CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

CHEMISTRY

Single Correct Answer Type

1.	Born Haber cycle is used	to determine:		
	a) Lattice energy	b) Electron affinity	c) Ionization energy	d) Either of them
2.	, .	tions of four elements <i>L</i> , <i>P</i> ,	, .	,
	$L = 1s^2, 2s^22p^4$ $Q = 1s$		t o ,	
	$P = 1s^2, 2s^2 2p^6, 3s^1 R$			
	=	compounds that can be for	med hetween these elemer	its are:
		b) <i>LP</i> , <i>RL</i> , <i>PQ</i> , <i>RQ</i>	c) P_2L , RL , PQ , RQ_2	d) LP , R_2L , P_2Q , RQ
3.		electropositive nature is:	0) 1 22,112,11 2,1122	a) <u>21</u> (11 <u>2</u> 2)1 <u>2</u> 2 2 2 1 2 2 1 2 1 2 2 1 2 2 1 2 1 2 2 2 1 1 2 2 1 2 2 2 1 1 1 2 2 2 1 1 2 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1
5.	a) Cu	b) Cs	c) Cr	d) Ba
4.	Octet rule is not valid for	,	ej ul	uj bu
1.	a) CO_2	b) H_2O	c) 0 ₂	d) CO
5.	The correct order of read	, -	6) 02	4,00
5.	a) $F > Br > Cl > I$	b) $F > Cl > Br > l$	c) $I > Br > C > F$	d) Cl > I > Br > F
6.		oint than expected, because		
0.	a) With water it forms N	-		
	b) It has strong intermole			
	c) It has strong intermol			
	d) Its density decreases i			
7.	The screening effect of <i>d</i>	-		
/.	a) Equal to the <i>p</i> -electron			
	b) Much more than <i>p</i> -electron			
	c) Same as <i>f</i> -electrons			
	d) Less than <i>p</i> -electrons			
8.	Which has the largest first	st ionisation onergy?		
0.	a) Li	b) Na	c) K	d) Rb
9.		molecules are all the bond		uj Kb
9.	a) AlF ₃	b) NF ₃	c) ClF ₃	d) BF ₃
10	5	dentical non-metal atoms h	\$ 5	u) br ₃
10.	a) Unequally shared between		as a pair of electrons.	
	b) Equally shared betwee			
	c) Transferred fully from			
	d) None of the above			
11	•	alactrong in a naramagnati	ic distomic molecule of an	element with atomic number
11.	16 is:	electrons in a paramagnet	ic diatomic molecule of an	element with atomic number
		h) 1	c) 2	4) 2
10	a) 4 In NO^{-1} ion number of h	b) 1		d) 3
12.		ond pair and lone pair elect		4) 4 0
10	a) 2, 2 Which element of second	b) 3, 1 I pariod forms most acidis.	c) 1,3	d) 4, 8
13.		l period forms most acidic (d) Elucrino
14	a) Carbon	b) Nitrogen	c) Boron	d) Fluorine
14.		tion of four elements are gl	ven below. which element	does not belong to the same
	family?	b) $[U_{n}] \wedge J^{10} = 2$	a) $[N_{a}]_{2} = 22 = 5$	d) $[\Lambda_m] 2 d^{10} 4 a^2$
	a) [Xe]4 <i>f</i> ¹⁴ 5 <i>d</i> ¹⁰ 6 <i>s</i> ²	b) [Kr] 4 <i>d</i> ¹⁰ 5 <i>s</i> ²	c) [Ne] $3s^23p^5$	d) [Ar] 3d ¹⁰ 4s ²

15.	For the four successive transition elements (Cr, Mn there in which of the following order?	, Fe and Co), the stability o	f +2 oxidation state will be
	(At. no. $Cr = 24$, $Mn = 25$, $Fe = 26$, $Co = 27$)	a) Ea > M ₂ > Ca > Cr	d C_{0} $>$ M_{T} $>$ E_{0} $>$ C_{T}
16	a) $Cr > Mn > Co > Fe$ b) $Mn > Fe > Cr > Co$	C F e > Mn > C o > C f	d = 0 > M = Fe > Cr
16.	Which is correct in the following?		
	a) Radius of Cl atom is 0.99 Å, while that of Cl ⁺ ion is		
	b) Radius of Cl atom is 0.99 Å, while that of Na atom		
	c) The radius of Cl atom is 0.95 Å, while that of Cl^- is		
	d) Radius of Na atom is 0.95 Å, while that of Na $^+$ ion	is 1.54 Å	
17.	The linear structure is possessed by:		
	a) $SnCl_2$ b) NCO^-	c) NO ₂ ⁺	d) CS_2
18.	Which of the following has largest ionic radius?		
	a) Na ⁺ b) K ⁺	c) Li ⁺	d) Cs ⁺
19.	In the cyanide ion, the formal negative charge is on:		
	a) C		
	b) N		
	c) Both C and N		
	d) Resonate between C and N		
20.	The size of ionic species is correctly given in the order	er:	
	a) $Cl^{7+} > Si^{4+} > Mg^{2+} > Na^+$		
	b) $Na^+ > Mg^{2+} > Si^{4+} > Cl^{7+}$		
	c) $Na^+ > Mg^{2+} > Cl^{7+} > Si^{4+}$		
	d) $Cl^{7+} > Na^+ > Mg^{2+} > Si^{4+}$		
21.	Which statement is wrong?		
	a) 2nd ionisation energy shows jump in alkali metals	S	
	b) 2nd electron affinity for halogens is zero		
	c) Maximum electron affinity exists for F		
	d) Maximum ionization energy exists for He		
22.	Which of the following atoms has minimum covalent	t radius?	
	a) Si b) N	c) C	d) B
23.	The second electron affinity is zero for		
	a) Alkali metals b) Halogens	c) Noble gases	d) Transition metal
24.	For alkali metals, which one of the following trends i		
	a) Hydration energy : Li > Na > K > Rb	b) Ionisation energy : Li >	> Na > K > Rb
	c) Density : Li < Na < K < Rb	d) Atomic size : Li < Na <	
25.	Na_2O , MgO , Al_2O_3 and SiO_2 have heat of formation equation Na_2O , MgO , Al_2O_3 and SiO_2 have heat of formation equations Na_2O , MgO , Al_2O_3 and SiO_2 have heat of formation equations Na_2O , MgO , Al_2O_3 and SiO_2 have heat of formation equations Na_2O , MgO , Al_2O_3 and SiO_2 have heat of formation equations Na_2O , MgO , Al_2O_3 and SiO_2 have heat of formation equations Na_2O , MgO , Al_2O_3 and SiO_2 have heat of formation equations Na_2O , MgO , Al_2O_3 and SiO_2 have heat of formation equations Na_2O , MgO , Al_2O_3 and SiO_2 have heat of formation equations Na_2O .		and
	-911 kJ mol ⁻¹ respectively. The most stable oxide is		
	a) Na_2O b) MgO	c) Al_2O_3	d) SiO ₂
26.	If Aufbau rule is not followed, K-19 will be placed in		
	a) s-block b) p-block	c) <i>d</i> -block	d) <i>f</i> -block
27.	The electronegativity order of O, F, Cl and Br is:		
	a) $F > 0 > Cl > Br$ b) $F > Cl < Br > 0$	c) $Br > Cl > F > 0$	d) $F < Cl < Br < 0$
28.	Which has the minimum bond energy?		
	a) H – Br b) H – I	c) I – I	d) H — H
29.	The bond angle in H_2S (for $H - S - H$) is:		
	a) Same as that of $Cl - Be - Cl$ in $BeCl_2$		
	b) Greater than H $-$ N $-$ H bond angle in NH ₃		
	c) Greater than $H - Se - H$ and less than $H - O - H$		
	d) Same as $Cl - Sn - Cl$ in $SnCl_2$		
30.	In which of the following arrangements, the sequence	e is not strictly according t	o the property written

30. In which of the following arrangements, the sequence is not strictly according to the property written

a) $CO_{3} < SiO_{3} < SiO_{3} < SiO_{3} < SiO_{3} < PEO_{2}$: increasing acid strength d) $B < C < O < N$: increasing first ionisation enthalpy 31. The tenth elements in the Periodic Tables escentles with the a) First period b) Second period c) Fourth period d) Ninth period 32. Which is not the correct order for the stated property? a) $Ba > Sr > Mg$; atomic radius b) $F > O > N$; first ionisation enthalpy c) $Cl > F > I;$ electron affinity d) $O > Se > Te;$ electronegativity 33. The unequal sharing of bonded pair of electrons between two atoms in a molecule gives rise to: a) Ionic bond b) Polar covalent bond c) Non-polar covalent bond d) None of the above 34. Which of the following oxides is most acidic in nature? a) $Be O b) MgO$ c) CaO d) BaO 35. In the formation of NaCl by combination of Na and Cl: a) Sodium and chlorine both lose electrons b) Sodium and chlorine both lose electrons b) Sodium and chlorine both gas electrons d) Sodium gains but chlorine loses electrons d) Sodium gains but chlorine is greater than that of chlorine c) The electronegativity of hydrogen is greater than that of chlorine d) He electronegativity of hydrogen is greater than that of chlorine d) Hydrogen and chlorine bate systemication: a) Sp b) sp^2 c) sp^3 d) dsp^2 40. Mendeleef S Periodic Table is upset by the fact that a) Many elements has several isotopes b) Noble gases do not form compounds c) Some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole and B 1 The incorrect statement among the following is: a) The incorrect statement among the following is: a) Square planar b) Square pyramidal c) Terahedral d'M g b) The second ionization potential of M is less than the first ionization potential of Ma c) The incorrect statement among the following is: a) Square planar b) Square pyramidal c) Terahedral d) Trigon		against it?					
c) $NI_3 > PII_3 < ASII_3 < SDII_3 : increasing basic strength d) B < C < 0 < N : increasing first ionisation enthalpy J The tenth elements in the Periodi C Table resembles with the a) First period b) Second period c) Fourth period d) Ninth period 3) Ba > Sr > Mg : atomic radius b) F > 0 > N : first ionisation enthalpy c) Cl > F > 1; electron affinity d) 0 > Se > Tc; electronegativity 3) The unequal sharing of bonded pair of electrons between two atoms in a molecule gives rise to: a) Ionic bond b) Polar covalent bond c) Non-polar covalent bond d) None of the above 4) Which of the following oxides is most acidic in nature? a) Be0 b) Mg0 c) Cl CaO d) Ba0 35. In the formation of NaCl by combination of Na and Cl: a) Sodium and chlorine both gain electrons b) Sodium and chlorine both gain electrons c) Sodium and chlorine both gain electrons b) Sodium and chlorine both gain electrons c) Sodium and chlorine both gain electrons d) Sodium and chlorine both gain electrons d) Sodium gains but chlorine gains electrons d) Sodium gains but chlorine is set soft soft symmetry is: a) NH3 b) PlC1 c) SO2 d) CO2 37. The covalent compound HCl has the polar character because: a) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of chlorine is greater than that of chlorine b) The electronegativity of hydrogen is equal to than that of chlorine b) The electronegativity of hydrogen is greater than that of hydrogen d) Hydrogen and chlorine are gases 4) Sp b) Sp2 c) Sp3 d) dsp2 40. Mendeleef S Periodic Table is upset by the fact that a) Sp b) Sp s2 c) Sp3 d) dsp2 40. Mendeleef S Periodic Table is upset by the fact that: a) Many elements has several isotopes b) Noble gases do not form compounds c) Sonium potential of Al is less than the first ionization potential of Ma b) The second ionization potential of Mg is greater than the second ionization potential of Ma c) The fir$		a) $CO_2 < SiO_2 < SnO_2 < SnO_2 < SiO_2 < SnO_2 < Sn$	PbO ₂ : increasing oxidising	g power			
d) B < C < 0 < N : increasing first ionisation enthalpy 31. The tenth elements in the Periodic Table resembles with the a) First period b) Second period c) Fourth period d) Ninth period 32. Which is not the correct order for the stated property? a) Ba > Sr > Mg : atomic radius b) F > 0 > N : first ionisation enthalpy c) Cl > F : l; electron affinity d) 0 > Se > Te; electronegativity 33. The unequal sharing of bonded pair of electrons between two atoms in a molecule gives rise to: a) Ionic bond b) Polar covalent bond c) Non-polar covalent bond d) None of the above 34. Which of the following oxides is most acidic in nature? a) BeO b) MgO c) CaO d) BaO 35. In the formation of NaCl by combination of Na and Cl: a) Sodium and chlorine both gain electrons b) Sodium and chlorine both gain electrons c) Sodium loses but chlorine gains electrons d) Sodium agains but chlorine loses electrons d) Sodium agains but chlorine loses electrons d) Sodium agains but chlorine lose selectrons d) Sodium and chlorine to both lose electrons d) Sodium and chlorine to both lose electrons d) Sodium and chlorine loses electrons d) Sodium agains but chlorine loses electrons d) Sodium agains but chlorine lose selectrons d) Sodium and chlorine both gain electrons d) NH ₃ b) PCl ₅ c) SO ₂ d) CO ₂ 37. The covalent compound HCl has the polar character because: a) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of hydrogen is greater than that of hydrogen d) Hydrogen and chlorine are gases 38. If the bond has zero percent ionic character, the bond is: a) sp b) sp ² c) sp ³ d) Asp ² 40. Mendeleef's Periodic Table is uspet by the fact that a) Many elements has several isotopes b) Noble gases do not form compounds S come groups stand divided into two sub groups A d) Atomic weights of elements are not always whole c) and B nu							
31. The tenth elements in the Periodic Table resembles with the a) First period b) Second period c) Fourth period d) Ninth period 31. The uncert order for the stated property? a) Ba > Sr > Mg; atomic radius b) F > 0 > N; first ionisation enthalpy c) Cl > F > 1; electron affinity d) 0 > Se > Te; electronegativity 31. The uncequal sharing of bonded pair of electrons between two atoms in a molecule gives rise to: a) lonic bond b) Polar covalent bond c) Non-polar covalent bond d) None of the above 34. Which of the following oxides is most acidic in nature?							
a) First period b) Second period c) Fourth period d) Ninth period 32. Which is not the correct or der for the stated property? a) Ba S r> Mg; a stomic radius b) F > 0 > N; first ionisation enthalpy c) Cl > F > 1; electron affinity d) 0 > Se > Te; electronegativity 33. The unequal sharing of bonded pair of electrons between two atoms in a molecule gives rise to: a) lonic bond b) Polar covalent bond d) None of the above d) None of the above d) None of the following oxides is most acidic in nature? a) BeO b) MgO c) CaO d) BaO 35. In the formation of Na Cl by combination of Na and Cl: a) Sodium and chlorine both lose electrons b) Sodium and chlorine both lose electrons c) Sodium loses but chlorine gains electrons c) Sodium loses but chlorine loses electrons d) Sodium gains but chlorine loses electrons d) Sodium gains but chlorine loses electrons d) Sodium gains but chlorine loses electrons a) N1a b) PC[c) C3C d) C02 37. The covalent compound HCl has the polar character because: a) N1a b) PC[c) c) S0G d) C02 37. The covalent compound HCl has the polar character because: a) The electronegativity of chlorine is greater than that of chlorine c) The electronegativity of chlorine is greater than that of chlorine d) Hydrogen and chlorine are gases 38. The bood has zero percent ionic character, the bout is: a) Pure covalent b) Partial covalent cont hat that of hydrogen d) Hydrogen and chlorine are gases 39. Pure covalent b) Sp2 c) Sp ³ d) dSp ² 40. Mendeleer's Periodic Table is upset by the fact that a) Mary elements has several isotopes b) Nobel gases do not formet are analysis whole and B 30. The first ionization potential of Mg is greater than the second ionization potential of Mg c) The first ionization potential of Mg is greater than the second ionization potential of Mg c) The first ionization potential of Mg is greater than the second ionization potential of Mg c) The first ionization potential of Mg is greater than the first ionization potential of Mg c) The first ionizatio		d) B < C < 0 < N : increa	sing first ionisation enthal	ру			
32. Which is not the correct order for the stated property? a) Ba > Sr > Mg; atomic radius b) F > 0 > N; first ionisation enthalpy c) Cl > F > I; electron affinity d) 0 > Se > Te; electronegativity 33. The unequal sharing of bonded pair of electrons between two atoms in a molecule gives rise to: a) Ionic bond b) Polar covalent bond c) Non-polar covalent bond d) None of the above 34. Which of the following oxides is most acidic in nature? a) BeO b) MgO c) CaO d) BaO 35. In the formation of NaCl by combination of Na and Cl: a) Sodium and chlorine both lose electrons b) Sodium and chlorine both lose electrons b) Sodium and chlorine both lose electrons b) Sodium and chlorine both lose electrons c) Sodium loses but chlorine gains electrons d) Sodium gains but chlorine gains electrons d) Sodium gains but chlorine loses electrons d) Sodium gains but chlorine is greater than that of chlorine b) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of hydrogen is greater than that of chlorine c) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of hydrogen is greater than that of chlorine d) Hydrogen and chlorine are gases 34. If the bond has zero percent ionic character, the bond is: a) $pure covalent$ b) Partial covalent c) Partial ionic d) Coordinate covalent in piperdime full Hydrogen and chlorine are gases 35. If the sond has several isotopes b) Noble gases do not form compounds c) Some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole and B a) The first ionization potential of Mg is greater than the first ionization potential of Mg b) The	31.	1. The tenth elements in the Periodic Table resembles with the					
a) Ba > Sr > Mg; atomic radius b) F > 0 > N; first ionisation enthalpy c) Cl > F > I; electron affinity d) 0 > Se > Te; electronegativity 33. The unequal sharing of bonded pair of electrons between two atoms in a molecule gives rise to: a) lonic bond b) Polar covalent bond c) Non-polar covalent bond d) None of the above 34. Which of the following oxides is most acidic in nature? a) BeO b) MgO c) CaO d) BaO 35. In the formation of NaCl by combination of N and Cl: a) Sodium and chlorine both gain electrons b) Sodium and chlorine both gain electrons c) Sodium and chlorine both gain electrons c) Sodium and chlorine both gain electrons d) Sodium gains but chlorine gains electrons d) Sodium gains but chlorine gains electrons 36. The molecule having three folds of axis of symmetry is: a) NH ₃ b) PCl ₅ c) SO ₂ d) CO ₂ 37. The covalent compound HCl has the polar character because: a) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of hydrogen is greater than that of chlorine c) The electronegativity of hydrogen is greater than that of chlorine c) The electronegativity of hydrogen is greater than that of chlorine c) The electronegativity of hydrogen is greater than that of chlorine d) Hydrogen and chlorine are gases 38. If the bond has zero percent ionic character, the bond is: a) Sp b) Sp ² c) Sp ³ d) dsp ² 40. Mendeleef's Periodic Table is upset by the fact that a) Many elements has several isotopes b) Noble gases do not form compounds c) Some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole and B mumbers 41. The incorrect statement among the following is: a) The first ionization potential of Mg is greater than the first ionization potential of Mg d) The third ionization potential of Mg is greater than the first ionization potential of Mg d) The third ionization potential of Mg is greater than the first ionization potential of Mg d) The third ionization potential of Mg is greater than the		a) First period	b) Second period	c) Fourth period	d) Ninth period		
c) $Cl > F > 1;$ electron affinity d) $0 > Se > Te;$ electronegativity 33. The unequal sharing of bonded pair of electrons between two atoms in a molecule gives rise to: a) lonic bond b) Polar covalent bond c) Non-polar covalent bond d) None of the above 34. Which of the following oxides is most acidic in nature? a) BeO b) MgO c) CaO d) BaO 35. In the formation of NaCl by combination of Na and Cl: a) Sodium and chlorine both lose electrons b) Sodium and chlorine both gain electrons c) Sodium gains but chlorine gains electrons d) Sodium gains but chlorine pages electrons 36. The molecule having three folds of axis of symmetry is: a) NH ₃ b) PC ₅ c) SO ₂ d) CO ₂ 37. The covalent compound HCI has the polar character because: a) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of hydrogen is greater than that of chlorine c) The electronegativity of hydrogen is greater than that of hydrogen d) Hydrogen and chlorine are gases 38. If the bond has zero percent ionic character, the bond is: a) Pure covalent b) partial covalent c) Day 2 40. Mendelecfs Periodic Table is upset by the fact that a) Anay elements has several isotopes b) Noble gases do not form compounds c) Some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole numbers 41. The incorrect statement among the following is: a) The first tonization potential of Mg is greater than the first tonization potential of Ng d) The third ionization potential of Mg is greater than the second ionization potential of Na c) The first tonization potential of Mg is greater than the the tonic potential of Na c) The first tonization potential of Mg is greater than the escond ionization potential of Na c) The first tonization potential of Mg is greater than the trst ionization potential of Na c) The first tonization potent	32.	Which is not the correct o	rder for the stated propert	ty?			
33. The unequal sharing of bonded pair of electrons between two atoms in a molecule gives rise to: a) lonic bond b) Polar covalent bond c) Non-polar covalent bond d) None of the above 34. Which of the following oxides is most acidic in nature? a) Be0 b) Mg0 c) CaO d) Ba0 35. In the formation of NaCl by combination of Na and Cl: a) Sodium and chlorine both gain electrons b) Sodium and chlorine both gain electrons c) Sodium gains but chlorine gains electrons d) Sodium gains but chlorine loses electrons d) Sodium gains but chlorine loses electrons d) Nh₃ b) PCl₅ c) SO₂ d) CO₂ 7. The covalent compound HCl has the polar character because: a) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of chlorine is greater than that of hydrogen d) Hydrogen and chlorine are gases 8. If the bond has zero percent ionic character, the bond is: a) sp b) sp² c) sp³ d) dsp² 40. Mondeleef S Periodic Table is upset by the fact that a) Pure covalent b) sp² c) sp³ d) Atomic weights of elements are not always whole and bive indication potential of Mg b) The second ionization potential of Mg is greater than the first ioniz		a) Ba > Sr > Mg; atomic	radius	b) $F > 0 > N$; first ionisa	ation enthalpy		
33. The unequal sharing of bonded pair of electrons between two atoms in a molecule gives rise to: a) lonic bond b) Polar covalent bond c) Non-polar covalent bond d) None of the above 34. Which of the following oxides is most acidic in nature? a) Be0 b) Mg0 c) CaO d) Ba0 35. In the formation of NaCl by combination of Na and Cl: a) Sodium and chlorine both gain electrons b) Sodium and chlorine both gain electrons c) Sodium gains but chlorine gains electrons d) Sodium gains but chlorine loses electrons d) Sodium gains but chlorine loses electrons d) Nh₃ b) PCl₅ c) SO₂ d) CO₂ 7. The covalent compound HCl has the polar character because: a) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of chlorine is greater than that of hydrogen d) Hydrogen and chlorine are gases 8. If the bond has zero percent ionic character, the bond is: a) sp b) sp² c) sp³ d) dsp² 40. Mondeleef S Periodic Table is upset by the fact that a) Pure covalent b) sp² c) sp³ d) Atomic weights of elements are not always whole and bive indication potential of Mg b) The second ionization potential of Mg is greater than the first ioniz		c) $Cl > F > I$; electron aff	inity	d) $0 > Se > Te;$ electron	egativity		
 b) Polar covalent bond Non-polar covalent bond None-polar covalent bond None-polar covalent bond None of the above 34. Which of the following oxides is most acidic in nature? a) BeO b) MgO c) CaO d) BaO 35. In the formation of NaCl by combination of Na and Cl: a) Sodium and chlorine both gain electrons b) Sodium and chlorine both gain electrons c) Sodium gains but chlorine gains electrons d) Sodium gains but chlorine gains electrons d) Sodium gains but chlorine gains electrons d) Sodium gains but chlorine losse electrons 36. The molecule having three folds of axis of symmetry is: a) NH₃ b) PCI₅ c) So₂ d) CO₂ 37. The covalent compound HCI has the polar character because: a) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of hydrogen is greater than that of chlorine c) The electronegativity of hydrogen is greater than that of chlorine d) Hydrogen and chlorine re gases 38. If the bond has zero percent ionic character, the bond is: a) Pure covalent b) Partial covalent c) Partial ionic d) Coordinate covalent 4) sp b) Sp² c) Sp³ d) dsp² 40. Mendeleef's Periodic Table is upset by the fact that a) Many elements has several isotopes b) Noble gases do not form compounds c) Some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole and B a) The incorrect statement among the following is: a) The first ionization potential of Al is less than the first ionization potential of Ma c) The second ionization potential of Al is less than the first ionization potential of M	33.	The unequal sharing of bo	onded pair of electrons bet				
 c) Non-polar covalent bond d) None of the above 34. Which of the following oxides is most acidic in nature? a) BeO b) MgO c) CaO d) BaO 35. In the formation of NaCl by combination of N and Cl: a) Sodium and chlorine both lose electrons b) Sodium and chlorine both gain electrons c) Sodium loses but chlorine loses electrons d) Sodium gains but chlorine loses electrons a) NH₃ b) PCl₅ c) So₂ d) CO₂ 7. The covalent compound HCl has the polar character because: a) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of hydrogen is greater than that of chlorine c) The electronegativity of hydrogen is greater than that of chlorine d) Hydrogen and chlorine are gases 38. If the bond has zero percent ionic character, the bond is: a) sp b) Sp² c) Sp³ d) dsp² d) May elements has several isotopes b) Noble gases do not form compounds a) May elements has several isotopes b) Noble gases do not form compounds a) any elements has several isotopes b) Noble gases do not form compounds a) Any elements has several isotopes b) Noble gases do not form compounds a) The first ionization potential of Ma is less than the first ionization potential of Mg b) The second ionization potential of Ma is less than the first ionization potential of Mg b) The second ionization potential of Mg is greater than the tird ionization potential of Mg b) The size on boxication potential of Mg is greater than the tird ionization potenti		a) Ionic bond					
d) None of the above 34. Which of the following oxides is most acidic in nature? a) BeO b) MgO c) CaO d) BaO 5. In the formation of NaCl by combination of Na and Cl: a) Sodium and chlorine both lose electrons b) Sodium and chlorine both gain electrons c) Sodium loses but chlorine gains electrons d) Sodium gains but chlorine loses electrons d) Hay b) PCl 5 c) SO 2 d) CO 2 d) CO 2 d) CO 2 d) Co 2 d) Electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of chlorine is greater than that of chlorine c) The electronegativity of chlorine is greater than that of chlorine c) The electronegativity of chlorine is greater than that of hydrogen d) Hydrogen and chlorine are gases 38. If the bond has zero percent ionic character, the bond is: a) Pure covalent b) Partial covalent c) Partial ionic d) Coordinate covalent a) sp b) sp 2 c) sp 3 d) dsp ² 40. Mendeleef's Periodic Table is upset by the fact that a) Many elements has several isotopes b) Noble gases do not form compounds c) Some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole and B numbers 41. The incorrect statement among the following is: a) The first ionization potential of Ma is less than the first ionization potential of Mg d) The third ionization potential of Ma is less than the third ionization potential of Mg d) The third ionization potential of Mg is greater than the second ionization potential of Mg d) The third ionization potential of Mg is greater than the third ionization potential of Mg d) The third ionization potential of Mg is greater tha		b) Polar covalent bond					
34. Which of the following oxides is most acidic in nature? a) BeO b) MgO c) CaO d) BaO 3) BeO b) MgO c) CaO d) BaO 35. In the formation of NaCl by combination of Na and Cl: a) Sodium and chlorine both gain electrons b) Sodium gains but chlorine lose electrons d) Sodium gains but chlorine lose electrons d) Sodium gains but chlorine lose electrons d) Sodium gains but chlorine lose electrons a) NH₃ b) PCl₅ c) SO₂ d) CO₂ The molecule having three folds of axis of symmetry is: a) NH₃ b) PCl₅ c) SO₂ d) CO₂ The covalent compound HCl has the polar character because: a) The electronegativity of hydrogen is greater than that of chlorine c) The electronegativity of chlorine is greater than that of hydrogen d) Hydrogen and chlorine are gases Bi freb bond has zero percent ionic character, the bond is: a) Pure covalent b) Par² c) sp³ d) dsp² Mendeleef's Periodic Table is upset by the fact that a) sp b) sp² c) sp³ d) Abarge In piperidins c) some groups st		c) Non-polar covalent bor	nd				
a) BeO b) MgO c) CaO d) BaO 35. In the formation of NaCl by combination of Na and Cl: a) Sodium and chlorine both Jose electrons b) Sodium and chlorine both gain electrons c) Sodium loses but chlorine jams electrons d) Sodium gains but chlorine loses electrons d) Hotogen and chlorine segases 36. The electronegativity of hydrogen is equal to than that of chlorine c) The electronegativity of chlorine is greater than that of hydrogen d) Hydrogen and chlorine are gases 38. If the bond has zero percent ionic character, the bond is: a) Pure covalent b) Partial covalent c) Partial ionic d) Coordinate covalent ln piperidinc $- H_{H,N}$ atom has hybridization: a) sp b) sp^2 c) sp^3 d) dsp^2 40. Mendeleef's Periodic Table is upset by the fact that a) Many elements has several isotops b) Noble gases do not form compounds some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole numbers 41. The incorrect statement among the following is: a) The first ionization potential of Na is less than the first ionization potential of Ma c) The first ionization potential of Na is less than the first ionization potential of Ma c) The first ionization potential of Na is less than the first ionization potential of Al 42. Which one of the follow		d) None of the above					
35. In the formation of NaCl by combination of Na and Cl: a) Sodium and chlorine both gain electrons b) Sodium and chlorine both gain electrons c) Sodium gains but chlorine loses electrons 36. The molecule having three folds of axis of symmetry is: a) NH ₃ b) PCl ₅ c) SO ₂ d) CO ₂ The covalent compound HCl has the polar character because: a) a) The electronegativity of hydrogen is greater than that of chlorine b) b) The electronegativity of hydrogen is greater than that of chlorine c) c) The electronegativity of chlorine is greater than that of hydrogen d) d) Hydrogen and chlorine are gases a) a) 38. If the bond has zero percent ionic character, the bond is: a) pure covalent b) Sp a) sp b) sp ² c) sp ³ d) dsp ² 40. Mendeleef's Periodic Table is upset by the fact that a) a) ang zero percent ionic character, the bonic weights of elements are not always whole and B numbers 41. Mendeleef's Periodic Tabl	34.	Which of the following ox	ides is most acidic in natur	re?			
 a) Sodium and chlorine both lose electrons b) Sodium and chlorine both gain electrons c) Sodium gaiss but chlorine gains electrons d) Sodium gains but chlorine gains electrons 36. The molecule having three folds of axis of symmetry is: a) NH₃ b) PCl₅ c) SO₂ d) CO₂ 37. The covalent compound HCl has the polar character because: a) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of hydrogen is greater than that of chlorine c) The electronegativity of chlorine is greater than that of chlorine c) The electronegativity of chlorine is greater than that of hydrogen d) Hydrogen and chlorine are gases 38. If the bond has zero percent ionic character, the bond is: a) Pure covalent b) Partial covalent c) Partial ionic d) Coordinate covalent a) sp b) sp² c) sp³ d) dsp² 40. Mendeleef's Periodic Table is upset by the fact that a) May elements has several isotopes b) Noble gases do not form compounds c) Some groups stand divide into two sub groups A d) Atomic weights of elements are not always whole numbers 41. The incorrect statement arrong the following is: a) The first ionization potential of Mg is greater than the third ionization potential of Mg c) The first ionization potential of Mg is greater than the the third ionization potential of Ma c) The first ionization potential of Mg is greater than the therd ionization potential of Ma c) The first ionization potential of Mg is greater than the third ionization potential of Ma c) The first ionization potential of Mg is greater than the third ionization potential of Ma c) The first ionization potential of Mg is greater than the third ionization potent		a) BeO	b) MgO	c) CaO	d) BaO		
 b) Sodium and chlorine both gain electrons c) Sodium loses but chlorine gains electrons d) Sodium gains but chlorine loses electrons 36. The molecule having three folds of axis of symmetry is: a) NH₃ b) PC1₅ c) SO₂ d) CO₂ 37. The covalent compound HCl has the polar character because: a) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of chlorine is greater than that of chlorine c) The electronegativity of chlorine is greater than that of chlorine c) The electronegativity of chlorine is greater than that of chlorine d) Hydrogen and chlorine are gases 38. If the bond has zero percent ionic character, the bont is: a) Pure covalent b) Partial covalent c) Partial ionic d) Coordinate covalent a) sp b) sp² c) sp³ d) dsp² 40. Mendeleef's Periodic Table is upset by the fact that a) May elements has several isotopes b) Noble gases do not form compounds c) Some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole and B c) The first ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the third ionization potential of Na c) The first ionization potential of Mg is greater than the third ionization potential of Na c) The first ionization potential of Mg is greater than the third ionization potential of Na c) The third ionization potential of Mg is greater than the third ionization potential of Na c) The third ionization potential of Mg is greater than the third ionization potential of Na <li< th=""><th>35.</th><th>In the formation of NaCl b</th><th>y combination of Na and C</th><th>:1:</th><th></th></li<>	35.	In the formation of NaCl b	y combination of Na and C	:1:			
c) Sodium loses but chlorine agins electrons d) Sodium gains but chlorine loses electrons 36. The molecule having three folds of axis of symmetry is: a) NH ₃ b) PCl ₅ c) SO ₂ d) CO ₂ 37. The covalent compound HCl has the polar character because: a) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of hydrogen is greater than that of chlorine c) The electronegativity of chlorine is greater than that of chlorine d) Hydrogen and chlorine are gases 38. If the bond has zero percent ionic character, the bont is: a) Pure covalent b) Partial covalent c) Partial ionic d) Coordinate covalent in piperidine $-+H,N$ atom has hybridization: a) sp b) sp^2 c) sp^3 d) dsp^2 40. Mendeleef's Periodic Table is upset by the fact that a) Many elements has several isotopes b) Noble gases do not form compounds Some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole numbers 41. The incorrect statement amorg the following is: a) The first ionization potential of Mg is greater than the first ionization potential of Ma c) The first ionization potential of Mg is greater than the third ionization potential of Ma c) The first ionization potential of Mg is greater than the third ionization potential of Ma c) The first ionization potential of Mg is greater than the third ionization potential of Ma c) The first ionization potential of Mg is greater than the third ionization potential of Ma c) The first ionization potential of Mg is greater than the third ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na ₂ O c) SO ₂ d) B ₂ O ₃ 43. The shape of ClO ₄ ion is: a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 44. Which one is correct? a) Dinitrogen is paramagnet:		a) Sodium and chlorine be	oth lose electrons				
 d) Sodium gains but chlorine loses electrons 36. The molecule having three folds of axis of symmetry is: a) NH₃ b) PCl₅ c) SO₂ d) CO₂ 37. The covalent compound HCl has the polar character because: a) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of chlorine is greater than that of chlorine c) The electronegativity of chlorine is greater than that of chlorine c) The electronegativity of chlorine is greater than that of hydrogen d) Hydrogen and chlorine are gases 38. If the bond has zero percent ionic character, the bond is: a) Pure covalent b) Partial covalent c) Partial ionic d) Coordinate covalent 39. <i>p</i> b) <i>sp</i>² c) <i>sp</i>³ d) <i>dsp</i>² 40. Mendeleef's Periodic Table is upset by the fact that a) Any elements has several isotopes b) Noble gases do not form compounds a) <i>sp</i> b) <i>sp</i>² c) <i>sp</i>³ d) <i>Atomic</i> weights of elements are not always whole numbers 41. The incorrect statement among the following is: a) The first ionization potential of Al is less than the first ionization potential of Na c) The first ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the second ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na₂O c) SO₂ c) SO₂ d) B₂O₃ 43. The shape of ClO₄ ion is a) ZnO b) Na₂O c) SO₂ c) Slouer planar c) Square planar c) Squ		b) Sodium and chlorine be	oth gain electrons				
36.The molecule having three folds of axis of symmetry is:a) NH3b) PCl5c) SO2d) CO237.The covalent compound HCI has the polar character because:a) The electronegativity of hydrogen is greater than that of chlorineb) The electronegativity of hydrogen is greater than that of chlorine)c) The electronegativity of chlorine is greater than that of chlorine)d) Hydrogen and chlorine are gases)38.If the bond has zero percent ionic character, the bond is:a) Pure covalenta) Pure covalentb) Partial covalentc) Partial ionicd) Coordinate covalent39.m piperidim \rightarrow H,N atom has hybridization:a) spb) sp2c) sp3d) dsp240.Mendeleef's Periodic Table is upset by the fact thata) Anny elements has several isotopesb) Noble gases do not form compoundsc) Some groups stand divided into two sub groups Ad) Atomic weights of elements are not always whole numbersand B41.The first ionization potential of Mg is greater than the second ionization potential of Nac) The first ionization potential of Mg is greater than the second ionization potential of Nac) The first ionization potential of Mg is greater than the third ionization potential of Mg is greater than the third ionization potential of Mgd) The third ionization potential of Mg is greater than the third ionization potential of Mac) The first ionization potential of Mg is greater than the third ionization potential of Mgd) The first ionization potential of Mg is greater than the third ionization potential of Mgd) The third ionization potential		c) Sodium loses but chlor	ine gains electrons				
 a) NH₃ b) PCl₅ c) SO₂ d) CO₂ 37. The covalent compound HCl has the polar character because: a) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of hydrogen is equal to than that of chlorine c) The electronegativity of chlorine is greater than that of hydrogen d) Hydrogen and chlorine are gases 38. If the bond has zero percent ionic character, the bond is: a) Pure covalent b) Partial covalent c) Partial ionic d) Coordinate covalent 39. b) sp² c) sp³ d) dsp² 40. Mendeleef's Periodic Table is upset by the fact that a) Many elements has several isotopes b) Noble gases do not form compounds c) and B for incorrect statement among the following is: a) The first ionization potential of Al is less than the first ionization potential of Mg d) The scond ionization potential of Mg is greater than the third ionization potential of Mg d) The third ionization potential of Mg is greater than the third ionization potential of Mg d) The first ionization potential of Mg is greater than the third ionization potential of Mg d) The first ionization potential of Mg is greater than the third ionization potential of Ma c) The first ionization potential of Mg is greater than the third ionization potential of Ma d) The third ionization potential of Mg is greater than the third ionization potential of Mg d) The third ionization potential of Mg is greater than the third ionization potential of Ma c) The first ionization potential of Mg is greater than the third ionization potential of Ma d) The third ionization potential of Mg is greater than the third ionization potential of Ma d) The third ionization potential of Mg is greater than the third ionization potential of Ma <		d) Sodium gains but chlor	ine loses electrons				
 37. The covalent compound HCl has the polar character because: a) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of chlorine is greater than that of chlorine c) The electronegativity of chlorine is greater than that of chlorine c) The electronegativity of chlorine is greater than that of hydrogen d) Hydrogen and chlorine are gases 38. If the bond has zero percent ionic character, the bond is: a) Pure covalent b) Partial covalent c) Partial ionic d) Coordinate covalent 39. as p b) sp² c) sp³ d) dsp² 40. Mendeleef's Periodic Table is upset by the fact that a) Many elements has several isotopes b) Noble gases do not form compounds c) and B functional divided into two sub groups A d) Atomic weights of elements are not always whole numbers 41. The incorrect statement among the following is: a) The first ionization potential of Al is less than the first ionization potential of Mg d) The third ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the third ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na₂O c) SO₂ d) B₂O₃ 43. The shape of ClO⁴/₄ ion is: a) ZnO b) Na₂O c) SO₂ d) B₂O₃ 44. Which one is correct? a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 	36.	The molecule having three	e folds of axis of symmetry	vis:			
 a) The electronegativity of hydrogen is greater than that of chlorine b) The electronegativity of hydrogen is equal to than that of chlorine c) The electronegativity of chlorine is greater than that of hydrogen d) Hydrogen and chlorine are gases 38. If the bond has zero percent ionic character, the bond is: a) Pure covalent b) Partial covalent c) Partial ionic d) Coordinate covalent a) Pure covalent b) Sp² c) Sp³ d) dsp² 40. Mendeleef's Periodic Table is upset by the fact that a) Many elements has several isotopes b) Noble gases do not form compounds c) Some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole numbers 41. The incorrect statement among the following is: a) The first ionization potential of Al is less than the first ionization potential of Mg b) The second ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the third ionization potential of Mg d) The third ionization potential of Mg is greater than the third ionization potential of Ma c) The first ionization potential of Mg is greater than the third ionization potential of Ma d) The third ionization potential of Mg is greater than the third ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na₂O c) SO₂ d) B₂O₃ 43. The shape of ClO¹/₄ ion is: a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 44. Which one is correct? a) Dinitrogen is paramagnetic 		a) NH ₃	b) PCl ₅	c) SO ₂	d) CO ₂		
 b) The electronegativity of hydrogen is equal to than that of chlorine c) The electronegativity of chlorine is greater than that of hydrogen d) Hydrogen and chlorine are gases 38. If the bond has zero percent ionic character, the bond is: a) Pure covalent b) Partial covalent c) Partial ionic d) Coordinate covalent 39. a) Sp b) Sp² c) Sp³ d) dsp² 40. Mendeleef's Periodic Table is upset by the fact that a) Many elements has several isotopes b) Noble gases do not form compounds c) Some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole numbers 41. The incorrect statement among the following is: a) The first ionization potential of Al is less than the first ionization potential of Mg b) The second ionization potential of Mg is greater than the second ionization potential of Na is less than the first ionization potential of Mg d) The third ionization potential of Mg is greater than the third ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na₂O c) SO₂ d) B₂O₃ 43. The shape of ClO⁴/₄ ion is: a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 	37.	The covalent compound H	ICl has the polar character	because:			
 c) The electronegativity of chlorine is greater than that of hydrogen d) Hydrogen and chlorine are gases 38. If the bond has zero percent ionic character, the bond is: a) Pure covalent b) Partial covalent c) Partial ionic d) Coordinate covalent 39. If the bond has zero percent ionic character, the bond is: a) Pure covalent b) Partial covalent c) Partial ionic d) Coordinate covalent 39. If the bond has zero percent ionic character, the bond is: a) Pure covalent b) Partial covalent c) Partial ionic d) Coordinate covalent 39. If the bond has zero percent ionic character, the bond is: a) Pure covalent b) Partial covalent c) Partial ionic d) Coordinate covalent 39. Pure covalent c) Sp² c) Sp³ d) dsp² 40. Mendeleef's Periodic Table is upset by the fact that a) Many elements has several isotopes b) Noble gases do not form compounds c) Some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole numbers 41. The incorrect statement among the following is: a) The first ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the third ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na₂O c) SO₂ d) B₂O₃ 43. The shape of ClO²₄ ion is: a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 44. Which one is correct? <li< th=""><th></th><th>a) The electronegativity o</th><th>f hydrogen is greater than</th><th>that of chlorine</th><th></th></li<>		a) The electronegativity o	f hydrogen is greater than	that of chlorine			
 d) Hydrogen and chlorine are gases 38. If the bond has zero percent ionic character, the bond is: a) Pure covalent b) Partial covalent c) Partial ionic d) Coordinate covalent 39. a) Sp b) Sp² c) Sp³ d) dsp² 40. Mendeleef's Periodic Table is upset by the fact that a) Many elements has several isotopes b) Noble gases do not form compounds c) and B d) Atomic weights of elements are not always whole numbers 41. The incorrect statement among the following is: a) The first ionization potential of Al is less than the first ionization potential of Mg b) The second ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the third ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na₂O c) SO₂ d) B₂O₃ 43. The shape of ClO⁴ ion is: a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 		b) The electronegativity o	f hydrogen is equal to thar	n that of chlorine			
 38. If the bond has zero percent ionic character, the bond is: a) Pure covalent b) Partial covalent c) Partial ionic d) Coordinate covalent 39. a) Sp b) Sp² c) Sp³ d) dsp² 40. Mendeleef's Periodic Table is upset by the fact that a) Many elements has several isotopes b) Noble gases do not form compounds 40. Mendeleef's Deriodic Table is upset by the fact that a) Many elements has several isotopes b) Noble gases do not form compounds c) Some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole numbers 41. The incorrect statement among the following is: a) The first ionization potential of Al is less than the first ionization potential of Mg b) The second ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the third ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na₂O c) SO₂ d) B₂O₃ 43. The shape of ClO₄ ion is: a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 		c) The electronegativity o	f chlorine is greater than t	hat of hydrogen			
a) Pure covalentb) Partial covalentc) Partial ionicd) Coordinate covalent39 $n piperidine + H, N atom has hybridization:n piperidine + H, N atom has hybridization:n piperidine + H, N atom has hybridization:40.a p pb p p^2c p p^3d p^240.Mendeleef's Periodic Table is upset by the fact thata Many elements has several isotopesb N oble gases do not form compoundsa) Many elements has several isotopesb N oble gases do not form compoundsand Bc) Some groups stand divide into two sub groups Ad A tomic weights of elements are not always whole numbers41.The incorrect statement arrong the following is:a 1 The first ionization potential of Al is less than the first ionization potential of Na is less than the first ionization potential of Na is less than the second ionization potential of Na is less than the third ionization potential of Na is less than the third ionization potential of Al42.Which one of the following is an amphoteric oxide?a) ZnOb) Na_2Oc) SO2d) B_2O343.The shape of ClO4 ion is:a) Square planarb) Square pyramidalc) Tetrahedrald) Trigonal bipyramidal44.Which one is correct?a) Dinitrogen is paramagneticb) Square pyramidalc) Tetrahedrald) Trigonal bipyramidal$		d) Hydrogen and chlorine	are gases				
 39. In piperidine — H,N atom has hybridization: a) sp b) sp² c) sp³ d) dsp² 40. Mendeleef's Periodic Table is upset by the fact that a) Many elements has several isotopes b) Noble gases do not form compounds Some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole numbers 41. The incorrect statement among the following is: a) The first ionization potential of Al is less than the first ionization potential of Mg b) The second ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the third ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na₂O c) SO₂ d) B₂O₃ 43. The shape of ClO₄ ion is: a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 	38.	If the bond has zero perce	ent ionic character, the bon	ıd is:			
In piperidineN=H,N atom has hybridization:a) sp b) sp^2 c) sp^3 d) dsp^2 40.Mendeleef's Periodic Table is upset by the fact thata) Many elements has several isotopesb) Noble gases do not form compoundsc) Some groups stand divided into two sub groups Ad) Atomic weights of elements are not always whole numbersc) and Bnumbers41.The incorrect statement among the following is:a) The first ionization potential of Al is less than the first ionization potential of Mg b) The second ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the second ionization potential of Mg d) The third ionization potential of Mg is greater than the third ionization potential of Al42.Which one of the following is an amphoteric oxide? a) ZnOb) Na_2Oc) SO2d) B_2O_343.The shape of ClO4 ion is: a) Square planarb) Square pyramidalc) Tetrahedrald) Trigonal bipyramidal44.Which one is correct? a) Dinitrogen is paramagneticb) Square planarb) Square planarc) Tetrahedrald) Trigonal bipyramidal		a) Pure covalent	b) Partial covalent	c) Partial ionic	d) Coordinate covalent		
 40. Mendeleef's Periodic Table is upset by the fact that a) Many elements has several isotopes b) Noble gases do not form compounds Some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole numbers 41. The incorrect statement among the following is: a) The first ionization potential of Al is less than the first ionization potential of Mg b) The second ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the third ionization potential of Mg d) The third ionization potential of Mg is greater than the third ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na₂O c) SO₂ d) B₂O₃ 43. The shape of ClO₄ ion is: a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 	39.	In piperidine H,N atom ha	as hybridization:				
 40. Mendeleef's Periodic Table is upset by the fact that a) Many elements has several isotopes b) Noble gases do not form compounds Some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole numbers 41. The incorrect statement among the following is: a) The first ionization potential of Al is less than the first ionization potential of Mg b) The second ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the third ionization potential of Mg d) The third ionization potential of Mg is greater than the third ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na₂O c) SO₂ d) B₂O₃ 43. The shape of ClO₄ ion is: a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 		a) <i>sp</i>	b) <i>sp</i> ²	c) <i>sp</i> ³	d) dsp^2		
 a) Many elements has several isotopes b) Noble gases do not form compounds Some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole numbers 41. The incorrect statement among the following is: a) The first ionization potential of Al is less than the first ionization potential of Mg b) The second ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the third ionization potential of Na c) The first ionization potential of Mg is greater than the third ionization potential of Na d) The third ionization potential of Mg is greater than the third ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na₂O c) SO₂ d) B₂O₃ 43. The shape of ClO₄ ion is: a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 44. Which one is correct? a) Dinitrogen is paramagnetic 	40.	<i>,</i> .	<i>J</i> 1				
 c) Some groups stand divided into two sub groups A d) Atomic weights of elements are not always whole and B numbers 41. The incorrect statement among the following is: a) The first ionization potential of Al is less than the first ionization potential of Mg b) The second ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Mg is greater than the third ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na₂O c) SO₂ d) B₂O₃ 43. The shape of ClO₄⁻ ion is: a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 				b) Noble gases do not form compounds			
 41. The incorrect statement arrows the following is: a) The first ionization potential of Al is less than the first ionization potential of Ng b) The second ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Ng is greater than the second ionization potential of Na c) The first ionization potential of Ng is greater than the second ionization potential of Na d) The third ionization potential of Mg is greater than the third ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na₂O c) SO₂ d) B₂O₃ 43. The shape of ClO₄ ion is: a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal e) Third one is correct? a) Dinitrogen is paramagetic 		Some groups stand div	-				
 a) The first ionization potential of Al is less than the first ionization potential of Mg b) The second ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Na is less than the first ionization potential of Mg d) The third ionization potential of Mg is greater than the third ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na2O c) SO2 d) B2O3 43. The shape of ClO⁴/₄ ion is: a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 44. Which one is correct? a) Dinitrogen is paramagetic 		C1			,		
 a) The first ionization potential of Al is less than the first ionization potential of Mg b) The second ionization potential of Mg is greater than the second ionization potential of Na c) The first ionization potential of Na is less than the first ionization potential of Mg d) The third ionization potential of Mg is greater than the third ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na2O c) SO2 d) B2O3 43. The shape of ClO⁴/₄ ion is: a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 44. Which one is correct? a) Dinitrogen is paramagetic 	41.	The incorrect statement a	mong the following is:				
 c) The first ionization potential of Na is less than the first ionization potential of Mg is greater than the third ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na₂O c) SO₂ d) B₂O₃ 43. The shape of ClO⁴/₄ ion is: a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 44. Which one is correct? a) Dinitrogen is parameter 				first ionization potential o	f Mg		
 c) The first ionization potential of Na is less than the first ionization potential of Mg is greater than the third ionization potential of Al 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na₂O c) SO₂ d) B₂O₃ 43. The shape of ClO⁴/₄ ion is: a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 44. Which one is correct? a) Dinitrogen is parameter 		b) The second ionization	potential of Mg is greater t	han the second ionization j	potential of Na		
 42. Which one of the following is an amphoteric oxide? a) ZnO b) Na₂O c) SO₂ d) B₂O₃ 43. The shape of ClO⁻₄ ion is: a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 44. Which one is correct? a) Dinitrogen is paramatric 							
a) ZnOb) Na2Oc) SO2d) B2O343.The shape of ClO4 ion is: a) Square planarb) Square pyramidalc) Tetrahedrald) Trigonal bipyramidal44.Which one is correct? a) Dinitrogen is paramagnetic		d) The third ionization po	tential of Mg is greater tha	n the third ionization pote	ntial of Al		
a) ZnOb) Na2Oc) SO2d) B2O343.The shape of ClO4 ion is: a) Square planarb) Square pyramidalc) Tetrahedrald) Trigonal bipyramidal44.Which one is correct? a) Dinitrogen is paramagnetic	42.						
 a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 44. Which one is correct? a) Dinitrogen is paramagnetic 		a) ZnO	b) Na ₂ O	c) SO ₂	d) B_2O_3		
 a) Square planar b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal 44. Which one is correct? a) Dinitrogen is paramagnetic 	43.	The shape of ClO_4^- ion is:					
a) Dinitrogen is paramagnetic		a) Square planar	b) Square pyramidal	c) Tetrahedral	d) Trigonal bipyramidal		
,	44.	Which one is correct?					
b) Dihydrogen is paramagnetic		a) Dinitrogen is paramagr	netic				
		b) Dihydrogen is paramag	gnetic				

