HALOALKANES AND HALOARENES

CHEMISTRY

Single Correct Answer Type

1	A constant of the first of the control of the control of the first of the control	C	th I a delivery	
1.	Among the following the one that gives positive iodoform test upon reaction with I ₂ and NaOH is			
	a) CH ₃ CH ₂ CH(OH)CH ₂ CH ₃			
	b) C ₆ H ₅ CH ₂ CH ₂ OH			
	$H_3C - CH - CH_2OH$		A . Y	
	c)			
	CH ₃			
	d) PhCHOHCH ₃			
2.	Vicinal and geminal dihalides can be distinguished by			
	a) KOH(aq.) b) KOH(alc.)	c) Zn dust	d) None of these	
3.	An alkyl halide may be converted into an alcohol by:			
	a) Addition b) Substitution	c) Dehydrohalogenation	d) Elimination	
4.	Dehydrohalogenation in haloalkanes produces:			
	a) A single bond b) A double bond	c) A triple bond	d) Fragmentation	
5.	Chlorination of CS ₂ gives:			
	a) CCl ₄ b) CS ₂ Cl ₂	c) CH ₄	d) CHCl ₃	
6.	Methylene chloride on hydrolysis yields:	V		
	a) HCHO b) CH ₃ CHO	c) CHCl ₃	d) CH ₃ COCl	
7.	The greater the ionic character of the carbon metal b	ond:		
	a) The more reactive is the organometallic compoun	d		
	b) The less reactive is the organometallic compound			
	c) Both are correct			
	d) None of the above is correct			
8.	For the reaction,			
	$C_2H_5OH + HX \xrightarrow{ZnX_2} C_2H_5X$, the order of reactivity is:			
	a) HI > HCl > HBr b) HI > HBr > HCl	c) HCl > HBr > HI	d) HBr > HI > HCl	
9.	The order of reactivities of methyl halides in the form	•	•	
	a) $CH_3I > CH_3Br > CH_3Cl$	b) $CH_3Cl > CH_3Br > Cl$		
	c) $CH_3Br > CH_3Cl > CH_3I$	d) $CH_3Br > CH_3I > CH$	_	
10.	The antiseptic character of iodoform is due to:	, ,	5	
	a) Its poisonous nature			
	b) Unpleasant smell			
	c) Liberation of free iodine			
~~	d) None of the above			
11.	On treating a mixture of two alkyl halides with sodiu	m metal in dry ether, 2-me	thyl propane was obtained.	
	The alkyl halides are	•		
	a) 2-chloropropane and chloromethane	b) 2-chloropropane and c	hloroethane	
	c) Chloromethane and chloroethane	d) Chloromethane and 1-	chloropropane	
12.	The IUPAC name of the compound, (CH ₃) ₂ CHCH ₂ CH	₂ Br is:		
	a) 2-methyl-3-bromopropane			
	b) 1-bromopentane			
	c) 2-methyl-4-bromobutane			

d) 1-bromo-3-methylbutane

13.	The given reaction is an example of,
	$C_2H_5Br + KCN(aq.) \rightarrow C_2H_5CN + R$
	a) Elimination

- b) Nucleophilic substitution
- c) Electrophilic substitution
- d) Redox change
- 14. Which one of the following compound reacts with chlorobenzene to produce DDT?

+ KBr:

a) Acetaldehyde

b) Nitrobenzene

c) *m*-chloroacetaldehyde

- d) Trichloroacetaldehyde
- 15. Preparation of alkyl halides in laboratory is least preferred by:
 - a) Halide exchange
 - b) Direct halogenation of alkanes
 - c) Treatment of alcohols
 - d) Addition of hydrogen halides to alkenes
- 16. Which one of the following pairs is the strongest pesticide?
 - a) Chloroform and benzene hexachloride
- b) DDT and 666

c) 666 and ether

- d) isocyanides and alcohol
- 17. Iodoform gives a precipitate with AgNO₃ on heating but chloroform does not because:
 - a) Iodoform is ionic
 - b) Chloroform is covalent
 - c) C—I bond in iodoform is weak and C—Cl bond in chloroform is strong
 - d) None of the above
- 18. Which reagent is useful in increasing the carbon chain of an alkyl halide?
 - a) HCN

b) KCN

- c) NH₄CN
- d) AgCN
- 19. Chloroform on reaction with conc. HNO₃ gives an insecticide and war gas known as:
 - a) Chloropicrin
- b) Nitromethane
- c) Picric acid
- d) Acetylene
- 20. Aryl halides are less reactive towards electrophiles than alkyl halides due to:
 - a) Resonance
 - b) Stability of carbonium ions
 - c) High boiling point
 - d) None of the above
- 21. Carbon tetrachloride reacts with steam at 500°C to give:
 - a) COCl₂
- b) CHCl₃
- c) Both (a) and (b)
- d) None of these

- 22. Chloroform on reaction with acetone yields:
 - a) Insecticide
- **b**) Hypnotic agent

b) Sodium in dry ether

- c) Analgesic
- d) Isocyanide

- 23. In Wurtz reaction alkyl halide reacts with
 - a) Sodium in ether
- c) Sodium only
- d) Alkyl halide in ether

- 24. When iodoform is heated with silver powder it forms:
 - a) Acetylene
- b) Ethylene
- c) Methane
- d) Ethane

- 25. 1,3-dibromopropane reacts with metallic zinc to form:
 - a) Propene
- b) Cyclopropane
- c) Propane
- d) Hexane

In the reaction sequence 26.

$$X \xrightarrow{\text{Cl}_2} Y \xrightarrow{\text{CHO}} Y \xrightarrow{\text{CHO}} CCl_3$$

$$CCl_3$$

$$CCl_3$$

$$CCl_3$$

$$CCl_3$$

Compound 'X' is

- a) Chlorobenzene
- b) Benzene
- c) Toluene
- d) Biphenyl methane

27. Which is used as a general anaesthetic in place of diethyl ether?						
	a) CF ₃ —CHClBr	b) CF ₃ —CHCl ₂	c) CF ₃ —CHBr ₂	d) None of these		
28.	Which of the following k	etones will not respond to i	odoform test?			
	a) Methyl isopropyl keto	ne	b) Ethyl isopropyl ketone			
	c) Dimethyl ketone		d) 2-hexanone			
29.	Propyl iodide and isopro	pyl iodide are:				
	a) Functional isomers	b) Chain isomers	c) Metamers	d) Position isomers		
30.	$X + KCN \rightarrow CH_3CN \xrightarrow{2H_2/2}$					
		\longrightarrow $Gn_3Gn_2Nn_2$,				
	What is (X) ?	b) CII Cl	a) CH CH CH Cl	4) (CII) CIICI		
21	a) CH ₃ CH ₂ Cl	b) CH ₃ Cl	c) CH ₃ CH ₂ CH ₂ Cl	d) $(CH_3)_2$ CHCl		
31.		by chlorination of butane,		d) I form		
22	a) meso-form	b) Racemic form	c) d-form	d) <i>l</i> -form		
<i>32</i> .	-	with aromatic compounds		s known as		
	a) Friedel-Craft's reactio	n	b) Hofmann degradation			
22	c) Kolbe's synthesis		d) Beckmann rearrangem	ient		
33.	=	catements is incorrect regar	ding benzyl chloride?			
		ate with alcoholic AgNO ₃				
	= =	ound with substitution in t	he side chain			
	= =	nilic substitution reaction				
	d) It is less reactive than	_				
34.	=	ompounds is not formed in				
	a) CH ₃ COCH ₂ I	b) ICH ₂ COCH ₂ I	c) CH ₃ COCHI ₂	d) CH ₃ COCI ₃		
35.		the isomers that give the m	inimum and maximum nui	mber of monochloro		
	derivatives are respectively					
	a) 3-methylpentane and		b) 2, 3-dimethylbutane ar			
	c) 2, 2-dimethylbutane a		d) 2, 3-dimethylbutane ar	nd 2-methypentane		
36.	1, 2-dibromo cyclohexan	e on dehydrogenation gives	5			
				d) None of these		
	a) [b) [c) [
		, , , , , , , , , , , , , , , , , , ,				
37.		rmed by heating wi				
		b) C ₂ H ₅ OH	c) HCOOH	d) CH ₃ CHO		
38.	_	rk coloured bottles because	:			
	a) It is inflammable					
	b) It gives a peroxide					
	c) It undergoes rapid chlorination					
	d) It is oxidized to poisor					
39.		rill not respond to iodoform	test?			
	a) Ethyl alcohol	b) Propanol-2	c) Propanol-1	d) Ethanal		
40.	At higher temperature, ic	odoform reaction is given b	y:			
7	a) CH ₃ COOCH ₃	b) CH ₃ COOC ₂ H ₅	c) $C_6H_5COOCH_3$	d) $CH_3COOC_6H_5$		
41.	Molecular formula of chl	oropicrin is				
	a) CHCl ₃ NO ₂	b) CCl ₃ NO ₃	c) CCl ₂ NO ₂	d) CCl ₃ NO ₂		
42.	Which one of the following is not true for the hydrolysis of <i>t</i> -butyl bromide with aqueous NaOH?					
	a) Reaction occurs throu	a) Reaction occurs through the $S_N 1$ mechanism.				
	b) The intermediate form	ned is a carbocation.				
	c) Rate of the reaction do	oubles when the concentrat	ion of alkali is doubled.			
	d) Rate of the reaction do	oubles when the concentrat	ion of <i>t</i> -butyl bromide is do	oubled.		
43.	CHCl ₃ reacts with conc. I	HNO ₃ to give				
	a) CCl ₃ NO ₂	b) CH ₃ NO ₂	c) CH ₃ CN	d) CH ₃ CH ₂ NO ₂		

- 44. The correct order of melting and boiling points of the primary (1°), secondary(2°) and tertiary (3°) alkyl halides is:
 - a) P > S > T
- b) T > S > P
- c) S > T > P
- d) T > P > S

- 45. Ethyl alcohol gives ethyl chloride on treatment with:
 - a) NaCl

- b) SOCl₂
- c) Cl₂

- d) KCl
- 46. 20% aqueous solution of sodium chloride containing ethyl alcohol on electrolysis gives:
 - a) Ethyl chloride
- b) Chloral
- c) Acetaldehyde
- d) Chloroform
- 47. Which of the following statements about benzyl chloride is incorrect?
 - a) It is less reactive than alkyl halides
 - b) It can be oxidised to benzaldehyde by boiling with copper nitrate solution
 - c) It is a lachrymatory liquid and answers Beilstein's test
 - d) It gives a white precipitate with alcoholic silver nitrate
- 48. The S_N1 reactivity of ethyl chloride is:
 - a) More or less equal to that of benzyl chloride
 - b) Less than that of benzyl chloride
 - c) More or less equal to that of chlorobenzene
 - d) Less than that of chlorobenzene
- 49. Which of the following will not give iodoform test?
 - a) Isopropyl alcohol
 - b) Ethanol
 - c) Ethanal
 - d) Benzyl alcohol
- 50. Elimination of HBr from 2-bromobutane results in the formation of:
 - a) Equimolar mixture of 1- and 2- butene
 - b) Predominantly 2-butene
 - c) Predominantly 1- butene
 - d) Predominantly 2-butyne
- 51. 1,2-dibromoethane is added to prevent deposition of lead metal in:
 - a) Water pipes
 - b) Petrol engines
 - c) Electric heaters
 - d) Metal working lathe machines
- 52. For the reaction,

$$CH_3$$
— CH — CH — CH
 CH_2 = $CH \cdot CH_2 \cdot CH_3$

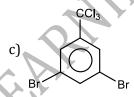
- a) CH₃ —CH=CH— CH₃ predominates
- b) CH₂=CH—CH₂—CH₃ predominates
- c) Both are formed in equal amounts
- d) The product ratio is dependent on the halogen *X*
- 53. Grignard reagent is prepared by the reaction between:
 - a) Zinc and alkyl halide
 - b) Magnesium and alkyl halide
 - c) Magnesium and alkane
 - d) Magnesium and aromatic hydrocarbon
- 54. In the following swquence of reactions

the end product (*C*) is:

- a) Acetaldehyde
- b) Ethyl alcohol
- c) Acetone
- d) Methane

55. The IUPAC name of the compound,

 CH_3COCH —CHCOOH is:


- a) 2-bromo-3-chloro-4-oxopentanoic acid
- b) 3-chloro-2-bromo-4-oxopentanoic acid
- c) 4-carboxybromo-3-chloro-2-butanone
- d) None of the above
- 56. Which of the following is primary halide?
 - a) Isopropyl halide
- b) Sec-butyl halide
- c) Tert-butyl halide
- d) Neo-hexyl chloride

57. ÇCl₃

$$1. \text{ equ of } Br_2/Fe \longrightarrow A.$$

Compound A is

- 58. Which of the following do not form Grignard reagent?
 - a) CH_aF
- b) CH₃Cl
- c) CH₃Br
- d) CH₃I
- 59. The structure of the major product formed in the following reaction is

- b) NC CN
- 60. Butane nitrile may be prepared by heating:
 - a) Propyl alcohol with KCN
 - b) Butyl alcohol with KCN
 - c) Butyl chloride with KCN
 - d) Propyl chloride with KCN
- 61. Consider the following reaction,

$$H_3C$$
- CH - CH - CH_3 + $\dot{\mathbf{B}}\mathbf{r}$ - $'X'$ + $HB\mathbf{r}$
 D
 CH_3

Identify the structure of the major product '*X*': H₃C-CH-CH-CH₂ D CH₃ H_3C -CH- $\dot{C}H$ - CH_3 d) H_3C – $\dot{C}H$ –CH– CH_3 62. A mixture of 1-chloropropane and 2-chloropropane when treated with alcoholic KOH, it gives: a) 1-propene b) 2-propene c) Isopropylene d) A mixture of 1-propene and 2-propene 63. In Wurtz reaction of alkyl halides with sodium, the reactivity order of these halides is: a) RI > RBr > RClb) RCl > RBr > RIc) RBr > RI > RCld) None of these 64. A mixture of sodium acetate and sodalime is heated and the product treated with excess of chlorine in presence of bright sunlight. The product is: a) CH₃COOH b) CH₂BrCOOH c) CCl₄ d) CH₃Cl 65. 1-chlorobutane on reaction with alcoholic KOH gives: b) 1-butanol a) 1-butene c) 2-butene d) 2-butanol 66. Which halide does not get hydrolysed by sodium hydroxide? b) Methyl Chloride c) Ethyl chloride a) Vinyl chloride d) Isopropyl chloride 67. Iodoform test is not given by a) 2-pentanone c) Ethanal b) Ethanol d) 3-pentanone 68. The alkyl halides that can be made by free radical halogenation of alkanes are a) RCl and RBr but not RF or RI b) RF, RCl and RBr but not RI c) RF, RCl, RBr, RId) RF, RCI and RI but not RBr 69. Non-sticking frying pans are coated with a) Ethylene b) Styrene c) Tetrafluoroethylene (Teflon) d) Chlorofluoro methane 70. Ethyl chloride on heating with AgCN forms a compound *X*. The functional isomer of X is d) None of these a) C₂H₅NC b) $C_2H_5NH_2$ c) C_2H_5CN 71. Chlorine is most reactive towards NaOH in: a) CH₃Cl b) $CH_2 = CHCl$ c) C_6H_5Cl d) C₆H₅CH₂Cl 72. The chemical formula of 'tear gas' is a) COCl₂ c) Cl₂

