ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

CHEMISTRY

Single Correct Answer Type

1. On heating with aqueous alkali, chloroform yields:
a) HCHO
b) HCOOH
c) $\mathrm{CH}_{3} \mathrm{OH}$
d) CO_{2} and $\mathrm{H}_{2} \mathrm{O}$
2. A keto ester (A) with molecular formula $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{3}$ on treatment with $\mathrm{NaOH}+\mathrm{I}_{2}$ does not give iodoform but on boiling with dilute KOH gives a compound (B) with molecular formula $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{~K}$ which upon acidification followed by heating undergoes decarboxylation to give acetone. The keto ester (A) is
a) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$
b) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{COOCH}_{3}$
d) $\mathrm{CH}_{3}-\mathrm{COCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOCH}_{3}$
3. In the reaction, $\mathrm{HCHO}+\mathrm{NH}_{3} \rightarrow X, X$ is
a) meta-formaldehyde
b) para-formaldehyde
c) urotropine
d) None of these
4. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CHO} \xrightarrow[\text { alkali }]{\text { Dil. }}$ product

The product in the above reaction is
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH}$

d)

5. One mole of an organic compound requires 0.5 mole of oxygen to produce an acid. The compound may be:
a) Alcohol
b) Ether
c) Ketone
d) Aldehyde
6. Acetic acid reacts with PCl_{5} to form
a) $\mathrm{CH}_{2} \mathrm{ClCOOH}$
b) $\mathrm{CHCl}_{2} \mathrm{COOH}$
c) $\mathrm{CH}_{3} \mathrm{COCl}$
d) $\mathrm{CH}_{3} \mathrm{COOCl}$
7. The calcium salt of the final oxidation product of ethanol on dry distillation gives:
a) Formaldehyde
b) Acetaldehyde
c) Acetone
d) Formic acid
8. Coal-tar is obtained as by product during :
a) Destructive distillation of wood
b) Destructive distillation of coal
c) Destructive distillation of bones
d) None of the above
9. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ can be distinguished by:
a) Flame test
b) Solubility in water
c) Physical state
d) All of these
10. The reaction $=\mathrm{O}+\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$ produces:
a)

b)

c)

d)

11. Methylene chloride on hydrolysis yields:
a) HCHO
b) $\mathrm{CH}_{3} \mathrm{CHO}$
c) $\mathrm{CH}_{3} \mathrm{COCl}$
d) None of these

Product is
a)

b)

c)

d)

13. Which of the following compounds does not have a carboxyl group?
a) Methanoic acid
b) Ethanoic acid
c) Picric acid
d) Benzoic acid
14. 2,4-dichlorophenoxy acetic acid is used as a:
a) Fungicide
b) Insecticide
c) Herbicide
d) Moth repellent
15. Which one of the following is reduced with zinc and hydrochloric acid to give the corresponding hydrocarbon?
a) Ethyl acetate
b) Acetic acid
c) Acetamide
d) Butan-2-one
16. 3-pentanol on reaction with aluminium tertiary butoxide in the presence of acetone gives
a) 3-pentanal
b) 2-pentanal
c) 3-pentanone
d) 2-pentanone
17. Bakelite is obtained from phenol by reacting with:
a) HCHO
b) $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$
c) $\mathrm{CH}_{3} \mathrm{CHO}$
d) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
18. The silver salt of a fatty acid on refluxing with an alkyl halide gives an
a) Acid
b) Ester
c) Ether
d) Amine
19. In the reaction, P is:

a) $\mathrm{CH}_{3} \mathrm{COCHO}$
b) $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
c) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{OH}$
d) None of these
20.

Product is
a)

b)

c)

d)

21. Which will give Hofmann bromamide reaction?
a)

b) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
c) $\mathrm{H}_{2} \mathrm{NCONH}_{2}$
22. Distillation involves all the following processes except:
a) Change of state
b) Boiling
c) Condensation
d) Evaporation
23.

$[A]$ and $[B]$ are
a)

b)

c) both

d)

24. The reaction,
$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}=\mathrm{N} \cdot \mathrm{NH}_{2}$ is:
a) Elimination
b) Addition
c) Addition-elimination
d) None of these
25. Which of the following would undergo aldol condensation?
a) $\mathrm{CCl}_{3} \mathrm{CHO}$
b)

c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
26. Acetalsehyde reacts with:
a) Only nucleophiles
b) Both electrophiles and nucleophiles
c) Only electrophiles
d) Only free radicals
27.

This reaction is called
a) The Stevens reaction
b) The carbonylation reactionc
c) The Koch reaction
d) Oxidation
28. Which of the following statement is correct?
a) Acidity increases with increase in carbon atoms in carboxylic acids.
b) Solubility of carboxylic acid increases with increase in carbon atoms.
c) Boiling points of acids are higher than corresponding alcohols.
d) None of the above.
29. The best reagent to convert pent-3-en-2-ol into pent-3-en-2-one is
a) Pyridinium chloro-chromate
b) Chromic anhydride in glacial acetic acid
c) Acidic dichromate
d) Acidic permanganate
30. The catalyst used in Rosenmund reaction is
a) $\mathrm{Zn} / \mathrm{Hg}$
b) $\mathrm{Pd} / \mathrm{BaSO}_{4}$
c) Raney Ni
d) Na in ethanol
31. Claisen condensation is not given by
a)

b)

c)

d)

32. Which of the following is a flavouring agent called 'oil of winter green'?
a) Olive oil
b) Vinegar
c) Methyl acetate
d) Methyl salicylate
33. The following reaction is known by the name of:
$\underset{\text { Xylene }}{\mathrm{CH}_{3} \mathrm{COCl}}+\mathrm{H}_{2} \xrightarrow[\mathrm{~Pb} / \mathrm{BaSO}_{4}]{[\mathrm{H}]} \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{HCl}$
a) Stephen's reduction
b) Rosenmund's reaction
c) Cannizzaro's reaction
d) None of these
34. The enol form of acetone, after treatment with $\mathrm{D}_{2} \mathrm{O}$ gives
a)

b)

c)

d)

35. $\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{NH}_{3} \stackrel{\Delta}{\rightarrow} \text { ? }}$

The product of the reaction is isomeric with
a) $\underset{\substack{\mathrm{NH}_{2} \\ \mathrm{NH}_{2}}}{\mathrm{CHO}}$
b) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{NHO}$
c) $\mathrm{HCONH}-\mathrm{CH}_{3}$
d) All of these
36. The acid formed when propyl magnesium bromide is treated with CO_{2} is:
a) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}$
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$
c) Both (a) and (b)
d) None of these
37. Tamarind contains
a) (+) tartaric acid
b) (-) tartaric acid
c) \pm tartaric acid
d) None of the above
38. The splitting of an ester by an alcohol is known as:
a) Acidolysis
b) Alcoholysis
c) Ammonolysis
d) Hydrolysis
39. The product formed when hydroxylamine condenses with a carbonyl compound is called
a) Hydrazide
b) Oxime
c) Hydrazine
d) Hydrazone
40. ФСНО undergoes Claisen condensation with another aldehyde to give cinnamaldehyde. The aldehyde is
a) Formaldehyde
b) Acetaldehyde
c) Crotonaldehyde
d) Propanaldehyde
41. Two mole of acetic acid are heated with $\mathrm{P}_{2} \mathrm{O}_{5}$. The product formed is:
a) 2 mole of ethyl alcohol
b) Formic anhydride
c) Acetic anhydride
d) 2 mole of methyl cyanide
42. The nitrogen content in the proteins can be quantitatively estimated by:
a) Carius method
b) Kjeldahl's method
c) Victor Meyer's method
d) Rast method
43. Correct order of reducing power of the following carbonyl compounds
a) $\mathrm{HCHO}>\mathrm{CH}_{3} \mathrm{COCH}_{3}>\phi \mathrm{CHO}$
b) $\mathrm{CH}_{3} \mathrm{COCH}_{3}>\phi \mathrm{CHO}>\mathrm{HCHO}$
c) $\mathrm{HCHO}>\phi \mathrm{CHO}>\mathrm{CH}_{3} \mathrm{COCH}_{3}$
d) $\mathrm{CH}_{3} \mathrm{COCH}_{3}>\mathrm{HCHO}>\phi \mathrm{CHO}$
44. Cyanohydrin of which of the following forms lactic acid?
a) HCHO
b) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
c) $\mathrm{CH}_{3} \mathrm{CHO}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
45. Ethyl acetate on reaction with a Grignard reagent gives,
a) Alcohol
b) Aldehyde
c) Acid
d) Ketone
46. Acetaldehyde reacts with HCN followed by hydrolysis forms a compound which shows:
a) Optical isomerism
b) Geometrical isomerism
c) Metamerism
d) Tautomerism
47. Carboxylic acids dissolve in $a q$. NaOH because the acids undergo:
a) Protonation
b) Deprotonation
c) Carboxylation
d) Decarboxylation
48. Which of the acids cannot be prepared by Grignard reagent?
a) Acetic acid
b) Succinic acid
c) Formic acid
d) All of these
49. Compound A when treated with ethyl magnesim iodide in dry ether forms an addition compound which on hydrolysis form compound B. The compound B on oxidation form 3-pentanone. Hence, the compound A and B are
a) Propanol, 3-pentanol
b) Pentanol, 3-pentanol
c) Ethanal, pentanal
d) Acetone, 3-pentanol
50. Suggest appropriate structures for the missing final compound. (The number of carbon atom remains the same throughout the reaction.)

a)

b)

c)

d)

51. Lactic acid on heating with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives
a) Acetic acid
b) Formic acid
c) Acrylic acid
d) Propionic acid
52. Urea can be detected by
a) Benedict test
b) Molisch test
c) Ninhydrine test
d) Biurate test
53. Which of the following does not give brick red precipitate with Fehling's solution?
a) Acetaldehyde
b) Formalin
c) D-glucose
d) Acetone
54. Which of the following statements is wrong?
a) Formic acid is stronger than acetic acid
b) o-bromobenzoic acid is weaker than o-chlorobenzoic acid
c) Lactic acid does not answer the silver mirror test
d) Benzaldehyde does not reduce Fehling's solution
55. Pick out the reaction in which formic and acetic acid differs from each other:
a) Sodium replaces hydrogen from the compound
b) Forms esters with alcohols
c) Reduces solution of ammoniacal silver nitrate or Fehling's solution of dil. acid KMnO_{4}
d) Turns red litmus blue
56. An organic substance from its aqueous solution can be separated by:
a) Solvent extraction
b) Steam distillation
c) Distillation
d) Fractional distillation
57. The strongest acid amongst the following compounds is
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) HCOOH
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{Cl}) \mathrm{CO}_{2} \mathrm{H}$
d) $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
58. What is obtained what acetyl chloride is heated with benzene in presence of anhydrous AlCl_{3}
a) Acetyl benzoic acid
b) Anisol
c) Acetonephenone
d) Chlolorobenzene
59. Reaction of formaldehyde and ammonia gives
a) Hexamethylene tetramine
b) Bakelite
c) Urea
d) Triethylene tetramine
60. 4-methyl benzene sulphonic acid reacts with sodium acetate to give
a)

b)

c)

d)

61. An acyl halide is formed when PCl_{5} reacts with an:
a) Acid
b) Alcohol
c) Amine
d) Ester
62. Generally it is more difficult to purify organic compounds than inorganic compounds because:
a) They are very unstable
b) Their m. p. and b. p. are low
c) Organic compounds have low solubility
d) Physical constants of organic compounds and the impurities associated with them are very close to each other
63. The acetophenone can be converted to ethylbenzene by reaction with
a) LiAlH_{4}
b) $\mathrm{H}_{2} \mathrm{NOH}$
c) $\mathrm{Pd} / \mathrm{BaSO}_{4}-\mathrm{H}_{2}$
d) $\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$
64. When propionic acid is treated with aqueous sodium bicarbonate, CO_{2} is liberated. The C from CO_{2} comes from
a) Methyl group
b) Carboxylic acid group
c) Methylene group
d) Bicarbonate
65. Boiling points of carboxylic acid are:
a) Lower than corresponding alcohols
b) Higher than corresponding alcohols
c) Equal to that of corresponding alcohols
d) None of the above
66. The - COOH group in a carboxylic acid can be replaced by ' H ' by heating the acid with:
a) Zn with HCl
b) H_{2} in presence of nickel
c) Sodalime
d) Bromine and concentrated aqueous alkali
67. The product obtained in the reaction

a)

b)

d) There is no reaction
c)

68. Which of the following would produce secondary alcohol?
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3} \xrightarrow[2 . \mathrm{H}^{+}]{1 . \mathrm{CH}_{3} \mathrm{MgBr}}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3} \xrightarrow[2 . \mathrm{H}^{+}]{\text {1. } \mathrm{LiAlH}_{4}}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \xrightarrow[2 . \mathrm{H}^{+}]{\text {1. } \mathrm{CH}_{3} \mathrm{MgBr}}$
d) $\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow[2 . \mathrm{H}^{+}]{\text {1. } \mathrm{LiAlH}_{4}}$
69. Which factor/s will increase the reactivity of $>\mathrm{C}=0$ group?
I. Presence of a group with positive inductive effect.
II. Presence of a group with negative inductive effect.
III. Presence of large alkyl group.
a) Only (i)
b) Only (ii)
c) (i) and(iii)
d) (ii) and (iii)
70.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH} \xrightarrow{\text { Red P/Br }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}-\mathrm{COOH}$

This reaction is called the
a) Cannizaro reaction
b) Schrodinger reaction
c) Hell-Volhard-Zelinsky reaction
d) Reimer-Tiemann reaction
71. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCOCH}_{3}$ can be oxidised to $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCOOH}$ by:
a) Cu at $300^{\circ} \mathrm{C}$
b) KMnO_{4}
c) Chromic acid
d) NaOI
72. The correct order of decreasing boiling points of $\mathrm{CH}_{3} \mathrm{CONH}_{2}(A), \mathrm{CH}_{3} \mathrm{COCl}(B), \mathrm{CH}_{3} \mathrm{COOH}(C)$ and $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(\mathrm{D})$ is:
a) $A>D>C>B$
b) $A>B>C>D$
c) $D>C>B>A$
d) None of these
73. Rate of reaction,

is fastest when Z is
a) Cl
b) NH_{2}
c) $\mathrm{OC}_{2} \mathrm{H}_{5}$
d) OCOCH_{3}
74. Which is useful for separating benzoic acid from a mixture of benzoic acid and methyl benzoate?
a) NaHCO_{3} (aq.)
b) Dil. HCl
c) Dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$
d) Dil. HNO_{3}
75. The compound X, in the reaction is
$X \xrightarrow{\mathrm{CH}_{3} \mathrm{CHO}} Y \xrightarrow{\text { Hydrolysis }} \mathrm{Mg}(\mathrm{OH}) \mathrm{I}+\mathrm{CH}_{3} \mathrm{COOH}$
a) $\mathrm{CH}_{3} \mathrm{CHO}$
b) CO_{2}
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
d) HCHO
76. Which of the following does not undergo polymerization?
a) $\mathrm{CH}_{3} \mathrm{CHO}$
b) HCHO
c) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
d) None of these
77. The reaction, $R \mathrm{COOAg}+\mathrm{Br}_{2} \xrightarrow{\mathrm{CCl}_{4}} \mathrm{RBr}+\mathrm{AgBr}+\mathrm{CO}_{2}$ is called:
a) HVZ reaction
b) Hunsdiecker reaction
c) Hofmann's reaction
d) Carbylamine reaction
78. Methyl ketones are characterised through:
a) The Tollen's reagent
b) The iodoform test
c) The Schiff's test
d) The Benedict's reagent
79. An organic compound X contains Y and Z impurities. Their solubility differs slightly. They may be separated by:
a) Simple crystallization
b) Fractional crystallization
c) Sublimation
d) Fractional distillation
80. Which of the following reactants on reaction with conc. NaOH followed by acidification gives following lactone as the product

a)

b)

c)

d)

81. An ester (A) with molecular formula $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$ was treated with excess of $\mathrm{CH}_{3} \mathrm{MgBr}$ and the complex so formed was treated with $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give an olefin (B). Ozonolysis of (B) gave a ketone with molecular formulC $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}$ which shows positive iodoform test. The structure of (A) is
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOC}_{2} \mathrm{H}_{5}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOC}_{6} \mathrm{H}_{5}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOCH}_{3}$
d) $p-\mathrm{H}_{3} \mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{COCH}_{3}$
82. Acetone reacts with Grignard reágent to form
a) 3° alcohol
b) 2° alcohol
c) Ether
d) No reaction
83. When petroleum is heated gradually, first batch of vapours evolved will be rich in:
a) Kerosene
b) Petroleum ether
c) Diesel
d) Lubrication oil
84. Decarboxylation of malonic acid gives
a) CH_{4}
b) $\mathrm{CH}_{3} \mathrm{COOH}$
c) Both (a) and (b)
d) None of these
85. What is the product in the reaction

a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\underset{\mathrm{CH}_{3} \mathrm{CONH}_{3} \mathrm{Cl}^{-}}{+}$
c) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
d) $\mathrm{CH}_{3} \mathrm{CHO}$
86. Which of the following substances cannot be used for the replacement of -OH group in organic compounds by Cl ?
a) $\mathrm{S}_{2} \mathrm{Cl}_{2}$
b) SOCl_{2}
c) PCl_{3}
d) PCl_{5}
87. Acetyl nitrate is formed when acetic anhydride reacts with
a) Nitrogen pentoxide
b) Nitric acid
c) Nitrous acid
d) Potassium nitrate
88. Which one is not prepared from tartaric acid?
a) Tartar emetic
b) Fenton's reagent
c) Fehling's solution
d) Rochelle salt
89. The reagent used in Clemmensen's reduction is
a) Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
b) $\mathrm{Zn}-\mathrm{Hg} /$ conc. HCl
c) aq. KOH
d) alc. KOH
90. In the reaction, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{O}^{*} \mathrm{H} \xrightarrow{\mathrm{H}^{+}}$Ester + water
a) Isotopically labeled oxygen $\left(\mathrm{O}^{18}\right)$ is present in
water
b) 0^{18} is present with ester
c) O^{18} shifts from acid to alcohol
d) No reaction takes place
91. The technique of gas chromatography is suitable for compounds which are:
a) Liquids
b) Highly volatile
c) Soluble in water
d) Vaporise without decomposition
92. There are several criteria of purity of organic compounds. Which is considered to be the best?
a) Melting point
b) Mixed melting point
c) Colour
d) Microscopic examination
93. $\phi \mathrm{CHO}+\mathrm{NH}_{3} \rightarrow$? Product is
a)

b) $\phi \mathrm{CH}=\mathrm{NH}$
c)

94. The ease of hydrolysis with an alkali in the compounds

Is of the order
a) I $>$ II $>$ III $>$ IV
b) IV $>$ III $>$ II $>$ I
c) I $>$ II $>$ IV $>$ III
d) II $>$ I $>$ IV $>$ III
95. What is the formula of adipic acid?
a) $\mathrm{COOH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$
b) $\mathrm{CH}_{2}(\mathrm{COOH}) \mathrm{CH}_{2} \mathrm{COOH}$
c) $\mathrm{COOH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH}$
d) None of the above
96. $\mathrm{CH}_{3} \mathrm{CHO}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHO}$ can be distinguished chemically by:
a) Tollen's reagent test
b) Fehling solution test
c) Benedict test
d) Iodoform test
97. Acrolein on complete reduction gives:
a) Allyl alcohol
b) Propanol
c) Propanal
d) None of these
98. Identify the starting material of the following reaction

a)

b)

c)

d)

99. Which one of the following is not a fatty acid?
a) Stearic acid
b) Palmitic acid
c) Oleic acid
d) Phenyl acetic acid
100. $\mathrm{CH}_{3} \mathrm{CN} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} A \xrightarrow{\text { diazomethane }} B$
A and B are
(a) Acetamide, N-methyl acetamide
b) Acetic acid, ethyl ethanoate
c) Acetic acid, methyl acetate
d) Acetamide, acetone
101. Tartronic acid is obtained from tartaric acid by:
a) HBr
b) HI
c) Tollen's reagent
d) PCl_{5}
102.

Product is
a)

b)

c)

d)

103. A compound, containing only carbon, hydrogen and oxygen, has a molecular weight of 44 . On complete oxidation it is converted into a compound of molecular weight 60 . The original compound is
a) An aldehyde
b) An acid
c) An alcohol
d) An ether
104. Which of the following reagents is useful for separating aniline from a mixture of aniline and nitrobenzene?
a) $\mathrm{NaOH}(a q$.)
b) $\mathrm{H}_{2} \mathrm{O}$
c) NaHCO_{3} (aq.)
d) $\mathrm{HCl}(a q$.)
105. How will you separate a miscible mixture of $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CHCl}_{3}$?
a) Sublimation
b) Filtration
c) Distillation
d) Crystallization
106. An organic compound has C and H percentage in the ratio $6: 1$ and C and 0 percentage in the ration $3: 4$. The compound is:
a) HCHO
b) $\mathrm{CH}_{3} \mathrm{OH}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
d) $(\mathrm{COOH})_{2}$
107. Potassium cyanate is heated with ammonium sulphate. The product formed is
a) Urea
b) Ammonia
c) Potassium sulphate
d) Ammonium cyanide
108. 2-pentanone and 3-petanone can be distinguished by
a) Cannizaro's reaction
b) Aldol condensation
c) Iodoform reaction
d) Clemmensen's reduction
109. Acetyl bromide reacts with excess of $\mathrm{CH}_{3} \mathrm{MgI}$ followed by treatment with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ gives
a) Acetone
b) Acetamide
c) 2-methyl-2-propanol
d) Acetyl iodide
110. Formalin is
a) Solution of fructose
b) 40% aq. sol. Of HCHO
c) $40 \% \mathrm{HCHO}+60 \% \mathrm{CH}_{3} \mathrm{CHO}$
d) None of the above
111. Aldol condensation is given by
a) Trimethylacetaldehyde
b) Acetaldehyde
c) Benzaldehyde
d) Formaldehyde
112. Which reaction is used for detecting the presence of carbonyl group?
a) Reaction with hydrazine
b) Reaction with phenyl hydrazine
c) Reaction wit hydroxylamine
d) All of the above
113. The product obtained in the reaction

$\mathrm{CH}_{3} \mathrm{CHCO}_{2} \mathrm{H}$
a)

b) $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
c)

d) $\mathrm{Cl}_{2} \mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
114. An organic compound contains carbon, hydrogen and oxygen. Its elemental analysis gave, C, 38.71% and $\mathrm{H}, 9.67 \%$. The empirical formula of the compound would be:
a) $\mathrm{CH}_{2} \mathrm{O}$
b) CHO
c) $\mathrm{CH}_{4} \mathrm{O}$
d) $\mathrm{CH}_{3} \mathrm{O}$
115. $\left.\mathrm{CH}_{3} \mathrm{COCl} \xrightarrow[{\left[\mathrm{H}_{2}\right.}]\right]{\mathrm{Pd} / \mathrm{BaSO}_{4}} A$

The isomers of $\mathrm{CH}_{3} \mathrm{COCl}$ and A will be respectively
a) $\mathrm{CH}_{2} \mathrm{ClCHO}$, oxirane
b) Chloral, vinyl alcohol
c) α-chloro ethyl alcohol, epoxy ethane
d) None of the above
116. Acid chlorides react with Grignard's reagents to give:
a) Esters
b) Ethers
c) Carbonyl compounds
d) None of these
117. Which of the following give an explosive RDX, on nitration?
a) Toluene
b) Benzene
c) Guanidine
d) Urotropine
118. The conversion of -COOH group to $-\mathrm{NH}_{2}$ group can be made by:
a) Wurtz reaction
b) Claisen condensation
c) Stephen's reduction
d) Schmidt reaction
119. In question 178 step (2) can be thought of an/a:
a) Neutralization
b) Electrophilic attack at the carbonyl carbon
c) Nucleophilic attack of N-lone pair at the carbonyl carbon leading to substitution
d) Nucleophilic addition reaction
120. Acetaldehyde forms a white crystalline precipitate on mixing with asolution of
a) Acidic, $\mathrm{Zn}-\mathrm{Hg}$
b) Alcoholic, $\mathrm{Na}_{2} \mathrm{SO}_{3}$
c) Saturated aqueous, NaHSO_{3}
d) Aqueous, NaCl
121. Fehling's solution is:
a) Acidified copper sulphate solution
b) Ammoniacal cuprous chloride solution
c) Copper sulphate, Rochelle salt +NaOH
d) None of the above
122. Stephen's reduction is used to prepare aldehyde from
a) Alcohol
b) Alkyl cyanides
c) Alkanones
d) Acid chlorides
123. Benzyl alcohol can be prepared from benzaldehyde by
a) Friedel-Craft's reaction
b) Cannizaro's reaction
c) Kolbe's reaction
d) Reimer-Tiemann reaction
124. The mechanism of ester formation in acidic medium is as follows

The slowest step in the above mechanism is
a) Step (i)
b) Stem (ii)
c) Step (iii)
d) Step (iv)
125. Ammonolysis of an ester gives:
a) Amine
b) Amide
c) Uride
d) None of these
126. Acetic anhydride can easily be prepared by:
a) Distilling a mixture of anhydrous sodium acetate and acetyl chloride
b) Heating acetic acid
c) Partial hydrolysis of acetyl chloride
d) Oxidation of ethanol
127. When one of the following hydrocarbons is burnt in excess of oxygen, the volume of CO_{2} evolved is just
double to that of hydrocarbon taken. The hydrocarbon is:
a) CH_{4}
b) $\mathrm{C}_{2} \mathrm{H}_{6}$
c) $\mathrm{C}_{3} \mathrm{H}_{8}$
d) $\mathrm{C}_{3} \mathrm{H}_{6}$
128. Identify the compound Z . In this reaction sequence
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \xrightarrow{\mathrm{NH}_{3}} X \xrightarrow{\mathrm{Br}_{2}+\mathrm{KOH}} Y \xrightarrow{\mathrm{HNO}_{2}} Z$;
a) $\mathrm{CH}_{3} \mathrm{OH}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
129. Arrange the following carboxylic acids in order of decreasing acidity

Oxalic acid Malonic acid Succinic acid
${ }_{\text {a) }}^{\text {II }}{ }^{\text {I }}>{ }_{\text {III }} \quad$ b) ${ }_{\text {II }} \xrightarrow{\text { III }}>{ }_{\text {I }}$
130. Oppenauer oxidation is the reverse process of:
a) Wolff-Kishner's reduction
b) Rosenmund's reduction
c) Clemmensen's reduction
d) Meerwein-Ponndorf Verley reduction
131. Indicate the organic structure for product expected when 2-methyl propene is heated with acetyl chloride in presence of anhydrous ZnCl_{2} :
a)

b)

c)

d)

132. A mixture of benzaldehyde and formaldehyde on heating with aqueous NaOH solution gives
a) Benzyl alcohol and sodium formate
b) Sodium benzoate and methyl alcohol
c) Sodium benzoate and sodium formate
d) Benzyl alcohol and methyl alcohol
133. Identify X;

a) $\mathrm{CH}_{3} \mathrm{OH}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
c) $\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$
d) $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})\left(\mathrm{CH}_{3}\right)_{2}$
134. $X \xrightarrow{\text { Conc. } \mathrm{NaOH}}$ Furoic acid + Furyl alcohol.

Compound X is
a)

b)

c)

d)

135. Decarboxylation of which will yield 1,1,2,2-tetra bromoethane:
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{CH}_{2} \mathrm{BrCBr}_{2} \mathrm{COOH}$
c) $\mathrm{HCBr}_{2} \mathrm{CBr}_{2} \mathrm{COOH}$
d) $\mathrm{CH}_{2} \mathrm{BrCHBrCOOH}$
136. Fehling's solution is used in the detection of:
a) Ketonic group
b) Alcoholic group
c) Aldehydic group
d) Carboxylic group
137. $R \mathrm{COOH}+\mathrm{N}_{3} \mathrm{H} \xrightarrow[\text { conc. }]{\mathrm{H}_{2} \mathrm{SO}_{4}} R \mathrm{NH}_{2}+\mathrm{CO}_{2}+\mathrm{N}_{2}$

The above reaction is called:
a) HVZ reaction
b) Hunsdiecker reaction
c) Schmidt reaction
d) Decarboxylation reaction
138. Butanol on reaction with one of the following will produce banana odour:
a) PCl_{5}
b) $\mathrm{CH}_{3} \mathrm{COCl}$
c) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
d) NH_{3}
139. CHO
${ }_{\mathrm{CHO}} \xrightarrow{\mathrm{OH}^{-}} X$; the product X is :
a) $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{OH}$
b) $\mathrm{CH}_{2} \mathrm{OH}-\mathrm{COO}^{-}$
c) $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCOOH}$
d) $00 \mathrm{C}-\mathrm{COO}^{-}$
140. Some organic compounds are purified by distillation at low pressure because the compounds are:
a) Low boiling liquids
b) High boiling liquids
c) Highly volatile
d) Dissociated before reaching their boiling points
141. A compound ' A^{\prime} has a molecular formula $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{OH}$. A reduces Fehling solution and on oxidation produces a monocarboxylic acid B. A can also be obtained by the action of Cl_{2} on ethanol. A is
a) Chloral
b) CHCl_{3}
c) $\mathrm{CH}_{3} \mathrm{Cl}$
d) Chloroacetic acid
142. Predict the products in the given reaction.

a)

b)

c)

d)

143. In the scheme given below, the total number of intramolecular aldol condensation products formed from " Y " is

a) 1
b) 2
c) 3
d) 4
144. Calcium propanoate on refluxing yields:
a) Propanol-2
b) Propanone-2
c) Pentanone-3
d) Pentanone-2
145. When a mixture of one mole of benzoic acid and one mole of phenol in water is treated with one mole of NaHCO_{3}, the product formed will consist of
a) $\phi \mathrm{COOH}+\phi \mathrm{ONa}$
b) $\phi \mathrm{COONa}+\phi 0 \mathrm{Na}$
c) $\phi \mathrm{COONa}+\phi \mathrm{OH}$
d) $\phi \mathrm{COO} \phi+\phi \mathrm{COOCO} \phi$
146. Aldehyde not showing Cannizaro's reaction is
a) Paraldehyde
b) Chloral
c) Formaldehyde
d) Acetaldehyde
147. Compound (A) (molecular formula $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$) is treated with acidified potassium dichromate to form a product B (molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$).' B^{\prime} 'forms a shining silver mirror on warming with ammonical silver nitrate. ' B ' when treated with an aqueous solution of $\mathrm{H}_{2} \mathrm{NCONHNH}_{2} . \mathrm{HCl}$ and sodium acetate gives a product ' C '. Identify the structure of ' C '.
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{NNHCONH} 2$
b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{NNHCONH} 2$
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{NCONHNH} H_{2}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{NCONHNH}_{2}$
148. Methyl cyanide can be converted into acetic acid by:
a) Reduction
b) Hydrolysis
c) Electrolysis
d) Decarboxylation
149. A product obtained by the reaction of X with hydroxylamine and on further reduction gives

a) 2,2-dimethyl-3-pentanone
b) 3,3-dimethyl-3-butanone
c) 1-methyl-3-pentanone
d) Diethyl ketone
150. The main reason for the fact than carboxylic acids can undergo ionization is:
a) Absence of α-H-atom
b) Resonance stabilization of carboxylate ion
c) High reactivity of α - H -atom
d) Hydrogen bonding
151. Acetamide reacts with maximum ease with:
a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
c) $\mathrm{H}_{2} \mathrm{O}$
d) $a q \cdot \mathrm{NaOH}$
152. Formalin is the commercial name of
a) Formic acid
b) Fluroform
c) 40% aqueous solution of methanal
d) para formaldehyde
153. Which of the following carboxylic acids is not reduced to the corresponding 1° alcohol byLiAlH H_{4} ?
a) $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
b) Cyclohexane carboxylic acid
c) $(\mathrm{Z})-\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{COOH}$
d) $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COOH}$
154. The weakest acid amongst the following is
a) $\mathrm{ClCH}_{2} \mathrm{COOH}$
b) HCOOH
c) $\mathrm{FCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
d) $\mathrm{CH}_{2}(\mathrm{I}) \mathrm{COOH}$
155. Identify (X) in the sequence, $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{OCl} \xrightarrow{\mathrm{NH}_{3}} \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{ON} \xrightarrow{\mathrm{Br}_{2} / \mathrm{KOH}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$:
a)

b)

c) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COCl}$
d) $\mathrm{OHC}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Cl}$
156. Which compound is oxidised to prepare ethyl methyl ketone?
a) Propanol-2
b) Butanol-1
c) Butanol-2
d) Tert-butyl alcohol
157. The product obtained in the reaction

a)

c) $\mathrm{RCH}=\mathrm{CHCOOH}$
158.

Here, A is
a)

c)

159. Acetone is treated with excess of ethanol in the presence of hydrochloric acid. The product obtained is:
a)

b)

c)

d)

160. When acetaldehyde is heated with Fehling's solution, it gives a red precipitate of:
a) Cu
b) CuO
c) $\mathrm{Cu}+\mathrm{Cu}_{2} \mathrm{O}+\mathrm{CuO}$
d) $\mathrm{Cu}_{2} \mathrm{O}$
161. Simple distillation can be used to separate:
a) A mixture of benzene (b. p. $80^{\circ} \mathrm{C}$) and toluene (b. p. $110^{\circ} \mathrm{C}$)
b) A mixture of ether (b. p. $35^{\circ} \mathrm{C}$) and toluene (b. p. $110^{\circ} \mathrm{C}$)
c) A mixture of ethanol (b. p. $78^{\circ} \mathrm{C}$) and water (b. p. $100^{\circ} \mathrm{C}$)
d) None of the above
162. Acetyl bromide reacts with excess of $\mathrm{CH}_{3} \mathrm{MgI}$ followed by treatment with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ gives
a) Acetone
b) Acetamide
c) 2-methyl-2-propanol
d) Acetyl iodide
163. Aldol condensation between the following compounds followed by dehydration gives methyl vinyl ketone:
a) HCHO and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
b) HCHO and $\mathrm{CH}_{3} \mathrm{CHO}$
c) Two molecules of $\mathrm{CH}_{3} \mathrm{CHO}$
d) Two molecules of $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
164. $R-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH}$ $R-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{H}$ can be converted into The correct sequence of reagent is,
a) $\mathrm{KCN}, \mathrm{H}^{+}$
b) $\mathrm{PBr}_{3}, \mathrm{KCN}, \mathrm{H}_{2}$
c) $\mathrm{HCN}, \mathrm{PBr}_{3}, \mathrm{H}^{+}$
d) $\mathrm{PBr}, \mathrm{KCN}, \mathrm{H}^{+}$
165. The acid which does not form an anhydride when treated with $\mathrm{P}_{2} \mathrm{O}_{5}$ is:
a) Formic acid
b) Acetic acid
c) Propionic acid
d) Benzoic acid
166. Prior to the seventeenth century people knew the processes except:
a) Dyeing
b) Preparation of wines
c) Organic synthesis
d) Fermentation
167. Molecular weight of acetic acid is 60 . Its empirical formula is:
a) $\mathrm{CH}_{2} \mathrm{O}$
b) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
c) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
d) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{3}$
168. Ketones can be obtained in one step by:
a) Hydrolysis of ester
b) Oxidation of primary alcohols
c) Reaction of acid halide with alcohols
d) Oxidation of secondary alcohol
169. The scientist who gave chromatography concept:
a) Berzelius
b) Avogadro
c) Tswett
d) Lavoisier
170. $\mathrm{RCOOH} \rightarrow R \mathrm{CH}_{2} \mathrm{COOH}$. This conversion is known as reaction
a) Arndt-Eistert reaction
b) Favorskii reaction
c) Mannich reaction
d) Schmidt reaction
171. Nucleophilic addition reaction will be most favoured in:
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
b) $\mathrm{CH}_{3} \mathrm{CHO}$
c) $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \mathrm{COCH}_{3}$
d) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}$
172. 0.2 g of an organic compound containing C, H and O on combustion yielded $0.147 \mathrm{~g} \mathrm{CO}_{2}$ and 0.12 g water. The percentage of oxygen in it is:
a) 73.34%
b) 78.45%
c) 83.23%
d) 89.50%
173. Aliphatic aldehydes react with Fehling's solution to give red ppt. but benzaldehyde does not produce red precipitate with Fehling's solution because:
a) Of a bulky ring, - CHO is hinderer
b) Or resonance, oxidation of benzaldehyde is difficult
c) -CHO is present in cyclic structure
d) Of all the above statements
174. The identical $\mathrm{C}-\mathrm{O}$ bond lengths in carboxylate ions are due to:
a) Resonance
b) Presence of carbonyl group
c) Presence of alkyl group
d) None of the above
175. Which one of following can be oxidised to the corresponding carbonyl compound?
a) 2-hydroxypropane
b) Ortho-nitrophenol
c) Phenol
d) 2-methyl-2-hydroxypropane
176. A compound does not react with 2,4 dinitrophenyl hydrazine, compound is
a) Acetone
b) Acetaldehyde
c) $\mathrm{CH}_{3} \mathrm{OH}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$
177. When $\mathrm{CH}_{3} \mathrm{COOH}$ reacts withCH $3-\mathrm{Mg} X$
a) $\mathrm{CH}_{3} \mathrm{COX}$ is formed
b) Hydrocarbon is formed
c) Acetone is formed
d) Alcohol is formed
178. 13 g of a hydrocarbon contains 1.0 g of hydrogen. Its formula is:
a) $\mathrm{C}_{2} \mathrm{H}_{2}$
b) $\mathrm{C}_{2} \mathrm{H}_{3}$
c) $\mathrm{C}_{3} \mathrm{H}_{4}$
d) $\mathrm{C}_{4} \mathrm{H}_{7}$
179. 2-pentanone and 3-pentanone can be distinguished by one of the following:
a) Tollen's reagent
b) Fehling's solution
c) Schiff's test
d) Iodoform test
180. Ethyl acetate is obtained by acetaldehyde in one step process by
a) Condensation using $\mathrm{Ba}(\mathrm{OH})_{2}$
b) Using aluminium ethoxide
c) Oxidation
d) Reduction
181. On reaction with hydroxylamine, aldehydes produce
a) Ketoxime
b) Hydrazone
c) Semicarbazone
d) Aldoxime
182. The solvent which can dissolve all the carboxylic acids is:
a) Water
b) Dilute HCl
c) Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
d) Dilute NaOH
183. 0.759 g of a silver salt of a dibasic organic acid on ignition left 0.463 g metallic silver. The equivalent weight of acid is:
a) 70
b) 108
c) 60
d) 50
184. Acetone and acetaldehyde can be distinguished by
a) Molisch test
b) Tollen's test
c) Schiff's test
d) Iodoform test
185. Hydroxamic acid test is employed to detect
a) Ketones
b) Aldehydes
c) Esters
d) amides
186. When $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COOH}$ is reduced with LiAlH_{4}, the compound obtained will be
a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}$
b) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
187. Conversion of benzaldehyde to 3-phenylprop-2-en-1-oic acid is
a) Perkin condensation
b) Claisen condensation
c) Oxidative addition
d) Aldol condensation
188. Dry distillation of calcium formate and subsequent treatment with conc KOH gives the mixture of
a) $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{HCOOK}$
b) $\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{HCOOK}$
c) $\mathrm{HCHO}, \mathrm{HCOOK}$
d) None of these
189. The main component of oil of winter green is
a) Salicylic acid
b) Methyl salicylate
c) Acetyl salicylic acid
d) salicylaldehyde
190. Acetic acid is manufactured by the fermentation of:
a) Ethanol
b) Methanol
c) Ethanal
d) Methanal
191. Which is/are hydroxy acid (s)?
a) Lactic acid
b) Tartaric acid
c) Citric acid
d) All of these
192. When cyclohexanone is treated with $N_{3} H$ (hydrazoic acid)
a) Caprolactum is obtained
b) Caprolactone is obtained
c) Caproserum is obtained
d) No reaction
193. Which of the following will not give cyclic products upon being heated or being treated by an acid?
a)

b)

c)

d)

194.
$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{CO}_{2}(\mathrm{COOH})_{2} \xrightarrow[\Delta]{\text { Pyridine }} X ; X$ is:
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$
c) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOOH}$
d) $(\mathrm{COOH}) \mathrm{CH}=\mathrm{CH}(\mathrm{COOH})$
195. The most suitable reagent for the conversion of primary alcohol into aldehyde with the same number of carbon is
a) Acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
b) Acidified KMnO_{4}
c) Alkaline KMnO_{4}
d) Pyridinium chlorochromate
196. Give the order of ease of decarboxylation of the following acids

C IV
a) I $>$ II $>$ III $>$ IV
b) III $>$ IV $>$ II $>$ I
c) IV $>$ III $>$ II $>$ I
d) I $>$ III $>$ II $>$ IV
197. Which is used as a preservative for biological specimens?
a) Formalin
b) Formic acid
c) Liquid NH_{3}
d) Acetic acid
198. Carbon forms a very large number of compounds because:
a) It is a non-metal
b) It forms covalent bonds
c) It has a strong tendency of catenation
d) Compounds are combustible
199. What will be the order of reactivity of the following carbonyl compounds with Grignard's reagent?

I

II

a) I $>$ II $>$ III $>$ IV
b) IV $>$ III $>$ II $>$ I
c) II $>$ I $>$ IV $>$ III
d) III $>$ II $>$ I $>$ IV
200. By which of the following reagents can the following conversion be affected?

a) $2 \mathrm{CH}_{3} \mathrm{MgBr}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$
b) HOCH_{2}
b) $-\mathrm{CH}_{2} \mathrm{OH}, \mathrm{H}^{+}, \mathrm{LiAlH}_{4}$, ether, $2 \mathrm{CH}_{3} \mathrm{MgBr}, \mathrm{H}_{3} \mathrm{O}^{+}$
c) $\mathrm{HOCH}_{2}-\mathrm{CH}_{2} \mathrm{OH}, \mathrm{H}^{+}, 2 \mathrm{CH}_{3} \mathrm{MgBr}, \mathrm{H}_{3} \mathrm{O}^{+}$
d) $\mathrm{HOCH}_{2}-\mathrm{CH}_{2} \mathrm{OH}, \mathrm{H}^{+}, \mathrm{H}_{2}, \mathrm{Pt}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{H}^{+}$
201. Which of the following does not give HVZ reaction?
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
b) $\mathrm{CH}_{3} \mathrm{COOH}$
c) HCOOH
d) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
202.

a)

b)

c)

d)

203. Which of the following on treatment with Baeyer's reagent will give meso-tartaric acid?
a) Fumaric acid
b) Maleric acid
c) Both (a) and (b)
d) None of these
204. Wolff-Kishner's reaction is:
a) Reduction of carbonyl compound into hydrocarbons
b) Reduction of carbonyl compound into alcohols
c) Reduction of nitrobenzene into aniline
d) Reduction of carbohydrates to alcohols
205. Colouration of $\mathrm{Br}_{2} / \mathrm{CCl}_{4}$ will be discharged by
a) Cinnamic acid
b) Benzoic acid
c) o-phthalic acid
d) acetophenone
206.
 $\xrightarrow[\text { (ii) } \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}]{\text {(i) Conc. } \mathrm{NaOH}}$
a)

b)

c)

d)

207. Aldehydes and ketones both give addition reaction with:
a) HCN
b) NaHSO_{3}
c) Both (a) and (b)
d) None of these
208. Identify the organic compound which, on heating with strong solution of NaOH , partly converted into an, acid salt and partly into alcohol.
a) Benzyl alcohol
b) Acetaldehyde
c) Acetone
d) Benzaldehyde
209. Which of the following will undergo Cannizzaro's reaction?
a) $\mathrm{CH}_{3} \mathrm{CHO}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHO}$
d) None of these
210. Long chain carboxylic acids are called fatty acids because:
a) The molecule is very fatty
b) The molecules were first found in natural fat
c) They have fattering effect
d) None of the above
211. Which of the following reagents can form a hydrazone with alkanone?
a) $\mathrm{NH}_{3} \mathrm{OHCl}$
b) PhNHNH_{2}
c) $\mathrm{NH}_{2} \mathrm{NHCONH}_{2}$
d) HCN
212. Identify X in the sequence:
$X \xrightarrow[\text { 2. } \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}]{\text {1. } \mathrm{CH}_{3} \mathrm{MgCl}} \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O} \xrightarrow[575 \mathrm{~K}]{\mathrm{Cu}} \mathrm{C}_{5} \mathrm{H}_{10}$:
a)

b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHO}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
213. The reaction of HCOOH with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives:
a) CO_{2}
b) CO
c) Oxalic acid
d) Acetic acid
214. Which of the following will react with water?
a) CHCl_{3}
b) $\mathrm{CCl}_{3} \mathrm{CHO}$
c) CCl_{4}
d) $\mathrm{CH}_{2} \mathrm{Cl} \cdot \mathrm{CH}_{2} \mathrm{Cl}$
215. $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3} \xrightarrow{\mathrm{Hg}^{2+} / \mathrm{H}^{+}} A, A$ is:
a)

b)

c)

d)

216.

