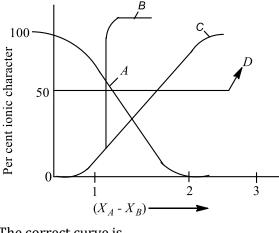
CHEMICAL BONDING AND MOLECULAR STRUCTURE

CHEMISTRY

	Single Correct A	Answer Type	
1.	The hybrid state of S in SO_3 is similar to that of		
	a) $C in C_2 H_2$ b) $C in C_2 H_4$	c) C in CH ₄	d) C in CO ₂
2.	The hydration energy of Mg^{2+} is larger than that of:		
	a) Al ³⁺ b) Na ⁺	c) Be ²⁺	d) None of these
3.	Number of lone pair (s) in XeOF ₄ is/are		
	a) 0 b) 1	c) 2	d) 3
4.	Van der Waals' forces between molecules depend up	oon:	
	a) Number of electrons b) Charge on nucleus	c) Radius of atoms	d) All of these
5.	XeF ₆ is:	^	X
	a) Octahedral		
	b) Pentagonal pyramidal		5
	c) Planar		
	d) tetrahedral		
6.	The bond order in NO is 2.5 while that in NO^+ is 3. V	Which of the following sta	tements is true for these two
	species?		
	a) Bond length in NO ⁺ is greater than in NO		
	b) Bond length in NO is greater than in NO ⁺		
	c) Bond length in NO ⁺ is equal to than in NO		
	d) Bond length is unpredictable		
7.	An atom with atomic number 20 is most likely to con	mbine chemically with the	atom whose atomic number
	is:		
	a) 11 b) 16	c) 18	d) 10
8.	Which has the largest distance between the carbon h	nydrogen atom?	
	a) Ethane b) Ethene	c) Ethyne	d) Benzene
9.	Length of hydrogen bond ranges from 2.5Å to:		
	a) 3.0 Å b) 2.75 Å	c) 2.6 Å	d) 3.2 Å
10.	If H – X bond length is 2.00 Å and H – X bond has di	ipole moment 5.12×10^{-3}	30 C – m,
	the percentage of ionic character in the molecule wil		
	a) 10% b) 16%	c) 18%	d) 20%
11.	Which molecule is planar?	-	-
	a) NH ₃ b) CH_4	c) C ₂ H ₄	d) SiCl ₄
12.	From the molecular orbital theory, one can show that		
	a) 2 b) 1	c) 3	d) 4
13.	Two ice cubes are pressed over each other until they	-	Which one of the following
C	forces dominates for holding them together?		
	a) Dipole-dipole interaction	b) Van der Waals' forces	
	c) Hydrogen bond formation	d) Covalent attraction	
14.	Maximum number of covalent bonds between two li	•	
	a) Three b) Two	c) Four	d) One
15.	When sodium and chlorine react, energy is:	-	-
	a) Released and ionic bond is formed		
	b) Released and covalent bond is formed		
	c) Absorbed and covalent bond is formed		
	· · · · · ·		

4.6	d) Absorbed and ionic bo			
16.		umber of hydrogen bonds i		
. –	a) 1	b) 2	c) 3	d) 4
17.		st ionisation energy among		N . 2 . 2 . 5
	a) $1s^2$, $2s^22p^3$	b) $1s^2$, $2s^22p^6$, $3s^1$	c) $1s^2$, $2s^22p^6$	d) $1s^2$, $2s^22p^5$
18.	Bond energies in NO, NO ⁺			
	a) $NO^- > NO > NO^+$	b) $NO > NO^- > NO^+$	c) $NO^+ > NO > NO^-$	•
19.		present in which of the follo	- ,	
	a) SF ₄	b) XeF ₄	c) SF ₆	d) CF ₄
20.	-	two hybrid orbitals is 105°.	The percentage of <i>s</i> -chara	cter of hybrid orbital is
	between			D 44 4004
0.1	a) 50 – 55%	b) 9 – 12%	c) 22 – 23%	d) 11 – 12%
21.	Which is electron deficier	-		
22	a) C_2H_4	b) B_2H_6	c) C ₂ H ₆	d) NaBH ₄
ΖΖ.	CCl_4 is insoluble in water			\sim
	a) CCl_4 is non-polar and v	-	^	×.
	b) Water is non-polar andc) Water and CCl₄ both and			
	d) None of the above	e pola		
23		not correct regarding the p	roperties of ionic compour	nde?
23.	_	high metling and boiling po		
		in aqueous medium is very		
		eir molten and aqueous sol		ricity
	d) They are highly soluble			
24.	, , , , , , , , , , , , , , , , , , , ,	pi (π) bonds present in be	nzene respectively are	
	a) 12, 6	b) 6, 6	c) 6, 12	d) 12, 3
25.	Which of the following is	-		
	a) BF ₄	b) NH ₄	c) CO_3^{2-}	d) SO ₄ ²⁻
26.	In PCl ₅ molecule, P is:		-	-
	a) <i>sp</i> ³ -hybridized	b) <i>dsp</i> ² -hybridized	c) <i>ds³p</i> -hybridized	d) <i>sp</i> ³ <i>d</i> -hybridized
27.	The bond angle and % of	d-character in SF ₆ are		
	a) 120°, 20%	b) 90°, 33%	c) 109°, 25%	d) 90°, 25%
28.	Linear combination of tw	o hybridized orbitals, belor	iging to two atoms and eac	h having one electron leads
	to:			
	a) Sigma-bond			
	b) Double bond	,		
	c) Coordinate covalent bo	ond		
20	d) Pi-bond			
29.		carbon atoms are joined by		
	a) Three σ -and three π -bo b) Two σ - and one π -bond			
	c) Two σ -and two π -bond			
5	d) Three π -bonds only	15		
30	Geometry of SiO_4^{4-} anion	is		
50.	a) Tetrahedral	b) Trigonal	c) Trihedral	d) Pentagonal
31.	The carbon atom in graph		e, million un	a, i ontagonar
	a) sp^2 -hybridized	b) <i>sp</i> ³ -hybridized	c) <i>sp</i> -hybridized	d) None of these
32.		one of the following anion		,
	a) BF ₆ ^{3–}	b) BH ₄	c) $B(OH)_{4}^{-}$	d) BO_2^-
33.	2 0	$d F^-$ are about 1.34 Å each,		
			-	

should be respectively: a) 1.34 and 1.34 Å b) 2.31 and 0.64 Å c) 0.64 and 2.31 Å d) 2.31 and 1.34 Å 34. If *Z*-axis is the molecular axis, then π -molecular orbitals are formed by the overlap of b) $p_x + p_y$ a) $s + p_z$ c) $p_z + p_z$ d) $p_x + p_x$ 35. Which one is the weakest bond? c) Covalent d) Metallic a) Hydrogen b) Ionic 36. The total number of valency electrons for PO_4^{3-} ion is: a) 32 b) 16 d) 30 c) 28 37. The ratio of σ and π -bonds in benzene is: a) 2 b) 6 c) 4 d) 8 38. The geometry of PF₅ molecule is: a) Planar b) Square planar c) Trigonal bipyramidal d) Tetrahedra 39. Which one of the following linear structure? $(I)I_{3}^{-}$ $(II)NO_{2}^{-}$ $(III)I_3^+$ $(IV)SO_2$ $(V)N_3^$ d) All of these a) I, II and III b) I and V c) II, III and IV 40. According to MO theory, which of the following lists ranks the nitrogen species in terms of increasing bond order? b) $N_2^- < N_2 < N_2^{2-}$ c) $N_2^{2-} < N_2^{-}$ d) $N_2 < N_2^{2-} < N_2^{--}$ a) $N_2^- < N_2^{2-} < N_2$ 41. The equilateral triangle shape has: c) *sp*³-hybridization d) sp^3d -hybridization b) sp^2 -hybridization a) *sp*-hybridization 42. Which of the following has fractional bond order? b) 0^{2-}_{2-} a) 0^{2+}_{2+} d) H_{2}^{-} 43. For which of the following hybridization the bond angle is maximum? b) *sp* a) sp^2 c) sp^3 d) dsp^2 44. Experiment shows that H₂O has a dipole moment whereas, CO₂ has not. Point out the structures which best illustrate these facts: H = O = C = O, $\bigwedge_{H = H}^{O} = C = O$, $\bigwedge_{H = H}^{O} = O$, $\bigcap_{H = H}^{O} = O$, O = Ha) 0=C=0, H-O-H 45. In TeCl₄, the central atom tellurium involves b) $sp^3 d$ hybridization c) $sp^3 d^2$ hybridisation d) dsp^2 hybridisation a) sp^3 hybridisation 46. Stability of hydrides generally increases with: a) Increase in bond angle b) Decrease in bond angle c) Decrease in resonance d) None of these 47. Which of the following is isoelectronic with CO_2 ? a) NO_{2} b) NO c) N_20 d) N_2O_4 48. Which can be described as a molecule with residual bonding capacity? a) N_2 b) CH₄ c) NaCl d) $BeCl_2$ 49. Lattice energy of an ionic compound depends upon a) Charge on the ion and size of the ion b) Packing of ions only c) Size of the ion only d) Charge on the ion only 50. Identify the correct statement from below, concerning the structure of $CH_2 = C = CH_2$ b) One of the three carbon atoms is in an-sp³hybridised state a) The molecule is planar The molecule is non - planar with the two – CH_2d) All the carbon atoms are *sp*-hybridized groups being in planes perpendicular to each


other 51. (i) H - C - H angle in CH_4 (ii) Cl - B - Cl angle in BCl_3 (iii) F - I - F angle in IF_7 in a plane (iv) I - I - I angle in I_3^- Increasing order of above bond angles is b) (ii) < (i) < (iii) < (iv) a) (i) < (ii) < (iii) < (iv) c) (iii) < (i) < (ii) < (iv) d) (iv) < (ii) < (i) < (iii) 52. Among the following elements, the most electronegative is: a) Oxygen b) Chlorine c) Nitrogen d) Fluorine 53. Metallic bonds do not play a role in: a) Brass b) Copper c) Germanium d) Zinc 54. Which *p*-orbitals overlapping would give the strongest bond? a) b) (c) 55. H_2O boils at higher temperature than H_2S because it is capable of forming: c) Hydrogen bonds a) Ionic bonds b) Covalent bonds d) Metallic bonds 56. When two atomic orbitals combine, they form: a) One molecular orbitals b) Two molecular orbitals c) Two bonding molecular orbitals d) Two antibonding molecular orbitals 57. The correct increasing covalent nature is: b) $BeCl_2 < NaCl < LiCl$ c) $BeCl_2 < LiCl < NaCl$ a) NaCl < LiCl < BeCl₂ d) LiCl < NaCl < BeCl₂ 58. IP₁ and IP₂ of Mg are 178 and 348 kcal mol⁻¹. The energy required for the reaction, $Mg \rightarrow Mg^{2+} + 2e^{-}$ is: a) +170 kcal +526 kcal c) -170 kcal d) -526 kcal b) 59. The electronic configuration $(\sigma_{1s})^2 (\overset{*}{\sigma}_{1s})^2 (\sigma_{2s})^2 (\sigma_{2s})^2 (\sigma_{2p_x})^2$ $(\pi 2p_y)^2(\pi 2p_z)^2(\pi 2p_y)^2(\pi 2p_y)^2(\pi 2p_z)^1$ can be assigned to b) 0₂+ d) 0_2^{2-} c) 0₂ a) 0_2 60. Some of the properties of the two species, NO_3^- and H_3O^+ are described below. Which one of them is correct? a) Dissimilar in hybridization for the central atom with different structure b) Isostructural with same hybridization for the central atom c) Isostructural with different hybridization for the central atom d) Similar is hybridization for the central atom with different structure 61. 6,6 a) 6, 6 b) 6, 6 c) 6, 6 d) 6, 6 62. Greater the dipole moment: a) Greater is the ionic nature

	b) Lesser the polarity			
	c) Smaller the ionic natur	e		
	d) None of these			
63.	H–B–H bond angle in BH			
	a) 180°	b) 120°	c) 109°	d) 90°
64.	Which of the following mo	olecular orbitals has two no	odal planes?	
	a) $\sigma 2p_x$	b) $\pi 2p_y$	c) $\pi^* 2p_y$	d) $\sigma^* 2p_x$
65.	The common feature amo	ng the species CN ⁻ , CO and	NO ⁺ are:	
	isoelectronic	weak field ligands	c) Bond order two and π -acceptors	d) Isoelectronic and weak field ligands
66.	Hydrogen bonding is max	imum in		
	a) C ₂ H ₅ OH	b) CH ₃ OCH ₃	c) $(CH_3)_2 C = 0$	d) CH ₃ CHO
67.	The O_H bond distance i		0	
	a) 1.0Å	b) 1.33 Å	c) 0.96 Å	d) 1.45 Å
68.	O_2^{2+} has a bond order of			21
	a) 1	b) 2	c) 3	d) 4
69.	-	ng molecules/ ions is diama	agnetic?	
	a) Super oxide ion			-
	b) Oxygen			
	c) Carbon molecule			
	d) Unipositive ion of N ₂ m			
70.	The enolic form of aceton			
	a) 9 sigma bonds, 1 pi bor	-		
	b) 8 sigma bonds, 2 pi bor	=		
	c) 10 sigma bonds, 1 pi bo		Y	
	d) 9 sigma bonds, 2 pi bor	= /	. 12	
/1.	_	e isoelectronic and isostruc	ctural?	
	$NO_3^-, CO_3^{2-}, ClO_3^-, $	J. J	$a = a a^2 - a^2 $	$12.00^{2}00^{2}$
50	a) NO_3^-, CO_3^{2-}	b) SO_3, NO_3^-	c) ClO_3^-, CO_3^{2-}	d) CO_3^{2-} , SO_3
12.		paramagnetic with bond or		1) O-
70	a) F_2	b) H ⁺ ₂	c) N ₂	d) 0_2^-
73.	Water has high heat of va a) Covalent bonding		c) Ionic bonding	d) None of these
74	The C – H bond distance is		c) forme borraning	d) None of these
74.	a) C_2H_6	b) C_2H_2	c) C ₂ H ₂ Br ₂	d) C_2H_4
75			is A and B is 2.0, then the pe	
, 01	character in the molecule			er contrage of covaront
	a) 54%	b) 46%	c) 23%	d) 72%
76.	Structure of ICl_2^- is:			
	a) Trigonal			
	b) Octahedral			
\mathbf{C}	c) Square planar			
7	d) Distorted trigonal pyra	midal		
77.	Polar covalent compound	s are soluble in:		
	a) Polar solvents	b) Non-polar solvents	c) Concentrated acids	d) All solvents
78.	N_20 is isoelectronic to CO	$_2$ and N_3^- . Which of the following	owing is the structure of N ₂	0?
				N N
	a) N N	b) N – O – N	c) $N - O - N$	^u J N O
79.	Which does not show hyd	rogen bonding?		
	a) C ₂ H ₅ OH	b) Liquid NH ₃	c) H ₂ 0	d) Liquid HBr
	-	-		

80.	All bond angles are exactly equal to 109 a) Methyl chloride	° 28` in b) Iodoform	
	c) Chloroform	d) Carbon tetra	ichloride
81.	Which among the following has highest	onic radius?	
	a) F ⁻ b) B ³⁺	c) 0 ^{2–}	d) Li ⁺
82.	Zero dipole moment is possessed by		
	a) PCl ₃ b) BF ₃	c) ClF ₃	d) NH ₃
83.	The number of electrons involved in the	bond formation of N ₂ molec	ule
	a) 2 b) 4	c) 6	d) 10
84.	Which one of the following orders is not	in according with the prope	rty stated against it?
	a) $F_2 > Cl_2 > Br_2 > I_2$: Electronegative	vity	
	b) $F_2 > Cl_2 > Br_2 > I_2$: Bond dissociation is been seen as the second dissociation of the second distance o		
	c) $F_2 > Cl_2 > Br_2 > I_2$: Oxidising power of the second sec		
	d) HI > HBr > HCl > HF : Acidic proper		
85.	What is the dominant intermolecular for	ce or bond that must be ove	rcome in converting liquid CH_3OH to a
	gas?		
	a) London dispersion force		
	b) Hydrogen bonding		
	c) Dipole-dipole interaction		
06	d) Covalent bonds	ding malagular arhitala haga	
86.	The incorrect statements regarding bon a) Bonding molecular orbitals possess le		
	b) Bonding molecular orbitals possess in b) Bonding molecular orbitals have low		
	c) Every electron in bonding molecular		
	d) They are formed when the lobes of th		
87.	A coordinate bond is a dative covalent b		-
-	a) Three atom form bond by sharing the		
	c) Two atoms form bond and one of th		
	both electrons		m third atom.
88.	The bond length between C – C bond in .	p^2 hybridised molecule is	
	a) 1.2 Å b) 1.39 Å	c) 1.33 Å	d) 1.54 Å
89.	The electronegativity values of C, H, O, N	and S are 2.5, 2.1, 3.5, 3.0 ar	d 2.5 respectively. Which of the
	following bonds is most polar?		
	a) C—H b) N—H	c) S—H	d) 0—H
90.	Which of the following has largest size?		
	a) Al b) Al ⁺	c) Al ²⁺	d) Al ³⁺
91.	In which of the following, the bond le	ngth between hybridised ca	rbon atom and other carbon atom is
	minimum?	a) Dutau a	d) Dream and
02	a) Propyne b) Propene	c) Butane	d) Propane
92.	Which is expected to conduct electricity a) Diamond b) Molten sul		d) Crystalline NaCl
93	Metals are good conductors of electricity	,	u) erystannie Naei
75.	a) Ionic bonds	b) A network s	tructure
~	c) Very few valence electrons	d) Free electro	
94.	The species having pyramidal shape is		
	a) SO_3 b) BrF_3	c) SiO_3^{2-}	d) OSF_2
95.	The attraction that non-polar molecules	, ,	
	a) Hydrogen bonding	1	
	b) Difference in electronegativities		
	c) High ionisation energy		

d) Van der Waals' forces

- 96. In HCHO carbon atom has hybridisation:
- a) sp b) sp^2 c) sp^3 d) None of these 97. Which of the following species has four lone pairs of electrons in its outer shell?
- a) I b) 0^- c) Cl^- d) He
- 98. For *AB* bond if per cent ionic character is plotted against electronegativity difference $(X_A X_B)$, the shape of the curve would look like

The correct curve is

a) A

c) *C*

- d) *D*
- 99. Chlorine atom, in its third excited state, reacts with fluorine to form a compound *X*. The formula and shape of *X* are
 - a) ClF₅, pentagonal
 - b) ClF₄, tetrahedral
 - c) ClF₄, pentagonal bipyramidal
 - d) ClF₇, pentagonal bipyramidal
- 100. The formation of the oxide ion $O^{2-}(g)$ requires first an exothermic and then an endothermic step as shown below,

 $O(g) + e \rightarrow O^{-}(g); \qquad \Delta H = -142 \text{ kJ/mol}$ $O^{-}(g) + e \rightarrow O^{2^{-}}(g); \qquad \Delta H = 844 \text{ kJ/mol}$

This is because:

a) 0^- ion has comparatively larger size than oxygen atom

b) *B*

- b) Oxygen has high electron affinity
- c) 0^- ion will lead to resist the addition of another electron
- d) Oxygen is more electronegative

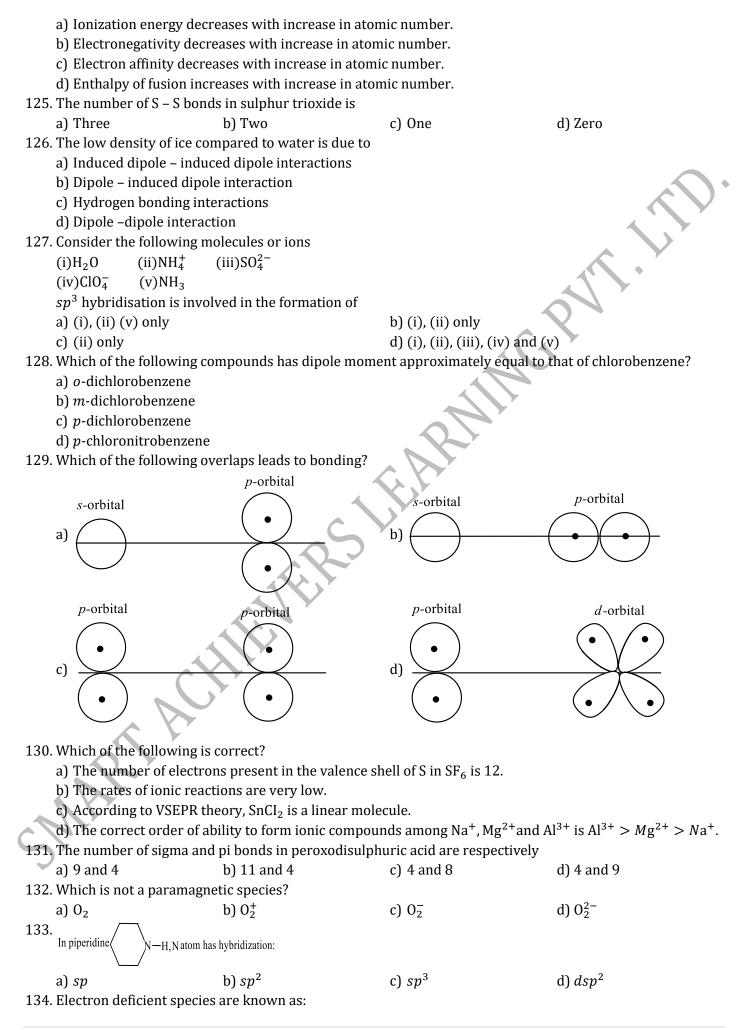
101. In which of the following molecules are all the bonds not equal?

a) AlF_3 b) NF_3 c) ClF_3 d) BF_3 102. Which of the following compound is covalent?a) H_2 b) KClc) Na_2S d) CaO103. Which of the following molecular species has unpaired electron (s)?a) N_2 b) F_2 c) O_2^- d) $O_2^{2^-}$

104. The correct order of bond angles is:

 \checkmark a) PF₃ < PCl₃ < PBr₃ < PI₃

b) $PF_3 < PBr_3 < PCl_3 < PI_3$


c) $PI_3 < PBr_3 < PCl_3 < PF_3$

d) $PF_3 > PCl_3 < PBr_3 < PI_3$

105. If the bond length and dipole moment of a diatomic molecule are 1.25 A and 1.0 D respectively, what is the per cent ionic character of the bond?

106. The molecule which does not exhibit dipole moment is

a) NH ₃	b) CHCl ₃	c) H ₂ 0	d) CCl ₄
	nd convert into N_2^- , where thi	s electron goes?	
a) Antibonding π-m	olecular orbital		
b) Bonding π-moleo	cular orbital		
c) σ -bonding molec	cular orbital		
d) σ-antibonding m	olecular orbital		
108. The correct order o	f radii is:		
a) N < Be < B	b) $F^- < 0^{2-} < N^{3-}$	c) Na < Li < K	d) $Fe^{3+} < Fe^{2+} < Fe^{4+}$
109. The bond order is n	naximum in:	-	
a) H ₂	b) H ₂ ⁺	c) He ₂	d) He ₂
· -	ing atoms has minimum coval	· •	
a) Si	b) N	c) C	d) B
111. The screening effec	,	,	
a) Equal to the p -el			
b) Much more than			
c) Same as <i>f</i> -electr	-		
d) Less than <i>p</i> -elect			
112. Which of the follow		4	\mathbf{O}
	ydrides increase from NH ₃ to	BiH_{2} in group 15 of the r	periodic table
	form $d\pi - p\pi$ bond.		
	d is weaker than the single P–	-Phond	
d) N_2O_4 has two res		i bond.	
	g permanent dipole moment i		
a) SF ₄	b) XeF ₄	c) SiF ₄	d) BF ₃
	ing point of water is result of		u) br ₃
		b) Intramolecular hy	drogon honding
a) Intermolecular h			0 0
	ter molecular hydrogen bond	ing uj nigh specific fieat	
115. Which of the follow	-		d) CaCl
a) CaF_2	b) CaBr ₂	c) CaI ₂	d) CaCl ₂
116. What bond order d		-) 2	4) 1 / 2
a) 1	b) 2	c) 3	d) $1/3$
=		lation states of X, Y and A	Zare +2, +2 and -2 respectively.
-	la of the compound is		
a) XYZ_2	b) $Y_2(XZ_3)_2$	c) $X_3(Y_4Z)_2$	d) $X_3(YZ_4)_3$
	llowing is a non-polar molecu		
a) CCl_4	b) CHCl ₃	c) CH_2Cl_2	d) CH ₃ Cl
	llowing has the regular tetrah		
	= 5, S = 16, Ni = 28, Xe = 54		N Frank (mark) 32
a) XeF ₄	b) SF ₄	c) BF ₄	d) $[Ni(CN)_3]^{2-}$
7		ne are 0.43 D and 3.93 D,	then what is the expected dipole
moment of <i>p</i> -nitro			
a) 3.50 D	b) 2.18 D	c) 4.36 D	d) 5.30 D
121. Which of the follow		.	
a) Pb ²⁺	b) Ge ²⁺	c) Si ²⁺	d) Sn ²⁺
	owing compound <i>sp</i> ² hybridis		
a) $CH_2 = CH - CH$	$= CH_2$	b) CH \equiv C – CH ₂ – C	-
c) $CH_2 - CH = CH_2$		d) $CH_2 = CH - CH_2$	– CH ₃
	llowing pairs of species has th	e same bond order:	
a) NO^+ and CN^+	b) CN^- and NO^+	c) CN^{-} and CN^{+}	d) O_2^- and CN^-
124. Which of the follow	ing characteristics regarding	halogens is not correct?	

a) Lewis acids	b) Hydrophilic	c) Nucleophiles	d) Lewis bases
135. The molecule having	three folds of axis of symmetry	y is:	
a) NH ₃	b) PCl ₅	c) SO ₂	d) CO ₂
136. The structure of ICl_2^-	is:		
a) Trigonal			
b) Octahedral			
c) Square planar			
d) Distorted trigonal			
	, the molecule with the highest	-	
a) CH ₃ Cl	b) CH ₂ Cl ₂	c) CHCl ₃	d) CCl ₄
	ng is not isostructural with SiCl	•	
a) PO_4^{3-}	b) NH ₄ +	c) SCl ₄	d) SO_4^{2-}
	nnot exist theoretically is:		
a) SF ₄	b) OF ₂	c) OF ₄	d) $0_2 F_2$
	valence electrons and atom Y h	nas six valence electrons. Tl	ne compound formed
between them will h			X
a) $X_2 Y_6$	b) <i>XY</i> ₂	c) $X_2 Y_3$	d) $X_3 Y_2$
	nolecule among the following?		<i>T</i>
a) CH_4	b) CCl ₄	c) CO ₂	d) H ₂ 0
142. Shape of molecules i	s decided by:		
a) Sigma bond			
b) π-bond	11.		
c) Both sigma and π			
d) Neither sigma nor			
143. The shape of carbon		c) Planar	d) linear
a) Pyramidal 144. The correct ionic rac	b) Tetrahedral	c) Plallal	d) linear
	$> Na^+ > Mg^{2+} > Al^{3+}$		
	$^{-}$ > F ⁻ > Mg ²⁺ > Al ³⁺		
	$> F^{-} > Mg^{2+} > Al^{3+}$		
d) $\Omega^{2-} > F^- > Na^+$	$> N^{3-} > Mg^{2+} > Al^{3+}$		
145. Which is not linear?			
a) CO_2	b) HCN	c) C ₂ H ₂	d) H ₂ 0
146. Hybridisation of oxy		0) 02112	uj 1120
a) <i>Sp</i>	b) sp^2	c) <i>sp</i> ³	d) sp^3d
	more electronegative atom on t		ajsp a
a) Increases	b) Decreases	c) Remains the same	d) None of these
148. Which of the followi		ej nemano ene bance	
a) XeF_2 , IF_2^-	b) NH_3 , BF_3	c) CO_3^{2-}, SO_3^{2-}	d) PCl ₅ , ICl ₅
149. NF ₃ is:	-)3	0,003,003	
a) Non-polar compo	und		
b) Electrovalent com			
	of dipole moment than NH ₃		
d) Having more dipo	le moment than NH ₃		
150. Molecular size of ICl	and Br ₂ is nearly same, but boi	ling point of ICl is about 40	°C higher than Br ₂ . This
might be due to:			
a) I—Cl bond is stro	nger than Br—Br bond		
b) Ionisation energy	of I < ionisation energy of Br		
c) ICl is polar where	as Br ₂ is non-polar		
d) The size of I > siz	e of Br		

151. Which molecule is linear?		
a) H_2S b) NO_2	c) ClO_2	d) CO_2
152. Which of the following shows minimum melting	-	<i>, , , , , , , , , ,</i>
a) Naphthalene b) Diamond	c) NaCl	d) Mn
153. Which of the following does not have a lone pair of	on the central atom?	-
a) NH ₃ b) PH ₃	c) BF ₃	d) PCl ₃
154. Molecular orbital theory was given by		
a) Kossel b) Mosley	c) Mulliken	d) Werner
155. NH_3 has a net dipole moment, but boron trifluori	de (BF ₃) has zero dipole m	noment, because:
a) B is less electronegative than N		
b) F is more electronegative than H		
c) BF_3 is pyramidal while NH_3 is planar		
d) NH_3 is pyramidal while BF_3 is trigonal planar		
156. Proton plays an important role inbonding.		
a) Electrovalent b) Hydrogen	c) Covalent	d) Coordinate
 157. Which represents a collection of isoelectronic special Be, Al³⁺, Cl⁻ b) Ca²⁺, Cs⁺, Br 	c) Na ⁺ , Ca ²⁺ , Mg ²⁺	d) N ^{3–} , F [–] , Na ⁺
158. An electrovalent compound does not exhibit space		uj N°, F, Na
a) Presence of ions	e isolilei isili uue to:	
b) High melting point		
c) Strong electrostatic forces between constituen	tions	
d) Non-directional nature of electrovalent bond		
159. In which molecule Sulphur atom is not sp^3 -hybri	dized?	
a) SO_4^{2-} b) SF_4	c) SF_2	d) None of these
160. In which one of the following species, the central		•
as that present in other three?		
a) SF ₄ b) I_3^-	c) SbCl ₅ ^{2–}	d) PCl ₅
161. The radii of F, F^- , O and O^{2-} are in the order of:		
a) $0^{2^-} > F^- > F > 0$ b) $F^- > 0^{2^-} > F > 0$	c) $0^{2-} > 0 > F^{-} > F$	d) $0^{2-} > F^- > 0 > F$
162. The correct order of decreasing second ionisation		
a) $V > Mn > Cr > Ti$ b) $Mn > Cr > Ti > V$		d) $Cr > Mn > V > Ti$
163. How many σ and π -bonds are present in given co	mpound?	
$Ph - CH = C - C_2H_5$		
CH_3	b) 22π and 4π has	da
a) 19 σ and 4 π – bonds c) 25 σ and 4 π – bonds	b) 22 σ and 4 π – bon	
164. C – Cl bond is stronger than C – I bond, because	d) 26 σ and 4 π – bon	us
	b) C Cl bond is polo	r covalent hand
a) C – Cl bond is more ionic than C – I	b) C – Cl bond is polar	
c) $C - Cl$ bond is more covalent than $C - I$	d) C – Cl bond length	is longer than C – I
165. The ICl molecule is: a) Purely covalent		
b) Purely electrovalent		
c) Polar with negative end on chlorine		
d) Polar with negative end on iodine		
166. Which of the following silver salts is insoluble in	water?	
a) $AgClO_4$ b) Ag_2SO_4	c) AgF	d) AgNO ₃
167. Silicon has 4 electrons in the outermost orbit. In the		
a) It gains electrons b) It losses electrons	c) It shares electrons	d) None of these
168. The shape of gaseous SnCl ₂ is	,	-

a) Tetrahedral b) Linear	c) Angular	d) T-shape
169. Chlorine atom tends to acquire the structure of:		
a) He b) Ne	c) Ar	d) Kr
170. The d – orbital involved in $sp^3 d$ – hybridisation is		
a) $d_{x^2-y^2}$ b) d_{xy}	c) d_{z^2}	d) d_{zx}
171. When O_2 is converted into O_2^+ ;		
a) Both paramagnetic character and bond order inc	rease	
b) Bond order decreases		
c) Paramagnetic character increases		
d) Paramagnetic character decreases and the bond	order increases	
172. Intramolecular hydrogen bond is present in		
a) Water b) <i>o</i> -nitrophenol	c) <i>p</i> -nitrophenol	d) methylamine
173. A pair of compounds which have odd electrons in the	ne group NO, CO, ClO ₂ , N ₂ O _s	, SO ₂ and O ₂ are
a) NO and ClO_2 b) COI and SO_2	c) ClO ₂ and CO	d) SO_2 and O_3
174. According to VSEPR theory the repulsion between o	lifferent pair (lone or bond) of electrons obey the order
a) <i>lp bp lp lp bp bp</i>	b) <i>lp bp bp bp lp lp</i>	X
c) <i>lp lp lp bp bp bp</i>	d) bp bp lp lp lp bp	
175. The bond between two identical non-metal atoms h	as a pair of electrons:	7
a) Unequally shared between the two		
b) Equally shared between the two		
c) Transferred fully from one atom to another		
d) None of the above		
176. The bond angle in AsH_3 is greater than that in		
a) NH_3 b) H_2O	c) BCl ₃	d) None of these
177. The correct order of increasing electropositive char		
a) $Cu \approx Fe < Mg$ b) $Fe < Cu < Mg$		d) Cu < Fe < Mg
178. H—O—H bond angle in H_2O is 104.5° and not 109°.	28' because of:	
a) High electronegativity of oxygen		
b) Bond pair-bond pair repulsion		
c) Lone pair-lone pair repulsion		
d) Lone pair-bond pair repulsion		
179. The bond order in O_2^+ is equal to bond order in:		N NOT
a) N_2^+ b) CN^-	c) CO	d) NO ⁺
180. The electron affinity for inert gases is likely to be:	a) 7	
a) High b) Small	c) Zero	d) Positive
181. The true statements from the following are		
1.PH ₅ and BiCl ₅ do not exist 2. $p\pi - d\pi$ bond is present in SO ₂		
3.Electrons travel at the speed of light		
4.SeF ₄ and CH ₄ have same shape		
5.1^+_3 has bent geometry		
a) 1,3 b) 1,2,5	c) 1,3,5	d) 1,2,4
182. 1,3-butadiene has:	cj 1,3,5	иј 1,2,т
a) 6σ and 2π -bonds b) 2σ and 2π -bonds	c) 9σ and 2π -bonds	d) 6σ and 2π -bonds
183. The bond between atoms of two elements of atomic	,	aj 00 una 211 001103
a) Covalent b) Ionic	c) Coordinate	d) Metallic
184. In methane the bond angle is	-,	
a) 180° b) 90°	c) 109°	d) 120°
185. One would expect the elemental form of Cs at room	,	2
a) A network solid b) A metallic solid	c) Non-polar liquid	d) An ionic liquid
		-

186. Which of the following is false? a) Glycerol has strong hydrogen bonding b) Glycol is a poisonous alcohols c) Waxes are esters of higher alcohols with higher acids d) Alkyl halides have higher b.p. than corresponding alcohols 187. Ionic radii are: a) $\propto \frac{1}{\text{effective nuclear charge}}$ b) $\propto \frac{1}{(\text{effective nuclear charge})^2}$ c) \propto effective nuclear charge d) \propto (effective nuclear charge)² 188. Which of the following statements is incorrect? a) He₂ does not exist because its bond order is zero b) O_2 , O_2^- and O_2^+ are all paramagnetic c) Any two atomic orbitals can combine to form two molecular orbitals d) $\pi(2p_x)$ and $\pi(2p_y)$ are degenerate molecular orbitals 189. Which of the following pairs will from the most stable ionic bond? b) Mg and F c) Li and F d) Na and F a) Na and Cl 190. Among NaF, NaCl NaBr and NaI, the NaF has highest melting point because: a) It has maximum ionic character b) It has minimum ionic character c) It has associated molecules d) It has least molecular weight 191. The planar structure of BF_3 can be explained by the fact that BF_3 is b) *sp*² hybridised a) *sp* hybridized c) *sp*³ hybridised d) $sp^3 d$ hybridized 192. The correct order of bond order value among the following is (ii) N0⁺ (i) NO⁻ (iv) NO²⁺ (iii)NO $(v) NO^{2-}$ a) (i) < (iv) < (iii) < (ii) < (v) b) (iv) = (ii) < (i) < (v) < (*iii*) c) (v) < (i) < (iv) = (iii) < (ii) d) (ii) < (iii) < (iv) < (i) < (v) 193. The bond between chlorine and bromine in BrCl₃ is: a) Ionic b) Non-polar c) Polar with negative end on Br⁻ d) Polar with negative end on Cl⁻ 194. Which of the following has regular tetrahedral shape? a) $[Ni(CN)_4]^{2-}$ b) SF_4 c) [BF₄]⁻ d) XeF₄ 195. Which of the following will have large dipole moment? NH_2 NH_2 NO₂ NH_2 b) a) NO₂ NO_2

196. PCl₅ exists but NCl₅ does not because:

a) Nitrogen has no vacant 2*d*-orbitals

b) NCl ₅ is unstable	
c) Nitrogen atom is much smaller than phosp	horus
d) Nitrogen is highly mert	
197. In which of the following pairs the two specie	es are not isostructural?
a) PCl_4^+ and $SiCl_4$ b) PF_5 and BrF_5	c) AlF ₆ ³⁻ and SF ₆ d) CO_3^{2-} and NO_3^{-}
198. The molecule having a pyramidal shape out o	
a) CO_2 b) BF_3	c) SF_4 d) NH_3
	arger thanCl ⁻ ion, which of the following will be stable soluble
in water?	
a) Sodium chloride b) Sodium sulphid	e c) Magnesium chloride d) Magnesium sulphide
	s in its outermost orbit and that of <i>B</i> has six electrons in its
outermost orbit. The formula of the compoun	
a) $A_3 B_6$ b) $A_2 B_3$	c) A_3B_2 d) A_2B
201. The energy of σ 2 <i>s</i> -orbital is greater than $\sigma * \mathcal{I}$, , , , , , , , , , , , , , , , , , , ,
a) σ 2s orbital is bigger than σ * 1s orbital	
b) σ 2s orbital is a bonding orbital whereas, σ	s * 1s is an antibonding orbital
c) σ 2 <i>s</i> orbital has a greater value of <i>n</i> than σ	
d) None of the above	
202. The bond angle in ammonia molecule is	
a) 90°3′ b) 91°8′	c) 106°45′ d) 109°28′
203. The compound in which the number of $d p$ t	
a) XeF_4 b) XeO_3	c) XeO_4 d) XeF_6
204. The correct order of bond angles (smallest fir	
a) $H_2S < SiH_4 < NH_3 < BF_3$	b) $NH_3 < H_2S < SiH_4 < BF_3$
c) $H_2 S < N H_3 < Si H_4 < B F_3$	d) $H_2S < NH_3 < BF_3 < SiH_4$
	cture. The number of lone pair and bond pair of electrons in
the molecule are respectively.	
a) 2 and 2 b) 0 and 4	c) 3 and 1 d) 1 and 3
206. Be in BeCl ₂ undergoes	
a) Diagonal hybridisation	b) Trigonal hybridisation
c) Tetrahedral hybridisation	d) No hybridisation
207. Which statement is wrong?	
a) Hybridisation is the mixing of atomic orbit	als prior to their combining into molecular orbitals
b) <i>sp</i> ² -hybrid orbitals are formed from two <i>p</i>	-atomic orbitals and one <i>s</i> -atomic orbitals
c) dsp^2 -hybrid orbitals are all at 90° to one a	nother
d) d^2sp^2 -hybrid orbitals are directed towards	
	bonds are found to be of equal length. What is the reason for
it?	
a) Electronic orbits of carbon atom are hybrid	dised
b) The C=O bond is weaker than the C $-$ O bo	ond
c) The anion HCOO [–] has two resonating struc	ctures
d) The anion is obtained by removal of a prot	on from the acid molecule
209. Which of the following molecules has three fo	old axis of symmetry?
a) NH ₃ b) C_2H_4	c) CO_2 d) SO_2
210. Oxygen and the oxide ion have the	
a) Same proton number	b) Same electronic configuration
c) Same electron number	d) Same size
211. Valence bond theory of metallic bond was giv	-
a) Dalton b) Drudel	c) Fajan d) Pauling
212. The correct order of second ionisation potent	
1	

a) $C > N > 0 > F$		c) $0 > F > N > C$	d) $F > 0 > N > C$
213. The molecule which has T	-		
a) PCl ₃	b) ClF ₃	c) NH ₃	d) BCl ₃
214. As a result of resonance:			
a) Bond length decreases			
b) Energy of the molecule			
c) Stability of the molecul	le increases		
d) All are correct			
215. The pair of species with th			
a) NO, CO	b) N_2, O_2	c) O_2^{2-}, B_2	d) 0 ⁺ ₂ , N0 ⁺
216. Which of the following mo			
a) PF_5	b) SF ₆ I	c) XeF ₆	d) [Fe(CN) ₆] ^{3–}
217. The number of types of bo			
a) One sigma, two pi	b) One sigma, one pi	c) Two sigma, one pi	d) Two sigma, two pi
218. The bond angle between I			
a) 115°	b) 109°28′	c) 110°	d) 90°
219. If a molecule MX_3 has zer			
a) Pure p	b) <i>sp</i> -hybrid	c) sp^2 -hybrid	d) <i>sp</i> ³ -hybrid
220. Which combination of ato			d) No and Dr
a) H and H 221 The head strength in 0^+ (b) H and Br $O_{-}O_{-}^{-}$ and O_{-}^{2-} follows the	c) N and N	d) Na and Br
221. The bond strength in 0^+_2 ,			$d_{1} = 2 + 2^{2} + $
	b) $0_2^+ > 0_2 > 0_2^- > 0_2^{2-}$		a) $0_2 > 0_2^2 > 0_2^2 > 0_2$
222. The shape of XeF_4 molecu	lle and hybridisation of xen		2
a) Tetrahedral and sp^3	۲.	b) Square planar and dsp^{3}	_
c) Square planar and $sp^3 d$		d) Octahedral and sp^3d^2	
223. In H_2^- ion, the bond order		a) 1/2	4) 1
a) Zero	b) 1/2	c) -1/2	d) 1
224. H-bonding is not present			
a) Glycerine 225. In which of the following ;	b) Water	c) H_2S	d) HF
a) HCl	b) HBr	c) HI	d) HF
226. The angle between the ov		,	u) m
a) 180°	b) 120°	c) 109°28′	d) 120°60′
227. How many bonds are the		C) 109 20	u) 120 00
\sim			
a) 14 σ,8π	b) 18 σ, 8π	c) 19 σ, 4π	d) 14 σ, 2π
228. Which is the correct state		ılar orbitals? Statements ar	e
(i) π -bonding orbitals are			
(ii) π -antibonding orbitals			
(iii) σ -antibonding orbital			
💙 a) (i) only	b) (ii) and (iii) only	c) (iii) only	d) (ii) only
229. Among the following state			
NH ₃ is a better electror a) directional	n donor because the lone pa	air of electron occupies sph	erical <i>s</i> -orbital and is less
	n donor because the lone pa	ir of electron occupies sp^3	-orbital and is more
	n donor because the lone of	air of electron occupies sn ³	-orbital and more
c) directional	a donor because the folle pa	in or electron occupies sp	
0 directional NH ₃ is a better electron	n donor because the lone pa n donor because the lone pa		

d) PH₃ is a better electron donor because the lone pair of electron occupies spherical *s*-orbital and is less directional

directional			
230. Which is expected to have	e linear structure?		
a) SO ₂	b) CO ₂	c) CO_3^{2-}	d) SO_4^{2-}
231. The bond angle in PH_3 is:			
a) Much lesser than $\rm NH_3$	b) Equal to that in $\rm NH_3$	c) $\frac{Much greater than in}{NH_3}$	d) $\frac{\text{Slightly more than in}}{\text{NH}_3}$
232. Carnallite in solution in w	vater shows the properties	s of	
a) K ⁺ , Mg ²⁺ , Cl ⁻	b) K ⁺ , Cl ⁻ , SO ₄ ²⁻ , Br ⁻	c) K ⁺ , Mg ²⁺ , CO ₃ ²⁻	d) K ⁺ , Mg ²⁺ , Cl ⁻ , Br ⁻
233. A simple of a coordinate	covalent bond is exhibited		$\langle \cdot \rangle$
a) HCl	b) NH ₃	c) C_2H_2	d) H_2SO_4
234. In the series ethane, ethy	lene and acetylene, the C–	-H bond energy is:	
a) The same in all the thr			
b) Greatest in ethane	-		
c) Greatest in ehtylene			
d) Greatest in acetylene		A	
235. In which molecule the va	n der Waals' force is likelv	to be the most important ir	determining the m.p. and
b.p.?	······	r	
a) Br ₂	b) CO	c) H ₂ S	d) HCl
236. Identify the wrong staten	,	0, 120	
		noves down the first group	of the periodic table
-		noves across from left to rig	-
periodic table		noves deross from fere to rig	site in the 2nd period of the
-	species smaller the positi	ve charge on the cation, sm	aller is the ionic radius
		ive charge on the anion, larg	
237. (I)1, 2-dihydroxy benzen		ive charge on the amon, larg	ser is the forme radius
(II) 1, 3-dihydroxy benze		Y	
(III) 1, 4-dihydroxy benze			
(IV) Hydroxy benzene			
	oiling points of above men	tioned alcohols is	
a) $I < II < III < IV$	oning points of above men	b) I $< II < IV < III$	
c) $IV < I < II < III$		d) IV < II < I < III	
· · · · · · · · · · · · · · · · · · ·	hu		
238. Dipole moment is shown		h) trang 1 2 dishlara ath	ano.
a) <i>cis</i> - 1, 2-dichloro etha		b) <i>trans</i> -1, 2-dichloro eth	lane
c) <i>trans</i> -1 2-dichloro-2 p		d) Both (a) and (c)	
239. Compounds formed by <i>sp</i>	b ^o a ² -hybridization will ha	ve configuration:	
a) Square planar			
b) Octahedral			
c) Trigonal bipyramidal			
d) Pentagonal bipyramid			
240. In which molecular are al	=		
a) PF ₃	b) NH ₃	c) BF ₃	d) CH ₄
241. The AsF ₅ molecule is trig		-	-
a) $d_{x^2-y^2}$, d_{z^2} , s, P_x , P_y	b) d_{xy} , s, P_x , P_z	c) $s, P_x, P_y, P_z, d_{z^2}$	d) $d_{x^2-y^2}$, s, P_x , P_y
242. The bond order of N_2^+ is			
a) 1.5	b) 3.0	c) 2.5	d) 2.0
243. $\rm CO_2$ is isostructural with			
a) C ₂ H ₂	b) SnCI ₂	c) NO ₂	d) MgCI ₂
244. The compound with the r	naximum dipole moment a	among the following is:	
a) <i>p</i> -dichlorobenzene	b) <i>m</i> -dichlorobenzene	c) o-dichlorobenzene	d) Carbon tetrachloride