b) CO₂

d) CCl₃NO₂

73. The order of polarity of CH₃I, CH₃Br and CH₃Cl molecules follows the order:

a) $CH_3Br > CH_3Cl > CH_3I$

b) $CH_3I > CH_3Br > CH_3Cl$

c) $CH_3Cl > CH_3Br > CH_3I$

d) $CH_3Cl > CH_3I > CH_3Br$

74. Chloroform gives a trichloro derivative of an alcohol on reaction with

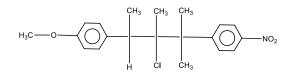
a) conc. nitric acid

b) aq. alkali

c) acetone and alkali

d) a primary amine and an alkali

75. In order to convert aniline into chlorobenzene the reagent used is


a) NaNO₂/HCl, CuCl

b) Cl₂/CCl₄

c) Cl₂/AlCl₃

d) CuCl₂

76.	Number of monochloro derivatives obtained when neo -pentane is chlorinated, is			
	a) One	b) Two	c) Three	d) Four
77.	Which of the following wi	ll not form a yellow precipi	itate on heating with an alk	aline solution of iodine?
	a) CH ₃ CH(OH)CH ₃	b) CH ₃ CH ₂ CH(OH)CH ₃	c) CH ₃ OH	d) CH ₃ CH ₂ OH
78.	$CaOCl_2 + H_2O \rightarrow Ca(OH)$	$(1)_2 + X$		
	$X + CH_3CHO \rightarrow Y$			
	$Y + Ca(OH)_2 \rightarrow CHCl_3$.			
	What is 'Y?			
	a) $CH_3CH(OH)_2$	b) CH ₂ Cl ₂	c) CCl ₃ CHO	d) CCl ₃ COCH ₃
79.	Reaction of trans-2-phen	yl-1-bromocyclopentane o	n reaction with alcoholic K	OH produces
	a) 4-phenylcyclopentene		b) 2-phenylcyclopentene	
	c) 1-phenylcyclopentene		d) 3-phenylcyclopentene	
80.	In order to get ethanethio	ol from C ₂ H ₅ Br, the reagent	used is:	
	a) Na ₂ S	b) NaHS	c) KCNS	d) K ₂ S
81.	Solvent used in dry-clean	ing of clothes is:		
	a) Alcohol	b) Acetone	c) Carbon tetrachloride	d) freon
82.	Correct order of reactivity	y for halides is:	C_{Λ}	Y
	a) Vinyl chloride > allyl c	hloride > propyl chloride		
	b) Propyl chloride > viny	l chloride > allyl chloride		
	c) Allyl chloride > propyl	chloride > vinyl chloride		
	d) None of the above			
83.	The substance employed	as tear gas is:		
	a) Westron	b) Chloropicrin	c) Chloretone	d) None of these
84.	One of the following that	cannot undergo dehydroha	logenation is	
	a) iso-propyl bromide	b) ethanol	c) Ethyl bromide	d) None of the above
85.	The starting material for t	the preparation of CHI_3 is:	>	
	a) C ₂ H ₅ OH	b) CH ₃ OH	c) C ₂ H ₅ CHO	d) HCHO
86.	Optically active compound			
	a) 2-chloropropane	b) 2-chlorobutane	c) 3-chloropentane	d) None of these
87.	CCl ₄ is insoluble in water	because:		
	a) Water is non-polar			
	b) CCl ₄ is non-polar			
	c) Water and CCl ₄ are pol	ar		
	d) None of the above			
88.	Which one is most reactive			
	a) $C_6H_5CH(C_6H_5)Br$	b) C ₆ H ₅ CH(CH ₃)Br	c) $C_6H_5C(CH_3)(C_6H_5)Br$	d) C ₆ H ₅ CH ₂ Br
89.	Which of the following ap			
	CH ₃ CHBrCH ₂ CH ₃ Alc.KOH	l →		
	(i) $CH_3CH = CHCH_3$ (majo			
	(ii) $CH_2 = CHCH_2CH_3$ (mi			
1	a) Markownikoff's rule	b) Saytzeff's rule	c) Kharasch effect	d) Hofmann's rule
90.	The following compound	on hydrolysis in aqueous a	cetone will give	
	-			

a) Mixture of (K) and (L)

b) Mixture of (K) and (M)

c) Only (*M*)

- d) Only (K)
- 91. The metal used for the de-bromination reaction of 1, 2-dibromoethane.
 - a) Na

b) Zn

c) Mg

- d) Li
- 92. Reaction of *t*-butyl bromide with sodium methoxide produces
 - a) Isobutane
 - b) Isobutylene
 - c) Sodium t-butoxide
 - d) t-butylmethyl ether
- 93. $CH_3Br + KCN(alc.) \rightarrow X$ $\xrightarrow{\text{Reduction}} Y$

What is Y in the series?

- a) CH₃CN
- b) C₂H₅CN
- c) $C_2H_5NH_2$
- d) CH₃NH₂
- 94. If methyl iodide and ethyl iodide are mixed in equal proportions, and the mixture is treated with metallic sodium in presence of dry ether, the number of possible products formed is:
 - a) 2

b) 3

c) 1

d) 4

- 95. An alkyl iodide on standing darkens, due to:
 - a) Hydrolysis
 - b) Conversion into ether
 - c) Liberation of iodine
 - d) Formation of alkanes
- 96. X compound reacts with Na to give CH₃ CH₂ CH₂ CH₃, then compound X is
 - a) CH₃ CH₂OH
 - b) CH₃ CH₂ Cl
 - c) $CH_3 CH_3$
 - d) CH₃CH₂CH₂CH₂ OH
- 97. Maximum number of molecules of CH₃I that can react with a molecule of CH₃NH₂ are
 - a) 3

b) 4

c) 2

d) 1

- 98. The CCl₄ and CHCl₃ can be distinguished by the action of:
 - a) $RNH_2 + KOH$ alc.
- b) RCN + KOH alc.
- c) Hydrolysis
- d) Burning in air

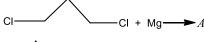
99.	Alkyl halides reacts with	dialkyl lithium cuprate to g	give:	
	a) Alkenes	b) Alkyl Cu halide	c) Alkanes	d) Alkenyl halide
100.	Which responds to the ic	odoform test?	•	-
	a) Butanol	b) Butan-1-al	c) Butanone-2	d) 3-pentanone
101.	In the reaction sequence	•		
	$C_2H_5Cl + KCN \xrightarrow{C_2H_5OH}$			
	$C_2H_5CI + KCN \longrightarrow$	$X \xrightarrow{\triangle} Y$		
	What is the molecular for	rmula of <i>Y</i> ?		
	a) $C_3H_6O_2$	b) C_3H_5N	c) $C_2H_4O_2$	d) C ₂ H ₆ O
102.	Which one of the following	ng forms propane nitrile as	the major product?	\sim
	a) Ethyl bromide + alcol	nolic KCN	b) Propyl bromide + alco	
	c) Propyl bromide + alco	_	d) Ethyl bromide + alcoh	_
103.	The compound <i>A</i> forms	\boldsymbol{B} with sodium metal and	again A forms C with PCl	$_{5}$, but B and C form diethyl
	ether. Therefore A, B and			
				Cld) C_2H_5OH , C_2H_5Cl , C_2H_5Ol
104.	For the carbylamine read	ction we need hot alcoholic	KOH and:	
	a) Any amine and chloro			
	b) Chloroform and silver	powder	4/0	
	c) A primary amine and	an alkyl halide		
	d) Any monoalkyl amine			
105.		h lead-sodium alloy to form		
	a) Tetraethyl lead	b) Tetraethyl bromide	c) Both (a) and (b)	d) None of these
106.		enantiomeric pairs that can	be produced during mono-	-chlorination of 2-methyl
	butane is		GXX	
	a) 3	b) 4	c) 1	d) 2
107.		nt with a suspension of ${ m Ag}_2$		
	a) Alkanol	b) Alkanal	c) Alkanes	d) Alkoxy alkane
108.	-	chloride into diethyl ether ta		
	a) Williamson's synthesi	S	b) Perkin's reaction	
	c) Wurtz reaction		d) Grignard reaction	
109.		occur during formation of C		
440	a) Hydrolysis	b) Oxidation	c) Elimination	d) Chlorination
110.		oes not answer iodoform te		
	a) <i>n</i> -butyl alcohol	b) Acetophenone	c) Acetaldehyde	d) Ethylmethyl ketone
111.	Methyl bromide is not us	sed:		
	a) As an insecticide			
	b) As disinfectant			
	c) For dyeing clothes	C		
112	d) As disinfectant for you	_	. 1	2
112.		ction with ethyl magnesium		
113	a) CH ₃ COCH ₃	b) CH ₃ COOCH ₃	c) CH ₃ CH ₂ CHO	d) C ₂ H ₅ COCH ₃
113.	Alkyl halides are less sol	uble in water because	15.1 1	1 11 1
	a) they ionise in water		b) they do not form H-box	
111	c) they are highly viscou		d) they have very strong	C – X pona
114.	Hexachloroethane is also		-) A-+i6: -i -ll	d) Name of the con
115	a) Artificial sweetner	b) Artificial camphor	c) Artificial polymer	d) None of these
115.		mide with dry ether and ab	isolute alcohol gives:	
	CH ₃ •CH•CH ₂ OH• and CH a)	1 ₃ •CH ₂ MgBr		
	CH ₃			

- b) $CH_3 \cdot CH \cdot CH_2 \cdot CH_2 \cdot CH_3$ and Mg(OH)Br CH_3
- c) CH_3 -CH- CH_3 , CH_2 = CH_2 and Mg(OH)Br CH_3
- d) CH₃-CH-CH₃ and CH₃CH₂OMgBr
- 116. Strong reducing agent converts CHCl₃ into:
 - a) C_2H_2

b) C_2H_6

c) C_2H_4

- d) CH₄
- 117. Which of the following are arranged in decreasing order of dipole moment:
 - a) CH₃Cl, CH₃Br, CH₃F
- b) CH₃Cl, CH₃F, CH₃Br
- c) CH₃Br, CH₃Cl, CH₃F
- d) CH₃Br, CH₃F, CH₃Cl


- 118. Fluorobenzene (C₆H₅F) can be synthesised in the laboratory
 - a) By heating phenol with HF and KF
 - b) From aniline by diazotisation followed by heating the diazonium salt with HBF4
 - c) By direct fluorination of benzene with F2 gas
 - d) By reacting bromobenzene with NaF solution
- 119. 1-chlorobutane on reaction with alcoholic potash gives
 - a) but-1-ene
- b) butan-1-ol
- c) but-2-ene
- d) butan-2-ol

- 120. On warming with silver powder, chloroform is converted into
 - a) Acetylene

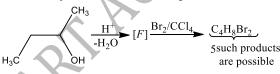
b) Hexachloroethane

c) 1, 1, 2, 2-tetrachloroethane

- d) Ethylene
- 121. What is the product *A* in the following?

a) <u></u>

b) CI—Mg——CI


c) Both (a) and (b)

- d) None of the above
- 122. Identify (Z) in the following reaction series,

$$C_2H_5I \xrightarrow{\text{Alcoholic}} (X) \xrightarrow{\text{Br}_2} (Y) \xrightarrow{\text{KCN}} (Z)$$

- a) CH₃—CH₂—CN
- b) | CH₂-CH₂ | CN CN
- CH₂—CH₂
- CH =CH d) | | Br CN

123. How many structures of *F* is possible?

a) 2

b) 5

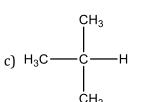
c) 6

d) 3

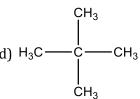
- 124. PVC plastics are produced by the polymerization of:
 - a) Vinyl acetate
- b) Allyl chloride
- c) Vinyl chloride
- d) Ethene
- 125. Ethylene dichloride can be prepared by the reaction of HCl and:
 - a) Ethane
- b) Ethylene
- c) Acetylene
- d) Ethylene glycol

- 126. Polymer of chloroethylene is:
 - a) PVC

- b) Teflon
- c) Nylon
- d) Terylene


- 127. Most readily hydrolysed halides is:
 - a) C₆H₅Cl
- b) $(C_6H_5)_2$ CHCl
- c) $C_6H_5CH_2Cl$
- d) $(C_6H_5)_3CCl$
- 128. What is the product of the reaction of 1, 3-butadiene with Br₂?
 - a) 1, 4-dibromo butene

b) 1, 2- dibromo butene


c) 3, 4- dibromo butene

d) 2, 3- dibromo-2-butene

- a) NH₃/Cu₂0
- b) NH_3/H_2SO_4
- c) NaNH₂
- d) None of the above
- 130. In the following compound, least number of monochlorination is possible
 - a) CH₃CH₂CH₂CH₂CH₃

b)

131. 2, 2-dichloro propane on hydrolysis yields

a) Acetone

b) 2, 2-propane diol

c) Isopropyl alcohol

- d) Acetaldehyde
- 132. The product of vinyl chloride and HCl is a
 - a) gem chloride

b) Ethylidene chloride

c) 1, 1 dichloroethane

- d) All of the above are correct
- 133. Among the following, the molecule with the highest dipole moment is:
 - a) CH₃Cl
- b) CH₂Cl₂
- c) CHCl₃
- d) CCl₄

- 134. CO₂ on reaction with C₂H₅MgBr and H₂O gives:
 - a) Ethane
- b) Propionic acid
- c) Acetic acid
- d) None of these

- 135. Methyl chloride reacts with silver acetate to yield:
 - a) Acetic acid
- b) Methyl acetate
- c) Acetyl chloride
- d) Acetaldehyde
- 136. A compound A of formula C₃H₆Cl₂ on reaction with alkali can give B of formula C₃H₆O or C of formula C_3H_4 . B on oxidation gave a compound of the formula $C_3H_6O_2$. C with dilute

 H_2SO_4 containing H_g^{2+} ion gave D of formula C_3H_6O , which with bromine and NaOH gave the sodium salt of $C_2H_4O_2$. Then A is:

- a) CH₃CH₂CHCl₂
- b) CH₃CCl₂CH₃
- c) CH2ClCH2CH2Cl
- d) CH₃CHClCH₂Cl
- 137. Compounds formed, when methyl amine is heated with chloroform in the presence of KOH is:
 - a) $CH_3 C \equiv N$
- b) CH₃N⁺≡C⁻
- c) $CH_3 N^- \equiv C^+$
- d) CH₃NHCH₃
- 138. Tertiary butyl alcohol gives tertiary butyl chloride on treatment with
 - a) Conc. HCl/anhy. ZnCl₂ b) KCN

- c) NaOCl
- d) Cl₂
- 139. The reaction of toluene with Cl₂ in presence of FeCl₃ gives predominantly
 - a) Benzoyl chloride

b) Benzyl chloride

c) o-and p-chlorotoluene

- d) m-chlorotoluene
- 140. Which one of the following compounds when heated with KOH and a primary amine gives carbylamine test?
 - a) CHCl₃
- b) CH₃Cl
- c) CH₃OH
- d) CH₃CN

141. In the following reaction:

$$C_6H_5CH_2Br \xrightarrow{1. Mg/ether} X$$
; the product 'X' is :

- a) $C_6H_5CH_2OCH_2C_6H_5$
- b) $C_6H_5CH_2OH$
- c) $C_6H_5CH_3$
- d) $C_6H_5CH_2CH_2C_6H_5$
- 142. For a given alkyl group, the densities/b. p./m. p. are in the order:
 - a) RI < RBr < RCI
- b) RI < RCl < RBr
- c) RBr < RI < RCI
- d) RCl < RBr < RI

- 143. Carbylamine test is performed by heating alc. KOH with:
 - a) CHCl₃ and Ag
 - b) Trihalogenated methane and primary amine

	c) CH ₃ Cl and C ₂ H ₅ NH ₂ d) RCN and RNH ₂			
111		da ia armthagiaed by ablaval	າ	
144.	•	ds is synthesised by chloral		d) Mi alalama lastamas
1 1 5	a) DDT	b) BHC	c) Chloroform	d) Michlers ketones
145.	Iodoform can be prepare	=		
	a) Isopropyl alcohol	b) 3-methyl -2-butanone	•	d) Ethyl methyl ketone
146.	=	assed through alcoholic KOI		
	a) It dissolves	b) It forms vinyl alcohol	c) It forms acetylene	d) It has no action
147.	Following compounds ar			
	(i) CH ₃ CH ₂ OH	(ii) CH ₃ COCH ₃		
	(iii) CH ₃ —CH OH	(iv) CH ₃ OH		
	CH			
	CH ₃			
		oound(s), on being warmed		
	a) (i),(iii) and (iv)	b) Only (ii)	c) (i), (ii) and (iii)	d) (i) and (ii)
148.	=	eaction of chlorobenzene w		X
	a) Chloral	b) Chloroform	c) Dichloromethane	d) Acetaldehyde
149.		the reaction between C_6H_5	NH_2 , CHCl_3 and KOH are:	
	a) $C_6H_5NC + KCl$			
	b) $C_6H_5OH + NH_4Cl + H$	20		
	c) $C_6H_5Cl + NH_4Cl + KC$			
	d) $C_6H_5CN + KCl$			
150.	In the reaction,			
	$CH_3C \equiv \overline{C} Na^+ + (CH_3)_2C$	HCl →	G. X.	
	the product formed is:	4		
	a) 4-methyl-2-pentyne	b) Propyne	c) Propyne and propene	d) None of these
151.	Which one of the followi	ng chlorohydrocarbons read	dily undergoes solvolysis?	
	a) $CH_2 = CHCl$		b) (() \—CI	
	c) (d) $\langle \bigcirc \rangle$ —CH ₂ CH ₂ CI	
4 = 2			<u> </u>	
152.	Grignard reagent with hy			12 Nr C.1
4 = 2	a) Aldehyde	b) Ketone	c) Both (a) and (b)	d) None of these
153.	What happens if CCl ₄ is t		12370 411 1 1	
	a) A white ppt. of AgCl w		b) NO ₂ will be evolved	
4 - 4	c) CCl ₄ will dissolve in A		d) Nothing will happen	
154.		ich one has weakest carbon	-	12.75
	a) Benzyl bromide	b) Bromobenzene	c) Vinyl bromide	d) Benzyl chloride
155.		nes, the isomer which can g		
	a) 2-methylpentane	b) 1,2 anneary bacaire		d) <i>n</i> -hexane
156.		ompounds gives trichlorom		
	a) Methanal	b) Phenol	c) Ethanol	d) Methanol
157.		with ethyl iodide to yield:		
	a) CH ₃ CH ₃	b) $C_2H_5OCH_3$	c) $C_2H_5OC_2H_5$	d) None of these
158.	$CH_3Br + KCN (alc.) \rightarrow$	$X \xrightarrow{\text{Reduction}} Y$, what is Y	in the series?	
				D CH MH
4 = 2	, ,	b) C ₂ H ₅ CN	c) $C_2 H_5 NH_2$	d) CH ₃ NH ₂
159.	Identify A and B in the fo			
	$A \xrightarrow{\text{Aq.NaOH}} C_2 H_5 OH \xleftarrow{\text{AgO}}$	$\stackrel{\sim}{} B$		
	a) $A = C_2 H_2, B = C_2 H_6$		b) $A = C_2H_5Cl, B = C_2H_4$	
	, - <u></u> - <u>-</u> <u>-</u> - <u>-</u>		, - <u>4</u> 3, <u>4</u> 4	

