EQUILIBRIUM

CHEMISTRY

	Single Correct Answer Type				
1.	Which may be added to one litre of water to act as a a) One mole of $HC_2H_3O_2$ and one mole of HCl b) One mole of NH ₂ OH and one mole of NaOH	buffer?			
	c) One mole of NH_4Cl and one mole of HCl				
	d) One mole of $HC_2H_3O_2$ and 0.5 mole of NaOH				
2.	An aqueous solution of 1 M NaCl and 1 M HCl is				
	a) not a buffer but pH < 7	b) not a buffer but pH 🗲	> 7		
	c) a buffer with $pH < 7$	d) a buffer with $pH > 7$			
3.	In the following reversible reaction,				
	$2SO_2 + O_2 \rightleftharpoons 2SO_3 + Q$ cal				
	Most suitable condition for the higher production of SU_3 is				
	c) High temperature and high pressure	d) High temperature and	low pressure		
4.	Select the pK_a value of the strongest acid from t	he following	ion problate		
	a) 1.0 b) 3.0	c) 2.0	d) 4.5		
5.	The pH of a 0.1 M solution of NH ₄ OH (having K_h	$= 1.0 \times 10^{-5}$) is equal t	.0		
	a) 10 b) 6	c) 11	d) 12		
6.	In the reaction, $H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$	7			
	a) $K_p \neq K_c$ b) $K_p = K_c$	c) $K_p > K_c$	d) $K_p < K_c$		
7.	The total number of different kind of buffers obtaine	ed during the titration of H ₃	$_{3}PO_{4}$ with NaOH are:		
	a) 3 b) 1	c) 2	d) Zero		
8.	Which will not affect the degree of ionisation?				
0	a) Temperature b) Concentration	c) Type of solvent	d) Current		
9.	Which of the following has highest pH?	М	М		
	a) $\frac{M}{4}$ KOH b) $\frac{M}{4}$ NaOH	c) $\frac{M}{4}$ NH ₄ OH	d) $\frac{M}{4}$ Ca(OH) ₂		
10.	Solubility product constant $[K_{sp}]$ of salts of type	s MX , MX_2 and M_3X at te	emperature 'T' are 4.0 $ imes$		
	10^{-8} , 3.2×10^{-14} and 2.7×10^{-15} respectively. S	Solubilities (mol, dm ⁻³) o	of the salts at temperature		
	'T' are in the order				
	a) $MX > MX_2 > M_3X$ b) $M_3X > MX_2 > MX$	c) $MX_2 > M_3X > MX$	d) $MX > M_3X > MX_2$		
11.	Which of the following base is weakest?				
Ċ	a) NH ₄ OH; $K_b = 1.6 \times 10^{-6}$	b) $C_6H_5NH_2$; $K_b = 3$.	8×10^{-10}		
	c) $C_2H_5NH_2$; $K_b = 5.6 \times 10^{-4}$	d) $C_9H_7N;$ $K_b = 6.3$	$\times 10^{-10}$		
12.	One litre of water contains 10^{-7} mole H ⁺ ions. Degree	ee of ionisation of water is:			
10	a) 1.8×10^{-7} % b) 1.8×10^{-9} %	c) 3.6×10^{-7} %	d) $3.6 \times 10^{-9}\%$		
13.	A precipitate is formed when	:l:tr: nro du at			
	a) The fonic product is nearly equal to the solub	inty product			
	c) The ionic product exceeds the colubility prod	uct			
	d) The jonic product is less than solubility product	uci			
	a) The foline product is less thalf solubility produ	ici			