	c) Dioxygen is paramagi	netic		
	d) Dioxygen is diamagnetic			
45.	In which one of the follo	wing pairs the radius of the	second species is greater t	
	a) Na, Mg	b) 0 ^{2–} , N ^{3–}	c) Li ⁺ , Be ²⁺	d) Ba ²⁺ , Sr ²⁺
46.	Atomic radii of fluorine	and neon in angstrom unit a		
	a) 0.72, 1.60	b) 1.60, 1.60	c) 0.72, 0.72	d) 1.60, 0.72
47.	-	nenclature, a newly discover	red element has been name	ed as Uun. The atomic
	number of the element i			
	a) 111	b) 112	c) 109	d) 110
48.		reasing electron affinity of h		
	a) F < Cl < Br < I	-	c) $I > Br > Cl > F$	-
49.		rons in <i>p</i> -orbitals and also b		
- 0	a) <i>X</i>	b) <i>X</i> ₂	c) X_4	d) X ₅
50.	_	equence regarding ionisatio		
F 4	a) $Cu > Ag > Au$	b) Cu < Ag < Au	c) Cu > Ag < Au	d) Ag > Cu < Au
51.	The bond length is maxi		-) 11 ()	d) I.e.
۳D	a) H_2S Which of the following i	b) HF	c) H_2O	d) Ice
52.	•	s the most electropositive el b) S		4) (1
E 2	a) P Which group of stome h	ave nearly same atomic rad	c) Mg	d) Al
55.	a) Na, K, Rb, Cs	b) Li, Be, B, C	c) Fe, Co, Ni, Cu	d) F, Cl, Br, I
54	Which of the following s	-	c) re, co, m, cu	uj 1 [°] , 01, D1, 1
51.	a) Metals are more than			
	b) There are only few m			
		ed with alkali metals as wel	ll as with halogen in Period	ic Table.
	d) Non-metals are more			
55.		ing has the lowest ionisation	n energy?	
	a) $1s^2 2s^2 2p^6$	b) $1s^2 2s^2 2p^6 3s^1$	c) $1s^2 2s^2 2p^5$	d) $1s^2 2s^2 2p^3$
56.	, I	e correct order of first ionisa	ation potential is:	, I
	a) K > Na > Li		_	d) Ge > Si > C
57.	Which one of the follow	ing belongs to representativ	ye group of elements in the	Deviadia Table?
	a) Aluminium		e group of cicilients in the	Periodic Table?
58	aj Aluminum	b) Chromium	c) Argon	d) Lanthanum
00.			c) Argon	d) Lanthanum
501		b) Chromium	c) Argon	d) Lanthanum
	The shape of NO_3^- is plana) sp ³ -hybridized	b) Chromium nar. It is formed by the over	 c) Argon lapping of oxygen orbitals c) Three <i>p</i>-orbitals 	d) Lanthanum with orbitals of nitrogen . d) None of these
59.	The shape of NO_3^- is plan a) sp^3 -hybridized If a molecule MX_3 has zer a) Pure p	b) Chromium nar. It is formed by the over b) <i>sp</i> ² -hybridized	 c) Argon lapping of oxygen orbitals c) Three <i>p</i>-orbitals 	d) Lanthanum with orbitals of nitrogen . d) None of these
59.	The shape of NO_3^- is plan a) sp^3 -hybridized If a molecule MX_3 has zer a) Pure p 1, 3-butadiene has:	 b) Chromium har. It is formed by the over b) sp²-hybridized ero dipole moment the sigm b) sp-hybrid 	 c) Argon lapping of oxygen orbitals c) Three <i>p</i>-orbitals a bonding orbitals used by c) <i>sp</i>²-hybrid 	 d) Lanthanum with orbitals of nitrogen . d) None of these <i>M</i>(at. no. < 21) is: d) <i>sp</i>³-hybrid
59. 60.	The shape of NO_3^- is plan a) sp^3 -hybridized If a molecule MX_3 has zer a) Pure p 1, 3-butadiene has: a) 6σ and 2π -bonds	b) Chromium har. It is formed by the over b) sp^2 -hybridized ero dipole moment the sigm b) sp -hybrid b) 2σ and 2π -bonds	 c) Argon lapping of oxygen orbitals c) Three <i>p</i>-orbitals a bonding orbitals used by c) <i>sp</i>²-hybrid c) 9σ and 2<i>π</i>-bonds 	 d) Lanthanum with orbitals of nitrogen . d) None of these <i>M</i>(at. no. < 21) is:
59. 60.	The shape of NO_3^- is plan a) sp^3 -hybridized If a molecule MX_3 has zer a) Pure p 1, 3-butadiene has: a) 6σ and 2π -bonds Which of the following t	b) Chromium har. It is formed by the over b) sp^2 -hybridized ero dipole moment the sigm b) sp -hybrid b) 2σ and 2π -bonds ransitions involves maximu	 c) Argon lapping of oxygen orbitals c) Three <i>p</i>-orbitals a bonding orbitals used by c) <i>sp</i>²-hybrid c) 9σ and 2π-bonds m amount of energy? 	 d) Lanthanum with orbitals of nitrogen . d) None of these <i>M</i>(at. no. < 21) is: d) <i>sp</i>³-hybrid d) 6σ and 2π-bonds
59. 60. 61.	The shape of NO_3^- is plan a) sp^3 -hybridized If a molecule MX_3 has zer a) Pure p 1, 3-butadiene has: a) 6σ and 2π -bonds Which of the following t a) $M^-(g) \rightarrow M(g)$	b) Chromium har. It is formed by the over b) sp^2 -hybridized ero dipole moment the sigm b) sp -hybrid b) 2σ and 2π -bonds ransitions involves maximu b) $M(g) \rightarrow M^+(g)$	c) Argon lapping of oxygen orbitals c) Three <i>p</i> -orbitals a bonding orbitals used by c) sp^2 -hybrid c) 9σ and 2π -bonds m amount of energy? c) $M^+(g) \rightarrow M^{2+}(g)$	 d) Lanthanum with orbitals of nitrogen . d) None of these <i>M</i>(at. no. < 21) is: d) <i>sp</i>³-hybrid
59. 60. 61.	The shape of NO_3^- is plan a) sp^3 -hybridized If a molecule MX_3 has zer a) Pure p 1, 3-butadiene has: a) 6σ and 2π -bonds Which of the following t a) $M^-(g) \rightarrow M(g)$ Which of the following r	b) Chromium har. It is formed by the over b) sp^2 -hybridized ero dipole moment the sigm b) sp -hybrid b) 2σ and 2π -bonds ransitions involves maximu b) $M(g) \rightarrow M^+(g)$ molecular species has unpain	 c) Argon lapping of oxygen orbitals c) Three <i>p</i>-orbitals a bonding orbitals used by c) <i>sp</i>²-hybrid c) 9σ and 2π-bonds m amount of energy? c) <i>M</i>⁺(g) → <i>M</i>²⁺(g) red electron(s)? 	d) Lanthanum with orbitals of nitrogen . d) None of these M(at. no. < 21) is: d) sp^3 -hybrid d) 6σ and 2π -bonds d) $M^{2+}(g) \rightarrow M^{3+}(g)$
 59. 60. 61. 62. 	The shape of NO_3^- is plan a) sp^3 -hybridized If a molecule MX_3 has zer a) Pure p 1, 3-butadiene has: a) 6σ and 2π -bonds Which of the following t a) $M^-(g) \rightarrow M(g)$ Which of the following r a) N_2	b) Chromium har. It is formed by the over b) sp^2 -hybridized ero dipole moment the sigm b) sp -hybrid b) 2σ and 2π -bonds ransitions involves maximu b) $M(g) \rightarrow M^+(g)$ nolecular species has unpain b) F_2	 c) Argon lapping of oxygen orbitals c) Three <i>p</i>-orbitals a bonding orbitals used by c) <i>sp</i>²-hybrid c) 9σ and 2π-bonds m amount of energy? c) <i>M</i>⁺(g) → <i>M</i>²⁺(g) red electron(s)? c) 0⁻₂ 	 d) Lanthanum with orbitals of nitrogen . d) None of these <i>M</i>(at. no. < 21) is: d) <i>sp</i>³-hybrid d) 6σ and 2π-bonds
 59. 60. 61. 62. 	The shape of NO_3^- is plan a) sp^3 -hybridized If a molecule MX_3 has zer a) Pure p 1, 3-butadiene has: a) 6σ and 2π -bonds Which of the following t a) $M^-(g) \rightarrow M(g)$ Which of the following m a) N_2 The element having low	b) Chromium har. It is formed by the over b) sp^2 -hybridized ero dipole moment the sigm b) sp -hybrid b) 2σ and 2π -bonds ransitions involves maximu b) $M(g) \rightarrow M^+(g)$ nolecular species has unpain b) F_2 est ionisation energy among	c) Argon lapping of oxygen orbitals c) Three <i>p</i> -orbitals a bonding orbitals used by c) sp^2 -hybrid c) 9σ and 2π -bonds m amount of energy? c) $M^+(g) \rightarrow M^{2+}(g)$ red electron(s)? c) O_2^- g the following is:	d) Lanthanum with orbitals of nitrogen . d) None of these M(at. no. < 21) is: d) sp^3 -hybrid d) 6σ and 2π -bonds d) $M^{2+}(g) \rightarrow M^{3+}(g)$ d) O_2^{2-}
 59. 60. 61. 62. 63. 	The shape of NO_3^- is plan a) sp^3 -hybridized If a molecule MX_3 has zer a) Pure p 1, 3-butadiene has: a) 6σ and 2π -bonds Which of the following the a) $M^-(g) \rightarrow M(g)$ Which of the following the a) N_2 The element having low a) $1s^2, 2s^22p^3$	b) Chromium har. It is formed by the over- b) sp^2 -hybridized ero dipole moment the sigm b) sp -hybrid b) 2σ and 2π -bonds ransitions involves maximu b) $M(g) \rightarrow M^+(g)$ nolecular species has unpain b) F_2 est ionisation energy among b) $1s^2, 2s^22p^6, 3s^1$	 c) Argon lapping of oxygen orbitals c) Three <i>p</i>-orbitals a bonding orbitals used by c) <i>sp</i>²-hybrid c) 9σ and 2π-bonds m amount of energy? c) <i>M</i>⁺(g) → <i>M</i>²⁺(g) red electron(s)? c) 0⁻₂ 	d) Lanthanum with orbitals of nitrogen . d) None of these M(at. no. < 21) is: d) sp^3 -hybrid d) 6σ and 2π -bonds d) $M^{2+}(g) \rightarrow M^{3+}(g)$
 59. 60. 61. 62. 63. 	The shape of NO_3^- is plan a) sp^3 -hybridized If a molecule MX_3 has zer a) Pure p 1, 3-butadiene has: a) 6σ and 2π -bonds Which of the following to a) $M^-(g) \rightarrow M(g)$ Which of the following to a) N_2 The element having low a) $1s^2, 2s^22p^3$ Which of the following to	b) Chromium har. It is formed by the over b) sp^2 -hybridized ero dipole moment the sigm b) sp -hybrid b) 2σ and 2π -bonds ransitions involves maximu b) $M(g) \rightarrow M^+(g)$ nolecular species has unpain b) F_2 est ionisation energy among b) $1s^2, 2s^22p^6, 3s^1$ has largest ionic radius?	c) Argon lapping of oxygen orbitals c) Three <i>p</i> -orbitals a bonding orbitals used by c) sp^2 -hybrid c) 9σ and 2π -bonds m amount of energy? c) $M^+(g) \rightarrow M^{2+}(g)$ red electron(s)? c) O_2^- g the following is: c) $1s^2, 2s^22p^6$	d) Lanthanum with orbitals of nitrogen . d) None of these M(at. no. < 21) is: d) sp^3 -hybrid d) 6σ and 2π -bonds d) $M^{2+}(g) \rightarrow M^{3+}(g)$ d) 0_2^{2-} d) $1s^2, 2s^22p^5$
 59. 60. 61. 62. 63. 64. 	The shape of NO_3^- is plan a) sp^3 -hybridized If a molecule MX_3 has zer a) Pure p 1, 3-butadiene has: a) 6σ and 2π -bonds Which of the following the a) $M^-(g) \rightarrow M(g)$ Which of the following the a) N_2 The element having low a) $1s^2, 2s^22p^3$ Which of the following the a) Li ⁺	b) Chromium har. It is formed by the overful b) sp^2 -hybridized ero dipole moment the sigm b) sp -hybrid b) 2σ and 2π -bonds ransitions involves maximu b) $M(g) \rightarrow M^+(g)$ nolecular species has unpain b) F_2 est ionisation energy among b) $1s^2, 2s^22p^6, 3s^1$ has largest ionic radius? b) K ⁺	c) Argon lapping of oxygen orbitals c) Three <i>p</i> -orbitals a bonding orbitals used by c) sp^2 -hybrid c) 9σ and 2π -bonds m amount of energy? c) $M^+(g) \rightarrow M^{2+}(g)$ red electron(s)? c) O_2^- g the following is:	d) Lanthanum with orbitals of nitrogen . d) None of these M(at. no. < 21) is: d) sp^3 -hybrid d) 6σ and 2π -bonds d) $M^{2+}(g) \rightarrow M^{3+}(g)$ d) O_2^{2-}
 59. 60. 61. 62. 63. 64. 	The shape of NO_3^- is plan a) sp^3 -hybridized If a molecule MX_3 has zer a) Pure p 1, 3-butadiene has: a) 6σ and 2π -bonds Which of the following the a) $M^-(g) \rightarrow M(g)$ Which of the following me a) N_2 The element having low a) $1s^2, 2s^22p^3$ Which of the following he a) Li ⁺ Which will not conduct of	b) Chromium har. It is formed by the overl b) sp^2 -hybridized ero dipole moment the sigm b) sp -hybrid b) 2σ and 2π -bonds ransitions involves maximu b) $M(g) \rightarrow M^+(g)$ nolecular species has unpain b) F_2 est ionisation energy among b) $1s^2, 2s^22p^6, 3s^1$ has largest ionic radius? b) K ⁺ electricity?	c) Argon lapping of oxygen orbitals c) Three <i>p</i> -orbitals a bonding orbitals used by c) sp^2 -hybrid c) 9σ and 2π -bonds m amount of energy? c) $M^+(g) \rightarrow M^{2+}(g)$ red electron(s)? c) O_2^- g the following is: c) $1s^2, 2s^22p^6$	d) Lanthanum with orbitals of nitrogen . d) None of these M(at. no. < 21) is: d) sp^3 -hybrid d) 6σ and 2π -bonds d) $M^{2+}(g) \rightarrow M^{3+}(g)$ d) 0_2^{2-} d) $1s^2, 2s^22p^5$
 59. 60. 61. 62. 63. 64. 	The shape of NO_3^- is plan a) sp^3 -hybridized If a molecule MX_3 has zer a) Pure p 1, 3-butadiene has: a) 6σ and 2π -bonds Which of the following the a) $M^-(g) \rightarrow M(g)$ Which of the following the a) N_2 The element having low a) $1s^2, 2s^22p^3$ Which of the following the a) Li ⁺ Which will not conduct of a) Aqueous KOH solution	b) Chromium har. It is formed by the overl b) sp^2 -hybridized ero dipole moment the sigm b) sp -hybrid b) 2σ and 2π -bonds ransitions involves maximu b) $M(g) \rightarrow M^+(g)$ nolecular species has unpain b) F_2 est ionisation energy among b) $1s^2, 2s^22p^6, 3s^1$ has largest ionic radius? b) K ⁺ electricity?	c) Argon lapping of oxygen orbitals c) Three <i>p</i> -orbitals a bonding orbitals used by c) sp^2 -hybrid c) 9σ and 2π -bonds m amount of energy? c) $M^+(g) \rightarrow M^{2+}(g)$ red electron(s)? c) O_2^- g the following is: c) $1s^2, 2s^22p^6$	d) Lanthanum with orbitals of nitrogen . d) None of these M(at. no. < 21) is: d) sp^3 -hybrid d) 6σ and 2π -bonds d) $M^{2+}(g) \rightarrow M^{3+}(g)$ d) 0_2^{2-} d) $1s^2, 2s^22p^5$
 59. 60. 61. 62. 63. 64. 	The shape of NO_3^- is plan a) sp^3 -hybridized If a molecule MX_3 has zer a) Pure p 1, 3-butadiene has: a) 6σ and 2π -bonds Which of the following the a) $M^-(g) \rightarrow M(g)$ Which of the following me a) N_2 The element having low a) $1s^2, 2s^22p^3$ Which of the following he a) Li ⁺ Which will not conduct of	b) Chromium har. It is formed by the overl b) sp^2 -hybridized ero dipole moment the sigm b) sp -hybrid b) 2σ and 2π -bonds ransitions involves maximu b) $M(g) \rightarrow M^+(g)$ nolecular species has unpain b) F_2 est ionisation energy among b) $1s^2, 2s^22p^6, 3s^1$ has largest ionic radius? b) K ⁺ electricity?	c) Argon lapping of oxygen orbitals c) Three <i>p</i> -orbitals a bonding orbitals used by c) sp^2 -hybrid c) 9σ and 2π -bonds m amount of energy? c) $M^+(g) \rightarrow M^{2+}(g)$ red electron(s)? c) O_2^- g the following is: c) $1s^2, 2s^22p^6$	d) Lanthanum with orbitals of nitrogen . d) None of these M(at. no. < 21) is: d) sp^3 -hybrid d) 6σ and 2π -bonds d) $M^{2+}(g) \rightarrow M^{3+}(g)$ d) 0_2^{2-} d) $1s^2, 2s^22p^5$

d) KCl in solid state

	d) KCI in solid state			
66.	The bond order is maxim	num in:		
	a) H ₂	b) H ₂ ⁺	c) He ₂	d) He ₂ ⁺
67.	The isoelectronic species	s among the following are:		
	$I - CH_3^+; II - NH_2^+; III - NH_2^+$			
	a) I, II, III	b) II, III, IV	c) I, II, IV	d) II, I
68.		-	0, 1, 11, 11	
00.	a) Equal to that of <i>p</i> -elec		b) More than that of <i>p</i> -ele	octrone
		0113		
(0	c) Same as <i>f</i> -electrons		d) Less than <i>p</i> -electrons	
69.	OF ₂ is:			
	a) Linear molecule and s			
	b) Tetrahedral molecule			
	c) Bent molecule and <i>sp</i>	³ -hybridized		
	d) None of the above			
70.	Be and Al exhibit diagona	al relationship. Which of the	e following statement abou	t them is/are not true?
	I. Both react with HCl t	to liberate H_2		
	II. They are made passi	ve by HNO ₃		
		acetylene on treatment wit	h water	
	IV. Their oxides are am	-		
	a) (iii) and (iv)	b) (i) and (iii)	c) (i) only	d) (iii) only
71	Which is not linear?			
/ 1.	a) CO_2	b) HCN	c) C ₂ H ₂	d) H ₂ O
72	, -		cj c ₂ 11 ₂	u) 11 ₂ 0
12.	-	bond angle is maximum?		
70	a) NH ₃	b) NH ₄ ⁺	c) PCl ₅	d) SCl ₂
/3.	The molecule which has			D 2007
	a) PCl ₃	b) SO_3	c) CO_3^{2-}	d) NO ₃
74.	-	has no 'd' electrons in the ce		2.
	a) [MnO ₄] ⁻	b) [Co(NH ₃) ₆] ³⁺	c) $[Fe(CN)_6]^{3-}$	d) $[Cr(H_20)_6]^{3+}$
75.	For the formation of cova	alent bond, the difference in	the value of electronegativ	vities should be:
	a) Equal to or less than 1	7		
	b) More than 1.7			
	c) 1.7 or more			
	d) None of the above			
76.	Strongest bond is in:			
	a) NaCl	b) CsCl	c) Both (a) and (b)	d) None of these
77.	-	-		endothermic step as shown
	below,			r
	$0(g) + e \rightarrow 0^{-}(g); \Delta H$	= -142 kI/mol		
	$0^{-}(g) + e \rightarrow 0^{2-}(g); \Delta h$	••		
	These is because:	m = 044 KJ/mol		
		vely larger size than oxygen	atom	
	b) Oxygen has high elect	-		
		ist the addition of another e	electron	
	d) Oxygen is more electr	•		
78.	Which among the follow	ing has the largest dipole m	oment?	
	a) NH ₃	b) H ₂ O	c) HI	d) SO ₃
79.	The correct order of radi			
	a) N < <i>Be</i> < B	b) $F^- < 0^{2-} < N^{3-}$	c) $Fe^{3+} < Fe^{2+} < Fe^{4+}$	d) Na < <i>Li</i> < <i>K</i>
80.	Diagonal relationship is	for		
	a) Li-Na	b) Be-Mg	c) Si-C	d) B-Si
	-		-	-

81.	Bond order of 1.5 is shown by:				
	a) 02 ⁻	b) 0 ₂	c) 0 ₂ ⁺	d) 0 ₂	
02	TATI THE STATE COLOR COLLECTION				

82. Which one of the following is an amphoteric oxide?a) ZnOb) Na_2O c) SO_2 d) B_2O_3

83. Among, Al_2O_3 , SiO_2 , P_2O_3 and SO_2 the correct order of acid strength isa) $SO_2 < P_2O_3 < SiO_2 < Al_2O_3$ b) $SiO_2 < SO_2 < Al_2O_3 < P_2O_3$ c) $Al_2O_3 < SiO_2 < SO_2 < P_2O_3$ d) $Al_2O_3 < SiO_2 < P_2O_3 < SO_2$

84. Point out the wrong statement. On moving horizontally from left to right across a period in the Periodic Table

- a) Metallic character decreases
- b) Electronegativity increases
- c) Gram atomic volume first decreases and then increases
- d) Size of the atoms increases for normal elements
- 85. The correct increasing bond angles order is:
 - a) $BF_3 < NF_3 < PF_3 < ClF_3$
 - b) $ClF_3 < PF_3 < NF_3 < BF_3$
 - c) $BF_3 \approx NF_3 < PF_3 < ClF_3$
 - d) $BF_3 < NF_3 < PF_3 > ClF_3$
- 86. The incorrect statement among the following is
 - a) The first ionisation potential of Al is less than the first ionisation potential of Mg
 - b) The second ionisation potential of Mg is greater than the second ionisation potential of Na
 - c) The first ionisation potential of Na is less than the first ionisation potential of Mg
 - d) The third ionisation potential of Mg is greater than that of Al
- 87. Concept of bond order in the molecular orbital theory depends on the number of electrons in the bonding and antibonding orbitals. The bond order:
 - a) Can have a -ve value
 - b) Has always an integral value
 - c) Is a non-zero quantity
 - d) Can assume any +ve value, including zero

88.	. Which hybridization results non-polar orbitals?			
	a) <i>sp</i>	b) <i>sp</i> ²	c) <i>sp</i> ³	d) dsp^2
89.	The total number of valen	cy electrons for PO_4^{3-} ion is	5:	
	a) 32	b) 16	c) 28	d) 30
90.	Intramolecular hydrogen	bonding is found in:		
	a) Salicyldehyde	b) Water	c) Acetaldehyde	d) Phenol
91.	Amphoteric oxide combin	ations are in		
	a) ZnO, K_2O , SO ₃	b) ZnO, P_2O_5 , Cl_2O_7	c) SnO_2 , Al_2O_3 , ZnO	d) PbO ₂ , SnO ₂ , SO ₃
92.	Chlorine atom tends to ac	quire the structure of:		
	a) He	b) Ne	c) Ar	d) Kr
93.	Which of the following ior	n is the smallest ion?		
	a) 0 ₂	b) 0 ₂ ⁺	c) 0_2^-	d) 0_2^{2-}
94.	Variable valency is charac	teristic of:		
	a) Noble gas			
	b) Alkali metals			
	c) Transition metals			
	d) Non-metallic elements			
95.	Which force is strongest?			

a) Dipole-dipole forces

- b) Ion-ion forces
- c) Ion-dipole forces

d) Ion-induced dipole forces		
96. Identify the transition element.		
a) $1s^2$, $2s^22p^6$, $3s^23p^6$, $4s^2$	b) $1s^2$, $2s^22p^6$, $3s^23p^63$	
c) $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^24p^2$	d) 1s ² , 2s ² 2p ⁶ , 3s ² 3p ⁶ 3	$3d^{10}, 4s^2 4p^1$
97. For a covalent solid, the units which occupy lattice	e points are:	
a) Atoms b) Ions	c) Molecules	d) Electrons
98. Which is not true in case of ionic bond?		
a) It is linear bond		
b) It is 100% ionic		
c) It is formed between two atoms with large elec	tronegativity difference	
d) None of the above		
99. In the following molecule, the two carbon atom	s marked by asterisk (*) j	possess the following type of
hybridized orbitals:		
H ₂ C ——	с <u></u> ссн ₃	
5	c) <i>sp</i> -orbital	d) <i>s</i> -orbital
100. The element which exists in both hard and soft for		uj s-orbitar
a) Fe b) Si		d) A1
101. Resonance is not shown by:	c) C	d) Al
-	$(0,0)^{2-1}$	4) 6:0
a) C_6H_6 b) CO_2	c) CO_3^{2-}	d) SiO ₂
102. The hybridization of P in PO_3^{3-} is same as in:		$\mathbf{D} = \mathbf{c} + \mathbf{c} + \mathbf{c}^2 \mathbf{c}^2$
a) I in ICl_4^- b) S in SO_3	c) N in NO_3^-	d) S in SO_4^{2-}
103. Dipole moment is highest for:		
a) $CHCl_3$ b) CH_4	c) CHF_3	d) CCl ₄
104. What is the correct decreasing order of ionic radii	of following ions? N^{3-} , O^{2-}	, F ⁻ , Na ⁺ , Mg ²⁺
a) $N^{3-} > O^{2-} > F^- > Mg^{2+} > Na^+$	b) $N^{3-} > 0^{2-} > F^- > N$	0
c) $N^{3-} > O^{2-} > Mg^{2+} > Na^+ > F^-$	d) $Na^+ > F^- > O^{2-} > N$	0
105. In which of the following crystals of ionic compou	nds would you expect maxi	mum distance between the
centres of cotions and anions		
a) LiF b) CsF	c) CsI	d) LiI
106. Which of the following has lowest bond angle?		
a) BeF_2 b) H_2O	c) NH ₃	d) CH ₄
107. The state of hybridization of C_2 , C_3 , C_5 and C_6 of the state of hybridization of C_2 , C_3 , C_5 and C_6 of C_6	ie hydrocarbon,	
CH ₃ CH ₃		
$CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{C} CH_{3}$ $CH_{3} \xrightarrow{C} CH_{5} \xrightarrow{C} CH_{4} \xrightarrow{C} CH_{3} \xrightarrow{C} CH_{1}$		
$\begin{array}{c} 7 \\ \text{CH}_2 \end{array}$		
Is in the following sequence:		
a) sp, sp^2, sp^3 and sp^2 b) sp, sp^3, sp^2 and sp^3	c) an^3 an^2 an^2 and an	d) $cn cn^2 cn^2$ and cn^3
108. Among the following elements Ca, Mg, P and Cl the		
a) $Mg < Ca < Cl < P$ b) $Cl < P < Mg < Ca$	C P < C I < C a < Mg	$u_J ca < Mg < P < cl$
109. Alkali metals in each period have:		
a) Largest size		
b) Lowest <i>IE</i>		
c) Highest <i>IE</i>		
d) Highest electronegativity		
110. The critical temperature of water is higher than the	hat of U_2 because H_2U mole	cules has:
a) Fewer electrons than O_2		
b) Two covalent bonds		
c) V-shape		

d) Dipole moment

111. For diatomic species are listed below. Identify the correct order in which the bond order is increasing in them:

a) NO < $O_2^- < C_2^{2-} < He_2^+$ b) $0_2^- < \text{NO} < C_2^{2-} < \text{He}_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $\text{He}_2^+ < \text{O}_2^- < \text{NO} < \text{C}_2^{2-}$ 112. Which of the following is least ionic? a) CaF_2 b) $CaBr_2$ d) CaCl₂ c) CaI_2 113. The bond order of individual carbon-carbon bonds in benzene is: a) One b) Two c) Between 1 and 2 d) One and two alternately 114. The total number of valency electrons in PH_4^+ ion is: a) 8 b) 9 d) 14 c) 6 115. Pauling's equation for determining the electronegativity of an element, is X_A, X_B = electronegativity values of elements A and B Δ =represents polarity of A - B bond b) $X_A + X_B = 0.208\sqrt{\Delta}$ c) $X_A - X_B = 0.208\Delta^2$ a) $X_A - X_B = 0.208\sqrt{\Delta}$ d) $X_A - X_B = \sqrt{\Delta}$ 116. The set representing the correct order of ionic radius is: a) $Na^+ > Li^+ > Mg^{2+} > Be^{2+}$ b) $Li^+ > Na^+ > Mg^{2+} > Be^{2+}$ c) $Mg^{2+} > Be^{2+} > Li^+ > Na^+$ d) $Li^+ > Be^{2+} > Na^+ > Mg^{2+}$ 117. The pair having similar geometry is : a) BF_3 , NH_3 b) BF_3 , AlF_3 c) BeF_2, H_2O d) BCl_3 , PCl_3 118. The attraction that non-polar molecules have for each other is primarily caused by: a) Hydrogen bonding b) Difference in electronegativities c) High ionisation energy d) Van der Waals' forces 119. The structure of ICl_2^- is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal bipyramid 120. The correct order of increasing oxidising power is c) $Cl_2 < Br_2 < F_2 < I_2$ a) $F_2 < Cl_2 < I_2 > Br_2$ b) $F_2 < Br_2 < Cl_2 < I_2$ d) $I_2 < Br_2 < Cl_2 < F_2$ 121. Which of the following oxides is not expected to react with sodium hydroxide? a) BeO b) $B_2 O_3$ c) CaO d) SiO_2 122. In which molecule, the central atom does not use sp^3 -hybrid orbitals in its bonding? d) SO_4^{2-} b) $BeF_3^$ c) SO_2Cl_2 a) NH_2^- 123. Which element has the lowest electronegativity? a) Li b) F c) Cl d) Fe 124. Amongst the following elements the configuration having the highest ionization energy is: b) [Ne] $3s^23 p^3$ a) [Ne] $3s^2 3 p^1$ c) [Ne] $3s^23p^2$ d) [Ar] $3d^{10}4s^24p^3$ 125. Which species does not exist? a) $(SnCl_6)^{2-}$ b) $(GeCl_6)^{2-}$ c) $(CCl_6)^{2-}$ d) $(SiCl_6)^{2-}$ 126. Which one of the following has not triangular pyramidal shape? b) NCl_3 c) PF_3 d) BCl_3 a) NH_3

	b) BeCl ₂ and CO ₂ state of carbon atom chang bly	c) NH_3 and H_2O	d) NH ₃ and CO ₂ ally to <i>sp,</i> the angle between
a) Liquid H_2	b) Liquid CO ₂	c) Liquid O ₂	d) Liquid N ₂
130. The equilateral triangle		c_{j} Equila O_{2}	a) Eiquia N ₂
	b) <i>sp</i> ² -hybridization	c) sn^3 -hybridization	d) sp^3d -hybridization
131. Which atomic orbital is			aj sp a hybridization
a) s	b) <i>p</i>	c) d	d) <i>f</i>
132. Two ice cubes are pres		•	
holding them together?			Ĩ
a) van der Waals' forces	3		
b) Covalent attraction			
c) Hydrogen bond form	ation		
d) Dipole-dipole attract			
133. The decreasing values o	f bond angles from $NH_3(10)$	6°) to SbH ₃ (101°) down gi	oup-15 of the periodic table
is due to:			
a) Increasing $bp - bp$ re			
b) Increasing <i>p</i> -orbital of	-		
c) Decreasing $lp - bp$ re	-		
d) Decreasing electrone 134. The bond that determin		of a protain ic.	
a) Coordinate bond	b) Covalent bond	c) Hydrogen bond	d) Ionic bond
135. Which is not an exception		c) flydrogen bond	a) forme borna
a) BF_3		c) Bel ₂	d) ClO_2
136. Higher is the bond orde	y 1	6) 2012	
a) Bond dissociation en	-		
b) Covalent character			
c) Bond length			
d) Paramagnetism			
137. Highest electron affinity	among the following is		
a) Fluorine	b) Chlorine	c) Sulphur	d) Xenon
138. According to molecular			
	an O_2 and O_2^+ is paramagnet		
	han O_2 and O_2^+ is paramagne		
	an O_2 and O_2^+ is diamagnetic		
	han O_2 and O_2^+ is diamagnet	10	
139. Which of the following h a) O_2^{2+}	b) O_2^{2-}	c) F ₂ ²⁻	4) H_
140. Which of the following i	, ,	· -	d) H ₂
a) PO_4^{3-}	b) NH ⁺ ₄	4. c) SCl ₄	d) SO ₄ ²⁻
141. The correct order of dec		<i>y</i>	
a) $V > Mn > Cr > Ti$	-	c) Ti > V > Cr > Mn	
142. The electrons used in bo	-	- <i>j</i> =	· , · · · · · · · · · · · ·
a) Belong to outermost	-		

b) Belong to penultimate shell						
c) Belong to outermost shell and sometimes penultimate shell						
143. The discovery of which of the following group of elements gave death blow to the Newland's law of octaves?						
c) Rare earths	d) Actinides					
g a period. But there are so	me exceptions. One which is					
c) Mg and Al	d) Be and B					
ect sequence of the increas	sing basic nature of the given					
, , , , , , , , , , , , , , , , , , , ,	-					
,	< MgO					
-						
ng of magnesium vapours i	s [Given, $1eV = 96.5 \text{ kJ}$					
.) 1 1						
-	d) 0.5					
asing order of them size is:						
t are 191 578 872 and 59	62 kcal. The number of					
t are 191, 370, 072 and 39	62 Keal. The number of					
c) 3	d) 4					
-) -						
c) 1, 3, 5	d) 1, 2, 4					
lis						
c) Na > Mg > Al > Si	d) Na $< Mg < Al > Si$					
	d) NH_2^- and BeF_2					
-						
c) 9.32 eV, 9.32 eV	d) 9.32 eV, 8.29 eV					
c) $0^{2^-} > 0^- > 0$	d) $0 > 0^{2^-} > 0^-$					
$c_J \cup > c > B > N$	d) $0 < C < B < N$					
h) Nitnozon har	E then owner					
-	ig ageilt					
	termost shell ments gave death blow to c) Rare earths g a period. But there are so c) Mg and Al rect sequence of the increas b) MgO $< K_2O < Al_2O_3$ d) $K_2O < Na_2O < Al_2O_3$ the Periodic Table is b) Electronegativity d) Number of valence electively. The amount of ener ing of magnesium vapours i c) 1.1 asing order of their size is: t are 191, 578, 872 and 590 c) 3					

-	b) Solid NaCl is covalent				
c) In solid NaCl there is no velocity of ions					
d) In solid NaCl there are no electrons					
158. Which of the following configuration is associate					
	c) $1s^2$, $2s^22p^6$, $3s^2$				
159. Consider the ions K^+ , S^{2-} , Cl^- and Ca^{2+} . The radi					
a) $Ca^{2+} > K^+ > Cl^- > S^{2-}$	b) $Cl^- > S^{2-} > K^+ > Ca$				
c) $Ca^{2+} > Cl^- > K > S^{2-}$	d) $S^{2-} > Cl^{-} > K^{+} > Ca$	2+			
160. The correct order of ionisation energy for compa		/gen is			
a) $C < N > 0$ b) $C > N < 0$	c) $C > N > 0$	d) C < N < 0			
161. A π -bond is formed by sideways overlapping of:					
a) <i>s-s</i> orbitals b) <i>p-p</i> orbitals	c) <i>s-p</i> orbitals	d) <i>s-p-s</i> orbitas			
162. Which oxide of nitrogen is isoelectronic with CO	2?				
a) NO_2 b) N_2O	c) NO	d) $N_2 O_2$			
163. In which of the following pairs of molecules/ions	s, the central atom has sp^2 -hy	bridization?			
a) NO ₂ and NH ₃ b) BF ₃ and NO ₂ ⁻	c) NH_2^- and H_2O	d) BF ₃ and NH ₂			
164. Which of the following has largest ionic radius?					
a) Cs ⁺ b) Li ⁺	c) Na ⁺	d) K+			
165. Boron cannot form which one of the following an	nions?				
a) BF_6^{3-} b) BH_4^{-}	c) B(OH) ₄	d) BO_2^-			
166. Most covalent halide of aluminium is:		· -			
a) AlCl ₃ b) All ₃	c) AlBr ₃	d) AlF ₃			
167. The shape of ClO_3^- according to VSEPR model is:	<i>,</i>	<i>y</i> 0			
a) Planar triangle b) Pyramidal	c) Tetrahedral	d) Square planar			
168. The correct order of increasing bond angles in th	2				
a) $NO_2^- < NO_2 < NO_2^+$ b) $NO_2^+ < NO_2 < NO_2^-$					
169. Which of the following pairs has both members f					
a) Mg – Ba b) Mg – Cu	c) Mg – K	d) Mg – Na			
170. Silicon has 4 electrons in the outermost orbit. In	, ,				
a) It gains electrons b) It losses electrons	-	d) None of these			
171. sp^2 -hybridization is shown by:	-)				
a) $BeCl_2$ b) BF_3	c) NH ₃	d) XeF ₂			
172. A <i>p</i> -block element in which last electron enters i					
a) As b) Ga	c) No such element exist	_			
173. Which of the following are not correct?					
a) Lone pair of electrons present on central atom	n can give rise to dipole mome	nt			
b) Dipole moment is vector quantity					
c) CO_2 molecule has dipole moment					
d) Difference in electronegativities of combining	atoms can lead to dipole mor	nent			
174. The order of first ionisation energies of the elem	-	licite			
_	c) Na > Li > B > Be	d) Be > $Li > B > Na$			
175. Differentiating electron in inner transition eleme		•			
a) s b) p	c) d	d) <i>f</i>			
176. Which is expected to conduct electricity?	cj u	u) j			
a) Diamond b) Molten sulphur	c) Molten KCl	d) Crystalline NaCl			
177. Elements whose electronegativities are 1.2 and 3	2	uj ci ystallile Naci			
a) Ionic bond b) Covalent bond	c) Coordinate bond	d) Metallic bond			
178. Which is the correct order of ionic sizes?) At. no.					
a) $Ce > Sn > Yb > Lu$ b) $Sn > Yb > Ce > Lu$ 179 Ovygen is divalent but subbut exhibits variable	-				
179. Oxygen is divalent, but sulphur exhibits variable	valency of 2, 4 and 0, because				

 a) Sulphur is less electronegative than oxygen b) Sulphur is bigger atom than oxygen c) Ionisation potential of sulphur is more than ox d) Of the presence of <i>d</i>-orbitals in sulphur 180. In the Periodic Table, going down in the fluorine a) Stability of hydrides will increases c) Electronegativity will increases 181. The ionisation energy of nitrogen is larger than t a) Of greater attraction of electrons by the nuclei b) Of the size of nitrogen atom being smaller c) The half-filled <i>p</i>-orbitals possess extra stabilit d) Of greater penetration effect 182. Which has the highest ionisation potential? 	group b) Ionic radii will increas d) IE will increases hat of oxygen because of us	ses
a) Na b) Mg	c) C	d) F
183. Which of the following does not represents the c	orrect order of the property i	ndicated?
	b) Sc $< Ti < Cr < Mn -$	
c) $Mn^{2+} > Ni^{2+} > Co^{2+} < Fe^{2+}$ – ionic radii		
184. The electronic configuration of most electronega		
	c) 1s ² , 2s ² , 2p ⁶ , 3s ¹ , 3p ¹	d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^5$
185. Which group of the Periodic Table does not conta	ain only metals?	
a) IB b) IA	c) IIA	d) IIIA
186. The species showing $p\pi - d\pi$ overlapping is:		
a) NO_3^- b) PO_4^{3-}	c) CO_3^{2-}	d) NO ₂
187. Variable oxidation state and degenerated orbital	shows	
a) <i>s</i> -block elements b) <i>p</i> -block elements	c) <i>d</i> -block elements	d) All of these
188. Which of the following is a metalloid?		
a) Sb b) Mg	c) Zn	d) Bi
189. Which does not use sp^3 -hybrid orbitals in its bor		
a) BeF_3^- b) OH_3^+	c) NH ₄	d) NF ₃
190. Which of the following have highest electron affi	-	
a) N b) O	c) F	d) Cl
 191. The correct order of increasing electropositive cl a) Cu ≈ Fe < Mg b) Fe < Cu < Mg 	c) Fe < Mg < Cu	d) Cu < Fe < Mg
a) Cu \approx Fe < Mg b) Fe < Cu < Mg 192. As one moves along a given row in the Periodic T	, .	u j c u < r e < Mg
a) Increases from left to right	b) Decreases from left to	right
c) First increases, then decreases	d) Remains the same	
193. The lightest metal is	aj kemano ele same	
a) Li b) Na	c) Mg	d) Ca
194. Which is the property of non-metal?	, 0	,
a) Electronegative	b) Basic nature of oxide	
c) Reducing property	d) Low ionisation potent	tial
195. In a given shell the order of screening effect is		
a) $s > p > d > f$ b) $s > p > f > d$	c) $f > d > p > s$	d) s
196. Among the following compounds the one that is	polar and has central atom wi	th sp^2 -hybridisation is:
a) H_2CO_3 b) SiF_4	c) BF ₃	d) HClO ₂
197. The formation of the oxide ion $0^{2-}(g)$ requires fibelow;	irst an exothermic and then a	n endothermic step as shown
$O(g) + e^{-} = O^{-}(g); \Delta H^{\circ} = -142 \text{ kJmo}1^{-1}$		
$O(g)^{-} + e^{-} = O^{2-}(g); \Delta H^{\circ} = 844 \text{ kJmo} 1^{-1}$		
This is because		