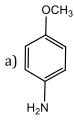
c) $A = C_2H_4$, $B = C_2H_5Cl$

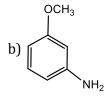
- d) $A = C_2H_5Cl$, $B = C_2H_5Cl$
- 160. The reagent used in the conversion of 1-butanol to 1-bromobutane is:
 - a) CHBr₃
- b) Br₂

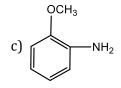
- c) CH₃Br
- d) $P + Br_2$

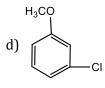
- 161. t-butyl chloride preferably undergo hydrolysis by
 - a) S_N1 mechanism
 - b) S_N2 mechanism
 - c) Any of (a) and (b)
 - d) None of the above
- 162. Which statement is wrong about chloroform?
 - a) Chloroform is used as anaesthetic
 - b) Chloroform has distorted tetrahedral shape
 - c) Chloroform is used as a solvent
 - d) Chloroform has sp^2 -hybridised carbon atom
- 163. When CCl₄ is boiled with KOH, the product formed is:
 - a) Formic acid
- b) Methyl alcohol
- c) Formaldehyde
- d) Carbon dioxide

- 164. Which set of reagents will produce freon(CCl₂F₂)?
 - a) $C + F_2 + Cl_2 \rightarrow$
- b) $CH_3Cl + F_2 \rightarrow$
- c) $CCl_4 + HF \xrightarrow{SbCl_5}$
- d) $CCl_4 + F_2 -$


- 165. Which of the following will not give positive iodoform test?
 - a) CH₃CH₂CHOHCH₃
- b) CH₃CH₂CH₂COCH₃
- c) CH₃CH₂COCH₂CH₃
- d) CH₃COC₆H₅
- 166. Which of the following does not react with benzene in presence of anhydrous AlCl₃?
 - a) C₆H₅Cl
- b) $C_6H_5CH_2Cl$
- c) CH₃Cl
- d) C₆H₅CH₂CH₂CH₂Cl


- 167. Iodoform is obtained when ethanol is heatd with
 - a) KI and aq. KOH
- b) I₂ and aq. KOH
- c) I₂/aq. KI
- d) HI and HIO₃


- 168. *n*-propyl bromide reacts with ethanolic KOH to form:
 - a) Propane
- b) Propene
- c) Propyn
- d) Propyl alcohol
- 169. Which of the following statements regarding the $S_N 1$ reaction shown by alkyl halide is not correct?
 - a) The added nucleophile plays no kinetic role in S_N1 reaction.
 - b) The $S_N 1$ reaction involves the inversion of configuration of the optically active substrate.
 - c) The S_N1 reaction on the chiral starting material ends up with racemization of the product.
 - d) The more stable the carbocation intermediate the faster the $S_N {\bf 1}\,$ reaction.
- 170. Pick up the correct statement about alkyl halides:
 - a) They show H-bonding.
 - b) They are soluble in water.
 - c) They are soluble in organic solvents.
 - d) They do not contain any polar bond.
- 171. The product of reaction between alcoholic silver nitrite with ethyl bromide is
 - a) Ethene
- b) Ethane
- c) Ethyl nitrile
- d) Nitro ethane
- 172. 1-phenyl, 2-chloropropane on treating with alc. KOH gives mainly:
 - a) 1-phenylpropene
 - b) 2-phenylpropene
 - c) 1-phenylpropan-2-ol
 - d) 1-phenylpropan-1-ol
- 173. In the reaction,



The major product *A* is

- 174. (CH₃)₃CMgCl on reaction with D₂O gives:
 - a) $(CH_3)_3CD$
- b) $(CH_3)_3OD$
- c) $(CD_3)_3CD$
- d) $(CD_3)_3OD$

- 175. Grignard reagent shows addition on:
 - a) >C=O
- b) —C≡N
- c) > c = s
- d) All of these
- 176. When tetrahydrafuran is treated with excess HI, the product formed is
 - a) 1, 4-diiodobutane

b) 1, 4-butanediol

c) 2-iodotetrahydrofuran

- d) 4-iodo-1-butanol
- 177. Lodoform can be used in medicine as:
 - a) Anaesthetic
- b) Antiseptic
- c) Analgesic
- d) Antifebrin
- 178. A mixture of two organic compounds was treated with sodium metal in ether solution. Isobutane was obtained as a product. The two chlorine compounds are:
 - a) Methyl chloride and propyl chloride
 - b) Methyl chloride and ethyl chloride
 - c) Isopropyl chloride and methyl chloride
 - d) Isopropyl chloride and ethyl chloride
- 179. Wurtz's reaction involves the reduction of alkyl halide with
 - a) Zn/HCl
- b) HI

- c) Zn/Cu couple
- d) Na in ether

180. In the following sequences of reactions;

$$CH_3CH_2CH_2Br \xrightarrow{KOH(alc.)} (A)$$

- (B) $\xrightarrow{KOH(aq.)}$ (C) the end product (C) is:
- a) Propene
- b) Propyne
- c) Propan-l-ol
- d) Propan-2-ol
- 181. When CHCl₃ is boiled with NaOH, it gives
 - a) Formic acid

b) Trihydroxy methane

c) Acetylene

- d) Sodium formate
- 182. Which of the following compounds has the highest boiling point?
 - a) CH₃ CH₂CH₂Cl

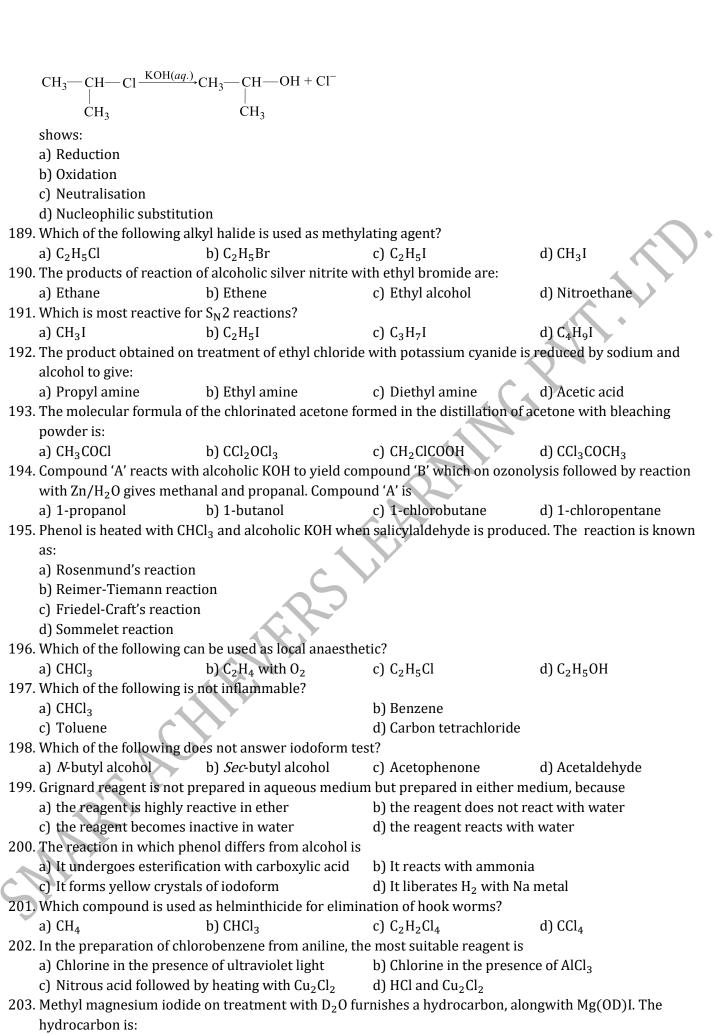
b) CH₃CH₂CH₂CH₂Cl

c) CH₃CH(CH₃)CH₂Cl

- d) $(CH_3)_3$ CCl
- 183. Which one is liquid at room temperature?
 - a) CH₃Cl
- b) C_2H_5Cl
- c) CH₃Br
- d) C₂H₅Br
- 184. The organic chloro compound, which shows complete stereochemical inversion during an S_N 2 reaction is
 - a) $(C_2H_5)_2$ CHCl
- b) $(CH_3)_3CCl$
- c) $(CH_3)_2$ CHCl
- d) CH₃Cl
- 185. The best method for the conversion of an alcohol into an alkyl chloride is by treating the alcohol with
 - a) PCl₂

b) PCl₅

c) SOCl₂in presence of pyridine


- d) dry HCl in the presence of anhydrous ZnCl₂
- 186. Which compound is used in cooling?
 - a) CHCl₃
- b) CCl₄

c) CF₄

d) CCl₂F₂

- 187. Which is finally produced when acetylene reacts with HCl?
 - a) CH₂=CHCl
- b) CH₃CHCl₂
- c) ClCH=CHCl
- d) None of these

188. The reaction,

c) CH₄

a) CH₃D

b) CH₃CH₂D

204. A Grignard reagent is prepared by reacting magnesium with:

d) None of these

205	a) Methyl amine b) Diethyl ether Identify <i>A</i> and <i>B</i> in the following reaction	c) Ethyl iodide	d) Ethyl alcohol
	$C_2H_5Cl \xrightarrow{A} C_2H_5OH \xleftarrow{B} C_2H_5Cl$		
	a) A= aqueous KOH; B= AgOH	b) $A=$ alcoholic KOH/ Δ ; E	3=aqueous NaOH
	c) A= aqueous NaOH; B= AgNO ₂	d) $A = AgNO_2$; $B = KNO_2$	2
206	A yellow precipitate is obtained when aqueous AgNO	$ ho_3$ is added to a solution of	the compound:
	a) CCl ₃ CHO b) CHI ₃	c) CHCl ₃	d) C ₆ H ₅ CH ₂ Cl
207	Which statement is correct?		
	a) C_2H_5Br reacts with alcoholic KOH to form $C_2H_5OH_5$		
	b) C ₂ H ₅ Br when treated with metallic sodium gives of		
	c) C_2H_5Br when treated with sodium ethoxide forms	s diethyl ether	
200	d) C ₂ H ₅ Br with AgCN forms ethyl cyanide		A Y
208	Phosgene is a common name for:		D C 1 11 1
200	a) CO ₂ and PH ₃ b) Phosphoryl chloride	•	d) Carbon tetrachloride
209	The alkyl halide which does not give white precipitat		
210	a) Ethyl chloride b) Allyl chloride	c) Isopropyl chloride	d) Vinyl chloride
210	An alkyl halide reacts with equivalent amount of NH a) Amide b) Cyanide	c) Amine	d) None of these
211	a) Amide b) Cyanide The combination which produces <i>t</i> -butyl alcohol wh		,
411	a) $CH_3MgBr + CH_3COCH_3$	en deateu with drighard re	eagent.
	b) C ₂ H ₅ MgBr + CH ₃ COCH ₃		
	c) CH ₃ MgBr + (CH ₃) ₂ CHOH		
	d) $CH_3MgBr + (CH_3)_3COH$		
212	Methyl chloride on treatment with potassium cyanid	e followed by hydrolysis y	ields:
	a) HCOOH b) CH ₃ COOH	c) CH ₃ CN	d) CH ₃ COOK
213	9.65 C of electric current is passed through fused anl		, ,
	thus, obtained is completely converted into a Grigna	_	_
	reagent obtained is		
	a) 5×10^{-4} b) 1×10^{-4}	c) 5×10^{-5}	d) 1×10^{-5}
214	A bromoalkane 'X' reacts with magnesium in dry eth		he reaction of 'Y' with
	methanal followed by hydrolysis yield an alcohol have	ing molecular formula C ₄ H	I ₁₀ 0. The compound 'X' is
	a) Bromoethane b) Bromomethane	c) 1-bromopropane	d) 2-bromopropane
215	$C_2H_5Br \xrightarrow{KCN} (A) \xrightarrow{Hydrolysis} (B)$		
	The compound (B) in above reaction is:		
	a) Ethylene chloride b) Acetic acid	c) Propionic acid	d) Ethyl cyanide
216	A salt solution is treated with chloroform drops a		
	becomes violet, solution contains:		-
	a) NO ₂ b) NO ₃	c) Br ⁻	d) I ⁻
217	Which of the following is least reactive in a nucleoph		,
	a) (CH ₃) ₃ CCl b) CH ₂ =CHCl	c) CH ₃ CH ₂ Cl	d) CH ₂ =CHCH ₂ Cl
218	Ethylidine dichloride (CH ₃ CHCl ₂) can be prepared by	- 0 -	<u>-</u>
	a) C ₂ H ₆ b) C ₂ H ₄	c) C ₂ H ₂	d) All of these
219	Which of the following statements is true?		
	a) Allyl chloride is more reactive than vinyl chloride		
	b) Vinyl chloride is as reactive as allyl chloride		
	c) Vinyl chloride is more reactive than allyl chloride $$		
	d) Both of them are more reactive than chlorobenzer	ne	
220	An alkyl halide (RX) reacts with Na to from 4, 5-dietl	nyloctane. Compound RX is	
	a) CH_3 $(CH_2)_3$ Br	b) CH ₃ (CH ₂) ₂ CH(Br)CH ₂	CH ₃
	c) CH_3 (CH_2) ₃ $CH(Br)CH_3$	d) $CH_3(CH_2)_5$ Br	

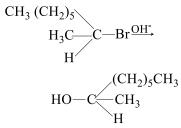
221. PCl ₅ reacts with propanone, to give:		
a) Gem dichloride b) Vic dichloride	c) Propanal	d) Propane chloride
222. Which is not present in Grignard reagent?		
 a) Carboxylic radical represented by COOH 		
b) Magnesium represented by Mg		
c) Alkyl radical represented by R		
d) Halide radical represented by X		
223. Alkyl iodide reacts with NaCN to give alkyl cyanide	and small amount of alkyl i	socvanide. Formation of
these two products is due to the	and oman amount of amy in	socyamaer i ermatien er
a) ionic character of NaCN	b) nucleophilic character	of CN-
c) ambidentate character of CN ⁻	d) Electrophilic character	
•	u) Electrophinic character	TOTCH
224. Which of the following gives iodoform test?		_ Y
a) CH ₃ – CH ₂ (OH)		4
b) C ₂ H ₅ CHO		4 >
c) $(CH_2OH)_2$		
d) None of the above		X.
225. C ₂ H ₅ Br can be obtained in the laboratory by the act	tion of ethyl alcohol with:	
a) KBr b) NH ₄ Br	c) Br ₂	d) KBr and conc. H ₂ SO ₄
226. Predict the product,	1/3	
ОН		
(i) PBr ₃		
(ii) alc.KOH		
OH \	Br	^
OH A		
a) b) b)		d)
227. Trichloro acetone reacts with lime water to form:		
a) CH ₃ CHO b) CHCl ₃	c) CH ₃ Cl	d) CH ₃ OH
228. When 32.25 g of ethyl chloride is subjected to dehyd		2 0
formed is 50%. The mass of the product formed is (-	
a) 14 g b) 28 g	c) 64.5 g	d) 7 g
229. Which one of the following possess highest m.pt. ?	0) 01.0 g	α), β
	c) <i>m</i> - dichlorobenzene	d) <i>p</i> - dichlorobenzene
230. Which of the compounds when brominated turns to		
a) Cis-2-butene b) Iso-butane	c) Butane	d) <i>Trans-</i> 2-butene
231. Iodoform can be obtained on warming NaOH and io		
) CIT CIT CIT(OT) CIT	0	
a) $CH_3 - CH_2 - CH(OH)CH_3$	b)	
	$(\mathrm{CH_3})_2\mathrm{CH} - \mathrm{C} - \mathrm{C_2H_5}$	
$CH_3 - C - OCH_3$		
c)	d) $(CH_3)_3 CCH_2OH$	
0		
232. 1-chlorobutane on reaction with alcoholic potash gi	ves	
a) 1-butene b) 1-butanol	c) 2-butene	d) 2-butanol
233. S _N 1 reaction is favoured by:		
a) Non-polar solvents		
b) More no. of alkyl group on the carbon atom attac	ched to the halogen atom	
c) Small groups on the carbon attached to the halog	gen atom	
d) None of the above		
234. What mass of isobutylene is obtained from 37 g o	f tertiary butyl alcohol by	heating with 20% H ₂ SO ₄ at
,		2 7