Product is
Ca

b)

c)

d)

217. Ketones are first oxidation product of:
a) Primary alcohols
b) Secondary alcohols
c) Dihydric alcohols
d) Trihydric alcohols
218. Which does not react with Fehling's solution?
a) $\mathrm{CH}_{3} \mathrm{CHO}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
c) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
d) HCOOH
219. When sucrose is heated with conc. HNO_{3}, the product is:
a) Sucrose nitrate
b) Formic acid
c) Oxalic acid
d) Citric acid
220. Amides are formed by the reaction of acid chloride with
a) $\mathrm{NH}_{2} \mathrm{NH}_{2}$
b) NH_{3}
c) $\mathrm{NH}_{2} \mathrm{OH}$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHNH}_{2}$
221. The product formed in aldol condensation is:
a) A β-hydroxy aldehyde or a β-hydroxy ketone
b) An α-hydroxy aldehyde or ketone
c) An α, β-unsaturated ester
d) A β-hydroxy acid
222. Tartaric acid is not used in:
a) Dyeing of clothes
b) Cosmetics
c) Photography
d) Medicines
223. Acetaldehyde on treatment of few drops of $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives:
a) Ethyl acetate
b) Ethyl alcohol
c) Ethyl methylamine
d) Paraldehyde
224. Salt can be obtained from a concentrated seawater by:
a) Catalysis
b) Decomposition
c) Hydrolysis
d) Crystallization
225. Liquid obtained by distillation of red ant is
a) Formaline
b) Formaldehyde
c) Formic acid
d) Formyl chloride
226. Monocarboxylic acids show functional isomerism with :
a) Esters
b) Alcohols
c) Ethers
d) Aldehydes
227. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCHO} \xrightarrow[+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}]{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}\right]_{3} \mathrm{Al}} \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OH}$ is
a) Baeyer-Villiger reaction
b) Meerwein-Ponndorff Verley reduction
c) Vilsmeier-Hack reaction
d) None of the above
228. The product formed in the reaction n-hexanamide $+\mathrm{Br}_{2}+\mathrm{KOH}$, is
a) Hexanamine
b) Propanamine
c) Butanamine
d) pentanamine
229. Semicarbazide is:
a) $\mathrm{NH}_{2} \mathrm{CONH}_{2}$
b) $\mathrm{NH}_{2}-\mathrm{NH}_{2}$
c) $\mathrm{NH}_{2} \mathrm{CONHNH}_{2}$
d) None of these
230. Which statement is correct?
a) RCOOOH is stronger acid than RCOOH
b) Maleic acid is stronger than fumaric acid
c) Both (a) and (b)
d) None of the above
231. Which gives lactic acid on hydrolysis after reacting with $H C N$?
a) HCHO
b) $\mathrm{CH}_{3} \mathrm{CHO}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
d) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
232. The IUPAC name of the $\mathrm{CH}_{3} \mathrm{COCH}\left(\mathrm{CH}_{3}\right)_{2}$ is:
a) 4-methyl isopropyl ketone
b) 3-methyl-2-butanone
c) Isopropylmethyl ketone
d) 2-methyl-3-butanone
233. Which of the following will give readily a hydrocarbon?
a) $\mathrm{RCOOK} \xrightarrow{\text { Electrolysis }}$
b) $R \mathrm{COOAg} \xrightarrow{\mathrm{I}_{2}}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{3} \xrightarrow[h \nu]{\mathrm{Cl}_{2}}$
d) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCl}_{2} \xrightarrow{\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{OH}}$
234. In which of the following $\rangle \mathrm{C}=\mathrm{O}$ and $\backslash \mathrm{C}=\mathrm{C}^{\prime}$ reactions are not similar?
a) Hydrogenation
b) Elimination
c) Oxidation
d) None of these
235. Hydrogenation of benzoyl chloride in presence of Pd on BaSO_{4} gives
a) Benzyl alcohol
b) Benzaldehyde
c) Benzonic acid
d) Phenol
236. On treatment of citric acid with fuming $\mathrm{H}_{2} \mathrm{SO}_{4}$, which of the following is produced?
a) Acetone
b) Dihydroxy acetone
c) Citraconic anhydride
d) Acetone dicarboxylic acid
237. Base catalysed aldol condensation occurs with:
a) Propionaldehyde
b) Benzaldehyde
c) 2,2-dimethyl propionaldehyde
d) None of the above
238. When HCHO is treated with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$ in presence of NaOH , the products are:
a) $\mathrm{CH}_{3} \mathrm{OH}$ and HCOONa
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{c}) \mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONad}$) HCOONa and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}$
239. When formaldehyde is heated with ammonia the compound formed is:
a) Methyl amine
b) Amino formaldehyde
c) Hexamethylene tetramine
d) Formalin
240.
$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{HCHO} \xrightarrow[\text { Heat }]{\text { Dil. } \mathrm{NaOH}} A \xrightarrow[\mathrm{H}_{3} \mathrm{O}^{+}]{\mathrm{HCN}} B$.
The structure of compound B is
a)

c)

b)

CN
d)

241.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \xrightarrow[\mathrm{Fe}]{\mathrm{Cl}_{2}} X \xrightarrow[\text { KOH }]{\text { Alc. }} Y$ The compound Y is:
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$
c) $\mathrm{CH}_{2}=\mathrm{CH} \cdot \mathrm{COOH}$
d) $\mathrm{CH}_{2} \mathrm{CHClCOOH}$
242. The reaction of acetamide with water is an example of:
a) Alcoholysis
b) Hydrolysis
c) Ammonolysis
d) Saponification
243. The most acidic among the following is:
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
c) $\mathrm{CH}_{3} \mathrm{COOH}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
244. $A \xrightarrow{\mathrm{HCl}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCOCH}_{3}, A$ is
a) Acetone
b) Acetaldehyde
c) Propionaldehyde
d) Formaldehyde
245. When citric acid is heated at $150^{\circ} \mathrm{C}$, the main product formed is:
a) Acetone
b) Aconitic acid
c) Ethanal
d) None of these
246. The general formula $(R C O)_{2} O$ represents:
a) A ketone
b) An ether
c) An acid anhydride
d) An ester
247. Formaldehyde on condensation in presence of $\mathrm{Ca}(\mathrm{OH})_{2}$ gives:
a) Formose
b) Fructose
c) Maltose
d) Xylose
248. The correct formula of the product of reaction between $\phi \mathrm{CHO}$ and propanoic anhydride in presence of sodium propionate is
a) $\phi-\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{COOH}$
b) $\phi \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$
c)

d)

249. Which of the following compounds neither forms semicarbazone nor oxime?

b)

c)

d)

250. When a mixture of calcium benzoate and calcium acetate is dry distilled, the resulting compound is
a) Acetophenone
b) Benzaldehyde
c) Benzophenone
d) Acetaldehyde
251. An organic compound (A) with molecular formula $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$ forms an orange-red precipitate with 2,4-DNP reagent and gives yellow precipitate on heating with iodine and NaOH . It does not reduce Tollen reagent or Fehling solution nor it decolourises bromine water as Baeyer's reagent. On drastic oxidation with chromic acid, it gives a carboxylic acid having molecular formula $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$. Identify the compound (A)
a)

b)

c)

d)

252. Ethanoic acid or $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid because:
a) It is highly ionized
b) It has no replaceable hydrogen
c) It is slightly ionized
d) It is insoluble in water
253. Paraldehyde is:
a) A trimer of formaldehyde
b) A trimer of acetaldehyde
c) A hexamer of formaldehyde
d) A hexamer of acetaldehyde
254. Calcium formate on distillation gives
a) HCOOH
b) $\mathrm{CH}_{3} \mathrm{COOH}$
c) $\mathrm{CH}_{3} \mathrm{CHO}$
d) HCHO
255. Alkaline hydrolysis of 1,1-dichloroalkane yields:
a) Alkanal
b) Alkanol
c) Alkanone
d) Alkyne
256. Sodium ethoxide has reacted with ethanoyl chloride. The compound that is produced in the above reaction is
a) Diethyl ether
b) 2-butanone
c) Ethyl chloride
d) Ethyl ethanoate
257. Which of the following carboxylic acids undergoes decarboxylation easily?
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{COOH}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCOOH}$
c)

d)

258. Which of the following compound cannot formed an optically active cyanohydrins on reaction with HCN?
a) $\mathrm{CH}_{3} \mathrm{CHO}$
b) Benzaldehyde
c) 2-pentanone
d) 3-pentanone
259. The weakest acid among the following is:
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$
d) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} . \mathrm{COOH}$
260. Reaction of acid with alcohols is also known as
a) Esterification
b) Saponification
c) Alkalisation
d) None of these
261. Cinnamic acid is formed when $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CHO}$ condenses with $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ in presence of
a) Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$
b) Sodium acetate
c) Sodium metal
d) Anhydrous ZnCl_{2}
262. A mixture of water and NaCl can be separated by:
a) Sublimation
b) Evaporation
c) Filtration
d) Decantation
263. 500 mL of a hydrocarbon gas burnt in excess of oxygen yielded 2500 mL of CO_{2} and 3.0 litre of water vapour (all volumes measured at the same temperature and pressure). The formula of the hydrocarbon is:
a) $\mathrm{C}_{3} \mathrm{H}_{6}$
b) $\mathrm{C}_{2} \mathrm{H}_{4}$
c) $\mathrm{C}_{5} \mathrm{H}_{12}$
d) CH_{4}
264. Which halo acid gives cyclic ester on treatment with aq. NaOH ?
a)

b)

c)

d) All of these
265. Which reduces carboxylic acid directly to primary alcohols?
a) LiAlH_{4}
b) $\mathrm{Na}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
c) NaBH_{4}
d) All of these
266. Which of the product is formed when acetone is reacted with barium hydroxide solution?
a)

b)

c)

d)

267.

In Gattermann Koch reaction

a)

b)

c)

d)
 the product formed is
268. A colourless water soluble organic liquid decomposes sodium carbonate and liberates CO_{2}. It produces black precipitate with Tollen's reagent. The liquid is:
a) $\mathrm{CH}_{3} \mathrm{CHO}$
b) $\mathrm{CH}_{3} \mathrm{COOH}$
c) HCHO
d) HCOOH
269. The formation of cyanohydrin from a ketones is an example of:
a) Electrophilic addition
b) Nucleophilic addition
c) Nucleophilic substitution
d) Electrophilic substitution
270. Aldehyde are the first oxidation product of
a) Primary alcohol
b) Secondary alcohol
c) Tertiary alcohol
d) Dihydric alcohols
271.

. Product is
a)

b)

c)

d)

272. Urea is preferred to ammonium sulphate as a nitrogenous fertilizer because
a) It is more soluble in water
b) It is cheaper than ammonium sulphate
c) It is quite stable
d) It does not cause acidity in the soil
273. Boiling point of acetone is:
a) $100^{\circ} \mathrm{C}$
b) $60^{\circ} \mathrm{C}$
c) $56^{\circ} \mathrm{C}$
d) $90^{\circ} \mathrm{C}$
274. Which of the following is correct?
a) All aldehydes undergo Cannizzaro's reaction
b) Aldehydes are less susceptible to oxidation than ketones
c) Aldehydes are more susceptible to oxidation than ketones
d) Formaldehyde forms $\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{NH}_{2}$ with NH_{3}
275. Acetone may be produced from starch by the action of:
a) Acid
b) Certain bacteria
c) Oxidising agents
d) None of these
276. Benzaldehyde condense with acetaldehyde to produce
a) Cinnamic acid
b) Benzoic acid
c) Cinnamaldehyde
d) Acetic anhydride
277. Formic acid cannot be halogenated with chlorine in presence of red P, but acetic acid can be halogenated in the same way, because:
a) Formic acid is weaker than acetic acid
b) Formic acid has no α - H -atom in its molecule
c) Both (a) and (b)
d) None of the above
278. Treatment of acetaldehyde with ethyl magnesium bromide and subsequent hydrolysis gives:
a) l-butanol
b) 2-butanol
c) l-propanol
d) tert.-butanol
279. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}$ and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ can be distinguished by testing with:
a) Phenyl hydrazine
b) Hydroxylamine
c) Fehling's solution
d) Sodium bisulphate
280. Kjeldahl's method cannot be used for the estimation of nitrogen in:
a) Pyridine
b) Nitrocompounds
c) Azo compounds
d) All of these
281. Acetic anhydride reacts with diethyl ether in the presence of anhydrous AlCl_{3} to give:
a) Ethyl acetate
b) Methyl propionate
c) Methyl acetate
d) Propionic acid
282. Formaldehyde is not used in:
a) Adhesives
b) Bakelite
c) Tooth powders
d) Explosives
283. Acetic acid will be obtained on oxidation of
a) Ethanol
b) Propanal
c) Methanal
d) Glyoxal
284. Acetamide is
a) Highly acidic
b) Highly basic
c) Neutral
d) Amphoteric
285. Which reagent can convert acetic acid into ethanol?
a) $\mathrm{Na}+$ alcohol
b) $\mathrm{LiAlH}_{4}+$ ether
c) $\mathrm{H}_{2}+\mathrm{Pt}$
d) $\mathrm{Sn}+\mathrm{HCl}$
286. Which reaction, intermediate is formed during the condensation reaction between acetaldehyde and formaldehyde?
a) : $\overline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CHO}$
b) ${ }_{\mathrm{CH}_{2} \mathrm{CHO}}^{+}$
c) ${ }_{\mathrm{CH}}^{2} \mathrm{OH}$
d) : $\overline{\mathrm{C}} \mathrm{HCHO}$
287. Write the product of the following reaction

a)

b)

c)

d) None of the above
288. Which of the following regent can effectively carried out the following conversion?

a) LiAlH_{4}
b) NaBH_{4}
c) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$
d) H_{2} /Raney Ni
289. Which of the following on heating with aqueous KOH , produces acetaldehyde?
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$
b) $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$
c) $\mathrm{CH}_{3} \mathrm{CHCl}_{2}$
d) $\mathrm{CH}_{3} \mathrm{COCl}$
290. Which carbonyl compound does not undergo aldol condensation?
a) HCHO
b) $\mathrm{CH}_{3} \mathrm{CHO}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
d) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
291. Which of the following reagents reacts in same manner with $\mathrm{HCHO}, \mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{COCH}_{3}$?
a) HCN
b) $\mathrm{NH}_{2} \mathrm{OH}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHNH}_{2}$
d) All of these
292. Which of the following has most acidic proton?
a) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$
c) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COCH}_{3}$
d) $\left(\mathrm{CH}_{3} . \mathrm{CO}\right)_{3} \mathrm{CH}$
293. What are the organic products formed in the following reaction?

a) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}-\mathrm{OH}$ and $\mathrm{CH}_{3}-\mathrm{OH}$
b) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{OH}$ and $\mathrm{CH}_{3}-\mathrm{OH}$
c) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3}$ and $\mathrm{CH}_{3}-\mathrm{OH}$
d) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}-\mathrm{OH}$ and CH_{4}
294. Which on oxidation will not give a carboxylic acid with the replacement of carbon atoms?
a) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
b) $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
295.

This polymer is obtained when acetone is saturated with hydrogen chloride gas. Polymer is:
a) Phorone
b) Formose
c) Diacetonyl alcohol
d) Mesityl oxide
296. Which of the following does not react with NaHSO_{3} ?
a) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
b) $\mathrm{CH}_{3} \mathrm{CHO}$
c) HCHO
d) None of these
297. Which one is a polyprotic acid?
a) Acetic acid
b) Oxalic acid
c) Benzoic acid
d) Salicylic acid
298. Halogens can be estimated by:
a) Duma's method
b) Carius method
c) Liebig's method
d) None of these
299. Ethyl isocyanide on acidic hydrolysis generates
a) Ethylamine salt and methanoic acid
b) Propanoic acid and ammonium salt
c) ethanoic acid and ammonium salt
d) Methyl amine salt and ethanoic acid
300. A carbonyl compound reacts with hydrogen cyanide to form cyanohydrin which on hydrolysis forms a racemic mixture of α-hydroxy acid. The carbonyl compound is:
a) Diethyl ketone
b) Formaldehyde
c) Acetaldehyde
d) Acetone
301. Which would undergo aldol condensation?
a) $\phi \mathrm{CHO}+\mathrm{CH}_{3} \mathrm{COCH}_{3} \xrightarrow{\mathrm{OH}^{-}}$
b) $\mathrm{CCl}_{3} \mathrm{CHO}+\mathrm{HCHO} \xrightarrow{\mathrm{OH}^{-}}$
c)

d)

Product is
a)

b)

c)

d)

303. Aldehydes can be oxidised by
a) Tollen's reagent
b) Fehling solution
c) Benedict solution
d) All of these
304. Which can be oxidised to the corresponding carbonyl compound?
a) Propan-2-ol
b) Ortho-nitro-phenol
c) Phenol
d) 2-methylpropan-2-ol
305. When ethanal reacts with $\mathrm{CH}_{3} \mathrm{MgBr}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{dry} \mathrm{HCl}$, the product formed are
a) Ethyl alcohol and 2-propanol
b) Ethane and hemiacetal
c) 2-propanol and acetal
d) Propane and methyl acetate
306. In the context of the rearrangement of an oxime of a ketone to an amide (represented below)

Which of the following statement is/are correct?
a) It is the cis hydrocarbon radical (R) with respect to the OH group that migrates
b) The group that migrates never gets completely detached from the remainder of the molecule during the transformation
c) The rearrangement is intermolecular
d) None of the above
307. In presence of dry HCl gas, $\mathrm{CH}_{3} \mathrm{CHO}$ condenses with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ to give:
a) Aldol
b) Paraldehyde
c) Ethyl acetate
d) Acetal
308. Which of the following acids combines the properties of acid and aldehyde?
a) Acetic acid
b) Formic acid
c) Benzoic acid
d) Oxalic acid
309. Stephen's reaction is reduction of:
a) Alkyl cyanide with LiAlH_{4}
b) Alkyl cyanide with SnCl_{2} and HCl
c) Alkyl isocyanide with Na and alcohol
d) Acyl halide in the presence of $\mathrm{Pd} / \mathrm{BaSO}_{4}$
310. The order or reactivity of phenyl magnesium bromide with the following compound is

(I)

(II)

(III)
a) (II) $>$ (III) $>$ (I)
b) (I) $>$ (III) $>$ (II)
c) (II) $>$ (I) $>$ (III)
d) All react with the same rate
311. Alkaline hydrolysis of R_{2} C. Cl_{2} forms:
a) Propanone
b) Propane
c) Alkanone
d) Alkanal
312. Dry distillation of barium salt of Hexane-1,2-dicarboxylic acid gives:
a)

b)

c)

d)

313. Which is liquid at room temperature?
a) Acetamide
b) Formamide
c) Methane thiol
d) $\mathrm{CH}_{3} \mathrm{Cl}$
314. The key step in Cannizaro's reaction is the intermolecular shift of
a) Proton
b) Hydride ion
c) Hydronium ion
d) Hydrogen band
315. Identify the final product of the reaction

a)

b)

c)

d)

316. Which acid on heating gives CO and CO_{2} both?
a) HCOOH
b) $\mathrm{CH}_{3} \mathrm{COOH}$
c)

d)

317. A sequential reaction may be performed as represented below,

The appropriate reagent for step (3) is:
a) Bromine alone
b) Bromine and alkali
c) HBr
d) $\mathrm{P}_{2} \mathrm{O}_{5}$
318. Osazone formation is used to characterise:
a) Polymers
b) Sugars
c) Carboxylic acid
d) Alcohol
319. $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4} \xrightarrow{\Delta} X \xrightarrow{\mathrm{NH}_{3}} Y$

The compound X is
a) o-xylene
b) Phthalic acid
c) Phthalic anhydride
d) Salicylic acid
320. The products obtained in the reaction

a)

c)

d) None of the above
321. Acetic acid vapours when passed over aluminium phosphate forms:
a) $\mathrm{CH}_{3} \mathrm{CHO}$
b) Ketene
c) $\mathrm{C}_{2} \mathrm{H}_{6}$
d) $\mathrm{C}_{2} \mathrm{H}_{4}$
322. A mixture contains four solid organic compounds A, B, C, D. On heating only C changes from solid to vapour state. C can be separated from others present in a mixture by:
a) Distillation
b) Crystallization
c) Sublimation
d) Fractional distillation
323. What is the end product in the following sequences of operations;

Acetamide $\xrightarrow{\mathrm{P}_{2} \mathrm{O}_{5}} A \xrightarrow{4 \mathrm{H}} B$?
a) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
c) $\mathrm{CH}_{3} \mathrm{CN}$
d) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
324. The appropriate reagent for the transformation

a) $\mathrm{Zn}(\mathrm{Hg}), \mathrm{HCl}$
b) $\mathrm{NH}_{2} \mathrm{NH}_{2}, \mathrm{OH}^{-}$
c) $\mathrm{H}_{2} / \mathrm{Ni}$
d) NaBH_{4}
325. Which of the following compounds will undergo self aldol condensation in presence of cold dilute alkali?
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
b) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CHO}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
d) None of these
326. Which of the following would undergo Hofmann reaction to give a primary amine?
a) RCOCl
b) $\mathrm{R} \mathrm{CONHCH}_{3}$
c) $\mathrm{R} \mathrm{CONH}_{2}$
d) $R \mathrm{COOR}^{\prime}$
327. In kjeldahl's method, nitrogen present is estimated as:
a) N_{2}
b) NH_{3}
c) NO_{2}
d) None of these
328. Correct order of reactivity of acid derivatives towards a nucleophile is
a) $\mathrm{RCOCl}>(R \mathrm{CO})_{2} \mathrm{O}>R \mathrm{COO} R>R \mathrm{CONH}_{2}$
b) $R \mathrm{COOR}>\mathrm{RCOCl}>R \mathrm{CONH}_{2}>(R \mathrm{CO})_{2} \mathrm{O}$
c) $R \mathrm{CONH}_{2}>(R \mathrm{CO})_{2} \mathrm{O}>\mathrm{RCOOR}>\mathrm{RCOCl}$
d) $(R \mathrm{CO})_{2} \mathrm{O}>R \mathrm{COCl}>R \mathrm{COO} R>R \mathrm{CONH}_{2}$
329. Methylethyl ketone can be reduced to n-butane by
a) The Meerwein-Ponndroff reduction
b) The Wolf-Kishner reduction
c) $\mathrm{Mg}-\mathrm{Hg}, \mathrm{H}_{2} \mathrm{O}$
d) All of the above
330.

Show the final product of the reaction
a)

b)

c)

d)

331.

The name of the reaction and reagent used for it is
a) Cannizaro reaction, NaOH
b) Aldon condensation, OH^{-}
c) Tischenko reaction, $\mathrm{Al}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$
d) Perkin reaction, $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
332. Which statement is incorrect in the case of acetaldehyde and acetone?
a) Both react with hydroxylamine to form oximes
b) Both react with sodium bisulphite to form addition product
c) Both reduce ammoniacal silver nitrate to silver
d) Both react with hydrazine to form hydrazones
333. A compound ' A ' having the molecular formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$, on oxidation gives a compound ' B ' with molecular formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$. Compound ' B ' gave a 2, 4-dinitrophenylhydrazine derivative but did not answer haloform test or silver mirror test. The structure of compound ' A '
a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$

c)
OH

b)

d) $\underset{\mathrm{CH}_{3}}{\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OH}}$
334. Acetone is used:
a) As a solvent
b) In nail polishes
c) For storing acetylene under pressure
d) All are correct
335. Which of the following will form two isomers with semi carbazide?
a) Benzaldehyde
b) Acetone
c) Benzoquinone
d) Benzophenone
336. 15 mL of a gaseous hydrocarbon required 45 mL of oxygen for complete combustion. 30 mL of CO_{2} is formed. The formula of the hydrocarbon is:
a) $\mathrm{C}_{2} \mathrm{H}_{6}$
b) $\mathrm{C}_{2} \mathrm{H}_{4}$
c) $\mathrm{C}_{3} \mathrm{H}_{6}$
d) $\mathrm{C}_{2} \mathrm{H}_{2}$
337. First Noble Prize winner in chemistry is:
a) Van't Hoff
b) Rutherford
c) Pasteur
d) Madam Curie
338. Which cannot be used as acylating agent?
a) RCOBr
b) $(R \mathrm{CO})_{2} \mathrm{O}$
c) $\mathrm{RCH}_{2} \mathrm{COCl}$
d) RCONH_{2}
339.
 on heating gives:
a) Formic acid
b) Acetic acid $+\mathrm{CO}_{2}$
c) Oxalic acid
d) Acetaldehyde
340. With hot conc. KOH brown black resinous product is given by:
a) $\mathrm{CH}_{3} \mathrm{CHO}$
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
c) HCHO
d) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
341. Acetamide and ethyl amine are distinguished by reacting with
a) Br_{2} water
b) Acidic KMnO_{4}
c) aq. NaOH and heat
d) aq. HCl and heat
342. General formula of saturated carboxylic acid is:
a) $\mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{COOH}$
b) $\mathrm{C}_{n} \mathrm{H}_{2 n} \mathrm{O}_{2}$
c) Both (a) and (b)
d) None of these
343. The reagent which can be used to distinguish acetophenone from benzophenone is :
a) 2,4-dinitrophenyl hydrazine
b) Aqueous NaHSO_{3}
c) Benedict's solution
d) I_{2} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$
344. Acetaldehyde is not obtained in the reactions
a) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \xrightarrow[2 . \mathrm{Zn}, \mathrm{H}_{2} \mathrm{O}]{1 . \mathrm{O}_{3}}$
c) $\mathrm{HC} \equiv \mathrm{CH}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HgSO}_{4}}$
b) $\mathrm{CH}_{3} \mathrm{CH}=\frac{1 \cdot \mathrm{O}_{3}}{2 \cdot \mathrm{Zn}, \mathrm{H}_{2} \mathrm{O}}$
d) $\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{H}_{2} \xrightarrow{\mathrm{Pd}-\mathrm{BaSO}_{4}}$
345. The acid present in tomatoes is:
a) Lactic acid
b) Oxalic acid
c) Citric acid
d) Tartaric acid
346. Identify A and B in the following reaction $\mathrm{CH}_{3}-\mathrm{CH}_{3} \stackrel{\mathrm{~B}}{\longleftrightarrow} \mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{A}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
A
B
a) $\mathrm{HI}+\operatorname{red} \mathrm{P}$
LiAlH_{4}
b) Ni / Δ
LiAlH_{4}
c) LiAlH_{4}
$\mathrm{HI}+\operatorname{red} \mathrm{P}$
d) $\mathrm{Pd}-\mathrm{BaSO}_{4}$
$\mathrm{Zn}+\mathrm{HCl}$
347. A ketone reacted with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}$ reagent followed by hydrolysis gave a product which on dehydration gives an alkene. The alkene on ozonolysis gave diethyl ketone and acetaldehyde. The ketone is:
a) Dimethyl ketone
b) Ethyl methyl ketone
c) Diethyl ketone
d) Ethyl propyl ketone
348. Cross aldol condensation occurs between
a) Two same aldehydes
b) Two same ketones
c) Two different aldehydes and ketones
d) None of the above
349. The increasing order of the rate of HCN addition to compounds $A-D$ is:
(A) HCHO
(B) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(C) PhCOCH_{3}
(D) PhCOPh
a) $A<B<C<D$
b) $D<B<C<A$
c) $D<C<B<A$
d) $C<D<B<A$
350.

C is
a)
b) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}$
c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$
d)

351. Which method cannot be used for purification of liquids?
a) Chromatographic
b) Steam distillation
c) Sublimation
d) Distillation
352. $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ with excess of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}$ and hydrolysis gives
a)
$\mathrm{CH}_{3}-\mathrm{C}=0$
\mid
$\mathrm{C}_{2} \mathrm{H}_{5}$
b)
$\mathrm{CH}_{3}-\mathrm{C}-\mathrm{OH}$
c)
$\mathrm{CH}_{3}-\mathrm{C}=0$
\mid
CH_{3}
d)
$\mathrm{CH}_{3}-\stackrel{\mathrm{C}_{2} \mathrm{H}_{5}}{\mathrm{C}=0}$
353. Aniline is purified by:
a) Steam distillation
b) Simple distillation
c) Vacuum distillation
d) Extraction with a solvent
354. Percentage of $\operatorname{Se}($ at. mass $=78.4)$ in peroxidase anhydrase enzyme is 0.5% by weight, then minimum molecular mass of peroxidase anhydrase enzyme is:
a) 1.576×10^{4}
b) 1.576×10^{3}
c) 15.76
d) 2.136×10^{4}
355. Which reagent is most suitable for the following for the synthesis of $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ from $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$?
a) Grignard reagent
b) $\mathrm{KCN} / \mathrm{H}_{3} \mathrm{O}^{+}$
c) $\mathrm{HgSO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}$
d) PCl_{5}
356. The IUPAC name of acrolein is:
a) Propanal
b) Prop-2-en-l-al
c) Propan-2-ol
d) Prop-l-en-2-al
357. An organic compound contains hydrogen, oxygen, a single carbon atom and responds positively to Tollen's reagent. The compound is:
a) HCHO
b) $\mathrm{CH}_{3} \mathrm{OH}$
c) $\mathrm{CH}_{3} \mathrm{CHO}$
d) $\mathrm{CH}_{3} \mathrm{COOH}$
358. The reagent with which both acetaldehyde and acetophenone react easily are
a) Fehling's solution
b) Schiffs reagent
c) Tollen's reagent
d) 2, 4-dinitrophenylhydrazine
359. $\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{LiAlH}_{4}} \mathrm{~A}+\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{B}+\mathrm{H}_{2} \mathrm{O}$

In the above reactions ' A ' and ' B 'respectively are
a) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
b) $\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CHO}$
d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$
360. Formaldehyde gives an additive product with methyl magnesium iodide which on aqueous hydrolysis gives:
a) Isopropyl alcohol
b) Ethyl alcohol
c) Methyl alcohol
d) Propyl alcohol
361. In Kjeldahl's method of estimation of nitrogen, $\mathrm{K}_{2} \mathrm{SO}_{4}$ acts as:
a) Oxidizing agent
b) Catalytic agent
c) Hydrolysing agent
d) Boiling point elevator
362. The compound that doesn't undergo aldol condensation
a)

b)

c)

d)

363. Which of the following products is formed when adipic acid is heated?
a)

b)

c)

d)

364.

Here B and C are
a)
 and

b)

d) None of the above
c)

365. A silver salt of fatty acid on heating with an alkyl halide gives:
a) Ether
b) Alcohol
c) Aldehyde
d) Ester
366. For hydrolysis of the following functional groups, the decreasing order of reactivity is:
a) $\mathrm{RCOOR}>\mathrm{RCOCl}>\mathrm{RCONH}_{2}$
b) $\mathrm{RCOCl}>\mathrm{RCOOR}>\mathrm{RCONH}_{2}$
c) $\mathrm{RCOCl}>R \mathrm{CONH}_{2}>R \mathrm{COOR}$
d) $R \mathrm{COOR}>R \mathrm{CONH}_{2}>R \mathrm{COCl}$
367. The organic compounds A and B react with sodium metal and release H_{2} gas. A and B react with each other to give ethyl acetate. A and B are:
a) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
b) HCOOH and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
c) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{OH}$
d) $\mathrm{CH}_{3} \mathrm{COOH}$ and HCOOH
368.

a) Acetaldehyde
b) Formaldehyde
c) Acetone
d) Propionaldehyde
369. The hydrolysis product of $\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{CH}_{3} \mathrm{MgBr}$ is
a) n-butyl alcohol
b) Tertiary butyl alcohol
c) Secondary butyl alcohol
d) Isopropyl alcohol
370. Aldehyde used in the manufacture of perfumes is:
a) HCHO
b) $\mathrm{CH}_{3} \mathrm{CHO}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
d) $\mathrm{CCl}_{3} \mathrm{CHO}$
371.

Which is more stable?
a) X
b) Y
c) Both are equally stable
d) Can't be predicted
372. When sodium formate is heated it gives:
a) Hydrogen
b) Water
c) Sodium hydroxide
d) Carbon dioxide
373. In esterification, the reactivity of alcohols is:
a) $3^{\circ}>2^{\circ}>1^{\circ}$
b) $1^{\circ}>2^{\circ}>3^{\circ}$
c) Same in all cases.
d) None of these
374. Separation of organic compounds by column chromatography is due to:
a) Selective adsorption
b) Selective absorption
c) Solubilities
d) Selective adsorption and selective absorption
375. To determine the weight of halogen in the organic compound, the compound is heated with fuming HNO_{3} in presence of:
a) Ag
b) AgNO_{3}
c) AlCl_{3}
d) $\mathrm{Ag}_{2} \mathrm{SO}_{4}$
376. Cannizzaro's reaction involves:
a) Conversion of aldehyde into acid only
b) Conversion of aldehyde into alcohol only
c) Redox system reaction
d) Aromatic transformation
377.

The major product A is:
a)

b)

c)

d)

378. Which one of the following compounds on treatment with LiAlH_{4} will give a product that will give a positive iodoform test?
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
d) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
379. An aldehyde can be distinguished from a ketone by the use of the reagent:
a) Grignard reagent
b) Schiff's reagent
c) Hydroxylamine
d) Hydrazine
380. A compound A has molecular formula $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{OH}$. It reduces Fehling's solution and on oxidation gives a monocarboxylic acid $B . A$ is obtained by action of Cl_{2} on ethyl alcohol. A is:
a) Chloral
b) CHCl_{3}
c) $\mathrm{CH}_{3} \mathrm{Cl}$
d) Chloro acetic acid
381. Halogenation of silver salt of carboxylic acid using CCl_{4} as solvent to form alkyl halide is an example of:
a) Free radical halogenation
b) Nuclear halogenation
c) Hunsdiecker reaction
d) HVZ reaction
382. Anhydrous CaCl_{2} is used as drying agent because it:
a) Adsorbs water molecules
b) Absorbs water molecules
c) Adsorbs and absorbs water molecules
d) none of the above

$$
\text { " } A \text { " and " } B^{\prime \prime} \text { are }
$$

a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{COOH}$
c) $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{COCH}_{3}$
d) $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COC}_{2} \mathrm{H}_{5}$
384. Aldol condensation between the following compounds followed by dehydration gives methyl vinyl ketone:
a) Methanal and ethanal
b) Two mole of formaldehyde
c) Methanal and propanone
d) Two mole of ethanol
385. In a reaction $R \mathrm{CHO}$ is reduced to RCH_{3} using amalgamated zinc and concentrated HCI and warming the solution. The reaction is known as
a) Meerwein-Ponndorf reaction
b) Clemmensen's reduction
c) Wolff-Kishner reduction
d) Schiff's reaction
386. The Lassaigne's extract is boiled with conc. HNO_{3} while testing for halogens. By doing so it:
a) Increases the concentration of NO_{3}^{-}ions
b) Decomposes $\mathrm{Na}_{2} \mathrm{~S}$ and NaCN , if formed
c) Helps in the precipitation of AgCl
d) Increases the solubility product of AgCl
387. $\mathrm{CH} \equiv \mathrm{CH} \xrightarrow{\mathrm{CH}_{3} \mathrm{MgBr}} A \xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {(i) } \mathrm{CO}_{2}} B \xrightarrow{\mathrm{HgSO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}} D \xrightarrow\left[\left(\text { ii) } \mathrm{H}^{+}\right]{\stackrel{\text { (i) }\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} \mathrm{OH}}{\longleftrightarrow}} C\right.$

In the given reaction, product D is,
a) c
b)

c)

d)

388. Among the following compounds which will react with acetone to give a product containing $>\mathrm{C}=\mathrm{N}-?$
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHNH}_{2}$
c) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHC}_{6} \mathrm{H}_{5}$
389. Which can be used to distinguish aldehydes and ketones?
a) Fehling's solution
b) $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution
c) NaHSO_{3}
d) NH_{3}
390. The name of $\mathrm{H}-\mathrm{C}-\mathrm{COOH}$ is :

a) Maleic acid
b) Fumaric acid
c) Malonic acid
d) Succinic acid
391. The important step in Cannizzaro's reaction is the intermolecular shift of:
a) Proton
b) H -atom
c) Hydride ion
d) Hydronium ion
392. Given below are some statements concerning formic acid, which of them is true?
a) It is weaker acid than acetic acid
b) It is reducing agent
c) When its calcium salt is heated, it forms a ketone
d) It is an oxidising agent
393. When Lemery for the first time proposed his classification of substances in 1675 the substance not known among the following was:
a) Cane sugar
b) Wine
c) Iron
d) Penicillin
394. Formalin is:
a) Formaldehyde
b) Formaldehyde + methanol
c) Formaldehyde + methanol + water
d) Formaldehyde + water
395. Chloral belongs to the class of:
a) Alcohols
b) Aldehydes
c) Amides
d) Ketones
396. Which one of the following product is formed when calcium salt of adipic acid is heated?
a)

b)

c)

$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
d) |
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
397. The product of acid hydrolysis of P and Q can be distinguish by

a) Lucas reagent
b) $2,4-\mathrm{DNP}$
c) Fehling's solution
d) NaHSO_{3}
398. Which gives positive haloform test and positive Fehling's solution test?
a) Acetone
b) Acetaldehyde
c) Ethanol
d) Formaldehyde
399. Acetone when saturated with dry acid gives:
a) Diacetone alcohol
b) Mesityl oxide
c) Mesitylene
d) Propane
400. -COOH group of a compound does not react with NaHSO_{3} even though it has $\lambda \mathrm{C}=\mathrm{O}$ group because of:
a) Acid character
b) Resonance
c) Cyclic structure
d) The attached organic group
401. Aceto acetic ester behaves as:
a) An unsaturated hydroxyl compound
b) A keto compound
c) Both of these ways
d) None of the above
402. When benzoic acid is treated with PCl_{5} at $100^{\circ} \mathrm{C}$, it gives
a) Benzoyl chloride
b) o-chlorobenzoic acid
c) p-chlorobenzoic acid
d) Benzyl chloride
403. $\mathrm{CH}_{3} \mathrm{COOCH}_{3}+$ excess $\mathrm{PhMgBr} \longrightarrow$ Product $\xrightarrow{\mathrm{H}^{+}} \mathrm{X}$

Th product X is
a) 1,1-diphenylethanol
b) 1,1-diphenylethanol
c) Methyl phenylethanol
d) Methyl phenylketone
404. The major product obtained in the reaction,

- a)

c)

b)

d) None of the above

405. The end product B in the sequence of reactions, $R-X \xrightarrow{\mathrm{CN}^{-}} A \xrightarrow{\mathrm{NaOH}} B$ is:
a) An alkane
b) A carboxylic acid
c) Sodium salt of carboxylic acid
d) A ketone
406. The correct order of acidic strengths of the carboxylic acids is
a) Formic acid $<$ benzoic acid $<$ acetic acid
b) Formic acid < acetic acid < benzoic acid
c) Acetic acid < formic acid < benzoic acid
d) Acetic acid < benzoic acid < formic acid
407. When formic acid reacts with PCl_{3}, it forms:
a) Formyl chloride
b) Acetyl chloride
c) Methyl chloride
d) Propionyl chloride
408. Carboxylic acids react with diazomethane to yield:
a) Amines
b) Alcohols
c) Esters
d) Amides
409. $\mathrm{Me}_{2} \mathrm{CHCHO}+\mathrm{CH}_{2}=\mathrm{CHCOCH}_{3} \xrightarrow[\text { (ii) } \mathrm{OH}^{-}]{\text {(i)Michael addition }}[X]$ product is
a)

b)

c)

d)

410. Tamarind contains:
a) $(+)$ tartaric acid
b) (-) tartaric acid
c) Citric acid
d) Lactic acid
411. Which of the following, compounds is the reactant in Rosenmund's reduction?
a) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
b) $\mathrm{CH}_{3} \mathrm{CHO}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$
d) $\mathrm{CH}_{3} \mathrm{COCl}$
412. Aldol condensation will not take place in
a) HCHO
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
c) $\mathrm{CH}_{3} \mathrm{CHO}$
d) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
413. Benzaldehyde reacts with methyl amine to give
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{NCH}_{3}$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2}$
414. The reagent with which both acetaldehyde and acetone react easily is:
a) Fehling's solution
b) Grignard reagent
c) Schiff's reagent
d) Tollen's reagent
415. 0.20 g of a hydrocarbon on combustion gave $0.66 \mathrm{~g} \mathrm{CO}_{2}$. The percentage of hydrogen in the hydrocarbon is about :
a) 33
b) 45
c) 10
d) 90
416. Which of the following is hydroxy acid?
a) Malic acid
b) Lactic acid
c) Tartaric acid
d) All of these
417. Which one of the following undergoes reaction with 50% sodium hydroxide solution to give the corresponding alcohol and acid?
a) Phenol
b) Benzaldehyde
c) Butanal
d) Benzoic acid
418. Amides may be converted into amines by reaction named after:
a) Perkin
b) Claisen
c) Hofmann
d) Kekule
419. The correct order of decreasing acid strength of trichloroacetic acid, (A), trifluoroacetic (B), acetic acid (C) and formic acid (D) is:
a) $A>B>C>D$
b) $A>C>B>D$
c) $B>A>D>C$
d) $B>D>C>A$
420. Which of the following is the strongest acid?
a) $\mathrm{HCOOH}\left(\mathrm{p} K_{a} 3.77\right)$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\left(\mathrm{p} K_{a} 4.22\right)$
c) $\mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{p} K_{a} 4.71\right)$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\left(\mathrm{p} K_{a} 4.88\right)$
421. In Lassaigne's test sodium metal is used because:
a) It is a very reactive
b) Its melting point is low
c) Its compounds are soluble in water
d) all of the above
422. A process that involves the union of two or more molecules to form a new molecular aggregate without losing any simple molecule is known as:
a) Polarisation
b) Polymerisation
c) Photosensitization
d) None of these
423. o-toluic acid on reaction with $\mathrm{Br}_{2}+\mathrm{Fe}$ gives
a)

b)

c)

d)

424. The correct order of increasing acid strength of the compounds
(A) $\mathrm{CH}_{3} \mathrm{COOH}$
(B) $\mathrm{MeOCH}_{2} \mathrm{COOH}$
(C) $\mathrm{CF}_{3} \mathrm{COOH}$
(D)

is
a) B $<$ D $<$ A $<$ C
b) D $<$ A $<$ C $<$ B
c) D $<$ A $<$ B $<$ C
d) A $<$ D $<$ C $<$ B
425. Acetic acid and $\mathrm{P}_{2} \mathrm{O}_{5}$ reacts to produce which of the following?
a) Acetic anhydride
b) Acetaldehyde
c) Phosphoric acid
d) Acetone
426. Which of the following is an example of aldol condensation?
a) $2 \mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\text { Dil. } \mathrm{NaOH}} \mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{CHO}$
b) $\mathrm{HCHO} \xrightarrow{\text { Dil. } \mathrm{NaOH}} \mathrm{CH}_{3} \mathrm{OH}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{HCHO} \xrightarrow{\text { Dil. } \mathrm{NaOH}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
d) $2 \mathrm{CH}_{3} \mathrm{COCH}_{3} \xrightarrow{\text { Conc. } \mathrm{NaOH}} \mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COCH}_{3}$
427. Aldehydes behave as:
a) Oxidising agent
b) Reducing agent
c) Dehydrating agent
d) Oxidizing as well as reducing agent
428. Acetone is prepared by:
a) Pyrolysis of acetic acid
b) Oxidation of acetic acid
c) Pyrolysis of calcium acetate
d) Oxidation of n-propyl alcohol
429. Benzaldehyde gives a positive test with
a) Tollen's reagent
b) Fehling's solution
c) Benedict's solution
d) All of these
430. Isopropyl alcohol on passing over heated copper at $300^{\circ} \mathrm{C}$ gives:
a) Propylene
b) Acetaldehyde
c) Acetone
d) None of these
431. Vinegar contains:
a) 10 to 20% acetic acid
b) 10% acetic acid
c) 6 to 10% acetic acid
d) 100% acetic acid
432. What product is formed in the reaction

a)

b)

c)

d) None of these
433. Acetaldehyde is the rearrangement product of:
a) Ethyl alcohol
b) Vinyl alcohol
c) Allyl alcohol
d) Methyl alcohol
434. When sodium extract is prepared, generally the substance ignites:
a) Na
b) H_{2}
c) Organic compound
d) O_{2}
435. The compound which forms acetaldehyde when heated with dilute NaOH , is
a) 1,1-dicholoroethane
b) 1,1,1-trichloroethane
c) 1-chloroethane
d) 1,2-dichloroethane
436.

The reaction: $\left.\left.2\right|_{\mathrm{CHO}} ^{\mathrm{COOH}} \xrightarrow{\mathrm{OHOH}}\right|_{\mathrm{CH}_{2} \mathrm{OH}} ^{\mathrm{COOH}}+\left.\right|_{\mathrm{COONa}}$ is :
a) Crossed Cannizzaro reaction
b) Intermolecular Cannizzaro reaction
c) Intramolecular Cannizzaro reaction
d) Either of the above
437. The product of following reaction

a)

b)

c)

d)

438. Tollen's reagent is:
a) Ammoniacal cuprous chloride
b) Ammoniacal cuprous oxide
c) Ammoniacal silver nitrate
d) Ammoniacal silver nitrite
439. Which structural unit is possessed by aldehyde and not ketone?
a) $\alpha-\mathrm{H}$-atom
b) H -atom and carbonyl group
c) OH and carbonyl group
d) None of the above
440. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ is produced when the following is hydrolysed:
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
b) $\mathrm{CH}_{3} \mathrm{CHClCH}_{2} \mathrm{Cl}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCl}_{2}$
d) $\mathrm{CH}_{3} \mathrm{C} \cdot \mathrm{Cl}_{2} \cdot \mathrm{CH}_{3}$
441. Acetaldehyde undergoes self condensation in presence of aluminium ethoxide to give ethyl acetate. This reaction is called:
a) Perkin reaction
b) Tischenko's reaction
c) Cannizzaro's reaction
d) Aldol condensation
442. Formaldehyde polymerises from 6 to 100 molecules to form:
a) Formalin
b) Metaldehyde
c) Para formaldehyde
d) None of these
443. Magenta is:
a) Alkaline phenolphthalein
b) Red litmus
c) p-rosaniline hydrochloride
d) Methyl red
444. Aldehyde which is formed during photosynthesis of plants is
a) Methanal
b) Acetaldehyde
c) Propanal
d) Phenylmethanal
445. Which of the following carboxylic acids undergoes decarboxylation easily?
a) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CO}-\mathrm{CH}_{2} \mathrm{COOH}$
b) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CO}-\mathrm{COOH}$
c)

d)

446. The salicylic acid reacts with both the neutral FeCl_{3} solution and in esterification reaction because it contains:
a) Both an acid group and an alcoholic group
b) Both an acid group and an aldehydic group
c) Both an acid group and a phenolic group
d) Both an acid and ester group
447. Consider the following reaction:

The product ' A ' is:
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
448. Ink stains can be removed from clothes by treating them with:
a) Formic acid
b) Acetic acid
c) Benzoic acid
d) Oxalic acid
449. Identify 'acetaldoxime'
a) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{N}-\mathrm{NH}_{2}$
b) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{N}-\mathrm{OH}$
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{N}-\mathrm{OH}$
d) $\mathrm{CH}_{2}=\mathrm{N}-\mathrm{OH}$
450. Benzaldehyde and acetaldehyde can be distinguished by:
a) Iodoform test
b) $2: 4 \mathrm{DNP}$ test
c) NH_{3} reaction
d) Wolff-Kishner's reduction
451. Ethyl benzoate reacts with PCl_{5} to give
a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}+\mathrm{POCl}_{3}+\mathrm{HCl}$
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}+\mathrm{POCl}_{3}$
c) $\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}+\mathrm{POCl}_{3}$
d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{POCl}_{3}$
452. Lactic acid extracted from muscles is:
a) laevo-rotatory
b) dextro-rotatory
c) Similar with synthetic lactic acid
d) None of the above
453. Phenol is soluble in:
a) Dilute HCl
b) Both NaOH solution and dilute HCl
c) NaHCO_{3} solution
d) NaOH solution
454. The correct order of reactivity of PhMgBr with,

a) I $>$ II $>$ III
b) III $>$ II $>$ I
c) II $>$ III $>$ I
d) II $>$ I $>$ III
455. Reactions between organic compounds are generally slow because they are:
a) Ionic
b) Covalent
c) Metallic
d) None of these
456. Ethyl ester $\xrightarrow[\text { (excess) }]{\mathrm{CH}_{3} \mathrm{MgBr}} P$, the product ' P will be
(a)

b)

c)

d)

457.

