Hyperbola
 Single Correct Answer Type

1. A line drawn through the point $\mathrm{P}(-1,2)$ meets the hyperbola $x y=c^{2}$ at the points A and B . (points A and B lie on same side of P) and Q is a point on $A B$ such that $P A, P Q$ and $P B$ are in H.P then locus of Q is
A. $x-2 y=2 c^{2}$
B. $2 x-y=2 c^{2}$
C. $2 x+y+2 c^{2}=0$
D. $x+2 y=2 c^{2}$

Key. B
Sol. Locus of Q is $S_{1}=0$
$2 x-y=2 c^{2}$
2. If the asymptote of the hyperbola $(x+y+1)^{2}-(x-y-3)^{2}=5$ cut each other at A and the coordinate axis at B and C then radius of circle passing through the points A, B, C is
A. 3
B. $\frac{\sqrt{5}}{2}$
C. $\frac{\sqrt{3}}{2}$
D. $\sqrt{3}$

Key. B
Sol. Centre of rectangular hyperbola $=(1,-2)$
So equation of asymptotes are $x=1, y=-2$
So radius of circle $=\frac{\sqrt{5}}{2}$
3. PM and PN are the perpendiculars from any point P on the rectangular hyperbola $\mathrm{xy}=8$ to the asymptotes. If the locus of the mid point of $M N$ is a conic, then the least distance of $(1,1)$ to director circle of the conic is
A. $\sqrt{3}$
B. $\sqrt{2}$
C. $2 \sqrt{3}$
D. $2 \sqrt{5}$

Key. B
Sol. OMPN is rectangle.
$P=\left(C t, \frac{c}{t}\right)$
Mid point $=\left(\frac{c t}{2}, \frac{c}{2 t}\right)=(x, y) \quad \therefore c y=\frac{c^{2}}{4} \Rightarrow e=\sqrt{2}$
4. A hyperbola passing through origin has $3 x-4 y-1=0$ and $4 x-3 y-6=0$ as its asymptotes. Then the equations of its transverse and conjugate axes are
A) $x-y-5=0$ and $x+y+1=0$
B) $x-y=0$ and $x+y+5=0$
C) $x+y-5=0$ and $x-y-1=0$
D) $x+y-1=0$ and $x-y-5=0$

Key. C
Sol. Transverse and conjugate axes are the bisectors of the angle between asymptotes.

$$
\frac{3 x-4 y-1}{5}= \pm\left(\frac{4 x-3 y-6}{5}\right) \text { etc...... }
$$

5. If the asymptotes of the hyperbola $(x+y+1)^{2}-(x-y-3)^{2}=5$ cuts each other at A and the coordinate axes at B and C, then radius of the circle passing through the points A, B, C is
A) 3
B) $\frac{\sqrt{5}}{2}$
C) $\frac{\sqrt{3}}{2}$
D) $\sqrt{3}$

Key. B
Sol. (B) Centre of rectangular hyperbola ($1,-2$)
So equation of asymptotes are $x=1, y=-2$
So radius of circle $=\frac{\sqrt{5}}{2}$
6. If a chord joining $\mathrm{P}(\mathrm{aSec} \theta, \operatorname{atan} \theta), \mathrm{Q}(\mathrm{aSec} \alpha, \operatorname{atan} \alpha)$ on the hyperbola $x^{2}-y^{2}=a^{2}$ is the normal at P,then $\operatorname{Tan} \alpha=$
A) $\operatorname{Tan} \theta\left(4 \sec ^{2} \theta+1\right)$
B) $\operatorname{Tan} \theta\left(4 \sec ^{2} \theta-1\right)$
C) $\operatorname{Tan} \theta\left(2 \operatorname{Sec}^{2} \theta-1\right)$
D) $\operatorname{Tan} \theta\left(1-2 \operatorname{Sec}^{2} \theta\right)$

Key. B
Sol. Slope of chord joining P and $\mathrm{Q}=$ slope of normal at P
$\frac{\operatorname{Tan} \alpha-\operatorname{Tan} \theta}{\sec \alpha-\sec \theta}=-\frac{\operatorname{Tan} \theta}{\sec \theta} \Rightarrow \operatorname{Tan} \alpha-\operatorname{Tan} \theta=-\mathrm{kTan} \theta$ and $\sec \alpha-\sec \theta=\mathrm{k} \sec \theta$
$\therefore(1-k) \operatorname{Tan} \theta=\operatorname{Tan} \alpha \rightarrow 1 .(1+k) \sec \theta=\sec \alpha \rightarrow 2$.
$[(1+\mathrm{k}) \sec \theta]^{2}-[(1-\mathrm{k}) \operatorname{Tan} \theta]^{2}=\sec ^{2} \alpha-\operatorname{Tan}^{2} \alpha$
$\Rightarrow \mathrm{k}=-2\left(\sec ^{2} \theta+\operatorname{Tan}^{2} \theta\right)=-4 \sec ^{2} \theta+2$
From (1) $\operatorname{Tan} \alpha=\operatorname{Tan} \theta\left(1+4 \sec \theta^{2}-2\right)=\operatorname{Tan} \theta\left(4 \sec \theta^{2}-1\right)$.
7. PM and PN are the perpendiculars from any point P on the rectangular hyperbola $x y=c^{2}$ to the asymptotes. If the locus of the mid point of MN is a conic, then its eccentricity is
A) $\sqrt{3}$
B) $\sqrt{2}$
C) $\frac{1}{\sqrt{3}}$
D) $\frac{1}{\sqrt{2}}$

Key. B
Sol. OMPN is rectangle.

$P=\left(C t, \frac{c}{t}\right)$
Mid point $=\left(\frac{c t}{2}, \frac{c}{2 t}\right)=(x, y)$
$\therefore x y=\frac{c^{2}}{4} \Rightarrow e=\sqrt{2}$
8. A variable straight line of slope 4 intersects the hyperbola $x y=1$ at two points. The locus of the point which divides the line segment between these two points in the ratio $1: 2$ is
A) $16 x^{2}+10 x y+y^{2}=2$
B) $16 x^{2}-10 x y+y^{2}=2$
C) $16 x^{2}+10 x y+y^{2}=4$
D) $16 x^{2}-10 x y+y^{2}=4$

Key. A
Sol. Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$

$$
y-k=4(x-h)--(1)
$$

Let it meets $\mathrm{xy}=1$----(2) at $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$

$$
\begin{aligned}
\mathrm{x}_{1}+\mathrm{x}_{2}=\frac{4 \mathrm{~h}-\mathrm{k}}{4}, \mathrm{x}_{1} \mathrm{x}_{2} & =-\frac{1}{4} \text { Also } \Rightarrow \therefore \frac{2 \mathrm{x}_{1}+\mathrm{x}_{2}}{3}=\mathrm{h} \Rightarrow \mathrm{x}_{1}=\frac{8 \mathrm{~h}+\mathrm{k}}{4}, \mathrm{x}_{2}=\frac{2 \mathrm{~h}+\mathrm{k}}{2} \\
& \Rightarrow 16 \mathrm{x}^{2}+10 \mathrm{xy}+\mathrm{y}^{2}=2
\end{aligned}
$$

9. The length of the transverse axis of the hyperbola $9 x^{2}-16 y^{2}-18 x-32 y-151=0$ is
1) 8
2) 4
3) 6
4) 2

Key. 1
Sol. Given hyperbola is $\frac{(x-1)^{2}}{16}-\frac{(y+1)^{2}}{9}=1$
Length of the transverse axis is $2 a=8$.
10. The equation of a hyperbola, conjugate to the hyperbola $x^{2}+3 x y+2 y^{2}+2 x+3 y=0$ is

1) $x^{2}+3 x y+2 y^{2}+2 x+3 y+1=0$
2) $x^{2}+3 x y+2 y^{2}+2 x+3 y+2=0$
3) $x^{2}+3 x y+2 y^{2}+2 x+3 y+3=0$
4) $x^{2}+3 x y+2 y^{2}+2 x+3 y+4=0$

Key. 2
Sol. Let $H=x^{2}+3 x y+2 y^{2}+2 x+3 y=0$ and $\mathrm{C}=0$ is its conjugate. Then $\mathrm{C}+\mathrm{H}=2 \mathrm{~A}$, where $\mathrm{A}=0$ is the combined equation of asymptotes. Equation of asymptotes is $x^{2}+3 x y+2 y^{2}+2 x+3 y+\lambda=0$, where $\Delta=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0 \Rightarrow \lambda=1$
$\therefore C=2\left(x^{2}+3 x y+2 y^{2}+2 x+3 y+1\right)-\left(x^{2}+2 y^{2}+3 x y+2 x+3 y\right)$
\Rightarrow equation of conjugate hyperbola is $x^{2}+3 x y+2 y^{2}+2 x+3 y+2=0$
11. If AB is a double ordinate of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that $\triangle O A B$ is an equilateral triangle O being the origin, then the eccentricity of the hyperbola satisfies

1) $e>\sqrt{3}$
2) $1<e<\frac{1}{\sqrt{3}}$
3) $e=\frac{2}{\sqrt{3}}$
4) $e>\frac{2}{\sqrt{3}}$

Key. 4

Sol. Let the length of the double ordinate be 2 \&
$\therefore \mathrm{AB}=2 \ell$ and $\mathrm{AM}=\mathrm{BM}=\ell$
Clearly ordinate of point A is ℓ.

The abscissa of the point A is given by
$\frac{x^{2}}{a^{2}}-\frac{l^{2}}{b^{2}}=1 \Rightarrow x=\frac{a \sqrt{b^{2}+l^{2}}}{b}$
$\therefore \mathrm{A}$ is $\left(\frac{a \sqrt{b^{2}+l^{2}}}{b}, l\right)$
Since $\triangle O A B$ is equilateral triangle, therefore
$\mathrm{OA}=\mathrm{AB}=\mathrm{OB}=2^{l}$
Also, $O M^{2}+A M^{2}=O A^{2} \cdot \frac{a\left(b^{2}+l^{2}\right)}{b}+l^{2}=4 l^{2}$
We get $l^{2}=\frac{a^{2} b^{2}}{3 b^{2}-a^{2}}$
Since $l^{2}>a \cdot \frac{a^{2} b^{2}}{3 b^{2}-a^{2}}>0 \Rightarrow 3 b^{2}-a^{2}>0$
$\Rightarrow 3 a^{2}\left(e^{2}-1\right)-a^{2}>0 \Rightarrow e>\frac{2}{\sqrt{3}}$
12. If the line $5 x+12 y-9=0$ is a tangent to the hyperbola $x^{2}-9 y^{2}=9$, then its point of contact is

1) $(-5,4 / 3)$
2) $(5,-4 / 3)$
3) $(3,-1 / 2)$
4) $(5,4 / 3)$

Key. 2
Sol. Common Point
13. Any chord passing through the focus $(a e, 0)$ of the hyperbola $x^{2}-y^{2}=a^{2}$ is conjugate to the line

1) $e x-a=0$
2) $a e+x=0$
3) $a x+e=0$
4) $a x-e=0$

Key. 1
Sol. $\quad S_{1}=0$
14. Number of points from where perpendicular tangents to the curve $\frac{x^{2}}{16}-\frac{y^{2}}{25}=1$ can be drawn, is:

1) 1
2) 2
3) 0
4) 3

Key. 3
Sol. Director circle is set of points from where drawn tangents are perpendicular in this case $x^{2}+y^{2}=a^{2}-b^{2}$ (equation of director circle)i.e., $x^{2}+y^{2}=-9$ is not a real circle so there is no points from where tangents are perpendicular.
15. $x^{2}-y^{2}+5 x+8 y-4=0$ represents

1) Rectangular hyperbola
2) Ellipse
3) Hyperbola with centre at $(1,1) \quad$ 4) Pair of lines

Key. 1
Sol. $\quad \Delta \neq 0, x^{2}-a b>0, a+b=0$
16.

1) $(2 \sqrt{2}, 2 \sqrt{2}),(-2 \sqrt{2},-2 \sqrt{2})$
2) $(-3 \sqrt{2},-3 \sqrt{2}),(3 \sqrt{2}, 3 \sqrt{2})$
3) $(2 \sqrt{2},-2 \sqrt{2}),(-2 \sqrt{2}, 2 \sqrt{2})$
4) (-2.2)

Key. 1
Sol. foci of $x y=c^{2}$ is $(\pm c \sqrt{2}, \pm c \sqrt{2})$
17. Which of the following is INCORRECT for the hyperbola $x^{2}-2 y^{2}-2 x+8 y-1=0$

1) Its eccentricity is $\sqrt{2}$
2) Length of the transverse axis is $2 \sqrt{3}$
3) Length of the conjugate axis is $2 \sqrt{6}$
4) Latus rectum $4 \sqrt{3}$

Key. 1
Sol. The equation of the hyperbola is $x^{2}-2 y^{2}-2 x+8 y-1=0$
Or $(x-1)^{2}-2(y-2)^{2}+6=0$
Or $\frac{(x-1)^{2}}{-6}+\frac{(y-2)^{2}}{3}=1 ;$ or $\frac{(y-2)^{2}}{3}-\frac{(x-1)^{2}}{6}=1 \rightarrow 1$
Or $\frac{Y^{2}}{3}-\frac{X^{2}}{6}=1$, where $\mathrm{X}=\mathrm{x}-1$ and $\mathrm{Y}=\mathrm{y}-2 \rightarrow 2$
\therefore the centre $=(0,0)$ in the $X-Y$ coordinates.
\therefore the centre $=(1,2)$ in the $\mathrm{x}-\mathrm{y}$ coordinates .using $\rightarrow 2$
If the transverse axis be of length $2 a$, then $a=\sqrt{3}$, since in the equation (1) the transverse axis is parallel to the y-axis.
If the conjugate axis is of length 2 b , then $\mathrm{b}=\sqrt{6}$
But $b^{2}=a^{2}\left(e^{2}-1\right)$
$6=3\left(e^{2}-1\right), \therefore e^{2}=3$ or $e=\sqrt{3}$
The length of the transverse axis $=2 \sqrt{3}$
The length of the conjugate axis $=2 \sqrt{6}$
Latus rectum $4 \sqrt{3}$
18. If the curve $x y=R^{2}-16$ represents a rectangular hyperbola whose branches lies only in the quadrant in which abscissa and ordinate are opposite in sign but not equal in magnitude, then

1) $|R|<4$
2) $|R| \geq 4$
3) $|R|=4$
4) $|R|=5$

Keу.
Sol. conceptual
19. If the line $a x+b y+c=0$ is a normal to the curve $x y=1$, then

1) $a>0, b>0$
2) $a<0, b<0$
3) $a<0, b>0$
4) $a=b=1$

Key. 3
Sol. Slope of the line $\frac{-a}{b}$ is equal to slope of the normal to the curve.
\therefore either $\mathrm{a}>0 \& \mathrm{~b}<0$ (or) $\mathrm{a}<0 \& \mathrm{~b}>0$.
20. The equation of normal at $\left(a t, \frac{a}{t}\right)$ to the hyperbola $x y=a^{2}$ is

1) $x t^{3}-y t+a t^{4}-a=0$
2) $x t^{3}-y t-a t^{4}+a=0$
3) $x t^{3}+y t+a t^{4}-a=0$
4) $x t^{3}+y t-a t^{4}-a=0$

Key. 2
Sol. Equation of tangent is $S_{1}=0$ normal is \perp^{γ} to tangent and passing through
$\left(a t, \frac{a}{t}\right)_{\text {is }} x t^{3}-y t-a t^{4}+a=0$
21. The product of perpendiculars from any point $P(\theta)$ on the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$ to its asymptotes is equal to:

1) $\frac{6}{5}$
2) $\frac{36}{13}$
3) Depending on θ
4) $\frac{5}{6}$

Key. 2
Sol. The product of perpendiculars from any point $\mathrm{P}(\theta)$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ to its asymptotes is equal to $\frac{a^{2} b^{2}}{a^{2}+b^{2}}$
22. The foot of the perpendicular from the focus to an asymptote of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is

1) $(a e, b e)$
2) $(a / e, b / e)$
3) (e/a,e/b)
4) (be,ae)

Key. 2
Sol. Focus $S=(a e, 0)$ Equation of one asymptote is $b x-a y=0$
Let (h, k) be the foot of the perpendicular from s to $b x-a y=0$
Then $\frac{h-a e}{b}=\frac{k-0}{-a}=\frac{-a b e}{a^{2}+b^{2}} \Rightarrow \frac{h-a e}{b}=\frac{-a b e}{a^{2} e^{2}} \& \frac{k}{-a}=\frac{-a b e}{a^{2} e^{2}}$
On simplification, we get $h=a / e, k=b / e$
Foot of the perpendicular is (a/e,b/e)
23. The area of the triangle formed by the asymptotes and any tangent to the hyperbola $x^{2}-y^{2}=a^{2}$

1) $4 a^{2}$
2) $3 a^{2}$
3) $2 a^{2}$
4) a^{2}

Key. 4
Sol. Equation of any tangent to $x^{2}-y^{2}=a^{2}$
i.e. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}}=1$ is $\frac{x}{a} \sec \theta-\frac{y}{a} \tan \theta=1 \rightarrow(1)$
or $x \sec \theta-y \tan \theta=a$
equation of other two sides of the triangle are
$x-y=0 . .(2) x+y=0(3)$
The two asymptotes of the hyperbola $x^{2}-y^{2}=a^{2}$
Are $x-y=0$ and $x+y=0$)
Solving (1) (2) and (3) in pairs the coordinates of the vertices of the triangle are $(0,0)$
$\left(\frac{a}{\sec \theta+\tan \theta}, \frac{a}{\sec \theta+\tan \theta}\right)$
And $\left(\frac{a}{\sec \theta-\tan \theta}, \frac{-a}{\sec \theta-\tan \theta}\right)-$
Area of triangle $=\frac{1}{2}\left|\frac{a^{2}}{\sec ^{2} \theta-\tan ^{2} \theta}+\frac{a^{2}}{\sec ^{2} \theta-\tan ^{2} \theta}\right|$
$\frac{1}{2}\left(a^{2}+a^{2}\right) \quad \because \sec ^{2} \theta-\tan ^{2} \theta=1$
$=a^{2}$
24. The foot of the normal $3 x+4 y=7$ to the hyperbola $4 x^{2}-3 y^{2}=1$ is

1) $(1,1)$
2) $(1,-1)$
3) $(-1,1)$
4) $(-1,-1)$

Key. 1
Sol. Since the point $(1,1)$ lies on the normal and hyperbola it is the foot of the normal
25. Tangent at the point $(2 \sqrt{2}, 3)$ to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$ meet its asymptotes at A and B, then area of the triangle $O A B$, O being the origin is

1) 6 sq. units
2) 3 sq. units
3) 12 sq. units
4) 2 sq. units

Key. 1
Sol. Since area of the Δ formed by tangent at any point lying on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and its asymptotes is always constant and is equal to ab. Therefore, required area is $2 \times 3=6$ square units.
26.