	363 K, if the yield is 65%?	?		
	a) 16 g	b) 18.2 g	c) 20 g	d) 22 g
235.	, ,	, ,	ution by S _N 2 mechanism be	
	a) Steric hindrance	b) Inductive effect	c) Instability	d) Insolubility
236.	,	_	nd 'Y' in the following set o	,
_00.	$CH_3CH_2CH_2Br \xrightarrow{\prime X\prime} Produc$			
	X = dilute NaOH aq.; 2			
	Y= HBr/acetic acid; 20			
	b) $X = \text{conc.}$, alc. NaOH; 80 $Y = \text{HBr/acetic acid}$; 20			
	X = fibry acedic acid, X			4
	c) $Y = Br_2/CHCl_3$; 0°C	711, 20 G		
	=-)° C		
	d) $X = \text{conc.}$, alc. NaOH; 80 $Y = \text{Br}_2/\text{CHCl}_3$; 0°C	<i>y</i> u		
237.			f products are obtained. Ho	w many isomers the
_0,.	mixture contains?	eron or propune, inniture of	products are obtained fro	Winding asomers the
	a) 2	b) 3	c) 4	d) 5
238.	The number of stereoisor	,	0) 1	, 0
	CH_3 — $CH = CH$ — $CHBr$ —		1/3	
	a) 3	b) 6	c) 2	d) 4
239.	=	n of chloroform employs a		w) -
	a) Sodium chloride	b) Chlorine gas	c) Calcium hypochlorite	d) Phosgene
240.	$RX + A \rightarrow RNC$,		, 0
	Ais			
	a) AgCN	b) KCN	c) NaCN	d) HCN
241.	On mixing a certain alkan	e with chlorine and irradia	ting it with ultraviolet light	, it forms only one
	monochloroalkane.			
	a) Propane	b) Pentane	c) Iso-pentane	d) Neo-pentane
242.	Formation of alkane by the	ne action of Zn on alkyl hal	ide is called:	
	=		c) Cannizzaro's reaction	d) Frankland's reaction
243.		g is prepared by the reaction	on of acetone with:	
	-	b) Ethyl chloride	c) Chloroform	d) Ethylene dichloride
244.	Which is gem dihalide?	\		
	a) CH ₃ · CHBr ₂	b) CH ₂ Br · CH ₂ Br	c) $CH_3 \cdot CHBr \cdot CH_2Br$	d) None of these
245.	Which of the following is			
	a) Ammoniacal solution of			
	b) Ethereal solution of C ₂			
	c) Alcoholic solution of K			
246	d) Aqueous solution of ca		h hlaashina nassadania	
		eaction of ethyl alcohol with	= =	4) CII CIIO
	a) CHCl ₃ Chloral is:	b) CCl ₃ CHO	c) CH ₃ COCH ₃	d) CH ₃ CHO
	a) CCl ₃ CHO	b) CCl ₃ · CO · CH ₃	c) CCl ₃ · CO · CCl ₃	d) CCl ₃ · CH ₂ OH
	, ,	mpounds undergo E_2 reactions	, ,	u) GG13 GT12OT1
2 10.	$(CH_3)_2 C \cdot CH_2CH_3$	impounds undergo 12 react	nons more easily.	
	ı			
	a)			
	Br			
	b) CH ₃ (CH ₂) ₂ CH ₂ Cl			
	c) $CH_3(CH_2)_2CH_2I$			
	d) I			

- 249. Decomposition of benzene diazonium chloride by using Cu₂Cl₂/HCl to form chlorobenzene is
 - a) Raschig's reaction

b) Sandmeyer's reaction

c) Kolbe's reaction


- d) Cannizaro's reaction
- 250. Isobutyl chloride and butyl chloride are:
 - a) Position isomers
- b) Chain isomers
- c) Functional isomers
- d) Metamers

251. $CH_3Br + Nu^- \rightarrow CH_3 - Nu + Br^-$

The decreasing order of the rate of the above reaction with nucleophiles (Nu⁻) A to D is [Nu⁻ = (A)PhO⁻,(B)AcO⁻,(C)HO⁻,(D)CH₃O⁻]

- a) D > C > A < B
- b) D > C > B > A
- c) A > B > C > D
- d) B > D > C > B

252. The reaction described below is:

a) $S_E 1$

b) S_N2

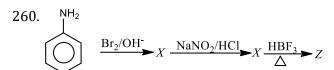
c) S_v1

d) $S_E 2$

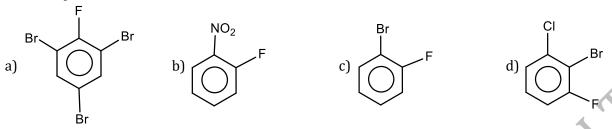
253. Identify 'Z' in the following reaction series,

$$\mathrm{CH_3}\text{-}\mathrm{CH_2}\mathrm{CH_3}\mathrm{Br}\xrightarrow{aq.\mathrm{NaOH}}(X)\xrightarrow{\mathrm{Al_2O_3}}(Y)\xrightarrow{\mathrm{HOCl}}(Z):$$

Mixture of


- CH₃-CH-CH b) | | OH Cl
- c) | CH CH₂
- d) CH₃-CH-CH₂ | | | | Cl Cl
- 254. Which of the following when heated with KOH and primary amine gives carbylamine test?
 - a) CHCl₂
- b) CH₂Cl₂
- c) CH₃OH
- d) CCl₄
- 255. The reagent used for dehalogenation of 1,2-dichloropropane is:
 - a) Zn dust
- b) Zn—Hg
- c) Na

d) Zn-Cu couple


- 256. CH₃NH₂ reacts with CH₃MgX to give:
 - a) Acetone
- b) Alcohol
- c) Methane
- d) Ethane

- 257. Which of the following haloalkanes is most reactive?
 - a) 1-chloropropane
- b) 1-bromopropane
- c) 2-chloropropane
- d) 2-bromopropane

- 258. Iodoform is formed when ethanol is heated with:
 - a) Potassium iodide and sodium hydroxide
 - b) Iodine and aqueous potassium hydroxide
 - c) Chloroform and iodine
 - d) Iodine and potassium iodide
- 259. Tertiary alkyl halides are practically inert to S_N2 mechanism because of:
 - a) Insolubility
- b) Instability
- c) Inductive effect
- d) Steric hinderance

The final product, is

- 261. Carbon tetrachloride on treatment with Fe/H₂O gives:
 - a) Chloromethane
- b) Methane
- c) Chloroform
- d) Methylene chloride

- 262. Which group is displaced by a halogen group?
 - a) Hydroxyl (OH) group
 - b) Aldehyde (—CHO) group
 - c) Nitro (-NO₂) group
 - d) Keto (C=0) group
- 263. A small amount of alcohol is usually added to CHCl₃ bottles because:
 - a) It retards the anaesthetic property of CHCl₃
 - b) It retards the oxidation of CHCl₃ to phosgene
 - c) It converts any phosgene formed to harmless ethyl carbonate
 - d) Both (b) and (c)
- 264. Which one is correct?
 - a) Freon-14 is CF₄; Freon-13 is CF₃Cl; Freon-12 is CF₂Cl₂ and Freon-11 is CFCl₃
 - b) Freons are chlorofluorocarbons
 - c) Freons are used as refrigerants
 - d) All of the above
- 265. The reactivity order of alkyl halides depends upon:
 - a) Nature of alkyl group only
 - b) Nature of halogen atom only
 - c) Nature of both alkyl group and halogen atom
 - d) None of the above
- 266. *p*-nitrobromobenzene can be converted to *p*-nitroaniline by using NaNH₂. The reaction proceeds through the intermediate named
 - a) Carbocation
- b) Carbanion
- c) Benzyne
- d) Dianion
- 267. Reagent not used to prepare an alkyl halide from an alcohol is:
 - a) HCl + ZnCl₂
- b) NaCl

c) PCl₅

- d) SOCl₂
- 268. The catalyst used in the preparation of an alkyl chloride by the action of dry HCl on an alcohol is
 - a) anhy. AlCl₃
- b) FeCl₃

- c) anhy. ZnCl₂
- d) Cu
- 269. Following is the substitution reaction in which -CN replaces -Cl.

$$R - Cl + KCN \xrightarrow{\Delta} R - CN + KCl$$
alcoholic

To obtain propanenitrile, R - Cl should be

- a) Chloroethane
- b) 1-chloropropane
- c) Chloromethane
- d) 2-chloropropane
- 270. $CH_3Br + O\overline{H} \rightarrow CH_3OH + Br^-$ reaction proceeds by S_N2 mechanism. Its rate is dependent on the concentration of
 - a) CH₃Br, OH
- b) CH₃Br only
- c) OH only
- d) CH₃Br, CH₃OH

- 271. If chloroform is left open in air in presence of sun-rays:
 - a) Explosion takes place

- b) Poisonous phosgene gas is formed
- c) Polymerization takes place
- d) No reaction takes place
- 272. Westrosol is:
 - a) Acetylene tetrachloride
 - b) Acetylene dichloride
 - c) Trichloroethyne
 - d) 1,1,2-trichloroethene
- 273. The compound formed on heating chlorobenzene with chloral in the presence of concentrated sulphuric acid is
 - a) Gammexane
- b) DDT

- c) Freon
- d) Hexachloroethane

- 274. The C—Mg bond in CH₃CH₂MgBr is:
 - a) Ionic

- b) Non-polar covalent
- c) Polar covalent
- d) Hydrogen

- 275. In S_N 1 reaction, the first step involves the formation of:
 - a) Free radical
- b) Carbanion
- c) Carbocation
- d) Final product

- 276. The alkyl group of Grignard reagent acts as:
 - a) Free radical
- b) Carbonium ion
- c) Carbanion
- d) None of these

- 277. Methyl ketone is identified by
 - a) Iodoform test
- b) Fehling solution
- c) Tollen's reagent
- d) Schiff's reagent

278. Product on monobromination of this compound is

b) H₃C CH₅

$$\text{d}) \xrightarrow{\text{H}_3\text{C}} \text{CH}_3$$

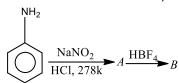
- 279. Which of the following is added to chloroform to slow down its aerial oxidation in presence of light?
 - a) Carbonyl chloride
- b) Ethyl alcohol
- c) Sodium hydroxide
- d) Nitric acid

- 280. When a solution of AgNO₃ is added to pure CCl₄:
 - a) A pale yellow precipitate is formed
 - b) Curdy white precipitate is formed
 - c) No precipitate is formed
 - d) None of the above
- 281. A compound containing two —OH groups attached with one carbon atom is unstable but which one of the following is stable?


d) None of these

282. Westron is:

,	Cl=CHCl nalogen derivative	b) CHCl ₂ · CHCl ₂ of alkanes with alcoholic K	,	d) None of these
a) Alk	ane			
b) Alk	ene			
c) Alk	yne			
-	yclic hydrocarbon			
284. The re	action RCl + Nal -	$\stackrel{\text{cetone}}{\longrightarrow} R - I + \text{NaCl is known}$	wn as:	
	rtz reaction	b) Fittig reaction	c) Frankland's reaction	d) Finkelstein's reaction
-	drogen atom in ch		,	
a) Aci	=	b) Basic	c) Neutral	d) None of these
-		following reaction is	,	
Me	→Br	J		
	F PhSNa	_		
	dimethyl formar	mide		
O ₂ N		Me、SPh	Ma Du 4	M- ODI-
Me、	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SFII	Me Br	Me
-)	F	F F	SPh	SPh
a)		b)	c)	d)
	O ₂ N	NO	NO ₂	NO.
	_	NO ₂	_	NO_2
		opyl chloride can be disting	uished by:	
-	oholic AgNO ₃ nparing their colou	uro.		
-				
=	ning the compound leous KOH solution			
, ,	following sequence	A V		
	$\operatorname{rr} \xrightarrow{\operatorname{AgCN}} X \xrightarrow{\operatorname{Reduct}}$			
		b) Isopropylamine	-, -, -	d) ethylmethyl amine
		ferentially hydrolysed by S		
a) CH ₃		b) CH ₃ CH ₂ Cl	c) CH ₃ CH ₂ CH ₂ Cl	d) $(CH_3)_2C \cdot Cl$
		vith excess of ethyl chloride	e will yield:	
=	thyl amine			
b) Eth				
	raethyl ammonium	ı chloride		
-	chyl amine			
		kyl halides, the order of boi		
	nary < secondary	-	b) primary > secondary <	=
	nary < secondary	-	d) primary > secondary >	
-			neric compounds. Identify t	he statement which is not
	able to both of ther			
-	ct with alcoholic p			
-	• •	otash and give the same pro	oducts	
-	dihalides			
-	wer Beilstein's tes			
	g—Br bond in CH ₃			15 M C.1
a) Ion	ıC	b) Non-polar	c) Covalent	d) None of these


•	xidised by air in the presence	O .	
a) Formyl chloride	b) Trichloro methanol	c) Phosgene	d) Formaldehyde
=	ne one that gives positive iod	oform test upon reaction w	ith I ₂ and NaOH is:
a) CH ₃ CH ₂ CH(OH)CH ₂	СH ₃		
b) C ₆ H ₅ CH ₂ CH ₂ OH			
c)			
c) CH ₃ —CHCH ₂ OH			
d) PhCHOHCH ₃			
296. 2-bromopentane is hea	ated with potassium ethoxide	in ethanol. The major prod	luct is:
a) <i>trans</i> -pent-2-ene	b) 2-ethoxy pentane	c) pent-1-ene	d) <i>cis</i> -pent-2-ene
297. Bottles containing C ₆ H	₅ I and C ₆ H ₅ CH ₂ I lost their or	riginal labels. They were lab	elled A and B for testing. A
and B were separately	taken in a test tube and boile	ed with NaOH solution. The	end solution in each tube
was made acidic with d	lilute HNO_3 and then some A	${ m gNO}_3$ solution was added. S	Substance B gave a yellow
precipitate. Which one	of the following statements i	s true for this experiment?	
a) A was C ₆ H ₅ I		b) A was C ₆ H ₅ CH ₂ I	
c) B was C_6H_5I		d) Addition of HNO ₃ was	unnecessary
298. $2CHCl_3 + O_2 \stackrel{X}{\rightarrow} 2COCl_2$	- + 2HCl	4.13	
In the above reaction λ			
a) An oxidant	b) A reductant	c) Light and air	d) None of these
•	(a) in following reaction series		,
$CH_3CN \xrightarrow{Na/C_2H_5OH} (X)$	-		
	\longrightarrow $(I) \rightarrow$		
$(Z) \xrightarrow{\text{Tollen's}} (A)$:		G KY	
a) CH ₃ CHO	b) CH ₃ CONH ₂	c) CH ₃ COOH	d) CH ₃ —CH ₂ —NHOH
300. Isocyanide test is used	, , ,		, , ,
a) Primary alcohols	b) Primary amines	c) Secondary amines	d) Secondary alcohols
•	ned by boiling CHCl ₃ with cau	•	,
a) CH ₃ COONa	b) HCOONa	c) $Na_2C_2O_4$	d) CH ₃ OH
302. In the following sequer	nces of reactions:	,	, ,
$CH_3CH_2CH_2I \xrightarrow{KOH(alc.)} ($	$(A) \xrightarrow{Br_2} (B) \xrightarrow{NaNH_2/NH_3} (C)$		
the end product (C) is:			
a) Alkene	b) Alkanol	c) Alkyne	d) Alkyl amine
	compound give yellow preci	, ,	a) mkyr amme
505. Which of the following	compound give yenow preen	pitate with 12 and 14aon.	
a) CH ₃ OH	b) CH ₃ CH ₂ CH ₂ OH	c) $C_2H_5OC_2H_5$	d) CH ₃ CH ₂ OH
304. In the reaction of phen	ol with CHCl ₃ and aqueous N	aOH at 70°C, the electrophi	le attacking the ring is:
a) CHCl ₃	b) CHCl ₂	c) CCl ₂	d) COCl ₂
305. The product formed in	the reaction of HX with (CH ₃	$_3)_2$ C=CH ₂ is:	
a) $(CH_3)_2CXCH_3$	b) $(CH_3)_2CH \cdot CH_2X$	c) $(CH_3)_2CHCH_3$	d) $(CH_3)_2CXCH_2X$
306. The molecular formula	of diphenyl methane is		
CH ₂	\longrightarrow is $C_{13}H_{12}$		
/	·11 1	C-1 1 1 · 1	11 11
	somers are possible when on		
a) 6	b) 4	c) 8	d) 7
= = =	<i>p</i> -nitroiodobenzene from <i>p</i> -r		
a) NaNO ₂ /HCl followed		b) NaNO ₂ /HCl followed b	DY CUCN
c) LiAlH ₄ followed by I		d) NaBH ₄ followed by I ₂	
308. Iodoform test is not giv	=	a) CII COCII	4) C II OII
а) НСНО	b) CH ₃ CHO	c) CH ₃ COCH ₃	d) C ₂ H ₅ OH

