (a)  $ZnS + BaSO_4$ . Ag belongs to second (4d) transition series. 495 (c)  $_{21}$ Sc( $3d^{1}4s^{2}$ ) has no unpaired electron in Sc<sup>3+</sup> Remaining all are in first transition series 508 (a) ion. Mn in carbonyl has zero oxidation state. 497 (c) 509 (c) -do-Copper is good conductor of current. 498 (b) 510 (d) 4*f*-level is successively filled in lanthanoids and 5*f*-level is successively filled in actinoids. Calomel is the name for  $Hg_2Cl_2$ . 499 **(b)** 511 (d) Developing involves the decomposition of AgBr to  $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O.$ 500 (c) Ag. AgBr<sup>x</sup> a molecule of AgBr exposed to light is Haematite conatins SiO<sub>2</sub> (acidic) non-fusible reduced to Ag by: impurity and this basic flux CaCO<sub>3</sub> is used.  $C_6H_4(OH)_2 + 2AgBr^x \rightarrow C_6H_4O_2 + 2HBr + 2Ag$ 512 **(b)**  $CaCO_3 \rightarrow CaO + CO_2$ ,  $CaO + SiO_2 \rightarrow CaSiO_3.$ Zinc blende is roasted and then treated with coke for the reduction. 501 (a)  $2\text{ZnS} + 30_2 \xrightarrow{\Delta} 2\text{ZnO} + 2\text{SO}_2 \uparrow$  $CuSO_4 + 2KCN \rightarrow K_2SO_4 + Cu(CN)_2$  $ZnO + C \xrightarrow{\Delta} Zn + CO \uparrow$ cupric cyanide (unstable) 513 (d)  $2Cu(CN)2 \rightarrow 2CuCN + (CN)_2$ This is chrome alum used in tanning leather, white ppt mordant in dyeing and in photography for  $3KCN + CuCN \rightarrow K_3[Cu(CN)_4]$ hardening of negative. potassium cuprocyanide 514 (c) (soluble complex)  $FeSO_4$ .  $(NH_4)_2 SO_4$ .  $6H_2O$  is called Mohr's salt. 502 (c) 515 (a)  $Ti^{3+} \rightarrow 3d^1.4s^0$  $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$  $Sc^{3+} \rightarrow 3d^0$ purple colour  $Mn^{2+} \rightarrow 3d^5, 4s^0$ 516 (d)  $Zn^{2+} \rightarrow 3d^{10}, 4s^0$  $CuCl_2$  and  $CuBr_2$  exist as  $(CuCl_2)_x$  and  $(CuBr_2)_x$ In  $Mn^{2+}$  number of unpaired electrons =5. So, it polymeric bridge structure. has maximum magnetic moment according to the 517 (d) formula Na will react with water; Ag, Hg are placed below  $\mu = \sqrt{n(n+2)}$  BM Cu in electrochemical series. 518 (a) 503 (b)  $2\mathrm{MnO}_2 + 4\mathrm{KOH} + \mathrm{O}_2 \rightarrow 2\mathrm{K}_2\mathrm{MnO}_4 + 2\mathrm{H}_2\mathrm{O}$ Mohr's salt is green in colour due to Fe<sup>2+</sup> ions purple green which are green. 519 (c) 504 (c) +3 and +4 states are shown by Ce in aqueous  $\mathrm{Ni}^{2+}$  and  $\mathrm{Cr}^{2+}$  are coloured due to presence of solutions. Thus statement (c) is incorrect. unpaired electrons. But Zn<sup>2+</sup> is colourless Page | 68

| 520 | (c)                                                                                                                                  |                   | sodium                                                                                                                                                         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Tungsten filaments are used in bulbs.                                                                                                |                   | chloroaurate                                                                                                                                                   |
| 522 | (b)                                                                                                                                  | 545               | (d)                                                                                                                                                            |
|     | It is a fact.                                                                                                                        |                   | Zinc sulphate hepta hydrate $(ZnSO_4.7H_2O)$ is                                                                                                                |
| 523 | (a)                                                                                                                                  |                   | called white vitriol. When it is heated with barium                                                                                                            |
|     | Fool's gold is $CuFeS_2$ or $FeS_2$ .                                                                                                |                   | sulphide, it forms a white pigment lithopone.                                                                                                                  |
| 524 | (a)                                                                                                                                  | 546               | (a)                                                                                                                                                            |
|     | $Cu(NH_3)_4SO_4$                                                                                                                     |                   | Silver (Ag) metal is purified by Pattinson's                                                                                                                   |
| 525 | (d)                                                                                                                                  |                   | process.                                                                                                                                                       |
|     | Follow Bessemer's process in Fe extraction.                                                                                          | 547               | (c)                                                                                                                                                            |
| 526 | (a)                                                                                                                                  |                   | <i>d</i> -block elements have higher melting point due                                                                                                         |
|     | A mixture of $TiO_2$ and $BaSO_4$ is called titanox                                                                                  |                   | to greater forces of attraction between two atoms.                                                                                                             |
| 527 | (b)                                                                                                                                  | 548               | (c)                                                                                                                                                            |
|     | The b.p. of Ti, Cr, Fe and Co are 3260, 2665, 3000                                                                                   |                   | $\mathrm{Fe}_2\mathrm{O}_3 + 3\mathrm{CO} \longrightarrow 2\mathrm{Fe} + 3\mathrm{CO}_2.$                                                                      |
|     | and 2900 K respectively.                                                                                                             | 549               | (b)                                                                                                                                                            |
| 528 | (d)                                                                                                                                  |                   | Iron is $d$ -block element (3 $d^6$ , 4 $s^2$ ).                                                                                                               |
|     | It is a fact.                                                                                                                        | 550               | (c)                                                                                                                                                            |
| 530 | (c)                                                                                                                                  |                   | It is a fact.                                                                                                                                                  |
|     | Ferric compounds are more easily hydrolysed                                                                                          | 551               | (b)                                                                                                                                                            |
|     | than ferrous salts.                                                                                                                  |                   | Fe <sup>2+</sup> is light green in colour.                                                                                                                     |
| 531 | (a)                                                                                                                                  | 552               | (a)                                                                                                                                                            |
|     | The important ores of iron are haematite ( $Fe_2O_3$ ),                                                                              |                   | $Cr_2 0_7^{2-}$ has orange colour in <i>aq</i> . Medium.                                                                                                       |
|     | magnetite ( $Fe_3O_4$ ) and iron pyrites ( $FeS_2$ ). Iron is                                                                        | 553               | (c)                                                                                                                                                            |
|     | manufactured from haematite ore.                                                                                                     | $\langle \rangle$ | Reference electrodes are calomel electrodes.                                                                                                                   |
| 532 | (C)                                                                                                                                  | 554               | (b)                                                                                                                                                            |
| 504 | The process is called auto reduction.                                                                                                |                   | All cations formed by transition metals are not                                                                                                                |
| 534 |                                                                                                                                      |                   | coloured and are not paramagnetic, $.g., Zn^{2+}$ .                                                                                                            |
| FOF | $2Lu^{2^+} + 4KI \to Lu_2I_2 + I_2 + 4K^+$                                                                                           | 555               | (b)                                                                                                                                                            |
| 535 | (d)                                                                                                                                  |                   | 3.87= $\sqrt{n(n+2)}$ , where, <i>n</i> is the number of                                                                                                       |
| FDC | It is a fact.                                                                                                                        |                   | unpaired electron                                                                                                                                              |
| 530 | (u)<br>Cormon gilver is an allow of $C_{11} + \overline{C_{12}} + N_{12} + C_{12}$                                                   |                   | $(3.87)^2 = n(n+2)$                                                                                                                                            |
|     | German Silver is an alloy of $Cu + Zh + Ni$ (2.1.1                                                                                   |                   | $15 = n^2 + 2n$                                                                                                                                                |
| 527 | (d)                                                                                                                                  |                   | $n^2 + 2n - 15 = 0$                                                                                                                                            |
| 557 | (u)<br>It is a method for extraction of Ni                                                                                           |                   | $\therefore$ $n \cong 3$                                                                                                                                       |
| 528 | (a)                                                                                                                                  | 556               | (d)                                                                                                                                                            |
| 550 | Cold                                                                                                                                 |                   | Lutetium-71 belongs to lanthanoids, the elements                                                                                                               |
|     | $K_2Cr_2O_7 + 2H_2SO_4 \longrightarrow 2CrO_3 + 2KHSO_4 + H_2O$                                                                      |                   | from 58 to 71.                                                                                                                                                 |
|     | $CrO_3$ is highly acidic and oxidising and is called                                                                                 | 557               | (c)                                                                                                                                                            |
|     | chromic acid                                                                                                                         |                   | It is a fact.                                                                                                                                                  |
| 539 |                                                                                                                                      | 558               | (C)                                                                                                                                                            |
|     | $4\text{FecI}_3 + 3\text{K}_4[\text{Fe}(\text{CN})_6] \rightarrow \text{Fe}_4[\text{Fe}(\text{CN})_6]_3 + \text{Ferri-ferrocyanide}$ |                   | $\operatorname{Fe}_2(\operatorname{SO}_4)_3 \to \operatorname{Fe}_2\operatorname{O}_3 + 3\operatorname{SO}_3.$                                                 |
| 5   | (Prussian blue)                                                                                                                      | 559               | (C)                                                                                                                                                            |
|     | 12KCl.                                                                                                                               | 500               | It is a fact.                                                                                                                                                  |
| 540 | (a)                                                                                                                                  | 560               | (D)                                                                                                                                                            |
|     | $Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 + 2H_2O$                                                                                |                   | $2 \operatorname{SIG}_2 + 2 \operatorname{II}_2 \operatorname{SIG}_2 \longrightarrow 2 \operatorname{SIG}_4 + \operatorname{Hg}_2$ ; $\operatorname{SIG}_2$ is |
| 541 | (b)                                                                                                                                  | EC1               | oxiaizea.                                                                                                                                                      |
|     | The process is called hardening of steel and it                                                                                      | 201               | (U)<br>Chalconumitoor connor numito is CurEsC                                                                                                                  |
|     | develops hard and brittle nature in steel.                                                                                           |                   | . It is one of conner and iron                                                                                                                                 |
| 542 | (d)                                                                                                                                  | 567               | (d)                                                                                                                                                            |
|     | $AuCl_3 + NaCl \rightarrow Na[AuCl_4]$                                                                                               | 502               | (ש)                                                                                                                                                            |