a) Ovv				
	gen is more electro			
b) Oxy	gen has high electi	on affinity		
c) 0 ⁻ i	on will tend to resi	st the addition of another e	electron	
d) 0 ⁻ h	as comparatively	arger size than oxygen ato	m	
198. Which	of the following st	atements is correct?		
a) X ⁻ i	on is larger in size	than X-atom	b) X^+ ion is larger in size	than X-atom
c) X ⁺ i	on is larger in size	than X^- ion	d) X^+ and X^- ions are equation	ual in size
199. Numbe	er of elements pres	sents in the fifth period of p	eriodic table is	
a) 32		b) 10	c) 18	d) 8
200. The co	mpound possessin	ig most strongly ionic natu	re is:	
a) SrC	2	b) BaCl ₂	c) CaCl ₂	d) CsCl
201. What i	s the name of elem	ent with atomic number 1	05?	
a) Kur	chatovium	b) Dubnium	c) Nobelium	d) Holmium
202. Among	the following whi	ch is the strongest oxidisin	g agent?	-
a) Cl_2	, .	b) F_2	c) Br_2	d) I ₂
	termost electronic	c configuration of the most	· -	5 2
a) ns^2		b) ns^2np^4	c) ns^2np^5	d) ns^2np^6
-	•	regarding bonding molecu	· ·	
			an combining atomic orbita	als.
-	-		nsity between the two nucle	
			tributes to attraction betwee	
-	-	-	g atomic orbitals have same	
-	of the following ha			, 51611.
a) Al	or the following it	b) Al ⁺	c) Al ²⁺	d) Al ³⁺
-	1 atoms in C ₂ (CN) ₄	,	C) AI	u) Al
200. Cai boi				$sn sn^2$ and sn^3 .
a) <i>sp-</i> ł	ybridized	b) <i>sp</i> ² -hybridized	c) <i>sp</i> -and sp^2 - hybridized	d d d $b w b r i d z o d$
207 The co	mmon feature am	ong the species CN ⁻ , CO and	$d NO^+$ are:	nybriaizea
		•	u NO ale.	
-	d order three and			
-		weak filed ligands		
-	d order two and π	•		
	lectronic and wea	0		
	one of the elemen			
a) F		ts has the maximum electro	-	
	1 1.	b) Cl	c) Br	d) I
		b) Cl	c) Br	d) I vely. The bond length of H —
Cl may	be:	b) Cl e in H ₂ and Cl ₂ molecules a	c) Br re 74 and 198 pm respectiv	rely. The bond length of H —
Cl may a) 272	be: pm	b) Cl e in H ₂ and Cl ₂ molecules a b) 70 pm	c) Br	
Cl may a) 272 210. PCl ₅ ex	be: pm kists but NCl ₅ does	 b) Cl e in H₂ and Cl₂ molecules a b) 70 pm not because: 	c) Br re 74 and 198 pm respectiv	rely. The bond length of H —
Cl may a) 272 210. PCl ₅ ex a) Nitr	be: pm sists but NCl ₅ does ogen has no vacan	 b) Cl e in H₂ and Cl₂ molecules a b) 70 pm not because: 	c) Br re 74 and 198 pm respectiv	rely. The bond length of H —
Cl may a) 272 210. PCl ₅ ex a) Nitr b) NCl	be: pm kists but NCl ₅ does ogen has no vacan 5 is unstable	 b) Cl e in H₂ and Cl₂ molecules a b) 70 pm not because: t 2<i>d</i>-orbitals 	c) Br re 74 and 198 pm respectiv	rely. The bond length of H —
Cl may a) 272 210. PCl ₅ ex a) Nitr b) NCl c) Nitr	be: pm tists but NCl ₅ does ogen has no vacan 5 is unstable ogen atom is much	 b) Cl e in H₂ and Cl₂ molecules a b) 70 pm not because: t 2<i>d</i>-orbitals n smaller than <i>p</i> 	c) Br re 74 and 198 pm respectiv	rely. The bond length of H —
Cl may a) 272 210. PCl ₅ ex a) Nitr b) NCl c) Nitr d) Nitr	be: pm xists but NCl ₅ does ogen has no vacan 5 is unstable ogen atom is much ogen is highly high	 b) Cl e in H₂ and Cl₂ molecules a b) 70 pm not because: t 2<i>d</i>-orbitals n smaller than <i>p</i> nly inert 	c) Br re 74 and 198 pm respectiv c) 136 pm	rely. The bond length of H —
Cl may a) 272 210. PCl ₅ ex a) Nitr b) NCl c) Nitr d) Nitr	be: pm xists but NCl ₅ does ogen has no vacan 5 is unstable ogen atom is much ogen is highly high	 b) Cl e in H₂ and Cl₂ molecules a b) 70 pm not because: t 2<i>d</i>-orbitals n smaller than <i>p</i> nly inert ng process requiring absorption 	 c) Br re 74 and 198 pm respective c) 136 pm ption of energy? 	rely. The bond length of H — d) 248 pm
Cl may a) 272 210. PCl ₅ ex a) Nitr b) NCl c) Nitr d) Nitr 211. Which a) Cl -	be: pm sists but NCl ₅ does ogen has no vacan 5 is unstable ogen atom is much ogen is highly high one of the followin → Cl ⁻	b) Cl e in H ₂ and Cl ₂ molecules a b) 70 pm not because: t 2 <i>d</i> -orbitals n smaller than <i>p</i> nly inert ng process requiring absorp b) H \rightarrow H ⁻	c) Br re 74 and 198 pm respectiv c) 136 pm ption of energy? c) $0 \rightarrow 0^{2-}$	rely. The bond length of H —
Cl may a) 272 210. PCl ₅ ex a) Nitr b) NCl c) Nitr d) Nitr 211. Which a) Cl -	be: pm sists but NCl ₅ does ogen has no vacan 5 is unstable ogen atom is much ogen is highly high one of the followin → Cl ⁻	 b) Cl e in H₂ and Cl₂ molecules a b) 70 pm not because: t 2<i>d</i>-orbitals n smaller than <i>p</i> nly inert ng process requiring absorption 	c) Br re 74 and 198 pm respectiv c) 136 pm ption of energy? c) $0 \rightarrow 0^{2-}$	rely. The bond length of H — d) 248 pm
Cl may a) 272 210. PCl ₅ ex a) Nitr b) NCl c) Nitr d) Nitr 211. Which a) Cl - 212. The hy	be: pm sists but NCl ₅ does ogen has no vacan 5 is unstable ogen atom is much ogen is highly high one of the followin → Cl ⁻	b) Cl e in H ₂ and Cl ₂ molecules a b) 70 pm not because: t 2 <i>d</i> -orbitals n smaller than <i>p</i> nly inert ng process requiring absorp b) H \rightarrow H ⁻	c) Br re 74 and 198 pm respectiv c) 136 pm ption of energy? c) $0 \rightarrow 0^{2-}$	rely. The bond length of H — d) 248 pm
Cl may a) 272 210. PCl ₅ es a) Nitr b) NCl c) Nitr d) Nitr 211. Which a) Cl - 212. The hy a) <i>sp</i> ³ ,	be: pm sists but NCl ₅ does ogen has no vacan is unstable ogen atom is much ogen is highly high one of the followin \rightarrow Cl ⁻ bridization of cark sp^2, sp	b) Cl e in H ₂ and Cl ₂ molecules a b) 70 pm not because: t 2 <i>d</i> -orbitals n smaller than <i>p</i> nly inert ng process requiring absorp b) H \rightarrow H ⁻ bon in diamond, graphite ar b) <i>sp</i> ³ , <i>sp</i> , <i>sp</i> ²	c) Br re 74 and 198 pm respectiv c) 136 pm ption of energy? c) $0 \rightarrow 0^{2-}$ nd acetylene is:	rely. The bond length of H − d) 248 pm d) F → F [−] d) $sp, sp^3 sp^2$
Cl may a) 272 210. PCl ₅ ex a) Nitr b) NCl c) Nitr d) Nitr 211. Which a) Cl - 212. The hy a) <i>sp</i> ³ , 213. Which	be: pm sists but NCl ₅ does ogen has no vacan is unstable ogen atom is much ogen is highly high one of the followin \rightarrow Cl ⁻ bridization of cark sp^2, sp	b) Cl e in H ₂ and Cl ₂ molecules a b) 70 pm not because: t 2 <i>d</i> -orbitals n smaller than <i>p</i> nly inert ng process requiring absorp b) H \rightarrow H ⁻ bon in diamond, graphite ar b) <i>sp</i> ³ , <i>sp</i> , <i>sp</i> ²	c) Br re 74 and 198 pm respectiv c) 136 pm ption of energy? c) $0 \rightarrow 0^{2-}$ nd acetylene is: c) sp^2, sp^3, sp	rely. The bond length of H − d) 248 pm d) F → F [−] d) $sp, sp^3 sp^2$
Cl may a) 272 210. PCl ₅ ex a) Nitr b) NCl c) Nitr d) Nitr 211. Which a) Cl - 212. The hy a) <i>sp</i> ³ , 213. Which a) K ⁺	be: pm sists but NCl ₅ does ogen has no vacan g is unstable ogen atom is much ogen is highly high one of the followin \rightarrow Cl ⁻ bridization of cark sp^2, sp ionisation potenti \rightarrow K ²⁺ + e^-	b) Cl e in H ₂ and Cl ₂ molecules a b) 70 pm not because: t 2 <i>d</i> -orbitals n smaller than <i>p</i> nly inert ng process requiring absorp b) H \rightarrow H ⁻ bon in diamond, graphite ar b) <i>sp</i> ³ , <i>sp</i> , <i>sp</i> ² al (IP) in the following equ	c) Br re 74 and 198 pm respectiv c) 136 pm c) 136 pm c) $0 \rightarrow 0^{2-}$ nd acetylene is: c) sp^2, sp^3, sp ations involves the greatest	rely. The bond length of H − d) 248 pm d) F → F [−] d) $sp, sp^3 sp^2$ c amount of energy?
Cl may a) 272 210. PCl ₅ ex a) Nitr b) NCl c) Nitr d) Nitr 211. Which a) Cl - 212. The hy a) <i>sp</i> ³ , 213. Which a) K ⁺ - 214. The pa	be: pm sists but NCl ₅ does ogen has no vacan g is unstable ogen atom is much ogen is highly high one of the followin \rightarrow Cl ⁻ bridization of cark sp^2, sp ionisation potenti \rightarrow K ²⁺ + e^-	b) Cl e in H ₂ and Cl ₂ molecules a b) 70 pm not because: t 2 <i>d</i> -orbitals n smaller than <i>p</i> nly inert ng process requiring absorp b) H \rightarrow H ⁻ bon in diamond, graphite ar b) sp^3 , sp , sp^2 al (IP) in the following equ b) Na \rightarrow Na ⁺ + e^-	c) Br re 74 and 198 pm respectiv c) 136 pm c) 136 pm c) $0 \rightarrow 0^{2-}$ nd acetylene is: c) sp^2, sp^3, sp ations involves the greatest	rely. The bond length of H − d) 248 pm d) F → F [−] d) $sp, sp^3 sp^2$ c amount of energy?

215. The energy of $\sigma 2s$ -orbital is greater than $\sigma^* 1s$ orbit	al because:		
a) $\sigma 2s$ orbital is bigger than $\sigma 1s$ orbital			
b) $\sigma 2s$ orbital is a bonding orbital whereas, $\sigma^* 1s$ an antibonding orbital			
c) $\sigma 2s$ orbital has a greater value of <i>n</i> than $\sigma^* 1s$ orb	pital		
d) None of the above			
216. Who developed the long form of Periodic Table?			
a) Niels Bohr b) Moseley	c) Mendeleef	d) Lothar Meyer	
217. At ordinary temperature and pressure, among ha	-		
iodine is a solid. This is because:		sus, bromme is a nquia ana	
a) The specific heat is in the order $Cl_2 > Br_2 > I_2$			
	no and the weeks and the	as in isding and the	
b) Intermolecular forces among molecules of chlori	lie ale uie weakest allu tilo		
strongest			
c) The order of density is $I_2 > Br_2 > Cl_2$			
d) The order of stability is $Cl_2 > Br_2 > I_2$			
218. The radii F, F ^{$-$} , O and O ^{2$-$} are in the order of	2		
a) $F^- > 0^{2-} > F > 0$ b) $F > F^- > 0 > 0^{2-}$	c) $0^{2^-} > F^- > 0 > F$	d) $F > 0 > F^- > 0^{2-}$	
219. Which of the following is the smallest in size?			
a) Na ⁺ b) F ⁻	c) 0 ²⁻	d) N ³⁻	
220. Which of the following pairs show reverse properti	es on moving along a perio	d from left to right and from	
top to down in a group?			
a) Nuclear charge and electron affinity	b) Ionisation energy and	electron affinity	
c) Atomic radius and electron affinity	d) None of the above		
221. Which of the following relation is correct?			
a) I st IE of C > I st IE of B	b) I st IE of C < I st IE of B		
c) II^{nd} IE of C > II^{nd} IE of B	d) Both (b) and (c)		
222. KF combines with HF to form KHF ₂ . The compound	contains the species:		
a) K^+ , F^- and H^+ b) K^+ , F^- and HF^-	c) K^+ and $[HF_2]^-$	d) [KHF] ⁺ and F^-	
223. The bond angle between $H - O - H$ in ice is closest	to:		
a) 115° b) 109°28′	c) 110°	d) 90°	
224. Which has higher bond energy and stronger bond?		-	
a) F_2 b) Cl_2	c) Br ₂	d) I ₂	
225. The example of the p - p -orbital overlapping is the fo		<i></i>	
a) H_2 molecule			
b) Cl ₂ molecule			
c) Hydrogen chloride			
d) Hydrogen bromide molecule			
226. In compound <i>X</i> , all the bond angles are exactly 109	°28′.X is:		
a) Chloromethane b) Iodoform	c) Carbon tetrachloride	d) Chloroform	
227. Which of the following species has four lone pairs o	,	•	
a) I b) 0 ⁻	c) Cl ⁻	d) He	
228. The type of bond formed between H^+ and NH_3 in N	,	a) 110	
a) Ionic b) Covalent	c) Dative	d) Hydrogen	
229. Which transition involves maximum amount of ene	,	uj nyu ogen	
a) $M^{-}(g) \rightarrow M(g) + e$	igy:		
b) $M^-(g) \rightarrow M^+(g) + 2e$			
c) $M^+(g) \rightarrow M^{2+}(g) + e$			
d) $M^{2+}(g) \rightarrow M^{3+}(g) + e$ 220 The order of stability of metal outdoes in			
230. The order of stability of metal oxides is			
a) $Al_2O_3 < MgO < Fe_2O_3 < Cr_2O_3$	b) $Cr_2O_3 < MgO < Al_2O_3$		
c) $Fe_2O_3 < Cr_2O_3 < Al_2O_3 < MgO$	d) $Fe_2O_3 < Al_2O_3 < Cr_2$	$U_3 < MgU$	

231. The first ionisation potential of Na, Mg,	Al and Si are in the order	
	> Al < Si c) Na $< Mg < Al > S$	i d) Na > Mg > Al < Si
232. The electronic configuration of 4 eleme	nts K, L, M and N are,	
$K = 1s^2, 2s^22p^1$ $L = 1s^2, 2s^22p^6$		
$M = 1s^2, 2s^22p^4$ $N = 1s^2, 2s^22p^3$		
The element that would form a diatomi	c molecule with double bond is:	
a) <i>K</i> b) <i>L</i>	c) <i>M</i>	d) <i>N</i>
233. In the formation of N_2^+ from N_2 , the electron	ctron is lost from:	-
a) a σ -orbital b) a π -orbita	l c) a σ^* -orbital	d) a π^* -orbital
234. Which of the following two are isostruc	tural?	-
a) XeF_2 , IF_2^- b) NH_3 , BF_3	c) CO ₃ ²⁻ , SO ₃ ²⁻	d) PCl ₅ , ICl ₅
235. Which has sp^2 -hybridization?		
a) CO_2 b) SO_2	c) N ₂ O	d) CO
236. Which of the following metal oxides is r		2
a) ZnO b) Al_2O_3	c) As_2O_3	d) K ₂ 0
237. Which of the following phenomenon wi		
a) Bonding will not occur		
b) Orbital overlap will not occur		
c) Both (a) and (b)		
d) None of the above		
238. The bonds present in N_2O_5 are:		
a) Ionic		
b) Covalent and coordinate		
c) Covalent		
d) Ionic and covalent		
-		
239. How many σ -and π -bonds are there in t	the molecule of tetracyanoethylene?	
239. How many σ -and π -bonds are there in t	the molecule of tetracyanoethylene? $N \equiv C \searrow C \equiv N$	
239. How many σ -and π -bonds are there in t	$\stackrel{\text{N} \equiv C}{\longrightarrow} C = C < \stackrel{\text{C} \equiv N}{\longrightarrow} N$	
	$\sum_{N=C}^{N=C} C = C \begin{pmatrix} C \equiv N \\ C \equiv N \end{pmatrix}$	
a) Nine σ - and nine π b) Five σ - and	$\begin{array}{c} N \equiv C \\ N \equiv C \end{array} > C = C \left\langle \begin{array}{c} C \equiv N \\ C \equiv N \\ C \equiv N \end{array} \right\rangle$ d nine π c) Nine σ - and seven π	
a) Nine σ - and nine π b) Five σ - an 240. The maximum valency of an element w	$N \equiv C \qquad C = C < C \equiv N N \equiv C \qquad C \equiv N d nine \pi \qquad c) Nine \sigma- and seven \pi ith atomic number 7 is $	π d) Five σ- and eight $π$
a) Nine σ - and nine π b) Five σ - an 240. The maximum valency of an element w a) 2 b) 3	$N \equiv C \qquad C = C < C \equiv N C \equiv N C = N d nine \pi c) Nine \sigma- and seven \piith atomic number 7 isc) 4$	
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has	$N \equiv C \qquad C = C < C \equiv N C \equiv N d nine \pi c) Nine \sigma - and seven \pi ith atomic number 7 is c) 4 the lowest melting point?$	π d) Five σ- and eight $π$ d) 5
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has a) CaF ₂ b) CaCl ₂	$N \equiv C \qquad C = C < C \equiv N C \equiv N d nine \pi c) Nine \sigma- and seven \piith atomic number 7 isc) 4the lowest melting point?c) CaBr2$	π d) Five σ- and eight $π$
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has a) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by	$N \equiv C \qquad C = C \begin{pmatrix} C \equiv N \\ C \equiv N \end{pmatrix}$ d nine π c) Nine σ - and seven π ith atomic number 7 is c) 4 the lowest melting point? c) CaBr ₂ y heating	π d) Five σ- and eight $πd) 5d) CaI2$
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has a) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by a) KNO ₃ b) Pb(NO ₃) ₂	$N \equiv C \qquad C = C \begin{pmatrix} C \equiv N \\ C \equiv N \\ C \equiv N \end{pmatrix}$ d nine π c) Nine σ - and seven π ith atomic number 7 is c) 4 the lowest melting point? c) CaBr ₂ y heating c) Cu(NO ₃) ₂	π d) Five σ- and eight $π$ d) 5
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has a) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order	$N \equiv C \qquad C = C \begin{pmatrix} C \equiv N \\ C \equiv N \end{pmatrix}$ $d \text{ nine } \pi \qquad c) \text{ Nine } \sigma \text{- and seven } \pi$ $d \text{ nine } \pi \qquad c) \text{ Nine } \sigma \text{- and seven } \pi$ $d \text{ nine } \pi \qquad c) \text{ Nine } \sigma \text{- and seven } \pi$ $d \text{ nine } \pi \qquad c) \text{ Nine } \sigma \text{- and seven } \pi$ $d \text{ nine } \pi \qquad c) \text{ Nine } \sigma \text{- and seven } \pi$ $d \text{ nine } \pi \qquad c) \text{ Nine } \sigma \text{- and seven } \pi$ $d \text{ nine } \pi \qquad c) \text{ Nine } \sigma \text{- and seven } \pi$ $d \text{ nine } \pi \qquad c) \text{ Nine } \sigma \text{- and seven } \pi$ $d \text{ nine } \pi \qquad c) \text{ Nine } \sigma \text{- and seven } \pi$ $d \text{ nine } \pi \qquad c) \text{ Nine } \sigma \text{- and seven } \pi$ $d \text{ nine } \pi \qquad c) \text{ Nine } \sigma \text{- and seven } \pi$ $d \text{ nine } \pi \qquad c) \text{ Nine } \sigma \text{- and seven } \pi$ $d \text{ nine } \pi \qquad c) \text{ Nine } \sigma \text{- and seven } \pi$ $d \text{ nine } \pi \qquad c) \text{ CaBr}_2$ $d \text{ nine } \pi$ $d \text{ nine } \pi \qquad c) \text{ CaBr}_2$ $d \text{ nine } \pi$ $d \text{ nine } \pi \qquad c) \text{ Cu(NO_3)}_2$ $d \text{ nine } \sigma \text{- and seven } \pi$	 d) Five σ- and eight π d) 5 d) CaI₂ d) AgNO₃
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has a) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > M	$N \equiv C \qquad C = C < C \equiv N C \equiv N d nine \pi c) Nine \sigma- and seven \pi ith atomic number 7 is c) 4 the lowest melting point? c) CaBr2 y heating c) Cu(NO3)2 of increasing size? Be2+ b) Be2+ > Mg2+ > N$	α d) Five σ- and eight π d) 5 d) CaI ₂ d) AgNO ₃ $Ia^+ > S^{2-} > CI^- > Br^-$
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has a) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Cl ⁻ > Br ⁻ > Cl ⁻ > Cl ⁻ > Br ⁻ > Cl	$N \equiv C \qquad C = C < C \equiv N C \equiv N d nine \pi c) Nine \sigma- and seven \pi ith atomic number 7 is c) 4 the lowest melting point? c) CaBr2 y heating c) Cu(NO3)2 of increasing size? Be2+ b) Be2+ > Mg2+ > N$	α d) Five σ- and eight π d) 5 d) CaI ₂ d) AgNO ₃ $Ia^+ > S^{2-} > CI^- > Br^-$
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has a) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > Table Correct order of bond angles is:	$N \equiv C \qquad C = C < C \equiv N C \equiv N d nine \pi c) Nine \sigma- and seven \pi ith atomic number 7 is c) 4 the lowest melting point? c) CaBr2 y heating c) Cu(NO3)2 of increasing size? Be2+ b) Be2+ > Mg2+ > N$	α d) Five σ- and eight π d) 5 d) CaI ₂ d) AgNO ₃ $Ia^+ > S^{2-} > CI^- > Br^-$
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has a) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > C c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > 2 244. The correct order of bond angles is: a) PF ₃ < PCl ₃ < PBr ₃ < Pl ₃	$N \equiv C \qquad C = C < C \equiv N C \equiv N d nine \pi c) Nine \sigma- and seven \pi ith atomic number 7 is c) 4 the lowest melting point? c) CaBr2 y heating c) Cu(NO3)2 of increasing size? Be2+ b) Be2+ > Mg2+ > N$	α d) Five σ- and eight π d) 5 d) CaI ₂ d) AgNO ₃ $Ia^+ > S^{2-} > CI^- > Br^-$
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has a) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > T c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > T c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > T 244. The correct order of bond angles is: a) PF ₃ < PCl ₃ < PBr ₃ < Pl ₃ b) PF ₃ < PBr ₃ < PCl ₃ < Pl ₃	$N \equiv C \qquad C = C < C \equiv N C \equiv N d nine \pi c) Nine \sigma- and seven \pi ith atomic number 7 is c) 4 the lowest melting point? c) CaBr2 y heating c) Cu(NO3)2 of increasing size? Be2+ b) Be2+ > Mg2+ > N$	α d) Five σ- and eight π d) 5 d) CaI ₂ d) AgNO ₃ $Ia^+ > S^{2-} > CI^- > Br^-$
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has a) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > C c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C 244. The correct order of bond angles is: a) PF ₃ < PCl ₃ < PBr ₃ < PCl ₃ < PI ₃ b) PF ₃ < PBr ₃ < PCl ₃ < PF ₃	$N \equiv C \qquad C = C < C \equiv N C \equiv N d nine \pi c) Nine \sigma- and seven \pi ith atomic number 7 is c) 4 the lowest melting point? c) CaBr2 y heating c) Cu(NO3)2 of increasing size? Be2+ b) Be2+ > Mg2+ > N$	α d) Five σ- and eight π d) 5 d) CaI ₂ d) AgNO ₃ $Ia^+ > S^{2-} > CI^- > Br^-$
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has a) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > T c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > T c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > T 244. The correct order of bond angles is: a) PF ₃ < PCl ₃ < PBr ₃ < Pl ₃ b) PF ₃ < PBr ₃ < PCl ₃ < Pl ₃	$N \equiv C \qquad C = C < C \equiv N C \equiv N d nine \pi c) Nine \sigma- and seven \pi ith atomic number 7 is c) 4 the lowest melting point? c) CaBr2 y heating c) Cu(NO3)2 of increasing size? Be2+ b) Be2+ > Mg2+ > N$	α d) Five σ- and eight π d) 5 d) CaI ₂ d) AgNO ₃ $Ia^+ > S^{2-} > CI^- > Br^-$
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has a) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > K c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > K c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > K 244. The correct order of bond angles is: a) PF ₃ < PCl ₃ < PBr ₃ < Pl ₃ b) PF ₃ < PBr ₃ < PCl ₃ < PI ₃ c) PI ₃ < PBr ₃ < PCl ₃ < PF ₃ d) PF ₃ > PCl ₃ < PBr ₃ < PI ₃ 245. Among the following metals interatomi	$N \equiv C \qquad C = C \qquad C \equiv N \qquad S \qquad$	α d) Five σ- and eight π d) 5 d) CaI ₂ d) AgNO ₃ $Ia^+ > S^{2-} > CI^- > Br^-$
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has a) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > C c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C 244. The correct order of bond angles is: a) PF ₃ < PCl ₃ < PBr ₃ < Pl ₃ b) PF ₃ < PBr ₃ < PCl ₃ < PI ₃ c) PI ₃ < PBr ₃ < PCl ₃ < PF ₃ d) PF ₃ > PCl ₃ < PBr ₃ < PI ₃ 245. Among the following metals interatomina a) Cu b) Ag	$N \equiv C \qquad C = C \qquad C \equiv N \qquad C \qquad S \qquad S$	α d) Five σ- and eight π d) 5 d) CaI ₂ d) AgNO ₃ $Ia^+ > S^{2-} > CI^- > Br^-$
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has a) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > Mg ²⁺ > C) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > Mg ²⁺ > 244. The correct order of bond angles is: a) PF ₃ < PCl ₃ < PBr ₃ < Pl ₃ b) PF ₃ < PBr ₃ < PCl ₃ < PI ₃ c) PI ₃ < PBr ₃ < PCl ₃ < PF ₃ d) PF ₃ > PCl ₃ < PBr ₃ < PI ₃ 245. Among the following metals interatomi a) Cu b) Ag 246. The element with atomic number 117 i	$N \equiv C \qquad C = C \qquad C \equiv N \qquad C = N \qquad C \equiv N \qquad C = $	d) Five σ - and eight π d) 5 d) CaI ₂ d) AgNO ₃ Ha ⁺ > S ²⁻ > Cl ⁻ > Br ⁻ Br ⁻ > Cl ⁻ > S ²⁻ d) Hg
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has a) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > C c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C 244. The correct order of bond angles is: a) PF ₃ < PCl ₃ < PBr ₃ < Pl ₃ b) PF ₃ < PBr ₃ < PCl ₃ < PI ₃ c) PI ₃ < PBr ₃ < PCl ₃ < PF ₃ d) PF ₃ > PCl ₃ < PBr ₃ < PI ₃ 245. Among the following metals interatomi a) Cu b) Ag 246. The element with atomic number 117 i a) Noble gas family b) Alkali fam	$N \equiv C \qquad C = C \qquad C \equiv N \qquad C \qquad S \qquad C \qquad C \qquad C \equiv N \qquad C \qquad S \qquad C \qquad C \qquad S \qquad C \qquad C \qquad S \qquad C \qquad C$	d) Five σ - and eight π d) 5 d) CaI ₂ d) AgNO ₃ Ha ⁺ > S ²⁻ > Cl ⁻ > Br ⁻ H > Br ⁻ > Cl ⁻ > S ²⁻
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has a) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > R c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > R c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > R d) PF ₃ < PCl ₃ < PBr ₃ < Pl ₃ b) PF ₃ < PBr ₃ < PCl ₃ < PI ₃ c) PI ₃ < PBr ₃ < PCl ₃ < PF ₃ d) PF ₃ > PCl ₃ < PBr ₃ < PI ₃ 245. Among the following metals interatomi a) Cu b) Ag 246. The element with atomic number 117 i a) Noble gas family b) Alkali fam 247. The element with atomic numbers 9, 17	$N \equiv C \qquad C = C \qquad C \equiv N \qquad C = N \qquad C \equiv N \qquad C = $	π d) Five σ - and eight π d) 5d) CaI2d) AgNO3 $Ha^+ > S^{2-} > CI^- > Br^ Ha^+ > Br^- > CI^- > S^{2-}$ d) Hgd) Hgelyd) Halogen family
a) Nine σ - and nine π b) Five σ - and 240. The maximum valency of an element w a) 2 b) 3 241. Which of the following compounds has a) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > C c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > C 244. The correct order of bond angles is: a) PF ₃ < PCl ₃ < PBr ₃ < Pl ₃ b) PF ₃ < PBr ₃ < PCl ₃ < PI ₃ c) PI ₃ < PBr ₃ < PCl ₃ < PF ₃ d) PF ₃ > PCl ₃ < PBr ₃ < PI ₃ 245. Among the following metals interatomi a) Cu b) Ag 246. The element with atomic number 117 i a) Noble gas family b) Alkali fam	$N \equiv C \qquad C = C \qquad C \equiv N \qquad C \qquad S \qquad C \qquad C \equiv N \qquad C \qquad S \qquad C \qquad C \equiv N \qquad C \qquad S \qquad C \qquad $	d) Five σ - and eight π d) 5 d) CaI ₂ d) AgNO ₃ Ha ⁺ > S ²⁻ > Cl ⁻ > Br ⁻ H > Br ⁻ > Cl ⁻ > S ²⁻

a) Condensation reaction b) Hydrogen bonding		
b) Hydrogen bonding		
c) Presence of carboxyl group		
d) Presence of hydrogen atom at α -carbon		
249. In which of the following arrangements the order is	not correct according to p	roperty indicated against it?
a) Increasing size : $Al^{3+} < Mg^{2+} < Na^+ < F^-$		
b) Increasing IE_1 : B < C < N < O		
c) Increasing EA_1 : I < Br < F < Cl		
d) Increasing metallic radius: $Li < Na < K < Rb$		
250. The forces present in the crystals of naphthalene ar		
a) Van der Waals' forces b) Electrostatic forces	c) Hydrogen bonding	d) None of these
251. Which has zero dipole moment?	a) SE	
a) ClF b) PCl ₃ 252. Which group of the Periodic Table contains coinage	c) SiF ₄	d) CFCl ₃
a) IIA b) IB	c) IA	d) None of these
253. The bond angle and hybridization in ether (CH_3OCI	•	uj None of these
a) $106^{\circ} 51'$, sp^3 b) $104^{\circ} 31'$, sp^3	c) 110° , sp^3	d) None of these
254. Ionisation potential values of 'd' block elements a		-
elements are:		potential values of f block
a) Higher b) Lower	c) Equal	d) Either of these
255. How many bonded electron pairs are present in IF_7		uj Litilei of these
a) 6 b) 7	c) 5	d) 8
256. Formation of π -bond:		a) o
a) Increases bond length		
b) Decreases bond length		
c) Distorts the geometry of molecule		
d) Makes homoatomic molecules more reactive		
· · · · · · · · · · · · · · · · · · ·		dia Tabla?
257. An element with atomic number 20 will be placed i	n which period of the Perio	aic l'able?
257. An element with atomic number 20 will be placed ifa) 1b) 2	n which period of the Perio c) 3	d) 4
-	c) 3	d) 4
a) 1 b) 2	c) 3	d) 4
a) 1 b) 2 258. Which bond angle results in the minimum dipole m	c) 3 oment for the triatomic mo c) 150°	d) 4 lecule <i>XY</i> ₂ shown below? d) 180°
a) 1 b) 2 258. Which bond angle results in the minimum dipole m a) 90° b) 120°	c) 3 oment for the triatomic mo c) 150°	d) 4 lecule <i>XY</i> ₂ shown below? d) 180°
 a) 1 b) 2 258. Which bond angle results in the minimum dipole m a) 90° b) 120° 259. NH₃ has a net dipole moment, but boron trifluoride 	c) 3 oment for the triatomic mo c) 150°	d) 4 lecule <i>XY</i> ₂ shown below? d) 180°
 a) 1 b) 2 258. Which bond angle results in the minimum dipole m a) 90° b) 120° 259. NH₃ has a net dipole moment, but boron trifluoride a) B is less electronegative than N 	c) 3 oment for the triatomic mo c) 150°	d) 4 lecule <i>XY</i> ₂ shown below? d) 180°
 a) 1 b) 2 258. Which bond angle results in the minimum dipole m a) 90° b) 120° 259. NH₃ has a net dipole moment, but boron trifluoride a) B is less electronegative than N b) F is more electronegative than H 	c) 3 oment for the triatomic mo c) 150°	d) 4 lecule <i>XY</i> ₂ shown below? d) 180°
a) 1 b) 2 258. Which bond angle results in the minimum dipole m a) 90° b) 120° 259. NH ₃ has a net dipole moment, but boron trifluoride a) B is less electronegative than N b) F is more electronegative than H c) BF ₃ is pyramidal while NH ₃ is planar d) NH ₃ is pyramidal while BF ₃ is trigonal planar 260. The geometry of PF ₅ molecule is:	c) 3 oment for the triatomic mo c) 150°	d) 4 lecule <i>XY</i> ₂ shown below? d) 180°
a) 1 b) 2 258. Which bond angle results in the minimum dipole m a) 90° b) 120° 259. NH ₃ has a net dipole moment, but boron trifluoride a) B is less electronegative than N b) F is more electronegative than H c) BF ₃ is pyramidal while NH ₃ is planar d) NH ₃ is pyramidal while BF ₃ is trigonal planar 260. The geometry of PF ₅ molecule is: a) Planar b) Square planar	 c) 3 oment for the triatomic mo c) 150° (BF₃) has zero dipole mon c) Trigonal bipyramidal 	d) 4 lecule <i>XY</i> ₂ shown below? d) 180° nent, because: d) Tetrahedral
a) 1 b) 2 258. Which bond angle results in the minimum dipole m a) 90° b) 120° 259. NH ₃ has a net dipole moment, but boron trifluoride a) B is less electronegative than N b) F is more electronegative than H c) BF ₃ is pyramidal while NH ₃ is planar d) NH ₃ is pyramidal while BF ₃ is trigonal planar 260. The geometry of PF ₅ molecule is: a) Planar b) Square planar 261. The correct order of ionisation energy for comparing	 c) 3 oment for the triatomic mo c) 150° (BF₃) has zero dipole mon c) Trigonal bipyramidal ng carbon, nitrogen and oxy 	d) 4 lecule <i>XY</i> ₂ shown below? d) 180° nent, because: d) Tetrahedral gen atom is
a) 1b) 2258. Which bond angle results in the minimum dipole m a) 90°b) 120°259. NH3 has a net dipole moment, but boron trifluoride a) B is less electronegative than N b) F is more electronegative than H c) BF3 is pyramidal while NH3 is planar d) NH3 is pyramidal while BF3 is trigonal planar260. The geometry of PF5 molecule is: a) Planarb) Square planar261. The correct order of ionisation energy for comparing a) $C > N > 0$ b) $C > N < 0$	 c) 3 oment for the triatomic mo c) 150° (BF₃) has zero dipole mon c) Trigonal bipyramidal ng carbon, nitrogen and oxy c) C < N > 0 	 d) 4 lecule XY₂ shown below? d) 180° nent, because: d) Tetrahedral gen atom is d) C < N < 0
a) 1 b) 2 258. Which bond angle results in the minimum dipole m a) 90° b) 120° 259. NH ₃ has a net dipole moment, but boron trifluoride a) B is less electronegative than N b) F is more electronegative than H c) BF ₃ is pyramidal while NH ₃ is planar d) NH ₃ is pyramidal while BF ₃ is trigonal planar 260. The geometry of PF ₅ molecule is: a) Planar b) Square planar 261. The correct order of ionisation energy for comparin a) $C > N > O$ b) $C > N < O$ 262. In which of the following arrangements the order is	 c) 3 oment for the triatomic mo c) 150° (BF₃) has zero dipole mon c) Trigonal bipyramidal ng carbon, nitrogen and oxy c) C < N > 0 	 d) 4 lecule XY₂ shown below? d) 180° nent, because: d) Tetrahedral gen atom is d) C < N < 0
a) 1 b) 2 258. Which bond angle results in the minimum dipole m a) 90° b) 120° 259. NH ₃ has a net dipole moment, but boron trifluoride a) B is less electronegative than N b) F is more electronegative than H c) BF ₃ is pyramidal while NH ₃ is planar d) NH ₃ is pyramidal while BF ₃ is trigonal planar 260. The geometry of PF ₅ molecule is: a) Planar b) Square planar 261. The correct order of ionisation energy for comparin a) $C > N > O$ b) $C > N < O$ 262. In which of the following arrangements the order is a) Li < Na < K < Rb increasing metallic radius	 c) 3 oment for the triatomic mo c) 150° (BF₃) has zero dipole mon c) Trigonal bipyramidal ng carbon, nitrogen and oxy c) C < N > O a not according to the properties 	 d) 4 lecule XY₂ shown below? d) 180° nent, because: d) Tetrahedral gen atom is d) C < N < 0
a) 1 b) 2 258. Which bond angle results in the minimum dipole m a) 90° b) 120° 259. NH ₃ has a net dipole moment, but boron trifluoride a) B is less electronegative than N b) F is more electronegative than H c) BF ₃ is pyramidal while NH ₃ is planar d) NH ₃ is pyramidal while BF ₃ is trigonal planar 260. The geometry of PF ₅ molecule is: a) Planar b) Square planar 261. The correct order of ionisation energy for comparin a) $C > N > O$ b) $C > N < O$ 262. In which of the following arrangements the order is a) Li < Na < K < Rb increasing metallic radius b) I < Br < F < Cl increasing electron gain enthaly	 c) 3 oment for the triatomic mo c) 150° (BF₃) has zero dipole mon c) Trigonal bipyramidal ng carbon, nitrogen and oxy c) C < N > 0 s not according to the property v (with negative sign) 	 d) 4 lecule XY₂ shown below? d) 180° nent, because: d) Tetrahedral gen atom is d) C < N < 0
a) 1 b) 2 258. Which bond angle results in the minimum dipole m a) 90° b) 120° 259. NH ₃ has a net dipole moment, but boron trifluoride a) B is less electronegative than N b) F is more electronegative than H c) BF ₃ is pyramidal while NH ₃ is planar d) NH ₃ is pyramidal while BF ₃ is trigonal planar 260. The geometry of PF ₅ molecule is: a) Planar b) Square planar 261. The correct order of ionisation energy for comparin a) $C > N > 0$ b) $C > N < 0$ 262. In which of the following arrangements the order is a) Li < $Na < K < Rb$ increasing metallic radius b) I < $Br < F < Cl$ increasing electron gain enthaly c) B < $C < N < 0$ increasing first ionisation enthal	 c) 3 oment for the triatomic mo c) 150° (BF₃) has zero dipole mon c) Trigonal bipyramidal ng carbon, nitrogen and oxy c) C < N > 0 s not according to the property v (with negative sign) 	 d) 4 lecule XY₂ shown below? d) 180° nent, because: d) Tetrahedral gen atom is d) C < N < 0
a) 1 b) 2 258. Which bond angle results in the minimum dipole m a) 90° b) 120° 259. NH ₃ has a net dipole moment, but boron trifluoride a) B is less electronegative than N b) F is more electronegative than H c) BF ₃ is pyramidal while NH ₃ is planar d) NH ₃ is pyramidal while BF ₃ is trigonal planar 260. The geometry of PF ₅ molecule is: a) Planar b) Square planar 261. The correct order of ionisation energy for comparin a) $C > N > O$ b) $C > N < O$ 262. In which of the following arrangements the order is a) Li < Na < K < Rb increasing metallic radius b) I < Br < F < Cl increasing electron gain enthaly c) B < C < N < O increasing first ionisation enthal d) Al ³⁺ < Mg ²⁺ < Na ⁺ < F ⁻ increasing ionic size	 c) 3 oment for the triatomic mo c) 150° (BF₃) has zero dipole mon c) Trigonal bipyramidal ng carbon, nitrogen and oxy c) C < N > 0 s not according to the property v (with negative sign) 	 d) 4 lecule XY₂ shown below? d) 180° nent, because: d) Tetrahedral gen atom is d) C < N < 0
a) 1 b) 2 258. Which bond angle results in the minimum dipole m a) 90° b) 120° 259. NH ₃ has a net dipole moment, but boron trifluoride a) B is less electronegative than N b) F is more electronegative than H c) BF ₃ is pyramidal while NH ₃ is planar d) NH ₃ is pyramidal while BF ₃ is trigonal planar 260. The geometry of PF ₅ molecule is: a) Planar b) Square planar 261. The correct order of ionisation energy for comparin a) $C > N > 0$ b) $C > N < 0$ 262. In which of the following arrangements the order is a) Li < $Na < K < Rb$ increasing metallic radius b) I < $Br < F < Cl$ increasing metallic radius b) I < $Br < F < Cl$ increasing first ionisation enthal d) Al ³⁺ < Mg ²⁺ < Na ⁺ < F ⁻ increasing ionic size 263. Pauling received Nobel Prize for his work on:	 c) 3 oment for the triatomic mo c) 150° (BF₃) has zero dipole mon c) Trigonal bipyramidal for carbon, nitrogen and oxy c) C < N > 0 c) not according to the property (with negative sign) phy 	d) 4 lecule XY_2 shown below? d) 180° nent, because: d) Tetrahedral gen atom is d) C < N < O erty indicated against it?
a) 1 b) 2 258. Which bond angle results in the minimum dipole m a) 90° b) 120° 259. NH ₃ has a net dipole moment, but boron trifluoride a) B is less electronegative than N b) F is more electronegative than H c) BF ₃ is pyramidal while NH ₃ is planar d) NH ₃ is pyramidal while BF ₃ is trigonal planar 260. The geometry of PF ₅ molecule is: a) Planar b) Square planar 261. The correct order of ionisation energy for comparin a) $C > N > O$ b) $C > N < O$ 262. In which of the following arrangements the order is a) Li $< Na < K < Rb$ increasing metallic radius b) I $< Br < F < Cl$ increasing electron gain enthaly c) B $< C < N < O$ increasing first ionisation enthal d) Al ³⁺ $< Mg^{2+} < Na^+ < F^-$ increasing ionic size 263. Pauling received Nobel Prize for his work on: a) Photosynthesis b) Atomic structure	 c) 3 oment for the triatomic mo c) 150° (BF₃) has zero dipole mon c) Trigonal bipyramidal ng carbon, nitrogen and oxy c) C < N > 0 not according to the property (with negative sign) phy c) Chemical bonding 	 d) 4 lecule XY₂ shown below? d) 180° nent, because: d) Tetrahedral gen atom is d) C < N < 0
a) 1 b) 2 258. Which bond angle results in the minimum dipole m a) 90° b) 120° 259. NH ₃ has a net dipole moment, but boron trifluoride a) B is less electronegative than N b) F is more electronegative than H c) BF ₃ is pyramidal while NH ₃ is planar d) NH ₃ is pyramidal while BF ₃ is trigonal planar 260. The geometry of PF ₅ molecule is: a) Planar b) Square planar 261. The correct order of ionisation energy for comparin a) $C > N > O$ b) $C > N < O$ 262. In which of the following arrangements the order is a) Li < Na < K < Rb increasing metallic radius b) I < Br < F < Cl increasing electron gain enthaly c) B < C < N < O increasing first ionisation enthal d) Al ³⁺ < Mg ²⁺ < Na ⁺ < F ⁻ increasing ionic size 263. Pauling received Nobel Prize for his work on: a) Photosynthesis b) Atomic structure 264. For electron affinity of halogens, which of the follow	 c) 3 oment for the triatomic mo c) 150° (BF₃) has zero dipole mon c) Trigonal bipyramidal ng carbon, nitrogen and oxy c) C < N > O s not according to the property r (with negative sign) phy c) Chemical bonding ving is correct? 	d) 4 lecule XY_2 shown below? d) 180° nent, because: d) Tetrahedral gen atom is d) C < N < O erty indicated against it? d) Thermodynamics
a) 1 b) 2 258. Which bond angle results in the minimum dipole m a) 90° b) 120° 259. NH ₃ has a net dipole moment, but boron trifluoride a) B is less electronegative than N b) F is more electronegative than H c) BF ₃ is pyramidal while NH ₃ is planar d) NH ₃ is pyramidal while BF ₃ is trigonal planar 260. The geometry of PF ₅ molecule is: a) Planar b) Square planar 261. The correct order of ionisation energy for comparin a) $C > N > O$ b) $C > N < O$ 262. In which of the following arrangements the order is a) Li $< Na < K < Rb$ increasing metallic radius b) I $< Br < F < Cl$ increasing electron gain enthaly c) B $< C < N < O$ increasing first ionisation enthal d) Al ³⁺ $< Mg^{2+} < Na^+ < F^-$ increasing ionic size 263. Pauling received Nobel Prize for his work on: a) Photosynthesis b) Atomic structure	 c) 3 oment for the triatomic mo c) 150° (BF₃) has zero dipole mon c) Trigonal bipyramidal ng carbon, nitrogen and oxy c) C < N > 0 not according to the property (with negative sign) phy c) Chemical bonding 	d) 4 lecule XY_2 shown below? d) 180° nent, because: d) Tetrahedral gen atom is d) C < N < O erty indicated against it?