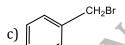
509. Fires result from the combustion of alkan metals can	•	
a) CCl ₄ b) Sand	c) Water	d) Kerosene
310. The reactivities of methyl chloride (A) propyl chlori	ide (B) and chlorobenzene	(C) are in the order:
a) $A > B > C$ b) $C > B > A$	c) $A > C > B$	d) $B > A > C$
311. A sample of chloroform before being used as an anae	•	-,
a) AgNO ₃ solution	estilette is tested by.	
· - ·		
b) AgNO ₃ solution after boiling with alc. KOH		
c) Fehling's solution		
d) Ammoniacal Cu ₂ Cl ₂		
312. Ethylene dichloride can be prepared by adding HCl t	:0:	
a) Ethane b) Ethylene	c) Acetylene	d) Ethylene glycol
313. Which of the following can be obtained by halide exc	change method?	
a) CH_3Cl b) C_2H_5Cl	c) CH ₃ I	d) CH ₃ Br
314. Grignard reagent undergoes:	cy dilar	u) 0.13.51
a) Nucleophilic substitution		
b) Nucleophilic addition		
c) Both (a) and (b)	. (4	Y
d) None of the above		
315. Ethylene on treatment with chlorine gives:		
a) Ethylene dichloride		
b) Ethylene chlorohydrin		
c) CH ₄		
d) C_2H_6		
316. Ethylidene dichloride on treatment with aq . KOH given	108.	
CH ₂ OH	c) HCHO	d) ÇHO
a) CH ₃ CHO b)	cy riciro	
,		СНО
CH ₂ OH	alaahalta aa atta aataah aa	
317. The bad smelling substance formed by the action of		
a) Phenyl isocyanide b) Nitrobenzene	c) Acetylene	d) Chlorobenzene
318. In the reaction,		
$2A + \text{dry oxide} \xrightarrow{\Delta} \text{ether} + 2\text{Ag}X$		
A is a/an		
a) Primary alcohol b) Acid	c) Alkyl halide	d) Alcohol
319. Ethyl alcohol is used as a preservative for chloroform	•	a) Theolioi
	b) Prevents decompositio	n of ablamatame
a) Prevents aerial oxidation of chloroform		
c) Decomposes phosgene to CO and Cl ₂	d) Removes phosgene by	converting it to ethyl
	carbonate	
320. Anhydrous HCl gas, on passing through ethyl alcoho		
a) Ethane b) Ethyl chloride	c) Ethene	d) CCl ₄
321. Which one of the isomers of cyclohexane hexachloric	de is strong pesticide?	
a) α b) β	c) γ	d) δ
322. Which one of the following does not give iodoform?		
9		
a) / C C C C C C C C C C	b) CH ₃ OH	
C—CH ₃	2) 3113 311	
	CH ₃ —CH—CH ₂	
c) CH ₃ CH ₂ OH	CH_3 — CH — CH_3	
, , ,	OH	
323. The IUPAC name of the compound,		

- a) An ester
- b) A nitro compound
- c) An amide
- d) A nitrile

341. In the chemical reactions,

The compounds 'A' and 'B' respectively are

- a) Nitrobenzene and fluorobenzene
- b) Phenol and benzene
- c) Benzene diazonium chloride and fluorobenzene
- d) Nitrobenzene and chlorobenzene
- 342. Chloroform, when kept open, is oxidised to
 - a) CO₂


- b) COCl₂
- c) CO_2 , Cl_2
- d) None of these

343. $X \xrightarrow{\text{AgNO}_3} Y \text{ Yellow or white ppt.}$

Which of the following cannot be *X*?

b) $(CH_3)_2CHCl$

HALOALKANES AND HALOARENES

CHEMISTRY

					:	ANS	W	ER K	ΕY						
1)	d	2)	a	3)	b	4)	b	169)	b	170)	С	171)	d	172)	a
5)	a	6)	a	7)	a	8)	b	173)	a	174)	a	175)	d	176)	a
9)	a	10)	С	11)	a	12)	d	177)	b	178)	c	179)	d	180)	d
13)	b	14)	d	15)	b	16)	b	181)	d	182)	b	183)	d	184)	d
17)	c	18)	b	19)	a	20)	a	185)	c	186)	d	187)	b	188)	d
21)	a	22)	b	23)	b	24)	a	189)	d	190)	d	191)	a	192)	a
25)	b	26)	b	27)	a	28)	b	193)	d	194)	c	195)	b	196)	c
29)	d	30)	b	31)	b	32)	a	197)	d	198)	a	199)	d	200)	c
33)	d	34)	b	35)	d	36)	b	201)	d	202)	c	203)	a	204)	c
37)	a	38)	d	39)	c	40)	b	205)	a	206)	b	207)	c	208)	c
41)	d	42)	C	43)	a	44)	a	209)	d	210)	c	211)	a	212)	b
45)	b	46)	d	47)	a	48)	b	213)	C A	214)	c	215)	c	216)	d
49)	d	50)	b	51)	b	52)	a	217)	b	218)	c	219)	a	220)	b
53)	b	54)	b	55)	a	56)	d	221)	a	222)	a	223)	c	224)	a
57)	a	58)	a	59)	d	60)	d	225)	d	226)	a	227)	b	228)	d
61)	b	62)	a	63)	a	64)	C	229)	d	230)	d	231)	a	232)	a
65)	a	66)	a	67)	d	68)	a	233)	b	234)	b	235)	a	236)	b
69)	c	70)	C	71)	d	72)	d	237)	C	238)	d	239)	c	240)	a
73)	c	74)	C	75)	a	76)	a	241)	d	242)	d	243)	c	244)	a
77)	c	78)	c	79)	d	80)	b	245)	b	246)	a	247)	a	248)	d
81)	c	82)	c	83)	b	84)	b	249)	b	250)	b	251)	a	252)	b
85)	a	86)	b	87)	b	88)	c	253)	b	254)	a	255)	a	256)	c
89)	b	90)	a	91)	b	92)	b	257)	d	258)	b	259)	d	260)	a
93)	c	94)	b	95)	c	96)	b	261)	C	262)	a	263)	d	264)	d
97)	a	98)	a	99)	C	100)	C	265)	C	266)	c	267)	b	268)	C
101)	a	102)	a	103)	a	104)	d	269)	a	270)	a	271)	b	272)	d
105)	a	106)	d	107)	d	108)	a	273)	b	274)	c	275)	c	276)	C
109)	c	110)	a	111)	C	112)	a	277)	a	278)	b	279)	b	280)	C
113)	b	114)	b	115)	d	116)	d	281)	C	282)	b	283)	b	284)	d
117)	b 🗸	118)	b	119)	a	120)	a	285)	a	286)	a	287)	a	288)	d
121)	a	122)	b	123)	d	124)	C	289)	d	290)	c	291)	d	292)	b
125)	d	126)	a	127)	d	128)	a	293)	a	294)	c	295)	d	296)	a
129)	a	130)	d	131)	a	132)	d	297)	a	298)	c	299)	c	300)	b
133)	a	134)	b	135)	b	136)	a	301)	b	302)	c	303)	d	304)	C
137)	b	138)	a	139)	c	140)		305)	a	306)	b	307)	a	308)	a
141)	C	142)	d	143)	b	144)	a	309)	a	310)	a	311)	b	312)	d
145)	c	146)	C	147)	C	148)		313)	C	314)	c	315)	a	316)	a
149)	a	150)	a	151)	d	152)		317)	a	318)	c	319)	d	320)	b
153)	d	154)	a	155)	c	156)		321)	C	322)	b	323)	a	324)	d
157)	c	158)	C	159)	d	160)		325)	b	326)	С	327)	a	328)	a
161)	a	162)	d	163)	d	164)		329)	C	330)	b	331)	a	332)	b
165)	C	166)	a	167)	b	168)	b	333)	a	334)	a	335)	d	336)	d

337) d 338) d 339) a 340) a 341) c 342) b 343) a

SWART ACHIEVERS LEARNING RVII. LITE

HALOALKANES AND HALOARENES

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (d)

For positive iodoform test, alcohol molecule must have

OH
$$\begin{array}{c} \text{OH} \\ \text{Ph} - \text{CH} - \text{CH}_3 \xrightarrow{I_2 + \text{NaOH}} \text{CHI}_3 + \text{Ph} - \text{COO}^- \\ | \\ \text{OH} \end{array}$$

2 **(a)**

$$\begin{array}{c} \text{CH}_2\text{ClCH}_2\text{Cl} \xrightarrow{\text{KOH}(aq.)} \text{CH}_2\text{OHCH}_2\text{OH} \\ \text{Ethane-1,2-diol} \\ \text{CH}_3\text{CHCl}_2 \xrightarrow{\text{KOH}(aq.)} \text{CH}_3\text{CHO} \\ \text{Ethanal} \end{array}$$

3 **(b)**

$$R - X \xrightarrow{\text{KOH(aq.)}} R - \text{OH}$$

4 **(b**)

$$CH_3CH_2Cl \xrightarrow{KOH(alc.)} CH_2 = CH_2 + HCl$$

5 (a)

$$CS_2 + 2Cl_2 \rightarrow CCl_4 + 2S$$

6 (a)

$$CH_2Cl_2 \xrightarrow{HOH} CH_2(OH)_2 \xrightarrow[-H_2O]{HCHO}$$

8 **(b**)

HI reacts with C_2H_5OH even in absence of ZnX_2 . Larger is bond length, more is reactivity.

9 (a

Among alkyl halides, iodides are least stable, hence these form Grignard reagent easily. Hence, the correct order of reactivity in formation of Grignard reagent is

$$CH_3I > CH_3Br > CH_3CI$$

10 (c)

The I₂ has antiseptic nature.

11 (a)

This is Wurtz reaction. 2-chloropropane and chloromethane reacts in presence of dry ether t form 2-methyl propane.

$$CH_3 Cl + 2Na + Cl - CH - Ch_3 \xrightarrow{Ether}$$

$$CH_3$$

$$CH_3 - CH - CH_3 + 2NaCl$$

$$CH_3$$

13 **(b)**

Br is replaced by a nucleophile CN⁻.

15 **(b)**

A mixture of halides is formed.

16 **(b**

DDT and 666 (C₆H₆Cl₆ or benzene hexachloride) is the pair of strongest pesticides.

17 **(c**)

Thus, decomposition of CHI₃occurs.

18 **(b)**

$$CH_3X + KCN \rightarrow CH_3CN$$

19 (a)

$$CHCl_3 + HNO_3$$

$$\rightarrow$$
 CCl₃ · NO₂ + H₂O · CCl₃
· NO₂ is called chloropicrin.

20 (a

Aryl halides show resonance in their structure.

21 **(a)**

$$CCl_4 + H_2O(v) \rightarrow COCl_2 + 2HCl$$

23 **(b)**

In Wurtz reaction alkyl halide react with sodium in dry ether to produce alkane having double number of carbon atoms as in alkyl halide.

$$2R - X + 2Na \xrightarrow{\text{Dry ether}} R - R + 2NaX$$
 alkyl halide alkane

24 **(a)**

$$CH_3I + 6Ag + I_3HC \rightarrow C_2H_2 + 6AgX$$

26 **(b)**

This is the preparation method of DDT (dichloro diphenyl trichloroethane).

$$\begin{array}{c|c}
Cl \\
\hline
Cl_2 \\
\hline
FeCl_3
\end{array}$$
benzene (X) chlorobenzene (Y)

2 + CCl₃CHO
$$\frac{\text{H}_2\text{SO}_4}{\text{-H}_2\text{O}}$$

30 **(b)**

$$RCl + KCN \rightarrow RCN + KCl$$

$$alkyl$$

$$chloride$$

$$cyanide$$

$$\begin{array}{cccc} \text{CH}_3\text{Cl} & + & \text{KCN} & \rightarrow & \text{CH}_3\text{CN} & \xrightarrow{2\text{H}_2/\text{Ni}} & \text{CH}_3\text{CH}_2\text{NH}_2 \\ \text{methyl} & & \text{methyl} & & \text{ethyl amine} \\ \text{chloride} & & \text{cyanide} & & \text{(Primary amine)} \end{array}$$

31 **(b)**

An optically inactive compound forming optically active compound during a reaction always gives racemic mixture.

32 **(a)**

Friedel-Craft reaction: In this reaction alkyl halides react with aromatic compounds in presence of AlCl₃ or FeCl₃ to form alkyl substituted aromatic compounds.

benzene arkyr hand

33 **(d**)

Benzyl chloride is very reactive. It readily gives white precipitate with alcoholic ${\rm AgNO_3}$ at room temperature. It also readily undergoes nucleophilic substitution. Its structure is as follows

$$\begin{array}{ccc}
0 & 0 & \\
\parallel & \parallel & \parallel \\
CH_3 - C - CH_3 \xrightarrow{OI^-} CH_3 - C - CH_2I + OH^- \\
0 & 0 & \\
\parallel & \parallel & \parallel \\
CH_3 - C - CH_3I \xrightarrow{OI^-} CH_3 - C - CHI_2 + OH^- \\
0 & 0 & 0
\end{array}$$

27 **(a)**

 $\mathsf{CF}_3\mathsf{CHClBr}, i.e.$, haloethane is less hazardous and

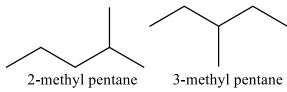
28 **(b**)

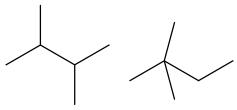
All the except ethyl isopropyl ketone gives iodoform test in this question.

$$C_2H_5$$
 C CH_3 CH_3 ethyl isopropyl ketone

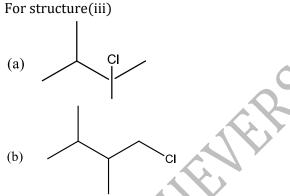
29 **(d)**

CH₃CH₂CH₂I and CH₃CHICH₃; note the position of iodine

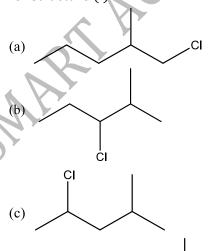


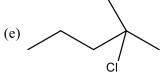

Vinyl chloride ($CH_2 = CH \cdot Cl$), on the other hand, is less reactive than benzyl chloride due to resonance.

$$\begin{bmatrix} \text{CH}_2 = \text{CH} - \vdots & \bullet \\ \text{CH}_2 = \text{CH} = \text{CH} \end{bmatrix}$$


35 **(d)**

The possible isomers of hexane are




2,3-dimethyl butane 2,2-dimethyl butane Out of these structure (iii) and (i) have respectively minimum and maximum number of monochloro derivatives

[Only 2 monochloro derivatives (minimum) are possible]

For structure (i).

[5 monochloro derivatives (maximum) are possible]

- 37 (a) $CHCl_3 + 3C_2H_5ONa \rightarrow CH(OC_2H_5)_3 + 3NaCl$ Ethy ortho formate
- 38 **(d)** $2CHCl_3 + \frac{1}{2}O_2$ $\rightarrow COCl_2$ $+ H_2O_1 COCl_2 i. e., phosgene is poisonous gas.$
 - Iodoform test is given by only those compounds which conatain either $CH_3C = O$ or $CH_3CH OH$ group

$$\begin{vmatrix} & & & & & & \\ & (a) \ CH_3CH - OH & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Hence, propanal-1 due to absence of above given groups, does not give positive iodoform test.

(b)
At higher temperature, esters undergoes
hydrolysis to give alcohol and acid. In (b) ethyl
alcohol is formed which respond for positive
iodoform test.