|     | Siderite (FeCO <sub>3</sub> ) is an ore of iron.                                                        |                   | due to the presence of = bond. Ferrous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|---------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 563 | (a)                                                                                                     |                   | ammonium sulphate and oxalic acid decolourized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | The process of extraction of metal by heating                                                           |                   | the KMnO <sub>4</sub> in acidic medium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | roasted ore with coke in the presence of a flux is                                                      |                   | $2 \text{ KMnO}_4 + 10 \text{FeSO}_4 + 8 \text{H}_2 \text{SO}_4 \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | called smelting. It is done in blast furnace. Iron is                                                   |                   | $K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 8H_2O_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | extracted by this process.                                                                              |                   | $2 \text{ KMnO}_4 + 5C_2 \text{H}_2\text{O}_4 + 3\text{H}_2\text{SO}_4 \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | $5 \times 1123 \text{ K}$                                                                               |                   | $K_2SO_4 + 2MnSO_4 + 10CO_2 + 8H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | $re_2O_3 + 5C \longrightarrow 2re + 5CO$                                                                | 571               | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | $Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$                                                             |                   | The complex formation imparts colour.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 564 | (c)                                                                                                     | 572               | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Stainless steel contains 11.5% Cr.                                                                      |                   | Syvanite (AuAgTe <sub>4</sub> ); calaverite (AuTe <sub>2</sub> ), bismuth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 565 | (a)                                                                                                     |                   | aurite (BiAu <sub>2</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | Ceria or cerium oxide, CeO <sub>2</sub> , a lanthanide                                                  | 573               | (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | compound is used as a pigment and as a polishing                                                        |                   | It is a reason for the given fact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | agent for glass.                                                                                        | 574               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 566 | (d)                                                                                                     | 0,1               | Azurite is $Cu(OH)_{c}$ 2CuCO <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | $ZnO + C \rightarrow Zn + CO$                                                                           | 575               | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | $2CO + O_2 \rightarrow 2CO_2$ (Blue flame on burning of CO).                                            | 575               | $7n^{2+}(7-30)\cdot[\Lambda r]^2d^{10}As^0$ , zero uppoired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 567 | (c)                                                                                                     |                   | alactron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | In CuF <sub>2</sub> , Cu <sup>2+</sup> ion exist, having $d^9$ configuration.                           |                   | Honco its magnetic memort is zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | Unpaired electron causes colour $(d - d)$                                                               |                   | $\frac{1}{2} = \frac{1}{2} = \frac{1}$ |
|     | transition) In the crystalline form $CuF_{\rm o}$ is blue                                               |                   | $\mu = \sqrt{n(n+2)} = \sqrt{0(0+2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | coloured                                                                                                |                   | $\mu = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 568 |                                                                                                         | 576               | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 500 | Spin only magnetic moments depend upon the                                                              | $\langle \rangle$ | $4\text{Zn} + 10\text{HNO}_3 \rightarrow 4\text{Zn}(\text{NO}_3)_2 + \text{NH}_4\text{NO}_3 + 3\text{H}_2\text{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | number of unpaired electrons more the number                                                            | 577               | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | of unpaired electron greater will be the spin only                                                      |                   | Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | magnetic moment                                                                                         |                   | $3d^{10}$ $4s^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | magnetic moment.                                                                                        |                   | 11 11 11 11 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | $25Mn = 15^{\circ}, 25^{\circ}, 25^{\circ}, 35^{\circ}, 35^{\circ}, 35^{\circ}, 36^{\circ}, 45^{\circ}$ |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | $Mn^{2+} = 1s^2, 2s^2, 2p^3, 3s^2, 3p^3, 3d^3, 4s^3$                                                    |                   | Cu <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                                                                         |                   | $3d^{10}$ $4s^{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | Number of unpaired electrons=5                                                                          |                   | 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | $_{24}Cr = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5, 4s^4$                                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | $Cr^{2+} = 1s^2, 2s^22p^6, 3s^23p^6 3d^4, 4s^6$                                                         |                   | Cu <sup>+</sup> is colourless due to the absence of unpaired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |                                                                                                         |                   | electron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | Number of unpaired electron=4                                                                           | 578               | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | $23V=1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^3, 4s^2$                                                          |                   | Fe ores possess magnetic nature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | $V^{2+} = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^3, 4s^6$                                                     | 579               | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                                                                                         |                   | The process is called auto reduction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | Number of unpaired electrons =3                                                                         | 580               | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | So, the correct order of spin only magnetic                                                             |                   | Transition elements have ( <i>n</i> -1) <i>d</i> and <i>ns</i> -shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | moment is                                                                                               |                   | incomplete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | $Mn^{2+} > Cr^{2+} > V^{2+}$                                                                            | 581               | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 569 | (c)                                                                                                     |                   | In electrorefining of conner, some gold is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | Stainless steel contains 11-15% Cr.                                                                     |                   | deposited as anode mud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 570 | (c)                                                                                                     | 582               | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Aromatic compounds which have= or $\equiv$ bond in                                                      | 302               | $(u^{2+}(aa))$ is blue in colour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | the side chain decolourise acidic/ alkaline $KMnO_4$ .                                                  | 502               | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Benzene does not delcolourise the acidic/alkaline                                                       | 505               | $\int \frac{d^2}{d^2} = \frac{1}{2} \int \frac{d^2}{d^2} \frac{d^2}{d^2} = \frac{1}{2} \int \frac{d^2}{d^2} \frac{d^2}{d^2} = \frac{1}{2} \int \frac{d^2}{d^2} \frac{d^2}{d^2} \frac{d^2}{d^2} = \frac{1}{2} \int \frac{d^2}{d^2} \frac{d^2}{d^2} \frac{d^2}{d^2} = \frac{1}{2} \int \frac{d^2}{d^2} $                                                                                                                             |
|     | KMnO <sub>4</sub> due to the delocalization of $\pi$ - electrons.                                       |                   | The magnetic moment = $\sqrt{n(n+2)}$ BM where n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