What is ${ }^{\prime \prime} Y^{\prime \prime}$?
a)

b)

c)

d)

458. Lemon gives sour taste because of
a) Citric acid
b) Tartaric acid
c) Oxalic acid
d) Acetic acid
459. On warming formic acid with ammoniacal silver nitrate, the product formed is:
a) Silver oxide
b) Metallic silver
c) Silver formate
d) Formaldehyde
460. Simple distillation is used to separate liquids which differ in their boiling point by:
a) $5^{\circ} \mathrm{C}$
b) $10^{\circ} \mathrm{C}$
c) $30^{\circ}-80^{\circ} \mathrm{C}$
d) Less than $20^{\circ} \mathrm{C}$
461. Maximum percentage of chlorine is in:
a) Pyrene
b) PVC
c) Chloral
d) Ethylidene chloride
462. Which of the following aldehydes give red precipitated with Fehling solution?
a) Benzaldehyde
b) Salicylaldehyde
c) Acetaldehyde
d) None of these
463. Pinacole is:
a) 2,3-dimethyl-2,3-butandiol
b) 3,3-dimethyl-2-propanone
c) 3-methyl butan-2-ol
d) None of the above
464. $\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\mathrm{HCN}} \mathrm{A} \xrightarrow{\mathrm{HOH}} \mathrm{B}$. The product B is
a) Malonic acid
b) Glycolic acid
c) Lactic acid
d) Malic acid
465. A mixture of calcium acetate and calcium formate on heating gives:
a) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
b) $\mathrm{CH}_{3} \mathrm{CHO}$
c) HCHO
d) All of these
466. Which of the following can be used to differentiate between aldehyde and ketone?
a) Ammoniacal AgNO_{3}
b) Ammoniacal AgNO_{3} in presence of tartarate ion
c) I_{2} in the presence of base
d) Ammoniacal AgNO_{3} in the presence of citrate ion
467. If the compound contains C, H and halogen. When C and H are to be estimated the combustion tube at the exit should contain a:
a) Copper spiral
b) Silver spiral
c) Lead spiral
d) Iron spiral
468. A ketone on reduction gives:
a) Primary alcohol
b) Secondary alcohol
c) A dihydric alcohol
d) A mixture of above all three
469. Which is least soluble in water?
a) Phenol
b) Ethanol
c) Benzene
d) Benzoic acid
470. In a set of reactions propionic acid yielded a compound D.

The structure of D would be:
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHCH}_{3}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}$
471. Acetals are:
a) Aldehyde
b) Diethers
c) Ketones
d) Hydroxy aldehydes
472. Hexamethylene tetramine is used as an:
a) Analgesic
b) Antipyretic
c) Urinary antiseptic
d) All of these
473. Which of the following gives an aldehyde on dry distillation?
a) Calcium formate + calcium acetate
b) Calcium acetate + calcium benzoate
c) Calcium acetate
d) Calcium benzoate
474. Which aldehyde cannot be obtained by Rosenmund's reaction?
a) $\mathrm{CH}_{3} \mathrm{CHO}$
b) HCHO
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
d) All of these
475. Which is tribasic acid?
a) Malonic acid
b) Citric acid
c) Valeric acid
d) Tartaric acid
476. Which of the following on heating with aqueous KOH , produces acetaldehyde?
a) $\mathrm{CH}_{3} \mathrm{COCl}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$
c) $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$
d) $\mathrm{CH}_{3} \mathrm{CHCl}_{2}$
477. Fruits are preserved by using:
a) Aldehydes
b) Sodium benzoate
c) Formic acid
d) Salicylic acid
478. End product of the following reaction is
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \xrightarrow[\text { red } \mathrm{P}]{\mathrm{Cl}_{2}} X \xrightarrow{\text { Alc. } \mathrm{KOH}}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
c) $\mathrm{CH}_{2}=\mathrm{CHCOOH}$
$\mathrm{CH}_{2} \mathrm{CHCOOH}$
a) $\quad \stackrel{\mathrm{OH}}{\mathrm{OH}}$
b) 1
d)
Cl OH
479. Predict the product for the following

a)

b)

c)

d)

480. Ketones can be prepared by:
a) Rosenmund's reduction
b) Stephen's reduction
c) Both (a) and (b)
d) None of the above
481. The percentage of nitrogen in urea is about:
a) 64.6
b) 46.7
c) 35.8
d) 28
482. Collin's reagent is used to convert
a)

b) $-\mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CHO}$
c) $-\mathrm{CHO} \rightarrow-\mathrm{COOH}$
d) $-\mathrm{CHO} \rightarrow-\mathrm{CH}_{2} \mathrm{OH}$
483. Which of the following reactant give Tollen's reagent and Fehling's solution test?
a) $\mathrm{CH}_{3} \mathrm{CHO}$
b) $\mathrm{CH}_{3} \mathrm{COOH}$
c) $\quad \mathrm{I}$
d) $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{COOH}$
0
484. Reduction of aldehydes and ketones into hydrocarbons using $\mathrm{Zn}-\mathrm{Hg} \mathrm{HCl}$ conc. is called?
a) Cope reaction
b) Dow reaction
c) Wolff-Kishner reaction
d) Clemmensen reduction
485. How will you convert butan-2-one to propanoic acid?
a) Tollen's reagent
b) Fehling solution
c) $\mathrm{NaOH} / \mathrm{I}_{2} / \mathrm{H}^{+}$
d) $\mathrm{NaOH} / \mathrm{NaI} / \mathrm{H}^{+}$

a)

b)

d)

487. When vapours of acetic acid are passed over $\ldots . .300^{\circ} \mathrm{C}$ we get acetone.
a) $\mathrm{Al}_{2} \mathrm{O}_{3}$
b) CuO
c) MoO
d) Cu
488. Which product is obtained on reduction of methanal in the presence of concentrated NaOH ?
a) Formic acid and methyl alcohol
b) $\mathrm{CO}+\mathrm{H}_{2}$
c) Methyl alcohol
d) Formic acid
489. Which of the following doesn't give Fehling solution test?
a) Acetone
b) Propanal
c) Ethanal
d) Butanal
490. Which gives smell of burnt sugar on charring?
a) Tartaric acid
b) Formic acid
c) Oxalic acid
d) Acetic acid
491. Hydrated oxalic acid contains:
a) 5 water molecules
b) 1 water molecule
c) 2 water molecules
d) 4 water molecules
492. Cacodyl test is used for identification of:
a) HCOOH
b) $\mathrm{CH}_{3} \mathrm{COOH}$
c) Oxalic acid
d) Tartaric acid
493. During hydrogenation of oils vegetable ghee is formed. In this process:
a) Hydrogen is dissolved in the oil
b) Hydrogen combines with O_{2} of the oil
c) Esters of unsaturated fatty acids are reduced to those of saturated acids
d) Hydrogen drives off impurities from the oil
494. Hydrogenation of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOH}-\mathrm{COOH}$ over $\mathrm{Rh}-\mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst in methanol gives
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}$
b) $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CH}_{2} \mathrm{COOH}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOH} . \mathrm{CH}_{2} \mathrm{OH}$
d) $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CHOH}-\mathrm{COOH}$
495. Formaldehyde can be distinguished from acetaldehyde by the use of:
a) Schiff's reagent
b) Tollen's reagent
c) Fehling's solution
d) NaOH and iodine
496. Which of the following carbonyl compounds on condensation gives an aromatic compound?
a) $\mathrm{CH}_{3} \mathrm{CHO}$
b) HCHO
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
497. Mild oxidation of carboxylic acids occurs at \qquad position.
a) α
b) γ
c) β
d) δ
498. The compound obtained by the reduction of propionaldehyde by $\mathrm{Zn} / \mathrm{Hg}$ and conc. HCl is:
a) Propanol
b) Propane
c) Propene
d) None of these
499. Almost all amides exist in:
a) Solid state
b) Liquid state
c) Gaseous state
d) Liquid and gaseous state
500. In public urinals, we observe some nascent smell. This smell is due to:
a) Hydrolysis of urea of urine by urease of atmosphere into NH_{3} and CO_{2}
b) Formation of sulphamic acid by urea of urine
c) Reaction of CO_{2} of atmosphere with urea mononitrate in urine
d) Hydrogen present in air reacts with nitrogen forming NH_{3}
501. Trichloroacetaldehyde was subjected to Cannizaro's reaction by using NaOH .The mixture of the products contains sodium trichloroacetate ion and another compound. The other compound is
a) 2,2,2-trichlorethanol
b) Trichloromethanol
c) 2,2,2-trichloropropanol
d) Chloroform
502. The end products in the Cannizaro reaction of benzaldehyde is
a) $\mathrm{PhCO}_{2} \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{OH}$
b) $\mathrm{PhCO}_{2} \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
c) $\mathrm{PhCH}_{2} \mathrm{OH}, \mathrm{PhCOCH}_{3}$
d) $\mathrm{PhCO}_{2} \mathrm{H}, \mathrm{PhCOCH}_{3}$
503. Turpentine oil can be purified by:
a) Vacuum distillation
b) Fractional distillation
c) Steam distillation
d) Simple distillation
504. $\mathrm{CH}_{3} \mathrm{NH}_{2}$ is heated with sodium and extracted with water and then AgNO_{3} is added. The white ppt. obtained is of:
a) AgCN
b) $\mathrm{Ag}_{2} \mathrm{SO}_{4}$
c) AgCl
d) $\mathrm{Cl} \cdot \mathrm{CH}_{2} \mathrm{COOAg}$
505. An ester $(A) \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$ was treated with LiAlH_{4} to give compound $(B) \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}$ and $(C) \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$. B on slight heating with an acid forms $(D) \mathrm{C}_{9} \mathrm{H}_{10}$. Compound D on vigorous oxidation with KMnO_{4} gives terephthalic acid. The compound (A), is
a)

c)

506. Elements found in explosive are:
a) S
b) N
c) Both S and N
d) C
507. Which acid forms Zwitter ions?
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) Salicylic acid
c) Phthalic acid
d) Sulphanilic acid
508. Acetaldehyde cannot show
a) Iodoform test
b) Lucas test
c) Benedict's test
d) Tollen's test
509. In Lassaigne's test for N, S and halogens, the organic compound is:
a) Fused with sodium
b) Dissolved with sodamide
c) Extracted with Sodamide
d) Fused with calcium
510. The number of áldehydes of molecular formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ is:
a) 2
b) 3
c) 4
d) 5
511. Which of the following compound a would have the smallest value of $p K_{a}$?
a) $\mathrm{CHF}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CF}_{2} \mathrm{COOH}$
c) $\mathrm{CH}_{2} \mathrm{FCHFCH}_{2} \mathrm{COOH}$
d) $\mathrm{CH}_{3} \mathrm{CF}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
512. Hydrolysis of an ester gives acid A and alcohol B. The acid reduces Fehling's solution. Oxidation of alcohol B gives acid A. The ester is:
a) Methyl formate
b) Ethyl formate
c) Methyl acetate
d) Ethyl acetate
513. Weakest acid among the following is:
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{CH}_{2} \mathrm{ClCOOH}$
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$
d) $\mathrm{CCl}_{3} \mathrm{COOH}$
514. What is the product in following cross Claisen condensation?
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOC}_{2} \mathrm{H}_{5}+\underset{\mathrm{COOC}_{2} \mathrm{H}_{5}}{\mathrm{COOC}_{2} \mathrm{H}_{5}} \xrightarrow[\mathrm{H}^{+}]{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}}$?
a)

b)

c)

d)

515. 0.22 g of organic compound $\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{O}$ which occupied 112 mL at NTP and on combustion gave $0.44 \mathrm{~g} \mathrm{CO}_{2}$. The ratio of X to Y in the compound is:
a) $1: 1$
b) $1: 2$
c) $1: 3$
d) $1: 4$
516. Rate of the reaction:

a) OCOCH_{3}
b) NH_{2}
c) $\mathrm{OC}_{2} \mathrm{H}_{5}$
d) Cl
517. Among the following acids which has the lowest $\mathrm{p} K_{a}$ value?
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{COOH}$
c) HCOOH
d) $\mathrm{CH}_{3} \mathrm{COOH}$
518. The reaction of an organic compound with ammonia followed by nitration of the product gives a powerful explosive, called RDX. The organic compound is
a) Phenol
b) Toluene
c) Glycerine
d) Formaldehyde
519. The decreasing order of solubility of methanal (A), propanaldehyde (B), benzaldehyde (C) and acetophenone (D) :
a) $A>B>C>D$
b) $D>C>B>A$
c) D $>$ A $>B>C$
d) $B>A>C>D$
520. Why - OH group in ethyl alcohol is neutral, while it is acidic in acetic acid?
a) In acetic acid - OH group is attached with electronegative carbonyl group
b) Ethyl alcohol molecules get associated
c) Acetic acid has much stronger hydrogen bonding
d) All of the above
521. The class of compounds that are reduced to primary alcohols and also respond to Fehling's solution are known as:
a) Aliphatic aldehydes
b) Aliphatic ketones
c) Aromatic amines
d) Aromatic ketones
522. $\mathrm{CH}_{3}-\mathrm{CHO}+\mathrm{HCN} \rightarrow$ A.Compound A on hydrolysis gives
a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}$
b) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
$\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{COOH}$
c) $\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{COOH}$
d) $\quad \mid$
OH
523. Which of the following aldehydes on chlorination will give a product, which can be used for the synthesis of DDT?
a) HCHO
b) $\mathrm{CH}_{3} \mathrm{CHO}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
524. The relation of the isoelectric point for an amino acid to solubility is:
a) The two are not related
b) An amino acid is the least soluble at the isoelectric point
c) An amino acid has the maximum solubility at the isoelectric point
d) Solubilities of only some amino acids depend on it
525. The discovery that shocked the vital force theory was:
a) Stereoisomerism
b) Synthesis of indigo
c) Wöhler's synthesis of urea from $\mathrm{NH}_{4} \mathrm{CNO}$
d) Fermentation of sugars
526. α-chloropropionic acid on treatment with alcoholic KOH followed by acidification gives:
a) $\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})-\mathrm{COOH}$
b) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COOH}$
c) $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$
d) None of the above
527. A mixture of camphor and NaCl can be separated by:
a) Sublimation
b) Evaporation
c) Filtration
d) Decantation
528. When $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COOH}$ is reduced by LiAlH_{4}, the compound obtained is:
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
b) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OH}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
529. Among the given compounds, the most susceptible to nucleophile attack at the carbonyl group is:
a) MeCOCl
b) MeCHO
c) MeCOOMe
d) MeCOOCOMe
530. In Tischenko's reaction an aldehyde is heated with catalyst:
a) NaOH
b) $\mathrm{Al}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$
c) $\mathrm{Al}_{2} \mathrm{O}_{3}$
d) $\mathrm{Mg} / \mathrm{Hg}$
531. Identify Z in the sequence,

a)

b) $\mathrm{CH}_{3} \mathrm{CN}$
c) $\mathrm{CH}_{3} \mathrm{COOH}$
d) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
532. In the α-halogenation of aliphatic acids (HVZ reaction) the catalyst used is:
a) Zn
b) P
c) FeCl_{3}
d) AlCl_{3}
533. Distillation under reduced pressure in principle resembles with:
a) Steam distillation
b) Fractional distillation
c) Azeotropic distillation
d) All of these
534. Which of the following does the best represent the structure of the carboxylate ion?
a)

b)

d) None of these
535. Acetic acid is obtained when:
a) Glycerol is heated with sulphuric acid
b) Methyl alcohol is oxidized with potassium permanganate
c) Acetaldehyde is oxidized with potassium dichromate and sulphuric acid
d) Calcium acetate is distilled in presence of calcium formate
536.

Product is
a)

b)

c)

d)

537. Acetophenone is used in:
a) Toilet soaps
b) Preparation of hypnotic drug
c) Perfumery
d) Phenacyl chlorine preparation used in tear gas shells
538. In organic compounds sulphur is estimated as:
a) $\mathrm{H}_{2} \mathrm{SO}_{4}$
b) BaSO_{4}
c) SO_{2}
d) BaCl_{2}
539.
 $\xrightarrow[\text { (ii) } \mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}]{\text { (i) } \mathrm{NaOH} / 100^{\circ} \mathrm{C}}$

Major product is
a)

b)

c)

d)

540. Malonic acid and succinic acid are distinguished by:
a) Heating
b) NaHCO_{3}
c) Both (a) and (b)
d) None of these
541. Pleasant odours of common fruits is due to:
a) Alcohol
b) Fats
c) Sugars
d) Esters
542. Which one of the following pairs gives effervescence with aq. NaHCO_{3} ?
$\mathrm{CH}_{3} \mathrm{COCl}$
(I)
$\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
(III)
$\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(II)
$\mathrm{CH}_{3} \mathrm{COOCOCH}_{3}$
(iv)
a) I and II
b) I and IV
c) II and III
d) I and III
543. The reduction of aldehydes and ketones to the corresponding alkanes in presence of alkaline hydrazine solution is called:
a) MPV reaction
b) Stephen reduction
c) Wolff-Kishner's reduction
d) Cannizzaro's reaction
544. The acid showing salt like structure in aqueous solution is:
a) Acetic acid
b) Benzoic acid
c) Formic acid
d) α-aminoacetic acid
545. Cannizaro reaction is given by
a) HCHO
b)

c)

d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
546. Acetone on addition to methyl magnesium bromide forms a complex, which on decomposition with acid gives X and $\mathrm{Mg}(\mathrm{OH}) \mathrm{Br}$. Which one of the following is X ?
a) $\mathrm{CH}_{3} \mathrm{OH}$
b) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
547. $\mathrm{OHC}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COCH}_{3} \xrightarrow[\Delta]{\mathrm{OH}^{-}}$? Major product is
a)

b)

c)

d)

548. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow[\text { I }]{\mathrm{Cu}, 573 \mathrm{~K}} X \underset{\text { II }}{[\mathrm{O}]} Y \xrightarrow[\text { III }]{\mathrm{Br}_{2}, \mathrm{P}} \mathrm{BrCH}_{2} \mathrm{COOH}$

Reaction I, II and III respectively are
a) Reduction, oxidation and substitution
b) Dehydration, oxidation and substitution
c) Dehydrogenation, oxidation and substitution
d) Dehydration, oxidation and elimination
549. Chromatographic techniques of purification can be used for:
a) Coloured compounds
b) Liquids
c) Solids
d) All of these
550. Decarboxylation of malonic acid gives:
a) HCHO
b) $\mathrm{COOH}-\mathrm{COOH}$
c) $\mathrm{CH}_{3} \mathrm{COOH}$
d) CH_{4}
551. Which of following reactions convert acetone into hydrocarbon having same number of carbon atoms?
a) Wolff-Kishner reaction
b) Hofmann reaction
c) Grignard reaction
d) Reduction with LiAlH_{4}
552. A compound $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ gives a positive test of carbonyl group, gives a negative test with Fehling solution but gives positive haloform test and on reduction it gives normal pentane. Identify the compound
a) 3-pentanone
b) 2-pentanone
c) 1,5-pentanediol
d) None of these
553. Fruity smell is given by
a) Esters
b) Alcohols
c) Chloroform
d) Acid anhydrides
554. The reaction of a carboxylic acid gives effervescences of CO_{2} with NaHCO_{3}. The CO_{2} comes from:
a) $\mathrm{R}-\mathrm{COOH}$
b) NaHCO_{3}
c) Both (a) and (b)
d) None of these
555. Hydrolysis of HCN gives:
a) Acetic acid
b) Formaldehyde
c) Acetaldehyde
d) Formic acid
556. Which of the following is an example of aldol condensation?
a) $2 \mathrm{CH}_{3} \mathrm{COCH}_{3} \xrightarrow{\text { Dil. } \mathrm{NaOH}} \mathrm{CH}_{3} \mathrm{COHCH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$
b) $2 \mathrm{HCHO} \xrightarrow{\text { Dil. } \mathrm{NaOH}} \mathrm{CH}_{3} \mathrm{OH}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{HCHO} \xrightarrow{\text { Dil. } \mathrm{NaOH}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
d) None of the above
557. Benedict's solution provides:
a) Ag^{+}
b) Cu^{2+}
c) Ba^{2+}
d) Li^{+}
558. Which of the following product is formed in the reaction
$\mathrm{CH}_{3} \mathrm{MgBr} \xrightarrow[(\mathrm{ii}) \mathrm{H}_{2} \mathrm{O}]{\left(\text { (i) } \mathrm{CO}_{2}\right.}$?
a) Acetic acid
b) Methanoic acid
c) Methanol
d) Ethanal
559. The Cannizaro reaction is not given by
a) Trimethyl acetaldehyde
b) Acetaldehyde
c) Benzaldehyde
d) Formaldehyde
560. Carboxylic acids readily dissolve in aqueous sodium bicarbonate, liberating carbon dioxide. Which one of the following is correct?
a) Free carboxylic acid and its conjugate base are of comparable stability.
b) The free carboxylic acid is more stable than its conjugate base.
c) The conjugate base of the carboxylic acid is more stable than the free carboxylic acid.
d) The conjugate acid of the carboxylic acid is more stable than the free carboxylic acid.
561. $\mathrm{ClCH}_{2} \mathrm{COOH}$ is heated with fuming HNO_{3} in the presence of AgNO_{3} in Carius tube. After filtration and washing the precipitate obtained is:
a) AgNO_{3}
b) AgCl
c) $\mathrm{Ag}_{2} \mathrm{SO}_{4}$
d) $\mathrm{ClCH}_{2} \mathrm{COOA}_{g}$
562. The correct order of reactivity of $>\mathrm{CO}$ group
in given compounds is:
a)

b)

c)

d)

563. Doctors detect diabetes disease by testing the presence of glucose in urine with :
a) Nessler's reagent
b) Fehling's solution
c) Fenton's reagent
d) Silver nitrate solution
564. Which reaction is used for the preparation of acetophenone?
a) Reimer-Tiemann reaction
b) Wurtz-Fittig reaction
c) Friedel-Craft's reaction
d) Cannizaro's reaction
565. Carbonyl group undergoes:
a) Electrophilic addition reactions
b) Nucleophilic addition reactions
c) Both (a) and (b)
d) None of the above
566. Carbon shows maximum capacity of catenation because:
a) Carbon shows variable valency
b) In carbon there is one extra empty d-orbital
c) $\mathrm{C}-\mathrm{C}$ bond strength is very low
d) $\mathrm{C}-\mathrm{C}$ bond strength is very high
567. The enol form of acetone after treatment with $\mathrm{D}_{2} \mathrm{O}$, give
$\mathrm{H}_{3}-\mathrm{C}=\mathrm{CH}_{3}$
a)
a) $\quad 1$
b)

$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}-\mathrm{CH}_{2} \mathrm{D}$
c)
I
OH
d)

568. An important reaction of acetone is autocondensation in presence of concentrated sulphuric acid to give the aromatic compound
a) Mesitylene
b) Mesityl oxide
c) Trioxan
d) Phorone
569. Acetals are
a) Ketones
b) Diethers
c) Aldehyde
d) Hydroxy aldehydes
570. Azeotropes are:
a) Liquid mixture, which distil unchanged in composition
b) Liquids mixed in equal proportion
c) Sodium which form solutions of definite composition
d) Gaseous mixture, which cannot be separated
571. The name glacial acid is given to pure acetic acid:
a) Below $16.6^{\circ} \mathrm{C}$ it is white liquid
b) It forms ice like solid below $16.6^{\circ} \mathrm{C}$
c) It is mixed with methanol
d) Pure acetic acid above $16.6^{\circ} \mathrm{C}$
572. The conversion of $\mathrm{CH}_{3} \mathrm{OH}$ to $\mathrm{CH}_{3} \mathrm{COOH}$ can be brought in by:
a) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$
b) $\mathrm{CO}+\mathrm{Rh}$
c) KMnO_{4}
d) $\mathrm{H}_{3} \mathrm{PO}_{4}$
573. The IUPAC name of tartaric acid is:
a) 2,3-dihydroxy butane-1-4-dicarboxylic acid
b) 1,4-dihydroxy butane-2-3-dioic acid
c) Butane-1-4-dicarboxylic acid
d) None of the above
574. The IUPAC name of caproic acid is:
a) Pentanoic acid
b) Hexanoic acid
c) Heptanoic acid
d) Octanoic acid
575. An azeotropic mixture of ethanol and water is first treated with before subjecting for fractional distillation to separate them.
a) Anhydrous lime
b) $\mathrm{C}_{6} \mathrm{H}_{6}$
c) Both (a) and (b)
d) None of these
576. Acetaldehyde on oxidation with SeO_{2} gives:
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
c) $\mathrm{CHO} \cdot \mathrm{CHO}$
d) None of these
577. Acetaldehyde is used:
a) In the preparation of dyes
b) In the preparation of chloral
c) In the preparation of paraldehyde
d) All are correct
578. Consider the following reactions,
$\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{CaCO}_{3}} A \xrightarrow{\text { Heat }} B$
Compound B is:
a) An ether
b) An alcohol
c) An aldehyde
d) A ketone
579. Ethanal reacts with alkali to give 3-hydroxybutanal. This reaction is:
a) Polymerisation
b) Claisen condensation
c) Reimer-Tiemann reaction
d) Aldol condensation
580. When acetic acid is dissolved in benzene its molecular mass:
a) Decreases
b) Increases
c) Either decreases or increases
d) Suffers no change
581. Chloral is prepared industrially by the chlorination of:
a) Propanone
b) Formaldehyde
c) Ethanol
d) Chloroform
582. Paraldehyde is used as a:
a) Soporific
b) Poison
c) Polymer
d) Dye
583. Identify the final product (D) of the reaction

a)

b)

c)

d)

584. Ketones are prepare by:
a) Clemmensen's reduction
b) Rosenmund's reduction
c) Oppenauer's oxidation
d) Cannizzaro's reaction
585. The correct sequence of decreasing order of reactivity of hydrolysis of acid chlorides is
a) $\mathrm{PhCOCl}>p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COCl}$
$>p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{COCl}$
b) $\begin{aligned} & \mathrm{PhCOCl}>p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{COCl} \\ & >p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COCl}\end{aligned}$
c) $\mathrm{p}-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COCl}>\mathrm{PhCOCl}$ $>p-C \mathrm{H}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{COCl}$
d) $\mathrm{p}-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COCl}>p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{COCl}$ $>\mathrm{PhCOCl}$
586. When acetamide is treated with Br_{2} and caustic soda, the product formed is
a) N -bromamide
b) Bromoacetic acid
c) Methanamine
d) Ethanamine
587. The product (A) of the following reaction

a)

b)

c)

d)

588. Nitration of salicylic acid will give:
a) 2,4,6-trinitophenol
b) 2,4,6-trinitrobenzoic acid
c) 2,4,6-trinitrobenzene
d) None of the above
589. In Dumas' method of estimation of nitrogen 0.35 g of an organic compound gave 55 mL of nitrogen collected at 300 K temperature and 715 mm pressure. The percentage composition of nitrogen in the compound would be:
(Aqueous tension at $300 \mathrm{~K}=15 \mathrm{~mm}$)
a) 14.45
b) 15.45
c) 16.45
d) 17.45
590. A powerful sedative made from acetaldehyde is:
a) Acetic anhydride
b) Paraldehyde
c) Acetic acid
d) Acetamide
591. An organic compound of molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ did not give a silver mirror with Tollen's reagent, but gave an oxime with hydroxylamine, it may be
a) $\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{3}$
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}$
c) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OH}$
d) $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}=\mathrm{CH}_{2}$
592. Trichloroacetaldehyde was subjected to Cannizzaro's reaction by using NaOH . The mixture of the products conatains sodium trichloroacetate ion and another compound. The other compound is:
a) 2,2,2-Trichloroethanol
b) Trichloromethanol
c) 2,2,2-Trichloropropanol
d) Chloroform
593. Acetic anhydride is prepared in the laboratory by heating sodium acetate with
a) Ethyl chloride
b) Acetyl chloride
c) Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
d) Zinc dust
594.

The compound B is
a)

b)

c)

d)

595. Which one of the following compound gives aspirin on reacting with acetic anhydride in presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
a)

b)

c)

d)

596. The acid which contains the aldehyde group is
a) Acetic acid
b) Formic acid
c) Benzoic acid
d) Propionic acid
597. When acetyl chloride reacts with any amine, the reaction is known as:
a) Saponification
b) Esterification
c) Acetylation
d) Condensation
598. Fehling solution is
a) $\mathrm{CuSO}_{4}+$ lime
b) $\mathrm{CuSO}_{4}+\mathrm{NaOH}(a q)$
c) $\mathrm{CuSO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3}$
d) None of these
599. In the Rosenmund's reaction
$\mathrm{RCOCl}+\mathrm{H}_{2} \xrightarrow{\mathrm{Pd} / \mathrm{BaSO}_{4}} \mathrm{RCHO}+\mathrm{HCl} \mathrm{BaSO} 4$ here
a) Promotes catalytic activity of Pd
b) Removes the HCl formed in the reaction
c) Deactivates palladium
d) Activates palladium
600. Formaldehyde can be manufactured from:
a) Natural gas
b) Water gas
c) Both (a) and (b)
d) None of these
601. Which of the following methods is not employed to prepare methyl benzoate $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOCH}_{3}$?
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}$,
, b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{~N}_{2}, \Delta$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOC}_{2} \mathrm{H}_{5}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{l}$
602. The boiling and melting points of carboxylic acids depend on:
a) Hydrogen bonding
b) Polarization
c) Resonance
d) All of these
603. Complete the following reaction $R \mathrm{COOH} \xrightarrow[\Delta]{\mathrm{P}_{2} \mathrm{O}_{5}}$?
a) Acid anhydride
b) Ketone
c) Aldehyde
d) Ester
604. Which of the following does not undergo Cannizaro's reaction?
a) Benzaldehyde
b) 2-methylpropanal
c) p-methoxybenzaldehyde
d) 2,2-dimethylpropanal
605. The strongest acid amongst the following compound is:
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) HCOOH
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{Cl}) \mathrm{COOH}$
d) $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
606. Phthalic acid
$\Delta \downarrow$
$A \xrightarrow{\mathrm{NH}_{3}} B \xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\mathrm{NaOH}} C \xrightarrow{\mathrm{Br}_{2} / \mathrm{KOH}} D \xrightarrow{\mathrm{HCl}} E$
In this reaction, the product E is
a) o-nitrobenzoic acid
b) Salicylic acid
c) Anthranilic acid
d) Crotonic acid
607. In the Lassaigne's test the Sulphur present in the organic compound first changes into:
a) $\mathrm{Na}_{2} \mathrm{SO}_{3}$
b) CS_{2}
c) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
d) $\mathrm{Na}_{2} \mathrm{~S}$
608. Which of the following statements is correct about a carbonyl group?
a) The carbonyl carbon is $s p$-hybridised
b) The carbonyl carbon is $s p^{3}$-hybridised
c) The three groups attached to the carbonyl carbon lie in the same plane
d) The three groups attached to the carbonyl carbon lie in different planes
609. Formaldehyde and formic acid can be distinguished by:
a) Tollen's reagent
b) Fehling's solution
c) Ferric chloride
d) NaHCO_{3}
610. Oxidation of which compound is not possible?
a) $\mathrm{CH}_{3}-\mathrm{COOH}$
b) $\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{3}$
c) $\mathrm{CH}_{3}-\mathrm{CHO}$
d) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$
611. Which type of isomerism is not common in carboxylic acid?
a) Chain
b) Functional
c) Metamer
d) Optical
612. The acidity of the compounds $\mathrm{RCOOH}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}, \mathrm{ROH}$ decreases in the order
a) $\mathrm{RCOOH}>\mathrm{H}_{2} \mathrm{CO}_{3}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}>\mathrm{ROH}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}>\mathrm{RCOOH}>\mathrm{H}_{2} \mathrm{CO}_{3}>\mathrm{ROH}$
c) $\mathrm{ROH}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}>\mathrm{RCOOH}>\mathrm{H}_{2} \mathrm{CO}_{3}$
d) $\mathrm{H}_{2} \mathrm{CO}_{3}>\mathrm{RCOOH}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}>\mathrm{ROH}$
613. Which one of the following will undergo meta-sustitution on monochlorination?
a) Ethoxybenzene
b) Chlorobenzene
c) Ethyl benzoate
d) Phenol
614. When acetamide is hydrolysed by boiling with acid, the product obtained is
a) Acetic acid
$\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{Br}_{2} / \mathrm{P}} \mathrm{Y} \xrightarrow[(\mathrm{ii}) \mathrm{H}_{3} \mathrm{O}^{+}]{\substack{\text { b) Ethyl amine } \\ \text { (i) } \mathrm{KCN}}} X$ Here, X is
a) Glycollic acid
b) α-hydroxy propionic acid
c) Succinic acid
d) Malonic acid
616. Lemon is sour due to:
a) Citric acid
b) Tartaric acid
c) Oxalic acid
d) Acetic acid
617. Both acetaldehyde and ketone react with:
a) Ammoniacal AgNO_{3}
b) Rochelle salt
c) 2,4-dinitro phenylhydrazine
d) All of the above
618. Self condensation of two moles of ethyl acetate in presence of sodium ethoxide yields:
a) Methyl acetoacetate
b) Ethyl propionate
c) Ethyl butyrate
d) Acetoacetic ester
619. $\mathrm{Me}_{2} \mathrm{CHCOC}_{2} \mathrm{H}_{5} \xrightarrow[\text { Villiger }]{\text { Baeyer }}$? Productc
a) $\mathrm{Me}_{2} \mathrm{CHCOOC}_{2} \mathrm{H}_{5}$
b)

c)

d)

620. Salicylic acid is treated with bromine under two different conditions.

Predict the nature of $[X]$ and $[Y]$ in the above reactions,
a)

b)

c)

d)

621. Acetic acid on warming with hydrazoic acid in presence of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives:
a) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
b) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
c) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
622. Electrolytic reduction with lead cathode of oxalic acid yields:
a) Glycollic acid
b) Glyoxalic acid
c) Glycollic acid + glyoxalic acid
d) $\mathrm{CH}_{3} \mathrm{COOH}$
623.

Final product and the name of the reaction is
a)

b)

c)

d) None of the above
624. Complete the following reaction,

a)

b)

c)

d)

625. In the following reaction
$R \mathrm{CH}_{2} \mathrm{COOH} \xrightarrow{\mathrm{Br}_{2} / \mathrm{P}} \mathrm{X} \xrightarrow{\text { Excess } \mathrm{NH}_{3}} Y$
The major amounts of X and Y are
a) $\mathrm{RCHBrCONH} \mathrm{C}_{2} ; \mathrm{RCH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$
b) $R \mathrm{CHBrCOOH} ; R \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$
c) $R \mathrm{CH}_{2} \mathrm{COBr} ; \mathrm{CH}_{2} \mathrm{COONH}_{4}$
d) $R \mathrm{CHBrCOOH} ; R \mathrm{CH}_{2} \mathrm{CONH}_{2}$
626. Benzaldehyde and acetone can be best distinguished using
a) Fehling's solution
b) Sodium hydroxide solution
c) $2,4-\mathrm{DNP}$
d) Tollen's reagent
627.
$\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{LiAlH}_{4}} X \xrightarrow[300^{\circ} \mathrm{C}]{\mathrm{Cu}} Y \xrightarrow[\mathrm{NaOH}]{\text { Dilute }} Z$. In the above reaction Z is
a) Butanol
b) Aldol
c) Ketol
d) Acetal
628. Give the order of ease of the esterification of the following acids

a) I $>$ II $>$ III $>$ IV
b) IV $>$ III $>$ II $>$ I
c) II $>$ I $>$ IV $>$ III
d) I $>$ II $>$ III $>$ IV
629. Which of the following statements is/are correct?
a) Magnesium citrate is used as antacid
b) Tartar emetic is used to produce nausea and vomiting in the treatment of poisoning
c) Cream of tarter (pot. Hydrogen tartrate) is used in baking powder
d) All of the above
630. Which of the following reaction is a condensation reaction?
a) $\mathrm{HCHO} \longrightarrow$ Para-formaldehyde
b) $\mathrm{CH}_{3} \mathrm{CHO} \longrightarrow$ Paraldehyde
c) $\mathrm{CH}_{3} \mathrm{COCH}_{3} \rightarrow$ Mesityl oxide
d) $\mathrm{CH}_{2}=\mathrm{CH}_{2} \rightarrow$ Polyethylene
631. In Duma's method for determining the nitrogen content of an organic compound, the nitrogen content is determined in the form of:
a) Gaseous NH_{3}
b) NaCN
c) Gaseous N_{2}
d) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
632. An organic compound containing C, H and O gives red colouration with sodium nitroprusside solution but does not reduce Tollen's reagent and yields chloroform on treating with NaOH and Cl_{2}. The compound is
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
b)

c) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
d) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CHO}$
633. In a Cannizaro reaction, the intermediate that will be best hydride donor is
a)

b)

c)

d)

634. 0.58 g of hydrocarbon on combustion gave 0.9 g water. The percentage of carbon is about :
a) 75.8
b) 82.7
c) 27.85
d) 68.8
635. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{HCN} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{CN}) \mathrm{OH}$; the product is:
a) Optically active
b) A meso compound
c) Racemate
d) Mixture of distereoisomers
636. Which is the most reactive of the following?
a) Ethyl acetate
b) Acetic anhydride
c) Acetamide
d) Acetyl chloride
637. When acetamide is hydrolysed by boiling with acid, the product formed is:
a) Acetic acid
b) Ethyl amine
c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
d) Acetamide
638. The most reactive compound towards formation of cyanohydrin on treatment with HCN followed by acidification is
a) Benzaldehyde
b) p-nitrobenzaldehyde
c) Phenylacetaldehyde
d) p-hydroxybenzaldehyde
639. Which one of the following aldehydes will not form an aldol when treated with dil. NaOH ?
a) $\mathrm{CH}_{3} \mathrm{CHO}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
c) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCHO}$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHO}$
640. Wacker method is used to convert alkene into corresponding.........using PbCl_{2}
a) Alcohol
b) Ketone
c) Aldehyde
d) Acid
641. The figure given below describes a condensation polymer which can be obtained in two ways. Either treating 3 molecules of acetone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$ with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ or passing propyne $\left(\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}\right)$ through a red hot tube. The polymer is:

a) Phorone
b) Mesityl oxide
c) Diacetonyl alcohol
d) Mesitylene
642. 0.5 g of an organic compound containing nitrogen on Kjeldahlising required 29 mL of $\mathrm{N} / 5 \mathrm{H}_{2} \mathrm{SO}_{4}$ for complete neutralization of ammonia. The percentage of nitrogen in the compound is:
a) 34.3
b) 16.2
c) 21.6
d) 14.8
643. A nitrogen containing organic compound gave an oily liquid on heating with bromine and potassium hydroxide solution. On shaking the product with acetic anhydride, an antipyretic drug was obtained. The
reactions indicate that the starting compound is
a) Aniline
b) benzamide
c) acetamide
d) nitrobenzene
644. Acid hydrolysis of X yields two different organic compounds. Which one of the following is X ?
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
c) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$
d) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
645. An alcohol, on oxidation, produces a ketone with the same number of carbon atoms. When the ketone is oxidized, it yields an acid with a lesser number of carbon atoms. The alcohol could be a
a) Primary alcohol
b) Secondary alcohol
c) Tertiary alcohol
d) None of these
646.

(i) $\mathrm{KMnO}_{4} / \mathrm{KOH}, \mathrm{D}$
(ii) dil $\mathrm{H}_{2} \mathrm{SO}_{4}$

In this reaction, C is
a)

b)

c)

d)

647. At room temperature formaldehyde is :
a) Gas
b) Liquid
c) Solid
d) None of these
648. Positive Beilstein test shows that:
a) Halogens are surely present
b) Halogens are absent
c) Halogens may be present
d) None of the above
649. Among the following, the most acidic is
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{ClCH}_{2} \mathrm{COOH}$
c) $\mathrm{Cl}_{2} \mathrm{CHCOOH}$
d) $\mathrm{Cl}_{2} \mathrm{CHCH}_{2} \mathrm{COOH}$
650. In question 178 step (4) cab be carried out with $\mathrm{NaNO}_{2}+$ dil. HCl . The other products of the step are:
a) NO_{2}
b) NH_{3}
c) $\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{RCH}_{2} \mathrm{NO}_{2}$
651. In question 178 an intermediate involved in step (3) is:
a) $\mathrm{R}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
b) $R-\mathrm{CH}_{2} \mathrm{COONH}_{4}$
c) $\mathrm{R}-\mathrm{CH}_{2} \mathrm{CN}$
d) $R-\mathrm{CH}_{2}-\mathrm{N}=\mathrm{C}=0$
652. Acetyl chloride is reduced to acetaldehyde by:
a) $\mathrm{Na}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
b) LiAlH_{4}
c) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}$
d) $\mathrm{H}_{2} / \mathrm{Ni}$
653. The compound having least solubility in water is:
a) Methanol
b) Acetaldehyde
c) Acetone
d) Acetophenone
654. 2-bromopropanoic acid when heated with alcoholic KCN gives an organic compound which on further acid hydrolysis gives the compound A. Hence, A will be:
a)

b) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{COOH})_{2}$
c)

d)

655.

Identify the final product X
a)

b)

c)

d)

656. $R \mathrm{COOH} \rightarrow R \mathrm{CH}_{2} \mathrm{OH}$. This mode of reduction of an acid to alcohol can be affected only by:
a) $\mathrm{Zn} / \mathrm{HCl}$
b) Na-alcohol
c) Aluminium isopropoxide and isopropyl alcohol
d) LiAlH_{4}
657. An organic compound X is oxidised by using acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$. The product obtained reacts with phenyl hydrazine but does not answer silver mirror test. The possible structure of X is
$\mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}_{3}$
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
b)
II
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
d) $\mathrm{CH}_{3} \mathrm{CHO}$

0
658. Formic acid reduces ammoniacal AgNO_{3} solution and Fehling's solution because:
a) All organic acids do so
b) Formic acid has aldehyde like structure
c) Formic acid is an aliphatic acid
d) None of the above statement is correct
659. Vapour density of a volatile substance is $4\left(\mathrm{CH}_{4}=1\right)$. Its molecular weight would be:
a) 8
b) 2
c) 64
d) 128
660. The final product (III) obtained in the reaction

$$
\xrightarrow{\mathrm{NaBH}_{4}} \mathrm{III} \text { is }
$$

a)

b)

c)

d)

661. Which one of the following compounds, each with two carbons will have the highest boiling point?
a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
b) $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$
c) $\mathrm{CH}_{3} \mathrm{COOH}$
d) $\mathrm{CH}_{3} \mathrm{CHO}$
662. The major product obtained in the reaction

a)

b)

c)

d)

663. In organic chemistry the element which is estimated by difference:
a) N
b) 0
c) S
d) H
664. In estimation of carbon and hydrogen, the saphnolite resin absorbs:
a) N_{2}
b) $\mathrm{H}_{2} \mathrm{O}_{2}$
c) CO_{2}
d) CO_{2} and $\mathrm{H}_{2} \mathrm{O}_{2}$
665.
$\left(\mathrm{CH}_{2} \mathrm{CO}\right)_{2} \mathrm{O}+R \mathrm{MgX} \xrightarrow{\mathrm{H}_{2} \mathrm{O}}$?
a) $\mathrm{ROOC}\left(\mathrm{CH}_{2}\right) \mathrm{COOR}$
b) $\mathrm{RCOCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
c) RCOOR
d) RCOOH
666. Which reaction is suitable for the preparation of α-chloroacetic acid?
a) Hell-Volhard-Zelinsky reaction
b) Nef reaction
c) Stephen's reaction
d) Perkin condensation
667. A fractionating column is used in:
a) Sublimation
b) Distillation
c) Fractional distillation
d) Chromatography
668. Ni formate is best used as catalyst in:
a) Preservation of fruits
b) Esterification
c) Dyeing wool and cotton fabric
d) Hydrogenation of oil
669. The term carboxylic is a contraction of two terms:
a) Carbonyl and amine
b) Carbonyl and hydroxyl
c) Hydroxyl and carboxyl
d) Carboxyl and hydroxyl
670. Boiling point of a compound does not depend on:
a) Hydrogen bonding in the compound
b) Solubility of the compound in water
c) Size of the molecule
d) Polarity of the molecule
671.

What is" $X^{\prime \prime}$?
a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$
c)

b)

d)

672. In the following reaction,

$$
\mathrm{CH}_{3} \mathrm{COCl} \xrightarrow[\mathrm{Pd} / \mathrm{H}_{2}]{\mathrm{BaSO}_{4}} X
$$

Identify X out of the following
a) Acetaldehyde
b) Propionaldehyde
c) Acetone
d) Acetic anhydride
673. Which acid is an optically active?
a) Propionic acid
b) 2-chloropropionic acid
c) 3-chloropropionic acid
d) Acetic acid
674. Two substances when separated out on the basis of their extent of adsorption by one material, the phenomenon is:
a) Chromatography
b) Paper chromatography
c) Sublimation
d) Steam distillation
675. Which of the following statement is correct?
a) o-nitrophenol can be separated from p-nitrophenol because of intermolecular hydrogen bonding in o -
a) nitrophenol
b) m-nitrophenol vcan be separated from p-nitrophenol because of intermolecular hydrogen bonding in o nitrophenol
c)
o-hydroxybenzoic acid can be separated from p-hydrobenzoic acid because of intramolecular hydrogen bonding in o-hydroxybenzoic acid
d) o-hydroxybenzoic acid can be separated from p-hydrobenzoic acid because of intermolecular hydrogen bonding in o-hydroxybenzoic acid
676. The major product of the following reaction is

a) A hemiacetal
b) An acetal
c) An ether
d) An ester
677. The molecular formula of chlorinated acetone produced in the distillation with bleaching powder is:
a) $\mathrm{CH}_{3} \mathrm{COCl}$
b) $\mathrm{CCl}_{3} \mathrm{COCl}_{3}$
c) $\mathrm{CH}_{2} \mathrm{ClCOOH}$
d) $\mathrm{CCl}_{3} \mathrm{COCH}_{3}$
678. Which one of the following contains acetic acid?
a) Vinegar
b) Molasses
c) Coal-tar
d) Butter
679. The compound which on reduction with LiAlH_{4} gives two alcohols:
a) $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
b) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$
c) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
d) $\mathrm{CH}_{3} \mathrm{CHO}$
680. Salicylic acid gives a compound known as oil of winter green when treated with
a) $\mathrm{CH}_{3} \mathrm{COCl}$
b) $\phi \mathrm{OH}$
c) $\mathrm{CH}_{3} \mathrm{OH}$
d) PCl_{5}
681. The compound easily soluble in water is:
a) Stearic acid
b) Benzene
c) Aniline
d) Ethanol
682. Carbon atom of carbonyl gp. in aldehyde is of:
a) 1°
b) 2°
c) 3°
d) None of these
683. Identify D in the following reaction

a) $\mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{COOH}$
b) $\mathrm{OHC}-\mathrm{CH}_{2}-\mathrm{COOH}$
c) $\mathrm{OHC}-\mathrm{CH}_{2}-\mathrm{CHO}$
d) $\mathrm{HO}-\mathrm{CH}=\mathrm{CH}-\mathrm{COOH}$
684. Which reagent is useful in separating benzoic acid from phenol?
a) Dilute HCl
b) Dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$
c) $5 \% \mathrm{NaOH}$
d) $5 \% \mathrm{NaHCO}_{3}$
685. Acetone and acetophenone can be identified by:
a) Burning the compound on spatula
b) Adding a saturated solution of NaHSO_{3}
c) HCN
d) All are correct
686. Which of the following will produce only one product on reduction with LiAlH_{4} ?
a) $\mathrm{CH}_{3} \mathrm{OCOCH}_{2} \mathrm{CH}_{3}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCOCH}_{2} \mathrm{CH}_{3}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCOCH}_{3}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
687. Main product of the reaction,
$\mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{HNO}_{2} \rightarrow \ldots . .$. is :
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
c) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
d) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
688. In presence of sodium ethoxide two molecules of ethyl acetate interact to form acetoacetic ester, this process is known as:
a) Aldol condensation
b) Claisen condensation
c) Polymerization
d) None of these
689. When calcium acetate is distilled, it will produce which of the following compound?
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{CH}_{3} \mathrm{CHO}$
c) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
d) All of these
690. The main source of organic compounds is:
a) Coal-tar
b) Petroleum
c) Both (a) and (b)
d) None of these
691. The strongest acid is:
a) $\mathrm{CH}_{2} \mathrm{FCOOH}$
b) $\mathrm{CH}_{2} \mathrm{ClCOOH}$
c) $\mathrm{CHCl}_{2} \mathrm{COOH}$
d) $\mathrm{CHF}_{2} \mathrm{COOH}$
692. Which one of the following is the mechanism of hydrolysis of ethyl benzoate by refluxing with dil. Aq. NaOH solution?
a) Acyl oxygen bond cleavage, unimolecular
b) Acyl oxygen bond cleavage, bimolecular
c) Alkyl oxygen bond cleavage, unimolecular
d) Alkyl oxygen bond cleavage, bimolecular
693. $\phi \mathrm{COCH}_{3} \xrightarrow[\text { (ii) LAH }]{\text { (i) } \mathrm{Br}_{2} 1 \mathrm{eq} .}[X] \xrightarrow{\mathrm{OH}^{-}}[Y]$. Here Y is
a)

b)

c)

d)

694. Formaldehyde can be distinguished from acetaldehyde by:
a) Fehling's solution
b) Schiff's reagent
c) Ammonia
d) Ammoniacal AgNO_{3}
695. 20 mL of CH_{4} is burnt with 60 mL of O_{2}. If all measurements are made at the same P and T, what is the volume of unreacted oxygen?
a) 10 mL
b) 20 mL
c) 30 mL
d) 40 mL
696. The aldol condensation of $\mathrm{CH}_{3}-\mathrm{CHO}$ results in the formation of
a) $\quad \| \quad 1$
$0 \quad \mathrm{OH}$
a)
$\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}$
b) $\mathrm{OH}>\mathrm{O}$
c)

d) $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{OH}$
697. Oxalic acid may be distinguished from tartaric acid by:
a) NaHCO_{3}
b) Ammoniacal silver nitrate
c) Litmus paper
d) Phenolphthalein
698.