a) C, N, Si, P	b) N, Si, C, P	c) Si, P, C, N	d) P, Si, N, C
	g properties show gradual de	crease with increase in ato	mic number across a period
in the Periodic Table?)		
a) Electron affinity	b) Ionisation potential	c) Electronegativity	d) Size of atom
267. Difference between S	and S ^{2–} as S ^{2–} has		
a) Larger radii and la	rger size	b) Smaller radii and larg	ger size
c) Larger radii and sr	naller size	d) Smaller radii and sma	aller size
268. Two lone pairs of elec	ctrons and two bond pairs are	present in:	
a) NH ₃	b) BF ₃	c) CO_3^{2-}	d) NH_2^-
269. The lattice energy or	y 0	<i>y</i> 5	5 2
a) LiF > LiCl > LiBr :			
b) LiCl > LiF > LiBr :			
c) LiBr > LiCl > LiF :			
d) LiI > LiBr > LiCl >			
,	π -bonds in pent-4-en-1-yne a	re respectively.	
a) 3, 10	b) 9,4	c) 4,9	d) 10, 3
	g order off polarising power is		uj 10,5
a) $Ca^{2+} < Mg^{2+} < Be$			
b) $Mg^{2+} < Be^{2+} < K^{-1}$			
c) $Be^{2+} < K^+ < Ca^{2+}$			
d) $K^+ < Ca^{2+} < Mg^{2-}$	0		
, 0			
	e down the group is due to		
a) Increase in numbe			
	r of protons and neutrons		
c) Increase in numbe	r of protons		
-	•		
d) Increase in numbe	r of protons, neutrons and ele		
d) Increase in numbe 273. When the first ionisat	r of protons, neutrons and ele tion energies are plotted again	ist atomic number, the pea	
d) Increase in numbe 273. When the first ionisat a) Alkali metals	r of protons, neutrons and ele tion energies are plotted agair b) Halogens		ks are occupied by d) Rare gases
d) Increase in numbe 273. When the first ionisat a) Alkali metals 274. Which of the followin	r of protons, neutrons and ele tion energies are plotted again b) Halogens g is non-metallic?	nst atomic number, the pea c) Transition metals	d) Rare gases
d) Increase in numbe 273. When the first ionisat a) Alkali metals 274. Which of the followin a) B	r of protons, neutrons and ele tion energies are plotted agair b) Halogens	ist atomic number, the pea	
 d) Increase in numbe 273. When the first ionisat a) Alkali metals 274. Which of the followin a) B 275. Structure of ICl₂⁻ is: 	r of protons, neutrons and ele tion energies are plotted again b) Halogens g is non-metallic?	nst atomic number, the pea c) Transition metals	d) Rare gases
 d) Increase in numbe 273. When the first ionisat a) Alkali metals 274. Which of the followin a) B 275. Structure of ICl₂⁻ is: a) Trigonal 	r of protons, neutrons and ele tion energies are plotted again b) Halogens g is non-metallic?	nst atomic number, the pea c) Transition metals	d) Rare gases
 d) Increase in numbe 273. When the first ionisat a) Alkali metals 274. Which of the followin a) B 275. Structure of ICl₂⁻ is: a) Trigonal b) Octahedral 	r of protons, neutrons and ele tion energies are plotted again b) Halogens g is non-metallic?	nst atomic number, the pea c) Transition metals	d) Rare gases
 d) Increase in numbe 273. When the first ionisat a) Alkali metals 274. Which of the followin a) B 275. Structure of ICl₂⁻ is: a) Trigonal b) Octahedral c) Square planar 	r of protons, neutrons and ele tion energies are plotted again b) Halogens g is non-metallic? b) Be	nst atomic number, the pea c) Transition metals	d) Rare gases
 d) Increase in number 273. When the first ionisate a) Alkali metals 274. Which of the followine a) B 275. Structure of ICl₂ is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal 	r of protons, neutrons and ele tion energies are plotted again b) Halogens g is non-metallic? b) Be	nst atomic number, the pea c) Transition metals c) Mg	d) Rare gases
 d) Increase in number 273. When the first ionisate a) Alkali metals 274. Which of the followine a) B 275. Structure of ICl₂ is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal 	r of protons, neutrons and ele tion energies are plotted again b) Halogens g is non-metallic? b) Be	nst atomic number, the pea c) Transition metals c) Mg	d) Rare gases
 d) Increase in number 273. When the first ionisate a) Alkali metals 274. Which of the followine a) B 275. Structure of ICl₂ is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal 	r of protons, neutrons and ele tion energies are plotted again b) Halogens g is non-metallic? b) Be	nst atomic number, the pea c) Transition metals c) Mg	d) Rare gases
d) Increase in number 273. When the first ionisat a) Alkali metals 274. Which of the followin a) B 275. Structure of ICl_2^- is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal 276. Which compound doe a) C_2H_4	r of protons, neutrons and ele tion energies are plotted again b) Halogens g is non-metallic? b) Be pyramidal es not contain double bond or	nst atomic number, the pea c) Transition metals c) Mg triple bond?	d) Rare gases d) Al
d) Increase in number 273. When the first ionisat a) Alkali metals 274. Which of the followin a) B 275. Structure of ICl_2^- is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal 276. Which compound doe a) C_2H_4	r of protons, neutrons and ele tion energies are plotted again b) Halogens g is non-metallic? b) Be pyramidal es not contain double bond or b) H ₂ O ncreasing oxidising power is	nst atomic number, the pea c) Transition metals c) Mg triple bond?	d) Rare gases d) Al
 d) Increase in number 273. When the first ionisate a) Alkali metals 274. Which of the followine a) B 275. Structure of ICl₂ is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal 276. Which compound does a) C₂H₄ 277. The correct order of integral of the second seco	r of protons, neutrons and ele cion energies are plotted again b) Halogens g is non-metallic? b) Be pyramidal es not contain double bond or b) H ₂ O ncreasing oxidising power is I ₂	nst atomic number, the pea c) Transition metals c) Mg triple bond? c) N ₂	d) Rare gases d) Al
d) Increase in number 273. When the first ionisat a) Alkali metals 274. Which of the followin a) B 275. Structure of ICl_2^- is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal 276. Which compound doe a) C_2H_4 277. The correct order of i a) $F_2 < Cl_2 < Br_2 < Cl_2 < Cl_2$	r of protons, neutrons and ele tion energies are plotted again b) Halogens g is non-metallic? b) Be pyramidal es not contain double bond or b) H ₂ O ncreasing oxidising power is I ₂	 hst atomic number, the peace of the	d) Rare gases d) Al
d) Increase in number 273. When the first ionisat a) Alkali metals 274. Which of the following a) B 275. Structure of ICl_2^- is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal 276. Which compound doe a) C_2H_4 277. The correct order of in a) $F_2 < Cl_2 < Br_2 < Cl_2 < Br_2 < Cl_2 < Cl_$	r of protons, neutrons and ele tion energies are plotted again b) Halogens g is non-metallic? b) Be pyramidal es not contain double bond or b) H ₂ O ncreasing oxidising power is I ₂	 hst atomic number, the peace of the	d) Rare gases d) Al
d) Increase in number 273. When the first ionisat a) Alkali metals 274. Which of the following a) B 275. Structure of ICl_2^- is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal 276. Which compound doe a) C_2H_4 277. The correct order of it a) $F_2 < Cl_2 < Br_2 < Cl_2 < Br_2 < Cl_2$ c) $Br_2 < I_2 < F_2 < Cl_2$ 278. Which is soluble in we a) AgF	r of protons, neutrons and ele cion energies are plotted again b) Halogens g is non-metallic? b) Be pyramidal es not contain double bond or b) H ₂ O ncreasing oxidising power is I ₂ l ₂ ater?	 hst atomic number, the pea c) Transition metals c) Mg triple bond? c) N₂ b) I₂ < F₂ < Cl₂ < Br₂ d) I₂ < Br₂ < Cl₂ < F₂ c) AgBr 	d) Rare gases d) Al d) HCN
d) Increase in number 273. When the first ionisat a) Alkali metals 274. Which of the following a) B 275. Structure of ICl_2^- is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal 276. Which compound doe a) C_2H_4 277. The correct order of it a) $F_2 < Cl_2 < Br_2 < Cl_2 < Br_2 < Cl_2$ c) $Br_2 < I_2 < F_2 < Cl_2$ 278. Which is soluble in we a) AgF	r of protons, neutrons and ele cion energies are plotted again b) Halogens g is non-metallic? b) Be pyramidal es not contain double bond or b) H ₂ O ncreasing oxidising power is I ₂ I ₂ ater? b) AgCl	 hst atomic number, the pea c) Transition metals c) Mg triple bond? c) N₂ b) I₂ < F₂ < Cl₂ < Br₂ d) I₂ < Br₂ < Cl₂ < F₂ c) AgBr 	d) Rare gases d) Al d) HCN
d) Increase in number 273. When the first ionisat a) Alkali metals 274. Which of the followin a) B 275. Structure of ICl_2^- is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal 276. Which compound doe a) C_2H_4 277. The correct order of i a) $F_2 < Cl_2 < Br_2 < Cl_2 < Cl_2$	r of protons, neutrons and ele tion energies are plotted again b) Halogens g is non-metallic? b) Be pyramidal es not contain double bond or b) H_2O ncreasing oxidising power is I_2 I_2 ater? b) AgCl e absorbed to eject out the ele	 hst atomic number, the peace of the	d) Rare gases d) Al d) HCN d) AgI
d) Increase in number 273. When the first ionisat a) Alkali metals 274. Which of the followin a) B 275. Structure of ICl_2^- is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal 276. Which compound doe a) C_2H_4 277. The correct order of i a) $F_2 < Cl_2 < Br_2 < c$ c) $Br_2 < I_2 < F_2 < C$ 278. Which is soluble in w a) AgF 279. Highest energy will b a) $1s^22s^22p^1$ 280. Most acidic oxide is	r of protons, neutrons and ele tion energies are plotted again b) Halogens g is non-metallic? b) Be pyramidal es not contain double bond or b) H_2O ncreasing oxidising power is I_2 I_2 ater? b) AgCl e absorbed to eject out the ele	 hst atomic number, the peace of the	d) Rare gases d) Al d) HCN d) HCN d) AgI d) $1s^2 2s^2 2p^4$
d) Increase in number 273. When the first ionisat a) Alkali metals 274. Which of the followind a) B 275. Structure of ICl_2^- is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal 276. Which compound doe a) C_2H_4 277. The correct order of it a) $F_2 < Cl_2 < Br_2 < C$ c) $Br_2 < I_2 < F_2 < C$ 278. Which is soluble in w a) AgF 279. Highest energy will b a) $1s^2 2s^2 2p^1$ 280. Most acidic oxide is a) Na ₂ O	r of protons, neutrons and ele cion energies are plotted again b) Halogens g is non-metallic? b) Be pyramidal es not contain double bond or b) H_2O ncreasing oxidising power is I_2 I_2 ater? b) AgCl e absorbed to eject out the ele b) $1s^22s^22p^3$ b) ZnO	hst atomic number, the pea c) Transition metals c) Mg triple bond? c) N ₂ b) $I_2 < F_2 < Cl_2 < Br_2$ d) $I_2 < Br_2 < Cl_2 < F_2$ c) AgBr ectron in the configuration c) $1s^2 2s^2 2p^2$	d) Rare gases d) Al d) HCN d) AgI
d) Increase in number 273. When the first ionisat a) Alkali metals 274. Which of the followin a) B 275. Structure of ICl_2^- is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal 276. Which compound doe a) C_2H_4 277. The correct order of i a) $F_2 < Cl_2 < Br_2 <$ c) $Br_2 < I_2 < F_2 < C_2$ 278. Which is soluble in w a) AgF 279. Highest energy will b a) $1s^2 2s^2 2p^1$ 280. Most acidic oxide is a) Na_2O 281. The process requiring	r of protons, neutrons and ele cion energies are plotted again b) Halogens g is non-metallic? b) Be pyramidal es not contain double bond or b) H ₂ O ncreasing oxidising power is I ₂ I ₂ ater? b) AgCl e absorbed to eject out the ele b) $1s^22s^22p^3$ b) ZnO g the absorption of energy is:	hst atomic number, the pea c) Transition metals c) Mg triple bond? c) N ₂ b) $I_2 < F_2 < CI_2 < Br_2$ d) $I_2 < Br_2 < CI_2 < F_2$ c) AgBr fortron in the configuration c) $1s^2 2s^2 2p^2$ c) MgO	d) Rare gases d) Al d) HCN d) HCN d) AgI d) $1s^2 2s^2 2p^4$ d) $P_2 O_5$
d) Increase in number 273. When the first ionisat a) Alkali metals 274. Which of the followin a) B 275. Structure of ICl_2^- is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal 276. Which compound doe a) C_2H_4 277. The correct order of i a) $F_2 < Cl_2 < Br_2 <$ c) $Br_2 < I_2 < F_2 < Cl_2$ 278. Which is soluble in w a) AgF 279. Highest energy will b a) $1s^2 2s^2 2p^1$ 280. Most acidic oxide is a) Na ₂ O 281. The process requiring a) $F \rightarrow F^-$	r of protons, neutrons and election energies are plotted again b) Halogens g is non-metallic? b) Be pyramidal es not contain double bond or b) H ₂ O ncreasing oxidising power is I ₂ 2 ater? b) AgCl e absorbed to eject out the elec b) $1s^22s^22p^3$ b) ZnO g the absorption of energy is: b) H \rightarrow H ⁻	triple bond? c) Mg triple bond? c) N ₂ b) I ₂ $<$ F ₂ $<$ $Cl_2 < Br_2$ d) I ₂ $<$ $Br_2 < Cl_2 < F_2$ c) AgBr ectron in the configuration c) $1s^22s^22p^2$ c) MgO c) Cl \rightarrow Cl ⁻	d) Rare gases d) Al d) HCN d) HCN d) AgI d) $1s^2 2s^2 2p^4$
d) Increase in number 273. When the first ionisat a) Alkali metals 274. Which of the followin a) B 275. Structure of ICl_2^- is: a) Trigonal b) Octahedral c) Square planar d) Distorted trigonal 276. Which compound doe a) C_2H_4 277. The correct order of i a) $F_2 < Cl_2 < Br_2 <$ c) $Br_2 < I_2 < F_2 < Cl_2$ 278. Which is soluble in w a) AgF 279. Highest energy will b a) $1s^2 2s^2 2p^1$ 280. Most acidic oxide is a) Na ₂ O 281. The process requiring a) $F \rightarrow F^-$	r of protons, neutrons and ele cion energies are plotted again b) Halogens g is non-metallic? b) Be pyramidal es not contain double bond or b) H ₂ O ncreasing oxidising power is I ₂ I ₂ ater? b) AgCl e absorbed to eject out the ele b) $1s^22s^22p^3$ b) ZnO g the absorption of energy is:	triple bond? c) Mg triple bond? c) N ₂ b) I ₂ $<$ F ₂ $<$ $Cl_2 < Br_2$ d) I ₂ $<$ $Br_2 < Cl_2 < F_2$ c) AgBr ectron in the configuration c) $1s^22s^22p^2$ c) MgO c) Cl \rightarrow Cl ⁻	d) Rare gases d) Al d) HCN d) HCN d) AgI d) $1s^2 2s^2 2p^4$ d) $P_2 O_5$

283. H-bonding is not presen	t in•		
a) Glycerine	b) Water	c) H ₂ S	d) HF
284. Which formulae does no		, -	
a) $\begin{bmatrix} H \\ H \\ H \\ H \end{bmatrix}$	F F	-0	-0
a) $H \longrightarrow H$	b) $\sum_{i=1}^{r}$	c) O←N ⊂OH	d) H-C=C
	0	107	N 02
285. The higher values of spe	cific heat of water in comp	arison to other liquids is du	ue to:
a) High dielectric consta	nt		
b) Polarity			
c) H-bonding			
d) None of the above			
286. Which one of the followi	ng combinations represen	ts a metallic element?	
a) 2, 8, 2	b) 2, 8, 4	c) 2, 8, 7	d) 2, 8, 8
287. Which bond has the high	est bond energy?		
a) Coordinate bond	b) Sigma bond	c) Multiple bond	d) Polar covalent bond
288. The increasing order of f	first ionisation enthalpies of	of the elements B, P, S and I	F (lowest first) is
a) F < <i>S</i> < <i>P</i> < <i>B</i>	b) P < S < B < F	c) B < P < S < F	d) $B < S < P < F$
289. Which of the following p	airs are isostructural?		
a) SO_3^{2-} , NO_3^{-}	b) BF ₃ , NF ₃	c) BrO_3^- , XeO_3^-	d) SF4, XeF4
290. The electronic configura	, , ,	, , ,	
a) $(n-1)d^{1-10}$, ns^2		-	d) ns^2 , np^5
291. The bond strength in 0^+_2		,	5 · - 7 · F
			d) $0_2^- > 0_2^{2-} > 0_2^+ > 0_2$
292. The first ionisation energy 2^{2}			
reason for this observati		at of file ogen. Which of the	
	ar charge of oxygen than n	itrogen	
b) Lesser atomic size of		ntrogen	
		ectrons in the same <i>p-</i> orbit	al counter balances the
	uclear charge on moving f	_	al counter balances the
	ear charge of oxygen than		
293. A C \equiv C bond is :	ear charge of oxygen than	Introgen	
	nd		
a) Weaker than $C = C$ bo			
b) Weaker than $C - C$ bo			
c) Longer than $C - C$ bound of the context of the			
d) Shorter than $C = C$ bo			
294. Which is likely to have the			
a) He	b) CsF	c) NH ₃	d) CHCl ₃
295. Which of the two ions from the two ions fro	-		explained by the same
	, NO ₂ , NO ₃ , NH ₂ , NH ₄ , SCN		
a) NO_2^- and NH_2^-	b) NO_2^- and NO_3^-	c) NH_4^+ and NO_3^-	d) SCN ^{$-$} and NH ^{-2}
296. Valency means:			
a) Combining capacity o			
b) Atomicity of an eleme			
c) Oxidation number of a	an element		
d) None of the above			
297. The hybridization of car			
a) $sp^3 - sp^3$	b) $sp^2 - sp^3$	c) $sp - sp^2$	d) <i>sp</i> ³ – <i>sp</i>
298. The IP ₁ is maximum for:			
a) K	b) Na	c) Be	d) He

200 Which of the following has	high oct band angle?		
299. Which of the following has a) H_2O	b) H_2S	c) NH ₃	d) DH
		$C J N \Pi_3$	d) PH ₃
300. The halogen that most eas	b) Cl_2	a) Dr	d) I
a) F ₂ 301. The enhanced force of coh	, 1	c) Br ₂	d) I ₂
a) The covalent linkages b			
b) The electrovalent linkag			
c) The lack of exchange of	-		
d) The exchange energy of		1.2	
302. Which contains both polar			
a) NH ₄ Cl	b) HCN	c) H_2O_2	d) CH ₄
303. Electron deficient species			
a) Lewis acids	b) Hydrophilic	c) Nucleophiles	d) Lewis bases
304. Metallic bonds do not play			
a) Brass	b) Copper	c) Germanium	d) Zinc
305. A number of ionic compou) ₄ are insoluble in water. T	his is because:
a) Ionic compounds do no			
b) Water has a high dielect			
c) Water is not a good ioni	-		
d) These molecules have e			
306. Pauling's electronegativity	v values for elements are u	seful in predicting:	
a) Polarity of bonds in mo			
b) Position of elements in	electromotive series		
c) Coordination number			
d) Dipole moment of vario	ous molecules		
307. Among the following elem			
307. Among the following elem a) Oxygen	ents, the most electronega b) Chlorine	itive is: c) Nitrogen	d) Fluorine
a) Oxygen 308. The correct order of decre	b) Chlorine easing first ionization poter	c) Nitrogen	d) Fluorine
a) Oxygen 308. The correct order of decre	b) Chlorine easing first ionization poter	c) Nitrogen ntial is:	d) Fluorine d) Be > Li > B > C
a) Oxygen 308. The correct order of decre	 b) Chlorine b) Chlorine b) C > Be > B > Li 	c) Nitrogen ntial is: c) B > C > Be > Li	
 a) Oxygen 308. The correct order of decrea a) C > B > Be > Li 309. Ionization potential of Na a) Electron affinity of Na⁺ 	 b) Chlorine easing first ionization potention b) C > Be > B > Li would be numerically the 	c) Nitrogen ntial is: c) B > C > Be > Li	
 a) Oxygen 308. The correct order of decre a) C > B > Be > Li 309. Ionization potential of Na 	 b) Chlorine easing first ionization potention b) C > Be > B > Li would be numerically the 	c) Nitrogen ntial is: c) B > C > Be > Li	
 a) Oxygen 308. The correct order of decrea a) C > B > Be > Li 309. Ionization potential of Na a) Electron affinity of Na⁺ 	 b) Chlorine easing first ionization potention b) C > Be > B > Li would be numerically the 	c) Nitrogen ntial is: c) B > C > Be > Li	
 a) Oxygen 308. The correct order of decreal a) C > B > Be > Li 309. Ionization potential of National b) Electron affinity of National 	b) Chlorine easing first ionization poten b) C > Be > B > Li would be numerically the +	c) Nitrogen ntial is: c) B > C > Be > Li	
 a) Oxygen 308. The correct order of decrea a) C > B > Be > Li 309. Ionization potential of Na a) Electron affinity of Na⁺ b) Electronegativity of Na⁺ c) Electron affinity of He 	b) Chlorine easing first ionization poten b) C > Be > B > Li would be numerically the +	c) Nitrogen ntial is: c) B > C > Be > Li same as:	d) Be > Li > B > C
 a) Oxygen 308. The correct order of decree a) C > B > Be > Li 309. Ionization potential of Na a) Electron affinity of Na⁺ b) Electronegativity of Na⁺ c) Electron affinity of He d) Ionization potential of Ma 	b) Chlorine easing first ionization poten b) $C > Be > B > Li$ would be numerically the + Mg ments <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are <i>Z</i> -	c) Nitrogen ntial is: c) $B > C > Be > Li$ same as: - 1, Z + 1, and Z + 2, respe	d) Be > Li > B > C
 a) Oxygen 308. The correct order of decree a) C > B > Be > Li 309. Ionization potential of Na+ b) Electron affinity of Na+ c) Electron affinity of He d) Ionization potential of M 310. The atomic number of eler 	b) Chlorine easing first ionization poten b) $C > Be > B > Li$ would be numerically the + Mg ments <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are <i>Z</i> - from the following statem	c) Nitrogen ntial is: c) $B > C > Be > Li$ same as: - 1, Z + 1, and Z + 2, respe	d) Be > Li > B > C
 a) Oxygen 308. The correct order of decree a) C > B > Be > Li 309. Ionization potential of Na a) Electron affinity of Na⁺ b) Electronegativity of Na⁺ c) Electron affinity of He d) Ionization potential of M 310. The atomic number of eler choose the correct answer 	b) Chlorine easing first ionization potential b) $C > Be > B > Li$ would be numerically the + Mg ments <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are <i>Z</i> - from the following statential affinity	c) Nitrogen ntial is: c) $B > C > Be > Li$ same as: - 1, Z + 1, and Z + 2, respe	d) Be > Li > B > C
 a) Oxygen 308. The correct order of decreal (C > B > Be > Li 309. Ionization potential of National (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	b) Chlorine easing first ionization poten b) C > Be > B > Li would be numerically the + Mg ments <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are <i>Z</i> - from the following statem affinity on state	c) Nitrogen ntial is: c) $B > C > Be > Li$ same as: - 1, Z + 1, and Z + 2, respe	d) Be > Li > B > C
 a) Oxygen 308. The correct order of decree a) C > B > Be > Li 309. Ionization potential of Na a) Electron affinity of Na⁺ b) Electronegativity of Na⁺ c) Electron affinity of He d) Ionization potential of M 310. The atomic number of eler choose the correct answer V. 'A' has higher electron VI. 'C' exists in +2 oxidation 	b) Chlorine easing first ionization poten b) C > Be > B > Li would be numerically the + Mg ments <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are <i>Z</i> - from the following statem affinity on state	c) Nitrogen ntial is: c) $B > C > Be > Li$ same as: - 1, Z + 1, and Z + 2, respe	d) Be > Li > B > C
 a) Oxygen 308. The correct order of decree a) C > B > Be > Li 309. Ionization potential of Na a) Electron affinity of Na⁺ b) Electronegativity of Na⁺ c) Electron affinity of He d) Ionization potential of M 310. The atomic number of eler choose the correct answer V. 'A' has higher electron VI. 'C' exists in +2 oxidation VII. 'D' is an alkaline earth 	b) Chlorine easing first ionization poten b) C > Be > B > Li would be numerically the + Mg ments <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are <i>Z</i> - from the following statem affinity on state metal b) II and III	c) Nitrogen ntial is: c) $B > C > Be > Li$ same as: - 1, Z + 1, and Z + 2, respensenents.	 d) Be > Li > B > C ectively. If 'B' is a noble gas, d) I, II and III
 a) Oxygen 308. The correct order of decree a) C > B > Be > Li 309. Ionization potential of Nava a) Electron affinity of Nava b) Electronegativity of Nava c) Electron affinity of He d) Ionization potential of M 310. The atomic number of eler choose the correct answer V. 'A' has higher electron VII. 'C' exists in +2 oxidation VII. 'D' is an alkaline earth a) I and II 311. The type of hybridization of 	b) Chlorine easing first ionization poten b) C > Be > B > Li would be numerically the + Mg ments <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are <i>Z</i> - from the following statem affinity on state metal b) II and III	c) Nitrogen ntial is: c) $B > C > Be > Li$ same as: - 1, Z + 1, and Z + 2, respensenents.	 d) Be > Li > B > C ectively. If 'B' is a noble gas, d) I, II and III
 a) Oxygen 308. The correct order of decree a) C > B > Be > Li 309. Ionization potential of Nava a) Electron affinity of Nava b) Electronegativity of Nava c) Electron affinity of He d) Ionization potential of M 310. The atomic number of eler choose the correct answer V. 'A' has higher electron VI. 'C' exists in +2 oxidation VII. 'D' is an alkaline earth a) I and II 311. The type of hybridization of 	b) Chlorine easing first ionization poten b) C > Be > B > Li would be numerically the + Mg ments <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are <i>Z</i> - from the following statem affinity on state metal b) II and III of sulphur atom present in b) <i>sp</i> ² , <i>sp</i> ²	c) Nitrogen ntial is: c) $B > C > Be > Li$ same as: - 1, $Z + 1$, and $Z + 2$, respendents. c) I and III a SO ₂ and SO ₃ is respectively	 d) Be > Li > B > C ectively. If 'B' is a noble gas, d) I, II and III ly:
 a) Oxygen 308. The correct order of decree a) C > B > Be > Li 309. Ionization potential of Na + b) Electron affinity of Na + b) Electron egativity of Na + c) Electron affinity of He d) Ionization potential of N 310. The atomic number of eler choose the correct answer V. 'A' has higher electron VI. 'C' exists in +2 oxidation VII. 'D' is an alkaline earth a) I and II 311. The type of hybridization of 	b) Chlorine easing first ionization poten b) C > Be > B > Li would be numerically the + Mg ments <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are <i>Z</i> - from the following statem affinity on state metal b) II and III of sulphur atom present in b) <i>sp</i> ² , <i>sp</i> ²	c) Nitrogen ntial is: c) $B > C > Be > Li$ same as: - 1, $Z + 1$, and $Z + 2$, respendents. c) I and III a SO ₂ and SO ₃ is respectively	 d) Be > Li > B > C ectively. If 'B' is a noble gas, d) I, II and III ly:
 a) Oxygen 308. The correct order of decree a) C > B > Be > Li 309. Ionization potential of Na a) Electron affinity of Na⁺ b) Electronegativity of Na⁺ c) Electron affinity of He d) Ionization potential of M 310. The atomic number of eler choose the correct answer V. 'A' has higher electron VII. 'C' exists in +2 oxidation VII. 'D' is an alkaline earth a) I and II 311. The type of hybridization of a) <i>sp</i>, <i>sp</i>² 312. Dipole moment is exhibite 	b) Chlorine easing first ionization poten b) C > Be > B > Li would be numerically the + Mg ments <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are <i>Z</i> - from the following statem affinity on state metal b) II and III of sulphur atom present in b) <i>sp</i> ² , <i>sp</i> ²	c) Nitrogen ntial is: c) $B > C > Be > Li$ same as: - 1, $Z + 1$, and $Z + 2$, respendents. c) I and III a SO ₂ and SO ₃ is respectively	 d) Be > Li > B > C ectively. If 'B' is a noble gas, d) I, II and III ly:
 a) Oxygen 308. The correct order of decreal (C > B > Be > Li 309. Ionization potential of National Electron affinity of National Electron affinity of Nation (C) Electron affinity of Head) Ionization potential of Nation (C) Electron affinity of Head) Ionization potential of National Interpretation (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	b) Chlorine easing first ionization potential b) C > Be > B > Li would be numerically the would be numerically the the Mg ments <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are <i>Z</i> - from the following statem affinity on state metal b) II and III of sulphur atom present in b) sp^2 , sp^2 ed by:	c) Nitrogen ntial is: c) $B > C > Be > Li$ same as: - 1, $Z + 1$, and $Z + 2$, respendents. c) I and III a SO ₂ and SO ₃ is respectively	 d) Be > Li > B > C ectively. If 'B' is a noble gas, d) I, II and III ly:
 a) Oxygen 308. The correct order of decree a) C > B > Be > Li 309. Ionization potential of Na a) Electron affinity of Na⁺ b) Electronegativity of Na⁺ c) Electron affinity of He d) Ionization potential of M 310. The atomic number of eler choose the correct answer V. 'A' has higher electron VI. 'C' exists in +2 oxidation VII. 'D' is an alkaline earth a) I and II 311. The type of hybridization of a) sp, sp² 312. Dipole moment is exhibite a) 1, 4-dichlorobenzene b) 1, 2-dichlorobenzene 	b) Chlorine easing first ionization potentials b) C > Be > B > Li would be numerically the would be numerically the the Mg ments <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are <i>Z</i> - from the following statent affinity on state metal b) II and III of sulphur atom present in b) sp^2 , sp^2 ed by:	c) Nitrogen ntial is: c) $B > C > Be > Li$ same as: - 1, $Z + 1$, and $Z + 2$, respendents. c) I and III a SO ₂ and SO ₃ is respectively	 d) Be > Li > B > C ectively. If 'B' is a noble gas, d) I, II and III ly:
 a) Oxygen 308. The correct order of decree a) C > B > Be > Li 309. Ionization potential of Nava a) Electron affinity of Nava b) Electronegativity of Nava c) Electron affinity of He d) Ionization potential of M 310. The atomic number of eler choose the correct answer V. 'A' has higher electron VI. 'C' exists in +2 oxidation VII. 'D' is an alkaline earth a) I and II 311. The type of hybridization of a) sp, sp² 312. Dipole moment is exhibite a) 1, 4-dichlorobenzene b) 1, 2-dichloroether 	b) Chlorine easing first ionization potential b) $C > Be > B > Li$ would be numerically the the Mg ments <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are <i>Z</i> - from the following statem affinity on state metal b) II and III of sulphur atom present in b) sp^2 , sp^2 ed by:	c) Nitrogen ntial is: c) $B > C > Be > Li$ same as: - 1, Z + 1, and Z + 2, respendents. c) I and III sO ₂ and SO ₃ is respectively c) sp^2 , sp^3	 d) Be > Li > B > C ectively. If 'B' is a noble gas, d) I, II and III d) sp, sp³
 a) Oxygen 308. The correct order of decree a) C > B > Be > Li 309. Ionization potential of Nava a) Electron affinity of Natbody b) Electronegativity of Natbody c) Electron affinity of He d) Ionization potential of Natbody 310. The atomic number of elerenchoose the correct answere V. 'A' has higher electron VI. 'D' is an alkaline earthal a) I and II 311. The type of hybridization of all sp, sp² 312. Dipole moment is exhibite a) 1, 4-dichlorobenzene b) 1, 2-dichloroethed d) <i>Trans</i>-1, 2-dichloroethed 	b) Chlorine easing first ionization potentials b) C > Be > B > Li would be numerically the would be numerically the the Mg ments <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are <i>Z</i> - from the following statem affinity on state metal b) II and III of sulphur atom present in b) sp^2 , sp^2 ed by: ene tene tene tene tene tene tene tene	c) Nitrogen ntial is: c) $B > C > Be > Li$ same as: - 1, Z + 1, and Z + 2, respendents. c) I and III sO ₂ and SO ₃ is respectively c) sp^2 , sp^3	 d) Be > Li > B > C ectively. If 'B' is a noble gas, d) I, II and III d) sp, sp³
 a) Oxygen 308. The correct order of decree a) C > B > Be > Li 309. Ionization potential of Na a) Electron affinity of Na⁺ b) Electronegativity of Na⁺ c) Electron affinity of He d) Ionization potential of M 310. The atomic number of eler choose the correct answer V. 'A' has higher electron VI. 'C' exists in +2 oxidation VII. 'D' is an alkaline earth a) I and II 311. The type of hybridization of a) sp, sp² 312. Dipole moment is exhibite a) 1, 4-dichlorobenzene b) 1, 2-dichlorobenzene c) <i>Trans</i>-1, 2-dicloro-2-bu 313. The formation of the oxide 	b) Chlorine easing first ionization potentials b) C > Be > B > Li would be numerically the the from the numerically the the from the following statem affinity on state metal b) II and III of sulphur atom present in b) sp^2 , sp^2 ed by: ene stene tene tene tene tene tene tene	c) Nitrogen ntial is: c) $B > C > Be > Li$ same as: - 1, Z + 1, and Z + 2, respendents. c) I and III sO ₂ and SO ₃ is respectively c) sp^2 , sp^3 an exothermic and then an	 d) Be > Li > B > C ectively. If 'B' is a noble gas, d) I, II and III d) sp, sp³

		-1	
b) Oxygen has high electr	ist the addition of another of another of a structure of the second second second second second second second s	electron	
c) Oxygen is more electro	•		
	ely larger size than oxyger	atom	
314. Which pair of the atomic			
a) 3, 12	b) 6, 12	c) 7, 15	d) 9, 17
315. Which of the following do	,	,	uj), 1/
a) Bonding behaviour	b) Electronegativity	c) Ionisation potential	d) Neutron/proton ratio
316. In the Periodic Table met		<i>,</i> .	
a) <i>f</i> -block	b) <i>d</i> -block	c) <i>p</i> -block	d) <i>s</i> -block
317. Four diatomic species are	•	· ·	, ,
of their increasing bond o		1	1
a) NO < C_2^{2-} < O_2^{-} < He ⁺ ₂			
b) $C_2^{2-} < He_2^+ < NO < O_2^-$			
c) $He_2^+ < O_2^- < NO < C_2^{-2}$			
d) $0_2^- < NO < C_2^{2-} < He_2^+$			
318. The increase in bond orde			
	th and increase in bond ene	ergy	
b) Decrease in bond lengt	th and bond energy		
c) Increase in bond lengt	h and bond energy		
d) None of the above			
319. In which molecule all atom	ms are coplanar?		
a) CH ₄	b) BF ₃	c) PF ₃	d) NH ₃
320. Length of hydrogen bond	ranges from 2.5 Å to:		
a) 3.0 Å	b) 2.75 Å	c) 2.6 Å	d) 3.2 Å
321. XeF ₆ is:			
a) Octahedral			
b) Pentagonal pyramidal			
c) Planar			
d) Tetrahedral			
322. HCl molecule in the vapou			
a) Non-polar bond	b) Ionic bond	c) Polar covalent bond	d) Pure covalent bond
323. Which of the following sp			
a) NO_2^+	b) 0 ₃	c) NO_2^-	d) SO ₂
324. Which represents a collect	_		
a) Be, Al^{3+} , Cl^{-}	b) Ca ²⁺ , Cs ⁺ , Br	c) Na ⁺ , Ca ²⁺ , Mg ²⁺	d) N ^{3–} , F [–] , Na ⁺
325. In which of the following		-	
a) SF ₄	b) SiF ₄	c) XeF ₄	d) BF ₄
326. Solid CH_4 is:			
a) Molecular solid	b) Ionic solid	c) Covalent solid	d) Not exist
327. Which has the highest box		a) Daubla band	d) Single hand
a) Hydrogen bond 328. The electron affinity valu	b) Triple bond of (in kI mol ^{-1}) of three br	c) Double bond	d) Single bond
-325. Then <i>X</i> , <i>Y</i> and <i>Z</i> re	spectively, are		-
a) F_2 , Cl_2 and Br_2		c) Cl_2 , Br_2 and F_2	
329. According to MO theory, order?	which of the following lists	ranks the nitrogen species	in terms of increasing bond
a) $N_2^- < N_2^{2-} < N_2$	b) $N_2^- < N_2 < N_2^{2-}$	c) $N_2^{2-} < N_2^- < N_2$	d) $N_2 < N_2^{2-} < N_2^{-}$
330. Be resembles much with			
a) Li	b) Al	c) Zn	d) Ra

331. The pair of species with the same bond order is:	10^{2} - D	Not Not
a) NO, CO b) N_2, O_2	c) O_2^{2-}, B_2	d) 0_2^+ , NO ⁺
332. Which molecule is planar?		
a) NH_3 b) CH_4	c) C ₂ H ₄	d) SiCl ₄
333. Which is present in peroxides?	N - 2	
a) 0_2 b) 0^{2-}	c) 0_2^{2-}	d) 0_2^-
334. The number of valency electrons in carbon atom is:		
a) Zero b) 2	c) 6	d) 4
335. Which does not form two or more chlorides?		
a) NA b) Hg	c) Cu	d) Fe
336. CCl ₄ is insoluble in water because:		
a) CCl ₄ is non-polar and water is polar		
b) Water is non-polar and CCl ₄ is polar		
c) Water and CCl ₄ both are polar		
d) None of the above		
337. In the transition of Cu to Cu ²⁺ , there is a decrease in	1:	
a) Atomic number		
b) Atomic mass		
c) Equivalent weight		
d) Number of valency electrons		
338. In coordinate bond, the acceptor atoms must essent	tially contain in its valency	shell an orbitals:
a) With paired electron b) With single electron	c) With no electron	d) With three electrons
339. Which one of the following statement is false?	,	,
a) The electron affinity of chlorine is less than that	of fluorine.	
b) The electronegativity of fluorine is more than that		
c) The electron affinity of bromine is less than that		
d) The electronegativity of chlorine is more than the		
340. Which of the following halides is most acidic?		
a) CCl_4 b) PCl_3	c) BiCl ₃	d) SbCl ₃
341. Hybridization state of I in ICl_2^+ is:		
a) dsp^2 b) sp	c) <i>sp</i> ²	d) sp^3
342. Identify the correct order in which the covalent rad	<i>,</i> ,	
	II) Sc	its increases
	·	
a) (I), (II), (III) b) (III), (I), (I)	c) (II), (I), (III)	d) (I), (III), (II)
343. Experiment shows that H_2O has a dipole moment	whereas, CO_2 has not. Po	int out the structures which
best illustrate these facts:		
a) $O = C = O, H - O - H$		
H = 0 - H		
0		
b) $\stackrel{C}{\longrightarrow} \stackrel{C}{\bigcirc} \stackrel{H \to O \to H}{\longrightarrow}$ c) $O = C = O, \stackrel{O}{\longleftarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow}$		
0 0 - 0 - 1		
••		
d) $\begin{array}{c} O & H \\ \parallel & , \\ C = O & O - H \end{array}$		
d) $\bigcirc H$ $C = O$, $\bigcirc H$ $C = O$, $\bigcirc H$ 344. Which is chemically most active non-metal?	c) Fa	d) Na
d) $\begin{array}{c} O & H \\ \parallel & , \\ C = O & O - H \end{array}$	c) F ₂	d) N ₂

a) Energy released when an electron is added to an isolated atom in the gaseous state

b) Energy absorbed when an electron is added to an isolated atom in the gaseous state

a) Enormy required to take out on electron from an isolated gaseous at	om
c) Energy required to take out an electron from an isolated gaseous at	om
d) Power of an atom to attract an electron to itself	
346. Which is paramagnetic?	4) (10
a) Cl_2O_6 b) Cl_2O_7 c) Cl_2O	d) ClO ₂
347. The bond length of LiF will be	
a) Equal to that of KF b) More than tha	
c) Equal to that of NaF d) Less than that	
348. The bond order of CO molecule on the basis of molecular orbital theory	
a) Zero b) 2 c) 3	d) 1
349. Compounds formed by sp^3d^2 -hybridization will have configuration:	
a) Square planar	
b) Octahedral	
c) Trigonal bipyramidal	
d) Pentagonal bipyramidal	
350. Ionic radii are:	
a) $\propto \frac{1}{1}$	
a) $\propto \frac{1}{\text{effective nuclear charge}}$	
b) $\propto \frac{1}{(\text{effective nuclear charge})^2}$	
c) \propto effective nuclear charge	
d) \propto (effective nuclear charge) ²	
351. The predominent intermolecular forces in hydrogen fluoride is due to	:
a) Dipole-induced dipole interaction	
b) Dipole-dipole interaction	
c) Hydrogen bond interaction	
d) Dispersion interaction	
352. Which of the following species does not exist under normal conditions	?
a) Be^{2+} b) Be_2 c) B_2	d) Li ₂
353. An element with atomic number 21 is a	
a) Halogen b) Representativ	re element
c) Transition element d) Alkali metal	
354. Linear combination of two hybridized orbitals, belonging to two atom	s and each having one electron leads
to:	
a) Sigma-bond	
b) Double-bond	
c) Coordinate covalent bond	
d) Pi-bond	
355. Which one of the following oxides is amphoteric in character?	
a) SnO_2 b) SiO_2 c) CO_2	d) CaO
356. The correct order in which the first ionisation potential increases is	-
a) Na, K, Be b) K, Na, Be c) K, Be, Na	d) Be, Na, k
357. The correct order of electron gain enthalpy with negative sign of F, Cl,	
17, 35 and 53 respectively, is	
a) $Cl > F > Br > I$ b) $F > Cl > Br > I$ c) $I > Br > Cl > I$	F d) $I > Br > F > Cl$
358. As the <i>s</i> -character of hybridization orbitals increases, the bond angle:	,
a) Increases b) Decreases c) Does not chan	ge d) Becomes zero
359. Dipole-dipole attractive forces are strongest between the molecules of	-
a) He b) CH_4 c) CO_2	d) H ₂ O
360. Among Na ⁺ , Na, Mg and Mg ²⁺ , the largest particle is	~,~~~
a) Mg^{2+} b) Mg c) Na	d) Na ⁺
361. If the IP of Na is 5.48 eV, the ionisation potential of K will be	uj na
sort in the front with 5.10 eV, the folloadton potential of K will be	

a) Same as that of Na		c) 5.68 eV	d) 10.88 eV
362. The electronic configur	ation of the atom having ma	iximum difference in first an	nd second ionisation
energies is			
a) $1s^2$, $2s^2$, $2p^6$, $3s^1$		b) $1s^2$, $2s^2$, $2p^6$, $3s^2$	
c) $1s^2, 2s^2, 2p^1$		d) 1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ¹	
363. Amongst LiCl, RbCl, Be	Cl_2 and $MgCl_2$, the compo	ounds with the gratest an	d the least ionic character
respectively are:			
a) LiCl and RbCl	b) RbCl and BeCl ₂	c) RbCi and MgCl ₂	d) MgCl ₂ and BeCl ₂
364. Pick the odd man out (7	The one having zero dipole i	noment):	
a) NH ₃	b) H ₂ 0	c) BCl ₃	d) SO ₂
365. The property of attract	ng electrons by the halogen	atoms in a molecule is calle	ed
a) Ionisation potential			d) Electronic attraction
366. The oxide of an elemen		ation is $1s^2, 2s^2, 2p^6, 3s^1$ is	
a) Neutral	b) Amphoteric	c) Basic	d) Acidic
367. Which among the follow		lue of ionisation energy?	
a) Mg	b) Ca	c) Ba	d) Sr
368. The pair of elements w			mpound is:
a) Na and Ca	b) K and O ₂	c) O_2 and Cl_2	d) Al and I ₂
369. A molecule which canne			
a) SF ₄	b) OF ₂	c) OF ₄	d) $O_2 F_2$
370. The ions O^{2-} , F ⁻ , Na ⁺ , N			,
	to F^- and then increase fro	m Na ⁺ to Al ³⁺	
b) A significant increase			
c) A significant decreas			
d) An increase from O ²⁻	to F^- and then decrease fr	om Na ⁺ to Al ³⁺	
371. A sudden large jump be	tween the values of second	and third ionisation energie	es of an element would be
associated with the elec	ctronic configuration		
a) $1s^2$, $2s^2$, $2p^6$, $3s^2$		b) 1s ² , 2s ² , 2p ⁶ , 3s ¹	
c) 1s ² ,2s ² ,2p ⁶ ,3s ² ,3p	1	d) 1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ²	
372. Among O, C, F, Cl, Br the			
,	b) $F < C < 0 < Br < Cl$	c) $F < Cl < Br < 0 < C$	d) C < 0 < F < Cl < Br
373. The correct order of rac			
a) N < Be < B	,	c) Na < Li < K	d) Fe ³⁺ < Fe ²⁺ < Fe ⁴⁺
374. The ionic radius of 'Cr'		u .	
a) CrO ₂	b) $K_2 CrO_4$	c) CrF ₃	d) CrCl ₃
375. Which molecule has tri			
a) IF ₃	b) PCl ₃	c) NH ₃	d) BF ₃
376. Which is the general ou		_	
a) ns^2np^6	b) $(n-1)d^{10}ns^1$	c) $(n-1)d^{10}ns^2$	d) $(n-1)d^9ns^2$
377. Which among the follow			
a) Pb	b) Sn	c) Si	d) C
378. The values of electrone		e 1.20 and 4.0 respectively.	Гhe percentage of ionic
character of $A - B$ bond			
a) 58.3%	b) 48%	c) 79.6%	d) 73.6%
379. Which of the following	=		
a) Al	b) Mg	c) P	d) S
380. Super octet molecule is			
a) F ₃ Cl	b) PCl ₃	c) NH ₃	d) None of these
381. Which of the following			
a) Li	b) Mg	c) Ca	d) Rb

382. An element <i>X</i> which occurs in the first short period	has an outer electronic str	ucture $s^2 p^1$. What are the
formula and acid-base character of its oxides?		
a) XO_3 , basic b) X_2O_3 , basic	c) X_2O_3 , amphoteric	d) <i>XO</i> ₂ , acidic
383. The diamagnetic molecules are:		
a) B_2, C_2, N_2 b) O_2, N_2, F_2	c) C ₂ , N ₂ , F ₂	d) B ₂ , O ₂ , N ₂
384. Which of the following electronic configuration repr	resents noble gas?	
a) ns^2np^6 b) ns^2np^5	c) ns^2np^4	d) ns^2np^3
385. The number of naturally occurring <i>p</i> -block element	ts that are diamagnetic is	
a) 18 b) 6	c) 5	d) 7
386. Which of the following element shows maximum va	lency?	
a) Carbon b) Barium	c) Nitrogen	d) Sulphur
387. The pair likely to form the strongest hydrogen bond		
a) H_2O_2 and H_2O	0	
b) HCOOH and CH_3COOH		
c) CH_3COOH and CH_3COOCH_3		
d) SiH ₄ and SiCl ₄		
388. Highest covalent character is found in which of the	following?	
a) CaF_2 b) $CaCl_2$	c) Cal_2	d) CaBr ₂
389 . How many bridging oxygen atoms are present in P_4		u) dubi 2
a) 6 b) 4	c) 2	d) 5
390. Which element has the highest electronegativity?	C) Z	u) 5
a) C b) O	c) Mg	d) S
391. Metallic nature and basic nature of the oxides as		u) s
a) Increases	b) Decreases	
c) Remains constant	d) First increases then d	ecreases
392. In which block does 106th element belong?		
a) <i>s</i> -block b) <i>p</i> -block	c) <i>d</i> -block	d) <i>f</i> -block
393. Which of the following is more ionic?		
a) NaCl b) KCl	c) MgCl ₂	d) CaCl ₂
394. Which one of the following orders is not in accordin	g with the property stated	against it?
a) $F_2 > Cl_2 > Br_2 > I_2$: Electronegativity		
b) $F_2 > Cl_2 > Br_2 > I_2$: Bond dissociation energy		
c) $F_2 > Cl_2 > Br_2 > I_2$: Oxidising power		
d) HI > HBr > HCl > HF : Acidic property in water		
395. Which one is electron deficient compound?		
a) NH ₃ b) ICl	c) BCl ₃	d) PCl ₃
396. Which of the following is largest ion?		
a) Na ⁺ b) Mg ²⁺	c) 0 ²⁻	d) F ⁻
397. Which of the following has the minimum bond length	th?	
a) 0_2 b) 0_2^+	c) 0_2^-	d) 0_2^{2-}
398. Ionisation energy in group 1-A varies in the decreas	ing order as	
a) Li $> Na > K > Cs$ b) Na $> Li > K > Cs$	c) Li > Cs > K > Na	d) K > Cs > Na > Li
399. Paramagnetism is exhibited by molecules:		
a) Not attracted into a magnetic field		
b) Containing only paired electrons		
c) Carrying a positive charge		
d) Containing unpaired electrons		
400. The value of bond order in nitrogen and oxygen mo	lecule is:	
a) 3, 2 b) 4, 2	c) 2,3	d) 1, 2
401. In third row of Periodic Table, the atomic radii from		

	a) Continuously decrease c) Remains constant	S	b) Continuously increases d) Increases but not contin	
			u) mereases but not contin	nuousiy
40	12. Which has a giant covalent of the second sec		a) NaCl	
	a) PbO ₂	b) SiO ₂	c) NaCl	d) AlCl ₃
40	3. Which has an odd electron			N H O
	a) NO	b) SO_2	c) CO_2	d) H ₂ 0
4(04. The correct order of incre		, C - O, C - C and C = C is :	
	a) $C - H < C - 0 < C - C$			
	b) $C - H < C = C < C - C$			
	c) $C - C < C = C < C - 0$			
	d) $C - 0 < C - H < C - C$	C < C = C		
4()5. NF ₃ is :			
	a) Non-polar compound	_		
	b) Electrovalent compour			
	c) Having low value of dig	_		
	d) Having more dipole mo			
4()6. Atomic radii of F and Ne, i			
	a) 0.72, 0.71	b) 0.72, 1.6	c) 1.6, 1.58	d) 0.71, 0.72
4(07. When an electron is remo	oved from an atom, its energ	gy	
	a) Increase	b) Decrease	c) Remains the same	d) None of these
4(98. In which of the following			
	a) NO ₃	b) SO_3^{2-}	c) BO ₃ ³⁻	d) CO_3^{2-}
4(9. In BrF ₃ molecule, the lone	e pair occupy equatorial po	sition to minimize :	
	a) Lone pair-bond pair re	pulsion only		
	b) Bond pair-found pair r	epulsion only		
	c) Lone pair-lone pair rep	oulsion and lone pair-bond	pair repulsion	
	d) Lone pair-lone pair rep	oulsion only		
42	0. The number of lone pairs	is same in PCl ₃ and:		
	a) BCl ₃	b) NCl ₃	c) CCl ₄	d) PCl ₅
42	1. As a result of resonance:			
	a) Bond length decreases			
	b) Energy of the molecule	es decreases		
	c) Stability of the molecul	le increases		
	d) All are correct			
42	2. The number of ions forme	ed when a molecule of K ₄ Fe	e(CN) ₆ dissociate is:	
	a) 4	b) 5	c) 6	d) 2
42	3. Polar covalent compound	s are soluble in:		
	a) Polar solvents	b) Non-polar solvents	c) Concentrated acids	d) All solvents
42	4. The elements with atomic	c numbers 9, 17, 35, 53, 85	are all	
	a) Halogens	b) Noble gases	c) Heavy metals	d) Light metals
42	5. Which among the following	ng has highest ionic radius?		
	a) F ⁻	b) B ³⁺	c) 0 ²⁻	d) Li ⁺
42	6. Strongest bond is formed	by the head on overlapping	g of:	
	a) 2 <i>s</i> - and 2 <i>p</i> -orbitals	b) 2 <i>p</i> - and 2 <i>p</i> -orbitals	c) 2s- and 2s-orbitals	d) All of these
42	7. $A \rightarrow A^+ + e, E_1 \text{ and } A^+ \rightarrow$	$A^{2+} + e, E_2$. The energy re	quired to pull out the two e	lectrons are E_1 and E_2
	respectively. The correct	relationship between two e	energy would be	
	a) $E_1 < E_2$	b) $E_1 > E_2$	c) $E_1 = E_2$	d) $E_1 \neq E_2$
42	8. The element having highe	est electron affinity is		
	a) Bromine	b) Iodine	c) Fluorine	d) Chlorine
42	9. Fluorine has low electron	affinity than chlorine beca	use of	