While propene decolourized the alkaline KMnO<sub>4</sub>

(n+2) BM where n is no. of unpaired electron. Thus, n = 1.

| 584 | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | The highest oxidation state of transition elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|     | is exhibited in their compounds with F and O, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59 |
| FOF | most electronegative elements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 585 | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|     | I gp. reagent is dil. HCl. The chlorides of Ag, PD, Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| EOG | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 500 | (u)<br>>671℃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|     | $4K_2Cr_2O_7 \longrightarrow 4K_2CrO_4 + 2Cr_2O_3 + 3O_2.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 587 | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60 |
|     | $2KMnO_4 \xrightarrow{200 \text{ C}} K_2MnO_4 + MnO_2 + O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 |
|     | $2K_2MnO_4 \xrightarrow{Above 200^{\circ}C} 2K_2MnO_3 + O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60 |
| 588 | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|     | Fe <sup>2+</sup> , 2SO <sub>4</sub> <sup>2-</sup> , 2NH <sub>4</sub> <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 589 | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| -01 | $2\operatorname{NaOH}_{Alkali} + \operatorname{Zn}(OH)_2 \longrightarrow \operatorname{Na}_2\operatorname{ZnO}_2 + 2H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| 591 | (a)<br>It is a fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60 |
| 592 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| 392 | Alnico is a series of alloys based on iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60 |
|     | containing Ni. Al. Co and Cu. They are used to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|     | make permanent magnets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60 |
| 593 | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|     | Bordeaux mixture is $CaO + CuSO_4$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60 |
| 594 | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|     | Lanthanoids [Xe] $4f^{1-14}5d^{0-1}6s^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60 |
|     | Actinoides [Rn]5 $f^{1-14}6d^{0-1}7s^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|     | Lanthanoides and actinoides use core <i>d</i> and <i>f</i> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~  |
|     | orbitals also to show higher oxidation state. As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60 |
|     | actinoides have comparatively low energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|     | a $u$ $u$ $i$ $u$ i | 60 |
| 595 | (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00 |
| 575 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61 |
|     | $K_2MnF_6 + 2SbF_5 \rightarrow 2KSbF_6 + MnF_3 + \frac{1}{2}F_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|     | In this reaction, the stronger Lewis acid ${\rm SbF}_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|     | displaces the weaker one, MnF <sub>4</sub> from its salt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 61 |
|     | MnF <sub>4</sub> is unstable and readily decomposes to give                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|     | MnF <sub>3</sub> and fluorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 596 | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|     | A reduction in atomic size with increase in atomic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|     | This is due to lanthanide contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1 |
| 597 | (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01 |
| 597 | Parke's process is based on the fact that molten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61 |
|     | lead and zinc are nearly immiscible. Zinc heing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|     | lighter forms the upper laver and molten lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|     | forms the lower layer. Ag is more soluble in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|     | molten Zn than molten Pb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 61 |

```
598 (c)
```

It is a use of this reagent.

599 **(d)** 

Transition metals due to the presence of partially, filled *d*-orbitals, are coloured.

The unpaired electron present in partially filled *d*orbital is excited to the higher energy *d*-orbital by absorbing energy from visible light and thus exhibits the complementary colour. Due to which the transition metal ions appear coloured.

#### 500 **(b)**

It contains 36% Ni.

# 601 **(c)**

 $Cr^{2+}$  (Z=24): [Ar] $3d^4 4s^0$ ; four unpaired electrons Fe<sup>2+</sup> (Z=26) : [Ar] $3d^6 4s^0$ ; four unpaired electrons.  $Cr^{2+}$  and Fe<sup>2+</sup> have same number of unpaired electrons, hence they have the same value of magnetic moment.

# 602 **(c)**

Erbium is a lanthanide

603 **(a)** 

 $BaO + ZnO \rightarrow BaZnO_2$ 

04 **(d)** 

Brass is an alloy of copper with zinc.

606 **(c)** 

$$CuCl_2 + Cu \xrightarrow{HCl} Cu_2Cl_2$$

507 **(b)** 

Cast iron or pig iron (2–5% C); wrought iron (0.1 to 0.5% C), steel (0.1 to 1.5% C).

# 608 **(c)**

*d*-block elements invariably show variable valence.

# 609 **(b)**

This is characteristic of inner transition elements.

# 610 **(b)**

Mercurous chloride is insoluble in water while rest are soluble in water

# 611 **(c)**

Carnallite KCl, MgCl<sub>2</sub>,  $6H_2O$ Limonite  $2Fe_2O_3$ ,  $3H_2O$ Siderite  $FeCO_3$ Horn silver AgCl  $\therefore$  Siderite is carbonate ore.

612 **(b)** 

It is a facts,  $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ .

613 **(c)** 

Black Jack is an ore of zinc. Other ores of zinc are zincite (ZnO), calamine (ZnCO<sub>3</sub>), zinc blende or black jack (ZnS).

614 **(d)** 

AgI is insoluble in NH<sub>4</sub>OH but AgCl is soluble in NH<sub>4</sub>OH due to the formation of [Ag(NH<sub>3</sub>)<sub>2</sub>]Cl 615 (b) e.g.,  $MnCl_2$ ,  $Mn(OH)_3$ ,  $MnO_2$ ,  $K_2MnO_4$ ,  $KMnO_4$ , +4 616 (a)  $HgCl_2 + H_2S \rightarrow HgS + 2HCl$ 617 **(b)** CuCl forms coordinated product with CO.  $CuCl + CO \rightarrow CuCl. CO$ 618 (a) Except Cu, Hg, Ag, Pt and Au, where  $E_{RP}^{\circ}$  are + ve. 619 (a)  $AuCl_3 + 3FeSO_4 \rightarrow Au + Fe_2(SO_4)_3 + FeCl_3$ 620 (a) ZnCl<sub>2</sub> is deliquescent. 622 (a)  $Fe + H_2SO_4 \rightarrow FeSO_4 + H_2 \uparrow$  $3Fe + 4H_2O \rightarrow 4H_2\uparrow + Fe_3O_4$ hot steam 623 (a)  $Hg_2Cl_2 + 2NH_4OH$  $\rightarrow \underbrace{\text{Hg} + \text{Hg}(\text{NH}_2)\text{Cl}}_{\text{Black}} + \text{NH}_4\text{Cl}$  $+ 2H_20$ 624 (d) Bleaching powder is mixed salt,  $K_4$ Fe(CN)<sub>6</sub> is complex salt, hypo is normal salt. 625 **(b)** Bronze is a mixture of Cu and Sn. 626 (b) Gun metal is an alloy of Cu, Sn and Zn. It is used to make cartridge of rifles and pistols. 627 (b)  $\mu_{eff}$  value of 1.73 BM corresponds to one unpaired electron.  $Ti^{3+} = 3d^1$  ( $Ti = [Ar]3d^2 4s^2$ ) 628 (a) Thermite process is used for the reduction of oxides of less electropositive metals. Oxides of less electropositive metals such as  $Cr_2O_3$ ,  $Mn_3O_4$ etc are reduced by using Al. This process is called thermite process.  $Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr + Heat$ 629 **(b)** Copper ores contain FeO as non-fusible mass. Thus, FeO +  $SiO_2 \rightarrow FeSiO_3$ . Acidic flux Slag 630 (d) Chalcopyrite is CuFeS<sub>2</sub>