The polymer

When HCHO is allowed to stand. It is a white solid. The polymer is:
a) Trioxane
b) Formose
c) Para formaldehyde
d) Metaldehyde
699. Aldehydes are produced in atmosphere by:
a) Oxidation of secondary alcohols
b) Reduction of alkenes
c) Reaction of oxygen atoms with hydrocarbons
d) Reaction of oxygen atoms with O_{3}
700. Main product of the reaction is,

a) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
c) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
701. Which is not an organic compound?
a) Hexane
b) Urea
c) Spirit
d) Ammonium cyanate
702. In organic compound phosphorus is estimated as:
a) Magnesium pyrophosphate $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
b) $\mathrm{H}_{3} \mathrm{PO}_{4}$
c) $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
d) $\mathrm{P}_{2} \mathrm{O}_{5}$
703. Wolff-Kishner reduction, reduces
a) -COOH group
b) - C $\equiv \mathrm{C}$ - group
c) -CHO group
d) - 0 - group
704. RMgX on reaction with O_{2} followed by hydrolysis gives:
a) RH
b) RCOOH
c) $R O R$
d) ROH
705. Aldehyde with $\mathrm{NH}_{2} \cdot \mathrm{NH}_{2}$ forms
a) Hydrazones
b) Aniline
c) Nitrobenzene
d) None of these
706. Steam distillation is a better method of purification for.....compounds.
a) Liquids
b) Steam volatile
c) Non-volatile
d) Miscible with water
707. On mixing ethyl acetate with aqueous sodium chloride, the composition of the resultant solution is
a) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NaCl}$
b) $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
c) $\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{NaOH}$
d) $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}$
708. Liquid benzene burns in oxygen according to $2 \mathrm{C}_{6} \mathrm{H}_{6}+15 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. How many litre of O_{2} at STP are needed to complete the combustion of 39 g of liquid benzene?
a) 11.2 litre
b) 22.4 litre
c) 84 litre
d) 74 litre
709. The final product of the following sequence of reaction is

a)

b)

c)

d)

710. The product obtained when

a)

b)

c)

d)

711. Identify Z in the series,

$$
\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow[\text { Dil. } \mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{MnO}_{4}^{-}} X \xrightarrow{\mathrm{SOCl}_{2}} Y \xrightarrow[\text { Heat }]{\mathrm{CH}_{3} \mathrm{COONa}} Z:
$$

a) $\mathrm{CH}_{3} \cdot \mathrm{CO} \cdot \mathrm{CH}_{2} \mathrm{COONa}$
b) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
c) $\mathrm{CH}_{2} \mathrm{Cl} \cdot \mathrm{CO} \cdot \mathrm{O} \cdot \mathrm{COCH}_{3}$
d) $\mathrm{CHCl}_{2} \mathrm{CO} \cdot \mathrm{O} \cdot \mathrm{COCH}_{3}$
712. When an acyl chloride is heated with Na salt of a carboxylic acid, the product is an
a) ester
b) Anhydride
c) Alkene
d) Aldehyde
713. Which produces NH_{3} on reaction with caustic soda?
a) Ethyl amine
b) Dimethyl amine
c) Acetamide
d) Aniline
714. The IUPAC name of crotonaldehyde is:
a) Propenal
b) But-2-en-l-al
c) Butan-2-en-l-al
d) None of these
715. The elimination of CO_{2} from a carboxylic acid is known as:
a) Hydration
b) Dehydration
c) Decarboxylation
d) Carboxylation
716. Oxidation product of ' X ' (molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$) is ' y ' (molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$). The compound ' y ' is :
a) Acetic acid
b) Formic acid
c) Propionic acid
d) Butyric acid
717. HVZ reaction leads to the formation of:
a) Acetic acid
b) Formic acid
c) Chlorosubstituted acids
d) Oxalic acid
718. Which of the following acids acts as reducing agent?
a) $\mathrm{COOH}-\mathrm{COOH}$
b) Tartaric acid
c) Formic acid
d) All of these
719. Which part of - COOH group is involved in the reaction of acid with metals?
a) Only H-atom
b) Only -OH part
c) Both (a) and (b)
d) None of these
720. HCHO and HCOOH are distinguished by treating with:
a) Tollen's reagent
b) NaHCO_{3}
c) Fehling's solution
d) Benedict solution
721. Formula of diacetone alcohol is:
a) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COCH}_{3}$
b) $\mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{COCH}_{3}$
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOHCH}_{2} \mathrm{COCH}_{3}$
d) None of the above
722. Mercuric chloride is reduced to mercurous chloride by:
a) Acetic acid
b) Carbon tetrachloride
c) Formic acid
d) Ammonia
723. An organic compound containing C, H and N have the percentage $40,13.33$ and 46.67 respectively. Its empirical formula may be:
a) $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}$
b) $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{2}$
c) $\mathrm{CH}_{4} \mathrm{~N}$
d) $\mathrm{CH}_{5} \mathrm{~N}$
724. Pick up the correct statement from the following:
a) Secondary alcohols are oxidized to ketones in which the number of carbon atoms remains unchanged
b) TEL is a good anti-knock compound
c) Both aldehydes and ketones use $s p^{2}$-hybrid carbon atoms for their formation
d) All of the above
725. Name the end product in the following series of reactions,
$\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{NH}_{3}} A \xrightarrow{\Delta} B \xrightarrow{\mathrm{P}_{2} \mathrm{O}_{5}} C:$
a) CH_{4}
b) $\mathrm{CH}_{3} \mathrm{OH}$
c) Acetonitrile
d) Ammonium acetate
726. Certain unripe fruits like green apples and plums contain:
a) $\mathrm{H}_{2} \mathrm{SO}_{4}$
b) HCl
c) $\mathrm{CH}_{3} \mathrm{COOH}$
d) Malic acid
727.

The reaction
 $\xrightarrow{\mathrm{OH}^{-}}$
is an example of:
a) Wolf rearrangement
b) Favorskii rearrangement
c) Steven's rearrangement
d) Wagner-Meerwin rearrangement
728. Which of the following is least acidic?
a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
b) $\mathrm{CH}_{3} \mathrm{COOH}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
d) $\mathrm{ClCH}_{2} \mathrm{COOH}$
729. For a compound to be purified by steam distillation:
a) Impurities must be non-volatile
b) The liquid must be completely immiscible with water
c) The vapour pressure of the liquid must be sufficiently high
d) All of the above are correct
730. Acetone + mercaptan $\xrightarrow{\mathrm{HCl}} X \xrightarrow{4[0]} Y$; Identify ${ }^{`} Y^{\prime}$ in the above sequence
a) Sulphonal
b) Trional
c) Tetronal
d) None of these
731. Amides are:
a) Amphoteric
b) Acidic
c) Basic
d) Neutral
732. Silica gel is used for keeping away the moisture because it:
a) Absorbs $\mathrm{H}_{2} \mathrm{O}$
b) Adsorbs $\mathrm{H}_{2} \mathrm{O}$
c) Reacts with $\mathrm{H}_{2} \mathrm{O}$
d) None of these
733. Consider the acidity of the carboxylic acids
(i) PhCOOH
(ii) $\mathrm{o}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$
(iii) $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$
(iv) $m-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$

Which of the following order is correct?
a) I $>$ II $>$ III $>$ IV
b) II $>$ IV $>$ III $>$ I
c) II $>$ IV $>$ IN $>$ III
d) II $>$ III $>$ IV $>$ I
734. Benzaldehyde on refluxing with aqueous alcoholic KCN produce
a) Cyanobenzene
b) Cyanohydrin
c) Benzoyl cyanide
d) Benzoin
735. A bottle containing two immiscible liquids is given to you. These may be separated by:
a) Fractionating column
b) Separating funnel
c) Fractional distillation
d) Steam distillation
736. Which of the following is obtained by the oxidation of propionaldehyde?
a) Acetic acid
b) Formic and acetic acid
c) Propionic acid
d) n-propyl alcohol
737. Acetaldehyde and acetone differ in their reaction with:
a) NaHSO_{3}
b) NH_{3}
c) PCl_{5}
d) Phenyl hydrazine
738. Which of the following reactions can be used to change benzaldehyde to cinnamic acid?
a) Perkin's reaction
b) Knoevenagel reaction
c) Reformatsky reaction and ketones
d) Benzoin condensation
739. In the estimation of nitrogen by Duma's method 1.18 g of an organic compound gave 224 mL of N_{2} at NTP. The percentage of nitrogen in the compound is about:
a) 20.0
b) 11.8
c) 47.5
d) 23.7
740. p-cresol reacts with chloroform in alkaline medium to give the compound A which adds hydrogen cyanide to form the compound B. The latter on acidic hydrolysis gives chiral carboxylic acid. The structure of the carboxylic acid is
a)

b)

c)

d)

741. Butan-2-one can be converted to propanoic acid by:
a) Tollen's reagent
b) Fehling's solution
c) $\mathrm{NaOH} / \mathrm{I}_{2} / \mathrm{H}^{+}$
d) $\mathrm{NaOH} / \mathrm{NaI} / \mathrm{H}^{+}$
742. By passing water gas $\left(\mathrm{CO}+\mathrm{H}_{2}\right)$ through an electric discharge at low pressure, we get:
a) HCHO
b) HCOOH
c) $\mathrm{CH}_{3} \mathrm{CHO}$
d) CO_{2} and $\mathrm{H}_{2} \mathrm{O}$
743. An organic compound $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ forms phenyl hydrazone, gives positive iodoform test and undergoes Wolff Kishner reaction to give isopentane. It is:
a) Pentanol
b) Pentan-2-one
c) Pentan-3-one
d) 3-methylbutan-2-one
744. Consider the reaction:
$R \mathrm{CHO}+\mathrm{NH}_{2} \mathrm{NH}_{2} \rightarrow R \mathrm{CH}=\mathrm{N}-\mathrm{NH}_{2}$
What sort of reaction is it?
a) Electrophilic addition - elimination reaction
b) Free radical addition - elimination reaction
c) Electrophilic substitution - elimination reaction
d) Nucleophilic addition - elimination reaction
745. Lindlar's catalyst is:
a) $\mathrm{Ni}+\mathrm{BaSO}_{4}$
b) $\mathrm{Pd}-\mathrm{CaCO}_{3}+\mathrm{BaSO}_{4}$
c) $\mathrm{Hg}+\mathrm{BaSO}_{4}$
d) $\mathrm{Ni}+\mathrm{ZnSO}_{4}$
746. In a Cannizaro's reaction, the combination not possible is
a) $\mathrm{HCHO}+\mathrm{HCHO}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{HCHO}$
c) $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{HCHO}$
d)

747. When propanone reacts with chlorine, it forms:
a) Trichloro propanone
b) Hexachloro propanone
c) Trichloro ethanol
d) Trichloro propanal
748. Benzyl alcohol and sodium benzoate is obtained by the action of sodium hydroxide on benzaldehyde, This reaction is known as
a) Perkin's reaction
b) Cannizaro's reaction
c) Sandmeyer's reaction
d) Claisen condensation
749. The structural formula of the compound isomeric with acetone is:
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
b) $\mathrm{CH}_{3} \mathrm{CHO}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
d) None of these
750. An organic compound contains, C, H and S . When C and H are to be estimated the combustion tube at the exit should contain a:
a) Copper spiral
b) Silver spiral
c) Potassium chloride
d) Lead chromate
751. In the preparation of an ester the commonly used dehydrating agent is:
a) Phosphorus pentoxide
b) Anhydrous calcium chloride
c) Anhydrous aluminium chloride
d) Concentrated sulphuric acid
752. A compound A has a molecular formulaC $\mathrm{Cl}_{3} \mathrm{OH}$.It reduces Fehling's solution and on oxidation, gives a monocarboxylic acid B. A can be obtained by the action of chlorine on ethyl alcohol. A is
a) Chloroform
b) Chloral
c) Methyl chloride
d) Monochloroacetic acid
753. In glycine the basic group is:
a) $-\mathrm{NH}_{2}$
b) $-\mathrm{NH}_{3}^{\oplus}$
c) -COOH
d) $-\mathrm{COO}^{\ominus}$
754. 3-hydroxybutanal is formed when (X) reacts with (Y in dilute (Z) solution. What are X, Y and Z ? $\begin{array}{ll}X & Y \\ Z\end{array}$
a) $\mathrm{CH}_{3} \mathrm{CHO}, \quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$,
NaOH
b) $\mathrm{CH}_{3} \mathrm{CHO}$,
$\mathrm{CH}_{3} \mathrm{CHO}$,
NaCl
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}, \quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$,
HCl
d) $\mathrm{CH}_{3} \mathrm{CHO}, \quad \mathrm{CH}_{3} \mathrm{CHO}, \quad \mathrm{NaOH}$
755. Which of the following have high melting points?
a) Acids containing even number of carbon atoms
b) Acids containing odd number of carbon atoms
c) Both (a) and (b)
d) None of the above
756. $A \xrightarrow{\mathrm{HCN}} B \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}}$lactic acid. Identify A
a) HCHO
b) $\mathrm{CH}_{3} \mathrm{CHO}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
d) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
757. Predict the product,

$\xrightarrow[\substack{\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}}]{\text {(i) } \mathrm{MeMgBr}}$
a)

b)

c)

d)

758. The reverse of esterification is known as:
a) Acidolysis
b) trans-esterification
c) Hydrolysis
d) Neutralization
759. Identify the reaction which is used to obtain β-hydroxy ketone.
a) Condensation reaction
b) Aldol condensation
c) Cross aldol condensation
d) Cannizaro reaction
760. 0.14 g of an acid required 12.5 mL of 0.1 N NaOH for complete neutralization. The equivalent weight of the acid is:
a) 45
b) 56
c) 63
d) 112
761. Which of the following contains pungent odour?
a) Esters
b) Higher aldehydes
c) Lower aldehydes
d) None of these
762. Which of the following cannot reduce Fehling solution?
a) HCOOH
b) $\mathrm{H}_{3} \mathrm{CCOOH}$
c) HCHO
d) $\mathrm{H}_{3} \mathrm{CCHO}$
763. Which of the following on treatment with 50% aq. NaOH gives alcohol and acid?
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
c) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHO}$
764. The reaction $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{CH}_{3} \mathrm{CHO} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCHO}+\mathrm{H}_{2} \mathrm{O}$ is called:
a) Benzoin condensation
b) Claisen condensation
c) Aldol condensation
d) Condensation
765. Which of the following does not undergo benzoin condensation?
a) Benzene carbaldehyde
b) p-toluene carbaldehyde
c) Phenylethanal
d) 4-methoxyhbenzaldehyde
766. When acetaldehyde is heated with Fehling solution, a red precipitate is formed. Which of the following is that?
a) $\mathrm{Cu}_{2} \mathrm{O}$
b) Cu
c) CuO
d) CuSO_{4}
767. Benzaldehyde reacts with ammonia to form
a) Benzaldehyde ammonia
b) Urotropine
c) Hydrobenzamide
d) Ammonium chloride
768. The reactant (X) in the reaction,
$(X) \xrightarrow[\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}]{\mathrm{CH}_{3} \mathrm{COONa}}$ Cinnamic acid is
a)

b)

c)

d)

769. Ketones are less reactive than aldehydes because:
a) $\mathrm{C}=0$ group is less polar in ketones
b) Of electromeric effect
c) Of steric hindrance to the attacking reagent
d) None of the above
770. Dialkyl cadmium reacts with a compound to form a ketone. The compound is:
a) Acid
b) Acid chloride
c) Ester
d) CO
771. The reaction of 1 mole each of p-hydroxyacetophenone and methyl magnesium iodide will give
a)

b)

c)

d)

772. Which of the following has the most acidic hydrogen?
a) 3-hexanone
b) 2,4-hexanedione
c) 2,5-hexanedione
d) 2,3-hexanedione
773. Which of the following will be most readily dehydrated under acidic conditions?
a)

b)

c)

d)

774. Sodium salt of formic acid on strong heating followed by acid hydrolysis yields:
a) HCHO
b) HCOOH
c) $\mathrm{COOH}-\mathrm{COOH}$
d) $\mathrm{CH}_{3} \mathrm{CHO}$
775. $R \mathrm{COOH} \stackrel{\mathrm{H}_{2} \mathrm{O}^{+}}{\leftrightarrows} \mathrm{X} \xrightarrow{[\mathrm{H}]} R \mathrm{CH}_{2} \mathrm{NH}_{2}$

Identify the X in the above sequence
a) Alkane nitrile
b) Alkyl isonitrile
c) Aldoxime
d) Alkyl nitrile
776. Which of the following acids has the smallest dissociation constant?
a) $\mathrm{CH}_{3} \mathrm{CHFCOOH}$
b) $\mathrm{FCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
c) $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
d) $\mathrm{CH}_{3} \mathrm{CHBrCOOH}$
777. Salol (phenyl salicylate) is used as an:
a) Insecticide
b) Analgesic
c) Ointment
d) Intestinal antiseptic
778. Aldehydes and ketones will not form crystalline derivatives with:
a) NaHSO_{3}
b) Phenyl hydrazine
c) Semicarbazide hydrochloride
d) Dihydrogen sodium phosphate
779. Pyruvic acid is obtained by
a) Oxidation of acetaldehyde cyanohydrin
b) Oxidation of formaldehyde cyanohydrin
c) Oxidation of acetone cyanohydrin
d) None of the above
780. A compound (A) (molecular formula $-\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}$) on treatment with $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$ gives B and C rearrange to give D and E respective on treatment with acid. B, C, D and E are all isomers of molecular formula $\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}\right)$. When D is boiled with the alcoholic KOH , an oil $F\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)$ separates out. F reacts rapidly with $\mathrm{CH}_{3} \mathrm{COCl}$ to give back D. On the other hand, E on boiling with alkali followed by acidification gives a white solid $G\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}\right)$. Identify A
a)

b)

c)

d)

781. On mixing ethyl acetate with aqueous sodium chloride, the composition of the resultant solution is
a) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NaCl}$
b) $\mathrm{C}_{3} \mathrm{COONa}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
c) $\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{NaOH}$
d) $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}$
782.

Identify the reactant.
a) $\mathrm{H}_{2} \mathrm{O}$
b) HCHO
c) CO
d) $\mathrm{CH}_{3} \mathrm{CHO}$
783. Carbon atom of carbonyl gp. in ketone is of:
a) 1°
b) 2°
c) 3°
d) None of these
784. Formic acid is not a representative member of the carboxylic acids because:
a) It is the first member of the series
b) It does not contain alkyl group
c) It is a gas
d) It contains an aldehydic group while the other acids do not have the aldehydic group
785. $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{NOH} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{N}-\mathrm{OH}$ The above reaction occurs at:
a) $\mathrm{pH}=1$
b) $\mathrm{pH}=4.5$
c) Any value of pH
d) $\mathrm{pH}=12$
786. β-hydroxy butyraldehyde is an example of:
a) Aldol
b) Diol
c) Hemiacetal
d) Acetal
787.
 is
a) An ester
b) An anhydride
c) Acetal
d) Hemiacetal
788. Hydrogenation of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCOOH}$ over $\mathrm{Rh}-\mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst in methanol gives:
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}$
b) $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CHOHCOOH}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}_{2} \mathrm{OH}$
d) $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CH}_{2} \mathrm{COOH}$
789. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ can be distinguished by
a) FeCl_{3}
b) Tollen's reagent
c) NaHSO_{3}
d) 2,4-DNP
790. The molecular formula of methanoic acid and propanoic acid differs by:
a) $\mathrm{C}_{2} \mathrm{H}_{4}$
b) CH_{3}
c) CH_{2}
d) $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
791. The most suitable method of separation of 1:1 mixture of ortho and para nitrophenols is:
a) Distillation
b) Crystallization
c) Sublimation
d) Chromatography
792. Identify the product Z in the series, $\mathrm{CH}_{3} \mathrm{CN} \xrightarrow{\mathrm{Na} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}} X \xrightarrow{\mathrm{HNO}_{2}} Y \xrightarrow{[\mathrm{O}]} Z:$
a) $\mathrm{CH}_{3} \mathrm{CHO}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}$
c) $\mathrm{CH}_{3} \mathrm{COOH}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHOH}$
793. Which of the following is not true about the urea?
a) It can be stored easily
b) It should be applied at sowing time
c) It cannot be used for all types of crops and soils
d) The cost of production of urea is cheap
794. In the reaction

The structure of the product T is
a)

b)

c)

d)

795. The term hypnone is used for:
a) Benzophenone
b) Acetophenone
c) Acetaldehyde
d) None of these
796. The end product of $\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{CaCO}_{3}} A \xrightarrow{\text { Heat }} B \xrightarrow{\mathrm{NH}_{2} \mathrm{OH}} C$
a) Acetaldehyde
b) Acetoxime
c) Formaldehydeoxime
d) Methyl cyanide
797. The boiling points of aldehydes and ketones lie in between alkanes and alcohols of comparable masses because:
a) Alkanes are polar
b) Aldehydes and ketones are non-polar

Alkanes are non-polar and aldehydes and ketones contain polar
c)
$>\mathrm{C}=0$ group and lower alcohols have H -bonding.
d) Alkanes are held together by weak van der Waals'
forces (being non-polar), aldehydes and ketones contain
polar $\rangle \mathrm{C}=0$ group and held together by strong
dipole-dipole attraction and lower alcohols have
H-bonding, which is stronger than
dipole-dipole attraction
798. A compound (60 g) on analysis gave $\mathrm{C}=24 \mathrm{~g}, \mathrm{H}=4 \mathrm{~g}$ and $\mathrm{O}=32 \mathrm{~g}$. Its empirical formula is:
a) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
b) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{CH}_{2} \mathrm{O}_{2}$
d) $\mathrm{CH}_{2} \mathrm{O}$
799. Alkaline hydrolysis of esters is........than acid hydrolysis.
a) Faster
b) Slower
c) Equal
d) None
800. Main product obtained from the reaction of ammonia and formaldehyde is
a) Formic acid
b) Methylamine
c) Methanol
d) Urotropine
801. The gas evolved on heating alkali formate with soda-lime is
a) CO
b) CO_{2}
c) Hydrogen
d) Water vapour
802. 2, 4-dichlorophenoxy acetic acid is used as
a) Fungicide
b) Insecticide
c) Herbicide
d) Moth repellant
803. Benzaldehyde undergoes Claisen's condensation with another aldehyde to give cinnamaldehyde. The aldehyde is:
a) Formaldehyde
b) Acetaldehyde
c) Crotonaldehyde
d) Propanaldehyde
804. An organic compound X gives a red precipitate on heating with Fehling's solution. Which one of the following reactions yields X as a major product?
a) $\mathrm{HCHO} \xrightarrow[\text { (ii) } \mathrm{H}_{2} \mathrm{O}]{\text { (i) } \mathrm{CH}_{3} \mathrm{MgI}}$
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{AgOH} \xrightarrow{\Delta}$
c) $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{Ag}_{2} \mathrm{O} \xrightarrow{\Delta}$
d) $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[\substack{1 \% \mathrm{HgSO}_{4} \\ 60^{\circ} \mathrm{C}}]{40 \% \mathrm{H}_{2} \mathrm{SO}_{4}}$
805.

a)

b)

c)

d)

806. The Cannizzaro's reaction is not given by:
a) Trimethylacetaldehyde
b) Acetaldehyde
c) Benzaldehyde
d) Formaldehyde
807. Which of the following represents the correct order of the activity in the given compounds?
a)
$\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{BrCH} \mathrm{H}_{2} \mathrm{COOH}>\mathrm{ClCH}_{2} \mathrm{COOH}$
$>F \mathrm{FH}_{2} \mathrm{COOH}$
b) $\begin{aligned} \mathrm{FCH}_{2} \mathrm{COOH}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{BrCH}_{2} \mathrm{COOH} \\ >\mathrm{ClCH}_{2} \mathrm{COOH}\end{aligned}$
c) $\begin{aligned} \mathrm{BrCH}_{2} \mathrm{COOH}> & \mathrm{ClCH} \mathrm{H}_{2} \mathrm{COOH}>\mathrm{FCH}_{2} \mathrm{COOH} \\ & >\mathrm{CH}_{3} \mathrm{COOH}\end{aligned}$
d) $\begin{gathered}\mathrm{FCH}_{2} \mathrm{COOH}> \\ >\mathrm{ClCH}_{2} \mathrm{COOH}>\mathrm{HrCH}_{2} \mathrm{COOH}\end{gathered}$
808. Ellution is the process for:
a) Crystallization of compound
b) Separation of compound
c) Extraction of compound
d) Distillation of compound
809. Pyroligneous acid contains:
a) 2% acetic acid
b) 50% acetic acid
c) 10% acetic acid
d) 20% acetic acid
810.

is the anhydride in
a) 1, 2-butane diol
b) 2, 2-butane diol
c) 2, 3-butane diol
d) 1, 1-butane diol
811.

a)

c)

b)

d)

812. Consider the following reaction;
$\mathrm{CH}_{3} \mathrm{Br}+\mathrm{Mg} \xrightarrow{\text { Ether }} A \xrightarrow{\mathrm{HCHO}} B \xrightarrow{\mathrm{HOH}} C$ compound C is :
a) Acetic acid
b) Acetaldehyde
c) Ethyl alcohol
d) Formic acid
813. In the reaction sequence,

Compound ' A ' is
a) 1-propanol
b) Propanal
c) Ethanol
d) 2-propanol
814. Identify Z in the sequence

a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}$
b) $\mathrm{CH}_{3} \mathrm{CN}$
c) $\mathrm{CH}_{3} \mathrm{COOH}$
d) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
815. The major organic product formed in the following reaction is:

a)

b)

c)

d)

816. Compound ' A ' (molecular formula $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$) is treated with acidified potassium dichromate to form a product ' B ' (molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$). ' B ' forms a shining silver mirror on warming with ammoniacal silver nitrate. ' B ' when treated with an aqueous solution of $\mathrm{H}_{2} \mathrm{NCONHNH}_{2}$. HCl and sodium acetate gives a product ' C '. Identify the structure of ' C '.
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{NNHCONH}_{2}$
b)

c)

d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{NCONHNH}_{2}$
817. Which of the following intermediate species is not formed in the reaction of acrylic acid with HBr to give β bromopropionic acid?
$\left(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COOH} \xrightarrow{\mathrm{HBr}} \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)$?
a)

b)

c)

d)

818. The oxidation of benzyl chloride with lead nitrate gives
a) Benzaldehyde
b) Benzyl alcohol
c) p-chloro benzaldehyde
d) Benzoic ácid
819.

Compound (C) in above reaction is:
a) α-hydroxy acid
b) α-amino acid
c) α-amino alkanol
d) α-amino β-hydroxy acid
820. The conversion

Can be effected using
a) LiAlH_{4} and then H
b) NaBH_{4} and then H^{+}
c) $\mathrm{H}_{2} / \mathrm{Pt}-\mathrm{C}$
d) None of these
821.

a)

b)

c)

d)

822. The major product H of the given reaction sequence is:

a)

b)

c)

d)

823. Which of the following compounds is not obtained when phthalic anhydride is treated with $\mathrm{N}_{3} \mathrm{H}$?
a)

b)

c)

d)

824. Chlorine does not react with:
a) Methanal
b) $\mathrm{CH}_{3} \mathrm{CHO}$
c) Propanone
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
825. An organic acid when heated strongly with $\mathrm{P}_{2} \mathrm{O}_{5}$, gave rise to a colourless gas which burns with a pale blue flame. The acid is:
a) Acetic acid
b) Formic acid
c) Formalin
d) Benzoic acid
826. Bakelite polymer is formed by the polymerization of
a) Methanal and salicyaldehyde
b) Methanal and hydroxy benzene
c) Ethanal and hydroxy benzene
d) Ethanal and cinnamic acid
827. Propionic acid with $\mathrm{Br}_{2} \mid \mathrm{P}$ yields a dibromo product. Its structure would be:
a)

b) $\mathrm{CH}_{2} \mathrm{Br}-\mathrm{CHBr}-\mathrm{COOH}$
c)

d) $\mathrm{CH}_{2} \mathrm{Br}-\mathrm{CH}_{2}-\mathrm{COBr}$
828. The difference between aldol condensation and Cannizzaro's reaction is that:
a) The former takes place in the presence of $\alpha-\mathrm{H}$-atom
b) The former takes place in the absence of α - H -atom
c) The former takes place in the presence of $\beta-\mathrm{H}$-atom
d) None of the above
829. Collin's reagent causes the conversion:
a) $\lambda \mathrm{CO} \longrightarrow>\mathrm{CHOH}$
b) $\rangle \mathrm{CHO} \longrightarrow-\mathrm{COOH}$
c) $\rangle \mathrm{CHOH} \longrightarrow>\mathrm{CO}$
d) $\searrow \mathrm{CHOH} \longrightarrow-\mathrm{COOH}$
830. Cyanohydrin of which compound gives lactic acid on hydrolysis?
a) Acetone
b) Acetaldehyde
c) Propanal
d) HCHO
831. Arrange phenol (I), cyclohexanol (II), 2, 4, 6-trinitrophenol (III) and acetic acid (IV) in order of acidity
a) III $>$ IV $>$ I $>$ II
b) I $>$ II $>$ III $>$ IV
c) III $>$ I $>$ II $>$ IV
d) II $>$ I $>$ IV $>$ III
832. In the following reaction,

The structure of the major product X is
a)

b)

c)

d)

833. Preparation of β-hydroxy ester is favoured by:
a) Cannizzaro's reaction
b) Reformatsky reaction
c) Claisen condensation
d) Wittig reaction
834. The enolic form of acetone contains:
a) 9σ-bonds, 1π-bond and 2 lone pairs
b) 8σ-bonds, 2π-bond and 2 lone pairs
c) 10σ-bonds, 1π-bond and 1 lone pair
d) 9σ-bonds, 2π-bond and 1 lone pairs
835. Monocarboxylic acids (saturated) are regarded as \qquad ...oxidation products of paraffins.
a) First
b) Second
c) Third
d) Fourth
836. Which of the following forces explain the boiling point of aldehydes and ketones?
a) Hydrogen bonding
b) van der Waals' forces
c) Dipole-dipole attraction
d) None of the above
837. Which can reduce $\mathrm{RCOOH} \rightarrow \mathrm{RCH}_{2} \mathrm{OH}$?
a) NaBH_{4}
b) $\mathrm{Na} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
c) $\mathrm{BH}_{3} / \mathrm{THF} / \mathrm{H}_{3} \mathrm{O}^{+}$
d) H_{2} / catalyst
838. Ethanol vapours are passed over heated copper at $300^{\circ} \mathrm{C}$ and product is treated with aqueous NaOH . The final product is:
a) Aldol
b) β-hydroxy butyraldehyde
c) Both (a) and (b)
d) None of the above
839. The refluxing of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}$ with acid gives
a) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}+\mathrm{CH}_{3} \mathrm{COOH}$
b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOOH}+\mathrm{CH}_{4}$
c) $2 \mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CONH}_{2}$
d) $2 \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{CH}_{3} \mathrm{COOH}$
840. $\mathrm{OCH}-\mathrm{CHO} \xrightarrow{\mathrm{OH}^{-}} \mathrm{HOH}_{2} \mathrm{C}-\mathrm{COOH}$. The reaction given is
a) Aldol condensation
b) Knovengel reaction
c) Cannizaro reaction
d) None of these
841. A distinctive and characteristic functional group in fat is:
a) Keto group
b) Ester group
c) Basic group
d) None of these
842. Sodium acetamide smells like:
a) Garlic
b) Rotten egg
c) Pleasant
d) Reminiscents of mice
843. On mixing ethyl acetate with aqueous sodium chloride, the composition of the resultant solution is:
a) $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}$
b) $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
c) $\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{NaOH}$
d) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NaCl}$
844. The final product formed when acetaldehyde is reduced with sodium and alcohol is:
a) Ethylene
b) Ethyl alcohol
c) Ethene
d) All of these
845. Oxalic acid when reduced with zinc and $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives
a) Glyoxalic acid
b) Glyoxal
c) Glycolic acid
d) glycol
846. Which of the following functional groups, cannot be reduced to alcohol using NaBH_{4} in ethanolic solution?
a) $R-0-R$
b) RCOCl
c) $R-\mathrm{COOH}$
d) $\mathrm{R}-\mathrm{CHO}$
847. A carboxylic acid is converted into its anhydride using
a) Thionyl chloride
b) Sulphur chloride
c) Sulphuric acid
d) Phosphorus pentoxide
848. Ammonium formate on heating yields:
a) Ammonia
b) Formamide
c) Formic acid
d) Ammonium carbonate
849. By combining the two calcium salts of carboxylic acids we are preparing 2-butanone. Find the correct pair of the following
a) Calcium formate + calcium propanoate
b) Calcium acetate + calcium propanoate
c) Calcium acetate + calcium acetate
d) Calcium formate + calcium acetate
850. Aldehydes and ketones form addition products with:
a) Phenyl hydrazine
b) Hydrazine
c) Semicarbazide
d) Hydrogen cyanide
851. Lactic acid on oxidation with Fenton's reagent gives main product:
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
c) $\mathrm{CH}_{3} \mathrm{COCOOH}$
d) None of these
852. An aromatic compound $(A), \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{Br}$ reacts with $\mathrm{CH}_{2}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}$ in then presence of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$ to give (B) which on refluxing with oil $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives (C), a monobasic acid. (() On vigorous oxidation gives benzoic acid. What is the structure of (A) ?
a)

b)

c)

d)

853. Urotropine has the composition:
a) $\left(\mathrm{CH}_{2}\right)_{4} \mathrm{~N}_{6}$
b) $\left(\mathrm{CH}_{2}\right)_{5} \mathrm{~N}_{5}$
c) $\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4}$
d) $\left(\mathrm{CH}_{3}\right)_{6} \mathrm{~N}_{5}$
854. 0.75 g platinic chloride of a mono-acid base on ignition gave 0.245 g platinum. The molecular weight of the base is:
a) 75.0
b) 93.5
c) 100
d) 80.0
855. An aliphatic hydroxy acid is:
a) Maleic acid
b) Mandelic acid
c) Malonic acid
d) Malic acid
856. Carbonyl compounds when treated with sodium bisulphite solution generally a crystalline sodium bisulphite addition product is formed but which of the following carbonyl compound not forms crystalline addition product?
a) HCHO
b) $\mathrm{CH}_{3} \mathrm{CHO}$
c) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COC}_{2} \mathrm{H}_{5}$
857. In presence of iodine catalyst, chlorine reacts with acetic acid to form:
a)

b)

c)

d)

858. In the following reaction sequence, the correct structures of E, F and G are:

(*implies ${ }^{13} \mathrm{C}$ labelled carbon)
a)

b)

c)

d)

859. Compound having molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ may be:
a) Cyclic ether
b) Carbonyl compound
c) Unsaturated ether or unsaturated alcohol
d) All of the above
860. In the estimation of nitrogen by Duma's method 0.59 g of an organic compound gave 112 mL nitrogen at NTP. The percentage of nitrogen in the compound is about:
a) 23.7
b) 11.8
c) 20
d) 47.5
861. Propanone does not undergo:
a) Oxime formation
b) Hydrazone formation with hydrazine
c) Cyanohydrin formation with HCN
d) Reduction of Fehling's solution
862. 2DCDO $\xrightarrow{\mathrm{OH}^{-}}[X]$ and $[Y$]are
a) $\mathrm{DCOO}^{-}, \mathrm{D}_{2} \mathrm{CHOH}$
b) $\mathrm{HCOO}^{-}, \mathrm{CH}_{3} \mathrm{OH}$
c) $\mathrm{HCOO}^{-}, \mathrm{CD}_{3} \mathrm{OH}$
d) $\mathrm{DCOO}^{-}, \mathrm{CD}_{3} \mathrm{OH}$
863. A typical compound undergoes Cannizzaro's reaction and aldol condensation. It is :
a) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHO}$
b) HCHO
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
d) $\mathrm{CH}_{3} \mathrm{CHO}$
864. Formaldehyde when reacted with methyl magnesium bromide gives
a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
b) $\mathrm{CH}_{3} \mathrm{COOH}$
c) HCHO
d) $\mathrm{CH}_{3} \mathrm{CHO}$
865. Among the following which has lowest $\mathrm{p} K_{a}$ values:
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) HCOOH
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
866. Ethane can be obtained from ethanal in one step by:
a) $\mathrm{Na}-\mathrm{Hg}+$ water
b) $\mathrm{Zn}-\mathrm{Hg}+$ conc. HCl
c) Aluminium isopropoxide and isopropyl alcohol
d) $\mathrm{LiAlH}_{4}+$ ether
867. The end product ' C ' in the following sequence of chemical reactions is

a) Acetaldehyde oxime
b) Formaldehyde oxime
c) Methyl nitrate
d) Acetoxime
868. Which set of products is expected on reductive ozonolysis of the following diolefin?

a) $\mathrm{CH}_{3} \mathrm{CHO} ; \mathrm{CH}_{3} \mathrm{COCH}=\mathrm{CH}_{2}$
b) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CHO} ; \mathrm{CH}_{2} \mathrm{O}$
c) $\mathrm{CH}_{3} \mathrm{CHO} ; \mathrm{CH}_{3} \mathrm{COCHO} ; \mathrm{CH}_{2} \mathrm{O}$
d) $\mathrm{CH}_{3} \mathrm{CHO} ; \mathrm{CH}_{3} \mathrm{COCH}_{3} ; \mathrm{CH}_{2} \mathrm{O}$
869.

The compound (X) is
a) $\mathrm{CH}_{3}-\mathrm{COOH}$
b) $\mathrm{BrCH}_{2}-\mathrm{COOH}$
c) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
d) $\mathrm{CHO}-\mathrm{COOH}$
${ }^{870}$. In the sequence, $A \xrightarrow{\mathrm{NH}_{2} \mathrm{OH}} \mathrm{CH}_{3} \mathrm{CH}=\mathrm{NOH} \xrightarrow{\text { Reduction }} B$
A and B are
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
b) $\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{NH}-\mathrm{CH}_{3}$
c) $\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{NHCH}_{3}$
871. Partial oxidation of methane gives:
a) HCHO
b) HCOOH
c) $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}
d) CO and $\mathrm{H}_{2} \mathrm{O}$
872. Ethyl acetate is obtained when methyl magnesium bromide reacts with
a) Ethyl formate
b) Ethyl chloroformate
c) Acetyl chloride
d) Carbon dioxide
873. Collin's reagent is used to convert
a) $\triangle \mathrm{C}=\mathrm{O} \longrightarrow \triangle \mathrm{CHOH}$
b) $-\mathrm{CH}_{2} \mathrm{OH} \rightarrow-\mathrm{CHO}$
c) $-\mathrm{CHO} \rightarrow-\mathrm{COOH}$
d) $-\mathrm{CHO} \rightarrow-\mathrm{CH}_{2} \mathrm{OH}$
874.

a)

b)

c)

875. Which can be reduced to corresponding hydrocarbon by $\mathrm{Zn} / \mathrm{HCl}$?
a) Butan-2-one
b) Acetic acid
c) Acetamide
d) Ethyl acetate
876. The product obtained when acetic acid is treated with phosphorus trichloride is:
a)

b)

c)

d)

877.

X and Y respectively are
a) Picric acid, 2, 4, 6-tribromophenol
b) 5-nitrosalicylic acid, 5-bromosalicylic acid
d) 3,5-dinitrosalicylic acid, 3,5-dibromosalicylic acid
878. The final products of oxidation of isopropyl alcohol are:
a) $\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{HCOOH}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{HCOOH}$
c) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HCOOH}$
d) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
879. The main product obtained in the reaction of acetamide and HNO_{2} is
a) $\mathrm{CH}_{3} \mathrm{CN}$
b) $\mathrm{CH}_{3} \mathrm{NC}$
c) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
d) $\mathrm{CH}_{3} \mathrm{COOH}$
880. Which gives a ketone with a Grignard reagent?
a) Formaldehyde
b) Ethyl alcohol
c) Methyl cyanide
d) Methyl iodide
881. Self condensation of acetaldehyde, in the presence of dilute alkalies gives
a) An acetal
b) An aldol
c) Mesitylene
d) Propionaldehyde
882. Hybridization of carbon in carbonylic group is:
a) $s p$
b) $s p^{2}$
c) $s p^{3}$
d) None of these
883.

a)

b)

c)

d)

884.
a) $\mathrm{Pt} / \mathrm{H}_{2}$
b) $\mathrm{Ni} / \mathrm{H}_{2}$
c) LiAlH_{4}
d) Zn
885. Ethyl ester $\xrightarrow[\text { Excess }]{\mathrm{CH}_{3} \mathrm{MgBr}} P$. The product P will be:
a)

b)

c)

d)

886. When benzaldehyde reacts with acetophenone in presence of sodium hydroxide, then product is
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCOC}_{6} \mathrm{H}_{5}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHC}_{6} \mathrm{H}_{5}$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{COC}_{6} \mathrm{H}_{5}$
887. Acetaldehyde cannot exhibit:
a) Lodoform test
b) Benedict's test
c) Tollen's test
d) Lucas test
888. Cannizaro reaction is performed by
a) Formaldehyde
b) Formaldehyde and acetaldehyde
c) Benzaldehyde
d) Formaldehyde and benzaldehyde
889. The reaction,
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{Cl}_{2} \xrightarrow{\mathrm{p}} \mathrm{ClCH}_{2} \mathrm{COOH}+\mathrm{HCl}$ is called
a) Hell-Volhard-Zelinsky reaction
b) Wurtz reaction
c) Rosenmund reaction
d) Hunsdiecker reaction
890. In a Cannizzaro's reaction, the intermediate that will be best hydride donor is:
a)

b)

c)

d)

891. Aldehydes can be conveniently separated from alcohols by treating with:
a) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
b) NaCN
c) NaHSO_{3}
d) Schiff's reagent
892. One having high vapour pressure at temperature below its m. p. :
a) Benzoic acid
b) Salicylic acid
c) Citric acid
d) All of these
893. Which of the following compounds would be the main product of an aldol condensation of acetaldehyde and acetone?
a) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH} . \mathrm{CHO}$
b) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOCH}_{3}$
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH} . \mathrm{CHO}$
d) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCOCH}_{3}$
894. Reaction between $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Cd}$ and $\mathrm{CH}_{3} \mathrm{COCl}$ leads to the formation of
a) Diethyl ketone
b) Ethyl methyl ketone
c) Dimethyl ketone
d) Acetaldehyde
895. Which of these does not contain -COOH group?
a) Aspirin
b) Benzoic acid
c) Picric acid
d) Salicylic acid
896. The ease of reduction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$ (i), $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$ (II), $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$ (III) and

(IV) by hydrogen over a palladium catalyst follows the order
a) I $>$ II $>$ III $>$ IV
b) IV $>$ III $>$ II $>$ I
c) II $>$ III $>$ I $>I V$
d) III $>$ II $>$ I $>$ IV
897. Schiffs and Piria method is used for the estimation of:
a) Nitrogen
b) Sulphur
c) Halogens
d) Oxygen
898. Select the strongest acid:
a) $\mathrm{CF}_{3} \mathrm{COOH}$
b) $\mathrm{CCl}_{3} \mathrm{COOH}$
c) $\mathrm{CH}_{3} \mathrm{COOH}$
d) $\mathrm{CBr}_{3} \mathrm{COOH}$
899. The most acidic of the following is
a) $\mathrm{ClCH}_{2} \mathrm{COOH}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
c) $\mathrm{CD}_{3} \mathrm{COOH}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
900. The formula of a compound which gives simple whole number atomic ratio in one molecule of a compound is called:
a) Structure formula
b) Molecular formula
c) Empirical formula
d) Projection formula
901. Which of the following is a better reducing agent for the following reduction?

$$
R \mathrm{COOH} \rightarrow \mathrm{RCH}_{2} \mathrm{OH}
$$

a) $\mathrm{SnCl}_{2} / \mathrm{HCl}$
b) NaBH_{4} /ether
c) $\mathrm{H}_{2} / \mathrm{Pd}$
d) $\mathrm{B}_{2} \mathrm{H}_{6} / \mathrm{H}_{3} \mathrm{O}^{+}$
902. Alkaline hydrolysis of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2}$ gives a compound which on heating with NaOH and I_{2} produces a yellow precipitate of CHI_{3}. The compound should be
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
c)

b)

d)

903. The most appropriate reagent to distinguish between acetaldehyde and formaldehyde is
a) Fehling's solution
b) Tollen's reagent
c) Schiff's reagent
d) Iodine in presence of base
904. Which will form two oximes with $\mathrm{NH}_{2} \mathrm{OH}$?
a) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
d)

905. What is the final product of the following reaction?

a)

b)

c)

d)

906. The reaction of acetaldehyde with Tollen's reagent gives
a) Silver acetate
b) Methyl alcohol
c) Formaldehyde
d) Acetic acid
907. Aldol condensation is given by:
a) Aldehydes only having α-hydrogen atom
b) Aldehydes and ketones having α-hydrogen atom
c) Ketones only having α-hydrogen atom
d) Aldehydes having α-hydrogen atom
908. Isoelectric point is the pH at which :
a) An amino acid becomes acidic
b) An amino acid becomes basic
c) Zwitter ion has positive charge
d) Zwitter ion has zero charge
909. Ascorbic acid is a/an:
a) Vitamin C
b) Enzyme
c) Protein
d) None of these
910. Lacrymator or tear gas is:
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OC}_{6} \mathrm{H}_{5}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{Cl}$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$
911. Which acid derivatives on hydrolysis will give brown precipitate with Nessler's reagent?
a) Acid chloride
b) Acid anhydride
c) Acid amide
d) All of these
912. In a set of the given reactions, acetic acid yielded a product C.
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{PCl}_{5} \rightarrow \mathrm{~A}$

$$
A \xrightarrow[\text { arth. } \mathrm{AlCl}_{3}]{\mathrm{C}_{6} \mathrm{H}_{5}} B \xrightarrow[\text { ether }]{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}} C
$$

Product C would be
a) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{5}$

c) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{2} \mathrm{H}_{5}$
d) $\mathrm{CH}_{3} \mathrm{COC}_{6} \mathrm{H}_{5}$
913. Formic acid:
a) Is immiscible with water
b) Reduces ammoniacal silver nitrate
c) Is a weak acid nearly three and a half times weaker than acetic acid
d) Is prepared by heating potassium hydroxide
914. The number of aldol reaction(s) that occurs in the given transformation is:

a) 1
b) 2
c) 3
d) 4
915. Reactivity of acids in esterification follows the order:
a) $\mathrm{HCOOH}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{RCH}_{2} \mathrm{COOH}>R_{2} \mathrm{CHCOOH}>R_{3} \mathrm{CCOOH}$
b) $\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{HCOOH}>R_{3} \mathrm{CCOOH}>R_{2} \mathrm{CHCOOH}>\mathrm{CH}_{2} \mathrm{COOH}$
c) $R_{3} \mathrm{CCOOH}>R_{2} \mathrm{CHCOOH}>\mathrm{RCH}_{2} \mathrm{COOH}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{HCOOH}$
d) None of the above
916. The most suitable reagent A, for the reaction

is/are
a) O_{3}
b) $\mathrm{H}_{2} \mathrm{O}_{2}$
c) $\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}_{2}$
d) m -chloroperbenzoic acid
917. Three of the following four reactions are due to one similar feature of carbonyl compounds, while the fourth one is different. Which one is fourth?
a) Aldol condensation
b) Knoevenagel reaction
c) Witting reaction
d) Haloform reaction
918. The relative reactivities of acyl compounds towards nucleophilic substitution are in the order of:
a) Ester $>$ Acyl chloride $>$ Amide $>$ Acid anhydride
b) Acid anhydride $>$ Amide $>$ Ester $>$ Acyl chloride
c) Acyl chloride $>$ Ester $>$ Acid anhydride $>$ Amide
d) Acyl chloride $>$ Acid anhydride $>$ Ester $>$ Amide
919. With the help of following Grignard synthesis which carboxylic acid is formed?
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br} \xrightarrow{\mathrm{Mg} / \text { Ether }} \xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\left(\text {i) } \mathrm{CO}_{2}\right.}$?
a) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{COOH}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
c) $\mathrm{CH}_{2}=\mathrm{CHCOOH}$
d) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\mathrm{COOH}$
920. Oxalic acid on treatment with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives:
a) $\mathrm{CO}+\mathrm{H}_{2} \mathrm{O}_{2}$
b) $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}+\mathrm{CO}_{2}$
c) $\mathrm{HCOOH}+\mathrm{CO}_{2}$
d) $\mathrm{HCOOH}+\mathrm{CO}_{2}+\mathrm{O}_{2}$
921. The reaction product of the compound ' A ' with excess of methyl magnesium iodide followed by acidification yields t-butanol. The compound A is:
a) Methanal
b) Ethanal
c) Propanal
d) Methyl ethanoate
922. The correct order of increasing acid strength of the compounds:
(A) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
(B) $\mathrm{MeOCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
(C) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
(D)

is:
a) $B<D<A<C$
b) $D<A<C<B$
c) $D<A<B<C$
d) $A<D<C<B$
923. Which is obtained by the oxidation of propionaldehyde?
a) Acetic acid
b) Formic acid and acetic acid
c) Propanoic acid
d) n-Propyl alcohol
924. Acetone and acetaldehyde can be identified by treatment with:
a) NaHSO_{3}
b) NaCN
C) $\mathrm{NaOH}+\mathrm{I}_{2}$
d) $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}$
925. The presence of carbon in an organic compound can be shown by
a) Heating with copper which goes black
b) Burning it to produce green edge flame
c) Heating it with copper oxide to convert it into CO_{2}
d) None of the above
926. Choose the incorrect statement
a) Carboxylic acids have higher boiling points than those of alcohols of similar molecular weight
b) Carboxylic acids have lower boiling points than those of alcohols of similar molecular weight
c) Carboxylic acids (C_{1} to C_{4}) are soluble in water
d) The melting points of carboxylic acids increase or decrease in an irregular manner
927. The increasing order of the rate of HCN addition to compounds $A-D$ is
IV. HCHO
V. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
VI. PhCOCH 3
VII. PhCOPh
a) A $<$ B $<$ C $<$ D
b) D $<$ B $<$ C $<$ A
c) D $<$ C $<$ B $<$ A
d) C $<$ D $<$ B $<$ A
928. Benzoin is
a) Compound containing an aldehyde and a ketonic
group
b) α, β-unsaturated acid
c) α-hydroxy aldehyde
d) α-hydroxy ketone
929. Highest pH value among the following is that of:
a) Gastric juice
b) Lemon juice
c) Human blood
d) Pepsi cola
930. Molecular weight of phorone is equal to
a) $2 \times$ molecular weight of acetone - molecular weight of water
b) $3 \times$ molecular weight of accetone $-2 \times$ molecular weight of water
c) $3 \times$ molecular weight of acetone - molecular weight of water
d) $2 \times$ molecular weight of acetone $-2 \times$ molecualr weight of water
931.

a) $\mathrm{H}_{2} / \mathrm{Ni}$ and NaOH
b) $\mathrm{H}_{2} / \mathrm{Ni}$ and hydrazine
c) $\mathrm{H}_{2} / \mathrm{Ni}$, LAH
d) None of theses
932.