-	
	orine, less density
c) CO_2	d) SO_3
⊥	
, ,	d) H ₂ 0
c) Ba > K > Ca	d) K > Ba > Ca
c) CaCl ₂	d) H ₂ 0
,	d) 5
c) $sp^2 - sp^2$	d) All of these
,	d) 0
	1-2
)S ¹ 2
,	d) Se > S > 0
, 20	d) BeO
,	d) N ⁺
-) , -,	d) 1.71, 1.36, 1.40
m dipole moment for the t	riatomic molecule XY_2 shown
,	d) $\theta = 180^{\circ}$
2.5, 2.1, 3.5, 3.0 and 2.5 res	pectively. Which of the
,	d) 0 – H
_	
, , , ,	
• · •	
c) IBr	d) N ₂ O ₄
c) Ca ²⁺	d) Na ⁺
c) 0	d) Be
	d) Nitrogen
2.60 and 1.40. The ionic rad	dius of the isoelectronic ion
•	d) 0.95
al 15 :	
	b) Smaller radius of fluc d) Smaller radius of chlomin: c) CO_2 c) NH_4^+ rgy of K, Ca and Ba is: c) Ba > K > Ca c) CaCl ₂ c) 4 ost efficient overlapping are c) $sp^2 - sp^2$ c) Fe ion elements is b) $(n - 1)d^{1-10}$, $(n + 1)$ d) $(n - 1)d^{1-10}$, ns^{1-2} c) Se > 0 > S oth of an acid and alkali, is? c) Al_2O_3 n atom? c) O^{2-} d F ⁻ are in the order? c) 1.71 , 1.40 , 1.36 m dipole moment for the tr c) $\theta = 150^{\circ}$ 2.5, 2.1, 3.5, 3.0 and 2.5 resp c) S - H ents the decreasing acidic na b) $CO_2 > N_2O_3 > B_2O_3$ d) $CO_2 > BeO > Li_2O >$ ive the largest percentage o c) IBr c) Ca ²⁺ c) O c) Oxygen 2.60 and 1.40. The ionic rad c) 1.4 al is :

c) Equal to that of 2 <i>s</i> -c	orbital		
d) Double that of 2 <i>s</i> -or			
441. The bond angle in PH_3			
a) Much lesser than NI			
b) Equal to that in NH_3	-		
c) Much greater than i			
d) Slightly more than i	-		
442. The dipole moment of	-	hat of CCL, is zero, because	CCL is:
a) Linear	b) Symmetrical	c) Planar	d) Regular tetrahedral
443. The high boiling point	•	cj i lanai	aj regular tetranearar
a) Weak dissociation o			
•	among water molecules		
c) Its high specific hea	-		
d) Its high dielectric co			
444. The number of unpaire		is:	
a) Zero	b) 1	c) 2	d) 3
445. Variable valency in ger	-	,	
a) Transition elements		c) Non-metals	d) <i>s</i> -block elements
446. Which statement is tru		-	-
a) Absolutely pure wat	ter does not contain any ion		
	pounds may also give ions in		
c) In aqueous solution	only electrovalent compour	nds give ions.	
d) Very sparingly solul	ble substances do not dissoc	ciate in aqueous solution	
447. The bond strength inc	reases:		
a) With increasing bon	nd order		
b) With increasing exte	ent of overlapping of orbital	S	
c) With decreasing diff	ference between energies of	f overlapping orbitals	
d) All of the above			
448. If the ionic radii of K ⁺	and F [–] are about 1.34 Å e	ach, then the expected val	lues of atomic radii of K and F
should be respectively	1		
a) 1.34 and 1.34 Å	b) 2.31 and 0.64 Å	c) 0.64 and 2.31 Å	d) 2.31 and 1.34 Å
449. Which species is param	nagnetic?		
a) 0 <u>-</u>	b) CH_3^-	c) CO	d) NO ⁺
450. Chemical bond formati	ion takes place when:		
a) Energy is absorbed			
b) Forces of attraction	overcome forces of repulsio	on	
c) Forces of repulsion	overcome forces of attraction	on	
d) Forces of attraction	are equal to forces of repuls	sion	
451. H ₂ 0 has a net dipole m	noment, while BeF ₂ has zero	dipole moment, because:	
a) H ₂ O molecule as lin	ear while BeF ₂ is bent		
b) BeF ₂ molecule is lin	ear while H ₂ 0 is bent		
c) Fluorine is more ele	ectronegative than oxygen		
d) Be is more electrone	egative than oxygen		
452. Which has the smalles	t size?		
a) Na ⁺	b) Mg ²⁺	c) Al ³⁺	d) P ⁵⁺
453. Observe the following	statement		
VIII. The physical ar	nd chemical properties of el	ements are periodic functi	ons of their electronic
configuration.			
IX. Electronegativity	of fluorine is less than the el	ectronegativity of chlorine	2.
V Electron estricter a	turo docroscos from top to l	a attam in a graun	

X. Electropositive nature decreases from top to bottom in a group.

The correct answer is		.	
a) I, II and III are correct		Only I is correct	
c) Only I and II is correct		Only II and III are corre	ct
454. The only non-metal which is liqu			
a) Hg b) Br ₂	c)	NH ₃	d) None of these
455. Which has triangular planar shap	e?		
a) CH_3^+ b) ClO	c)	$H_{3}O^{+}$	d) ClO_3^-
456. With respect to chlorine, hydroge	en will be		
a) Electropositive b) Electropositive	ctronegative c)	Neutral	d) None of these
457. In the case of alkali metals, the co	valent character decre	eases in the order:	
a) $MI > MBr > MCl > MF$			
b) $MCl > MI > MBr > MF$			
c) $MF > MCl > MBr > MI$			
d) $MF > MCl > MI > MBr$			
458. The set representing the correct	order of ionic radius is		
a) $Li^+ > Be^{2+} > Na^+ > Mg^{2+}$		$Na^{+} > Li^{+} > Mg^{2+} > B$	e ²⁺
c) $Li^{2+} > Na^+ > Mg^{2+} > Be^{2+}$,	$Mg^{2+} > Be^{2+} > Li^+ > N$	
459. Which element has maximum ele	,		ia.
	-	A1	d) S
a) Na b) Mg	C)	Al	u) 5
460. Ionisation potential is lowest for	b)	In out goo	
a) Alkali metals	=	Inert gas	
c) Halogens		Alkaline earth metals	
461. It is thought that atoms comb			=
configuration of 8 electrons. If st	-	with 6 electrons rather t	han with 8, what would be
the formula of the stable fluoride		-	N P ² -
a) F ³⁺ b) F ⁺	,	F ⁻	d) F ²⁻
462. The outermost configuration of the			
a) ns^2p^3 b) ns^2	. ,	ns^2p^5	d) ns^2p^6
463. Elements of the same vertical gro	up of the Periodic Tabl	le have	
a) Same atomic number		Same atomic size	
c) Same number of atoms	d)	Same number of electro	ns in outermost shell
464. Ionisation potential for a noble ga	as is		
a) Maximum in a period	b)	Minimum in a period	
c) Either minimum or maximum	d)	Constant	
465. Which of the following possess m	aximum hydration ene	ergy?	
a) MgSO ₄ b) RaS	0 ₄ c)	SrSO ₄	d) BaSO ₄
466. The correct order of hybridizati	on of the central atom	n in the following speci-	es NH_3 , $[PtCl_4]^{2-}$, PCl_5 and
BCl ₃ is:			
a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3	dsp^2, dsp^3, sp^2 c)	dsp^2 , sp^2 , sp^3 , dsp^3	d) dsp^2 , sp^3 , sp^2 , dsp^3
467. Following statements regarding t	he periodic trends of c	hemical reactivity to the	alkali metals and the
halogens are given. Which of thes	e statements gives the	correct picture?	
a) The reactivity decreases in the	alkali metals but incre	eases in the halogens wit	h increase in atomic
number down the group.		C C	
b) In both the alkali metals and th	he halogens the chemic	al reactivity decreases w	vith increase in atomic
number down the group	0	5	
c) Chemical reactivity increases v	with increase in atomic	c number down the grou	o in both the alkali metals
and halogens.			
d) In alkali metals the reactivity i	ncreases but in the hal	ogens it decreases with i	ncrease in atomic number
down the group.	cases sat in the num		
U	And A C N O E in		

468. The correct order of ionisation energy of C, N, O, F is

a) $F < 0 < N < C$ 469. Which has minimum	b) $F < N < C < 0$	c) C < N < 0 < F	d) C < 0 < N < F
a) N^{3-}	b) K ⁺	c) Na ⁺	d) F ⁻
,	pecies the ionic radii (Å) of N	,	-
a) 1.71, 1.40, 1.36		c) 1.36, 1.40, 1.71	d) 1.36, 1.71, 1.40
	ial order for which set is corr		
a) Cs < Li < K	b) Cs < Li > B	c) $Li > K > Cs$	d) B > Li < K
	which shows decreasing ord		
a) $Al^{3+} > Mg^{2+} > Na$		b) $Na^+ > Mg^{2+} > Al^{3+}$	
c) $Na^+ > F^- > Mg^{2+}$	$> 0^{2-} > Al^{3+}$	d) $0^2 > F^- > Na^+ > M$	$ g^{2+} > Al^{3+}$
473. Among HX, the maxin	num dipole moment is of:		
a) HF	b) HCl	c) HBr	d) HI
474. Compound formed by	$sp^{3}d$ -hybridization will hav	e structure:	
a) Trigonal bipyramic	lal		
b) T-shaped			
c) Linear			
d) Either of these dep	ending on number of lone pa	ir of electrons of central at	com
, .	companying the process give		
$Na^+(g) + Cl^-(g) \rightarrow N$		· · · · · · · · · · · · · · · · · · ·	
	b) Ionization energy	c) Electron affinity	d) Lattice energy
			and occupies a greater volume
	ructure of ice is due to:		
a) Solid state of ice	b) Its low density	c) Crystalline nature	d) Hydrogen bonding
	complete outershell are know		uj nyurogen bonung
	b) Valency electrons		d) None of the above
	g is not a correct statement?	cj shen electrons	uj None of the above
	e does in fact have square py	ramid structure	
÷	always shorter than corresp		
-	ent molecules can act as Lew		
-	ctures have no real existence		
479. Van der Waals' forces	are applied to:		
a) Inert gases only			
b) Rare gases only			
c) Mixture of gases			
d) Elementary gases of	•		
480. The correct order of c	-		
a) $CH_4 < NF_3 < NH_3$	_		
b) $NF_3 < CH_4 < NH_3$	-		
c) $NH_3 < NF_3 < CH_4$	_		
d) $H_2 0 < NH_3 < NF_3$	•		
481. Which of the followin	g species contains three bon	d pairs and one lone pair a	round the central atom?
a) NH ₂	b) PCl ₃	c) H ₂ 0	d) BF ₃
482. In H_2^- ion, the bond or	der is:		
a) Zero	b) 1/2	c) −1/2	d) 1
483. Which statement is co	orrect?		
a) Pi-bond always exi	sts with sigma-bond		
b) Pi-bond can exist in	ndependently		
c) Sigma-bond is wea	ker than pi-bond		
d) Pi-bond is less read	tive than sigma-bond		
484. Which is highest melt	ing point halide?		
-			

	a) NaCl	b) NaBr	c) NaF	d) NaI
48	85. The following compounds	s have been arranged in oro	ler of their increasing ther	nal stabilities. Identify the
	correct order:			
	K_2CO_3 (I) MgCO ₃ (II)			
	$CaCO_3$ (III) $BeCO_3$ (IV)			
	a) $I < II < III < IV$	b) IV < II < III < I	c) IV < II < I < III	d) II < IV < III < I
48	86. Elements of which group			N
	a) Halogens	b) Alkali metals	c) Oxygen family	d) Nitrogen group
48	37. The bond order of C_2^+ is:			1) 4 /0
4.0	a) 1	b) 2	c) 3/2	d) 1/2
48	88. Which is not a scale of me	easuring electronegativity?		
	a) Stevenson's scale		b) Mulliken's scale	
10	c) Allred-Rochow's scale	long and agetuland the C	d) Pauling scale	
40	 In the series ethane, ethyl a) The same in all the three 	=	n boliu ellergy is :	
	b) Greatest in ethane	ee compounds		
	c) Greatest in ethylene			
	d) Greatest in acetylene			
<i>1</i> .C	0. Which ion is not isoelectr	onic with 0^{2-2}		
Т	a) N^{3-}	b) Na ⁺	c) F ⁻	d) Ti ⁺
ДC	91. The ionic radii of N ^{3–} , O ²⁻	,	,	uj II
Т	a) 1.36, 1.40, 1.71			d) 1.71, 1.36, 1.40
ДC	92. During change of O_2 to O_2^2			
1,	a) π^* orbital	b) π orbital	c) σ^* orbital	d) σ orbital
40	93. Which of the following ha	-		a) o orbitar
1,	a) Al	b) Al ⁺	c) Al ²⁺	d) Al ³⁺
40	94. The correct order of incre	,	,	u) m
1,		b) $ClO_2 < Cl_2O < ClO_2^-$		d) $C[0^{-}_{2} < C]^{-}_{2} < C[0^{-}_{2}]$
49	95. In the Periodic Table met			
		oup and increases across the	-	
		oup and decreases across th	=	
	, ,	eriod and also down the gro	•	
		eriod and also down the gr	-	
49	96. When sodium and chlorin		-	
	a) Released and ionic bon	nd is formed		
	b) Released and covalent	bond is formed		
	c) Absorbed and covalent	t bond is formed		
	d) Absorbed and ionic bo	nd is formed		
49	97. In third row of Periodic T	able from Na to Cl		
	a) Electronegativity incre	ases	b) Electronegativity decre	eases
	c) Ionisation energy decr	eases	d) Atomic volume increas	es
49	98. The molecule having sma	-		
	a) AsCl ₃	b) SbCl ₃	c) PCl ₃	d) NCl ₃
49	9. Which of the following sta		monoxide is correct?	
	a) It involves <i>sp</i> -orbitals			
	b) It contains a lone pair of			
	c) It contains a lone pair of			
		d is attached to the metal at	coms	
50	0. The hydration of ionic co	mpounds involves:		
	a) Evolution of heat			

b) Weakening of attractive forces c) Dissociation into ions d) All of the above 501. Ionic radii are a) Inversely proportional to effective nuclear charge b) Inversely proportional to square of effective nuclear charge c) Directly proportional to effective nuclear charge d) Directly proportional to square of effective nuclear charge 502. Which of the following is the atomic number of a metal? a) 32 b) 34 c) 36 d) 38 503. The electronic configurations of four elements are given below. Arrange these elements in the correct order of the magnitude (without sign) of their electron affinity. XI. $2s^2 2p^5$ XII. 3*s*²3*p*⁵ XIII. $2s^2 2p^4$ $3s^2 3p^4$ XIV. Select the correct answer using the codes given below a) (i) < (ii) < (iv) < (iii) b) (ii)<(i)<(iv)<(iii) c) (i)<(iii)<(iv)<(ii) d) (iii) < (iv) < (i) < (ii) 504. Which statement is correct? a) X^+ ion is larger than X^- ion b) X^- ion is larger in size than X atom c) X^+ and X^- have the same size d) X^+ ion is larger in size than X atom 505. The correct order of size of iodine species is c) $I^+ > I > I^$ a) $I > I^- > I^+$ b) $I^- > I > I^+$ d) $I^- > I^+ > I$ 506. Which of the following statement is wrong? a) The stability of hydrides increase from NH_3 to BiH_3 in group 15 of the periodic table. b) Nitrogen cannot form $d\pi - p\pi$ bond. c) Single N—N bond is weaker than the single P—P bond d) N_2O_4 has two resonance structure 507. Methanol and ethanol are miscible in water due to: a) Covalent character b) Hydrogen bonding character c) Oxygen bonding character d) None of the above 508. Bond order of N_2^- anion is : b) 2.0 c) 2.5 d) 1.5 a) 3.0 509. Among the following, the number of elements showing only one non-zero oxidation state is O, Cl, F, N, P, Sn, Tl, Na, Ti a) 1 b) 2 c) 3 d) 4 510. The structure of IF_5 can be best demonstrated as: d) None of these b) 120 c) a) 511. The correct decreasing order of first ionisation enthalpies of five elements of the second period is a) Be > B > C > N > F b) N > F > C > B > Bec) F > N > C > Be > Bd) N > F > B > C > Be512. The correct order of second ionisation potential of carbon, nitrogen, oxygen and fluorine is: a) C > N > 0 > Fb) 0 > N > F > Cc) 0 > F > N > Cd) F > 0 > N > C

E12 Of the following elements w	which one has the highest	alastronagativity?	
513. Of the following elements, w a) F b) Cl	c) Br	d) I
514. A molecule in which sp^2 -hyl	,	,	,
) SO ₂	c) PCl ₅	d) N_2
515. The hydrogen bonding is str	-	c) i ci5	uj w
	•	c) F — H … F	d) F – H … O
516. In which of the following pro	,	,	
			d) $0^- + e \rightarrow 0^{2-}$
517. A covalent bond is formed b		,	,
a) Single electron	etween the atoms by the	over apping of or breads con	
b) Paired electron			
c) Single electron with paral	llel spin		
d) Single electron with oppo	-		
518. Which main group elements	=	of outermost electrons that	n their group number?
		c) Halogens	d) None of these
519. Which one of the following h	, 0	, 0	,
) Cl	c) P	d) Si
520. If the ionization potential for		2	otential for He ⁺ ion should
be:			
a) 72.2 eV b) 54.4 eV	c) 6.8 eV	d) 13.6 eV
521. Which property is commonly	y exhibited by a covalent	compound?	
a) High solubility in water			
b) Low m. p.			
c) High electrical conductivi	ity		
d) High b. p.			
522. The energy of antibonding m	nolecular orbitals is:		
a) Greater than the bonding	M. O.		
b) Smaller than the bonding	M. O.		
c) Equal to that of bonding N	М. О.		
d) None of the above			
523. Which is not characteristic o			
a) π -bond is formed when a	• ·	ied	
b) π -bond is formed from hy			
c) π -bond may be formed by			
d) π -bond results from later	-		
524. An atom with atomic numbe	er 20 is most likely to con	ibine chemically with the a	tom whose atomic number
is:			N 4.0
,) 16	c) 18	d) 10
525. How does the ionisation ene		-	
a) Increases down the group	0	b) Decreases down the gro	oup
c) Remains unchanged	17	d) Variation is not regular	11 1 11 11 12 12
526. Which one of the following p			
		c) $[BCl_3 \text{ and } BrCl_3]$	d) $[NH_3 \text{ and } NO_3^-]$
527. Which shows the highest lat		-) N-F	בע (ר
-) CsF	c) NaF	d) KF
528. The hybridization of phosph	-		d) D in DCl
) S in SF ₆ idal geometry?	c) Cl and ClF ₃	d) B in BCl ₃
529. Which does not have pyramit		c) NH	
) NO ₃	c) NH ₃	d) $C(C_6H_5)_3^-$
530. Dative bond is present in:			

a) SO_3 b) NH_3	c) BaCl ₂	d) BF ₃
531. Amongst H_2O , H_2S , H_2Se and H_2Te , the one with h	ighest boiling point is:	
a) H_2O because of hydrogen bonding		
b) H ₂ Te because of higher molecular weight		
c) H_2S because of hydrogen bonding		
d) H_2 Se because of lower molecular weight		
532. Which of the following halides is least stable and h	as doubtful existence?	
a) CI ₄ b) GeI ₄	c) SnI ₄	d) PbI ₄
533. Which property of halogens increases from F to I?		
a) Electronegativity		
b) First ionisation energy		
c) Bond length in the molecule		
d) None of the above		
534. Which has highest melting point?		
a) LiCl b) BeCl ₂	c) BCl ₃	d) CCl ₄
535. Which of the following phenomenon will occur w	hen two atoms of an eleme	nt with same spin of electron
in orbitals approach each other?		
a) Orbitals will overlap		
b) Orbitals will not overlap		
c) Bonding will take place		
d) A diatomic molecule will be formed		
536. The least stable ion among the following is		
a) Li ⁻ b) Be ⁻	c) B ⁻	d) C ⁻
537. The electron affinity values for the halogens show	-	
a) $F < Cl > Br > I$ b) $F < Cl < Br < I$	c) $F > Cl > Br > I$	d) $F < Cl > Br < I$
538. CO_2 has the same geometry as:		
(A)HgCl ₂ , (B)NO ₂ , (C)SnCl ₄ , (D)C ₂ H ₂		
a) A and C b) B and D	c) A and D	d) C and D
539. In which of the following molecule, the central ato		
a) CH_4 b) SF_4	c) BF_4^-	d) NH ₄ ⁺
540. The elements present in the core of earth are colle		
a) Lithophiles b) Nucleophiles	c) Chalcophiles	d) Siderophiles
541. In the Modern Periodic Table, elements are arrang	-	~~~
a) Alphabetically	b) With increasing volud) With increasing atom	
c) With increasing mass 542. Which of the ions has the largest ionic radius?	uj with niciedsnig aton	ne number
a) Be^{2+} b) Mg^{2+}	c) Ca ²⁺	d) Sr ²⁺
543. The elements having the electronic configuration	,	,
a) <i>s</i> -block b) <i>p</i> -block	c) d -block	d) <i>f</i> -block
544. Some of the properties of the two species, NO_3^-	,	,,
correct?	and mgo are described i	below. Which one of them is
a) Dissimilar in hybridization for the central atom	with different structure	
b) Isostructural with same hybridization for the co		
c) Isostructural with different hybridization for th		
d) Similar is hybridization for the central atom wi		
545. Which compound shows hydrogen bonding?		
a) HCl b) C_2H_6	c) RCH ₂ CHO	d) RCH ₂ NHCH ₃
546. The ionization potential order for which set is cor		
a) $\text{Li} > \text{K} > \text{Cs}$ b) $\text{B} > \text{Li} > \text{K}$	c) Cs > Li > B	d) Cs < Li < K
547. Which shows non-directional bonding?		

a) BCl ₃	b) CsCl	c) NCl ₃	d) BeCl ₃
	covalent bonds between tw		
a) Three	b) Two	c) Four	d) One
549. o-hydroxy benzaldeh	nyde, although contains en	nolic group but does not giv	e test of group with FeCl ₃
because:			
a) It is steam volatile			
b) Of intermolecular l	H-bonding		
c) Of intermolecular l	H-bonding		
d) All of the above			
550. Bond energy of covale	ent $0 - H$ bond in water is	:	
a) Greater than bond	energy of hydrogen bond		
b) Equal to bond ener	rgy of hydrogen bond		
-	ergy of hydrogen bond		
d) None of the above			
551. Which is expected to			
a) ClO ₂	b) SO ₂	c) CO ₂	d) SiO ₂
=	nembers from the same pe		
a) Cl, Br	b) Ca, Cl	c) Na, Ca	d) Na, Cl
	ving arrangements, the sequ	uence is not strictly according t	to the property written
against it?			
-	HI : increasing acid streng	-	
	$_3 < \text{SbH}_3$: increasing basic		
-	creasing first ionization en		
	$_2 < PbO_2$: increasing oxidi		
554. The half of the differe		of electrons in bonding molecu	lar orbitals and antibonding
المثر والمغث واستمر متصالبته مراجعت			
molecular orbitals is l		a) Malagular ardar	d) Electron order
a) Bond order	b) Proton order	c) Molecular order	d) Electron order
a) Bond order 555. Which can be describ	b) Proton order ed as a molecule with resid	lual bonding capacity?	-
a) Bond order 555. Which can be describ a) N ₂	b) Proton order ed as a molecule with resid b) CH ₄	lual bonding capacity? c) NACl	d) Electron order d) BeCl ₂
a) Bond order 555. Which can be describ a) N ₂ 556. The intermolecular at	b) Proton order ed as a molecule with resid b) CH ₄ ttractive forces vary in the	lual bonding capacity? c) NACl	-
a) Bond order 555. Which can be describ a) N ₂ 556. The intermolecular at a) water < alcohol <	b) Proton order ed as a molecule with resid b) CH ₄ ttractive forces vary in the ether	lual bonding capacity? c) NACl	-
a) Bond order 555. Which can be describ a) N ₂ 556. The intermolecular at a) water < alcohol < b) water > alcohol >	b) Proton order ed as a molecule with resid b) CH ₄ ttractive forces vary in the ether ether	lual bonding capacity? c) NACl	-
 a) Bond order 555. Which can be describ a) N₂ 556. The intermolecular at a) water < alcohol < b) water > alcohol > c) alcohol > water < 	b) Proton order ed as a molecule with resid b) CH ₄ ttractive forces vary in the ether ether ether	lual bonding capacity? c) NACl	-
 a) Bond order 555. Which can be describ a) N₂ 556. The intermolecular at a) water < alcohol < b) water > alcohol > c) alcohol > water < d) ether > water > alcohol > 	b) Proton order ed as a molecule with resid b) CH ₄ ttractive forces vary in the ether ether ether lcohol	lual bonding capacity? c) NACl	-
 a) Bond order 555. Which can be described a) N₂ 556. The intermolecular at a) water < alcohol < b) water > alcohol > c) alcohol > water < d) ether > water > alcohol 	b) Proton order ed as a molecule with resid b) CH ₄ ttractive forces vary in the ether ether ether lcohol ole moment?	lual bonding capacity? c) NACl	-
 a) Bond order 555. Which can be describ a) N₂ 556. The intermolecular at a) water < alcohol < b) water > alcohol > c) alcohol > water < d) ether > water > alcohol 557. Which have zero diportion a) 1, 1-dichloroethene 	b) Proton order ed as a molecule with resid b) CH ₄ ttractive forces vary in the ether ether ether lcohol ole moment? e	lual bonding capacity? c) NACl	-
 a) Bond order 555. Which can be described a) N₂ 556. The intermolecular at a) water < alcohol < b) water > alcohol > c) alcohol > water < d) ether > water > alcohol 	b) Proton order ed as a molecule with resid b) CH ₄ ttractive forces vary in the ether ether lcohol ble moment? e	lual bonding capacity? c) NACl	-
 a) Bond order 555. Which can be described a) N₂ 556. The intermolecular at a) water < alcohol < b) water > alcohol > c) alcohol > water < d) ether > water > alcohol a) ether > water > alcohol > b) the content of the	b) Proton order ed as a molecule with resid b) CH ₄ ttractive forces vary in the ether ether lcohol ble moment? e	lual bonding capacity? c) NACl	-
 a) Bond order 555. Which can be describ a) N₂ 556. The intermolecular at a) water < alcohol < b) water < alcohol > c) alcohol > water < d) ether > water > alcohol > 557. Which have zero diportion a) 1, 1-dichloroethered b) Cis-1, 2-dichloroethered c) Trans-1, 2-dichloroethered 	b) Proton order ed as a molecule with resid b) CH ₄ ttractive forces vary in the ether ether lcohol ble moment? e hene othene	lual bonding capacity? c) NACl	-
 a) Bond order 555. Which can be describ a) N₂ 556. The intermolecular at a) water < alcohol < b) water > alcohol > c) alcohol > water < d) ether > water > a 557. Which have zero diportion a) 1, 1-dichloroethenee b) <i>Cis</i>-1, 2-dichloroethenee c) <i>Trans</i>-1, 2-dichloroethenee 	b) Proton order ed as a molecule with resid b) CH ₄ ttractive forces vary in the ether ether lcohol ole moment? e hene othene ds get dissolved in water:	lual bonding capacity? c) NACl	-
 a) Bond order 555. Which can be describ a) N₂ 556. The intermolecular at a) water < alcohol < b) water < alcohol > c) alcohol > water < d) ether > water > alcohol > 557. Which have zero diportion a) 1, 1-dichloroethere b) <i>Cis</i>-1, 2-dichloroethere c) <i>Trans</i>-1, 2-dichloroethere d) None of the above 558. When ionic compound 	b) Proton order ed as a molecule with resid b) CH ₄ ttractive forces vary in the ether ether lcohol ble moment? e hene othene ds get dissolved in water: changes	lual bonding capacity? c) NACl	-
 a) Bond order 555. Which can be describ a) N₂ 556. The intermolecular at a) water < alcohol < b) water > alcohol > c) alcohol > water < d) ether > water > alcohol > 557. Which have zero diportion at the series of the	b) Proton order ed as a molecule with resid b) CH ₄ ttractive forces vary in the ether ether lcohol ble moment? e hene othene ds get dissolved in water: changes	lual bonding capacity? c) NACl order:	-
 a) Bond order 555. Which can be describ a) N₂ 556. The intermolecular at a) water < alcohol < b) water > alcohol > c) alcohol > water < d) ether > water > alcohol > 557. Which have zero diportion at the series of the	b) Proton order ed as a molecule with resid b) CH ₄ ttractive forces vary in the ether ether lcohol ole moment? e hene othene ds get dissolved in water: changes on is reduced	lual bonding capacity? c) NACl order:	-
 a) Bond order 555. Which can be describ a) N₂ 556. The intermolecular at a) water < alcohol < b) water > alcohol > c) alcohol > water < d) ether > water > a 557. Which have zero dipore a) 1, 1-dichloroethene b) <i>Cis</i>-1, 2-dichloroethene c) <i>Trans</i>-1, 2-dichloroethene d) None of the above 558. When ionic compoun a) They involve heat of b) Inter-ionic attraction c) Ions show dipole-ion d) All are correct 	b) Proton order ed as a molecule with resid b) CH ₄ ttractive forces vary in the ether ether ether lcohol ble moment? e thene othene ds get dissolved in water: changes on is reduced on attraction with water m	lual bonding capacity? c) NACl order: olecules	-
 a) Bond order 555. Which can be describ a) N₂ 556. The intermolecular at a) water < alcohol < b) water > alcohol > c) alcohol > water < d) ether > water > a 557. Which have zero dipore a) 1, 1-dichloroethenee b) <i>Cis</i>-1, 2-dichloroethenee c) <i>Trans</i>-1, 2-dichloroethenee c) Trans-1, 2-dichloroethenee c) They involve heat of b) Inter-ionic attraction c) Ions show dipole-ion d) All are correct 559. H₂O boils at higher terma 	b) Proton order ed as a molecule with resid b) CH ₄ ttractive forces vary in the ether ether lcohol ble moment? e hene othene ds get dissolved in water: changes on is reduced on attraction with water m emperature than H ₂ S becau b) Covalent bonds	lual bonding capacity? c) NACl order: olecules use it is capable of forming: c) Hydrogen bonds	-
a) Bond order 555. Which can be describ a) N_2 556. The intermolecular at a) water < alcohol < b) water > alcohol > c) alcohol > water < d) ether > water > a 557. Which have zero dipor a) 1, 1-dichloroethend b) <i>Cis</i> -1, 2-dichloroethend c) <i>Trans</i> -1, 2-dichloroethend d) None of the above 558. When ionic compound a) They involve heat of b) Inter-ionic attraction c) Ions show dipole-iond d) All are correct 559. H_2O boils at higher te a) Ionic bonds 560. Which one of the follow	b) Proton order ed as a molecule with resid b) CH ₄ ttractive forces vary in the ether ether ether lcohol ble moment? e hene othene ds get dissolved in water: changes on is reduced on attraction with water m emperature than H ₂ S becau b) Covalent bonds	lual bonding capacity? c) NACl order: olecules use it is capable of forming: c) Hydrogen bonds hest ionisation energy?	d) BeCl ₂
a) Bond order 555. Which can be describ a) N ₂ 556. The intermolecular at a) water < alcohol < b) water > alcohol > c) alcohol > water < d) ether > water > a 557. Which have zero dipor a) 1, 1-dichloroethene b) <i>Cis</i> -1, 2-dichloroethene c) <i>Trans</i> -1, 2-dichloroethene d) None of the above 558. When ionic compound a) They involve heat of b) Inter-ionic attraction c) Ions show dipole-ion d) All are correct 559. H ₂ O boils at higher te a) Ionic bonds 560. Which one of the follow	b) Proton order ed as a molecule with resid b) CH_4 ttractive forces vary in the ether ether ether lcohol ble moment? e hene othene ds get dissolved in water: changes on is reduced on attraction with water m emperature than H ₂ S becau b) Covalent bonds owing elements has the hig b) [Ne] $3s^23p^3$	lual bonding capacity? c) NACl order: olecules use it is capable of forming: c) Hydrogen bonds hest ionisation energy? c) [Ne]3s ² 3p ²	d) $BeCl_2$ d) Metallic bonds d) [Ar] $3d^{10}$, $4s^2 4p^2$
a) Bond order 555. Which can be describ a) N ₂ 556. The intermolecular at a) water < alcohol < b) water > alcohol > c) alcohol > water < d) ether > water > a 557. Which have zero dipor a) 1, 1-dichloroethend b) <i>Cis</i> -1, 2-dichloroethend c) <i>Trans</i> -1, 2-dichloroethend d) None of the above 558. When ionic compound a) They involve heat of b) Inter-ionic attraction c) Ions show dipole-iond d) All are correct 559. H ₂ O boils at higher te a) Ionic bonds 560. Which one of the follow a) [Ne] $3s^23p^1$ 561. Which element exist a	b) Proton order ed as a molecule with resid b) CH_4 ttractive forces vary in the ether ether ether lcohol ble moment? e thene othene ds get dissolved in water: changes on is reduced on attraction with water m emperature than H ₂ S becau b) Covalent bonds owing elements has the hig b) [Ne] $3s^23p^3$ as a solid at 25°C and 1 atm	lual bonding capacity? c) NACl order: olecules se it is capable of forming: c) Hydrogen bonds hest ionisation energy? c) [Ne]3s ² 3p ² n pressure among the following	d) BeCl ₂ d) Metallic bonds d) [Ar] $3d^{10}$, $4s^24p^2$
a) Bond order 555. Which can be describ a) N ₂ 556. The intermolecular at a) water < alcohol < b) water > alcohol > c) alcohol > water < d) ether > water > a 557. Which have zero dipor a) 1, 1-dichloroethend b) <i>Cis</i> -1, 2-dichloroethend c) <i>Trans</i> -1, 2-dichloroethend c) <i>Trans</i> -1, 2-dichloroethend b) <i>Cis</i> -1, 2-dichloroethend c) <i>Trans</i> -1, 2-dichloroethend c) <i>Trans</i> -1, 2-dichloroethend b) Inter-ionic compound a) They involve heat of b) Inter-ionic attraction c) Ions show dipole-ion d) All are correct 559. H ₂ O boils at higher te a) Ionic bonds 560. Which one of the follow	b) Proton order ed as a molecule with resid b) CH_4 ttractive forces vary in the ether ether ether lcohol ble moment? e hene othene ds get dissolved in water: changes on is reduced on attraction with water m emperature than H ₂ S becau b) Covalent bonds owing elements has the hig b) [Ne] $3s^23p^3$	lual bonding capacity? c) NACl order: olecules use it is capable of forming: c) Hydrogen bonds hest ionisation energy? c) [Ne]3s ² 3p ²	d) $BeCl_2$ d) Metallic bonds d) [Ar] $3d^{10}$, $4s^2 4p^2$

562. In allene structure, three carbon atoms are joined by:

- a) Three σ -and three π -bonds
- b) Two σ -and one π -bond

c) Two σ -and two π -bonds

d) Three π -bonds only

563. Among the following statement, the correct statement about PH_3 and NH_3 is:

- NH_3 is a better electron donor because the lone pair of electron occupies spherical *s*-orbital and is less directional
- b) PH_3 is a better electron donor because the lone pair of electron occupies sp^3 -orbital and is more directional
- $\rm NH_3$ is a better electron donor because the lone pair of electron occupies sp^3 -orbital and more directional c)
- PH₃ is a better electron donor because the lone pair of electron occupies spherical *s*-orbital and is less directional d)
- 564. Which of the following pairs show reverse properties on moving along a period from left to right and from top to down in a group?
 - a) Nuclear charge and electron affinity
- b) Ionisation radius and electron affinity

d) None of the above

c) Atomic radius and electron affinity

565. Covalent radius of Li is 123 pm. The crystal radius of Li will be:

			100			
a) > 123 pm	b) < 123 pm	c) +123 pm	d) = $\frac{123}{2}$ pm			
566. Bond length decreases	with:		-			
a) Decrease in size of t	a) Decrease in size of the atom					
b) Increase in the num	ber of bonds between the	atoms				
c) Decrease in bond or	'der					
d) Decrease in the num	nber of bonds between the	atoms				
567. Which of the following	statements is most correc	ct?				
Effective nuclear charg	ge of an atom depends on:					
a) The atomic number	of the atom					
b) The charge on the ic	on					
c) The shielding effect						
d) Both the actual nucl	ear charge and the shieldi	ng effect				
568. Which of the following	oxides is most basic?					
a) Na ₂ O	b) SiO ₂	c) SO ₂	d) All are equally basic			
569. Which one of the follow						
a) Li ⁺	b) B ³⁺	c) 0 ²⁻	d) F ⁻			
570. Which has the lowest h	oond angle?					
a) NH ₃	b) BeF ₂	c) H ₃ 0 ⁺	d) CH ₄			
571. Pauling's electronegati						
a) Polarity of bonds in			s in electromotive series			
c) Coordination numb		d) Dipole moment of v	arious molecules			
572. The correct order of de						
a) Cl ⁻ , Br ⁻ , I ⁻ , F ⁻	b) F ⁻ , I ⁻ , Br ⁻ , Cl ⁻	c) I ⁻ , Br ⁻ , Cl ⁻ , F ⁻	d) F ⁻ , Cl ⁻ , Br ⁻ , I ⁻			
573. Strongest oxidising age						
a) I ₂	b) Br ₂	c) Cl_2	d) F ₂			
574. Which contains a coord	dinate and covalent bond?					
a) BaCl ₂						
b) NH ₄ Cl						
c) HCl						
d) H ₂ O						
575. Which of the following	, acts sometimes as a meta	l and sometimes as a non-n	netal?			

a) Hg	b) Cl	c) K	d) At
576. The lowest ionization en			
a) $1s^2, 2s^2, 2p^6, 3s^1$	b) $1s^2$, $2s^22p^5$	c) $1s^2$, $2s^22p^6$	d) 1s ² , 2s ² 2p ⁶ , 3s ²
577. IP is influenced by:			
a) Size of atom			
b) Charge on nucleus			
c) Electrons present in in	nner shells		
d) All of the above			
578. The bond between chlor	ine and bromine in BrCl ₃ i	S:	
a) Ionic			
b) Non-polar			
c) Polar with negative en			
d) Polar with negative en		c	
579. The hydration energy of 13^{++}			
a) Al^{3+}	b) Na ⁺	c) Be ²⁺	d) None of these
580. Which of the following c		-	
,	reases with increase in ato		
, , ,	reases with increase in ato		
	eases with increase in aton		
	reases with increase in ato		
581. IP_2 for an element is inva		ause :	
a) The size of cation is si			
b) It is difficult to remov			
c) Effective nuclear char	ge is more for cation		
d) All of the above			
582. Which of the following is		1	
	gth means increase in bon		
	bon is less than that of nit	rogen	
c) Single bonds are stron	-		
, , ,	ot exist in the dimeric form	ı Fe ₂ Cl ₆	
583. Molecular orbitals theor			
a) Werner	b) Kossel	c) Moseley	d) Mullikan
584. Proton plays an importa			
a) Electrovalent	b) Hydrogen	c) Covalent	d) Coordinate
585. Which cannot exist on th		\ ** ↓	
a) C_2	b) He ₂ ⁺	c) H ₂ ⁺	d) He ₂
586. Which of the following s		1	
	on is maximum by high cha	arged cation	
b) Small sized cation min	=		
, ,	bout a large degree of pol		
-	bes a high degree of polari		
587. The double bonds betwe		in ethylene consists of:	
	ight angles to each other.		
b) One sigma-bond and o	=		
c) Two pi-bonds at right			
d) Two pi-bonds at an ar	-		
588. Which compound among			
a) AlCl ₃	b) AlI ₃	c) MgI ₂	d) NaI
589. Iron is tougher than sodi	ium because:		
a) Iron atom is smaller			

b) Iron atoms are more			
c) Metallic bonds are st	ronger in iron		
d) None of the above			
590. In HCHO carbon atom h	-		
a) <i>sp</i>	b) <i>sp</i> ²	c) <i>sp</i> ³	d) None of these
591. Amongst the elements	with following electronic of	configurations, which one	of them may have the highest
ionization energy?			
	b) Ne[3 <i>s</i> ² 3 <i>p</i> ³]		d) Ar[$3d^{10}4s^24p^3$]
592. In which pair, the first a	atom or ion is not larger tha	an the second?	
a) N, F	b) Cl ⁻ , Cl	c) 0, S	d) Fe ²⁺ , Fe ³⁺
593. The correct order of ior	nic radii is:		
a) $Fe > Fe^{2+} > Fe^{3+}$	b) $0^{2-} > 0^{-} > 0^{+}$	c) $I^- > I > I^+$	d) All of these
594. Greater the dipole mom			
a) Grater is the ionic na	ture		
b) Lesser the polarity			
c) Smaller the ionic nat	ure		
d) None of these			
595. The element with the e	lectronic configuration as [Ar]3d ¹⁰ 4s ² 4p ³ represents	a
a) Metal	b) Non-metal	c) Metalloid	d) Transition element
596. Bonded electron pairs p	present in octahedral SF ₆ m	nolecule:	
a) 3	b) 4	c) 6	d) 5
597. First ionisation energy	is highest for		
a) Noble gases		b) Platinum metals	
c) Transition elements		d) Inner-transition eler	nents
598. According to the Period	lic Law of elements, the var	riation in properties of eler	nents is related to their
a) Atomic masses		b) Nuclear masses	
c) Atomic masses		d) Nuclear neutron-pro	oton number ratios
599. The angle between the	overlapping of one s-orbita	al and one <i>p</i> -orbital is:	
a) 180°	b) 120°	c) 109°28′	d) 120°60′
600. The ionisation energy v		ocess:	
a) Ba \rightarrow Ba ²⁺	b) Be \rightarrow Be ²⁺	c) $Cs \rightarrow Cs^+$	d) Li \rightarrow Li ⁺
601. Ionization energy of nit		because:	
a) Nucleus has more at			
b) Half-filled <i>p</i> -orbitals			
c) Nitrogen atom is sma			
d) More penetration eff			
602. One would expect the e		-	
a) A network solid	b) A metallic solid	c) Non-polar liquid	d) An ionic liquid
603. The carbon atom in gra			
a) <i>sp</i> ² -hybridized	b) <i>sp</i> ³ - hybridized	c) <i>sp</i> -hybridized	d) None of these
604. Which involves a bond	forming process?		
a) Stretching rubber			
b) Dissolution of sugar	in water		
c) Rusting of iron			
d) Emission of γ -rays b			
605. Which element has high			
a) F	b) He	c) Ne	d) Na
606. The trivalent ion having			
a) Ti	b) Zr	c) Hf	d) La
607. PF ₃ molecule is:			

		,	d) Trigonal pyramidal
608. When an element of very low	v ionisation potential is a	allowed to react with an ele	ement of very high electron
affinity, we get:			
a) A weak ionic bond b)	-	c) A polar covalent bond	d) No bond
609. Which of the following is an a	=		
	MgO	c) Al_2O_3	d) P_4O_{10}
610. In which element shielding ef	•		
	Be	c) B	d) N
611. One mole of magnesium in th			
ionisation energies of Mg are			osition of the mixture is
a) 31% Mg ⁺ + 69% Mg ²⁺		b) 69% Mg ⁺ + 31% Mg ²⁺	
c) 86% Mg ⁺ + 14% Mg ²⁺		d) 14% Mg ⁺ + 86% Mg ²⁺	
612. The Cl $-$ C $-$ Cl angle in 1, 1, 2			
a) 109.5° and 900° b)			d) 109.5° and 120°
613. In which of the following pair	-		4) [NIL] [DE]
a) $[NH_4^+]$, $[BF_4^-]$ b)			d) [NH ₃], [BF ₃]
614. Polarization of electrons in ad	-		
a) $\underset{CH_2 = CH}{\overset{\delta}{\overset{-}} CH} = \underset{CH}{\overset{\delta^+}{\overset{+}} O}$ b)	$\overset{\delta}{\operatorname{CH}}_{2} = \operatorname{CH} - \operatorname{CH} = \overset{\delta}{\operatorname{O}}^{+}$	c) $\operatorname{CH}_{2} = \operatorname{CH}_{2} - \operatorname{CH}_{2} = 0$	d) $\operatorname{CH}_{2}^{\delta^{+}} = \operatorname{CH} - \operatorname{CH} = \operatorname{O}^{\delta^{-}}$
615. Molecular shape of SF ₄ , CF ₄ a	2	2	
a) The same with 2, 0 and 1 lo		pectively	
b) The same with 1, 1 and 1 lo	-		
c) Different with 0, 1 and 2 lo			
d) Different with 1,0 and 2 lo			
616. Which one is the weakest bor	=		
a) Hydrogen b)	Ionic	c) Covalent	d) Metallic
617. Which has the lowest anion to	o cation size ration?		
a) LiF b)	NaF	c) CsI	d) CsF
618. Which set has strongest tend	ency to form anions?		
a) Ga, In, Te b)	Na, Mg, Al	c) N, O, F	d) V, Cr, Mn
619. Which one is most polar?			
a) CCl ₄ b)	CHCl ₃	c) CH ₃ Cl	d) CH ₃ OH
620. Acetate ion contains:			
a) One C, O single bond and o	one C, O double bond		
b) Two C, O single bonds			
c) Two C, O double bonds			
d) None of the above			
621. The nodal plane in the π -bone	d of ethane is located in:	:	
a) The molecular plane			
b) A plane parallel to the mol	-		
c) A plane perpendicular to the	=		
d) A plane perpendicular to the	•		oon σ-bond
622. Which of the following isoele			
,	Ca ²⁺	c) K ⁺	d) S ^{2–}
623. The electronegativity differen			and H yet the dipole
moment of $NH_3(1.5 D)$ is larg			
a) In NH ₃ as well as NF ₃ the a			
	and bond dipole are in th	ie opposite directions whe	reas in NF_3 these are in the
same direction.		بر منه ماه منه الم	

c) In $\rm NH_3$ as well as in $\rm NF_3$ the atomic dipole and bond dipole are in the same direction.