245. Which of the following bonds require the a) H—H bond in H ₂ b) C—H bond		e the bond concerned? d) $0 = 0$ bond in 0_2
246. The sequence that correctly describes		· -
cation or anion is		
a) $0^{2-}_2 > 0^2 > 0^2 > 0^+_2$	b) $0_2 > 0_2^+ > 0_2^- > 0_2^{2-}$	
c) $0_2^+ > 0_2^- > 0_2^- > 0_2^-$	d) $0_2^+ > 0_2^- > 0_2^- > 0_2^{2-}$	
247. The type of hybridisation in XeF_4 is		
a) dsp^2 b) sp^3d	c) $sp^{3}d^{2}$	d) $sp^{3}d^{3}$
248. What bond order does Li ₂ have?		· · ·
a) 3 b) 1	c) 2	d) 0
249. Which have zero dipole moment?		
a) 1,1-dichloroethene		
b) Cis-1, 2-dichloroethene		
c) <i>trans</i> -1, 2-dichlorothene		
d) None of the above		
250. Strongest bond is formed by the head o		X
a) $2s$ -and $2p$ -orbitals b) $2p$ - and 2	<i>p</i> -orbitals c) 2 <i>s</i> - and 2 <i>s</i> - orbitals	d) All of these
251. Hybridization state of I in ICl_2^+ is :		
a) dsp^2 b) sp	c) sp^2	d) <i>sp</i> ³
252. Arrange the following compound in ord		
Toluene (I) <i>m</i> -dichlorob		
<i>o</i> -dichlorobenzene (III) <i>p</i> -dichlorobe		
a) $I < IV < II < III$ b) $IV < I < I$		d) IV < II < I < III
253. Which has maximum covalent characte		
a) SiCl ₄ b) MgCl ₂ 25.4 Which encodes does not evict?	c) NaCl	d) AlCl ₃
254. Which species does not exist? a) $(SnCl_6)^{2-}$ b) $(GeCl_6)^{2-}$	- c) (CCl ₆) ²⁻	d) $(SiCl_6)^{2-}$
255. Among the following which has the hig		$a_{j}(3iCi_{6})$
a) CsI b) CsF	c) LiF	d) NaF
256. The dipole moment of HBr is 1.6×10	-	-
HBr is	en and inter atomic spacing is i	n. The 70 forme character of
a) 7 b) 10	c) 15	d) 27
257. When an element of very low ionisation		,
affinity, we get:	1	, ,
a) A weak ionic bond b) A strong i	ionic bond c) A polar covalent bond	d) No bond
258. Ionization potential is lowest for:		-
a) Halogens b) Inert gase	es c) Alkaline earth metals	d) Alkali metals
259. The orbitals of same energy level provi	ding the most efficient overlapping are:	
a) sp^3-sp^3 b) sp -sp	c) $sp^2 - sp^2$	d) All of these
260. The covalent compound HCl has the po		
a) The electronegativity of hydrogen is		
b) The electronegativity of hydrogen is		
C) The electronegativity of chlorine is g	greater than that of hydrogen	
d) Hydrogen and chlorine are gases		
261. Identify the non-polar molecule in the s	set of compounds given	
HCl, HF, H ₂ , HBr	<u>.</u>	N
a) H_2 b) HCl	c) HF, HBr	d) HBr
262. Which one of the following compounds		N CO
a) CO_2 b) SO_2	c) N_2O	d) CO
263. The increasing order of the ionic radii of	of the given isoelectronic species is:	

a) S ^{2–} , Cl [–] , Ca ²⁺ , K ⁺	b) Ca ²⁺ , K ⁺ , Cl ⁻ , S ^{2–}	c) K ⁺ , S ^{2–} , Ca ²⁺ , Cl [–]	d) Cl ⁻ , Ca ²⁺ , K ⁺ , S ^{2–}
264. Which cannot exist on th	e basis of M.O. theory?		
a) C ₂	b) He ₂ ⁺	c) H ₂ ⁺	d) He ₂
265. Which of the following d	oes not involve covalent bo	nd?	
a) PH ₃	b) CsF	c) HCl	d) H ₂ S
266. $B_{10}C_2H_{12}$ is isoelectronic	c with	-	· -
a) $B_{12}H_{12}^{2-}$	b) $B_{12}H_{12}$	c) B ₁₂ H ⁺ ₁₂	d) $B_{12}H_{12}^{2+}$
267. The electronegativity of	/ 12 12		
will be		copectively. Therefore, for	
a) 50%	b) 43%	c) 53.3%	d) 72.23%
•	,	CJ 55.5%	u) / 2.23%
268. During the formation of			Y
	pulsion becomes more that	nb) Energy of the system d	oes not change
the nucleus-electron i	repulsion attraction		A +
c) Energy increases		d) Energy decreases	
269. The number of ions form	•		
a) 4	b) 5	c) 6	d) 2
270. Pair of species having id	entical shapes for molecules	is C	Y
a) CF_4 , SF_4	b) BF ₃ , PCl ₃	c) XeF ₂ , CO ₂	d) PF ₅ , IF ₇
271. An example of a polar co	valent compound is		
a) KCl	b) NaCl	c) CCl ₄	d) HCl
272. Which is not an exceptio	n to octet rule?		-
a) BF_3	b) SnCl₄	c) Bel ₂	d) ClO_2
273. The molecules having di	y		, <u>,</u>
a) 2, 2-dimethylpropane	-		
b) <i>Trans</i> -3-hexene		\sim	
c) <i>Trans</i> -2-pentene		>*	
d) 2, 2, 3, 3-tetramethylk			
· · · ·		on than 22	
274. Which of the following space $r_{\rm s}$			4) 0+
a) CO	b) CN ⁻	c) NO ⁺	d) 0 ₂ ⁺
275. Which of the following is			
a) XeF ₂	b) XeO ₃ F	c) XeO ₂ F ₂	d) XeF ₄
276. Among the following spe			
a) CN ⁻ and O_2^-	b) O_2^- and NO ⁺	c) CN ⁻ and NO ⁺	d) CN^{-} and CN^{+}
277. The bond angle and dipo		ively, are	
a) 109.5°, 1.84 D	b) 107.5°, 1.56 D	c) 104.5°, 1.84 D	d) 102.5°, 1.56 D
278. The correct order of incr	reasing bond angles in the fo	llowing species is:	
a) $Cl_2 0 < ClO_2 < ClO_2^-$	b) $ClO_2 < Cl_2O < ClO_2^-$	c) $Cl_2 0 < ClO_2^- < ClO_2$	d) $ClO_2^- < Cl_2O < ClO_2$
279. Which compound shows	hydrogen bonding?		
a) RCH ₂ NHCH ₃	b) RCH ₂ CHO	c) C ₂ H ₆	d) HCl
280. Chlorine atom differs fro			
a) Protons			
b) Neutrons			
c) Electrons			
d) Protons and electrons			
281. What is the reason for u			
		h) Due te dinele dinele	interactions
	f H ⁺ and OH ⁻ ions in water		linteractions
c) Due to London forces		d) Strong London Forces	
282. The increasing order of t	_		
a) $F < S < P < B$		c) $B < P < S < F$	-
283. The IP_1 , IP_2 , IP_3 , IP_4 , and I	P ₅ of an element are 7.1, 14.	3, 34.5, 46.8, 162.2 eV resp	ectively. The element is

likely to be:			
a) Na	b) Si	c) F	d) Ca
284. Which of the followin	ng is paramagnetic?		
a) B ₂	b) C ₂	c) N ₂	d) F ₂
_	of Na would be numerically the	e same as:	
a) Electron affinity of			
b) Electronegativity of			
c) Electron affinity of			
d) Ionization potentia	-		
	owing conversions involve chat b) $NH_3 \rightarrow NH_4^+$	c) $BF_3 \rightarrow BF_4^-$	d) $H_2 0 \rightarrow H_3 0^+$
a) $CH_4 \rightarrow C_2H_6$ 287. According to MO theo		$CJ Dr_3 \rightarrow Dr_4$	$u_{1} n_{2} 0 \rightarrow n_{3} 0$
_	c and bond order greater than	0.	
	c and bond order less than O_2	02	
	and bond order is less than O_2		
	and bond order is more than (\mathbf{Q}
	Cl were totally polar, the expe		ent is 6.12 D (dbye), but the
experimental value o	f dipole moment was 1.03 D. C	alculate the percentage ion	ic character
a) 17	b) 83	c) 50	d) Zero
289. The order of first elec	ctron affinity of O, S and Se is:		
a) 0 > S > Se	b) S > 0 > Se	c) Se > 0 > S	d) Se > S > 0
_	e π -bond of ethane is located i	n:	
a) The molecular plan			
b) A plane parallel to			
	ular to the molecular plane wh		
291. The correct electrone	ular to the molecular plane wh	iich contains the carbon-ca	10011 0-00110
a) C, N, Si, P	b) N, Si, C, P	c) Si, P, C, N	d) P, Si, N, C
-	aving identical shapes for mole	,	
a) CF_4 , SF_4	b) XeF_2 , CO_2	c) BF_3 , PCl_3	d) PF ₅ , IF ₅
	ng, the molecule that is linear is		
a) SO ₂	b) CO ₂	c) ClO ₂	d) NO ₂
294. Using MO theory pre	dict which of the following spe	cies has the shortest bond l	ength?
a) 0_2^{2+}	b) 0 ₂ +	c) 0_2^-	d) 0_2^{2-}
	carbon atom in benzene is?		-
a) sp	b) <i>sp</i> ²	c) <i>sp</i> ³	d) dsp^2
	two hybrid orbitals is 105°. Hy		
a) Between 20-21%	b) Between 19-20%	c) Between 21-22%	d) Between 22-23%
	to form KHF ₂ . The compound		d) [VIIE] + and E=
a) K^+ , F^- and H^+	b) K ⁺ , F [–] and HF yde, although contains enolic	c) K^+ and $[HF_2]^-$	d) $[KHF]^+$ and F^-
because:	lyue, although contains enonc	group but does not give les	t of group with rech ₃
a) It is steam volatile			
b) Of intermolecular			
c) Of intramolecular	-		
d) All of the above	U U		
299. Iron is tougher than s	sodium because:		
a) Iron atom is small	er		
h) Iron atoms are mo	re closely packed		
c) Metallic bonds are			

d) None of the above	·	
300. Correct order of bond angles in NH_3 , PCl_3 and BCl_3		
a) $PCl_3 > NH_3 > BCl_3$	b) $NH_3 > BCl_3 > PCl_3$	
c) $NH_3 > PCl_3 > BCl_3$	d) $BCl_3 > NH_3 > PCl_3$	
301. The number of π - bonds present in propyne is		
a) 4 b) 1	c) 3	d) 2
302. A bond with maximum covalent character between	non-metallic elements is f	formed:
a) Between identical atoms		
b) Between chemically similar atoms		
c) Between atoms of widely different electro-nega	tivities	\sim \sim
d) Between atoms of the same size		
303. The compound in which underlined carbon uses or		
a) CH_3COOH b) CH_3CONH_2	с) СН ₃ <u>С</u> Н ₂ ОН	d) $CH_2 \underline{C}H = CH_2$
304. Consider the following compounds		
(i) chloroethene (ii) benzene		\sim
(iii) 1, 3-butadiene (iv) 1,3,5 – hexatriene		X
All the carbon atoms are sp^2 hybridised in		•
a) (i), (iii), (iv) only b) (i), (ii) only	c) (ii), (ii), (iv) only	d) (i), (ii), (iii) and (iv)
305. When ionic compounds get dissolved in water:		
a) They involve heat changes		
b) Inter-ionic attraction is reduced		
c) Ions show dipole-ion attraction with water mole	ecules	
d) All are correct		
306. Pick the odd one out (The one having zero dipole n		
a) NH_3 b) H_2O	c) BCl ₃	d) SO ₂
307. Which of the following shows minimum bond angle	× ×	
a) H_2O b) H_2Se	c) H_2S	d) H ₂ Te
308. Among the following isostructural compounds, ide		
a) LiF b) LiCl	c) NaCl	d) MgO
309. Which species is diamagnetic in nature?	-) 11+	-11 (1
a) He ⁺ ₂ b) H ₂ 310. Which of the following compounds would have the	c) H ₂ ⁺	d) H ₂ ⁻
	• • • •	d) CIL E
	c) CH ₃ OH	d) CH_2F_2
311. Hybridisation of central atom in NF ₃ is a) sp^3 b) sp	$c) cm^2$	d) dsp^2
312. Which of the compounds has highest boiling point?	c) sp^2	u) usp
a) Acetone b) Diethyl ether	c) Methanol	d) Ethanol
313. The number and type of bonds between two carbo		u) Ethanor
a) One sigma (σ) and one pi (π)-bond	II atoms in CaC ₂ are.	
b) One sigma (σ) and two pi (π)-bonds		
c) One sigma (σ) and one and a half pi (π)-bond		
d) One sigma (σ) bond		
314. Which of the following hydrogen bonds are strong	est in vanour nhase?	
a) HFHF b) HFHCl	c) HCLHCl	d) HFHi
315. The bond angle and hybridization in ether (CH_3OC		~,
a) $106^{\circ} 51'$, sp^3 b) $104^{\circ} 31'$, sp^3	c) 110° , sp^{3}	d) None of these
316. Which has the highest bond energy?	40, 0 <u>1</u>	
a) Hydrogen bond b) Triple bond	c) Double bond	d) Single bond
317. Among the following compounds the one that is po		
a) H_2CO_3 b) SiF ₄	c) BF ₃	d) HClO ₂
-, 2, -, -, -, 4	· J 3) 2

318. The incorrect statement among the following is:					
a) The first ionization potential of Al is less than t	he first ionization potential	of Mg			
	b) The second ionization potential of Mg is greater than the second ionization potential of Na				
	c) The first ionization potential of Na is less than the first ionization potential of Mg				
d) The third ionization potential of Mg is greater	=	_			
319. The bond angle is smallest in	Ĩ				
a) H_2O b) H_2S	c) BeCl ₂	d) N_2O			
320. The number of electrons in the valence shell of su	-	-) 2 -			
a) 12 b) 10	c) 8	d) 11			
321. Acetic acid exists as dimer in benzene due to:					
a) Condensation reaction					
b) Hydrogen bonding					
c) Presence of carboxyl group					
d) Presence of hydrogen atom at α -carbon					
322. The correct order of hybridization of the central a	atom in the following specie	$s NH_2$, $[PtCl_4]^{2-}$, PCl_5 and			
BCl ₃ is:		·····;,[······; ·····			
a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2	c) $dsn^2 sn^2 sn^3 dsn^3$	d) $dsn^2 sn^3 sn^2 dsn^3$			
323. Chemical bond formation takes place when?					
a) Energy is absorbed					
b) Forces of attraction overcome forces of repulsi	on				
c) Forces of repulsion overcome forces of attracti					
d) Forces of attraction are equal to forces of repu					
$324. \text{ NH}_3$ has higher boiling point than expected, becau					
a) With water it forms NH_4OH					
b) It has strong intermolecular hydrogen bonds					
c) It has strong intermolecular covalent bonds	V				
d) Its density decreases in freezing					
325. Which of the following represents the Lewis strue	cture of N ₂ molecule?				
	_	× × × × ×			
a) $\times N = N \times b$ b) $\times N \times N = N \times b$	c) $\times N \times $	d) $\times N = N \times$			
	X X'				
326. Which of the following has a bond order of 1.75?					
a) ClO_3^- b) ClO_4^-	c) NO ₃	d) CO ₃ ^{2–}			
327. Higher is the bond order, greater is:					
a) Bond dissociation energy					
b) Covalent character					
c) Bond length					
d) Paramagnetism					
328. Which has the highest ionisation potential?					
a) Na b) Mg	c) C	d) F			
329. Strongest bond is in:					
a) NaCl b) CsCl	c) Both (a) and (b)	d) None of these			
330. Which of the following is not correct with respect	to bond length of the speci	es?			
a) $C_2 > C_2^{2-}$ b) $B_2^+ > B_2$	c) $\text{Li}_2^+ > \text{Li}_2$	d) $0_2 > 0_2^-$			
331. The bond order in O_2^{2-} ion is					
a) 3 b) 2	c) 3/2	d) 1			
332. Which is likely to have the highest melting point?					
a) He b) CsF	c) NH ₃	d) CHCl ₃			
333. Which of the following are not correct?					
a) Lone pair of electrons present on central atom	can give rise to dipole mom	ient			

a) Lone pair of electrons present on central atom can give rise to dipole moment

b) Dipole moment is vector quantity

	has dipole moment		
-	lectronegativities of combining	=	noment
	of N_2^+ from N_2 , the electron is lo		d) o =* orbital
a) a σ-orbital 335. Bond angle of 10	b) a π -orbital	c) a σ^* -orbital	d) a π^* -orbital
555. Dolla aligie of 10		æ	Æ
a) NH ₃	b) H ₂ 0	c) ⊕ H5	d) $\stackrel{oldsymbol{\Theta}}{\mathrm{N}}_{\mathrm{H}_4}$
336. The half of the dif	fference between the number o	f electrons in bonding mole	ecular orbitals and antibonding
molecular orbital	s is known as:		\sim
a) Bond order	b) Proton order	c) Molecular order	d) Electron order
337. Which of the follo	owing set contains species having	ng same angle around the c	central atom?
a) SF_4 , CH_4 , NH_3	b) NF ₃ , BCl ₃ , NH ₃	c) BF ₃ , NF ₃ , AlCl ₃	d) BF ₃ , BCl ₃ , BBr ₃
338. At ordinary temp	erature and pressure, among h	alogens, the chlorine is a ga	as, bromine is a liquid and
iodine is a solid. T	This is because:		
	eat is in the order $Cl_2 > Br_2 > I$		
b) Intermolecular	r forces among molecules of ch	lorine are the weakest and	those in iodine are the
strongest			
-	ensity is $I_2 > Br_2 > Cl_2$		
	tability is $Cl_2 > Br_2 > I_2$		
	owing has lowest bond angle?		N 61-
a) BeF ₂	b) H ₂ 0	c) NH ₃	d) CH ₄
	wing has shortest carbon-carb		
a) C_6H_6	b) C ₂ H ₆	c) C_2H_4	d) C_2H_2
	following constitutes a group of C^{2-} CN= N		
a) $C_2^{2-}, O_2^{-}, CO, NC$		c) CN^- , N_2 , O_2^{2-} , CO_3^{2-}	d) N_2 , O_2^- , NO^+ , CO
	lisation of central atom of a mo	lecule would lead to	
a) Square planar			
b) Tetrahedral ge c) Trigonal bipyr			
d) Octahedral geo			
, , ,	anol are miscible in water due	to	
a) Covalent chara			
b) Hydrogen bon			
c) Oxygen bondir			
d) None of the ab			
344. The shape of ClF ₃			
a) Distorted T- sh		c) Tetrahedral	d) Trigonal planar
	atements among the following		
(1) PH ₅ and BiCl			
	ls are present in SO ₂		
	vel with speed of light		
(4) SeF ₄ and CH ₄	has same shape		
(5) I_3^+ has bent ge	eometry		
a) 1, 3	b) 1, 2, 5	c) 1, 3, 5	d) 1, 2, 4
346. The actual geome	etry of NO_2^- is		
a) Planar	b) Linear	c) V-shape	d) Tetrahedral
347. Which has the low	west anion to cation size ratio?		
a) LiF	b) NaF	c) CsI	d) CsF
	ge accompanying the process gi	ven below is,	
$Na^+(g) + Cl^-(g)$			
a) Hydration ene	rgy b) Ionization energy	c) Electron affinity	d) Lattice energy
			- · ·

349. Which of the following has covalent bond?		
a) Na_2S b) $AlCl_3$	c) NaH	d) MgCl ₂
350. The correct order in which the $0 - 0$ bond length		
	c) $0_3 < 0_2 < H_2 0_2$	d) $0_2 < H_2 0_2 < 0_3$
351. N_2 is less reactive than CN^- due to		
a) Difference in spin quantum number	b) Presence of more elec	ctrons in orbitals
c) Absence of dipole moment	d) None of the above	
352. According to molecular orbital theory for 0^+_2 :		
a) Bond order is less than 0_2 and 0_2^+ is paramagne		× •
b) Bond order is more than O_2 and O_2^+ is paramagn	etic	
c) Bond order is less than O_2 and O_2^+ is diamagnetic	С	
d) Bond order is more than O_2 and O_2^+ is diamagne	etic	
353. As compared to covalent compounds, electrovalen	t compounds generally have	e:
a) Low melting points and low boiling points		
b) High melting points and high boiling points		
c) Low melting points and high boiling points		\mathbf{v}
d) High melting points and low boiling points	Ć	
354. Which is present in peroxides?		
a) 0_2 b) 0^{2-}	c) 0_2^{2-}	d) 0_{2}^{-}
355. Two hybrid orbitals have a bond angle of 120°. The	e percentage ofs character i	n the hybrid orbital is nearly
a) 25% b) 33%	c) 50%	d) 66%
356. Which molecule is T-shaped?		-
a) BeF_2 b) BCl_3	c) NH ₃	d) ClF ₃
357. Which of the following is paramagnetic?		5 0
a) O_2 b) CN^-	c) CO	d) NO ⁺
358. Dipole moment is highest for:		2
a) $CHCl_3$ b) CH_4	c) CHF ₃	d) CCl ₄
359. Which will not conduct electricity?		
a) Aqueous KOH solution b) Fused NaCl	c) Graphite	d) KCl in solid state
360. The ionization potential order for which set is corr	rect?	
a) $Li > K > Cs$ b) $B > Li > K$	c) Cs > Li > B	d) Cs < Li < K
361. The bond that determines the secondary structure	of a protein is:	
a) Coordinate bond b) Covalent bond	c) Hydrogen bond	d) Ionic bond
362. Molecular orbital theory was developed mainly by		
a) Pauling b) Mulliken	c) Thomson	d) Pauling and Slater
363. Which species has lone pair on central atom?		
a) CCl ₄ b) CH ₄	c) NH ₄ ⁺	d) H ₂ O
364. In which of the following molecules/ions are all th	e bonds not equal?	
a) SF ₄ b) SiF ₄	c) XeF ₄	d) BF ₄
365. Super octet molecule is:		
a) F_3 Cl b) PCl_3	c) NH ₃	d) None of these
366. The number of unpaired electrons in a paramagne	tic diatomic molecule of an	element with atomic number
16 is:		
a) 4 b) 1	c) 2	d) 3
367. Which of the following statement is not correct?		
a) Hybridisation is the mixing of atomic orbitals p	rior to their combining into	molecular orbitals
b) <i>sp</i> ² hybrid orbitals are formed from two <i>p</i> -atom	ic orbitals and one <i>s</i> -orbita	1
c) d^2sp^3 hydride orbitals are directed towards the	e corners of a regular octahe	edron
d) <i>dsp</i> ³ hybrid orbitals are all at 90° to one anothe		
368. Which statement is correct?		

368. Which statement is correct?

	a) Pi-bond always exists	-		
	b) Pi-bond can exist inde			
	c) Sigma-bond is weaker	=		
	d) Pi-bond is less reactive	Ũ		
369	. Which of the following pa			N
	a) PCl ₅ and SF ₆	b) SO_2 and NH_3	c) PH ₃ and BCl ₃	d) NH_4^+ and SO_4^{2-}
370	. Which of the following ha	-		
	a) CO ₂	b) <i>p</i> -dichlorobenzene	c) NH ₃	d) CH ₄
371		ng is highest melting halide		
	a) AgCl	b) AgBr	c) AgF	d) AgI
372	. The hybridisation state o	-		
	a) sp ³ d	b) sp^3d^2	c) <i>sp</i> ³	d) d^2sp^3
373		easing bond angles in the fo		
		b) $NO_2^+ < NO_2 < NO_2^-$	_	d) $NO_2^- < NO_2^+ < NO_2^-$
374		e isoelectronic. The decreas	sing order of their size is:	\sim
	a) $S^{2-} > Cl^- > K^+ > Ca^2$			X
	b) $Ca^{2+} > K^+ > Cl^- > S^2$			
	c) $K^+ > Cl^- > Ca^{2+} > S^2$			F
	d) $Cl^- > S^{2-} > Ca^{2+} > K$	<u>z</u> +		
375	. As the <i>s</i> -character of hyb	oridization orbitals increase	s, the bond angle:	
	a) Increases	b) Decreases	c) Does not change	d) Becomes zero
376	•	IF_3 is ionic. This fact can be		
	a) Valence bond theory		c) Lattice energy	d) Fajan rule
377		ng is a correct set with resp	-	_
	a) BeCl ₂ , sp^2 , linear		b) BeCl ₂ , <i>sp</i> ² , triangular p	blanar
	c) BCl_3 , sp^2 , triangular p		d) BCl ₃ , sp^3 , tetrahedral	
378	0	e pairs occupy equatorial p	ositions to minimize	
	a) Lone pair – bond pair	-		
	b) Bond pair – bond pair			
		epulsion and lone pair – bo	nd pair repulsion	
	d) Lone pair – lone pair r			
379	. The correct order of decr			
	a) $HF > SO_2 > H_2O > NI$		b) $HF > H_2 O > SO_2 > NH$	5
	c) $HF > NH_3 > SO_2 > H_2$		d) $H_2 0 > NH_3 > SO_2 > H_3$	IF
380	. The process requiring th			2
	a) $F - F^{-}$	b) $H \rightarrow H^-$	c) $Cl \rightarrow Cl^-$	d) $0 \rightarrow 0^{2-}$
381		ular species, the total numb		
	a) 7, 6, 8	b) 1, 0, 2	c) 6, 6, 6	d) 8, 6, 8
382	. <i>sp</i> ³ hybridisation is foun			
	a) CO ₃	b) BF ₃	c) NO_3^-	d) NH ₃
383		tals interatomic forces are p		
	a) Cu	b) Ag	c) Zn	d) Hg
384		henomenon will occur whe	n two atoms of an element	with same spin of electron
	in orbitals approach each	n other?		
	a) Orbitals will overlap			
	b) Orbitals will not overl	•		
	c) Bonding will take plac			
_	d) A diatomic molecule w			
385	=	cent ionic character, the bo		
	a) Pure covalent	b) Partial covalent	c) Partial ionic	d) Coordinate covalent

386. Which bond angle θ wou	ıld result in the maximum d	lipole moment for the triate	omic molecule <i>vxv</i> ?		
a) $\theta = 90^{\circ}$	b) $\theta = 120^{\circ}$	c) $\theta = 150^{\circ}$	d) $\theta = 180^{\circ}$		
387. The species having bond		•	-)		
a) NO ⁻	b) NO ⁺	c) CN ⁻	d) N ₂		
388. The species having octal	nedral shape is:	-	- <u>-</u>		
a) SF ₆	b) BF ₄	c) PCl ₅	d) BO_3^{3-}		
389. The following compound	ds have been arranged in or	der of their increasing the	mal stabilities. Identify the		
correct order:					
K_2CO_3 (I)	MgCO ₃ (II)				
CaCO ₃ (III)					
	b) IV < II < III < I		d) II < IV < III < I		
390. Which of the following w					
a) Ethane	b) Ether	c) Ethanol	d) Water		
391. Which has the minimum					
a) H—Br	b) H—I	c) I—I	d) H—H		
392. The polarising ability of	_	is highest?	X		
a) Small highly positive	10n				
b) Large positive ion	·		<i>J</i>		
c) Small highly negative	1011				
d) Large negative ion	www.wowoom.org				
393. Which is expected to sho a) ClO ₂	b) SO ₂	c) CO ₂	d) SiO ₂		
394. Highest covalent charact	, -	· · ·	u) 510 ₂		
a) CaF_2	b) CaCl ₂	c) Cal ₂	d) CaBr ₂		
395. The molecule which has	2	c) cul2			
a) CH ₃ Cl	b) NF ₃	c) BF ₃	d) ClO_2		
396. Hydrogen bond is strong	, ,	V ⁻ J ⁻ J			
a) S—HO	b) 0—HS	С) ғ.—.нғ	d) O		
397. The only molecule havin		y	,		
a) 2,2-dimethylpropane					
b) <i>trans</i> -2-pentene					
c) <i>trans</i> -3-hexene					
d) 2,2,3,3-tetramethylbu	itane				
398. Two lone pairs of electro	ons and two bond pairs are	present in:			
a) NH ₃	b) BF ₃	c) CO_3^{2-}	d) NH ₂		
399. The lattice enthalpy and		compounds are given belo	W.		
Compound Lattice	5				
enthalp (in ht mo	10				
(in kJ mo P +780					
Q +1012					
Ř +828					
S +632					
	which is soluble in water is				
a) <i>P</i> and <i>Q</i>	b) Q and R	c) R and S	d) Pand R		
400. The increase in bond or					
-	gth and increase in bond enor	ergy			
b) Decrease in bond leng					
c) Increase in bond length and bond energy d) None of the above					
401. The correct stability order of the following resonance structure is					
401. The correct stability order of the following resonance structure is					

$H_2C = \bar{N} = \bar{N} + H_2C - N = \bar{N}$		
$H_2\bar{C} \longrightarrow N \longrightarrow N H_2\bar{C} \longrightarrow N \longrightarrow N$		
	b) (I)> (III) > (II) > (IV	2
a) (I)>(II) > (IV) > (III)	(1) > (11) > (11) > (11) > (11))
c) $(II) > (I) > (III) > (IV)$	d) $(III) > (I) > (IV) > (II)$)
402. Which is not characteristic of π -bond?		\frown
a) π -bond is formed when a sigma bond already fo	rmed	
b) π -bond is formed from hybrid orbitals	whitele	
c) π -bond may be formed by the overlapping of <i>p</i> -od) π -bond results from lateral overlap of atomic or		
403. A molecule in which sp^2 -hybrid orbitals are used b		ng covalent hand is:
a) He ₂ b) SO ₂	c) PCl ₅	d) N_2
404. Which species has the highest bond order?	c) i ci ₅	u) N ₂
a) O_2 b) O_2^{2-}	c) N_2	d) Both O_2 and O_2^{2-}
405. Molecular shapes of SF ₄ , CF ₄ , XeF ₄ are	0) 112	
a) The same with 2, 0 and 1 lone pair of electron re	espectively	<i>J</i>
b) The same with 1, 1 and 1 lone pair of electrons r		
c) Different with 0, 1 and 2 lone pair of electrons re		
d) Different with 1, 0 and 2 lone pair of electrons re	espectively	
406. The correct sequence of hybridisation of methane,	ethene and acetylene is	
a) sp, sp^2, sp^3 b) sp^2, sp^3, sp	c) <i>sp</i> ³ , <i>sp</i> ² , <i>sp</i>	d) sp^3 , sp , sp^2
407. The nature of the bond in diamond is	\mathbf{X}	
a) Ionic b) Covalent	c) Metallic	d) Coordinate covalent
408. The set representing the correct order of first ioniz	•	
a) $K > Na > Li$ b) $Be > Mg > Ca$	c) $B > C > N$	d) Ge > Si > C
409. Amongst the following, the molecule that is linear i		
a) SO_2 b) BeH_2	c) ClO ₂	d) NO ₂
 410. Which of the following species does not exist under a) Be²⁺ b) Be₂ 		4) I :
a) Be^{2+} b) Be_2 411. How many σ and π – bonds are present in toluene?	c) B ₂	d) Li ₂
a) $3\pi + 8\sigma$ b) $3\pi + 10\sigma$	c) 3π + 15σ	d) 6π + 3σ
412. Octet rule is not valid for the molecule:	CJ 511 150	
a) CO_2 b) H_2O	c) 0 ₂	d) CO
413. CO_2 has the same geometry as:	0) 02	
(A) HgCl_2 , (B) NO_2 , (C) SnCl_4 , (D) $\operatorname{C}_2\operatorname{H}_2$		
a) A and C b) B and D	c) A and D	d) Cand D
414. Concept of bond order in the molecular orbital the	ory depends on the number	r of electrons in the bonding
and antibonding orbitals. The bond order:		
a) Can have a —ve value		
b) Has always an integral value		
✓ c) Is a non-zero quantity		
d) Can assume any +ve value, including zero		
415. The number of σ and π -bonds in pent-4-en-1-yne a		
a) 3, 10 b) 9, 4	c) 4, 9	d) 10, 3
416. The Cl—C—Cl angle in 1, 1, 2, 2-tetrachloroethene		
a) 109.5° and 900° b) 120° and 109.5°	c) 90° and 109.5°	d) 109.5° and 120°
417. Which set has strongest tendency to form anions?		
a) Ga, In, Te b) Na, Mg, Al	c) N, O, F	d) V, Cr, Mn

Z	18. From elementary molecular orbital theory we can gi	ive the electronic configura	ation of the singly positive
	nitrogen molecular ion N_2^+ as		
	a) $l\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \pi 2p^4, \sigma 2p^1$	b) $\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2$	$s^{2},\sigma 2p^{2},\pi 2p^{3}$
	c) $\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p^3, \pi 2p^2$	d) $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2$	
Z	19. NH ₃ has much higher boiling point than PH ₃ becaus	e	
	a) NH_3 has larger molecular weight		
	b) NH_3 undergoes umbrella inversion		
	c) NH_3 forms hydrogen bond		
	d) NH_3 contains ionic bonds whereas PH_3 contains of	covalent bonds	
Z	20. In a crystal, the atoms are located at the positions of		\sim
	a) Maximum potential energy		
	b) Minimum potential energy		
	c) Zero potential energy		
	d) Infinite potential energy		
Z	21. Which substance has the greatest ionic character?		
	a) Cl ₂ O b) NCl ₃	c) PbCl ₂	d) BaCl ₂
Z	22. The conductivity of the metal decreases with increas	ses in temperature because	2
	a) The kinetic energy of the electron increases		
	b) The movement of electrons becomes haphazard		
	c) The kernels start vibrating		
	d) The metal becomes hot and starts emitting radiat	ions	
Z	23. Which of the following when dissolved in water form	ns a solution, <i>i.e.</i> , non-cond	lucting?
	a) Chile salt petre	b) Potash alum	
	c) Green vitriol	d) Ethyl alcohol	
Z	24. Which bond is more polar?		
	a) Cl—Cl b) N—F	c) C—F	d) 0—F
4	25. The pairs of bases in DNA are held together by:	<i>v</i>	
	a) Hydrogen bonds b) Ionic bonds	c) Phosphate groups	d) Deoxyribose groups
Z	26. Which of the following has highest bond angle?		
	a) H_2O b) H_2S	c) NH ₃	d) PH ₃
Z	27. The compound in which carbon atom uses only sp^3	 hybrid orbitals for bond f 	formation is
	a) HCOOH b) NH ₂ CONH ₂	c) (CH ₃) ₃ COH	d) CH ₃ CHO
Z	28. For the type of interactions; (I) Covalent bond, (II) v		
	Dipole-dipole interaction, which represents the corr	ect order of increasing stal	bility?
	a) (I) < (III) < (II) < (IV)		
	b) (II) $<$ (III) $<$ (IV) $<$ (I)		
	c) $(II) < (IV) < (III) < (I)$		
	d) $(IV) < (II) < (III) < (I)$		
4	29. If the ionization potential for hydrogen atom is 13.6	eV, then the ionization pot	ential for He ⁺ ion should
	be:		
	a) 72.2 eV b) 54.4 eV	c) 6.8 eV	d) 13.6 eV
4	30. The hydrogen bonding is strongest in:		
	а) 0—Н S b) S—Н О	c) F—H F	d) F—H O
Z	31. The correct increasing order of polarising power is:		
	a) $Ca^{2+} < Mg^{2+} < Be^{2+} < K^+$		
	b) $Mg^{2+} < Be^{2+} < K^+ < Ca^{2+}$		
	c) $Be^{2+} < K^+ < Ca^{2+} < Mg^{2+}$		
	d) $K^+ < Ca^{2+} < Mg^{2+} < Be^{2+}$		
Z	32. Acetate ion contains:		
	a) One C, O single bond and one C, O double bond		

b) Two C, O single	e bonds		
c) Two C, O doub			
d) None of the ab	ove		
433. Which one is para	magnetic and has the bond o	rder half (0.5)?	
a) F ₂	b) N ₂	c) 0 ₂	d) H ₂ ⁺
434. Which one is corr	ect?		
a) Dinitrogen is p	_		
b) Dihydrogen is	paramagnetic		
c) Dioxygen is pa	_		
d) Dioxygen is dia			
435. IP is influenced by	y:		
a) Size of atom			
b) Charge on nucl			
c) Electrons pres			
d) All of the above			0
	of atomic orbitals of nitrogen	n in NO_2^+ , NO_3^- and NH_4^+ are:	
a) sp, sp^3 and sp^2			*
b) sp , sp^2 and sp^3			5
c) sp^2 , sp and sp^3			
d) sp^2 , sp^3 and sp^3			
437. The bond betwee	n carbon atoms (1) and (2) ir	$n \text{ compound } N \equiv C - CH = CH$	2,
		(1) (2)	
involves the hybr			
a) sp^2 , sp^3	b) <i>sp, sp</i> ²	c) sp, sp^3	d) <i>sp, sp</i>
	wing has lowest boiling point		
a) NaCl	b) CuCl	c) CuCl ₂	d) CsCl
	ct with non-metals, the metal		
a) Share electron	-	-	d) None of the above
	ore tendency to form covalen	-	
a) Ba	b) Be	c) Mg	d) Ca
	ing point of <i>ortho, para, meta</i>	•	
a) $o > m > p$	b) $p > m > o$	c) $m > p > o$	d) $p > o > m$
		XeF_6 , XeF_4 and XeF_2 respective	
a) 6, 4, 2	b) 1, 2, 3	c) 3, 2, 1	d) 0, 3, 2
-	of carbon in diamond, graph	-	
aj 5p , 5p , 5p	b) sp^3 , sp , sp^2	c) <i>sp</i> ² , <i>sp</i> ³ , <i>sp</i>	d) $sp, sp^3 sp^2$
	which is pyramidal in shape		
a) NO ₃	b) PCl ₃	c) CO_3^{2-}	d) SO ₃
	ne pairs of Xe in XeF ₂ , XeF ₄ an		
a) 3, 2, 1	b) 2, 4, 6	c) 1, 2, 3	d) 6, 4, 2
		$B, C \text{ and } D \text{ are, } (A) = 1s^2; (B)$	$(B) = 1s^2, 2s^2 2p^2; (C) =$
$1s^2, 2s^22p^5; (D) =$			
	orm electrovalent bond is ma		
a) <i>A</i>	b) <i>B</i>	c) <i>C</i>	d) <i>D</i>
447. C – C bond order			
a) 1	b) 2	c) Between 1 and 2	d) None of these
		nce in the value of electronega	tivities should be:
a) Equal to or less	s than 1.7		
b) More than 1.7			
c) 1.7 or more			

d) None of the above

a) Cl_2O, ICl_2^-

b) Cl_2^-, ClO_2

449. Which among the following elements has lowest value of ionisation energy?

a) Pb b) Sn c) Si d) C 450. In coordinate bond, the acceptor atoms must essentially contain in its valency shell an orbitals: a) With paired electron b) With single electron c) With no electron d) With three electrons 451. How many σ -and π -bonds are there in the molecule of tetracyanoethylene? $N \equiv C$ $N \equiv C$ a) Nine σ - and nine π b) Five σ - and nine π c) Nine σ - and seven π d) Five σ - and eight π 452. Paramagnetism of oxygen is explained on the basis of its electronic configuration of c) $\binom{*}{\sigma 2s}^{1} (\pi 2p_y)^{1}$ b) $(\pi^{*}_{2}p_{v})^{1}(\pi^{*}_{2}p_{z})^{1}$ a) $(\hat{\pi}_{2}p_{x})^{1}(\pi 2p_{y})^{1}$ 453. The compound possessing most strongly ionic nature is: d) CsC a) $SrCl_2$ b) BaCl₂ c) CaCl₂ 454. The complex ion which has no 'd' electrons in the central metal atom is: b) $[Co(NH_3)_6]^{3+}$ d) $[Cr(H_20)_6]^{3+}$ a) [MnO₄]⁻ c) $[Fe(CN)_6]^{3-1}$ 455. Which of the following species is least stable? b) 0^+_2 d) 0_2^{2-} a) 0_2 c) 0_2^- 456. The dipole moment of HBr is 1.6×10^{-30} C-m and interatomic spacing is 1Å. The % ionic character of HBr is a) 7 b) 10 c) 15 d) 27 457. Which group of atoms have nearly same atomic radius? c) Fe, Co, Ni, Cu a) Na, K, Rb, Cs b) Li, Be, B, C d) F, Cl, Br, I 458. Bond polarity of diatomic molecule is because of a) Difference in electron affinity of the two atoms b) Difference in electronegativities of the two atoms c) Difference in ionisation potential d) All of the above 459. The hybridization of P in PO_4^{3-} is same as in: a) I in ICl₄ b) S in SO_3 c) N in $NO_3^$ d) S in SO_4^{2-} 460. AB is an ionic solid. The ionic radii of A^+ and B^+ are respectively r_c and r_a . Lattice energy of AB is proportional to d) $\frac{1}{(r_c + r_a)}$ a) $\frac{r_c}{r_a}$ c) $\frac{r_a}{r_c}$ b) $(r_c + r_a)$ 461. Which contains a coordinate and covalent bond? b) NH₄Cl d) H_20 a) BaCl₂ c) HCl 462. Covalent radius of Li is 123 pm. The crystal radius of Li will be: d) = $\frac{123}{2}$ pm a) > 123 pm b) < 123 pm c) + 123 pm 463. Which of the following does not contain coordinate bond? b) NH₄⁺ a) BH4 c) CO_3^{2-} d) H_30^+ 464. The bond order of C_2^+ is: b) 2 c) 3/2 d) 1/2 a) 1 465. With increasing bond order, stability of a bond b) Decreases c) Remains unaltered d) None of these a) Increases 466. Molecular orbitals theory was proposed by: a) Werner b) Kossel c) Moseley d) Mullikan 467. The isoelectronic pair is

c) IF_2^+, I_3^-

d) ClO_2^- , ClF_2^+

468. The compound 1,2-butadiene has					
a) sp , sp^2 and sp^3 hybridised carbon atoms	b) Only sn^2 hybridised	b) Only <i>sp</i> ² hybridised carbon atoms			
c) Only <i>sp</i> hybridised carbon atoms		d) Only sp and sp^2 hybridised carbon atoms			
469. The correct order of ionic radii is:	uj olity sp and sp ligt				
a) Fe > Fe ²⁺ > Fe ³⁺ b) $0^{2-} > 0^{-} > 0^{+}$	c) $I^- > I > I^+$	d) All of these			
470. The shape of sulphate ion is					
a) Square planar b) Trigonal	c) Trigonal planar	d) Tetrahedral			
471. Molecular shape of SF_4 , CF_4 and XeF_4 are:	ey mgenarplanar	aj reclanearai			
a) The same with 2, 0 and 1 lone pair of electro	ons respectively				
b) The same with 1, 1 and 1 lone pair of electro		\sim			
c) Different with 0, 1 and 2 lone pairs of electr					
d) Different with 1, 0 and 2 lone pairs of electr					
472. Which of the following is sp^3 hybridised?	1 0				
a) NH_3 b) BH_3	c) PCl ₅	d) AlCl ₃			
473. Sodium chloride is soluble in water but not in	benzene because				
$\Delta H_{ m hdydration}$	$\Delta H_{ m hdydration}$				
a) $< \Delta H_{\text{lattice energy in water}}$ and $\Delta H_{\text{hdydration}}$	b) > $\Delta H_{\text{lattice energy in v}}$	$_{\rm water}$ and $\Delta H_{\rm hdydration}$			
$> \Delta H_{\text{lattice energy in benzene}}$	$<\Delta H_{\text{lattice energy in b}}$				
$\Delta H_{\rm hdydration}$	$\Delta H_{\rm Hdydration}$				
c) = $\Delta H_{\text{lattice energy in water}}$ and $\Delta H_{\text{hdydration}}$	d) $< \Delta H_{\text{lattice energy in v}}$	A and AH duration			
$< \Delta H_{\text{lattice energy in benzene}}$	$= \Delta H_{lattice energy in the second seco$				
474. The pair likely to form the strongest hydrogen		benzene			
	COOH c) CH_3COOH and CH_3COOH and CH_3COOH c) CH_3COOH and CH_3COOH an	COO(d) SiH, and SiCl.			
475. The number of sigma and pi bonds in 1- butan		sootu j shii4 and sici4			
a) 5σ and 5π b) 6σ and 4π	c) 7σ and 3π	d) 8σ and 2π			
476. Which is soluble in water?	c) / o una on				
a) AgF b) AgCl	c) AgBr	d) AgI			
477. Which of the following compounds has the low	, , ,				
a) CaF ₂ b) CaCl ₂	c) CaBr ₂	d) CaI ₂			
478. sp^3 hybridisation is not found in					
a) H_2O b) CH_4	c) BCl ₃	d) NH ₃			
479. Amongst H_2O , H_2S , H_2Se and H_2Te , the one with	ith highest boiling point is:				
a) H ₂ O because of hydrogen bonding					
b) H ₂ Te because of higher molecular weight					
c) H ₂ S because of hydrogen bonding					
d) H_2 Se because of lower molecular weight					
480. Which of the following is false?					
a) Methane molecule is tetrahedral in shape					
b) Nickel tetrachloride is square planar in sha	-				
c) P_2O_5 is like two pyramids joined at their ap	ices				
d) Acetylene is non-linear		1.			
481. The pair of elements which on combination ar		-			
\checkmark a) Na and Ca b) K and O ₂	c) O_2 and Cl_2	d) Al and I ₂			
482. Among the following the maximum covalent cl					
a) FeCl ₂ b) SnCl ₂ 483. Dipole-dipole attractive forces are strongest b	c) AlCl ₃ etween the molecules of	d) MgCl ₂			
a) He b) CH ₄	c) CO_2	d) H_20			
484. The type of hybridization of sulphur atom pres	· -				
a) sp , sp^2 b) sp^2 , sp^2					
485. The electrons used in bonding atoms:	c, c, c, c,	45,99,99			
too, the electrons used in bonding atoms.					

a) Belong to outermost shell

b) Belong to penultimate shell

c) Belong to outermost shell and sometimes penultimate shell

d) Belong to penultimate shell and sometimes to outermost shell

498. In OF₂, number of bond pair and lone pairs of electrons are respectively:

486. Given are 0_2 , 0_2^+ , 0_2^{2+} and 0_2^{2-} respectively. Find the correct increasing bond order

Here interval and
$$2_{1}^{2} < 0_{2}^{2} < 0_{2}^{2}$$
 or $2_{2}^{2} < 0_{2}^{2} < 0_{2}^{2}$ or $2_{2}^{2} < 0_{2}^{2} < 0_{2}^{2}$ or $2_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0$

	a) 2, 6	b) 2, 8	c) 2, 10	d) 2, 9			
	499. In which pair, the first at	om or ion is not larger than	the second?				
	a) N, F	b) Cl ⁻ , Cl	c) 0, S	d) Fe ²⁺ , Fe ³⁺			
	500. The maximum number of	f hydrogen bonds that a mo	lecule of water can have is				
	a) 1	b) 2	c) 3	d) 4			
	501. The isoelectronic species						
	$I = CH_3^+; II = NH_2^+; III = NH_2^+$	Η ₄ ; IV—NH ₃					
	a) I, II, III	b) II, III, IV	c) I, II, IV	d) II, I			
	502. Dipole moment is exhibit	ed by:					
	a) 1, 4-dichlorobenzene						
	b) 1, 2-dichlorobenzene	_					
	c) <i>Trans</i> - 1, 2-dichloroet						
	d) Trans-1, 2-dichloro-2-						
	503. In a multi-electron atom,		is:				
	a) Less than that of 2 <i>s</i> -or			\sim			
	b) More than that of 2 <i>s</i> -o		^	X			
	c) Equal to that of 2 <i>s</i> -orb						
	d) Double that of 2 <i>s</i> -orbit						
	504. In which molecule the cer	=		-			
	a) NH_2^-	b) BeF ₃	c) SO_2Cl_2	d) SO ₄ ²⁻			
	505. RbO_2 is	motia	h) Dependent diamagn	atia			
	a) Peroxide and paramagc) Superoxide and param		b) Peroxide and diamagnedd) Superoxide and diamagned				
	506. Ionization energy of nitro	-		gnetic			
	a) Nucleus has more attra		ecause.				
	b) Half-filled <i>p</i> -orbitals and		Y				
	c) Nitrogen atom is small						
	d) More penetration effect						
	507. The high melting point ar		lvents of sulphanilic acid a	re due to itsstructure			
	a) Simple ionic	b) Cubic	c) Bipolar ionic	d) hexagonal			
	508. Which of the following do						
	a) SO_2	b) H_2SO_3	c) HNO ₂	d) HNO ₃			
	509. Which of the following se	quence regarding ionisatio	n potential of coinage meta	l is correct:			
	a) Cu > Ag > Au	b) Cu < Ag < Au	c) Cu > Ag < Au	d) Ag > Cu < Au			
	510. Which, molecule has zero	dipole moment?					
	a) HBr	b) AgI	c) PbSO ₄	d) H ₂ O			
	511. BCl ₃ is a planar molecule	, while NCl ₃ is pyramidal, b	ecause				
	a) N – Cl bond is more co	valent than B – Cl bond					
	b) Nitrogen atom is small						
	c) B – Cl bond is more po						
		d) BCl ₃ has no lone pair of electrons but NCl ₃ has a lone pair of electrons					
(512. Hybridisation of the unde	erline atom changes in					
	a) <u>A</u> lH ₃ changes to AlH ₄		b) $H_2 O$ changes to $H_3 O^+$				
	c) $\underline{N}H_3$ changes to NH_4^+		d) In all cases				
	513. Which molecule has hydr	• •					
	a) CH ₄	b) СН ₃ СООН	c) GeH ₄	d) H ₂ Te			
	514. The energy released whe	-					
	a) Ionization energy	b) Solvation energy	c) Electronegativity	d) Electron affinity			
	515. In NO_3^- ion, number of bo						
	a) 2, 2	b) 3, 1	c) 1, 3	d) 4, 8			

516. Which has sp^2 -hybridisation?						
a) CO_2 b) SO_2	c) N ₂ 0	d) CO				
517. A sp^3 -hybrid orbital contains:	<i>y</i> 2	,				
a) 1/4 <i>s</i> -character b) 1/2 <i>s</i> -character	c) 2/3 s-character	d) 3/4 <i>s</i> -character				
518. In the formation of NO ⁺ from NO, the electron is re	moved from					
a) a σ orbital b) a π orbital	c) a σ^* orbital	d) a π^* orbital				
519. The decreasing order of the second ionization ener	gy of K, Ca and Ba is:					
a) K > Ca > Ba b) Ca > Ba > K	c) Ba > K > Ca	d) K > Ba > Ca				
520. The value of <i>n</i> in the molecular formula $Be_nAI_2Si_6G$	0 ₁₈ is	•				
a) 1 b) 2	c) 3	d) 4				
521. Compound X is anhydride of sulphuric acid. The m	umber of σ bonds and the	number of π - bonds present				
in Xare, respectively.						
a) 3, 3 b) 4, 2	c) 2, 4	d) 4, 3				
522. OF ₂ is:						
a) Linear molecule and <i>sp</i> -hybridized						
b) Tetrahedral molecule and sp^3 -hybridized	•	X				
c) Bent molecule and sp^3 -hybridized						
d) None of the above		<i>J</i>				
523. Which is not true in case of ionic bond?						
a) It is linear bond						
b) It is 100% ionic						
c) It is formed between two atoms with large elect	ronegativity difference					
d) None of the above						
524. Which of the following are possible resonating stru	cture of $N_20?$					
a) I and II b) I and III	c) I, II and III	d) All of these				
525. The number of σ and π – bonds in a molecule of action						
a) 2, 5 b) 3, 4	c) 4, 3	d) 5, 2				
526. Strongest hydrogen bond is present in		~, ~, <u>_</u>				
	c) 0——HS	d) FF				
527. In the cyanide ion, the formal negative charge is on						
a) C						
b) N						
c) Both C and N						
d) Resonate between C and N						
528. The trigonal bipyramidal geometry results from th	e hybridisation					
a) dsp^3 or sp^3d b) dsp^2 or sp^2d	c) d^2sp^3 or sp^3d^2	d) d^3p^2 or d^2p^3				
529. Which one of the following molecules has the smal	lest bond angle?					
a) NH ₃ b) PH ₃	c) H ₂ 0	d) H ₂ Se				
530.						
The H H bond angle in H ₂ O is 104.5. This fac	t can be best explained wit	h the help of				
The H H bond angle in H_2O is 104.5. This fact can be best explained with the help of a) Valence shell electron pair repulsion (VSEPR)b) Molecular orbital theory						
theory						
c) Presence of hydrogen bond	d) Electronegativity dif	ference between hydrogen				
, , , ,	and oxygen atoms					

531. Which of the two ions fr	-		explained by the same			
hybridization of orbitals	, NO ₂ , NO ₃ , NH ₂ , NH ₄ , SCN					
a) NO_2^- and NH_2^-	b) NO_2^- and NO_3^-	c) NH_4^+ and NO_3^-	d) SCN ^{$-$} and NH ^{$-$}			
532. Which of the following is						
a) SO ₃	b) CO ₂	c) CS_2	d) BeCl ₂			
533. Which contains both cov	alent and ionic bonds?					
a) CCl ₄	b) KCN	c) CaCl ₂	d) H ₂ 0			
534. In the formation of NaCl	-	Cl:				
a) Sodium and chlorine						
b) Sodium and chlorine	-		\sim			
c) Sodium loses but chlo	-					
d) Sodium gains but chlo						
535. Which of the following h		a) C II	d) SO_2			
a) CCl_4	b) C_2H_4	c) C_2H_2				
			- orbitals (ii) one sigma bond			
X?	orbitals and (III) one <i>it</i> bon	a formed by p_x and p_z orbi	tals. Which of the following is			
a) $C_2 H_6$	b) C ₂ H ₃ Cl	c) $C_2H_2Cl_2$	d) C_2H_4			
537. The lowest ionization en						
a) $1s^2$, $2s^22p^6$, $3s^1$	b) $1s^2$, $2s^22p^5$	c) $1s^2$, $2s^22p^6$	d) $1s^2$, $2s^22p^6$, $3s^2$			
538. Which is correct in the fo		c) 13, 23 2p	uj 13 , 23 2p , 33			
	.99Å, while that of Cl ⁺ ion i	is 1.54 Å				
-	.99 Å, while that of Na atom					
-	is 0.95 Å, while that of Cl ⁻					
).95 Å, while that of Na ⁺ io					
539. How many unpaired elec						
a) 1	b) 2	c) 3	d) 4			
540. Which one of the followi	ng compounds has the sma	allest bond angle in its mol	ecule?			
a) SO ₂	b) OH ₂	c) SH ₂	d) NH ₃			
541. Which of the following is a) N ₂ O	s isostructural with CO ₂ ?					
		c) N_2O_5	d) NO			
_	542. The electronic configuration of four elements L, P, Q and R are given in brackets					
	$L(1s^2, 2s^2, 2p^4), P(1s^2, 2s^2, 2p^6, 3s^1), Q(1s^2, 2s^2, 2p^6, 3s^2, 3p^5), R(1s^2, 2s^2, 2p^6, 3s^2)$ The formula of ionic					
-	formed between these elen					
			d) LP , R_2L , P_2Q , and RQ			
	g ionisation processes, the	e bond order has increased	l and the magnetic behaviour			
has changed?		$\mathbf{b} = \mathbf{c} \mathbf{c}^{\dagger}$				
	b) NO \rightarrow NO ⁺		d) $N_2 \rightarrow N_2^+$			
544. The size of ionic species a) $Cl^{7+} > Si^{4+} > Mg^{2+} >$		der:				
b) Na ⁺ > Mg ²⁺ > Si ⁴⁺ >						
$M_{1} = M_{1} = M_{2} = M_{2$	> CI < C;4+					
c) $Na^+ > Mg^{2+} > Cl^{7+} > d$ d) $Cl^{7+} > Na^+ > Mg^{2+} > d$	> 31 < \$;4+					
	O d) Cl ⁷⁺ > Na ⁺ > Mg ²⁺ > Si ⁺⁺ 545. Which of the following has the minimum bond length?					
a) 0_2	b) 0^+_2	c) 0_2^-	d) 0_2^{2-}			
546. In acetylene molecule, b	, <u>-</u>	, 1	uj 02			
a) Three pi bonds		b) One sigma and two p	i bonds			
c) Two sigma and one pi	i bonds	d) Three sigma bonds				
547. The ionic radii of N^{3-} , O^{2}		, ,				
a) 1.36, 1.40, 1.71			d) 1.71, 1.36, 1.40			
,, -,	, , ,	, , -,	, ,, -			

548. Bond order of 1.5 is shown by: a) $0_2^{2^-}$ b) 0_2 c) 0^+_2 d) 0_{2}^{-} 549. In which of the process, the bond order increases and magnetic behaviour changes? c) NO \rightarrow NO⁺ d) $0_2 \rightarrow 0_2^+$ a) $N_2 \rightarrow N_2^+$ b) $C_2 \rightarrow C_2^+$ 550. Which involves a bond forming process? a) Stretching rubber b) Dissolution of sugar in water c) Rusting of iron d) Emission of γ -rays by radioactive iron 551. Which is paramagnetic? a) Cl_2O_6 b) $Cl_2 O_7$ c) $Cl_2 O$ d) ClO_2 552. Which one of the following pairs of molecules will have permanent dipole moments for both members? a) SiF₄ and NO₂ b) NO_2 and CO_2 c) NO_2 and O_3 d) SiF₄ and CO_2 553. The state of hybridization of boron and oxygen atom in boric acid (H₃BO₃) is respectively: a) sp^3 , sp^3 b) sp^2 , sp^3 c) sp^3 , sp^2 d) sp^2 , sp^2 554. The correct order towards bond angle is d) $sp^2 < sp^3 < sp$ b) $sp < sp^2 < sp^3$ c) $sp < sp^3 < sp^2$ a) $sp^3 < sp^2 < sp$ 555. Which orbital is used by oxygen atom to form a sigma bond with other oxyen atom in O_2 molecule? b) sp^2 -hybrid orbital c) sp^3 - hybrid orbital d) sp- hybrid orbital a) Pure *p*-orbital 556. Which of the following is a linear molecule? a) BeCl₂ b) H_20 d) CH_4 557. Which involves breaking of covalent bond? c) Melting SiO₂ a) Boiling H_2S b) Melting KCN d) Boiling CF₄ 558. For $\overline{N}H_2$, the best three-dimensional view is 559. For the four successive transition elements (Cr, Mn, Fe and Co), the stability of +2 oxidation state will be there in which of the following order? a) Cr > Mn > Co > Feb) Mn > Fe > Cr > Coc) Fe > Mn > Co > Cr d) $\begin{array}{l} \text{Co} > \text{Mn} > \text{Fe} > \text{Cr} \\ (\text{At. no. Cr} = 24, \text{Mn} = 25, \text{Fe} = 26, \text{Co} = 27) \end{array}$ 560. In PO_4^{3-} , the formal charge on each on each oxygen atom and the P – O bond order respectively are b) -0.75, 1.0 a) -0.75, 0.6 c) −0.75, 1.25 d) -3, 1.25561. An element *X* has 3 electrons in *p*-orbitals and also belongs to III period. Its molecular formula should be: a) X b) X_2 d) X₅ c) X₄ 562. Elements having six electrons in its outermost orbit generally form: a) Complex ion b) Negative ion c) Positive ion d) Zwitter ion 563. Oxygen is divalent, but sulphur exhibits variable valency of 2, 4 and 6, because: a) Sulphur is less electronegative than oxygen b) Sulphur is bigger atom than oxygen c) Ionisation potential of sulphur is more than oxygen d) Of the presence of *d*-orbitals in sulphur 564. Of the following sets which one does not contain isoelectronic species? a) $BO_3^{3-}, CO_3^{2-}, NO_3^{-}$ b) $SO_3^{2-}, CO_3^{2-}, NO_3^{-}$ c) CN^-, N_2, C_2^{2-} d) PO_4^{3-} , SO_4^{2-} , ClO_4^{-} 565. In which of the following, unpaired electrons are present?