632 (b) It is  $Ag(NH_3)_2Cl$ . 633 (a) Cu is added in Au to prepare ornaments. 634 (d) On igniting at 1400°c.  $Fe_2O_3$  get reduced to metallic Fe.  $3Fe_2O_3$  $CO_2$  $Fe_3O_4 + CO \rightarrow 3$  $FeO + CO \rightarrow Fe + O$ 635 (b) These are uses of ZnO. It is also used for glazing purposes. 636 (c)  $Fe(OH)_3$  is formed as brown residue. Also colourless or light yellow solution will be left. 637 (a) Given,  $X = [Ar]d^4$ : The complete configuration of the ion,  $X^{3+} = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^4$  $\therefore X = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5 4s^2$ : The atomic number of the element is 25 and the element is Mn. 638 (c) Cast iron or pig iron (2-5% C); wrought iron (0.1)to 0.5% C), steel (0.1 to 1.5% C). 639 (b) Follow complementary colour concept. 640 (b) <sup>41</sup>Nb and <sub>73</sub>Ta have similar atomic size. 641 (a) A white precipitate of cuprous iodide is formed on adding KI to CuSO<sub>4</sub> solution.  $2CuSO_4 + 4KI \rightarrow 2CuI + I_2$ white ppt. 642 (a) The *d* -block elements form coloured compounds. These compounds have ions with unpaired electron in *d*-subshell. i) Na and Mg belong to s-block, so NaCl and MgCl<sub>2</sub> are colourless compounds. ii)  $CuF_2$ Oxidation state of Cu in  $CuF_2$  is +2  $Cu^{2+}=1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^0, 3d^9$ 11 11 11 11 11 1 ∴ CuF<sub>2</sub> in which Cu has one unpaired electron is coloured. iii)CuI Oxidation state of Cu in CuI =+1 $Cu^+=1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^0, 3d^{10}$
It has no unpaired electron. So, CuI is colourless.  $\therefore$  Only CuF<sub>2</sub> is coloured among given choices. 643 **(b)** 2NaOH + Zn<sup>2+</sup>  $\rightarrow$  Na<sub>2</sub>ZnO<sub>2</sub> + 2H<sup>+</sup>, Na<sub>2</sub>ZnO<sub>2</sub> gives 2Na<sup>+</sup> and [ZnO<sub>2</sub>]<sup>2-</sup> ions.

#### 644 **(c)**

 $2MnO_4^- + Br^- + H_2O \rightarrow 2MnO_2 + BrO_3^- + 2OH^-$ 645 (a)

Cyanide process is used for extraction of silver (Ag).

 $4Ag + 8NaCN + 2H_2O + O_2$  $\approx 4Na[Ag(CN)_2] + 4NaOH$ 

 $2Na[Ag(CN)_2] + 4NaOH + Zn \rightarrow$ 

 $Na_2ZnO_2 + 2H_2O + 4NaCN + 2Ag$ 

#### 646 **(a)**

 $\begin{array}{l} \operatorname{ScCl}_3 \to \operatorname{Sc}^{3+} + \operatorname{3Cl}^- \\ \operatorname{Sc}^{3+} \\ \operatorname{3s}^2 & \operatorname{3p}^6 \end{array}$ 

3*d*<sup>0</sup>

No unpaired electron, so will show diamagnetic character so, will weightless in magnetic field

#### 647 **(a)**

11

It is the definition of nitriding of steel.

#### 648 **(b)**

A light hard aluminium alloy containing 4% Cu and small amounts of Mg, Mn and Si.

#### 649 **(b)**

Gun metal is an alloy of Cu + Sn + Zn.

#### 650 **(b)**

This is definition of tempering of steel. The product obtained is neither so hard nor so brittle. It is softer than steel.

#### 651 **(c)**

 $\begin{aligned} &\text{CuSO}_4 + 2\text{KCN} \rightarrow \text{Cu}(\text{CN})_2 + \text{K}_2\text{SO}_4 \\ &\text{2Cu}(\text{CN})_2 \rightarrow \text{Cu}_2(\text{CN})_2 + (\text{CN})_2 \\ &\text{Cu}_2(\text{CN})_2 + 6\text{KCN} \rightarrow 2\text{K}_3[\text{Cu}(\text{CN})_4] \end{aligned}$ 

652 **(d)** 

MnO<sub>2</sub> imparts purple colour to pottery

653 **(d)** 

It is a fact.

#### 654 **(b)**

Purest zinc is made by zone refining method. 655 (a)

Magnetic moment = $\sqrt{n(n+2)}$  BM Where, *n* =number of unpaired electrons

 $5.93 = \sqrt{n(n+2)}$ 

$$n = 5$$

 $Mn^{2+}$  ion  $(3d^5)$  has 5 unpaired electrons and magnetic moment is 5.93 BM.

1

656 **(c)** 

Potassium dichromate, on heating gives oxygen and chromic oxide  $(Cr_2O_3)$ .

$$4K_2Cr_2O_7 \xrightarrow{\Delta} 4K_2CrO_4 + 3O_2 + 2Cr_2O_3$$

657 (c)

Annealing is the process of heating steel to bright red and then cooling it slowly. Steel thus, becomes soft and pliable.

#### 659 **(b)**

It is a fact.

#### 660 **(b)**

HgCl<sub>2</sub> compound is easily volatile. They are insoluble in water and soluble in acids.

#### 661 **(c)**

Among all the given reactions,  $CuSO_4$  does not react with KCl to give  $Cu_2Cl_2$ 

#### 662 **(a)**

It is  $[Cu(H_2O)_4]SO_4$ . H<sub>2</sub>O; one H<sub>2</sub>O is held by sulphate ion by H-bonding.

#### 663 **(d)**

It is a fact.

#### 664 **(b)**

#### 665 **(c)**

 $Mn_2O_7$  is an acidic oxide of manganese. It dissolve in water to give violet coloured solution of permanganic acid.

 $Mn_2O_7 + H_2O \rightarrow 2HMnO_4$ 

666 **(c)** 

A developer is a weak reducing agent, *e*. g. Ferrous oxalate; the parts affected by light on photographic plate are reduced to the maximum

extent whereas part not affected by light remains unaffected.

#### 667 **(d)**

In acidic medium, +7 +2  $KMnO_4 \rightarrow MnSO_4$ In weak basic medium

$$KMnO_4 \rightarrow MnO_2$$

#### 668 **(c)**

Transition metals are *d*-block elements.

#### 669 **(d)**

It is  $FeSo_4$ .  $(NH_4)_2SO_4$ .  $6H_2O$ . Gives test of each ion in solution.

670 **(b)** 

Gun metal is an alloy of Cu + Sn + Zn (87:10:3

respectively).