In NH₃ the atomic dipole and bond dipole are in the same direction whereas in NF₃ these are in d) $_{\rm max}$ the same direction whereas in NF₃ these are in opposite directions. 624. In the electronic structure of acetic acid there are: a) 16 shared and 8 unshared valency electrons b) 8 shared and 16 unshared valency electrons c) 12 shared and 12 unshared valency electrons d) 18 shared and 6 unshared valency electrons 625. Van der Waals' forces between molecules depend upon: a) Number of electrons b) Charge on nucleus c) Radius of atoms d) All of these 626. IP₁ and IP₂ of Mg are 178 and 348 kcal mol⁻¹. The energy required for the reaction, $Mg \rightarrow Mg^{2+} + 2e^{-}$ is: a) +170 kcal b) +526 kcal c) -170 kcal d) -526 kcal 627. Among NaF, NaCl, NaBr and NaI, the NaF has highest melting point because : a) It has maximum ionic character b) It has minimum ionic character c) It has associated molecules d) It has least molecular weight 628. Which does not show hydrogen bonding? a) C_2H_5OH b) Liquid NH₃ c) H_20 d) Liquid HBr 629. A trend common to both group I and VII elements in the Periodic Table as atomic number increases is a) Atomic radius increases b) Oxidising power increases c) Reactivity with water increases d) Maximum valency increases 630. What is the dominant intermolecular force or bond that must be overcome in converting liquid CH₃OH to a gas? a) London dispersion force b) Hydrogen bonding c) Dipole-dipole interaction d) Covalent bond 631. Which among the following elements has lowest value of ionisation energy? a) Pb b) Sn c) Si d) C 632. Which of the atomic number pairs represents elements of *s*-block? a) 7, 15 b) 5, 12 c) 9, 17 d) 3, 12 633. The correct order of decreasing first ionisation energy is a) C > B > Be > Lib) C > Be > B > Lic) B > C > Be > Lid) Be > Li > B > C 634. The total number of bonds in acetylene molecules is: a) One b) Two c) Three d) Five 635. The elements *X*, *Y*, *Z* and *T* have the indicated electronic configuration. Starting with the innermost shell, which is the most metallic element? a) X = 2.8.4b) Y = 2, 8, 8c) Z = 2, 8, 8, 1d) T = 2, 8, 8, 7636. Maximum covalence of an atom of an element is equal to: a) Number of unpaired electrons in the *s*-and *p*-orbitals of valency shell b) Number of unpaired electrons in the *p*-orbitals of valency shell c) Total number of electrons in the *s*-and *p*-orbitals of valency shell d) Total number of electrons in the *p*-orbitals of valency shell 637. How many unpaired electrons are present in N_2^+ ? a) 1 d) 4 b) 2 c) 3 638. Which of the following has shortest carbon-carbon bond length? a) $C_6 H_6$ b) C_2H_6 c) C_2H_4 d) C_2H_2 639. Which of the following is largest? b) S²⁻ a) Cl⁻ c) Na⁺ d) F⁻

640. Which p-orbitals overlapping would give the strongest bond?

\mathbf{X}		
a) ()		
\mathcal{A}		
\mathcal{O}		
\bigcirc		
b)		
\bigcup		
c)		
\times		
(())		
641. H – 0 – H bond angle in H_2O is 104.5° and not 109°2	8' because of:	
a) High electronegativity of oxygen		
b) Bond pair-bond pair repulsion		
c) Lone pair-lone pair repulsion d) Lone pair –bond pair repulsion		
642. Which of the following statements is wrong?		
a) The stability of hydrides increases from NH ₃ to Bil	H_2 in group 15 of the Perio	odic Table.
b) Nitrogen cannot from $d\pi - p\pi$ bond.		
c) Single N – N bond is weaker than the single P – P	bond.	
d) N_2O_4 has two resonance structure.		
643. The ratio of σ and π -bonds in benzene is:		
a) 2 b) 6	c) 4	d) 8
644. In which one of the following species, the central ato	m has the type of hybridiz	zation which is not the same
as that present in other three?	$\sim 10^{2}$	
a) SF ₄ b) I_3^-	c) $SbCl_5^{2-}$	d) PCl ₅
645. Which is correct order for electron gain enthalpy?	c) Cl < F < S < 0	d) F < Cl < 0 < S
a) S < 0 < Cl < F b) 0 < S < F < Cl 646. The first ionisation energy of lithium will be	C C < F < S < 0	u j r < u < 0 < 3
a) Greater than Be b) Less than Be	c) Equal to that of Na	d) Equal to that of F
647. When two atomic orbitals combine, they form:	c) Equal to that of Na	u) Equal to that of I
a) One molecular orbitals		
b) Two molecular orbitals		
c) Two bonding molecular orbitals		
d) Two antibonding molecular orbitals		
648. The set representing the correct order of first ionisat	ion energy is	
a) $K > Na > Li$ b) $Be > Mg > Ca$	c) $B > C > N$	d) Ge > $Si > C$
649. The electronic configuration of the element with max	=	
	c) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^5$	d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^3$
650. Which of the following has regular tetrahedral shape a) $[Ni(CN)_4]^{2-}$ b) SF ₄		d) VoE
a) [Ni(CN) ₄] ^{2–} b) SF ₄ 651. The smallest among the following ions is	c) [BF ₄] ⁻	d) XeF ₄
oor, the smallest among the following folls is		

a) Na ⁺	b) Mg ²⁺	c) Ba ²⁺	d) Al ³⁺							
652. Coordinate compo	-									
a) Transfer of elec										
b) Sharing of elect										
c) Donation of elec	-									
d) None of the abo										
	t is true for the long form of the									
	equence of filling the electrons i		evels s, p, a and f							
	it the stable valency states of the									
	s in physical and chemical prop	erties of the elements								
d) All of the above	wing elements never show posit	tive ovidation number?								
			4) E							
a) 0 b) Fe c) Ga d) F 655. The energy released when a neutral gaseous atom takes up an electron is called:										
a) Ionization energy	_	c) Electronegativity	d) Electron affinity							
656. The structure of X		c) Electronegativity	u) Election annity							
a) Planar	b) Tetrahedral	c) Square planar	d) Pyramidal							
-	ollowing is expected to have lar		u) i yrannuar							
a) F^-	b) 0 ^{2–}	c) N ³⁻	d) Al ³⁺							
,	ipole moment is of the order of:	,								
a) 10^{-10} esu cm	-	c) 10 ⁻⁶ esu cm	d) 10 ⁻¹² esu cm							
,	, BCl ₃ and CCl ₄ , the covalent bor	,	,							
a) LiCl > BeCl ₂ >										
b) LiCl $<$ BeCl ₂ $<$	5 1									
c) LiCl > BeCl ₂ >	5									
d) LiCl $<$ BeCl ₂ $<$	$BCl_3 > CCl_4$									
660. Which one of the f	ollowing elements has lower va	lue of ionisation energy?								
a) Mg	b) Rb	c) Li	d) Ca							
661. Identify the least s	table ion amongst the following	J.								
a) Li ⁻	b) Be ⁻	c) B ⁻	d) C ⁻							
	teractions: (I) Covalent bond,									
• •	raction, which represents the co	orrect order of increasing s	tability?							
a) (I) < (III) < (II										
b) (II) < (III) < (I	,									
c) (II) < (IV) < (I										
d) $(IV) < (II) < (I$, , ,									
	's rule polarization is more whe	en:								
a) Small cation and										
b) Small cation and										
c) Large cation and d) Large cation and	_									
	bout ionisation potential?									
a) It is independer	=									
, ,	h increase in atomic radii									
-	tant with increase in atomic rad	lii								
-	h increase in atomic radii	***								
-	np between the value of first an	d second ionisation energie	es of elements would be							
	hich of the following electronic	-								
a) $1s^2$, $2s^22p^6$, $3s^2$	0	c) $1s^2$, $2s^2$, $2p^6$, $3s^13p^2$	² d) $1s^2$, $2s^22p^6$. $3s^2$							
666. The pair of ampho			- · · ·							
-										

a) LiOH, $Al(OH)_3$ b) $Be(OH)_2$, $Mg(OH)_2$ 667. Which one has more tendency to form covalent of	c) $B(OH)_2$, $Be(OH)_2$	d) $Be(OH)_2$, $Zn(OH)_2$									
a) Ba b) Be	c) Mg	d) Ca									
668. The electron affinity for inert gases is likely to bea) Highb) Small	c) Zero	d) Positive									
 669. Increasing order (lower first) of size of the vario a) sp, sp², sp³ b) sp³, sp², sp 	us hybridised orbitals is: c) <i>sp², sp³, sp</i>	d) sp^2 , sp , sp^3									
670. Shape of molecules is decided by: a) Sigma bond											
b) π -bond c) Both sigma and π -bonds											
d) Neither sigma nor π -bonds											
671. Which statement is wrong?											
a) Hybridization is the mixing of atomic orbitals b) sp^2 -hybrid orbitals are formed from two p -atomic production in the product of the	omic orbitals and one <i>s</i> -atom										
c) dsp^2 - hybrid orbitals are all at 90° to one another the second se											
d) d^2sp^3 -hybrid orbitals are directed towards th	5	edron									
672. Which one of the following has maximum ionisat	-										
a) K b) Be	c) Na	d) Mg									
673. In OF_2 , number of bond pairs and lone pairs of el		1) 2 0									
a) 2, 6 b) 2, 8	c) 2,10	d) 2, 9									
674. Which is the correct order of electronegativity?											
, , , , , , , , , , , , , , , , , , ,	c) $F > N > 0 < C$	d) $F < N < O = C$									
675. Which of the following has maximum bond energy		4) I									
a) Cl_2 b) F_2	c) Br ₂	d) I ₂									
676. In which molecule sulphur atom is not sp^3 -hybri		d) Norra of these									
a) SO_4^{2-} b) SF_4	c) SF_2	d) None of these									
677. Hydrogen fluoride is a liquid unlike other hydrog											
a) HF molecules associate due to hydrogen bond	Ing										
 b) F₂ is highly reactive c) HF is the weakest acid of all hydrogen halides 											
d) Fluorine atom is the smallest of all halogens											
678. The O – H bond distance in water molecule is:											
a) 1.0 Å b) 1.33 Å	c) 0.96 Å	d) 1.45 Å									
679. Van der Waals' forces are maximum in:	CJ 0.70 A	uj 1.45 A									
a) HBr b) LiBr	c) LiCl	d) AgBr									
680. The increasing order of the ionic radii of the give		uj ngbi									
	c) K ⁺ , S ²⁻ , Ca ²⁺ , Cl ⁻	d) Cl ⁻ , Ca ²⁺ , K ⁺ , S ²⁻									
681. Which of the following exhibits diamagnetic beha	, , , , ,										
a) NO b) O_2^{2-}	c) 0_2^+	d) 0 ₂									
682. The electronic configuration of sodium and chlor		a) 02									
a) Their physical state											
b) Their reactivity											
c) The formation of electrovalent compound Na	21										
d) None of the above											
683. Identify the correct order of solubility of Na ₂ S, Cu	uS and ZnS in aqueous mediu	ım:									
a) $Cus > ZnS > Na_2S$ b) $ZnS > Na_2S > CuS$	=	d) Na ₂ S > ZnS > CuS									
684. The correct order of radii is											
a) $N < Be < B$ b) $F^- < 0^{2-} < N^{3-}$	c) Na < <i>Li</i> < <i>K</i>	d) Fe ³⁺ < Fe ²⁺ < Fe ⁴⁺									
685. The compound showing maximum covalent char	acter is:										

a) BI ₃	b) BCl ₃	c) BF ₃	d) BBr ₃						
686. The nature of bonding in									
a) Electrovalent in both									
b) Covalent in CCl ₄ and	-								
c) Electrovalent in CCl ₄	and covalent in CaH ₂								
d) None of the above									
687. In which of the followin			d) CO_3^{2-} and NO_3^{-}						
a) PCl_4^+ and $SiCl_4$									
	The pair of species having identical shape of both species:								
a) BF_3 , PCl_3									
-	9. Which of the following halogen acids is least basic?								
•	a) HF b) HCl c) HBr								
690. Beryllium shows diagon	-								
a) Mg	b) Na	c) B	d) Al						
691. The compound with the			d) Carda are tatura alalari da						
a) <i>p</i> -dichlorobenzene	b) <i>m</i> -dichlorobenzene	c) <i>o</i> -dichlorobenzene	d) Carbon tetrachloride						
692. Which of the following r		-							
a) HF	b) NF_3	c) BF_3	d) ClF ₃						
693. Correct order of first ion									
		c) Be $< B < C < N < 0$							
694. For making good quality		ass. The metal used can be							
			d) Magnesium						
•	a) Mercury b) Tin c) Sodium 955. Which of the following pairs has both members of the same period of the Periodi								
a) Na – Cl	d) Cl – Br								
a) Na – Cl b) Na – Ca c) Ca – Cl d) Cl – Br 696. The increasing order of the first ionization enthalpies of the elements B, P, S and F (lower first) is:									
a) $F < S < P < B$ b) $P < S < B < F$ c) $B < P < S < F$ d) $B < S < P$									
,	697. Which of the following element has higher ionisation energy?								
a) Boron	b) Carbon	c) Oxygen	d) Nitrogen						
698. The correct order of aci		-) -)0-							
a) $Cl_2O_7 > SO_2 > P_4O_{10}$		b) $K_2 0 > Ca 0 > Mg 0$							
c) $CO_2 > N_2O_5 > SO_3$		d) $Na_2 0 > Mg0 > Al_2 0$	3						
699. Which of the following e	element is metalloid?		-						
a) Bi	b) Sn	c) Ge	d) C						
700. The number of lone pair	rs of electron on Xe in XeOF	4 is:							
a) 1	b) 2	c) 3	d) 4						
701. Which of the following r	netals exhibits more than o	ne oxidation state?							
a) Na	b) Mg	c) Al	d) Fe						
702. Among the following wh	nich has the highest cation t	o anion size ratio?							
a) CsI	b) CsF	c) LiF	d) NaF						
703. The correct order of ion									
a) Ti ⁴⁺ $< Mn^{7+}$	b) ³⁵ Cl ⁻ > ³⁷ Cl ⁻	c) $K^+ > Cl^-$	d) $P^{3+} > P^{5+}$						
704. An electrovalent compo	und does not exhibit space	isomerism due to:							
a) Presence of ions									
b) High melting point									
	orces between constituent i	ons							
d) Non-directional natu									
705. The element with the lo	-								
a) Na 706 Which has the largest di	b) K	c) Rb	d) Cs						
706. Which has the largest di	stance between the carbon	nyur ogen atom?							

a) Ethane b) Ethene	c) Ethyne	d) Benzene									
707. Which one pair of atoms or ions will have same con	-										
a) Li ⁺ and He ⁻ b) Cl ⁻ and Ar	c) Na and K	d) F ⁺ and Ne									
708. Atoms or group of atoms which are electrically char	-										
a) Anions b) Cations	c) Ions	d) Atoms									
709. The element with atomic number 36 belongs tob											
a) <i>p</i> b) <i>s</i>	c) <i>f</i>	d) <i>d</i>									
710. Which bond is more polar?											
a) Cl – Cl b) N – F	c) C — F	d) 0 – F									
711. If the electronegativity difference between two atoms <i>A</i> and <i>B</i> is 2.0, then the percentage of covalent character in the molecule is											
a) 54% b) 46%	c) 23%	d) 72%									
712. In the following, the element with the highest ionisation of the second seco	ation energy is										
a) [Ne] $3s^23p^1$ b) [Ne] $3s^23p^3$	c) [Ne] $3s^2 3p^2$	d) [Ne]3 <i>s</i> ² 3 <i>p</i> ⁴									
713. Ionization potential is lowest for:											
a) Halogens b) Inert gases	c) Alkaline earth metals	d) Alkali metals									
714. Electron affinity is positive, when											
a) O changes into O ⁻	b) O ⁻ changes into O ²⁻										
c) O changes into O ⁺	d) Electron affinity is alw	vays negative									
715. A bond with maximum covalent character between	non-metallic elements is fo	ormed:									
a) Between identical atoms											
b) Between chemically similar atoms											
c) Between atoms of widely different electro-negat	ivities										
d) Between atoms of the same size											
716. A sp^3 -hybrid orbital contains :											
a) 1/4 <i>s</i> -character b) 1/2 <i>s</i> -character c) 2/3 <i>s</i> -character d) 3/4 <i>s</i> -character											
717. In a crystal, the atoms are located at the positions o	f:										
a) Maximum potential energy											
b) Minimum potential energy											
c) Zero potential energy											
d) Infinite potential energy											
718. Water has high heat of vaporization due to:											
a) Covalent bonding b) H-bonding	c) Ionic bonding	d) None of the above									
719. The IP_1 , IP_2 , IP_3 , IP_4 , and IP_5 of an element are 7.1	, 14.3, 34.5, 46.8, 162.2, eV	respectively. The element is									
likely to be:											
a) Na b) Si	c) F	d) Ca									
720. Stability of hydrides generally increases with:											
a) Increase in bond angle											
b) Decrease in bond angle											
c) Decrease in resonance											
d) None of these											
721. The radii of F, F^- , O and O^{2-} are in the order of:											
a) $0^{2-} > F^- > F > 0$ b) $F^- > 0^{2-} > F > 0$	c) $0^{2-} > 0 > F^{-} > F$	d) $0^{2-} > F^- > 0 > F$									
722. Which one is the strongest bond?											
a) Cl – F b) F – F	c) Br – F	d) Br – Cl									
723. The low solubility of $BaSO_4$ in water is due to:											
a) Low dissociation energy											
b) Ionic bonds											
c) High value of lattice energy											
d) None of the above											
-											

724. The metal having highest melting point is?										
a) Cr b) Ag	c) Diamond	d) W								
725. Which one species has the longest bond length?	,	,								
a) NO ⁺ b) 0_2^-	c) 0 ⁺ ₂	d) N_2^+								
726. Arrange the following compound in order of increa	, 1									
Toluene (I) m – dichlorobenzene (II)										
o – dichlorobenzene (III) p – dichlorobenzene (IV)									
	, c) IV < I < III < II	d) IV < II < I < III								
727. The correct order regarding the electronegativity of hybrid orbitals of carbon is:										
a) $sp < sp^2 > sp^3$ b) $sp < sp^2 < sp^3$ c) $sp > sp^2 < sp^3$ d) $sp > sp^2 > sp^3$										
728. Molecular size of ICl and Br_2 is nearly same, but boiling point of ICl is about 40°C higher than Br_2 . This										
might be due to:										
a) I – Cl bond is stronger than $Br – Br bond$										
b) Ionisation energy of $1 < ionisation$ energy of Br										
c) ICl is polar where as Br_2 is non-polar										
d) The size of $I > size of Br$										
729. The pair of elements having approximately equal ic	onisation potential is									
a) Al, Ga b) Al, Si	c) Al, Mg	d) Al, B								
730. Elements having six electrons in its outermost orbi	,									
a) Complex ion b) Negative ion	c) Positive ion	d) Zwitter ion								
731. In which of the following molecules/ions BF_3 , NO_2^- ,	•									
a) BF ₃ and NO ₂ b) NO ₂ and NH ₂		d) NO $_2^-$ and H $_2^-$ O								
732. Na ⁺ , Mg ²⁺ , Al ³⁺ , Si ⁴⁺ are isoelectronics. Their ionic		, , , , , , , , , , , , , , , , , , , ,								
a) $Na^+ < Mg^{2+} < Al^{3+} < Si^{4+}$										
b) $Na^+ > Mg^{2+} < Al^{3+} < Si^{4+}$										
c) $Na^+ < Mg^{2+} > Al^{3+} > Si^{4+}$										
d) $Na^+ > Mg^{2+} > Al^{3+} > Si^{4+}$										
733. Which of the following is false?										
a) Methane molecule is tetrahedral in shape										
b) Nickel tetrachloride is square planar in shape										
c) P_2O_5 is like two pyramids joined at their apices										
d) Acetylene is non-linear										
734. In a double bond connecting two atoms there is a s	haring of:									
a) 2 electrons b) 4 electrons	c) 1 electron	d) All electrons								
735. As we go from left to right in period two of the Peri	odic Table, gram atomic vo	lume of the elements								
a) Will change indefinitely	b) Decreases									
c) Increases at a constant rate	d) First increases then d	ecreases								
736. Which of the following bond requires the largest ar	nount of energy to dissocia	te the bond concerned?								
a) H – H bond in H_2 b) C – H bond in CH_4	c) N \equiv N bond in N ₂	d) $0 = 0$ bond in 0_2								
737. Which does not show inert pair effect?										
a) Al b) Sn	c) Pb	d) Thallium								
738. Resonance is due to:										
a) Delocalization of σ -electrons										
b) Delocalization of π -electrons										
c) Migration of H atoms										
d) Migration of protons										
739. The ICl molecule is:										
a) Purely covalent										
b) Purely electrovalent										
c) Polar with negative end on chlorine										

d) Dolar with pogative of	ad on iodino									
d) Polar with negative en 740. H – B – H bond angle in										
a) 180°	b) 120°	c) 109°	d) 90°							
741. The lowest bond energy	,	•	u) 90							
a) $C - C$	b) N – N	c) H – H	d) 0 – 0							
,	•		•							
_	42. Which of the following electronic configurations in the outermost shell is a) $ns^2p^6d^1$ b) $(n-1)s^2p^6, ns^1$ c) $(n-1)s^2p^6, ns^2p^6$									
, 1	. In PCl ₅ molecule, P is:									
0	b) <i>dsp</i> ² -hybridized	c) de ³ n-hybridized	d) <i>sp³d-</i> hybridized							
		c) us p-ilybridized	a) sp a-nybriaizea							
744. In dry ice there are in between molecules.a) Ionic bondb) Covalent bondc) Hydrogen bondd) None of these										
745. The solubility of KCl is relatively more in (where D is dielectric constant):										
a) $C_6 H_6 (D = 0)$		c) $CH_3OH(D = 32)$	d) $CCl_4(D = 0)$							
746. The I st IEs of four consec										
	Which of these is the IE of									
a) 13.6	b) 8.3	c) 14.5	d) 11.3							
747. Which oxide is amphote	,	0) 11.5	uj 11.5							
a) ZnO	b) CaO	c) Na ₂ 0	d) BaO							
748. The correct ionic radii or	,	cj Na ₂ o	uj bao							
a) $N^{3-} > O^{2-} > F^- > N_3$										
b) $N^{3-} > Na^+ > O^{2-} > I$	U									
c) $Na^+ > 0^{2-} > N^{3-} > I$	8									
d) $0^{2-} > F^- > Na^+ > N$	6									
	•	compounds?								
749. Which is a good solvent for ionic and polar covalent compounds?a) H20b) CH3COOHc) CCl4d) Liquid NH3										
750. For which of the following hybridization the bond angle is maximum?										
a) sp^2	b) <i>sp</i>	c) sp^3	d) dsp^2							
751. Which of the following does not involve covalent bond?										
a) PH_3 b) CsF c) HCl d) H_2S										
752. The correct increasing co	,		uj 1120							
	b) $BeCl_2 < NaCl < LiCl$	c) BeCla < LiCl < NaCl	d) LiCl < NaCl < BeCl ₂							
753. The bond between atom										
a) Covalent	b) Ionic	c) Coordinate	d) Metallic							
754. The species having octal	,	ej doorantate	uj metallie							
a) SF_6	b) BF_4^-	c) PCl ₅	d) BO_3^{3-}							
755. Which of the following is	<i>,</i>	c) i ci5	u) D03							
a) NO ⁻	b) CN ⁻	c) N ₂	d) 0_2^{2+}							
756. In which of the following	,									
a) HCl	b) HBr	c) HI	d) HF							
757. What bond order does 0		cj m	uj III							
a) 1	b) 2	c) 3	d) 1/2							
758. Chlorine atom differs fro	,	,	u) 1/2							
a) Protons	b) Neutrons	c) Electrons	d) Protons and electrons							
759. Which molecule is T-sha			uj i i otons una cicculons							
a) BeF ₂	b) BCl ₃	c) NH ₃	d) ClF ₃							
760. The successive ionisation	, ,	, ,	u) ul 3							
XV. Ist ionisation energy										
	10 kJ mol^{-1}									
	$100 \text{ kJ} = 1100 \text{ kJ} \text{ mol}^{-1}$									
XVII. 310 Ionisation en										
	ст <u>а</u> у — 1300 кј шог									

XIX. 5th ionis	ation energy =3200 kJ mol [–]	1									
Find out the num	Find out the number of valence electron for the atom 'X'										
a) 4	b) 3	c) 5	d) 2								
761. Organic compou	nds soluble in water contain	::									
a) C, H, Cl	b) C, H	c) C, H, O	d) C, S								
762. Which of the foll	0										
a) Pb ²⁺	b) Ge ²⁺	c) Si ²⁺	d) Sn ²⁺								
		ollection of isoelectronic specie									
a) Na ⁺ , Mg ²⁺ , Al ³	³⁺ , Cl ⁻ b) Na ⁺ , Ca ²⁺ , Sc ³⁺	, F ⁻ c) K ⁺ , Cl ⁻ , Mg ²⁺ , Sc ³⁺	d) K ⁺ , Ca ²⁺ , Sc ³⁺ , Cl ⁻								
	e i	sents a collection of isoelectro	-								
a) K ⁺ , Cl ⁻ , Ca ²⁺ ,	Sc ³⁺ b) Ba ²⁺ , Sr ²⁺ , K ⁺ ,	Ca ²⁺ c) N ³⁻ , O ²⁻ , F ⁻ , S ²⁻	d) Li ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺								
765. Which one of the	e following arrangements rep	presents the correct order of el	ectron gain enthalpy (with								
negative sign) of	the given atomic species?										
a) Cl < <i>F</i> < <i>S</i> <	0 b) $0 < S < F < C$	l c) $S < 0 < Cl < F$	d) F < <i>Cl</i> < <i>O</i> < <i>S</i>								
766. Which of the foll	owing molecules does not po	ossess a permanent electric dip	oole moment?								
a) H ₂ S	b) SO ₂	c) SO ₃	d) CS_2								
767. Which one of the	e following has the highest el	lectronegativity?									
a) Si	b) P	c) Cl	d) Br								
768. The electronic co	onfiguration, $1s^2$, $2s^22p^6$, $3s$	2 3 p^6 3 d^9 represents a									
a) Metal atom	,	n c) Non-metallic anion	d) Metallic cation								
769. The bond order i	in O_2^+ is equal to bond order	in:									
a) N ₂ +	b) CN ⁻	c) CO	d) NO ⁺								
770. The molecule ha	ving permanent dipole mom	ient is:									
a) SF ₄	b) XeF ₄	c) SiF ₄	d) BF ₃								

CHEMISTRY

: ANSWER KEY : 1) d 2) c 3) b 4) b 173) c 174) b 175) d 5) b 6) b 7) d 8) a 177) a 178) c 179) d 9) c 10) b 11) c 12) d 181) c 182) d 183) a 13) d 14) c 15) b 16) b 185) d 186) b 187) c 17) d 18) d 19) d 20) a 189) a 190) d 191) d 21) c 22) b 23) b 24) c 193) a 194) a 195) a 25) b 26) c 27) a 28) c 197) c 198) a 199) c 29) c 30)	176)c180)b184)a188)a192)a196)a200)d204)b208)b
5) b 6) b 7) d 8) a 177) a 178) c 179) d 9) c 10) b 11) c 12) d 181) c 182) d 183) a 13) d 14) c 15) b 16) b 185) d 186) b 187) c 17) d 18) d 19) d 20) a 189) a 190) d 191) d 21) c 22) b 23) b 24) c 193) a 194) a 195) a 25) b 26) c 27) a 28) c 197) c 198) a 199) c 29) c 30) c 31) b 32) b 201) b 202) b 203) c 33) b 34) a 35) c	180)b184)a188)a192)a196)a200)d204)b
9) c 10) b 11) c 12) d 181) c 182) d 183) a 13) d 14) c 15) b 16) b 185) d 186) b 187) c 17) d 18) d 19) d 20) a 189) a 190) d 191) d 21) c 22) b 23) b 24) c 193) a 194) a 195) a 25) b 26) c 27) a 28) c 197) c 198) a 199) c 29) c 30) c 31) b 32) b 201) b 202) b 203) c 33) b 34) a 35) c 36) a 205) a 206) c 207) a	184) a 188) a 192) a 196) a 200) d 204) b
13) d 14) c 15) b 16) b 185) d 186) b 187) c 17) d 18) d 19) d 20) a 189) a 190) d 191) d 21) c 22) b 23) b 24) c 193) a 194) a 195) a 25) b 26) c 27) a 28) c 197) c 198) a 199) c 29) c 30) c 31) b 32) b 201) b 202) b 203) c 33) b 34) a 35) c 36) a 205) a 206) c 207) a	188) a 192) a 196) a 200) d 204) b
21)c22)b23)b24)c193)a194)a195)a25)b26)c27)a28)c197)c198)a199)c29)c30)c31)b32)b201)b202)b203)c33)b34)a35)c36)a205)a206)c207)a	196) a 200) d 204) b
25)b26)c27)a28)c197)c198)a199)c29)c30)c31)b32)b201)b202)b203)c33)b34)a35)c36)a205)a206)c207)a	200) d 204) b
29)c30)c31)b32)b201)b202)b203)c33)b34)a35)c36)a205)a206)c207)a	204) b
33) b 34) a 35) c 36) a 205) a 206) c 207) a	-
	208) b
	- ,
37) c 38) a 39) c 40) a 209) c 210) a 211) c	212) a
41) b 42) a 43) c 44) c 213) a 214) a 215) c	216) a
45) b 46) a 47) d 48) b 217) b 218) c 219) a	220) c
49) c 50) c 51) a 52) c 221) a 222) c 223) b	224) b
53) c 54) d 55) b 56) b 225) b 226) c 227) c	228) c
57) a 58) b 59) c 60) c 229) d 230) c 231) a	232) c
61) d 62) c 63) b 64) d 233) b 234) a 235) b	236) d
65) d 66) a 67) d 68) d 237) c 238) b 239) a	240) d
69) c 70) d 71) d 72) b 241) d 242) a 243) a	244) d
73) a 74) a 75) a 76) b 245) d 246) d 247) b	248) b
77) c 78) b 79) b 80) d 249) b 250) a 251) c	252) b
81) d 82) a 83) d 84) d 253) c 254) a 255) b	256) b
85) b 86) b 87) d 88) c 257) d 258) d 259) d	260) c
89) a 90) a 91) c 92) c 261) c 262) c 263) c	264) d
93) b 94) c 95) b 96) b 265) c 266) d 267) a	268) d
97) a 98) a 99) c 100) c 269) a 270) d 271) d	272) a
101) d 102) d 103) c 104) b 273) d 274) a 275) d 105) c 106) b 107) b 108) b 277) d 278) a 279) b	276) b 280) d
	280) d
109) b 110) d 111) d 112) c 281) d 282) a 283) c 113) c 114) a 115) a 116) a 285) c 286) a 287) c	284) d
117) b 118) d 119) d 120) d 289) c 290) a 291) b	200) u 292) c
121) c 122) b 123) a 124) b 293) d 294) b 295) b	292) c 296) a
125) c 126) d 127) c 128) d 297) c 298) d 299) c	300) a
129) a 130) b 131) a 132) c 301) d 302) c 303) a	304) a
133) d 134) c 135) b 136) a 305) d 306) a 307) d	308) b
137) b 138) b 139) d 140) c 309) a 310) c 311) b	312) b
141) d 142) c 143) a 144) b 313) a 314) a 315) d	316) b
145) a 146) d 147) c 148) a 317) c 318) a 319) b	320) b
149) c 150) b 151) a 152) c 321) b 322) c 323) a	324) d
153) d 154) c 155) a 156) c 325) a 326) a 327) b	328) b
157) c 158) c 159) d 160) a 329) c 330) b 331) c	332) c
161) b 162) b 163) b 164) a 333) c 334) d 335) a	336) a
165) a 166) b 167) b 168) a 337) d 338) c 339) a	340) b
169) a 170) c 171) b 172) d 341) d 342) d 343) c	344) c

345)	a	346)	d	347)	d	348)	С	549)	С	550)	а	551)	а	552)	d
349)	b	350)	а	351)	С	352)	b	553)	b	554)	а	555)	d	556)	b
353)	С	354)	а	355)	а	356)	b	557)	С	558)	d	559)	С	560)	b
357)	a	358)	а	359)	d	360)	С	561)	d	562)	С	563)	С	564)	С
361)	b	362)	а	363)	b	364)	С	565)	а	566)	b	567)	d	568)	а
365)	С	366)	С	367)	С	368)	b	569)	С	570)	а	571)	а	572)	С
369)	С	370)	С	371)	а	372)	а	573)	d	574)	b	575)	d	576)	а
373)	b	374)	b	375)	d	376)	b	577)	d	578)	d	579)	b	580)	С
377)	b	378)	d	379)	b	380)	а	581)	d	582)	а	583)	d	584)	d
381)	d	382)	С	383)	С	384)	a	585)	d	586)	а	587)	b	588)	b
385)	С	386)	d	387)	b	388)	С	589)	С	590)	b	591)	b	592)	С
389)	а	390)	b	391)	b	392)	С	593)	d	594)	а	595)	С	596)	С
393)	b	394)	b	395)	С	396)	С	597)	а	598)	С	599)	а	600)	b
397)	b	398)	а	399)	d	400)	а	601)	b	602)	b	603)	а	604)	С
401)	а	402)	b	403)	а	404)	b	605)	а	606)	d	607)	d	608)	b
405)	С	406)	b	407)	а	408)	b	609)	С	610)	а	611)	b	612)	b
409)	С	410)	b	411)	d	412)	b	613)	а	614)	d	615)	d	616)	а
413)	а	414)	а	415)	С	416)	b	617)	d	618)	С	619)	d	620)	а
417)	а	418)	d	419)	b	420)	С	621)	а	622)	d	623)	d	624)	а
421)	d	422)	а	423)	b	424)	С	625)	d	626)	b	627)	а	628)	d
425)	b	426)	b	427)	d	428)	b	629)	а	630)	b	631)	b	632)	d
429)	d	430)	d	431)	С	432)	а	633)	b	634)	d	635)	С	636)	С
433)	d	434)	С	435)	b	436)	b	637)	а	638)	d	639)	b	640)	С
437)	b	438)	d	439)	b	440)	b	641)	С	642)	а	643)	С	644)	С
441)	а	442)	d	443)	b	444)	С	645)	b	646)	b	647)	b	648)	b
445)	а	446)	b	447)	d	448)	b	649)	С	650)	С	651)	d	652)	С
449)	а	450)	b	451)	b	452)	d	653)	С	654)	d	655)	d	656)	С
453)	b	454)	b	455)	а	456)	а	657)	С	658)	b	659)	b	660)	b
457)	а	458)	b	459)	d	460)	а	661)	b	662)	b	663)	а	664)	d
461)	b	462)	d	463)	d	464)	а	665)	а	666)	d	667)	b	668)	С
465)	а	466)	b	467)	d	468)	d	669)	а	670)	а	671)	d	672)	b
469)	С	470)	а	471)	С	472)	d	673)	b	674)	а	675)	а	676)	b
473)	а	474)	d	475)	d	476)	d	677)	а	678)	С	679)	d	680)	b
477)	b	478)	а	479)	С	480)	а	681)	b	682)	С	683)	d	684)	b
481)	b	482)	b	483)	а	484)	С	685)	С	686)	b	687)	b	688)	d
485)	b	486)	а	487)	С	488)	а	689)	d	690)	d	691)	С	692)	d
489)	d	490)	d	491)	С	492)	а	693)	а	694)	d	695)	а	696)	d
493)	а	494)	d	495)	b	496)	а	697)	d	698)	а	699)	С	700)	а
497)	а	498)	а	499)	а	500)	d	701)	d	702)	b	703)	d	704)	d
501)	а	502)	d	503)	d	504)	b	705)	d	706)	а	707)	b	708)	С
505)	b	506)	а	507)	b	508)	С	709)	а	710)	С	711)	b	712)	b
509)	b	510)	С	511)	С	512)	С	713)	d	714)	b	715)	а	716)	а
513)	а	514)	b	515)	С	516)	С	717)	b	718)	b	719)	b	720)	а
517)	d	518)	b	519)	b	520)	b	721)	d	722)	С	723)	С	724)	d
521)	b	522)	а	523)	b	524)	b	725)	b	726)	b	727)	d	728)	С
525)	b	526)	b	527)	С	528)	a	729)	а	730)	b	731)	а	732)	d
529)	b	530)	а	531)	а	532)	d	733)	d	734)	b	735)	b	736)	С
533)	С	534)	а	535)	b	536)	b	737)	а	738)	b	739)	С	740)	С
537)	а	538)	С	539)	b	540)	d	741)	d	742)	b	743)	d	744)	b
541)	d	542)	d	543)	С	544)		745)	С	746)	С	747)	а	748)	а
545)	d	546)	b	547)	b	548)	а	749)	а	750)	b	751)	b	752)	а
														D a g o	40

753)	b	754)	а	755)	а	756)	d	765)	b	766)	d	767)	С	768)	d
757) a	a	758)	С	759)	d	760)	а	769)	а	770)	а				
761)	С	762)	а	763)	d	764)	а								

CHEMISTRY

	: HINTS AND	SO	LUTIONS ·
1	(d)	50	Mn^{2+} is most stable as it has half filled <i>d</i> -orbitals.
1	Born-Haber cycle inter-relates the various energy	16	(b)
	terms involved in ionic bonding.	10	The atomic radius decreases along the period.
2	(c)		Also cations are always smaller than their parent
_	Follow bonding rules.		atom and anions are always larger than their
3	(b)		parent atom .
	Alkali metals are most electropositive elements.	17	(d)
4	(b)		S = C = S.
	In H_2O , H-atom contains only two electrons.	18	(d)
5	(b)		Cation radius increases down the group.
	Fluorine is more reactive than chlorine, bromine	19	(d)
	and iodine		Cyanide ion is,
6	(b)		$-\overline{C}\equiv N \rightarrow -\overline{N}\equiv C$
	Due to H-bonding in NH ₃ .	20	(a)
7	(d)		All are isoelectronic species; more is nuclear
	The order of screening effect for a given shell		charge smaller is ionic size.
	electrons is $s > p > d > f$.	21	(c)
8	(a)		Electron affinity order for halogens is $Cl > F >$
	The ionisation energy of elements decreases		Br > I.
	down the group.	22	(b)
9	(c)		N atom has smallest radius.
	Cl in ClF_3 has sp^3d -hybridization	23	(b)
	F •,•		Halogens (ns^2np^5) after getting one electron
			occupy ns^2np^6 configuration, thus have EA_2 zero
	FCI	24	(c)
			In general, density increases on moving
	F		downward in a group but density of potassium
	and possesses two axial Cl— F bonds and one		(K) is lesser than that of the sodium (Na). This is
	equatorial bond Two lone pairs are at equatorial		because of the abnormal increase in atomic size
10	position give rise to bent 'T' shape to ClF_3 .		on moving from Na (86 pm) to K (227 pm).
10	(b)		Thus, the correct order of density is
11	In like atoms, electronegativity difference is zero.	~ -	Li < K < Na < Rb
11	(c) S_2 molecule is paramagnetic like O_2 having 2	25	(b)
	unpaired electrons.		The oxide having maximum heat of formation per
13	(d)		oxygen atom (thus energy needed to break one
15	Along the period acidic strength of oxide		M - 0 bond will be highest) will be most stable.
	increases		MgO is most stable oxide among Na_2O , SiO_2 , Al_2O_3 and MgO
14	(c)	26	and MgO.
± 1	In order to belong with the same family, the outer	26	(c)
	configuration must be the same		If Aufbau rule is not followed then 19^{th} electron in K enters in $3d$ sub-shall not in $4s$
15	(b)	27	K enters in 3 <i>d</i> sub-shell, not in 4 <i>s</i> (a)
		L'	(u)

The most electronegative element is F and next to F is O.

28 **(c)**

Larger is the size of atom, lesser is the tendency for overlapping, lesser is bond energy.

29 **(c)**

Bond angles in BeCl₂, NH₃, H₂O and SnCl₂ are 180°, 107°, 104.5° and 119° respectively. Also H₂S, H₂O, H₂Se has sp^3 -hybridization and bond angles of hydrides decreases down the group.

30 **(c)**

The correct increasing basic strength: $SbH_3 < AsH_3 < PH_3 < NH_3$ NH_3 is the most basic because of its small size, the electron density of electron pair is concentrated over small region. As the size increases, the electron density gets diffused over a large surface area and hence the ability to donate the electron pair (basicity) decreases.

31 **(b)**

Each period consists of a series of elements whose atoms have the same principal quantum number (*n*) of the outermost shell, *ie*, in second period, n = 2, this shell has four orbitals (one 2*s* and three 2*p*) which can have eight electrons, hence second period contain 8 elements from atomic number 3 to 10

32 **(b)**

Om moving along a period, ionisation enthalpy increases. Thus, the order of ionisation enthalpy should be as follow :

F > 0 > N

But N has half-filled structure, therefore, it is more stable than O, That's why its ionisation erthalpy is highper than O. Thus, the correct order of IE is

F > 0 > N

33 **(b)**

This give rise to polarity in bonds.

34 **(a)**

BeO is most acidic in nature amongst the given choices because acidity of oxides increases with decreases in electropositive character of central atom.

35 **(c)**

NaCl exist as Na⁺Cl⁻.

36 **(a)**

 $\rm NH_3$ has pyramidal shape and thus, possesses three folds axis of symmetry.

37 **(c)**

Larger is the difference in electronegativities of two atom, more is polar character in bond.

38 **(a)**

Non-polar or pure covalent bond has zero per cent ionic character due to the absence of partial charges on either end.

39 **(c)**

N in it has three σ -bonds and one lone pair of electron.

40 **(a)**

Mendeleef failed to assign positions to isotopes on the basis of atomic mass according to his periodic law

41 **(b)**

The removal of second electron from Mg takes place from 3*s*-orbital whereas, the removal of second electron from Na takes place from 2*p*-orbital. More closer are shells to the nucleus, difficult is removal of electron.

42 **(a)**

 $\begin{array}{ll} \text{ZnO can react with acid and base both} \\ \text{ZnO + 2HCl} & \text{ZnCl}_2 + \text{H}_2\text{O} \end{array} \end{array}$

$$ZnO + 2NaOH \qquad Na_2ZnO_2 + H_2O$$

43 **(c)**

 ClO_4^- has sp^3 -hybridization on Cl atom .

44 **(c)**

 O_2 has two unpaired electrons .

45 **(b)**

 O^{-2} and N^{3-} both are isoelectronic but differ in the charge possessed by them. As the negative charge increase, the electrons are held less and less tightly by the nucleus, therefore ionic radii increases. Hence, ionic radii of N^{3-} is greater than O^{2-} .

In a period from left to right atomic radii decreases but in a group on moving downwards it increases.

46 **(a)**

Ne has van der Waals radius larger than covalent radius of fluorine.

48 **(b)**

The value of electron affinity decreases with increase in size of atom, because the nuclear attraction decreases as the atomic number increases. Fluorine due to its very small size has lower electron affinity than chlorine. Hence, the increasing order of electron affinity of halogen is I < Br < F < Cl.

49 **(c)**

The element is P which exists as P_4 .