Eccentricity of hyperbola $\frac{x^{2}}{k}+\frac{y^{2}}{k}=1(k<0)$ is :

1) $\sqrt{1+k}$
2) $\sqrt{1-k}$
3) $\sqrt{1+\frac{1}{k^{2}}}$
4) $\sqrt{1-\frac{1}{k}}$

Key. 4
Sol. Given equation can be rewritten as $\frac{y^{2}}{k^{2}}-\frac{x^{2}}{(-k)}=1(-k>0)$
$e^{2}=1+\frac{(-k)}{k^{2}}=1-\frac{1}{k} \Rightarrow e=\sqrt{1-\frac{1}{k}}$
27. If the circle $x^{2}+y^{2}=a^{2}$ intersect the hyperbola $x y=c^{2}$ in four points $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right), S\left(x_{4}, y_{4}\right)$ then which of the following does not hold

1) $x_{1}+x_{2}+x_{3}+x_{4}=0$
2) $x_{1} x_{2} x_{3} x_{4}=y_{1} y_{2} y_{3} y_{4}=c^{4}$
3) $y_{1}+y_{2}+y_{3}+y_{4}=0$
4) $x_{1}+y_{2}+x_{3}+y_{4}=0$

Key. 4
Sol. $\quad \mathrm{x}^{2}+\frac{\mathrm{c}^{4}}{\mathrm{x}^{2}}=\mathrm{a}^{2} \Rightarrow \mathbf{x}^{4}-\mathbf{a}^{2} \mathbf{x}^{2}+\mathbf{c}^{4}=0,4^{\text {th }}$ option does not hold
28. If a normal to the hyperbola $\mathrm{x} \mathrm{y}=\mathrm{c}^{2}$ at $\left(c t_{1}, \frac{c}{t_{1}}\right)$ meets the curve again at $\left(c t_{2}, \frac{c}{t_{2}}\right)$, then:

1) $t_{1} t_{2}=-1$
2) $t_{2}=-t_{1}-\frac{2}{t_{1}}$
3) $t_{2}^{3} t_{1}=-1$
4) $t_{1}^{3} t_{2}=-1$

Key. 4
Sol. Equation of normal at $\left(c t_{1}, \frac{c}{t_{1}}\right)_{\text {is }}$
$t_{1}^{3} x-t_{1} y-c t_{1}^{4}+c=0$
It passes through $\left(c t_{2}, \frac{c}{t_{2}}\right)$
le., $t_{1}^{3} \cdot c t_{2}-t_{1} \cdot \frac{c}{t_{2}}-c t_{1}^{4}+c=0$
$\Rightarrow\left(t_{1}-t_{2}\right)\left(t_{1}^{3} t_{2}+1\right)=0$
$\Rightarrow t_{1}^{3} t_{2}=-1$
29. The equation of the chord joining two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the rectangular hyperbola $\mathrm{xy}=\mathrm{c}^{2}$ is

1) $\frac{x}{x_{1}+x_{2}}+\frac{y}{y_{1}+y_{2}}=1$
2) $\frac{x}{x_{1}-x_{2}}+\frac{y}{y_{1}-y_{2}}=1$
3) $\frac{y}{x_{1}+x_{2}}+\frac{x}{y_{1}+y_{2}}=1$
4) $\frac{x}{y_{1}-y_{2}}+\frac{y}{x_{1}-x_{2}}=1$

Key. 1
Sol. Mid point of the chord is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

The equation of the chord in terms of its mid-point is $s_{1}=s_{11}$
30. A rectangular hyperbola whose centre is C is cut by any circle of radius r in four points P, Q, R and S.Then $C P^{2}+C Q^{2}+C R^{2}+C S^{2}=$

1) r^{2}
2) $2 r^{2}$
3) $3 r^{2}$
4) $4 r^{2}$

Key. 4
Sol. $C P=C Q=C R=C S=r$
31. The product of focal distances of the point $(4,3)$ on the hyperbola $x^{2}-y^{2}=7$ is

1) 25
2) 12
3) 9
4) 16

Key. 1
Sol. $\quad e=\sqrt{2}, s p \cdot s^{\prime} p=\left(e x_{1}+a\right)\left(e x_{1}-a\right)=25$
32.

Let $y=4 x^{2} \& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{16}=1$ intersect iff

1) $|a| \leq \frac{1}{\sqrt{2}}$
2) $a>\frac{1}{\sqrt{2}}$
3) $a>-\frac{1}{\sqrt{2}}$
4) $a>\sqrt{2}$

Key.

Sol.
$y=4 x^{2} \& \frac{1}{4} y=x^{2}$
Using $\frac{1}{4 a^{2}} y-\frac{y^{2}}{16}=1$
$\Rightarrow 4 y-a^{2} y^{2}=16 a^{2}$
$\Rightarrow a^{2} y^{2}-4 y+16 a^{2}=0$
$\Rightarrow D \geq 0$ for intersection of two curves
$\Rightarrow 16-4 a^{2}\left(16 a^{2}\right) \geq 0$
$\Rightarrow 1-4 a^{4} \geq 0$
$\Rightarrow\left(2 a^{2}\right) \leq 1$
$\Rightarrow|\sqrt{2} a| \leq 1 \Rightarrow-\frac{1}{\sqrt{2}} \leq a \leq \frac{1}{\sqrt{2}}$
33.

If angle between the asymptotes of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is 45°, then value of eccentricity e is

1) $\sqrt{4 \pm 2 \sqrt{2}}$
2) $\sqrt{4+2 \sqrt{2}}$
3) $\sqrt{4-2 \sqrt{2}}$
4) $\sqrt{4-3 \sqrt{2}}$

Key. 3
Sol. $\quad 2 \tan ^{-1} \frac{b}{a}=45^{\circ} \Rightarrow \frac{b}{a}=\tan 22^{\circ}=\frac{a^{2}\left(e^{2}-1\right)}{a^{2}}=(\sqrt{2}-1)^{2}$
$\Rightarrow e^{2}-1=3-2 \sqrt{2} \Rightarrow e=\sqrt{4-2 \sqrt{2}}$.
34. A hyperbola, having the transverse axis of length $2 \sin \theta$, is confocal with the ellipse $3 x^{2}+4 y^{2}=12$. Then its equation is

1) $x^{2} \operatorname{cosec} 2 \theta-y^{2} \sec ^{2} \theta=1$
2) $x^{2} \sec ^{2} \theta-y^{2} \operatorname{cosec}^{2} \theta=1$
3) $x^{2} \sin ^{2} \theta-y^{2} \cos ^{2} \theta=1$
4) $x^{2} \cos ^{2} \theta-y^{2} \sin ^{2} \theta=1$

Key. 1
Sol. Equation of the ellipse is $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$. Its eccentricity is $e=\sqrt{1-\frac{3}{4}}=\frac{1}{2}$
Coordinates of foci are $(\pm 1,0)$.
Let the hyperbola be $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then $a=\sin \theta$
Also, $a e_{1}=1 \Rightarrow \quad e_{1}=\operatorname{cosec} \theta$

$$
b^{2}=a^{2}\left(e_{1}^{2}-1\right)=1-\sin ^{2} \theta=\cos ^{2} \theta
$$

Equation of the hyperbola is thus $\frac{x^{2}}{\sin ^{2} \theta}-\frac{y^{2}}{\cos ^{2} \theta}=1$
35. An ellipse intersects the hyperbola $2 x^{2}-2 y^{2}=1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinates axes, then

1) Equation of ellipse is $x^{2}+2 y^{2}=1$
2) the foci of ellipse are $(\pm 1,0)$
3) equation of ellipse are $x^{2}+2 y^{2}=4$
4) the foci of ellipse are $(\pm \sqrt{2}, 0)$

Key. 2
Sol. If two concentric conics intersect orthogonally then they must be confocal, so ellipse and hyperbola will be confocal
$\Rightarrow(\pm a e, 0) \equiv(\pm 1,0)$
[foci of hyperbola are $(\pm 1,0)$]
36.

Let $P(6,3)$ be a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If the normal at the point P intersects the x axis at $(9,0)$, then the eccentricity of the hyperbola is:

1) $\sqrt{\frac{5}{2}}$
2) $\sqrt{\frac{3}{2}}$
3) $\sqrt{2}$
4) $\sqrt{3}$

Key. 2
Sol. Normal at $(6,3)$ is
$\frac{a^{2} x}{6}+\frac{b^{2} y}{3}=a^{2}+b^{2}$,
$\Rightarrow \frac{9 a^{2}}{6}=a^{2}+b^{2} \Rightarrow \frac{3}{2}=1+\frac{b^{2}}{a^{2}}$

$$
\frac{b^{2}}{a^{2}}=\frac{1}{2} \Rightarrow e^{2}-1=\frac{1}{2} \Rightarrow e=\sqrt{\frac{3}{2}}
$$

37. For hyperbola $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$, which of the following remains constant with change in ' α '
1) abscissae of vertices
2) Eccentricity
3) abscissae of foci
4) directrix

Key. 2
Sol. Hyperbola is $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$
Coordinates of vertices are $(\pm \cos \alpha, 0)$, eccentricity of the hyperbola is $e=\sqrt{1+\frac{\sin ^{2} \alpha}{\cos ^{2} \alpha}}=|\sec \alpha|$
\therefore Coordinates of foci are thus $(\pm 1,0)$, which are independent of α.
Directrix is $x= \pm \cos ^{2} \alpha$
38. Equation of a common tangent to the curves $y^{2}=8 x$ and $x y=-1$ is
(a) $3 y=9 x+2$
(b) $y=2 x+1$
(c) $2 y=x+8$
(d) $y=x+2$

Key. D
Sol. $\quad y^{2}=8 k, x y=-1$
Let $P\left(t, \frac{-1}{t}\right)$ be any point on $\mathrm{xy}=-1$
Equation of the tangent to $x y=-1$ at $P\left(t, \frac{-1}{t}\right)$ is
$\frac{x y_{1}+y x_{1}}{2}=-1$
$\frac{-x}{t}+y t=-2$
$y=\frac{x}{t^{2}}+\left(\frac{-2}{t}\right)$
If (1) is tangent to the parabola $y^{2}=8 x$ then
$\frac{-2}{t}=\frac{2}{1 / t^{2}} \Rightarrow t^{3}=-1$
$t=-1$
\therefore Common tangent is $\mathrm{y}=\mathrm{x}+2$
39. If PQ is a double ordinate of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that OPQ is an equilateral triangle, O being the centre of the hyperbola. Then the eccentricity e of the hyperbola, satisfies
(a) $1<e<2 / \sqrt{3}$
(b) $e=2 / \sqrt{3}$
(c) $e=\sqrt{3} / 2$
(d) $e>2 / \sqrt{3}$

Key. D
Sol. If OPQ is equilateral triangle then OP makes 30° with x -axis. $\left(\frac{\sqrt{3} r}{2}, \frac{r}{2}\right)$ ties on hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$\Rightarrow r^{2}=\frac{16 a^{2} b^{2}}{12 b^{2}-4 a^{2}}>0$
$\Rightarrow 12 b^{2}-4 a^{2}>0 \Rightarrow \frac{b^{2}}{a^{2}}>\frac{4}{12}$
$e^{2}-1>\frac{1}{3}$
$e^{2}>\frac{4}{3} \Rightarrow e>\frac{2}{\sqrt{3}}$
40. The locus of a point, from where tangents to the rectangular hyperbola $x^{2}-y^{2}=a^{2}$ contain an angle of 45°, is
(A) $\left(x^{2}+y^{2}\right)+a^{2}\left(x^{2}-y^{2}\right)=4 a^{2}$
(B) $2\left(x^{2}+y^{2}\right)+4 a^{2}\left(x^{2}-y^{2}\right)=4 a^{2}$
(C) $\left(x^{2}+y^{2}\right)^{2}+4 a^{2}\left(x^{2}-y^{2}\right)=4 a^{4}$
(D) $\left(x^{2}+y^{2}\right)^{2}+a^{2}\left(x^{2}-y^{2}\right)=a^{4}$

Key. C
Sol. Equation of tangent to the hyperbola : $y=m x \pm \sqrt{m^{2} a^{2}-a^{2}}$
\Rightarrow Let $P\left(x_{1}, y_{1}\right)$ be locus
$\Rightarrow y-m x= \pm \sqrt{m^{2} a^{2}-a^{2}}$
S.B.S
$\Rightarrow m^{2}\left(x_{1}^{2}-a^{2}\right)-2 y_{1} x_{1} m+y_{1}^{2}+a^{2}=0$
$m_{1}+m_{2}=\frac{2 x_{1} y_{1}}{x_{1}^{2}-a^{2}} ; m_{1} m_{2}=\frac{y_{1}^{2}+a^{2}}{x_{1}^{2}-a^{2}}$
$\tan 45^{\circ}=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\Rightarrow\left(1+m_{1} m_{2}\right)^{2}=\left(m_{1}-m_{2}\right)^{2}=\left(m_{1}+m_{2}\right)^{2}-4 m_{1} m_{2}$
$\Rightarrow\left(1+\frac{y_{1}+a^{2}}{x_{1}^{2}-a^{2}}\right)=\left(\frac{2 x_{1} y_{1}}{x_{1}^{2}-a^{2}}\right)-4\left(\frac{y_{1}^{2}+a^{2}}{x_{1}^{2}-a^{2}}\right)$
41. If a circle cuts the rectangular hyperbola $\mathrm{xy}=1$ in 4 points $\left(x_{r}, y_{r}\right)$ where $\mathrm{r}=1,2,3,4$. Then ortho centre of triangle with vertices at $\left(x_{r}, y_{r}\right)$ where $r=1,2,3$ is

1. $\left(x_{4}, y_{4}\right)$
2. $\left(-x_{4},-y_{4}\right)$
3. $\left(-x_{4},+y_{4}\right)$
4. $\left(+x_{4},-y_{4}\right)$

Key. 2
Sol. $\quad x y=1$ cuts the circle in 4-points then $x_{1} x_{2} x_{3} x_{4}=1, y_{1} y_{2} y_{3} y_{4}=1$
Ortho centre of triangle with vertices $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\left(x_{3}, y_{3}\right)$
le $\left(\frac{-1}{x_{1} x_{2} x_{3}},-\left(y_{1} y_{2} y_{3}\right)^{-1}\right)$ $-\left(-x_{4},-y_{4}\right)$
42. A hyperbola passing through origin has $3 x-4 y-1=0$ and $4 x-3 y-6=0$ as its asymptotes. Then the equations of its transverse and conjugate axes are
A) $x-y-5=0$ and $x+y+1=0$
B) $x-y=0$ and $x+y+5=0$
C) $x+y-5=0$ and $x-y-1=0$
D) $x+y-1=0$ and $x-y-5=0$