#### 672 **(b)**

Value of magnetic moment depends upon number of unpaired electrons. All except  $Ti^{3+}|3d^{1}|$  have either fully filled *d*-subshell (*i. e.*,  $Zn^{2+}$ ,  $Cu^{+}$ ) or empty *d*-subshell (*ie*,  $Sc^{3+}$ ). As such only  $Ti^{3+}$  has a net value of magnetic moment.

Magnetic moment of Ti<sup>3+</sup>= $\sqrt{n(n+2)}$  BM = $\sqrt{1(1+2)}$  BM = $\sqrt{3}$  =1.73 BM

#### 673 **(a)**

 $\mathrm{Fe}^{3+}$  is more stable than  $\mathrm{Fe}^{2+}$  because of half-filled nature.

#### 674 **(b)**

Fool's gold is FeS<sub>2</sub>.

#### 675 **(b)**

Bessemer's converter is provided with basic lining of lime or MgO to withstand high temperature.

#### 676 **(d)**

Verdigris is  $CuCO_3$ .  $Cu(OH)_2$  or  $CuSO_4$ .  $Cu(OH)_2$ ; these are green deposits formed on copper on exposure to air. Used as paints and pigments.

#### 677 **(d)**

Transition element exhibit variable oxidation states because their *d*-electrons also take part in bonding along with *s*-electrons. However, the difference between two oxidation states is not always two.

#### 678 **(d)**

 $Sc^{3+}(3d^0)$ , Ti<sup>4+</sup>( $3d^0$ ) are diamagnetic due to absence of unpaired electrons. While  $Pd^{2+}(4d^8)$ ,  $Cu^{2+}(3d^9)$  contain two, and one unpaired electron respectively. Hence, these are paramagnetic

679 **(b)** 

 $2\mathrm{KI} + \mathrm{HgI}_2 \rightarrow \underbrace{\mathrm{K_2HgI_4} + \mathrm{KOH}}_{\mathrm{Nessler's\ reagent}}$ 

#### 680 **(b)**

26Fe = [Ar] $3d^5 4s^2$ ; Fe<sup>2+</sup>=[Ar] $3d^6$ Number of unpaired electrons, n=4  $\mu = \sqrt{n(n+2)} = \sqrt{4(4+2)} = 4.89$ 681 (d)

 $_{30}$ Zn  $\rightarrow$  [Ar] $3d^{10}4s^2$ 

: It *d*-orbital is complete

 $\therefore$  It does not show variable valency

#### 682 **(a)**

$$CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2.$$

 $\begin{array}{l} \text{CuSO}_4 + 2\text{KI} \longrightarrow \text{Cul}_2 + \text{K}_2\text{SO}_4 \\ 2 \text{Cul}_2 \longrightarrow \text{Cu}_2\text{I}_2 + \text{I}_2 \\ \text{cuprous iodide} \\ \text{white ppt.} \end{array}$ 

#### 684 **(b)**

The nonmetallic impurities such as mica, earth particles etc associated with ore. These impurities are known as gangue.

#### 685 **(c)**

The most common oxidation state of lanthanoid is +3. Lanthanoids in +3 oxidation state usually have unpaired electrons in f-subshell and impart characteristic colour in solid as well as in solution state due to f - f transition.

# (Except lanthanum and lutetium)

# 686 **(d)**

Bell metal is an alloy of Cu + Sn (80:20).

#### 687 **(a)**

Vermilion is HgS, a red variety used as pigment. 688 **(c)** 

# It is a fact.

689 (d)

In transition metals, electrons from penultimate *d*-subshell also take part in bonding.

#### 690 **(b)**

Both mustard and egg yolk contain sulphur in form of compounds in large amount which reacts with Ag.

 $2Ag + S \rightarrow Ag_2S(black)$ 

#### 691 **(b)**

 $KMnO_4$  will not oxidised further by ozone as manganese is already present in its highest possible oxidation state, *ie*, +7

#### 692 **(c)**

Hg does not form amalgam with iron.

#### 693 **(c)**

Sweets, pans (betel leaves), etc., covered by Ag foils are used as eatable items. Cu in form of dissolved Cu if water placed in Cu vessel.

#### 694 **(b)**

Only Pt belongs to *d*-block.

# 695 **(d)**

 $E^{\circ}_{\rm OP}$  of Cu >  $E^{\circ}_{\rm OP}$  of Ag.

#### 696 **(d)**

Only those transition metal ions which contain unpaired electrons, are coloured. Since colour appears when the unpaired *d*-electron absorb energy and gets excited to the higher energy *d*orbital. Hence, the reason of appearance of colour is d - d transition.

| 697 | (c)                                                           |
|-----|---------------------------------------------------------------|
|     | These are facts.                                              |
| 698 | (d)                                                           |
|     | $V(23) = [Ar] 3d^3, 4s^2$                                     |
|     | $V^{3+}=$ [Ar] $3d^2$ , $4s^0$ (two unpaired electrons)       |
|     | $Cr(24) = [Ar] 3d^{5} , 4s^{1}$                               |
|     | $Cr^{3+}=[Ar] 3d^3$ , $4s^0$ (three unpaired electrons)       |
|     | $Co(27) = [Ar] 3d^7, 4s^2$                                    |
|     | $CO^{3+}=[Ar] 3d^{7}$ , $4s^{0}$ (three unpaired electrons)   |
|     | $Sc(21) = [Ar] 3d^{1}, 4s^{2}$                                |
|     | $Sc^{3+}=[Ar] 3d^0$ , $4s^2$ (no unpaired electrons)          |
|     | Thus, in $Sc^{3+}$ no unpaired <i>d</i> -electron is present. |
|     | Hence, no $d - d$ transition is possible and it is            |
|     | colourless ion.                                               |
| 699 | (b)                                                           |
|     | Follow metallurgy of iron.                                    |
| 701 | (a)                                                           |
|     | Follow electronic configuration $(n - n)$                     |
|     | $1)s^2p^6d^{10}ns^1$ of coinage family.                       |
| 702 | (b)                                                           |
|     | It is a fact.                                                 |
| 703 | (c)                                                           |
|     | Transition metals and their compounds are very                |
|     | good catalysts, e.g., $CuCl_2$ in Deacon's process, Ni        |
| 704 | in hydrogenation of oils.                                     |
| /04 | (D)                                                           |
|     | Gravity separation process is used for the                    |
| 705 | (c)                                                           |
| /05 | (C)<br>Malachite is an one of conner. Its composition is      |
|     | $C_{\rm H}(\Omega)$ $C_{\rm H}(\Omega)$                       |
| 706 | (h)                                                           |
| ,   | Cr:[Ar]                                                       |
|     |                                                               |
|     | $\frac{1}{3d^5}$ $\frac{4s^1}{4s^1}$                          |
|     | Cr <sup>+</sup> :[Ar]                                         |
|     |                                                               |
|     | $3d^5$ $4s^0$                                                 |
|     | This is stable EC, hence formation of Cr <sup>2+</sup> by     |
|     | second IP requires maximum enthalpy.                          |
| 707 | (b)                                                           |
|     | It is a reason for the given fact.                            |
| 708 | (b)                                                           |
|     | CdS is yellow solid.                                          |
| 709 | (d)                                                           |
|     | —do—                                                          |
| 710 | (b)                                                           |
|     | Basic copper acetate (verdigris – $(CH_3COO)_2Cu \cdot$       |
|     | $Cu(OH)_2$ ) is blue green powder used in green               |
|     | nigment and in dues Also in manufacture of                    |

insecticides and fungicides

#### 711 **(a)**

Pig iron on heating in a vertical furnace and then pouring into moulds gives cast iron. Both contain 2–5% carbon.