14.	The precipitation is notice	ed when an aqueous solutio	on of HCl is added to an aqu	ueous solution of:
	a) NaNO ₂	b) $Ba(NO_3)_2$	c) ZnSO ₄	d) HgNO ₃
15.	Which of the following	is not a Lewis base?		
	a) NH ₃	b) H ₂ O	c) AlCl ₃	d) None of these
16.	Solubility of BaF_2 in a solution	ution of Ba(NO ₃) ₂ will be re	epresented by the concent	ration term
	.) [D-2+]	1)[[[-]]	1 1 [n-1	1) 2[NIO-]
	ај [ва-]	D)[F]	$C \int \frac{1}{2} [F]$	d) $2[NO_3]$
17.	Which of the following is	a buffer?		
	a) NaOH + CH_3COOH	b) NaOH + Na ₂ SO ₄	c) $K_2SO_4 + H_2SO_4$	d) NH ₄ OH + NaOH
18.	For the following three	reactions I, II and III, equ	ulibrium constants are g	iven
	I. $CO(g) + H_2O(g) \rightleftharpoons 0$	$CO_2(g) + H_2(g); K_1$		
	II. $CH_4(g) + H_2O(g) \rightleftharpoons$	$CO(g) + 3H_2(g); K_2$		
	III. $CH_4(g) + 2H_2O(g) =$	\Rightarrow CO ₂ (g) + 4H ₂ (g); K ₃		
	Which of the following	relations is correct?		
	a) $K_{\perp}/\overline{K_{\perp}} = K_{\perp}$	b) $K_{2}K_{2} - K_{2}$	c) $K_{z} = K_{z}K_{z}$	d) $K_{-}K^{3} - K^{2}$
10	$0.1 \text{ mole of N} 0 (\alpha) \text{ was}$	$5 \int R_2 R_3 = R_1$	$K_1 K_2 = K_1 K_2$	25% Calculate the number
19.	of moles of NO (g) preserved	sealed III a tube under one a α	a $rad a contraction of the second second$	is reached after some time
	(1) (2)	b) 26.00	$g = 2 \log_2(g) (\pi_p = 0.14)$	
20	A huffer colution is prov	UJ 30.00 narod by miving 0.1 M an	cj 500.0	uj 3.000 nium chlorido At 200 V
20.	A builer solution is pre	pareu by mixing 0.1 M an	innonna anu 1.0 m annino	iniuni chioriue. At 296 K,
	the pK_b of NH_4OH is 5.0). The pH of the buffer is		
	a) 10.0	b) 9.0	c) 6.0	d) 8.0
21.	Which of the following me	olecules acts as a Lewis acid	1?	
22	a) $(CH_3)_3N$	b) $(CH_3)_3B$	c) $(CH_3)_2 O$	d) $(CH_3)_3P$
22.	Which among the follow	wing is an electron deficie	ent compound?	
	a) NF ₃	b) PF ₃	c) BF ₃	d) AsF ₃
23.	Identify the correct order	of acidic strength of CO ₂ , C	u0, Ca0, H ₂ 0:	
	a) $CaO < CuO < H_2O < H_2O < CuO < H_2O < H_2O < CuO < H_2O < $			
	b) $H_2 0 < Cu0 < Ca0 < H_2$	I ₂ 0		
	c) $La0 < H_20 < Cu0 < C$	0_2		
24	$u_{1}H_{2}U < U_{2} < U_{2} < U_{3}U < U_{3}$ Which of the following is:	uU		
24.	a) UCIO	a strong aciu?		4) IINO
25	$A_{\rm ccording to Arrhonius c}$	UJ $\Pi DI U_4$	$C_{1} \Pi U_{4}$	$u_{J} m v_{3}$
23.	a) Hydrolycic	Sheept the, strength of all a	ciù depenus on.	
	h) Concentration of acid			
	c) H^+ ions furnished by a	cid		
	d) Number of mole of bas	e used for neutralization		
26.	$H_2 + I_2 \rightleftharpoons 2HI$			
	In the above equilibrium	system, if the concentration	n of the reactants at 25°C is	s increased, the value of K_c
	will	- <u>,</u>		t
\mathbf{C}	a) Increase		b) Decrease	
	c) Remains the same		d) Depends on the nature	e of the reactants
27.	0.04 g of pure NaOH is dis	ssolved in 10 litre of distille	d water. The pH of the solu	ution is:
	a) 9	b) 10	c) 11	d) 12
28.	What is the equilibrium e	xpression for the reaction,	$P_4(s) + 5O_2(g) \rightleftharpoons P_4O_{10}(s)$)?
	a) $K_c = \frac{1}{1}$	b) $K_{a} = [0_{a}]^{5}$	c) $K_{a} = \frac{[P_{4}O_{10}]}{[P_{4}O_{10}]}$	d) $K_{a} = \frac{[P_{4}O_{10}]}{[P_{4}O_{10}]}$
	$[0_2]^5$	~, ~, [02]	$5[P_4][O_2]$	$[P_4][O_2]^5$
29.	When 10^{-8} mole of HCl is	dissolved in one litre of wa	ater, the pH of the solution	will be:
	a) 8	b) 7	c) Above 8	d) Below 7