Key. C
Sol. Transverse and conjugate axes are the bisectors of the angle between asymptotes.

$$
\frac{3 x-4 y-1}{5}= \pm\left(\frac{4 x-3 y-6}{5}\right) \text { etc...... }
$$

43. If the asymptotes of the hyperbola $(x+y+1)^{2}-(x-y-3)^{2}=5$ cuts each other at A and the coordinate axes at B and C , then radius of the circle passing through the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ is
A) 3
B) $\frac{\sqrt{5}}{2}$
C) $\frac{\sqrt{3}}{2}$
D) $\sqrt{3}$

Key. B
Sol. Centre of rectangular hyperbola $(1,-2)$
So equation of asymptotes are $x=1, y=-2$
So radius of circle $=\frac{\sqrt{5}}{2}$
44. If a chord joining $\mathrm{P}(\operatorname{aSec} \theta, \operatorname{atan} \theta), \mathrm{Q}(\operatorname{aSec} \alpha, \operatorname{atan} \alpha)$ on the hyperbola $x^{2}-y^{2}=a^{2}$ is the normal at P ,then $\operatorname{Tan} \alpha=$
A) $\operatorname{Tan} \theta\left(4 \sec ^{2} \theta+1\right)$
B) $\operatorname{Tan} \theta\left(4 \sec ^{2} \theta-1\right)$
C) $\operatorname{Tan} \theta\left(2 \operatorname{Sec}^{2} \theta-1\right)$
D) $\operatorname{Tan} \theta\left(1-2 \operatorname{Sec}^{2} \theta\right)$

Key. B
Sol. Slope of chord joining P and $\mathrm{Q}=$ slope of normal at P

$$
\begin{aligned}
& \frac{\operatorname{Tan} \alpha-\operatorname{Tan} \theta}{\sec \alpha-\sec \theta}=-\frac{\operatorname{Tan} \theta}{\sec \theta} \Rightarrow \operatorname{Tan} \alpha-\operatorname{Tan} \theta=-\mathrm{k} \operatorname{Tan} \theta \text { and } \sec \alpha-\sec \theta=\mathrm{k} \sec \theta \\
& \therefore(1-k) \operatorname{Tan} \theta=\operatorname{Tan} \alpha \rightarrow 1 .(1+k) \sec \theta=\sec \alpha \rightarrow 2 \\
& {[(1+\mathrm{k}) \sec \theta]^{2}-[(1-\mathrm{k}) \operatorname{Tan} \theta]^{2}=\sec ^{2} \alpha-\operatorname{Tan}^{2} \alpha} \\
& \Rightarrow \mathrm{k}=-2\left(\sec ^{2} \theta+\operatorname{Tan}^{2} \theta\right)=-4 \sec ^{2} \theta+2
\end{aligned}
$$

From (1) $\operatorname{Tan} \alpha=\operatorname{Tan} \theta\left(1+4 \sec \theta^{2}-2\right)=\operatorname{Tan} \theta\left(4 \sec \theta^{2}-1\right)$.
45. PM and PN are the perpendiculars from any point P on the rectangular hyperbola $x y=c^{2}$ to the asymptotes. If the locus of the mid point of MN is a conic, then its eccentricity is
A) $\sqrt{3}$
B) $\sqrt{2}$
C) $\frac{1}{\sqrt{3}}$
D) $\frac{1}{\sqrt{2}}$

Key. B
Sol. OMPN is rectangle.

$$
P=\left(C t, \frac{c}{t}\right)
$$

Mid point $=\left(\frac{c t}{2}, \frac{c}{2 t}\right)=(x, y)$
$\therefore x y=\frac{c^{2}}{4} \Rightarrow e=\sqrt{2}$
46. A variable straight line of slope 4 intersects the hyperbola $x y=1$ at two points. The locus of the point which divides the line segment between these two points in the ratio $1: 2$ is
A) $16 x^{2}+10 x y+y^{2}=2$
B) $16 x^{2}-10 x y+y^{2}=2$
C) $16 x^{2}+10 x y+y^{2}=4$
D) $16 x^{2}-10 x y+y^{2}=4$

Key. A
Sol. Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$

$$
y-k=4(x-h)--(1)
$$

Let it meets $\mathrm{xy}=1$----(2) at $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$

$$
\begin{aligned}
\mathrm{x}_{1}+\mathrm{x}_{2} & =\frac{4 \mathrm{~h}-\mathrm{k}}{4}, \mathrm{x}_{1} \mathrm{x}_{2}=-\frac{1}{4} \text { Also } \Rightarrow \therefore \frac{2 \mathrm{x}_{1}+\mathrm{x}_{2}}{3}=\mathrm{h} \Rightarrow \mathrm{x}_{1}=\frac{8 \mathrm{~h}+\mathrm{k}}{4}, \mathrm{x}_{2}=\frac{2 \mathrm{~h}+\mathrm{k}}{2} \\
& \Rightarrow 16 \mathrm{x}^{2}+10 \mathrm{xy}+\mathrm{y}^{2}=2
\end{aligned}
$$

47. From a point P on the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{4}=1$ straight lines are drawn parallel to the asymptotes of the hyperbola. Then the area of parallelogram formed by the asymptotes and the two lines through P is
A) dependent on coordinates of P
B) 4
C) 6
D) $8 \sqrt{2}$

Key. B
Sol. Area of parallelogram is $\frac{a b}{2}=\frac{4 \times 2}{2}=4$
48. The eccentricity of the conic defined by $\left|\sqrt{(x-1)^{2}+(y-2)^{2}}-\sqrt{(x-5)^{2}+(y-5)^{2}}\right|=3$
A) $5 / 2$
B) $5 / 3$
C) $\sqrt{2}$
D) $\sqrt{11} / 3$

Key. B
Sol. Hyperbola for which $(1,2)$ and $(5,5)$ are foci and length of transverse axis 3.
$2 a e=5$ and $2 a=3 \quad \therefore e=5 / 3$
49. The asymptotes of a hyperbola are $3 x-4 y+2=0$ and $5 x+12 y-4=0$. If the hyperbola passes through the point $(1,2)$ then slope of transverse axis of the hyperbola is
A) 6
B) $-7 / 2$
C) -8
D) $1 / 8$

Key. C
Sol. Axes of hyperbola are bisectors of angles between asymptotes.
50. If P is a point on the rectangular hyperbola $\mathrm{x}^{2}-\mathrm{y}^{2}=\mathrm{a}^{2}, \mathrm{C}$ being the center and S, S^{\prime} are two foci, then $S P . S^{\prime} P$ $=$
a) 2
b) $(C P)^{2}$
c) $(C S)^{2}$
d) $\left(S S^{\prime}\right)^{2}$

Key. B
Sol. Let $P=(a \sec \theta, a \tan \theta), S_{1} S^{1}=(\pm a \sqrt{2}, 0)$
$S P=a(\sqrt{2} \sec \theta-1), S^{1} P=a(\sqrt{2} \sec \theta+1)$
$S P-S^{1} P=a^{2}\left(\sec ^{2} \theta+\tan ^{2} \theta\right)=C P^{2}$
51. An equation of common tangent to the parabola $y^{2}=8 x$ and the hyperbola $3 x^{2}-y^{2}=3$ is
a) $2 x-y+1=0$
b) $x-y+2=0$ c) $x+y+2=0$ d) $2 x+y-1=0$

Key. A

Sol. Let m be the slope of the common tangent
$\therefore \frac{2}{\mathrm{~m}}=\sqrt{\mathrm{m}^{2}-3} \Rightarrow \mathrm{~m}= \pm 2$
Equation of common tangents are $y=2 x+1$ or $y=-2 x-1$
52. Let $\mathrm{P}(\theta), \mathrm{Q}(\varphi)$ be two points on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ satisfying $\theta+\varphi=\pi / 2$. If (h, k) be the point of intersection of normals at P and Q , then k is equal to
a) $\frac{a^{2}+b^{2}}{a}$
b) $-\frac{a^{2}+b^{2}}{a}$
c) $-\frac{a^{2}+b^{2}}{b}$
d) $\frac{a^{2}+b^{2}}{b}$

Key. C
Sol. Solving the normals at θ, φ and using $\theta+\varphi=\frac{\pi}{2}$
53. A chord of the hyperbola $x^{2}-2 y^{2}=1$ is bisected at the point $(-1,1)$. Then the area of the triangle formed by the chord and the coordinate axes is
a) 1
b) 2
c) $1 / 2$
d) $1 / 4$

Key. D
Sol. Equation of the chord as $\mathrm{S}_{1}=\mathrm{S}_{11}=$ Req Area $\frac{1}{4}$
54. The angle of intersection between the curves $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{a^{2}-k^{2}}-\frac{y^{2}}{k^{2}-b^{2}}=1,(a>k>b>0)$ is
a) $\tan ^{-1}\left(\frac{b}{a}\right)$
b) $\tan ^{-1}\left(\frac{\mathrm{~b}}{\mathrm{ka}}\right)$
c) $\tan ^{-1}\left(\frac{\mathrm{a}}{\mathrm{kb}}\right)$
d) None of these

Key. D
Sol. Confocal ellipse and hyperbola cut at right angles
55. Let A is the number of tangents drawn from a point on the asymptote of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ (except origin) to the hyperbola itself. B is the number of normals which can be drawn from centre of $x y=c^{2}$ to the $x y=c^{2}$. C is the maximum number of normals which can be drawn from a point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. D is the number of tangent common to both branches of a hyperbola. Then number of normals which can be drawn from the point $(A B D, B C)$ to $y^{2}-48 y-4 x+616=0$ is (If $A=3, \quad B=5, C=4$ then $A B C=354$)
a) 1
b) 0
c) 2
d) 3

Key. D
Sol. $\quad A-1, B=2, C=4, D=0$
From $(120,24)$ we can draw 3 normals to
$(y-24)^{2}=4(x-10)$ since $(x-10)>2$
56. If the normal at $\mathrm{P}(8,2)$ on the curve $\mathrm{xy}=16$ meets the curve again at Q . Then angle subtended by PQ at the origin is
a) $\tan ^{-1}\left(\frac{15}{4}\right)$
b) $\tan ^{-1}\left(\frac{4}{15}\right)$
c) $\tan ^{-1}\left(\frac{261}{55}\right)$
d) $\tan ^{-1}\left(\frac{55}{261}\right)$

Key. A
Sol. If a normal cuts the hyperbola at point $\left(t, \frac{1}{t}\right)$ meets the curve again at $\left(\mathrm{ct}^{1}, \frac{\mathrm{C}}{\mathrm{t}^{1}}\right)$ then $\mathrm{t}^{3} \mathrm{t}^{1}=-1$
57. A triangle is inscribed in the curve $x y=c^{2}$ and two of its sides are parallel to $y+m_{1} x=0$ and $\mathrm{y}+\mathrm{m}_{2} \mathrm{x}=0$. Then the third side touches the hyperbola
a) $4 m_{1} m_{2} x y=c^{2}\left(m_{1}+m_{2}\right)^{2}$
b) $m_{1} m_{2} x y=c^{2}\left(m_{1}+m_{2}\right)$
c) $2 \mathrm{~m}_{1} \mathrm{~m}_{2} x y=\mathrm{c}^{2}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)^{2}$
d) $4 m_{1} m_{2} x y=c^{2}\left(m_{1}-m_{2}\right)^{2}$

Key. A
Sol. $\quad m(A C)=\frac{-1}{t_{1} t_{3}}=-m_{1}, m(B C)=-m_{2}=\frac{-1}{t_{2} t_{3}}, m_{1} m_{2}=\frac{1}{t_{3}^{2} \cdot t_{1} t_{2}}$

$$
\mathrm{m}_{1}+\mathrm{m}_{2}=\frac{1}{\mathrm{t}_{3}}\left(\frac{\mathrm{t}_{2}+\mathrm{t}_{1}}{\mathrm{t}_{1} \mathrm{t}_{2}}\right) \text { Compare chord } \mathrm{Ab}=\mathrm{x}+\mathrm{yt}_{1} \mathrm{t}_{2}=\mathrm{c}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) \text { with } \frac{\mathrm{x}}{\mathrm{t}}+\mathrm{y}+=2 \mathrm{k}
$$

58. Let a hyperbola passes through the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$. The transverse and conjugate axes of this hyperbola coincide with the major and minor axes of the given ellipse, also the product of eccentricities of given ellipse and hyperbola is 1 , then
a) The equation of hyperbola is $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
b) The equation of hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$
c) Focus of hyperbola is $(5,0)$
d) vertex of hyperbola is $(5 \sqrt{3}, 0)$

Key. C
Sol. Conceptual
59. Consider a branch of the hyperbola $x^{2}-2 y^{2}-2 \sqrt{2 x}-4 \sqrt{2} y-6=0$ with vertex at the point A. Let B be one of the end points of its latus rectum. If C is the focus of the hyperbola nearest to the point A, Then area of triangle $A B C$ is
a) $\sqrt{\frac{3}{2}}+1$
b) $1-\sqrt{\frac{2}{3}}$
c) $1+\sqrt{\frac{2}{3}}$
d) $\sqrt{\frac{3}{2}}-1$

Key. D
Sol. Area $=\frac{1}{2} a(e-1) \times \frac{b^{2}}{a}=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}}=\sqrt{\frac{3}{2}}-1$
60. If the equation to the hyperbola is $3 x^{2}-5 x y-2 y^{2}+5 x+11 y-8=0$ then equation to the conjugate hyperbola is
a) $3 x^{2}-5 x y-2 y^{2}+5 x+11 y-16=0$
b) $3 x^{2}-5 x y-2 y^{2}+5 x+11 y-12=0$
c) $3 x^{2}-5 x y-2 y^{2}+5 x+11 y-4=0$
d) $3 x^{2}-5 x y-2 y^{2}+5 x+11 y-20=0$

Key. A
Sol. $3 x^{2}-5 x y-2 y^{2}+5 x+11 y+c=0$ be the equation to the pair of asymptotes then $\mathrm{c}=-12$. And hence equation to the conjugate hyperbola is $3 x^{2}-5 x y-2 y^{2}+5 x+11 y-16=0$
61. Locus of the mid points of the chords of the hyperbola $x^{2}-y^{2}=a^{2}$ that touch the parabola $y^{2}=4 a x$ is
(A) $x^{2}(x-a)=y^{3}$
(B) $y^{2}(x-a)=x^{3}$
(C) $x^{3}(x-a)=y^{2}$
(D) $y^{3}(x-a)=x^{2}$

Key. B
Sol. Let the mid point $=(h, k)$
\therefore equation of the chord $x h-y k=h^{2}-k^{2}$
$y k=x h+\left(k^{2}-h^{2}\right)$
$y=\frac{x h}{k}+\frac{\left(k^{2}-h^{2}\right)}{k}$
$\frac{k^{2}-h^{2}}{k}=\frac{a k}{h}$
$\Rightarrow k^{2} h-h^{3}=a k^{2} \quad \Rightarrow k^{2}(h-a)=h^{3} \quad \therefore x^{3}=y^{2}(x-a)$
62. If e is the eccentricity of of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and θ is the angle between the asymptotes. The $\cos \theta / 2$ is equal to
(A) \sqrt{e}
(B) $\frac{e}{1+e}$
(C) $\frac{1}{\sqrt{e}}$
(D) $\frac{1}{e}$

Key. D
Sol. $\tan \frac{\theta}{2}=\frac{b}{a}$
$\cos \frac{\theta}{2}=\frac{a}{\sqrt{a^{2}+b^{2}}}=\frac{1}{\sqrt{1+\frac{b^{2}}{a^{2}}}}=\frac{1}{e}$.
63. Locus of the midpoints of the chords of the hyperbola $x^{2}-y^{2}=a^{2}$ that touch the parabola $y^{2}=4 a x$ is
A) $x^{2}(x-a)=y^{3}$
B) $y^{2}(x-a)=x^{3}$
C) $x^{3}(x-a) y^{2}$
D) $y^{3}(x-a) x^{2}$

Key. B

Sol. let the mid point (h, k) equation of the chord is $x h-y k=h^{2}-k^{2}$

$$
\mathrm{y}=\frac{\mathrm{xh}}{\mathrm{k}}+\frac{\left(\mathrm{k}^{2}-\mathrm{h}^{2}\right)}{\mathrm{k}} ; \frac{\left(\mathrm{k}^{2}-\mathrm{h}^{2}\right)}{\mathrm{k}}=\frac{\mathrm{ak}}{\mathrm{~h}} \Rightarrow \mathrm{k}^{2}(\mathrm{~h}-\mathrm{a})=\mathrm{h}^{3} \Rightarrow \mathrm{x}^{3}=\mathrm{y}^{3}(\mathrm{x}-\mathrm{a})
$$