 $RCOOR' \xrightarrow{\text{HOH}} R'\text{OH} + RCOOH$

40

- 41 (d)
 CHCl₃ + HNO₃ → CCl₃NO₂ + H₂O
 Chloroform nitric acid chloropicrin
 Thus, the molecular formula of chloropicrin is CCl₃NO₂.
 42 (c)
 - (c)
 The reaction between *tert*-butyl bromide and hydroxide ion yields *tert*-butyl alcohol and follows the first order kinetics. The rate of

reaction depends upon the concentration of only one reactant, which is tertiary butyl bromide.

$$(CH_3)_3CBr$$
 Slow H_3C CH_3 CH_3 CH_3

$$CH_3$$
 \oplus
 $+ OH^ Step II$
 $fast$
 $CH_3)_3COH$
 H_3C
 CH_3

43 **(a)**

Chloroform reacts with conc. HNO₃ to give chloropicrin which is used as tear gas.

$$\begin{array}{c} {\rm CHCl_3 + HNO_3} \stackrel{\Delta}{\longrightarrow} {\rm CCl_3NO_2 + H_2O} \\ {\rm chloropicrin} \end{array}$$

44 (a)

More is the branching in molecule, lesser is surface area, lower is attraction, lower is b.p.

45 **(b)** $C_2H_5OH + SOCl_2 \rightarrow C_2H_5Cl + SO_2 + HCl$

46 (d)

 ${
m Cl_2}$ formed at anode reacts with ${
m C_2H_5OH}$ in presence of NaOH (formed in reaction) to give haloform reaction.

47 (a)

Benzyl chloride is more reactive than alkyl halides. Benzyl carbocation is stabilised by resonance hence, benzyl chloride easily gives nucleophilic substitution reaction.

48 **(b)**

 $S_N 1$ order.

Benzyl > Allyl > 3° > 2° > 1° > Phenyl halide.

49 **(d**)

Iodoform test is given by compounds which have CH₃CO or CH₃CHOH group.

$$\begin{array}{ccc} & & & & \\ & & & & \\ (a)H_3C-C-CH_3 & & (b)CH_3CH_2OH \\ & & & & \\ & & & \\ & & & \\ OH & & & \\ \end{array}$$

Iso-propyl alcohol

$$\begin{array}{c}
0\\ \parallel\\ (c) CH_3 - C - H\\ ethanal\\ CH_2OH\\ (d)\end{array}$$

benzyl alcohol

(i) iso-propyl alcohol, ethanol ad ethanal all have

 ${\rm CH_3CO}$ or CHOH group, therefore they give iodoform test.

(ii) Benzyl alcohol does not have CH₃CO – or CHOH group,

Therefore, it does not give iodoform test.

50 **(b)**

Follow Saytzeff's rule.

51 **(b)**

The lead deposited is exhaused out in the form of $PbBr_2$.

53 **(b)**

$$RX + Mg \xrightarrow{Ether} RMgX$$

54 **(b**)

$$CH_{3}Br + KCN \xrightarrow{-KBr} CH_{3}CN \xrightarrow{H_{3}^{+}O} CH_{3}COOH$$

$$\xrightarrow{LiAlH_{4}} CH_{3}CH_{2}OH$$

$$(A) \qquad (B)$$

(C)

56 **(d)** (CH₃)₃CCH₂CH₂Cl; halogen is attached on 1°

 $(CH_3)_3CCH_2CH_2CI$; natiogen is attached on 1 carbon.

57 **(a)**CCl₃
Br₂/Fe

As-CCl₃ group is meta -directing.

58 (a)

RMgF are unstable compounds.

59 **(d)**

Chloride is an 1° aliphatic carbon which is substituted easier in comparison to iodide which is arylic and more stable due to delocalisation hence, difficult to substitute.

60 **(d)** $CH_3CH_2CH_2CI + KCN \rightarrow CH_3CH_2CH_2CN + KCI$

61 **(b)**

Br is less reactive and more selective and thus, formation of 3° free radical will be the major product.

62 **(a)**

$$\begin{array}{c} \mathsf{CH_3CH_2CH_2Cl} \xrightarrow{\mathsf{KOH(alc.)}} \; \mathsf{CH_3CH} {=} \mathsf{CH_2} \\ \mathsf{CH_3CHClCH_3} \xrightarrow{\mathsf{KOH(alc.)}} \; \mathsf{CH_3CH} {=} \mathsf{CH_2} \end{array}$$

63 **(a)**

Larger is C—*X* bond length; more is reactivity.

64 **(c**

$$\label{eq:coon} \begin{split} \mathsf{CH_3COONa} + \mathsf{NaOH} &\longrightarrow \mathsf{CH_4} + \mathsf{Na_2CO_3} \\ &\quad \quad \downarrow \mathsf{Cl_2} \\ &\quad \quad \mathsf{CCl_4} \end{split}$$

66 **(a)**

In vinyl chloride, the C-Cl bond acquires some double bond character due to resonance.

$$CH_2$$
 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2

68 **(a)**

RCl and RBr can be prepared by free radical halogenation of alkanes while RF and RI cannot be prepared. With F_2 , the reaction is not only explosive but also brings cleavage of C-C bonds while with I_2 the reaction is too slow to be of any practical value.

70 **(c)**

$$C_2H_5Cl + AgCN \rightarrow C_2H_5NC + AgCl$$
(X)

Functional isomer of X is C_2H_5CN .

71 **(d)**

Benzyl carbonium ion is most stable and thus, its chloride is most reactive.

72 **(d)**

Tear gas is chloropicrin. It is obtained by the reaction of chloroform with nitric acid.

$$\begin{array}{c} \mathsf{CHCl}_3 \ + \ \mathsf{HNO}_3 \ \to \ \mathsf{CCl}_3 \mathsf{NO}_2 \ + \ \mathsf{H}_2 \mathsf{O} \\ & \mathsf{chloropicric} \end{array}$$

73 **(c**)

C—Cl bond is more polar due to more electronegativity difference.

76 **(a)**

The number of monochloro derivatives of a compound depends upon the type of hydrogen present in the compound. The structure of *neo*pentane is

- :It contains only one type of hydrogens.
- ∴ It will give only ony monochloro derivative

Vinyl chloride

Thus, it is very difficult to break C-Cl bond. Hence, vinyl chloride not get hydrolysed by NaOH.

67 **(d)**

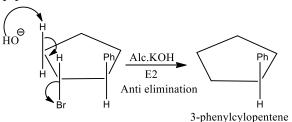
Iodoform test is given by compounds which have $(CH_3 - CO -)$ group or $CH_3 - CH -$ group.

Hence, 2-pentanone, CH_3CHO and C_2H_5OH give the test. But 3-pentanone does not give iodoform test. Actually, iodoform test can be used to distinguish methyl ketones from ketones.

CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

77 **(c)**

An organic compound forms yellow precipitate of iodoform with $\rm I_2$ in presence of alkali, if it has $\rm CH_3CO-$ group directly or it has


$$CaOCl_2 + H_2O \rightarrow Ca(OH)_2 + Cl_2$$

$$(X)$$
 $CH_3CHO + Cl_2 \rightarrow CCl_3CHO$

$$(X) \qquad (Y)$$

$$2CCl_3CHO + Ca(OH)_2 \rightarrow 2CHCl_3 + (HCOO)_2 Ca$$
(Y)

79 **(d)**

Anti-elimination, means –H and the –Br both departing group must be present at dihedral angle

of 180° (anti).

80 (b)

 $C_2H_5Br + NaHS \rightarrow C_2H_5SH + NaBr$

82 **(c)**

Allyl carbonium shows resonance and thus, allyl chloride is more reactive. Vinyl chloride shows resonance and thus, less reactive.

83 **(b)**

CCl₃NO₂ is chloropicrin used as tear gas.

84 **(b**)

Ethanol cannot undergo dehydrohalogenation as it does not contain any halogen.

85 **(a)**

By haloform reaction.

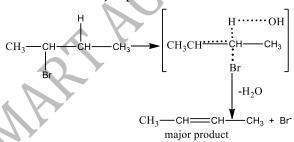
86 **(b)**

 $\mathrm{CH_3} \mathrm{CHCH_2CH_3}$ has one asymmetric carbon atom.

Ċl

87 **(b)**

CCl₄ is non-polar; H₂O is polar.


88 **(c**)

Most stable carbocation formation by halide shows more reactivity for $\mathsf{S}_{\mathsf{N}^1}$ reactions.

$$C_{6}H_{5}C_{-}Br_{-}C_{6}H_{5}C_{-}C_{6}H_{5}$$

89 **(b)**

Alkyl halides on heating with alcoholic KOH give dehydrogenation reaction to yield alkene. If in reaction, more than one alkenes are formed, then according to Saytzeff, the most highly substituted alkene is the major product.

90 (a)

The product ($\it K$) is formed through simple substitution while major product ($\it L$) is formed through H $^-$ shift $\it via$ S $_N$ 1 reaction and methoxy group stabilizes the carbocation intermediate of product ($\it L$).

91 **(b)**

Zinc is used for debromination of dibromoalkane to give alkene.

$$\begin{array}{c|c} \operatorname{CH_2} & \operatorname{Br} \\ & & + \operatorname{Zn} & \underline{\hspace{1cm}} & \operatorname{Alcohol} \\ & & & \Delta \\ & & \operatorname{CH_2} & - \operatorname{Br} \end{array} + \operatorname{ZnBr_2}$$

92 **(b**

$$\begin{array}{c} \operatorname{CH_3} \\ | \\ \operatorname{CH_3} - \operatorname{C} - \operatorname{Br} + \operatorname{CH_3} \operatorname{ONa} \rightarrow \\ | \\ \operatorname{Sodium} \\ \operatorname{CH_3} \end{array}$$

t-butyl bromide

methanol

$$CH_3$$

 $|$
 $CH_3 - C = CH_2 + CH_3OH + NaBr$
2-methyl propene methanol
methoxide (isobutylene)

93 **(c**)

$$CH_3Br \xrightarrow{Alc.KCN} CH_3CN \xrightarrow{Na/C_2H_5OH} CH_3CH_2 NH_2$$
(X)
(Y)

95 **(c)**

Liberated iodine is absorbed by iodides to darken their colour.

96 **(b)**

This is Wurtz reaction. In this reaction two molecules of alkyl halide react with each other to form alkane having double the number of carbon atoms.

$$2CH_3CH_2Cl + 2Na \xrightarrow{Dry \text{ ether}}$$

$$(X)$$
ethyl chloride
$$CH_3CH_2CH_2CH_3 + 2NaCl$$
butane

97 (a) $CH_3NH_2 \xrightarrow{CH_3I} (CH_3)_2NH \xrightarrow{CH_3I} (CH_3)_3N$ $\xrightarrow{CH_3I} (CH_3)_4N^+I^-$ Hence, three molecules of CH₃I is used.

98 **(a)**

CHCl₃ will give positive carbylamine reaction.

99 **(c**)

This is corey house synthesis:

$$R_2$$
CuLi + $R'X \rightarrow RR' + RCu + LiX$

100 **(c)**

When a carbonyl compound having the structure $\mathrm{CH_3} - \mathrm{CO} - R$ is reacted with a halogen in the presence of NaOH, KOH, $\mathrm{Na_2CO_3}$ or $\mathrm{K_2CO_3}$ solution, haloform is obtained. Thus, butanone-2 gives +ve iodoform test.

(

 $CHI_3 + CH_3 - CH_2 - C - ONa$ iodoform

101 (a)

$$C_2H_5Cl + KCN \xrightarrow{C_2H_5OH} C_2H_5CN + KCl$$
(X)

$$C_2H_5CN \xrightarrow{H_3O^+,2H_2O} C_2H_5COOH + NH_3$$

$$(Y) \text{ or } (C_3H_6O_2)$$

So, the molecular formula of the Y is $C_3H_6O_2$.

102 (a)

When ethyl bromide reacts with alcoholic KCN, propane nitrile is obtained as main product. $C_2H_5Br + Alc.KCN \rightarrow C_2H_5CN$

propane nitrile

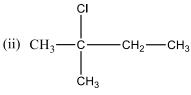
104 (d)

Carbylamine reaction is characteristic reaction for primary amine and chloroform.

105 (a)

$$4C_2H_5Br + 4Na - Pb \rightarrow (C_2H_5)_4Pb + 4NaBr$$

106 (d)


(1)
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3

Its monochloro derivatives are follows

(i)
$$ClCH_2$$
- CH_2 — CH_3 — CH_3

or
$$CH_3$$
— $\overset{*}{\underset{CH_2CI}{\leftarrow}}$ CH₂— CH_3

It will exist as enantiomers pair d and l-forms

no asymmetric C atom

$$\begin{array}{c} & \text{Cl} \\ | \\ \text{(iii)} \ CH_3 - CH - CH - CH_3 \\ | \\ CH_3 \end{array}$$

It will exist as enantiomeric pair (d-and l- forms)

(iv)
$$CH_3$$
— CH — CH_2 — CH_2 — CH_2 — CH_3

No asymmetric carbon atom Hence, only two enantiomeric pairs will be

obtained by the monochlorination of 2-methylbutane.

107 **(d)**

$$RX + Ag_2O \longrightarrow R \cdot O \cdot R + 2AgX$$
(Ether)

108 **(a)**

Williamson's synthesis

$$C_2H_5ONa + ClC_2H_5 \rightarrow C_2H_5OC_2H_5 + NaCl$$
diethyl ether

109 (c)

$$CaOCl_2 + H_2O \rightarrow Ca(OH)_2 + Cl_2(Hydrolysis)$$

 $Cl_2 + C_2H_5OH \rightarrow CH_3CHO (Oxidation)$
 $CH_3CHO + Cl_2 \rightarrow CCl_3CHO (Substitution)$
 $CCl_3CHO + Ca(OH)_2 \rightarrow CHCl_3 +$
 $(HCOO)_2Ca (Hydrolysis)$

110 (a)

Iodoform test is given by the compounds containing either

CH₃CO – roup or CH₃CHOH group.

The structures of the given compounds are as

- 1. CH₃CH₂CH₂CH₂OH
- 2. $CH_3COC_6H_5$
- 3. CH₃CHO
- 4. CH₃COC₂H₅

∴ *n* butyl alcohol does not give iodoform test because it does not possess the

١

CH₃CO − or CH₃CHOH group.

111 **(c)**

It is not a colouring material.

113 **(b)**

Alkyl halides are less soluble in water. They are polar but fail to form H-bonds with water.

114 **(b)**

Hexachloroethane is also called artificial camphor. Its structure is

115 (d)

$$(CH_3)_2CHCH_2MgBr + HOC_2H_5 \xrightarrow{Ether} OC_2H_5$$
 $(CH_3)_2CHCH_3+Mg$
 R_r

117 **(b)**

Dipole moment of CH_3Cl is more than CH_3F due to larger C—X bond. Also electronegativity of Br being less than F and Cl and thus inspite of larger C—X bond dipole moment of CH_3Br is lowest.

119 (a)

$$\begin{array}{c} \operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{Cl} \xrightarrow{\operatorname{Alc.KOH}} \operatorname{CH}_3 \\ \operatorname{CH}_2 - \operatorname{CH} = \operatorname{CH}_2 + \operatorname{HCl} \\ \operatorname{1-chlorobutane} \\ \operatorname{butene-1} \end{array}$$

120 (a)

$$2CHCl_3 + 6Ag \xrightarrow{\triangle} CH \equiv CH + 6AgCl$$

121 (a)

$$CH_2$$
— CH_2 — CH_2 — CH_2
 OCH_2
 OCH_2

 α and ω -dihalogen derivative of an alkane on treatment with Mg or Zn or Na gives cycloalkane.

122 **(b)**

$$\begin{array}{c} C_2H_5I \xrightarrow{KOH(alc.)} C_2H_4 \xrightarrow{Br_2} CH_2BrCH_2Br \\ CH_2BrCH_2Br \xrightarrow{KCN} CH_2CNCH_2CN \end{array}$$

123 (d)

In [F] order of quantity of alkene 2 > 1 > 3These on addition with $\mathrm{Br_2/CCl_4}$ to give their addition products which have $\mathrm{C_4H_6}$ $\mathrm{Br_2}$ as molecular formula.

125 (d)

$$CH_2OHCH_2OH \xrightarrow{HCl} CH_2ClCH_2Cl$$

127 (d)

Tertiary carbonium is most stable.

128 (a)

$$CH_2 = CH - CH = CH_2 + Br_2 \rightarrow$$

1,3-butadiene
(i) $CH_2 = CH - CH - CH_2$

3,4-dibromo butane

(ii)
$$CH_2 - CH = CH - CH_2$$

 $\begin{vmatrix} & & & \\ & & \\ Br & & Br \end{vmatrix}$

1,4-dibromo-2-butene

1,4-adduct is more stable than the 1,2-adduct.

130 (d)

Write chlorination reaction for all of them to find which gives of the maximum number of monochlorination product.

(a)
$$CH_3CH_2CH_2CH_3 + Cl_2 \xrightarrow{UV}$$
 Cl

$$\begin{aligned} \text{CICH}_2 - (\text{CH}_2)_3 \text{CH}_3 + \text{CH}_3 - \text{CH} - (\text{CH}_2)_2 \\ \text{CH}_3 + \text{CH}_3 - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH}_3 \\ & | \\ & \text{Cl} \end{aligned}$$

: Total 3 monochlorinated products are formed.