The reaction is known as
a) MPV reaction
b) Oppanauer oxidation
c) Tischenko reaction
d) Gattermann Koch reaction
933. Raw juice in sugar factories is generally concentrated by:
a) Vacuum distillation
b) Steam distillation
c) Sublimation
d) Crystallization
934. Which of the following converts carbonyl compounds into hydrocarbons?
a) $\mathrm{H}_{2} / \mathrm{Pt}$
b) LiAlH_{4}
c) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}$
d) $\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$
935. Two molecules of an aldehyde react with a concentrated solution of caustic soda and produces one molecule of an alcohol and acid each, which one is the aldehyde?
a) Acetaldehyde
b) Formaldehyde
c) Propionaldehyde
d) Butyraldehyde
936.

a)

b)

c)

d)

937. Schiff's reagent is:
a) Magenta solution decolourised with sulphurous acid
b) Magenta solution decolourised with chlorine
c) Ammoniacal cobalt chloride solution
d) Ammoniacal manganese sulphate solution
938. The compound which is not formed during the dry distillation of a mixture of calcium formate and calcium acetate is
a) Methanal
b) Propanal
c) Propanone
d) Ethanal
939. The reaction
$R \mathrm{COOH}+\mathrm{N}_{3} \mathrm{H} \xrightarrow{\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}} R \mathrm{NH}_{2}+\mathrm{CO}_{2}+\mathrm{N}_{2}$ is called
a) Lossen reaction
b) Schmidt reaction
c) Curtius reaction
d) Ullmann reaction
940. The IUPAC name of $\mathrm{H}-\mathrm{C}-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$ is:
a) 6-oxohexanoic acid
b) Hexan-1-al-6-oic acid
c) 1-aldo-hexanoic acid
d) 6-aldo-hexan-1-oic acid
941. The product formed in the reaction

a)

b)

c)

d) None of these
942. Fuels from crude oil are separated from one another by:
a) Fractional distillation
b) Crystallization
c) Steam distillation
d) Selective adsorption
943. Propanoic acid on warming with Cl_{2} in presence of red P gives:
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$
c) $\mathrm{CH}_{3} \mathrm{CHClCOOH}$
d) $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{COOH}$
944. The aldol condensation of acetaldehyde results in the formation of:
a)

b)

c)

d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH}$
945. Which one of the following can produce hydrogen when treated with metallic sodium?
a) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
b) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
d) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
946. Identify the correct order of boiling points of the following compounds,
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OH} ; \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHO}$;
1
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}:$
3
a) $1>2>3$
b) $3>1>2$
c) $1>3>2$
d) $3>2>1$
947. Organic compounds are studied separately from inorganic compounds because:
a) They occur in plants and animals
b) These are combustible and have complex structures
c) These are the compounds of carbon
d) The number of organic compounds is very large
948. Give IUPAC name of the product, when acetamide is heated with anhydrous phosphorus pentoxide.
a) Ethyl amine
b) Propane nitrile
c) Cyano methane
d) Ethane nitrile
949. Acetamide is treated with the following reagents separately. Which one of these would yield methyl amine.
a) $\mathrm{NaOH}+\mathrm{Br}_{2}$
b) Sodalime
c) Hot conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
d) PCl_{5}
950.

CH_{3}

|
The compounds $\mathrm{CH}_{3}-\mathrm{C}=\mathrm{CH}-\mathrm{CH}_{3}$ on reaction with NalO_{4} in the presence of KMnO_{4} gives
a) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
b) $\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{CH}_{3} \mathrm{COOH}$
c) $\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{CH}_{3} \mathrm{CHO}$
d) $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{CO}_{2}$
951. When a ketone is condensed into an aldol, the reagent used is:
a) Alkali
b) NaHCO_{3}
c) Br_{2} water
d) Cl_{2}
952. Amides contain $\geq \mathrm{C}=\mathrm{O}$ group, yet they do not give characteristic reactions of $>\mathrm{C}=\mathrm{O}$ group because
a) They dimerise
b) Of resonance
c) They posses cyclic structure
d) Of attached alkyl group
953. Which of the following acids (1 mol) does not give cyclic anhydride on heating
a) Adipic acid
b) Terephthalic acid
c) Succinic acid
d) Phthalic acid
954. Which of the aldehyde is most reactive?
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
b) $\mathrm{CH}_{3} \mathrm{CHO}$
c) HCHO
d) All are equally reactive
955. An ester (X) molecular formula $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$ was treated with LAH when it forms two compounds (A) and (B) with molecular formula $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}$ and $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ respectivity (A) on heating with an acid forms $\mathrm{C}_{9} \mathrm{H}_{10}(C)$. (C) on oxidation with KMnO_{4} forms terephthalic acid. Compound (X) is
a)

b)

c)

d)

956. Which of the following is present in tea as well as in bark of a tree?
a) Tannic acid
b) Oxalic acid
c) Cellulose
d) Caffeine
957. Waxes are long chain compounds belonging to the class:
a) Acids
b) Alcohols
c) Esters
d) Ethers
958. Which of the following is correct for carbonyl compounds?
a)

b)

c)

d)

959. Which of the following has most acidic hydrogen?
a) 3-hexanone
b) 2,4-hexanedione
c) 2,5-hexanedione
d) 2,3-hexanedione

960 . Which acid gives wine red colour with neutral FeCl_{3} ?
a) Propanoic acid
b) Acetic acid
c) Formic acid
d) None of these
961. An organic compound is fused with fusion mixture and extracted with HNO_{3}. The extract gives yellow precipitate with ammonium molybdate, It show the presence of which element?
a) P
b) As
c) Both P and As
d) May be P or As or both
962. Which acid is produced in the following reaction?

a) Maleic acid
b) Lactic acid
c) Tartaric acid
d) Oxalic acid
963. A and B in the following reaction are

(5)
a) $A=R R^{\prime} \mathrm{C} \sum_{\mathrm{OH}}^{\mathrm{CN}}, B-\mathrm{LiAlH}_{4}$
c) $A=R R^{\prime} \mathrm{C}<_{\mathrm{CN}}^{\mathrm{OH}}, B-\mathrm{H}_{3} \mathrm{O}^{\oplus}$
b) $A=R R^{\prime}$

d) $A+R R^{\prime} \mathrm{CH}_{2} \mathrm{CN}, \mathrm{B}=\mathrm{NaOH}$
964. Amino acid usually exists in the form of Zwitter ions, which consists of:
a) The basic group $-\mathrm{NH}_{2}$ and the acidic group -COOH
b) The basic group $-\mathrm{NH}_{3}^{+}$and the acidic group $-\mathrm{CO}_{2}^{-}$
c) The basic group $-\mathrm{CO}_{2}^{-}$and the acidic group $-\mathrm{NH}_{3}^{+}$
d) No basic or acidic groups as such
965. Which of the following do not form addition compounds with ammonia?
a) HCHO
b) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
c) $\mathrm{CH}_{3} \mathrm{CHO}$
d) None of these
966. Identify D in the following reaction

a) $\mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{COOH}$
b) $\mathrm{OHC}-\mathrm{CH}_{2}-\mathrm{COOH}$
c) $\mathrm{OHC}-\mathrm{CH}_{2}-\mathrm{CHO}$
d) $\mathrm{HO}-\mathrm{CH}=\mathrm{CH}-\mathrm{COOH}$
967. What reagent would be needed to bring about each step of following synthesis?

a) $\mathrm{Hg}^{2+}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{OH}^{-}$
b) $\mathrm{KMnO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{OH}^{-}$
c) $\mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, dry HCl
d) $\mathrm{O}_{3}, \mathrm{Zn}, \mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}$
968. Etard's reaction involves the preparation of benzaldehyde from
a) Toluene
b) Ethyl benzene
c) Benzoyl chloride
d) Sodium benzoate
969. The Hell-Volhard-Zelinsky reaction is used for preparing
a) β-halo acid
b) γ-halo acid
c) α-halo acid
d) Acid halide
970. It acetyl chloride is reduced in presence of $\mathrm{BaSO}_{4}+\mathrm{Pd}$, the product formed is:
a) $\mathrm{CH}_{3} \mathrm{CHO}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
c) $\mathrm{CH}_{3} \mathrm{COOH}$
d) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
971. The end product of the reaction, $\mathrm{CH}_{3} \mathrm{OH} \xrightarrow[300^{\circ} \mathrm{C}]{\mathrm{Cu}} A \xrightarrow{\mathrm{NaOH}} B$ is:
a) Alkane
b) Carboxylic acid
c) Ketone
d) Sodium slat of carboxylic acid
972. Aldehydes on reaction with hydroxylamine gives:
a) Aldoxime
b) Hydrazone
c) Aminohydroxide
d) Semicarbazone
973. In which of the below reaction do we find α, β - unsaturated carbonyl compounds undergoing a ring closure reaction with conjugated dienes?
a) Perkin reaction
b) Diels-Alder reaction
c) Claisen rearrangement
d) Hofmann reaction
974. When an aldehyde was heated with alkali, a part of it was converted into alcohol and a part of it into an acid. The aldehyde is:
a) An aliphatic aldehyde other than HCHO
b) An aliphatic aldehyde or salicylaldehyde
c) An aromatic aldehyde other than salicylaldehyde
d) An aromatic aldehyde or HCHO
975. In the reaction,
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}+\mathrm{CO} \xrightarrow[150^{\circ}, \mathrm{C}, 500 \text { atm pressure }]{\mathrm{BF}_{3}} X$
What is X ?
a) Diethyl carbonate
b) Ethyl carbonate
c) Diethyl peroxide
d) Ethyl propionate
976. The correct order of decreasing acid strength of trichloroacetic acid (A), trifluoroacetic acid (B), acetic
acid (C) and formic acid (D) is:
a) $A>B>C>D$
b) $A>C>B>D$
c) $B>A>D>C$
d) $B>D>C>A$
977. The product of acid hydrolysis of P and Q can be distinguished by:

a) Lucas reagent
b) $2,4-\mathrm{DNP}$
c) Fehling's solution
d) NaHSO_{3}
978. Acetone is used in:
a) Face creams
b) Vanilla
c) Nail polishes
d) Sweet smelling erasers
979. A colourless water soluble organic liquid decomposes sodium carbonate and liberates CO_{2}. It produces black precipitate with Tollen's reagent. The liquid is
a) Acetaldehyde
b) Acetamide
c) Formic acid
d) Acetone
980. The conversion of benzaldehyde into benzyl alcohol takes place by
a) Fittig reaction
b) Wurtz Fitting reaction
c) Wurtz reaction
d) Cannizaro's reaction
981. What is the oxidation number of carbonyl carbon in acetophenone?
a) +3
b) +1
c) +2
d) Zero
982. Acetic acid on heating with urea gives:
a) Acetamide, carbon dioxide and ammonia
b) Ammonium carbonate and carbon
c) Ammonium acetate, acetamide and carbon dioxide
d) None of the above
983. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$ on reacting with Cl_{2} gives:
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCl}_{2}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$
984. In sodium extract test of organic compounds, the nitrogen of an organic compound is converted into:
a) Sodamide
b) Sodium cyanide
c) Sodium nitrite
d) Sodium nitrate
985. At the isoelectric point for amino acid the species present are:
a)

d) $\mathrm{R}-\overbrace{{ }^{+} \mathrm{NH}_{3}}^{\mathrm{CH}}-\mathrm{COO}^{-}$
986. $\mathrm{CH}_{3} \mathrm{COCl}$ reacts with:
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
c) Salicylic acid
d) All of these
987. Stinges of bees, red ant and wasps contain:
a) Formaline
b) Formic acid
c) Acetic acid
d) Formaldehyde
988. A colourless organic compound gives brisk effervescences with a mixture of sodium nitrite and dil. HCl . It could be
a) Oxalic acid
b) Acetic acid
c) Urea
d) Glucose
989. Which of the following on oxidation gives an acid containing two carbon atoms?
a) Ethanol
b) Ethane nitrile
c) Ethanamide
d) Ethanamine
990. Which of the following has highest b.p.?
a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
b) $\mathrm{CH}_{3} \mathrm{COOH}$
c) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
d) HCOOCH_{3}
991. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \xrightarrow{\mathrm{NH}_{3}}$?
a) $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHN}\right)_{2} \mathrm{CH} . \mathrm{C}_{6} \mathrm{H}_{5}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCH}_{3}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHC}_{6} \mathrm{H}_{5}$
992. Cyclohexanone is subjected to reduction by NaBH_{4}. The product formed is:
a) Cyclohexane
b) Cyclohexanal
c) Cyclohexadiene
d) Cyclohexanol
993. Alkaline hydrolysis of an ester is called:
a) Neutralization
b) Esterification
c) Polymerization
d) Saponification
994. The reagent used in Gattermann Koch aldehyde synthesis is
a) $\mathrm{Pb} / \mathrm{BaSO}_{4}$
b) Alkaline KMnO_{4}
c) Acidic KMnO_{4}
d) $\mathrm{CO}+\mathrm{HCl}$
995. Which is false in case of carboxylic acids?
a) They are polar molecules
b) They form H-bonds
c) They are stronger than mineral acids
d) They have higher b.p. than corresponding alcohols
996.

The compound X is
a) $\mathrm{CH}_{3}-\mathrm{COOH}$
b) $\mathrm{BrCH}_{2}-\mathrm{COOH}$
c) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
d) $\mathrm{CHO}-\mathrm{COOH}$
997. Acetyl chloride cannot be obtained by treating acetic acid with:
a) CHCl_{3}
b) SOCl_{2}
c) PCl_{3}
d) PCl_{5}
998. Carbonyl compounds react with phenyl hydrazine to form:
a) Oxime
b) Phenyl hydrazone
c) Hydrazone
d) Semicarbazone
999. Formic acid is obtained when:
a) Calcium acetate is heated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
b) Calcium formate is heated with calcium acetate
c) Glycerol is heated with oxalic acid
d) Acetaldehyde is oxidized with $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$

100 Benedict's solution is not reduced by
0.
a) Formaldehyde
b) Acetaldehyde
c) Glucose
d) Acetic anhydride

100 Vinegar is
1.
a) HCHO
b) HCOOH
c) $\mathrm{CH}_{3} \mathrm{CHO}$
d) $\mathrm{CH}_{3} \mathrm{COOH}$

100 Which will not give acetamide (no heating) on reaction with ammonia?
2.
a) Acetic acid
b) Acetyl chloride
c) Acetic anhydride
d) Methyl acetate

100 Jone's reagent is:
3.
a) Acidified KMnO_{4}
b) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}$ or chromic acid $+\mathrm{H}_{2} \mathrm{SO}_{4}$
c) Alkaline $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
d) None of the above

100 Acetaldehyde reacts with PCl_{5}, to give:
4.
a) Ethyl chloride
b) Ethylene chloride
c) Ethylidene dichloride
d) Trichloroacetaldehyde

100 Trans esterification is the process of
5.
a) Conversion of an aliphatic acid to ester
b) Conversion of an aromatic acid to ester
c) Conversion of one ester to another ester
d) Conversion of an ester into its components namely acid and alcohol

100 The formation of aldehyde from alkyl cyanide is related with the name 6.
a) Stephen
b) Rosenmund
c) Wurtz
d) HVZ reaction

100 Which of the following substances will not react with PCl_{5} ?
7.
a) Methyl alcohol
b) Acetic acid
c) Acetaldehyde
d) Ethane

100 Treatment of propionaldehyde with dil. NaOH gives:
8.
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ b)
b) $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{CH}_{2} \mathrm{Clc}\right)$
$\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}\left(\mathrm{CH}_{3}\right) \mathrm{Cd}\right)$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CHO}$

100 Fehling's solution consists of two separate alkaline solution. If one is CuSO_{4}, the other is: 9.
a) NaHCO_{3}
b) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
c) $\mathrm{NaKC}_{4} \mathrm{H}_{6} \mathrm{O}_{8}$
d) $\mathrm{NaKC}_{2} \mathrm{O}_{4}$
$101 \alpha, \beta$ - unsaturated aldehyde is formed in the sequence 0.
a) $\mathrm{HCHO} \xrightarrow{\mathrm{KOH}(a q)}$
b) $\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\text { Dil. } \mathrm{KOH}} A \xrightarrow{\Delta} B$
c) $\mathrm{CCl}_{3} \mathrm{CHO} \xrightarrow{\mathrm{KOH}(a q)}$
d)

101 Which of the following organic compounds answers to both iodoform test and Fehling's test?
1.
a) Ethanol
b) Methanal
c) Ethanal
d) Propanone

101 In steam distillation, the vapour pressure of the volatile organic compound is: 2.
a) Equal to atmospheric pressure
b) Less than atmospheric pressure
c) More than atmospheric pressure
d) None of the above

101 The correct order of acid strength is:
3.
a) $\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{CH}_{2} \mathrm{ClCOOH}>\mathrm{CHCl}_{2} \mathrm{COOH}$
b) $\mathrm{CHCl}_{2} \mathrm{COOH}>\mathrm{CH}_{2} \mathrm{ClCOOH}>\mathrm{CH}_{3} \mathrm{COOH}$
c) $\mathrm{CHCl}_{2} \mathrm{COOH}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{CH}_{2} \mathrm{ClCOOH}$
d) $\mathrm{CH}_{2} \mathrm{ClCOOH}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{CHCl}_{2} \mathrm{COOH}$

101 The ration of carbon, hydrogen and oxygen in 2-methyl benzoic acid is:
4.
a) $4: 4: 2$
b) $4: 4: 1$
c) $4: 2: 2$
d) $2: 4: 1$

101 Oxalic acid, malonic acid and succinic acid can be distinguished by:
5.
a) Heat
b) Acidified KMnO_{4}
c) Br_{2} water
d) NH_{3}

101 Ketones on reaction with $\mathrm{NH}_{2} \mathrm{CONHNH}_{2}$ form well defined crystalline compounds, called: 6.
a) Hydrazones
b) Schiff's base
c) Oximes
d) Semicarbazones

101 In Kjeldahl's method nitrogen present is quantitatively converted to:
7.
a) N_{2}
b) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
c) NO_{2}
d) None of these

101 Propionic acid and KOH reacts to produce which one of the following? 8.
a) Potassium propionate
b) Propyl alcohol
c) Propionaldehyde
d) Does not react

101 In a set of reaction acetic acid yields a product [D]. The structure of [D] would be:
9.

a)

b)

c)

d)

102 Benzamide on treatment with POCl_{3} gives
0.
a) Aniline
b) Benzonitrile
c) Chlorobenzene
d) Benzyl amine

102 Anhydrous formic acid cannot be obtained from aqueous solution by fractional distillation because:
1.
a) It is soluble in water
b) It forms a constant boiling mixture with water
c) Its boiling point is very close to water
d) There is much difference in their boiling points

102 In lassaigne's test when both N and S are present, blood red colour obtained is due to the formation of: 2.
a) Ferric ferrocyanide
b) Ferric sulphocyanide
c) Ferric cyanide
d) None of the above

102 Muscone (an explosive perfume secreted by musk deer) has the structure
3.

a) 3-methyl cyclopentadecanone
b) Methyl cyclopentadecan-3-one
c) 3-methyl cyclotetradecanone
d) 3-methyl cyclohexadecan-3-one

102 An organic compound X with the molecular formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ yields phenyl hydrazone and gives a negative 4. response to the iodoform test and Tollen's test. It prouduces n-pentane on reduction. The compound could be
a) Pentanal
b) Pentanone-2
c) Pentanone-3
d) Amyl alcohol

102 Which compounds will not reduce Fehling's solution?
5.
a) Methanal
b) Ethanal
c) Trichloroethanal
d) Benzaldehyde

102 Which of the following compounds is oxidized to prepare methyl ethyl ketone?
6.
a) 2-propanol
b) 1-butanol
c) 2-butaonol
d) Tert-butyl alcohol

102 An organic compound is boiled with alcoholic potash. The product is cooled and acidified with HCl. A
7. white solid separates out. The starting compound may be
a) Ethyl benzoate
b) Ethyl formate
c) Ethyl acetate
d) Methyl acetate

102 The substance used as an adsorbent in the column chromatography is:
8.
a) $\mathrm{Na}_{2} \mathrm{O}$
b) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
c) $\mathrm{Al}_{2} \mathrm{O}_{3}$
d) Alum

102 Saturated fatty acids are represented by which of the formula?
9.
a) $\mathrm{C}_{n} \mathrm{H}_{n} \mathrm{O}_{2}$
b) $\mathrm{C}_{n} \mathrm{H}_{3 n} \mathrm{O}_{2}$
c) $\mathrm{C}_{n} \mathrm{H}_{2 n+1}$
d) $\mathrm{C}_{n} \mathrm{H}_{2 n} \mathrm{O}_{2}$

103 Clemmensen reduction of a ketone is carried out in the presence of which of the
0 . following?
a) H_{2} and Pt as catalyst
b) Glycol with KOH
c) $\mathrm{Zn}-\mathrm{Hg}$ with HCl
d) LiAlH_{4}

103 Which of the following diacid readily gives anhydride on heating?
1.
a) Fumaric
b) Maleic acid
c) Malic acid
d) Terephthalic acid

103 The conversion
2.

Can be effected by using the reagent
a) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}$
b) O_{2}

d) $\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$

103 For detection of sulphur in an organic compound, sodium nitroprusside is added to the sodium extract. A
3. violet colour is obtained due to the formation of:
a) $\mathrm{Fe}(\mathrm{CN})_{2}$
b) $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NS}$
c) $\mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}\right]$
d) $\mathrm{Na}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$

103 Which of the following acids has the smallest dissociation constant?
4.
a) $\mathrm{CH}_{3} \mathrm{CHFCOOH}$
b) $\mathrm{FCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
c) $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
d) $\mathrm{CH}_{3} \mathrm{CHBrCOOH}$

103 In the conversion of Grighard reagent into an aldehyde, the other component used in 5.
a) Ethyl formate
b) Ethyl acetate
c) Ethyl cyanide
d) Hydrogen cyanide

103 Compound $(A) \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ forms a phenyl hydrazone and gives negative Toolen's and iodoform tests.
6. Compound (A) on reduction gives n-pentane. Compound (A) is:
a) A primary alcohol
b) An aldehyde
c) A ketone
d) A secondary alcohol

103 Which of the following statements regarding amides is not correct?
7.
a) Amides do not form salts when treated with aqueous acids
b) The aqueous solutions of amides are alkaline
c) Amides are very poor nucleophiles
d) Amides are considerably less reactive than acid chlorides

103 Maleic and fumaric acids:
8.
a) Have identical m.p.
b) Have identical solubility in water
c) Form the same anhydride on heating
d) None of the above

103 Sodium extract prepared by using thio urea contains which ion in the solution, mainly responsible for a
9. characteristic test?
a) NaCN
b) $\mathrm{Na}_{2} \mathrm{~S}$
c) NaCNS
d) $\mathrm{Na}_{2} \mathrm{SO}_{4}$

104
0 . The final product obtained in the reaction

a)

b)

c)

d) None of the above

104 Both HCHO and $\mathrm{CH}_{3} \mathrm{CHO}$ gives similar reactions with all the reagents except 1.
a) Schiff reagent
b) Fehling solution
c) Ammoniacal AgNO_{3}
d) Ammonia

104 In the reaction,
2. $\quad R-X \xrightarrow{\text { Alcoholic } \mathrm{KCN}} A \xrightarrow{\text { Dilute } \mathrm{HCl}} B$

The product B is
a) Alkyl chloride
b) Aldehyde
c) Carboxylic acid
d) Ketone

104 The property which distinguishes formic acid from acetic acid is
3.
a) Only ammonium salt of formic acid on heating gives amide
b) When heated with alcohol $/ \mathrm{H}_{2} \mathrm{SO}_{4}$ only acetic acid forms ester
c) Only acetic acid forms salts with alkali
d) Only formic acid reduces Fehling's solution

104 Absolute alcohol is prepared from rectified spirit by:
4.
a) Fractional distillation
b) Steam distillation
c) Azeotropic distillation
d) Vacuum distillation

104 Which of the following gives oxalic acid?
5.
a) Heating of acetic acid
b) Action of nitric acid glucose
c) Acidic hydrolysis of cyanogen
d) Strong heating of sodium formate

104 Urea on slow heating gives
6.
a) $\mathrm{NH}_{2} \mathrm{CONHNO}_{2}$
b) $\mathrm{NH}_{2} \mathrm{CONHCONH}_{2}$
c) HCNO
d) $\mathrm{NH}_{2} \mathrm{CONH}_{2} \cdot \mathrm{HNO}_{3}$

104 The conversion of acetophenone to acetanilide is best accomplished by using
7.
a) Backmann rearrangement
b) Curtius rearrangement
c) Lossen rearrangement
d) Hofmann rearrangement
$104 \mathrm{CH}_{2} \mathrm{OH}$
8. $\mathrm{CH}_{2} \mathrm{OH}+$ cyclopentanone $\longrightarrow[X]$.
Product is
a)

b)

c)

d)

104 An aldehyde which undergoes Cannizzaro's reaction and reduces Schiff's reagent but does not reduce
9. Fehling's solution is:
a) $\mathrm{CH}_{3} \mathrm{CHO}$
b) HCHO
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
d) Salicyladehyde

105 Which acid is used in baking powder?
0.
a) Oxalic acid
b) Citric acid
c) Lactic acid
d) Tartaric acid

105 Which of the following statements are correct for benzoic acid?
1.
a) Nitration gives o and p-nitrobenzoic acid
b) Bromination gives o-bromobenzoic acid
c) The Friedel-Craft's reaction with $\mathrm{CH}_{3} \mathrm{COCl} / \mathrm{AlCl}_{3}$ give m-carboxyaceto-phenone
d) The reaction with concentrated sulphonic acid gives 3 -carboxybenzene sulphonic acid

105 An aromatic compound ' X ' with molecular formula $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$ gives the following chemical tests
2. VIII. Forms 2, 4-DNP derivative,
IX. Reduces Tollen's reagent,
X. Undergoes Cannizaro reaction and,
XI. On vigorous oxidation 1, 2-benzenedicarboxylic acid is obtained. X is
a)

b)

c)

d)

105 Give stereochemical formula for compound (D)
3.

a)

b)

c)

d)

105 General formula of carbonyl compound is:
4.
a) $\mathrm{C}_{n} \mathrm{H}_{2 n} \mathrm{O}$
b) $\mathrm{C}_{n} \mathrm{H}_{2 n+2} \mathrm{O}$
c) $\mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{O}$
d) $\mathrm{C}_{n} \mathrm{H}_{2 n+2} \mathrm{O}_{2}$

105 The product C of the reaction,
5. $\mathrm{CH}_{3} \mathrm{CN} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} A \xrightarrow{\mathrm{NH}_{3}} B \xrightarrow{\Delta} C$ is:
a) Methyl amine
b) Ammonium acetate
c) Ethyl amine
d) Acetamide

105 Formic acid and acetic acid are distinguished by 6.
a) NaHCO_{3}
b) FeCl_{3}
c) Victor Meyer test
d) Tollen's reagent

105 Which of the following types of carbonyl groups will produce oxime on reaction with?
7.
a)

b)

c)

d)

105 Aldehydes and ketones can be reduced to hydrocarbon by using 8.
a) LiAlH_{4}
b) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}$
c) $\mathrm{Na}-\mathrm{Hg} / \mathrm{HCl}$
d) $\mathrm{NH}_{2}-\mathrm{NH}_{2} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$

105 Industrial preparation of formic acid involves:
9.
a) Reaction of CO with aqueous NaOH under pressure
b) Reaction of CO_{2} with aqueous NaOH under pressure
c) Passing a mixture of CO and H_{2} overheated copper at 473 K
d) Reaction of CO with methanol at 473 K
$106 \mathrm{CH}_{3} \mathrm{COCH}_{3}$ can be obtained by:
0.
a) Heating acetaldehyde with methanol
b) Oxidation of propyl alcohol
c) Oxidation of isopropyl alcohol
d) Reduction of propionic acid
$106 \sum_{\substack{\mathrm{OH}}}^{\mathrm{C}-\mathrm{CN} \text { group is called }}$
a) Hydroxy nitrile
b) Hydroxy cyanide
c) Cyanohydrin
d) Hydroxy isocyanide

106 Vinegar is a solution of acetic acid which is
2.
a) $15-20 \%$
b) $20-25 \%$
c) $6-8 \%$
d) 2-4 \%

106 Which of the following is the strongest acid?
3.
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) HCOOH
c) $\mathrm{ClCH}_{2} \mathrm{COOH}$
d) $\mathrm{Cl}_{2} \mathrm{CHCOOH}$

106 In the following reaction sequence, the correct structures of E, F and G are
4.

a) $E=$

b) $E=$

c) $E=$

d)

106 Which of the following has high vapour pressure at temperature below its melting point? 5.
a) Citric acid
b) Benzoic acid
c) Salicylic acid
d) All of these

106 Tollen's reagent is
6.
a) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{NO}_{3}$
b) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Br}$
c) Both (a) and (b)
d) None of these

106 The Sulphur present in an organic compound is oxidized by fuming nitric acid into: 7.
a) SO_{2}
b) $\mathrm{H}_{2} \mathrm{SO}_{4}$
c) $\mathrm{H}_{2} \mathrm{~S}$
d) S

106
8.

a)

b)

c)

d)

106 $\mathrm{CH} \equiv \mathrm{CH} \xrightarrow[\text { di. } \mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HgSO}_{4}} \mathrm{~A} \xrightarrow[\mathrm{NaOH}]{\text { Dilute }} \mathrm{B}$
The compound B is
a) $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CHO}$
b) $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{COONa}$

I	1	
OH	OH	
0	OH	0
11	I	II
c) $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{3}$	d) $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{C}$	- $-\mathrm{CH}_{3}$
\|	\|	
OH	CH_{3}	

107 Aldol condensation of aldehydes and ketones takes place through the formation of: 0.
a) Carbene
b) Nucleophile
c) Electrophile
d) Free radical

107 Acetic anhydride reacts with ammonia to give:
1.
a) Acetamide
b) Formamide
c) Ethyl amine
d) Methyl amine

107 Identify the final product in the following reaction sequence
2.

a)

b)

c)

d)

107 Petroleum refining involves:
3.
a) Vacuum distillation
b) Steam distillation
c) Fractional distillation
d) Passing over activated charcoal

107 Acetyl bromide reacts with excess of $\mathrm{CH}_{3} \mathrm{MgI}$ followed by treatment with a saturated solution of
4. $\mathrm{NH}_{4} \mathrm{Cl}$ gives:
a) Acetyl iodide
b) Acetamide
c) 2-methyl propan-2-ol
d) Acetone

107 Which of the following will not undergo Hell Volhard Zelinsky reaction?
5.
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
c) 2,2-dimethyl propionic acid
d) 2-methyl propionic acid

107 Which of the following will not undergo aldol condensation?
a) Acetaldehyde
b) Propanaldehyde
c) Benzaldehyde
d) Trideuteroacetaldehyde

107 In a compound C, H and N are present in $9: 1: 3.5$ by weight. If molecular weight of the compound is 108 ,
7. the molecular formula of compound is:
a) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}$
b) $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}$
c) $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}$
d) $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{3}$

107 Which method is not used in the preparation of ketone?
8.
a) Dehydrogenation of 2° alcohol
b) Heating Ca salt of an acid
c) Acid hydrolysis of alkyl cyanide
d) Reaction of acid chloride with Grignard reagents

107 In the Cannizzaro's reaction given below,
9. $2 \mathrm{Ph}-\mathrm{CHO} \xrightarrow{\mathrm{OH}^{-}} \mathrm{Ph}-\mathrm{CH}_{2} \mathrm{OH}+\mathrm{PhCOO}^{-}$
the slowest step is:
a) The attack of OH^{-}at the carbonyl group
b) The transfer of hydride to the carbonyl group
c) The abstraction of proton from the carboxylic acid
d) The deprotonation of $\mathrm{Ph}-\mathrm{CH}_{2} \mathrm{OH}$

108 Which one is correct for acidic nature of the following?
0.
(i) PhCOOH
(ii) $o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$
(iii) $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$
(iv) $m-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$
a) (ii) $>$ (iii) $>$ (iv) $>$ (i)
b) (ii) $>$ (iv) $>$ (iii) $>$
(i) c) (ii) $>$ (iv) $>$ (i) $>$ (iii)
d) (i) $>$ (ii) $>$ (iii) $>$ (iv)

108 The reagent which does not give acid chloride on treating with a carboxylic acid is
1.
a) PCl_{5}
b) Cl_{2}
c) SOCl_{2}
d) PCl_{3}

108 Separation of petroleum into its components is mostly done by:
2.
a) Chromatography
b) Sublimation
c) Distillation under reduced pressure
d) Fractional distillation

108 The product formed in the aldol condensation of acetaldehyde is 3.
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CHO}$
b) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CHO}$
c) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COCH}_{3}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$

108 A compound X undergoes reduction with LiAlH_{4} to yield Y. When vapours of Y are passed over freshly
4. reduced copper at $300^{\circ} \mathrm{C}, X$ is formed. What is Y ?
a) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
b) $\mathrm{CH}_{3} \mathrm{CHO}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
d) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$

108 Formaldehyde when treated with KOH gives methanol and potassium formate. The reaction is known as: 5.
a) Perkin's reaction
b) Claisen's reaction
c) Cannizzaro's reaction
d) Knoevenagel's reaction

108 The reagent with which both acetaldehyde and acetone react is
6.
a) Fehling's solution
b) $\mathrm{I}_{2} / \mathrm{NaOH}$
c) Tollen's reagent
d) Carbonic acid

108 The compound obtained when acetaldehyde reacts with dilute aqueous sodium hydroxide exhibits
a) Geometrical isomerism
b) Optical isomerism
c) Neither optical nor geometrical isomerism
d) Both optical and geometrical isomerism

108 Consider the acidity of the carboxylic acids
8. (i) PhCOOH
(ii) $o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$
(iii) $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$
(iv) $m-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$

Which of the following order is correct?
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (ii) $>$ (iv) $>$ (iii) $>$ (i)
c) (ii) $>$ (iv) $>$ (i) $>$ (iii)
d) (ii) $>$ (iii) $>$ (iv) $>$ (i)

108 Which of the following orders is wrong with respect to property indicated?
9.
a) Formic acid $>$ Acetic acid $>$ Propionic acid (Acid strength)
b) Fluoro acetic acid $>$ Chloro acetic acid $>$ Bromo acetic acid (Acid strength)
c) Benzoic acid $>$ Phenol $>$ Cyclohexanol (Acid strength)
d) Aniline $>$ Cyclohexylamine $>$ Benzamide (Base strength)

109 The product P in the reaction,
0.

a)

b)

c)

109
1.

a)

b)

d)

109 What is the product in the reaction
2. $\mathrm{CH}_{3} \mathrm{MgBr} \xrightarrow[\text { (ii) } \mathrm{H}_{2} \mathrm{O}]{(\mathrm{i}) \mathrm{CO}_{2}} X$?
a) Acetaldehyde
b) Acetic acid
c) Formic acid
d) Formaldehyde

109
$\mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3} \xrightarrow{\mathrm{Hg}^{2+} / \mathrm{H}^{+}} A, A$ is
a)

b)

c)

d)

109 Organic compounds are studied separately from others, because:
4.
a) Organic compounds do not confirm to the laws of chemical combination
b) Organic compounds are all covalent, while inorganic compounds are electrovalent
c) Special characteristics if carbon compounds like catenation, formation of compounds both with electropositive and electronegative elements and their tendency to show isomerism
d) It appears a convenient way of study

109 Identify the product Y in the following reaction sequence
5.

a) Pentane
b) Cyclobutane
c) Cyclopentane
d) Cyclopentanone

109 A liquid was mixed with ethanol and a drop of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added. A compound with a fruity
6. smell was formed. The liquid was
a) $\mathrm{CH}_{3} \mathrm{OH}$
b) HCHO
c) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
d) $\mathrm{CH}_{3} \mathrm{COOH}$

109 Aldehydes are first oxidation product of:
7.
a) Primary alcohols
b) Secondary alcohols
c) Tertiary alcohols
d) Dihydric alcohols

ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

CHEMISTRY

353)	a	354)	a	355)	b	356)	b	557)	b	558)	a	559)	b	560)	
357)	a	358)	d	359)	d	360)	b	561)	b	562)	a	563)	b	564)	c
361)	d	362)	c	363)	b	364)	c	565)	b	566)	d	567)	a	568)	
365)	d	366)	b	367)	a	368)	c	569)	d	570)	a	571)	b	572)	b
369)	b	370)	c	371)	b	372)	a	573)	a	574)	b	575)	c	576)	
373)	b	374)	a	375)	b	376)	c	577)	d	578)	d	579)	d	580)	
377)	b	378)	d	379)	b	380)	a	581)	c	582)	a	583)	d	584)	
381)	c	382)	b	383)	a	384)	c	585)	c	586)	c	587)	b	588)	
385)	b	386)	b	387)	a	388)	b	589)	c	590)	b	591)	a		
389)	a	390)	a	391)	c	392)	b	593)	b	594)	a	595)	b	596)	
393)	d	394)	c	395)	b	396)	b	597)	c	598)	d	599)		600)	
397)	c	398)	b	399)	b	400)	b	601)	b	602)	a	603)		604)	d
401)	c	402)	a	403)	a	404)	b	605)	c	606)	c	607)		608)	c
405)	c	406)	d	407)	a	408)	c	609)	d	610)	a	611)		612)	a
409)	c	410)	a	411)	d	412)	a	613)	c	614)	a	615)	d	616)	
413)	c	414)	b	415)	c	416)	d	617)	c	618)	d	619)	b	620)	
417)	b	418)	c	419)	c	420)	a	621)	b	622)	c	623)	a	624)	b
421)	d	422)	b	423)	b	424)	c	625)	b	626)		627)	b	628)	a
425)	a	426)	a	427)	b	428)	c	629)	d	630)	c	631)	c	632)	
429)	a	430)	c	431)	c	432)	b	633)	d	634)	b	635)	c	636)	
433)	b	434)	b	435)	a	436)	b	637)		638)	b	639)	b	640)	
437)	c	438)	c	439)	b	440)	c	641)	d	642)	b	643)	b	644)	
441)	b	442)	c	443)	c	444)	a	645)		646)	b	647)	a	648)	
445)	a	446)	c	447)	a	448)	d	649)		650)	c	651)	d	652)	
449)	b	450)	a	451)	b	452)	b	653)	d	654)	b	655)	a	656)	
453)	d	454)	c	455)	b	456)	a	657)	c	658)	b	659)	c	660)	
457)	a	458)	a	459)	b	460)	c	661)	c	662)	a	663)	b	664)	
461)	a	462)	c	463)	a	464)	c	665)	b	666)	a	667)	c	668)	
465)	d	466)	a	467)		468)	b	669)	b	670)	b	671)	c	672)	
469)	c	470)	b	471)	b	472)	c	673)	b	674)	a	675)	c	676)	
473)	a	474)	b	475)		476)	d	677)	d	678)	a	679)	a	680)	
477)	b	478)	c		d	480)	d	681)	d	682)	a	683)	b	684)	
481)	b	482)	a	483)	a	484)	d	685)	a	686)	a	687)	a	688)	
485)	c	486)		487)	a	488)	a	689)	c	690)	c	691)	d	692)	
489)	a	490)		491)	c	492)	b	693)	c	694)	c	695)	b	696)	b
493)	c	494)	d	495)	d	496)	c	697)	b	698)	a	699)	c	700)	
497)	c	498)	b	499)	a	500)	a	701)	d	702)	a	703)	c	704)	
501)	a	502)	a	503)	c	504)	a	705)	a	706)	b	707)	a	708)	
505)		506)	c	507)	d	508)	b	709)	a	710)	b	711)	b	712)	
509)		510)	c	511)	b	512)	a	713)	c	714)	b	715)	c	716)	
513)		514)	c	515)	b	516)	d	717)	c	718)	d	719)	a	720)	
517)		518)	d	519)	a	520)	a	721)	a	722)	c	723)	c	724)	
521)	a	522)	d	523)	b	524)	c	725)	c	726)	d	727)	b	728)	
525)	c	526)	b	527)	a	528)	b	729)	d	730)	a	731)	a	732)	
529)	b	530)	b	531)	c	532)	b	733)	d	734)	d	735)	b	736)	
533)	a	534)	b	535)	c	536)	a	737)	b	738)	a	739)	d	740)	
537)	c	538)	b	539)	d	540)	a	741)	c	742)	a	743)	d	744)	
541)	d	542)	b	543)	c	544)	d	745)	b	746)	c	747)	a	748)	
545)	a	546)	b	547)	a	548)	c	749)	a	750)	d	751)	d	752)	b
549)	d	550)	d	551)	a	552)	a	753)	a	754)	d	755)	a	756)	
553)	a	554)	b	555)	d	556)	a	757)	b	758)	c	759)	b	760)	d

761)	c	762)	b	763)	a	764)	b	933)	a	934)	d	935)	b	936)	c
765)	c	766)	a	767)	c	768)	b	937)	a	938)	b	939)	b	940)	
769)	c	770)	b	771)	a	772)	b	941)	b	942)	a	943)	c	944)	
773)	a	774)	c	775)	a	776)	c	945)	d	946)	b	947)	d	948)	
777)	d	778)	d	779)	a	780)	a	949)	a	950)	b	951)	a	952)	
781)	a	782)	c	783)	b	784)	d	953)	b	954)	c	955)	b	956)	
785)	b	786)	a	787)	d	788)	b	957)	c	958)	b	959)	b	960)	
789)	b	790)	a	791)	a	792)	c	961)	d	962)	b	963)	a	964)	
793)	c	794)	c	795)	b	796)	b	965)	a	966)	b	967)	b	968)	
797)	d	798)	d	799)	a	800)	d	969)	c	970)	a	971)	d	972)	
801)	c	802)	c	803)	b	804)	d	973)	b	974)	d	975)	d	976)	c
805)	a	806)	b	807)	d	808)	b	977)	c	978)	c	979)		980)	d
809)	c	810)	c	811)	a	812)	c	981)	c	982)	a	983)		984)	b
813)	b	814)	c	815)	d	816)	a	985)	d	986)	d	987)	b	988)	c
817)	b	818)	a	819)	b	820)	a	989)	a	990)	b	991)	a	992)	d
821)	c	822)	a	823)	a	824)	a	993)	d	994)	d	995)	c	996)	c
825)	b	826)	b	827)	a	828)	a	997)	a	998)	,	999)	c	1000	
829)	c	830)	b	831)	a	832)	b	1001)	d	1002)		1003)	b	1004	
833)	b	834)	a	835)	c	836)	c	1005)	c	1006)		1007)	d	1008)	
837)	c	838)	c	839)	a	840)	c	1009)	b	1010)		1011)	c	1012	
841)	b	842)	d	843)	d	844)	b	1013)		1014)	b	1015)	a	1016) d
845)	c	846)	a	847)	d	848)	b	1017)		1018)	a	1019)	d	1020	
849)	b	850)	d	851)	c	852)	b	1021)		1022)		1023)	a	1024	
853)	c	854)	b	855)	d	856)	d	1025)		1026)		1027)	-	1028	
857)	b	858)	c	859)	d	860)	a	1029)	d	1030)		1031)	-	1032	
861)	d	862)	d	863)	a	864)	a	1033)	c	1034)		1035)	d	1036	
865)	b	866)	b	867)	d	868)	c	1037)		1038)		1039)	c	1040	
869)	c	870)	c	871)	d	872)	b	1041)	d	1042)		1043)	d	1044	
873)	b	874)	a	875)		876)	c	1045)	c	1046)		1047)	a	1048)	
877)	a	878)	c	879)	d	880)	c	1049)	c	1050)		1051)	d	1052	
881)	b	882)	b	883)	-	884)	c	1053)	b	1054)		1055)	d	1056	
885)	a	886)	a	887)	d	888)	d	1057)	b	1058)		1059)	a	1060	
889)	a	890)	d	891)	c	892)	a	1061)		1062)		1063)	d	1064	
893)	b	894)	b	895)	c	896)	a	1065)	b	1066)		1067)	b	1068	
897)	c	898)		899)	a	900)	c	1069)	a	1070)	b	1071)	a	1072	
901)	d	902)	b	903)	d	904)	b	1073)	c	1074)		1075)	c	1076	
905)	d	906)	d	907)	b	908)	d	1077)	c	1078)		1079)	b	1080	
909)	a	910)	c	911)	c	912)	b	1081)	b	1082)		1083)	b	1084	
913)		914)	c	915)	a	916)	d	1085)	c	1086)	b	1087)	b	1088	
917)		918)	d	919)	a	920)	b	1089)	d	1090)		1091)	a	1092	
921)		922)	c	923)	c	924)	d	1093)	a	1094)		1095)	c	1096	
925)		926)	b	927)	c	928)	d	1097)	a						
929)	c	930)	b	931)	b	932)	a								

ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (b)
$\mathrm{CHCl}_{3} \xrightarrow{\mathrm{HOH}} \mathrm{CH}(\mathrm{OH})_{3} \rightarrow \mathrm{HCOOH}$
2

The keto-ester (A) does not give haloform reaction inspite of the presence of $\mathrm{CH}_{3} \mathrm{CO}$ - group in it. The reason is the presence of active methylene group (ie, $-\mathrm{CH}_{2}-$), which prevents the conversion of $\mathrm{CH}_{3} \mathrm{CO}-$ to $\mathrm{CX}_{3} \mathrm{CO}-$
3 (c)
Formaldehyde reacts with NH_{3} to form urotropine which is used as medicine to cure urinary infections.
$6 \mathrm{HCHO}+4 \mathrm{NH}_{3} \rightarrow$
$\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4}$
Formaldehyde ammonia hexamethylene tetramine urotropine
4 (d)
Aldehydes and ketones having α-hydorgen atom undergo aldol condensation in presence of dilute base

5 (d)
$\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{[\mathrm{O}]} \mathrm{CH}_{3} \mathrm{COOH}$
6 (c)
Acetic acid reacts with PCl_{5} to form acetyl
chloride.
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{PCl}_{5} \rightarrow \mathrm{CH}_{3} \mathrm{COCl}+\mathrm{POCl}_{3}+\mathrm{HCl}$
acetic acid acetyl chloride
9 (d)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ is solid, less soluble in water and burn with smoky flame.
11 (a)
$\mathrm{CH}_{2} \mathrm{Cl}_{2} \xrightarrow{\mathrm{HOH}} \mathrm{HCHO}$
12 (b)
When aromatic carboxylic acids are subjected to Birch reduction (ie, Na or K in NH_{3} and an alcohol), 1,4 -additional of hydrogen takes place and 1, 4-cyclohexadiene carboxylic acids are produced

13 (c)
Picric acid is 2,4,6-trinitrophenol.
14 (c)
Herbicides are the substances that kills plants or inhibit their growth. Selective herbicides affect only particular plant types, making it possible to attack weeds growing among cultivated plants.
(d)

Carbonyl compounds are reduced to corresponding alkanes with ($\mathrm{Zn}+$ conc. HCl). It is called Clemmensen reduction.