50	(c)	ĺ	$Al_4C_3 + 6H_2O \rightarrow 3CH_4 + 2Al_2O_3$
	Atomic size of Ag and Au are closer to each other	71	(d)
	but nuclear charge is more on Au		H_2O is V shaped.
51	(a)	72	(b)
	S atom is larger in size than O and F.		$\rm NH_4^+$ has angle of 109°28′.
52	(c)	73	(a)
	Electropositive character decreases across the		Due to sp^3 -hybridization on P with one lone pair.
	period as metallic character decreases	74	(a)
53	(c)		In MnO_4^- , the oxidation no. of Mn is +7, <i>i. e.</i> , all the
	Due to shielding effect of $(n-1)d$ -subshell.		4s and 3d electrons are lost.
54	(d)	75	(a)
	Non-metals are more than metals is the wrong		If difference in electronegativity in between two
	statement.		atoms is 1.7, the molecule possesses 50%
55	(b)		covalent +50% ionic nature.
	$1s^2$, $2s^2$, $2p^6$, $3s^1$. It is an alkali metal; hence has	76	(b)
	least ionisation potential.		CsCl is most ionic because of most electropositive
56	(b)		nature of Cs.
	The ionisation potential decreases down the	77	(c)
	group.		Anion (0^-) repels the test electron because of
58	(b)		same charge.
	N is sp^2 -hybridized on NO ₃ ⁻ .	78	(b)
59	(c)		It is a fact.
	e . g. , BF $_3$, a non-polar molecule having sp^2 -	79	(b)
	hybridization.		Ionic radii decreases significantly from left to
60	(c)		right in a period among representative elements
	Butadiene is $CH_2 = CH - CH = CH_2$.	80	(d)
61	(d)		B and Si shows the diagonal relationship.
	$M^{2+} \rightarrow M^{3+}$, after the removal of $2e^-$, the nuclear	81	(d)
	charge per electron increases due to which high		$0_{2}^{-}:\sigma 1s^{2},\sigma^{*} 1s^{2},\sigma 2s^{2},\sigma^{*} 2s^{2},\sigma 2p^{2} \begin{bmatrix} \pi 2p_{y}^{2} \\ \pi 2p_{z}^{2} \end{bmatrix} \frac{\pi^{*} 2p_{y}^{2}}{\pi^{*} 2p_{z}^{1}}$
	energy is required to remove $3e^-$		
62	(c)		\therefore B. 0. = $\frac{10-7}{2} = 1.5$
	O_2^- has one unpaired electron in its antibonding	02	
	molecular orbital.	82	
63	(b)		ZnO can react with acid and base both $2\pi O + 2UC + 2\pi C + 4U = 0$
	Removal of electron is easier in the order of shell		$ZnO+2HCl \rightarrow ZnCl_2 + H_2O$
	4 > 3 > 2 > 1	02	$ZnO+2NaOH \rightarrow Na_2ZnO_2 + H_2O$
64	(d)	83	(d) While moving along a group from top to bottom,
	Ionic radii increases in a group		acidic nature of oxides decreases and along a
65	(d)		period left to right acidic nature increases.
	Ionic compounds conduct current only in fused		amphoteric acidic max. acidic
((state.		Al Si P S
66	(a) The band orders for $H = H^+$ He and He^+ are		Z 13 14 15 16
	The bond orders for H_2 , H_2^+ , H_2 and He_2^+ are		Al_2O_3 SiO_2 P_2O_3 SO_2
67	1.0, 0.5, 0.0 and 0.5 respcetively. (d)		amphoteric acidic max. acidic
07	CH_3^+ and NH_2^+ both have 8 electrons .		Thus, $Al_2O_3 < SiO_2 < P_2O_3 < SO_2$
69	(c) CH_3 and NH_2 both have 8 electrons.	85	(b) $1103, A1203 < 5102 < 1203 < 502$
09	O atom possesses sp^3 -hybridization with two lone		Bond angles of CIF_3 , PF_3 , NF_3 and BF_3 are
	pair of electron.		(180°, 90°), (101°), (106°) and (120°)
70	(d)		respectively.
70	$Be_2C + 2H_2O \rightarrow CH_4 + 2BeO$	86	(b)
	2020 - 2020 - 304 - 2000	1	

	IF (II) - (N, '-) '-) () () (M,) '-	105	
	IE (II) of Na is higher than that of Mg because in $a = b = a = b = a$	105	
	case of Na, the second e^- has to be removed from		Ionic radii is the distance between the nucleus of
	the noble gas core while in case of Mg removal of		an ion and a point upto which the nucleus has its
	second e^- gives a noble gas core		influence on its electron cloud.
	Mg has high first ionisation potential than Na		The size of ions increases on moving from top to
07	because of its stable ns^2 configuration		bottom in a group. Hence, the maximum distance
87	(d)		between the centres of cations and anions is in CsI
00	Follow concept of bond order in M.O. theory.		because Cs is the largest cation and I is the largest
88		100	anion.
00	sp^3 -hybridization leads to tetrahedral geometry.	106	
89	(a) $(-1)^{-1}$		Bond angles of BeF_2 , H_2O , NH_3 and CH_4 are
01	5 of P + 24 of O + 3 of - ve charge = 32.	107	180°, 104°31′, 106°50′, 109°28′ respectively.
91		107	
0.2	SnO_2 , Al_2O_3 and ZnO are amphoteric oxide.	100	Count σ and π bonds.
92	(c)	108	
0.2	The inert gas just after chlorine is argon.		The atomic radii decreases along the period and
93	(b)	100	increases down the gp.
	Cation has small size than parent atom and anion	109	
0.4	has larger size than parent atom	110	Ionisation energy increases along the period.
94	(c)	110	Due to dipole moment intramolecular forces of
95	Due to the presence of <i>d</i> -subshell electrons.		attraction becomes stronger and thus,
95	(b) Coulombia forces are strongest among all		liquefaction becomes easier.
96	Coulombic forces are strongest among all . (b)	111	-
90	Transition elements are those elements which	111	He ⁺ ₂ (B. 0. = 0.5) < O_2^- (B. 0. = 1.5)
	have partially filled <i>d</i> -subshells in their		$< NO(B. 0. = 2.5) < C_2^{-}(B. 0. = 3.0)$
	elementary form. Therefore, the general	112	
	electronic configuration of <i>d</i> -block element is	112	Larger is anion, more is covalent character.
	$(n-1)d^{1-10}ns^{1-2}$.	113	
97	(a)	115	Due to resonance structure of C_6H_6 .
71	In ionic solids, ions exist at lattice points. In	114	
	covalent solids atoms lie at lattice points.	111	5 (on P) + 4(on H) - 1 = 8.
98	(a)	115	
70	Ionic bond are non-directional.	110	Pauling scale is based upon the excess bond
99	(c)		energies. Pauling equation for determining the
	Both carbon atoms have 2 σ - and 2 π -bonds		electronegativity of an element is
100			$X_A - X_B = 0.208\sqrt{\Delta}$
200	Diamond is hard, graphite is soft.		where, X_A , X_B = electronegativity values of elemnt
101			A and B
	SiO ₂ structure is definite.		Δ =polarity of $A - B$ bond.
102		116	
	P in PO ₄ ³⁻ has sp^3 -hybridization like S in SO ₄ ²⁻ .	110	Be ²⁺ is smallest and Na ⁺ has largest radius.
103		117	
	C - F bond is more polar than $C - Cl$.		Both have sp^2 -hybridization geometry.
104	-	118	
	Ionic radii $\propto \frac{1}{z_{eff}} \propto$ charge of anion		Non-polar species exert van der Waals' forces
			among themselves.
	$\propto \frac{1}{\text{charge on cation}}$	119	
	Thus, the order of ionic radii is		ICl_2^- has sp^3d -hybridization and has two bond
	$N^{3-} > 0^{2-} > F^- > Na^+ > Mg^{2+}$		pairs and three lone pairs of electrons.
	-	I	• • • • • • •

100		100	
120		136	
	Halogens are strong oxidising agents. The		Bond energy increases with increase in bond
	oxidising power halogen decreases from fluorine		order.
	to iodine, because their reduction potential	137	
	decreases from fluorine to iodine. The increasing		Electron affinity is defined as, "The energy
	order of their oxidising power is as		released when an extra electron is added to a
	Element $I_2 < Br_2 < Cl_2 < F_2$		neutral gaseous atom."
			Electron affinity of F=332.6 kJ/mol
	Reduction		Electron affinity of Cl=348.5 kJ/mol
	potential +0.54 +1.06 +1.36 +2.87		Electron affinity of S=200.7 kJ/mol
121	(c)		Electron affinity of 0=140.9 kJ/mol
	CaO is basic oxide.		Highest electron affinity among fluorine, chlorine,
122	(b)		sulphur and oxygen, is of chlorine.
	Be in BeF ₃ ⁻ is sp^2 -hybridized.		The low value of electron affinity of fluorine than
123	(a)		chlorine is probably due to small size of fluorine
	$_{3}$ Li – $1s^{2}2s^{1}$ donates one electron easily		atom <i>i.e.</i> , electron density is high which hinders
124	(b)		the addition of an extra electron.
	Ionization energy increases along the period and	138	(b)
	decreases down the group. Also (b) has		Bond order for $O_2 = 2$ and for $O_2^+ = 2.5$
	[Ne] $3s^2$, $3p^3$, <i>i. e.</i> , half filled configuration, being		Both are paramagnetic $(O_2 has 2 unpaired$
	more stable and thus, have high ionization energy		electron, 0_2^+ has one unpaired electron).
125		139	
	Carbon cannot accept 6Cl ⁻ , since it has no vacant		Bond order for $H_2^- = +1/2$.
	<i>d</i> -orbitals.	140	(c)
126	(d)		S in SCl ₄ is sp^3d -hybridized and possesses see-
	BCl_3 has sp^2 -hybridization. Rest all have sp^3 -		saw structure whereas $SiCl_4$ is tetrahedral.
	hybridization having one lone pair of electron and		Cl
	thus, pyramidal in nature.		
127	(c)		
	Both NH ₃ and H ₂ O have sp^3 -hybridization. CO ₂		
	and BeCl ₂ are linear (<i>sp</i> -hybridization)		
128			Cl Cl
	The bond angles in sp^3 , sp^2 and sp -hybridization	141	(d)
	are 109°, 120° and 180° respectively.		$_{22}$ Ti : $3s^2$, $4s^2 \xrightarrow{IE_1} 3d^2$, $4s^1$
129			$_{23}$ V: $3d^3$, $4s^2 \xrightarrow{IE_1} 3d^3$, $4s^1$
	B. p. of H_2 is minimum.		
130	(b)		$_{24}$ Cr : $3d^5$, $4s^1 \xrightarrow{IE_1} 3d^5 \xrightarrow{IE_2 \text{ from}}_{\text{half filled}}$ maximum
	<i>e. g.</i> , BF ₃ .		$_{25}\text{Mn}: 3d^5, 4s^2 \xrightarrow{IE_1} 3d^5, 4s^1$
131	(a)		
	<i>s</i> -orbitals never go for lateral overlapping	142	
	because of non-directional nature.		In transition elements, penultimate shell electrons
132	(c)	1.10	also participate in bonding.
	H_2O possesses the tendency for H – bonding.	143	
133			With the discovery of inert gases (group zero in
	It is a reason for given fact.		Mendeleef's Periodic Table), the law of octaves
134			lost its original significance since, it was now the
	It is a fact.		ninth element which had properties similar to the
135			first one.
	Rest all either has incomplete (BF ₃ , BeF ₂) octer or	144	
	expanded octet (ClO ₂).		Na belongs to IA group and Mg belongs to IIA
			group. On moving from left to right in a period,

first ionisation energy increases, thus, IE of Mg is greater than the IE of Na. IE order	The correct order according to size is as $0^{2-} > 0^{-} > 0$ 155 (a)
Mg > Na 145 (a) Oxides Basic Decreases in a period ►	Electron affinity generally increases in a period from left to right because size decreases and nuclear charge increases. But the electron affinity of nitrogen is very low due to extra stability of half-filled 2 <i>p</i> -orbital. Hence, the order of electron affinity is B < C < O > N
↓ Increases in a group basic nature of oxides Al ₂ O ₃ < MgO < Na ₂ O <	156 (c) Lithium is basic in nature and hence, it is not amphoteric.
K ₂ O 147 (c) Total energy required for the conversion of one	157 (c) Ions are held in NaCl by coulombic forces and thus, possess no velocity.
Mg atom into $Mg^{2+}is = IE_1 + IE_2$ = 7.646 + 15.035 eV = 22.681 eV = 2188.6 kJ mol ⁻¹	 158 (c) The jump in ionisation energy occurs when valence shell changes during removal of electron. 159 (d) The correct order of ionic radii of these ions is
Moles of Mg = $\frac{12 \times 10^{-3}}{24}$ = 0.5 × 10 ⁻³ \therefore The energy required to convert 0.5 × 10 ⁻³ mol Mg into Mg ²⁺ = 0.5 × 10 ⁻³ × 2188.6	 S²⁻ > Cl⁻ > K⁺ > Ca²⁺. 160 (a) Nitrogen has more ionisation potential than carbon and oxygen because its outermost orbit is half-filled. So the order is C < N > 0
= $1.09 \approx 1.1$ 148 (a) The size of isoelectronics decreases with increase	161 (b) Only <i>p</i> -orbitals give rise to σ -bond (head on overlapping) and π -bond (lateral overlapping).
in atomic number. 149 (c) Since, the IV th IE is very high, <i>ie</i> , electron is to be removed from stable configuration, thus it has 3 valence electrons	 162 (b) Each has 22 electrons. 163 (b) BF₃ : sp² NO₂⁻: sp² NH₃: sp³ NH₂⁻: sp³ H₂O: sp³ 164 (a)
 150 (b) These are facts. 151 (a) The ionisation energy increases when we move 	Atomic and ionic radii increase from top to bottom in a group due to the inclusion of another shell at every step. Hence, Cs ⁺ ion will be the largest among given IA group ions
from left to right in a period. But this increase is not regular. The members of second group have greater ionisation potential as compared to third group due to stable configuration. Ionisation potential has following order	 (Na⁺, Li⁺ and K⁺) 165 (a) Due to non-availability of <i>d</i>-orbitals, boron cannot expand its octet. Therefore, the maximum covalence of boron cannot exceed 4.
Na $ < Mg > Al < Si$ 152 (c) Both SO ₄ ²⁻ and BF ₄ ⁻ have sp^3 -hybridization and	166 (b) Larger anion is easily deformed (Follow Fajans' rule).
are tetrahedral. 153 (d) First IP of Be > B because of stable <i>ns</i> ² configuration	 167 (b) ClO₃⁻ has <i>sp</i>³-hybridization with one lone pair of electron. 170 (c)
154 (c)	

Silicon has the tendency to show covalent bonding because of higher IP values.

171 **(b)** BeCl₂-sp; BF₃-sp²; NH₃-sp³; XeF₂-sp³d 172 (d) He has $1s^2$ configuration. 173 (c)

CO₂ is linear molecule.

174 (b)

Ionisation energies increase in a period on moving left to right while it decreases in a group on moving downward. The IE of Be is greater than 186 (b) B due to completely filled *s*-orbital. Hence, the order of IE is as

Be > B > Li > Na.

175 (d)

In inner transition elements, the differentiating electrons enter into (6n - 2)f orbital. Therefore, these elements are also known as *f*-block elements.

176 (c)

Ionic compounds conduct current in molten state. 177 (a)

Difference of electronegativity > 1.7 produces ionic compound.

178 (c)

Ionic radii $\propto \frac{1}{Z_{off}}$

179 (d)

In sulphur, the excitation of *np*-electrons to *nd*subshell gives rise to increase in number of unpaired electrons.

180 **(b)**

As the number of shells increases, ionic radii increases

182 (d)

Ionisation potential increases along the period.

183 (a)

$$Sc^{3+} > Cr^{3+} > Fe^{3+} > Mn^{3+}$$
, the correct order is
 $Cr^{3+} > Mn^{3+} > Fe^{3+} > Sc^{3+}$

184 (a)

 $1s^2, 2s^2, 2p^5 = 2, 7$ 1.

(: It has capacity to accept electron therefore, it is electronegative.)

(b) $1s^2$, $2s^2$, $2p^4$, $3s^1 = 2, 6, 1$ (configuration not correct $(2p^4)$) (c) $1s^2$, $2s^2$, $2p^6$, $3s^1$, $3p^5 = 2, 8, 6$

(configuration not correct $3s^1$)

(d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^5 = 2, 8, 7$

(: It has capacity to accept electron therefore, it is electronegative)

Smaller the size, greater will be electronegativity. Since, element in choice (a) is smaller in size, it will be more electronegative than (d). In choice (a) the atomic number of element is 9, which is of fluorine and it is the most electronegative element of the Periodic Table.

185 (d)

IIIA group contains both metals and non-metals

Only P has *d*-orbitals.

187 (c)

The general electronic configuration of *d*-block element is $(n-1)d^{1-10}$, ns^{1-2} . They show variable oxidation state because d-electrons also take part in bond formation. They have degenerated orbitals. *s* and *p*-block elements in general do not show variable oxidation states.

189 (a)

 BeF_3^- involves sp^2 -hybridization.

190 (d)

The electron affinities of some of the elements of second period (ie, N, O, F, etc) are however, lower than the corresponding element (*ie*, P, S, Cl, etc) of the third period. This is due to the reason that the elements of second period have the smallest atomic size amongst the elements in their respective groups. As a result, there are considerable electron-electron repulsion within the atom itself and hence, the additional electron is not accepted with the same ease as is the case with the remaining elements in the same group

191 (d)

 E_{op}° order is Mg > Fe > Cu; more is E_{op}° , more is electropositive character.

194 (a)

Non-metals are characteristically electronegative.

195 (a)

The relative extent to which the various orbitals penetrate the electron clouds of other orbitals is s > p > d > f. Electron will experience the greatest effective nuclear charge when in sorbital, then a p-orbital and so on. Ionisation energy increases with an increase in penetration power and thus, the order of screening effect is s > p > d > f.

196 (a)

Carbon in H_2CO_3 has sp^2 -hybridization and also

polar. BF ₃ has sp^2 but non-polar. SiF ₄ has sp^3 -	and greater than first electron affinity, which is
hybridization. $HClO_2$ has sp^3 -hybridization.	exothermic
197 (c)	212 (a)
$0^{-}(g) + e^{-} \rightarrow 0^{2-}(g), \Delta H^{\circ} = 844 \text{ kJmol}^{-1}$	Based on geometry of molecule.
This process is unfavorable in the gas phase	213 (a)
because the resulting increase in electron-	$K^+ \rightarrow K^{2+} + e^-$. Since, e^- is to be removed from
electron repulsion overweighs the stability gained	
by achieving the noble gas configuration.	214 (a)
199 (c)	Proteins show H-bonding.
The fifth period from nubidium (37) to xenon	215 (c)
(54). The last electron enters in 5s, 4d or $5p$ -	A reason for the given fact.
orbitals. Therefore, the fifth period has	217 (b)
(2+10+6)18 elements.	The intermolecular forces increase with increase
200 (d)	in mol. Wt.
Cs is more electropositive .	218 (c)
201 (b)	Atomic radius decreases on going from left to
The element with atomic no. 105 is Dubnium. In	right in a period. Thus, size of $0 > F$. As 0^{2-} and
IUPAC nomenclature, it is known as Un-nil-pentin.	
202 (b) $O_{\text{relations}} = O_{\text{relations}} = O_{$	219 (a) Na ⁺ < F^- < O^{2-} < N^{3-}
Oxidizing power : $F_2 > Cl_2 > Br_2 > I_2$. 203 (c)	
Halogens are most electronegative. Their general	All are isoelectronic. Effective nuclear charge is highest for Na ⁺ , so it has the smallest size
configuration is ns^2np^5	221 (a)
204 (b)	
They have high electron density.	$_{5}B \rightarrow 1s^{2}, 2s^{2}, 2p^{1}$
205 (a)	In first case IE_1 of $C > IE_1$ of B. Since, carbon is
Cations are always smaller than their parent	smaller than B in size. But $IE_2(B) > IE_2(C)$
atoms:	because electron are paired as well as present in
$\mathrm{Al}^{3+} < \mathrm{Al}^{2+} < \mathrm{Al}^+ < \mathrm{Al}.$	inner <i>s</i> -orbital whereas for carbon it will be still
206 (c)	in $2p$ -orbital and in unpaired state
	222 (c)
$C_{2}(CN)_{4} \text{ is } N \equiv C - C - C \equiv N$ $N \equiv C - C - C \equiv N$ $N \equiv C - C - C \equiv N$	$\text{KHF}_2 \rightarrow \text{K}^+ + \text{HF}_2^-$
$N \equiv C - C \equiv N$	223 (b)
$C = C$ is sp^2 -hybridization and $C \equiv N$ is sp -	H_2O has sp^3 -hybridizatio.
hybridized.	224 (b)
207 (a)	Bond energy of Cl_2 is higher among all halogen
Each species has 14 electrons and bond order for	molecules. B. E. of F_2 , Cl_2 , Br_2 , I_2 are 37, 58, 46 and
each is three.	36 kcal mol^{-1} respectively.
208 (b)	225 (b)
Fluorine although have highest electronegativity	Cl_2 involves $3p-3p$ overlapping.
due to its very small size, effective inter electronic	
repulsions are observed which brings down its	CCl_4 has sp^3 -hybridization giving regular
electron affinity	tetrahedron geometry. In others the geometry is
209 (c)	little distorted inspite of sp^3 -hybridization due to different atoms on the vertices of tetrahedron.
$r_H = \frac{74}{2} = 37 \text{ pm}, r_{\text{Cl}} = \frac{198}{2} = 99 \text{ pm}.$	227 (c)
B. L. of HCl = $r_{\rm H} + r_{\rm Cl}$	Cl^{-} has $1s^2$, $2s^22p^6$, $3s^23p^6$ configuration.
210 (a)	228 (c)
Thus, excitation of $2s$ -elctron in N is not possible.	N atom in NH_3 provides electron pair to H^+ to
211 (c)	form coordinate or dative bond ($H_3N \rightarrow H$).
Second electron affinity of oxygen is endothermic	

229 (d)	gas (<i>e.g.</i> , KNO ₃) while nitrates of p and d -block
$IP_3 > IP_2 > IP_1.$	elements $[e.g., (NO_3)_2, Cu(NO_3)_2 \text{ and } AgNO_3]$
230 (c)	gives out nitrogen dioxide on heating
The order of stability matel oxides is as :	$2KNO_3 \rightarrow 2KNO_2 + O_2$
$Fe_2O_3 < Cr_2O_3 < Al_2O_3 < MgO$	∴ Nitrogen dioxide cannot be prepared from
231 (a)	KNO_2 .
First ionisation energy increases from left to right	
across a period, but Mg has extra stability than Al, due to full-filled 3 <i>s</i> -orbitals.	Ions Be^{2+} $Cl^ S^{2-}$ Na^+ Mg^{2+} Br^-
Na ₁₁ = $1s^2$, $2s^2$, $2p^6$, $3s^1$	Valence shell 1 3 3 2 2 4 Now between Net and M_{2}^{2+} Net $> M_{2}^{2+}$
	Now, between Na ⁺ and Mg ²⁺ , Na ⁺ > Mg ²⁺
$Mg_{12} = 1s^2, 2s^2, 2p^6, 3s^2$	(isoelectronic), between Cl^- and S^{2-} , $S^{2-} > Cl^-$
$Al_{13} = 1s^2, 2s^2, 2p^6, 3s^2, 3p^1$	(isoelectronic) because for isoelectronic species
$Si_{14} = 1s^2, 2s^2, 2p^6, 3s^2, 3p^2$	size decreases as the atomic number increases.
The correct order of first ionisation potential is $A_{1} \neq A_{2} \neq A_{3}$	Hence, the order of increasing size is $P_{2}^{2+} > M_{2}^{2+} > N_{2}^{++} > C_{2}^{+-} > P_{2}^{}$
Na $< Mg > Al < Si$	$Be^{2+} > Mg^{2+} > Na^+ > Cl^- > S^{2-} > Br^-$
232 (c)	244 (d)
$1s^2$, $2s^22p^4$ leads a sharing of two electron pairs	$PCl_3 < PBr_3 < PI_3$, the bond angle order is
to form molecule, $e. g., O_2$.	explained in terms of increasing electronegativity $P_{1} > P_{2}$
233 (b)	of halogens, whereas, $PF_3 > PCl_3$, bond angle
M.O. configuration of N ₂ is: $-1e^{2} - e^{2} + 2e^{2} - 2e^{2}$	order is explained in terms of $p\pi - d\pi$ bonding in
$\sigma 1s^2 \sigma^* 1s^2, \sigma 2s^2 \sigma^* 2s^2, \pi 2p_y^2, \pi 2p_z^2, \sigma 2p_x^2$	PF ₃ . 245 (d)
M.O. configuration of N_2^+ is:	
$\sigma 1s^2 \sigma^* 1s^2, \sigma 2s^2 \sigma^* 2s^2, \pi 2p_y^2, \pi 2p_z^2 \sigma 2p_x^1$	Hg exists in liquid state. 246 (d)
234 (a)	$117 = [\text{Rn}]5f^{14}, 6d^{10}, 7s^27p^5$
Both are linear.	Since, the last electron enters in <i>p</i> -orbital, it will
235 (b)	be a <i>p</i> -block element and its group number
SO_2 has sp^2 -hybridization.	=5+2=7 (VIIA)
236 (d) The basic character of metal oxides decreases	So, the element would be the placed in halogen
	family.
from left to right in a period due to decrease in electropositive character which in turn decreases	247 (b)
the polarity of bond as well as the internuclear	The elements with atomic number 9, 17, 35, 53
distance between the oxygen and metal atom.	and 85 are respectively F, Cl, Br, I and At. These
Therefore, alkali metal oxides are most basic and	are VII A group elements which are also known
halogen oxide (oxygen halides) are most acidic :	as halogens (which means originating from sea.)
K_2O is most basic metal oxide.	These also have 7 electrons in valence shell (<i>i.e.</i> ,
237 (c)	ns^2np^5)
Same spin electrons in two atoms do not take part	e.g.,
in bonding.	$_{9}F = 1s^{2}, 2s^{2}, 2p^{5}$
239 (a)	$_{17}$ Cl = $1s^2$, $2s^22p^6$, $3s^23p^5$
Count σ - and π -bonds.	249 (b)
240 (d)	IE_1 of N > IE_1 of O due to half filled nature in N.
Valency is according to valence shell	250 (a)
configuration which here is $1s^2$, $2s^2$, $2p^3$, <i>ie</i> , 5	Solid molecules possess stronger van der Waals'
241 (d)	forces.
CaI ₂ has maximum covalent character due to large	
size of anion and possesses lowest lattice energy.	SiF ₄ has regular tetrahedral geometry.
Thus melting point is lowest.	252 (b)
242 (a)	IA–Alkali metals
Nitrates of alkali metals on heating evolve oxygen	IIA–Alkaline earth metals

	IB-Coinage metals		Electronegativity of elements increases along th
253			period and, decreases down the group.
	The bond angle in CH_3OCH_3 is 110° inspite of sp^3 -		
	hybridization of O and two lone pair due to stearic		Size of atom decreases with increase in atomic
	hindrance.		number across the period in Periodic Table.
254		267	
	Removal of electron is easier in <i>f</i> -block elements		Difference between S and S ^{2–} is larger radii and
	due to more shielding.		larger size os S^{2-} .
255	(b)		As the radii of the anion is always larger than the
	Seven atoms of fluorine are covalently bonded		atomic radii of its parent atom. In an anion as
	with iodine.		electron or electrons are added to the neutral
256	(b)		atom, the nuclear charge acts on more electrons
	As a result of more overlapping. Note that π -		so that each electron is held less tightly and
	bonds are formed after σ -has already formed.		thereby, the electron cloud expands.
257	(d)	268	(d)
	$1s^2$, $2s^22p^6$, $3s^23p^6$, $4s^2$. Principal quantum		NH ₂ ⁻ has <i>sp</i> ³ -hybridization having two covalent
	number is 4, so it belongs to 4th period		bonds and two lone pair of N atom.
258		269	_
	Resultant of two opposite vectors produces zero		Smaller is size of anion, lesser is its polarization
	dipole moment.		more is ionic nature, more is lattice energy.
259	-	270	
	The trigonal geometry of BF ₃ with three vectors		$HC \equiv C - HC = CH - CH_3 \ 10\sigma, 3\pi$
	$(B \rightarrow F)$ acting at 120° leads to zero dipole	271	-
	moment. In NH ₃ three vectors (N \leftarrow H) act at 107°		The charge-size ratio increases and thus
	along with one lone pair giving dipole moment in		polarising power increases.
	molecule.	272	
260			In a given group, atomic size increase due to
100	PF_5 involves sp^3d -hybridization.		addition of extra shell which outweighs the effe
261			of increased nuclear charge. Number of shells
201	C < N > 0 is the correct order because N has		increases with addition of extra electrons. Hence
	stable configuration (exactly half-filled <i>p</i> -orbital		increase in atomic size down the group is due to
			increase in number of electrons.
1/1	$1s^2, 2s^2, 2p^3$).	274	
262		274	
	(a) Metallic radii increase in a group from top to		B is non-metal among Be, Mg, Al and B. Be Mg a
	bottom.		Al are metals. Metallic character increases when
	Thus, Li $< Na < K < Rb$ is true		we move down the group and decreases along
	(b) Electron gain of enthalpy of $Cl > F$ and	0.75	period.
	decreases along a group.	275	
	Thus, $I < Br < F < Cl$ is true.		ICl_2^- has sp^3d -hybridized state
	(c) Ionisation enthalpy increases along a period		(<i>i.e.</i> , trigonal bipyramidal shape but distorted
	left to right but due to presence of half-filled		due to the presence of lone pair of electron on I
	orbital in N, ionisation enthalpy of $N > O$.		atom.)
	Thus $B < C < N < 0$ is incorrect.	276	(b)
263			2°
	Pauling work on chemical bonding.		
264		0==	H_2O has H H bonding.
	The order of electron affinity among the halogens	277	
	is		Oxidizing power decreases in a group
	Cl > F > Br > I	278	
265	(c)		Solubility order : AgF > AgCl > AgBr > AgI .
205		280	

Phosphorus is a non-metallic element. It forms The electronic configuration of oxygen is $_{8}0=1s^{2}, 2s^{2}2p^{4}$ acidic oxide. 281 (d) $2p^4$ **1 1 1** EA_1 for elements is exothermic and EA_2 is Greater repulsion endothermic. Also EA_2 for $O > EA_1$ for 0. The other reason for the greater IP of nitrogen is 282 (a) that in oxygen, there is a greater interelectronic C_6H_6 has regular hexagonal geometry. repulsion between the electrons present in the 283 (c) same *p*-orbital which counter-balance the H-bonding is noticed in molecules having H atom increase in effective nuclear charge from nitrogen attached on N, O or F. 284 (d) to oxygen. One carbon has three bonds and other five where 293 (d) as each should have four bonds. Multiplicity in bonds decreases bond lengths. 285 (c) 294 (b) h-bonding in H₂O increases forces of attracting It is an ionic compound. The most ionic compound among molecules and develops abnormal is CsF. 295 **(b)** properties. 286 (a) $NO_2^$ sp^2 sp^2 2, 8, 2 because it would donate electron more $NO_3^$ sp^3 easily NO_2^- 287 (c) sp^3 NO_4^+ Bond energy increases with multiplicity of bonds. SCN⁻ sp 288 (d) 296 (a) Examine the positions in Periodic Table. It is the definition of valency. BCNOF 297 (c) P S \equiv C – has 2 σ - and 2 π -(thus, *sp*-hybridization); Phosphorus is having stable half-filled $-CH = has 3\sigma$ - and 1π -(thus, sp^2 -hybridization). configuration. Remember hybridized orbitals do not form π -Hence, order is B < S < P < Fbonds 289 (c) 298 (d) Both BrO_3^- and XeO_3 have sp^3 -hybridisation and IP of inert gases is maximum. one lone pair of electron. 299 (c) 290 (a) Bond angles decrease down the group. The electronic configuration of transition 300 (a) elements is exhibited by Fluorine being most electronegative atom, has a $(n-1)d^{1-10}$, ns^2 high tendency to gain electron. Thus, it readily 291 (b) forms anions The bond order for 0^{2-}_2 , 0^-_2 , 0^-_2 , 0^+_2 are 301 (d) 1.0, 1.5, 2.0, 2.5 respectively. higher is bond order, A characteristic of metallic bonding. 303 (a) more is bond energy. 292 (c) Electron deficient species can accept lone pair of The electronic configuration of nitrogen is electron and thus, act as Lewis acid. $_7$ N= 1 s^2 , 2 s^2 , 2 p^3 304 (a) Brass in an alloy. $2p^3$ | 1 | 1 | 1 305 (d) half-filled *p*-orbital Ionic compounds having lattice energy higher Due to presence of half-filled *p*-orbital, (more than hydration energy are insoluble in water. stable) a large amount of energy is required to 306 (a) remove an electron from nitrogen. Hence, first Electronegativity difference in two atoms ionisation energy of nitrogen is greater than that involved in bonding is a measure of polarity in of oxygen.

molecule.

307 **(d)**

Electronegativity increases along the period and decreases down the group.

308 **(b)**

Ionization potential increases along the period. Also Be has $1s^2$, $2s^2$, *i. e.*, removal of electrons from 2s while in Boron it occurs from 2p and therefore, Be has high I. P.

309 (a)

 $Na \rightarrow Na^+ + e$; *IE* of Na = +ve $Na^+ + e \rightarrow Na$; *EA* of $Na^+ = -ve$ Both are equal but opposite in nature.

310 **(c)**

Given, Atomic number of element B = Z(:: Noble gas \therefore Belong to zero group) Atomic number of element A = Z - 1(*i.e.*, halogens) Atomic number of element C = Z + 1(*i.e.*, group IA) Atomic number of element D = Z + 2

: Element B is a noble gas.

 \therefore Element *A* must be a halogen *i.e.*, have highest electron affinity and element *C* must be an alkali metal and exist in+1 oxidation state.

And element D must be an alkaline earth metal with +2 oxidation state.

311 **(b)**

Both possess sp^2 -hybridization but different geometry.

313 **(a)**

The addition of second electron in an atom or ion is always endothermic as the incoming electron experience the greater force of repulsion

314 **(a)**

- $3 = 1s^2, 2s^1$
- $12 = 1s^2, 2s^2, 2p^6, 3s^2$

Since, last electron enters in *s*-orbitals, these are *s*-bloc elements

315 (d)

Rest all are periodic properties of elements.

316 **(b)**

In the Periodic Table metals usually used as catalysts belong to *d*-block *e.g.*, Ni, Pt etc.

317 **(c)**

Bond order $C_2^- > NO > O_2^- > He_2^+$ 3 5/2 3/2 1/2

318 **(a)**

It is a fact derived from bond order.

319 **(b)**

Due to sp^2 -hybridization.

320 **(b)**

H-bond has its bond length in the range 2.5 Å to 2.75 Å.

321 **(b)**

It has sp^3d^3 -hybridization with one lone pair on Xe.

322 **(c)**

HCl exists as $H^{\delta+} - Cl^{\delta-}$ due to difference in electronegativity of H and Cl.

324 **(d)**

Each has 10 electrons

325 **(a)**

In SF₄, S has sp^3d -hybridization. Thus, it contains two axial and two equatorial bonds to give seesaw structure.

326 **(a)**

Van der Waals' forces increases in CH₄ to give solid CH₄.

327 **(b)**

Multiplicity in bonding give rise to an increase in bond energy.

328 **(b)**

The electron affinity (in kJ/mol) Fluorine=332.6

- Chlorine=348.5
- Bromine=324.7

Iodine=295.5

Chlorine has highest electron affinity value, so, according to question the correct order of electron affinity will be $Cl_2 > F_2 > Br_2$.

329 **(c)**

According to M.O. theory, bond order of N_2,N_2^- and N_2^{2-} are 3, 2.5 and 2 respectively.

$$O_{2}^{2-}:\sigma 1s^{2},\sigma^{*}1s^{2},\sigma 2s^{2}\sigma^{*}2s^{2}\sigma 2p^{2}\begin{bmatrix}\pi 2p_{y}^{2}\\\pi 2p_{z}^{2}\end{bmatrix}\pi^{*}2p_{y}^{2}$$
B. 0. = $\frac{10-8}{2} = 1$
B₂ : $\sigma 1s^{2},\sigma^{*}1s^{2},\sigma 2s^{2},\sigma^{*}2s^{2}\begin{bmatrix}\pi 2p_{y}^{1}\\\pi 2p_{z}^{1}\end{bmatrix}$
B. 0. = $\frac{6-4}{2} = 1$
332 (c)

 C_2H_4 involves sp^3 -hybridization on carbon atoms. 346 (d)

 ClO_2 has 33 electron; one will be unpaired. 333 (c) $[0-0]^{2-}$ 347 (d) 334 (d) Down the group, size of atom increases. The electronic configuration of carbon is Therefore, bond length of LiF is less than that of NaF $1s^2, 2s^22p^2$. 335 (a) 348 (c) Bond order = $\frac{1}{2}$ [bonding electrons Only Na shows+1 oxidation state. Rest all have +1, +2 (Hg), +1, +2(Cu) and +2, +3(Fe) – antibonding electrons] oxidation states. 349 (b) 336 (a) $sp^3 d^2$ -hybridization leads to octahedral Like gets dissolved in like. It is theory. geometry. 337 (d) 350 (a) Cu loses two electron to form Cu^{2+} . Ionic radii = $\frac{n^2 a_0}{Z_{eff}}$ 338 (c) Only then it can accept lone pair in that shell. 351 (c) 339 (a) H atom attached of F is responsible for H-bonding. The electron affinity of fluorine is lower than that 352 (b) of chlorine due to the very small size of fluorine in Be₂($\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$) has bond order which negative charge is highly concentrated and equal to zero. repels the incoming electron thereby reducing the 353 (c) force of attraction of nucleus towards the adding The electronic configuration of element with electron and hence, decreasing the electron atomic number 21 is affinity. $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^1$ Thus, chlorine has highest value of electron Since, this element contains partly filled *d*-orbital, affinity. so it is a *d*-block element. *d*-block elements are 340 (b) also known as transition elements. In the Periodic Table, when one moves from left 354 (a) to right in a period, the acidity of oxides and Head on overlapping give rise to σ -bond halides of elements increases while it decreases formation. when one moves from top to bottom in a group. 355 (a) Hence, PCl_3 is most acidic among given species. A species is amphoteric if it is soluble in acid 341 (d) (behaves as a base) as well as in base (behaves as It is the hybridization of ICl_2^+ . an acid.) 342 (d) $SnO_2 + 4HCl \rightarrow SnCl_4 + 2H_2O$ $_{20}$ Ca = [Ar]4 s^2 basic acid $_{21}$ Sc = [Ar]4s², 3d¹ $SnO_2 + 2NaOH \rightarrow Na_2SnO_3 + H_2O$ $_{22}$ Ti = [Ar]4 s^2 , 3 d^2 acid base As *d*-orbital have diffused shape, hence their 356 (b) electron shields nuclear charge upto lesser extent. The first ionisation potential generally increases Hence, due to increase in effective nuclear charge in a period from left to right and decreases in a $(Z_{\rm eff})$ atomic size decrease, in the following order group from up to down. Thus, the correct order of Ca > Sc > Tifirst ionisation potential is 343 (c) K < Na < Be. $\mu_{H_2O} \neq 0$, $\mu_{CO_2} = 0$ 357 (a) 344 (c) As we go down the group in Periodic Table, F₂ is most reactive due to atomic size increases, force of attraction for the (1) highest electronegativity. added electron decreases, hence electron gain (2) low bond dissociation energy enthalpy decreases. (3) high heat of hydration of F⁻ion

 $X(g) + e^- \rightarrow X^-(g)$

358 359 360 362 363 364 365 366 366	Bond angle for sp , sp^2 and sp^3 -orbitals are 180°, 120° and 109°28' respectively. (d) Dipole forces exist only in polar molecule. (c) Reason being, as we move in period atomic radii decreases from left to right due to increase of effective nuclear charge. \therefore Na is larger in size than Mg and a neutral atom is larger than its positive ion. (a) Ionisation energy defined as the energy required to remove an electron from the outermost orbit of an isolated gaseous atom in its ground state. Na(11)= 1s ² , 2s ² , 2p ⁶ , 3s ¹ Na \rightarrow Na ⁺ + e ⁻ (First IE) Na ⁺ \rightarrow Na ²⁺ + e ⁻ (Second IE) First IE is lower and second IE is very higher, because removal of an electron from Na ⁺ is very difficult. (b) Follow Fajans' rule to predict covalent nature. (c) BCl ₃ has equilateral triangular shape leading to vector sum of polar bonds to zero. (c) The property of attracting electrons by an at atom of a molecule is called electronegativity. However, electron affinity is the amount of energy liberated when an electron is added to an isolated gaseous atom. (c) Na(11): $1s^2$, $2s^22p^6$, $3s^1$ It is an alkali metal. Alkali metal oxides are basic in nature. (c)	 370 371 372 373 374 375 376 377 378 379 379 	In case of isoelectronic species lonic radius $\propto \frac{1}{nuclear charge}$ Thus, the order of ionic radii of given ions is $0^{2-} > F^- > Na^+ > Mg^{2+} > Al^{3+}$ (a) $1s^2, 2s^2p^6, 3s^2 - In III transition e^-$ is to be removed from stable configuration (a) Atomic radius decreases along the period, increases down the group. (b) The size of isoelectronic decreases with increase in atomic number. (b) In K ₂ CrO ₄ , the oxidation state of Cr is +6. Therefore, Cr has the minimum radius in K ₂ CrO ₄ (d) B in BF ₃ has sp^2 -hybridization. (b) Coinage metals are transition metals but they cannot work as transition metal because they have completely filled <i>d</i> -orbital. Group 1B elements are called coinage metals (Cu, Ag, Au). Their general outer electronic configuration is $(n - 1)d^{10}ns^1$. (b) The ionisation energy of Tin (Sn) is less than that of lead (Pb). It is due to the poor sheilding of <i>d</i> - and <i>f</i> -electron in Pb, due to which it feels greater attraction from nucleus. (d) If the EN difference is 1.9, then bond is 50% ionic. The difference in electronegativity is 2.8, therefore, percentage ionic character due to EN difference of 2.8 is $\frac{2.8}{1.9} \times 50 = 73.6\%$ (b) In a period from left to right the electropositive nature of elements decreases because nuclear charge increases. Hence, magnesium (Mg) is the most electropositive element among these.
368	Ionisation energy decreases down the group. (b) KO ₂ is an ionic compound.	380	(a) F_3 Cl has 10 electrons on Cl atom. A superoctet molecule means for expanded octet on an atom.
369	(c) Oxygen cannot expand its octet due to absence of <i>d</i> -orbitals in its valence shell.	381	(d) IE decreases in a group and increases in a period. Thus, Rb has the lowest IE

382 (c) The outer electronic configuration = s^2p^1	395 (c) BCl ₃ has six electrons in outer shell of boron
Thus, valency = $2 + 1 = 3$	atom.
Therefore, the formula of the oxide is X_2O_3	396 (c)
Since, it is an oxide of III group element, its nature	Anions are larger in size than their parent atom.
is amphoteric	397 (b)
383 (c)	Bond order for $O_2 = 2$; $O_2^+ = 2.5$; $O_2^- = 1.5$, $O_2^{2-} = 1.5$
C_2 , N_2 and F_2 has no unpaired electron in their	1
molecular orbital configuration.	Thus bond length is $0_2^+ < 0_2 < 0_2^- < 0_2^{2-}$
384 (a)	398 (a)
Noble gases have fully filled valence shell	Atomic size increases as we move from top to
electronic configuration. Therefore, it represents	down in a group, therefore, the amount of energy
ns^2np^6 .	required for ejection of an electron from atom
385 (c)	decreases <i>i.e.</i> , ionisation energy decreases. Hence,
Ne, Ar, Kr, Xe and Rn are diamagnetic in nature.	the correct order of IE ₁ is
386 (d)	Li > Na > K > Cs
Sulphur belongs to VI group of Periodic Table	399 (d)
hence, it has maximum valency.	Unpaired electrons give rise to paramagnetis.
387 (b)	400 (a)
Dimerization occurs in carboxylic acids which	Bond order = $\frac{1}{2}$ [no. of bonding electron – no. of
indicates strong H-bonding.	-
388 (c)	antibonding electron]
Larger anion is polarized more (Fajans' rule).	402 (b)
389 (a)	SiO_2 possesses giant molecular structure due to
P_4O_{10} is	tetra valence and catenation nature of Si
O O	403 (a)
	NO has 15 electrons.
	404 (b) The bond length are :
0 = P, $0 = P = 0$	
	C - H < C = C < C - 0 < C - C 107 pm 134 pm 141 pm 154 pm
	405 (c)
Î.	Inspite of three polar bond, the lone pair of
Ö	electron on N atom decreases the dipole moment
390 (b)	of NF_3 than NH_3 .
Because of small atomic size and high nuclear	406 (b)
charge, oxygen has the highest electronegativity	Atomic radii decrease in a period from left to
among the given	right, hence, fluorine has a very less atomic radii
392 (c)	(covalent atomic radii =0.72Å). But inert gases
The electronic configuration of the element	
having atomic number 106 is	
$[\text{Rn}]_{86}, 7s^1, 5f^{14}, 6d^5$	fact, their calculated atomic radii is the van der
Since, the last electron enters in d -orbit, it is a d -	Waals' radii, which is found almost double to
block element. Its IUPAC name is unnilhexium	
(Unh)	neon (Ne) is about 1.60Å.
393 (b)	407 (a)
Larger cation favours ionic bonding (Fajan's rule).	• During ionisation, energy is supplied to atom in
394 (b)	order to take out electron from it. Energy of atom
Bond dissociation energy order:	increases when an electron is removed from
$Cl_2 > Br_2 > F_2 > I_2$	
	atom.
242.6 192.8 158.8 151.1 in kJ mol ^{-1}	atom. 408 (b) Only sulphur has <i>d</i> -orbitals.

409 (c)	427 (d)
It is a fact of VSPER theory.	Generally, <i>d</i> -block elements are called transition
410 (b)	elements as they contain inner partially filled <i>d</i> -
Both have one lone pair of electron.	subshell. Thus, their general electronic
411 (d)	configuration is $(n-1)d^{1-10}$, n^{1-2} .
These are characteristics of resonance.	428 (b)
412 (b)	Electron affinity decreases down the group, but
$K_4 Fe(CN)_6 \rightarrow 4K^+ + Fe(CN)_6^{4-}.$	'0' has small atomic size and $2p$ -orbital becomes
413 (a)	very compact and already has 6 electrons, hence,
Like gets dissolved in like.	there is a repulsive force among the already
414 (a)	present and added electrons. Some of the energy
These atomic numbers give the configuration	evolved, due to addition of electron, is used to
<i>ns²np⁵</i> which is of halogen group or VIIth group	reduce the repulsion. Hence, the E.A. of O is less
415 (c)	than S, so the order is $S > 0 > Se$.
In 0^{2-} effective nuclear charge is minimum due to	
more number of electrons and thus the size of 0^{2-}	BeO is basic oxide and reacts only with an acid to
is maximum.	form the salt while
416 (b)	ZnO , SnO_2 and Al_2O_3 are amphoteric oxides which
More directionally concentrated orbitals show	are react with acid and base both.
more overlapping.	430 (d)
417 (a)	Both C and N ⁺ have six electrons.
$E_1 < E_2$, because second IE is greater than first IE	431 (c)
418 (d)	The size of isoelectronic species decreases with
Halogens have highest electron affinity in the	increasing nuclear charge. Hence, the order of
Periodic Table and it decreases down the group.	ionic radii of N^3 , O^2 and F is as
Chlorine has highest electron affinity and fluorine	$N^3 > 0^2 > Fl$
has lower electron affinity than chlorine due to its	1.71 1.40 1.36
-	
small size and repulsion between electrons	432 (a)
present in it and added electron. The order of	$\mu = \sqrt{\mu_1^2 + \mu_2^2 + \mu_1 \mu_2 \cos \theta}$, if $\theta = 90^\circ \mu$ is
electron affinity is	maximum.
F < Cl > Br > I	433 (d)
419 (b)	More is electronegativity difference, more is ionic
Fluorine has low EA than chlorine because of	character.
smaller size of fluorine and compact 2 <i>p</i> -orbital	434 (c)
where interelectronic repulsion is more	On passing from left to right in a period, acidic
420 (c)	character of the normal oxides of the element
Carbon in CO_2 has <i>sp</i> -hybridization.	
421 (d)	goes on increasing with increases in
	electronegativity
0 has two lone pair of electrons.	435 (b)
422 (a)	Due to larger difference in electronegativity.
2nd IE_1 of alkali metals is abnormally higher.	436 (b)
423 (b)	Small cation has more polarizing power .
$K^+[C \equiv N]^-$; K^+ and CN^- ionic, C and N forms	437 (b)
covalent bonds .	Ionisation potential generally increases in a
425 (b)	period from left to right but $1E_1$ of N ₂ is greater
More is <i>s</i> -character, smaller is hybridized orbital,	than that of O_2 . It is due to the more stable (half-
more becomes tendency for overlapping, more is	filled orbitals) configurations of N.
hond energy, lesser is hond length	, _
bond energy, lesser is bond length.	438 (d)
bond energy, lesser is bond length. 426 (b) Alkali metals are always univalent.	· _

Page | 66

they contain inner partially filled *d*us, their general electronic on is $(n-1)d^{1-10}$, n^{1-2} . inity decreases down the group, but ll atomic size and 2*p*-orbital becomes ct and already has 6 electrons, hence, pulsive force among the already

$$N^3 > 0^2 > Fl$$

1.71 1.40 1.36

$$\mu = \sqrt{\mu_1^2 + \mu_2^2 + \mu_1 \mu_2 \cos \theta}, \text{ if } \theta = 90^\circ \mu \text{ is}$$

	from isolated gaseous atom. Its value increases in a period. Element having stable configuration have exceptionally high ionisation potential N has highest ionisation potential among	454	2.	Br ₂ is the only non-metal which is liquid at room temperature.
439	C, B, O and N (: N has $2p^3$ stable configuration).			Hg is metal which is liquid at room temperature.
	C^{4-} , N^{3-} and O^{2-} are isoelectronic species. The ionic radius of isoelectronic species decreases		4.	NH_3 is gas at room temperature.
	with increase the nuclear charge. Hence, the order of ionic radius is	455		ssesses sp^2 -hybridization.
	Species $C^{4-} > N^{3-} > O^{2-}$	457		
	Ionic radii(Å) 2.60 1.71 1.40	450	_	anion is more polarized.
440		458		ic radius in general increase moving ton to
441	Energy level order $2p > 2s$.			ic radius in general increase moving top to and further decreases moving left to right.
771	Bond angles decreases on moving down the group			correct order is :
	for similar compounds, <i>i. e.</i> , $NH_3 > PH_3 > AsH_3 >$			$Li^+ > Mg^{2+} > Be^{2+}$
	SbH ₃ .			0.68 Å 0.65 Å
442		459		
	The resultant dipole in regular tetrahedron is			n affinity increases across the period
440	zero.	461		
443	(D) Intermolecular H-bonding gives rise to an			electrons in its valence shell. Thus, to tability, it should have lost one electron.
	increase in b. p.	464		tability, it should have lost one electron.
444	-		• •	on potential is the energy required by an
	M.O. configuration of O_2 is			lose electron and their ionisation
	$\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p^2$,		potentia	al is high.
	$\pi 2p_x^2, \pi 2p_y^2, \pi^* 2p_x^1, \pi^* 2p_y^1$	465		
446				a smaller cation in these. Smaller is cation
	HCl and AlCl ₃ are covalent but give ions in	100		hydration energy.
447	solution.	466		$tCl_4]^{2-}$, PCl ₅ and BCl ₃ have sp^3 , dsp^2sp^3d
447	Characteristics of bond order concept.			hybridization respectively. Note that
448	-			zation of P in PCl ₅ is wrongly reported in
	Cations are always shorter than their parent		problen	n.
	atom, anion are always larger.	467		
449				i metals reactivity increases down the
450	O_2^- has one unpaired electron.			s electropositivity increases, but for
450			_	is F_2 is more reactive as moving down lar stability increases.
	The bond formation process is exothermic and thus resultant acquires lower energy level.	468		iai stability increases.
451				on energy generally increases from left to
	H_2O is sp^3 -hybridized; BeF ₂ is <i>sp</i> -hybridized.		right in	a period but ionisation energy of nitrogen
452	(d)		-	er than oxygen due to stable
	As the nuclear charge per electron is maximum in		-	guration. Hence, the order is as
450	P ⁵⁺ . Therefore, its size is smallest	100		C < O < N < F
453	(b) The physical and chemical properties of elements	469		are smaller in size than their parent
	are periodic functions of their electronics		atoms.	are smaller in size than then parent
	configuration. This is the correct statement.	470		

	The order of the ionic radii of the given species is		Bond order = $\frac{1}{2}$ [no. of bonding electrons – no. of
	$F^- < 0^{2-} < N^{3-}$		antibonding electrons].
. – .	or 1.36 1.40 1.71	483	(a)
471			π -bonding occurs only after σ -bond is formed.
	The ionisation potential decreases down the	484	(c)
	group (due to increases in size of atom) and increases in a period from left to right.		NaF is more ionic; F is smaller anion among all
	\therefore Out of the given choices Li > <i>K</i> > <i>Cs</i> is correct.		and thus, least polarized.
472	0	485	
	O ²⁻ , F ⁻ , Na ⁺ , Mg ²⁺ and Al ³⁺ are isoelectronic		The stability of carbonates increases with
	species and higher the nuclear charge, smaller the	487	increasing electropositive character of metal.
	size of isoelectronic species.	407	Molecular orbital configuration of,
473	(a)		$C_2^+ = \sigma 1 s^2, \sigma^* 1 s^2, \sigma 2 s^2, \sigma^* 2 s^2, \sigma 2 p_x^2, \pi 2 p_y^1$
	Due to larger difference in electronegativity .	488	
474		100	Stevenson's scale is not a scale of measuring
	$sp^{3}d$ -hybridisation leads to trigonal bipyramidal		electronegativity.
	geometry if no lone pair is present, <i>e</i> . <i>g</i> ., PCl ₅ ; in	489	3
	ClF_3 geometry is T shaped due to the presence of		An increase in <i>s</i> -character give rise to an increase
	two lone pair of electron. In XeF ₂ , geometry is linear due to the presence of three lone pair of		in bond strength.
	electrons.	490	
475			Ti ⁺ has 21 electrons in it. Rest all have 10
	Formation of solid lattice from oppositely charged	401	electrons.
	ionized gaseous atoms give rise to evolution of	491	
	lattice energy.		Size of isoelectronics decreases with increasing atomic number.
476	(d)	492	
	Due to H-bonding, $V_{ice} > V_{water}$.	172	M.O. configuration of O_2 :
477	(b) Outer shell electrons are referred as valence		$\sigma 1s^{2}, \sigma^{*} 1s^{2}, \sigma 2s^{2}, \sigma^{*} 2s^{2}, \sigma 2p_{x}^{2} \begin{bmatrix} \pi 2p_{y}^{2} \\ \pi 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi^{*} 2p_{y}^{1} \\ \pi^{*} 2p_{z}^{1} \end{bmatrix}$
450	electrons.		Molecular orbitals $\pi^* 2p$ gains electron when O_2^- is
478			formed from O_2 .
	IF ₅ is square pyramid (sp^3d^2 -hybridisation in I); PCl ₅ is trigonal bipyramid (sp^3d -hybridisation in	493	(a)
	P).		During the formation of cation, the size decreases
479	-	494	
	Operates in each gaseous molecule.		Follow text.
480		495	
	Dipole moment of $CH_4 = 0$.		Metallic character atomic size
481	(b)		$\frac{1}{\text{nuclear charge}}$ (for a period only)
	PCl_3 has sp^3 -hybrisation and possesses one lone		Metallic character decreases across a period from
	pair on P-atom and three bond pairs of electrons		left to right because atomic size decreases.
	3^{35} 3^{3p}		In a group from top to bottom, metallic nature
	$\mathbf{P}: (1) 1 1 1$	496	increases due to increase in atomic size.
	$(sp^3)^2$	170	Bond formation is always exothermic. Compounds
	$(sp^3)^1$ $(sp^3)^1$ $(sp^3)^1$		of sodium are ionic.
		498	
	3p of3p of3p ofClClCl		The bond angle of AX_3 type molecules with one
1.02			lone pair decreases down the gp due to
482	(b)		decreasing electronegativity of central atom

which causes lower repulsion between lone pairbond pair electrons.