### 713 **(c)**

Potassium permanganate is a powerful oxidizing agent in neutral, alkaline or acidic solution because it liberates nascent oxygen. The aqueous solutions of KMnO<sub>4</sub> can be decolourized by  $C_2O_4^{2^-}$ , HSO<sub>3</sub><sup>-</sup> and SO<sub>3</sub><sup>2-</sup> while CO<sub>3</sub><sup>2-</sup> cannot decolourise KMnO<sub>4</sub> aqueous solution.

### 714 **(c)**

 $\rm Ti^+$  ions are more stable than  $\rm Ti^{3+}$  and thus  $\rm Ti^{3+}$  ions charge to  $\rm Ti^+$ ions thereby acting as oxidizing agents

 $Ti^{3+}$  compounds  $+2e^- \rightarrow Ti^+$  compounds (less stable oxidizing agent) (More stable oxidising agent)

#### 715 **(a)**

Green vitriol is formed by oxidation of iron pyrite in presence of air and water.

 $\begin{array}{ll} 2\mathrm{FeS}_2 + 2\mathrm{H}_2\mathrm{O} + 7\mathrm{O}_2 & \longrightarrow 2\mathrm{FeSO}_4 + 2\mathrm{H}_2\mathrm{SO}_4 \\ \text{pyrites} & \text{green vitriol} \end{array}$ 

### 716 **(d)**

Transition elements have high densities.

### 717 **(b)**

3HgS + 2HNO<sub>3</sub> + 6HCl

### $\rightarrow$ 3HgCl<sub>2</sub> + 3S + 2NO + 4H<sub>2</sub>O

#### 718 **(a)** Chl

Chlorides of Ag, Pb and Hg are insoluble in water. 719 (a)

Fischer's salt is  $K_3[Co(NO_2)_6]$ .

# 720 **(a)**

Cu, Ag and Au have been used in coins since ancient times.

### 721 **(a)**

Cerium Ce<sub>58</sub> =  $[Xe]4f^1, 5d^1, 6s^2$ 

It most stable oxidation state is +3but + 4 is also existing.

# 722 **(c)**

The hormone insulin excreted from pancreas contains Zn.

### 723 **(c)**

It is a reason for the given fact.

### 724 **(b)**

Muntz metal is Cu + Zn alloy (3:2) respectively more stronger than brass.

725 **(b)** 

Ni(CO)<sub>4</sub> is a gas which decomposes to Ni and CO

on strong heating.

726 (c)

At 500°C Fe<sub>2</sub>O<sub>3</sub> is reduced by CO to Fe and CO<sub>2</sub>. 727 (a)

It is a fact.

#### 728 (c)

Most of the transition metal ions due to presence of unpaired *d*-electrons are coloured.

729 (d)

Cr ions are coloured.

#### 730 (c)

Strength of metallic bond depends upon number of upon number of unpaired electron. As number of unpaired electron increases, the bond strength increases. So, Cr, Mo, W show stronger bonding due to maximum number of unpaired electrons

731 (c)

Hg<sup>2+</sup> complex salts are more stable.

732 **(b)** 

 $2e + Cr_2 O_7^{2-} \rightleftharpoons 2Cr O_4^{2-}$  exists in basic medium. 733 (d)

Ti, Zr and Hf belong to IV B group of Periodic Table and in a group atomic radii increases on moving down. However, the transition metals of 4*d*-series have nearly the same radii as metals of 5*d*-series. Hence the order of atomic radii is  $Ti < Zr \approx HF$ 

Due to nearly equal atomic radii, Zr and Hf are called chemical twins.

#### 734 (a)

Basic character of oxides decreases from left to right in a period of Periodic Table

#### 735 (c)

 $Mn_2O_7 + H_2O \rightarrow 2HMnO_4$ HMnO<sub>4</sub> is permanganic acid, which is violet in colour

#### 736 (b)

Aqueous silver nitrate solution is used as indelible |748 (a) ink.

### 737 **(b)**

The fourteen elements which follow actinium from thorium(Z=90) to lawrencium (z=103) are called actinoids. They involve the filling of 5*f*subshell. Californium (Cf) has the atomic number 98 and its configuration is as

 $Cf(Z = 98): [Rn]5f^{10}, 6d^0, 7s^2$ 

Hence, it is a member of actinide series.

#### 738 (c)

Wrought iron is obtained from pig iron by removing its impurities by pudding process in which cast iron is heated on the hearth of reverberatory furnace.

# 739 **(b)**

Follow text.

740 (c)

Ammonium dichromate on heating gives green coloured powder of  $Cr_2O_3$ .

$$2(\mathrm{NH}_4)_2\mathrm{Cr}_2\mathrm{O}_7 \xrightarrow{\Delta} 2(\mathrm{NH}_4)_2\mathrm{Cr}\mathrm{O}_4 + \mathrm{Cr}_2\mathrm{O}_3 + 3\mathrm{O}_2$$
  
chromic

oxide

CuO is amphoteric.

#### 742 (d)

All these form soluble complexes with NH<sub>3</sub>.

#### 743 **(b)**

It is a reason for the low reactivity of transition elements.

744 (a)

 $E^{\circ}_{OP \text{ of } H} > E^{\circ}_{OP \text{ of } Hg}$ 

745 (a)

$$:: 24 \text{ carat gold} = 100\%$$

: 18 carat gold = 
$$\frac{100 \times 18}{24}$$
 = 75%

746 (d)

Ionic radii of lanthanide(La<sup>3+</sup>) decreases with increase in atomic numbe.

 $Y^{3+} < Lu^{3+} < Eu^{3+} < La^{3+}$ 

Because Eu and Lu are the members of lanthanide series (so they show lanthanide contraction) and La is the representative element. Y<sup>3+</sup> ion has lower ionic radii as comparison to La<sup>3+</sup> because it lies immediately above in Periodic Table.

#### 747 (d)

Coinage metals (Cu, Ag, Au) shows the properties of transitional elements as in their common oxidation states they possess partially filled dsubshells

Annealing is the process of heating steel to bright red and then cooling it slowly. Steel thus, becomes soft and pliable.

### 749 (b)

Cast iron or pig iron (2-5% C); wrought iron (0.1 to 0.5% C), stell (0.1 to 1.5% C).

750 **(a)** 

During the extraction of copper, the impurity (FeS) is removed as slag by mixing the contaminated copper ore with silica and coke.  $2\text{FeS} + 30_2 \rightarrow 2\text{FeO} + 2\text{SO}_2$ 