(c)

Aluminium tertiary butoxide is an oxidising agent used for the oxidation of secondary alcohols into ketones.
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
O
OH
3-pentanol

18 (b)
The silver salt of fatty acid on refluxing with an alkyl halide, give an ester.

19 (a)
$\mathrm{CH}_{3} \mathrm{COCH}_{3} \xrightarrow{\mathrm{SeO}_{2}} \mathrm{CH}_{3} \mathrm{CO} \cdot \mathrm{CHO}+\mathrm{Se}+\mathrm{H}_{2} \mathrm{O}$
20 (c)
1, 2 diketone undergoes rearrangement to α hydroxy carboxylic acid in presence of base. This reaction is known as benzilic acid rearrangement

23 (b)
In the given compound, carbonyl group is reduced to - OH group by NaBH_{4} and it does not affect double bond. The another is hydroborationoxidation reaction, in which one water molecule is added to double bond

26
(b)
$\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\mathrm{Na} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
28 (c)

1. Acidity decreases with increase in number of carbon atoms in carboxylic acid.
2. Solubility of carboxylic acid decrease with increase in number of carbon atoms. Higher acids are insoluble in $\mathrm{H}_{2} \mathrm{O}$.
3. Boiling points of acids are higher than corresponding alcohols due to greater extent of hydrogen bonding.
\therefore (c) is correct answer.

29 (b)

Only suitable reagent is chromic anhydride in glacial acetic acid. Other will also effect ($\mathrm{C}=\mathrm{C}$) bond.
(b)

In the Rosenmund's reaction the acid chlorides are converted to corresponding aldehydes by catalytic reaction. This reaction is carried in the presence of palladium deposited over barium, sulphate.

31 (a)
In Claisen condensation aromatic aldehydes having no α-hydrogen atom react with aldehyde, ketones or esters having α-hydrogen atom in presence of dilute alkali to form
α, β-unsaturated carbonyl compound. e.g.,

$a, \boldsymbol{\beta}$-unsaturated carbonyl compound
Claisen condensation is not given by

As it does not contain α-hydrogen atom.
Methyl salicylate an ester has smell of oil of winter green and used as medicine in iodex; the pain reliever of strains in muscles.
(b)

Rosenmund's reaction involves reduction of acid chlorides to aldehydes by the action of H_{2} in presence of $\mathrm{Pd} / \mathrm{BaSO}_{4} . \mathrm{BaSO}_{4}$ acts as poison for Pd and prevents further reduction of aldehydes to alcohol.
34 (a)
After treatment with $\mathrm{D}_{2} \mathrm{O}$, the H^{+}ion of -OH group is replaced by D^{+}ion, because of being more reactive than deuterium
$\mathrm{CH}_{3}-\mathrm{C}=\mathrm{CH}_{2} \xrightarrow{\mathrm{D}_{2} \mathrm{O}} \mathrm{CH}_{3}-\mathrm{C}=\mathrm{CH}_{2}$

1	O
OH	

35 (d)
$\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{NH}_{3}} \mathrm{CH}_{3} \mathrm{COONH}_{4} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\Delta} \mathrm{CH}_{3} \mathrm{CONH}_{2}$
acetic acid ammonium acetate acetamide The isomers of $\mathrm{CH}_{3} \mathrm{CONH}_{2}$ is
4. $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
5. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{NOH}$
6. $\mathrm{H}-\mathrm{CONH}-\mathrm{CH}_{3}$

38 (b)

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5} \\
+\mathrm{CH}_{3} \mathrm{OH}
\end{gathered}
$$

40 (b)
Cinnamaldehyde is prepared by the Claisen reaction between benzaldehyde and acetaldehyde

$$
\begin{gathered}
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\mathrm{NaOH}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \\
=\mathrm{CHCHO}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

cinnamaldehyde
41 (c)
$2 \mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{P}_{2} \mathrm{O}_{5}}\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{P}_{2} \mathrm{O}_{5}$ acts as dehydrating agent.
44 (c)
Carbonyl compound +
HCN \rightarrow cyanohydrin $\xrightarrow{\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}}$hydroxy acid Latic acid is

acetaldehyde

- Cyanohydrin of acetaldehyde forms lactic acid.

46 (a)

Carbon is asymmetric.
48 (c)
Carboxylic acids are prepared by reaction of Grignard reagent with CO_{2}.
\because Formic acid (HCOOH)has only one carbon atom
\therefore Formic acid cannot be prepared from Grignard reagent.

0
II
$R \mathrm{Mg} X+\mathrm{CO}_{2} \rightarrow \mathrm{R}-\mathrm{C}-\mathrm{OMg} X \xrightarrow{\mathrm{HOH}} \mathrm{COOH}$
Grignard reagent
acid
51 (c)
Lactic acid on heatng with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give acrylic acid

52 (d)
When urea is heated it gives the biurate which give violet colour with CuSO_{4} and NaOH .
56 (a)
An immiscible solvent is added to the solution. Some of the solute passes in this solvent maintaining Nernst distribution law $K=\frac{C_{1}}{C_{2}}$, where C_{1} and C_{2} are concentration of solute in two phases.
57 (c)
Electron withdrawing group (-Ieffect) stabilizes the anion, and thus increases acidic nature.
Thus (c), (d)> (a), (b) acidic
Farther the electron withdrawing group from the -COOH group, its effect in increasing acid strength decreases thus (c) with Cl at α-position is stronger than (d) with Cl at γ-position.
(c)

When, benzene is heated with acetyl chloride, in presence of anhydrous AlCl_{3}, electrophilic substitution takes place and acetophenone is obtained. The reaction is known as Friedel-Craft acylation.

59 (a)
$: 6 \mathrm{HCHO}+4 \mathrm{NH}_{3} \rightarrow\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4}+6 \mathrm{H}_{2} \mathrm{O}$ hexamethylene tetramine

60 (a)
4-methyl benzene sulphonic acid is stronger than acetic acid thus, it will release acetic acid from sodium acetate.
61 (a)
$\mathrm{RCOOH} \xrightarrow{\mathrm{PCl}_{5}} \mathrm{RCOCl}$.
63 (d)
Clemmensen reduction can be used to convert acetophenone into ethyl benzene as it reduce
$>\mathrm{C}=\mathrm{O}$ group into $>\mathrm{CH}_{2}$

64 (d)
Carboxylic acids reacts with weaker bases such as bicarbonates producingCO 2 . The CO_{2} evolved comes from NaHCO_{3}, not from carboxylic group as shown below :

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

67

(b)

Iso-propyl magnesium bromide reduces di-isopropyl ketone to secondary alcohol. However, only $-\mathrm{H}^{+}$ion adds to ketone in spite of bulky alkyl group due to steric hinderance

six membered cyclic transition state

(b)

In (a) t-alcohol, in (c) initially s-alcohol converting to ether. In (d) p-alcohol.

Carbonyl carbon becomes more reactive towards nucleophilic addition depending upon the magnitude of the positive charge on the carbonyl carbon atom. The introduction of negative inductive effect showing group ($-I$ effect) increases the reactivity while introduction of alkyl group (+ Ieffect) decreases the reactivity. So, large alkyl group decreases the reactivity of $>$ $\mathrm{C}=0$.
71 (d)
Unsaturated ketones may be converted to unsaturated acids by sodium hypohalite, i.e., $\mathrm{NaOCl}, \mathrm{NaOI}$, etc.
72 (a)
The b.p. are $\mathrm{CH}_{3} \mathrm{CONH}_{2}>\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
$>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{CH}_{3} \mathrm{COCl}$ $222^{\circ} \mathrm{C} \quad 139^{\circ} \mathrm{C}$
$116^{\circ} \mathrm{C}$
$52^{\circ} \mathrm{C}$
73 (a)
Cl^{-}is the best leaving group being the weakest nucleophile out of $\mathrm{NH}_{2}^{-}, \mathrm{Cl}^{-}, \mathrm{O}^{-}$
$-\mathrm{C}_{2} \mathrm{H}_{5}$ and $\mathrm{O}^{-} \stackrel{\mathrm{Cl}}{\mathrm{C}-\mathrm{CH}_{3} \text {. }}$
(a)

Former reacts with $a q . \mathrm{NaHCO}_{3}$.
75 (b)
CO_{2} adds to Grignard's reagent to yield acids.

78 (b)
All methyl ketones give iodoform test.
80 (c)
This is an example of Cannizaro reaction

82 (b)
Grignard reagent $=\mathrm{CH}_{3} \mathrm{MgX}$
Clemmensen reduction $=\mathrm{Zn}-\mathrm{Hg} /$ Conc HCl
Rosenmund reduction $=\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}$
Wolff-Kishner reduction $=\mathrm{N}_{2} \mathrm{H}_{4} / \mathrm{KOH} / \mathrm{CH}_{2} \mathrm{OH}$ |
$\mathrm{CH}_{2} \mathrm{OH}$

84 (b)
Decarboxylation of malonic acid give acetic acid and CO_{2}
 malonic acid
85 (a)
Amides, on treating with HNO_{2}, give acids.
$\mathrm{CH}_{3} \mathrm{CONH}_{2} \xrightarrow[\left(\mathrm{HNO}_{2}\right)]{\mathrm{NaNO}_{2} / \mathrm{HCl}} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}$ acetic acid
87 (a)
Acetyl nitrate is formed, when acetic anhydride reacts with nitrogen pentoxide.

88 (b)
Fenton's reagent is $\mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}$.
89 (b)
In Clemmensen's reduction
$\mathrm{Zn}-\mathrm{Hg} /$ conc. HCl is used

This method is used to convert carbonyl compound into alkane.
91 (d)
-do-
93 (c)
Bezaldehyde does not yield a simple addition product with ammonia, but forms a complex product, hydrobenzamide (90%)

$$
\xrightarrow{-\mathrm{H}_{2} \mathrm{O}} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{NH}
$$

 hydrobenzamide
94 (a)
The order of the acidic characters of acid derivative or their ease of hydrolysis with alkali is given below :

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{COCl}>\mathrm{CH}_{3} \mathrm{CO}-\mathrm{O}-\mathrm{COCH}_{3}>\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5} \\
>\mathrm{CH}_{3} \mathrm{CONH}_{2}
\end{gathered}
$$

95 (a)
It is adipic acid.
97 (b)
$\mathrm{CH}_{2}=\mathrm{CHCHO} \xrightarrow{\text { Reduction }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(d)

Stearic acid $\left(\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}\right)$, palmitic acid $\left(\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{COOH}\right)$ and oleic acid ($\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{COOH}$; an unsaturated acid) are fatty acids.
102 (d)
The given reaction is an example of Diels-Alder reaction, which is a cycloaddition

103 (a)
On complete oxidation the obtained compound shows increment in molecular weight of only 16. It means only one oxygen atom is added here.
This condition is fulfilled by only aldehyde which on oxidation gives acid.
$\mathrm{RCHO} \xrightarrow{[0]} \mathrm{RCOOH}$
Original compound must be
$\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{[\mathrm{O}]} \mathrm{CH}_{3} \mathrm{COOH}$
mol. wt. 44 mol.wt. 60
104 (d)
Former reacts with $a q$. HCl .
106 (a)
\% ratio of C: H:: $6: 1$ and C:0:0:3:4
$\therefore \quad \%$ ratio of $\mathrm{C}: \mathrm{H}: 0:: 6: 1: 8$
\%/at. wt.
$\therefore \quad \% \mathrm{C}=\frac{6}{15} \times 100=40 \quad \frac{40}{12}=3.33$
$\% \mathrm{H}=\frac{1}{15} \times 100=6.66 \quad \frac{6.66}{1}=6.66$
$\% \mathrm{O}=\frac{8}{15} \times 100=53.3 \quad \frac{53.3}{16}=3.33$
\therefore Simplest ratio of $\mathrm{C}: \mathrm{H}: \mathrm{O}:: 1: 2: 1$, i.e., $\mathrm{CH}_{2} \mathrm{O}$
107 (a)

$$
\begin{gathered}
2 \mathrm{KCNO}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{NH}_{4} \mathrm{CNO}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
\mathrm{NH}_{4} \mathrm{CNO} \xrightarrow{\Delta} \mathrm{NH}_{2} \mathrm{CONH}_{2} \\
\text { urea }
\end{gathered}
$$

108 (c)
2-pentanone and 3-pentanone can be distinguished by iodoform test.
$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (2-pentanone) gives positive iodoform test while $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$ (3pentanone) doesn't give iodoform test.
110 (b)

A 40\% solution of formaldehyde in water, called formalin, is used for the preservation of biological and anatomical species
111 (b)
Aldol condensation is given by acetaldehyde due to the presence of α-hydrogen atom.

112 (d)
These reactions lead to replacement of oxygen atom of carbonyl group to form hydrazones and oximes.
114 (d)
$\mathrm{C}=\frac{38.7}{12}=3.22=\frac{3.22}{3.22}=1$
$H=\frac{9.67}{1}=9.67=\frac{9.67}{3.22}=3$
$0=\frac{51.63}{16}=3.22=\frac{3.22}{3.22}=1$
\therefore Empirical formula is $\mathrm{CH}_{3} \mathrm{O}$
115 (a)

$\mathrm{CH}_{3} \mathrm{COCl}$ is the isomer of $\mathrm{CH}_{2} \mathrm{ClCHO} \cdot \mathrm{CH}_{3} \mathrm{CHO}$ is the isomer of oxirane ie
117 (d)

\therefore Nitration of urotropine gives powerful explosive
118 (d)
$R \mathrm{COOH}+\mathrm{N}_{3} \mathrm{H} \rightarrow R \mathrm{NH}_{2}+\mathrm{CO}_{2}+\mathrm{N}_{2}$
121 (c)
The solution produces CuO in it.
122 (b)
Stephen's reduction Aldehyde can be prepared
from alkyl cyanides.e.g.,

$$
\begin{array}{cl}
\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{~N}+2[\mathrm{H}] \xrightarrow[\text { Ether }]{\mathrm{SnCl}_{2} / \mathrm{HCl}} \\
=\mathrm{NH} . \mathrm{HCl}
\end{array} \mathrm{CH}_{3}-\mathrm{CH} \mathrm{CH}
$$

Aldehydes, which have no α-hydrogen atom, undergo Cannizaro reaction is presence of conc. NaOH and yield an alcohol and an acid salt.
(Disproportionation).
$2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \xrightarrow{\mathrm{NaOH}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$ benzaldehyde benzyl alcohol
125 (b)
$R \mathrm{COOR}^{\prime}+\mathrm{NH}_{3} \rightarrow \mathrm{RCONH}_{2}+\mathrm{R}^{\prime} \mathrm{OH}$
126 (a)
$\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{NaCOOCCH}_{3} \rightarrow\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}+\mathrm{NaCl}$
127 (b)
$\mathrm{C}_{2} \mathrm{H}_{6}+\frac{7}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
128 (c)
$\underset{\text { Propionic acid }}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}} \xrightarrow[\text { propionamide }]{\mathrm{NH}_{3}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}$
(X)

129 (a)
The acidic strength of dicarboxylic acids
decreases as the number of methyl groups increases, because of their $+I$ effect
130 (d)
Oppenauer oxidation;
=
Meerwein - Ponndorf - Verley reaction.
$R_{2} \mathrm{CO}+\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}\right]_{3} \mathrm{Al} \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{3}+$
$\left[R_{2} \mathrm{CHO}\right]_{3} \mathrm{Al}$

131 (a)
Addition according to Markownikoff's rule.
132 (a)
In Cannizaro reaction when formaldehyde reacts with other aldehydes lacking α-hydrogen, it is always oxidized and other aldehyde is reduced

$$
+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}
$$

134 (c)

It is an example of Cannizaro's reaction.
135 (c)

$$
\mathrm{Br}_{2} \mathrm{HCCBr}_{2} \mathrm{COOH} \xrightarrow{\text { Sodalime }} \mathrm{CHBr}_{2} \mathrm{CHBr}_{2}
$$

136 (c)
All aldehydes reduce Fehling's solution to give red ppt. of $\mathrm{Cu}_{2} \mathrm{O}$.
138 (b)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$; has banana odour.
139 (b)
This is internal Cannizzaro's reaction.
143 (a)

For aldol condensation C-5 and C-7 can attack to $\mathrm{C}-1$ similarly C-2 and C-10 can attack to C-6 but all give same product.
144 (c)
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}\right)_{2} \mathrm{Ca} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}+\mathrm{CaCO}_{3}$
146 (d)
Aldehyde containing no α-H-atom on reaction with $50 \% \mathrm{NaOH}$ or KOH , undergo disproportionation to give an alcohol and Na or K salt of an acid. This reaction is called Cannizaro reaction. Acetaldehyde does not show Cannizaro reaction due to presence of α-hydrogen atom
147 (a)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow[\mathrm{H}_{2} \mathrm{So}_{4}]{\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
7.
(B)

155 (c)
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OCl} \xrightarrow{\mathrm{NH}_{3}} \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{ONH}_{2} \xrightarrow[\mathrm{KOH}]{\mathrm{Br}_{2}{ }^{+}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
Thus, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OCl}$ should be $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCl}$.
156 (c)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}_{3} \xrightarrow{[\mathrm{O}]} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$
160 (d)
$R-\mathrm{CHO}+2 \mathrm{CuO} \rightarrow R \mathrm{COOH}+\mathrm{Cu}_{2} \mathrm{O}$
167 (a)
Acetic acid is $\mathrm{CH}_{3} \mathrm{COOH}$ or $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$. Thus, its empir
170 (a)
The Arndt-Eistert synthesis is used to convert carboxylic acid to the higher acid homologue
$R \mathrm{COOH} \xrightarrow[\text { (ii) } \mathrm{CH}_{2} \mathrm{~N}_{2}]{\text { (i) } \mathrm{SOCl}_{2}} R \mathrm{CH}_{2} \mathrm{COOH}$
171 (b)
propanol
propanal

(C)

148 (b)
$\mathrm{CH}_{3} \mathrm{CN} \xrightarrow{\mathrm{HOH}} \mathrm{CH}_{3} \mathrm{COOH}$
152 (c)
40% aqueous solution of formaldehyde
(methanal) is called as formalin.
Note Formalin used as disinfectant and preservative for biological specimens.
153 (a)
LiAlH_{4} is a strong reducing agent, which reduces carboxylic acids to corresponding primary alcohols as well as alkyl halide to alkenes, but donot reduce double bond

The strength of carboxylic acid depends upon the nature of the electron withdrawing halogen atom. Greater the electron withdrawing influence of the halogen atom stronger will be the acid. The electron withdrawing effect of the halogen decreases as

$$
\mathrm{F}>C l>B r>I
$$

Hence, CH_{2} (I). COOH is the weakest acid among these.

Less +ve inductive effect on carbonyl group and thus more + ve charge on C^{+}to give nucleophilic addition.

172 (a)
$\%$ of $\mathrm{C}=\frac{12 \times 0.147}{44 \times 0.2} \times 100=20$
$\%$ of $\mathrm{H}=\frac{2 \times 0.12}{18 \times 0.2} \times 100=6.66$
$\therefore \%$ of $0=100-20-6.66=73.34$
174 (a)
Resonance in carboxylate ions give rise to
identical bond lengths.
175 (a)
2-hydroxypropane or secondary alcohol is oxidised into propanone (corresponding carbonyl compound because in 2-hydroxypropane, secondary alcoholic group is present and it is oxidised into ketone).

176 (c)
Only aldehydes and ketones react with 2, 4dinitrophenyl hydrazine to give orange coloured ppt. This reaction is used as test for carbonyl group. Alcohols does not give this reaction.

(a)
(b)
(d)

Choice (a), (b) and (d) are carbonyl compounds and they react with 2,4-dnitreophenyl hydrazine $\mathrm{CH}_{3} \mathrm{OH}[$ choice(c)] doesn't have carbonyl group.
$\therefore \mathrm{CH}_{3} \mathrm{OH}[$ choice (c)] doesn't react with 2,4dinitrophenyl hydrazine.
177 (b)
Carboxylic acids acids react with Grignard's reagent to give alkanes.
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{MgX} \rightarrow \mathrm{CH}_{3} \mathrm{COOMgX}+\mathrm{CH}_{4}$ methane
179 (d)
2-pentanone give positive iodoform test.
180 (b)
Ethyl acetate is obtained by acetaldehyde by using aluminium ethoxide. It is a one step process and called Tischenko's reaction

182 (d)

Acids are soluble in bases.
183 (a)
Eq. of silver salt $=$ Eq. of Ag

$$
\frac{0.759}{E}=\frac{0.463}{108}
$$

$\therefore \quad$ Eq. wt. of ag salt $=177$
$\therefore \quad$ Eq. wt. of acid $=177-108+1=70$
184 (b)
Acetaldehyde on heating with Tollen's reagent give silver mirror test while acetone is not
oxidised by Tollen's reagent
(Ketones oxidise only under drastic condition).
185 (c)
Hydroxamic acid test is used to detect presence of esters.
In hydroxamic acid test a few crystals or a few drops of the substance is dissolved in 1 mL of 95% ethanol +1 mL of 1 MHCl . Then, a drop of 5% FeCl_{3} is added.
Formation of characteristic colour shows the presence of acyl or ester group.

186 (b)
LiAlH_{4} reduces -COOH group to $-\mathrm{CH}_{2} \mathrm{OH}$ group without affecting $\mathrm{C}=\mathrm{C}$ bond.
187 (a)
Benzaldehyde $\xrightarrow{\text { Perkin reaction }} 3$ - phenyl prop
$-2 e n e-1$ - oic acid.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} \xrightarrow{\mathrm{CH}_{3} \mathrm{COONa}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}$
$=\mathrm{CHCOOH}+\mathrm{CH}_{3} \mathrm{COOH}$
Cinnamic
acid
189 (b)
Methyl salicylate is the main component of oil of winter green. Its structure is

193 (c)
α-hydroxy acids form lactides, γ and δ-hydroxy acids form lactones, (cyclic compounds). While β hydroxy acids form α, β-unsaturated acid on heating

194 (c)
This is Knovengeal reaction.

195 (d)
For the conversion of primary alcohol into aldehyde with the same number of carbon, the most suitable reagent is pyridinium chlorochromate (PCC).

$$
R \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{PCC}} R \mathrm{CHO}
$$

Note PCC is the mixture of pyridine, CrO_{3} and HCl in 1:1:1 ratio.
196 (c)
In 2, 4, 6-tri-nitrobenzoic acid, the decarboxylation takes place most easily, because of $-I$ effect of nitro group, whereas in the dicarboxylic acid with one carbon atom having two carboxylic group it is also easier to remove CO_{2}. Hence, the order of ease of decarboxylation

199 (a)
As the number and the size of the alkyl groups increases, reactivity decreases. Hence, the reactivity order is

200 (c)
Keto group is protected by ethylene glycol being reduced and ester radical of the compound is reduced to tertiary alcohol by reaction with Grignard reagent and subsequent hydrolysis

201 (c)
In Hell-Volhard Zelinsky reaction, when acid reacts with Br_{2} or Cl_{2} in presence of red phosphorus α-hydrogen atom of the acid is
replaced by halogen atom. HCOOH does not give
HVZ reaction due to absence of α-hydrogen atom

Phthalic acid
In presence of $\mathrm{Ba}(\mathrm{OH})_{2}$ when heated phthalic acid undergoes decarboxylation.
204 (a)
Wolff-Kishner's reaction involves reduction of carbonyl compound into alkane using alkaline hydrazine as reducing agent.
205 (a)
Benzoic acid, o-phthalic acid and acetophenone inspite of having double bonds, does not give unsaturation test (addition with $\mathrm{Br}_{2} / \mathrm{CCl}_{4}$) as they are aromatic compounds and are quite stable due to large resonance energy. Cinnamic acid, on the other hand has a double bond outside the benzene ring (in the side chain) hence it gives unsaturation test.

206 (b)

This reaction is an example of intramolecular Cannizaro's reaction.
207 (c)

Note: only methyl ketones react with NaHSO_{3}.
208 (d)
Benzaldehyde lacks α-hydrogen atom, hence
undergo Cannizaro reaction in which it disproportionate into benzyl alcohol and sodium benzoate.
$2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \xrightarrow{\text { Conc. } \mathrm{NaOH}} \mathrm{C}_{6} \mathrm{H}_{5} . \mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOK}$
209 (c)
Although it has α-H-atom but undergoes Cannizzaro's reaction; an exception.
211 (b)
Hydrazines react with alkanones to give an addition-elimination reaction and hydrazones are obtained.

212 (a)
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ must be a tertiary alcohol as it gives alkene on treatment with Cu . Thus $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ is a ketone.
213 (b)
$\mathrm{HCOOH} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$
214 (b)
$\mathrm{CCl}_{3} \mathrm{CHO} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \underset{\text { Chloral hydrate }}{\mathrm{CCl}_{3} \mathrm{CH}(\mathrm{OH})_{2}}$
216 (c)
In the reaction of carboxylic acid with diazomethane, methyl esters are produced with liberation of N_{2}

217 (b)
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH} \xrightarrow{[\mathrm{O}]}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
218 (b)
Aromatic aldehyde i.e., $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$ are not able to reduce Fehling's solution but it gives Cannizaro's reaction with alkali.
220 (b)
$R \mathrm{COCl}+\mathrm{NH}_{3} \rightarrow R-\mathrm{CONH}_{2}$
Acid chloride
amide
223
(d)
$3 \mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}} \underset{\text { Paraldehyde }}{\left(\mathrm{CH}_{3} \mathrm{CHO}\right)_{3}}$
224 (d)
Crystallization of conc. solution separates out salts.
225 (c)
By distillation of red ant, formic acid is obtained.
226 (a)
$R \mathrm{COOH}$ and HCOOR are functional isomers having

228 (d)
When amide is heated with a mixture of Br_{2} in the presence of NaOH or KOH amine is formed which has one carbon atom less than original amide.
This is called Hofmann's degradation reaction. Hexanamide $+\mathrm{Br}_{2}+4 \mathrm{KOH} \rightarrow$ Pentanamine + $\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{KBr}+2 \mathrm{H}_{2} \mathrm{O}$
229 (c)
Semicarbazide is $\mathrm{NH}_{2} \mathrm{NHCONH}_{2}$.
230 (b)
Maleic acid contains intramolecular hydrogen bonding while Fumaric acid contains iuntermolecular bonding. Thus, maleic acid forms more stable maleate ion after the removal ofH ${ }^{+}$. Hence maleric acid is stronger acid than Fumaric acid
233 (a)
$R \mathrm{COOK}($ aq. $) \xrightarrow{\text { Electrolysis }} R-R+\mathrm{CO}_{2}+\mathrm{KOH}+$ H_{2}

235 (b)

chloride
benzaldehyde
This reaction is called Rosenmund's reaction.
238 (d)
The reaction is called crossed Cannizzaro's reaction;
$\mathrm{HCHO}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \xrightarrow{\mathrm{NaOH}} \mathrm{HCOONa}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
239 (c)
$6 \mathrm{HCHO}+4 \mathrm{NH}_{3} \rightarrow\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4}+6 \mathrm{H}_{2} \mathrm{O}$
242 (b)
$\mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{HOH} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{3}$
243 (c)
Acidic order is: $\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}>$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.
244 (a)
Acetone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$ undergoes condensation reaction in presence of HCl to produce mesityl oxide.
$2 \mathrm{CH}_{3} \mathrm{COCH}_{3} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\mathrm{HCl}}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{C}=\mathrm{CHCOCH}_{3}$
4-methyl pent-3en-2one or mesityl oxide
$6 \mathrm{HCHO} \xrightarrow{\mathrm{Ca}(\mathrm{OH})_{2}} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} ; \quad$ formose or α-acrose; an isomer of glucose and fructose.

Benzaldehyde condenses with propanoic anhydride to yield α, β - unsaturated acids in the presence of catalytic amount of sodium propionate

249 (b)
$\mathrm{CH}_{3} \mathrm{CONHCH}_{3}$ neither forms semicarbazone nor oxime because it is a substituted amide. While other compounds have carbonyl group hence, they form semicarbazone or oxime
(c)
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
254
(d)

Calcium formate on distillation gives HCHO .
$(\mathrm{HCOO})_{2} \mathrm{Ca} \xrightarrow{\text { Distillation }} \mathrm{HCHO}+\mathrm{CaCO}_{3}$
255 (a)
$R \mathrm{CH}_{2} \mathrm{HCCl}_{2} \xrightarrow{\mathrm{HOH}} R \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH})_{2} \xrightarrow{\text { Unsatble }} R \mathrm{CH}_{2} \mathrm{CHO}$
256 (d)

This is by S_{N} reaction. Cl^{-}is a better leaving group than $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$and the ethyl ethanoate is formed.
257 (a)
β-keto acids are the carboxylic acids that undergo decarboxylation easily

259 (d)
See the influence of $-I E$ of Cl -atom. The negative charge on carboxy late ion is dispersed more in presence of two Cl -atoms.

260 (a)
Acids react with alcohols give ester, this process is known as esterification.
$\mathrm{RCOOH}+\mathrm{R}^{\prime} \mathrm{OH} \rightarrow \mathrm{RCOOR}^{\prime}$
acid alcohol ester
261 (b)
When $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$ condenses with $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ in presence of sodium acetate then cinnamic acid is formed. This reaction is called Perkin reaction.
$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CHO}+\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} \xrightarrow[100^{\circ} \mathrm{C}]{\mathrm{CH}_{3} \mathrm{COONa}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}$

$$
=\mathrm{CHCOOH}+\mathrm{CH}_{3} \mathrm{COOH}
$$

benzaldehyde acetic cinnamic acid
anhydride
263 (c)
$\mathrm{C}_{x} \mathrm{H}_{y}+\left[x+\frac{y}{4}\right] \mathrm{O}_{2} \rightarrow x \mathrm{CO}_{2}+\frac{y}{2} \mathrm{H}_{2} \mathrm{O}(v)$
500
0

$$
500 x \quad \frac{y}{2} \times 500
$$

Now, $500 x=2500$
$\therefore x=5$
$500 \frac{y}{2}=3000$
$\therefore \quad y=12$
\therefore Alkane is $\mathrm{C}_{5} \mathrm{H}_{12}$.
264 (c)
As small rings cannot be formed because of internal strain
265 (d)
$\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\text { Reduction }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
All these do so.
266 (a)
When treated with $\mathrm{Ba}(\mathrm{OH})_{2}$, acetone undergoes aldol condensation to form diacetone alcohol.

The Gattermann-Koch reaction is an example of electrophilic substitution and electrophile is generated as,

(E)

The reaction takes place as,

269 (b)

The rate determining step suggest addition of CN^{-}
271 (d)
The α, β-unsaturated ketones add on ammonia to form β-amino compounds

272 (d)
Urea is one of the most important fertilizer as it does not change pH of soil. Urea, after hydrolysis gives ammonia and CO_{2}. Ammonia is taken up by plants leaving behind $\mathrm{CO}_{2} \cdot \mathrm{CO}_{2}$ is a very weak acidic oxide. It doesn't affect pH of soil

274 (c)
Aldehydes are easily oxidised to respective acids.
276 (c)
This reaction is an example of Claisen Schmidt reaction (Claisen condensation). The reaction is as fallows

(d)

Kjeldahl's method is not used for compounds having nitrogen atom in ring or having $\mathrm{N}-\mathrm{O}$ and $\mathrm{N}-\mathrm{N}$ bonds or to say heterocyclic ring with N atom, azo, azoxy and nitro compounds.
281 (a)
$\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5} \rightarrow 2 \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$
282 (d)
In rest all HCHO is used.
283 (a)

Acetic acid is obtained by the oxidation of ethanol with alkaline KMnO_{4}.

The acid amides are amphoteric in nature. In amides, the lone pair of electrons on N atom remains delocalised (in resonance) with ($\mathrm{C}=0$) group.
\therefore Amides are not much basic but infact they are amphoteric in nature.

285 (b)
Lithium aluminium hydride is a powerful reducing agent. It reduces acetic acid into ethanol.

The α-hydrogen atoms of acetaldehyde due to -

group is slightly acidic in nature. In crossed aldol condensation between formaldehyde and acetaldehyde in the first step OH^{-}ion (from the base added) abstracts one of these acidic α-hydrogens to form carbanion or enolate ion which is stabilised by resonance.

288 (b)

NaBH_{4} is a mild reducing agent and can not reduce less reactive ester group
289 (c)

Aldol condensation is shown by the molecules having α-carbon atom.
293 (a)

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOCH}_{3} \xrightarrow{\text { Red }} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{OH}
$$

294 (a)
$\mathrm{CH}_{3} \mathrm{COCH}_{3} \xrightarrow{[\mathrm{O}]} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HCOOH}$
296 (d)

Ketones and aldehydes add to NaHSO_{3} to give white crystalline bisulphite addition product

297 (b)
COOHCOOH is dibasic acid. A polyprotic acid donates more than one proton.
302 (b)
α, β-unsaturated acids add on halogen acids. The mode of addition is contrary to Markownikff's rule and may be described to the inductive effect of the carboxyl group.

303 (d)
Aldehydes are strong oxidising agents. They oxidise Tollen's reagent (ammoniacal AgNO_{3} to Ag), Fehling solution (to $\mathrm{Cu}_{2} \mathrm{O}$) and Benedict solution (to $\mathrm{Cu}_{2} \mathrm{O}$). The reactions are used to detect the presence of aldehyde group in compound.
304 (a)
Secondary alcohols are oxidised to give ketones.

Grignard reagent (RMgX) with aldehyde) other than formaldehyde (HCHO) gives 2° alcohol. Aldehyde on reaction with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{HCl}$ gives acetal.

306 (b)
This reaction is an example of rearrangement, ie, migration of alkyl group from carbon to adjacent nitrogen atom and the group which is trans to the leaving group (-OH group) migrates leading to the formation of resonance stabilised imine

(b)

310 (c)
In phenyl magnesium bromide $\binom{\delta-\delta+}{\mathrm{Ph} \mathrm{Mg} \mathrm{Br}}^{\delta-} \cdot \mathrm{Ph}$ is attached with that C-atom of carbonyl group which have low electron density (higher electropositive charge)
In carbonyl compounds, aldehydes are more reactive

towards nucleophile in nucleophilic addition reaction because in ketones alkyl groups(due to $+I$ effect) decrease the electropositive charge of carbon of carbonyl group. Hence attraction of nucleophile decreases. Moreover in the tetrahedral intermediate aldehyde have less steric repulsion than ketones and also the aldehyde increases the negative charge on oxygen less in comparison of ketones.

Thus, on the basis of above reason the order of reactivity of acetone(I), acetaldehyde (II) and benzaldehyde (III) with PhMgBr is

$$
\text { II }>\text { I }>\text { III }
$$

311 (c)
$R_{2} \mathrm{CCl}_{2} \xrightarrow{\mathrm{HOH}} R_{2} \mathrm{C}(\mathrm{OH})_{2} \rightarrow R_{2} \mathrm{CO}$
313 (b)
$\mathrm{CH}_{3} \mathrm{CONH}_{2}+$ is solid, $\mathrm{CH}_{3} \mathrm{Cl}$ and $\mathrm{CH}_{3} \mathrm{SH}$ are gas.
314 (b)
Cannizaro reaction,
$\mathrm{HCHO}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCOONa}$
This reaction takes place by those compounds which has no $\alpha-\mathrm{H}$ atom.
Inter molecular shift of hydride ion is key step of Cannizaro reaction

317 (b)
This is carbylamine reaction carried out by $\mathrm{Br}_{2}+$ NaOH .
320 (b)
p-keto acids are the only carboxylic acids that
decarboxylate under mild heat

$$
+\mathrm{CO}_{2}
$$

321 (b)

323
(b)

324 (b)
Hydrazine in the presence of strong base also reduces $\searrow \mathrm{C}=\mathrm{O}$ group to $\searrow \mathrm{CH}_{2}$ (Wolff-Kishner reduction). If there is any base sensitive groups, such as $-\mathrm{Br},-\mathrm{Cl}$, etc in carbonyl compound, this reagent is not advised

326 (c)
Hofmann reaction In this reaction acid amide group reacts with Br_{2} in presence of NaOH or KOH to give primary amine group. The amine is one carbon less than the parent amide. So, the reaction is known as Hofmann degradation reaction.

$$
\begin{aligned}
R \mathrm{CONH}_{2}+\mathrm{Br}_{2} & +4 \mathrm{KOH} \xrightarrow{\Delta} R \mathrm{NH}_{2}+2 \mathrm{KBr} \\
& +\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

(b)

The kjeldahl's method is based on the fact that nitrogen of an organic compound is quantitatively converted to $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ on heating with $\mathrm{H}_{2} \mathrm{SO}_{4}$ (conc.). The $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ is then treated with KOH to liberate NH_{3}, which is absorbed in $\mathrm{H}_{2} \mathrm{SO}_{4}$ to obtain $\%$ of N .
328 (a)
The relative reactivity of the acid derivatives towards nucleophilic acyl substitution reaction follow the order :
$R \mathrm{COCl}>(R \mathrm{CO})_{2} \mathrm{O}>R \mathrm{COOR}>\mathrm{RCONH}_{2}$
The ease with which these leaving groups depart decreases in the order: $\mathrm{Cl}^{-}>\mathrm{RCOO}^{-}>\mathrm{RCO}^{-}>$ NH_{2}^{-}. Consequently the relative reactivities of all these acid derivatives decreases in the order : acid chloride $>$ anhydride $>$ ester $>$ amide
329 (b)
Hydrazine in the presence of a strong base reduces $\searrow \mathrm{C}=\mathrm{O}$ group to $\searrow \mathrm{CH}_{2}$ group

This reaction is called Wolff-Kishner reduction
331 (c)

332 (c)
Only aldehydes reduce Tollen's reagent.

Since, the compound ' B ' gave a 2,4 dinitrophenylhydrazine derivative but did not answer halogen test or silver mirror test, it must contains a $>\mathrm{C}=0$ group, but it is neither a methyl ketone nor an aldehyde.
Moreover, compound ' B 'is obtained by the oxidation of compound ' A ' having molecular formulaC $\mathrm{H}_{12} \mathrm{O}$, so the compound must be a secondary alcohol.
$\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{[\mathrm{O}]}$
|
OH
2^{0} alcohol
(Compound ' A ')

Ketone
(Compound ' B)
334 (d)
All are facts about $\mathrm{CH}_{3} \mathrm{COCH}_{3}$.
335 (a)
Benzaldehyde forms two isomeric semicarbazone with semicarbazide.

336 (b)

Also, $15\left[\mathrm{x}+\frac{y}{4}\right]=45 \quad \therefore y=4$
338 (d)
Acid halides and acid anhydrides are acylating agent.
342 (c)
A carboxylic acid contains - COOH gp. and an alkyl group.
343 (d)
$\mathrm{CH}_{3} \mathrm{COC}_{6} \mathrm{H}_{5}$ will show iodoform test.
346 (c)
Acetic acid on reduction with lithium
aluminiumhydride $\left(\mathrm{LiAlH}_{4}\right)$ gives ethyl alcohol while on reduction with HI and red P gives ethane.

$\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\text { Red } \mathrm{P}+\mathrm{HI}} \mathrm{CH}_{3}-\mathrm{CH}_{3}$
Ethane
Hence, reagent A and B are respectively LiAlH_{4} and $\mathrm{HI} / \mathrm{red}$ P.

348 (c)
349 (c)
(A)

+ ve charge is less intensified
(B)

(C)

More intensified is + ve charge on C-atom, more is tendency to attack by nucleophile but due to steric hindrance, this tendency decreases.
352 (b)
Esters on reaction with excess of Grignard reagent produce 3° alcohol.

354 (a)
The enzyme must contain at least one atom of Se .
$\because 0.5 \mathrm{~g}$ enzyme, mol. weight $=100$
$\therefore 78.4 \mathrm{~g}$ enzyme, mol. weight $=\frac{100 \times 78.4}{0.5}$
$=1,576 \times 10^{4}$
356
(b)
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CHO}$ is acrolein.
357 (a)
HCHO has one carbon and reduces Tollen's reagent.
(d)

Aldehydes and ketones both can react with 2, 4dinitrophenyl hydrazine as

359
(d)
$\mathrm{CH}_{3} \mathrm{COOH}+4 \mathrm{H} \xrightarrow{\mathrm{LiAlH}_{4}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}$
(A)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+$ $\mathrm{H}_{2} \mathrm{O}$

361 (d)
Addition of $\mathrm{K}_{2} \mathrm{SO}_{4}$ increases the b. p. of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
365 (d)
R COOAg $+R^{\prime} X \rightarrow R$ COOR (ester); this is called Hunsdiecker reaction.
366 (b)
The reactivity order of acid derivatives is based on nature of leaving gp.,resonance and inductive effect.
367 (a)
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HOC}_{2} \mathrm{H}_{5} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$
370
(c)

Due to bitter almonds odour.
371 (b)
In carboxylic acid the oxygen attached to carboxyl carbon is more electronegative and withdraws the electrons of bond

Hence, protonation occurs at the carboxyl oxygen
373 (b)
$\mathrm{RCO} O \mathrm{OH}+\mathrm{H} \mathrm{OR}^{\prime} \longrightarrow R \mathrm{COOR}^{\prime}$
Alcohol loses H -atom and thus, reactivity order:
$3^{\circ}<2^{\circ}<1^{\circ}$.
375 (b)
AgNO_{3} gives precipitation of silver halides.
376 (c)
One molecule is oxidised and one is reduced on the cost of other.
377 (b)
This is Cannizzaro's reaction.
378 (d)
$\mathrm{CH}_{3} \mathrm{COCH}_{3} \xrightarrow{\mathrm{LiAlH}_{4}} \mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$;
This will give iodoform test.
379 (b)
Aldehydes restore pink colour of Schiff's reagent.
380 (a)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{Cl}_{2}} \mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\mathrm{Cl}_{2}} \mathrm{CCl}_{3} \mathrm{CHO}$
381 (c)
$R \mathrm{COAg}+\mathrm{X}_{2} \rightarrow \mathrm{RX}+\mathrm{Ag} X+\mathrm{CO}_{2}$
$\left(\mathrm{CCl}_{4}\right)$
385 (b)
In Clemmensen's reduction, aldehyde (R CHO) and ketones ($R-\mathrm{CO}-R^{\prime}$) are reduced into
hydrocarbons ($R-R^{\prime}$).
$R \mathrm{CHO}+6[\mathrm{H}] \xrightarrow[\text { Conc. } \mathrm{HCl}]{\text { Zn amalgamated }} R \mathrm{CH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
386 (b)
$\mathrm{Na}_{2} \mathrm{~S}$ and NaCN are decomposed on heating with
HNO_{3} to form $\mathrm{H}_{2} \mathrm{~S}$ and HCN in gaseous phase otherwise they will give precipitate with AgNO_{3}

$$
\begin{gathered}
\mathrm{NaCN}+\mathrm{HNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{HCN} \uparrow \\
\mathrm{Na}_{2} \mathrm{~S}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{~S}
\end{gathered}
$$

390 (a)
The cis form is maleic acid; trans form is fumaric acid.
391 (c)
Follow mechanism of Cannizzaro's reaction.
392 (b)
Formic acid also act as a reducing agent as it can
reduce Tollen's reagent, Fehling solution, mercuric chloride and KMnO_{4} etc.
393 (d)
Penicillin, an antibiotic is discovery of $20^{\text {th }}$ century.
394 (c)
HCHO is gas at room temperature. Its aqueous solution called formalin ($42 \% \mathrm{HCHO}+8 \%$ $\mathrm{CH}_{3} \mathrm{OH}$) is used as preservative for biological specimens.
395 (b)
Chloral is $\mathrm{CCl}_{3} \mathrm{CHO}$, i. e., 2,2,2 - trichloroethanal.
396 (b)
Calcium adipate on dry distillation gives cyclopentanone.