64. Consider a branch of the hyperbola $x^{2}-2 y^{2}-2 \sqrt{2} x-4 \sqrt{2} y-6=0$ with vertex at the point A. Let B be one of the end points of its latus rectum. If C is the focus of the hyperbola nearest to the point A , then the area of the triangle ABC is
(A) $1-\sqrt{\frac{2}{3}}$
(B) $\sqrt{\frac{3}{2}}-1$
(C) $1+\sqrt{\frac{2}{3}}$
(D) $\sqrt{\frac{3}{2}}+1$

Key. B
Sol. $\quad x^{2}-2 \sqrt{2} x-2\left(y^{2}+2 \sqrt{2} y\right)=6$
$\Rightarrow(\mathrm{x}-\sqrt{2})^{2}-2(\mathrm{y}+\sqrt{2})^{2}-2+4=6$
$\Rightarrow(\mathrm{x}-\sqrt{2})^{2}-2(\mathrm{y}+\sqrt{2})^{2}=4$
$\Rightarrow \frac{(x-\sqrt{2})^{2}}{4}-\frac{(y+\sqrt{2})^{2}}{2}=1$
$\mathrm{b}^{2}=\mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right)$
$\Rightarrow 2=4\left(\mathrm{e}^{2}-1\right)$
$\Rightarrow \mathrm{e}^{2}-1=1 / 2$
$e=\sqrt{3} / 2$
area $=\frac{1}{2}(\mathrm{ae}-\mathrm{a}) \times \mathrm{b}^{2} / \mathrm{a}$
$=(e-1)=\left(\sqrt{\frac{3}{2}}-1\right)$
65. The equations of the transverse and conjugate axes of a hyperbola respectively are $x+2 y-3=0$ and $2 x-y+4=0$ and their respective lengths are $\sqrt{2}$ and $\frac{2}{\sqrt{3}}$. The equation of the hyperbola is
(A) $\frac{2}{5}(x+2 y-3)^{2}-\frac{3}{5}(2 x-y+4)^{2}=1$
(B) $\frac{2}{5}(2 x-y+4)^{2}-\frac{3}{5}(x+2 y-3)^{2}=1$
(C) $2(2 x-y+4)^{2}-3(x+2 y-3)^{2}=1$
(D) $2(x+2 y-3)^{2}-3(2 x-y+4)^{2}=1$

Key. B
Sol. The equation of the hyperbola is
$\frac{\left(\frac{|2 x-y+4|}{\sqrt{5}}\right)^{2}}{\left(\frac{\sqrt{2}}{2}\right)^{2}}-\frac{\left(\frac{|x+2 y-3|}{\sqrt{5}}\right)^{2}}{\left(\frac{2}{\sqrt{3}} \cdot \frac{1}{2}\right)^{2}}=1$
66. If $P\left(\theta_{1}\right)$ and $Q\left(\theta_{2}\right)$ are the extremities of any focal chord of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then $\cos ^{2} \frac{\theta_{1}+\theta_{2}}{2}=\lambda$ $\cos ^{2} \frac{\theta_{1}-\theta_{2}}{2}$, where λ is equal to
(A) $\frac{a^{2}+b^{2}}{a^{2}}$
(B) $\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{~b}^{2}}$
(C) $\frac{a^{2}+b^{2}}{a b}$
(D) $\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{2 \mathrm{ab}}$

Key. A
Sol. Equation of any chord joining the points $\mathrm{P}\left(\theta_{1}\right)$ and $\mathrm{Q}\left(\theta_{2}\right)$ is,
$\frac{x}{a} \cos \left(\frac{\theta_{1}-\theta_{2}}{2}\right)-\frac{y}{b}$
$\sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right)=\cos \left(\frac{\theta_{1}+\theta_{2}}{2}\right)$. If it passes through (ae, 0), then
$\Rightarrow \mathrm{e}^{2} \cos ^{2}\left(\frac{\theta_{1}-\theta_{2}}{2}\right)=\cos ^{2}\left(\frac{\theta_{1}+\theta_{2}}{2}\right)$
$\Rightarrow \lambda=e^{2}=1+\frac{b^{2}}{a^{2}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}^{2}}$
67. If the normal at the points $P_{i}\left(x_{i}, y_{i}\right), i=1$ to 4 on the hyperbola $x y=c^{2}$ are concurrent at the point $Q(h, k)$, then $\frac{\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\left(y_{1}+y_{2}+y_{3}+y_{4}\right)}{x_{1} x_{2} x_{3} x_{4}}$ is equal to
(A) $\frac{\mathrm{hk}}{\mathrm{c}^{4}}$
(B) $\frac{\mathrm{h}^{2} \mathrm{k}^{2}}{\mathrm{c}^{6}}$
(C) $\frac{\sqrt{\mid \mathrm{hk\mid}}}{\mathrm{c}^{3}}$
(D) $-\frac{\mathrm{hk}}{\mathrm{c}^{4}}$

Key. D
Sol. Equation of normal at any point $\mathrm{P}\left(\mathrm{ct}, \frac{\mathrm{c}}{\mathrm{t}}\right.$) on xy
$=c^{2}$, is $x^{3}-y t-\mathrm{ct}^{4}+c=0$
If it passes through $\mathrm{Q}(\mathrm{h}, \mathrm{k})$, then
$\mathrm{ct}^{4}-\mathrm{ht}^{3}+\mathrm{kt}-\mathrm{c}=0$
If it's roots are t_{1}, t_{2}, t_{3} and t_{4}, then
$\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}+\mathrm{t}_{4}=\mathrm{h} / \mathrm{c}$
$\Rightarrow \mathrm{ct}_{1}+\mathrm{ct}_{2}+\mathrm{ct}_{3}+\mathrm{ct}_{4}=\mathrm{h} \Rightarrow \Sigma \mathrm{x}_{\mathrm{i}}=\mathrm{h}, \Sigma \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}=-\frac{\mathrm{k}}{\mathrm{c}}, \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{4}=-1$
$\Rightarrow\left(\mathrm{ct}_{1}\right)\left(\mathrm{ct}_{2}\right)\left(\mathrm{ct}_{3}\right)\left(\mathrm{ct}_{4}\right)=-\mathrm{c}^{4} \Rightarrow \Sigma \frac{\mathrm{c}}{\mathrm{t}_{\mathrm{i}}}=\mathrm{k} \Rightarrow \Sigma \mathrm{y}_{\mathrm{i}}=\mathrm{k}$ and $\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \mathrm{x}_{4}$
$=-c^{4} \Rightarrow \frac{\sum x_{i} \sum y_{i}}{\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \mathrm{x}_{4}}=-\frac{\mathrm{hk}}{\mathrm{c}^{4}}$
68. A tangent to the hyperbola $y=\frac{x+9}{x+5}$ passing through the origin is
(A) $x+25 y=0$
(B) $5 \mathrm{x}+\mathrm{y}=0$
(C) $5 \mathrm{x}-\mathrm{y}=0$
(D) $x-25 y=0$

Key. A
Sol. $y=\frac{x+9}{x+5}=1+\frac{4}{x+5}$
$\frac{d y}{d x}$ at $\left(x_{1}, y_{1}\right)=\frac{-4}{\left(x_{1}+5\right)^{2}}$

Equation of tangent
$y-y_{1}=\frac{-4}{\left(x_{1}+5\right)^{2}}\left(x-x_{1}\right)$
$y-1-\frac{4}{x_{1}+5}=\frac{-4}{\left(x_{1}+5\right)^{2}} \cdot\left(x-x_{1}\right)$
Since it passes through $(0,0)$
$\left(x_{1}+5\right)^{2}+4\left(x_{1}+5\right)+4 x_{1}=0$
$x_{1}=-15$ or $x_{1}=-3$. So equation are
$x+25 y=0$ or, $x+y=0$.
69. The circle $x^{2}+y^{2}-8 x=0$ and hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ intersect at the points A and B. Equation of a common tangent with positive slope to the circle as well as to the hyperbola is
(A) $2 x-\sqrt{5} y-20=0$
(B) $2 x-\sqrt{5} y+4=0$
(C) $3 x-4 y+8=0$
(D) $4 x-3 y+4=0$

Key. B
Sol. Equation of tangent at point $\mathrm{P}(\theta)$

$$
\begin{equation*}
\frac{x \sec \theta}{3}-\frac{y \tan \theta}{2}-1=0 \tag{i}
\end{equation*}
$$

since eq. (i) will be a tangent to the circle

$$
\therefore \frac{\frac{4 \sec \theta}{3}-1}{\sqrt{\frac{\sec ^{2} \theta}{9}+\frac{\tan ^{2} \theta}{4}}}=4
$$

by solving it we will get
$2 x-\sqrt{5} y+4=0$

70. There is a point P on the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ such that its distance to the right directrix is the average of its distance to the two foci. Let the x-coordinate of P be $\frac{m}{n}$ with m and n being integers, $(\mathrm{n}>0)$ having no common factor except 1 . Then $n-m$ equals
(A) 59
(B) 69
(C) -59
(D) -69

Key. B
Sol. It turns out that P has to be on the left branch. x -coordinate
is found to be $-64 / 5$
71. The reflection of the hyperbola $x y=1$ in the line $y=2 x$ is the curve $12 x^{2}+r x y+s y^{2}+t=0$ then the value of ' r ' is
a) -7
b) 25
c) -175
d) 90

Key. A
Sol. The reflection of (α, β) in the line $y=2 x$ is
$\left(\alpha_{1}, \beta_{1}\right)=\left(\frac{4 \beta-3 \alpha}{5}, \frac{4 \alpha+3 \beta}{5}\right)=\alpha_{1} \beta_{1}=1$
$\Rightarrow 12 \alpha^{2}-7 \alpha \beta-12 \beta^{2}+25=0$
72. Chords of the parabola $y^{2}=4 x$ touch the hyperbola $x^{2}-y^{2}=1$. The locus of the point of intersection of the tangents drawn to the parabola at the extremities of such chords is
a) a circle
b) a parabola
c) an ellipse
d) a rectangular hyperbola

Key. C
Sol. The chord of contact $y y_{o}=2\left(x+x_{o}\right)$ of the point $P\left(x_{o}, y_{o}\right)$ w.r.t the parabola is tangent to the hyperbola $x^{2}-y^{2}=1$ iff $2 x_{0}^{2}+y_{0}^{2}=4$. Locus of P is the ellipse $2 x^{2}+y^{2}=4$
73. A chord of the hyperbola $x^{2}-2 y^{2}=1$ is bisected at the point $(-1,1)$. Then the area of the triangle formed by the chord and the coordinate axes is
a) 1
b) 2
c) $\frac{1}{2}$
d) $1 / 4$

Key. D
Sol. Equation of the chord as $\mathrm{S}_{1}=\mathrm{S}_{11}=$ Req Area $\frac{1}{4}$
74. A pair of tangents with inclinations α, β are drawn from an external point P to the parabola $y^{2}=16 x$. If the point P varies in such a way that $\tan ^{2} \alpha+\tan ^{2} \beta=4$ then the locus of P is a conic whose eccentricity is
A) $\frac{\sqrt{5}}{2}$
B) $\sqrt{5}$
C) 1
D) $\frac{\sqrt{3}}{2}$

Key. B
Sol. Let $m_{1}=\tan \alpha, m_{2}=\tan \beta$, Let $P=(h, k)$
m_{1}, m_{2} are the roots of $K=m h+\frac{4}{m} \Rightarrow h m^{2}-K m+4=0$
$m_{1}+m_{2}=\frac{K}{h} ; \quad m_{1} m_{2}=\frac{4}{h}$
$m_{1}^{2}+m_{2}^{2}=\frac{K^{2}}{h^{2}}-\frac{8}{h}=4$
Locus of P is $y^{2}-8 x=4 x^{2} \Rightarrow y^{2}=4(x+1)^{2}-4 \Rightarrow \frac{(x+1)^{2}}{1}-\frac{y^{2}}{4}=1$
75. From a point P on the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{4}=1$ straight lines are drawn parallel to the asymptotes of the hyperbola. Then the area of parallelogram formed by the asymptotes and the two lines through P is
A) dependent on coordinates of P
B) 4
C) 6
D) $8 \sqrt{2}$

Key. B
Sol. Area of parallelogram is $\frac{a b}{2}=\frac{4 \times 2}{2}=4$
76. The asymptotes of a hyperbola are $3 x-4 y+2=0$ and $5 x+12 y-4=0$. If the hyperbola passes through the point $(1,2)$ then slope of transverse axis of the hyperbola is
A) 6
B) $-7 / 2$
C) -8
D) $1 / 8$

Key. C
Sol. Axes of hyperbola are bisectors of angles between asymptotes.
77. Locus of the midpoints of the chords of the hyperbola $x^{2}-y^{2}=a^{2}$ that touch the parabola $y^{2}=4 a x$ is
A) $x^{2}(x-a)=y^{3}$
B) $y^{2}(x-a)=x^{3}$
C) $x^{3}(x-a) y^{2}$
D) $y^{3}(x-a) x^{2}$

Key. B
Sol. let the mid point (h, k) equation of the chord is $x h-y k=h^{2}-k^{2}$
$y=\frac{x h}{k}+\frac{\left(k^{2}-h^{2}\right)}{k} ; \frac{\left(k^{2}-h^{2}\right)}{k}=\frac{a k}{h} \Rightarrow k^{2}(h-a)=h^{3} \Rightarrow x^{3}=y^{3}(x-a)$
78. Two distinct tangents can be drawn from the point $(\alpha, 2)$ to different branches of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$, if ' α ' belongs to
A) $\left(\frac{-3}{2}, \frac{5}{2}\right)$
B) $\left(\frac{-5}{2}, \frac{5}{2}\right)$
C) $\left(\frac{-7}{2}, \frac{7}{2}\right)$
D) $\left(\frac{-3}{2}, \frac{3}{2}\right)$

Key. D
Sol. The point on the line $y=2$ that should lie between the asymptotes where the curve do not exist.Equation of asymptotes are $4 x= \pm 3 y$. The point of intersection of $y=2$ with asymptotes are $x= \pm \frac{3}{2}$ $\therefore \frac{-3}{2}<\alpha<\frac{3}{2}$
79. A hyperbola passing through origin has $3 x-4 y-1=0$ and $4 x-3 y-6=0$ as its asymptotes. Then the equation of its transverse axis is
A) $x-y-5=0$
B) $\quad x+y+1=0$
C) $\quad x+y-5=0$
D) $\quad x-y-1=0$

Key. A
Sol. Asymptotes are equally inclined to the axes of hyperbola. Find the bisector of the asymptotes which bisects the angle containing the origin.
80. A hyperbola has centre ' C ' and one focus at $P(6,8)$. If its two directrices are $3 x+4 y+10=0$ and $3 x+4 y-10=0$ then $C P=$
A) 14
B) 8
C) 10
D) 6

Key. A
Sol. $\quad \frac{2 a}{e}=4 \Rightarrow a=2 e, P$ is nearest to $3 x+4 y-10=0$
$\Rightarrow a e-\frac{a}{e}=8 \Rightarrow e=\sqrt{5}, a=2 \sqrt{5}$
$C P=a e=10$
81. If a variable tangent to the circle $x^{2}+y^{2}=1$ intersects the ellipse $x^{2}+2 y^{2}=4$ at points P and Q , then the locus of the point of intersection of tangents to the ellipse at P and Q is a conic whose
a) eccentricity is $\frac{\sqrt{3}}{2}$
b) eccentricity is $\frac{\sqrt{5}}{2}$
c) latus -rectum is of length 2 units
d) foci are $(\pm 2 \sqrt{5}, 0)$

Key: A,C
Hint: A tangent to the circle $x^{2}+y^{2}=1$ is $x \cos \theta+y \sin \theta=1 . R\left(x_{o}, y_{o}\right)$ is the point of intersection of the tangents to the ellipse at P and $\mathrm{Q} \Leftrightarrow x \cos \theta+y \sin \theta=1$ and $x_{o} x+2 y_{o} y=4$ represent the same line $\Leftrightarrow x_{o}=4 \cos$ Aand $y_{o}=2 \sin \theta$ $\Leftrightarrow \frac{x_{0}^{2}}{16}+\frac{y_{0}^{2}}{4}=1$. Hence, locus of P is the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$
82. A variable straight line with slope $m(m \neq 0)$ intersects the hyperbola $x y=1$ at two distinct points . Then the locus of the point which divides the line segment between these two points in the ratio 1:2 is
(A) An ellipse
(B) A hyperbola
(C) A circle
(D) A parabola

Key: B
Hint: Let the points of intersection be $\left(t_{1}, \frac{1}{t_{1}}\right)\left(t_{2}, \frac{1}{t_{2}}\right)$.given $m=-\frac{1}{t_{1} t_{2}}$ or $t_{1} t_{2}=-\frac{1}{m}$ also by section formula,
solving for t_{1}, t_{2} and eliminating them gives $2 m^{2} x^{2}+5 m x y+2 y^{2}=m$ which is always a hyperbola as

$$
\frac{25 m^{2}}{4}-4 m^{2}=\frac{9 m^{2}}{4}>0, \forall m \neq 0
$$

83. A tangent to the parabola $\mathrm{x}^{2}=4$ ay meets the hyperbola $x^{2}-y^{2}=a^{2}$ at two points P and Q , then midpoint of P and Q lies on the curve
a) $y^{3}=x(y-a)$
b) $y^{3}=x^{2}(y-a)$
c) $y^{2}=x^{2}(y-a)$
d) $y^{2}=x^{3}(a-y)$