$$FeO + SiO_2 \rightarrow FeSiO_3$$

silica ferrous silicate

| (slag)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $PtCl_4 + 2HCl \rightarrow H_2PtCl_6.$                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 751 <b>(a)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 767 <b>(d)</b>                                                          |
| Usually across the first transition series, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Argentite is $Ag_2S$ , an ore of silver.                                |
| negative values for standard electrode potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 768 (c)                                                                 |
| decrease except for Mn due to stable $d^{5}$ –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Variable valency is due to the participation of                         |
| configuration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | electron from $(n-1)d$ and ns levels in bond                            |
| So, correct order : Mn $> Cr > Fe > Co$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | formation                                                               |
| 752 (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 769 (c)                                                                 |
| Conner pyrite (CuFeS <sub>c</sub> ) is the chief ore of conner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hg is liquid at room temperature                                        |
| 753 (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 770 (c)                                                                 |
| It is a fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | In Fe extraction limestone is used for the                              |
| 754 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | formation of slag. The central zone where the                           |
| FeCL acts as coagulating agent for blood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | temperature varies from 800-1000°C: the lime-                           |
| 755 <b>(h)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | stone present in the charge decomposes into                             |
| $7n(1 + 0 \rightarrow 7n(0H)(1 + H(1))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | calcium oxide and carbon dioxide                                        |
| $Z_{IICI_2, II_2O} \rightarrow Z_{II(OII)CI} + IICI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000°C                                                                  |
| $\frac{1}{100} \frac{1}{100} \frac{1}$                                                                                                                                                                                                             | $CaO_3 \longrightarrow CaO + CO_2$                                      |
| $\operatorname{HgCl}_2 + 2\operatorname{NaOH} \rightarrow \operatorname{HgO} + \operatorname{H}_2 \operatorname{O} + 2\operatorname{NaCH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The calcium oxide acts as flux and combines with                        |
| yenow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | silica present as an impurity to form a fusible slag                    |
| $\frac{1}{2} \frac{1}{2} \frac{1}$ | of CaSiO <sub>3</sub> .                                                 |
| $2 \operatorname{Na}[\operatorname{Au}(\operatorname{CN})_2] + 2n \longrightarrow \operatorname{Na}_2[\operatorname{Zn}(\operatorname{CN})_4] + 2Au.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $CaO + SiO_2 \rightarrow CaSiO_3$                                       |
| 758 (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 771 <b>(a)</b>                                                          |
| Due to lanthanoid contraction order will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The compounds which combine with impurities                             |
| $Yb^{3+} < Pm^{3+} < Ce^{3+} < La^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | present in ore (at high temperature) and remove                         |
| 759 <b>(b)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | them as a fusible substance (slag), are known as                        |
| $HgS + 2HCI + 3[0] \rightarrow HgCl_2 + H_2O + SO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flux. When basic impurities are present, an acidic                      |
| 760 <b>(d)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | flux is used and <i>vice-versa</i> .                                    |
| The actinoids $(5f$ -elements) exhibits more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $FeO + SiO_2 \rightarrow FeSiO_3$                                       |
| number of oxidation states in general than the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | basic impurity acidic flux slag                                         |
| lanthanoid because $5f$ -orbitals extend farther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 772 (a)                                                                 |
| from the nucleus than the $4f$ -orbitals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $Ni^{2+} = [Ar]3d^8$                                                    |
| 761 (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |
| Silver nitrate is used in making hair dues because                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number of unpaired electrons=2                                          |
| it reduced to metallic silver and finely divided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hence, magnetic moment= $\sqrt{n(n+2)}$                                 |
| silver is black in colour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-\sqrt{2}$                                                             |
| 762 <b>(b)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -vo-2.04                                                                |
| 2V + Hacl + 2VC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/15 (D)                                                                |
| $2 \text{Ki} + 11\text{gCl}_2 \longrightarrow 11\text{gl}_2 + 2 \text{KC}$<br>Scarlet red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ngs is used in ayui veuic medicine as                                   |
| 763 <b>(b)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lliakai uliwaja.                                                        |
| $Cr_2O_7^{2-}$ changes to $CrO_4^{2-}$ in basic medium .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The second in the lation                                                |
| 764 <b>(d)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Sigma_{11504}$ is used in eye folioli.                                |
| For electroplating of gold, electrolyte used is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hg <sub>2</sub> Cl <sub>2</sub> is used as purgative in medicine and in |
| mixture of $3.4\%$ AuCN, 19% KCN and Na <sub>3</sub> PO <sub>4</sub> a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | making standard calomet electrode.                                      |
| buffer or K[Au(CN) <sub>2</sub> ].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/4 (D)                                                                 |
| 765 <b>(b)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | It is the desired chemical formula.                                     |
| Parke's process for desilverisation of lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |
| involves extraction of Ag from Ag-Pb mixture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I ne differentiating electrons enter the $ns$ -orbital                  |
| 766 <b>(b)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | but they have configuration $(n-1)d^{10} ns^2$ .                        |
| Pt dissolves in aqua regia ( $HNO_3 + HCl$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | //b (a)                                                                 |
| $3HC] + HNO_{2} \longrightarrow 2H_{2}O + NOC] + 2C]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $HgCl_2 + 2NH_3 \xrightarrow{n_2O} Hg + NH_2HgCl + NH_4Cl$              |
| $Pt + 4Cl \longrightarrow PtCl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mercuric                                                                |
| $11 + 101 \times 11014$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | amino chloride                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page <b>  77</b>                                                        |

 $\therefore$  HgCl<sub>2</sub> on reaction with NH<sub>4</sub>OH (or NH<sub>3</sub> +  $H_2O$ ) forms mercuric amino chloride.

#### 777 (b)

Magnetic moment =  $\sqrt{n(n+2)}$  BM Where, *n* is the number of unpaired electrons. Maximum the value of unpaired electron, greater the value of magnetic moment. So,  $3d^5$  has highest value of magnetic moment.

#### 778 (d)

Carbon (non-metal) is present in steel.

#### 779 (c)

Corrosive sublimate is HgCl<sub>2</sub> because it has corrosion nature and sublimation nature.

#### 780 (b)

 $CuSO_4 + 2KI \rightarrow Cul_2 + K_2SO_4$ unstable

 $2CuI_2 \rightarrow Cu_2I_2 + I_2$ 

Thus,  $CuI_2$  is not formed.

#### 781 (b)

Cuprous ion  $(Cu^+)3d^{10}$  (completely filled *d*subshell)

| $3d^{10}$ |    |    |    |    |  |  |  |
|-----------|----|----|----|----|--|--|--|
| 11        | 11 | 11 | 11 | 11 |  |  |  |

Cupric ion  $(Cu^{2+})3d^9$  (one unpaired electron)  $3d^9$ 

11 11 11 11 1

#### 783 (b)

 $Cr_2O_3$  is amphoteric as it reacts with acid and alkalies both.

#### 784 (a)

Pig iron on heating in a vertical furnace and then pouring into moulds gives cast iron. Both contain 2-5% carbon.

#### 785 (b)

 $_{29}$ Cu<sup>+</sup> has configuration  $1s^2$ ,  $2s^22p^6$ ,  $3s^23p^63d^{10}$ . 786 (a)

In the blast furnace, iron ore is reduced by coke and carbon monoxide at different temperatures.  $C + O_2 \rightarrow CO_2$ 20

$$CO_2 + C \xrightarrow{1500^{\circ}C} 2C$$

$$3Fe_2O_3 + CO \xrightarrow{400^{\circ}C} 2Fe_3O_4 + CO_2$$

$$Fe_3O_4 + CO \xrightarrow{600^{\circ}C} 3FeO + CO_2$$

$$FeO + CO \xrightarrow{700^{\circ}C} Fe + CO_2$$

#### 787 (d)

These are reasons for the given fact.

#### 788 (d)

ZnO possess this characteristics.

789 (a)

A solid  $[AgNO_3(A)]$  silver nitrate which has photographic effects reacts with the solution of NaBr(*B*) to give a pale yellow ppt. of AgBr which is difficulty soluble in  $NH_4OH.NaBr(B)$  on heating gives brown vapours of bromine.

$$\begin{array}{cc} \operatorname{AgNO}_3 + \operatorname{NaBr} & \to \operatorname{AgBr} + \operatorname{NaNO}_3 \\ `A' & `B' & `C' \end{array}$$

#### 790 (d)

It is a reason for the given fact.