30. A physician wishes to prepare a buffer solution at pH = 3.58 that efficiently resists a change in pH yet contains only small cone. of the buffering agents. Which one of the following weak acid together with its sodum sail would be best to use?
a) *m*-chloro beneoic acid (pK_n = 3.98)
b) *p*-chlorocinnamic acid (pK_n = 4.11)
c) 2,5-dihydroxy benzoic acid (pK_n = 2.97)
d) Acctoacetic acid (pK_n = 4.11)
c) 2,5-dihydroxy benzoic acid (pK_n = 2.97)
d) Acctoacetic acid (pK_n = 4.11)
c) 2,5-dihydroxy benzoic acid (pK_n = 2.97)
d) Acctoacetic acid (pK_n = 4.11)
c) 2,5-dihydroxy benzoic acid (pK_n = 0.11)
a) 8 b b More than 8
c) Between 6 and 7 d) Slightly more than 7
3. A certain buffer solution contains equal concentration of X⁻ and HX. The K_a for HX is 10. The pH of the
buffer is:
a) 7 b) 8 c) 11 d) 14
33. 100 mL of 0.01 M solution of NaOH is diluted to 1 dm³. What is the pH of the diluted solution?
a) 12 b) 11 c) 2 d) 3
34. Which of the following salt does not get hydrolysed in water?
a) KClO₄ b) NH₄Cl c) Ch₄COONa d) None of these
35. A higher value for equilibrium constant. *K* shows that:
a) The reaction has gone to near completion towards right
b) The reaction has gone to near completion towards left
d) None of the above
a) None of the above
a) None of these
3. 2. moles of hydrogen iodide were heated in a seeled bub at 444°C till the equilibrium state was reached.
Its degree of dissociation at this temperature was found to be 22%. The number of moles of hydrogen
iodide present at equilibrium constant *K* is is.
a) 1.0 atm b) 2.496 c) 3.235 d) 4.126
31. In the reaction, SPCl₅
$$\neq$$
 PCl₅ \neq Cl₅ the mounts of PCl₅, PCl₅ and Cl₃ at equilibrium are 2 mole each and
the total pressure is 3 are three difficultion constant *K* is.
a) 1.0 atm b) 2.496 k) c) 3.0 atm d) 6.0 atm
4) Which of the following is correct for the reaction?
N₅(g) + 3H₅ (g) = 2.NH₅(g) c)
a) K₅ = K₆
b) K₆ = K₆
c) K₆ > K₆
c) K₆ > K₆
c) K₆ > K₆
c) K₆ >

c) ΔH is negligible

d) Highly spontaneous at ordinary temperature

- 42. 0.1 millimole of CdSO₄ are present in 10 mL acid solution of 0.08 N HCl. Now H₂S is passed to precipitate all the Cd^{2+} ions. The pH of the solution after filtering off precipitate, boiling of H_2S and making the solution 100 mL by adding H_2O is:
- a) 2 b) 4 c) 6 d) 8 43. Calculate the pH of a solution in which hydrogen ion concentration is 0.005 g-equi/L? a) 2.3 b) 2.8 c) 2.9 d) 2.6

44. In 1L saturated solution of AgCl [K_{sp} (AgCl)1.6 10¹⁰], 0.1 mole of CuCl [K_{sp} (CuCl)1.0 10⁶] is added. The resultant concentration of Ag in the solution is $1.6 \ 10^x$. The value of 'x' is a) 3 b) 5 c) 7 d) 9

45. Eight mole of a gas AB_3 attain equilibrium in a closed container of volume 1 dm³ as, $2AB_3 \Rightarrow A_2$ $3B_2(g)$. If at equilibrium 2 mole of A_2 are present then, equilibrium constant is : a) 72 mol²L⁻² b) $36 \text{ mol}^2 \text{L}^{-2}$ c) $3 \text{ mol}^2 L^{-2}$ d) 27 mol²L⁻²

- 46. Which of the following is most soluble in water?
 - a) MnS($K_{sp} = 8 \times 10^{-37}$)
 - b) $ZnS(K_{sp} = 7 \times 10^{-16})$

c)
$$\text{Bi}_2\text{S}_3(K_{sp} = 1 \times 10^{-70})$$

d)
$$Ag_2S(K_{sp} = 6 \times 10^{-51})$$

47. At a given temperature the K_c for the reaction, $PCl_5(g) \Rightarrow PCl_3(g) + Cl_2(g)$ is 2.4 $\times 10^{-3}$. At the same temperature, the K_c for the reaction

$$PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$$
 is :

- c) 4.2×10^{-2} d) 4.8 \times 10⁻² a) 2.4×10^{-3} b) -2.4×10^{-3}
- 48. If the solubility of lithium sodium hexafluoroaluminate, $Li_3Na_3(AlF_6)_2$ is '*a*'mol/litre, its solubility product is equal to:
 - a) a^2
 - b) 12*a*²
 - c) 18a³
 - d) 2916a⁸
- 49. Approximate relationship between dissociation constant of water (*K*) and ionic product of water (K_w) is

	a) $K_w = K$	b) $K_w = 55.6 \times$	$K \qquad \text{c)} \ K_w = 18 \times K$	d) $K_w = 14 \times K$
50.	Degree of diss	ociation of 0.1 N CH_3COOH is	(dissociation constant = $1 \times$	< 10 ⁻⁵)
	a) 10 ⁻⁵	b) 10 ⁻⁴	c) 10 ⁻³	d) 10 ⁻²

51. If the solubility of Ca(OH)₂ is $\sqrt{3}$. The solubility product of Ca(OH)₂ is:

- a) 3
- b) 27
- c) $\sqrt{3}$
- d) 12√3

52. pH of 0.1 M Na₂HPO₄ and 0.2 M NaH₂PO₄ solutions are respectively. p K_a for H₃PO₄ are 2.12, 7.21 and 12.0 for respective dissociation to $H_2PO_4^-$, HPO_4^{2-} and PO_4^{3-} .

b) 9.61, 4.67 a) 4.67, 9.61 c) 4.67, 5.61 d) 5.61, 4.67

53. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

In the reaction given above, the addition of small amount of an inert gs at constant pressure will shift the equilibrium towards which side?