500 (d)

These are characteristic of hydration.

501 (a)

Ionic radii $\propto \frac{1}{Z_{off}}$

 $Z_{eff} = Effective nuclear charge$ This Z_{eff} is calculated as follows

 $Z_{eff} = Z - screening constant (\sigma)$

The value of screening constant is based upon the number of electrons in valence shell as well as in penultimate shells.

503 **(d)**

Electron affinity is defined as "the energy released when an extra electron is added to neutral gaseous atom. The increasing order of electron affinity is

$$2s^{2}2p^{4} < 3s^{2}3p^{4} < 2s^{2}2p^{5} < 3s^{2}3p^{5}$$

 $0 < S < F < Cl$

General electron affinity decreases with the increase in the size of atom, since nuclear attraction decrease down a group. The value of electron affinity increase as we move along a period since the size of atoms decrease in a period. Electron affinity of O and F are less than S and Cl respectively due to very small size.

504 **(b)**

Anions are always larger than parent atom; cations are always lesser than parent atom.

505 **(b)**

The size of an anion is larger than its corresponding neutral atom and the size of cation is smaller than its corresponding neutral atom. Hence, the order of the size of iodine species is as $I^- > I > I^+$.

506 **(a)**

The stability of hydrides decreases down the gp, *i. e.*, from NH_3 to BiH_3 which can be observed from their bond dissociation enthalpy. The correct order is

 $\begin{array}{ll} \mathrm{NH}_3 < \mathrm{PH}_3 < \mathrm{AsH}_3 < \mathrm{SbH}_3 < \mathrm{BiH}_3 \\ \mathrm{Property} & \mathrm{NH}_3 \ \mathrm{PH}_3 \ \mathrm{AsH}_3 \ \mathrm{SbH}_3 \ \mathrm{BiH}_3 \\ \Delta_{\mathrm{diss}}H^-(E-H) \\ \mathrm{389} \ \mathrm{322} \ \mathrm{297} \ \mathrm{255} \ - \end{array}$

/kJ mol⁻¹ ³⁸ 507 **(b)**

$$R = 0 = H \cdots H = 0 = H$$

508 **(c)**

 σ

M.O. configuration of N_2^- :

$$1s^{2} \sigma^{*}1s^{2}, \sigma 2s^{2} \sigma^{*}2s^{2} \begin{bmatrix} \pi & 2p_{y}^{2} \\ \pi & 2p_{z}^{2} \end{bmatrix}, \sigma 2p_{x}^{2} \pi^{*}2p_{y}^{1}$$

$$B.0 = \frac{1}{2}[10 - 5] = 2.5$$

509 **(b)**

F is the most electronegative element which cannot loose electron to other so it exhibits only–1 state. Na is alkali metal which can loose only one electron so exhibits only +1 state.

510 **(c)**

 ${\rm IF}_5$ has sp^3d^2 -hybridization with one lone pair on I atom.

511 (c)

In general ionisation energy increases as we move from left to right in a period. It is due to the increase in effective nuclear charge. IE₁of Be and N is high due to stable configuration. Hence, the order is as follows F > N > C > Be > B

512 **(c)**

Notice configuration of N^+ , C^+ , O^+ and F^+ .

513 (a)

F has the highest electronegativity because of its smallest size

514 **(b)**

SO₂ has sp²-hybridization due to geometry.
515 (c) H -bonding order:

$$\cdots$$
 H – F > \cdots H – O > \cdots H – N

516 **(c)**

First electron affinity is energy releasing process.

517 **(d)**

The overlapping orbitals must possess half-filled nature with anti-spin electron.

518 **(b)**

Noble gases are in zero group however they possess eight electrons in their valence shell.

519 **(b)**

Electronegativity is the tendency to attract the shared pair of electron towards itself. It decreases down the group and increases in period.

Fluorine has highest electronegativity among all existing elements.

∴ Electronegativity of Cl is highest among given elements.

520 **(b)**

 E_1 for He⁺ = E_1 for $H \times Z^2$ (where Z = at.no. of He).

521	(h)	536	(h)
	Covalent compounds have lower m.p. and b.p.	550	Be $(1s^22s^2)$ because of the presence of fully filled
	than ionic one.		2 <i>s</i> -subshell has least tendency to take up an
522			electron. Hence, Be [–] is least stable
	Bonding molecular orbitals possess lower energy	538	
	levels than antibonding orbitals.		Both $HgCl_2$ and C_2H_2 are linear like CO_2 because
523	_		of <i>sp</i> -hybridization.
	Hybrid orbitals never form π -bond.	539	
524	(b)		SF ₄ has sp^3d -hybridization. Rest all have sp^3 -
	Element with atomic number 20 is metal (Ca); it		hybridization.
	will combine with non-metal.	540	(d)
525	(b)		The elements present in the earth's core are
	Ionisation energy of Ist group elements decreases		collectively called siderophiles. These are found in
	down the group because in groups from top to		their native state. These elements generally have
	bottom atomic size increase. Due to increase in		a low reactivity and exhibit an affinity to form
	atomic size, the nuclear attraction of outer		metallic bonds. <i>e.g</i> ., Pt, Ru, Pd, Ir, Os etc.
	electron is reduced. They easily removed from	542	
	valence orbital. So ionisation energy is reduced		The ionic radius increases down the group.
	from top to bottom in a group.	543	
526			Since, the <i>d</i> -orbital of the element is incompletely
	Both BF_4^- and NH_4^+ have sp^3 -hybridisation and	Г 4 4	filled, it is a <i>d</i> -block element
	therefore possess tetrahedral geometry. NE $\pm cm^3$ PCL $\pm cm^2$	544	
	$NF_3 : sp^3 BCl_3 : sp^2$ $BF_3 : sp^2 BrCl_3 : sp^3d$	545	$H_3O^+: sp^3; NO_3^-: sp^2$
	$BF_3 \cdot sp$ $BF_1 \cdot sp^3$ $BH_3 \cdot sp^3$	545	H is attached on N atom.
	$\operatorname{NH}_4^+ : sp^3 \operatorname{NO}_3^- : sp^2$	546	
527		510	IP_1 of $B > IP_1$ of Li ENC of boron is more than Li.
	Smaller the size of cation, more is ionic character,		Also IP_1 of $Li > IP_1$ of K because removal of
	more is attraction among ions.		electron in K occurs from 4 <i>s</i> .
528	_	547	
	In PCl ₃ and POCl ₃ , P atom is sp^3 -hybridized.		CsCl is ionic.
529	(b)	548	(a)
	NO_3^- has sp^2 -hybridization and possesses		Two like atoms involved in bonding can form only
	coplanar or equilateral triangular geometry.		two π -and one σ -bond within themselves because
531	(a)		π -bonds are formed by p -orbitals and only when
	${\rm H_20}$ shows high b.p. (inspite of lowest mol.wt.) on		σ -has already formed. Remember only three p -
	account of strong H-bonding.		orbitals exist.
532		549	
	+4 ionic state is not possible for lead with iodide		Intramolecular H-bonding in salicyl aldehyde
	because I [–] reduces Pb ⁴⁺ to Pb ²⁺ .		prevents its test with $\operatorname{FeCl}_3(aq)$.
533		550	
	Electronegativity and ionisation energy decreases	551	H-bonding is weakest bonding.
	from F to I.	331	ClO ₂ has 33 electrons, <i>i. e.</i> , one unpaired.
534	(a) BeCl ₂ has the highest melting point due to ionic	552	
	bond	552	Sodium and chlorine are in same period
535			a_{11} Na = 2, 8, 1
	According to valence bond theory, overlapping		$_{17}$ Cl = 2, 8, 7
	orbitals must possess half-filled nature as well as		Both have 3- shells, hence they both are placed in
	antispin electron.		3rd period of Periodic Table.
	-		

553 (b) Basic character of hydrides decreases down the	All the ions belong to same period thus for them cations will be smaller than anions. Now, O^{2-} and
gp.	F^- are isoelectronic and $r_n \propto \frac{1}{7}$
554 (a)	Thus, ionic radius of $0^{2^-}(Z = 8) > F^-(Z = 9)$.
The definition of bond order.	570 (a)
555 (d)	Due to the presence of lone pair on N atom.
In BeCl_2 , Be atom has incomplete octet.	571 (a)
556 (b) Due to H-bonding which is more in water than	Pauling's electronegativity values for elements
alcohol and not in ether.	are useful in predicting polarity of bonds in
558 (d)	molecules. 572 (c)
If the lattice energy < hydration energy, then only	Larger is anion, more is its polarization.
ionic compounds are soluble.	573 (d)
559 (c)	Fluorine has maximum reduction electrode
H-bonding in molecule gives rise to increase in its	potential $(E^{\circ}_{F/F^{-}}) = 2.87 \text{ V}$, hence, it is easily
b.p.	reduced into F^- and consequently F_2 is the best
560 (b) Since, e^- is to be removed from exactly half-filled	oxidising agent.
<i>p</i> -orbital	575 (d)
561 (d)	The metallic character is found in iodine as well as
At 25°C and 1 atm pressure bromine and mercury	in astatine (At). Note that metallic character
(Hg) are liquid. Chlorine (Cl) is gas and	increases down the group.
phosphorus (P) is solid. (m.p. of white	576 (a) Ionization energy increases along the period and
phosphorus=44°C)	decreases down the group.
562 (c)	577 (d)
Allene is $CH_2 = C = CH_2$.	These are the factors on which IP depends.
563 (c) Basic character of hydrides is $NH > PH$	578 (d)
Basic character of hydrides is $NH_3 > PH_3$. 564 (c)	Cl is more electronegative than Br.
(a) Nuclear charge and electron affinity both	579 (b)
increase in period and decrease in group.	Mg ²⁺ is smaller than Na ⁺ and thus, smaller is
(b) Ionisation energy and electron affinity both	cation more is hydration energy.
increase from left to right in a period and top to	580 (c) Electron affinity order for halogens is Cl > F >
bottom in a group.	Br > I.
(c) Atomic radius decreases from left to right in a	581 (d)
period and increases from top to bottom in a	The characteristic to be observed during removal
group whereas electron affinity increases from left to right in a period and decreases from top to	of II electron.
bottom in a group.	582 (a)
565 (a)	It is a concept.
Covalent radius are always smaller than crystal	583 (d)
radius as the former involves overlapping region.	Mullikan proposed M.O. theory.
566 (b)	584 (d) Proton (H ⁺) can only accept a lone pair from
Multiplicity in bonds decreases bond length.	donor atom.
567 (d)	585 (d)
These are factors on which effective nuclear	Bond order for He_2 is zero.
charge depends. 568 (a)	586 (a)
In a period, from left to right basic character of	According to Fajans' rule, polarization of anion is
	influenced by charge of cation, size of cation. More
569 (c)	is the charge on cation, more is polarization of
oxides decreases, thus Na ₂ O is most basic 569 (c)	is the charge on cation, more is polarization of

anion. compound to attract a pair of bonded electrons towards itself is known as electronegativity of the 587 (b) $CH_2 = CH_2$ has 1σ -and 1π -in between two sp^2 atom. hybridized carbon. Fluorine is most electronegative element because of smaller size and greater tendency to gain 588 (b) Follow Fajans' rule. electron. 606 (d) 589 (c) Stronger is metallic bonding (Fe has *d*-subshell), The trivalent ion having largest size is lanthanum. This is due to lanthanide contraction more is hardness. 590 (b) 607 (d) P atom has sp^3 -hybridization with one position It has 3σ -and 1π -bond. 591 (b) occupied by lone pair of electron. Half filled orbitals are more stable. 608 (b) Lower *IE*, more *EA* and high lattice energy are 592 (c) Atomic size decreases along the period and required conditions for ionic bonding. increases down the gp. 609 (c) 593 (d) Al_2O_3 behaves as an amphoteric oxide. $Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$ Anions are always larger in size than their parent $Al_2O_3 + 2NaOH \xrightarrow{\Delta} 2NaAlO_2 + H_2O$ atom. Cations are always smaller in size than their parent atom. 610 (a) 594 (a) H atom has 1s¹ configuration. Shielding effect is More is the dipole moment more is ionic nature. property of penultimate shell electrons. $\mu = \delta \times d$; higher is μ , more will be δ on the atom. 611 **(b)** 595 (c) $Mg \rightarrow Mg^+, E = 750 kJ$ Electronic configuration reveals that the *p*-orbital Remaining energy =1200-750=450kJ of the element is not complete. Therefore, it is a p-Energy needed to convert 1 mole of Mg⁺ to block element. Moreover, the atomic number of $Mg^{2+} = 1450$ the element is 33(As). Therefore, it is a metalloid. Number of moles Mg²⁺produced 596 (c) $=\frac{1}{1450} \times 450$ SF_6 has six S - F bonds. 598 (c) =0.31All physical and chemical properties of elements =31%are periodic function of atomic number-Modern Number of moles of Mg⁺produced = 1 - 0.31Periodic Law. =0.69599 (a) =69% s-orbitals always lead head on overlapping. 612 (b) 600 (b) $CCl_2 = CCl_2$ has sp^3 -hybridization. CCl_4 has sp^3 -Smaller is atom, more is energy needed to remove hybridization. electron, i.e., ionisation energy. Also removal of 613 (a) two electrons needs more energy. Both NH_4^+ and BF_4^- have sp^3 -hybridization. 601 (b) 614 (d) A reason for the given fact. O is more electronegative than C. 602 **(b)** 615 (d) Cs is metal and solid. SF₄ has sp^3d -hybridization with one lone pair; 603 (a) CF_4 has sp^3 -hybridization with no lone pair and Due to planar equilateral geometry of graphite. XeF₄ has sp^3d^2 -hybridization with two lone pairs. 604 (c) 616 (a) $2\text{Fe} + 3[0] \rightarrow \text{Fe}_2\text{O}_3(\text{rust}).$ H-bonding is weakest bonding. 605 (a) 617 (d) Electronegativity The tendency of an atom in a Cs^+ is biggest ion among these. F^- is smallest.

- 618 (c)
 - All are non-metals.

619 **(d)**

Dipole moment of CH₃OH is maximum in these .

621 **(a)**

A π -bond has a nodal plane passing through the two bonded nuclei, *i. e.*, molecular plane.

Nodal plane, i.e., molecular plane

\sim	
H V	
H H	

622 (d) Smaller is anion, lesser is its polarization. S^{2-} has the largest size and hence, has the lowest 628 (d) ionisation energy H atom attached on N, O, F develops hydrogen 625 (d) bonding molecule. 630 **(b)** These are the factors on which van der Waals' forces depend. CH_3OH shows H – bonding in liquid state. 626 (b) Removal of two electrons (one by one) from an atom requires energy = $IP_1 + IP_2$. 627 (a) 631 (b) IP_1 of Pb > IP_1 of Sn(an exception). 632 (d) Also atomic radius increases down the group, In s-block elements, electron enter into the nsdecreases along the period. orbitals. 640 (c) For atomic number $3=1s^2$, $2s^1$ It is head on overlapping and thus, forms more Atomic number $12 = 1s^2$, $2s^2 2p^6$, $3s^2$ stronger bond. 633 (b) 641 (c) Ionisation energy increases in a period from left O atom possesses two lone pair of electrons. to right. But IE_1 of Be is greater than B due to its 642 (a) stable configuration $(1s^2, 2s^2)$. Thermal stability of the hydrides decrease as we Hence, the order of decreasing go down the group in Periodic Table for group 15 IE_1 is C > Be > B > Li(N-family) 634 (d) $BiH_3 < SbH_3 < AsH_3 < PH_3 < NH_3$ $CH \equiv CH$; 3 for triple bonds and two for C - HLeast stable Most stable 255 391 M-H 247 322 bond. 635 (c) Bond-energy kImol⁻¹ Z = 2, 8, 8, 1. Because it would donate e^{-} more 643 (c) easily 636 (c) Benzene has 12σ - and 3π -bonds. 644 (c) Maximum covalence in most of the atoms (except SbCl₅²⁻ has sp^3d^2 and rest all has sp^3d -N, O, F) is given by the number of valency hybridisation. electrons. The paired s electrons are also get unpaired during excitation. 645 (b) 637 (a) Electron gain enthalpy of Cl is maximum. In N_2 , all electrons are paired. Thus, N_2^+ has one 647 (b) electron unpaired. One bonding molecular orbital and one 638 (d) antibonding. Bond length decreases with increase in s-648 (b) character. Ionisation energy is the amount of energy 639 **(b)** required to take out most loosely bonded electron Anions are always larger than their parent atom. from an isolated gaseous atom. In a group when

we move from top to bottom, ionisation energy decreases due to increase in size. In a period while moving from left to right ionisation energy increase due to increase in size. In a period while moving from left to right ionisation energy increase due to increase in size.

 \therefore Be > Mg > Ca (::It is the order of increasing ionisation energy when we move from top to bottom in group II A).

649 (c)

Generally electron affinity increases in a period and decreases in a group but due to smaller size and high electron density on fluorine atom, it experience high interelectronic repulsions. Thus, F⁻ion is less stable in comparison to Cl⁻ion. Hence, electron affinity is highest for chlorine. Its electronic configuration is

 $_{17}$ Cl = 1s², 2s²2p⁶, 3p², 3p⁵

650 (c)

Boron in $[BF_4]^-$ has regular tetrahedral geometry because of sp^3 -hybridization on boron atom.

651 (d)

The size of an species decreases with increasing nuclear charge because the attraction for the electrons increases. Thus, Al³⁺ is smaller in size

652 (c)

Coordinate bonding involves sharing of an electron pair provided by a donor atom to acceptor atom.

653 (c)

It reflects trends in physical and chemical properties of the elements

654 (d)

Fluorine is the most electronegative element in the Periodic Table so it never shows positive oxidation state.

655 (d)

It is the definition of electron affinity.

656 (c)

XeF₄ has sp^3d^2 -hybridized Xe atom having two lone pair of electrons and thus, octahedral 670 (a) geometry changes to square planar due to lone pair effect.

658 **(b)**

 $1 \text{ debye} = 10^{-18} \text{esu.}$

659 **(b)**

Smaller cation causes more polarization of anion. 660 **(b)**

Ionisation energy decreases down the group and increases along the period.

661 (b)

 $Li^{-}: 1s^{2}, 2s^{2}; Be^{-}: 1s^{2}, 2s^{2}, 2p^{1}; in Li, addition of$ electron has taken place in 2s orbital; in Be⁻, addition of electron has taken place in 2p orbital loosing its 2s completely filled configuration. EA_1 for Be is more positive than EA_1 for Li. Thus, Be⁻ is least stable.

662 (b)

It is the order of stability.

663 (a)

Small cation causes more polarization in anion. Also larger anions are easily polarized by a cation. More is polarization of anion, more is covalent character.

664 (d)

We know that ionisation potential gradually decreases on moving down the group while atomic size increases as we move down the group. Hence, larger the atomic size, smaller is ionisation potential.

665 (a)

 $1s^2$, $2s^2$, $2p^6$, $3s^1$ configuration represents the Na, because the atomic number of Na is 11. The first ionisation energy is less than second ionisation energy because IE₂ involves the removal of an electron from the stable configuration $(i.e., 1s^2, 2s^2, 2p^6)$

666 (d)

 $Be(OH)_2$ and $Zn(OH)_2$ are amphoteric in nature 667 (b)

Be has smallest size and thus, Be cation possesses more polarizing power.

668 (c)

No scope for addition in completely filled valence orbitals of inert gases.

669 (a)

As the *s*-character increases in hybrid orbitals, bond energy increases, size of the hybridized orbital decreases. *s*-characters in sp, sp^2 and sp^3 are 1/2,1/3,1/4 respectively.

Geometry is explained by taking an account of single bonds only. However, presence of double bond may distort bond angles, e.g., HCHO has sp^2 -hybridization but angle H – C – H is 116° and angle H - C - O is 122° due to double bond. In BF₃ (sp^2 -hybridization) each angle is of 120°.

671 (d)

 d^2sp^3 - leads to octahedral geometry.

```
672 (b)
```

The ionisation potential increases in a period on moving left to right while in a group it is decreases on moving from top to bottom. Hence, Be has maximum ionisation potential. 674 (a) Element F 0 N C 3.5 3.1 2.5 Electronegativity 4.0 ∴ Correct order of electronegativity F>0>N>C or F>N<0>C 675 (a) Halogen Cl_2 F₂ Br₂ I_2 Bond dissociation 158.8 242.6 192.8 151.1 Energy (kJ mol^1) The bond dissociation energy of F_2 is less than Cl_2 due to inter electronic repulsions present in small atom of fluorine. The order of bond energy is $Cl_2 > F_2 > Br_2 > I_2$ and Cl₂ has maximum bond energy. 676 **(b)** SF₄ has sp^3d -hybridized sulphur atom. 677 (a) A reason for given fact. 678 (c) It is experimental value. 679 (d) AgBr has higher lattice energy. 680 **(b)** The size of isoelectronic species increases with decrease in effective nuclear charge. 681 (b) O_2^{2-} has no unaired electron. 682 (c) Na⁺ and Cl⁻ are formed. 683 (d) The K_{sp} value of CuS is less ZnS and thus, ZnS is more soluble. Also sodium salts are highly soluble in water. 684 (b) These are isoelectronic species and their radii decreases with increasing their atomic number due to increasing effective nuclear charge (Z_{eff}) $(Z_{\rm eff}) = Z - \sigma$ where, Z_{eff} = effective nuclear charge, Z = atomic number and σ =screening constant. For F^-, O^{2-} and $N^{3-},$ the value of σ is constant due to equal number of electrons. So, order of Z_{eff} is $F^- < 0^{2-} > N^{3-}$

hence, order of radii

$$= \mathrm{F}^{-} < \mathrm{O}^{2-} < \mathrm{N}^{3-} \left(\mathrm{radii} \propto \frac{1}{\mathrm{Z}_{\mathrm{eff}}} \right).$$

```
685 (c)
```

Due to back bonding in BF_3 .

686 **(b)**

 CCl_4 involves two non-metals C and Cl and thus, bonding is covalent. CaH_2 is an ionic compound as it involves alkaline earth metal.

687 **(b)**

PF₅ has sp^3d hybridization (trigonal bipyramid); BrF₅ has sp^3d^2 hybridization (square pyramidal) 688 (d)

 XeF_2 (sp^3d with 3 lone pairs) and $CO_2(sp)$ are linear.

689 **(d)**

HF is least acidic due to the small size of fluorine 690 **(d)**

The element of II period show similar properties as the elements of III period, which are diagonally placed to them. This is known as diagonal relationship. Hence, Li shows diagonal relationship with Mg and Be shows diagonal relationship with Al.

IInd period

IIIrd period

691 **(c)**

In *o*-dichlorobenzene, $\alpha = 60^{\circ}$

$$\cdot \cos \alpha = + ve$$

$$\mu = \sqrt{\mu_1^2 + \mu_2^2 + 2\mu_1\mu_2 \cos \alpha}$$

692 **(d)**

Cl possesses 10 electrons in ClF_3 .

693 **(a)**

The ionisation potential increases from left to right in a period but the first ionisation potential of nitrogen is greater than oxygen due to halffilled stable configuration and ionisation potential of Be is greater than B due to completely filled *s*orbital. Hence, the order of ionisation potential is as

Element : B < Be < C < O < N IP (eV) : 8.3 9.3 11.2 13.6 14.5 694 (d) Mercury 695 (a)

Na – Cl. Both belongs to III period

696 **(d)**

Ionisation enthalpy increases along the period and decreases down the group

697 **(d)**

Ionisation energy order is B < C < 0 < N. 698 (a)

Acidic nature of oxide non-metallic nature of

element. Non-metallic nature decreases in the order Cl > S > P.

699 **(c)**

Boron (B), Si, Ge, As, Sb, Te and At are the metalloid elements. Bismuth (Bi) and tin (Sn) are metals while carbon (C) is non-metal.

700 (a)

Xe in XeOF₄ has sp^3d^2 -hybridization having one lone pair on Xe atom.

701 **(d)**

Fe is a transition element, thus exhibits variable oxidation states

702 **(b)**

 Cs^+ is largest cation and F^- is smallest anion.

703 **(d)**

Ionic radius $\propto \frac{1}{Z_{\text{eff}}}$

Since, P^{5+} has higher Z_{eff} as compared to P^{3+} , it has smaller ionic radii

704 **(d)**

Isomerism is arised due to directional nature of covalent bonding.

705 **(d)**

Ionisation potential is the amount of energy requires to remove an electron from an isolated gaseous atom. Since, on moving down the group, the size of atom increases, thus outer electron gets farther and farther away from the nucleus and hence, the less amount of energy is required to remove it. Thus, ionisation potential decreases and hence, Cs has lowest ionisation potential.

706 **(a)**

A decrease in *s*-character increases bond length. 707 **(b)**

Both possess $1s^2$, $2s^22p^6$, $3s^23p^6$ configuration. 708 (c)

Na⁺ is cation; Cl^- , PO_4^{3-} are anion.

709 (a)

Electronic configuration of element with atomic number 36, will be

 $=1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^24p^6$

As the last electron is present in *p*-subshell, hence the element will be placed in *p*-block.

710 **(c)**

Due to large electronegativity difference in C and

F atoms.

711 **(b)**

According to Hannay and Smith equation ∴ % ionic character

 $=16(x_A - x_B) + 3.5(x_A - x_B)^2$ Where, x_A and x_B are the electronegative of the

atoms *A* and *B* respectively.

:. % ionic charecter = $16(2) + 3.5(2)^2$ = 32 + 14 = 46%

712 **(b)** [Ne] $3s^2 3p^3$ $3s^2 3p^3$ **1**

> Elements having half-filled or fully-filled orbitals are more stable. Hence, much energy is required to remove an electron from the outermost orbit. So, [Ne] $3s^23p^3$ has highest ionisation energy.

713 **(d)**

Ionisation potential increases along the period.

714 **(b)**

Electron affinity is the energy change, when an electron is added. When 0^- changes into 0^{2-} the electron affinity is positive *i.e.*, change is endothermic. The reason is that 0^- repels the incoming electron due to similar charge, hence, it needs energy to accept the electron. Hence, electron affinity is positive.

715 **(a)**

Like atoms results in covalent bonding leading to the formation of non-polar bond, e. g., H - H or H_2 .

716 **(a)**

One of *s*-orbital +3 of *p*-orbital $= sp^3$.

717 **(b)**

Lower potential energy level imparts stability.

718 **(b)**

H-bonding in molecules gives rise to increase in b. p.

719 **(b)**

The jump in IP values exist in IP_5 and thus, removal of fifth electron occurs from inner shell. Thus, element contains four electrons in its valency shell.

720 **(a)**

The stability and bond angle order for hybrides in a group is

$$NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$$
.

721 **(d)**

Size of anions is larger than their parent atoms. Also more is ENC lesser is size.

	A share staristic of recommends
722 (c)	A characteristic of resonance.
The difference of electronegativity is more.	739 (c)
723 (c)	Cl is more electronegative than I.
Lattice energy of $BaSO_4$ is appreciable high and	740 (c)
predominates over hydration energy.	Due to sp^3 -hybridization.
725 (b)	741 (d)
Larger is bond order, lesser is bond length.	Bond energy for $C - C$, $N - N$, $H - H$ and $O - O$ are
726 (b)	: H - H > C - C > N - N > 0 - 0.
$o-,m-,p$ -derivatives has $\alpha = 60^{\circ}, 120^{\circ}$ and 180°	743 (d)
and thus, resultant vector has zero dipole moment	PCl ₅ has trigonal bipyramid geometry.
in <i>p</i> -derivative. Also dipole moment of <i>m</i> -	744 (b)
dichlorobenzene is more than toluene.	Dry ice is CO ₂ having C – O covalent bonds.
727 (d)	745 (c)
As the <i>s</i> character increases in hybridised	Polar solute are more soluble in polar solvents .
orbitals, its electronegativity increases.	746 (c)
sp sp^2 sp^3	Generally in a period, IE increases but nitrogen
<i>s</i> character 50% 33.3% 25%	due to the presence of half-filled <i>p</i> -subshell
728 (c)	(stable configuration) has higher IE as compared
Polarity in a molecule gives rise to an increase in	to its consecutive elements. Thus, the IE of
forces of attractions among molecules and thus,	nitrogen is 14.5
more becomes boiling point.	747 (a)
729 (a)	Zinc oxide is an amphoteric oxide as it reacts with
Ionisation energy increases with decrease in	both acid and alkali.
atomic size and decrease in shielding effect. Ten	$ZnO + 2HCI \rightarrow ZnCl_2 + H_2O$
d-electrons in Ga shield the nuclear charge less	$ZnO + 2NaOH \rightarrow Na_2ZnO_2 + H_2O$
effectively than the <i>s</i> and <i>p</i> electrons. Hence, the	sodium zincate
outer electron is held fairly strongly by the	Rest all (Na ₂ O, CaO and BaO) are basic oxides.
nucleus. Consequently, ionisation energy slightly	748 (a)
increases inspite of the increase in atomic size	Addition of electrons to an atom results an
from Al to Ga. Hence, Al (IE=577) and	increase in its size.
Ga(IE=578) have approximately equal ionisation	
Gal IE – 57 07 Have approximately equal joinsation	749 (a)
	749 (a) Water is an universal solvent.
potential (or ionisation energy).	Water is an universal solvent.
potential (or ionisation energy). 730 (b)	Water is an universal solvent. 750 (b)
potential (or ionisation energy).730 (b)Elements having six electrons in valency shell are	Water is an universal solvent. 750 (b) <i>sp</i> -hybridization leads to bond angle of 180°.
 potential (or ionisation energy). 730 (b) Elements having six electrons in valency shell are electronegative elements, <i>e. g.</i>, 0. 	Water is an universal solvent. 750 (b) <i>sp</i> -hybridization leads to bond angle of 180°. 751 (b)
 potential (or ionisation energy). 730 (b) Elements having six electrons in valency shell are electronegative elements, <i>e. g.</i>, 0. 731 (a) 	Water is an universal solvent. 750 (b) <i>sp</i> -hybridization leads to bond angle of 180°. 751 (b) CsF is ionic compound .
 potential (or ionisation energy). 730 (b) Elements having six electrons in valency shell are electronegative elements, <i>e. g.</i>, 0. 731 (a) BF₃(sp²), NO₂⁻(sp²), NH₂⁻(sp³) and H₂O(sp³). 	Water is an universal solvent. 750 (b) <i>sp</i> -hybridization leads to bond angle of 180°. 751 (b) CsF is ionic compound . 752 (a)
 potential (or ionisation energy). 730 (b) Elements having six electrons in valency shell are electronegative elements, <i>e. g.</i>, 0. 731 (a) BF₃(sp²), NO₂⁻(sp²), NH₂⁻(sp³) and H₂O(sp³). 732 (d) 	Water is an universal solvent. 750 (b) <i>sp</i> -hybridization leads to bond angle of 180°. 751 (b) CsF is ionic compound . 752 (a) Follow Fajan's rule.
 potential (or ionisation energy). 730 (b) Elements having six electrons in valency shell are electronegative elements, <i>e. g.</i>, 0. 731 (a) BF₃(sp²), NO₂⁻(sp²), NH₂⁻(sp³) and H₂O(sp³). 732 (d) Effective nuclear charge increases in this order. 	Water is an universal solvent. 750 (b) <i>sp</i> -hybridization leads to bond angle of 180°. 751 (b) CsF is ionic compound . 752 (a) Follow Fajan's rule. 753 (b)
 potential (or ionisation energy). 730 (b) Elements having six electrons in valency shell are electronegative elements, <i>e. g.</i>, 0. 731 (a) BF₃(sp²), NO₂⁻(sp²), NH₂⁻(sp³) and H₂O(sp³). 732 (d) Effective nuclear charge increases in this order. 733 (d) 	Water is an universal solvent. 750 (b) <i>sp</i> -hybridization leads to bond angle of 180°. 751 (b) CsF is ionic compound . 752 (a) Follow Fajan's rule. 753 (b) 37 is atomic number of Rb the electropositive
 potential (or ionisation energy). 730 (b) Elements having six electrons in valency shell are electronegative elements, <i>e. g.</i>, 0. 731 (a) BF₃(sp²), NO₂⁻(sp²), NH₂⁻(sp³) and H₂O(sp³). 732 (d) Effective nuclear charge increases in this order. 733 (d) C₂H₂ is a linear molecule with <i>sp</i>-hybridization. 	Water is an universal solvent. 750 (b) sp-hybridization leads to bond angle of 180°. 751 (b) CsF is ionic compound . 752 (a) Follow Fajan's rule. 753 (b) 37 is atomic number of Rb the electropositive element and 53 is atomic number of iodine (the
 potential (or ionisation energy). 730 (b) Elements having six electrons in valency shell are electronegative elements, <i>e. g.</i>, 0. 731 (a) BF₃(sp²), NO₂⁻(sp²), NH₂⁻(sp³) and H₂O(sp³). 732 (d) Effective nuclear charge increases in this order. 733 (d) C₂H₂ is a linear molecule with <i>sp</i>-hybridization. 	 Water is an universal solvent. 750 (b) sp-hybridization leads to bond angle of 180°. 751 (b) CsF is ionic compound . 752 (a) Follow Fajan's rule. 753 (b) 37 is atomic number of Rb the electropositive element and 53 is atomic number of iodine (the electronegative element).
 potential (or ionisation energy). 730 (b) Elements having six electrons in valency shell are electronegative elements, <i>e. g.</i>, 0. 731 (a) BF₃(sp²), NO₂⁻(sp²), NH₂⁻(sp³) and H₂O(sp³). 732 (d) Effective nuclear charge increases in this order. 733 (d) C₂H₂ is a linear molecule with <i>sp</i>-hybridization. 734 (b) Double bond involves the sharing of two electron 	 Water is an universal solvent. 750 (b) sp-hybridization leads to bond angle of 180°. 751 (b) CsF is ionic compound . 752 (a) Follow Fajan's rule. 753 (b) 37 is atomic number of Rb the electropositive element and 53 is atomic number of iodine (the electronegative element). 754 (a)
 potential (or ionisation energy). 730 (b) Elements having six electrons in valency shell are electronegative elements, <i>e. g.</i>, 0. 731 (a) BF₃(sp²), NO₂⁻(sp²), NH₂⁻(sp³) and H₂O(sp³). 732 (d) Effective nuclear charge increases in this order. 733 (d) C₂H₂ is a linear molecule with <i>sp</i>-hybridization. 734 (b) Double bond involves the sharing of two electron pairs or four electrons . 	Water is an universal solvent.750(b) sp -hybridization leads to bond angle of 180°.751(b) CsF is ionic compound .752(a) Follow Fajan's rule.753(b) 37 is atomic number of Rb the electropositive element and 53 is atomic number of iodine (the electronegative element).754(a) S atom in SF_6 is sp^3d^2 -hybridized state and shows
 potential (or ionisation energy). 730 (b) Elements having six electrons in valency shell are electronegative elements, <i>e. g.</i>, 0. 731 (a) BF₃(sp²), NO₂⁻(sp²), NH₂⁻(sp³) and H₂O(sp³). 732 (d) Effective nuclear charge increases in this order. 733 (d) C₂H₂ is a linear molecule with <i>sp</i>-hybridization. 734 (b) Double bond involves the sharing of two electron pairs or four electrons . 	Water is an universal solvent.750(b) sp -hybridization leads to bond angle of 180°.751(b)CsF is ionic compound .752(a)Follow Fajan's rule.753(b)37 is atomic number of Rb the electropositive element and 53 is atomic number of iodine (the electronegative element).754(a)S atom in SF ₆ is sp^3d^2 -hybridized state and shows octahedral shape.
 potential (or ionisation energy). 730 (b) Elements having six electrons in valency shell are electronegative elements, <i>e. g.</i>, 0. 731 (a) BF₃(sp²), NO₂⁻(sp²), NH₂⁻(sp³) and H₂O(sp³). 732 (d) Effective nuclear charge increases in this order. 733 (d) C₂H₂ is a linear molecule with <i>sp</i>-hybridization. 734 (b) Double bond involves the sharing of two electron pairs or four electrons . 736 (c) Multiplicity of bonds gives higher bond energy. 	Water is an universal solvent.750(b) sp-hybridization leads to bond angle of 180°.751(b) CsF is ionic compound .752(a) Follow Fajan's rule.753(b) 37 is atomic number of Rb the electropositive element and 53 is atomic number of iodine (the electronegative element).754(a) S atom in SF ₆ is sp^3d^2 -hybridized state and shows octahedral shape.755(a)
 potential (or ionisation energy). 730 (b) Elements having six electrons in valency shell are electronegative elements, <i>e. g.</i>, 0. 731 (a) BF₃(sp²), NO₂⁻(sp²), NH₂⁻(sp³) and H₂O(sp³). 732 (d) Effective nuclear charge increases in this order. 733 (d) C₂H₂ is a linear molecule with <i>sp</i>-hybridization. 734 (b) Double bond involves the sharing of two electron pairs or four electrons . 736 (c) Multiplicity of bonds gives higher bond energy. 	Water is an universal solvent.750(b) sp -hybridization leads to bond angle of 180°.751(b) CsF is ionic compound .752(a) Follow Fajan's rule.753(b) 37 is atomic number of Rb the electropositive element and 53 is atomic number of iodine (the electronegative element).754(a) S atom in SF ₆ is sp^3d^2 -hybridized state and shows octahedral shape.755(a) Except NO ⁻ (16 electrons), rest all have 14
 potential (or ionisation energy). 730 (b) Elements having six electrons in valency shell are electronegative elements, <i>e. g.</i>, 0. 731 (a) BF₃(sp²), NO₂⁻(sp²), NH₂⁻(sp³) and H₂O(sp³). 732 (d) Effective nuclear charge increases in this order. 733 (d) C₂H₂ is a linear molecule with <i>sp</i>-hybridization. 734 (b) Double bond involves the sharing of two electron pairs or four electrons . 736 (c) Multiplicity of bonds gives higher bond energy. 737 (a) Inert pair effect is not noticed for elements having 	Water is an universal solvent. 750 (b) sp-hybridization leads to bond angle of 180°. 751 (b) CsF is ionic compound . 752 (a) Follow Fajan's rule. 753 (b) 37 is atomic number of Rb the electropositive element and 53 is atomic number of iodine (the electronegative element). 754 (a) S atom in SF ₆ is sp^3d^2 -hybridized state and shows octahedral shape. 755 (a) Except NO ⁻ (16 electrons), rest all have 14 electrons.
 potential (or ionisation energy). 730 (b) Elements having six electrons in valency shell are electronegative elements, <i>e. g.</i>, 0. 731 (a) BF₃(sp²), NO₂⁻(sp²), NH₂⁻(sp³) and H₂O(sp³). 732 (d) Effective nuclear charge increases in this order. 733 (d) C₂H₂ is a linear molecule with <i>sp</i>-hybridization. 734 (b) Double bond involves the sharing of two electron pairs or four electrons . 736 (c) Multiplicity of bonds gives higher bond energy. 	Water is an universal solvent. 750 (b) sp-hybridization leads to bond angle of 180°. 751 (b) CsF is ionic compound . 752 (a) Follow Fajan's rule. 753 (b) 37 is atomic number of Rb the electropositive element and 53 is atomic number of iodine (the electronegative element). 754 (a) S atom in SF ₆ is sp^3d^2 -hybridized state and shows octahedral shape. 755 (a) Except NO ⁻ (16 electrons), rest all have 14

757 (a) Molecular orbital configuration of, $O_2^{2^-} = \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma^2 2p^2, \pi 2p_x^2, \pi 2p_y^2, \pi^* 2p_y^2$ 758 (c) Cl atom has 17 electrons, Cl ⁻ ion has 18 electrons. 759 (d) ClF ₃ has sp^3d -hybridization with two lone pair of electron on Cl. 760 (a) The ionisation energy values for valence electrons are comparable to remove electrons from inner shell very high amount of energy is needed. In the given values there is a biggest jump between IE ₄ and IE ₅ . Hence, there are four valence electrons for the atom <i>X</i> . 761 (c) Hydrogen bonding is responsible for their solubility. 762 (a) The tendency to show lower ionic state increases down the group due to inert pair effect. 763 (d) Each has 18 electrons. 764 (a) Each possesses 18 electrons. 765 (b) The correct order of electron gain enthalpy (electron affinity) is $0 < S < E < C$	3.61 In eV 766 (d) CS ₂ is linear having zero dipole moment. 767 (c) Electronegativity increases in a period from left to right and decreases in a group on moving downwards 768 (d) Electronic configuration of Cu is $1s^2, 2s^22p^6, 3s^23p^6, 4s^1, 3d^{10}$ and electronic configuration of Cu ²⁺ is $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^9$. Hence, the given configuration represents metallic cation. 769 (a) M.O. configuration of 0^+_2 is: $\sigma 1s^2\sigma^*1s^2, \sigma 2s^2\sigma^*2s^2\sigma 2p^2, \pi 2p_y^2\pi 2p_y^2\pi^*2p_x^1$ Bond order of $0^+_2 = \frac{1}{2}[6-1] = \frac{5}{2}$ M.O. configuration of N ⁺ ₂ is: $\sigma 1s^2\sigma^*1s^2, \sigma 2s^2\sigma^*2s^2, \pi 2p_y^2\pi 2p_y^2\sigma 2p^1$ Bond order of $N^+_2 = \frac{1}{2}[5-0] = \frac{5}{2}$ 770 (a) SF ₄ has sp^3d^2 -hybridization and see-saw geometry.
-	geometry.

CHEMISTRY

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

7

	Statement 1:	Manganese has a less favourable electron affinity than its neighbours in either side
2	Statement 2:	The magnitude of an element's electron affinity depends on the element's valence shell electrons configuration
	Statement 1:	The electron attachment enthalpy of fluorine is more negative than that of chlorine
3	Statement 2:	All alkaline earth and noble gas elements have positive value of electron attachment enthalpies
	Statement 1:	Atomic size of silver is almost equal to that of gold.
	Statement 2:	<i>d</i> -subshell has low penetration power and produce poor shielding.
4		
	Statement 1:	In any period, the radius of the noble gas is lowest
	Statement 2:	He has the highest IE in the Periodic Table
5		
	Statement 1:	First ionization energy for nitrogen is lower than oxygen.
	Statement 2:	Across a period effective nuclear charge decreases.
6		
	Statement 1:	The first ionization energy of Be is greater than B.
	Statement 2:	2p- orbitals have lower energy than $2s$ - orbitals .

Page | 1

	Statement 1:	Known elements may contain as many as 32 electrons in an energy level but only <i>s</i> and p sublevel electrons are considered for the octet rule.
	Statement 2:	For any atom, electrons present in <i>s</i> - and <i>p</i> - subshells assume greater stability.
8		
	Statement 1:	Plutonium among the transuranic elements is the longest lived element.
	Statement 2:	Plutonium is not radioactive.
9		
	Statement 1:	Sulphur atom has higher electron affinity than oxygen.
	Statement 2:	Oxygen is more electronegative than sulphur, that's why can hold electron better.
10		
	Statement 1:	Nobel gases have large positive electron gain enthalpy.
	Statement 2:	Electron has the enter the next higher principal quantum level.
11		
	Statement 1:	Shielding effect increases as we go down the group
	Statement 2:	More is the electrons in the penultimate shell, more is shielding
12		
	Statement 1:	Isoelectronic species are having same number of electrons but different radii.
	Statement 2:	Higher the charge, smaller the ion.
13		
	Statement 1:	Ionisation energy of nitrogen (7) is more than that of oxygen (8)
	Statement 2:	Half-filled <i>p</i> -orbitals in nitrogen $(2p^3)$ are more stable

CHEMISTRY

: ANSWER KEY :							
1)	b	2)	d	3)	b	4)	d
5)	d	6)	С	7)	b	8)	С
9)	b	10)	а	11)	а	12)	С
13)	а						

CHEMISTRY

	: HINTS AND SOLUTIONS :								
1	(b) $_{25}Mn = 3d^5, 4s^2; _{24}Cr = 3d^5, 4s^1; _{26}Fe$ $= 3d^6, 4s^2$		electrons are in the highest energy level in the atom and are the electrons involved in the chemical reactions.						
	Electron affinity of an element depends upon electronic configuration	8	(c) ³⁸ ₉₄ Pu has longest half-life period. It is used in breeder reactor as a fissionable nucleides and break up by slow neutrons and from fission product. It is a radioactive element.						
2	(d) All alkaline earth metals and noble gases have positive values of electron attachment enthalpies								
	as they have ns^2 and ns^2np^6 (fully-filled) electronic configuration	9	(b) Sulphur valence shell is less dense than oxygen.						
	Cl has more electron affinity than F because the more compact electronic configuration in F imparts greater electron repulsion to the incoming electron	10	(a) Noble gases have large positive electron gain enthalpy because the electron has to enter the next high principle quantam level leading to a very unstable electronic configuration.						
3	(b) Atomic size of silver is almost equal to that of gold due to lanthanide contraction.	11	(a) The phenomenon in which the penultimate shell, ie, $(n - 1)$ electrons act as shield in between nucleus and valence shell electrons thereby reducing the effective nuclear charge is known as shielding effect						
4	(d) Statement I is incorrect as in any period, the radius of the noble gas is largest and not the lowest								
5	(d) The ionization energy of N (<i>VA</i>) is more than O VI A because half filled and completely filled orbitals are more stable. Across a period effective nuclear charge increases with increase in atomic number	12	(c) Charge is not defined as positive or negative [Isoelectronic species having higher the negative charge, larger the size, higher the positive charge smaller the size].						
	and atomic size in atomic number and atomic size decreases.	13	(a) Symmetrical configuration (half-filled) is stable. Oxygen also gains half-filled configuration by						
6	(c) The lower IE ₁ of <i>B</i> than that of Be is because in boron $(1s^22s^22P^1)$ electron is to be removed from 2 <i>P</i> which is easy, while in Be $(1s^22s^2)$ electron is to be removed from 2 <i>s</i> -which is difficult.		losing an electron						
7	(b) Electrons in <i>d</i> and <i>f</i> sublevels can never be in the outer level of a neutral atom. The <i>s</i> -and <i>p</i> -								