KO_2 , AlO_2^- , BaO_2 , NO_2^+							
a) NO_2^+ , BaO_2 b) KO_2 , AlO_2^-	c) Only KO ₂	d) Only BaO ₂					
566. Which transition involves maximum amount of energy?							
a) $M^{-}(g) \rightarrow M(g) + e$							
b) $M^{-}(g) \rightarrow M^{+}(g) + 2e$							
c) $M^+(g) \to M^{2+}(g) + e$							
d) $M^{2+}(g) \to M^{3+}(g) + e$							
567. What is the nature of the bond between B and O in $(C_2H_5)_2OBH_3$?							
a) Covalent	b) Coordinate covalen	nt					
c) Ionic bond	d) Banana shaped bor						
568. Which does not use sp^3 -hybrid orbitals							
a) BeF ₃ b) OH_3^+	c) NH ₄ ⁺	d) NF ₃					
569. Hybridisation of C_2 and C_3 of	- J - Ŧ						
$H_3C - CH = C = CH - CH_3$ are							
a) sp, sp^3 b) sp^2, sp	c) sp^2, sp^2	d) <i>sp</i> , <i>sp</i>					
570. Maximum covalence of an atom of an ele							
a) Number of unpaired electrons in the	s-and p-orbitals of valency shell						
b) Number of unpaired electrons in the							
c) Total number of electrons in the <i>s</i> -an							
d) Total number of electrons in the <i>p</i> -or	-						
571. Which main group elements have a diffe		s than their group number?					
a) Alkali metals b) Noble gase		d) None of these					
572. The forces present in the crystals of nap	hthalene are:						
a) Van der Waals' forces b) Electrostat	tic forces c) Hydrogen bonding	d) None of these					
573. Which does not show inert pair effect?							
a) Al b) Sn	c) Pb	d) Thallium					
574. The electronic theory of bonding was pr	oposed by						
a) Pauling b) Lewis 📈	c) Bronsted	d) Mullikan					
575. The correct order of decreasing first ion	ization potential is:						
a) $C > B > Be > Li$ b) $C > Be > I$		d) Be > Li > B > C					
576. The hybridisation of orbitals of N atom i		vely					
a) sp, sp^2, sp^3 b) sp^2, sp, sp	b^3 c) sp, sp^3, sp^2	d) sp^2 , sp^3 , sp					
577. Which of the following is more ionic?							
a) NaCl b) KCl	c) MgCl ₂	d) CaCl ₂					
578. The species showing $p\pi$ - $d\pi$ overlapping							
a) NO_3^- b) PO_4^{3-}	c) CO ₃ ^{2–}	d) NO_2^-					
579. H_2O has a net dipole moment, while BeF		:					
a) H_2O molecule as linear while BeF ₂ is							
b) BeF ₂ molecule is linear, while H_2O is							
c) Fluorine is more electronegative than							
d) Be is more electronegative than oxyg							
580. Among the following which is the strong							
a) Cl_2 b) F_2	c) Br ₂	d) I ₂					
581. Which of the following molecule in its v	valence shell has three bond pairs o	t electrons and one lone pair of					
electrons?							
a) NH_3 b) H_2O	c) BF ₃	d) CO ₂					
582. Which of the following statements is cor							
a) All carbon to carbon bonds contain a σ - bond and one or more π - bonds							
b) All carbon to hydrogen bonds are π -							
c) All oxygen to hydrogen bonds are hyd							

d) All carbon to hydrogen bonds are σ - bonds		
583. Which of the following has sp^2 hybridisation?		
a) C_2H_6 b) C_2H_4	c) BeCl ₂	d) C_2H_2
584. The formation of energy bonds in solids are in accor	dance with	
a) Heisenberg's uncertainty principle	b) Bohr's theory	
c) Ohm's law	d) Rutherford's atomic mo	odel
585. Which of the following configuration is associated w	ith biggest jump between 2	nd and 3rd <i>IE</i> ?
a) $1s^2$, $2s^22p^2$ b) $1s^2$, $2s^22p^6$, $3s^1$	c) $1s^2$, $2s^22p^6$, $3s^2$	d) $1s^2$, $2s^22p^1$
586. The predominent intermolecular forces in hydrogen	fluoride is due to:	
a) Dipole-induced dipole interaction		$\langle \langle \rangle$
b) Dipole-dipole interaction		
c) Hydrogen bond interaction		
d) Dispersion interaction		
587. Correct order of bond length is		
a) $CO_3^{2-} > CO_2 > CO$	b) $CO_2 > CO > CO_3^{2-}$	
c) $CO > CO_2 > CO_3^{2-}$	d) None of these	\mathbf{v}
588. Which of the following molecules has pyramidal sha		
a) PCl ₃ b) SO ₃	c) CO_3^{2-}	d) $NO_{\overline{3}}$
589. The molecular electronic configuration of Be_2 is	, 5	ۍ - ر
	* * .	d) None of the above
a) $\sigma ls^2 \overset{*}{\sigma} ls^2 \sigma 02s^2 \overset{*}{\sigma} 2p^2$ b) $KK\sigma 2S^2$	c) $\sigma ls^2 \overset{*}{\sigma} ls^2 \sigma 02s^2 \overset{*}{\sigma} 2s^2$	a, none or the ubove
590. The maximum number of 90° angles between bond	pair-bond pair of electrons	is observed in
a) dsp^3 hybridisation	b) $sp^3 d$ hybridization	
c) <i>dsp</i> ² hybridisation	d) $sp^3 d^2$ hybridisation	
591. In which of the following arrangement the order is n		nerty indicated against it?
a) Increasing size : $Al^{3+} < Mg^{2+} < Na^+ < F^-$	or correct according to pro	
b) Increasing IE_1 : B < C < N < 0		
c) Increasing EA_1 : I < Br < F < Cl		
d) Increasing metallic radius : Li $<$ Na $<$ K $<$ Rb		
592. Most covalent halide of aluminium is:		
a) $AlCl_3$ b) All_3	c) AlBr ₃	d) AlF ₃
593. The bond order of individual carbon-carbon bonds i		
a) One	II DEIIZEIIE 13.	
b) Two		
c) Between 1 and 2		
d) One and two alternately		.)
594. In pyrophosphoric acid, $H_4P_2O_7$, number of σ and $d\pi$		
a) 8 and 2 b) 6 and 2	c) 12 and zero	d) 12 and 2
595. The percentage s – character of the hybrid orbitals in		
a) 25, 33, 50 b) 25, 50, 75	c) 50, 75, 100	d) 10, 20, 40
596. The types of bonds present in $CuSO_4 \cdot 5H_2O$ are only		
a) Electrovalent and covalent		
) Electrovalent and co-ordinate		
c) Electrovalent, covalent and co- ordinate covalent		
d) Covalent and co-ordinate covalent		
597. Which pair represents isostructural species?		
a) CH_3^- amd CH_3^+ b) NH_4^+ and NH_3	c) SO_4^{2-} and BF_4^{-}	d) NH_2^- and BeF_2
598. In which of the following species, all the three types	of hybrid carbons are prese	ent?
a) $CH_2 = C = CH_2$	b) $CH_3 - CH = CH - CH_2^+$	
c) $CH_3 - C \equiv C - CH_2^+$	d) $CH_3 - CH = CH - CH_2^-$	
	-	

Page | 37

599. Which statement is not correct?		
a) Double bond is shorter than a single bond.		
b) Sigma bond is weaker than π -bond.		
c) Double bond is stronger than a sigma bond.		
d) Covalent bond is stronger than hydrogen bond.		
600. The pair having similar geometry is:		
a) BF_3 , NH_3 b) BF_3 , AIF_3	c) BeF_2, H_2O	d) BCl ₃ , PCl ₃
601. Which of the following is largest?	, , ,	
a) Cl ⁻ b) S ²⁻	c) Na ⁺	d) F ⁻
602. The AsF ₅ molecule is trigonal bipyramidal. The hyb	,	
	-	
a) $d_{x^2-y^2}, d_{z^2}, s, p_x, p_y$ b) d_{xy}, s, p_x, p_y, p_z	c) $s, p_x, p_y, p_z, d_{z^2}$	d) $d_{x^2-y^2}$, s, p_x , p_y
603. Consider the following halogen containing compound	nds	
(A) $CHCl_3$ (B) CCl_4		
(C) CH_2Cl_2 (D) CH_3Cl		
(E)		
		V ·
CI()CI	Ć	
The compounds with a net zero dipole moment are		
a) B and E only b) C only	c) C and D only	d) A and D only
604. Alkali metals in each period have:		
a) Largest size		
b) Lowest <i>IE</i>		
c) Highest <i>IE</i>		
d) Highest electronegativity		
605. In a regular octahedral molecule, MX_6 the number of		S
a) Three b) Two	c) Six	d) Four
606. Valency means:		
a) Combining capacity of an element		
b) Atomicity of an element		
c) Oxidation number of an element		
d) None of the above		
607. Which does not form two or more chlorides?		
a) Na b) Hg	c) Cu	d) Fe
608. Which has the largest first ionisation energy?	c) cu	ujre
a) Li b) Na	c) K	d) Rb
609. Polarization of electrons in acrolein may be written	as:	
a) $s^{-}_{CH_2=CH-CH=O}$ b) $s^{-}_{CH_2=CH-CH=O}$	c) $\delta^{-} \delta^{+}$	d) δ^+
	$CH_2 = CH - CH = O$	$CH_2 = CH - CH = O$
610. Which bond has the highest bond energy?		
a) Coordinate bond b) Sigma bond		d) Dolon covalent hand
611. In which of the following molecules the van der Wa	c) Multiple bond	d) Polar covalent bond
5	, ,	-
determining the melting and boiling point?	, ,	-
determining the melting and boiling point?	als' forces is likely to be the	-
a) CO	als' forces is likely to be the b) H ₂ S	-
a) CO c) Br ₂	als' forces is likely to be the b) H ₂ S d) HCl	e most important in
 a) CO c) Br₂ 612. The higher values of specific heat of water in compared 	als' forces is likely to be the b) H ₂ S d) HCl	e most important in
 a) CO c) Br₂ 612. The higher values of specific heat of water in comparable a) High dielectric constant 	als' forces is likely to be the b) H ₂ S d) HCl	e most important in
 a) CO c) Br₂ 612. The higher values of specific heat of water in compa a) High dielectric constant b) Polarity 	als' forces is likely to be the b) H ₂ S d) HCl	e most important in
 a) CO c) Br₂ 612. The higher values of specific heat of water in comparance of the specific heat of water in comparance of the specific heat of water in comparance of the specific heat of the specific heat of water in comparance of the specific heat of	als' forces is likely to be the b) H ₂ S d) HCl	e most important in
 a) CO c) Br₂ 612. The higher values of specific heat of water in compa a) High dielectric constant b) Polarity 	als' forces is likely to be the b) H ₂ S d) HCl	e most important in

613. Which contains both polar and non-polar covalent bonds?

	a) NH ₄ Cl		
	b) HCN		
	c) H ₂ O ₂		
	d) CH ₄		
	614. How many – bonds are present in nap	hthalene?	
	a) 4 b) 5	c) 6	d) 7
	615. If the electron pair forming a bond be	tween two atoms A and B is not in	the centre, then the bond is
	a) Polar bond b) Single b	-	d) Non-polar bond
	616. Which of the following species in non-	-linear?	
	a) ICl_2^- b) I_3^-	c) N ₃	d) ClO_2^-
	617. The bond order of CO molecule on the	•	
	a) Zero b) 2	c) 3	d) 1
	618. Which one is the strongest bond?		
	a) Cl—F b) F—F	c) Br—F	d) Br—Cl
	619. Which of the following compound has	maximum volatility?	
	ОН ОН	ОН	соон
	\land \downarrow		ЮН "
	a) () b) ()	c)	
	$\langle \rangle$		
	~	Соон	\checkmark
	СООН		
	620. In the following electron-dot structur	e, calculate the formal charge from	left to right nitrogen atom;
	N N		
	•• •• a) -1, -1, +1 b) -1, +1,-1	c) +1, -1, -1	d) +1, -1, +1
	-		
	621. Hybridisation shown by carbon and o		
	a) sp^2 , sp^2 b) sp^3 , sp^3 622. The molecule which has pyramidal sh		d) sp^2 , sp^3
		-	d) NO=
	a) PCl_3 b) SO_3	c) CO_3^{2-}	d) NO_3^-
	623. The correct increasing bond angles of a) $BF_3 < NF_3 < PF_3 < ClF_3$	del 15.	
	b) $ClF_3 < PF_3 < NF_3 < ClF_3$		
	c) $BF_3 \approx NF_3 < PF_3 < CIF_3$		
	d) $BF_3 < NF_3 < PF_3 > CIF_3$		
	624. Van der Waals' forces are applied to:		
	a) Inert gases only		
	b) Rare gases only		
	c) Mixture of gases		
	d) Elementary gases only		
	625. Which bond angle results in the minir	num dipole moment for the triaton	nic molecule <i>XY</i> ₂ shown below?
(a) 90° b) 120°	c) 150°	d) 180°
	626. Which shows the least dipole momen	•	
	a) CHCl ₃ b) CH ₃ CH ₂		d) CCl ₄
	627. Which force is strongest?		
	a) Dipole-dipole forces		
	b) Ion-ion forces		
	c) Ion-dipole forces		
	d) Ion-induced dipole forces		
	628. Which molecule has linear structure?		

a) CO_2 b) H_2O c) SO_2 d) H_2O_2 629. Out of the compounds below the vapour pressure of (*B*) at a particular temperature is

OH NO₂ NO₂ (B)(A)a) Higher than that of (A) b) lower than that of (*A*) c) Higher or lower than (A), depending on the size ofd) Same as that of (A) the vessel 630. Which ion has a higher polarizing power? c) Ca²⁺ a) Mg²⁺ b) Al³⁺ 631. Which of the following represent the given mode of hybridisation $sp^2 - sp^2 - sp$ from left to right? a) $H_2C = CH - C \equiv CN$ b) HC \equiv C - CH₂ - C \equiv CH c) $H_2C = C = C = CH_2$ d) $HC = C - CH_2 - C = CH$ 632. The solubility of KCl is relatively more in (where D is dielectric constant): a) $C_6 H_6 (D = 0)$ b) $(CH_3)_2CO(D = 2)$ c) $CH_3OH(D = 32)$ d) $CCl_4(D = 0)$ 633. Elements have electronegativities 1.2 and 3.0, bond formed between them would be b) Covalent c) Co-ordinate a) Ionic d) metallic 634. Among the following, the pair in which the two species are not isostructural, is a) SiF₄ and SF₄ b) IO₃⁻ and XeO₃ c) BH_4^- and NH_4^+ d) PF_6^- and SF_6 635. Which has zero dipole moment? a) ClF b) PCl_3 c) SiF₄ d) CFCl₃ 636. Which of the following molecules is covalent and shows expanded octet in its formation? a) HF b) NF_3 c) BF_3 d) ClF_3 637. Which one of the following is a correct set? a) H_2O , sp^3 , angular b) $BCl_3 sp^3$, angular c) NH₄, dsp^2 , square planar d) CH_4 , dsp^2 , tetrahedral 638. Which property of halogens increases from F to I? a) Electronegativity b) First ionization energy c) Bond length in the molecule d) None of the above 639. The total number of bonds in acetylene molecule is: a) One d) Five b) Two c) Three 640. The number of antibonding electron pairs in O_2^{2-} molecular ion on the basis of molecular orbital theory is (Atomic number of 0 is 18.) a) 5 b) 4 c) 3 d) 2 641. Variable valency is characteristic of: a) Noble gases b) Alkali metals c) Transition metals d) Non-metallic elements 642. In which molecule all atoms are coplanar? a) CH4 b) BF_3 c) PF_3 d) NH_3

643. During change of O_2 to O_2^- ion, the electron adds o a) π* orbital b) π orbital	n which one of the following c) σ* orbital	g orbitals? d) σ orbital
644. Bond energy of covalent O—H bond in water is:	cj of orbital	aj o orbitar
a) Greater than bond energy of hydrogen bond		
b) Equal to bond energy of hydrogen bond		
c) Less than bond energy of hydrogen bond		
d) None of the above		
645. Which one of the following has a coordinate bond?	2	
a) NH_4Cl b) $AlCl_3$	c) NaCl	d) Cl_2
646. Which carbon is more electronegative?	2	
a) sp^3 hybridised carbon		
b) <i>sp</i> – hybridised carbon		
c) sp^2 hybridised carbon		
d) Always same irrespective of its hybrid state		
647. Among NH_3 , $BeCl_2$, CO_2 and H_2O , the non-linear m	olecules are:	
a) $BeCl_2$ and H_2O b) $BeCl_2$ and CO_2	c) NH ₃ and H ₂ O	d) $\rm NH_3$ and $\rm CO_2$
648. Paramagnetism is exhibited by molecules:	C	
a) Not attracted into a magnetic field		>
b) Containing only paired electrons		
c) Carrying a positive charge		
d) Containing unpaired electrons		
649. Which molecule has the largest dipole moment?		
a) HF b) HCl	c) HBr	d) HI
650. The intermolecular attractive forces vary in the or	der:	
a) Water < alcohol < ether		
b) Water > alcohol > ether	\mathbf{V}	
c) Alcohol > water < ether		
d) Ether > water > alcohol		
651. Which of the following species has a linear shape?		
a) NO_2^+ b) O_3	c) NO_2^-	d) SO_2
652. The electronic configuration of 4 elements K , L , M	and N are,	
$K = 1s^2, 2s^22p^1$ $L = 1s^2, 2s^22p^6$ $M = 1s^2, 2s^22p^4$ $N = 1s^2, 2s^22p^3$		
-	with double hand in	
The element that would form a diatomic molecule		A) M
a) <i>K</i> b) <i>L</i> 653. Which of the following will provide the most effici	c) M	d) <i>N</i>
a) $s - s$ b) $s - p$	c) $sp^2 - sp^2$	d) cm cm
		d) <i>sp</i> – <i>sp</i>
654. The state of hybridization of C_2 , C_3 , C_5 and C_6 of th CH_3 CH_3	e fiyul ocal boll,	
$CH_{3}{6}C-CH=CH-C-C\equiv CH_{4}$		
CH ₃		
✓ is in the following sequence:		
a) sp , sp^2 , sp^3 and sp^2 b) sp , sp^3 , sp^2 and sp^3	c) sp^3 , sp^2 , sp^2 and sp	d) sp , sp^2 , sp^2 and sp^3
655. Four diatomic species are listed below in different	sequences. Which of these	represents the correct order
of their increasing bond order?		
a) NO < $C_2^{2-} < O_2^- < He_2^+$		
b) $C_2^{2-} < He_2^+ < NO < O_2^-$		
c) $\text{He}_2^+ < \text{O}_2^- < \text{NO} < \text{C}_2^{2-}$		
d) $0_2^- < NO < C_2^{2-} < He_2^+$		
$u_J u_2 < m u < u_2 < m u_2$		

656. Which one species has the longest bond length? a) NO+ c) 0^+_2 d) N_{2}^{+} b) 0_2^- 657. The pair of molecules forming strongest hydrogen bonds are $CH_3 - C - CH_3$ and $CHCl_3$ b) a) SiH₄ and SiF₆ H - C - OH and $CH_3 - C - OH$ c) Ш d) H_2O and H_2 0 0 658. Which one of the following has not triangular pyramidal shape? a) NH₃ b) NCl_3 c) PF_3 d) BCl₂ 659. A covalent bond is formed between the atoms by the overlapping of orbitals containing: a) Single electron b) Paired electron c) Single electron with parallel spin d) Single electron with opposite spin 660. Which of the following bonds required the largest amount of bond energy to dissociate the atom concerned? a) H – H bond in H_2 b) 0 = 0 bond in 0_2 c) N \equiv N bond in N₂ d) C – C bond in C_2H_6 661. The covalency of nitrogen in HNO₃ is: a) Zero b) 3 c) 4 d) 5 662. Which is distilled first? a) Liquid H₂ b) Liquid CO₂ c) Liquid O_2 d) Liquid N₂ 663. Which one of the following is a correct set? a) H_2O , sp^3 , angular b) H_2O , sp^2 , linear c) NH_4^+ , dsp^2 , square planar d) CH_4 , dsp^2 , tetrahedral 664. Which is correct order for electron gain enthalpy? b) 0 < S < F < Cl a) S < 0 < Cl < Fc) Cl < F < S < 0d) F < Cl < 0 < S665. Which is a pyramidal structure? a) Trimethylamine b) Methanol c) Acetylene d) Water 666. Among the following mixtures, dipole – dipole as the major interaction, is present in a) Benzene and ethanol b) Acetonitrile and acetone c) KCl and water d) Benzene and carbon tetrachloride 667. In dry ice there are ... in between molecules. a) Ionic bond b) Covalent bond c) Hydrogen bond d) None of these 668. The dipole moment of *o*, *p* and *m*-dichlorobenzene will be in the order a) o > p > mb) p > o > mc) m > o > pd) o > m > p669. Which formulae does not correctly represents the bonding capacity of the atom involved? c) $O \leftarrow N$ H d) H - C = C $H \rightarrow P \rightarrow H$ a) 670. Which has minimum ionic radius? a) N³⁻ b) K⁺ c) Na⁺ d) F⁻ 671. The bond order is maximum in d) 0_2^{2-} a) 0_2 b) 0^+_2 c) 0_2^-

$672. PF_3$ molecule is:		
a) Square planar b) Trigonal bipyramidal	c) Tetrahedral	d) Trigonal pyramidal
673. Resonance is due to:		
a) Delocalization of σ -electrons		
b) Delocalization of π -electrons		
c) Migration of H atoms		
d) Migration of protons		
674. Which property is commonly exhibited by a covale	nt compound?	
a) High solubility in water	ne compound.	
b) Low m.p.		
c) High electrical conductivity		
d) High b.p.		
675. Which of the following is an electrovalent linkage?	$\rightarrow M_{\pm}C$	
a) CH_4 b) $SiCl_4$	c) MgCl ₂	d) BF ₃
676. The decreasing values of bond angles from NH_3 (1)	06°) to SbH ₃ (101°) down	group-15 of the periodic
table is due to:		
a) Increasing $bp - bp$ repulsion		•
b) Increasing <i>p</i> -orbital character in sp^3		<u> </u>
c) Decreasing lp - bp repulsion		
d) Decreasing electronegativity		
677. The shape of ClO_3^- according to VSEPR model is:		
a) Planar triangle b) Pyramidal	c) Tetrahedral	d) Square planar
678. Which metal has a greater tendency to form metal	oxide?	
a) Cr b) Fe	c) Al	d) Ca
679. The charge/size ratio of a cation determines its p	olarising power. Which or	e of the following sequences
represents the increasing order of the polarising p	ower of the cationic species	s, K ⁺ , Ca ²⁺ , Mg ²⁺ , Be ²⁺ ?
a) $Mg^{2+} < Be^{2+} < K^+ < Ca^{2+}$	b) Be ²⁺ < K ⁺ < Ca ²⁺ <	: <i>M</i> g ²⁺
c) $K^+ < Ca^{2+} < Mg^{2+} < Be^{2+}$	d) Ca ²⁺ < Mg ²⁺ < Be ²⁺	- < K+
680. A p -block element in which last electron enters int		
a) As b) Ga	c) No such element exis	t d) He
681. How many electron pairs are present in valence sh	ell of oxygen in water mole	ecule?
a) 4 b) 1	c) 2	d) 3
682. Number of electrons in a the valence orbit of nitrog	,	-
a) 8 b) 5	c) 6	d) 7
683. The number of valency electrons in carbon atom is	-	<i></i>
a) Zero b) 2	с) б	d) 4
684. The structure of IF ₅ can be best described as		
F		d) None of these
E F E	F F F	u) None of these
	90%	
a) $I \xrightarrow{1} F$ b) $72^{\circ} (I \xrightarrow{1} F$	c) _{90°}	
E F		
	$F \smile F$	
685. The relationship between the dissociation energy a	and N_2 and N_2^+ is	
a) dissociation energy of N_2 = dissociation energy		
b) dissociation energy of N_2 can either be lower or		on energy of N_2^+
c) dissociation energy of N_2 > dissociation energy	_	
d) dissociation energy of N_2^2 > dissociation energy		
686. The bond angle in H_2S (for H—S—H)is:	- ·· Z	
a) Same as that of Cl—Be—Cl in BeCl ₂		

b) Greater than H—N—H bond angle in NH_3

c) Greater than H—Se—H and less than H—O—H d) Same as Cl—Sn— Cl in SnCl₂ 687. Which one among the following does not have the hydrogen bond? b) Water c) Liquid NH₃ a) Phenol d) Liquid HCl 688. Which of the following molecules/ions does not contain unpaired electrons. a) 0^{2}_{7} c) N_{2}^{+} d) 0_2 b) B_2 689. The C - O - H bond angle in ethanol is nearly a) 90 b) 104 c) 120 d) 180 690. Which one of the following does not have sp^2 hybridised carbon? b) Acetic acid c) Acetonitrile d) Acetamide a) Acetone 691. Among the following elements Ca, Mg, P and Cl the order of increasing atomic radius is: a) Mg < Ca < Cl < P b) Cl < P < Mg < Cac) P < Cl < Ca < Mgd) Ca < Mg692. Which has a giant covalent structure? a) PbO_2 b) SiO_2 c) NaCl d) AlCl₂ 693. Bond angles of NH₃, PH₃, AsH₃ and SbH₃ is in the order b) $SbH_3 > AsH_3 > PH_3 > NH_3$ a) $PH_3 > AsH_3 > SbH_3 > NH_3$ c) $SbH_3 > AsH_3 > NH_3 > PH_3$ d) $NH_3 > PH_3 > AsH_3 > SbH_3$ 694. Amongst the elements with following electronic configurations, which one of them may have the highest ionization energy? d) Ar[$3d^{10}4s^24p^3$] a) Ne $[3s^23p^1]$ b) Ne[$3s^2 3p^3$] c) Ne[$3s^23p^2$] 695. Based on VSEPR theory, the number of 90 degree F - Br - F angles in BrF_5 is a) 0 b) 1 c) 2 d) 3 696. Which one of the following elements has lower value of ionisation energy? a) Mg b) Rb c) Li d) Ca 697. The lattice energy order for lithium halide is: a) LiF > LiCl > LiBr > LiIb) LiCl > LiF > LiBr > LiIc) LiBr > LiCl > LiF > LiId) LiI > LiBr > LiCl > LiF698. Among the species: CO_2 , CH_3COO^- , $CO_1CO_2^{2-}$, HCHO which has the weakest C – O bond? a) CO c) CO_3^{2-} b) CO_2 d) CH₃COO⁻ 699. Peroxide ion (i) has five completely filled antibonding molecular orbitals (ii) is diamagnetic (iii) has bond order one (iv) is isoelectronic with neon Which one of these is correct? a) (ii) and (iii) b) (i),(ii) and (iv) d) (i) and (iv) c) (i),(ii) and (iii) 700. Which is the weakest among the following type of bond? a) Ionic bond b) Covalent bond c) Metallic bond d) Hydrogen bond 701. In which of the following pairs of molecules/ions, the central atom has sp^2 -hybridization? a) NO_2 and NH_3 b) BF_3 and $NO_2^$ c) NH_2^- and H_2O d) BF_3 and NH_2^- 702. Bond length decreases with: a) Decrease in size of the atom b) Increase in the number of bonds between the atoms c) Decrease in bond order d) Decrease in the number of bonds between the atoms 703. Which of the following molecules/ ions does not contain unpaired electrons? a) 0^{2-}_{2-} b) B_2 c) N_{2}^{+} d) 0_2 704. The structure of IF_7 is

a) Square pyramid b) Trigonal bipyramid c) Octahedral d) Pentagonal bipyramid 705. The species C₂ a) Has one σ bond and one π bond b) Has both π bonds c) Has both σ bonds d) Does not exist 706. In which of the following bond angle is maximum? a) NH₃ b) NH_4^+ c) PCl₅ d) SCl_2 707. Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below $\frac{1}{2}\operatorname{Cl}_{2}(g) \xrightarrow{\frac{1}{2}\Delta_{\operatorname{diss}}H^{\circ}} \operatorname{Cl}(g) \xrightarrow{\Delta_{\operatorname{EA}}H^{\circ}} \operatorname{Cl}^{-}(g) \xrightarrow{\Delta_{\operatorname{hyd}}H^{\circ}} \operatorname{Cl}^{-}(aq)$ The energy involved in the conversion of $\frac{1}{2}$ Cl₂(g) to Cl⁻(*aq*)(Using the data) $\Delta_{diss^{H^{\circ}Cl_{2}}} = 240 \text{ kJ mol}^{-1}$ $\Delta_{\mathrm{EA}^{H^{\circ}}\mathrm{Cl}} = -349 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$ $\Delta_{hvd} H^{\circ}Cl = -381 \text{ kJ mol}^{-1}$ will be a) $+152 \text{ kJ mol}^{-1}$ b) -610 kJ mol⁻¹ c) -850 kJ mol⁻¹ d) +120 kJ mol⁻¹ 708. The hybridisation of the *ipso* – carbon dichlorobenzene is d) *sp*³ hybridised b) *sp*² hybridised c) $sp^2 d$ hybridized a) *sp* hybridized 709. Which of the following has maximum dipole moment? d) NI_3 a) NCl₃ b) NBr_3 c) NH₃ 710. The molecule having largest dipole moment among the following is c) CHCl₂ b) CH_4 d) CCl₄ a) CHl₃ 711. Which of the following diatomic molecules would be stabilized by the removal of an electron? a) C_2 b) CN c) N_2 d) 0_2 712. Which of the following possess maximum hydration energy? a) MgSO₄ b) RaSO₄ c) $SrSO_4$ d) BaSO₄ 713. In which of the following hydrogen bond is present? a) H₂ b) Ice c) Sulphur d) Hydrocarbon 714. The correct order of decreasing polarisability of ion is: c) I⁻, Br⁻, Cl⁻, F⁻ a) Cl⁻, Br⁻, I⁻, F⁻ b) F⁻, I⁻, Br⁻, Cl⁻ d) F⁻, Cl⁻, Br⁻, I⁻ 715. Which is highest melting point halide? b) NaBr a) NaCl c) NaF d) NaI 716. Number of σ and π bonds in acetylene are b) 2 and 2 a) 3 and 2 c) 2 and 3 d) 4 and 3 717. Which of the following halides is least stable and has doubtful existence? a) CI₄ b) Gel₄ c) SnI₄ d) PbI₄ 718. C – C bond length is maximum in a) Diamond b) Graphite c) Naphthalene d) Fullerene 719. The electronegativity difference between N and F is greater than that between N and H yet the dipole moment of NH_3 (1.5 D) is larger than that of NF_3 (0.2D). This is because: a) In NH₃ as well as NF₃ the atomic dipole and bond dipole are in opposite directions. In NH₃ the atomic dipole and bond dipole are in the opposite directions whereas in NF₃ these are in the b) same direction. c) In NH₃ as well as in NF₃ the atomic dipole and bond dipole are in the same direction. In $\rm NH_3$ the atomic dipole and bond dipole are in the same direction whereas in $\rm NF_3$ these are in opposite directions. 720. Resonance is not shown by: c) CO_3^{2-} d) SiO_2 a) C_6H_6 b) CO_2 721. The molecular shapes of SF_4 , CF_4 and XeF_4 are a) Different with 1, 0 and 2 lone pairs of electrons on the central atom, respectively

b) Different with 0, 1 and 2 lone pairs of electrons o	n the central atom, respectively		
c) The same with 1, 1 and 1 lone pairs of electrons on the central atoms, respectively			
d) The same with 2, 0 and 1 lone pairs of electrons on the central atom, respectively			
722. The shape of IF_7 molecule is			
a) Pentagonal bipyramidal	b) Trigonal bipyramidal		
c) Tetrahedral	d) Octahedral		
723. Decreasing order of C – C bond length is			
$(I)C_2H_4 \qquad (II)C_2H_2$			
$(III)C_6H_6 \qquad (IV)C_2H_6$			
a) $IV > III > I > II$ b) $I > II > IV > III$,		
724. In which of the following compounds, the bonds have			
a) H_2O b) HF	c) IBr d) N_2O_4		
725. Oxygen and sulphur both are the member of same	group in Periodic Table but H_2O is liquid while H_2S is		
gas because			
a) Molecular weight of water is more			
b) Electronegativity of sulphur is more			
 c) H₂S is weak acid d) Water molecules are having strong hydrogen bor 	ade between them		
726. The linear structure is possessed by:	lds between them		
a) $SnCl_2$ b) NCO^-	c) NO $\frac{1}{2}$ d) CS $_2$		
727. When the hybridization state of carbon atom chang			
the hybridized orbitals:	es nom sp to sp and many to sp, the angle between		
a) Decreases gradually			
b) Decreases considerably			
c) Is not affected	\times		
d) Increases progressively			
728. Which species has the maximum number of lone pa	ir of electrons on the central atom?		
a) $[ClO_3^-]$ b) XeF ₄	c) SF_4 d) $[I_3^-]$		
729. Which concept best explains that <i>o</i> -nitrophenol is n	nore volatile than <i>p</i> -nitrophenol?		
a) Resonance			
b) Steric hinderance			
c) Hydrogen bond			
d) Hyperconjugation			
730. How many bonded electron pairs are present in IF_7			
a) 6 b) 7	c) 5 d) 8		
731. The comparatively high b.p. of HF is due to			
a) High reactivity of fluorine			
b) Small size of hydrogen atom			
c) Formation of hydrogen bonds and consequent as	sociation		
d) High IE of fluroine			
732. Which one of the following species is diamagnetic in h_{1} μ_{2}			
a) H_2^- b) H_2^+ 733. The unequal sharing of bonded pair of electrons bet	c) H_2 d) He_2^+		
a) Ionic bond	ween two atoms in a molecule gives rise to.		
b) Polar covalent bond			
c) Non-polar covalent bond			
d) None of the above			
734. In which of the following process energy is liberated	1?		
a) $Cl \rightarrow Cl^+ + e$ b) $HCl \rightarrow H^+ + Cl^-$			
735. Identify the least stable ion amongst the following:			

a) Li ⁻	b) Be ⁻	c) B ⁻	d) C ⁻
736. The lowest bond	energy exist in the following bo	nds for:	
a) C—C	b) N—N	c) H—H	d) 0—0
737. Number of lone p	air (s) in XeOF ₄ is/are		
a) 0	b) 1	c) 2	d) 3
738. Which one is elec	tron deficient compound?		
a) NH ₃	b) ICl	c) BCl ₃	d) PCl ₃
739. Which type of bor	nd is present in H ₂ S molecule?		
a) Ionic bond		b) Covalent bond	
c) Coordinate		d) All of three	
740. In compound <i>X</i> , a	ll the bond angles are exactly 10	09°28′ , X is:	
a) Chloromethane	e b) Iodoform	c) Carbon tetrachloride	d) Chloroform
741. The hybridisation	of P in PCl ₅ is		
a) <i>sp</i> ²	b) <i>sp</i> ³ <i>d</i>	c) <i>sp</i> ³	d) dsp^2
742. Pauling's electron	egativity values for elements a	re useful in predicting:	
a) Polarity of bon	ds in molecules	4	V ¹
b) Position of eler	nents in electromotive series	C	
c) Coordination n	umber		
d) Dipole momen	t of various molecules		
743. The hybridization	of carbon atoms in C—C single	bond of $HC \equiv C - CH = CH_2$ is:	
a) $sp^3 - sp^3$	b) $sp^2 - sp^3$	c) $sp-sp^2$	d) $sp^3 - sp$
744. It is thought that a	atoms combine with each other	such that the outermost orbit	acquires a stable
configuration of 8	electrons. If stability were atta	ined with 6 electrons rather t	han with 8, what would be
the formula of the	stable fluoride ions?	C.XY	
a) F ³⁺	b) F ⁺	c) F [−]	d) F ²⁻
745. The number of an	tibonding electrons pairs in O_2^2	[–] on the basis of MO theory ar	e:
a) 4	b) 3	c) 2	d) 5
746. Which has triang	ılar planar shape?		
a) CH ₃ +	b) ClO_2^-	c) H ₃ O ⁺	d) ClO_3^-
747. Specify the coord	ination geometry around and h	ybridization of N and B atoms	in a 1:1 complex of BF_3 and
NH ₃ :			
a) N : tetrahedral	sp^3 ; B : tetrahedral, sp^3		
b) N : pyramidal, :	sp^3 ; B : pyramidal, sp^3		
c) N : pyramidal,	sp^3 ; B : planar, sp^2		
d) N : pyramidal, .	sp^3 ; B : tetrahedral, sp^3		
748. Which of the follo	wing molecule has highest bone	d energy?	
a) C – C	b) N – N	c) 0 – 0	d) F — F
749. The number of ox	ygen atoms bonded to one pho	sphorus atom in P ₄ O ₆ is	
a) 4	b) 3	c) 6	d) 5
750. Bond energies in	NO,NO ⁺ and NO ^{$-$} are such as		
a) $N0^- > N0 > N$	10^+ b) $N0^+ > N0^- > N0$	c) $NO > NO^{-} > NO^{+}$	d) $N0^+ > N0 > N0^-$
751. In XeF ₆ , oxidation	n state and state of hybridisatio	n of Xe and shape of the mole	cule are, respectively
(a) +6, $sp^3 d^3$, dist	torted octahedral	b) +4, $sp^3 d^2$, square pla	nar
c) +6, <i>sp</i> ³ , pyram	idal	d) +6, sp^3d^2 , square pyra	amidal
752. Which one of the	following pairs of species have	the same bond order?	
a) CN^{-} and NO^{+}	b) CN^{-} and CN^{+}	c) O_2^- and CN^-	d) NO ⁺ and CO
753. The bond length o	of species O_2 , O_2^+ and O_2^- are in the species O_2 are in the species of O_2^- ar	he order of	
a) $0_2^+ > 0_2 > 0_2^-$	b) $0_2^- > 0_2 > 0_2^+$	c) $0_2 > 0_2^+ > 0_2^-$	d) $0_2 > 0_2^- > 0_2^+$
754. Which hybridizat	ion results non-polar orbitals?		
a) <i>sp</i>	b) <i>sp</i> ²	c) <i>sp</i> ³	d) dsp^2

755. The <i>d</i> -orbital involed in sp^3d hybridization is		
a) $d_{x^2-y^2}$ b) d_{xy}	c) d_{z^2}	d) d_{zx}
756. The element with strong electropositive nature is	•	
a) Cu b) Cs	c) Cr	d) Ba
757. Which statement is correct?	·	-
a) X^+ ion is larger than X^- ion		
b) X^- ion is larger in size than X atom		
c) X^+ and X^- have the same size		
d) <i>X</i> ⁺ ion is larger in size than <i>X</i> atom		
758. SF_2 , SF_4 and SF_6 have the hybridisations at sulph		
a) sp^2 , sp^3 , sp^2d^2 b) sp^3 , sp^3d^2	c) sp^3 , sp^3d , sp^3d^2	d) sp^3 , spd^2 , d^2sp^3
759. Solid CH_4 is:		d) Not exist
a) Molecular solid b) Ionic solid	c) Covalent solid	d) Not exist
760. The bond angles of NH_3 , NH_4^+ and NH_2^- are in the c a) $NH_2^- > NH_3 > NH_4^+$ b) $NH_4^+ > NH_3 > NH_2^-$		d) NH > NH ₄ ⁺ > NH ₂ ⁻
$761. sp^2$ -hybridization is shown by:	$C_J MII_3 > MII_2 > MII_4$	u_1 u_1 u_1 u_1 u_1 u_1 u_1 u_1 u_2 u_2 u_2 u_1 u_2
a) $BeCl_2$ b) BF_3	c) NH ₃	d) XeF ₂
762. Cl – P – Cl bond angles in PCl ₅ molecule are		
a) 120 and 90 b) 60 and 90	c) 60 and 120	d) 120 and 30
763. Which one of the following pairs is isostructural		,
a) $[NF_3 \text{ and } BF_3]$ b) $[BF_4^- \text{ and } NH_4^+]$	c) $[BCl_3 \text{ and } BrCl_3]$	d) [NH ₃ and NO_3^-]
764. Which one of the following sets of ions represent		c species?
a) K ⁺ , Cl ⁻ , Ca ²⁺ , Sc ³⁺ b) Ba ²⁺ , Sr ²⁺ , K ⁺ , Ca ²⁺	c) N ³⁻ , O ²⁻ , F ⁻ , S ²⁻	d) Li ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺
765. Which molecule has zero dipole-moment?		
a) HF b) HBr	c) H ₂ 0	d) CO ₂
766. Four diatomic species are listed below. Identify t	ho governet order in which the	
	ne correct of der in which the	e bond order is increasing in
them:		e bond order is increasing in
them: a) NO < O_2^- < C_2^{2-} < He ₂ ⁺		e bond order is increasing in
them: a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$		e bond order is increasing in
them: a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$		e bond order is increasing in
them: a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$		e bond order is increasing in
them: a) $NO < O_2^- < C_2^{2^-} < He_2^+$ b) $O_2^- < NO < C_2^{2^-} < He_2^+$ c) $C_2^{2^-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2^-}$ 767. Which one of the following compounds has bond	angle as nearly 90°?	
them: a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ 767. Which one of the following compounds has bond a) NH_3 b) H_2S		d) CH ₄
them: a) $NO < O_2^- < C_2^{2^-} < He_2^+$ b) $O_2^- < NO < C_2^{2^-} < He_2^+$ c) $C_2^{2^-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2^-}$ 767. Which one of the following compounds has bond	angle as nearly 90°?	
them: a) $NO < O_2^- < C_2^{2^-} < He_2^+$ b) $O_2^- < NO < C_2^{2^-} < He_2^+$ c) $C_2^{2^-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2^-}$ 767. Which one of the following compounds has bond a) NH_3 b) H_2S 768. The hybrid state of sulphur in SO ₃ molecule is	angle as nearly 90°? c) H ₂ O c) <i>sp</i> ³ d ²	d) CH ₄ d) <i>sp</i> ²
them: a) $NO < O_2^- < C_2^{2^-} < He_2^+$ b) $O_2^- < NO < C_2^{2^-} < He_2^+$ c) $C_2^{2^-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2^-}$ 767. Which one of the following compounds has bond a) NH_3 b) H_2S 768. The hybrid state of sulphur in SO_3 molecule is a) sp^3d b) sp^3 769. In which of the following pair both molecules do a) CH_4 and H_2O b) PCl_5 and SF_4	angle as nearly 90°? c) H ₂ O c) <i>sp</i> ³ d ²	d) CH ₄ d) <i>sp</i> ²
them: a) $NO < O_2^- < C_2^{2^-} < He_2^+$ b) $O_2^- < NO < C_2^{2^-} < He_2^+$ c) $C_2^{2^-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2^-}$ 767. Which one of the following compounds has bond a) NH_3 b) H_2S 768. The hybrid state of sulphur in SO_3 molecule is a) sp^3d b) sp^3 769. In which of the following pair both molecules do a) CH_4 and H_2O b) PCl_5 and SF_4 770. Which is the most covalent?	angle as nearly 90°? c) H_2O c) sp^3d^2 not possess same type of hyl c) SF_6 and XeF_4	d) CH_4 d) sp^2 pridisation? d) BCl_3 and NCl_3
them: a) $NO < O_2^- < C_2^{2^-} < He_2^+$ b) $O_2^- < NO < C_2^{2^-} < He_2^+$ c) $C_2^{2^-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2^-}$ 767. Which one of the following compounds has bond a) NH_3 b) H_2S 768. The hybrid state of sulphur in SO_3 molecule is a) sp^3d b) sp^3 769. In which of the following pair both molecules do a) CH_4 and H_2O b) PCl_5 and SF_4 770. Which is the most covalent? a) $C - F$ b) $C - O$	angle as nearly 90°? c) H_2O c) sp^3d^2 not possess same type of hyl c) SF_6 and XeF_4 c) $C - S$	d) CH_4 d) sp^2 pridisation? d) BCl_3 and NCl_3 d) $C - Br$
them: a) $NO < O_2^- < C_2^{2^-} < He_2^+$ b) $O_2^- < NO < C_2^{2^-} < He_2^+$ c) $C_2^{2^-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2^-}$ 767. Which one of the following compounds has bond a) NH_3 b) H_2S 768. The hybrid state of sulphur in SO ₃ molecule is a) sp^3d b) sp^3 769. In which of the following pair both molecules do a) CH_4 and H_2O b) PCl_5 and SF_4 770. Which is the most covalent? a) $C - F$ b) $C - O$ 771. The shape of NO_3^- is planar. It is formed by the or	angle as nearly 90°? c) H_2O c) sp^3d^2 not possess same type of hyl c) SF_6 and XeF_4 c) $C - S$ verlapping of oxygen orbitals	d) CH_4 d) sp^2 pridisation? d) BCl_3 and NCl_3 d) $C - Br$ with orbitals of nitrogen.
them: a) $NO < O_2^- < C_2^{2^-} < He_2^+$ b) $O_2^- < NO < C_2^{2^-} < He_2^+$ c) $C_2^{2^-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2^-}$ 767. Which one of the following compounds has bond a) NH_3 b) H_2S 768. The hybrid state of sulphur in SO ₃ molecule is a) sp^3d b) sp^3 769. In which of the following pair both molecules do a) CH_4 and H_2O b) PCl_5 and SF_4 770. Which is the most covalent? a) $C - F$ b) $C - O$ 771. The shape of NO_3^- is planar. It is formed by the oval a) sp^3 -hybridized b) sp^2 -hybridized	angle as nearly 90°? c) H_2O c) sp^3d^2 not possess same type of hyl c) SF_6 and XeF_4 c) $C - S$	d) CH_4 d) sp^2 pridisation? d) BCl_3 and NCl_3 d) $C - Br$
them: a) $NO < O_2^- < C_2^{2^-} < He_2^+$ b) $O_2^- < NO < C_2^{2^-} < He_2^+$ c) $C_2^{2^-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2^-}$ 767. Which one of the following compounds has bond a) NH_3 b) H_2S 768. The hybrid state of sulphur in SO ₃ molecule is a) sp^3d b) sp^3 769. In which of the following pair both molecules do a) CH_4 and H_2O b) PCl_5 and SF_4 770. Which is the most covalent? a) $C - F$ b) $C - O$ 771. The shape of NO_3^- is planar. It is formed by the oval a) sp^3 -hybridized b) sp^2 -hybridized c) sp^2 -hybridized b) sp^2 -hybridized c) sp^2 -hybridi	angle as nearly 90°? c) H_2O c) sp^3d^2 not possess same type of hyl c) SF_6 and XeF_4 c) $C - S$ verlapping of oxygen orbitals c) Three <i>p</i> -orbitals	 d) CH₄ d) sp² pridisation? d) BCl₃ and NCl₃ d) C – Br with orbitals of nitrogen. d) None of these
them: a) $NO < O_2^- < C_2^{2^-} < He_2^+$ b) $O_2^- < NO < C_2^{2^-} < He_2^+$ c) $C_2^{2^-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2^-}$ 767. Which one of the following compounds has bond a) NH_3 b) H_2S 768. The hybrid state of sulphur in SO ₃ molecule is a) sp^3d b) sp^3 769. In which of the following pair both molecules do a) CH_4 and H_2O b) PCI_5 and SF_4 770. Which is the most covalent? a) $C - F$ b) $C - O$ 771. The shape of NO_3^- is planar. It is formed by the oval a) sp^3 -hybridized b) sp^2 -hybridized 772. Which of the ions has the largest ionic radius? a) Be^{2+} b) Mg^{2+}	angle as nearly 90°? c) H_2O c) sp^3d^2 not possess same type of hyl c) SF_6 and XeF_4 c) $C - S$ verlapping of oxygen orbitals c) Three <i>p</i> -orbitals c) Ca^{2+}	d) CH_4 d) sp^2 pridisation? d) BCl_3 and NCl_3 d) $C - Br$ with orbitals of nitrogen. d) None of these d) Sr^{2+}
them: a) $NO < O_2^- < C_2^{2^-} < He_2^+$ b) $O_2^- < NO < C_2^{2^-} < He_2^+$ c) $C_2^{2^-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2^-}$ 767. Which one of the following compounds has bond a) NH_3 b) H_2S 768. The hybrid state of sulphur in SO_3 molecule is a) sp^3d b) sp^3 769. In which of the following pair both molecules do a) CH_4 and H_2O b) PCl_5 and SF_4 770. Which is the most covalent? a) $C - F$ b) $C - O$ 771. The shape of NO_3^- is planar. It is formed by the ov a) sp^3 -hybridized b) sp^2 -hybridized 772. Which of the ions has the largest ionic radius? a) Be^{2+} b) Mg^{2+} 773. A σ -bonded molecule MX_3 is T-shaped. The num	angle as nearly 90°? c) H_2O c) sp^3d^2 not possess same type of hyl c) SF_6 and XeF_4 c) $C - S$ verlapping of oxygen orbitals c) Three <i>p</i> -orbitals c) Ca^{2+}	d) CH_4 d) sp^2 pridisation? d) BCl_3 and NCl_3 d) $C - Br$ with orbitals of nitrogen. d) None of these d) Sr^{2+}
them: a) $NO < O_2^- < C_2^{2^-} < He_2^+$ b) $O_2^- < NO < C_2^{2^-} < He_2^+$ c) $C_2^{2^-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2^-}$ 767. Which one of the following compounds has bond a) NH_3 b) H_2S 768. The hybrid state of sulphur in SO ₃ molecule is a) sp^3d b) sp^3 769. In which of the following pair both molecules do a) CH_4 and H_2O b) PCI_5 and SF_4 770. Which is the most covalent? a) $C - F$ b) $C - O$ 771. The shape of NO_3^- is planar. It is formed by the ov a) sp^3 -hybridized b) sp^2 -hybridized 772. Which of the ions has the largest ionic radius? a) Be^{2+} b) Mg^{2+} 773. A σ -bonded molecule MX_3 is T-shaped. The num a) 0	angle as nearly 90°? c) H_2O c) sp^3d^2 not possess same type of hyl c) SF_6 and XeF_4 c) $C - S$ verlapping of oxygen orbitals c) Three <i>p</i> -orbitals c) Ca^{2+}	d) CH_4 d) sp^2 pridisation? d) BCl_3 and NCl_3 d) $C - Br$ with orbitals of nitrogen. d) None of these d) Sr^{2+}
them: a) $NO < O_2^- < C_2^{2^-} < He_2^+$ b) $O_2^- < NO < C_2^{2^-} < He_2^+$ c) $C_2^{2^-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2^-}$ 767. Which one of the following compounds has bond a) NH_3 b) H_2S 768. The hybrid state of sulphur in SO ₃ molecule is a) sp^3d b) sp^3 769. In which of the following pair both molecules do a) CH_4 and H_2O b) PCI_5 and SF_4 770. Which is the most covalent? a) $C - F$ b) $C - O$ 771. The shape of NO_3^- is planar. It is formed by the ov a) sp^3 -hybridized b) sp^2 -hybridized 772. Which of the ions has the largest ionic radius? a) Be^{2+} b) Mg^{2+} 773. A σ -bonded molecule MX_3 is T-shaped. The num a) O b) 2	angle as nearly 90°? c) H_2O c) sp^3d^2 not possess same type of hyl c) SF_6 and XeF_4 c) $C - S$ verlapping of oxygen orbitals c) Three <i>p</i> -orbitals c) Ca^{2+}	d) CH_4 d) sp^2 pridisation? d) BCl_3 and NCl_3 d) $C - Br$ with orbitals of nitrogen. d) None of these d) Sr^{2+}
them: a) $NO < O_2^- < C_2^{2^-} < He_2^+$ b) $O_2^- < NO < C_2^{2^-} < He_2^+$ c) $C_2^{2^-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2^-}$ 767. Which one of the following compounds has bond a) NH_3 b) H_2S 768. The hybrid state of sulphur in SO ₃ molecule is a) sp^3d b) sp^3 769. In which of the following pair both molecules do a) CH_4 and H_2O b) PCI_5 and SF_4 770. Which is the most covalent? a) $C - F$ b) $C - O$ 771. The shape of NO_3^- is planar. It is formed by the ov a) sp^3 -hybridized b) sp^2 -hybridized 772. Which of the ions has the largest ionic radius? a) Be^{2+} b) Mg^{2+} 773. A σ -bonded molecule MX_3 is T-shaped. The num a) 0	angle as nearly 90°? c) H ₂ O c) <i>sp</i> ³ <i>d</i> ² not possess same type of hyl c) SF ₆ and XeF ₄ c) C – S verlapping of oxygen orbitals c) Three <i>p</i> -orbitals c) Ca ²⁺ ber non-bonding pairs of ele	d) CH_4 d) sp^2 pridisation? d) BCl_3 and NCl_3 d) $C - Br$ with orbitals of nitrogen. d) None of these d) Sr^{2+}
them: a) $NO < O_2^- < C_2^{2^-} < He_2^+$ b) $O_2^- < NO < C_2^{2^-} < He_2^+$ c) $C_2^{2^-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2^-}$ 767. Which one of the following compounds has bond a) NH_3 b) H_2S 768. The hybrid state of sulphur in SO ₃ molecule is a) sp^3d b) sp^3 769. In which of the following pair both molecules do a) CH_4 and H_2O b) PCl_5 and SF_4 770. Which is the most covalent? a) $C - F$ b) $C - O$ 771. The shape of NO_3^- is planar. It is formed by the ov a) sp^3 -hybridized b) sp^2 -hybridized 772. Which of the ions has the largest ionic radius? a) Be^{2+} b) Mg^{2+} 773. A σ -bonded molecule MX_3 is T-shaped. The num a) O b) 2 c) 1	angle as nearly 90°? c) H ₂ O c) <i>sp</i> ³ <i>d</i> ² not possess same type of hyl c) SF ₆ and XeF ₄ c) C – S verlapping of oxygen orbitals c) Three <i>p</i> -orbitals c) Ca ²⁺ ber non-bonding pairs of ele	d) CH_4 d) sp^2 pridisation? d) BCl_3 and NCl_3 d) $C - Br$ with orbitals of nitrogen. d) None of these d) Sr^{2+}
them: a) $NO < O_2^- < C_2^{2^-} < He_2^+$ b) $O_2^- < NO < C_2^{2^-} < He_2^+$ c) $C_2^{2^-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2^-}$ 767. Which one of the following compounds has bond a) NH_3 b) H_2S 768. The hybrid state of sulphur in SO ₃ molecule is a) sp^3d b) sp^3 769. In which of the following pair both molecules do a) CH_4 and H_2O b) PCl_5 and SF_4 770. Which is the most covalent? a) $C - F$ b) $C - O$ 771. The shape of NO_3^- is planar. It is formed by the ov a) sp^3 -hybridized b) sp^2 -hybridized 772. Which of the ions has the largest ionic radius? a) Be^{2+} b) Mg^{2+} 773. A σ -bonded molecule MX_3 is T-shaped. The num a) O b) 2 c) 1 d) Can be predicted only if atomic number of M is	angle as nearly 90°? c) H ₂ O c) <i>sp</i> ³ <i>d</i> ² not possess same type of hyl c) SF ₆ and XeF ₄ c) C – S verlapping of oxygen orbitals c) Three <i>p</i> -orbitals c) Ca ²⁺ ber non-bonding pairs of ele	d) CH_4 d) sp^2 pridisation? d) BCl_3 and NCl_3 d) $C - Br$ with orbitals of nitrogen. d) None of these d) Sr^{2+}