- a) LHS (Left hand side) b) RHS(Right hand side)
- c) Neither side

- d) Either side

54. Which one is hard base?

	a) Ag ⁺	b) Cr ³⁺	c) I ₂	d) F ⁻	
55.	Which species acts as an	acid and also a conjugate b	base of another acid?		
	a) HSO ₄	b) CO_3^{2-}	c) SO_4^{2-}	d) H ₃ O ⁺	
56.	Predict the conditions fo	r forward reaction on the b	asis of Le-Chatelier's princ	tiple for : $2SO_2(g) + O_2(g) \rightleftharpoons$	
	$2SO_3(g); \Delta H = -198 \text{ kJ}$				
	a) Lowering the tempera	ature and increasing pressu	ire		
	b) Any value of temperat	ture and pressure			
	c) Lowering of temperat	ture as well as pressure			
	d) Increasing temperatu	re as well as pressure			
57.	The solubility of AgCl in	water at 10°C is 6.2×10^{-6}	mol/litre. The K_{sp} of AgCl	is:	
-	a) $[6.2 \times 10^{-6}]^{1/2}$	b) $6.2 \times (10^{-6})^2$	c) $(6.2)^2 \times 10^{-6}$	d) $[6.2 \times 10^{-6}]^2$	
58.	When pressure is appl	ied to the equilibrium sys	stem ice r water. Which o	of the following	
	phenomenon will happ	pen?			
	a) More ice will be form	ned	b) Water will evaporat	e	
	c) More water will be f	formed	d) Equilibrium will not	be formed	
59.	At constant temperature	in one litre vessel, when th	ne reaction,		
	$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2$	$_2(g)$ is at equilibrium, the S	50_2 concentration is 0.6 M	, initial concentration of SO_3	
	is 1 <i>M</i> . The equilibrium c	onstant is :			
6.0	a) 2.7	b) 1.36	c) 0.34	d) 0.675	
60.	When 20g of $CaCO_3$ wer	e put into 10 litre flask and	heated to 800°C, 35% of C	CaCO ₃ remained unreacted at	
	equilibrium. K_p for deco	mposition of $CaCO_3$ is :			
(1	a) 1.145 atm	b) 0.145 atm	c) 2.145 atm	d) 3.145 atm	
61.	For the reaction equilibrium,				
	$2NOBr(g) \rightleftharpoons 2NO(g) + F$	$\operatorname{Br}_2(g)$, if $P_{\operatorname{Br}_2} = \frac{1}{9}$ at equilib	rium and <i>P</i> is total pressur	e. The ratio K_p/P is equal to:	
	a) 1/9	b) 1/81	c) 1/27	d) 1/3	
62.	$K_{sp} = 1.2 \times 10^{-5}$ of M_2	SO ₄ (<i>M</i> ⁺ is monovalent me	tal ion) at 298 K. The ma	ximum concentration of M^+	
	ions that could be attain	ed in a saturated solution o	f this solid at 298 K is:	•	
	a) $3.46 \times 10^{-3} M$	b) 7.0 × $10^{-3}M$	c) $2.88 \times 10^{-2} M$	d) $14.4 \times 10^{-3} M$	
63.	Which of the following d	escribes correct sequence f	for decreasing Lewis acid n	ature?	
	a) $BCI_3 > BF_3 > BBr_3$	b) $BBr_3 > BCl_3 > BF_3$	c) $BBr_3 > BF_3 > BCl_3$	d) $BF_3 > BCI_3 > BBr_3$	
64.	What should be the pF	I of solution to dissolve the 10^{-31}	he $Cr(OH)_3$ precipitate?		
	[Given, [Cr3+] = 1.0 m	$hol/L, K_{sp} = 6 \times 10^{-51}$			
	a) 2.0	b) 3.0	c) 5.0	d) 4.0	
65.	Which one of the follow	wing salts on being disso	lved in water gives pH>7	7 at 25°C?	
	a) KCN	b) KNO ₃	c) NH ₄ Cl	d) NH ₄ CN	
66.	Aqueous solution of whi	ch salt has the lowest pH?			
	a) NaOH	b) NH ₄ Cl	c) Na ₂ CO ₃	d) NaCl	
67.	In a gaseous reversible	e reaction,			
	$N_2 + O_2 \rightleftharpoons 2NO +$	heat			
C	If pressure is increased	d then the equilibrium co	nstant would be		
	a) Unchanged				
	b) Increased				
	c) Decreased				
	d) Sometimes increase	d, sometimes decreased			
68.	Glycine is:				
	a) Arrhenius acid	b) Lewis base	c) Simplest amino acid	d) All of these	
69.	On a given condition, the	e equilibrium concentration	of HI, H_2 and I_2 are 0.80, 0.	.10 and 0.10 mol/L. The	
	equilibrium constant for	the reaction, $H_2 + I_2 \rightleftharpoons 2H$	l, will be		