398 (b)
Acetaldehyde is the only aldehyde which gives +ve iodoform test. Also, only aldehydes reduce Fehling's solution.
401 (c)
Due to tautomerism,

402 (a)
It gives benzoyl chloride $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}\right)$.

403 (a)
The reaction occurs as follows

1,1-diphenyl ethanol

When addition of HCN takes place at $\alpha, \beta-$ unsaturated carbonyl compounds, it gives β cyano compounds

405 (c)

406
(d)

Acidic strength is the tendency to give H^{+}ions.
The correct order of acidic strength of given acids is
$\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}<\mathrm{HCOOH}$
407 (a)
$3 \mathrm{HCOOH}+\mathrm{PCl}_{3} \rightarrow \underset{\text { (Less stable) }}{3 \mathrm{HCOCl}}+\mathrm{H}_{3} \mathrm{PO}_{3}$
408 (c)
$R \mathrm{COOH}+\mathrm{CH}_{2} \mathrm{~N}_{2} \rightarrow R \mathrm{COOCH}_{3}+\mathrm{N}_{2}$; methyl esters are formed.

The nucleophilic addition of carbanion of α, β unsaturated carbonyl compounds is known as

[^0]

410 (a)
Tamarind contains dextro-rotatory pot. Salt of tartaric acid.
411 (d)
Rosenmund's reduction involves the reduction of acid halide into aldehyde by means of $\mathrm{Pd} / \mathrm{BaSO}_{4}$.
$\mathrm{CH}_{3} \mathrm{COCl} \xrightarrow[\mathrm{H}_{2}]{\mathrm{Pd} / \mathrm{BaSO}_{4}} \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{HCl}$
412 (a)
HCHO does not have α C-atom and hence no
$\alpha \mathrm{H}-$ atom.
Therefore, it doesn't give aldol condensation.
413 (c)
Benzaldehyde reacts with methyl amine to give
Schiff's base

$$
\begin{gathered}
\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CHO}+\mathrm{H}_{2} \mathrm{NCH}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH} \\
=\mathrm{N} . \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Schiff's base
415 (c)
$\% \mathrm{C}=\frac{12 \times 0.66 \times 100}{44 \times 0.2}=90$
$\therefore \% \mathrm{H}=100-90=10$
417 (b)
$A+\mathrm{NaOH} \rightarrow$ alcohol+acid
Thus, it is Cannizaro reaction. A is thus aldehyde without H at α-carbon.
(like $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}, \mathrm{HCHO}$)
$2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{NaOH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$ benzaldehyde
418 (c)
$R-\mathrm{CONH}_{2}+\mathrm{Br}_{2}+4 \mathrm{KOH} \rightarrow R \mathrm{NH}_{2}+\mathrm{K}_{2} \mathrm{CO}_{3}+$ $2 \mathrm{KBr}+2 \mathrm{H}_{2} \mathrm{O}$
This is Hofmann's bromamide reaction.
419 (c)
The presence of electron withdrawing gp. in carboxylic acid increases acidic character. Also
electron withdrawing nature of F is more than Cl .
420 (a)
Higher is K_{a} or lower is $\mathrm{p} K_{a}$, stronger is acid.
422 (b)
It is definition of polymerisation.
423 (b)
-COOH is meta-directing group

424 (c)

$-I$ effect increases acidity.
$+I$ effect decreases acidity.
$-\mathrm{CF}_{3}$ exerting more-I effect than Meo -
$\mathrm{Me}_{2} \mathrm{CH}$ - exerting more $+I$ effect than $-\mathrm{CH}_{3}$
425 (a)
Acetic acid on dehydration produce acetic
anhydride. $\mathrm{P}_{2} \mathrm{O}_{5}$ is a dehydrating agent it
dehydrate $\mathrm{CH}_{3} \mathrm{COOH}$ to anhydride.
$2 \mathrm{CH}_{3} \mathrm{COOH} \xrightarrow[\left(-\mathrm{H}_{2} \mathrm{O}\right)]{\mathrm{P}_{2} \mathrm{O}_{5}}\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
Acetic acid acetic anhydride
426 (a)
It is better to called aldol condensation.
428 (c)
$2\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca} \xrightarrow{\text { Dry distillation }} 2 \mathrm{CH}_{3} \mathrm{COCH}_{3} \mathrm{CaCO}_{3}$
429 (a)
Aromatic aldehydes reduce Tollen's reagent. Since they are less reactive they do not reduce Fehling's solution and Benedict's solution.

431 (c)
Vinegar is 6 to 10% aqueous solution of $\mathrm{CH}_{3} \mathrm{COOH}$.
433 (b)
$\mathrm{CH}_{2}=\mathrm{CHOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CHO}$
436 (b)
This is simple Cannizzaro's reaction, i.e., intermolecular.
438 (c)
Tollen's reagent is ammoniacal AgNO_{3}.

$$
\begin{gathered}
2 \mathrm{AgNO}_{3}+2 \mathrm{NH}_{4} \mathrm{OH} \rightarrow 2 \mathrm{Ag}(\mathrm{OH})+2 \mathrm{NH}_{4} \mathrm{NO}_{3} \\
2 \mathrm{Ag}(\mathrm{OH}) \rightarrow \mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

(b)

H
440 (c)

441 (b)
$\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{Al}} \mathrm{CH}_{3} \mathrm{COOCH}_{2} . \mathrm{CH}_{3}$
This is Tischenko's reaction.
442 (c)
$n \mathrm{HCHO} \xrightarrow{\text { Polymerisation }}(\mathrm{HCHO}) n ; n=6$ to 100.
443 (c)
Magenta is rosaniline hydrochloride which is decolourised by $\mathrm{H}_{2} \mathrm{SO}_{3}$ to give Schiff's reagent.
444 (a)
Methanal is formed during photosynthesis of plants.
445 (a)
β - keto acids are readily decarboxylated.
447 (a)
454 (c)
Carbonyl compound reacts with Grignard reagent following nucleophilic addition. More is +ve charge on C^{+}centre of carbonyl group, easier is nucleophilic attack.

Positive charge on $\mathrm{C}+$ is dispersed due to $-I E$ of $-\mathrm{CH}_{3}$ gp.

Positive charge on C^{+}is dispersed more due to -IE of two $\mathrm{CH}_{3} \mathrm{gp}$.

Positiye charge on C^{+}is intensified due to $+I E$ of two $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{gp}$. But $>\mathrm{CO}$ gp. is in conjugation with π system of benzene nuleus and the resonance in ring develops electron deficiency at C atom of $\rangle \mathrm{CO}$ and thus deactivates $\mathrm{C}+$ centre towards nuleophilic attack. The $-R$ effect over powers $+I E$ and thus diphenyl ketone is least reactive.

456 (a)

This ketone is further reacted with excess
$\mathrm{CH}_{3} \mathrm{MgBr}$ (Grignard reagent) and to give t-alcohol as the final product. Hence, it is a tertiary butyl alcohol.
457 (a)
The reaction series takes place as

$$
\xrightarrow[-2 \mathrm{H}_{2} \mathrm{O}]{\mathrm{P}_{2} \mathrm{O}_{5}} \underset{C N}{\mathrm{CN}}
$$

458 (a)
Citric acid is found in lemon. Therefore, lemon gives sour taste.
459 (b)
$\mathrm{HCOOH}+\mathrm{Ag}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}+\underset{\substack{\text { Silver } \\ \text { Mirror }}}{2 \mathrm{Ag}}$

461 (a)
Pyrene is CCl_{4}; find percentage of Cl in each.
462 (c)
Only aliphatic aldehydes give red ppt of $\mathrm{Cu}_{2} \mathrm{O}$ with Fehling solution.

benzaldehyde salicylaldehyde acetaldehyde
\therefore Only acetaldehyde gives red ppt. with Fehling solution.
465 (d)
All possible products are formed, i.e., acetone from calcium acetate, formaldehyde from calcium formate and acetaldehyde from calcium acetate and calcium formate.
466 (a)
Aldehydes are oxidised by weak oxidising agents like Tollen's reagent (which is ammoniacal AgNO_{3}) but ketones cannot be oxidised by them.
$\mathrm{RCHO}+2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} 3 \mathrm{OH}^{-} \xrightarrow{\mathrm{NH}_{4} \mathrm{OH}} \mathrm{RCO} \overline{\mathrm{O}}$

$$
+2 \mathrm{Ag} \downarrow+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{NH}_{3}
$$

Aldehyde Tollen's reagent silver
mirror
Ketone + Tollen's reagent \rightarrow no reaction.
467 (b)
To remove halogen oxides and halogen.
472 (c)
Urotropine is hexamethylene tetramine, i.e., $\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4}$, used as medicine for gout and urine infections.
473 (a)

$$
\begin{aligned}
&(\mathrm{HCOO})_{2} \mathrm{Ca}+\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca} \\
& \xrightarrow{\text { Dry distillation }} 2 \mathrm{CH}_{3} \mathrm{CHO} \\
&+2 \mathrm{CaCO}_{3}
\end{aligned}
$$

476 (d)

$$
\begin{array}{cc}
\mathrm{O} \\
\mathrm{CH}_{3}-\mathrm{C}-\mathrm{Cl} \xrightarrow{\mathrm{KOH}} \xrightarrow{\text { CH }} \mathrm{CH}_{3}-\mathrm{C}-\mathrm{O}^{-} \\
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl} & \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \\
\mathrm{ClCH}_{2}-\mathrm{CH}_{2} \mathrm{Cl} & \rightarrow \mathrm{HOCH}_{2}-\mathrm{CH}_{2} \mathrm{OH} \\
\mathrm{CH}_{3} \mathrm{CHCl}_{2} & \rightarrow \mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})_{2} \\
\text { Intermediate } \\
& \rightarrow \mathrm{CH}_{3}-\mathrm{CH}=0 \\
\text { Acetaldehyde }
\end{array}
$$

478 (c)

1
Cl
$\xrightarrow[\text { (elimination) }]{\text { alcoholic } \mathrm{KOH}} \mathrm{CH}_{2}=\mathrm{CHCOOH}$
acrylic acid

480 (d)
Both (a) and (b) are for preparation of aldehydes only.
481 (b)
Percentage of N in urea $=\frac{28}{60} \times 100$

Collin's reagents is used to convert
$-\mathrm{CH}_{2} \mathrm{OH} \rightarrow-\mathrm{CHO}$
483 (a)
Only aldehydes react with both Tollen's reagent and Fehling's solution
$\mathrm{CH}_{3} \mathrm{CHO}$
(a)
$\mathrm{CH}_{3} \mathrm{COOH}$
Aldehyde
acid
$\mathrm{CH}_{3} \mathrm{COCH}_{3} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
(c)

Ketone
(d)
$\mathrm{CH}_{3} \mathrm{CHO}$ (ethanal) is the only aldehyde in given choices.
So, it reacts with both Tollen's reagent and Fehling solution.
$\mathrm{CH}_{3} \mathrm{CHO}+$ Ammoniacal $\mathrm{AgNO}_{3} \rightarrow \mathrm{Ag}$ mirror (Tollen's reagent)
$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{Cu}^{2+}$ ions complexed $\rightarrow \mathrm{Cu}_{2} \mathrm{O}$ With tartarate anion red ppt.
484 (d)
It is called Clemmensen reduction.
485 (c)
Tollen's reagent, Fehling solution and $\mathrm{NaOH} / \mathrm{NaI} / \mathrm{H}^{+}$are not able to change butan-2one (ketone) into propanoic acid because these are mild oxidising agents, so $\mathrm{NaOH} / \mathrm{I}_{2}$ firstly from iodoform along with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}$ with butan-2one (ethyl methyl ketone). In these $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}$ reacts with acid $\left(\mathrm{H}^{+}\right)$to give $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ (propanoic acid).

(ethyl methyl ketone)
 iodoform
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}+\mathrm{H}^{+} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{Na}^{+}$ Propanoic acid
486 (a)
The acidic strength of the attached group is in the following order :

Note Due to attachment of electron attractive group acidic strength increases and carboxylic acids are more acidic than phenols.
The two moles of NH_{2}^{-}ions will abstract two moles of a most acidic hydrogen out of the four moles of hydrogen present per mole of the given acidic compounds. Hence, after abstraction of two moles of hydrogen and obtained product will be as shown

488 (a)
$\mathrm{HCHO} \xrightarrow{\text { Conc. } \mathrm{NaOH}} \mathrm{HCOOH}+\mathrm{CH}_{3} \mathrm{OH}$ methanal formic acid methyl alcohol Thus, reaction is called Cannizaro's reaction.
489 (a)
Fehling solution is cupric ion complex with tartarate anion. Aldehydes reduce it to red precipitate. The red precipitate is chemically $\mathrm{Cu}_{2} \mathrm{O}$

8.
$\mathrm{CH}_{3} \mathrm{COH}$
ethanal
(C)

(d)
\therefore Only acetone which is ketone not an aldehyde does not give iodoform test.

491 (c)
Hydrated oxalic acid is $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
493 (c)
$R \mathrm{CH}=\mathrm{CHCOOC}_{2} \mathrm{H}_{5} \xrightarrow{[\mathrm{H}]} \mathrm{RCH}_{2} \mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$
495 (d)
Formaldehyde does not give iodoform reaction.
496 (c)
Acetone gives aromatic compound mesitylene on condensation with conc $\mathrm{H}_{2} \mathrm{SO}_{4}$

497 (c)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \xrightarrow{\mathrm{H}_{2} \mathrm{O}_{2}} \mathrm{CH}_{3}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH}$
500 (a)
$\mathrm{NH}_{2} \mathrm{CONH}_{2} \xrightarrow{\text { Urease }} \mathrm{NH}_{3}+\mathrm{CO}_{2}$
501 (a)
Cannizaro's reaction is given by aldehydes
(RCHO) lacking H at α-carbon or lacking α-carbon (as in HCHO). With NaOH , there is formation of acid salt $\left(R \mathrm{COO}^{-}\right)$by oxidation and alcohol $\left(R \mathrm{CH}_{2} \mathrm{OH}\right)$ by reduction.

a-carbon without H

by reduction 2, 2, 2 trichloroethanol
502 (a)
Aldehydes which does not contain α-hydrogen atom undergo self oxidation and reduction on treatment with conc. Solution of alkali. This reaction is called Cannizaro reaction.

504 (a)
$\mathrm{NaCN}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCN}+\mathrm{NaNO}_{3}$
506 (c)
It is a fact.
508 (b)
Acetaldehyde cannot show Lucas test because Lucas test is given by alcohols only. It is used in the distinction between primary, secondary and tertiary alcohols. Conc. $\mathrm{HCl}+$ anhydrous ZnCI_{2} is called Lucas reagent.
509 (a)
Lassaigne's tests involves the preparation of sodium extract by fusing organic compounds with Na and then extracting them with water.
510 (c)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$; $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCHO}$;

511 (b)

Out of all alternates
$\mathrm{p} K_{a}$ is smallest for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CF}_{2} \mathrm{COOH}$
512 (a)
HCOOH is reducing agent.

513 (c)
Presence of electron withdrawing atom $(-X)$
increases the acidic nature. Presence of electron repelling gp. $\left(-\mathrm{CH}_{3}\right)$ decreases the acidic nature.
515 (b)
Mol. wt. of compound $=\frac{w^{R T}}{P V}$
$=\frac{0.22 \times 0.0821 \times 273 \times 1000}{1 \times 112}=44$
Now find \% of C; \% of $\mathrm{H}=100-\%$ of C
Now find molecular formula.
516
(d)

The reactivity order for acid derivatives due to better leaving group is:
$R \mathrm{COCl}>(R \mathrm{CO})_{2} \mathrm{O}>R \mathrm{COOR}>\mathrm{RCONH}_{2}$
517 (c)
Out of the given acids, strongest is HCOOH .
highest K_{a} value
Since $\mathrm{p} K_{a}=-\log K_{a}$
Thus lowest $\mathrm{p} K_{a}$ is of HCOOH .
518 (d)
Formaldehyde with ammonia gives a medicinal compound hexamethylene tetramine (urotropine), which on nitration gives one of the most powerful explosive, named cyclonite or RDX.

hexamethylene tetramine

hexamethylene tetramine

RDX (sym-trimethylene trinitramine)
519 (a)
Solubility of organic compounds in water decreases with mol. wt. due to increasing hydrophobic character of alkyl or aryl gps.

The presence of electron attracting

on -OH increases the tendency of oxygen to attract $\mathrm{O}-\mathrm{H}$ bond pair more effectively towards
it.
523 (b)
$\mathrm{CCl}_{3} \mathrm{CHO}$ formed from $\mathrm{CH}_{3} \mathrm{CHO}$ by the action of Cl_{2} is used to prepare DDT.
525 (c)
Prior to Wöhler preparation, organic compounds were assumed to be derived only from living organisms.
526 (b)
$\mathrm{CH}_{3} \mathrm{CHClCOOH} \xrightarrow{\mathrm{KOH} \text { alc. }} \mathrm{CH}_{2}=\mathrm{CHCOOH}$;
Elimination reaction.
528 (b)
LiAlH_{4} reduces -COOH to $-\mathrm{CH}_{2} \mathrm{OH}$ but does not influence $\mathrm{C}=\mathrm{C}$.
529 (b)
Acid derivatives do not show nucleophilic addition. Also, $\mathrm{CH}_{3} \mathrm{COOCOCH}_{3}$ is less reactive than $\mathrm{CH}_{3} \mathrm{CHO}$.
531 (c)
Y is $\mathrm{CH}_{3} \mathrm{CN} ; \mathrm{Z}$ is $\mathrm{CH}_{3} \mathrm{COOH}$.
532 (b)
HVZ reaction occurs in presence of halogen and P (catalyst).
534 (b)
Both C-0 bonds are identical and each 0 possesses partial negative charge.
535 (c)
$\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{[\mathrm{O}]} \mathrm{CH}_{3} \mathrm{COOH}$
536 (a)
In the given reaction, OH^{-}group replaces the group present in side chain as ketonic group is less reactive

537 (c)
Due to pleasant odour, it is used in perfumery and also producing sleeping drug.
organic compound $+\mathrm{HNO}_{3}+\mathrm{BaCl}_{2} \rightarrow \underset{(\mathrm{ppt} .)^{2}}{\mathrm{BaSO}_{4}}$

Note Cannizaro reaction is due to the absence of α-hydrogen atom.

Many fruits contain esters such as pineapple has ethyl butyrate, raspberry has isobutyl methanoate, banana has n-pentyl ethanoate, orange has octyl ethanoate, etc.
542 (b)
Due to strong negative inductive effect shown by -Cl and - OCOCH_{3} group, acid chloride and acid anhydride are highly reactive among acid derivatives. They react independently with water even in the absence of catalyst to give carboxylic acid.

544 (d)
It exists as zwitter ion, an internal salt structure.

545 (a)
Aldehyde, having no α-hydrogen atom, undergoes Cannizaro reaction in which two molecules of the aldehyde are involved, one molecule being converted into the corresponding alcohol, and the other into the acid. The usual reagent for the Cannizaro reaction is aqueous or ethanolic alkali
$2 \mathrm{HCHO}+\mathrm{NaOH} \rightarrow \mathrm{HCOONa}+\mathrm{CH}_{3} \mathrm{OH}$
547 (a)
In the presence of base catalyst, intramolecular aldol condensation and ring closure takes place

551 (a)

propane
In Wolff-Kishner reduction carbonyl compounds are reduced to alkanes by using $\mathrm{NH}_{2} . \mathrm{NH}_{2}$ and KOH/glycol.
552 (a)

(1) Ketone gives negative test with Fehling solution
(2) Ketone containing - COCH_{3} group gives positive haloform test
553 (a)
Esters are pleasant smelling liquids having fruity smell.
554 (b)
It is a test for - COOH gp .;
$R-\mathrm{COOH}+\mathrm{NaHCO}_{3} \rightarrow R \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow$
555
(d)
$\mathrm{H}-\mathrm{C} \equiv \mathrm{N} \xrightarrow{\mathrm{HOH}} \mathrm{HCOOH}+\mathrm{NH}_{3}$
556 (a)
Aldehyde and ketone having α-hydrogen atom undergo aldol condensation in presence of dilute base to give β-hydroxy aldehydes or ketones. Acetone has α-hydrogen atom, hence it will give aldol condensation reaction

Benedict solution contains CuSO_{4}, sodium citrate and sodium carbonate.
559 (b)

trimethyl acetaldehyde

benzaldehyde
acetaldehyde

formaldehyde

Cannizaro reaction is given by only those aldehydes which does not have α-hydrogen atom. As such acetaldehyde will not give Cannizaro reaction.
560 (c)
$\mathrm{RCOOH}+\mathrm{NaHCO}_{3} \rightleftharpoons \mathrm{RCOONa}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ or $\mathrm{RCOOH}+\mathrm{HCO}_{3}^{-} \rightleftharpoons R \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
Conjugate base, RCOO^{-}is more stable. That is why equilibrium shifts in the forward direction.
561 (b)
Halogen compounds $+\mathrm{HNO}_{3}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl}$
(Cl)

562 (a)
Positive $I E$ of alkyl gp. decreases positive charge on C^{+}centre of carbonyl gp. and thus, reactivity order is, $\mathrm{HCHO}>\mathrm{CH}_{3} \mathrm{CHO}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}>$
$\mathrm{CH}_{3} \mathrm{COCH}_{3}$
564 (c)
Acetophenone can be prepared by Friedel-Craft's reaction. By treating benzene with acetyl chloride in presence of anhydrous aluminium chloride acetophenone is obtained.

566 (d)
Bond energy for catenation of carbon is maximum ($85 \mathrm{kcal} \mathrm{mol}^{-1}$).
568 (a)
Three moles of acetone condense in presence of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give mesitylene.

569 (d)
Aldehydes and ketones condense with alcohol to give aceta and ketals respectively, e.g.,

574 (b)
Caproic acid is $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$.
575 (c)
Anhydrous lime or $\mathrm{C}_{6} \mathrm{H}_{6}$ disturbs the nature of azeotropic mixture of alcohol and water.
576 (c)
$\left.\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\mathrm{SeO}_{2}}\right|_{\mathrm{CHO}} ^{\mathrm{CHO}}$
577 (d)
All are facts about $\mathrm{CH}_{3} \mathrm{CHO}$.
578 (d)
$\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{CaCO}_{3}}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca}$
$\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca} \xrightarrow{\Delta} \mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{CaCO}_{3}$
579 (d)
$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\text { Alkali }} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CHOH}$
581 (c)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{Cl}_{2}} \mathrm{CH}_{3} \mathrm{CHO}+3 \mathrm{HCl} ;$
$\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\mathrm{Cl}_{2}} \mathrm{CCl}_{3} \mathrm{CHO}$
582 (a)
Paraldehyde is used as hypnotic and soporific (sleep producing) drug.
585 (c)
In p-nitrobenzoyl chloride, $-\mathrm{NO}_{2}$ group has a $-I$ and $-R$-effect and this is greater from the p position than from m-or o-positions. Thus, $-\mathrm{NO}_{2}$ group reduces the electron density at the carbon atom attached to - Cl atom and facilitate its releasing and hydrolysis of benzoyl chloride

Whereas, $\mathrm{CH}_{3} \mathrm{O}$-group has a strong $+R$-effect and a weak - I-effect. At p-position $\mathrm{CH}_{3} \mathrm{O}$-group exerts its strong $+R$ effect. As a result, electron density at C -atom attached to -Cl atom increases and the cleavage of $\mathrm{C}-\mathrm{Cl}$ bond becomes difficult. Hence, the order of reactivity of hydrolysis of acid chlorides:
$\mathrm{p}-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COCl}>\mathrm{PhCOCl}$

$$
>p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{COCl}
$$

(c)

Amides react with bromine and caustic soda to give their corresponding primary amines. Thus, acetamide gives methanamine. This reaction is known as Hofmann's bromamide degradation reaction.

acetamide
methanamine
587 (b)
The reaction produced as

β-lactone do not exist but can only be made by special method
588 (a)

COOH gp. of salicylic acid is replaced during nitrati

$$
\begin{array}{rlrl}
& P_{\mathrm{N}_{2}}=715-15=700 \mathrm{~mm} \\
V & =55 \mathrm{~mL} \\
& & P V & =\frac{w}{m} R T \\
& \frac{700}{760} \times \frac{55}{1000} & =\frac{w_{\mathrm{N}_{2}}}{28} \times 0.0821 \times 300 \\
{ }^{w} \mathrm{~N}_{2} & =0.058 \mathrm{~g} \\
& \therefore & & \% \mathrm{~N}_{2}
\end{array}=\frac{0.058}{0.35} \times 100=16.45
$$

590 (b)
Paraldehyde is used as hypnotic and soporific (sleep producing) drug.
591 (a)
9. Organic compound gave an oxime with hydroxyl amine, therefore, it must be an aldehyde or ketone.
10. Organic compound did not give silver mirror with Tollen's reagent, therefore, it cannot be an aldehyde.

Therefore, compound is ketone and its molecular formulae with be $\mathrm{CH}_{3} \mathrm{COCH}_{3}$.

592 (a)
The cannizzaro product of given reaction yields 2,2,2-trichloroethanol.

593 (b)
$\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{CH}_{3} \mathrm{COONa} \rightarrow\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}+\mathrm{NaCl}$ Acetylchloride sod. acetate acetic anhydride 594 (a)

β-keto acid undergoes decarboxylation when heated.
595 (b)
Salicylic acid gives aspirin on reaction with acetic anhydride in presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$

596 (b)
Formic acid $[\mathrm{H}-\mathrm{OH}]_{\text {contains }-\mathrm{COOH} \text { as }}^{\mathrm{C}}$ well as -CHO group.
597 (c)
$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{CH}_{3} \mathrm{COCl} \rightarrow \mathrm{CH}_{3} \mathrm{NHCOCH}_{3}+\mathrm{HCl}$
598 (d)
Fehling's solution is the solution of $\mathrm{CuSO}_{4}+$
$\mathrm{NaOH}+$ Rochel salt (sodium potassium tartarate).
Aldehydes give red precipitate with Fehling's solution.
599 (c)
In the Rosenmund's reaction, acid chlorides are converted to corresponding aldehydes by catalytic reduction. The reaction is carried out by passing through a hot solution of the acid chloride in the presence of Pd deposited over BaSO_{4}. Here, barium sulphate decrease the activity of palladium
$\mathrm{RCOCl}+\mathrm{H}_{2} \xrightarrow{\mathrm{Pd} / \mathrm{BaSO}_{4}} \mathrm{RCHO}+\mathrm{HCl}$
602 (a)
Acids shows H-bonding and thus, have higher b.p.
603 (a)
$\mathrm{P}_{2} \mathrm{O}_{5}$ is dehydrating agent, hence acid gives anhydrides on dehydration by $\mathrm{P}_{2} \mathrm{O}_{5}$.
$2 R \mathrm{COOH} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\mathrm{P}_{2} \mathrm{O}_{5}}(R \mathrm{CO})_{2} \mathrm{O}$
604 (d)
2, 3-dimethyl propanal does not undergo
Cannizaro's reaction due to absence of α - H atom.
605 (c)
α-chloro butyric acid is more stronger than others due to $-I$ effect of Cl^{-}.
607 (d)
The Sulphur of organic compound gives $\mathrm{Na}_{2} \mathrm{~S}$.
608 (c)
In the carbonylgroup, carbon atom is in a state of $s p^{2}$ hybridisation. One $s p^{2}$ hybrid orbital overlap with a unhydridised p-orbital of oxygen to form $\mathrm{C}-0 \sigma$-bonds. The remaining two $s p^{2}$ orbitals of carbon from σ-bonds with s-orbitals of hydrogen or $s p^{3}$-orbitals of carbon of the alkyl groups. The C -0π-bond is formed by the sideways overlap of p-orbitals of carbon and oxygen. Thus, the three σ-bonds of carbonyl carbon lie in one plane and are 120° aprat

609 (d)
Both show reducing nature and thus, reduce each of the following. The distinction in these two can be however made by NaHCO_{3} where HCOOH gives effervescences.
610 (a)
Oxidation of $\mathrm{CH}_{3} \mathrm{COOH}$ is not possible.
611 (c)
e.g., $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$ are chain isomers $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right) \mathrm{CHCH}_{2} \mathrm{COOH}$ and

is optical isomer
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$ are
functional isomers.
612 (a)
Carbonic acid is less acidic than carboxylic acids whereas more acidic than phenols and alcohols.
Hence, order of acidic strength.
$R \mathrm{COOH}>\mathrm{H}_{2} \mathrm{CO}_{3}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}>\mathrm{ROH}$
614 (a)

In presence of dil. HCl , acetamide is hydrolysed by boiling, the product obtained is acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$.
$\mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{3}$ $\mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HCl} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{Cl}$
617 (c)
A characteristic test for carbonyl gp., red salt is formed.
618 (d)

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5} \\
& \xrightarrow{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}} \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}
\end{aligned}
$$

This is Claisen condensation in presence of $\mathrm{NaOC}_{2} \mathrm{H}_{5}$ involving α - H -atom of ester.
619 (b)
This is the example of Baeyer-Villager oxidation and oxy-insertion takes place generally at the alkyl side

Hence, the migratory group must always be electron rich, $i e$, migratory aptitude t-butyl $>2^{\circ}$ alkyl $>1^{\circ}$ alkyl
620 (b)
When some activating group, eg, -OH is present along with -COOH is ortho or para position, substitution occurs with respect to -OH preferably at para-position due to steric factors. In case the reagent used is strong, electrophile enters atall possible positions even with the replacement of -COOH group
(b)
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{N}_{3} \mathrm{H} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{N}_{2}+\mathrm{CO}_{2}$
623 (a)
Following is the example of Knoevengel reaction, which is shown by aldehydes and ketones

625 (b)
When an acid is heated with Br_{2} in presence of $\mathrm{P}, \alpha-\mathrm{H}$ atom of the acid is replaced by bromine atom. This reaction is called Hell-Volhard Zelinsky reaction. NH_{2}^{-}is a better nucleophile than Br^{-}.

(Y)

626 (d)
With Fehling's solution, benzaldehyde as well as acetone do not react while with Tollen's reagent, benzaldehyde gives precipitate but acetone done not react. Hence, Tollen's reagent is used to distinguish them.
628 (a)
As $-\mathrm{CH}_{3}$ group has a strong $+I$ effect and $-\mathrm{OCH}_{3}$ group has a weak $-I$ but strong $+R$ effect, hence they increase the electron density on oxygen atom and $\mathrm{O}-\mathrm{H}$ bond becomes stronger. On the other hand, $-\mathrm{NO}_{2}$ group has a strong $-I$ and $-R$ effect. It withdraws electrons from benzene ring as well as oxygen atom of - OH group and proton is easily removed. Order of esterification is I $>I I>I I I>$ IV
631 (c)
The N_{2} evolved during the process is measured at desired P and T.
632 (c)
$\mathrm{CH}_{3} \mathrm{COCH}_{3}$ gives red colour with sodium nitroprusside solution but does not reduce
Tollen's reagent. Acetone yields chloroform with $\mathrm{NaOH} / \mathrm{Cl}_{2}$
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{Cl}_{3} \mathrm{C}-\mathrm{COCH}_{3} \xrightarrow{\mathrm{NaOH}} \mathrm{CHCl}_{3}$
Acetone
chloroform
633 (d)
The effect of electron-withdrawing substituent in
the benzene ring fastens the Cannizaro reaction
634 (b)
First find \% of H by $=\frac{2 \times \mathrm{wt} \text {. of } \mathrm{H}_{2} \times 100}{\text { wt. ofcompound } \times 18}$
Find percentage of $\mathrm{C}=100$-percentage of H
635 (c)
No doubt the reaction involves the synthesis of chiral centre, however; the stereosphecity cannot be controlled and both the enantiomers are formed to give a racemic mixture.
636 (d)
The order of reactivity of acid derivatives is as $R \mathrm{COCl}>(R \mathrm{CO})_{2} \mathrm{O}>R \mathrm{COOR}{ }^{\prime}>\mathrm{RCONH}_{2}$
Hence, acetyl chloride is the most reactive among these.
637
$\mathrm{CH}_{3} \mathrm{CONH}_{2} \xrightarrow{\mathrm{HOH}} \mathrm{CH}_{3} \mathrm{COOH}$
638 (b)
Addition of HCN to a carbonyl compound is a nucleophilic addition reaction. $-\mathrm{NO}_{2}$ group being electron withdrawing increases the polarity (or electron deficiency) of carbonyl carbon and thus, makes the $\mathrm{C}=0$ group of benzaldehyde more reactive towards HCN.
640 (c)
$\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{PdCl}_{2}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{CuCl}_{2}} \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{Pd}+$ 2 HCl ; This is Wacker method.
642 (b)
Meq. of NH_{3} formed $=29 \times \frac{1}{5}$;

$$
\text { Wt. of } \mathrm{NH}_{3}=\frac{29}{5} \times \frac{17}{1000} \mathrm{~g}
$$

\therefore Wt. of N_{2} in $\mathrm{NH}_{3}=\frac{14}{17} \times \frac{29 \times 17}{5 \times 1000} \mathrm{~g}$
$\therefore \%$ of $\mathrm{N}=\frac{14 \times 29 \times 17 \times 100}{17 \times 5 \times 1000 \times 0.5}=16.24$
643 (b)
Benzamide undergoes Hofmann-bromamide reaction with $\mathrm{Br}_{2} / \mathrm{KOH}$ to give aniline. This aniline give paracetamol (antipyretic drug) with acetic anhydride.

(c)

(X)

645 (b)
On oxidation, secondary alcohol produces ketone with same number of carbon atom and on further oxidation ketone produces an acid with a lesser number of carbon atoms

647 (a)
HCHO is gas at room temperature.
648 (c)
Beilstein test (or Cu wire test of halogens) is also given by some other compounds such as urea, thio urea, etc.
649 (c)
Proton donors are acids. Electrons withdrawing groups increase acidity. More the number of electrons withdrawing groups more will be acidity. Closer the electrons withdrawing group to proton more will be acidity.
$\therefore \mathrm{Cl}_{2} \mathrm{CHCOOH}$, has highest acidity among
$\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{ClCH}_{2} \mathrm{COOH}, \mathrm{Cl}_{2} \mathrm{CHCOOH}, \mathrm{Cl}_{2} \mathrm{CHCH}_{2} \mathrm{COC}$
650 (c)
$R \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{HONO} \rightarrow R \mathrm{CH}_{2} \mathrm{OH}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}$
651 (d)
The intermediate formed during Hofmann's bromamide reaction is $R \mathrm{CH}_{2}-\mathrm{N}=\mathrm{C}=\mathrm{O}$. Follow mechanism of the reaction.
652 (c)
Rosenmund's reaction.
653 (d)
Solubility of organic compounds in water decreases with mol. wt. due to increasing hydrophobic character of alkyl or aryl gps.
655 (a)
Formation of α, β-unsaturated carboxylic acid by the action of acetic anhydride and sodium acetate on aromatic aldehyde as Perkin reaction. The other Perkin like condensation involve condensation of aromatic aldehyde and α hydrogen containing compound

656 (d)
LiAlH_{4} is used for converting - COOH to $\mathrm{CH}_{2} \mathrm{OH}$.
657
(c)

Ketone (i.e., acetone reacts with phenyl hydrazine but does not give silver mirror test.)
659 (c)
Given vapour density of $\mathrm{CH}_{4}=1$, i.e., $8=1$.
660 (b)
Aldol condensation takes place as,

664 (c)
It absorbs only CO_{2}.
666 (a
$\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow[\Delta]{\mathrm{Cl}_{2} / \text { Red } \mathrm{P}} \mathrm{CH}_{2} \mathrm{ClCOOH}$
$\alpha-$ chloroacetic acid
This reaction is called Hell-Volhard-Zelinsky reaction.
667 (c)
If two liquids have a difference in their b. p. $\approx 5^{\circ} \mathrm{C}$, a fractionating column is used in distillation
assembly. The lower b. p. liquid comes down when it passes through fractionating column.
668 (d)
Ni formate is better catalyst than Ni for hydrogenation of oils.
669 (b)
Carbon $+\mathrm{xyl}=$ Carboxyl.
671 (c)
The following is the reaction

(a)

This reaction is called Rosenmund's reaction.
675 (c)
o-hydroxy benzoic acid contain intramolecular hydrogen bonding
677 (d)
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{3} \mathrm{COCH}_{3}$; chlorine attacks α-H-atoms of carbonyl compounds.
679 (a)
$\mathrm{CH}_{3} \mathrm{COOCH}_{3} \xrightarrow{\mathrm{LiAH}_{4}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{OH}$
684 (d)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ reacts with sodium bicarbonate but phenol not.
685 (a)
Acetophenone burns with sooty flame due to aromatic nature.
686 (a)
Only ethyl acetate undergoes reduction with LiAlH_{4} to give only ethyl alcohol, other esters given in option on reduction gives a mixture of alcohols.
$\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+2 \mathrm{H}_{2} \xrightarrow[\text { ether }]{\mathrm{LiAlH}_{4}} 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
687 (a)
$\mathrm{CH}_{3} \mathrm{CONH}_{2} \xrightarrow{\mathrm{HNO}_{2}} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$; the
function of HNO_{2} is to convert $-\mathrm{NH}_{2} \mathrm{gp}$. to -OH
gp.
688 (b)

$$
\begin{aligned}
\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5} & +\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5} \\
& \xrightarrow{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}} \mathrm{CH}_{3} \mathrm{CO}^{-\mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}} \\
& +\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
\end{aligned}
$$

689 (c)
Calcium acetate on distillation produce acetone.

691 (d)
See the influence of $-I F$ of Cl and F -atoms.
692 (b)
Ethyl benzoate hydrolyses to give benzoic acid and ethanol in the presence of aqueous acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ or aqueous base (NaOH). In both cases the reaction is bimolecular and it is the $\mathrm{C}-0$ bond between the acyl group and oxygen that is cleaved

694 (c)
Formaldehyde and acetaldehyde react to different manner towards NH_{3}.
$6 \mathrm{HCHO}+4 \mathrm{NH}_{3} \rightarrow\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4}$

695 (b)
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$.
The volume ratio is $1: 2$; Thus, 20 mL of CH_{4} will react with 40 mL of O_{2}.
(b)

Two molecules of acetaldehyde gives aldol on aldol condensation.

acetaldehyde
OH
697 (b)
Tartaric acid reduces Tollen's reagent.
698 (a)
Trioxane or trioxyl methylene is a white solid polymer (m. p. $62^{\circ} \mathrm{C}$) formed when HCHO gas is allowed to stand at room temperature.
699 (c)
Hydrocarbons are oxidised to aldehydes because only these two are present in atmosphere.
701 (d)
$\mathrm{NH}_{4} \mathrm{CNO}$ is inorganic compound.
702 (a)
Organic compound + conc. $\mathrm{HNO}_{3}+$ magnesia.
mixture $\rightarrow \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ as precipitate.
705 (a)
Aldehydes and ketones with $\mathrm{NH}_{2} . \mathrm{NH}_{2}$ forms hydrazones.

$$
\begin{array}{r}
\text { RCHO }+\mathrm{H}_{2} \mathrm{~N} . \mathrm{NH}_{2} \rightarrow R \mathrm{CH}=\mathrm{N} . \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \\
\text { alde. hydrazone }
\end{array}
$$

$$
R_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{~N} \cdot \mathrm{NH}_{2} \rightarrow R_{2} \mathrm{C}=\mathrm{N} \cdot \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Only steam volatile liquids are purified by steam distillation, e. g., aniline, nitrobenzene, benzaldehyde, essential oils, etc.
707 (a)
Aqueous NaCl is neutral hence there is no reactions between ethyl acetate and aqueous NaCl .
708 (c)
$2 \times 78 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6}$ requires 15×22.4 litre O_{2}.
710 (b)
The characteristic property of periodic acid is the oxidative cleavage of bonds with adjacent oxidisable group such as 1 , 2 -diols, α-hydroxy carbonyl, 1,2-diketones, etc. The reagent does not react with 1, 3- or 1, 4-diols or carbonyl compounds

714 (b)
Crotonaldehyde is $\mathrm{CH}_{3} . \mathrm{CH}=\mathrm{CH} . \mathrm{CHO}$.
715 (c)
Removal of CO_{2} from carboxylic acid is called decarboxylation.
716 (c)
The acid with 3 carbon atoms.
717 (c)
$\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{X_{2}, \mathrm{P}} \mathrm{CH}_{2} \mathrm{X}-\mathrm{COOH}$.
718 (d)
Oxalic acid is oxidized as,

Tartaric acid oxidizes as:

Formic acid oxidizes as;
$\mathrm{HCOOH} \xrightarrow{[\mathrm{O}]} \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
Thus, all are used as reducing agent.
719 (a)
$R \mathrm{COOH}+\mathrm{Na} \rightarrow \mathrm{RCOONa}+\frac{1}{2} \mathrm{H}_{2}$
720 (b)
HCOOH reacts with NaHCO_{3} giving out effervescences of CO_{2}. Note that HCOOH is also strong reducing agent.

721 (a)

This is diacetone alcohol.
722 (c)
$\mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{NH}_{3}$
723 (c)
\% Relative no. of atoms Simplest
ratio
$\begin{array}{lll}\text { C } 40 & \frac{40}{12}=3.33 & \frac{3.33}{3.33}=1\end{array}$
H $13.33 \frac{133.33}{1}=13.33 \quad \frac{13.33}{3.33}=4$
N $46.67 \frac{46.67}{14}=3.33 \quad \frac{3.33}{3.33}=1$
724 (d)
All are facts.
725 (c)
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{3}$

$$
\begin{aligned}
& \xrightarrow{\rightarrow} \mathrm{CH}_{3} \mathrm{COONH}_{4} \xrightarrow{\Delta} \mathrm{CH}_{3} \mathrm{CONH}_{2} \\
& \xrightarrow{\mathrm{P}_{2} \mathrm{O}_{5}} \mathrm{CH}_{3} \mathrm{CN}
\end{aligned}
$$

$\mathrm{CH}_{3} \mathrm{CN}$ is ethane nitrile or acetonitrile or methyl cyanide.
728 (a)
The acidic order is: $\mathrm{ClCH}_{2} \mathrm{COOH}>\mathrm{CH}_{3} \mathrm{COOH}>$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.
733 (d)
$-\mathrm{NO}_{2}$ group at any position shows electron withdrawing effect, thus acid strength is increased. But o-nitro benzoic acid believed to have ortho effect. As a result, resonance gets prevented. Hence, its acid strength is maximum, thus , the order of acid strength
(II) $<$ (III) $<$ (IV) $<$ (I)
(The effect is more at para position than meta.)
734 (d)
Benzaldehyde on reaction with alc.KNC undergo condensation reaction to give benzoin.

II

736 (c)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO} \xrightarrow{[\mathrm{O}]} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
737 (b)
Acetaldehyde shows addition reaction; whereas ketone shows condensation with NH_{3}.
738 (a)
When benzaldehyde is heated with acetic anhydride in the presence of sodium acetate,
condensation product is obtained which on hydrolysis give α, β-unsaturated acid (such as cinnamic acid) and the reaction is known as Perkin's reaction.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{CHCOOCOCH} 3
$$

benzaldehyde acetic anhydride

739 (d)
$\%$ of $\mathrm{N}=\frac{28 \times 224 \times 100}{22400 \times 1.18}=23.72$

(c)

-OH is more activating than $-\mathrm{CH}_{3}$ in o, p directing thus -CHO goes to ortho w.r.t., -OH group.

(c)

This is iodoform reaction.
742 (a)
$\mathrm{CO}+\mathrm{H}_{2} \xrightarrow{\mathrm{arc}} \mathrm{HCHO}$
$\mathrm{CH}_{4}+\mathrm{O}_{2} \xrightarrow{\mathrm{MoO}} \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O}$
743 (d)
It forms hydrazone thus, carbonyl compound; gives +ve iodoform test thus has $\mathrm{CH}_{3}-\mathrm{CO}$-or $\mathrm{CH}_{3} \mathrm{CHOH}$ - unit. Gives Wolff-Kishner's reaction to form isobutane thus compound is 3-methyl butan-2-one.

744 (d)
The reaction is nucleophilic addition-elimination reaction.

$$
\xrightarrow[\text { elimination }]{-\mathrm{H}_{2} \mathrm{O}} R-\mathrm{CH}=\mathrm{N}-\mathrm{NH}_{2}
$$

745 (b)
$\mathrm{Pd}-\mathrm{CaCO}_{3}+\mathrm{BaSO}_{4}$ is called Lindlar's catalyst.
746 (c)
As Cannizaro reaction is shown by aldehydes lacking α-hydrogen, hence the combination $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{HCHO}$ is not possible
$\mathrm{HCHO}+\mathrm{HCHO} \xrightarrow[\Delta]{\mathrm{NaOH}} \mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCOO}^{-} \mathrm{Na}^{+}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{HCHO} \xrightarrow[\Delta]{\mathrm{NaOH}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$

747 (a)
$\mathrm{CH}_{3} \mathrm{COCH}_{3} \xrightarrow{\mathrm{Cl}_{2}} \mathrm{CCl}_{3} . \mathrm{COCH}_{3} ;$
Halogen attacks α-carbon atom.
748 (b)
$2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \xrightarrow[\begin{array}{c}\text { Cannizaro's } \\ \text { reaction }\end{array}]{\mathrm{NaOH}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$
This reaction is given byaldehydes which doesn't have α-hydrogen atom.
749 (a)
Acetone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$ and propanal $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}\right)$ have same molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ and are functional ísomers.
750 (d)
To remove
which will otherwise be absorbed in lime water.
751 (d)
$\mathrm{H}_{2} \mathrm{SO}_{4}$ acts as protonating (catalyst) agent as well as dehydrating agent.
752 (b)
Molecular formula of $\mathrm{A}=\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{OH}$
As (A) reduces Fehling's solution and on oxidation gives a monocarboxylic acid (B). It means (A) must be an aldehyde.
$\mathrm{CCl}_{3} \mathrm{CHO}$
(A)

This is further confirmed by the reaction
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$+\mathrm{Cl}_{2} \xrightarrow[\text { oxidation }]{[\mathrm{O}]} \mathrm{CH}_{3} \mathrm{CHO} \xrightarrow[\text { chlorination }]{\mathrm{Cl}_{2}} \mathrm{CCl}_{3} \mathrm{CHO}$
$A=$ Chloral $\left[\mathrm{CCl}_{3} \mathrm{CHO}\right]$
753 (a)
Glycine is $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$.
754 (d)
Aldehydes having $\alpha-\mathrm{H}$-atoms undergoes aldol condensation in the presence of dil. NaOH and yield β-hydroxy aldehydes.