Key: B

Hint: Equation of tangent to parabola $y=m x-a m^{2} \ldots \ldots .(1)$ equation of chord of hyperbola whose midpoint is (h, k) is $h x-k y=h^{2}-k^{2} \ldots \ldots$. (2) form (1) and (2)
$\frac{m}{h}=\frac{1}{k}=\frac{a m^{2}}{h^{2}-k^{2}} \Rightarrow k^{3}=h^{2}(k-a)$
84. The equation of a tangent to the hyperbola $3 x^{2}-y^{2}=3$, parallel to the line $y=2 x+4$ is
(A) $y=2 x+3$
(B) $y=2 x+1$
(C) $y=2 x+4$
(D) $y=2 x+2$

Key. B
Sol. $\quad 3 x^{2}-y^{2}=3, \frac{x^{2}}{1}-\frac{y^{2}}{3}=1$
Equation of tangent in terms of slope.
$y=m x \pm \sqrt{\left(m^{2}-3\right)}$
Here, $\quad \mathrm{m}=2$,
then $\quad \mathrm{y}=2 \mathrm{x} \pm 1$
85. A circle cuts the X-axis and Y-axis such that intercept on X-axis is a constant a and intercept on Y-axis is a constant b. Then eccentricity of locus of centre of circle is

1. 1
2. $\frac{1}{2}$
3. $\sqrt{2}$
4. $\frac{1}{\sqrt{2}}$

Key. 3
Sol. Locus of centre of circle is a rectangular hyperbola hence its eccentricity is $\sqrt{2}$
86. If a circle cuts the rectangular hyperbola $\mathrm{xy}=1$ in 4 points $\left(x_{r}, y_{r}\right)$ where $\mathrm{r}=1,2,3,4$. Then ortho centre of triangle with vertices at $\left(x_{r}, y_{r}\right)$ where $r=1,2,3$ is

1. $\left(x_{4}, y_{4}\right)$
2. $\left(-x_{4},-y_{4}\right)$
3. $\left(-x_{4},+y_{4}\right)$
4. $\left(+x_{4},-y_{4}\right)$

Key. 2
Sol. $\quad x y=1$ cuts the circle in 4-points then $x_{1} x_{2} x_{3} x_{4}=1, y_{1} y_{2} y_{3} y_{4}=1$
Ortho centre of triangle with vertices $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\left(x_{3}, y_{3}\right)$
le $\left(\frac{-1}{x_{1} x_{2} x_{3}},-\left(y_{1} y_{2} y_{3}\right)^{-1}\right)$
$-\left(-x_{4},-y_{4}\right)$
87. The locus of a point, from where tangents to the rectangular hyperbola $x^{2}-y^{2}=a^{2}$ contain an angle of 45°, is
(A) $\left(x^{2}+y^{2}\right)+a^{2}\left(x^{2}-y^{2}\right)=4 a^{2}$
(B) $2\left(x^{2}+y^{2}\right)+4 a^{2}\left(x^{2}-y^{2}\right)=4 a^{2}$
(C) $\left(x^{2}+y^{2}\right)^{2}+4 a^{2}\left(x^{2}-y^{2}\right)=4 a^{4}$
(D) $\left(x^{2}+y^{2}\right)^{2}+a^{2}\left(x^{2}-y^{2}\right)=a^{4}$

Key. C
Sol. Equation of tangent to the hyperbola : $y=m x \pm \sqrt{m^{2} a^{2}-a^{2}}$

$$
\begin{aligned}
& \Rightarrow \text { Let } P\left(x_{1}, y_{1}\right) \text { be locus } \\
& \Rightarrow y-m x= \pm \sqrt{m^{2} a^{2}-a^{2}}
\end{aligned}
$$

S.B.S
$\Rightarrow m^{2}\left(x_{1}^{2}-a^{2}\right)-2 y_{1} x_{1} m+y_{1}^{2}+a^{2}=0$
$m_{1}+m_{2}=\frac{2 x_{1} y_{1}}{x_{1}^{2}-a^{2}} ; m_{1} m_{2}=\frac{y_{1}^{2}+a^{2}}{x_{1}^{2}-a^{2}}$
$\tan 45^{\circ}=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\Rightarrow\left(1+m_{1} m_{2}\right)^{2}=\left(m_{1}-m_{2}\right)^{2}=\left(m_{1}+m_{2}\right)^{2}-4 m_{1} m_{2}$
$\Rightarrow\left(1+\frac{y_{1}+a^{2}}{x_{1}^{2}-a^{2}}\right)=\left(\frac{2 x_{1} y_{1}}{x_{1}^{2}-a^{2}}\right)-4\left(\frac{y_{1}^{2}+a^{2}}{x_{1}^{2}-a^{2}}\right)$
88. If PQ is a double ordinate of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that OPQ is an equilateral triangle, O being the centre of the hyperbola. Then the eccentricity e of the hyperbola, satisfies
(a) $1<e<2 / \sqrt{3}$
(b) $e=2 / \sqrt{3}$
(c) $e=\sqrt{3} / 2$
(d) $e>2 / \sqrt{3}$

Key. D
Sol. If OPQ is equilateral triangle then OP makes 30° with x-axis.

$$
\begin{aligned}
& \left(\frac{\sqrt{3} r}{2}, \frac{r}{2}\right) \text { ties on hyperbola } \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
& \Rightarrow r^{2}=\frac{16 a^{2} b^{2}}{12 b^{2}-4 a^{2}}>0 \\
& \Rightarrow 12 b^{2}-4 a^{2}>0 \Rightarrow \frac{b^{2}}{a^{2}}>\frac{4}{12} \\
& e^{2}-1>\frac{1}{3} \\
& e^{2}>\frac{4}{3} \Rightarrow e>\frac{2}{\sqrt{3}}
\end{aligned}
$$

89. Consider a hyperbola $x y=4$ and a line $2 x+y=4$. Let the given line intersect the x-axis at R. If a line through ' R ' intersects the hyperbola at S and T . The minimum value of $R S \times R T$ is
A) 24
B) 16
C) 8
D) 4

Key.
Sol. $\mathrm{s}, \mathrm{T}=(2+r \cos \theta, 0+r \sin \theta)$
$r^{2} \cos \theta \sin \theta+2 \sin \theta-4=0$
RS.RT $=\frac{4}{\sin \theta \cos \theta}=\frac{8}{\sin 2 \theta} \geq 8$
90. The normal at ' P ' on a hyperbola of eccentricity ' e ' intersects its transverse and conjugate axes at L and M respectively. If the locus of the mid point of LM is a hyperbola then its eccentricity is
A) $\frac{e+1}{e-1}$
B) $\frac{e}{\sqrt{e^{2}-1}}$
C) e
D) $\frac{2 e}{\sqrt{e^{2}-1}}$

Key. B
Sol. Normal : $a x \cos \theta+b y \cot \theta=a^{2}+b^{2}$
$L=\left(\frac{a^{2}+b^{2}}{a} \sec \theta, 0\right), M=\left(0, \frac{a^{2}+b^{2}}{b} \tan \theta\right)$
Locus is $\frac{x^{2}}{\frac{a^{2} e^{2}}{4}}-\frac{y^{2}}{\frac{a^{2} e^{2}}{4 b^{2}}}=1$
$e_{1}=\frac{e}{\sqrt{e^{2}-1}}$
91. Consider a branch of the hyperbola $x^{2}-2 y^{2}-2 \sqrt{2 x}-4 \sqrt{2} y-6=0$ with vertex at the point A. Let B be one of the end points of its latus rectum. If C is the focus of the hyperbola nearest to the point A, Then area of triangle $A B C$ is
a) $\sqrt{\frac{3}{2}}+1$
b) $1-\sqrt{\frac{2}{3}}$
c) $1+\sqrt{\frac{2}{3}}$
d) $\sqrt{\frac{3}{2}}-1$

Key. D
Sol. Area $=\frac{1}{2} a(e-1) \times \frac{b^{2}}{a}=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}}=\sqrt{\frac{3}{2}}-1$
92. If the equation to the hyperbola is $3 x^{2}-5 x y-2 y^{2}+5 x+11 y-8=0$ then equation to the conjugate hyperbola is
a) $3 x^{2}-5 x y-2 y^{2}+5 x+11 y-16=0$
b) $3 x^{2}-5 x y-2 y^{2}+5 x+11 y-12=0$
c) $3 x^{2}-5 x y-2 y^{2}+5 x+11 y-4=0$
d) $3 x^{2}-5 x y-2 y^{2}+5 x+11 y-20=0$

Key. A
Sol. $3 x^{2}-5 x y-2 y^{2}+5 x+11 y+c=0$ be the equation to the pair of asymptotes then $\mathrm{c}=-12$. And hence equation to the conjugate hyperbola is $3 x^{2}-5 x y-2 y^{2}+5 x+11 y-16=0$
93. A tangent to the circle $x^{2}+y^{2}=4$ intersects the hyperbola $x^{2}-2 y^{2}=2$ at P and Q. If locus of mid-point of $P Q$ is $\left(x^{2}-2 y^{2}\right)^{2}=\lambda\left(x^{2}+4 y^{2}\right)$; then λ equals
(A) 2
(B) 4
(C) 6
(D) 8

Key.
Sol. Equation of chord of hyperbola $\frac{x^{2}}{2}-\frac{y^{2}}{1}=1$, whose mid-point is (h, k) is
$\frac{h x}{2}-k y=\frac{h^{2}}{2}-\frac{k^{2}}{1}$
It is tangent to the circle $x^{2}+y^{2}=4$, then $\left|\frac{\frac{h^{2}}{2}-k^{2}}{\sqrt{\frac{h^{2}}{4}+k^{2}}}\right|=2$

$$
\Rightarrow\left(\frac{\mathrm{h}^{2}}{2}-\mathrm{k}^{2}\right)^{2}=4\left(\frac{\mathrm{~h}^{2}}{4}+\mathrm{k}^{2}\right) \Rightarrow\left(\mathrm{x}^{2}-2 \mathrm{y}^{2}\right)^{2}=4\left(\mathrm{x}^{2}+4 \mathrm{y}^{2}\right) \Rightarrow \lambda=4 .
$$

94. Length of latusrectum of the conic satisfying the differential equation $x d y+y d x=0$ and passing through the point $(2,8)$ is
A) $4 \sqrt{2}$
B) 8
C) $8 \sqrt{2}$
D) 16

Key. C
Sol. $\frac{d y}{y}+\frac{d x}{x}=0 \Rightarrow x y=16$
$\therefore y=-x$ is conjugate axis centre is $(0,0)$.
Vertices are $(4,4),(-4,-4) . e=\sqrt{2}$
Length of transverse axis $=8 \sqrt{2}=2 a$
$\mathrm{L} . \mathrm{R}=2 a\left(e^{2}-1\right)$
95. From a point P on the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{4}=1$ straight lines are drawn parallel to the asymptotes of the hyperbola. Then the area of parallelogram formed by the asymptotes and the two lines through P is
A) dependent on coordinates of P
B) 4
C) 6
D) $8 \sqrt{2}$

Key. B
Sol. Area of parallelogram is $\frac{a b}{2}=\frac{4 \times 2}{2}=4$
96. The eccentricity of the conic defined by $\left|\sqrt{(x-1)^{2}+(y-2)^{2}}-\sqrt{(x-5)^{2}+(y-5)^{2}}\right|=3$
A) $5 / 2$
B) $5 / 3$
C) $\sqrt{2}$
D) $\sqrt{11} / 3$

Key. B
Sol. Hyperbola for which $(1,2)$ and $(5,5)$ are foci and length of transverse axis 3.

$$
2 a e=5 \text { and } 2 a=3 \quad \therefore e=5 / 3
$$

97. The asymptotes of a hyperbola are $3 x-4 y+2=0$ and $5 x+12 y-4=0$. If the hyperbola passes through the point $(1,2)$ then slope of transverse axis of the hyperbola is
A) 6
B) $-7 / 2$
C) -8
D) $1 / 8$

Key. C
Sol. Axes of hyperbola are bisectors of angles between asymptotes.
98. A triangle is inscribed in the curve $x y=c^{2}$ and two of its sides are parallel to $y+m_{1} x=0$ and $y+m_{2} x=0$. Then the third side touches the hyperbola
a) $4 m_{1} m_{2} x y=c^{2}\left(m_{1}+m_{2}\right)^{2}$
b) $m_{1} m_{2} x y=c^{2}\left(m_{1}+m_{2}\right)$
c) $2 \mathrm{~m}_{1} \mathrm{~m}_{2} \mathrm{xy}=\mathrm{c}^{2}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)^{2}$
d) $4 m_{1} m_{2} x y=c^{2}\left(m_{1}-m_{2}\right)^{2}$

Key. A
Sol. $m(A C)=\frac{-1}{t_{1} t_{3}}=-m_{1}, m(B C)=-m_{2}=\frac{-1}{t_{2} t_{3}}, m_{1} m_{2}=\frac{1}{t_{3}^{2} \cdot t_{1} t_{2}}$

$$
\mathrm{m}_{1}+\mathrm{m}_{2}=\frac{1}{\mathrm{t}_{3}}\left(\frac{\mathrm{t}_{2}+\mathrm{t}_{1}}{\mathrm{t}_{1} \mathrm{t}_{2}}\right) \text { Compare chord } \mathrm{Ab}=\mathrm{x}+\mathrm{yt}_{1} \mathrm{t}_{2}=\mathrm{c}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) \text { with } \frac{\mathrm{x}}{\mathrm{t}}+\mathrm{y}+=2 \mathrm{k}
$$

99. Let a hyperbola passes through the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$. The transverse and conjugate axes of this hyperbola coincide with the major and minor axes of the given ellipse, also the product of eccentricities of given ellipse and hyperbola is 1 , then
a) The equation of hyperbola is $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
b) The equation of hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$
c) Focus of hyperbola is $(5,0)$
d) vertex of hyperbola is $(5 \sqrt{3}, 0)$

Key. C
Sol. Conceptual
100. The length of the transverse axis of the hyperbola $9 x^{2}-16 y^{2}-18 x-32 y-151=0$ is

1) 8
2) 4
3) 6
4) 2

Key. 1
Sol. Given hyperbola is $\frac{(x-1)^{2}}{16}-\frac{(y+1)^{2}}{9}=1$
Length of the transverse axis is $2 \mathrm{a}=8$.
101. The equation of a hyperbola, conjugate to the hyperbola $x^{2}+3 x y+2 y^{2}+2 x+3 y=0$ is

1) $x^{2}+3 x y+2 y^{2}+2 x+3 y+1=0$
2) $x^{2}+3 x y+2 y^{2}+2 x+3 y+2=0$
3) $x^{2}+3 x y+2 y^{2}+2 x+3 y+3=0$
4) $x^{2}+3 x y+2 y^{2}+2 x+3 y+4=0$

Key. 2
Sol. Let $H=x^{2}+3 x y+2 y^{2}+2 x+3 y=0$ and $\mathrm{C}=0$ is its conjugate. Then $\mathrm{C}+\mathrm{H}=2 \mathrm{~A}$, where $\mathrm{A}=0$ is the combined equation of asymptotes. Equation of asymptotes is $x^{2}+3 x y+2 y^{2}+2 x+3 y+\lambda=0$, where $\Delta=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0 \Rightarrow \lambda=1$
$\therefore C=2\left(x^{2}+3 x y+2 y^{2}+2 x+3 y+1\right)-\left(x^{2}+2 y^{2}+3 x y+2 x+3 y\right)$
\Rightarrow equation of conjugate hyperbola is $x^{2}+3 x y+2 y^{2}+2 x+3 y+2=0$
102. If AB is a double ordinate of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that $\Delta O A B$ is an equilateral triangle O being the origin, then the eccentricity of the hyperbola satisfies

1) $e>\sqrt{3}$
2) $1<e<\frac{1}{\sqrt{3}}$
3) $e=\frac{2}{\sqrt{3}}$
4) $e>\frac{2}{\sqrt{3}}$

Key. 4
Sol. Let the length of the double ordinate be 2ℓ
$\therefore \mathrm{AB}=2^{\ell}$ and $\mathrm{AM}=\mathrm{BM}=\ell$
Clearly ordinate of point A is ℓ.