	a) 8	b) 16	c) 32	d) 64	
70.	If pH of the solution is on	e, what weight of HCl prese	ent in one litre of solution?		
	a) 3.65 g	b) 36.5 g	c) 0.365 g	d) 0.0365 g	
71. The concentration of hydroxyl ion in a solution left after mixing 100 mL of $0.1 M \text{ MgCl}_2$ and 10					
	0.2 <i>M</i> NaOH [K_{sp} of Mg(0	$(H_2) = 1.2 \times 10^{-11}]$ is:			
	a) 2.8 × 10 ⁻³	b) 2.8×10^{-2}	c) 2.8×10^{-4}	d) 2.8×10^{-5}	
72.	For a reaction and equi	librium which of the follo	owing is correct?		
	a) Concentration of rea	ctant=concentration of p	product		
	b) Concentration of rea	ctant is always greater th	an product		
	c) Rate of forward reac	tion=rate of backward re	eaction		
	d) $Q_c = k$				
73.	The correct order of incre	easing basic nature of the g	iven conjugate bases is:		
	a) $RCO\overline{O} < HC \equiv \overline{C} < \overline{N}H$	$_2 < \overline{R}$			
	b) $RCO\overline{O} < HC \equiv \overline{C} < \overline{R} <$				
	c) \overline{R} < HC = \overline{C} < RCO \overline{O} <	$\frac{1}{NH_2}$		\bigcirc	
	d) $BCOO < \overline{NH} < HC = 0$	$\overline{C} < \overline{R}$	Ć,	>	
74	What is the equilibrium	o < N evpression for the react	ion		
, 1.	$P_{1}(s) \pm 50_{1}(s)$	$\rightarrow P_1 O_{12}(c)$?			
	$[P_4(3) + 50_2(g)]$	$(-140_{10}(3))$		1	
	a) $K_c = \frac{[P_4][O_5]^5}{[P_4][O_5]^5}$	b) $K_c = \frac{1}{5[P_4][O_2]}$	c) $K_c = [O_2]^5$	d) $K_c = \frac{1}{[O_2]^5}$	
75.	A characteristic feature o	f reversible reaction is that			
	a) They never proceed to	completion			
	b) They proceed to comp	letion	G, Y		
	c) They are not complete	unless the reactants are re	moved from the sphere of	reaction mixture	
	d) None of the above	\sim			
76.	The concentration of CO	$_2$ be in equilibrium with 2	1.5×10^{-2} mol litre ⁻¹ of CO	D at 100 $^{\circ}$ C for the reaction :	
	$FeO(s) + CO(g) \rightleftharpoons Fe(s)$	$+ CO_2 (g); K_c = 5.0$			
	a) 5 <i>M</i>	b) 1.25 <i>M</i>	c) 12.5 <i>M</i>	d) 0.125 <i>M</i>	
//.	In the reaction, $H_2 + I_2$	$a \rightleftharpoons 2HI$			
	In a 2 I flask 0.4 moles of	of each H_2 and I_2 are take	en. At equilibrium 0.5 mo	les of HI are formed.	
	What will be the value	of equilibrium constant <i>k</i>	ζ _c ?		
	a) 20.2	b) 25.4	c) 0.284	d) 11.1	
78.	0.005 M acid solution h	as 5 pH. The percentage	ionisation of acid is		
	a) 0.8%	b) 0.6 %	c) 0.4 %	d) 0.2 %	
79.	A solution of pH 8 is ba	sic than a solution of pH 12)		
	a) Less	b) More	c) Equally	d) None of these	
80.	Which statement is/are c	orrect?			
	a) All Arrhenius acids are	e Bronsted acids			
	b) All Arrhenius bases are	e not Bronsted base			
	c) H' ion in solution exis	ts as H ₉ U ₄			
01	d) All of the above	r_{2}	-26×10^{-3}) which is not	wined to get $[11^+] = 1.50$ v	
01.	The concentration of Hu $10^{-3}M$ is	roacetic acid (K_a of acid =	$= 2.6 \times 10^{-5}$) which is rec	$[\text{unred to get }[\text{H}^{-}] = 1.50 \times$	
	10^{-M} IS:				
	a) 0.003 M b) 2.37 $\times 10^{-3} M$				
	c) $2.37 \times 10^{-4}M$				
	d) 2 37 x 10^{-2} M				
82	Which among the following	ng is the strongest acid?			
02.	a) $H(ClO)O_2$	b) H(Cl0)0 ₂	c) H(ClO)O	d) H(ClO)	
	1 1 1-6	1 1 1 1 1			