755 (a)
The carboxylic and terminal methyl groups in even carbon atom acids lie on opposite side to provide more close packing in crystal lattice which provide higher m.p.

Nucleophiles that are relatively weak bases such as $\mathrm{CN}^{-}, \mathrm{RNH}_{2}$ and X^{-}give conjugate addition, whereas strong bases such as $R-\mathrm{Li}, R-\mathrm{Mg}-\mathrm{X}$ give direct addition.

conjugate addition

direct addition

758 (c)
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5} \xrightarrow{\mathrm{HOH}} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
759 (b)
Aldehydes and ketones containing α-hydrogen atom undergo self condensation in the presence of dilute alkali to form β-hydroxy aldehyde or β-hydroxy ketone. This reaction is called aldol condensation.

$\boldsymbol{\beta}$-hydroxy ketone
(4-hydroxy-4-methyl pentan-2-one)
760 (d)
Meq. of acid $=$ Meq. of NaOH

$$
\frac{0.14}{E} \times 1000=12.5 \times 0.1
$$

$\therefore \quad E=112$
761 (c)
Lower aldehydes have pungent odour.
(b)
$\mathrm{CH}_{3} \mathrm{COOH}$ (acetic acid) cannot reduce Fehling solution while $\mathrm{HCOOH}, \mathrm{HCHO}$ and $\mathrm{CH}_{3} \mathrm{CHO}$ reduce Fehling solution.
763 (a)
It is Cannizzaro's reaction shown by aldehydes lacking with $\alpha-\mathrm{H}$-atom.
764 (b)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\text { Alkali }} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCHO}$ Cinnamaldehyde
This is claisen condensation.
765 (c)
As benezoic condensation is the reaction of aromatic aldehydes, but phenyl ethanal is an aryl substituted aliphatic aldehydes. Hence, it could not show benzoin condensation

766 (a)
When acetaldehyde is heated with Fehling solution, a red precipitate of $\mathrm{Cu}_{2} \mathrm{O}$ is obtained, $\mathrm{CH}_{3} \mathrm{CHO}+2 \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{NaOH}$

$$
\rightarrow \mathrm{CH}_{3} \cdot \mathrm{COONa}+\mathrm{Cu}_{2} \mathrm{O} \downarrow+3 \mathrm{H}_{2} \mathrm{O}
$$

red
768 (b)
Perkin reaction is the condensation reaction in which aromatic aldehyde is heated with an anhydride of an aliphatic acid in the presence of sodium salt of the same acid to form α, β-unsaturated acid.

benzaldehyde
acetic anhydride $\beta \quad a$
$\mathrm{CH}_{3} \mathrm{COOH}$

cinnamic acid
$\rangle \mathrm{C}=\mathrm{O} \leftrightarrow\rangle_{\mathrm{C}}^{+}-\overline{\mathrm{O}}$ the + ve $I E$ of alkyl groups decreases +ve charge on C^{+}centre more effectively in ketones. Also, steric hindrance caused by bulky groups for nucleophiles to attack C^{+}centre.

770 (b)
$2 \mathrm{CH}_{3} \mathrm{COCl}+R_{2} \mathrm{Cd} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{COR}+\mathrm{CdCl}_{2}$
771 (a)
As the compound having active hydrogen produces alkane on reaction with Grignard reagent, hence - H atom of hydroxyl group is replaced by methyl magnetism iodine

772 (b)
A compound that contains a $-\mathrm{CH}_{2}-$ or CH -group flanked by two electron-withdrawing
group such as $\searrow \mathrm{C}=\mathrm{O}$ group, becomes acidic compound and hydrogen atoms are called acidic hydrogen

contains no acidic hydrogen

2,5-hexanedione
contains no acidic hydrogen

2,3-hexanedione
contains no acidic hydrogen
773 (a)
β-hydroxy aldehydes or β-hydroxy ketones (i.e.,aldol) readily dehydrated under acidic condition to give $\alpha-\beta$-unsaturated aldehyde or ketone.

781 (a)
Aqueous NaCl is neutral hence, there is no reaction between ethyl acetate and aqueous NaCl $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NaCl}(a q) \rightarrow$ No reaction (c)

The reaction is known as Gattermann-Koch reaction.
785 (b)
In highly acidic medium, $\mathrm{NH}_{2} \mathrm{OH}$ forms salts with acidic molecule and loses its capacity to act as nucleophile.
786 (a)
$\mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{CHO}$ is aldol.
787 (d)

\therefore The given compound

is a hemiacetal.
789 (b)
Ketone and aldehyde can be distinguished by Tollen's reagent, Fehling's solution and Schiff's reagent.
$\mathrm{CH}_{3} \mathrm{COCH}_{3}$ (ketone) and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ (aldehyde) can be distinguised by Tollen's
reagent. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ reacts with Tollen's reagent to give silver mirror while $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ does not react.

$\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{Ag}_{2} \mathrm{O} \xrightarrow{\Delta}$ No reaction
790 (a)
HCOOH and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$.
791 (a)
Para nitrophenol has higher b. p. due to H bonding.
792 (c)

$[0]$
$\mathrm{CH}_{3} \mathrm{COOH}$
793 (c)
Urea $\left(\mathrm{NH}_{2}-\mathrm{CO}-\mathrm{NH}_{2}\right)$ can be use for all types of crops and soil. It is hazardous hence can be store easily and it is cheap as it can be manufactured from crude nephthalein. After assimilation of urea by plants through the interaction of nitrifying bacteria, it leaves behind only carbon di oxide in the soil.
795 (b)
Acetophenone is hypnotic agent and called hypnone in medicinal use.
799 (a)
The alkaline hydrolysis of ester is irreversible whereas, acid hydrolysis of ester is reversible.

$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NaOH} \xrightarrow{\mathrm{OH}^{-}} \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
800 (d)
When ammonia $\left(\mathrm{NH}_{3}\right)$ reacts with formaldehyde (HCHO), hexamethylenetetramine which is also known as urotropine, is formed. Urotropine is used as a medicine to treat urinary infections.

$$
6 \mathrm{HCHO}+4 \mathrm{NH}_{3} \rightarrow\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4}+6 \mathrm{H}_{2} \mathrm{O}
$$ formaldehyde ammonia urotropine

801 (c)
Generally soda-lime removes CO_{2} from an acid but in case of alkali formate it gives alkali carbonate and hydrogen.
$\mathrm{HCOONa}+\mathrm{NaOH} \xrightarrow{\mathrm{CaO}} \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2}$
802 (c)
2, 4-D or 2, 4-dichlorophenoxy acetic acid is used as a herbicide.

803 (b)

This is claisen condensation.
804 (d)
$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[1 \% \mathrm{HgSO}_{4}]{40 \% \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{3} \mathrm{CHO}$
acetaldehyde
Acetaldehyde + Fehling's solution $\xrightarrow{\Delta}$ Cuprous oxide
(Red ppt.)
806 (b)
Aldehydes lacking with α - H atom undergoes Cannizzaro's reaction; in Cannizzaro's reaction one molecule of such aldehydes is oxidized on the cost of other.
807 (d)
The acidity of halogenated acid increases almost proportionately with the increase in electronegativity of the halogen present.
Therefore, the correct order is
$\mathrm{FCH}_{2} \mathrm{COOH}>\mathrm{ClCH}_{2} \mathrm{COOH}>\mathrm{BrCH} \mathrm{H}_{2} \mathrm{COOH}$

$$
>\mathrm{CH}_{3} \mathrm{COOH}
$$

808 (b)
Ellution means separation of process.
809 (c)
Pyroligneous acid obtained by destructive distillation of wood contains $\sim 10 \%$ acetic acid, \sim $2-2.5 \%$ methanol and $\sim 0.5 \%$ acetone.
811 (a)

It is like the saponification reaction of esters.

Alcohols on reacting with Grignard reagent ($R \mathrm{Mg} X$) give hydrocarbon on hydrolysis, hence the compound ' A ' cannot be an alcohol as the product is a oxygen containing compound.
The compound ' A ' must be propanal. The reaction will be as fallows

(B)

816 (a)

(A)

Thus, (B) is aldehyde and (A) is primary alcohol.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{~N} . \mathrm{NHCONH}_{2} \longrightarrow$

(C)

818 (a)

It is a laboratory method of the preparation of benzaldehyde.
821 (c)
Secondary alcohols can be conveniently oxidized to ketones without any danger of being further oxidized to acids or oxidation occurring at the end of double bond by Oppanauer oxidation

824 (a)
Cl_{2} reacts with $\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{COCH}_{3}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$ t respectively.
825
$\mathrm{HCOOH} \xrightarrow{\mathrm{P}_{2} \mathrm{O}_{5}} \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}$ (burns with pale blue flame).
826 (b)
Methanal and phenol (or hydorxy benzene) gives
Bakelite polymer on polymerization.
 methanal
hydroxybenzene

This is Hell-Volhard-Zelinsky reaction.
828 (a)
Cannizzaro's reaction is shown by aldehydes lacking α - H -atom.
Condensation reactions are shown by aldehydes having α-H-atoms.
829 (c)
Collin's reagent $\left(\mathrm{CrO}_{3}\right.$-pyridine) converts 2° alcohol to ketone and 1° alcohol to aldehyde.
832 (b)

Ring 1 is more active, electrophilic shbstitution takes place over ring.1.
$-\mathrm{NH}-\mathrm{C}-\mathrm{Ph}$ is ortho para directing. Para product is predominating.

II
0
833 (b)
The Reformatsky reaction is the reaction between an α-bromo acid ester and carbonyl compound (aldehyde or ketone) in the presence of Zn to form a β-hydroxy ester.

835 (c)
$R \mathrm{CH}_{3} \xrightarrow{[0]} \mathrm{RCH}_{2} \mathrm{OH} \xrightarrow{[\mathrm{O}]} \mathrm{RCHO} \xrightarrow{[0]} \mathrm{COOH}$
837 (c)
The reduction of carboxylic acids to alcohols is carried out by LiAlH_{4} and boranes $\left(\mathrm{BH}_{3}\right.$ or $\left.\mathrm{B}_{2} \mathrm{H}_{6}\right)$ in THF
839 (a)
Amides on acidic hydrolysis give acid and an amine. Hence, N -dimethylacetamide will give acetic acid and dimethyl amine on hydrolysis.
840 (c)
Cannizaro reaction It is given by aldehydes which do not have α-hydrogen atom. Half of the molecules are oxidised and half are reduced in presence of base.

842 (d)
It is a characteristic of acetamide.
843 (d)
No reaction.
844 (b)
$\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\mathrm{Na} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
845 (c)
Oxalic acid is reduced by Zn and $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give glycolic acid

846 (a)

Only compounds having - C - are reduced to alcohol using NaBH_{4} in ethanolic solution.

O	O		
$\\|$	$\\|$		
$\mathrm{R}-\mathrm{C}-\mathrm{l}, \mathrm{R}-\mathrm{C}-\mathrm{OH}$,			
O	0		
$\\|$	$\\|$		
$\mathrm{R}-\mathrm{C}-\mathrm{H}$ have-C -			

\therefore They are reduced to alcohols by reaction with ethanolic NaBH_{4} solution.
$\therefore \mathrm{R}-\mathrm{O}-\mathrm{R}$ does not have- $C-$ group.
\therefore It cannot be reduced to alcohol by alcoholic solution of NaBH_{4}.
847 (d)
Carboxylic acid is converted into its anhydride by using phosphorus pentaoxide.

848 (b)
$\mathrm{HCOONH}_{4} \xrightarrow{\Delta} \mathrm{HCONH}_{2}+\mathrm{H}_{2} \mathrm{O}$
849 (b)
Calcium salts of carboxylic acid on heating give carbonyl compound.
(a) $(\mathrm{HCOO})_{2} \mathrm{Ca}+\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}\right)_{2} \mathrm{Ca}$

Calcium formate calcium propanoate

propanal
(b) $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca}+\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}\right)_{2} \mathrm{Ca}$

Calcium acetate calcium propanoate
O
$\rightarrow 2 \mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}+2 \mathrm{CaCO}_{3}$
2-butanone
(c) $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca}+\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca}$

Calcium acetate calcium acetate
0
II
$\rightarrow 2 \mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}_{3}+2 \mathrm{CaCO}_{3}$

acetone

(d) $(\mathrm{HCOO})_{2} \mathrm{Ca}+\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca}$

Calcium formate calcium acetate

ethanal
850 (d)
Rest all show elimination of carbonylic oxygen.
851 (c)

Fenton's reagent $\mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}$ as well as Tollen's reagent give pyruvic acid.
853 (c)
Urotropine is hexamethylene tetramine, i.e., $\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4}$, used as medicine for gout and urine infections.
854 (b)
$\frac{\mathrm{Wt} \text {. of } \mathrm{B}_{2} \mathrm{H}_{2} \mathrm{PtCl}_{6}}{2 B+410}=\frac{\mathrm{Wt} \text {. of Pt }}{195}$
$\therefore \quad \frac{0.75}{2 B+410}=\frac{0.245}{195}$
$\therefore \quad B=93.5$
Eq. wt. of base $=93$; since it is monoacidic.
\therefore Mol. wt. of base $=93.5 \times 1=93.5$
855 (d)

Mandelic acid $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCOOH}$ is aromatic hydrox .

857 (b)
Halogen attacks α-carbon atom of acid in presence of I_{2} or P (HVZ reaction).
859 (d)

$$
\begin{aligned}
& \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \\
= & \mathrm{CHOCH}_{3}
\end{aligned}
$$

860 (a)
Percentage of $\mathrm{N}=\frac{28 \times V \times 100}{22400 \times W}$
862 (d)
Cannizaro reaction takes place as,

863 (a)
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHO}$ shows both reactions, i.e., aldol condensation and Cannizzaro's reaction.
864 (a)
Formaldehyde reacts with methyl magnesium bromide to give a addition product which ethanol on hydrolys

865 (b)
Stronger acids possess low $\mathrm{p} K_{a}$ value.
866
(b)

Clemmensen's reduction.
867 (d)

$\xrightarrow[-\mathrm{CaCo}_{3}]{\Delta}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\mathrm{NH}_{2} \mathrm{OH}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{NOH}$
acetoxime
868 (c)

869 (c)
This reaction is an example of Perkin's reaction because in it α, β-unsaturated acid is obtained with aromatic áldehydes.
Therefore, (X) is acetic anhydride
i.e., $\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)$.

871 (d)
$\mathrm{CH}_{4} \xrightarrow{[\mathrm{O}]} \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}$
872 (b)
Ethyl acetate is obtained when methyl magnesium bromide reacts with ethyl chloroformate.

874 (a)

It is an example of crossed Cannizaro's reaction.

875 (a)
Reduction of ketone to corresponding alkane using $\mathrm{Zn} / \mathrm{HCl}$ is called Clemmensen reduction.
876 (c)
$3 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{PCl}_{3} \rightarrow 3 \mathrm{CH}_{3} \mathrm{COCl}+\mathrm{H}_{3} \mathrm{PO}_{3}$
879 (d)
Acetamide reacts with HNO_{2} to give acetic acid and nitrogen gas
$\mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{HNO}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$ acetamide
881 (b)
The self condensation of acetaldehyde in presence of dilute alkalies is called aldol condensation and the product is known as aldol.

882 (b)
$R-\mathrm{C}=\mathrm{O}$; 3σ-bonds on carbon of -CHO .
H
884 (c)
Amides are reduced by lithium aluminium hydride $\left(\mathrm{LiAlH}_{4}\right)$ or sodium and ethylalcohol into primary amines.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}$
propyl amine
886 (a)
In presence of sodium hydroxide, benzaldehyde reacts with acetophenone, to give phenyl cinnamate.

888 (d)
Cannizaro reaction is given by only those aldehydes and ketones in which α - H atom is absent.
Formaldehyde (HCHO) and benzaldehyde ($\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$) both due to the absence of α - H atom
undergo Cannizaro reaction.
889 (a)
In this reaction $\alpha-\mathrm{H}$ is replaced by chlorine.

This reaction is called the Hell-Volhard-Zelinsky reaction.
890 (d)
Presence of $\mathrm{NO}_{2} \mathrm{gp}$. makes it best hydride donor.
891
(c)

Aldehydes form white crystalline solid with NaHSO_{3}.
893 (b)

$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COCH}_{3}+\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CHO}$ major

$$
\begin{aligned}
& +\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COCH}_{3} \\
& +\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH})-\mathrm{CH}_{2} \mathrm{CHO}
\end{aligned}
$$

$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COCH}_{3} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\Delta} \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOCH}_{3}$
major product major
product(25\%)
894 (b)
$2 \mathrm{CH}_{3} \mathrm{COCl}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cd} \rightarrow 2 \mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{CdCl}_{2}$
895 (c)
Picric acid doesn't contain - COOH group. It is 2, 4, 6 trinitrophenol.

897 (c)
Organic compound $+\mathrm{CaO}+\mathrm{Na}_{2} \mathrm{CO}_{3} \xrightarrow[\text { a Pt cructible }]{\text { He }}$
Cool the solution and add dil. HNO_{3} and then AgNO_{3}. A precipitate of AgX is dried and weighed and the \% of halogen is obtained as usual. This is Schiffs and Piria method.

See the influence of $-I E$ of Cl -atom. The negative charge on carboxy late ion is dispersed more in presence of two Cl -atoms.

The $I E$ order $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$.

899 (a)
Any electron withdrawing group increases the acidity due to $-I$ effect. The $-I$ effect of chlorine is greater than phenyl group. Hence, $\mathrm{ClCH}_{2} \mathrm{COOH}$ is the most acidic compound among these.
900 (c)
Molecular formula $=$ integer \times empirical formula.
901 (d)
Carboxylic acids when treated with either diborane or LAH, get reduced to primary alcohols. Diborane is a better reagent than LAH for such conversion, as it does not affect other functional groups such as ester, intro, holo etc.
$R-\mathrm{COOH}+\mathrm{B}_{2} \mathrm{H}_{6} \xrightarrow[\mathrm{H}_{3} \mathrm{O}^{+}]{ } R-\mathrm{CH}_{2} \mathrm{OH}$
902 (b)

(Remember! Only methyl ketones give iodoform test.)
903 (d)
Iodine in presence of base is used to detect presence of $\mathrm{CH}_{3} \mathrm{CO}$ group in compound.

acetaldehyde yellow ppt.
\therefore Formaldehyde and acetaldehyde are distinguished by using I_{2} and base.
906
(d)

Acetaldehyde reduces Tollen's reagent and itself is oxidised to acetic acid.
$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{Ag}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{Ag} \downarrow$
909 (a)
Ascorbic acid $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right)$ is called vitamin C , found in citrus fruits.
910 (c)

911 (c)
$\mathrm{CH}_{3} \mathrm{CONH}_{2} \xrightarrow{\mathrm{HOH}} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{3}$
$\xrightarrow{\text { Nessler's reagent }}$ a test for NH_{3}.
912 (b)
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{PCl}_{5} \rightarrow \mathrm{CH}_{3} \mathrm{COCl}$
(A)

915 (a)
Notice $+I E$ of alkyl group which intensifies the ve charge on carboxylate ion and thus, makes it more reactive. The acid therefore becomes more stable.
916 (d)
Baeyer-Villiger oxidation involves transformation of a ketone into ester by reaction with a peracid. The net change is the insertion of an oxygen atom between the carbonyl carbon and an adjacent carbon of the ketone. So, it is an example of Baeyer-Villiger oxidation, the most suitable reagent is m-chloroperbenzoic acid

917 (c)
Aldol condensation, haloform reaction and knovengel reaction involve the formation of a resonance stabilised anion, while the Wittig reaction involves the addition of a nucleophile on the carbonyl carbon. The driving force for the Wittig reaction is the formation of a very strong P-O bond
918 (d)
Better is leaving gp, higher will be reactivity of acyl compound towards nucleophile acyl substitution. Weaker is the base, better is leaving gp. Stronger is base, weaker is its acid and viceversa.
922 (c)
Presence of electron withdrawing atom $(-X)$ increases the acidic nature. Presence of electron repelling gp. $\left(-\mathrm{CH}_{3}\right)$ decreases the acidic nature.
923 (c)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO} \xrightarrow{[\mathrm{O}]} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
924 (d)
All aldehydes give silver mirror with Tollen's reagent.

Organic compound $+\mathrm{CuO} \rightarrow \mathrm{CO}_{2}$ will come out
if carbon is present.
926 (b)
As compared to alcohol, the $\mathrm{O}-\mathrm{H}$ bond in carboxylic acids is more strongly polarised due to the adjacent electron withdrawing carbonyl group. Therefore carboxylic acid from stronger intermolecular H -bonds than alcohols, and the boiling points of carboxylic acids are much higher than those of alcohol of comparable molecular masses
927 (c)
Addition of HCN is nucleophilic addition. Greater the electron deficiency of carbonyl group higher the rate of reaction.
Hence,

928 (d)
Benzaldehyde when heated with ethanolic KCN, it gives α-hydroxy ketone, benzoin.

Benzaldehyde (2 mol)

$$
\begin{gathered}
\mathrm{O} \\
\mathrm{ll} \\
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{5}
\end{gathered}
$$

benzoin
929 (c)
Gastric juice has $\mathrm{pH} \approx 2.5$; lemon juice and pepsi cola have $\mathrm{pH} \approx 7$. Human blood has pH 7.2 .
931 (b)
The reagent $\mathrm{Ni} / \mathrm{H}_{2}$ reduces double bond and hydrazine converts

932 (a)
In Meerwein-Ponndorff-Verley reduction, the carbonyl compound is heated with aluminium iso-propoxide in iso-propanol solution, it gets reduced to alcohol. The iso-propoxide is oxidized to acetone, which is removed from the
equilibrium mixture by slow distillation

934 (d)

Carbonyl compounds can be converted into hydrocarbons by treating with zinc-amalgam $/ \mathrm{HCl}$ (Clemmensen's reduction).
935 (b)
Cannizzaro's reaction is shown by aldehydes lacking with α - H -atom.
936 (c)
In the presence of base, cyclohexanone show aldol condensation

937 (a)
Magenta is rosaniline hydrochloride which is decolourised by $\mathrm{H}_{2} \mathrm{SO}_{3}$ to give Schiff's reagent.
938 (b)
Propanal is not formed during the dry distillation of a mixture of calcium formate and calcium acetate.

939 (b)
$\mathrm{RCOOH}+\mathrm{N}_{3} \mathrm{H} \xrightarrow{\text { Conc } \mathrm{H}_{2} \mathrm{SO}_{4}} R \mathrm{NH}_{2}+\mathrm{CO}_{2} \mathrm{~N}_{2}$ hydrazoic acid primary amine
It is Schmidt reaction.
941 (b)
Ketones on reduction with LiAIH_{4} gives
secondary alcohol.

942 (a)
Petrol, kerosene, diesel, etc., have difference in their b. p. of more than $50^{\circ} \mathrm{C}$.
943 (c)
Halogen attacks α-carbon of carboxylic acid. This is HVZ reaction.
944 (b)
Aldol condensation is shown by the molecules having α-carbon atom

945 (d)
$\mathrm{CH}_{3} \mathrm{CONH}_{2}$ on treatment with metallic sodium produce hydrogen.
$\mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{Na} \rightarrow \mathrm{CH}_{3} \mathrm{CONH}^{-} \mathrm{Na}^{+}+\frac{1}{2} \mathrm{H}_{2} \uparrow$
946 (b
More is the tendency for H -bonding, more will be boiling point. In carboxylic acid H -bonding is more than alcohols.
948 (d)

949 (a)
This is Hofmann's bromamide reaction.
950 (b)
An aqueous solution of sodium periodate and a trace of potassium permanganate is known as Lemieux reagent. The alkene is oxidized to cisdiol, which is cleaved by periodate to aldehydes and/or ketones. Aldehydes are further oxidized by KMnO_{4} to acids

This is better for both determining the position of double bond and for preparing carbonyl compounds, because in this method, formaldehyde is usually obtained from terminal alkene, instead of producing CO_{2} and water

Alkali used is $\mathrm{Ba}(\mathrm{OH})_{2}$.
954 (c)
Among the carbonyl compounds, the reactivity decreases with increase in number of alkyl group and size of alkyl group because the positive charge on the carbon atom decreases due to $+I$ effect of alkyl groups.
Thus, the correct order reactivity is
$\mathrm{HCHO}>\mathrm{CH}_{3} \mathrm{CHO}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
955 (b)
Reaction proceeds as

957 (c)
Waxes are esters of higher fatty acids $R C O O R^{\prime}$.
958 (b)
O is more electronegative than C .
961 (d)
The formation of canary yellow precipitate with am. molybdate confirms the presence of P of As or both due to the formation of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$.
$12 \mathrm{MoO}_{3}$ or $\left(\mathrm{NH}_{4}\right)_{3}$ As $\mathrm{O}_{4} \cdot 12 \mathrm{MoO}_{3}$.
964 (c)
$\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH} \rightleftharpoons \mathrm{NH}_{3}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-}$
965 (a)
$\mathrm{CH}_{3} \mathrm{CHO}$ and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ forms condensation product with NH_{3}.
968 (a)
Toluene can be oxidized to benzaldehyde with a solution of chromyl chloride
$\left(\mathrm{CrO}_{2} \mathrm{Cl}_{2}\right)$ in CS_{2} or CCl_{4}. This is known as Etard reaction

Further oxidation of benzaldehyde to benzoic acid is avoided by protection of carbonyl group
969 (c)
The Hell-Volhard-Zelinsky reaction is used for preparing α-halo acid.

\propto-chloropropanoic acid
970 (a)
This is Rosenmund's reaction.
971 (d)
$\mathrm{CH}_{3} \mathrm{OH} \xrightarrow{\mathrm{Cu}} \mathrm{HCHO} \xrightarrow{\mathrm{NaOH}} \mathrm{HCOONa}+\mathrm{HCH}_{2} \mathrm{OH}$;
Cannizzaro's reaction.
972 (a)
$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{NOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}=\mathrm{NOH}+\mathrm{H}_{2} \mathrm{O}$
973 (b)
The addition of α, β-unsaturated carbonyl compound, with conjugated diene is called Diel'sAlder reaction.

(d)

The given statement is of Cannizzaro's reaction.
976 (c)
Follow applications of inductive effect. The negative charge on carboxylate ion is dispersed more due to $-I E$ of F -atom.

The carboxylate ion thus becomes more stable and acid more active.
980 (d)

Cannizaro reaction aldehydes which does not have α-hydrogen atom undergo disproporation reaction (half of the molecule are oxidised and half are reduced).

\therefore Benzaldehyde is converted into benzyl alcohol by Cannizaro reaction.
981 (c)

Thus, oxidation number of carbonyl carbon in acetophenone is +2 .
(a)
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{2} \mathrm{CONH}_{2}$

$$
\xrightarrow[\longrightarrow]{\mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{CO}_{2}+\mathrm{NH}_{3}}
$$

983 (d)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \xrightarrow{\mathrm{Cl}_{2}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$
984 (b)
$\mathrm{Na}+\mathrm{C}+\mathrm{N} \xrightarrow{\text { Fusion }} \mathrm{NaCN}$.
986 (d)
It attacks acidic $\mathrm{H}(\mathrm{H}$ attached on $\mathrm{N}, \mathrm{O}, \mathrm{F}$) to show acylating nature.

(b)

Stinges of bees and wasps contain formic acid.
988 (c)
$\mathrm{NaNO}_{2}+\mathrm{HCl} \rightarrow \mathrm{HNO}_{2}+\mathrm{NaCL}$
$\mathrm{H}_{2} \mathrm{NCONH}_{2}+\mathrm{HNO}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$ urea
CO_{2} gas evolves with brisk effervescence
989 (a)
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{[\mathrm{O}]} \mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{[\mathrm{O}]} \mathrm{CH}_{3} \mathrm{COOH}$
991 (a)
Benzaldehyde reacts with ammonia to form hydrobenzamide.

992 (d)
RCHO or $R \mathrm{COR}$ can be reduced t
$R \mathrm{CH}_{2} \mathrm{OH}$ or $\mathrm{RCHOH} R$ respectively by $\mathrm{H}_{2}+$ catalyst, $\mathrm{LiAlH}_{4}, \mathrm{NaBH}_{4}$,etc.

993 (d)

994 (d)
The Gattermann-Koch aldehyde synthesis is as follows.

995 (c)
Carboxylic acids are weak acids.
997 (a)
$\mathrm{PCl}_{5}, \mathrm{PCl}_{3}, \mathrm{SOCl}_{2}$ are used in organic reactions to replace -OH group or to replace carbonylic oxygen.
998 (b)
$\mathrm{C}=\mathrm{O}+\mathrm{H}_{2} \mathrm{NNHC}_{6} \mathrm{H}_{5} \rightarrow \mathrm{C}=\mathrm{N} \cdot \mathrm{NHC}_{6} \mathrm{H}_{5}$
999 (c)

The intermediate formed decomposes to give glycerol back and formic acid.
100 (d)
0 Benedict solution is readily reduced by aldehyde. It doesn't oxidise anhydrides.
100 (d)
1 7-9\% dilute solution of acetic acid is known as vinegar.
Vinegar can be obtained by the fermentation of ethyl alcohol in the presence of enzyme acetobactor.
100 (a)
$2 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{COONH}_{4}$
100 (b)
3 Unlike KMnO_{4} acid Jone's reagent $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\right.$ $\mathrm{H}_{2} \mathrm{SO}_{4}$) does not attack $\mathrm{C}=\mathrm{C}$.
100 (c)
$4 \mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\mathrm{PCl}_{5}} \mathrm{CH}_{3} \mathrm{CHCl}_{2}$
100 (c)
5 Transesterification is the process of conversion of one ester to another ester.

100 (a)
6 The formation of aldehyde from alkyl cyanide takes place by Stephen's reaction
$R-\mathrm{C} \equiv \mathrm{N}+2 \mathrm{H} \xrightarrow{\mathrm{SnCl}_{2}} \mathrm{RCH}=\mathrm{NH} . \mathrm{HCl}$ alkyl cyanid
+HCl aldimine hydrochloride

$R \mathrm{CHO}+\mathrm{NH}_{4} \mathrm{Cl}$
aldehyde
$7 \quad \mathrm{PCl}_{5}$ usually used to replace -OH gp . or oxygen of
9 Fehling's solution is produced by mixing two solutions. Fehling (A) containing alkaline CuSO_{4} and Fehling (B) $\mathrm{NaKC}_{4} \mathrm{H}_{6} \mathrm{O}_{8}$ or sod. pot. tartrate.

The compound which contains - COCH_{3} group in its structure, give positive iodoform test and the compound which contains - CHO group give positive Fehling test.
In ethanal, $\mathrm{CH}_{3} \mathrm{CHO}$ both the groups are present, hence it responds to both iodoform test and Fehling's test.

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{I}_{2}+\mathrm{NaOH} \rightarrow \mathrm{CHI}_{3}+\mathrm{NaI}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{Cu}(\mathrm{OH})_{2} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{Cu}_{2} \mathrm{O} \\
\downarrow+2 \mathrm{H}_{2} \mathrm{O} \\
\text { Fehling's } \\
\text { Solution }
\end{gathered}
$$

101 (b)
$2 \quad P_{\text {mixture }}=P_{\text {compound }}+P_{\text {steam }}=$ 1 atm (at b. p.)
101 (a)
5 Two - COOH gp. on one carbon atom gives CO_{2} on heating. Two - COOH gp. on adjacent carbon atoms lose $\mathrm{H}_{2} \mathrm{O}$ to give anhydride on heating

101 (b)

7 The nitrogen of an organic compound is quantitatively converted to $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ on heating with $\mathrm{H}_{2} \mathrm{SO}_{4}$.
101 (a)
8 Propionic acid and KOH reacts to produce potassium propionate.

102 (b)
0 Benzamide on treatment with POCl_{3} gives benzonitrile (phenyl cyanide) because in this reaction POCl_{3} acts as dehydrating agent and on dehydration of benzamide, benzonitrile is obtained.

102 (c)
1 Both have nearly same boiling point
$\left(\mathrm{HCOOH}=100.5^{\circ} \mathrm{C} ; \mathrm{H}_{2} \mathrm{O}=100^{\circ} \mathrm{C}\right)$.
102 (b)
$2 \quad 3 \mathrm{NaCNS}+\mathrm{FeCl}_{3} \rightarrow \underset{\text { (Red) }}{\mathrm{Fe}(\mathrm{CNS})_{3}}+3 \mathrm{NaCl}$
102 (c)
4 The compound is pentanone-3

102 (d)
5 An exceptional aldehyde which does not reduce Fehling's solution.
102 (c)
6 Oxidation of 2-butanol to ethyl methyl ketone can be made effective by using oxidizing agent PCC/DCM (pyridinium chlorochromate in
dichloro methane)

102 (a)
7 The reaction occurs as follows
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{KOH} \xrightarrow{\Delta} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOK}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ ethyl benzoate
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOK}+\mathrm{HCl} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{KCl}$ white solid

2 (c)

$8 \quad \mathrm{Al}_{2} \mathrm{O}_{3}$ is used as absorbent. the other absorbents al powder, animal charcoal, etc.

9 The monocarboxylic acids are called fatty acids, because some of the higher members were obtained from fats. The general formula is $\mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{COOH}$ or RCOOH or $\mathrm{C}_{n} \mathrm{H}_{2 n} \mathrm{O}_{2}$.

1 Cis-dioic acid readily gives anhydride on heating. Since maleic acid is a dioic acid gives maleic
anhydride readily.

103 (c)
$3 \quad \mathrm{Na}_{2} \mathrm{~S}+\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right] \rightarrow$
$\underset{\text { d.thio nitroprusside }}{\mathrm{Na}_{4}}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}\right]$
Sod.thio nitroprusside
103 (c)
$4 \quad \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ is the weakest acid and have lowest dissociation constant $-I E$ of Br is lesser than F and is far away from - COOH group.
103 (c)
7 Acid amides are least reactive towards nucleophile amongst the all acid derivatives because of electron deficiency of the acyl carbon due to $-I$ effect of the $-\mathrm{NH}_{2}$ group. In other way, lone pair of electrons undergoes resonance with

It is because of this alkanamides are amphoteric in nature

103 (c)
8 Maleic and fumaric acid are geometrical isomers (cis-and trans-respectively) having different physical properties but almost same chemical nature.

103 (c)
$93 \mathrm{NaCNS}+\mathrm{FeCl}_{3} \rightarrow \underset{\text { Red colour }}{\mathrm{Fe}(\mathrm{CNS})_{3}}+\mathrm{NaCl}$
104 (d)
1 HCHO and $\mathrm{CH}_{3} \mathrm{CHO}$ give different reaction with NH_{3}

acetaldehyde ammonia
104 (c)
$2 \quad R-X \xrightarrow[K C N]{\text { Alcoholic }} R-\mathrm{CN} \xrightarrow{\text { Dil } \mathrm{HCl}} R-\mathrm{COOH}$ alkyl cyanide carboxylic acid

104 (d)
3 Formic acid HCOOH also contain a - CHO group, so gives some reducing properties of aldehydes HC $=0 \quad 3$ aldehyde group |
OH
Formic acid is a very strong redúcing agent. It reduces Tollen's reagent, Fehling's solution and mercruric chloride.
Acetic acid does not give these reaction.
Formic acid distinguishes from acetic acid by Fehling's solution. Formic acid gives red ppt of cuprous oxide with Fehling's solution while acetic acid does not.
104 (c)
5 Oxalic acid is prepared by the acidic hydrolysis of cyanogen.

104 (b)
6 Urea on show heating gives biuret.

104 (a)
7 Beckmann rearrangement oximes on treatment with catalysts such as conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ undergo rearrangement to form substituted amide.
 anti-phenyl acetophenone oxime
104 (c)
8 Ethylene glycol is used to protect the carbonyl group of cyclopentanone

104 (c)
9 These are characteristics of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$.
(a)

2 1. X forms 2, 4-DNP derivatives, it shows that it is a carbonyl compound ($>\mathrm{C}=0$).
2. It reduces Tollen's reagent, it shows that it has an aldehyde group.
3. It undergoes Cannizaro reaction, that also shows the presence of an aldehyde having no α-hydrogen.
4. On vigorous oxidation, it produces 1, 2benzenedicarboxylic acid. It shows that groups are present at 1,2-position on benzene ring.

Thus, the correct structure of the compound X is

105 (a)
4 Two H -atoms of alkane are replaced by 0 .
105 (d)
5
$\mathrm{CH}_{3} \mathrm{CN} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{NH}_{3}} \mathrm{CH}_{3} \mathrm{COONH}_{4}$
$\xrightarrow{\Delta} \mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{H}_{2} \mathrm{O}$
105 (d)
6
Formic acid has $-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{H}$ (aldehyde) group. It reduces Tollens reagent to silver mirror like other aldehydes
105 (d)
$8 \quad \mathrm{By} \mathrm{NH}_{2}-\mathrm{NH}_{2} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$
Aldehyde and ketones are reduced with hydrazine $\mathrm{NH}_{2}-\mathrm{NH}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$ to give hydrocarbon (paraffins). This reaction is called Wolff-Kishner reaction.
$-\mathrm{CHO} \xrightarrow[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}]{\mathrm{NH}_{2}-\mathrm{NH}_{2}}-\mathrm{CH}_{3}-\mathrm{CO}-\xrightarrow[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}]{\mathrm{NH}_{2}-\mathrm{NH}_{2}}-\mathrm{CH}_{2}-$
105 (a)
$9 \mathrm{CO}+\mathrm{NaOH} \xrightarrow{\text { High } P, T} \mathrm{HCOONa} \xrightarrow{\mathrm{NaHSO}_{4}} \mathrm{HCOOH}+$ $\mathrm{Na}_{2} \mathrm{SO}_{4}$
106 (c)
$0 \quad \mathrm{CH}_{3} \mathrm{CHOHCH}_{3} \xrightarrow{[\mathrm{O}]} \mathrm{CH}_{3} \mathrm{COCH}_{3}$
106 (c)
2 6-8 \% solution of acetic acid is called vinegar.
106 (d)
3 See the influence of $-I E$ of Cl -atom. The negative charge on carboxylate ion is dispersed more in presence of two Cl-atoms.

106 (b)
$5 \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ sublimes on heating.
106 (a)
6 Tollen's reagent is $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{NO}_{3}$.
106 (a)
$8 \quad \mathrm{NH}_{2}^{-}$withdraws acidic H from active methylene group of $\mathrm{ClCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$ and it combines with
107 (b)
0

C^{+}is more reactive than O^{-}.
107 (a
1

107 (c)
$6 \mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ and $\mathrm{CD}_{3} \mathrm{CHO}$ each possess $\alpha-H / D$ atom and will show aldol condensation.
107 (c)
$7 \quad 13.5 \mathrm{~g} \equiv 9 \mathrm{gC} \equiv 1 \mathrm{gH} \equiv 3.5 \mathrm{~g} \mathrm{~N}$
$\therefore 100 \mathrm{~g} \equiv \frac{9 \times 100}{13.5} \mathrm{~g} \quad \mathrm{C} \equiv \frac{1 \times 100}{13.5} \mathrm{~g} \quad \mathrm{H} \equiv \frac{3.5 \times 100}{13.5} \mathrm{~g} \mathrm{~N}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$ to form intermediate that undergoes intramolecular cyclisation

$$
+\underset{\substack{\mathrm{C} \\ \mathrm{Cl}}}{\overline{\mathrm{C}} \mathrm{HCOOC}_{2} \mathrm{H}_{5}+\mathrm{Na}^{+}}
$$

106 (a)
$\mathrm{CH} \equiv \mathrm{CH} \xrightarrow[\text { Dil. } \mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HgSO}_{4}} \mathrm{CH}_{3} \mathrm{CHO}$
acetaldehyde
[A]

I
OH
aldol
[B]
This reaction is followed by acidic oxidation and aldol condensation respectively.

$$
\begin{aligned}
& \equiv \frac{9 \times 100}{13.5 \times 12} \text { mole } \mathrm{C}=\frac{1 \times 100}{13.5 \times 1} \text { mole } \mathrm{H} \\
& =\frac{3.5 \times 100}{13.5 \times 14} \text { mole } \mathrm{N}
\end{aligned}
$$

\therefore Mol. formula $=\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}$

9 The slowest step is the transfer of hydride ion to the carbonyl group as shown in mechanism.

108 (a)
0 This is the required order based on ortho-effect and electron withdrawing nature of $-\mathrm{NO}_{2}$ group. 108 (b)
$1 \mathrm{PCl}_{3}, \mathrm{PCl}_{5}$ and SOCl_{2} are used to replace - OH group of an alcohol or an acid by -Cl group

When acid reacts with Cl_{2} in presence of red phosphorus, \propto-chloro acid is obtained. (Hell Vohlard-Zelinsky reaction).
 acid
108 (d)
2 Fractional distillation of petroleum produces a large number of compounds.
108 (b)
Aldol condensation aldehydes containing α-hydrogen undergo self addition in presence of a base to form products called 'aldols'. The reaction is called 'aldol condensation'.
Example Two molecules of acetaldehyde combine with each other in presence of dil. NaOH to form 3 -hydroxybutanal.

hydroxybutanal

108 (c)
4 Aldehydes are reduced by LiAIH_{4} to alcohols and alcohols are oxidised by copper to give aldehydes.

(X)
(I)
(X)

108 (c)
5 This is Cannizzaro's reaction.
108 (b)
6 Methyl ketones (acetone) and acetaldehyde both give indoform test.

108 (b)
7 When acetaldehyde is treated with aqueous sodium hydroxide solution, it sundergoes aldol condensation (because of the presence of $\alpha-\mathrm{H}$ atom) as.

$=\mathrm{CHCHO} \stackrel{\Delta}{\longleftarrow} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CHO}$
(shows geometrical isomerism)
aldol
(shows optical isomerism)
(I)

(II)

(III)

$-\mathrm{NO}_{2}$ group at any position shows electron withdrawing effect. Thus, acid strength is increased. But o-nitro benzoate ion is stabilised by intramolecular H -bonding like forces. Hence its acid strength is maximum.
Thus, the order of acid strength is (II) $>$ (III) $>$ (IV) $>$ (I).

108 (d)
Cyclohexylamines are more basic than aniline; the later shows resonance.
109 (a)
1 Rosenmund reaction,

So, compound (A) is benzoyl chloride.
109 (b)
2 Grignard reagent produce carboxylic acid on reaction with CO_{2}

$$
\begin{aligned}
\mathrm{CH}_{3} \mathrm{MgBr}+\mathrm{CO}_{2} & \\
& \rightarrow \mathrm{CH}_{3} \mathrm{COOMgBr} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{CH}_{3} \mathrm{COOH} \\
& +\mathrm{Mg}(\mathrm{OH}) \mathrm{Br}
\end{aligned}
$$

09 (c)
4 It is the reason why organic compounds studied as separate branch.
109 (d)
6

Fruity smell is the characteristic property of ester, thus reaction can be considered as follows

109 (a)

ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

CHEMISTRY

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0 . Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

Statement 1: $\quad \alpha$-hydrogen atoms in aldehydes and ketones are acidic
Statement 2: The anion left after the removal of α-hydrogen is stablished by inductive effect

Statement 1: Benzoic acid does not give Friedel-Craft's reaction
Statement 2: Benzoic acid is obtained by catalytic oxidation of toluene with air in presence of $\mathrm{Co}-\mathrm{Mn}$ catalyst

Statement 1: Highly branched carboxylic acids are more acidic than unbranched acids
Statement 2: Hydrogen bonding in carboxylic acids is stronger than alcohols

Statement 1: Pure acetic acid is converted into ice like solid called glacial acetic acid
Statement 2: Acetic acid is stronger than HCOOH

Statement 1:

Statement 2: Resonance in carbonyl compound provides C^{+}and O^{-}

Statement 1: Friedel-Craft's reaction between benzene and acetic anhydride in the presence of anhydrous AlCl_{3} yields acetophenone and not polysubstituted products
Statement 2: Acetophenone formed poisons and catalyst preventing further reaction

Statement 1: Halogen acids donot add on to carbonyl bond
Statement 2: Addition depends upon the polarization of $\mathrm{H} X$ and carbonyl bond

Statement 1: CH_{3}^{-}adds to $>\mathrm{C}=\mathrm{O} \mathrm{C}=0$ group irreversibly but CN^{-}ion adds reversibly
Statement 2: CH_{3}^{-}ion is much stronger nucleophile than CN^{-}ion

Statement 1: The second dissociation constant of maleic acid is greater than Fumaric acid
Statement 2: Higher the dissociation constant of acid more is acidic character

ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

CHEMISTRY

: ANSWER KEY :

1)	c	2)	b	3)	a	4)	d	9)	a	10)
5)	d									

ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (c)
The anion left after the removal of α-hydrogen is stabilised by resonance effect

2 (b)
The carboxyl group $(-\mathrm{COOH})$ is an electron withdrawing group and therefore deactivates the benzene ring towards electrophilic attack. Therefore, benzoic acid doe not give FriedelCraft's reaction

3 (a)
In formate ion, resonance gives rise to identical bond lengths

4 (d)
Highly branched carboxylic acids are less acidic than unbranched acids. The $+I$ effect of alkyl groups in branched one increases the magnitude of negative group. The $-\mathrm{COO}^{-}$group is shielded from solvent molecules and can't be stabilised by solvation as effectively as in unbranched carboxylic acids

5 (c)
Formic acid is stronger than acetic acid

(b)

Both carbon and oxygen are non-metals and try to
complete their octet. In $R-\mathrm{C} \equiv \mathrm{O}^{+}$each has complete octet, whereas in $R-\mathrm{C}^{+}=0$, carbon atom has incomplete octet

(c)

$\mathrm{CH}_{3} \mathrm{CO}$ - group in acetophenone being electron withdrawing reduces the electron-density at the benzene ring, thereby preventing further electrophilic substitution

8 (b)
The high degree of polarity in $\mathrm{H} X$ as well as in carbonyl bond shows the easy addition of $\mathrm{H} X$ on carbonyl bond but as soon as the addition products are formed, the products loses to $\mathrm{H} X$ to show the backward reaction
CH_{3}^{-}ion is much stronger nucleophile due to $+I$

10 (d)
Both furmaric acid and maleic acid have two ionisable protons. At first sight, since the structures are identical, it might have been expected that the ionisation constants would be the same. However,

[^0]: Michael addition