(b)
$$CH_3 - CH - CH_2 - CH_3 + Cl_2 \xrightarrow{UV}$$

$$CH_3$$

$$Cl$$

$$CICH_2 - CH - CH_2 - CH_3 + CH_3 - C - CH_2$$

$$CH_3$$

 \div Total 3 monochlorinated products are formed.

$$(c) CH_3 - C - H + Cl_2 \xrightarrow{UV}$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_2Cl$$

$$|$$

$$CH_3 - C - Cl + CH_3 - C - H$$

$$|$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

 \therefore Total 3 monochlorinated products are formed.

$$CH_3$$
|
 $(d)CH_3 - C - CH_3 + Cl_2$
|
 CH_3

∴ Only one monochlorinated products formed.

Cl OH

$$CH_3 - C - CH_3 \xrightarrow{Hydrolysis} CH_3 - C - CH_3$$

$$Cl OH$$

$$2,2-dichloro propane unstable$$

$$\xrightarrow{-H_2O} CH_3 - C - CH_3$$

0 acetone

132 **(d)** $\text{CH}_2 = \text{CHCl} + \text{HCl} \rightarrow \text{CH}_3 - \text{CHCl}_2$ ethylidene chloride sor 1,1 dichloroethane

133 (a) $\mu_{CCl_4} = 0; \; \mu_{CHCl_3} = 1.0 \; D; \; \mu_{CH_2Cl_2} = 1.6 \; D, \mu_{CH_3Cl} = 1.86 \; D$

134 **(b)**

$$0=C=0+C_{2}H_{5}OMgBr \rightarrow OH$$

$$O=C \xrightarrow{C_{2}H_{5}} \xrightarrow{HOH} O=C \xrightarrow{C_{2}H}$$

135 **(b)** $CH_3COOAg + CH_3Cl \rightarrow CH_3COOCH_3 + AgCl$

136 (a)
$$C_{3}H_{6}Cl_{2}$$

$$(A)$$

$$KOH(alc.) C_{3}H_{4} Or$$

$$(C)$$

$$CH_3C = CH \xrightarrow{H_2O}_{H^+,Hg^{2+}} CH_3COCH_3 \xrightarrow{Br2}_{+NaOH} CHBr_3 + CH_3COONa$$

Since, B and D are different thus, B is CH_3CH_2CHO and so A is $CH_3CH_2CHCl_2$.

138 **(a)**

Tertiary alcohols readily react with Lucas reagent $(ZnCl_2/conc.\ HCl)$ to give white turbidity due to the formation of halide.

$$H_3C$$
 — CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

140 (a)

Carbylamine test is a characteristic test of aliphatic and aromatic primary amines. In this test, amine is heated with chloroform and alcoholic potash when a bad smelling isocyanide (carbylamine) is formed.

$$RNH_2 + CHCl_3 + 3KOH (alc.)$$

$$RN = C + 3KCl + 3H_2O$$
alkyl isocyanide
(bad smelling)

142 (d)

The density order is:

Iodine > Bromide > Chloride > Fluoride. Higher is the molecular weight, more is b.p, m.p.

143 **(b)** $4C_2H_5Br + 4Na - Pb \rightarrow (C_2H_5)_4Pb + 4NaBr$ 147 (c)

Follow iodoform test.

148 **(a)**

Chloral + Chlorobenzene → DDT

150 (a)

 $CH_3C\equiv CNa+(CH_3)_2CHCl \rightarrow CH_3C\equiv CCH(CH_3)_2 + NaCl$

151 **(d)**

Solvolysis of haloalkanes follows first order kinetics. During this process an intermediate carbocation is formed. Therefore, the halohydrocarbon which gives more stable carbocation undergoes solvolysis readily.

153 (d)

 CCl_4 is a covalent compound, therefore, it does not ionise to give Cl^- ions hence, it does not give white ppt. of AgCl when treated with AgNO_3 soution. There is no reaction to evolve NO_2 . CCl_4 will form a separate layer as it is immiscible with water.

154 (a)

C-X bond in benzyl bromide is much weaker than in vinyl bromide and bromobenzene since the benzyl cation left after the removal of the bromide ion is stabilized by resonance. Further, C-Br is weaker than C-Cl bond. Therefore, $C_6H_5CH_2Br$ has the weakest C-X bond.

- 155 (c)
 - 5. 2-methylpentane $\xrightarrow{\text{Cl}_2}$ five types of monochlorinated compounds
 - 6. 3-methylpentane $\xrightarrow{\text{Cl}_2}$ four types of monochlorinated compounds
 - 7. 2, 2-dimethylbutane $\xrightarrow{Cl_2}$ three types
 - 8. 2, 3-dimethylbutane $\xrightarrow{\text{Cl}_2}$ two types
 - 9. n-hexane $\xrightarrow{\text{Cl}_2}$ three types
- 156 (c)

Ethanol on reaction with bleaching powder, gives chloroform (trichloromethane).

chloroform

157 (c)

 $C_2H_5ONa + C_2H_5I$ $\longrightarrow C_2H_5OC_2H_5$

+ NaI; Williamson's synthesis.

158 (c)

$$CH_3Br + KCN(alc.) \rightarrow$$
 $CH_3CN \xrightarrow{Reduction} CH_3CH_2NH_2$

ethylamine

159 **(d)**

Ethyl chloride can be converted into ethanol either by its alkaline hydrolysis or by its reaction with moist AgOH.

$$C_2H_5Cl \xrightarrow{\text{Aq.NaOH}} C_2H_5OH \longleftrightarrow C_2H_5Cl$$
(A) (B)

160 **(d)**

 $CH_3CH_2CH_2CH_2OH \xrightarrow{P+Br_2} CH_3CH_2CH_2CH_2Br$

161 **(a)**

Tertiary halide preferentially undergo $S_N \mathbf{1}$ substitution as they can give stable carbocation.

$$\begin{array}{c|c} CH_3 \\ | \\ H_3C-C-Cl \xrightarrow{Slow} (H_3C)_3C^+ \xrightarrow{+OH^-} (H_3C)_3COH \\ | & carbocation & \textit{t-butyl alcohol} \\ CH_3 \\ \textit{t-butyl chloride} \end{array}$$

162 (d)

In CHCl₃, carbon is sp^3 -hybridised.

163 **(d)**

$$CCl_4 + KOH(aq.) \rightarrow C(OH)_4 \rightarrow CO_2 + 2H_2O$$

164 (c)

$$CCl_4 + 2HF \xrightarrow{SbCl_5} CCl_2F_2 + 2HCl$$

165 (c)

Iodoform test is positive for compounds which have 0

$$CH_3 - C$$

group or 2° alcohol group.

$$\begin{array}{c} & \text{H} \\ | \\ \text{(a) } \text{CH}_3 - \text{CH}_2 - \text{C} - \text{CH}_3 \\ | \\ \text{OH} \end{array}$$

has 2° alcoholic group

$$0 \\ \parallel \\ \text{(b)CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{C} - \text{CH}_3$$

(d) $CH_3 - C - C_6H_5$ has $CH_3CO - group$

∴ Compounds in choice (a), (b) and (d) give positive iodoform test.

$$\mathrm{CH}_3 - \mathrm{CH}_2 - \mathrm{C} - \mathrm{CH}_2 - \mathrm{CH}_3$$

 \because This compound doesn't have CH₃CO – or 2° alcoholic group.

∴ It does not give positive iodoform test.

166 (a)

In C₆H₅Cl, Cl is firmly attached to C₆H₆ nucleus.

167 **(b)**

For iodoform reaction, we need an oxidising agent

which is provided by only $\frac{I_2}{KOH}$, i. e., IO^- ion.

Hypoiodide ion first oxidises

and then brings about iodination of

CH₃CHO to I₃C. CHO. Alkaline hydrolysis of

Cl₃CHO then gives CHl₃. The other three reagents

do not contain any oxidising species and hence,

fail to give iodoform test.

169 **(b)**

Statement (b) is not correct regarding the $S_N 1$ reaction for alkyl halide because in $S_N 1$ reaction no inversion takes place. The removal of X and the attachment of OH^- will take place from the same side.

$$R - X \xrightarrow{Slow} R^{+} + X^{-}$$

$$R^{+} + OH^{-} \xrightarrow{Fast} ROH$$

170 (c)

Alkyl halides are soluble in organic solvents.

171 (d)

$$C_2H_5Br + AgNO_2(alc.) \rightarrow C_2H_5NO_2 + AgBr$$

nitro ethane

173 (a)

This reaction follows benzyne mechanism.

175 (d)

Grignard reagent give nucleophilic addition (of R^-) at +ve centre.

176 (a)

Tetrahydrofuran when treated with excess HI, give 1, 4-diiodobutane.

177 **(b)**

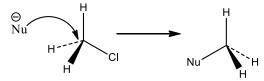
I₂ possesses antiseptic nature.

179 (d)

Wurtz's reaction involves the reduction of alkyl halide with Na in ether.

$$CHCl_3 + 4NaOH \rightarrow HCOONa + 3NaCl + 2H_2O$$
(aq) sodium formate

182 **(b)**


Straight chain alkyl halides have greater boiling point than their isomers. Therefore, CH₃CH₂CH₂CH₂Cl has highest boiling point.

183 (d)

CH₃Cl, C₂H₅Cl and CH₃Br are gases at room temperature.

184 (d)

Nucleophilic substitution bimolecular (S_N2) prefers less sterically hindered site to attack. Lesser the steric hindrance better the S_N2 reaction. So, ease of reaction is $1^{\circ} > 2^{\circ} > 3^{\circ}$. S_N2 involves inversion of configuration stereochemically (Walden inversion)

185 (c)

The best method for the conversion of an alcohol into an alkyl chloride is by treating the alcohol with SOCl₂ in the presence of pyridine.

$$ROH + SOCl_2 \rightarrow RCl + HCl + SO_2$$

The other products being gases escape leaving behind pure alkyl halide.

186 (d)

Freon, CCl₂F₂ is used in cooling.

187 **(b)**

 $CH \equiv CH + 2HCl \rightarrow CH_3CHCl_2$

188 (d)

Cl⁻ is replaced by OH⁻ , *i.e.*, nucleophilic substitution.

189 (d)

RXare called alkylating agent. CH_3X is methylating agent; C_2H_5X is ethylating agent.

191 (a)

Methyl iodide is more reactive for nucleophilic substitution of II order.

192 (a)

$$\mathsf{C_2H_5Cl} \xrightarrow{\mathsf{KCN}} \mathsf{C_2H_5CN} \xrightarrow{\mathsf{Na/alcohol}} \mathsf{C_2H_5CH_2NH_2}$$

$$CH_3COCH_3 \xrightarrow{Cl_2} CH_3COCCl_3$$

194 (c)

1-chlorobutane gives butene-1 on reaction with alc. KOH (dehydrohalogenation) which on ozonolysis yields methanal and propanal. The reaction is as follows

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CI} & \xrightarrow{\text{Alc.KOH}} & \text{CH}_3\text{CH}_2\text{CH} & \xrightarrow{\text{CH}_2} \text{CH}_2 \\ \text{1- chlorobutane} & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\$$

 $CH_3CH_2CHO + HCHO$ methanal propanal

197 (d)

Carbon tetrachloride is not inflammable. It is used as fire-proof agent under the name 'pyrene'.

198 (a)

n-butyl alcohol (CH₃CH₂CH₂CH₂OH) does not give iodoform test because it does not possess the $CH_3CO - or CH_3CHOH$ group.

199 (d)

Grignard reagents are highly reactive and react with any source of proton to give hydrocarbons. It is therefore necessary to avoid even traces of moisture from a grignard reagent.

200 (c)

Iodoform test is given by those compounds which 215 (c)

$$CH_3 - C - C/H \text{ or } CH_3 - CH - \text{ units.}$$

$$\parallel \qquad \qquad | \qquad \qquad |$$

$$OH$$

Hence, this test is not given by phenol

$$(C_6H_5 - OH).$$

201 (d)

CCl₄ is used as medicine in this form.

202 (c)

$$\begin{array}{c|c} NH_2 & + \\ \hline NHO_2 & \\ \hline HCl & \\ \hline \end{array}$$

(Diazotization)

204 (c)

$$C_2H_5I + Mg \rightarrow C_2H_5MgI$$

205 (a)

$$C_2H_5Cl \xrightarrow{Aq.KOH} C_2H_5OH \xleftarrow{AgOH} C_2H_5Cl$$

206 **(b)**

Due to less stable nature of CHI₃.

207 (c)

 $C_2H_5Br + C_2H_5ONa \rightarrow C_2H_5OC_2H_5$; also in (a) C₂H₄ is formed; in (b) C₄H₁₀ is formed, in (d) C₂H₅NC is formed.

208 (c)

Phosgene is COCl₂.

210 (c)

$$R - X + NH_3 \rightarrow RNH_2$$

212 **(b)**

$${\rm CH_3}X + {\rm KCN} \longrightarrow {\rm CH_3CN} \stackrel{{\rm HOH}}{\longrightarrow} {\rm CH_3COOH};$$
 —CN group hydrolyses to —COOH.

213 (c)

$$MgCl_2 \rightarrow Mg^{2+} + 2Cl^-$$

 $Mg^{2+} + 2e^- \rightarrow Mg \text{ (at cathode)}$

: 2F(2 × 96500 C)deposits Mg = 1 mol

∴ 9.65 C charge will deposit Mg =
$$\frac{1 \times 9.65}{2 \times 96500}$$

= 5×10^{-5} mol

$$RBr + Mg \xrightarrow{Dry \text{ ether}} RMgBr$$
Grignard reas

Grignard reagent

In order to prepare Grignard reagent, one mole of Mg is used per mole of reagent obtained. Thus, by 5×10^{-5} mol mg, 5×10^{-5} mole of Grignard reagent is obtained.

$$C_2H_5CN(A)$$
 on hydrolysis gives C_2H_5COOH .

216 **(d)**

$$2Nal + Cl_2 \rightarrow NaCl_2 + I_2$$

 $I_2 + CHCl_3 \rightarrow Violet$

218 **(c)**

219 (a)

Allyl carbonium shows resonance and thus, allyl chloride is more reactive. Vinyl chloride shows resonance and thus, less reactive.

220 **(b)**

Since, the alkyl halide *RX* gives 4, 5-diethyloctane, when reacts with Na, it must be

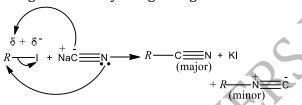
$$CH_3 (CH_2)_2 CH(Br)CH_2CH_3$$
.

$$2CH_3CH_2CH_2CH - Br \xrightarrow{Na} \frac{Na}{Dry \text{ ether}}$$

$$\mathrm{CH_3}(\mathrm{CH_2})_2\mathrm{CH} - \mathrm{CH} - (\mathrm{CH_2})_2 - \mathrm{CH}_3$$

The reaction is known as Wurtz reaction.

221 **(a)**


$$CH_3COCH_3 + PCl_5 \rightarrow CH_3CCl_2CH_3 + POCl_3$$

222 (a)

Grignard reagent is RMgX.

223 **(c)**

CN⁻ (cyanide) is an ambidenate ligand, *i.e.*, it can donate electrons to the alkyl iodide either by using carbon or by using nitrogen.

In principle, the reaction can occur either through carbon or nitrogen. But in practice, the reaction mainly occurs through carbon as carbon behave like a strong nucleophile.

224 (a)

The iodoform test is given by compounds which have

In this given compounds only CH_3CH_2 OH gives positive iodoform test as it has

225 (d)

KBr and conc. H_2SO_4 gives HBr , which reacts with C_2H_5OH to give C_2H_5Br .

227 **(b)**
$$CCl_3COCH_3 + Ca(OH)_2 \rightarrow CHCl_3 + (CH_3COO)_2Ca$$

$$C_2H_5Cl \xrightarrow{Dehydrohalogenation} C_2H_4$$
 $(24+5+35.5)$ $(24+4)$
 $64.5 \text{ g of } C_2H_5Cl \text{ forms}=28 \text{ gC}_2H_4$
 $\therefore 32.25 \text{ g of } C_2H_5Cl \text{ will form}=\frac{28}{64.5} \times 32.25$
 $= 14 \text{ g } C_2H_5$
yield of alkene = 50% of 14 g
 $=\frac{50}{100} \times 14 = 7\text{ g}$

229 (d)

p- dichlorobenzene molecule has symmetrical structure. It can fit well in its crystal lattice. The intermolecular forces of attraction are strong. Hence, it possesses highest melting point.

231 (a)

The compound containing

$$\begin{array}{ccc} & & \text{OH} \\ & & \text{II} \\ & \text{CH}_3 - \text{C} - \text{and} - \text{CH} - \text{CH}_3 \end{array}$$

groups on heating with sodium hypoiodite (NaOI) or I_2 with aq. NaOH or aq. Na $_2$ CO $_3$ gives yellow ppt. of iodoform and the reaction is known as iodoform.