The abscissa of the point A is given by
$\frac{x^{2}}{a^{2}}-\frac{l^{2}}{b^{2}}=1 \Rightarrow x=\frac{a \sqrt{b^{2}+l^{2}}}{b}$
$\therefore \mathrm{A}$ is $\left(\frac{a \sqrt{b^{2}+l^{2}}}{b}, l\right)$
Since $\triangle O A B$ is equilateral triangle, therefore
$\mathrm{OA}=\mathrm{AB}=\mathrm{OB}=2^{l}$
Also, $O M^{2}+A M^{2}=O A^{2} \therefore \frac{a\left(b^{2}+l^{2}\right)}{b}+l^{2}=4 l^{2}$
We get $l^{2}=\frac{a^{2} b^{2}}{3 b^{2}-a^{2}}$
Since $l^{2}>0 \therefore \frac{a^{2} b^{2}}{3 b^{2}-a^{2}}>0 \Rightarrow 3 b^{2}-a^{2}>0$

$$
\Rightarrow 3 a^{2}\left(e^{2}-1\right)-a^{2}>0 \Rightarrow e>\frac{2}{\sqrt{3}}
$$

103. If the line $5 x+12 y-9=0$ is a tangent to the hyperbola $x^{2}-9 y^{2}=9$, then its point of contact is
1) $(-5,4 / 3)$
2) $(5,-4 / 3)$
3) $(3,-1 / 2)$
4) $(5,4 / 3)$

Key. 2
Sol. Common Point
104. Any chord passing through the focus $(a e, 0)$ of the hyperbola $x^{2}-y^{2}=a^{2}$ is conjugate to the line

1) $e x-a=0$
2) $a e+x=0$
3) $a x+e=0$
4) $a x-e=0$

Key. 1
Sol. $\quad S_{1}=0$
105. Number of points from where perpendicular tangents to the curve $\frac{x^{2}}{16}-\frac{y^{2}}{25}=1$ can be drawn, is:

1) 1
2) 2
3) 0
4) 3

Key. 3
Sol. Director circle is set of points from where drawn tangents are perpendicular in this case $x^{2}+y^{2}=a^{2}-b^{2}$ (equation of director circle)i.e., $x^{2}+y^{2}=-9$ is not a real circle so there is no points from where tangents are perpendicular.
106. $x^{2}-y^{2}+5 x+8 y-4=0$ represents

1) Rectangular hyperbola
2) Ellipse
3) Hyperbola with centre at $(1,1)$
4) Pair of lines

Key. 1
Sol. $\quad \Delta \neq 0, x^{2}-a b>0, a+b=0$
107. Coordinates if foci of the hyperbola $x y=4$ are

1) $(2 \sqrt{2}, 2 \sqrt{2}),(-2 \sqrt{2},-2 \sqrt{2})$
2) $(-3 \sqrt{2},-3 \sqrt{2}),(3 \sqrt{2}, 3 \sqrt{2})$
3) $(2 \sqrt{2},-2 \sqrt{2}),(-2 \sqrt{2}, 2 \sqrt{2})$
4) (-2.2)
Key. 1
Sol. foci of $x y=c^{2}$ is $(\pm c \sqrt{2}, \pm c \sqrt{2})$
108. Which of the following is INCORRECT for the hyperbola $x^{2}-2 y^{2}-2 x+8 y-1=0$
1) Its eccentricity is $\sqrt{2}$
2) Length of the transverse axis is $2 \sqrt{3}$
3) Length of the conjugate axis is $2 \sqrt{6}$
4) Latus rectum $4 \sqrt{3}$

Key. 1
Sol. The equation of the hyperbola is $x^{2}-2 y^{2}-2 x+8 y-1=0$
Or $(x-1)^{2}-2(y-2)^{2}+6=0$
Or $\frac{(x-1)^{2}}{-6}+\frac{(y-2)^{2}}{3}=1 ; \quad \frac{(y-2)^{2}}{3}-\frac{(x-1)^{2}}{6}=1 \rightarrow 1$
Or $\frac{Y^{2}}{3}-\frac{X^{2}}{6}=1$, where $X=x-1$ and $Y=y-2 \rightarrow 2$
\therefore the centre $=(0,0)$ in the $X-Y$ coordinates.
\therefore the centre $=(1,2)$ in the $x-y$ coordinates .using $\rightarrow 2$
If the transverse axis be of length $2 a$, then $a=\sqrt{3}$, since in the equation (1) the transverse axis is parallel to the y - $a x i s$. If the conjugate axis is of length $2 b$, then $b=\sqrt{6}$

But $b^{2}=a^{2}\left(e^{2}-1\right)$
$6=3\left(e^{2}-1\right), \therefore e^{2}=3$ or $e=\sqrt{3}$
The length of the transverse axis $=2 \sqrt{3}$
The length of the conjugate axis $=2 \sqrt{6}$
Latus rectum $4 \sqrt{3}$
109. If the curve $x y=R^{2}-16$ represents a rectangular hyperbola whose branches lies only in the quadrant in which abscissa and ordinate are opposite in sign but not equal in magnitude, then

1) $|R|<4$
2) $|R| \geq 4$
3) $|R|=4$
4) $|R|=5$

Key. 1
Sol. Conceptual
110. Assertion: The pair of asymptotes of $\frac{x^{2}}{10}-\frac{y^{2}}{4}=1$ and the pair of asymptotes of $\frac{x^{2}}{10}-\frac{y^{2}}{4}=-1$ coincide.

Reason: A hyperbola and its conjugate hyperbola possess the same pair of asymptotes

1) Both A and R are true and R is the correct explanation of A
2) Both A and R are true but R is not correct explanation of A
3) A is true R is false
4) A is false R is true

Key. 1
Sol. Conceptual
111. If the line $a x+b y+c=0$ is a normal to the curve $x y=1$, then

1) $a>0, b>0$
2) a <0, b <0
3) $a<0, b>0$
4) $a=b=1$

Key. 3
Sol. Slope of the line $\frac{-a}{b}$ is equal to slope of the normal to the curve.
\therefore either $\mathrm{a}>0 \& \mathrm{~b}<0$ (or) $\mathrm{a}<0 \& \mathrm{~b}>0$.
112.

The equation of normal at $\left(a t, \frac{a}{t}\right)$ to the hyperbola $x y=a^{2}$ is

1) $x t^{3}-y t+a t^{4}-a=0$
2) $x t^{3}-y t-a t^{4}+a=0$
3) $x t^{3}+y t+a t^{4}-a=0$
4) $x t^{3}+y t-a t^{4}-a=0$

Key. 2
Sol. Equation of tangent is $S_{1}=0$ normal is \perp^{γ} to tangent and passing through
$\left(a t, \frac{a}{t}\right)_{\text {is }} x t^{3}-y t-a t^{4}+a=0$
113. The product of perpendiculars from any point $\mathrm{P}(\theta)$ on the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$ to its asymptotes is equal to:

1) $\frac{6}{5}$
2) $\frac{36}{13}$
3) Depending on θ
4) $\frac{5}{6}$

Key. 2
Sol. The product of perpendiculars from any point $\mathrm{P}(\theta)$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ to its asymptotes is equal to $\frac{a^{2} b^{2}}{a^{2}+b^{2}}$
114.

The foot of the perpendicular from the focus to an asymptote of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is

1) $(a e, b e)$
2) $(a / e, b / e)$
3) $(e / a, e / b)$
4) (be,ae)

Key. 2
Sol. Focus $\mathrm{S}=(\mathrm{ae}, 0)$ Equation of one asymptote is $\mathrm{bx}-\mathrm{ay}=0$
Let (h, k) be the foot of the perpendicular from s to $b x-a y=0$
Then $\frac{h-a e}{b}=\frac{k-0}{-a}=\frac{-a b e}{a^{2}+b^{2}} \Rightarrow \frac{h-a e}{b}=\frac{-a b e}{a^{2} e^{2}} \& \frac{k}{-a}=\frac{-a b e}{a^{2} e^{2}}$
On simplification, we get $h=a / e, k=b / e$

Foot of the perpendicular is $(a / e, b / e)$
115. The area of the triangle formed by the asymptotes and any tangent to the hyperbola $x^{2}-y^{2}=a^{2}$

1) $4 a^{2}$
2) $3 a^{2}$
3) $2 a^{2}$
4) a^{2}

Key. 4
Sol. Equation of any tangent to $x^{2}-y^{2}=a^{2}$
i.e. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}}=1$ is $\frac{x}{a} \sec \theta-\frac{y}{a} \tan \theta=1 \rightarrow(1)$
or $x \sec \theta-y \tan \theta=a$
equation of other two sides of the triangle are
$x-y=0 . .(2) x+y=0(3)$
The two asymptotes of the hyperbola $x^{2}-y^{2}=a^{2}$
Are $x-y=0$ and $x+y=0$)
Solving (1) (2) and (3) in pairs the coordinates of the vertices of the triangle are (0,0)
$\left(\frac{a}{\sec \theta+\tan \theta}, \frac{a}{\sec \theta+\tan \theta}\right)$
And $\left(\frac{a}{\sec \theta-\tan \theta}, \frac{-a}{\sec \theta-\tan \theta}\right)-$
Area of triangle $=\frac{1}{2}\left|\frac{a^{2}}{\sec ^{2} \theta-\tan ^{2} \theta}+\frac{a^{2}}{\sec ^{2} \theta-\tan ^{2} \theta}\right|$
$\frac{1}{2}\left(a^{2}+a^{2}\right) \quad \because \sec ^{2} \theta-\tan ^{2} \theta=1$
$=a^{2}$
116. The foot of the normal $3 x+4 y=7$ to the hyperbola $4 x^{2}-3 y^{2}=1$ is

1) $(1,1)$
2) $(1,-1)$
3) $(-1,1)$
4) $(-1,-1)$

Key. 1
Sol. Since the point $(1,1)$ lies on the normal and hyperbola it is the foot of the normal
117. Tangent at the point $(2 \sqrt{2}, 3)$ to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$ meet its asymptotes at A and B, then area of the
triangle $O A B, O$ being the origin is

1) 6 sq. units
2) 3 sq. units
3) 12 sq. units
4) 2 sq. units

Key. 1
Sol. Since area of the Δ formed by tangent at any point lying on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and its asymptotes is always constant and is equal to ab. Therefore, required area is $2 \times 3=6$ square units.
118. Eccentricity of hyperbola $\frac{x^{2}}{k}+\frac{y^{2}}{k}=1(k<0)$ is :

1) $\sqrt{1+k}$
2) $\sqrt{1-k}$
3) $\sqrt{1+\frac{1}{k^{2}}}$
4) $\sqrt{1-\frac{1}{k}}$

Key. 4
Sol. Given equation can be rewritten as $\frac{y^{2}}{k^{2}}-\frac{x^{2}}{(-k)}=1(-k>0)$
$e^{2}=1+\frac{(-k)}{k^{2}}=1-\frac{1}{k} \Rightarrow e=\sqrt{1-\frac{1}{k}}$
119. If the circle $x^{2}+y^{2}=a^{2}$ intersect the hyperbola $x y=c^{2}$ in four points $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right), S\left(x_{4}, y_{4}\right)$ then which of the following does not hold

1) $x_{1}+x_{2}+x_{3}+x_{4}=0$
2) $x_{1} x_{2} x_{3} x_{4}=y_{1} y_{2} y_{3} y_{4}=c^{4}$
3) $y_{1}+y_{2}+y_{3}+y_{4}=0$
4) $x_{1}+y_{2}+x_{3}+y_{4}=0$

Key. 4
Sol. $\quad x^{2}+\frac{c^{4}}{x^{2}}=a^{2} \Rightarrow \mathbf{x}^{4}-a^{2} \mathbf{x}^{2}+c^{4}=0,4^{\text {th }}$ option does not hold
120. If a normal to the hyperbola $\mathrm{x} \mathrm{y}=\mathrm{c}^{2}$ at $\left(c t_{1}, \frac{c}{t_{1}}\right)$ meets the curve again at $\left(c t_{2}, \frac{c}{t_{2}}\right)$, then:

1) $t_{1} t_{2}=-1$
2) $t_{2}=-t_{1}-\frac{2}{t_{1}}$
3) $t_{2}^{3} t_{1}=-1$
4) $t_{1}^{3} t_{2}=-1$

Key. 4
Sol. Equation of normal at $\left(c t_{1}, \frac{c}{t_{1}}\right)$ is
$t_{1}^{3} x-t_{1} y-c t_{1}^{4}+c=0$
It passes through $\left(c t_{2}, \frac{c}{t_{2}}\right)$
le., $t_{1}^{3} \cdot c t_{2}-t_{1} \cdot \frac{c}{t_{2}}-c t_{1}^{4}+c=0$
$\Rightarrow\left(t_{1}-t_{2}\right)\left(t_{1}^{3} t_{2}+1\right)=0$
$\Rightarrow t_{1}^{3} t_{2}=-1$
121. The equation of the chord joining two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the rectangular hyperbola $\mathrm{xy}=\mathrm{c}^{2}$ is

1) $\frac{x}{x_{1}+x_{2}}+\frac{y}{y_{1}+y_{2}}=1$
2) $\frac{x}{x_{1}-x_{2}}+\frac{y}{y_{1}-y_{2}}=1$
3) $\frac{y}{x_{1}+x_{2}}+\frac{x}{y_{1}+y_{2}}=1$
4) $\frac{x}{y_{1}-y_{2}}+\frac{y}{x_{1}-x_{2}}=1$

Key. 1
Sol. Mid point of the chord is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
The equation of the chord in terms of its mid-point is $s_{1}=s_{11}$
122. A rectangular hyperbola whose centre is C is cut by any circle of radius r in four points P, Q, R and S. Then $C P^{2}+C Q^{2}+C R^{2}+C S^{2}=$

1) r^{2}
2) $2 r^{2}$
3) $3 r^{2}$
4) $4 r^{2}$

Key. 4
Sol. $C P=C Q=C R=C S=r$
123. The product of focal distances of the point $(4,3)$ on the hyperbola $x^{2}-y^{2}=7$ is

1) 25
2) 12
3) 9
4) 16

Key. 1
Sol. $\quad e=\sqrt{2}, s p \cdot s^{\prime} p=\left(e x_{1}+a\right)\left(e x_{1}-a\right)=25$
124.

Let $y=4 x^{2} \& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{16}=1$ intersect iff

1) $|a| \leq \frac{1}{\sqrt{2}}$
2) $a>\frac{1}{\sqrt{2}}$
3) $a>-\frac{1}{\sqrt{2}}$
4) $a>\sqrt{2}$

Key.
Sol. $\quad y=4 x^{2} \& \frac{1}{4} y=x^{2}$
Using $\frac{1}{4 a^{2}} y-\frac{y^{2}}{16}=1$
$\Rightarrow 4 y-a^{2} y^{2}=16 a^{2}$
$\Rightarrow a^{2} y^{2}-4 y+16 a^{2}=0$
$\Rightarrow D \geq 0$ for intersection of two curves
$\Rightarrow 16-4 a^{2}\left(16 a^{2}\right) \geq 0$
$\Rightarrow 1-4 a^{4} \geq 0$
$\Rightarrow\left(2 a^{2}\right) \leq 1$
$\Rightarrow|\sqrt{2} a| \leq 1 \Rightarrow-\frac{1}{\sqrt{2}} \leq a \leq \frac{1}{\sqrt{2}}$
125. If angle between the asymptotes of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is 45°, then value of eccentricity e is

1) $\sqrt{4 \pm 2 \sqrt{2}}$
2) $\sqrt{4+2 \sqrt{2}}$
3) $\sqrt{4-2 \sqrt{2}}$
4) $\sqrt{4-3 \sqrt{2}}$

Key. 3
Sol. $\quad 2 \tan ^{-1} \frac{b}{a}=45^{\circ} \Rightarrow \frac{b}{a}=\tan 22^{\circ}=\frac{a^{2}\left(e^{2}-1\right)}{a^{2}}=(\sqrt{2}-1)^{2}$
$\Rightarrow e^{2}-1=3-2 \sqrt{2} \Rightarrow e=\sqrt{4-2 \sqrt{2}}$.
126. A hyperbola, having the transverse axis of length $2 \sin \theta$, is confocal with the ellipse $3 x^{2}+4 y^{2}=12$. Then its equation is

1) $x^{2} \operatorname{cosec}^{2} \theta-y^{2} \sec ^{2} \theta=1$
2) $x^{2} \sec ^{2} \theta-y^{2} \operatorname{cosec}^{2} \theta=1$
3) $x^{2} \sin ^{2} \theta-y^{2} \cos ^{2} \theta=1$
4) $x^{2} \cos ^{2} \theta-y^{2} \sin ^{2} \theta=1$

Key. 1
Sol. Equation of the ellipse is $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$. Its eccentricity is $e=\sqrt{1-\frac{3}{4}}=\frac{1}{2}$
Coordinates of foci are $(\pm 1,0)$.
Let the hyperbola be $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then $a=\sin \theta$
Also, $a e_{1}=1 \Rightarrow \quad e_{1}=\operatorname{cosec} \theta$

$$
b^{2}=a^{2}\left(e_{1}^{2}-1\right)=1-\sin ^{2} \theta=\cos ^{2} \theta
$$

Equation of the hyperbola is thus $\frac{x^{2}}{\sin ^{2} \theta}-\frac{y^{2}}{\cos ^{2} \theta}=1$
127. An ellipse intersects the hyperbola $2 x^{2}-2 y^{2}=1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinates axes, then

1) Equation of ellipse is $x^{2}+2 y^{2}=1$
2) the foci of ellipse are $(\pm 1,0)$
3) equation of ellipse are $x^{2}+2 y^{2}=4$
4) the foci of ellipse are $(\pm \sqrt{2}, 0)$

Key. 2
Sol. If two concentric conics intersect orthogonally then they must be confocal, so ellipse and hyperbola will be confocal
$\Rightarrow(\pm a e, 0) \equiv(\pm 1,0)$
[foci of hyperbola are $(\pm 1,0)$]
128.