	1 11.1		
	les are all the species param	-	
a) B_2, O_2, N_2	b) B ₂ , O ₂ , NO	c) B_2, F_2, O_2	d) B ₂ , O ₂ , Li ₂
	g has strongest hydrogen bo	-	
a) Ethylamine	b) Ammonia	c) Ethyl Alcohol	d) Diethyl ether
777. The bonds present in l	N_2O_5 are:		
a) Ionic			
b) Covalent and coord	inate		
c) Covalent			
d) Ionic and covalent			
778. The angle between tw	o covalent bonds is maximu	m in:	
a) CH ₄	b) H ₂ 0	c) CO ₂	d) SO_3
779. The pair having simila	r geometry is		
a) PCl ₃ , NH ₄	b) BeCl ₂ , H ₂ O	c) CH ₄ , CCl ₄	d) IF ₅ , PF ₅
780. In the electronic struc	ture of acetic acid there are:		
a) 16 shared and 8 un	shared valency electrons		
b) 8 shared and 16 un	shared valency electrons		X
c) 12 shared and 12 u	nshared valency electrons	C	× ×
d) 18 shared and 6 un	shared valency electrons		
781. Increasing order (low	er first) of size of the various	s hybridised orbitals is:	
a) sp, sp^2, sp^3	b) sp^3 , sp^2 , sp	c) sp^2 , sp^3 , sp	d) sp^2 , sp , sp^3
782. Among the following,	the compound that contains	ionic, covalent and coordin	ate linkage is
a) NH ₃	b) NH ₄ Cl	c) NaCl	d) CaO
, ,	kygen atoms are present in F	$P_4 0_{10}?$	
a) 6	b) 4	c) 2	d) 5
	aber cycle for the formatio	n of an ionic compound g	given below and identify the
compound (<i>Z</i>) formed	-		
		Y	
$ M(S) \longrightarrow M(g) \longrightarrow M $	$(g) \xrightarrow{\Delta H_5} Z$		
$\begin{bmatrix} M(s) \xrightarrow{\Delta H_1} M(g) \xrightarrow{\Delta H_2} M\\ \frac{1}{2} X_2(g) \xrightarrow{\Delta H_3} X(g) \xrightarrow{\Delta H_4} X \end{bmatrix}$	(⁻ (g)		
a) M^+X^-	b) $M^+X^-(s)$	c) <i>MX</i>	d) $M^+X^-(g)$
785. The bond length is ma		0) 1111	
a) H_2S	b) HF	c) H ₂ 0	d) Ice
2	d into monocations, N ₂ ⁺ and	, 1	2
a) In N_2^+ , N – N bond v		b) In O_2^+ , the $O - O$ bond	
c) In O_2^+ , paramagneti		d) N_2^+ become diamagne	
	blanes present in σ^* <i>s</i> -antibol		
a) 1	b) 2	c) 0	d) 3
	g has maximum number of lo	,	-
a) XeO ₃ 789. Which is most volatile	b) XeF ₄	c) XeF ₆	d) XeF ₂
a) HI	b) HCl	a) IIDm	4) IIE
790. The calculated bond o	,	c) HBr	d) HF
	_	a) 2	d) 2 F
a) 1	b) 1.5	c) 2	d) 2.5
791. A C \equiv C bond is:	and		
a) Weaker than C=C b			
b) Weaker than C—C I			
c) Longer than C—C b			
d) Shorter than $C=C b$		20/ 2	
	ing pairs bond angle is 109°2		
a) [NH ₄ ⁺], [BF ₄ ⁻]	b) [NH ₄ ⁺], [BF ₃]	c) $[NH_3], [BF_4^-]$	d) [NH ₃], [BF ₃]

793. Which of the following n	olecules has three-fold ax	is of symmetry?			
a) NH ₃	b) C ₂ H ₄	c) CO ₂	d) SO ₂		
794. In which of the following against it?	garrangements the sequen	ce is not strictly according	to the property written		
_	: increasing acid strength				
-	\therefore SbH ₃ : increasing basic st				
	asing first ionization entha	_			
-	_				
	PbO ₂ :increasing oxidisin	g power			
795. Which one of the followi					
a) N_2	b) NO	c) CO	d) 0_3		
796. Which of the following h	_				
a) Na ⁺	b) K ⁺	c) Li ⁺	d) Cs ⁺		
797. Lattice energy of a solid	increases if				
a) Size of ions is small		b) Charges of ions are sn	nall		
c) Ions are neutral		d) None of the above			
798. Which one is most polar	?		X		
a) CCl ₄	b) CHCl ₃	c) CH ₃ Cl	d) CH ₃ OH		
799. The high boiling point of	water is due to:		>		
a) Weak dissociation of	water molecules				
b) Hydrogen bonding an	nong water molecules				
c) Its high specific heat					
d) Its high dielectric con	stant				
800. The states of hybridisati	on of boron and oxygen at	oms in boric acid (H ₃ BO ₃)	are respectively		
a) sp^2 and sp^2	b) sp^2 and sp^3	c) sp^3 and sp^2	d) sp^3 and sp^3		
801. In which pair of species,	both species do have the s	imilar geometry?			
a) CO_2 , SO_2	b) NH ₃ , BH ₃	c) CO_3^{2-} , SO_3^{2-}	d) SO_4^{2-} , ClO_4^{-}		
802. Which of the following is					
a) Na ⁺	b) Mg^{2+}	c) 0^{2-}	d) F ⁻		
803. The electronic configuration of sodium and chlorine justifies:					
a) Their physical state					
b) Their reactivity					
	trovalent compound NaCl				
d) None of the above 📣	Y .				
804. sp^3 hybridisation is four	ıd in				
a) ⁺ _{C H3}	b) <u>•</u> C H ₃	c) ClO_3^-	d) SO ₃		
	5				
805. Glycerol is more viscous a) High molecular weigh		h) Uigh hailing naint			
		b) High boiling point			
c) Many hydrogen bond:	-	d) Fajan's rule			
806. In the case of alkali meta		decreases in the order:			
a) MI > MBr > MCl > M					
b) $MCl > MI > MBr > M$					
c) MF > MCl > MBr > M					
d) MF > MCl > MI > ME					
807. Two nodal planes are pr	esent in				
a) $\pi^{2} p_{x}$	b) σ2 <i>p_z</i>	c) π2 <i>p_x</i>	d) $\pi 2p_y$		
808. H – bond is not present i	n				
a) Water		b) Glycerol			
c) Hydrogen fluoride		d) Hydrogen sulphide			
809. In which of the following	g pairs molecules have bon	d order three and are isoel	ectronic?		

	a) CN ⁻ , CO	b) CO, O ₂ ⁺	c) NO ⁺ , CO ⁺	d) CN ⁻ , 0 ⁺ ₂
81	0. Which of the following ha	lides has maximum melting	g point?	
	a) NaF	b) NaCl	c) NaBr	d) NaI
81	1. Which atomic orbital is al	ways involved in sigma bor	nding only?	
	a) <i>s</i>	b) <i>p</i>	c) d	d) <i>f</i>
81	2. Which of the following ac	ts sometimes as a metal and	d sometimes as a non-meta	1?
	a) Hg	b) Cl	c) K	d) At
81	3. Amongst the following ele	-		
	a) [Ne]3 <i>s</i> ² 3 <i>p</i> ¹	b) [Ne]3s ² 3p ³	c) [Ne] $3s^23p^2$	d) [Ar] $3d^{10}4s^24p^3$
81	4. Which of the following sp	ecies exhibits the diamagne	etic behaviour ?	
	a) 0 ^{2–}	b) 0 ⁺ ₂	c) 0 ₂	d) NO
81	5. Which is a good solvent for	or ionic and polar covalent o	compounds?	
	a) H ₂ 0	b) CH ₃ COOH	c) CCl ₄	d) Liquid NH ₃
81	6. The following salt shows	maximum covalent charact	er	
	a) AlCl ₃	b) MgCl ₂	c) CsCl	d) LaCl ₃
81	7. Each of the followings has	s non-zero dipole moment,	except:	X i
	a) C ₆ H ₆	b) CO	c) SO ₂	d) NH ₃
81	8. Bonded electron pairs pre	esent in octahedral SF ₆ mol	ecule:	
	a) 3	b) 4	c) 6	d) 5
81	9. Resonance structures can	be written for		
	a) 0 ₃	b) NH ₃	c) CH ₄	d) H ₂ O
82	0. Born-Haber cycle may be	used to calculate		
	a) Electronegativity	b) Mass number	c) Oxidation number	d) Electron affinity
82	1. The electronic structure of	of four elements A, B, C, D a	re	
	$(A)1s^2$ $(B)1s^2, Z$	$2s^2, 2p^2$	V	
	$(C)1s^2, 2s^2, 2p^5$ $(D)1s^2, 2p^5$	2s ² , 2p ⁶		
	The tendency to form elec	ctrovalent bond is largest in	l	
	a) <i>A</i>	b) <i>B</i>	c) <i>C</i>	d) <i>D</i>
82	2. In which element shieldin	g effect is not possible?		
	a) H	b) Be	c) B	d) N
82	3. The hybridisation of orbit	tals of N atom in NO_3^- , NO_2^+ a	and NH_4^+ are respectively:	
	a) sp, sp^2, sp^3	b) <i>sp</i> ² , <i>sp</i> , <i>sp</i> ³	c) <i>sp</i> , <i>sp</i> ³ , <i>sp</i> ²	d) sp^2 , sp^3 , sp
82	4. Which of the following is	isoelectronic with carbon a	tom?	
	a) Na ⁺	b) Al ³⁺	c) 0 ²⁻	d) N+
82	5. Which of the following sta	atement is correct?		
	a) Polarization of an anio	n is maximum by high charg	ged cation	
	b) Small sized cation mini	mises the polarization		
	c) A small anion brings at	oout a large degree of polar	isation	
	d) A small anion undergo	es a high degree of polariza	tion	
82	6. Among LiCl, BeCl ₂ , BCl ₃ and	nd CCl ₄ , the covalent bond o	character follows the order	:
	a) LiCl > $BeCl_2 > BCl_3 >$	CCl ₄		
Ċ	b) LiCl < BeCl ₂ < BCl ₃ <	CCl ₄		
	c) LiCl > $BeCl_2 > CCl_4 >$	BCl ₃		
	d) LiCl < BeCl ₂ < BCl ₃ >	CCl ₄		
82	7. The value of bond order in	n nitrogen and oxygen mole	ecule is:	
	a) 3, 2	b) 4, 2	c) 2, 3	d) 1, 2
82	8. Pauling received Nobel Pr	rize for his work on:		
	a) Photosynthesis	b) Atomic structure	c) Chemical bonding	d) Thermodynamics
82	9. With which of the given p	airs CO ₂ resembles?		
	a) HgCl ₂ , C ₂ H ₂	b) C_2H_2 , NO ₂	c) HgCl ₂ , SnCl ₄	d) N ₂ O, NO ₂

830. The enhanced force of cohesion in metals is due to: a) The covalent linkages between atoms b) The electrovalent linkages between atoms c) The lack of exchange of valency electrons d) The exchange energy of mobile electrons 831. Among HX, the maximum dipole moment is of: d) HI a) HF b) HCl c) HBr 832. Dative bond is present in: b) NH_3 c) $BaCl_2$ d) BF_3 a) SO_3 833. In which of the following molecule, the central atom does not have sp^3 -hybridization? a) CH4 b) SF_4 c) $BF_4^$ d) NH_{4}^{+} 834. Which has an odd electron and shows paramagnetic character? b) SO_2 d) H_2O a) NO c) CO₂ 835. Which ion is not isoelectronic with 0^{2-2} ? a) N³⁻ b) Na⁺ c) F⁻ 836. Which species is paramagnetic? d) N0⁺ a) 0_{2}^{-} b) $CH_3^$ c) CO 837. Structure of ammonia is a) Pyramidal b) Tetrahedral c) Trigonal d) Trigonal pyramidal 838. The example of the *p*-*p*-orbital overlapping is the formation of: a) H₂ molecule b) Cl₂ molecule c) Hydrogen chloride d) Hydrogen bromide molecule 839. In which of the following $p\pi - d\pi$ bonding is observed c) BO₃³⁻ b) SO_3^{2-} d) CO_3^{2-} a) NO_3^- 840. The shape of ClO_4^- ion is: b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal a) Square planar 841. The critical temperature of water is higher than that of O_2 because H_2O molecule has: a) Fewer electrons than 0_2 b) Two covalent bonds c) V-shape d) Dipole moment 842. Compound formed by sp^3d -hybridization will have structure: a) Trigonal bipyramidal b) T-shaped c) Linear d) Either of these depending on number of lone pair of electrons of central atom 843. Which has the lowest bond angle? a) NH₃ c) H₃0⁺ b) BeF_2 d) CH₄ 844. Assuming that Hund's rule is violated, the bond order and magnetic nature of the diatomic molecule B₂ is a) 1 and diamagnetic b) 0 and diamagnetic c) 1 and paramagnetic d) 0 and paramagnetic 845. The energy of antibonding molecular orbitals is: a) Greater than the bonding M.O. b) Smaller than the bonding M.O. c) Equal to that of bonding M.O. d) None of the above

846. The set representing the correct order of ionic radius is: a) $Na^+ > Li^+ > Mg^{2+} > Be^{2+}$ b) $Li^+ > Na^+ > Mg^{2+} > Be^{2+}$ c) $Mg^{2+} > Be^{2+} > Li^+ > Na^+$ d) $Li^+ > Be^{2+} > Na^+ > Mg^{2+}$ 847. Which of the following hydrogen bonds is the strongest? a) O——H-----N b) F——H-----F c) O—H-----O d) 0— —H----F 848. H₂O is dipolar, whereas BeF₂ is not. It is because a) The electronegativity of F is greater than that of O b) H₂O involves hydrogen bonding whereas BeF₂ is a discrete molecule c) H₂O is linear and BeF₂ is angular d) H₂O is angular and BeF₂ is linear 849. Which of the following statements is most correct? Effective nuclear charge of an atom depends on: a) The atomic number of the atom b) The charge on the ion c) The shielding effect d) Both the actual nuclear charge and the shielding effect 850. The total number of valency electrons in PH_4^+ ion is: a) 8 d) 14 b) 9 c) 6 851. Phosphoric acid is syrupy in nature due to b) Hydrogen bonding a) Strong covalent bonding d) None of the above c) van der Waals' forces 852. The correct order of bond angles is: a) $H_2S < NH_3 < BF_3 < SiH_4$ b) $NH_3 < H_2S < SiH_4 < BF_3$ c) $H_2S < NH_3 < SiH_4 < BF_3$ d) $H_2S < SiH_4 < NH_3 < BF_3$ 853. Metallic lusture is explained by a) Diffusion of metal ions b) Oscillation of loose electrons c) Excitation of free protons d) Existence of bcc lattice 854. Which of the following phenomenon will occur when two atoms of same spin will react? a) Bonding will not occur b) Orbital overlap will not occur c) Both (a) and (b) d) None of the above 855. The hybrid state of S in SO_3 is similar to that of b) C in C₂H₄ a) C in C_2H_2 c) C in CH_4 d) C in CO_2 856. Among the following the pair in which the two species are not isostructural is a) 10_3^- and $XeO_3^$ b) PF_6^- and SF_6 c) BH_4^- and NH_4^+ d) SiF₄ and SF₄ 857. Which of the following species contains three bond pairs and one lone pair around the central atom? a) $NH_2^$ b) PCl_3 c) H_20 d) BF_3 858. Intramolecular hydrogen bonding is found in: a) Salicyldehyde b) Water d) Phenol c) Acetaldehyde 859. The type of bond formed between H^+ and NH_3 in NH_4^+ ion is: a) Ionic b) Covalent c) Dative d) Hydrogen 860. Which of the following statements is correct about N₂ molecule? a) It has a bond order of 3 b) The number of unpaired electrons present in it is zero and hence, it is diamagnetic The order of filling of MOs is $\pi(2p_x) =$ d) All the above three statements are correct c) $\pi(2p_{\gamma}), \sigma(2p_z)$

861. Ice has an open structure compared to water due to of space. The open structure of ice is due to:	which it floats on water ar	nd occupies a greater volume
a) Solid state of ice b) Its low density	c) Crystalline nature	d) Hydrogen bonding
862. Which of the following has minimum melting point	· ·	u) nyurogen bonung
a) CsF b) HCl	c) HF	d) LiF
863. Geometry of ammonia molecule and the hybridisati	,	,
a) sp^3 hyridisation and tetrahedral geometry		
b) sp^3 hyridisation and distorted tetrahedral geom	etrv	
c) sp^2 hyridisation and triangular geometry	5	
d) None of the above		$\langle \cdot \rangle$
864. The molecule having smallest bond angle is		
a) H_2O b) H_2S	c) NH ₃	d) H ₂ Te
865. For a covalent solid, the units which occupy lattice	points are:	
a) Atoms b) Ions	c) Molecules	d) Electrons
866. Carbon suboxide (C_3O_2) has recently been shown a		
the following formulation raepresents the correct g		
a) :0:C::C:C:0: b) :0::C::C:C:0:	c) : Ö::C::C::C:: Ö:	d) :0: C: C: C: 0:
867. The ionization energy will be maximum for the pro		
a) $Ba \rightarrow Ba^{2+}$ b) $Be \rightarrow Be^{2+}$	c) $Cs \rightarrow Cs^+$	d) Li \rightarrow Li ⁺
868. Born Haber cycle is used to determine:	c) Ionization energy	d) Either of them
a) Lattice energy b) Electron affinity 869. In which of the following molecules/ions BF ₃ , NO ₂ ,		d) Either of them a^2 hybridized ²
a) BF ₃ and NO ₂ b) NO ₂ and NH ₂	c) NH_2^- and H_2O the central a	d) NO_2^- and H_2O
$870. sp^3 d$ hybridisation results in	c) why and hyo	
a) A square planar molecule	b) An octahedron molecu	ıle
c) A trigonal bipyramidal molecule	d) A tetrahedron molecu	
871. In the electronic structure of H_2SO_4 , the total numb	-	
a) 20 b) 16	c) 12	d) 8
872. Which of the following element has higher ionisatio	on energy?	-
a) Boron b) Carbon	c) Oxygen	d) Nitrogen
873. The bond length of HCl molecule is 1.275 Å and i	ts dipole moment is 1.03 I	D. The ionic character of the
molecule (in per cent) (charge of the electron= 4.8	3×10^{-10} esu) is	
a) 100 b) 67.3	c) 33.66	d) 16.83
874. In a double bond connecting two atoms there is a sl	-	
a) 2 electrons b) 4 electrons	c) 1 electron	d) All electrons
875. Number of P – O bonds in P_4O_{10} is	245	
a) 17 b) 16	c) 15	d) 6
876. Elements whose electronegativities are 1.2 and 3.0		d) Matallia han d
a) Ionic bond b) Covalent bond 877. Which of the following is correct?	c) Coordinate bond	d) Metallic bond
a) Decreases in bond length means increase in bond	d strongth	
b) Covalent radius of carbon is less than that of nitr	_	
c) Single bonds are stronger than double bonds	0,000	
d) Fe (III) chloride cannot exist in the dimeric form	Fe ₂ Cl ₆	
878. Which of the following is a favourable factor for cat		
a) Low ionisation potential	b) High electron affinity	
c) High electronegativity	d) Small atomic size	
879. A number of ionic compounds, e.g., AgCl, CaF ₂ , BaSC	0 ₄ are insoluble in water. Th	his is because:
a) Ionic compounds do not dissolve in water		
b) Water has a high dielectric constant		

c) Water is not a good ionizing solvent

d) These molecules have exceptionally high attractive forces in their lattice

880. Ionisation potential values of '*d*' block elements as compared to ionisation potential values of '*f*' block elements are:

elements	are:		
a) Higher	b) Lower	c) Equal	d) Either of these
881. When a n	netal atom combines with a non-mo	etal atom, the non-metal ato	m will
a) Lose e	lectrons and decrease in size		
-	lectrons and increase in size		
,	ectrons and decrease in size		
-	ectrons and increase in size		
-			
	ation of ionic compounds involves:		
	ion of heat		
,	ning of attractive forces		A +
2	iation into ions		
d) All of t			
883. Which of	the following is diamagnetic?		
a) H ₂ +	b) 0 ₂	c) Li ₂	d) Fe_2^+
884. Molecula	r orbital electronic configuration fo	or 'X' anion is	$\langle \mathbf{O} \rangle$
	$(\sigma_{2s})^{2}(\pi_{2p_{x}})^{2}(\pi_{2p_{y}})^{2}(\sigma_{2p_{y}})^{2}(\sigma_{2p_{x}})^{2}(\pi_{2p_{x}})^{2}$	1	
$KK(\sigma 2s)$	$(\sigma_{2s})(\pi_{2}p_{x})(\pi_{2}p_{y})(\sigma_{2}p_{z})(\pi_{2}p_{x})$	•	
The anior	1 ' <i>X</i> ' is		*
a) N_2^-	b) 0 ₂	c) N_2^2	d) 02 ⁻
	g to Fajan's rule polarization is mo		u) 02
		re when.	
-	cation and large anion		
-	cation and small anion		
	cation and large anion		
	cation and small anion		
-	ompounds soluble in water contain		
a) C, H. Cl		c) C, H, O	d) C, S
887. Atomic ra	dii of fluorine and neon in angstro	m unit are respectively give	n by:
a) 0.72, 1	.60 b) 1.60, 1.60	c) 0.72, 0.72	d) 1.60, 0.72
888. The decre	easing order of bond angle is		
a) NO ₂ >	$NO_{2}^{+} > NO_{2}^{-}$	b) $NO_2^- > NO_2 >$	NO ⁺ ₂
c) NO ₂ ⁺ >	$NO_2 > NO_2$	d) $NO_2^+ > NO_2^- >$	NO ₂
—	ect order of dipole moment is:		_
	$NF_3 < NH_3 < H_2O$		
, ,	$CH_4 < NH_3 < H_2O$		
	$NF_3 < CH_4 < H_2O$		
	$NH_3 < NF_3 < CH_4$		
	$M_3 < M_3 < Cl_4$ ide of nitrogen is isoelectronic with		
		-	DN O
a) NO_2	b) N ₂ O	c) NO	d) N_2O_2
	the following molecules does not p	ossess a permanent electric	c dipole moment?
a) H ₂ S			
b) SO ₂			
c) SO ₃			
d) CS ₂			
892. Among O	, C, F, Cl, Br the correct order of inc	reasing atomic radii is:	
-	< C < Cl < Br b) $F < C < 0 < B$	-	O < C d) $C < O < F < Cl < Br$
-	of the following diatomic molecule	-	-
a) 0^+_2 , NO	_	c) N_2^+, NO, O_2^+	d) O_2^+, CN^-, N_2^+
a) 02.100	· · · · · · · · · · · · · · · · · · ·	, _,,	, _,

a) sp^2	b) <i>sp</i> ³	c) dsp^2	d) <i>sp</i>
895. Identify the correct orde		•	
a) $CuS > ZnS > Na_2S$	b) $ZnS > Na_2S > CuS$	c) $Na_2S > CuS > ZnS$	d) $Na_2S > ZnS > CuS$
896. In the following molecul	e, the two carbon atoms ma	irked by asterisk (*) posses	s the following type of
hybridized orbitals:	*		
$H_3C - \overset{*}{C} \equiv$	с́—СН ₃		
a) <i>sp</i> ³ -orbital	b) <i>sp</i> ² -orbital	c) <i>sp</i> -orbital	d) <i>s</i> -orbital
897. Debye an unit of dipole r			
a) 10 ⁻¹⁰ esu cm	b) 10 ^{–18} esu cm	c) 10 ⁻⁶ esu cm	d) 10 ⁻¹² esu cm
898. Which of the following is			
a) High electronegativity		b) High electron affinity	
c) Low ionisation potent		d) Smaller atomic size	
899. The paramagnetic molec		0	
a) H ₂	b) 0 ₂	c) N ₂	d) CO
900. The bond in the formation			X
a) Due to <i>s</i> – <i>s</i> overlapp	-	b) Due to <i>s</i> – <i>p</i> overlappin	ng
c) Due to $p - p$ overlapp	-	d) Due to hybridisation	Г —
901. The diamagnetic molecu			
a) B ₂ , C ₂ , N ₂ 902. The IP ₁ is maximum for:	b) O ₂ , N ₂ , F ₂	c) C_2, N_2, F_2	d) B ₂ , O ₂ , N ₂
a) K	b) Na	c) Be	d) He
903. In the transition of Cu to	Cu ²⁺ , there is a decrease in	1:	
a) Atomic number	A	GX'	
b) Atomic mass	•	N.	
c) Equivalent weight			
d) Number of valency ele		Ŧ	
904. In the following, which b			
a) N — H	b) 0 – H	c) F — H	d) S – H
905. The bond order of O_2^+ is			D Mot
a) N_2^+	b) CN ⁻	c) CO	d) NO ⁺
906. Structure of XeF_5^+ ion is			
a) Trigonal bipyramidal	b) Square pyramidal	c) Octahedral	d) Pentagonal
907. The fHOMO in CO is			
a) π -bonding	b) π -antibonding	c) σ -antibonding	d) σ -bonding
908. Which of the following h			
a) BF ₂ 909. Which one has sp^3 hybri	b) BCl ₃	c) SO ₃	d) CCl ₄
a) N_2O	b) CO_2	a) \$0	d) CO
910. Coordinate compounds a	· -	c) SO ₂	uj co
a) Transfer of electrons	are formed by.		
b) Sharing of electrons			
c) Donation of electron	nair		
d) None of the above			
911. In P_4O_{10} the			
	is formed by $p\pi - d\pi$ back	bonding	
b) $P = 0$ bond is formed		0	
c) $P = 0$ bond is formed			
	by $d\pi - d\pi - 3\sigma$ back bon	ding	
912. Allene (C_3H_4) contains			
•			

a) One double bond, one triple bond and one single	e bond	
b) One triple and two double bonds		
c) Two triple and one double bond		
d) Two double and four single bond		
913. Which shows non-directional bonding?		
a) BCl ₃ b) CsCl	c) NCl ₃	d) BeCl ₃
914. Which one of the following contains both ionic and	covalent bonds?	
a) C_6H_5Cl b) H_2O	c) NaOH	d) CO_2
915. Na ⁺ , Mg ²⁺ , Al ³⁺ , Si ⁴⁺ are isoelectronics. Their ionic	size follows the order:	
a) $Na^+ < Mg^{2+} < Al^{3+} < Si^{4+}$		
b) $Na^+ > Mg^{2+} < Al^{3+} < Si^{4+}$		
c) $Na^+ < Mg^{2+} > Al^{3+} > Si^{4+}$		
d) $Na^+ > Mg^{2+} > Al^{3+} > Si^{4+}$		
916. Which of the following does not apply to metallic b	ond?	
a) Overlapping valence orbitals		\circ
b) Mobile valence electrons		X
c) Delocalized electrons		
d) Highly directed bonds		<i>J</i>
917. Van der Waals' forces are maximum in:		
a) HBr b) LiBr	c) LiCl	d) AgBr
918. The internuclear distance in H_2 and Cl_2 molecules a	are 74 and 198 pm respectiv	vely. The bond length of H—
Cl may be:	a) 12(mm	d) 240 mm
a) 272 pm b) 70 pm	c) 136 pm	d) 248 pm
919. The molecule having zero dipole moment is	a) ME	d) CIE
a) CH ₂ Cl ₂ b) BF ₃ 920. For a stable molecule, the value of bond order mus	c) NF ₃	d) ClF ₃
a) There is no relationship between stability and b		
b) Zero		
c) Positive		
d) negative		
921. Which compound among the following has more co	ovalent character?	
a) AlCl ₃ b) All ₃	c) MgI ₂	d) NaI
922. Which among the following has the largest dipole r	2	
a) NH_3 b) H_2O	c) HI	d) SO ₃
923. The hybridization of phosphorus in $POCl_3$ is same a	,	-) 3
a) P in PCl ₃ b) S in SF ₆	c) Cl in ClF_3	d) B in BCl ₃
924. A square planar complex is formed by hybridisatio		5 0
a) s, p_x, p_y, p_z b) s, p_x, p_y, p_z, d	c) d, s, p_x, p_y	d) s, p_x, p_y, p_z, d, d
925. Which of the following pairs are isostructural?	,,	
a) SO_3^{2-}, NO_3^{-} b) BF_3, NF_3	c) BrO_3^- , XeO_3	d) SF4, XeF4
926. Among HF, CH_4 , CH_3OH and N_2O_4 intermolecular h		
a) In two b) In all	c) In all leaving one	d) None of these
927. Hydration of different ions in aqueous solution is a		2
a) Ion – induced dipole interaction	-	
b) Dipole - dipole interaction		
c) Dipole – induced dipole interaction		
d) Ion – dipole interaction		
928. Amongst LiCl, RbCl, BeCl ₂ and MgCl ₂ , the compoun	ds with the greatest and the	least ionic character,
respectively		
a) LiCl and RbCl b) RbCl and MgCl ₂	c) RbCl and BeCl ₂	d) MgCl ₂ and BeCl ₂

929. The percentage of p – character in the orbitals forming P – P bonds in P ₄ is	
a) 25 b) 33 c) 50	d) 75
930. Atoms or group of atoms which are electrically charged are known as:	
a) Anions b) Cations c) Ions	d) Atoms
931. Which among the following elements has lowest value of ionisation energy	
a) Mg b) Ca c) Ba	d) Sr
932. IP_2 for an element is invariably higher than IP_1 because:	
a) The size of cation is smaller than its atom	
b) It is difficult to remove 'e' from cation	
c) Effective nuclear charge is more for cation	
d) All of the above 0.22 In forming (i) N = 0.14 and (ii) $0 = 0.04$ the electrone respectively are n	
933. In forming (i) $N_2 \rightarrow N_2^+$ and (ii) $O_2 \rightarrow O_2^+$; the electrons respectively are r	
a) $\left(\stackrel{*}{\pi} _{2} p_{y} \text{ or } \stackrel{*}{\pi} _{2} p_{x} \right)$ and $\left(\stackrel{*}{\pi} _{2} p_{y} \text{ or } \stackrel{*}{\pi} _{2} p_{x} \right)$	
b) $(\pi 2 p_y \text{ or } \pi 2 p_x)$ and $(\pi 2 p_y \text{ or } \pi 2 p_x)$	QN
c) $(\pi 2 p_y \text{ or } \pi 2 p_x)$ and $(\pi 2 p_y \text{ or } \pi 2 p_x)$	
d) $(\stackrel{*}{\pi} _{2} p_{y} \text{ or } \stackrel{*}{\pi} _{2} p_{x})$ and $(\pi _{2} p_{y} \text{ or } \pi _{2} p_{x})$	
934. Which one pair of atoms or ions will have same configuration?	
a) Li^+ and He^- b) Cl^- and Ar c) Na and K	d) F ⁺ and Ne
935. Which combination is best explained by the coordinate covalent bond?	5
	d) H = 1
	d) $H_2 + I_2$
936. The dipole moment of $CHCl_3$ is 1.05 debye while that of CCl_4 is zero, becaus	
a) Linear b) Symmetrical c) Planar	d) Regular tetrahedral
937. Which shows the highest lattice energy?	
a) RbF b) CsF c) NaF	d) KF
938. In a polar molecule, the ionic charge is 4.8×10^{-10} e.s.u. If the inter ionic direct means at i.e.	ic distance is 1 A unit, then the
dipole moment is	d) 0.40 dabaa
a) 41.8 debye b) 4.18 debye c) 4.8 debye	d) 0.48 debye
939. The correct order regarding the electronegativity of hybrid orbitals of carbo a) $sp < sp^2 > sp^3$ b) $sp < sp^2 < sp^3$ c) $sp > sp^2 < sp^3$	d) $sp > sp^2 > sp^3$
940. Which of the following groups all do not have $sp^3 d$ hybridisation?	dj sp > sp > sp
a) ClF_3 , IF_3 , XeF_3^+ b) ICl_2^- , ClF_2^- , I_3^- c) ClF_3 , BrF_3 , IF_3	d) PCl ₃ , AsCl ₃ , PF ₅
941. Which of the following compounds does not follow the octet rule for electro	y b . b . b
a) H_2O b) PH_3 c) PCl_3	d) PCl ₅
942. Which of the following sets represents the collection of isoelectronic specie	5 6
a) Na ⁺ , Mg ²⁺ , Al ³⁺ , Cl ⁻ b) Na ⁺ , Ca ²⁺ , Sc ³⁺ , F ⁻ c) K ⁺ , Cl ⁻ , Mg ²⁺ , Sc ³⁺	
943. Which of the following has unchanged valency?	
a) H b) Na c) Fe	d) 0
944. The structure of XeF_4 is:	
a) Planar b) Tetrahedral c) Square planar	d) Pyramidal
945. N_2 and O_2 are converted into N_2^+ and O_2^+ respectively.	
Which of the following is not correct?	
a) In N ⁺ ₂ , the N – N bond weakens	
b) In O_2^+ , O – O bond order increases	
c) In O_2^+ , paramagnetism decreases	
d) N ₂ ⁺ becomes diamagnetic	
946. Which molecule has trigonal planar geometry?	

 a) IF₃ b) PCl₃ c) NH₃ d) BF₃ 947. Malleability and ductility of metals can be accounted due to a) The presence of electrostatic force b) The crystalline structure in metal c) The capacity of layers of metal ions to slide over the other 	
a) The presence of electrostatic force b) The crystalline structure in metal	
b) The crystalline structure in metal	
c) The capacity of layers of metal ions to slide over the other	
-)	
d) The interaction of electrons with metal ions in the lattice	
948. Underlined carbon is sp^3 hybridised in	
a) $CH_3\underline{C}H = CH_2$ b) $CH_3\underline{C}H_2NH_2$ c) $CH_3\underline{C}ONH_2$ d) $CH_3CH_2\underline{C}N$	
949. Hydrogen fluoride is a liquid unlike other hydrogen halides because:	•
a) HF molecules associate due to hydrogen bonding)
b) F ₂ is highly reactive	
c) HF is the weakest acid of all hydrogen halides	
d) Fluorine atom is the smallest of all halogens	
950. The number of sigma (σ)and pi (π) covalent bonds respectively in banzene nitrile are	
a) 5, 13 b) 15, 3 c) 13, 5 d) 16, 2	
951. In which one of the following cases, breaking of covalent bond takes place?	
a) Boiling of H_2O b) Melting of KCN c) Boiling of CF_4 d) Melting of SiO ₂	
952. Which compound is soluble in water	
a) CS_2 b) C_2H_5OH c) CCl_4 d) $CHCl_3$	
953. A π -bond is formed by sideways overlapping of:	
a) s - s orbitals b) p - p orbitals c) s - p orbitals d) s - p - s orbitals	
954. Which statement is true?	
a) Absolutely pure water does not contain any ion.	
a) hospitally pure water does not contain any ion.	
h) Some covalent compounds may also give ions in aqueous solution	
b) Some covalent compounds may also give ions in aqueous solution.	
c) In aqueous solution only electrovalent compound give ions.	
c) In aqueous solution only electrovalent compound give ions.d) Very sparingly soluble substances do not dissociate in aqueous solution	
 c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π-bond: 	
 c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π-bond: a) Increases bond length 	
 c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π-bond: a) Increases bond length b) Decreases bond length 	
 c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π-bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule 	
 c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π-bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 	
 c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π-bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp² to sp³? 	
c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π -bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp^2 to sp^3 ? a) NH ₃ + H ⁺ \rightarrow NH ₄ ⁺ b) BF ₃ + F ⁻ \rightarrow BF ₄ ⁻ c) H ₂ 0 + H ⁺ \rightarrow H ₃ 0 ⁺ d) C ₂ H ₂ + 2H ₂ \rightarrow C ₂ H ₆	
c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π -bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp^2 to sp^3 ? a) NH ₃ + H ⁺ \rightarrow NH ₄ ⁺ b) BF ₃ + F ⁻ \rightarrow BF ₄ ⁻ c) H ₂ 0 + H ⁺ \rightarrow H ₃ 0 ⁺ d) C ₂ H ₂ + 2H ₂ \rightarrow C ₂ H ₆ 957. The low solubility of BaSO ₄ in water is due to:	
c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π -bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp^2 to sp^3 ? a) NH ₃ + H ⁺ \rightarrow NH ₄ ⁺ b) BF ₃ + F ⁻ \rightarrow BF ₄ ⁻ c) H ₂ 0 + H ⁺ \rightarrow H ₃ 0 ⁺ d) C ₂ H ₂ + 2H ₂ \rightarrow C ₂ H ₆ 957. The low solubility of BaSO ₄ in water is due to: a) Low dissociation energy	
c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π -bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp^2 to sp^3 ? a) NH ₃ + H ⁺ \rightarrow NH ₄ ⁺ (b) BF ₃ + F ⁻ \rightarrow BF ₄ ⁻ (c) H ₂ 0 + H ⁺ \rightarrow H ₃ 0 ⁺ (d) C ₂ H ₂ + 2H ₂ \rightarrow C ₂ H ₆ 957. The low solubility of BaSO ₄ in water is due to: a) Low dissociation energy b) Ionic bonds	
c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π -bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp^2 to sp^3 ? a) NH ₃ + H ⁺ \rightarrow NH ₄ ⁺ b) BF ₃ + F ⁻ \rightarrow BF ₄ ⁻ c) H ₂ 0 + H ⁺ \rightarrow H ₃ 0 ⁺ d) C ₂ H ₂ + 2H ₂ \rightarrow C ₂ H ₆ 957. The low solubility of BaSO ₄ in water is due to: a) Low dissociation energy b) Ionic bonds c) High value of lattice energy	
c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π -bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp^2 to sp^3 ? a) NH ₃ + H ⁺ \rightarrow NH ₄ ⁺ b) BF ₃ + F ⁻ \rightarrow BF ₄ ⁻ c) H ₂ 0 + H ⁺ \rightarrow H ₃ 0 ⁺ d) C ₂ H ₂ + 2H ₂ \rightarrow C ₂ H ₆ 957. The low solubility of BaSO ₄ in water is due to: a) Low dissociation energy b) Ionic bonds c) High value of lattice energy d) None of the above	
c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π -bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp^2 to sp^3 ? a) NH ₃ + H ⁺ \rightarrow NH ₄ ⁺ b) BF ₃ + F ⁻ \rightarrow BF ₄ ⁻ c) H ₂ 0 + H ⁺ \rightarrow H ₃ 0 ⁺ d) C ₂ H ₂ + 2H ₂ \rightarrow C ₂ H ₆ 957. The low solubility of BaSO ₄ in water is due to: a) Low dissociation energy b) Ionic bonds c) High value of lattice energy d) None of the above 958. The number of lone pairs of electron on Xe in XeOF ₄ is:	
c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π -bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp^2 to sp^3 ? a) NH ₃ + H ⁺ \rightarrow NH ₄ ⁺ b) BF ₃ + F ⁻ \rightarrow BF ₄ ⁻ c) H ₂ 0 + H ⁺ \rightarrow H ₃ 0 ⁺ d) C ₂ H ₂ + 2H ₂ \rightarrow C ₂ H ₆ 957. The low solubility of BaSO ₄ in water is due to: a) Low dissociation energy b) Ionic bonds c) High value of lattice energy d) None of the above 958. The number of lone pairs of electron on Xe in XeOF ₄ is: a) 1 b) 2 c) 3 d) 4	
c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π -bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp^2 to sp^3 ? a) NH ₃ + H ⁺ \rightarrow NH ₄ ⁺ b) BF ₃ + F ⁻ \rightarrow BF ₄ ⁻ c) H ₂ 0 + H ⁺ \rightarrow H ₃ 0 ⁺ d) C ₂ H ₂ + 2H ₂ \rightarrow C ₂ H ₆ 957. The low solubility of BaSO ₄ in water is due to: a) Low dissociation energy b) Ionic bonds c) High value of lattice energy d) None of the above 958. The number of lone pairs of electron on Xe in XeOF ₄ is: a) 1 b) 2 c) 3 d) 4 959. Which compound does not contain double bond or triple bond?	
c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π -bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp^2 to sp^3 ? a) NH ₃ + H ⁺ \rightarrow NH ₄ ⁺ b) BF ₃ + F ⁻ \rightarrow BF ₄ ⁻ c) H ₂ 0 + H ⁺ \rightarrow H ₃ 0 ⁺ d) C ₂ H ₂ + 2H ₂ \rightarrow C ₂ H ₆ 957. The low solubility of BaSO ₄ in water is due to: a) Low dissociation energy b) Ionic bonds c) High value of lattice energy d) None of the above 958. The number of lone pairs of electron on Xe in XeOF ₄ is: a) 1 b) 2 c) 3 d) 4 959. Which compound does not contain double bond or triple bond? a) C ₂ H ₄ b) H ₂ O c) N ₂ d) HCN	
c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π -bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp^2 to sp^3 ? a) NH ₃ + H ⁺ \rightarrow NH ₄ ⁺ b) BF ₃ + F ⁻ \rightarrow BF ₄ ⁻ c) H ₂ 0 + H ⁺ \rightarrow H ₃ 0 ⁺ d) C ₂ H ₂ + 2H ₂ \rightarrow C ₂ H ₆ 957. The low solubility of BaSO ₄ in water is due to: a) Low dissociation energy b) Ionic bonds c) High value of lattice energy d) None of the above 958. The number of lone pairs of electron on Xe in XeOF ₄ is: a) 1 b) 2 c) 3 d) 4 959. Which compound does not contain double bond or triple bond? a) C ₂ H ₄ b) H ₂ O c) N ₂ d) HCN 960. The compound showing maximum covalent character is:	
c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π -bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp^2 to sp^3 ? a) NH ₃ + H ⁺ \rightarrow NH ₄ ⁺ b) BF ₃ + F ⁻ \rightarrow BF ₄ ⁻ c) H ₂ 0 + H ⁺ \rightarrow H ₃ 0 ⁺ d) C ₂ H ₂ + 2H ₂ \rightarrow C ₂ H ₆ 957. The low solubility of BaSO ₄ in water is due to: a) Low dissociation energy b) Ionic bonds c) High value of lattice energy d) None of the above 958. The number of lone pairs of electron on Xe in XeOF ₄ is: a) 1 b) 2 c) 3 d) 4 959. Which compound does not contain double bond or triple bond? a) C ₂ H ₄ b) H ₂ O c) N ₂ d) HCN 960. The compound showing maximum covalent character is: a) Bl ₃ b) BCl ₃ c) BF ₃ d) BBr ₃	
c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π -bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp^2 to sp^3 ? a) NH ₃ + H ⁺ \rightarrow NH ₄ b) BF ₃ + F ⁻ \rightarrow BF ₄ c) H ₂ 0 + H ⁺ \rightarrow H ₃ 0 ⁺ d) C ₂ H ₂ + 2H ₂ \rightarrow C ₂ H ₆ 957. The low solubility of BaSO ₄ in water is due to: a) Low dissociation energy b) Ionic bonds c) High value of lattice energy d) None of the above 958. The number of lone pairs of electron on Xe in XeOF ₄ is: a) 1 b) 2 c) 3 d) 4 959. Which compound does not contain double bond or triple bond? a) C ₂ H ₄ b) H ₂ O c) N ₂ d) HCN 960. The compound showing maximum covalent character is: a) BI ₃ b) BCl ₃ c) BF ₃ d) BBr ₃ 961. Carbon atoms in C ₂ (CN) ₄ are:	
c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π -bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp^2 to sp^3 ? a) NH ₃ + H ⁺ \rightarrow NH ₄ ⁺ b) BF ₃ + F ⁻ \rightarrow BF ₄ ⁻ c) H ₂ 0 + H ⁺ \rightarrow H ₃ 0 ⁺ d) C ₂ H ₂ + 2H ₂ \rightarrow C ₂ H ₆ 957. The low solubility of BaSO ₄ in water is due to: a) Low dissociation energy b) Ionic bonds c) High value of lattice energy d) None of the above 958. The number of lone pairs of electron on Xe in XeOF ₄ is: a) 1 b) 2 c) 3 d) 4 959. Which compound does not contain double bond or triple bond? a) C ₂ H ₄ b) H ₂ O c) N ₂ d) HCN 960. The compound showing maximum covalent character is: a) Bl ₃ b) BCl ₃ c) BF ₃ d) BBr ₃ 961. Carbon atoms in C ₂ (CN) ₄ are: a) <i>sp</i> -hybridised	
c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π -bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp^2 to sp^3 ? a) NH ₃ + H ⁺ \rightarrow NH ₄ ⁺ b) BF ₃ + F ⁻ \rightarrow BF ₄ ⁻ c) H ₂ 0 + H ⁺ \rightarrow H ₃ 0 ⁺ d) C ₂ H ₂ + 2H ₂ \rightarrow C ₂ H ₆ 957. The low solubility of BaSO ₄ in water is due to: a) Low dissociation energy b) Ionic bonds c) High value of lattice energy d) None of the above 958. The number of lone pairs of electron on Xe in XeOF ₄ is: a) 1 b) 2 c) 3 d) 4 959. Which compound does not contain double bond or triple bond? a) C ₂ H ₄ b) H ₂ O c) N ₂ d) HCN 960. The compound showing maximum covalent character is: a) Bl ₃ b) BCl ₃ c) BF ₃ d) BBr ₃ 961. Carbon atoms in C ₂ (CN) ₄ are: a) <i>sp</i> -hybridised b) <i>sp</i> ² -hybridised	
c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π -bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp^2 to sp^3 ? a) NH ₃ + H ⁺ \rightarrow NH ₄ ⁺ b) BF ₃ + F ⁻ \rightarrow BF ₄ ⁻ c) H ₂ 0 + H ⁺ \rightarrow H ₃ 0 ⁺ d) C ₂ H ₂ + 2H ₂ \rightarrow C ₂ H ₆ 957. The low solubility of BaSQ ₄ in water is due to: a) Low dissociation energy b) Ionic bonds c) High value of lattice energy d) None of the above 958. The number of lone pairs of electron on Xe in XeOF ₄ is: a) 1 b) 2 c) 3 d) 4 959. Which compound does not contain double bond or triple bond? a) C ₂ H ₄ b) H ₂ O c) N ₂ d) HCN 960. The compound showing maximum covalent character is: a) Bl ₃ b) BCl ₃ c) BF ₃ d) BBr ₃ 961. Carbon atoms in C ₂ (CN) ₄ are: a) sp-hybridised b) sp ² -hybridised c) sp- and sp ² -hybridised	
c) In aqueous solution only electrovalent compound give ions. d) Very sparingly soluble substances do not dissociate in aqueous solution 955. Formation of π -bond: a) Increases bond length b) Decreases bond length c) Distorts the geometry of molecule d) Makes homoatomic molecules more reactive 956. In which reaction, the hybridisation on the central atom changes from sp^2 to sp^3 ? a) NH ₃ + H ⁺ \rightarrow NH ₄ ⁺ b) BF ₃ + F ⁻ \rightarrow BF ₄ ⁻ c) H ₂ 0 + H ⁺ \rightarrow H ₃ 0 ⁺ d) C ₂ H ₂ + 2H ₂ \rightarrow C ₂ H ₆ 957. The low solubility of BaSO ₄ in water is due to: a) Low dissociation energy b) Ionic bonds c) High value of lattice energy d) None of the above 958. The number of lone pairs of electron on Xe in XeOF ₄ is: a) 1 b) 2 c) 3 d) 4 959. Which compound does not contain double bond or triple bond? a) C ₂ H ₄ b) H ₂ O c) N ₂ d) HCN 960. The compound showing maximum covalent character is: a) Bl ₃ b) BCl ₃ c) BF ₃ d) BBr ₃ 961. Carbon atoms in C ₂ (CN) ₄ are: a) <i>sp</i> -hybridised b) <i>sp</i> ² -hybridised	

	a) and ionication oner	y shows jump in alkali meta	lc	
	b) 2nd electron affinity	, 1	15	
	c) Maximum electron af	-		
06	d) Maximum ionization3. Value of <i>x</i> in potash alur			
90	-			
	$K_2SO_4.AI_x(SO_4)_3.24H_2$ a) 4		c) 2	d) None of these
06	-	b) 1	•	u) None of these
90	a) Na_2O_2	e paramagnetic compound i b) 0 ₃	c) N_20	d) KO_2
06	5. HCl molecule in the vap	5 0	$CJ N_2 O$	
90	a) Non-polar bond	b) Ionic bond	c) Polar covalent bond	d) Pure covalent bond
06		mplete outershell are know		uj r ure covalent bonu
90	a) Kernel electrons	b) Valency electrons	c) Shell electrons	d) None of the above
06	-	r concept the correct order (-	
90	a) $0_2 > 0_2^+ > 0_2^-$	b) $0_2^- > 0_2^- > 0_2^+$	c) $0_2 > 0_2^- > 0_2^+$	d) $0_2^+ > 0_2 > 0_2^-$
96	_	ts in both hard and soft form		$u_1 v_2 > v_2 > v_2$
90	a) Fe	b) Si	c) C	d) Al
96	9. Which of the following i	,		
90	_	loes in fact have square pyra	amid structure	
		ways shorter than correspo		
		t molecules can act as Lewis		
		ires have no real existence.	s actus.	
97	0. The bond strength incre			
)1	a) With increasing bond			
		nt of overlapping of orbitals	X) ^y	
		rence between energies of o	overlanning orbitals	
	d) All of the above	rence between energies of	svenupping of bituis	
97		l electrons in 0_2 molecule is		
,,	a) Zero	b) 1	c) 2	d) 3
97		energy and stronger bond?	•) =	
	a) F ₂	b) Cl ₂	c) Br ₂	d) I ₂
97		tatements regarding carbor		52
	a) It involves <i>sp</i> -orbital			
	b) It contains a lone pair			
	c) It contains a lone pair			
		nd is attached to the metal a	atoms	
97		s having highest bond lengt		
	a) NO ⁻	b) NO ⁺	c) CN ⁻	d) CN ⁺
97	5. Which of the following s	tatement is correct for CsBi	r ₃ ?	
	a) It is a covalent compo	ound		
	b) It contains Cs ³⁺ and I	3r ⁻ ions		
Ċ	c) It contains Cs ⁺ and Br	ions		
	d) It contains Cs ⁺ , Br ⁻ a			
97	6. In 1 – butene number of			
	a) 8	b) 10	c) 11	d) 12
97	7. Which does not have py	ramidal geometry?		
	a) SO_3^{2-}	b) NO_{3}^{-}	c) NH ₃	d) $C(C_6H_5)_3^-$
97	8. The nature of bonding in	5 6	· -	
	a) Electrovalent in both			
	b) Covalent in CCl ₄ and			

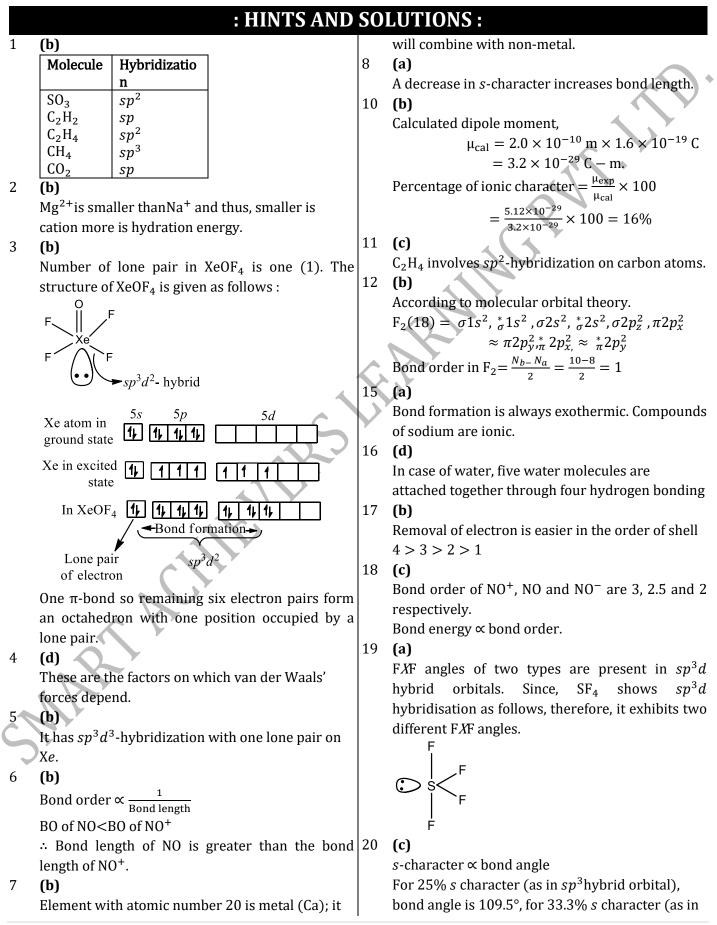
c) Electrovalent in $\mbox{\rm CCl}_4$ and covalent in $\mbox{\rm CaH}_2$