83.	Which one of the following is not an amphoteric	c substance?	
	a) HNO_3 b) HCO_3^-	c) H ₂ 0	d) NH ₃
84.	For the chemical reaction $3X(g) + Y(g) \rightleftharpoons X_3Y(g)$	g), that amount of $X_3 Y$ at	equilibrium is affected
	by		
	a) Temperature and pressure	b) Temperature only	
	c) Pressure only	d) Temperature, pressu	re and catalyst
85.	K_p/K_c for the reaction,		-
	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix}$		
	$CO(g) + \frac{1}{2}O_2(g) \leftarrow CO_2(g) \text{ is:}$		
	a) RT b) $1/\sqrt{RT}$	c) \sqrt{RT}	d) 1
86.	Densities of diamond and graphite are 3.5 and	2.3 g/mL respectively. In	crease of pressure on the
	equilibrium $C_{diamond} \rightleftharpoons C_{graphite}$:		
	a) Favours backward reaction		
	b) Favours forward reaction		
	c) Have no effect		V i
07	d) Increases the reaction rate $(D, C) = 4 + 40^{-9}$ H		
87.	The solubility product of $BaCl_2$ is 4×10^{-2} . Its so	olubility in mol/Lis	N 4 40-9
	a) 4×10^{-3} b) 4×10^{-9}	c) 1×10^{-3}	d) 1×10^{-9}
88.	Addition of sodium acetate to 0.1 M acetic acid v	vill cause	
	a) Increase in pH	b) Decrease in pH	
	c) No change in pH	d) Change in pH that car	nnot be predicted
89.	The solubility in water of a sparingly soluble salt A_2	Bis 1.0 \times 10 ⁻³ mol L ⁻¹ . Its s	olubility product will be
	a) 4×10^{-9} b) 4×10^{9}	c) 1×10^{9}	d) 1×10^{-9}
90.	NaHCO ₃ and NaOH can not co-exist in a solution beca	ause of:	
	a) Common ion effect		
	b) Acid-base neutralisation		
	c) Le – Chatelier's principle		
01	a) Redox change		
91.	Formation of SO_3 form SO_2 and O_2 is favoured by	h) Dograda in procedura	
	a) Increase in pressure	d) Decrease in tompora	
02	A definite amount of colid NH HS is placed in a flash	u) Decrease in tempera	uie
92.	A definite amount of solid NH_4HS is placed in a hask and 0.50 atm pressure NH HS decomposes to give N	H_{1} and H_{2} and total equil	librium prossure in flack is
	0.84 atm. The equilibrium constant for the reaction	ing and m ₂ 5 and total equil	indituiti pressure ili flask is
	a) 0.30 b) 0.18	c) 0.17	d) 0.11
93.	Hydroxyl ion concentration of 10^{-2} M HCl is		
	a) 1×10^{1} mol dm ⁻³ b) 1×10^{-12} mol dm ⁻³	c) 1×10^{-1} mol dm ⁻³	d) 1 x 10 ⁻¹⁴ mol dm ⁻³
94.	For a reaction in equilibrium :		
	a) There is no volume change		
	b) The reaction has stopped completely		
	c) The rate of forward reaction is equal to the rate of	f backward reaction	
\checkmark	d) The forward reaction is faster than reverse reaction	on	
95.	A solution of CuSO ₄ in water will:		
	a) Turn red litmus blue		
	b) Turn blue litmus red		
	c) Show no effect on litmus		
	d) Decolourize litmus		
96.	At constant temperature, the equilibrium constant (A	K_p) for the decomposition	reaction $N_2O_4(g) \rightleftharpoons$