Let $P(6,3)$ be a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If the normal at the point P intersects the x axis at $(9,0)$, then the eccentricity of the hyperbola is:

1) $\sqrt{\frac{5}{2}}$
2) $\sqrt{\frac{3}{2}}$
3) $\sqrt{2}$
4) $\sqrt{3}$

Key. 2
Sol. Normal at $(6,3)$ is
$\frac{a^{2} x}{6}+\frac{b^{2} y}{3}=a^{2}+b^{2}$,
$\Rightarrow \frac{9 a^{2}}{6}=a^{2}+b^{2} \Rightarrow \frac{3}{2}=1+\frac{b^{2}}{a^{2}}$
$\therefore \quad \frac{b^{2}}{a^{2}}=\frac{1}{2} \Rightarrow e^{2}-1=\frac{1}{2} \Rightarrow e=\sqrt{\frac{3}{2}}$
129. For hyperbola $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$, which of the following remains constant with change in ' α^{\prime}

1) abscissae of vertices
2) Eccentricity
3) abscissae of foci
4) directrix

Key. 2
Sol. Hyperbola is $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$
Coordinates of vertices are $(\pm \cos \alpha, 0)$, eccentricity of the hyperbola is $e=\sqrt{1+\frac{\sin ^{2} \alpha}{\cos ^{2} \alpha}}=|\sec \alpha|$
\therefore Coordinates of foci are thus $(\pm 1,0)$, which are independent of α.
Directrix is $x= \pm \cos ^{2} \alpha$
130. A ray emanating from the point $(5,0)$ is incident on the hyperbola $9 x^{2}-16 y^{2}=144$ at the point P with abscissa 8 , then the equation of the reflected ray after first reflection is (P lies in first quadrant)
A) $\sqrt{3} x-y+7=0$
B) $3 \sqrt{3} x-13 y+15 \sqrt{3}=0$
C) $\sqrt{3} x+y-14=0$
D) $3 \sqrt{3} x+13 y-15 \sqrt{3}=0$

Key. B
Sol. foci $=(\pm 5,0)$
\therefore Equation of reflected ray after first reflection passes through $P, S^{1} ; P=(8,3 \sqrt{3}), S^{11}=(-5,0)$
131. If PQ is a double ordinate of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that OPQ is an equilateral triangle, O being the centre of the hyperbola then eccentricity e of the hyperbola satisfies
A) $1<e<\frac{2}{\sqrt{3}}$
B) $e=\frac{2}{\sqrt{3}}$
C) $e=\frac{\sqrt{3}}{2}$
D) $\mathrm{e}>\frac{2}{\sqrt{3}}$

Key. D
Sol. Let $\mathrm{PQ}=2 \ell$

$$
\ell^{2}=\frac{\mathrm{a}^{2} \mathrm{~b}^{2}}{3 \mathrm{~b}^{2}-\mathrm{a}^{2}}>0 \Rightarrow \mathrm{e}>\frac{2}{\sqrt{3}}
$$

132. $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \phi, b \tan \phi)$ are the ends of a focal chord of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then $\tan \frac{\theta}{2} \tan \frac{\phi}{2}$ is
A) $\frac{e-1}{e+1}$
B) $\frac{1-e}{1+e}$
C) $\frac{1+e}{1-e}$
D) $\frac{e+1}{e-1}$

Key. B or C
Sol. Conceptual Question
133. If a variable straight line $x \cos \alpha+y \sin \alpha=P$, which is a chord of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1(b>a)$, subtend a right angle at the centre of the hyperbola, then it always touches a fixed circle whose radius is
A) $\frac{a b}{\sqrt{b-2 a}}$
B) $\frac{a}{\sqrt{a-b}}$
C) $\frac{a b}{\sqrt{b^{2}-a^{2}}}$
D) $\frac{a b}{b \sqrt{b+a}}$

Key. C
Sol. Making homogeneous equation of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ with the help of $x \cos \alpha+y \sin \alpha=P$
()$x^{2}+() y^{2}=0$
$\frac{1}{\mathrm{a}^{2}}-\frac{1}{\mathrm{~b}^{2}}=\frac{1}{\mathrm{P}^{2}} \Rightarrow \mathrm{P}=\frac{\mathrm{ab}}{\sqrt{\mathrm{b}^{2}-\mathrm{a}^{2}}}$
P is the length of perpendicular drawn from $(0,0)$ to $x \cos \alpha+y \sin \alpha=P$

Radius $=P=\frac{a b}{\sqrt{b^{2}-a^{2}}}$
134. The normal at P to a hyperbola of eccentricity e , intersects its transverse and conjugate axes at L and M respectively. If locus of the mid point of $L M$ is a hyperbola, then eccentricity of the hyperbola is
A) $\frac{e+1}{e-1}$
B) $\frac{\mathrm{e}}{\sqrt{\mathrm{e}^{2}-1}}$
C) e
D) $\frac{2 \mathrm{e}}{\sqrt{\mathrm{e}^{2}-1}}$

Key. B
Sol. $\mathrm{N}_{\mathrm{p}}: \mathrm{ax} \cos \theta+\mathrm{by} \cot \theta=\mathrm{a}^{2}+\mathrm{b}^{2}$
$\mathrm{L}\left(\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}} \sec \theta, 0\right)$
$M\left(0, \frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{~b}} \tan \theta\right)$
Locus is $\frac{x^{2}}{\left(\frac{a^{2}+b^{2}}{2 a}\right)^{2}}-\frac{y^{2}}{\left(\frac{a^{2}+b^{2}}{2 b}\right)^{2}}=1 \Rightarrow e_{1}=\frac{e}{\sqrt{e^{2}-1}}$
135. If e is the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and θ is the angle between the asymptotes, then $\cos \frac{\theta}{2}$ is equal to
A) $\frac{1-e}{e}$
B) $\frac{2}{\mathrm{e}}-\mathrm{e}$
C) $\frac{1}{e}$
D) $\frac{2}{\mathrm{e}}$

Key. C
Sol. $\theta=2 \tan ^{-1} \frac{\mathrm{~b}}{\mathrm{a}} \Rightarrow \tan \frac{\theta}{2}=\frac{\mathrm{b}}{\mathrm{a}}$
$\cos \frac{\theta}{2}=\frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}=\frac{1}{\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}}=\frac{1}{\mathrm{e}}$
136. Area of triangle formed by the lines $x-y=0, x+y=0$ and any tangent to the hyperbola $x^{2}-y^{2}=a^{2}$ is
A) $|a|$
B) $\frac{1}{2}|a|$
C) a^{2}
D) $\frac{1}{2} \mathrm{a}^{2}$

Key. C
Sol. Any tangent to $x^{2}-y^{2}=a^{2}$ is $x \sec \phi-y \tan \phi=a$
Area $=|a|$
137. The locus of the point of intersection of the line $\sqrt{3} x-y-4 \sqrt{3} K=0$ and $\sqrt{3} K x+K y-4 \sqrt{3}=0$ is a hyperbola of eccentricity is
A) 1
B) 2
C) 2.5
D) $\sqrt{3}$

Key. B
Sol. $K=\frac{\sqrt{3} x-y}{4 \sqrt{3}}=\frac{4 \sqrt{3}}{\sqrt{3} x-y}$
$\Rightarrow 3 x^{2}-y^{2}=48 \Rightarrow \frac{x^{2}}{16}-\frac{y^{2}}{48}=1$
$48=16\left(\mathrm{e}^{2}-1\right) \Rightarrow \mathrm{e}=2$
138. The locus of the middle points of chords of hyperbola $3 x^{2}-2 y^{2}+4 x-6 y=0$ parallel to $y=2 x$ is
A) $3 x-4 y=4$
B) $3 y-4 x+4=0$
C) $4 x-4 y=3$
D) $3 x-4 y=2$

Key. A
Sol. Let locus be $\mathrm{P}(\mathrm{h}, \mathrm{k}), \mathrm{T}=\mathrm{S}_{1}$
$3 h x-2 k y+2(x+h)-3(k+y)=3 h^{2}-2 k^{2}+4 h-6 k$
Slope $=\frac{3 \mathrm{~h}+2}{2 \mathrm{k}+3}=2 \Rightarrow 3 \mathrm{x}-4 \mathrm{y}=4$
139. From a point $\mathrm{P}(1,2)$ pair of tangent's are drawn to a hyperbola ' H ' in which one tangent to each arm of hyperbola. Equation of asymptotes of hyperbola H are $\sqrt{3} x-y+5=0 \& \sqrt{3} x+y-1=0$ then eccentricity of ' H ' is
A) 2
B) $\frac{2}{\sqrt{3}}$
C) $\sqrt{2}$
D) $\sqrt{3}$

Key. B
Sol. Since $c_{1} c_{2}\left(a_{1} a_{2}+b_{1} b_{2}\right)<0$
$\therefore \quad$ origin lies in acute angle
$\mathrm{P}(1,2)$ lies in obtuse angle
Acute angle between the asymptotes is $\frac{\pi}{3}$
$\therefore \quad \mathrm{e}=\sec \frac{\theta}{2}=\sec \frac{\pi}{6}=\frac{2}{\sqrt{3}}$
140. If a variable line has its intercepts on the co-ordinates axes $\mathrm{e}, \mathrm{e}^{\prime}$, where $\frac{\mathrm{e}}{2}, \frac{\mathrm{e}^{\prime}}{2}$ are the eccentricities of a hyperbola and its conjugate hyperbola, then the line always touches the circle $x^{2}+y^{2}=r^{2}$, where $r=$
A) 1
B) 2
C) 3
D) can not be decided

Key. B
Sol. Since $\frac{e}{2}$ and $\frac{e^{\prime}}{2}$ are eccentricities of a hyperbola and its conjugate
$\therefore \quad \frac{4}{e^{2}}+\frac{4}{e^{\prime 2}}=1$
i.e. $4=\frac{\mathrm{e}^{2} \mathrm{e}^{12}}{\mathrm{e}^{12}+\mathrm{e}^{12}}$
line passing through the points $(e, 0)$ and $\left(0, e^{\prime}\right) e^{\prime} x+e y-e e^{\prime}=0$
it is tangent to the circle $x^{2}+y^{2}=r^{2}$
$\therefore \quad \frac{\mathrm{ee}^{\prime}}{\sqrt{\mathrm{e}^{2}+\mathrm{e}^{\prime 2}}}=\mathrm{r}$
$\therefore \quad \mathrm{r}^{2}=\frac{\mathrm{e}^{2} \mathrm{e}^{12}}{\mathrm{e}^{2}+\mathrm{e}^{\prime 2}}=4$
$\therefore \quad r=2$
141. If angle between asymptote's of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is 120° and product of perpendiculars drawn from foci upon its any tangent is 9 , then locus of point of intersection of perpendicular tangents of the hyperbola can be -
A) $x^{2}+y^{2}=6$
B) $x^{2}+y^{2}=9$
C) $x^{2}+y^{2}=3$
D) $\mathrm{x}^{2}+\mathrm{y}^{2}=18$

Key. D
Sol. $b^{2}=9$

$$
\frac{\mathrm{b}}{\mathrm{a}}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}
$$

$\therefore \quad a^{2}=3 b^{2}=27$
$\therefore \quad$ Required locus is director circle of the hyperbola \& which is $\mathrm{x}^{2}+\mathrm{y}^{2}=27-9, \mathrm{x}^{2}+\mathrm{y}^{2}=18$
If $\frac{b}{a}=\tan 60^{\circ}$ is taken then

$$
\mathrm{a}^{2}=\frac{\mathrm{b}^{2}}{3}=\frac{9}{3}=3 .
$$

$\therefore \quad$ Required locus is $\mathrm{x}^{2}+\mathrm{y}^{2}=3-9=-6$ which is not possible.
142. ' C ' be a curve which is locus of point of intersection of lines $x=2+m$ and $m y=4-m$. A circle $\mathrm{s} \equiv(\mathrm{x}-2)^{2}+(\mathrm{y}+1)^{2}=25$ intersects the curve C at four points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S . If O is centre of the curve ' C ' then $\mathrm{OP}^{2}+\mathrm{OQ}^{2}+\mathrm{OR}^{2}+\mathrm{OS}^{2}$ is
A) 50
B) 100
C) 25
D) $25 / 2$

Key. B
Sol. $\mathrm{x}-2=\mathrm{m}$
$y+1=\frac{4}{m}$
$\therefore \quad(x-2)(y+1)=4$
$\Rightarrow \quad X Y=4$, where $X=x-2, Y=y+1$

$$
\begin{aligned}
& \mathrm{S} \equiv(\mathrm{x}-2)^{2}+(\mathrm{y}+1)^{2}=25 \\
\Rightarrow \quad & \mathrm{X}^{2}+\mathrm{Y}^{2}=25
\end{aligned}
$$

Curve ' C ' \& circle S both are concentric
$\therefore \quad \mathrm{OP}^{2}+\mathrm{OQ}^{2}+\mathrm{OR}^{2}+\mathrm{OS}^{2}=4 \mathrm{r}^{2}=4.25=100$
143. The combined equation of the asymptotes of the hyperbola $2 x^{2}+5 x y+2 y^{2}+4 x+5 y=0$ is
A) $2 x^{2}+5 x y+2 y^{2}+4 x+5 y+2=0$
B) $2 x^{2}+5 x y+2 y^{2}+4 x+5 y-2=0$
C) $2 x^{2}+5 x y+2 y^{2}=0$
D) none of these

Key. A
Sol. Let the equation of asymptotes be

$$
\begin{equation*}
2 x^{2}+5 x y+2 y^{2}+4 x+5 y+\lambda=0 \tag{1}
\end{equation*}
$$

This equation represents a pair of straight lines therefore

$$
\mathrm{abc}+2 \mathrm{fgh}-\mathrm{at}^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2}=0
$$

$\therefore \quad 4 \lambda+25-\frac{25}{2}-8-\lambda \frac{25}{4}=0 \quad \Rightarrow \quad-\frac{9 \lambda}{4}+\frac{9}{2}=0$
$\Rightarrow \quad \lambda=2$
Putting the value of λ in (i), we get $2 x^{2}+5 x y+2 y^{2}+4 x+5 y+2=0$ this is the equation of the asymptotes.
144. If $\alpha+\beta=3 \pi$ then the chord joining the points α and β for the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ passes through
A) focus
B) centre
C) one of the end points of the transverse axis
D) one of the end points of the conjugates axis

Key. B
Sol. (i) Equation of chord joining α and β is

$$
\begin{array}{ll}
& \frac{x}{a} \cos \left(\frac{\alpha-\beta}{2}\right)-\frac{y}{b} \sin \left(\frac{\alpha+\beta}{2}\right)=\cos \left(\frac{\alpha+\beta}{2}\right) \\
\therefore \quad & \alpha+\beta=3 \pi \\
& \frac{x}{a} \cos \left(\frac{\alpha-\beta}{2}\right)=\frac{y}{b}=0
\end{array}
$$

If passes through the centre $(0,0)$
145. For a given non-zero value of m each of the lines $\frac{x}{a}-\frac{y}{b}=m$ and $\frac{x}{a}+\frac{y}{b}=m$ meets the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at a point. Sum of the ordinates of these points, is
A) $\frac{a\left(1+m^{2}\right)}{m}$
B) $\frac{b\left(1-m^{2}\right)}{m}$
C) 0
D) $\frac{a+b}{2 m}$

Key. C
Sol. Ordinate of the point of intersection of the line $\frac{x}{a}-\frac{y}{b}=m$ and the hyperbola is given by
$\left(\frac{x}{a}-\frac{y}{b}\right)\left(\frac{x}{a}-\frac{y}{b}+\frac{2 y}{b}\right)=1$
i.e. $\quad m\left(m+\frac{2 y}{b}\right)=1$
i.e. $y=\frac{b\left(1-m^{2}\right)}{2 m}$