- d) None of the above
- 979. Which of the following oxides is not expected to react with sodium hydroxide?
 - a) BeO b) B_2O_3 c) CaO d) SiO₂

HURBOLIN SMARLAC

CHEMICAL BONDING AND MOLECULAR STRUCTURE

: ANSWER KEY : 2) 3) 4) d 177) 178) 179) 180) 1) b b b d С а С 5) b 6) b 7) b 8) а 181) b 182) 183) b 184) С С 188) 9) b 10) b 11) С 12) b 185) b 186) d 187) a C d 189) 190) 192) 13) С 14) а 15) а 16) b а 191) b С 193) d 194) 195) 196) 17) b 18) С 19) 20) С С d а а 197) 198) 199) 200) 21) b 22) а 23) С 24) d b d d b 25) 26) d 27) 28) 201) 202) 203) b 🔸 204) С b а С С С 29) 30) 31) 205) d 206) 207) d 208) С а а 32) а а С 211) d 35) 209) d 212) 33) b 34) 36) 210) a а a а С 215) 37) 38) 39) b 40) c 213) b 214) d С 216) С С С b 219) 41) b 42) d 43) b 44) 217) 218) С 220) b С а d 221) 222) 223) 45) 47) b Ċ b 224) b 46) С 48) С а 49) 51) d 225) d 226) 227) 228) 50) С 52) a С а С а 230) 53) 54) 55) 56) 229) b 231) 232) а С С b С a а 57) 59) a 233) d 234) d 235) 236) 58) b С 60) а a С С 238) 237) d 239) 240) 61) 62) 63) 64) С b а а С С 65) 66) 67) 68) 241) С 242) С 243) 244) а а С С a С 69) 71) 245) 246) d 247) 248) 70) а 72) b С С b С а d 249) 250) 73) 74) 75) 76) b 251) d 252) b b С а а 77) 79) d 80) d 253) 254) 255) b 256) 78) a С b а С 81) 82) 83) 84) b 257) b 258) d 259) b 260) С b С С 85) 87) 88) b 261) 262) 263) 264) b 86) b С b b d а 92) 89) d 90) 91) a c 265) b 266) а 267) d 268) d а 93) d 94) d 95) d 96) b 269) b 270) С 271) d 272) b 97) 98) 99) **d** 100) С 273) С 274) d 275) 276) С С а С 103) d 277) 280) 101) С 102) а С 104) С 278) d 279) a С 107) 105) С 106) d а 108) b 281) а 282) d 283) b 284) a 111) 109) а 110) b d 112) а 285) a 286) С 287) a 288) а 113) 114) 115) a 289) b 290) 291) 292) а a С 116) a С b 118) 119) 293) b 294) 295) 296) d 117) а a С 120) С а b 121) 122) b 123) b 124) 297) 298) 299) 300) d а С С С С 126) 127) b 301) d 302) 303) 304) d 125) d С d 128) a С 130) 131) d 129) b 132) d 305) 306) 307) d 308) d b а С 134) d 309) 133) 135) 136) b 310) 311) 312) d С а а С a 137) 138) 139) 140) 313) b 314) 315) 316) а С С С а С b 317) 141) 142) 143) d 144) 318) 319) b 320) d а b а а а 145) 147) 321) b 322) 323) b d 146) 148) b 324) b С а а 149) 150) 151) d 152) а 325) 326) b 327) 328) d С С а a d 329) 153) 155) 330) 331) 332) 154) С d 156) b d d b С d 157) d 158) 159) b 160) 333) 334) b 335) d 336) С С а d 161) d 162) 163) 164) 337) d 338) b 339) b 340) d С a 165) 166) 167) 168) 341) b 342) d 343) 344) С b С С b а 169) 170) d 171) d 172) b 345) b 346) 347) d 348) d С С d 349) b 173) 174) 175) b 176) 350) 351) С 352) b а С а


CHEMISTRY

3539 b 3560 c 3579 d 3560 c 5588 a 5599 d 3660 c 5661 d 5671 b 5661 d 5671 b 5661 d 5671 b 5661 d 5772 a 3741 a 3761 d 3661 c 5771 b 5772 b 5781 b 5771 b 5772 a 3781 a 3771 a 3771 a 3771 a 3771 a 3771 a 3781 a 3881 a 5891 c 5901 d 5911 b 5921 b 5901 a 5901 a 5901 a 5901 a 5901 b 5901 a 5901 a 5901 b 5901 b 5901 b 5901 b 5901 a 5901 a 5901 <														
361 c 362 b 363 d 364 a 565 c 566 d 577 b 578 b 579 b 580 b 579 c 587 a 582 b 383 a 380 d 383 a 383 a 383<	-	b	-	С	-	-	,	-	•	-	-	-		-
365 a 366 c 367 d 3689 a 579 c 571 b 572 a 369 d 370 c 371 a 574 b 575 b 575 b 575 b 575 b 575 b 575 b 576 b 570 b 579 b 580 b 580 b 580 b 580 b 580 b 580 a 580	-	а	-	С	-		2	1		-	b	-	d	-
360 d 370 c 371 a 573 a 574 b 575 b 576 b 373 a 374 a 373 a 374 a 373 a 374 a 373 a 377 a 378 d 373 a 379 b 576 b 578 b 579 b 578 b 579 b 578 b 578 b 5780 b 5780 <t< td=""><td>-</td><td>С</td><td>-</td><td>b</td><td>-</td><td>d</td><td>-</td><td>-</td><td>•</td><td>-</td><td>d</td><td>-</td><td>b</td><td>-</td></t<>	-	С	-	b	-	d	-	-	•	-	d	-	b	-
373 a 374 a 375 a 376 d 577 b 578 b 579 b 580 b 377 a 378 d 379 b 380 d 577 b 580 <	-	а	-	С	-	d	-	-		,	С	-	b	-
377) a 378) d 379) b 380) d 581) a 582) c 583) c 584) c 587) a 589) c 589) c 589) c 589) c 589) c 589) c 5890 d 5990 d 5991 d 6031 a 6071 a 6081 a 6071 a 6081 a 6071 a 6191 c 6121 c 6121 c 6121 6131 a 6311 a <	-	d	-	С	-	С	-	-	•	-	b	-	b	-
381) a 382) d 383) d 384) b 585) c 586) c 587) a 588) a 388) a 3861 a 387) a 388) a 589) c 590) d 591) d 591) b 590) c 590) c 590) d 591) b 590) c 590) d 591) d 591) d 590) c 590) d 590) d 590) d 590) d 600) b 3900 d 4001 d 401 b 4010 d 4001 d 4001 d 4011 b 4111 c 4110 d 4101 d 4201 c 6131 a 6141 a 6131 a 6161 a 6131 a 6161 a 6161 a <td< td=""><td>-</td><td>а</td><td>-</td><td>а</td><td>-</td><td>а</td><td>-</td><td>-</td><td></td><td>-</td><td>b</td><td></td><td>b</td><td>-</td></td<>	-	а	-	а	-	а	-	-		-	b		b	-
385 a 386 a 387 a 388 a 589 c 590 d 591 b 592 b 3893 a 3944 c 3957 c 398 d 5957 c 5981 c 5991 b 6001 b 3971 b 3980 d 3997 d 4001 a 6011 b 6021 a 6001 a 6017 a 6017 a 6017 a 6110 c 6110 c 6121 c 6121 c 6121 a 6221 a 6211 a 6212 a 6311 a 6321 a 6331 b 6311 a 6321 a 6331 b 6331 b 6311 a 6322 a 6331 b 6311 a 6322 a 6331 b 6331 a 6331 a <td>-</td> <td>а</td> <td>-</td> <td>d</td> <td>379)</td> <td>b</td> <td>380) a</td> <td>l 581]</td> <td>) a</td> <td>582)</td> <td>d</td> <td>-</td> <td>b</td> <td>584) b</td>	-	а	-	d	379)	b	380) a	l 581]) a	582)	d	-	b	584) b
389 b 390 a 391 c 392 a 593 c 594 d 595 a 596 c 393 a 394 c 395 c 395 c 396 c 395 c 598 c 603 a 607 a 6081 a 607 a 6081 c 611 c 611 c 611 c 611 c 6121 d 6120 a 6220 a 6231 a 6321 a 6321 a 6321 a 6331 a 6322 c 633 a 6331 a 6321 a 633 a 6331 a 6321 a 6331 a	-	а	382)	d	383)	d	384) k	585]) C	586)	С	587)	а	
393] a 394] c 395] c 597] c 598] c 599] b 6000 b 3977 b 388 d 3993 d 4000 a 6011 b 6021 a 6081 a 4011 b 4003 b 4004 c 605 a 6061 a 6071 a 6110 c 6111 c 6121 d 6131 c 6114 d a 6121 d 6221 a 6231 b 6331 b 6331 b 6331 b 6331 a 6332 c 6332 c 6331 a 6333 d 6331 a 6332 c 6331 a 6332 c 6333 a	-	а	-	а	-	а	388) a	589) C	-	d	-	b	
397) b 398) d 399) d 400) a 601) b 602) c 603) a 6044 b 401) b 402) b 403) b 404) c 605 a 6069 a 6071 c 6110 c 6121 d 6221 a 6201 a 6310 a 6321 a 6331 a 6331 a 6331 a 6341 a 6321 a 6341 a 6321 a 6331 a 6441 a 6431 a 6431 a	-	b	390)	а	391)	С	392) a	593]) C	594)	d	595)	а	596) c
401)b402)b403)b404)c605)a6060a607)a6080a4005)b4100b4110c4121c4120b6131c6141b6151c6110c6120c6120c6120c6120c6120c6121c <td>393)</td> <td>а</td> <td>-</td> <td>С</td> <td>395)</td> <td>С</td> <td>396) o</td> <td>597]</td> <td>) C</td> <td>598)</td> <td>С</td> <td>-</td> <td>b</td> <td></td>	393)	а	-	С	395)	С	396) o	597]) C	598)	С	-	b	
405) d 406) b 600) d 610) c 611) c 612) c 409) b 410) b 411) c 412) b 613) c 614) b 615) a 616) c 619) c 619) c 619) c 619) c 620 b 621) a 623) b 624) c 623) b 624) c 623) b 624) c 623) d 633) c 633) a 634) a 633) a 634) a 633) a 634) a 6440 a 643 a 633) a 634) a 6440 a 643 a 643) a 643 a 653 a 654) b 657	397)	b	398)	d	399)	d	400) a	601) b	602)	С	603)	а	604) b
409) b 410) b 411) c 412) b 613) c 614) b 615) a 616) d 413) c 418) a 419) c 420) b 621) d 622) a 623) b 624) c 421) d 422) c 423) d 424) c 625) d 630) b 631) a 632) c 633) a 634) a 633) d 640) b 641) a 6431 a 6443 a 6453 a 6441 b 6453	401)	b	-	b	403)	b	404) o	605]) a	606)	а	607)	а	608) a
413) c 414) d 415) d 416) b 617) c 618) c 619) c 620) b 417) c 418) a 419) c 420) b 621) d 622) a 623) b 623) a 632) c 623) a 632) c 633) b 634) a 633) b 634) a 635) c 636) a 637) a 638) c 633) a 644) a 4437) b 4430 c 4435 a 4440 b 645) a 6461 b 6471 c 6483 a 6449 a 6501 b 6511 a 6520 c 6561 a 6661 c 6571 c 6583 d 6571 c 6581 a 6591 a 6661 c 6671 b 6671 b 6671 b 6721 d 4681	405)	d	406)	С	407)	b	408) k	609]) d	610)	С	611)	C.	612) c
417) c 418) a 419) c 420) b 621) d 622) a 623) b 624) c 421) d 422) c 423) d 424) c 625) d 620) a 630) b 631) a 632) c 429) b 430 c 433) d 433) d 433) d 433) d 433) d 433) d 630) b 631) a 632) c 639) d 643) a 644) b 643 a 644) b 643 a 644) a 643 a 644) a 644 a 643 a 644) a 644 a 645) a 646) b 657) c 658) d 659 d 660 c 667 b 657) c 658) d 657) c 658) d 660 6671 b 6670 <td>409)</td> <td>b</td> <td>410)</td> <td>b</td> <td>411)</td> <td>С</td> <td>412) ł</td> <td>613</td> <td>) C</td> <td>614)</td> <td>b</td> <td>615)</td> <td>а</td> <td>616) d</td>	409)	b	410)	b	411)	С	412) ł	613) C	614)	b	615)	а	616) d
421) d 422) c 423) d 424) c 625) d 627) b 628) a 425) a 426) c 427) c 428) b 629) a 630) b 631) a 632) c 633) b 631) a 632) c 633) b 633) b 633) a 634) a 633) b 633) a 634) a 633) b 633) a 634) a 633) a 634) a 633) a 643 a 643) a 644) a 6433 a 644) a 6441 a 6443 a 6441 a 6445 a 6441 a 6445 a 6451 a 6453 a 6451 a 6453 a 6451 a <td< td=""><td>413)</td><td>С</td><td>414)</td><td>d</td><td>415)</td><td>d</td><td>416) ł</td><td>617</td><td>) C</td><td>618)</td><td>С</td><td>619)</td><td>С</td><td>620) b</td></td<>	413)	С	414)	d	415)	d	416) ł	617) C	618)	С	619)	С	620) b
425) a 426) c 427) c 428) b 629) a 630) b 631) a 632) c 429) b 430) c 431) d 432) a 633) b 630) c 633) c 633) c 633) a 644) a 643) a 644) a 6441 a 6451 a 6451 a 6551 a 6551 a 6561 a 6571 a 6663 a 6667 b 6571 a 6631 a 6661 a 6631 a 6661 a 6631 a 6661 a 6631 a 6631 a <t< td=""><td>417)</td><td>С</td><td>418)</td><td>а</td><td>419)</td><td>С</td><td>420) k</td><td>621</td><td>) d</td><td>622)</td><td>а</td><td>623)</td><td>b</td><td>624) c</td></t<>	417)	С	418)	а	419)	С	420) k	621) d	622)	а	623)	b	624) c
429 b 430 c 431 d 432 a 633 b 634 a 635 c 636 d 433 d 434 c 435 d 436 b 637 a 638 c 639 d 640 b 437 b 438 c 439 b 440 b 645 a 646 b 647 c 648 a 441 b 442 c 443 a 444 b 645 a 646 b 6477 c 648 a 445 a 4457 c 448 a 649 a 650 b 6517 a 653 a 664 b 6677 b 668 a 666 b 6671 b 6670 b 6671 b 668 d 6473 a 468 669 a 670 c 671 b 678 6661 b 6671	421)	d	422)	С	423)	d	424) o	625) d	626)	d	627)	b	628) a
433) d 434) c 435) d 436) b 637) a 638) c 639) d 644) b 437) b 438) c 439) b 440) b 641) c 642) b 643) a 644) a 4441 b 4441 b 6451 a 6460 b 647) c 648 d 6443 a 6443 a 6443 a 6441 a 6441 a 6443 a 6443 a 6443 a 6443 a 6543 a 6543 a 6543 a 6541 b 6557 c 6551 a 6661 a 6662 a 6661 a 6671 b 6671 b 6672 c 6761 d 6771 c 6763 a 6761 <	425)	а	426)	С	427)	С	428) k	629) a	630)	b	631)	а	632) c
437) b 439) b 440) b 641) c 642) b 643) a 644) a 441) b 442) c 443) a 444) b 645) a 646) b 647) c 648) d 444) b 450 c 447) c 448) a 649) a 650) b 651) a 654) b 651) c 666) c 653) d 650) b 651) a 666) c 653) a 654) b 657) c 658) d 659) d 660) c 653) a 666) b 667) b 6670 b 6660) d 664 d 468) a 677) b 674) b 677) c 6760) c 678) d 677) c 680) d 681 a 682 a 683) d 684) c 682 <td< td=""><td>429)</td><td>b</td><td>430)</td><td>С</td><td>431)</td><td>d</td><td>432) a</td><td>633</td><td>) b</td><td>634)</td><td>a</td><td>635)</td><td>С</td><td>636) d</td></td<>	429)	b	430)	С	431)	d	432) a	633) b	634)	a	635)	С	636) d
441) b 442) c 443) a 444 b 645) a 646) b 6477 c 6480 d 445) a 4460 c 4477 c 448 a 649) a 650) b 6551 a 652 c 449) b 4500 c 4511 a 452 b 6531 a 6511 b 6551 c 6565 b 4530 c 4551 d 4560 b 6571 c 6523 a 6621 a 6633 a 6664 b 6677 b 6662 a 6633 a 6641 c 4649 d 4731 d 4771 d 4722 a 6731 b 6771 b 6781 d 6791 c 6760 d 6473 b 4771 d 4771 d 4771 d 4783 a 6481 a 6821 a 6821 a 6	433)	d	434)	С	435)	d	436) k	637]) a	638)	С	639)	d	640) b
445) a 446) c 447) c 448) a 649) a 650) b 651) a 652) c 449) b 450) c 451) a 452) b 653) a 654) b 655) c 656) b 453) d 454) a 455) d 456) b 657) c 658) d 659) d 660) c 457) c 458) b 455) d 456) d 661) c 6620 a 6661 b 667) b 668) d 465) a 466) d 4677) d 4683 a 6669 d 670) c 671) b 672) d 473) b 477) d 477) a 673) b 678) d 679) c 680 d 681, a 682 a 683) d 681, a <	437)	b	438)	С	439)	b	440) k	641) с	642)	b	643)	а	644) a
449) b 450) c 451) a 452) b 653) a 654) b 655) c 656) b 453) d 454) a 455) d 456) b 657) c 658) d 659) d 660) c 457) c 458) b 459) d 460) d 661) c 658) d 659) d 660) c 663) a 6664) b 6671) b 6670 b 6671 b 6672) d 668) d 460) d 470) d 468 a 6671 b 673) b 674 b 675) c 676 d 677) b 678 d 679) c 680 d 684 c 6431 a 682 a 683 d 684 c 6481 a 682 a 683 d 684 c 6434 b 655 <td>441)</td> <td>b</td> <td>442)</td> <td>С</td> <td>443)</td> <td>а</td> <td>444) k</td> <td>645</td> <td>) a</td> <td>646)</td> <td>b</td> <td>647)</td> <td>С</td> <td>648) d</td>	441)	b	442)	С	443)	а	444) k	645) a	646)	b	647)	С	648) d
453) d 454) a 455) d 456) b 657) c 658) d 659) d 660) c 457) c 458) b 459) d 460) d 661) c 662) a 663) a 664) b 451) b 462) a 463) c 464) c 665) a 666) b 667) b 668) d 465) a 466) d 4671 d 472) a 673) b 671 b 675) c 676) d 479) c 476) d 472) a 673) b 678) d 679) c 6680) d 684 c 6481 a 682) a 683) d 684 c 6481 a 682) a 683) d 684 c 684 a 689 690) c 691) b 692) b 493	445)	а	446)	С	447)	С	448) a	649]) a	650)	b	651)	а	652) c
457) c 458) b 459) d 460) d 661) c 662) a 663) a 664) b 461) b 462) a 463) c 464) c 665) a 666) b 667) b 6688 d 465) a 466) d 467) d 448 a 669) d 670) c 671) b 672, d 469) d 470) d 471) d 472, a 673) b 674) b 675) c 676, d 477) d 478) c 479) a 480, 681, a 682, a 683, d 683, d 684, c 683, a 683, a 683, a 683, a 693, a 691, b 692, b b 692, b b 692, b b 692, b b 69	449)	b	450)	С	451)	а	452) k	653]	a	654)	b	655)	С	656) b
461) b 462) a 463) c 464) c 665) a 666 b 667) b 668) d 465) a 466 d 467) d 468) a 669) d 670) c 671) b 672) d 469) d 470) d 471) d 472) a 673) b 674) b 675) c 676) d 477) d 478) c 479) a 480) d 681) a 682) a 683) d 684) c 481) b 482) c 483) d 4844 b 685) c 6860 c 6871 d 6883 a 481) b 482) c 483) d 4843 a 689 b 6901 c 6911 b 6921 b 483) c 4961 d 492 a 6933 <t< td=""><td>453)</td><td>d</td><td>454)</td><td>а</td><td>455)</td><td>d</td><td>456) k</td><td>657]</td><td>) C</td><td>658)</td><td>d</td><td>659)</td><td>d</td><td>660) c</td></t<>	453)	d	454)	а	455)	d	456) k	657]) C	658)	d	659)	d	660) c
465) a 466) d 467) d 468) a 669) d 670) c 671) b 672) d 469) d 470) d 471) d 472) a 673) b 674) b 675) c 676) d 473) b 474) b 475) c 476) a 677) b 678) d 679) c 680) d 477) d 478) c 479) a 480) d 681) a 682) a 683) d 6883 d 6883 a 6923 b 4930 c 4963 b 4993 c 4963 a 693 a 6903 a 7003 a <t< td=""><td>457)</td><td>С</td><td>458)</td><td>b</td><td>459)</td><td>d</td><td>460) a</td><td>l 661]</td><td>) C</td><td>662)</td><td>а</td><td>663)</td><td>а</td><td>664) b</td></t<>	457)	С	458)	b	459)	d	460) a	l 661]) C	662)	а	663)	а	664) b
469) d 470) d 471) d 472) a 673) b 674) b 675) c 676) d 473) b 474) b 475) c 476) a 677) b 678) d 6779) c 680) d 477) d 478) c 479) a 480) d 681) a 682) a 6833) d 684) c 481) b 482) c 483) d 484) b 685) c 686) c 6871) d 688) a 485) c 486) b 487) b 488) a 689) b 690) c 6911 b 692) b 489) c 490) b 492) a 693) d 694) b 695) a 696) b 493) c 494) b 495) c 496) b 697)	461)	b	462)	а	463)	С	464) (665]) a	666)	b	667)	b	668) d
473) b 474) b 475) c 476) a 677) b 678) d 679) c 680) d 477) d 478) c 479) a 480) d 681) a 682) a 683) d 684) c 481) b 482) c 483) d 484) b 685) c 686) c 687) d 688) a 485) c 486) b 487) b 488) a 689) b 690) c 691) b 692) b 489) c 490) b 492) c 493) d 693) d 694) b 695) a 696) b 697) a 698) c 699) a 700) d 701 d 703) a 704 d 505 c 506) b 507) c 508) c 706) b 707) <t< td=""><td>465)</td><td>а</td><td>466)</td><td>d</td><td>467)</td><td>d</td><td></td><td>669</td><td>) d</td><td>670)</td><td>С</td><td>671)</td><td>b</td><td>672) d</td></t<>	465)	а	466)	d	467)	d		669) d	670)	С	671)	b	672) d
4777 d 4788 c 4797 a 480 d 681 a 682 a 683 d 684 c 481 b 482 c 483 d 484 b 685 c 686 c 687 d 688 a 485 c 486 b 487 b 488 a 689 b 690 c 691 b 692 b 489 c 490 b 492 a 693 d 694 b 695 a 696 b 697 a 698 c 699 a 700 d 497 c 498 b 499 c 500 d 701 b 703 a 704 d 497 c 498 b 499 c 500 d 701 b 703 a 704 d 505 c 506 b 507 c 508 c 709	469)	d	470)	d	471)	d	472) a	673]) b	674)	b	675)	С	676) d
481) b 482) c 483) d 484) b 685) c 686) c 687) d 688) a 485) c 486) b 487) b 488) a 689) b 690) c 691) b 692) b 489) c 490) b 491) d 492) a 693) d 694) b 695) a 696) b 493) c 494) b 495) c 496) b 697) a 698) c 699) a 700) d 497) c 498) b 499) c 500) d 701) b 702) b 703) a 704) d 501 d 507) c 508) c 709) c 710) c 711) d 712) a 509 c 510) b 511) d 516) b 717)	473)	b	474)	b	475)	с	476) a	677) b	678)	d	679)	С	680) d
485) c 486) b 487) b 488) a 689) b 690) c 691) b 692) b 489) c 490) b 491) d 492) a 693) d 694) b 695) a 696) b 493) c 4941) d 492) a 693) d 6941 b 695) a 696) b 493) c 4941 d 492) a 693) d 6941 b 6953 a 6960 b 497) c 4981 b 4991 c 5000 d 7011 b 7021 b 7031 a 704 d 501) d 5131 d 5121 a 713 b 7141 c 7151 c 7161 a 513) b 5141 d 5151 d 5161 b 7171 d 718 a 7123	477)	d	478)	С	479)	а	480) a	l 681]) a	682)	а	683)	d	684) c
489) c 490) b 491) d 492) a 693) d 694) b 695) a 696) b 493) c 494) b 495) c 496) b 697) a 698) c 699) a 700) d 497) c 498) b 499) c 500) d 701) b 702) b 703) a 704) d 501) d 502) b 503) b 504) b 705) b 706) b 707) b 708) b 509) c 510) b 511) d 512) a 713) b 714) c 715) c 716) a 513) b 514) d 515) d 516) b 721) a 722) a 723) a 724) b 521) a 518) d 519) a 520)	481)	b	482)	С	483)	d	484) k	685]) C	686)	С	687)	d	688) a
493)c494)b495)c496)b697)a698)c699)a700)d497)c498)b499)c500)d701)b702)b703)a704)d501)d502)b503)b504)b705)b706)b707)b708)b505)c506)b507)c508)c709)c710)c711)d712)a509)c510)b511)d512)a713)b714)c715)c716)a513)b514)d515)d516)b717)d718)a719)d720)d517)a518)d519)a520)c721)a723)a724)b521)a5123a520)c721)a723)a724)b521)a522)c523)a524)b725)d726)d727)d728)d525)d526)a527)d528)a729)c730)b731)c732)c529)d530)a531)b532)a733)b734)c735)b736) <td>485)</td> <td>С</td> <td>486)</td> <td>b</td> <td>487)</td> <td>b</td> <td>488) a</td> <td>689]</td> <td>) b</td> <td>690)</td> <td>С</td> <td>691)</td> <td>b</td> <td>692) b</td>	485)	С	486)	b	487)	b	488) a	689]) b	690)	С	691)	b	692) b
497)c498)b499)c500)d701)b702)b703)a704)d501)d502)b503)b504)b705)b706)b707)b708)b505)c506)b507)c508)c709)c710)c711)d712)a509)c510)b511)d512)a713)b714)c715)c716)a513)b514)d515)d516)b717)d718)a719)d720)d517)a518)d519)a520)c721)a722)a723)a724)b521)a518)d519)a520)c721)a722)a723)a724)b521)a522)c523)a524)b725)d726)d727)d728)d525)d526)a527)d528)a729)c730)b731)c732)c529)d530)a531)b532)a733)b734)c735)b736)d533)b534)c535)c536)d747) <td>489)</td> <td>С</td> <td>490)</td> <td>b</td> <td>491)</td> <td>d</td> <td>492) a</td> <td>693</td> <td>) d</td> <td>694)</td> <td>b</td> <td>695)</td> <td>а</td> <td>696) b</td>	489)	С	490)	b	491)	d	492) a	693) d	694)	b	695)	а	696) b
501) d 502) b 503) b 504) b 705) b 706) b 707) b 708) b 505) c 506) b 507) c 508) c 709) c 710) c 711) d 712) a 509) c 510) b 511) d 512) a 713) b 714) c 715) c 716) a 513) b 514) d 515) d 516) b 717) d 718) a 719) d 720) d 517) a 518) d 519) a 520) c 721) a 722) a 723) a 724) b 521) a 522) c 523) a 528) a 729) c 730) b 731) c 732) c 529) d 530) a 531) b 532)	493)	С	494)	b	495)	С	496) k	697) a	698)	С	699)	a	700) d
505) c 506) b 507) c 508) c 709) c 710) c 711) d 712) a 509) c 510) b 511) d 512) a 713) b 714) c 715) c 716) a 513) b 514) d 515) d 516) b 717) d 718) a 719) d 720) d 517) a 518) d 519) a 520) c 721) a 722) a 723) a 724) b 521) a 522) c 523) a 524) b 725) d 726) d 728) d 525) d 526) a 527) d 528) a 729) c 730) b 731) c 732) c 529) d 530) a 531) b 532) a 733)	497)	С	498)	b	499)	С	500) a	l 701]) b	702)	b	703)	a	704) d
509) c510) b511) d512) a713) b714) c715) c716) a513) b514) d515) d516) b717) d718) a719) d720) d517) a518) d519) a520) c721) a722) a723) a724) b521) a522) c523) a524) b725) d726) d727) d728) d525) d526) a527) d528) a729) c730) b731) c732) c529) d530) a531) b532) a733) b734) c735) b736) d533) b534) c535) c536) d737) b738) c739) b740) c537) a538) b539) a540) c741) b742) a743) c744) b541) a542) c543) b544) a745) a746) a747) a748) b545) b546) b547) c548) d749) b750) d751) a752) a549) c550) c551) d556) a757) b758) c759) a760) b	501)	d	502)	b	503)	b	504) k	705]) b	706)	b	707)	b	708) b
513) b 514) d 515) d 516) b 717) d 718) a 719) d 720) d 517) a 518) d 519) a 520) c 721) a 722) a 723) a 724) b 521) a 522) c 523) a 524) b 725) d 726) d 727) d 728) d 525) d 526) a 527) d 528) a 729) c 730) b 731) c 732) c 529) d 530) a 531) b 532) a 733) b 734) c 735) b 736) d 533) b 534) c 535) c 536) d 747) b 743) c 744) b 541) a 542) c 543) b 544) a 745)	505)	С	506)	b	507)	С	508) o	709) C	710)	С	711)	d	712) a
517)a518)d519)a520)c721)a722)a723)a724)b521)a522)c523)a524)b725)d726)d727)d728)d525)d526)a527)d528)a729)c730)b731)c732)c529)d530)a531)b532)a733)b734)c735)b736)d533)b534)c535)c536)d737)b738)c739)b740)c537)a538)b539)a540)c741)b742)a743)c744)b541)a542)c543)b544)a745)a746)a747)a748)b545)b546)b547)c548)d749)b750)d751)a752)a549)c550)c551)d552)c753)b754)c755)c756)b553)b554)a555)b556)a757)b758)c759)a760)b	509)	С	510)	b	511)	d	512) a	713) b	714)	С	715)	С	716) a
521) a522) c523) a524) b725) d726) d727) d728) d525) d526) a527) d528) a729) c730) b731) c732) c529) d530) a531) b532) a733) b734) c735) b736) d533) b534) c535) c536) d737) b738) c739) b740) c537) a538) b539) a540) c741) b742) a743) c744) b541) a542) c543) b544) a745) a746) a747) a748) b545) b546) b547) c548) d749) b750) d751) a752) a549) c550) c551) d552) c753) b758) c759) a760) b	513)	b	514)	d	515)	d	516) ł	717) d	718)	а	719)	d	720) d
525)d526)a527)d528)a729)c730)b731)c732)c529)d530)a531)b532)a733)b734)c735)b736)d533)b534)c535)c536)d737)b738)c739)b740)c537)a538)b539)a540)c741)b742)a743)c744)b541)a542)c543)b544)a745)a746)a747)a748)b545)b546)b547)c548)d749)b750)d751)a752)a549)c550)c551)d552)c753)b754)c755)c756)b553)b554)a555)b556)a757)b758)c759)a760)b	517)	а	518)	d	519)	а	520) o	721) a	722)	а	723)	а	724) b
529) d 530) a 531) b 532) a 733) b 734) c 735) b 736) d 533) b 534) c 535) c 536) d 737) b 738) c 739) b 740) c 537) a 538) b 539) a 540) c 741) b 742) a 743) c 744) b 541) a 542) c 543) b 544) a 745) a 746) a 747) a 748) b 545) b 546) b 547) c 548) d 749) b 750) d 751) a 752) a 549) c 550) c 551) d 552) c 753) b 758) c 759) a 760) b 553) b 556) a 757) b 758)		а	522)	С	523)	а	524) k	725) d	726)	d	727)	d	728) d
529) d 530) a 531) b 532) a 733) b 734) c 735) b 736) d 533) b 534) c 535) c 536) d 737) b 738) c 739) b 740) c 537) a 538) b 539) a 540) c 741) b 742) a 743) c 744) b 541) a 542) c 543) b 544) a 745) a 746) a 747) a 748) b 545) b 546) b 547) c 548) d 749) b 750) d 751) a 752) a 549) c 550) c 551) d 552) c 753) b 758) c 759) a 760) b 553) b 556) a 757) b 758)			-		-		,	-		-		-		-
533) b 534) c 535) c 536) d 737) b 738) c 739) b 740) c 537) a 538) b 539) a 540) c 741) b 742) a 743) c 744) b 541) a 542) c 543) b 544) a 745) a 746) a 747) a 748) b 545) b 546) b 547) c 548) d 749) b 750) d 751) a 752) a 549) c 550) c 551) d 552) c 753) b 754) c 755) c 756) b 553) b 556) a 757) b 758) c 759) a 760) b	-		-		-		-	-	•	-		-		-
537) a538) b539) a540) c741) b742) a743) c744) b541) a542) c543) b544) a745) a746) a747) a748) b545) b546) b547) c548) d749) b750) d751) a752) a549) c550) c551) d552) c753) b754) c755) c756) b553) b554) a555) b556) a757) b758) c759) a760) b		-	-		-		-	-		,		-		-
541) a542) c543) b544) a745) a746) a747) a748) b545) b546) b547) c548) d749) b750) d751) a752) a549) c550) c551) d552) c753) b754) c755) c756) b553) b554) a555) b556) a757) b758) c759) a760) b	-		-		-		-	-	•	-		-		-
545)b546)b547)c548)d749)b750)d751)a752)a549)c550)c551)d552)c753)b754)c755)c756)b553)b554)a555)b556)a757)b758)c759)a760)b	-		-		-		-	-		-		-		-
549) c550) c551) d552) c753) b754) c755) c756) b553) b554) a555) b556) a757) b758) c759) a760) b	-		-		-		-	-	•	-		-		-
553) b 554) a 555) b 556) a 757) b 758) c 759) a 760) b	-		-		-		-	-		-		-		-
	-		-		-		-	-		-		-		-
								1		,	-			

	761)	b	762)	а	763)	b	764)	a	873)	d	874)	b	875)	b	876)	а
	765)	d	766)	d	767)	b	768)	d	877)	a	878)	а	879)	d	880)	а
	769)	d	770)	С	771)	b	772)	d	881)	d	882)	d	883)	С	884)	а
	773)	b	774)	a	775)	b	776)	С	885)	a	886)	С	887)	а	888)	С
	777)	b	778)	С	779)	С	780)	a	889)	a	890)	b	891)	d	892)	а
	781)	а	782)	b	783)	a	784)	b	893)	с	894)	b	895)	d	896)	С
	785)	а	786)	d	787)	а	788)	d	897)	b	898)	С	899)	b	900)	С
	789)	b	790)	b	791)	d	792)	a	901)	с	902)	d	903)	d	904)	С
	793)	а	794)	b	795)	b	796)	d	905)	a	906)	b	907)	d	908)	d
	797)	а	798)	d	799)	b	800)	b	909)	с	910)	с	911)	a	912)	d
	801)	d	802)	С	803)	С	804)	b	913)	b	914)	С	915)	d	916)	d
	805)	С	806)	а	807)	а	808)	d	917)	d	918)	С	919)	b	920)	С
	809)	а	810)	а	811)	a	812)	d	921)	b	922)	b	923)	่ล	924)	С
	813)	b	814)	а	815)	а	816)	a	925)	с	926)	a	927)	d	928)	С
	817)	а	818)	С	819)	а	820)	d	929)	d	930)	с	931)	C	932)	d
	821)	С	822)	а	823)	b	824)	d	933)	С	934)	b	935)	а	936)	d
	825)	а	826)	b	827)	а	828)	С	937)	С	938)	C	939)	d	940)	d
	829)	а	830)	d	831)	а	832)	a	941)	d	942)	d	943)	b	944)	С
	833)	b	834)	а	835)	d	836)	a	945)	d	946)	d	947)	С	948)	b
	837)	а	838)	b	839)	b	840)	С	949)	a	950)	Ċ	951)	d	952)	b
	841)	d	842)	d	843)	а	844)	a	953)	b	954)	b	955)	b	956)	b
	845)	а	846)	а	847)	b	848)	d	957)	c —	958)	а	959)	b	960)	С
	849)	d	850)	а	851)	b	852)	С	961)	С	962)	С	963)	С	964)	d
	853)	b	854)	С	855)	b	856)	d	965)	С	966)	b	967)	d	968)	С
	857)	b	858)	a	859)	С	860) 🖌	d	969)	a	970)	d	971)	С	972)	b
	861)	d	862)	b	863)	b	864)	d	973)	a	974)	а	975)	С	976)	С
	865)	а	866)	С	867)	b	868)	d	9 77)	b	978)	b	979)	С		
	869)	а	870)	С	871)	b	872)	d								
		a a														
(5															

CHEMICAL BONDING AND MOLECULAR STRUCTURE

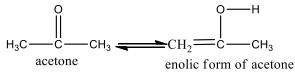
CHEMISTRY

 sp^2 hybrid orbital), bond angle is 120° and for 50% s character (as in sp hybrid orbital), bond angle is 180°. Similarly, when the bond angle decreases below 1.9.5°, thes – character will decrease accordingly Decreasing in angle = $120^{\circ} - 109.5^{\circ} = 10.5^{\circ}$ \therefore Decrease in *s*-character = 33.3 - 25 = 8.3Actual decrease in bond angle = $109.5^{\circ} - 105^{\circ} =$ 2 (no.of *d*-orbitals) *d*-character = 4.5° % of 6(total hybridised orbitals : Expected decrease in *s*-character 100 $=\frac{8.3}{10.5} \times 4.5 = 3.56\%$ = 33%So, SF₆ are bond angle = 90° Thus, the *s*-character should decrease by about d-character = 33% and 3.56%, *ie*, *s*-character = 25 - 3.56 = 21.44% 28 (a) 21 **(b)** Head on overlapping give rise to σ -bond B has only six electron in B_2H_6 . formation. 22 (a) 29 (c) Like gets dissolved in like. It is theory. Allene is $CH_2 = C =$ 23 (c) 30 (a) Ionic compounds are good conductor of electricity Silicate ion (Sio_4^{4-}) is the basic structural unit of in molten or in solution state. However, they are silicates. Silicates are metal derivatives of silicic bad-conductor in solid state. acid. 24 (d) 31 (a) In benzene 12σ and 3π bonds are present. The Due to planar equilateral geometry of graphite. structure of benzene is 32 (a) Due to non-availability of *d*-orbitals, boron cannot expand its octet. Therefore, the maximum covalence of boron cannot exceed 4. 33 (b) Cations are always shorter than their parent atom, anion are always larger. 35 (a) H-bonding is weakest bonding. σ 36 (a) 5 of P + 24 of 0 + 3 of -ve charge = 32.25 (c) 37 (c) In CO_3^{2-} ion the C-atom undergoes sp^2 -Benzene has 12σ - and 3π -bonds. hybridisation. It has triangular planar structure. 38 (c) BF_4^- , NH_4^+ and SO_4^{2-} have While tetrahedral PF_5 involves sp^3d -hybridization. structure. 39 **(b)** (d) 26 I_3^- ion is made up of an I_2 molecule with an I^- PCl₅ has trigonal bipyramid geometry. bonded to it by means of a coordinate bond in 27 (b) which I_2 is lone pair acceptor (Lewis acid) and I^- SF₆ has octahedral geometry, sp^3d^2 hybridisation the lone pair donor (Lewis base). There are two and bond angle is 90° bond pairs and three lone pairs in the outer shell of central atom. To minimize the repulsive forces the three lone pairs occupy the equatorial position. The ion is therefore, linear in shape with a bond angle of exactly 180°.

	•		The structure, $CH_2 = C = CH_2$ is non-planar with two $-CH_2$ groups being in planes perpendicular
			to each other.
		52	(d)
			Electronegativity increases along the period and
	I/		decreases down the group.
		53	(a)
	••		Brass in an alloy.
	$I_2 + I \longrightarrow [I \longrightarrow I]$	54	(c)
	Lewis Lewis		It is head on overlapping and thus, forms more
	acid base		stronger bond.
	Similarly, N_3^- ion is also linear in shape.	55	(c)
40	(c)		H-bonding in molecule gives rise to increase in its
	According to M.O. theory, bond order of		b.p.
	N_2 , N_2^- and N_2^{2-} are 3, 2.5 and 2 respectively.	56	(b)
41	(b)		One bonding molecular orbital and one
	<i>e.g.</i> , BF ₃ .		antibonding.
42	(d)	57	(a)
	Bond order for $H_2^- = +1/2$	0.	Follow Fajans' rule.
43	(b)	58	(b)
10	<i>sp</i> -hybridization leads to bond angle of 180° .	50	Removal of two electrons (one by one) from an
44	(C)		atom requires energy = $IP_1 + IP_2$.
	$\mu H_2 0 \neq 0, \mu_{CO_2} = 0$	59	(c) $(1 + 1)^2$
45	(b)	57	The molecular orbital electronic configuration.
43		X	
	No, of hybrid orbital $=\frac{1}{2}$ [No.of e^- in V-shell of		$ (\sigma_{1s})^{2} (\sigma_{1s})^{2} (\sigma_{2s})^{2} (\sigma_{2s})^{2} (\sigma_{2}p_{\chi})^{2} (\pi_{2}p_{\chi})^{2} (\pi_{2}p_{\chi})^{2} (\pi_{2}p_{\chi})^{2} (\pi_{2}p_{\chi})^{1} $
	atom + No.of monovalent atoms -charge on		$(\pi 2 p_{y})^{2} (\pi 2 p_{z})^{2} (\pi 2 p_{y})^{2} (\pi 2 p_{z})^{1}$
	cation +charge on anion]		Total electrons $=17$
	No. of hybrid orbital 2 3 4 5		Hence, this configuration belongs to 0_2^- (17 e^-)
	6 7		ion.
	Type of hybridisation sp sp^2 sp^3 sp^3d	60	(a)
	sp^3d^2 sp^3d^3		$H_3O^+: sp^3; NO_3^-: sp^2$
	Hybridisation in TeCl ₄ :	61	(a)
	No. of hybrid orbital = $\frac{1}{2}[6+4+0+0] = 5$	01	6, 6
	Hence, TeCl ₄ shows sp^3d hybridisation.	62	(a)
46		02	More is the dipole moment more is ionic nature.
40	(a) The stability and bond angle order for hybrids in a		$\mu = \delta \times d$; higher is μ , more will be δ on the atom.
		63	
47	group is $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$.	05	(c)
47	(c)		Due to sp^3 -hybridization.
	Isoelectronic species are those species which have		(a)
	equal number of electrons. Hence, CO_2 is		Each species has 14 electrons and bond order for
	isoelectronic with N_2O .		each is three.
	Number of electron in $CO_2 = 22$	66	(a)
	Number of electron in $N_2 O = 22$		Among the given choices of compound having
48	(d)		oxygen attached to hydrogen will have maximum
	In BeCl_2 , Be atom has incomplete octet.		hydrogen bonding.
49	(a)		\therefore Among CH ₃ OCH ₃ , (CH ₃) ₂ C = 0, CH ₃ CHO and
	Greater the charge, smaller the radius, greater the		C_2H_5OH only C_2H_5OH has oxygen attached to
	polarising power and thus greater the covalent		hydrogen atom.
	nature. This leads to increase in lattice energy.		\therefore C ₂ H ₅ OH shows maximum hydrogen bonding.
50	(c)	67	(c)

It is experimental value.

68 **(c)**


 O_2^{2+} has 14 electrons. Its electronic configuration is as

$$O_{2}^{+}: \sigma 1s^{2} {}_{\sigma}^{*} 1s^{2}, \sigma 2s^{2} {}_{\sigma}^{*} 2s^{2}, \pi 2p_{y}^{2} \pi 2p_{z}^{2} \sigma 2p_{x}^{2}$$

Bond order = $\frac{N_{b}-N_{a}}{2} = \frac{10-4}{2} = 3$

69 **(c)**

In diamagnetic molecule, all the electrons are paired

70 (a)

lone pairs

$H \xrightarrow{\sigma} C \xrightarrow{\pi} C \xrightarrow{\sigma} H H$ $H \xrightarrow{\sigma} C \xrightarrow{\pi} C \xrightarrow{\sigma} C \xrightarrow{\sigma} H$ $H \xrightarrow{\sigma} H \xrightarrow{\sigma} H$

Hence, enolic form of acetone contains 9 sigma 81 bonds, 1 pi bond and two lone pairs.

71 **(a)**

In NO_3^- ion, total number of electrons \checkmark 82 7+24+1=32 and in it central atom is sp^2 hybrid. No. of hybrid orbitals $=\frac{V-8B}{2}+B=\frac{24-8\times 3}{2}+3$ $(V \rightarrow \text{total number of electrons in valence shell})$ $B \rightarrow$ probability of formation of bond) In CO_3^{2-} ion, total number of electrons = 6+24+2=32 and in it central atom is sp^2 hybrid. No. of hybrid orbital = $\frac{24-8\times3}{2} + 3 = 3$ 84 Hence, NO_3^- and CO_3^{2-} ions are isoelectronic and isostructural. 72 **(b)** $H_2^+ = \sigma 1 s^2$ (According to molecular orbital 85 theory) Bond order = $\frac{\text{bonding electrons-antibonding electrons}}{\text{bonding electrons}}$ 86 $=\frac{1}{2}=0.5$ 87 H_2^+ is paramagnetic due to the presence of one unpaired electron. 73 (b) H-bonding in molecules gives rise to increase in b.p. 74 (a) Bond distance is in the order : $C - C > C = C > C \equiv C$ $sp^3 > sp^2 > sp$

75 (a) % ionic character = $16(x_A - x_B) + 3.5(x_A - x_B)^2$ = $16 \times 2 + 3.5 \times (2^2)$ = 46

 \therefore The % covalent character = 100 - 46 = 54

76 **(d)**

 ICl_2^- has sp^3d -hybridized state (*i. e.*, trigonal bipyramidal shape but distorted due to the presence of lone pair of electron on I atom.)

77 **(a)**

Like gets dissolved in like.

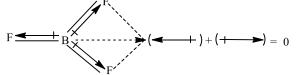
78 **(c)**

 N_2O is isoelectronic with CO_2 and N_3^- . Hence, its structure is linear. N - N - O

79 **(d)**

H atom attached on N, O, F develops hydrogen bonding molecule.

80 **(d)**


In CCl_4 all bonds of carbon being identical, the molecule is a regular tetrahedron

(c)

In O^{2-} effective nuclear charge is minimum due to more number of electrons and thus the size of O^{2-} is maximum.

(b)

The zero dipole moment of BF_3 molecule is due to its symmetrical (triangular planar) structure.

(b)

Bond dissociation energy order:

$$Cl_2 > Br_2 > F_2 > I_2$$

242.6 192.8 158.8 151.1 in kJ mol⁻¹
(b)

CH₃OH shows H—bonding in liquid state.

They have high electron density.

(c)

A coordinate bond is a dative covalent bond in which two atoms form bond and one of them provides both electrons.

$$X: +Y \longrightarrow X: Y \text{ or } X \longrightarrow Y$$

88 **(b)**

C - C bond length in sp^2 hybrid molecule is= 1.39Å

89 **(d)**

More is electronegativity differences, more is

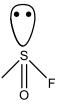
ionic character.

90 (a) Cation are always smaller than their parent atoms: $\mathrm{Al}^{3+} < \mathrm{Al}^{2+} < \mathrm{Al}^{+} < \mathrm{Al}.$

91 (a)

We know that the C - C bond length = 1.54 A, C =C bond length = 1.34 A and C \equiv C bond length = 1.20 A. Since propyne has triple bond; therefore, it has minimum bond length.

92 (c)


Ionic compounds conduct current in molten state.

93 (d)

Metals are good conductor of electricity because |104 (d) they contain free electrons.

94 (d)

OSF₂ has pyramidal shape

95 (d)

> Non-polar species exert van der Waals' forces among themselves.

96 **(b)**

It has 3σ -and 1π -bond.

97 (C)

 Cl^{-} has $1s^2$, $2s^22p^6$, $3s^23p^6$ configuration.

98 (c)

Per cent ionic character is given by % of ionic character.

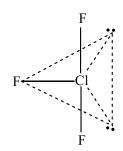
 $= 16(X_A - X_B) + 3.5(X_A - X_B)^2$

From the above relation, it is clear that as soon as $(X_A - X_B)$ increases, % ionic character will also increase.

Therefore, curve *C* shows a correct path.

99 (d)

 $7Cl=1s^2, 2s^2, 2p^6, 3s^2, 3p_x^2, 3p_y^2, 3p_z^1$ $Cl=1s^2, 2s^2, 2p^6, 3s^1, 3p_x^1, 3p_y^1, 3p_z^1, 3d^1, 3d^13d^1$ (3rd excited state)


Chlorine atom, in its third excited state, reacts with fluorine to form ClF_7 . Its shape is pentagonal bipyramidal.

100 (c)

Anion (0^{-}) repels the test electron because of same charge.

101 (c)

Cl in ClF₃ has sp^3d -hybridization

and possesses two axial Cl-F bonds and one equatorial bond. Two lone pairs are at equatorial position give rise to bent 'T' shape to ClF₃.

103 (c)

 O_2^- has one unpaired electron in its antibonding molecular orbital.

 $PCl_3 < PBr_3 < PI_3$, the bond angle order is explained in terms of increasing electronegativity of halogens, whereas, $PF_3 > PCl_3$, bond angle order is explained in terms of $p\pi$ - $d\pi$ bonding in PF₃.

105 (c)

 μ experimental = Dipole moment $\times 10^{-18}$ μ theoretical = Bond length $\times 4.8 \times 10^{-10}$ esu × cm

Percentage ionic character = $\frac{\mu_{experimental}}{\mu_{theoretical}} \times 100$

$$=\frac{1.0\times10^{-18}\times100}{1.25\times4.8\times10^{-10}\times10^{-8}}\\=16.66\%$$

106 (d)

CCl₄ does not exhibit dipole moment due to its symmetrical structure.

107 (a)

N₂ molecule has 14 electrons. The molecular orbital electronic configuration of the molecule is as

$$N_{2}: KK (\sigma 2s)^{2} ({}^{*}_{\sigma} 2s)^{2} (\pi 2p_{x})^{2}$$
$$= (\pi 2p_{y})^{2} (\pi 2p_{z})^{2}$$

 N^{-}_{2} ion is formed when N_{2} accept an electron hence it has15 electrons. The molecular orbital electronic configuration of the molecule is as

 $N_2^-: KK (\sigma 2s)^2 ({* \over \sigma} 2s)^2 (\pi 2p_x)^2 (\pi 2p_v)^2$ $(\sigma 2p_z)^2 (\frac{\pi}{\pi} 2p_x)^1$ Hence, this electron goes to antibonding π molecular orbital.

108 (b)

The size of isoelectronic decreases with increase in atomic number.

109 (a)

The bond orders for H_2 , H_2^+ , He_2 and He_2^+ are 1.0, 0.5, 0.0 and 0.5 respectively.

110 **(b)**

N atom has smallest radius.

111 (d)

The order of screening effect for a given shell electrons is s > p > d > f.

112 (a)

The stability of hydrides decreases down the gp, *i.e.*, from NH₃ to BiH₃ which can be observed from their bond dissociation enthalpy. The correct order is

 $NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$ Property NH₃ PH₃ AsH $\Delta_{\rm diss} H^{-}(E-H)/{\rm kJ}~{\rm mol}^{-1}$ 297 389 322

113 (a)

SF₄ has sp^3d^2 -hybridization and see-saw geometry.

114 (a)

Due to presence of intermolecular hydrogen bonding in H₂O, its molecules are associated with each other which results unusual high boiling point of water.

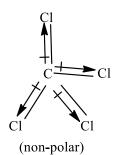
115 **(c)**

Larger is anion, more is covalent character.

116 (a)

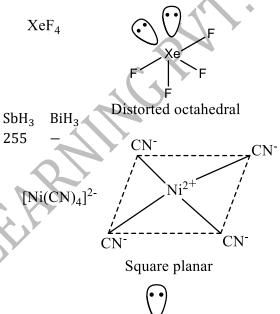
Molecular orbital configuration of, 0^{2-}_{2-}

 $= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p^2, \pi 2p_r^2, \pi 2p_v^2, \pi^* 2p$

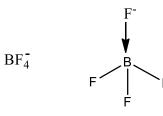

117 (a)

Valencies of X, Y and Z is +2, +2 and -2respectively so, they will form a compound having of formula XYZ_2 .

118 (a)


The molecule in which the bond dipoles of all the bonds are cancel out by each other, is called non -|120 (c) polar *e.g*., CCl₄.