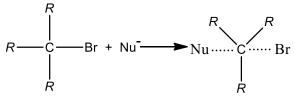
$$\begin{array}{c} {\rm H_3C-CH_2-CH-CH_3+OI^- \to }\\ & | \\ {\rm OH} \\ {\rm O} \\ {\rm O} \\ {\rm CH_3-CH_2-C-CH_3+I^-+H_2O} \\ {\rm O} \\ {\rm ||} \\ {\rm CH_3-CH_2-C-CH_3+OI^- \to }\\ {\rm O} \\ {\rm ||} \\ {\rm CH_3-CH_2-C-CI_3+\overline{O}H} \\ {\rm O} \\ {\rm ||} \\ {\rm CH_3CH_2-C-CI_3+HONa} \\ {\rm O} \\ {\rm ||} \\ {\rm CH_3-CH_2-C-ONa+CHI_3} \\ {\rm iodoform} \end{array}$$

232 **(a)**

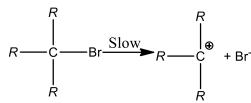
Alkyl halides in presence of strong alcoholic alkali give elimination reaction.

$$CH_3$$
— CH_2 — CH_2 — CH_2 — CH_2 — CH_3 — CH_2 —

234 **(b)**


$$(CH_3)_3COH \xrightarrow{H_2SO_4} (CH_3)_2C = CH_2$$
Mol.wt.74
Mol.wt.56

: % yield = 65


∴ Real yield =
$$\frac{56}{74} \times 37 \times \frac{65}{100} = 18.2 \text{ g}$$

235 (a)

In S_N2 reaction, nucleophile and alkyl halide react in one step.

Thus, tertiary carbon is under steric hindrance thus reaction does not take place until (C-Br) bond breaks

Which is the S_N 1 reaction.

236 **(b)**

Acc. To Markownikoff's rule.

NaOH(aq.) will lead to the formation of

CH₃CH₂CH₂OH; in

(d) CH₃CHBrCH₂Br will be formed.

237 **(c)**

There are four isomers obtained.

$$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_3} + \mathrm{Cl_2} \longrightarrow$$

$$CH_3 - CH_2 - CHCl_2 + 2HCl$$

(1,1,dichloro propane)

ČI 1,2-dichloro propane (optical active) d-and l-form

$$\begin{array}{c|c} \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 \\ | & | \\ \operatorname{Cl} & \operatorname{Cl} \end{array}$$

1,3-dichloro propane

238 **(d)**

Two optical and two geometrical.

Industrial preparation of $CHCl_3$ is carried out by 249 **(b)**

the action of bleaching powder over acetone.

240 (a)

$$RX + AgCN \rightarrow RNC + AgX$$
alkyl isocyanide

When alkyl halide reacts with silver cyanide, isocyanides are obtained. It is due to nucleophilic substitution in presence of Ag+.

241 **(d)**

Neo-pentane gives only one monochloro derivative.

$$\begin{array}{ccc} \text{CH}_3 & \text{CH}_3 \\ \mid & \mid \\ \text{CH}_3 - \text{C} - \text{CH}_3 + \text{Cl}_2 \xrightarrow{\text{UV}} \text{CH}_3 - \text{C} - \text{CH}_2 \text{Cl} \\ \mid & \mid \\ \text{CH}_3 & \text{CH}_3 \end{array}$$

242 (d)

 $R - X + Zn \rightarrow R - R + ZnX_2$; if Zn is used in place of Na, the reaction is called Frankland's reaction.

244 (a)

A gem dihalide possesses two halogens on same carbon atom.

245 **(b)**

R —MgX are obtained as ethereal solution.

246 (a)

Chloroform (CHCl₃) is formed on reaction of ethyl alcohol with bleaching powder. The reaction is complex and takes place in the following steps

(i)
$$CaOCl_2 + H_2O \rightarrow Ca(OH)_2 + Cl_2$$

bleaching

powder

(ii)
$$CH_3CH_2OH + Cl_2 \rightarrow CH_3CHO + 2HCl$$

oxidation step

(iii)
$$CH_3CHO + 3Cl_2 \rightarrow CCl_3CHO + 3HCl$$

chloral

chlorination step

247 (a)

Chloral is commercial name of CCl₃CHO.

248 (d)

C—I bond is broken easily as well as ease of reaction is *t*-alkyl halide > *s*-alkyl halide > p-alkyl halide.

$$\begin{array}{c|c} N_2^+\text{C}\Gamma & \text{CI} \\ \hline & Cu_2\text{CI}_2/\text{HCI} \\ \hline & \text{chlorobenzene} \\ \hline \text{diazonium} \\ \text{chloride} \\ \end{array}$$

This reaction is known as Sandmeyer's reaction.

250 **(b)**

(CH₃)₂CHCH₂Cl and CH₃CH₂CH₂CH₂Cl; only chain is different.

251 (a)

Nucleophilicity order is;

254 (a)
$$CHCl_3 + RNH_2 + 3KOH \rightarrow RNC + 3KCl + 3H_2O$$

255 (a)

Zn dust removes X_2 from molecule.

257 (d)

Order of reactivity of alkyl halide iodide > bromide > chloride > fluoride and tertiary > secondary > primary

258 **(b)**

$$R - X \xrightarrow{\text{KOH(aq.)}} R - \text{OH}$$

259 **(d)**

Reactivity of t-alkyl halides to mechanism is least due to steric hinderance.

261 (c)

$$CCl_4 + [H] \xrightarrow{Fe/H_2O(v)} CHCl_3$$

$$R \longrightarrow OH + PCl_5 \longrightarrow RCl + POCl_3 + HCl$$

265 **(c)**

R-I > R-Br > R-Cl > R-F; reactivity order due to halogen atom.

 $3^{\circ} > 2^{\circ} > 1^{\circ}$; reactivity order due to alkyl group.

266 (c)

Aryl halides in presence of strong base likeNaNH₂ , gives nucleophilic substitution reaction through benzyne intermediate.

$$NO_2$$
 NO_2
 NO_2

267 **(b)**

Rest all replace —OH by —Cl.

268 (c)

-OH group is converted into -Cl group by SOCl₂ or anhydrous ZnCl₂/conc. HCl or HCl etc.

269 **(a)**

$$C_2H_5Cl + KCN \rightarrow C_2H_5CN + KCl$$

Chloroethane alcoholic propanenitrile

270 (a)

$$CH_3Br + OH^- \rightarrow CH_3OH + Br^-$$

This reaction proceeds by S_N^2 mechanism.
Rate \propto [substrate][nucleophile]
Rate \propto [CH_3Br][OH^-]

271 **(b)**

$$2CHCl_3 + \frac{1}{2}O_2 \rightarrow COCl_2 + H_2O;$$

COCl₂, i. e., phosgene is poisonous gas.

272 (d)

Westrosol is formed during addition of Cl2 on CH≡CH followed with action of lime. It is a very good solvent.

$$\begin{array}{ccc} \mathsf{CH} \equiv \mathsf{CH} & + & 2\mathsf{Cl}_2 \longrightarrow \mathsf{CHCl}_2 \mathsf{CHCl}_2 \\ & \mathsf{Westron} \end{array}$$

Lime \rightarrow CHCl = CCl₂ Westrosol

274 (c)

C—Mg bond is covalent but polar.

275 (c)

$$RX \longrightarrow R^+ + X^-; \quad R^+_{Carbocation} + OH^- \longrightarrow ROH$$

277 **(a)**

- 10. Iodoform test is done to detect presence of CH₃CO group in organic compounds.
- Fehling solution identifies aldehydes. 11.
- 12. Tollen's reagent identifies aldehydes.
- Schiff's reagent identifies aldehydes. 13.

0

Methyl ketone is $CH_3 - C - R$.

0

: It has CH₃ − C group. It is tested by using iodoform test.

The compound having CH₃CO group give yellow ppt. on reaction with I₂ and aqueous alkali.

$$H_3C$$
 H_3C
 H_3
 H_3C
 H_3C
 H_3
 H_3C

It is electrophilic substitution, so electrophile must be attacked on o/p-position due to higher electron density on this position. In this ring, the attached –NH- group will have high electron density due to resonance and ortho position is blocked, so electrophile is attached on para position.

280 **(c)**

CCl₄ is covalent compound.

282 **(b)**

Westrosol is formed during addition of Cl_2 on $\mathrm{CH} \equiv \mathrm{CH}$ followed with action of lime. It is a very good solvent.

$$CH \equiv CH + 2Cl_2 \longrightarrow CHCl_2CHCl_2$$
Westron
$$CHCl = CCl$$

$$\xrightarrow{\text{Liffle}} \text{CHCl} = \text{CCl}_2$$
Westrosol

283 **(b)**

Elimination reaction.

286 (a)

PhS $\bar{}$ is a strong nucleophile and dimethyl formamide (DMF) is a highly polar aprotic solvent. Condition indicates that nucleophilic substitution (S_N2) takes place at 2° benzylic place, stereochemically, it involves inversion of configuration.

$$\begin{array}{c} \text{Me} \\ \text{PhS} \\ \\ \text{O}_2 \\ \text{N} \end{array}$$

287 (a)

C₂H₅Br gives yellow ppt. of AgBr whereas, (CH₃)₂CHCl gives white ppt. if AgCl.

288 (d)

$$\begin{array}{c} C_2H_5Br \xrightarrow{AgCN} C_2H_5NC \xrightarrow{Reduction} C_2H_5NH. \ CH_3 \\ \hline (X) \qquad \qquad (Y) \\ \hline Ethyl \ isocyanide \ \ \ ethyl \ methyl \ amine \end{array}$$

 S_N 1 order is TH > SH > PH.

$$C_2H_5Cl + NH_3 \rightarrow (C_2H_5)_4N^+Cl^-$$

292 **(b)**

CH₃CHCl₂ gives aldehyde; CH₂ClCH₂Cl₂ gives glycol.

294 (c)

Chloroform is oxidised by air in the presence of light to form phosgene or carbonyl chloride which is poisonous gas.

$$\mathsf{CHCl}_3 + \frac{1}{2}\mathsf{O}_2 \xrightarrow{\quad \mathsf{light} \quad} \mathsf{COCl}_2 + \mathsf{HCl}$$

Chloroform phosgene

295 (d)

$$R - X \xrightarrow{KOH(aq.)} R - OH$$

296 (a)

CH $_3$ CHBrCH $_2$ CH $_3$ CH $_3$ CH $_3$ CH=CHCH $_2$ CH $_3$ α -, β - elimination gives trans-isomers as main product.

298 **(c)**

Oxidation of CHCl₃ occurs in air and light.

301 **(b)**

$$CHCl_3 \xrightarrow{4NaOH} HCOONa + 3NaCl + 2H_2O$$

303 (d)

Ethyl alcohol gives positive iodoform test (i. e. , yellow ppt. with $\rm I_2$ and NaOH).

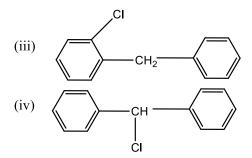
$$CH_3CH_2OH + 4I_2 + 6NaOH \rightarrow$$

 $CHI_3 \downarrow + 5NaI + CH_3COONa + 3H_2O$
yellow

304 (c)

Reimer-Tiemann reaction.

305 (a)


$$(CH_3)_2 CH = CH_2 \xrightarrow{HX} (CH_3)_2 CX \cdot CH_3;$$

Follow Markownikoff's rule.

306 **(b)**

The molecular formula of diphenyl methane shows four isomers in form of monochloro derivatives.

$$CH_2$$
 (Diphenyl methane) $C_{13}H_{12}$

Monochloro derivatives

307 (a)

p-nitroiodobenzene can be prepared from *p*nitroaniline as follows

$$NO_2$$
 NO_2
 NO_2

308 (a)

Iodoform test is given by those compounds which have - CH₃CO group or on oxidation yields this group. HCHO does not give this test.

309 (a)

 CCl_4 is fire extinguisher used under the name pyre 327 (a)

310 (a)

Among the primary halides reactivity order is $CH_3X > C_2H_5X > C_3H_7X$, also chlorobenzene is less reactive due to resonance.

311 **(b)**

A white ppt. of AgCl is obtained if CHCl₃ is impure.

312 (d)

 $CH_2OHCH_2OH \xrightarrow{HCl} CH_2ClCH_2Cl$

313 (c)

Only iodides and fluorides are obtained.

315 (a)

 $CH_2 = CH_2 + Cl_2 \rightarrow CH_2ClCH_2Cl$

316 (a)

 $\xrightarrow{\text{KOH(aq.)}} \text{CH}_3\text{CHO}$ CH₃CHCl₂ -

317 (a)

 $C_6H_5NH_2 + CHCl_3 + 3KOH \rightarrow C_6H_5NC + 3KCl + Bad smell$ $3H_{2}O$

An alkyl halide on heating with dry silver oxide gives ether.

$$2R - X + Ag_2O \xrightarrow{\Delta} R - O - R + 2AgX$$
 alkyl halide dry ether

319 (d)

Ethyl alcohol converts phosgene to ethyl carbonate.

$$COCl_2 + 2C_2H_5OH \rightarrow (C_2H_5O)_2CO + 2HCl | 332$$
 (b)

phosgene

ethyl carbonate

320 **(b)**

$$\mathsf{C_2H_5OH} + \mathsf{HCl} \xrightarrow{\mathsf{ZnCl_2}} \mathsf{C_2H_5Cl}$$

321 (c)

 γ -isomer of cyclohexane hexachloride is strong pesticide. It is also known as lindane.

Methyl alcohol (CH₃OH) does not give iodoform test.

324 (d)

Elimination of HCl by alc. KOH.

325 **(b)**

Vapours of chloroform on inhaling causes unconsciousness.

Alkyl halides give elimination reaction with alcoholic KOH and yield an alkene or alkyne (from dihalides) e.g.,

$$Br-CH_2-CH_2-Br$$
 $Alc.KOH$ CH CH

1,2-dibromo ethane acetylene Hence, product has both *sp*-hybridised carbon.

328 (a)

$$C_2H_5OH + PCl_5 \rightarrow C_2H_5Cl + POCl_3 + HCl$$

329 (c)

$$CH_3CH_2CHCH_3 \longrightarrow CH_3CH_2CHCH_3$$

Stability of I>II hence, I is predominant.

330 **(b)**

$$C_6H_5NH_2 + CHCl_3 + 3KOH$$

$$\longrightarrow C_6H_5NC + 3KCl + 3H_2O$$
Bad smell

331 (a)

$$ROH + SOCl_2 \rightarrow RCl + SO_2 \uparrow + HCl \uparrow$$

: SO₂ and HCl are gaseous by-products and can be removed easily to get pure alkyl halide.

- ∴ It is best method for preparation of alkl halide.

$$CH_2 = CHCl + HCl \rightarrow CH_3CH_2Cl_2$$

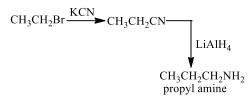
335 **(d)**

When an alkyl halide reacts with alcoholic ammonia in a sealed tube then a mixture of primary, secondary and tertiary amine is formed.

$$RX + \mathrm{NH_3} \rightarrow R\mathrm{NH_2} + \mathrm{H}X$$
 $pri\text{-amine}$
 $R\mathrm{NH_2} + XR \rightarrow R_2\mathrm{NH} + \mathrm{H}X$
 $sec\text{-amine}$
 $R_2\mathrm{NH} + \mathrm{H}X \rightarrow R_3\mathrm{N} + \mathrm{H}X$
 $ter\text{-amine}$

336 **(d)**

Chloroform on reaction with nitric acid give chloropicrin (nitro chloroform) according to following reaction


$$CHCl_3 + HNO_3 \rightarrow C(NO_2)Cl_3 + H_2O$$
nitrochloroform
(chloropicrin)

337 **(d)**

RMgX is soluble in each.

338 **(d)** $CHCl_3 \xrightarrow{Zn/HCl(alc.)} CH_2Cl_2$

339 **(a)**Ethyl bromide on treating with KCN, gives ethyl cyanide, which on reduction gives propyl amine.

340 (a)

The compounds of oxyacids in which H-atom of — OH group is replaced by an alkyl group are called inorganic esters.

$$R - X + K - O - N = O \rightarrow R - O - N = O + KX$$

342 **(b)**

Chloroform is oxidised to a poisonous gas, phosgene $(COCl_2)$ by atmospheric oxidation. $CHCl_3 + O \rightarrow COCl_2 + HCl$

343 (a) $X \xrightarrow{\text{AgNO}_3} \text{yellow or white ppt.}$

The above reaction is not give by because in bromobenzene, halogen is directly attached with the benzene ring.