Similarly ordinate of the point of intersection of the line $\frac{x}{a}+\frac{y}{b}=m$ and the hyperbola is given by $\mathrm{y}=\frac{\mathrm{b}\left(\mathrm{m}^{2}-1\right)}{2 \mathrm{~m}}$ $\therefore \quad$ Sum of the ordinates is 0 .
146. The equation of the transverse axis of the hyperbola $(x-3)^{2}+(y+1)^{2}=(4 x+3 y)^{2}$ is
A) $x+3 y=0$
B) $4 x+3 y=9$
C) $3 x-4 y=13$
D) $4 x+3 y=0$

Key. C
Sol. $\quad(x-3)^{2}+(y+1)^{2}=(4 x+3 y)^{2}$
$(x-3)^{2}+(y+1)^{2}=25\left(\frac{4 x+3 y}{5}\right)^{2}$
$\mathrm{PS}=5 \mathrm{PM}$

$$
\text { directrix is } 4 x+3 y=0 \text { and focus }(3,-1)
$$

So transverse axis has slope $=\frac{3}{4}$ and equation of transverse axis $y+1=\frac{3}{4}(x-3)$
$\Rightarrow \quad 3 \mathrm{x}-4 \mathrm{y}=13$
147. For which of the hyperbola we can have more than one pair of perpendicular tangents?
A) $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$
B) $\frac{x^{2}}{4}-\frac{y^{2}}{9}=-1$
C) $x^{2}-y^{2}=4$
D) $x y=4$

Key. B

Sol. Locus of point of intersection of perpendicular tangents is director circle for $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ equation of director circle is $x^{2}+y^{2}=a^{2}-b^{2}$ which is real if $a>b$
$\Rightarrow \quad B$ is correct answer.
148. From point $(2,2)$ tangents are drawn to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ then point of contact lie in
A) I \& II quadrants
B) I \& IV quadrants
C) I \& III quadrants
D) III \& IV quadrants

Key. D
Sol. Equation of Asymplote are $4 y-3 x=0$ and $4 y+3 x=0$
Since point $(2,2)$ lies above the asymptotes $4 y-3 x=0$,
Hence point of constant of pair of tangent are in III \& IV quadrant
149. The equation to the chord joining two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ on the rectangular hyperbola $\mathrm{xy}=\mathrm{c}^{2}$ is
A) $\frac{x}{x_{1}+x_{2}}+\frac{y}{y_{1}+y_{2}}=1$
B) $\frac{x}{x_{1}-x_{2}}+\frac{y}{y_{1}-y_{2}}=1$
C) $\frac{x}{y_{1}+y_{2}}+\frac{y}{x_{1}+x_{2}}=1$
D) $\frac{x}{y_{1}-y_{2}}+\frac{y}{x_{1}-x_{2}}=1$

Key. A
Sol. Mid point is $\mathrm{M}\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}\right)$
$\therefore \quad$ equation of the chord to the hyperbola $\mathrm{xy}=\mathrm{c}^{2}$ whose midpoint is M , is $\frac{\mathrm{x}}{\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}}=\frac{\mathrm{y}}{\frac{y_{1}+\mathrm{y}_{2}}{2}}=2$
$\Rightarrow \quad \frac{x}{x_{1}+x_{2}}+\frac{y}{y_{1}+y_{2}}=1$
150. The locus of the foot of the perpendicular from the centre of the hyperbola $x y=c^{2}$ on a variable tangent is
A) $\left(x^{2}-y^{2}\right)^{2}=4 c^{2} x y$
B) $\left(x^{2}+y^{2}\right)^{2}=2 c^{2} x y$
C) $\left(x^{2}+y^{2}\right)=4 x^{2} x y$
D) $\left(x^{2}+y^{2}\right)^{2}=4 c^{2} x y$

Key. D
Sol. Equation of tangent at $P, \frac{x}{t}+t y=2 c$.
or $\mathrm{x}+\mathrm{t}^{2} \mathrm{y}=2 \mathrm{ct}$
slope of tangent $=-\frac{1}{t^{2}}$

$$
\begin{equation*}
\text { equation of } \mathrm{CM} \text { is } \mathrm{y}=\mathrm{t}^{2} \mathrm{x} \tag{ii}
\end{equation*}
$$

Squaring (i), $\left(x+t^{2} y\right)^{2}=4 c^{2} t^{2}$
Using (ii), we get $\left(x+\frac{y^{2}}{x}\right)^{2}=4 c^{2}+\frac{y}{x} \Rightarrow\left(x^{2}+y^{2}\right)=4 c^{2} x y$
151. If $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{R}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right) \& \mathrm{~S}\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right)$ are 4 concyclic points on the rectangular hyperbola $x y=c^{2}$, the co-ordinates of the orthocenter of the triangle $P Q R$ are
A) $\left(x_{4},-y_{4}\right)$
B) $\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right)$
C) $\left(-\mathrm{x}_{4},-\mathrm{y}_{4}\right)$
D) $\left(-\mathrm{x}_{4}, \mathrm{y}_{4}\right)$

Key. C
Sol. Let P, Q, R, S are $\left(c t, \frac{\mathrm{c}}{\mathrm{t}}\right)$
Where t is $t_{1}, t_{2}, t_{3}, t_{4}$ respectively let equation of circle is $x^{2}+y^{2}=r^{2}$
$\left(\mathrm{ct} \frac{\mathrm{c}}{\mathrm{t}}\right)$ satisfy this equation
$\therefore \quad \mathrm{c}^{2} \mathrm{t}^{2}+\frac{\mathrm{c}^{2}}{\mathrm{t}^{2}}-\mathrm{r}^{2}=0$
$\mathrm{c}^{2} \mathrm{t}^{4}-\mathrm{r}^{2} \mathrm{t}^{2}+\mathrm{c}^{2}=0$
Its roots are $t_{1}, t_{2}, t_{3}, t_{4}$
$\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}=1$
Coordinates of orthocenter of $\triangle \mathrm{PQR}$ are $\left(\frac{-c}{\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}},-\mathrm{ct}_{1} \mathrm{t}_{2} \mathrm{t}_{3}\right)$

$$
\begin{align*}
& \Rightarrow \quad\left(-\mathrm{ct}_{4},-\frac{\mathrm{c}}{\mathrm{t}_{4}}\right) \tag{i}\\
& \Rightarrow \quad\left(-\mathrm{x}_{4},-\mathrm{y}_{4}\right)
\end{align*}
$$

152. If the curves $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1,(\mathrm{a}>\mathrm{b})$ and $\mathrm{x}^{2}-\mathrm{y}^{2}=\mathrm{c}^{2}$ cut at right angles then
A) $\left(x_{4},-y_{4}\right)$
B) $\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right)$
C) $\left(-x_{4},-y_{4}\right)$
D) $\left(-x_{4}, y_{4}\right)$

Key. C
Sol. Let P on the ellipse is $(\mathrm{a} \cos \theta, \mathrm{b} \sin \theta)$
Slope of tangent at P on the ellipse $m_{1}=-\frac{b}{a} \frac{\cos \theta}{\sin \theta}$
Slope of tangent at P on the hyperbola $\mathrm{x}^{2}-\mathrm{y}^{2}=\bar{c}^{2}$, is
$\mathrm{m}_{2}=\frac{\mathrm{a} \cos \theta}{\mathrm{b} \sin \theta}$
Since these curves are intersecting at right angle
$\therefore \quad \mathrm{m}_{1} \mathrm{~m}_{2}=-1$
$-\frac{b}{a} \times \frac{\cos \theta}{\sin \theta} \times \frac{a}{b} \frac{\cos \theta}{\sin \theta}=-1 \Rightarrow \tan ^{2} \theta=1$
$\mathrm{P}(\mathrm{a} \cos \theta, \mathrm{b} \sin \theta)$ also lies on hyperbola
$\therefore \quad \mathrm{a}^{2} \cos ^{2} \theta-\mathrm{b}^{2} \sin ^{2} \theta=\mathrm{c}^{2}$
$\mathrm{a}^{2}-\mathrm{b}^{2} \tan ^{2} \theta=\mathrm{c}^{2}+\mathrm{c}^{2} \tan ^{2} \theta$
$\Rightarrow \quad a^{2}-b^{2}=c^{2}+c^{2} \quad\left[\because \tan ^{2} \theta=1\right]$
$\mathrm{a}^{2}-\mathrm{b}^{2}=2 \mathrm{c}^{2}$
153. If radii of director circles of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{\left(b^{\prime}\right)^{2}}=1$ are $2 r$ and r respectively and e_{e} and e_{h} be the eccentricities of the ellipse and the hyperbola respectively then
A) $2 \mathrm{e}_{\mathrm{n}}^{2}-\mathrm{e}_{\mathrm{e}}^{2}=6$
B) $e_{e}^{2}-4 e_{n}^{2}=6$
C) $4 e_{n}^{2}-e_{e}^{2}=6$
D) none of these

Key. C
Sol. Equation of director circles of ellipse and hyperbola are respectively.
$\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$
and $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2}$
$a^{2}+b^{2}=4 r^{2}$
$a^{2}-b^{2}=r^{2}$
So $2 a^{2}=5 r^{2}$
$\mathrm{a}^{2}=\frac{5 \mathrm{r}^{2}}{2}$
$\mathrm{b}^{2}=4 \mathrm{r}^{2}-\frac{5 \mathrm{r}^{2}}{2}$
$b^{2}=\frac{3 r^{2}}{2}$
$e_{n}^{2}=1-\frac{b^{2}}{a^{2}}$
$\Rightarrow \quad \mathrm{e}_{\mathrm{n}}^{2}=1-\frac{3 \mathrm{r}^{2}}{2} \times \frac{2}{5 \mathrm{r}^{2}}=1-\frac{3}{5}=\frac{2}{5}$
$e_{n}^{2}=1+\frac{b^{2}}{a^{2}}$
$\Rightarrow \quad \mathrm{e}_{\mathrm{n}}^{2}=1+\frac{3}{5}=\frac{8}{5}$
So $\quad 4 \mathrm{e}_{\mathrm{n}}^{2}-\mathrm{e}_{\mathrm{n}}^{2}=4 \times \frac{8}{5}-\frac{2}{5}=\frac{30}{5}=6$
154. If the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{b^{2}}=1 \&$ the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide then the value of b^{2} is
A) 4
B) 9
C) 16
D) none

Key. C
Sol. For ellipse $\mathrm{a}^{2}=16$
$\Rightarrow \quad e=\sqrt{1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}=\frac{\sqrt{25-\mathrm{b}^{2}}}{5}$
$\Rightarrow \quad$ focii $-(\pm \mathrm{ae}, 0)=\left(\pm \sqrt{25-\mathrm{b}^{2}}, 0\right)$
For hyperbola, $e=\sqrt{1+\frac{b^{2}}{a^{2}}}=\frac{5}{4}$
$\therefore \quad$ focii $=(\pm \mathrm{ae}, 0)=(\pm 3,0)$
$\sqrt{25-b^{2}}=3 \Rightarrow b^{2}=16$
155. The tangent at any point $P\left(x_{1}, y_{1}\right)$ on the hyperbola $x y=c^{2}$ meets the co-ordinate axes at points $Q \& R$. The circumcentre of $\triangle O Q R$ has co-ordinates.
A) $(0,0)$
B) $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
C) $\left(\frac{x_{1}}{2}, \frac{y_{1}}{2}\right)$
D) $\left(\frac{2 \mathrm{x}_{1}}{3}, \frac{2 \mathrm{y}_{1}}{3}\right)$

Key. B
Sol. Tangent at $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ on $\mathrm{xy}=\mathrm{c}^{2}$ is

$$
\begin{aligned}
& \frac{\mathrm{x}}{\mathrm{x}_{1}}+\frac{\mathrm{y}}{\mathrm{y}_{1}}=2 \\
\therefore \quad & \mathrm{Q}=\left(2 \mathrm{x}_{1}, 0\right), \mathrm{R}=\left(0,2 \mathrm{y}_{1}\right)
\end{aligned}
$$

Now OQR is a right Δ and QR is the hypotenuse.
$\therefore \quad$ circumcentre $=\operatorname{mid} \mathrm{pt}$, of $\mathrm{QR}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
156. The locus of the mid points of the chords passing through a fixed point (α, β) of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is
A) a circle with centre $\left(\frac{\alpha}{2}, \frac{\beta}{2}\right)$
B) an ellipse with centre $\left(\frac{\alpha}{2}, \frac{\beta}{2}\right)$
C) a hyperbola with centre $\left(\frac{\alpha}{2}, \frac{\beta}{2}\right)$
D) straight line passing through $\left(\frac{\alpha}{2}, \frac{\beta}{2}\right)$

Key. C
Sol. Let (h, k) be the mid point
$\therefore \quad \mathrm{T}=\mathrm{S}_{1} \Rightarrow \quad \frac{\mathrm{xh}}{\mathrm{a}^{2}}-\frac{\mathrm{yk}}{\mathrm{b}^{2}}=\frac{\mathrm{h}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{k}^{2}}{\mathrm{~b}^{2}}$
(1) passes through (α, β) so putting (α, β) in it

$$
\begin{aligned}
& \Rightarrow \quad \frac{\alpha x}{a^{2}}-\frac{\beta y}{b^{2}}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} \Rightarrow\left(\frac{x^{2}}{a^{2}}-\frac{\alpha x}{a^{2}}\right)-\left(\frac{y^{2}}{b^{2}}-\frac{\beta y}{b^{2}}\right)=0 \\
& \Rightarrow \quad \frac{\left(x-\frac{\alpha}{2}\right)^{2}}{a^{2}}-\frac{\left(y-\frac{\beta}{2}\right)^{2}}{b^{2}}+\frac{\alpha^{2}}{4 a^{2}}-\frac{\beta^{2}}{4 b^{2}}=0
\end{aligned}
$$

Which is a hyperbola with centre $\left(\frac{\alpha}{2}, \frac{\beta}{2}\right)$
157. If two conics $a_{1} x^{2}+2 h_{1} x y+b_{1} y^{2}=c_{1}$ and $a_{2} x^{2}+2 h_{2} x y+b_{2} y^{2}=c_{2}$ intersect in four concyclic points, then
A) $\left(\mathrm{a}_{1}-\mathrm{b}_{1}\right) \mathrm{h}_{2}=\left(\mathrm{a}_{2}-\mathrm{b}_{2}\right) \mathrm{h}_{1}$
B) $\left(\mathrm{a}_{1}-\mathrm{b}_{1}\right) \mathrm{h}_{1}=\left(\mathrm{a}_{2}-\mathrm{b}_{2}\right) \mathrm{h}_{2}$
C) $\left(a_{1}+b_{1}\right) h_{2}=\left(a_{2}+b_{2}\right) h_{1}$
D) $\left(a_{1}+b_{1}\right) h_{1}=\left(a_{2}+b_{2}\right) h_{2}$

Key. A
Sol. On removing $x y$ terms by multiplying $a_{1} x^{2}+2 h_{1} x y+b_{1}{ }^{2}=C_{1}$ by h_{2} and $a_{2} x^{2}+2 h_{2} x y+b_{2} y^{2}=C_{2}$ by h_{1} and subtracting we have
$\left(a_{1} h_{2}-a_{2} h_{1}\right) x^{2}+\left(b_{1} h_{2}-b_{2} h_{1}\right) y^{2}=C_{1} h_{2}-C_{2} h_{1}$
Now this will represent a circle if coefficient of $x^{2}=$ coefficient of y^{2}
i.e.

$$
\mathrm{a}_{1} \mathrm{~h}_{2}-\mathrm{a}_{2} \mathrm{~h}_{1}=\mathrm{b}_{1} \mathrm{~h}_{2}-\mathrm{b}_{2} \mathrm{~h}_{1}
$$

i.e. $\quad\left(a_{1}-b_{1}\right) h_{2}=\left(a_{2}-b_{2}\right) h_{2}$
158. The transverse axis of a hyperbola is of length 2 a and a vertex divides the segment of the axis between the centre and the corresponding focus in the ratio 2 : 1 , the equation of the hyperbola is
A) $4 x^{2}-5 y^{2}=4 a^{2}$
B) $4 x^{2}-5 y^{2}=5 a^{2}$
C) $5 x^{2}-4 y^{2}=4 a^{2}$
D) $5 x^{2}-4 y^{2}=5 a^{2}$

Key. D
Sol.

Clearly $\frac{2 \mathrm{ae}}{3}=\mathrm{a} \quad \Rightarrow \quad \mathrm{e}=\frac{3}{2}$
$\therefore \quad \mathrm{S}=\left(\frac{3 \mathrm{a}}{2}, 0\right)$
Directrix is

$$
\mathrm{x}=\frac{2 \mathrm{a}}{3}
$$

\therefore equation of hyperbola will be $\left(x-\frac{3 a}{2}\right)^{2}+y^{2}=\frac{9}{4}\left(x-\frac{2 a}{3}\right)^{2}$
Which reduces to $5 x^{2}-4 y^{2}=5 a^{2}$