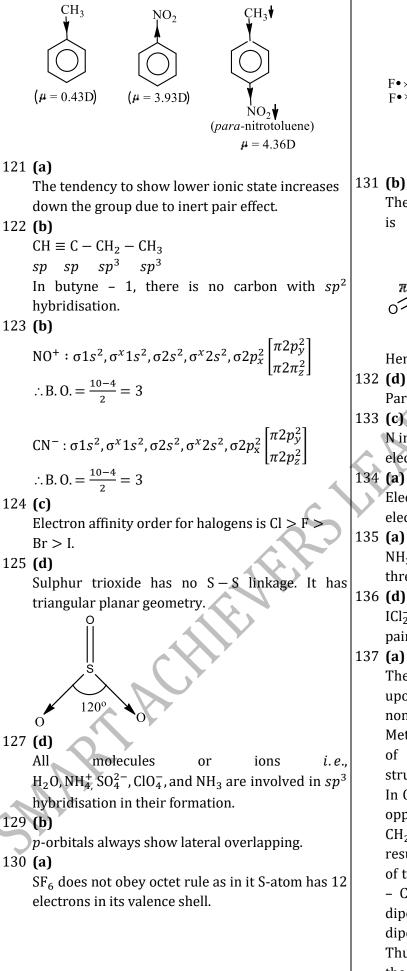
In CCl₄, there is a large difference between the electronegativities of C and Cl but all the four C -Cl bond dipoles cancel each other , hence it is a non-polar molecule.

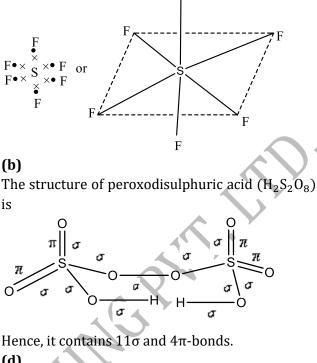


119 (c)

Tetrahedral structure is associated with sp^3 hybridised central atom without any lone pair. The structure of all the compounds given are as follows :

Distorted trigonal bipyramidal




Tetrahedral

 SF_4

Methyl group has +I effect and $-NO_2$ group has-I effect. Therefore, in *p*-nitro toluene the dipole moments of - CH₃ and -NO₂ groups act in the same direction. So, the resultant dipole moment is additive. *i.e.*, 3.93+0.43=4.36 debye

Page | 70

Paramagnetic species have unpaired electrons 133 (c)

N in it has three σ -bonds and one lone pair of electron.

Electron deficient species can accept lone pair of electron and thus, act as Lewis acid.

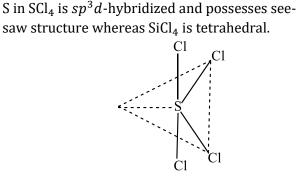
135 (a)

NH₃ has pyramidal shape and thus, possesses three folds axis of symmetry.

136 (d)

 ICl_2^- has sp^3d -hybridization and has two bond pairs and three lone pairs of electrons.

137 (a)


The dipole moment of a polar molecule depends upon its geometry. A symmetrical molecule is non-polar even though it contain polar bonds. Methane molecule (CH₄) has zero moment value of dipole moment due to its symmetrical structure.

In CHCl₃, the resultant of C – H and C – Cl dipole oppose the resultant of two C - Cl dipoles while in CH_2Cl_2 , the resultant of C – H dipoles adds to resultant of two C – Cl. In case CH₃Cl, the resultant of two C - H dipole adds to the resultant of two C - Cl. In case CH₃Cl the resultant of two C - H dipoles add to the resultant of C - H and C - Cl dipoles.

Thus dipole moment of CH₃Cl is highest among the given compounds. The molecule (CCl₄) again becomes symmetrical and dipole moment reduces

to zero.

138 (c)

139 (c)

Oxygen cannot expand its octet due to absence of *d*-orbitals in its valence shell.

142 (a)

Geometry is explained by taking an account of single bonds only. However, presence of double bond may distort bond angles, e.g., HCHO has sp^2 hybridization but angle H—C—H is 116° and angle H—C—O is 122° due to double bond. In BF₃ $(sp^2$ -hybridization) each angle is of 120°.

143 (d)

The shape of carbon dioxide is linear because it has *sp* hybridisation and bond angle 180°. 0 = C = 0

144 (a)

Addition of electrons to an atom results an increase in its size.

145 (d)

 H_2O is V shaped.

146 (c)

undergoes sp^3 In diethyl ether oxygen hybridisation forming four sp^3 hybrid orbitals.

147 (a)

As soon as the electronegativity increases, ionic bond strength increases

148 (a)

Both are linear.

149 (c)

Inspite of three polar bond, the lone pair of electron on N atom decreases the dipole moment

of NF₃ than NH₃.

150 (c)

Polarity in a molecule gives rise to an increase in forces of attractions among molecules and thus, more becomes boiling point.

152 (a)

The melting point of naphthalene is minimum |167 (c) because it is non - polar covalent compound and has less melting point.

153 (c)

BF₃ is a electron deficient compound. So, it has no lone pair orbital over B atom.

154 (c)

Molecular orbital theory was given by Mulliken.

155 (d)

The trigonal geometry of BF_3 with three vectors $(B \rightarrow F)$ acting at 120° leads to zero dipole moment. In NH₃ three vectors (N \leftarrow H) act as 107° along with one lone pair giving dipole moment in molecule.

156 (d)

Proton (H⁺) can only accept a lone pair from donor atom.

157 (d)

Each has 10 electrons 158 (d)

Isomerism is arised due to directional nature of covalent bonding.

159 **(b)**

 SF_4 has sp^3d -hybridized sulphur atom.

160 (c)

 $SbCl_5^{2-}$ has sp^3d^2 -and rest all has sp^3d hybridisation.

161 (d)

Size of anions is larger than their parent atoms. Also more is ENC lesser is size.

162 (d)

²²Ti:
$$3s^2, 4s^2 \xrightarrow{IE_1} 3d^2, 4s^1$$

²³V: $3d^3, 4s^2 \xrightarrow{IE_1} 3d^3, 4s^1$
²⁴Cr: $3d^5, 4s^1 \xrightarrow{IE_1} 3d^5 \xrightarrow{IE_2 \text{ from}}$ maximum

 $_{25}$ Mn : $3d^5$, $4s^2 \xrightarrow{IE_1} 3d^5$, $4s^1$

164 (a)

C – Cl bond is more ionic than C – I bond because of the greater difference in electronegativities of C and Cl as compared to that of carbon and iodine. Therefore, C – Cl bond is stronger than C – I bond.

165 (c)

Cl is more electronegative than I.

166 (b)

The solubility of a compound depends upon its hydration enthalpy. If hydration enthalpy exceeds the lattice enthalpy than it is soluble in water. For Ag₂SO₄, hydration enthalpy is lower than lattice enthalpy, so it is insoluble in water.

Silicon has the tendency to show covalent bonding because of higher IP values.

	404 (1)
168 (c)	181 (b)
In SnCl ₂ , Sn has sp^2 hybridisation and hence, has	SeF_4 has distorted tetrahedral geometry while,
angular shape	CH ₄ has tetrahedral geometry
169 (c)	Speed of electron \neq speed of light
The inert gas just after chlorine is argon.	182 (c)
170 (d)	Butadiene is $CH_2 = CH - CH = CH_2$.
The <i>d</i> -orbital involved in sp^3d -hybridization is	183 (b)
d_{zx} .	37 is atomic number of Rb the electropositive
	element and 53 is atomic number of iodine (the
171 (d)	electronegative element).
$0_{2} = \sigma 1 s^{2} {}^{*}_{\sigma} 1 s^{2} \sigma 2 s^{2} {}^{*}_{\sigma} 2 s^{2} \sigma 2 p_{z}^{2} \pi 2 p_{x}^{2}$	184 (c)
$= \pi 2 p_{y \pi}^{2 \pi} 2 p_{x'} = \pi^{2} 2 p_{y'}$	In methane bond angle is 109°28′. Methane
In 0^+_2 , one electron is removed from Na	molecule is tetrahedral in structure.
B0 for $0_2 = 2$ and for $0_2^+ = 2.5$	185 (b)
Therefore, paramagnetism decreases, BO	
increases.	186 (d)
172 (b)	1. Glycerol has strong hydrogen bonding due
Intramolecular H-bonding is present in ortho	
nitrophenol.	correct statement.
174 (c)	2. Alkyl halides have lower boiling point
According to valence shell electron pair repulsion	than alcohols because alcohols have
(VSEPR) theory, the order of repulsive	stronger forces of attraction between the
interactions between various electron is	hydrogen bonds as compared to weaker
lp - lp > lp - bp > bp - bp	van der Waals' forces between molecules
175 (b)	of alkyl halide.
In like atoms, electronegativity difference is zero.	
176 (d)	\therefore Statement (d) is false.
BCl_3 has bond angle equal to 120° (trigonal	
planar). NH ₃ and H ₂ O have sp^3 hybridisation but due to the presence of lone pair of electrons, they	
have bond angle less than $109.28'(NH_3 -$	Ionic radii= $\frac{n^2 a_0}{Z_{\text{eff}}}$
$107^{\circ}, H_2O = 104.5^{\circ}), AsH_3 (sp^3 hybrid) has$	188 (c)
smaller bond angle than NH_3 due to less	Only those atomic orbitals combine that have
electronegativity of As than N.	nearly equal energy
177 (d)	189 (b)
E_{op}° order is Mg > Fe > Cu; more is E_{op}° , more is	The stability of the ionic bond depends upon the
electropositive character.	lattice energy which is expected to be more
178 (c)	between Mg and F due to +2 charge on Mg atom
0 atom possesses two lone pair of electrons.	190 (a)
179 (a)	Smaller is anion, lesser is its polarization.
M.O. configuration of O_2^+ is:	191 (b)
$\sigma_{1s^2}\sigma^{*}1s^2, \sigma^{*}2s^2\sigma_{2p^2}, \pi_{2p_y^2}\pi_{2p_y^2}\pi^{*}2p_x^1$	$\frac{2s}{2p}$
Bond order of $0_2^+ = \frac{1}{2}[6-1] = \frac{5}{2}$	$\mathbf{B}_{(G.S.)} \overbrace{1}^{2s} \overbrace{1}^{2p}$
M.O. configuration of N_2^+ is:	
$\sigma 1s^2 \sigma^* 1s^2, \sigma 2s^2 \sigma^* 2s^2, \pi 2p_y^2 \pi 2p_y^2 \sigma 2p^1$	sp^2 - hybridisation
Bond order of $N_2^+ = \frac{1}{2}[5-0] = \frac{5}{2}$	Boron has planar structure due to sp^2
180 (c)	hybridisation.
No scope for addition in completely filled valence	192 (c)
orbitals of inert gases.	

 $\sigma 1s^{2}, {}^{*}_{\sigma} 1s^{2}, \sigma 2s^{2}, {}^{*}_{\sigma} 2s^{2}, \sigma 2p_{x}^{2}, \begin{cases} 1 & \sigma y \\ \pi 2p_{x}^{2}, \\ \pi 2p_{y}^{2}, \\ \pi 2p_{y}^{2}, \end{cases}$ Bond order = $\frac{\text{bonding electrons-antibonding electrons}}{2}$ $=\frac{10-6}{2}=2$ NO⁺(14). 4. $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_x^2$, $\begin{cases} \pi 2p_y^2 \\ \pi 2p_z^2 \\ \end{cases}$ Bond order = $=\frac{10-4}{2}=3$ 5. NO (15) $\sigma 1s^2, {}^*_{\sigma} 1s^2, \sigma 2s^2, {}^*_{\sigma} 2s^2, \sigma 2p_x^2, {}^{\left\{\begin{array}{c}\pi 2p_y^2\\\pi 2p_z^2,\\\pi 2p_y^2\\\pi 2p_y$ Bond order = $=\frac{10-5}{2}=2.5$ $(iv)NO^{2+}(13).$ $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_x^2$, $\begin{cases} \pi 2p_y^2 \\ \pi 2p_z^2 \end{cases}$ Bond order = $=\frac{9-4}{2}=2.5$ $NO^{2-}(17)$ 6. $\sigma 1s^{2}, {}^{*}_{\sigma} 1s^{2}, \sigma 2s^{2}, {}^{*}_{\sigma} 2s^{2}, \sigma 2p_{x}^{2}, {}^{\pi 2p_{y}}_{\left\{\begin{array}{c}\pi 2p_{y}\\\pi 2p_{z}\\ \\\pi 2p_{x}^{2}\\ \\\pi 2p_{y}^{2}\\ \\\pi 2p_{y}^{2$ Bond order = $=\frac{10-7}{2} = 1.5$ The order of bond order is $NO^{2-} < NO^{-} < NO^{2+} \approx NO < NO^{+}$ 193 (d) Cl is more electronegative than Br. 194 (c) Boron in $[BF_4]^-$ has regular tetrahedral geometry because of sp^3 -hybridization on boron atom. 195 (d) Usually symmetrical molecules have less dipole moment in comparison to unsymmetrical molecules. NH_2 NO_2 (*m*-nitroaniline) has the Hence. highest dipole moment among the given. 196 (a) Thus, excitation of 2*s*-electron in N is not possible. 197 (b)

PF₅ has sp^3d hybridization (trigonal bipyramid); BrF₅ has sp^3d^2 hybridization (square pyramidal) 198 **(d)**


In $NH_3 sp^3$ hybridisation is present but its shape becomes pyramidal due to the presence of one lone pair of electron.

199 **(d)**

Higher the lattice energy lower the solubility. Out of the four combinations possible, the lattice energy of MgS (bi-bivalent ionic solid) is higher than those of Na_2S , MgCl₂ (uni-bivalent or biunivalent ionic solids) and NaCl (uni-univalent ionic solids) and hence, MgS is the least soluble.

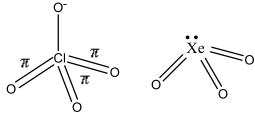
200 **(b)**

A three electrons in its outermost orbit, its valency is 3. *B* has six electrons in its outermost orbit, its valency is 2

Valency

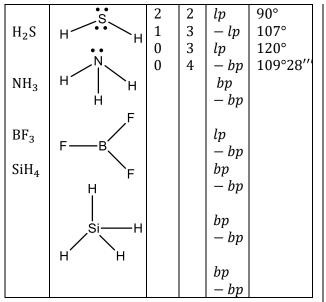
Formula of the compound = A_2B_3

201 **(c)**


A reason for the given fact.

202 **(c)**

In NH₃, sp^3 -hybridization is present but bond angle is 106°45′ because nitrogen has lone pair of electrons, according to VSEPR theory due to *bp*and *lp* repulsion, bond angle decreases from 109°28′ to 106°45′


203 **(b)**

 ClO_4^- and XeO_3 both contain $3d\pi - p\pi$ bonds

204 **(c)**

Spec	Structure	lp	bp	VSE	Bond
ies				PR	angle

Thus, bond angle $H_2S < NH_3 < SiH_4 < BF_3$. 205 (d)

The pyramidal structure of covalent molecule AB_3 is as :

No. of lone pair = 1No. of bond pair =3

207 (d)

 d^2sp^3 -leads to octahedral geometry. 209 (a)

> A molecule is said to possess a three-fold axis of symmetry if on rotation around this axis through an angle of 360/3, ie, 120°, gives the same arrangement of atoms. Since NH₃ has a pyramidal geometry, therefore, it has a three fold axis of symmetry

210 (a)

Proton number does not change in ion formation, though number of electrons and size change during this.

211 (d)

Valence bond theory (Resonance theory) of 217 (a) metallic bond was given by Pauling (1937). According to this theory, the metallic bonding is essentially covalent in origin and metallic structure exhibits resonance of electro-pair bonds between each atom and its nearest neighbours. In other words, there is a resonance of a large number of canonical forms.

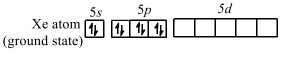
212 (c)

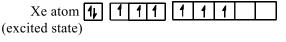
Notice configuration of N^+ , C^+ , O^+ and F^+ .

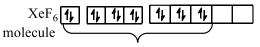
213 (b)

 ClF_3 has sp^3d hybridisation. Out of five sp^3d hybrid orbitals two are completely filled by *lp* and three are half filled which overlap with three $2p_z$ half filled orbitals of three F-atoms. Due to the presence of two *lps* its geometry is bent *T*-shaped.

214 (d)


These are characteristics of resonance


215 (c)


$$\begin{array}{l}
0_{2}^{2^{-}} : \sigma 1s^{2}, \sigma^{*} 1s^{2}, \sigma 2s^{2} \sigma^{*} 2s^{2} \sigma 2p^{2} \begin{bmatrix} \pi 2p_{y}^{2} \\ \pi 2p_{z}^{2} \end{bmatrix} \pi^{*} 2p_{z}^{2} \\
B.0. = \frac{10 - 8}{2} = 1 \\
B_{2} : \sigma 1s^{2}, \sigma^{*} 1s^{2}, \sigma 2s^{2}, \sigma^{*} 2s^{2} \begin{bmatrix} \pi 2p_{y}^{1} \\ \pi 2p_{z}^{1} \end{bmatrix} \\
B.0. = \frac{6 - 4}{2} = 1
\end{array}$$

216 (c)

In the formation of XeF_6 molecule, three 5 pelectrons are promoted to 5d orbitals. Now, one 5s, three 5p and three 5d-orbitals of Xe atom intermix together and form seven sp^3d^3 hybrid orbitals. One sp^3d^3 hybrid orbital contains one lone pair of electrons while other six are halffilled. The expected geometry is pentagonal bipyramidal.

 sp^2d^3 -hybridisation

Shape : Pentagonal bipyramidal

 $CaC_2 \rightleftharpoons Ca^{2+} + C_2^{2-}$

Carbide ion

In carbide ion, two carbon atoms are joined by triple bond

(If is isoelectronic with N_2)

 $-C \equiv C -$

with two π and one σ -bonds.

218 (b)

 H_20 has sp^3 -hybridization.

219 (c)

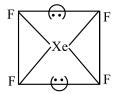
e. g., BF₃, a non-polar molecule having sp^2 hybridization.

220 **(b)**

When there is less difference in electronegativities of two atoms (but electronegativities are not same) and large difference in their size, polar covalent bond forms. H and Br : Small difference in electronegativities and large difference in size. Hence, form polar 234 (d) covalent bond.

Na and Br : large difference in electronegativities, hence electrovalent bond is formed.

221 (b)


The bond order for 0_2^{2-} , 0_2^{-} , 0_2^{-} , 0_2^{+} are 1.0, 1.5, 2.0, 2.5 respectively. Higher is bond order, more is bond energy.

222 (c)

In XeF₄, the central atom, Xe, has eight electrons $|237\rangle$ (c) in its outermost shell. Out of these four are used for forming four σ -bonds with F and four remain as lone pairs.

 \therefore XeF₄ \implies 4 σ bonds + 2 lone pairs

 \Rightarrow 6 bybridised orbitals, *i.e.*, sp^3d^2 hybridisation Since, two lone pairs of electrons are present, the geometry of XeF₄ becomes square planar from octahedral.

223 (b)

Bond order = $\frac{1}{2}$ [no. of bonding electrons – no. of antibonding electrons]

224 (c)

H-bonding is noticed in molecules having H atom attached on N, O or F.

225 (d)

F is more electronegative.

226 (a)

S-orbitals always lead head on overlapping.

228 (a)

According to molecular orbital theory , π -bonding orbital are ungerade.

229 (c)

Basic character of hydrides is $NH_3 > PH_3$.

230 (b)

CO₂ has *sp*-hybridization.

231 (a)

Bond angles decrease on moving down the group for similar compounds, *i. e.*, $NH_3 > PH_3 > AsH_3 >$ SbH₃.

232 (a)

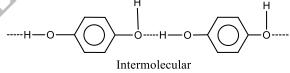
Ionic compounds break into their constituent ions when dissolved in water.

Carnallite is double salt having composition,

KCl. MgCl₂. $6H_2O$. It gives K⁺, Cl⁻ and Mg²⁺ ions when dissolved in water.

An increase in s-character give rise to an increase in bond strength.

235 (a)


In rest all dipole-dipole forces also exist.

236 (c)

Among the isoelectronic species smaller is +ve charge, larger is ionic radius, e.g.,

Ionic radius :
$$Na^+ > Mg^{2+} > Al^{3+}$$

1, 4-dihydroxy benzene shows the highest boiling point among given compounds because it forms strong intermolecular hydrogen bonds (It does not form intermolecular H-bonding.)

H-bonding

Order of H-bonding in *o*, *m* and *p*-isomers of a compound is given below

Intermolecular H-bonding, o < m < p-isomers intermolecular H-bonding

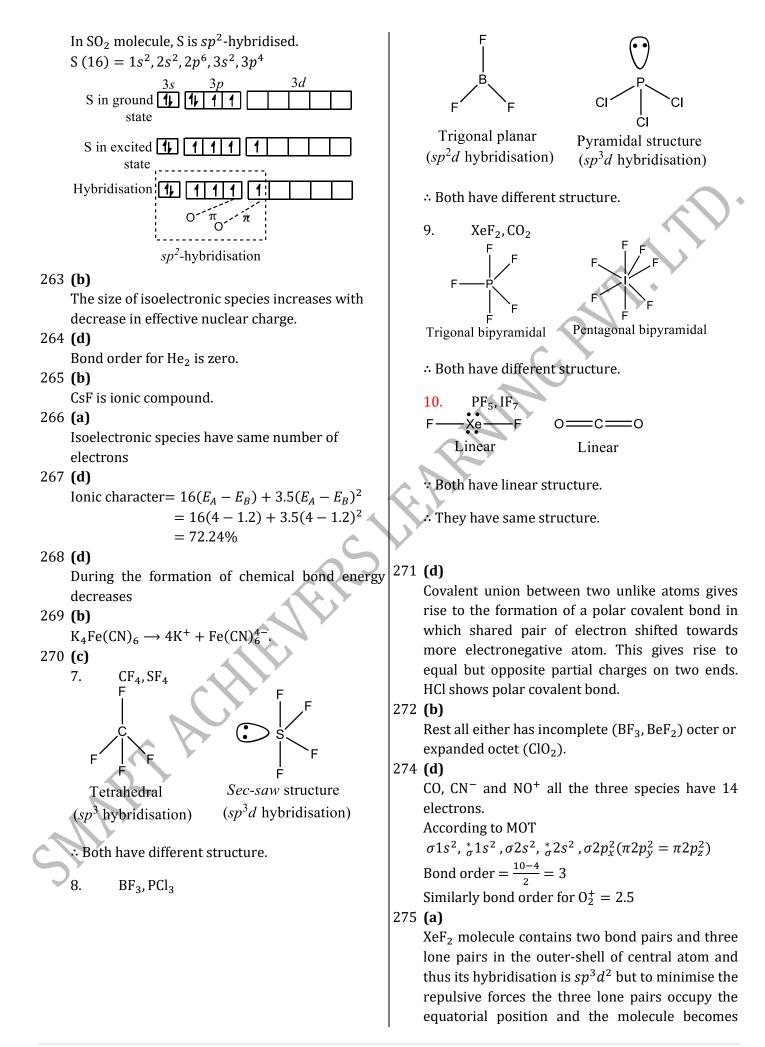
o > m > p isomers.

Hydroxy benzene do not form a chain of Hbonding . Hence, intermolecular H-bond is stronger than intermolecular H-bonds, so the stability of 1, 4-dihydroxy benzene is highest. Hence its boiling point is highest. The increasing order of the boiling points of the given compound is

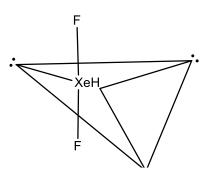
IV < I < II < III

238 (d)

Molecules in *trans*-1, 2-dichloroethene are symmetrical hence, no dipole moment.


239 (b)

 $sp^{3}d^{2}$ -hybridization leads to octahedral geometry.


240 (c)

In BF₃, boron is sp^2 hybridised, so its all atoms are coplanar

241	(c)		Hence, structure of Li ₂ is [Li – Li].
	Since, the geometry of AsF ₅ molecule is trigonal	250	
	bipyramidal, it is sp^3d hybridised. Thus, s, p_x , p_y ,		More directionally concentrated orbitals show
	p_z and d_{z^2} orbitals are utilised by As atom from		more overlapping.
	bonding.	251	
242			It is the hybridization of ICl_2^+ .
	Molecular orbital configuration of N_2^+ is	252	
	$N_{2}^{+} = (\sigma 1s)^{2} ({}^{*}_{\sigma} 1s)^{2} (\sigma 2s)^{2} ({}^{*}_{\sigma} 2s)^{2} (\pi 2p_{\gamma})^{2}$		$o-$, $m-$, p -derivatives has $\alpha = 60^{\circ}$, 120° and 180°
	$= (\pi 2 p_{x})^{2} (\sigma 2 p_{y})^{1}$		and thus, resultant vector has zero dipole moment
			in <i>p</i> -derivative. Also dipole moment of <i>m</i> -
	Bond order $=$ $\frac{N_{b-}N_a}{2} = \frac{9-4}{2} = 2.5$		dichlorobenzene is more than toluene.
243		253	(a)
	Structure of C_2H_2 is linear.		Covalent character α charge of cation
	$H - C \equiv C - H$	254	(c)
	Structure of CO ₂ is also linear		Carbon cannot accept 6Cl ⁻ , since it has no vacant
	0 = C = 0		<i>d</i> -orbitals.
	So, both are isostructural species.	255	
244			Cs ⁺ is largest cation and F ⁻ is smallest anion.
	In <i>o</i> -dichlorobenzene, $\alpha = 60^{\circ}$	256	(b)
	$\therefore \cos \alpha = +ve$		Charge of $e^{-} = 1.6 \times 10^{-19}$
	$\mu = \sqrt{\mu_1^2 + \mu_2^2 + 2\mu_1\mu_2 \cos \alpha}$		Dipole moment of HBr = 1.6×10^{-30}
	1		Inter-atomic spacing $= 1 \text{ Å}$
245			$= 1 \times 10^{-10} \mathrm{m}$
246	Multiplicity of bonds gives higher bond energy.	$\langle \rangle$	Percentage of ionic character in HBr
246			$= \frac{\text{Dipole moment of HBr} \times 100}{\text{inter spacing distance} \times q}$
	Bond order of oxygen molecule = 2		Inter spacing distance $\times q$ 1.6×10 ⁻³⁰
	Bond order of oxygen molecule ion = 2.5		$=\frac{1.6\times10^{-30}}{1.6\times10^{-19}\times10^{-10}}\times100$
	Bond order of superoxide ion $(0_2^-) = 1.5$		$= 10^{-30} \times 10^{29} \times 100$
	Bond order of peroxide ion $(0^{2^-}_2) = 1$		$= 10^{-1} \times 100$
	Hence, the order of bond strength is as $0^+ > 0 > 0^{-2} > 0^{2-2}$		$= 0.1 \times 100$
247	$0_2^+ > 0_2 > 0_2^- > 0_2^{2-}$		= 10%
247		257	(b)
	Electronic configuration of Xe in ground state		Lower <i>IE</i> , more <i>EA</i> and high lattice energy are
	5s 5p 5d		required conditions for ionic bonding.
	Electronic configuration of Xe in excited state	258	
			Ionisation potential increases along the period.
	$\begin{array}{c c} 5s & 5p & 2d \\ \hline 1_{1} & 1_{1} & 1_{1} & 1_{1} & 1_{1} \end{array}$	259	
	Electronic configuration of Xe in XeF_4		More is <i>s</i> -character, smaller is hybridized orbital,
	5.1		more becomes tendency for overlapping, more is
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		bond energy, lesser is bond length.
		260	
5	sp^3d^2 -hybridisation		Larger is the difference in electronegativities of
\sim	Note The expected geometry of XeF_4 is		two atom, more is polar character in bond.
	octahedral. On account of the fact that <i>lp-lp</i>	261	
	repulsion > <i>lp-bp</i> repulsion, there is some		The molecules having no difference in
	distortion octahedral geometry with two lone pair		electronegativity of bonded atoms are non-polar
	of electrons. In other words, it has a square planar		in nature. They are molecules having same atoms.
240	geometry.		\therefore Among HCl, HF, HBr and H ₂ . H ₂ is non-polar
248		262	molecule.
	Li ₂ : $KK(\sigma 2s)^2$, BO = $\frac{1}{2}(2-0) = 1$	262	ູເບງ

linear shape.

276 (c)

Species having the same number of electron, have same bond order.

Species	Number of
	electrons
CN ⁻	6+7+1=14
0_{2}^{-}	8+8+1=17
NO ⁺	7+8-1=14
CN ⁻	6+7-1=12

Since, CN^- and NO^+ have same number of electrons, they have same bond order, *i. e.*, 3. CN^- or NO^+ = 14=

 $\sigma 1s^{2}, \, _{\sigma}^{*} 1s^{2}, \sigma 2s^{2}, \, _{\sigma}^{*} 2s^{2}, \sigma 2p_{z}^{2}, \pi 2p_{x}^{2} \approx \pi 2p_{y_{z}}^{2}$ Bond order = $\frac{N_{b}-N_{a}}{2}$ = $\frac{10-4}{2}$ = 3.

277 (c)

In water molecule the H - O - H bond angle is 104.5° and dipole moment is 1.84 D.

The bond angle of H_2O is lower than 109.28" due to the presence of two lone pair of electrons on the oxygen atom.

278 (d)

Follow text.

279 (a)

 RCH_2NHCH_3 shows the hydrogen bonding, since H is attached to N atom.

280 (c)

Cl atom has 17 electrons, Cl⁻ ion has 18 electrons. 281 **(a)**

High boiling point. of water is due to dipole-dipole interaction.

282 **(d)**

Ionisation enthalpy increases along the period and decreases down the group.

283 **(b)**

The jump in IP values exist in IP_5 and thus, removal of fifth electron occurs from inner shell. Thus, element contains four electrons in its valency shell.

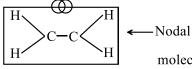
284 **(a)**

Paramagnetic species has unpaired electron. $\mathrm{B}_2=5+5=10~\sigma 1s^2$, $^*_\sigma 1s^2$, $\sigma 2s^2$, $^*_\sigma 2s^2$, $\pi 2p^1_x$ $= \pi 2 p_{y}^{1}$ $C_2 = 6 + 6 = 12$ $= \sigma 1s^{2}, \,_{\sigma}^{*} 1s^{2}, \sigma 2s^{2}, \,_{\sigma}^{*} 2s$ $= \pi 2p_{y}^{2}$ $N_2 = 7 + 7 = 14 = \sigma 1 s^2$, ${}^*_{\sigma} 1 s^2 \sigma 2 s^2$ $=\pi 2p_{\nu}^2$, $\sigma 2p_z^2$ $F_2 = 9 + 9 = 18$ $= \sigma 1 s^{2, *} \sigma^2 1 s^2, \sigma^2 2 s^{2, *} \sigma^2 2 s^2, \sigma^2 p_z^2, \pi^2 2 p_z^2$ $=\pi 2p_y^2$, $\pi^2 2p_x^2 = \pi^2 2p_y^2$ \therefore B₂ is paramagnetic because it has unpaired electron. 285 (a) $Na \rightarrow Na^+ + e; IE \text{ of } Na = +ve$ $Na^+ + e \rightarrow Na; EA \text{ of } Na^+ = -ve$ Both are equal but opposite in nature. 286 (c) (a) CH_4 \rightarrow CH₃ - CH₃ 4*bp*+ 0*lp* 4*bp* 4bpHybridisation sp^3 sp^3 sp^3 Structure tetrahedral tetrahedral NH_4^+ (b) NH_3 3bp + 1lp4bpHybridisation sp^3 sp^3 Structure pyramidal tetrahedral (c) BF3 BF_4 3*bp* 4bpHybridisation sp^2 sp^3 Structure trigonal tetrahedral planar H_2O H₃0⁺ (d) 2bp + 2lp3bp + 1lpHybridisation *sp*³ sp^3 Structure angular pyramidal Thus conversion of BF₃ into BF₄ involves change in both hybridisation and shape. 287 (a) In O_2 molecule, the total number of electrons = 16 Electronic distribution in molecular orbital of $0_2 = \sigma 1 s^2$, ${}^*_{\sigma} 1 s^2$, $\sigma 2 s^2$, ${}^*_{\sigma} 2 s^2$, $\sigma 2 p_x^2 (\pi 2 p_y^2, \pi 2 p_z^2)$ $({}^{*}_{\pi}2p^{1}_{y}, {}^{*}_{\pi}2p^{1}_{z})$ Bond order in $O_2 = \frac{1}{2}[N_{b-}N_a] = \frac{1}{2}[10-6] = 2.0$ In $O_2^+ = \sigma 1 s^2$, ${}_{\sigma}^* 1 s^2$, $\sigma 2 s^2$, ${}_{\sigma}^* 2 s^2$, $\sigma 2 p_x^2$

 $(\pi 2p_y^2 = \pi 2p_z^2), (\pi 2p_y^1)$ Bond order in $O_2^+ = \frac{N_{b-}N_a}{2} = \frac{10-5}{2} = 2.5$

288 (a)

Percentage ionic character


 $\frac{\text{experimental value of DM}}{\text{theoretical value of DM}} \times 100$ $= \frac{1.03}{6.12} \times 100 = 17\%$

289 **(b)**

Electron affinity decreases down the group, but 'O' has small atomic size and 2p-orbital becomes very compact and already has 6 electrons, hence, there is a repulsive force among the already present and added electrons. Some of the energy evolved, due to addition of electron, is used to reduce the repulsion. Hence, the E.A. of O is less than S, so the order is S > O > Se.

290 (a)

A π -bond has a nodal plane passing through the two bonded nuclei, *i. e.*, molecular plane.

—Nodal plane, *i.e.*,

molecular plane.

291 (c) Flectrones

Electronegativity of elements increases along the period and decreases down the group.

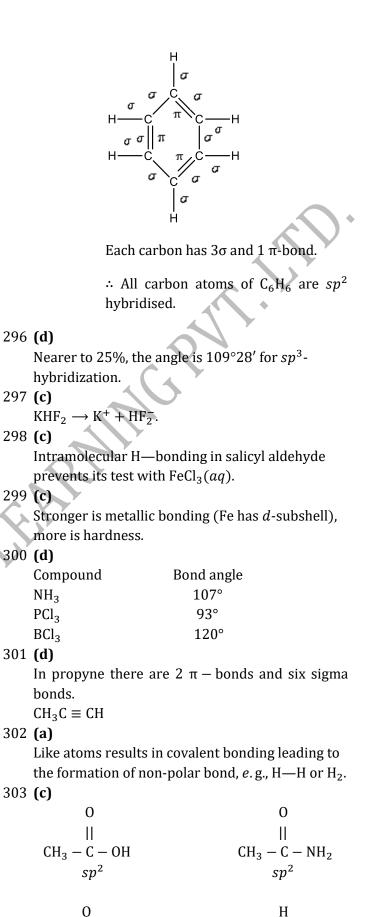
292 **(b)**

In CO₂, C-atom is *sp*-hybridised, thus it has linear structure. In XeF₂, Xe is sp^3d hybridised with three lone-pairs of electrons on equatorial position. This minimises repulsion, hence it has also linear structure.

293 **(b)**

Structure of CO_2 is linear due to *sp*-hybridisation. (*sp*)

0 = C = 0294 (a)


Higher the bond order short the bond length O_2^{2+} has the shortest the bond length (BO=3)

Bond order of remaining species are :

 $0_2^+(2.5), \ 0_2^-(1.5) \text{ and } 0_2^{2-}(1)$

295 **(b)**

- 11. The first bond between any two atoms is σ and rest are π bonds.
- 12. π bond is formed by sideways overlapping of unhybridised *p*-orbital.

 $CH_3 - C - OH$

I

H sp^2

 $CH_3 - C - CH_2$

 sp^2

304 (d)

 $cich = ch_2,$

chloroethene benzene

 sp^2 hybridised chloroethene $CH_2 = CH - CH = CH_2$ $sp^2 \quad sp^2 \quad sp^2 \quad sp^2$ $CH_2 = CH - CH = CH - CH = CH_2$ $sp^2 \quad sp^2 \quad sp^2 \quad sp^2 \quad sp^2 \quad sp^2$ 1, 3, 5-hexatriene

305 (d)

If the lattice energy < hydration energy, then only ionic compounds are soluble.

306 (c)

BCl₃ has equilateral triangular shape leading to vector sum of polar bonds to zero.

307 (d)

Hybride : H_2O H_2S H_2Se H_2Te Bond angle : 104° 92° 91° 90°

In all of the given species central atom is sp^3 hybridised. They have angular shape due to the presence of two lone pair of electron. The bond angle decreases with decrease in electronegativity therefore H₂Te shows minimum bond angle.

308 **(d)**

Lattice energy \propto charge of ions $\propto \frac{1}{\text{size of ions}}$

309 **(b)**

 He_2^+ , H_2^- have 3 electrons, one must be unpaired. H_2^+ has one unpaired electron. H_2 has two (paired) electrons.

310 (c)

Among the given, only CH_3OH and CH_3NH_2 are able to form H-bonds but H-bonding in CH_3OH due to high electronegativity of O-atom is strong. Hence, CH_3OH has the highest boiling point.

 $(\sigma-bps + 1ps = 3+1=4)$

In NF₃ N-atoms is sp^3 -hybride, but due to presence of a lone pair of electron, NF₃ has pyramidal structure.

312 (d)

The boiling point of ethanol is highest among

these due to the presence of hydrogen bonding.

313 **(b)**

C_2^{2-} has $[C \equiv C]^{2-}$ structure.

314 **(a)**

A compound having maximum electronegative element will form strong hydrogen bond

315 (c)

all carbon atoms are

The bond angle in CH_3OCH_3 is 110° inspite of sp^3 -hybridization of O and two lone pair due to stearic hindrance.

316 **(b)**

Multiplicity in bonding give rise to an increase in bond energy.

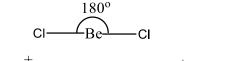
317 (a)

Carbon in H_2CO_3 has sp^2 -hybridization and also polar. BF_3 has sp^2 but non-polar. SIF_4 has sp^3 hybridization. $HClO_2$ has sp^3 -hybridisation.

318 **(b)**

The removal of second electron from Mg takes place from 3s-orbital whereas, the removal of second electron from Na takes place from 2p-orbital. More closer are shells to the nucleus, difficult is removal of electron.

319 (b)


Hence,

Bond angle depends on the structure of molecule. If two molecules have same structure, then bond angle is decided by the electronegativity of central atom. Electrongeativity of central atom \propto bond angle.

The bond angle of H_2S is less than H_2O because S is less electronegative than H_2O .

 $H_2 O > H_2 S$ (104.5°) (92.2°)

Further the $BeCl_2$ has linear structure, hence its bond angle is 180°. The N₂O molecule also has linear structure with bond angle 180°.

$$: N = \stackrel{+}{N} = 0 \quad \longleftrightarrow \quad N = \stackrel{+}{N} = 0 \quad \vdots$$

320 (a)

S has 6 electrons in its the valence shell and it shares 6 electrons with 6 fluorine atoms.

 \therefore In SF₆, S has 12 electrons in its valence shell

$$F + F$$

$$\bullet \bullet$$

$$F \times \bullet S \bullet$$

$$F \times \bullet S \bullet$$

$$F \times F$$

$$F + F$$

322 (b)

 NH_3 , $[PtCl_4]^{2-}$, PCl_5 and BCl_3 have sp^3 , dsp^2sp^3d

and sp^2 hybridization respectively. Note that hybridization of P in PCl₅ is wrongly reported in problem.

323 **(b)**

The bond formation process is exothermic and thus resultant acquires lower energy level.

324 **(b)**

Due to H-bonding in NH₃.

325 (a)

Lewis structure of N₂ molecule is

$$\begin{pmatrix} \times & \mathsf{N} & \times \\ \times & \mathsf{N} & \times \\ \times & \times & \mathsf{N} \\ \times & \times & \mathsf{N} \\ \times & \mathsf{N} \end{pmatrix} \text{or} \quad \overset{\times}{\times} \mathsf{N} \blacksquare \mathsf{N}_{\times}^{\times}$$

326 **(b)**

The resonating structure of ClO_4^- are as

$$\Rightarrow Bond order = \frac{Total number of bonds between Cl and 0}{Total number of resonating structure}$$

327 (a)

Bond energy increases with increase in bond order.

328 **(d)**

Ionisation potential increases along the period.

329 **(b)**

CsCl is most ionic because of most electropositive nature of Cs.

330 **(d)**

 $0_2 < 0_2^-$ Bond order $C_2 = 2$ $C_2^{2-} = 3$ $B_2 = 2$ $B_2^+ = 1.5$ $Li_2 = 1$ $Li_{2}^{+} = 0.5$ $N_2 = 3$ $N_{2}^{+} = 2.5$ $0_2 = 2$ $0_{2}^{-} = 1.5$ 331 (d) The molecular configuration of O_2^- is as $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_z^2$, $\pi 2p_y^2$ $\approx \pi 2 p_z^2$, $\pi^2 2 p_x^2 \approx \pi^2 2 p_y^2$ Bond order = $\frac{N_{b-}N_{a}}{2}$ $=\frac{10-8}{10-8}$

 \therefore Bond order = 1

332 **(b)**

It is an ionic compound. The most ionic compound is CsF.

333 **(c)**

CO₂ is linear molecule.

334 **(b)**

M.O. configuration of N_2 is:

 $\sigma 1s^2 \sigma^* 1s^2, \sigma 2s^2 \sigma^* 2s^2, \pi 2p_y^2, \pi 2p_z^2, \sigma 2p_x^2$

M.O. configuration of N₂⁺ is: $\sigma 1s^2 \sigma^* 1s^2, \sigma 2s^2 \sigma^* 2s^2, \pi 2p_v^2, \pi 2p_z^2, \sigma 2p_x^1$

335 **(d)**

In NH₄⁺ ion, N is sp^3 hybridised therefore, bond angle in NH₄⁺ (tetrahedral shape) is 109°28'.

336 **(a)**

The definition of bond order.

338 **(b)**

The intermolecular forces increase with increases in mol. wt.

339 **(b)**

Bond angles of BeF_2 , H_2O , NH_3 and CH_4 are 180°, 104°31', 106°50', 109°28' respectively.

340 **(d)**

Bond length decreases with increase in *s*-character.

341 (b)

Isoelectronic species have same number of electrons, NO^+ , C_2^{2-} , CN^- and N_2 . All have 14 electrons.

342 **(d)**

 sp^3d^2 hybridised molecule have octahedral geometry.

343 **(b)**

344 **(a)**

The shape of ClF_3 is distorted T-shape due to the presence of two lone pair of electrons.

345 **(b)**

These are facts.

346 **(c)**

 NO_2^- has sp^2 hybridisation. Its expected geometry is trigonal planar but actual geometry is V-shape due to presence of lone pair of electrons.

347 (d)

 Cs^+ is biggest ion among these. F^- is smallest.

348 (d)	359 (d)
Formation of solid lattice from oppositely charged	Ionic compounds conduct current only in fused
ionized gaseous atoms give rise to evolution of	state.
lattice energy.	360 (b)
349 (b)	IP_1 of B > IP_1 of Li ENC of boron is more than Li.
We know that Al^{3+} cation is smaller than Na^+	Also IP ₁ of Li > IP ₁ of K because removal of
(because of greater nuclear charge). According to	electron in K occurs from 4 <i>s</i> .
Fajan's rule, small cation polarise anion upto	
greater extent. Hence, Al ³⁺ polarise Cl ⁻ ions upto	It is a fact.
greater extent, therefore, AlCl ₃ has covalent bond	
between Al and Cl atoms.	O has two lone pair of electrons.
350 (a)	364 (a)
H—O—O—H, O←O=O,O=O	In SF ₄ , S has sp^3d -hybridisation. Thus, it contains
	two axial and two equatorial bonds to give see-
Due to resonance, in O_3 , the $O - O$ bond length will	saw structure.
be in between $0 = 0$ and $0 - 0$	sp ³ d
352 (b)	
Bond order for $O_2 = 2$ and for $O_2^+ = 2.5$	
Both are paramagnetic (O_2 has 2 unpaired	2p 2p 2p 2p
electron, O_2^+ has one unpaired electron).	365 (a)
354 (c)	F_3 Cl has 10 electrons on Cl atom. A superoctet
$[0-0]^{2-}$	molecule means for expanded octet on an atom.
355 (b)	366 (c)
For sp^2 hybridization, bond angle is 120°	S_2 molecule is paramagnetic like O_2 having 2
In <i>sp</i> ² hybridization,	unpaired electrons.
s character = $\frac{1}{3} \times 100 = 33\%$	368 (a)
356 (d)	π -bonding occurs only after σ -bond is formed.
ClF_3 has sp^3d -hybridization with two lone pair of	369 (d)
electron on Cl.	NH_4^+ and SO_4^{2-} both show sp^3 hybridisation and
357 (a)	tetrahedral geometry
13. $0_2 = 8 + 8 = 16$	370 (c)
$= \sigma 1s^{2}, {}^{*}_{\sigma} 1s^{2}, \sigma 2s^{2}, {}^{*}_{\sigma} 2s^{2}, \sigma 2p_{z}^{2}, (\pi 2p_{x}^{2} =$	Dipole moment is a vector quantity. The dipole
	moment of symmetrical molecule is zero. Only the molecule which has distorted shape has dipole
$\pi 2p_y^2), ({}_{\pi}^* 2p_x^1 = {}_{p}^* 2p_y^1)$	moment.
• It has 2 unpaired electrons.	Cl
∴ It is paramagnetic. 14. $CN^- = 6 + 7 + 1 = 14$	
14. $CN^- = 6 + 7 + 1 = 14$	H H
$=\sigma 1s^2, {}^*_{\sigma} 1s^2, \sigma 2s^2, {}^*_{\sigma} 2s^2, \sigma 2p_z^2, (\pi 2p_x^2 = \pi 2p_y^2)$	
• No unpaired electron and no paramagnetic.	
15. $CO = 6 + 8 = 14$	
$ = \sigma 1s^2, {}^*_{\sigma} 1s^2, \sigma 2s^2, {}^*_{\sigma} 2s^2, \sigma 2p_z^2, (\pi 2p_x^2 = \pi 2p_y^2) $	<i>p</i> -dichlorobenzene methane
\therefore No unpaired electron and no paramagnetic.	$\begin{array}{ccc} & & & \\ (a) & & (b) & & (d) \end{array}$
16. $NO^+ = 7 + 8 - 1 = 14$	\therefore CO ₂ , <i>p</i> -dichlorobenzene and CH ₄ have regular
$=\sigma 1s^2 *_{\sigma} 1s^2$, $\sigma 2s^2$, $*_{\sigma} 2s^2$, $\sigma 2p_z^2$, $(\pi 2p_x^2 = \pi 2p_y^2)$	symmetrical shape.
∴ No unpaired electron and not paramagnetic.	\therefore They don't have dipole moment.
358 (c)	
C— F bond is more polar than C— Cl.	
· · · · · · · · · · · · · · · · · · ·	1

$$H \xrightarrow{N}_{H} H$$
(NH₃)
(c)

NH₃ has distorted structure due to presence of lone pair of electron.

∴ It has dipole moment.

371 (c)

According to Fajan's rule smaller anion is polarised to lesser extent than the larger anion.

: compound having smaller anion has more ionic character.

∴ Higher melting

Since, the size of F^- ion is smallest, it is polarised.

: AgF will have highest ionic character and hence highest melting point.

(:: Ionic compounds have greater melting point than covalent compound)

372 (a)

Number of hybrid orbitals for neutral atom = $\frac{1}{2}$

[Number of valence electron in central atom + Number of monovalent atom]

Number of hybrid orbital = $\frac{5+5}{5} = 5$

Hence, hybridisation is sp^3d .

374 (a)

The size of isoelectronic decreases with increase in atomic number.

375 (a)

Bond angle for sp, sp^2 and sp^3 -orbitals are 180°, 120° and 109°28' respectively.

378 (d)

In BrF₃ molecule, Br is sp^3d hybrid, but geometry is T-shaped due to distortion of geometry from trigonal-bipyramidal to T-shaped the by involvement of lone pair-lone pair repulsion. Here 🔨

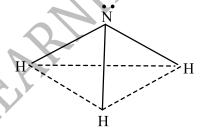
2

$$lp - lp \text{ repulsion} = 0$$
$$lp - bp \text{ repulsion} = 4$$
$$bp - bp \text{ repulsion} = 2$$

379 (b)

As the distance between the atoms, increases, bond polarity increases

380 (d)


 EA_1 for elements is exothermic and EA_2 is endothermic. Also EA_2 for $0 > EA_1$ for 0.

381 (a)

 $0_2^- = 8 + 8 + 1$ $= \sigma 1 s^2$, ${}^*_{\sigma} 1 s^{2}_{\sigma} \sigma 2 s^2$, ${}^*_{\sigma} 2 s^{2}_{\sigma} \sigma 2 p_z^2$, $\pi 2 p_x^2$ $=\pi 2p_{y}^{2}$, $_{\pi}^{*}2p_{x}^{2}=_{\pi}^{*}2p_{y}^{1}$ \therefore Total antibonding electrons = 7 $0_2 = 8 + 8 = 16$ $=\sigma 1s^2, \, {}^*_{\sigma} 1s^2, \, \sigma 2s^2, \, {}^*_{\sigma} 2s^{2}, \sigma 2p_z^2, \pi 2p_z^2$ $\pi 2p_{\nu}^2$, $\pi 2p_{\chi}^1 = {}^*_{\pi} 2p_{\nu}^1$ \therefore Total antibonding electrons = 6 $0_2^{2-} = 8 + 8 + 2 = 18$ $=\sigma 1 s^{2,*} {}^{*}_{\sigma} 1 s^{2,*} \sigma 2 s^{2,*} {}^{*}_{\sigma} 2 s^{2,*} \sigma 2 p_{z}^{2}$, $\pi 2 p_{x}^{2}$ $=\pi 2p_{y}^{2}, \pi 2p_{x}^{2} = \pi 2p_{y}^{2}$ \therefore Total antibonding electrons = 8

382 (d)

In NH₃, N undergoes sp^3 hybridisation. Due to the presence of one lone-pair, it is pyramidal in shape.

383 (d)

Hg exists in liquid state.

384 (b)

According to valence bond theory, overlapping orbitals must possess half-filled nature as well as antispin electron.

385 (a)

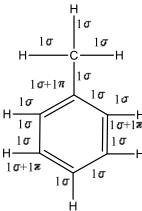
Non-polar or pure covalent bond has zero per cent ionic character due to the absence of partial charges on either end.

386 (a)

The dipole moment of two dipoles inclines at an angle θ is given by the equation $\pi =$

 $\sqrt{x^2 + y^2 + 2xy\cos\theta}, \cos 90 = 0$, since, the angle increases from 90 - 180, the value of $\cos \theta$ becomes more and more -ve and hence resultant decreases. Thus, dipole moment is maximum, when, $\theta = 90^{\circ}$

387 (a)


$$CO(14) = \sigma 1s^{2}, *_{\sigma} 1s^{2}, \sigma 2s^{2}, *_{\sigma} 2s^{2}, \pi 2p_{y}^{2}$$
$$= \pi 2p_{z}^{2}, \sigma 2p_{x}^{2}$$
$$B0 = \frac{N_{b} - N_{a}}{2} = \frac{10 - 4}{2} = 3$$
$$NO^{-}(16) =$$

	$\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_x^2$, $(\pi 2p_y^2 = \pi 2p_z^2)$,		The solubility of a compound mainly depend upon
	${}^*_{\pi}2p^1_{\nu} = {}^*_{\pi}2p^1_{z}$		its hydration energy. If the hydration energy of a
	$BO = \frac{10-6}{2} = 2$		compound is greater than from its lattice
			enthalpy, then its is soluble in water. Thus, for
	$N0^{+}(13); B0=3$		solubility
	$CN^{-}(14); BO= 3$		Hydration enthalpy > lattice
	$N_2(14); BO = 3$		enthalpy
	Hence, bond order of NO^- is different from that of		For compounds <i>P</i> and <i>R</i> hydration enthalpy
	CO.		exceeds the lattice enthalpy, so they are soluble in
388	(a)		water.
	S atom in SF_6 is sp^3d^2 -hybridized state and shows	400	
	octahedral shape.	100	It is a fact derived from bond order.
389	(b)	401	
	The stability of carbonates increases with	101	I has maximum covalent bond and negative
	increasing electropositive character of metal.		charge on electronegative nitrogen, most stable.
391	(c)		III has more covalent bond than both II and IV, III
	Larger is the size of atom, lesser is the tendency		is second most stable. Between II and IV, II is
	for overlapping, lesser is bond energy.		more stable since it has negative charge on
392	(a)		
	The polarising ability is characteristic of cation,	402	nitrogen while IV has negative charge carbon.
	smaller the size of cation with large magnitude of	402	
	positive charge, more will be its polarising ability.	101	Hybrid orbitals never form π -bond.
	(: It can cause large distortions in anion cloud.)	404	
393			$\mathbf{O}_{2}(16) = \sigma 1s^{2}, {}^{*}_{\sigma} 1s^{2}, \sigma 2s^{2}, {}^{*}_{\sigma} 2s^{2}, \sigma 2p_{z}^{2}, \pi 2p_{x}^{2}$
	ClO ₂ has 33 electrons, <i>i. e.</i> , one unpaired.	\sim	$\approx \pi 2 p_y^2, \ _{\pi}^* 2 p_x^1 \approx \ _{\pi}^* 2 p_y^1$
394	-		$BO = \frac{10-6}{2} = 2$
395	Larger anion is polarized more (Fajans' rule).		$0_{2}^{2-}(18) = \sigma 1s^{2}, {}_{\sigma}^{*}1s^{2}, \sigma 2s^{2}, {}_{\sigma}^{*}2s^{2}, \sigma 2p_{z}^{2}, \pi 2p_{x}^{2}$ $\approx \pi 2p_{y}^{2}, {}_{\pi}^{*}2p_{x}^{2} \approx {}_{\pi}^{*}2p_{y}^{2}$
	The molecules having distorted geometry have		$BO = \frac{10-8}{2} = 1$
	dipole moment and those having regular		2
	geometry have zero dipole moment.		$N_{2}(14) = \sigma 1s^{2}, {}^{*}_{\sigma} 1s^{2}, \sigma 2s^{2}, {}^{*}_{\sigma} 2s^{2}, \pi 2p_{x}^{2}$
	\therefore NH ₃ , CH ₃ Cl and ClO ₂ have distorted geometry.		$pprox \pi 2 p_y^2, \sigma 2 p_z^2$
	∴ They have dipole moment.		$BO = \frac{10-4}{2} = 3$
	\therefore BF ₃ has regular triangular planar geometry.		Thus, bond order is highest for N_2 .
	The dipole moment of BF_3 is zero.	405	_
396	-		Molecular shapes of SF_4 , CF_4 , XeF_4 are different
0,00	When hydrogen forms hydrogen bonding with		with 1, 0 and 2 lone pair or electrons respectively.
	fluorine it will be strongest H-bonding because	406	
	fluorine is strongest electronegative element.	100	The correct sequence of hybridisation of methane,
397			ethene and ethyne is sp^3 , sp^2 and sp .
577	<i>Trans</i> 2-pentene has dipole moment.	407	
	H_3C_{χ} ,H	107	Diamond has a three-dimensional structure in
\mathbf{C}			which a large number of carbon atoms are
5	H CH ₂ CH ₃		arranged tetrahedrally by covalent bonds. It is an
	2 0		allotropic form of carbon.
	Because $+I$ effect of ethyl group is more than that	408	-
	of CH_3 group, hence the two dipoles do not cancel	400	
	each other.		The ionisation potential decreases down the
398		400	group.
	NH_2^- has sp^3 -hybridization having two covalent	409	
			Doll mologulo is linear haccore it has
399	bonds and two lone pair of N atom.		BeH_2 molecule is linear because it has <i>sp</i> -hybridisation. It has bond angle180°.