791 **(b)** 

25Mn=1s<sup>2</sup>, 2s<sup>2</sup>, 2p<sup>6</sup>, 3s<sup>2</sup>, 3p<sup>6</sup>, 4s<sup>2</sup>, 3d<sup>5</sup>  
1 1 1 1 1 1  
∴ Number of unpaired electrons in Mn =5  
∴ Magnetic moment of Mn =
$$\sqrt{n(n+2)}$$
  
=  $\sqrt{5(5+2)} = \sqrt{25} = 5.91$  BM

792 (b)

$$\begin{array}{c} 3\text{Fe} + 4\text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2 \\ \text{Steam} \end{array}$$

#### 793 (b)

Transition elements are more metallic than representative elements due to the availability of *d*-orbitals for bonding

#### 794 (d)

Cerium can attain +4 oxidation state by losing *ns* and (n-2)f-electrons to have  $f^{\circ}$  configuration.

CHEMISTRY

#### Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

#### 1

- **Statement 1:** The free gaseous Cr atom has six unpaired electrons.
- **Statement 2:** Half filled s- orbital has greater stability.

#### 2

- **Statement 1:** Magnetic moments values of actinides are lesser than the theoretically predicted values.
- **Statement 2:** Actinide elements are strongly paramagnetic.

#### 3

- **Statement 1:** Tungsten has the highest melting point
- **Statement 2:** Tungsten is a covalent compound

#### 4

- Statement 1: Oxalates and carbonates of lanthanides are almost insoluable in water
- **Statement 2:** Salts of lanthanides usually contains water of crystallisation

#### 5

- **Statement 1:** CuSO<sub>4</sub>. 5H<sub>2</sub>O on heating to 250°C loses all the five H<sub>2</sub>O molecules and becomes anhydrous
- **Statement 2:** All the five  $H_2O$  molecules are coordinated to the central  $Cu^{2+}$  ion
- **Statement 1:** Mercury vapour is shining silvery in appearance.
- **Statement 2:** Mercury is a metal with shining silvery appearance.

#### 7

6

Statement 1: Chromium is hard but mercury is soft.

**Statement 2:** Chromium is a 3d transition elements.

#### 8

**Statement 1:** Mercury is liquid at room temperature

**Statement 2:** In mercury, there is no unpaired *d*-electron and thus, metallic bonding is weakest

#### 9

**Statement 1:** Europium(II) is more stable than cerium(II).

**Statement 2:** Cerium salts are used as a catalyst in petroleum cracking.

10

**Statement 1:** Equivalent mass of KMnO<sub>4</sub> is equal to one third of its molecular mass when it acts as an oxidising agent in an alkaline medium

**Statement 2:** Oxidation number of Mn is +7 in KMnO<sub>4</sub>

CHEMISTRY

|          |         |          |        |                           |        | : AN     | SWE    | R K | KEY : |     |   |   |   |                                           |   |
|----------|---------|----------|--------|---------------------------|--------|----------|--------|-----|-------|-----|---|---|---|-------------------------------------------|---|
| 1)<br>5) | с<br>с  | 2)<br>6) | b<br>d | 3)<br>7)                  | c<br>b | 4)<br>8) | a<br>a | 9)  | b     | 10) | b |   |   |                                           |   |
|          |         |          |        |                           |        |          | ·      |     |       |     |   |   |   | $\langle \langle \langle \rangle \rangle$ |   |
|          |         |          |        |                           |        |          |        |     |       |     |   |   | Â |                                           | ÷ |
|          |         |          |        |                           |        |          |        |     |       |     |   | 6 |   | ×                                         |   |
|          |         |          |        |                           |        |          |        |     |       | 4   | ( |   |   |                                           |   |
|          |         |          |        |                           |        |          |        |     |       | 1   |   |   |   |                                           |   |
|          |         |          |        |                           |        |          |        |     |       |     |   |   |   |                                           |   |
|          |         |          |        |                           |        |          |        |     |       |     |   |   |   |                                           |   |
|          |         |          |        |                           |        | C        | . 1    |     |       |     |   |   |   |                                           |   |
|          |         |          |        |                           |        | 2        | 2      |     |       |     |   |   |   |                                           |   |
|          |         |          |        |                           | 1      | Ŷ.       |        |     |       |     |   |   |   |                                           |   |
|          |         |          |        | $\langle \lambda \rangle$ |        |          |        |     |       |     |   |   |   |                                           |   |
|          |         |          | ~      |                           |        |          |        |     |       |     |   |   |   |                                           |   |
|          |         | Ś        |        |                           |        |          |        |     |       |     |   |   |   |                                           |   |
|          |         | S,       |        |                           |        |          |        |     |       |     |   |   |   |                                           |   |
| ~        | $v_{r}$ | 7        |        |                           |        |          |        |     |       |     |   |   |   |                                           |   |
| 3        | 7       |          |        |                           |        |          |        |     |       |     |   |   |   |                                           |   |

**CHEMISTRY** 

#### : HINTS AND SOLUTIONS : The free gaseous Cr atom has six unpaired possible in vapour state. electrons due to following electronic 7 **(b)** configuration $(Ar)3d^5 4s^1$ . This is because half filled d-orbitals are more stable than incompletely filled *d*-orbitals. So, one electron jumps from $4s^2$ electron. 8 (a) The magnetic moments are lesser than the statement I theoretically predicted values. This is due to the fact that 5*f* electrons of actinides are less 9 **(b)** effectively shielded which results in quenching of $Eu^{2+}[Xe]4f^7 5d^{10}$ (more stable) orbital contribution. $Ce^{2+}[Xe]4f^{1}$

#### 4 (a)

1

2

(c)

(b)

to 3*d* orbital.

The solubility of many salts of lanthanides follows 10 the pattern of group II elements

5 (c)

CuSO<sub>4</sub>. 5H<sub>2</sub>O  $\xrightarrow{\text{Air}}$  CuSO<sub>4</sub>. 3H<sub>2</sub>O  $\xrightarrow{100^{\circ}\text{C}}$ 

One water molecular is hydrogen bonded to coordinated water molecules and  $SO_4^{2-}$  ion and remaining four are coordinated to the central Cu<sup>2+</sup> ion

 $CuSO_4 \stackrel{250^{\circ}C}{\longleftarrow} CuSO_4. H_2O$ 

6 (d)

NA

Both assertion and reason are false. Mercury

#### (b)

In alkaline medium,  $KMnO_4$  is reduced to  $MnO_2$ which involves  $3e^{-}$ 

Thus, its eq. wt =  $\frac{M}{3}$ 

vapour are visible as no metallic bounding is

Chromium has maximum number of unpaired a electrons. While Hg does not have any unpaired d-

Statement II is the correct explanation of

#### CHEMISTRY

#### Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

1. Match List I with List II and select the correct answer using the codes given below the lists.



CHEMISTRY



CHEMISTRY

|          | : HINTS AND SOLUTIONS :                                                       |
|----------|-------------------------------------------------------------------------------|
| 1        | (c)<br>$\therefore \mu = \sqrt{n(n+2)}$                                       |
|          | $cr^{3+}(Z = 24): 3d^34s^0, \mu = \sqrt{3(3+2)} = \sqrt{15}$                  |
|          | Fe <sup>2+</sup> (Z = 26): $3d^{6}4s^{0}$ , $\mu = \sqrt{4(4+2)} = \sqrt{24}$ |
|          | Ni <sup>2+</sup> (Z = 28): $3d^8 4s^0$ , $\mu = \sqrt{2(2+2)} = \sqrt{8}$     |
|          | $Mn^{2+}(Z = 25): 3d^5 4s^0, \mu = \sqrt{5(5+2)} = \sqrt{35}$                 |
|          |                                                                               |
|          |                                                                               |
|          |                                                                               |
|          |                                                                               |
|          |                                                                               |
|          |                                                                               |
|          |                                                                               |
|          |                                                                               |
|          |                                                                               |
|          |                                                                               |
|          |                                                                               |
|          |                                                                               |
|          |                                                                               |
| <u> </u> |                                                                               |
|          |                                                                               |
|          |                                                                               |