2NO₂(g) is expressed by $K_p = \frac{(4x^2p)}{(1-x^2)}$ Where, p = pressure, x = extent of decomposition. Which one of the following statements is true? a) K_p increases with increase of pb) K_p remains constant with change in p and xc) K_p increases with increase of xd) None of the above 97. The pH of a solution is 5.0. To this solution sufficient acid is added to decrease the pH to 2.0. The increase in hydrogen ion concentration is: a) 1000 times b) 5/2 times c) 100 times d) 5 times 98. Which of the following is a Lewis acid? b) Cl⁻ a) AlCl₃ c) CO d) C_2H_2 99. The solubility of AgCl is 1×10^{-5} mol/L. Its solubility in 0.1 molar sodium chloride solution is a) 1×10^{-10} b) 1×10^{-5} c) 1×10^{-9} d) 1×10^{-4} 100. In which of the following reaction $K_p > K_c$? c) $2SO_3 \rightleftharpoons O_2 + 2SO_2$ d) $PCl_3 + Cl_2 \rightleftharpoons PCl_5$ a) $N_2 + 3H_2 \rightleftharpoons 2NH_3$ b) $H_2 + I_2 \rightleftharpoons 2HI$ 101. K_{sp} for sodium chloride is 36 mol²/litre². The solubility of sodium chloride is: a) $\frac{1}{36}M$ b) $\frac{1}{6}M$ c) 6 M d) 3600 M 102. Degree of dissociation of NH_4OH in water is 1.8×10^{-5} , then hydrolysis constant of NH_4Cl is a) 1.8×10^{-5} b) 1.8×10^{-10} c) 5.55×10^{-5} d) 5.55×10^{-10} 103. What volume of 1.0 M sodium formate solution should be added to 50 mL of 0.05 M formic acid to produce a buffer solution of pH = 4.0 (pK_a of formic acid = 3.80)? b) 39.62 mL a) 39.0 mL c) 40 mL d) 40.62 mL 104. An acid HA ionises as $HA \rightleftharpoons H^+ + A^-$ The pH of 1.0 M solution is 5. Its dissociation constant would be d) 1×10^{-5} c) 5×10^{-8} a) 1×10^{-10} b).5 105. Phosphorus pentachloride dissociates as follows, in a closed reaction vessel, $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ If total pressure at equilibrium of the reaction mixture is p and degree of dissociation of PCl₅ is x, the partial pressure of PCl₃ will be b) $\left(\frac{2x}{1-x}\right)p$ c) $\left(\frac{x}{x-1}\right)p$ a) $\left(\frac{x}{x+1}\right)p$ d) $\left(\frac{x}{1-x}\right) p$ 106. For the gaseous phase reaction, $2NO \Rightarrow N_2 + O_2$, $\Delta H^\circ = -43.5$ kcal mol⁻¹, which statement is correct for, $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)?$ a) K is independent of temperature b) K increases as temperature decreases c) K decreases as temperature decreases d) K varies with addition of NO 107. Which would decreases the pH of 25 cm³ of a 0.01 *M* solution of hydrochloric acid? a) The addition of magnesium metal b) The addition of 25cm³0.02 *M* hydrochloric acid c) The addition of 25 cm³0.005 *M* hydrochloric acid d) None of the above 108. Which is not a Lewis acid? b) $SnCl_2$ c) $AlCl_3$ d) BF_3 a) CCl_4 109. Which is Lewis base? a) HCl b) HNO_3 c) HF d) NH_3 110. Ammonia under a pressure of 15 atm at 27°C is heated to 347°C in a closed vessel in the presence of catalyst. Under the conditions, NH₃ is partially decomposed according to the equation, $2NH_3 \rightleftharpoons N_2 + 3H_2$. The vessel is such that the volume remains effectively constant whereas pressure increases to 50 atm.

	Calculate th	e percentage o	of NH ₃ actually	decomposed	1			
:	a) 61.3%		b) 63.5%		c) 65.3%		d) 66.6%	
111.	For the syst	tem; 3A + 2B =	\rightleftharpoons <i>C</i> , the expre	ssion for equ	ilibrium cons	tant is		
	$(A)^{3}[B]^{2}$		[<i>C</i>]		、[3 <i>A</i>][2 <i>B</i>]			
	a) <u></u> [C]		b) $\frac{[A]^3[B]^2}{[B]^2}$		c) <u>[C]</u>		d) $\frac{[3A][2B]}{[3A][2B]}$	
112.	A monopro	tic acid in a 0.1	l M solution io	nisesto 0.001	1%. Its ionisat	ion constant	is	
	a) 1×10^{-1}	1	b) 1×10^{-3}		c) 1×10^{-6}		d) 1×10^{-8}	
113.	For the read	ction, $C(s) + C$	$0_2(g) \rightleftharpoons 2CO(g)$	g), the princi	ple pressure o	of CO_2 and CC) are 2.0 and 4.0 atm	
	respectively	y at equilibriu	m. The K_n for t	he reaction is	S	-		•
	a) 2.0	-	b) 4.0		c) 8.0		d) 1.6	
114.'	The vapour	density of con	npletely disso	ciated NH₄Cl	would be:			
	a) Slightly l	ess than half o	of that of ammo	nium chlorio	de			
	b) Half of th	nat of ammoniu	um chloride					
	c) Double t	hat of ammoni	um chloride					
	d) Determii	ned by the amo	ount of solid ar	nmonium ch	loride used in	the experime	ent	
115.	Mg ²⁺ is t	han Ál ³⁺ .					V I	
	a) Strong Lo	ewis acid	b) Strong Lev	vis base	c) Weak Lew	vis acid 🖉 👗	d) Weak Lewis base	
116. '	The equilib	rium constant	for the reactio	$n_{1}N_{2}(g) + 0$	$_{2}(g) \rightleftharpoons 2NO(g)$	g) is 4×10^{-5}	⁴ at 2000 K. In presence of	f
	a catalyst th	ne equilibrium	is attained ten	times faster	. Therefore, tl	ne equilibriur	n constant, in present of th	e
	catalyst, at 1	2000 K is:						
	a) 40 × 10	-4						
	b) 4 × 10 ⁻	4						
	c) 4×10^{-1}	3						
	d) Difficult	to compute wi	thout more da	ta 🖌	G, Y'			
117.	The activati	ion energies of	f forward and l	backward rea	action: $A_2 + B$	$r_2 \rightleftharpoons 2AB$ are	180kJ mol ⁻¹ and 200 kJ	
	mol ⁻¹ resp	ectively. The p	resence of a ca	talyst lower:	s the activatio	n energy of b	oth (forward and	
	backward)	reactions by 1	00 kJ mol ⁻¹ . T	he enthalpy o	change of the	reaction in th	e presence of catalyst will	
	be (in kJ mo	ol^{-1}):						
;	a) –20							
1	b) —300							
	c) + 120							
	d) — 280	4	\mathbf{N}					
118.	How will in	ncrease of pr	essure affect	the equation	n?			
	C(s) +	$H_2O(g) \rightleftharpoons C$	$O(g) + H_2(g)$					
	a) Shift in t	the forward d	lirection		b) Shift in th	ne reverse d	irection	
	c) Increase	in the yield	of hydrogen		d) No effect			
119.	If the press	ure of N_2/H_2 i	nixture in a clo	osed apparat	us is 100 atm	and 20% of	the mixture then reacts, th	e
	pressure at	the same tem	perature would	d be :				
	a) 100		b) 90		c) 85		d) 80	
120.	C_2H_5ONaac	cts as in C_2 H	l₅OH.		,		,	
	a) Strong a	cid	b) Weak acid		c) Strong ba	se	d) Weak base	
121.	A solution o	of sodium bora	ite has a pH of	approximate	ly:			
	a) > 7		b) < 7		c) = 7		d) Between 4 and 5	
122.	A certain bı	uffer solution o	contains equal	concentratio	on of X^- and H	X. The K _a for	HX is 10^{-8} . The pH of the	
	buffer is		-				-	
:	a) 3		b) 8		c) 11		d) 14	
123.	Study the f	following tabl	le.					
	Buffer	Volume (in	Volume (in					
	solutio	mL) of 1 M	mL) of 0.1					
	n	weak acid	M sodium					