410 **(b)**

 $Be_2(\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2)$ has bond order equal to zero.

411 **(c)**

 15σ and $3\pi\text{-}$ bonds are present in toluene.

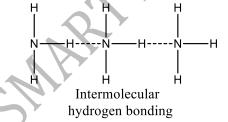
- 412 **(b)**
 - In H_20 , H-atom contains only two electrons.
- 413 **(c)**

Both $HgCl_2$ and C_2H_2 are linear like CO_2 because of *sp*-hybridization.

414 **(d)**

Follow concept of bond order in M.O. theory.

- 415 (d) HC \equiv C - HC = CH - CH₃ 10 σ , 3 π
- 416 **(b)**


 $CCl_2 = CCl_2$ has sp^3 -hybridization. CCl_4 has sp^3 -hybridization.

417 **(c)**

All are non-metals.

419 **(c)**

Boiling point of ammonia is much higher than phosphine. It is due to extensive hydrogen bonding found in ammonia.

420 **(b)**

Lower potential energy level imparts stability. 421 (d)

Covalent character $\propto \frac{1}{\text{size of cation}} \propto \text{size of anion}$

(according to Fajan's rule)

Lower the covalent character, higher will be ionic

character.

 Cl_2O , contains O^{2-} , NCl_3 contains N^{3-} , $PbCl_2$ contains Pb^{2+} and $BaCl_2$ contains Ba^{2+} . Hence, the order of covalent character is $NCl_3 > Cl_2O > PbCl_2 > BaCl_2$ ∴ $BaCl_2$ has the greatest ionic character.

422 **(c)**

Kernals start vibrating and hence, create hindrance in the flow of electrons

423 **(d)**

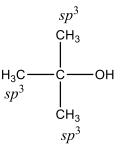
Chile salt petre $(NaNO_3)$, potash alum $(K_2SO_4.Al_2(SO_4)_3.24H_2O)$ and green vitriol $(FeSO_4.7H_2O)$ are ionic compounds. They

(FeSO₄. 7H₂O) are ionic compounds. They produce ions in their aqueous solutions, so they are conducting in nature. Ethyl alcohol, C_2H_5OH being covalent in nature, does not produce any ion in aqueous solution. Hence, it is non-conducting in nature.

424 **(c)**

Due to large electronegativity difference in C and F atoms.

425 **(a)**


Proteins show H-bonding.

426 **(c)**

Bond angles decreases down the group.

 \therefore H₂O > H₂S. Also bond angle of H₂O < NH₃ due to lone pair effect.

427 **(c)**

In the above compound all bonds are σ bond and hence, carbon atom uses only sp^3 - hybrid orbitals for bond formation.

428 **(b)**

It is the order of stability.

429 **(b)**

 E_1 for He⁺ = E_1 for $H \times Z^2$ (where Z=at. no. of He).

430 **(c)**

H—bonding order:

 $\cdots H - F > \cdots H - 0 > \cdots H - N$

431 (d)

The charge-size ratio increases and thus

polarizing power increases.

434 (c)

 O_2 has two unpaired electrons.

435 (d)

These are the factors on which IP depends.

436 **(b)**

The hybridised states of N in NO_2^+ , NO_3^- and NH_4^+ are sp, sp^2 and sp^3 respectively.

437 (b)

Carbon (1) has 2σ – and 2μ – bonds. Carbon (2) has 3σ and 1π -bond.

438 (c)

According to Fajan's rule, as the size of cation decreases, its polarising power increases. Hence, Cu²⁺ polarise Cl⁻ ions more than Cu⁺. Therefore, CuCl₂ has more covalent character and hence, its boiling point is less.

439 **(b)**

Metals are more electropositive and lose electrons, while non - metals have tendency to gain electron.

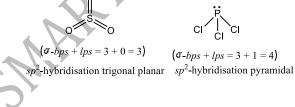
440 **(b)**

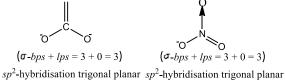
Be has smallest size and thus, Be cation possesses more polarizing power.

441 **(b)**

Due to intermolecular hydrogen bonding in ortho-isomer, it has least melting point. Due to effective intermolecular hydrogen bonding in para isomer, it has highest melting point among the isomers. So, the order is

Para isomer > *meta* > *ortho*


(114°C) (97°C) (54 °C)


443 (a)

Based on geometry of molecule.

444 **(b)**

The structure of these molecules/species are as follows :

 PCl_3 has sp^3 -hybridisation but due to presence of 459 (d) a lone-pair, its shape is pyramidal instead of

tetrahedral.

446 (c)

[C] forms anion readily by gaining one electron only.

447 (c)

Number of bonds between two atoms is called bond order.

Resonating structures of benzene are

: In benzene, the carbon - carbon bond is between the double and single bond due to the resonance, so its bond order is 1.5.

448 (a)

If difference in electronegativity in between two atoms is 1.7, the molecule possesses 50% covalent +50% ionic nature.

449 (b)

 IP_1 of Pb > IP_1 of Sn (an exception).

450 (c)

Only then it can accept lone pair in that shell.

451 (a)

Count σ -and π -bonds.

```
452 (b)
```

The molecular electronic configuration of O_2 is

$$0_{2} = [KK, (\sigma 2s)^{2}, ({}^{*}_{\sigma} 2s)^{2}, (\sigma 2p_{x})^{2}, (\pi 2p_{y})^{2} = (\pi 2p_{z})^{2}, ({}^{*}_{\pi} 2p_{y})^{1} = (\pi 2p_{z})^{1}]$$

$$= (\pi 2p_z)^2, (\pi^2 2p_y)^2 = (\pi 2p_z)^1$$

453 (d)

Cs is more electropositive.

454 (a)

In MnO_4^- , the oxidation no. of Mn is +7, *i.e.*, all the 4s and 3d electrons are lost.

455 (d)

Stability \propto bond order

456 **(b)** Charge of $e^- = 1.6 \times 10^{-19}$ C Dipole moment of HBr = 1.6×10^{-30} C-m

Interionic spacing = $1 \text{ Å} = 1 \times 10^{-10} \text{ m}$

- % of ionic character in
- Dipole moment of HBr \times 100 HBr =Interspacing distance $\times q$

$$1.6 \times 10^{-30} \times 100$$

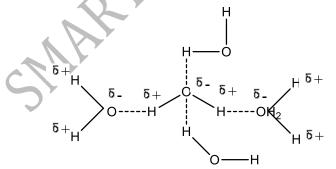
$$=\frac{1.6 \times 10^{-19} \times 10^{-10}}{1.6 \times 10^{-19} \times 10^{-10}}$$

$$= 10^{-30} \times 10^{29} \times 100 = 0.1 \times 100 = 10\%$$

Due to shielding effect of (n-1)d-subshell.

P in PO₄³⁻has sp^3 -hybridization like S in SO₄²⁻.

460 (d) S in II excited state = The lattice becomes stronger (i.e., the lattice 1 1 1 1 1 1 energy U becomes more negative). As r the $(sp^3)^1 3d_z^{2^1} 3d^1 x^2 - y^2$ interionic distance decreases. U is proportional to $(sp^3)^1 (sp^3)^1$ $SO_4^{2-} = (sp^3)^1$ 1 σσ \overline{r} $U \propto \frac{1}{(r_c + r_a)}$ or $6^{-}2px 2px 6^{-}2py$ $\dot{O} 2px$ 462 (a) Covalent radius are always smaller than crystal radius as the former involves overlapping region. 463 (c) CO_3^{2-} has the following structure Tetrahedral shape of SO 471 (d) SF_4 has sp^3d -hybridization with one lone pair, It contains only covalent bonds CF_4 has sp^3 -hybridization with no lone pair and 464 (c) XeF₄ has sp^3d^2 -hybridization with two lone pairs. Molecular orbital configuration of, 472 (a) $C_{2}^{+} = \sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p_{x}^{2}, \pi 2 p_{y}^{1}$ 466 (d) Mullikan proposed M.O. theory. 467 (d) $(\sigma - bps + lps = 3 + 1 = 4)$ $Cl_2O = 42$ electrons Hence, hybridisation $= sp^3$ $ICl_2^- = 88$ electrons In NH_3 N-atoms is sp^3 hybridised, but due to $Cl_2^- = 35$ electrons presence of a lone pair of electron on N-atom. It is $IF_2^+ = 70$ electrons pyramidal in shape. $I_3^- = 160$ electrons 473 (b) $Cl_2 0 = 33$ electrons For a compound to be soluble, the hydration $ClO_2^- = 34$ electrons energy must be greater than the lattice energy. $ClF_2^+ = 34$ electrons Since, NaCl is soluble in water but insoluble in ClO_2^- and ClF_2^+ contain 34 electrons each hence benzene. they are isoelectronic. $\Delta H_{\rm hydration} > \Delta H_{\rm lattice \, energy \, in \, water}$ 468 (a) 1, 2-butandiene has the structure. $\Delta H_{\rm hvdration}$ and Η Η Η $< \Delta H_{\text{lattice energy in benzene}}$ 474 (b) H - C - C = C = C - HDimerization occurs in carboxylic acids which $|sp^3 sv^2 sn sr$ indicates strong H-bonding. 475 (c) 469 (d) $H_{\overline{\sigma}} C_{\overline{\sigma}}^{\underline{2\pi}} C_{\overline{\sigma}} C_{\overline{\sigma}}^{\underline{\sigma}} C_{\overline{\sigma}}^{\underline{\sigma}} H$ Anions are always larger in size than their parent atom. Cations are always smaller in size than their parent atom. 470 (d) Thus, the number of σ and π bonds respectively Sulphade ion $(S0_4^{2-})$ has tetrahedral geometry, as are 7 and 3 in S-atom undergoes sp^3 hybridisation. 476 (a) Solubility order : AgF > AgCl > AgBr > AgI. 477 (d) Cal₂ has maximum covalent character due to large


size of anion and possesses lowest lattice energy.

Thus melting point is lowest. 478 (c)	Both possess sp^2 -hybridization but different geometry.
Hybridisation $=\frac{1}{2}$ [no. of electron in valence shell	
+ no. of monovalent atoms-charge on cation+	In transition elements, penultimate shell electrons
charge on anion]	also participate in bonding.
17. H_20	486 (b)
	Species O_2 O_2^+ O_2^{2+} O_2^{2-} Bond Order22.531
$H = \frac{1}{2}(6 + 2 + 0 - 0) = \frac{8}{2} = 4$	
	Hence, the increasing bond order is as follows :
$\therefore sp^3$ hybridisation	$0_2^{2-} < 0_2 < 0_2^+ < 0_2^{2+}$
18. CH ₄	487 (b) $\pi 2p_x$ and $\pi 2p_y$ or π_{2p_x} and π_{2p_y} orbitals have
w 1 (to to a a)	nearly equal energy and thus, are called
$H = \frac{1}{2} (4 + 4 + 0 - 0)$	degenerate orbitals.
8 .	488 (a)
$=\frac{8}{2}=4$	The most electronegative element is F and next to
$\therefore sp^3$ hybridisation	F is 0.
sp hybridisation	489 (c)
19. BCl ₃	Ions are held in NaCl by coulombic forces and
. 1	thus, possess no velocity.
$H = \frac{1}{2}(3 + 3 + 0 - 0)$	490 (b)
6	Both have one lone pair of electron.
$=\frac{6}{2}=3$	491 (d)
$\therefore sp^3$ hybridisation	Lattice energy, $U = \frac{q_1 q_2}{r^2}$
a sp hjörlalsadon	Since, interionic distances in CaO and NaCl are
20. NH ₃	similar, (larger cation has smaller anion and vice
	versa) r is almost the same. Therefore, lattice
$H = \frac{1}{2}(5 + 3 + 0 - 0)$	energy depends only on charge. Since, the magnitude of charge on Na ⁺ and Cl ⁻ ions is same
$=\frac{8}{2}=4$	<i>ie</i> , unity and that on Ca^{2+} and O^{2-} ions is 2 each,
	therefore, the lattice energy of CaO is four times
$\therefore sp^3$ hybridisation	the lattice energy of NaCl, <i>ie</i> ,4U
	492 (a)
\therefore (c) is correct answer.	
479 (a)	sp sp sp^2 sp^2
H_2O shows high b.p. (inspite of lowest mol. wt.)	$CH \equiv C - CH = CH_2$
on account of strong H-bonding.	Hence, carbon atom bonded to each other by
480 (d)	single
C_2H_2 is a linear molecule with <i>sp</i> -hybridization.	(C - C) are <i>sp</i> and <i>sp</i> ² hybrid.
481 (b)	493 (c)
KO_2 is an ionic compound.	In IF ₅ , halogens are member of VII group. Summation of group number
482 (c)	= 42
In all the given compounds, anion is same(Cl ⁻),	Bond pair $=\frac{42}{8}=5$ (Residue) 2
hence polarising power is decided by size and charge of cation. Al ³⁺ with maximum charge and	
smallest size has maximum polarising power	$\frac{10}{2}$
hence, $AlCl_3$ is maximum covalent.	5 bond pair, 1 lone pair means the geometry is
483 (d)	square pyramidal and sp^3d^2 hybridisation.
Dipole forces exist only in polar molecule.	494 (b) $P(t) = \frac{1}{2} \frac{1}{$
484 (b)	PCl_5 molecule has $sp^3 d$ hybridiation.
	P a g e 89

Its geometry is trigonal bipyramidal and it has 5 504 (b) valence shell pairs of electrons. Be in BeF₃⁻ is sp^2 -hybridized 495 (c) 505 (c) Given, ionic charge = 4.8×10^{-10} esu and, ionic distance = $1 \text{ Å} = 10^{-8} \text{ cm}$ We know that $p_{y, \pi} \Delta p_{x, \mu}$ Dipole moment =ionic charge×ionic distance $= 4.8 \times 10^{-10} \times 10^{-8}$ paramagnetic in nature. $= 4.8 \times 10^{-18} \text{ esu cm}^{-1}$ 506 **(b)** = 4.8 debye A reason for the given fact. 496 **(b)** 507 (c) $CH_2 = CH_2$ has 1σ -and 1π -in between two sp^2 hvbridized carbon. 497 (c) solvent S in SF₄ possesses trigonal bipyramidal structure 509 (c) with sp^3d hybridisation. S in ground state but nuclear charge is more on Au. S in ground state 511 (d) 3*s* 3n S in excited state 35 of nitrogen. 512 (a) 11 1 *sp*³ hybridised. $sp^{3}d$ hybridisation 513 (b) S in excited state bonding. 499 (c) H-bonding Atomic size decreases along the period and increases down the gp.

500 (d)

One water molecules is joined to four water molecules-two with H-atoms and other two with O-atoms. Thus, The maximum number of 514 (d) hydrogen bonds that a molecule of water can have is four as shown below :

501 (d)

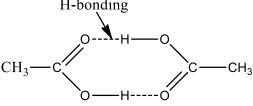
 CH_3^+ and NH_2^+ both have 8 electrons.

503 (b)

Energy level order 2p > 2s.

RbO₂ means Rb⁺ and
$$0_2^-, 0_2^-$$
 is the superoxide ion.
 $0_2^-(17) = \sigma 1s^2, \ _{\sigma}^* 1s^2, \ _{\sigma} 2s^2, \ _{\sigma}^* 2s^2, \ _{\sigma} 2p_x^2, \ _{\pi} 2p_x^2$
 $\approx \pi 2p_x^2, \ _{\pi}^* 2p_x^2 \approx \ _{\pi}^* 2p_x^1$

As it contains one unpaired electron, thus


Sulphanilic acids have dipolar structure to their melting point is high and insoluble in organic

Atomic size of Ag and Au are closer to each other

BCl₃ has trigonal planar structure due to 3 bond pairs in the valence shell of boron whereas NCl₃ has distorted tetrahearal structure due to one lone pair and three bond pair in the valence shell

In AlH₃, Al is sp^2 hybridised while in AlH₄, Al is

CH₃COOH dimerises in gaseous state due to H-

It is the definition of electron affinity.

516 **(b)**

 SO_2 has sp^2 -hybridization.

517 (a)

One of *s*-orbital +3 of *p*-orbital $= sp^3$

518 (d)
NO(7 + 8 = 15)
=
$$\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \pi 2p_x^2$$

 $\approx \pi 2p_y^2, \pi^* 2p_x^1$
NO⁺(7 + 8 - 1 = 14)
= $\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \pi 2p_x^2 \approx \pi 2p_y^2$
Thus, in the formation of NO⁺ from NO, the

electron is removed from a π^* orbital

519 (a)

2nd IE_1 of alkali metals is abnormally higher. 520 **(c)**

For $\text{Be}_n \text{Al}_2 \text{Si}_6 \text{O}_{18}$ 2n + 6 + 24 - 36 = 0n = 3

521 (a)

The structure of an hydride of H₂SO₄ is :

$$0 = \frac{1\sigma}{1\pi} S = 0$$

$$\frac{1\pi}{1\sigma} \begin{bmatrix} 1\pi \\ 1\pi \\ 0 \end{bmatrix}$$

522 **(c)**

O atom possesses sp^3 -hybridization with two lone pair of electron.

523 (a)

Ionic bonds are non-directional.

524 **(b)**

The molecule of N_2O is linear as would be expected for a triatomic molecule with 16 outer shell electrons. Its resonance structure is

525 **(d**)

$$H - \frac{\sigma}{\sigma} = \frac{\sigma}{\sigma} = \frac{\sigma}{\sigma} = \frac{\sigma}{2\pi} = \frac{\sigma}{2\pi}$$

Hence, number of σ and π -bond in acetonitrile are 5 and 2 respectively.

526 (a)

More the difference in electronegativity of atoms, stronger will be the hydrogen bond. Electronegativity difference between H and F is highest.

(∵F has highest electronegativity)

$$: F - H - - - - 0$$
 hydrogen bond is strongest.
527 (d)

Cyanide ion is,

$$-\overline{C}\equiv N \longrightarrow -\overline{N}\equiv C.$$

528 (a)

- 21. dsp^3 or sp^3d hybridisation results in trigonal bipyramidal geometry according to VSEPR theory.
- 22. dsp^2 hybridisation has square planar geometry.

23. d^2sp^3 or sp^3d^2 hybridisation has 537 (a)

octahedral planar geometry.

529 **(d)**

Bond angles of

0

$$NH_3 = 107^\circ, H_2Se = 91.0^\circ, H_2O = 104.5^\circ, H_2S$$

= 92.2°

So, the H_2 Se molecule has smallest bond angle. 530 **(a)**

The H H bond angle in H_2O is 104.5° due to the presence of two lone pairs of electrons. This fact can be best explained with the help of valence shell electron pair repulsion (VSEPR) theory.

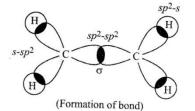
- 531 **(b)**
 - $NO_2^ sp^2$ $NO_3^ sp^2$
 - $NH_2^ sp^3$
 - NH_4^+ sp^3 SCN⁻ sp

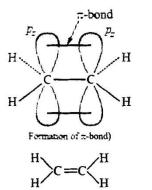
533 **(b)**

 $K^+[C \equiv N]^-$; K^+ and CN^- ionic, C and N forms covalent bonds.

534 **(c)**

NaCl exist as Na⁺Cl⁻.


535 **(c)**


 $\rm C_2H_2$ has a linear structure because it has sp hybridisation.

$$H - C \equiv C - H$$

536 **(d)**

Structure of C₂H₄ is

Geometry of the molecule)

So, the compound (X) is C_2H_4 .

Ionization energy increases along the period and decreases down the group.

538 **(b)**

The atomic radius decreases along the period. Also cations are always smaller than their parent atom and anions are always larger than their parent atom.

539 **(a)**

In N₂, all electrons are paired. Thus, N₂⁺ has one electron unpaired.

540 (c)

Mo lec ule	Hyb ridi sati on	Repulsion	Bond angle
SO_2	sp^2	lp.bp, bp – bp	119°
$0H_2$	sp^3	lp – lp, bp – lp bp – bp	104.5°
SH ₂	sp^3	-do-	
NH_3	sp^3	lp – bp, bp – bp	90°
-	•		107°

541 (a)

 CO_2 is isostructural with N_2O because both have 550 (c) linear structure. 2FC

$$0 \underbrace{=}_{CO_2} CO_2 O \xrightarrow{:} N \underbrace{=}_{N^+} \underbrace{=}_{O} \underbrace{O} \underbrace{O} O \xrightarrow{O} O \xrightarrow{O} O \xrightarrow{O} O$$

542 **(c)**

Valencies of *L*, *Q*, *P* and *R* is-2,-1,+1, and +2 respectively. So, they will form P_2L , *RL PQ*, and *RQ*₂

543 **(b)**

NO → NO⁺ (NO⁺) Total e⁻ = 14 $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\pi 2p_x^{1+1} = \pi 2p_y^{1+1}\sigma 2p_z^{2}$

Diamagnetic

Bond order = $=\frac{10-4}{2} = 3$ (NO) Total $e^- = 15$ $\sigma 1s^2 {}^*_{\sigma} 1s^2 \sigma 2s^2 {}^*_{\sigma} 2s^2$, $\sigma 2p_z^2 \pi 2p_x^{1+1} \pi 2p_y^{1+1}$, ${}^*_{\pi} 2p_x^1$ $= {}^*_{\pi} 2p_y$

Paramagnetic

Bond order $= = \frac{10-5}{2} = 2.5$

Electron is taken away from non-bonding molecular orbital that's why bond order increases.

544 (a)

All are isoelectronic species; more is nuclear charge smaller is ionic size.

545 **(b)**

Bond order for $0_2=2$; $0_2^+=2.5$, $0_2^-=1.5$, $0_2^{2-}=1$ Thus bond length is $0_2^+ < 0_2 < 0_2^- < 0_2^{2-}$ 546 **(b)** The structure of acetylene is

$$H - C = C - H$$

In acetylene, both the C-atoms are *sp* hybridised. Hence in acetylene molecule, there are one sigma and two pi bonds are present between carbon atoms.

547 **(c)**

Size of isoelectronics decreases with increasing atomic number.

$$\sigma 1s^{2}, \sigma^{*} 1s^{2}, \sigma 2s^{2}, \sigma^{*} 2s^{2}, \sigma 2p^{2} \begin{bmatrix} \pi 2p_{y}^{2} \\ \pi 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi^{*} 2p_{y}^{2} \\ \pi^{*} 2p_{z}^{1} \end{bmatrix}$$

$$\therefore B.0. = \frac{10-7}{2} = 1.5$$

549 **(c)**

NO has 15 electrons (paramagnetic) whereas NO⁺ has 14 electrons (diamagnetic).

$$2Fe + 3[0] \rightarrow Fe_2O_3$$
 (rust).

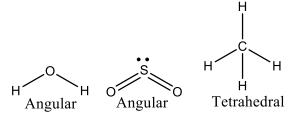
551 **(d)**

 ClO_2 has 33 electron; one will be unpaired.

 NO_2 and O_3 both are having irregular geometry.

554 (a)

s character \propto bond angle

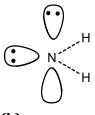

555 **(b)**

Since the two 0 atoms in O_2 are connected by a double bond (0 = 0), therefore, hybridization of 0 is sp^2

556 **(a)**

Cl – Be – Cl In BeCl₂, Be is *sp*-hybridised.

In BeCI₂, Be is *sp*-hybridised, hence it has linear structure.



557 (c)

On fusion KCN, ionic bonding is disturbed; on boiling H_2S and CF_4 only kinetic energy of molecules increases.

558 **(a)**

Structure of $\overline{N}H_2$ is as follows

559 **(b)**

Mn²⁺ is most stable as it has half-filled *d*-orbitals. 560 **(c)**

The structure of PO_4^{3-} is $\begin{bmatrix} 0 \\ | \\ 0 - P - 0 \\ | \\ 0 \end{bmatrix}^3$

Here, there units negative charge is shared by four O atoms and five bond pairs are shared between four P-O bonds

- $\therefore \text{ Formal charge} = \frac{3}{4} = -0.75$ B0 of P - 0 bond = $\frac{5}{4} = 1.25$
- 561 (c)

The element is P which exists as P_4 .

562 **(b)**

Elements having six electrons in valency shell are electronegative elements, *e*.g., O.

563 (d)

In sulphur, the excitation of *np*-electrons to *nd*-subshell gives rise to increase in number of unpaired electrons.

564 **(b)**

(^b)					
Spe	Elec	Electrons	Cha	Tot	
cies	tro	in other	rge	al	
	n in	element	gain		
	cent		ed	\mathbf{X}	
	ral			Y	
	ele				
	me	C		r	
	nt				
BO ₃ ³⁻	5	$3 \times 8 = 24$	+3	32	
CO_{3}^{2-}	6	$3 \times 8 = 24$	+2	32	
NO_3^-	7	$3 \times 8 = 24$	+1	32	
SO_{3}^{2-}	16	$3 \times 8 = 24$	+2	42	
CN ⁻	6	7	1	14	
N ₂	7	7	0	14	
C2-	6	6	+2	14	
$P\bar{O}_4^{3-}$	15	$4 \times 8 = 32$	+3	50	
SO_4^{2-}	16	$4 \times 8 = 32$	+2	50	
c_{10} -	17	$4 \times 8 = 32$	± 1	50	

CIO₄ 17 $| 4 \times 8 = 32 | +1 | 50$ Thus, (b) SO₃²⁻, CO₃²⁻, NO₃ are not isoelectronic. 565 (c)

Unpaired electrons are present in KO_2 , while others have paired electrons.

 $NO_2^+ \rightarrow 22$ electrons

 $BaO_2 \rightarrow 72$ electrons

 $AlO_2^- \rightarrow 30$ electrons

 $KO_2 \rightarrow 35$ electrons

 $IP_3 > IP_2 > IP_1$

567 **(b)**

Coordinate bond is formed.

 $(C_2H_5)_2O \rightarrow BH_3$

 $(C_2H_5)_2O$ gives one lone pair of electron to BH₃. So, it is called electron pair donar and BH₃ is called electron pair acceptor.

568 **(a)**

BeF₃⁻ involves sp^2 -hybridization.

570 **(c)**

Maximum covalence in most of the atoms (except N, O, F) is given by the number of valency electrons. The paired *s* electrons are also get unpaired during excitation.

571 **(b)**

Noble gases are in zero group however they possess eight electrons in their valence shell.

572 **(a)**

Solid molecules possess stronger van der Waals' forces.

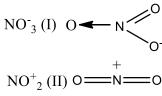
573 **(a)**

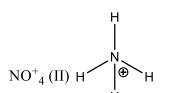
Inert pair effect is not noticed for elements having their outermost shell (n) if n < 4.

574 **(b)**

(a) **Pauling** gave scale of electronegativity.

(b) **Bronsted** gave concept of acid and base.


(c) Mullikan determined charge on electron.


(d) **Lewis** gave electronic theory of bonding.

575 **(b)**

Ionization potential increases along the period. Also Be has $1s^2$, $2s^2$, *i. e.*, removal of electrons from 2s while in Boron it occurs from 2p and therefore, Be has high I.P.

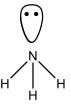
576 **(b)**

			Н		
		σ-	Lone	Unpaired	Total
		bond	pair	electron	
	I.	3	×	×	3 (sp ² 2
	II.	2	×	×	2
	III.	4	×	×	(sp) $4(sn^{3})$
					$4(sp^{3})$
577	(b)				

Larger cation favours ionic bonding (Fajan's rule). 578 (b)

Only P has *d*-orbitals.

579 **(b)**


 H_2O is sp^3 -hybridized; BeF₂ is *sp*-hybridized.

580 (b)

Oxidising power: $F_2 > Cl_2 > Br_2 > I_2$.

581 (a)

NH₃ molecule in its valence shell has three bond pairs of electrons and one lone pair of electrons. The shape of NH₃ molecule is pyramidal due to the presence of one lone pair electron. It has sp^3 hybridisation.

582 (d)

All carbon to hydrogen bonds are σ -bonds

583 (b)

In C_2H_6 , C is sp^3 hybridised.

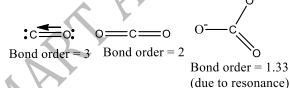
In C_2H_4 , C is sp^2 hybridised.

In BeCl₂, Be is *sp* hybridised.

In C_2H_2 , C is *sp* hybridised

584 (b)

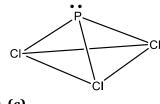
Energy bonds in solids are formed in accordance 594 (d) with Bohr's theory.


585 (c)

The jump in ionisation energy occurs when valence shell changes during removal of electron.

586 (c)

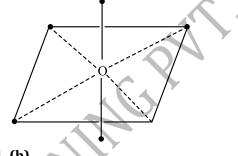
H atom attached on F is responsible for Hbonding..


587 (a)

Bond length increases when bond order decrease, hence the correct order of bond length is $CO_3^{2-} > CO_2 > CO$

588 (a)

In PCl₃ molecule, phosphorus is sp^3 -hybridised 59 but due to presence of lone-pair of electron. It has pyramidal structure.



589 (c)

 $Be_2 = (8 \text{ electrons})$ $\sigma 1s^2 \sigma 1s^2 \sigma 2s^2 \sigma 2s^2$

590 (d)

 $sp^3 d^2$ hybridisation has octahedral structure such that four hybrid orbitals are at 90° w.r.t each other and others two at 90° with first four.

591 (b)

 IE_1 of N > IE_1 of O due to half filled nature in N. 592 **(b)**

Larger anion is easily deformed (Follow Fajans' rule).

593 (c)

Due to resonance structure of C_6H_6 .

Draw bond structure and then count bonds.

$$\begin{array}{c|c} \sigma & \sigma & \sigma \\ \hline \sigma & \sigma \\ H \hline 0 & P \\ \hline 0 & P \\ \hline \sigma \\ \sigma \\ \sigma \\ 0 \\ \hline \sigma \\ H \\ 0 \\ \hline \sigma \\ H \\ 0 \\ \hline 0 \\ \hline 0 \\ \hline H \\ 0 \\ \hline H \\ 0 \\ \hline 0 \\ \hline H \\ 0 \\ \hline 0 \\ \hline$$

595 (a)

In methane, ethene and ethyne, the hybridisations are respectively sp^3 , sp^2 and sp. Hence, % scharacter will be

$$sp^{3} = \frac{1}{4} \times 100 = 25\%$$

$$sp^{2} = \frac{1}{3} \times 100 = 33\%$$

$$sp = \frac{1}{2} \times 100 = 50\%$$

Both SO_4^{2-} and BF_4^{-} have sp^3 -hybridization and are tetrahedral.

598 (c)

If there is four σ – bonds, hybridisation is sp^3 , if three σ – bonds, hybridisation is sp^2 and if two

σ - bonds, hybridisation is *sp.*
(a)
$$CH_2 = C = CH_2$$

 $sp^2 sp sp^2$
(b) $CH_3 - CH = CH - CH_2^+$
 $sp^3 sp^2 sp^2 sp^2$
(c) $CH_3 - C \equiv C - CH_2^+$
 $sp^3 sp sp sp^2$
(d) $CH_3 - CH = CH - CH_2^-$
 $sp^3 sp^2 sp^2 sp^3$
(e) $CH_2 = CH - CH = CH_2$
 $sp^2 sp^2 sp^2 sp^2$
Hence, in $CH_3 - C \equiv C - CH_2^+$, all the three types of hybrid carbons are present.

599 (b)

Sigma bond formation involves more overlapping and thus stronger.

600 **(b)**

Both have sp^2 -hybridization geometry.

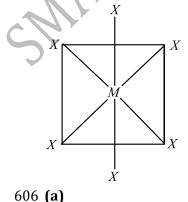
601 **(b)**

Anions are always larger than their parent atom. Also atomic radius increases down the group, decreases along the period.

602 (c)

AsF₅has sp³d hybridization. In sp^3d hybridization, it is d_{z^2} orbitals which takes part

603 (a)


CI CI compounds has CCl₄ and zero dipole moment due to their symmetrical structure.

604 **(b)**

Ionisation energy increases along the period.

605 (a)

In octahedral structure MX_6 , the six hybrid orbitals $(sp^3 d^2)$ are directed towards the corners of a regular octahedral with an angle of 90° . 616 (d) According to following structure of MX_6 the number of X - M - X bonds at 180° must be three.

It is the definition of valency.

607 (a)

Only Na shows +1 oxidation state. Rest all have +1, +2(Hg), +1, +2 (Cu) and +2, +3 (Fe) oxidation states.

608 (a)

The ionisation energy of elements decreases down the group.

609 (d)

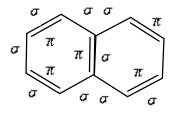
O is more electronegative than C.

610 (c)

Bond energy increases with multiplicity of bonds.

611 (c)

Br₂ is a non-polar molecule and hence, its melting point and boiling point depend only upon van der Waals' forces of attraction while all the remaining molecules have dipole moments and hence, their melting points and boiling points depend upon dipole-dipole interactions


612 (c)

H-bonding in H₂O increases forces of attracting among molecules and develops abnormal properties.

614 (b)

In a double bond (=) one σ and one π -bond is present while in a single bond (-) only σ -bond is present.

The structure of the naphthalene is as

In naphthalene five double bonds are present, hence 5π bonds are present in naphthalene.

 ICl_2, I_3, N_3 are linear but

 ClO_2^- is angular due to sp^3 hybridisation of Cl aton

So, ClO_2^- is non-linear.

617 (c)

Bond order = $\frac{1}{2}$ [bonding electrons – antibonding electrons]

The difference of electronegativity is more.

619 (c)

	<i>Ortho</i> hydroxyl benzaldehyde has maximum volatility due to intra molecular H-bonding.	634	expected to be covalent (a)
620			SiF_4 and SF_4 are not isostructural because SiF_4 is
	Formal charge = Number of electrons in valence		tetrahedral due to sp^3 hybridisation of Si while
	shell –		SF ₄ is not tetrahedral but it is distorted
	$(\frac{1}{2} \times \text{numbers of electrons as bond pair+numbers})$		tetrahedral because in it S is sp^3d hybridised and
	of electrons as lone pair)	(25	has a lone pair of electron.
	1 2 3 N N N	635	(c) SiF_4 has regular tetrahedral geometry.
		636	
	For N_1 and N_3	000	Cl possesses 10 electrons in ClF_3 .
	Formal charge = $5 - \left(\frac{4}{2} + 4\right) = 5 - (6) = -1$	637	
	For $N_2 = 5 - \frac{1}{2} \times 8 - 0 = 5 - 4 = +1$		Molec bp Hybridisa Shape
621	(d)		ule + lp tion
	In phenol each C atom is sp^2 hybridised and O		H_2O 2+2 sp^3 Angular Trigonal
	atom is sp^3 hybridised.		BCl ₃ $3 + 0$ sp^2 Planar
622			$\begin{array}{c c c c c c c c c c c c c c c c c c c $
623	Due to sp^3 -hybridization on carbon atoms.	638	$\begin{array}{ c c } CH_4 & 4+0 & sp^3 & Tetrahedral \\ \hline $
	Bond angles of ClF_3 , PF_3 , NF_3 and BF_3 are (180°,	030	Electronegativity and ionisation energy decreases
	90°), (101)°, (106°) and (120°) respectively.		from F to I.
624		639	(d)
	Operates in each gaseous molecule.		$CH \equiv CH$; 3 for triple bonds and two for C—H
625		$\mathbf{\mathbf{N}}$	bond.
	Resultant of two opposite vectors produces zero	640	
626	dipole moment.		The electronic configuration of O_2^{2-} ion is O_2^{2-}
626	Because of its regular tetrahedral geometry, CCl ₄		$\sigma_{2} = -\sigma 1s^{2}, \ _{\sigma} 1s^{2} \sigma 2s^{2}, \ _{\sigma} 2s^{2}, \sigma 2p_{z}^{2}, \pi 2p_{x}^{2}, \pi 2p_{y}^{2}, \ _{\pi} 2p_{x}^{2},$
	has least dipole moment		Hence, number of antibonding electron pair in
627	_		$O_2^{2^-}$ molecular ion are four.
	Coulombic forces are strongest among all.	641	-
628			Due to the presence of d-subshell electrons.
	CO_2 has linear structure. It has <i>sp</i> -hybridisation	642	
629	0 = C = 0	(1)	Due to sp^2 -hybridization.
	In (A) para-nitro phenol intermolecular	643	M.O. configuration of O_2 :
	(between two molecules) H-bonding exists while		
	in (B) ortho -nitrophenol, intramolecular H-		$\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma * 2s^2, \sigma 2p_x^2 \begin{vmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{vmatrix} \begin{vmatrix} \pi^* 2p_y^2 \\ \pi^* 2p_z^2 \end{vmatrix}$
	bonding exists.		Molecular orbitals $\pi^* 2p_z$ gains electron when 0_2^-
	Because of the presence of intramolecular H-		is formed from Ω_2
~	bonding, the boiling point of (B) is lower as	644	
	compare to (<i>A</i>) and thus, (<i>B</i>) is more volatile <i>i. e.</i> , has higher vapour pressure as compare to (<i>A</i>).		H-bonding is weakest bonding.
630		646	
	Small cation has more polarizing power.		Out of sp^3 , sp , sp^2 hybridised carbon, sp hybridised carbon is more electronegative.
632		647	
	Polar solute are more soluble in polar solvents.		Both NH ₃ and H ₂ O have sp^3 -hybridization. CO ₂
633			and $BeCl_2$ are linear (<i>sp</i> -hybridization).
	Since, the electronegativity (EN) different is $3.0 - 1.2 = 1.0$ which is less than 1.0, therefore, hand is	648	
	1.2 = 1.8, which is less than 1.9, therefore, bond is		Unpaired electrons give rise to paramagnetism.

649 (a)	666 (b)
HF has largest dipole moment because	Molecules Interaction
electronegativity difference of both is high so, it is	Benzene and Dispersion force
highly polar	ethanol Dipole-dipole
650 (b)	Acetonitrile and Ion-dipole
Due to H-bonding which is more in water than	acetone Dispersion
alcohol and not in ether.	KCl and water (London) force
652 (c)	Benzene and
$1s^2$, $2s^22p^4$ leads a sharing of two electron pairs	carbon tetrachloride
to form molecule, <i>e</i> . g., O_2 .	667 (b)
654 (b)	Dry ice is CO_2 having C—O covalent bonds.
Count σ and π bonds.	668 (d)
655 (c)	
Bond order $C_2^- > NO > O_2^- > He_2^+$ 3 5/2 3/2 1/2	
656 (b)	
Larger is bond order, lesser is bond length.	
657 (c)	$\mu = 0 \qquad \mu = \sqrt{3x} \qquad \mu = x$
Strongest H-bonds are formed in between HCOOH	In <i>p</i> -dichlorobenzene, two C – Cl dipole cancel
and CH_3COOH . This is because H- bonding	each other
-	$\therefore \mu = 0$
increases with electronegativity and decreases with size of atom	In, <i>o</i> -dichlorobenzene, two C – Cl dipoles (say x)
	are inclined at an angle of 60°. Therefore,
658 (d)	according to parallelogram law of forces, the
BCl_3 has sp^2 -hybridization. Rest all have sp^3 -	resultant
hybridization having one lone pair of electron and	
thus, pyramidal in nature.	$=\sqrt{x^2 + x^2 + 2x \times \cos 60^\circ}$
659 (d)	$= \sqrt{x^2 + x^2 + 2x^2 \times 1/2}$
The overlapping orbitals must possess half-filled nature with anti-spin electron.	$=\sqrt{3x^2}=\sqrt{3x}$
661 (c)	In <i>m</i> -dichlorobenzene, the two dipoles are
	inclined to each other at an angle of 120°,
HNO ₃ is HO $-N=O$, assume one covalence	therefore, resultant
Ŏ	$=\sqrt{x^2 + x^2 + 2x \times \cos 120^\circ}$
for each coordinate bond.	$= x^{2} + x^{2} + 2x^{2} \times (-1/2)$
662 (a)	$=\sqrt{x^2} = x$
B.p. of H_2 is minimum.	$= \sqrt{x^2} = x$ Thus ,the decreasing order of dipole moments:
663 (a)	
H_2O has sp^3 -hybridisation and is angular in	o > m > p 669 (d)
shape.	One carbon has three bonds and other five where
664 (b)	as each should have four bonds.
Electron gain enthalpy of Cl is maximum.	670 (c)
665 (a)	
The structure of trimethyl amine is pyramidal.	Cations are smaller in size than their parent atoms.
	671 (b) $O_2(8+8=16)$
\bigvee	$\sigma_{2}(\sigma + \sigma = 10) = \sigma_{1}s^{2}, \sigma^{*}1s^{2}, \sigma_{2}s^{2}, \sigma^{*}2s^{2}, \sigma_{2}p_{z}^{2}, \pi_{2}p_{x}^{2}$
N N	• •
	$\approx \pi 2 p_y^2, \pi^* 2 p_x^1 \approx \pi^* 2 p_y^1$
H_3C	Bond order $=$ $\frac{10-6}{2} = 2$
	$O_2^+(8+8-1=15)$
\breve{H}_3	
	1

Bond order= $\frac{10-5}{2} = 2.5$ $O_2^-(8+8+1=17)$, Bond order = $\frac{10-7}{2} = 1.5$ $O_2^{2-}(8+8+2=18)$, Bond order = $\frac{10-8}{2} = 1$

Thus, bond order is maximum for 0^+_2

672 **(d)**

P atom has sp^3 -hybridization with one position occupied by lone pair of electron.

673 **(b)**

A characteristic of resonance.

674 **(b)**

Covalent compounds have lower m.p. and b.p. than ionic one.

676 **(d)**

It is a reason for given fact.

677 **(b)**

 ClO_3^- has sp^3 -hybridization with one lone pair of electron.

678 **(d)**

Greater the stability of oxide, greater is the case of its formation. Generally ionic oxides are more stable than covalent oxides and among the given metals only Ca form ionic oxide. Hence, Ca has greater tendency to form oxide.

679 **(c)**

Higher the charge/size ratio, more is the polarising power. $K^+ < Ca^{2+} < Mg^{2+} < Be^{2+}$

680 **(d)**

He has $1s^2$ configuration.

681 (a)

Water molecules has following structure

/

Therefore, there are 4 pairs of electrons (2 lone pairs and 2-bond pairs) in the valence shell of 0-atom in water molecule.

682 **(a)**

Total electrons in valence shell of nitrogen and hydrogen.

 $\mathrm{H} \times_{\bullet} \overset{\bullet}{\mathrm{N}} \bullet \times \mathrm{H}$

∴ Total electrons in NH₃=5+1+1+1=8 683 (**d**)

The electronic configuration of carbon is $1s^2$, $2s^22p^2$.

684 **(c)**

Number of hybrid orbitals = no. of bp + no. of lp= 5 + 1 = 6

Thus, hybridization is sp^3d^2 but geometry, due to the presence of one pair, is square pyramidal, *ie* F

$$F \xrightarrow{90^{\circ}} F$$

685 **(c)**

(i)N₂ (14 electrons)
=
$$KK^*, \sigma 2s^2, \sigma 2s^2, \pi 2p_x^2 \approx \pi 2p_y^2, \sigma 2p_z^2$$

Bond Order = $\frac{1}{2}(N_b - N_a)$

$$=\frac{1}{2}(8-2)=3$$

(ii) \overline{N}_2^+ (13 electrons) = KK^* , $\sigma 2s^2$, $\sigma^2 2s^2$, $\pi 2p_x^2 \approx \pi 2p_y^2$, $\sigma 2p_z^1$

Bond Order = $\frac{1}{2}(7-2) = 2.5$

Since, bond dissociation energy \propto bond order. Hence, bond dissociation energy of N₂ is greater than that of the bond dissociation energy of N₂⁺.

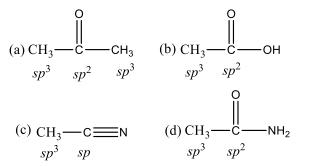
686 **(c)**

Bond angles in $BeCl_2$, NH_3 , H_2O and $SnCl_2$ are 180°, 107°, 104.5° and 119° respectively. Also H_2S , H_2O , H_2Se has sp^3 -hybridization and bond angles of hydrides decreases down the group.

687 **(d)**

LiquidHCl does not from H-bonds

688 **(a)**


 O_2 has two unpaired electrons but are paired in O_2^{2-} .

689 **(b)**

In ethanol the oxygen of – OH group is bonded to the sp^3 hybridised carbon by a sigma bond. The C – O – H bond angle in ethanol is less than the tetrahedral angle (109°, 28″) due to larger repulsions between the lone pair of repulsions between the lone pairs of oxygen. Hence, it is 104° in ethanol.

$$H_3C$$
 H_3C H_3C H_3C H_4 H_3C H_4 H_4

690 **(c)**

Acetonitrile does not contain sp^2 hybridised carbon.

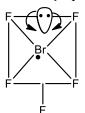
691 **(b)**

The atomic radii decreases along the period and increases down the gp.

692 **(b)**

 SiO_2 possesses giant molecular structure due to tetra valence and catenation nature of Si.

693 **(d)**


According to VSEPR theory the bond angle decreases with increase in the size of the valence shell of the central atom because electronegativity decreases. *i. e.*, decreasing order of bond angles is $NH_3 > PH_3 > AsH_3 > SbH_3$

694 **(b)**

Half-filled orbitals are more stable.

695 (a)

In BrF₅ number of electrons = 6 (1 lp +5 bp)

So, the structure is supposed to be square pyramidal but will be distorted because of additional *lp-bp* interaction.

Additional *lp-bp* interaction reduced the all bond angle and do not let any angle to be 90°.

696 **(b)**

Ionisation energy decreases down the group and increases along the period.

697 (a)

Smaller is size of anion, lesser is its polarization, more is ionic nature, more is lattice energy.

698 **(c)**

699 (a)

Among the given species, the bond dissociation energy of C – O bond is minimum in case of CO_3^{2-} by which C – Obond become more weaker in CO_3^{2-} or the bond order of $CO_3^{2-}(1.33)$ is minimum so, the bond become weaker Peroxide ion in $O_2^{2^-}$ $O_2^{2^-}(18) = \sigma 1s^2, \ {}^*_{\sigma} 1s^2, \ {}^{\sigma}_{\sigma} 2s^2, \ {}^*_{\sigma} 2s^2, \sigma 2p_z^2$ $\pi 2p_x^2 = \pi 2p_y^2, \ {}^*_{\pi} 2p_x^2 = \ {}^*_{\pi} 2p_y^2$

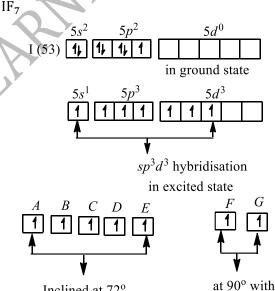
Bond order $=\frac{N_b - N_a}{2} = \frac{10 - 8}{2} = 1$

It contains four completely filled antibonding molecular orbitals. Since, all the electrons are paired, O_2^{2-} is diamagnetic.

Peroxide ion is isoelectronic with argon, not with neon.

701 **(b)**

702 (b)


 $\begin{array}{cccc} {\rm BF}_3:sp^2 & {\rm NO}_2^-:sp^2 & {\rm NH}_3:\\ sp^3 & {\rm NH}_2^-:sp^3 & {\rm H}_2{\rm O}:sp^3 \end{array}$

Multiplicity in bonds decreases bond length.

703 (a)

$$O_2^{2^-}$$
 (Total number of electrons =18)
 $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2 = \pi 2p_y^2 {}^*_{\pi} 2p_x^2$
= ${}^*_{2} 2n_z^2$

704 **(d)**

Inclined at 72° with one each other seven sp^3d^3 hybrid orbitals forming σ - bonds with F-atoms,

Pentagonal bipyramidal structure

705 **(b)**

ABCDE plane

In C₂, only 2π bonds are present 706 **(b)**

NH₄⁺ has angle of 109°28'.

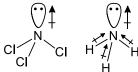
$$\frac{1}{2} \text{Cl}_2(\text{g}) \rightarrow \text{Cl}^-(aq)$$

$$\Delta H = \frac{1}{2} \Delta H_{\text{diss}}(\text{Cl}_2) + \Delta H_{\text{EA}} \text{Cl} + \Delta H_{\text{hyd}}(\text{Cl}^-)$$

$$= \frac{240}{2} - 349 - 381$$

$$= -610 \text{ kJ mol}^{-1}$$

708 (b)


The position at which substituent is present, is called *ipso*-position.

Chlorobenzene

The hybridisation of ipso-carbon in chlorobenzene is sp^2 .

709 (c)

Electronegativity difference between N (3,0) and Cl (3.0) is zero and hence, N - Cl bonds are nonpolar. As a result, the overall dipole moment of NCl₃ molecule and its direction is just the dipole moment of the lone pair of electrons

On the other hand, N - Br, (3.0 - 2.8), N - I(3.0 - 1)2.5) and N – H (3.0 - 2.1) are polar and hence, contribute towards the overall dipole moment of the respective moleculas. Since, the EN difference is higher in case of N – H bonds, therefore, NH₃has the higher dipole moment

710 (c)

CHCl₃ molecule has largest dipole moment among the given species.

711 (d)

In O₂, there are two electrons in antibonding orbitals. Removal of one electron from the O_2 molecular gives O_2^+ in which the number of antibonding electrons is one less and hence, BO increases. Thus, removal of the electron from 0₂stabilized the molecule

712 (a)

 Mg^{2+} is a smaller cation in these. Smaller is cation 722 (a) more is hydration energy.

713 (b)

Hydrogen bonding \propto electronegativity

- 714 (c) Larger is anion, more is its polarization.
- 715 (c)

NaF is more ionic; F is smallest anion among all and thus, least polarized.

716 (a)

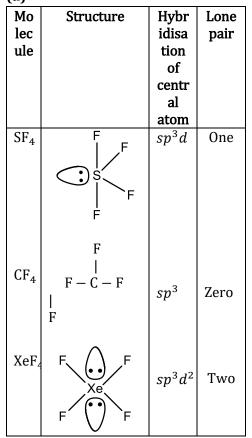
$$H \xrightarrow{\sigma} C \xrightarrow{\sigma} H \text{ and } 2\pi$$

Hence, In acetylene, there are 3 σ and 2 π bond.

717 (d)

+4 ionic state is not possible for head with iodide because I⁻ reduces Pb⁴⁺ to Pb²⁺.

718 (a)


The C – C bond length in sp^3 hybridisation is greater than sp^2 hybridisation due to large size of *p*-orbitals.

In diamond sp^3 hybridisation is present while in graphite, naphthalene and fullerene sp^2 hybridisation is present therefore the C - C bond length is maximum in diamond.

720 (d)

SiO₂ structure is definite.

721 (a)

We know that the shape of IF_7 (molecule) is

pentagonal bipyramidal because central atom I have sp^3d^3 hybridisation.

723 (a)

- C C bond length = 1.54 Å
- C = C bond length = 1.34 Å
- $C \equiv C \text{ bond length} = 1.20^{\circ} \text{ Å}$

Thus, correct decreasing order C to C bond lengths is

IV > III > I > II

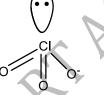
724 **(b)**

Due to larger difference in electronegativity.

725 (d)

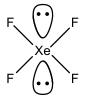
Both O and S belong to same group but H_2O is a liquid whileH₂S is a gas. This can be explained on the basis of electronegativity. In water due to the high electronegativity of oxygen hydrogen bonds are formed. As a result the molecules of H_2O get associate together, hence water exists as a liquid at room temperature. On the other hand, the |730 (b) electronegativity of S is less and therefore, hydrogen bonding in H₂S is almost negligible. As a result of which molecules of H_2S are not 731 (c) associated and H₂S exsists as a gas at room temperature.

726 (d)


S = C = S.

727 (d)

The bond angles in sp^3 , sp^2 and sp-hybridization are 109°, 120° and 180° respectively.

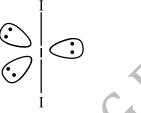

728 (d)

In ClO_3^- , Cl is central atom, it is sp^3 hybrid and on 732 (c) lone electrons it one pair of (free pair of electrons) is present.

Pyramidal shape

In XeF₄, Xe is central atom it is sp^3d^2 hybrid and on it two lone pair of electrons are present.

Square planar


In SF₄, S is central atom and sp^3d -hybridised and

it lone of electrons on one pair is present.

Irregular tetrahedral

In I_3^- , I is central atom and it is sp^3d hybridised and on it three lone pair of electrons are present.

Linear shape

Seven atoms of fluorine are covalently bonded with iodine.

Intermolecular hydrogen bonding is found in $(HF)_n$ due to higher electronegativity of fluorine atoms.

Hydrogen bonding

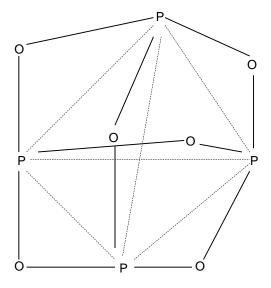
Hydrogen bonding is helpfull in the association of HF molecule, so HF is found in liquid form.

A species is said to be diamagnetic if it has all electrons paired

Sp eci es	El ect ro ns	MO electronic configurati on	Magnetic behaviour
H_2^-	3	$\sigma 1s^2 \frac{s}{\sigma} 1s^1$	Paramagnetic
H_2^+	1	$\sigma 1s^1$	Paramagnetic
H_2	2	$\sigma 1s^2$	Diamagnetic
He ⁺ ₂	3	$\sigma 1s^2 {s \over \sigma} 1s^1$	Paramagnetic

733 (b)

This give rise to polarity in bonds.

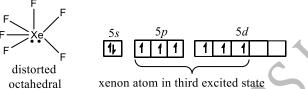

734 (c)

First electron affinity is energy releasing process. 735 (b)

 $Li^{-}: 1s^{2}, 2s^{2}; Be^{-}: 1s^{2}, 2s^{2}, 2p^{1}; in Li, addition$ of electron has taken place in 2s orbital; in Be⁻, addition of electron has taken place in 2p orbital loosing its 2s completely filled configuration. EA_1 for Be is more positive than EA_1 for Li. Thus Be⁻ is least stable.

736 (d)
Bod energy for C--C, N--N, H--H and O--O are:
H-H S-C-C > N-N > O--O.
737 (b)
The number of lone pair in XeOF₄ is one (1). The
structure of XeOF₄ is given as follows

$$F = \frac{1}{2} + \frac{1}{2$$



750 (d)

Bond energy ∝ Bond order

751 (a)

In XeF₆, the oxidation state of Xe is +6. The shape of XeF₆ should be pentagonal bipyramid due to sp^3d^3 hybridisation but due to the presence of one lone pair at one *trans* position its shape becomes distorted octahedral.

octahed shape

752 (a)

 CN^{-} and NO^{+} both have same number of electrons and same bond order (3).

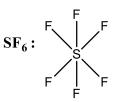
753 **(b)**

Bond length $\propto \frac{1}{\text{bond order}}$

754 **(c)**

 sp^3 -hybridization leads to tetrahedral geometry. 756 **(b)**

Alkali metals are most electropositive elements. 757 **(b)**


Anions are always larger than parent atom;

cations are always lesser than parent atom.

Total number = $4 \rightarrow sp^3$ hybridisation

SF₄:

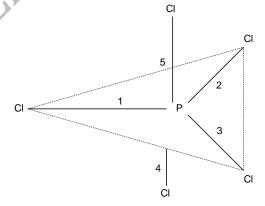
Total number = $5 \rightarrow sp^3 d$ hybridisation

Total number = $6 \rightarrow sp^3 d^2$ hybridisation 759 (a)

Van der Waals' forces increases in CH₄ to give solid CH₄.

760 **(b)**

As the number of lone pairs of electrons increases, bond angle decreases. Thus, the order of bond angle is


 $\mathrm{NH}_4^+ > \mathrm{NH}_3 > \mathrm{NH}_2^-$

(no *lp*) (1 *lp*) (2*lp*) 761 **(b)**

$$BeCl_2 - sp, BF_3 - sp^2; NH_3 - sp^3; XeF_2 - sp^3d$$

762 **(a)**

Cl - P - Cl bond angles in PCl_5 molecule are 120° and 90°. PCl_5 , having sp^3d hybridised P atom (trigonal bipyramidal geometry) has two types of bonds; axial and equatorial. The two types of bond have different bond lengths 1, 2, 3 and 4 equatorial bonds and 4, 5 axial bonds.

763 **(b)**

Both BF_4^- and NH_4^+ have sp^3 -hybridisation and therefore possess tetrahedral geometry.

Each possesses 18 electrons.

766 **(d)**

$$\begin{aligned} \text{He}_2^+(\text{B}.\,0. = 0.5) < 0_2^-(\text{B}.\,0. = 1.5) \\ < \text{NO}(\text{B}.\,0. = 2.5) < \text{C}_2^{2-}(\text{B}.\,0. \\ = 3.0) \end{aligned}$$

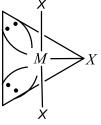
768 (d)

In SO₃ molecules, S-atom remains sp^2 hybrid, hence, it has trigonal planar structure

sp³hybridisation

 $BCl_3 = 3\sigma \text{ bonds} + 0lp \text{ of } e^- = 3 \Longrightarrow$ *sp*²hybridisation $NCl_3 = 3\sigma \text{ bonds} + 1lp \text{ of } e^- = 4 \Longrightarrow$

771 (b)


N is sp^2 -hybridized in NO₃.

772 (d)

The ionic radius increases down the group.

773 (b)

The formula of MX_3 shows the presence of 3σ bonds. Since, it has T-shape geometry, it must contain 2 lone pairs as

774 (a)

Except NO⁻ (16 electrons), rest all have 14 electrons.

776 (c)

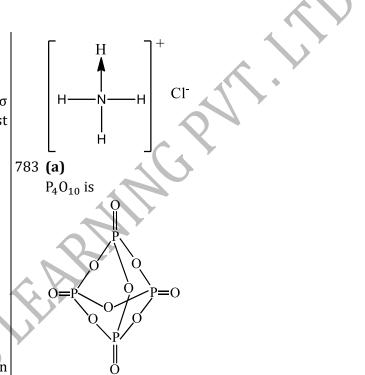
Ethyl alcohol forms stronger H-bonds than greater 784 (b) ethylamine or ammonia due to electronegativity of oxygen than nitrogen atom. Diethyl ether, however, does not form H-bonds since, it does not have a H-atom attached to Oatom.

778 (c)

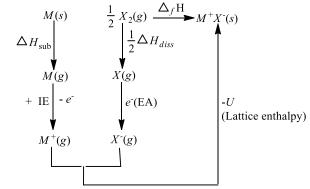
Carbon in CO₂ has *sp*-hybridization.

779 (c)

In both CH_4 and CCl_4 , sp^3 hybridisation is present and both have tetrahedral geometry.


781 (a)

As the *s*-character increases in hybrid orbitals, bond energy increases, size of the hybridized orbital decreases. s-characters in sp, sp^2 and sp^3


are 1/2, 1/3, 1/4 respectively.

782 (b)

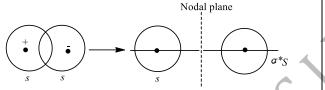
NH₄Cl contains ionic, covalent and coordinate linkage.

The Born-Haber cycle takes place as follows

Hence, Z is
$$M^+ X^- (s)$$

785 **(a)**

S atom is larger in size than O and F.


N₂(7 + 7 = 14) =
$$\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \pi 2p_x^2$$

 $\approx \pi 2p_y^2, \sigma 2p_z^2$
Bond order = $\frac{10-4}{2} = 3$
N₂⁺(7 + 7 - 1 = 13)
 $= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \pi 2p_x^2$
 $= \pi 2p_y^2, \sigma 2p_\pi^1$ (paramagnetic)

Bond order $=\frac{9-4}{2} = 2.5$ Since, N_2^+ has less bond, then N – Nbond gets weak $O_2(8 + 8 = 16)$ $= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \pi 2p_x^2$ $\approx \pi 2p_y^2, \pi^* 2p_x^1 \approx \pi^* 2p_y^1$ Bond order $= \frac{10-6}{2} = 2$ $O_2^+(8 + 8 - 1 = 15)$ $= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \pi 2p_x^2$ $\approx \pi 2p_y^2, \pi^* 2p_x^1$ Bond order $= \frac{10-5}{2} = 2.5$ Thus, in the formation of O_2^+ from

O₂, paramagnetism decreases but the bond order increases

787 (a)

In an antibonding molecular orbital, most of the electron density is located away from the space between the nuclei, as a result of which there is a nodal plane (*i.e.*, a plane at which the electron density is zero) between the nuclei.

788 (d)

(u)					
	Speci	Hybridisa	Lone	Bondin	
	es	tion of Xe	pair on	g pairs	
			Хе	$\mathbf{\nabla}$	
(a)	XeO ₃	sp^{3} $sp^{3}d^{2}$ $sp^{3}d^{3}$ $sp^{3}d$	1	3	
(b)	XeF ₄	sp ³ d ²	2	4	
(c)	XeF ₆	sp ³ d ³	1	6	
(d)	XeF ₂	sp ³ d	3	2	
			(Max.)		

789 **(b)**

Boiling point of HF is highest due to H-bonding. For other halogen acids boiling point increase in the order HCl < HBR < HI. Therefore, most volatile (with Lower b.pt.) is HCl.

790 **(b)**

The MO electronic configuration of O_2^- (8 + 8 + 1 = 17) = $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2$ $\approx \pi 2p_{y,\pi}^2 2p_{x,\pi}^2 \approx {}^*_{\pi} 2p_y^1$ Bond order = $\frac{N_{b-N_a}}{2}$ = $\frac{10-7}{2} = 1.5$

791 (d)

792 (a)

Multiplicity in bonds decreases bond lengths.

Both NH_4^+ and BF_4^- have sp^3 -hybridization.

793 (a)

 NH_3 molecule has three fold axis of symmetry because it has sp^3 hybridisation but due to presence of one lone pair of electron it has pyramidal structure.

794 **(b)**

Basic character of hydrides decreases down the

gp. 795 **(b)**

NO is paramagnetic in nature

796 **(d)**

Cation radius increases down the group.

797 **(a)**

According to Born-lande equation

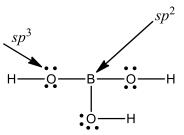
$$U = \frac{Z^+ Z^- e^2 \operatorname{An}}{r_{\text{node}}} \left(\frac{1}{n} - 1\right)$$

Where , U is lattice energy r_{node} is interionic distance

 $U \propto \frac{1}{\text{interionic disance}}$

 \therefore Ions should be of small size to have high lattice energy.

798 **(d)**


Dipole moment of CH₃OH is maximum in these.

799 **(b)**

Intermolecular H-bonding gives rise to an increase in b.p.

800 **(b)**

H₃BO₃ has structure

Boron has three bonds thus sp^2 hybrdised. Each oxygen has two bonds and two

801 **(d)**

Species having same hybridisation show similar geometry.

 SO_4^{2-} :Hybridisation of S $\longrightarrow sp^3$

 ClO_4^- :Hybridisation of $Cl \rightarrow sp^3$

802 **(c)**

Anions are larger in size than their parent atom.

803 (c)

Na⁺ and Cl⁻ are formed.

804 **(b)**

: $-CH_3$ has sp^3 hybridisation.

Glycerol and ethanol both have intermolecular 816 (a) hydrogen bonding but in glycerol (CH₂OH. CHOH. CH₂OH) hydrogen bonds per molecule is more than ethanol (C_2H_5OH). It increases attraction between the molecules and hence, glycerol is more viscous than ethanol.

806 (a)

Larger anion is more polarised.

807 (a)

In $_{\pi 2P_x}^*$ orbital, two nodal planes are present.

808 (d)

Hydrogen bond is formed between molecules of compounds having O, F and N with H.

CH₂OH

CHOH

ĊH₂OH glycerol (b)

(d)

H-----F hydrogen fluoride hydrogen sulphide (c)

: H₂S does not have O, F or N.

∴ It does not form hydrogen bond

810 (a)

NaF has maximum melting point, melting point decreases with increases in size of halide ion and their bond energy get lower

811 (a)

s-orbitals never go for lateral overlapping because of non-directional nature.

812 (d)

The metallic character is found in iodine as well as 821 (c) in astatine (At). Note that metallic character increases down the group.

813 (b)

Ionization energy increases along the period and decreases down the group. Also (b) has [Ne] $3s^2$, $3p^3$, *i.e.*, half filled configuration, being

more stable and thus, have high ionization energy.

814 (a)

The correct option is O_2^{2-} . This species has 18

electrons, which are filled in such a way that all molecular orbitals are fully filled, so diamagnetic. $\sigma 1s^2 {}^*_{\sigma} 1s^2$, $\sigma 2s^2 {}^*_{\sigma} 2s^2 \sigma 2p_z^2$, $\pi 2p_x^2 = \pi 2p_y^2$, ${}^*_{\pi} 2p_x^2 =$ $^{*}_{\pi}2p_{\nu}^{2}$

815 (a)

Water is an universal solvent.

According to Fajan's rule, as the charge on cation increase its size decreases. As a result its tendency to polarise anion increases. This brings covalent character more and more to electrovalent compounds.

· Among AlCl₃, LaCl₃, MgCl₂ and CsCl size

of Al³⁺ is smallest.

 \therefore Al³⁺ polarises anion to highest extent.

∴ AlCl₃ has maximum covalent character.

817 (a)

 C_6H_6 has regular hexagonal geometry.

818 (c)

SF₆ has six S–F bonds.

819 (a)

Resonating structure can be written only for such molecules in which multiple bonds are presents, $eg, 0_3$

820 (d)

According to Born-Haber cycle the enthalpy of formation (ΔH_f) of an ionic compound may be given as

$$\Delta H_f = S + \frac{1}{2}D + I + E + U$$

Where, I = ionisation energy

S = sublimation energy

E = electron affinity

D = dissociation energy

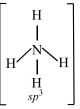
U = lattice energy of compound

Born-Haber cycle is used to determine the lattice energy of the compound. It also may be used to calculate electron affinity of an element.

Element *C* has electronic structure $1s^2$, $2s^2$, $2p^5$, it requires only one electron to complete its octet and it will form anion so it will form electrovalent bond

822 (a)

H atom has 1s¹ configuration. Shielding effect is property of penultimate shell electrons.


 NO_2^+ : The species is linear with *sp*-hybridisation.

$$O = \underset{sp}{\overset{+}{\underset{N}{=}} O}$$

 NO_3^- : The species is trigonal planar with sp^2 -hybridisation.

$$\bar{O}_{sp^2}N$$

 NH_4^+ : The species is tetrahedral with sp^3 -hybridisation.

824 (d)

Both C and N⁺ have six electrons.

825 **(a)**

According to Fajans' rule, polarization of anion is influenced by charge of cation, size of cation. More is the charge on cation, more is polarization of anion.

826 **(b)**

Smaller cation causes more polarization of anion.

827 **(a)**

Bond order = $\frac{1}{2}$ [no. of bonding electrons-no. of antibonding electron]

828 **(c)**

Pauling work on chemical bonding.

829 **(a)**

All have linear structure $0 = C = 0, Cl - Hg - Cl, H - C \equiv$

830 (d)

A characteristic of metallic bonding.

831 **(a)**

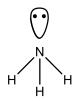
Due to larger differences in electronegativity. 833 **(b)**

SF₄ has sp^3d –hybridization. Rest all have sp^3 -hybridization.

834 **(a)**

NO has 15 electrons.

835 **(d)**


Ti⁺ has 21 electrons in it. Rest all have 10 electrons.

836 **(a)**

 0_2^{-} has one unpaired electron.

837 **(a)**

Structure of ammonia is pyramidal (Distorted from tetrahedral to pyramidal due to repulsion between lone pair and bond pair of electrons).

838 **(b)**

 Cl_2 involves 3p - 3p overlapping.

- 839 **(b)**
 - Only Sulphur has *d*-orbitals.
- 840 **(c)**

 ClO_4^- has sp^3 -hybridization on Cl atom.

841 **(d)**

Due to dipole moment intermolecular forces of attraction becomes stronger and thus, liquefaction becomes easier.

842 **(d)**

 sp^3d -hybridisation leads to trigonal bipyramidal geometry if no lone pair is present, *e.g.*, PCl₅; in ClF₃ geometry is T-shaped due to the presence of two lone pair of electron. In XeF₂, geometry is linear due to the presence of three lone pair of electrons.

843 **(a)**

Due to the presence of lone pair on N atom.

844 **(a)**

 B_2 : Total electrons = 10

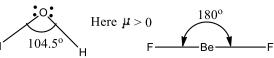
Configuration : $\sigma 1s^2 {}^*_{\sigma} 1s^2 \sigma 2s^2 {}^*_{\sigma} 2s^2 \pi 2p_x^1 = \pi 2p_y^1$ If Hund's rule is violated, then $\sigma 1s^2 {}^*_{\sigma} 1s^2 \sigma 2s^2 {}^*_{\sigma} 2s^2 \pi 2p_x^2 = \pi 2p_y^0$

Bond order = $\frac{6-4}{2} = 1$

845 **(a)**

Bonding molecular orbitals possess lower energy levels than antibonding orbitals.

846 **(a)**


Be²⁺ is smallest and Na⁺ has largest radius.

847 **(b)**

Hydrogen bond is strongest in HF due to higher electronegativity of F.

848 **(d)**

The structure of H_2O is angular V-shape and has sp^3 - hybridisation and bond angle is 105°. Its dipole moment value is positive or more than zero.

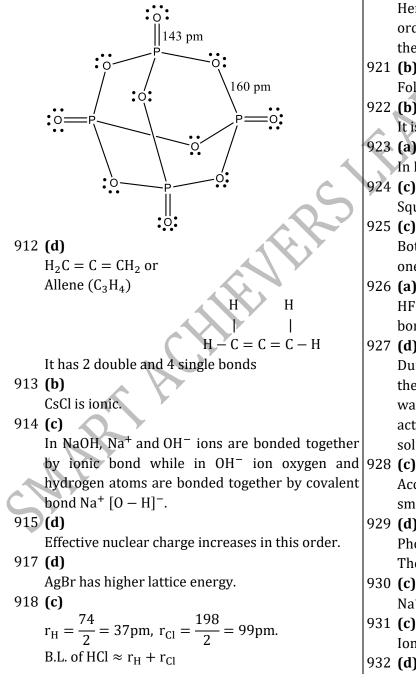
But in BeF₂ , structure is linear due to *sp*-hybridisation ($\mu = 0$). Thus, due to $\mu > 0$, H₂O is dipolar and due to $\mu = 0$, BeF₂ is non-polar.

849 (d)	3 \$ 3 n		
These are factors on which effective nuclear	P: (1) 1 1 1		
charge depends.			
850 (a)	$(sp^3)^2 (sp^3)^1 (sp^3)^1 (sp^3)^1$		
5(on P) + 4(on H) - 1 = 8.			
851 (b)	3p of 3p of 3p of		
Phosphoric acid has 3 – OH groups, which are			
involved in hydrogen bonding .	859 (c)		
The type of hydrogen bonding, found , is	N atom in NH ₃ provides electron pair to H ⁺ to form coordinate or dative bond (H ₃ N \rightarrow H).		
intermolecular. Due to this, it is syrupy.	861 (d)		
852 (c) The bond angles are H_2S NH ₃ SiH ₄	Due to H-bonding, $V_{ice} > V_{water}$.		
BF_3	862 (b)		
92.6° 107° 109°28′	The covalent compounds have low melting point		
120°	due to weaker forces of attraction among them as		
853 (b)	compared to strong forces of attraction in ionic		
The metals have low ionization energy. In a piece			
of metal many free electrons are found which			
move form one atom to other. The presence of			
mobile electrons or oscillation of loose electrons			
are responsible for metallic lusture.	 ∴ HCl has minimum boiling point. 863 (b) 		
854 (c) Same spin electrons in two atoms do not take part	(i) Hybridisation $=\frac{1}{2}$ (no. of e^- in valence shell of		
in bonding.			
855 (b)	central atom + no. of monovalent atoms + charge on anion – charge on cation)		
Molecule Hybridisation	charge on allon – charge on cation)		
SO_3 sp^2	(ii) Shape or geometry of molecule depends on		
C_2H_2 sp m^2	lone pair and bond pair of electrons present in it.		
$\begin{bmatrix} C_2H_4 & sp^2 \\ CH_4 & sp^3 \end{bmatrix}$	Hybridisation of		
$\begin{bmatrix} co_2 \\ co_2 \end{bmatrix}$ $\begin{bmatrix} cp \\ sp \end{bmatrix}$			
Hence, the hybrid state of S in SO_3 is similar to	N in NH ₃ = $\frac{1}{2}$ (5 + 3 + 0 - 0) = 4		
that of C in C_2H_4 .			
856 (d)	$\therefore sp^3$ hybridisation.		
$IO_{\overline{3}}^{-}$, XeO ₃ , (<i>sp</i> ³ hybridisation) pyramidal	: It has 3 bond pair and 1 lone pair of electrons,		
PF_6^- , $SF_6(sp^3d^2)$ octahedral	so it has distorted tetrahedron shape.		
$ m BH_4^-$, $ m NH_4^+$, $ m SiF_4$ (sp^3) tetrahedral $ m CO_3^{2^-}$ (sp^2) trigonal planar			
NO_3^- (<i>sp</i> ²) trigonal planar	864 (d)		
$SF_4(sp^3d)$ see – saw	24. The bond angle decreases with decrease		
Hence, SiF_4 and SF_4 are not isostructural (same	in electronegativity. It results in decrease in repulsion between bond pair-bond pair		
structure).	electrons and bond angle becomes		
857 (b)	smaller.		
\checkmark PCl ₃ has sp^3 -hybridisation and possesses one			
lone pair on P-atom and three bond pair of	25. Between NH^3 and H_2O , H_2O has smaller		
electron	bond angle due to presence of two lone		
	pair of electrons causing more repulsion among electrons as compared of NH ³		
	which has only one lone pair of electron.		

Hydrides

NH ³ H ₂ O H ₂ S H ₂ Se H ₂ Te	= 6.12 D
Bond angles	Percentage ionic character
Bond angles 107° 105° 92° 91° 90°	=
107 105 92 91 90	$\frac{\text{observed dipole moment}}{\text{theoretical value of dipole moment}} imes 100$
$\rm H_2$ Te has smallest bond angle.	$=\frac{1.03}{6.12} \times 100 = 16.83\%$
865 (a)	874 (b)
In ionic solids, ions exist at lattice points. In	Double bond involves the sharing of two electron
covalent solids atoms lie at lattice points.	pairs or four electrons.
866 (c)	875 (b)
In structure (c), all the atoms have complete octet.	There are 16 P – 0 bonds in P_4O_{10} .
Thus, it is the correct representation of carbon	876 (a)
suboxide	Difference of electronegativity > 1.7 produces
867 (b)	ionic compound.
Smaller is atom, more is energy needed to remove	877 (a)
electron, <i>i. e.</i> , ionisation energy. Also removal of	It is a concept.
two electrons needs more energy.	878 (a)
868 (d)	Low ionisation potential indicates that element
Born-Haber cycle inter-relates the various energy	can easily lose electron to form cation.
terms involved in ionic bonding.	879 (d)
869 (a)	Ionic compounds having lattice energy higher
$BF_3(sp^2)$, $NO_2^-(sp^2)$, $NH_2^-(sp^3)$ and $H_2O(sp^3)$.	than hydration energy are insoluble in water.
870 (c)	880 (a)
<i>sp</i> ³ hybridisation Tetrahedron	
molecule	due to more shielding.
<i>dsp</i> ² hybridisation Square planar	881 (d)
molecule	Metals and non-metals combine to complete their
<i>sp</i> ³ <i>d</i> hybridisation Trigonal	octet. Since, non-metals have lack of electrons, in
bipyramidal molecule	order to complete their octet, they gain electrons,
sp^3d^2 or d^2sp^3 Octahedron	consequently, the size of non-metal atom will
molecule	increase.
hybridisation	Metal + Non $-$ metal \rightarrow Electrovalent bond
371 (b)	(Na ⁺) (Cl) NaCl
ÿ:	882 (d)
н—ö—s—ö—н	These are characteristics of hydration.
	883 (c)
Total number of unchanged electrons $= 4 \times 4 = 16$	Molecules or ion having no unpaired electrons are
Total number of unshared electrons = $4 \times 4 = 16$	diamagnetic, <i>e. g.</i> ,
872 (d)	$Li_2 = 6e^- = \sigma 1s^2, \ _{\sigma}^* 1s^2, \ \sigma 2s^2$
Ionisation energy order is $B < C < 0 < N$.	884 (a)
873 (d)	Given electronic configuration of anion X is
Given,	$\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\pi 2p_x^2$
Observed dipole moment = 1.03 D	$=\pi 2p_{\mathcal{Y}}^2$, $\sigma 2p_Z^2$, ${}^*_{\pi}2p_x^1$
Bond length of HCl molecule, $d = 1.275$ Å	\therefore Total number of electrons of anion $X = 15$
$= 1.275 \times 10^{-8} \text{ cm}$	Hence, the anion X is N_2^- .
Charge of electron, $e^- = 4.8 \times 10^{-10}$ esu	885 (a)
Percentage ionic character = ?	Small cation causes more polarization in anion.
Theoretical value of dipole moment = $e \times d$	Also larger anions are easily polarized by a cation.
$= 4.8 \times 10^{-10} \times 1.275 \times$	More is polarization of anion, more is covalent
10^{-8} esu.cm	character.
$= 6.12 \times 10^{-18}$ esu.cm	
	Page I 109

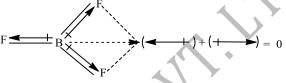
886 (c) $(d)0_2 = 8 + 8 = 16 =$ $\sigma 1s^2$, $\sigma 1s^2$, $\sigma 2s^2$, $\sigma 2s^2$, $\sigma 2p_z^2$, $(\pi 2p_z^2 =$ Hydrogen bonding is responsible for their solubility. $\pi 2p_{y}^{2}$, $({}_{\pi}^{*}2p_{x}^{1} = {}_{\pi}^{*}2p_{y}^{1})$ 887 (a) $: 0_2$ molecule has unpaired electrons. Ne has van der Waals radius larger than covalent \therefore 0₂ molecule is paramagnetic. radius of fluorine. 901 (c) 888 (c) C_2 , N_2 and F_2 has no unpaired electron in their As the number of unpaired electrons (lone pair of molecular orbital configuration. electrons) increases, bond angle decreases. Thus, 902 **(d)** the decreasing order of bond angle is IP of inert gases is maximum. $NO_{2}^{+} > NO_{2} > NO_{2}^{-}$ Species : 903 (d) **Bond angle**: 180° 135° 115° Cu loses two electron to form Cu²⁺ 889 (a) 905 (a) Dipole moment of $CH_4 = 0$. $0^+_2 (15 e^-)$ 890 (b) $= KK^{*} (\sigma 2s)^{2} ({}^{*}_{\sigma} 2s)^{2} (\sigma 2p_{x})^{2}, (\pi 2p_{y})^{2}$ Each has 22 electrons. $= (\pi 2p_z)^2 ({}^*_{\pi} 2p_y)^1 = ({}^*_{\pi} 2p_z)^0$ 891 (d) Hence, bond order $=\frac{1}{2}(10-5)=2.5$ CS₂ is linear having zero dipole moment. 892 (a) $N_{2}^{+} (13 e^{-}) = KK^{*} (\sigma 2s)^{2} (\frac{*}{\sigma} 2s)^{2} (\pi 2p_{y})^{2}$ Atomic radius decreases along the period, $= (\pi 2 p_z)^2, (\sigma 2 p_x)^1$ increases down the group. Hence, Bond order $=\frac{1}{2}(9-4) = 2.5$ 894 (b) In NH₃, the N atom contains a one lone pair of 906 (b) electrons and three bond pairs in its valence shell. In XeF⁺₅, Xe atom has only seven electrons , *i.e.*, So, it shows sp^3 hybridisation. Due to presence of $5s^2$ $5p^5$. Here two 5p electrons are promoted to one lone pair of electron, its shape deviates from 5*d*-sublevel. Then 5*s*, three 5*p* and two 5*d* orbitals tetrahedral because lone pair shows more hybridize to give six sp^3d^2 hybrid orbitals in an repulsion than bond pairs. octahedral geometry. Out of these five orbitals are As singly occupied which form sigma bonds with five lp - lp > lp - bp > bp - bpF atoms. The sixth hybrid orbital is occupied by a So, its shape is pyramidal and angle 107°. lone pair in trans position giving a square 895 (d) pyramid structure. The K_{sp} value of CuS is less than ZnS and thus, ZnS |907 (d) HOMO, means highest occupied molecular orbital is more soluble. Also sodium salts are highly and in CO (14 electron ion), σ bonding molecular soluble in water. orbital in HOMO 896 (c) $CO = \sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \pi 2 p_{r}^{2}$ Both carbon atoms have 2σ -and 2π -bonds. $= \pi 2 p_{\nu}^2, \sigma 2 p_z^2$ 897 (b) $1 \text{debye} = 10^{-18} \text{esu.}$ 909 (c) 898 (c) Sulphur is sp^2 hybridised in SO₂. Low ionisation energy indicates that electron can $S = 1s^2, 2s^22p^6, 3s^23p^43d^0$ be easily lost and cation formation is easier. S(in excited state) = 899 (b) The paramagnetic species has unpaired electron in it. (a) $H_2 = 1 + 1 = \sigma 1s^2$ sp^2 -hybridisation $(b)N_2 = 7 + 7 = 14 =$ Due to sp^2 -hybridisation and presence of one lone $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\pi 2p_x^2 = \pi 2p_y^2$, $\sigma 2p_z^2$ pair of electrons SO₂ has angular geometry. (c)CO = 6 + 8 = 14 = $\sigma 1s^2$, $\sigma 1s^2$, $\sigma 2s^2$, $\sigma 2s^2$, $\pi 2p_x^2 = \pi 2p_y^2$, $\sigma 2p_z^2$


Among N_2O, CO_2 and CO, all have sphybridisation.

910 (c)

Coordinate bonding involves sharing of an electron pair provided by a donor to acceptor atom.

911 (a)


In the structure of P_4O_{10} , each phosphorus atom is covalently linked with three oxygen atoms and each oxygen atom is bonded to two phosphorus atoms. Each phosphorus atom is also linked with an additional oxygen atom with the help of a coordinate linkage by lone pair of electron present on P atom.

919 (b)

A symmetrical molecule have zero dipole moment. The dipole moment of BF3 molecule is zero due to its symmetrical (triangular planar) structure.

The three fluoride atoms lie at the corners of an equilateral triangle with boron at the centre. Thus, the vectorial addition of the dipole moments of the three bonds gives a net sum of zero.

920 (c)

Bond order \propto Stability

Hence, for a stable molecule the value of bond order must be positive. When bond order is zero the molecule will not exist.

921 (b)

Follow Fajans' rule.

- 922 (b)
 - It is a fact.
- 923 (a)

In PCl_3 and $POCl_3$, P atom is sp^3 -hybridized.

924 (c)

Square planar geometry has dsp^2 -hybridisation.

925 (c)

Both BrO_3^- and XeO_3 have sp^3 -hybridisation and one lone pair of electron.

926 (a)

HF and CH₃OH shows intermolecular hydrogen bonding.

927 (d)

During hydration of ions in aqueous solution, there exists an attractive force between ions and water molecules, which are polar in nature and acts as dipole. So, hydrogen of ions in aqueous solution is an example ion-dipole interaction.

According to Fajan's rule, largest cation and smallest ions form ionic bond

929 (d)

Phosphorus atom is sp^3 hybridised in P_4 usually. Therefore, *p*-character 75%

930 (c)

Na⁺ is cation; Cl^{-} , PO_4^{3-} are anion.

931 (c)

Ionisation energy decreases down the group.

932 (d)

The characteristics to be observed during removal of II electron.

$$\begin{aligned} 1.(N_2 \to (\sigma 1s)^2 \ (_{\sigma}^* 1s)^2 \ (\sigma 2s)^2 (_{\sigma}^* 2s)^2 \\ (\sigma 2p_z)^2 \ (\pi 2p_x)^2 (\pi 2p_y)^2 \\ N_2^+ \to (\sigma 1s)^2 \ (_{\sigma}^* 1s)^2 \ (\sigma 2s)^2 (_{\sigma}^* 2s)^2 \\ (\sigma 2p_z)^2 \ (\pi 2p_x)^2 (\pi 2p_y)^1 \\ 1.0_2 \to (\sigma 1s)^2 \ (_{\sigma}^* 1s)^2 \ (\sigma 2s)^2 (_{\sigma}^* 2s)^2 \ (\sigma 2p_z)^2 \\ (\sigma 2p_x)^2 (\sigma 2p_y)^2 \ (_{\pi}^* 2p_x)^1 \ (_{\pi}^* 2p_y)^1 \\ 0_2^+ \to (\sigma 1s)^2 \ (_{\sigma}^* 1s)^2 \ (\sigma 2s)^2 \ (_{\sigma}^* 2s)^2 \ (2p_z)^2 \\ (\pi 2p_x)^2 (\pi 2p_y)^2 \ (_{\pi}^* 2p_x)^1 \end{aligned}$$

Since ,
$$\pi 2p_x$$
 and $\pi 2p_y$ are nearly same in energy,

the electrons can be removed from $(\pi 2p_y \text{ or } \pi 2p_x)$

and $\binom{*}{\pi 2 p_{y}}$ or $\frac{*}{\pi 2 p_{y}}$) respectively.

- 934 **(b)**
- Both possess $1s^2$, $2s^22p^6$, $3s^23p^6$ configuration. 936 (d)

The resultant dipole in regular tetrahedron is zero.

937 (c)

Smaller the size of cation, more is ionic character, more is attraction among ions.

938 **(c)**

Given ionic charge = 4.8×10^{-10} e.s.u. and ionic distance = $1\text{\AA} = 10^{-8}$ cm. We know that dipole moment = Ionic charge × ionic distance

=
$$(4.8 \times 10^{-18} \text{ e. s. u. per cm})$$

= $4.8 \times 10^{-18} \text{ e. s. u. per cm}$
= 4.8 debye.

939 **(d)**

As the *s*-character increases in hybridised orbitals, its electronegativity increases.

$$\sum_{s-\text{character }50\%}^{sp} \sum_{sp^2}^{sp^2} \sum_{sp^3}^{sp^3} 25\%$$

940 (d)

 $\rm PCl_3$ and $\rm AsCl_3$ have sp^3 hybridisation and $\rm PF_5$ has sp^3d hybridisation. Hence, in group of $\rm PCl_3$, $\rm AsCl_3$ and $\rm PF_5$ all do not have sp^3d hybridisation.

942 (d)

Each has 18 electrons.

943 **(b)**

Alkali metals are always univalent.

XeF₄ has sp^3d^2 -hybridized Xe atom having two lone pair of electrons and thus, octahedral geometry changes to square planar due to lone pair effect.

945 (d)

 $PCl_5 = sp^3d$ (Trigonal pyramidal) $IF_7 = sp^3d^3$ (Pentagonal bipyramidal) $H_3O^+ = sp^3$ (Pyramidal) $ClO_2 = sp^2$ (Angular) bond length are shorter than single bond due to resonance. $NH_4^+ = sp^3$ (Tetrahedral)

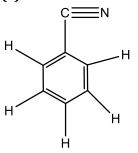
946 **(d)**

B in BF₃ has sp^2 -hybridization.

947 **(c)**

In metallic bonds, the valence shell electrons are delocalised and shared between many atoms. These delocalised electrons allow the metal atoms to slide past one another without being subjected strong repulsive forces. The malleability and ductility of metals is due to this sliding capacity of the delocalised electrons.

9

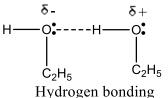

$$\begin{array}{c} \operatorname{CH}_{3} - \operatorname{CH}_{2} - \operatorname{NH}_{2} \\ sp^{3} & sp^{3} \\ \operatorname{CH}_{3} - \operatorname{CH} = \operatorname{CH}_{2} \\ sp^{3} & sp^{2} & sp^{2} \\ & 0 \\ & || \\ \operatorname{CH}_{3} - \operatorname{C} - \operatorname{NH}_{2} \\ sp^{3} & sp^{3} \\ \operatorname{CH}_{3} - \operatorname{CH}_{2} - \operatorname{C} \equiv \operatorname{N} \\ sp^{3} & sp^{2} & sp \end{array}$$

$$\begin{array}{c} \operatorname{GH}_{3} - \operatorname{CH}_{2} - \operatorname{C} \equiv \operatorname{N} \\ sp^{3} & sp^{2} & sp \end{array}$$

$$\begin{array}{c} \operatorname{GH}_{3} - \operatorname{CH}_{2} - \operatorname{C} \equiv \operatorname{N} \\ sp^{3} & sp^{2} & sp \end{array}$$

$$\begin{array}{c} \operatorname{GH}_{3} - \operatorname{CH}_{2} - \operatorname{C} \equiv \operatorname{N} \\ sp^{3} & sp^{2} & sp \end{array}$$

950 (c)


Benzene nitrile contains 13σ and 5π bonds. 951 (d)

During melting of SiO_2 , the gient network structure held by covalent bonds breaks to give

individual molecules of SiO2. In contrast, during
boiling of H2O only change of state occurs from
liquid to gaseous; during melting of KCN,
electrostatic attraction between K⁺ and CN⁻ ions
is overcome; during boiling of CF_4 , van der Waals'962
Br(c)
Potforces of attraction breaks963(c)

952 **(b)**

Ethyl alcohol $\rm C_2H_5OH$ is soluble in water due to H-bonding.

953 **(b)**

Only *p*-orbitals give rise to σ -bond (head on overlapping) and π -bond (lateral overlapping).

954 **(b)**

 $\rm HCl$ and $\rm AlCl_3$ are covalent but give ions in solution.

955 **(b)**

As a result of more overlapping. Note that π bonds are formed after σ -has already formed.

956 **(b)**

(a) $NH_3 + H^+ \rightarrow NH_4^+$ (3bp + 1lp) $(4bp \Rightarrow sp^3 hybridisation)$ \Rightarrow sp³ hybridisation) (b) $BF_3 + F^- \rightarrow BF_4^ (3bp + sp^2$ hybridisation) $(4bp \Rightarrow sp^3 \text{ hybridisation})$ (c) $H_2O + H^+ \rightarrow H_3O^+$ (3bp + 1h)(2bp + 2lp) \Rightarrow sp³ hybridisation) \Rightarrow sp³ hybridisation) (d) $CH \equiv CH + 2H_2 \rightarrow CH_3 - CH_3$ sp^3 sp^3 sp sp Hence, reaction given in option (b) involves the change of hybridisation from sp^2 to sp^3 . 957 (c) Lattice energy of BaSO₄ is appreciable high and predominates over hydration energy. 958 (a) Xe in XeOF₄ has sp^3d^2 -hybridization having one Ione pair on Xe atom. 960 (c) Due to back bonding in BF₃. 961 (c) $N \equiv C - C - C \equiv N$ $C_2(CN)_4$ is $N \equiv C - C - C \equiv N$ C = C is sp^3 -hybridization and $C \equiv N$ is sp-

hybridized. 962 (c) Electron affinity order for halogens is Cl > F >Br > I.Potash alum is a double salt. Potash alum, K_2SO_4 . $Al_x(SO_4)_3$. $24H_2O$ (given) Ions Al SO₄ Valency +3Therefore, $Al_3(SO_4)_3$ is compound of Al^3 SO_4^{2-} . On comparing, *x*=2 Hence, formula of potash alum is $= K_2 SO_4 . Al_2 (SO_4)_3 . 24H_2 O_4$ 964 (d) For KO_2, O_2^- has unpaired electron so, it is paramagnetic. $0_2^-(17)$ $\sigma 1s^2, \, {}^*_{\sigma} 1s^2, \sigma 2s^2, \, {}^*_{\sigma} 2s^2, \sigma 2p_x^2, (\sigma 2p_y^2 = \sigma 2p_z^2),$ ${}^*_{\pi}2p_{\nu}^2 = {}^*_{\pi}2p_z^1$ 965 (c) HCl exists as $H^{\delta+}$ — $Cl^{\delta-}$ due to difference in electronegativity of H and Cl. 966 (b) Outer shell electrons are referred as valence electrons. 967 (d) Bond order \propto stability Species Bond order 0_{2}^{+} 2.5 0_{2} 2.0 0^{-}_{2} 1.5 Hence, the order of stability is $0_2^+ > 0_2 > 0_2^-$ 968 (c) Diamond is hard, graphite is soft. 969 (a) IF₅ is square pyramid (sp^3d^2 -hybridisation in I); PCl_5 is trigonal bipyramid (sp^3d -hybridisation in P). 970 (d) Characteristics of bond order concept. 971 (c) M. θ . configuration of O₂ is $\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p^2, \pi 2p_x^2, \pi 2p_y^2, \pi^* 2p_x^1, \pi$ 972 (b)

Bond energy of Cl_2 is highest among all halogen molecules. B.E. of F_2 , Cl_2 , Br_2 , I_2 are 37, 58, 46 and 36 kcal mol⁻¹ respectively.

974 (a) I Bond length $\propto \frac{1}{Bond order}$ Н Н Number of σ bonds in 1-butene are 11. $N0^{-} = 16e^{-}$ 977 (b) $= \sigma 1 s^2, \, {}^*_{\sigma} 1 s^2, \, \sigma 2 s^2, \, {}^*_{\sigma} 2 s^2, \, \sigma 2 p_x^2, \pi 2 p_y^2$ NO_3^- has sp^2 -hybridization and possesses $=\pi 2p_z^2$, $\pi^2 2p_y^1 = \pi^2 2p_z^1$ coplanar or equilateral triangular geometry. $BO = \frac{N_{b-}N_a}{2}$ 978 **(b)** $=\frac{10-6}{2}=2$ CCl₄ involves two non-metals C and Cl and thus, bonding is covalent. CaH₂ is an ionic compound as Similarly BO of NO⁺ will be calculated as it involves alkaline earth metal. $N0^{+} = 14e^{-}$ 979 (c) $BO = \frac{10-4}{2} = 3$ CaO is basic oxide. $CN^{-} = 14e^{-}, BO = 3$ $CN^+ = 13e^-, BO = \frac{9-4}{2} = 2.5$ Bond order is least for NO^- . So, its bond length is highest. 975 **(c)** $CsBr_3 \rightarrow Cs^+ + Br_3^-$ 976 (c) Η Н Н Н H - C = C - C - C - H311 EVE SMARIA

CHEMISTRY

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

- **Statement 1:** In the aqueous HF solution, H_3O^+ and F^- are more likely to be found.
- **Statement 2:** Hydrogen bonding in HF is stronger than that in H₂0.

2

- **Statement 1:** Oxygen does not possess *d* orbitals in their valency shell
- Statement 2: The covalency of oxygen is two

3

- **Statement 1:** NaCl is more ionic than NaI.
- **Statement 2:** Chlorine is more electronegative than iodine.

4

Statement 1:	Bond energy has order like $C - C \le C \le C$
--------------	--

Statement 2: Bond energy increases with increase in bond order

5

- **Statement 1:** All F S F angle in SF₄ is greater than 90° but less than bond 180°.
- **Statement 2:** The lone pair-bond pair repulsion is weaker the bond pair-bond pair repulsion.
- 6
- **Statement 1:** Magnesium combines with fluorine to form MgF₂
- Statement 2: Oppositely charged ions are attracted to each other by electrovalent bond
- 7
- **Statement 1:** SeCl₄ does not have a tetrahedral structure.

	Statement 2:	Se in $SeCl_4$ has two lone pairs.
8		
	Statement 1:	CO ₂ molecules are linear
	Statement 2:	The value of dipole moment of CO ₂ is zero
9		
	Statement 1:	LiCl is predominantly a covalent compound.
	Statement 2:	Electronegativity difference between Li and Cl is too small.
10		
	Statement 1:	Ionisation enthalpy is always positive.
	Statement 2:	Energy is always required when electrons are removed.
11		
	Statement 1:	Molecular nitrogen is less reactive than molecular oxygen.
	Statement 2:	The bond length of N_2 is shorter than that of oxygen.
12		
	Statement 1:	In NH ₃ , N is sp^3 hybridised, but angle is found to be 104°.
	Statement 2:	The decrease in bond angle is due to repulsion between the lone pairs on nitrogen and bond pair between N and H.
13		bond pair between wand n.
	Statement 1:	Alkanes are insoluble in water
	Statement 2:	Organic compounds do not form hydrogen bonding with water
14		
	Statement 1:	F – F bond has low bond dissociation energy
	Statement 2:	The fluorine has low reactivity
	191	
Ĉ		

1)	h	2)	h	2)	h	: ANS	
1) 5)	b d	2) 6)	b a	3) 7)	b c	4) 8)	a a
9)	С	10)	а) 11)	b	12)	a
13)	а	14)	С				
							~
						Ċ	
						~	Ş
					1		
				\mathcal{A}			
			Ć	ΥY.			
		<i>N</i>					
		6)	1				
	17						
2	<u> </u>						
7	<i>V</i>	87					

CHEMISTRY

ACTIVE SITE TUTORIALS

Date : 23-07-2019 Time : 00:14:00 Marks : 56

TEST ID: 130 CHEMISTRY

4.CHEMICAL BONDING AND MOLECULAR STRUCTURE

: HINTS AND SOLUTIONS :

1 **(b)**

Aqueous HF mainly exists as H_3O^+ and F^- because HF is more acidic than H_2O .

2 **(b)**

The elements having vacant *d*-orbitals in their valency shell show variable covalency by increasing the number of unpaired electrons under excited conditions

3 **(b)**

NaCl is more ionic than NaI because Cl^- is less polarised in comparison to I^- .

4 **(a)**

With increase in bond order, bond length decreases and hence, bond energy increases.

5 **(d)**

SF₄ has see-saw shape. It has non planar structure. In this structure bond angles are different between different S – F atoms. According to VSEPR theory -lp - lp > lp - bp > bp - bp.

6 **(a)**

Electrovalent bond is not possible between similar atoms. This type of bonding requires two atoms of different nature, one atom should have the tendency to lose electrons *ie*, electropositive

7 **(c)**

SeCl₄, has see-saw geometry *ie*, distorted trigonal pyramidal geometry. In SeCl₄, se is sp^3d hybridised.

(a)

8

9

The values of dipole moments provide valuable information about the structure of molecules

(c)

LiCl is polar compound. In a period, we go from left to write the electronegativity increases. Li is a LA group element Cl is VIIA group element. So, the electronegativity difference is so large.

10 **(a)**

Ionisation enthalpy id the energy required to remove an electron from an isolated gaseous atom in its ground state. It is always positive.

12 **(a)**

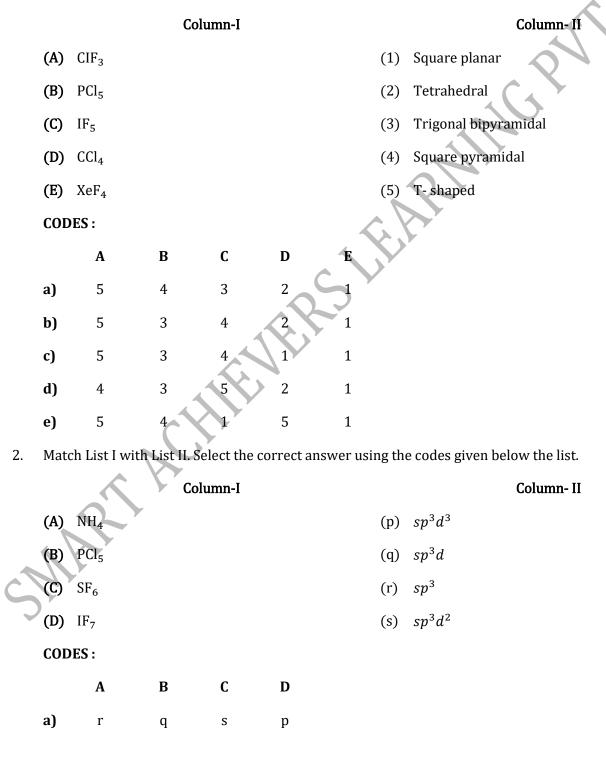
lp - lp > lp - bp > bp - bp.

In NH_3 the three N - H bond pairs are pushed close because of the lone pair-bond pair repulsion and HNH bond angle gets reduced from $109^{\circ}28^{\circ}$ to 107° .

13 **(a)**

A substance is said to be insoluble in water if it does not form hydrogen bonding with water. Alkanes, alkenes and ethers are insoluble in water

14 (c)


Fluorine is highly reactive because F – F bond has low bond dissociation energy

CHEMISTRY

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

1. Match List I and List II and pick out correct matching codes from the given choices.

	b)	р	q	r	S			
	c)	q	r	р	S			
	d)	S	р	q	r			
3.	Mate	ch List I wit	h List II a	ind choose	the correc	ct match	ing co	odes from the choices given.
			Co	olumn-I				Column- II
	(A)	PCl ₅					(1)	Linear
	(B)	IF ₇					(2)	Pyramidal
	(C)	$H_{3}0^{+}$					(3)	Trigonal bipyramidal
	(D)	ClO ₂					(4)	Tetrahedral
	(E)	$\rm NH_4^+$					(5)	Pentagonal bipyramidal
							(6)	Angular
	COD	ES :						
		Α	В	C	D	Е		
	a)	3	5	2	1	4	1 ~	
	b)	3	5	4	1	4	Ś	
	c)	3	5	6	1	4		
	d)	3	5	2	6	4		
	e)	3	5	2	4	4		
4.	Mate	ch List I wit	h List II a	ind select t	he correct	answer	:	
			Cc	olumn-I				Column- II
	(A)	ICI-					(1)	Linear
	(B)	BrF ₂ ⁺					(2)	Pyramidal
	(C)	ClF ₄	1				(3)	Tetrahedral
	(D)	AlCl ₄					(4)	Square planar
	S						(5)	Angular
5	COD	ES:						
		Α	В	С	D			

a)

b)

c)

d)	5	1	3	4
----	---	---	---	---

5. Match the compounds in the list I with that in List II.

5.	Mate	ch the comp	ounds in t	the list I w	rith that in	List II.		
			Col	umn-I				Column- II
	(A)	XeO ₃					(p)	Planar triangular
	(B)	XeOF ₄					(q)	T- shape
	(C)	BO ₃ ³⁻					(r)	Trigonal pyramid
	(D)	CIF ₃					(s)	Square pyramid
	(E)	$I_3^-(aq)$					(t)	Linear
							(u)	Bent
	COD	ES :						
		Α	В	С	D	Ε		
	a)	р	S	r	q	t		
	b)	q	S	р	r	t		
	c)	r	S	р	q	t	1.	
	d)	S	S	р	q	t	Ś	
6.	Mate	ch List I with	n List II. Se	elect the c	orrect ans	wer usi	ng th	e codes given below the list.
			Col	umn-I		2		Column- II
	(A)	$\rm NH_4$			K)		(p)	sp^3d^3
	(B)	PCl ₅					(q)	$sp^{3}d$
	(C)	SF ₆		\sum			(r)	sp ³
	(D)	IF ₇					(s)	sp^3d^2
	COD	ES:						
		A	В	С	D			
	a)	r	q	S	р			
	b)	р	q	r	S			
5	c)	q	r	р	S			
	d)	S	р	q	r			

CHEMISTRY

1)	b	2)	а	3)	d	: AN 4)	SWER c	KEY :					
1) 5)	d	6)	a a	3)	u	ŦJ							0.
												$\langle \rangle$	
											3	•	
										Q	7		
									2				
								N					
							5						
					1								
				3									
			2		×								
		2	Y										
		25	7										
2	Û,	~											
7	e.												

CHEMISTRY

			: HINTS	SAND	20	LUTIONS :		
	b)					$AlCl_4^- \Rightarrow 4bp + 0lp$ (thus sp^3 hybridisation) =		
	List I	List II	(Structure)			tetrahedral geometry		
	(Compound		T-Shaped		5	(d)		
 CIF₃ PCl₂ IF₅ CCl₂ XeF 		2. 3.			$XeO_3 (sp^3 hybridisation)$ = contain a loan pair = trigonal pyrami shape $XeOF_4 (sp^3 d hybridisation)$ = one lone pair = pyramidal shape			
L			planar			$BO_3^{3-}(sp^2 \text{ hybridisation}) = \text{planar triangular}$ $ClF_3(sp^3d^2 \text{ hybridisation})$ = two lone pair = T shaped		
(Г	a) Mala sula	T	1					
	Molecule /ion	Type of hybridis ation			6	I_3^- (<i>sp</i> ³ <i>d</i> hybridisation) = 3 loan pair=linear (a)		
	A. NH ₄ ⁺	r. <i>sp</i> ³			C.	Ethane $CH_3 - CH_3 2sp^2$ hybrid carbon		
	B. PCl ₅ C. SF ₆ D. IF ₇	q. <i>sp</i> ³ <i>d</i> s. <i>sp</i> ³ <i>d</i> ² p. <i>sp</i> ³ <i>d</i> ³		5		Ethylene $CH_2 = CH_2 2sp^2$ hybrid carbon Acetylene $CH \equiv CH 2sp$ hybrid carbon		
L		<u> </u>						
(d)							
	$PCl_5 = sp^3d$							
			bipyramidal)					
	$H_30^+ = sp^3$ (1.				
	$ClO_2 = sp^2$ (A) han single be		ond length are	shorter				
	$MH_4^+ = sp^3(1)$							
I	c) $Cl_2^- \Rightarrow 2bp +$ hybridization							
	$3rF_2^+ \Rightarrow 2bp$		ometi y					
			on)=angular geo	metry				
	$\mathrm{ClF}_4^- \Rightarrow 4bp$ -	+ 2 <i>lp</i> (thus, :	sp^3d^2 hybridisat	ion) =				
F	auare nlana	r geometry			1			