		salt of	
		weak acid	
Ι	4.0	4.0	
II	4.0	40.0	
III	40.0	4.0	
IV	0.1	10.0	
Which	of the two se	ts of buffer soluti	nave least pH?
a) I and	l II	b) I and III	c) II and III
4. Which i	ndicator work	s in the pH range 8	
a) Phen	olphthalein	b) Methyl ora	c) Methyl red
5. 100 ml	of 0.015 M I د	HCl solution is mi	with 100 mL of 0.005 M
resulta	nt solution?		
a) 2.5		b) 1.5	c) 2
6. The sol	ubility of $A_2 X_3$	is y mol dm ^{-3} . Its	oility product is:
a) 6 y ⁴		b) 64 y ⁴	c) 36 y ⁵
7. The vol	ume of water i	needed to dissolve	$f BaSO_4 (K_{sp} = 1.1 \times 10^{-1})$
a) 820 l	itre		
b) 410	itre		
c) 205	itre		
d) None	e of these	0 6	
In a ves	sel containing	SO_3 , SO_2 , and O_2 a	liibrium, some neiium gas
the disc	e increase, wi		ume remain constant. Acc
a) Incre		3 •	XY
a) more b) Decr	ases		
c) Rem	cases ains unaltared		7
d) Chan	ges unnredict	ahly	
). Given t	he equilibriu	m system	
NH.Cl	$s \rightarrow NH^+(a)$	$a) + Cl^{-}(aa)$	
$(\Lambda H -$	$\pm 35 \leftarrow \mathrm{MI}_4$ (u)	(uq)	
$(\Delta II - What a$	+3.5 Kcal/III	uift the equilibriu	the right?
vilat c	nange win si	int the equilibriu	the right?
aj Deci	easing the te	mperature	
DJ Incr	easing the ter	nperature	,
c) Diss	olving NaCl c	rystals in the equ	ium mixture
d) Diss	olving NH ₄ N(J_3 crystals in the	librium mixture
The sol	ubility produc	t of BaSO ₄ is 1.5 \times	The precipitation in a 0.0
adding	H ₂ SO ₄ of conce	entration	_
a) 10 ⁻⁹	М	b) 10 ⁻⁸ M	c) 10 ⁻⁷ M
1. The sol	ubility of Pb	(OH) ₂ in water is	< 10 ^{–6} M. Its solubility ir
would	be		
a) 1.2 >	< 10 ⁻²	b) 1.6 × 10 ⁻	c) 1.6×10^{-2}
In whic	h of the follo	wing reactions is	$< K_c$?
a) I ₂ (g`	$\Rightarrow 2I(g)$	-	b) $2BrCl(g) \rightleftharpoons C$
c) CO(0			
Anvnre	σ) + 3H ₂ (σ) =	ב (H (מ) + H טע	d) All of the above
y pit	g) + 3H ₂ (g) =	\doteq CH ₄ (g) + H ₂ O(d) All of the above
a) Solut	$g) + 3H_2(g) =$	\Rightarrow CH ₄ (g) + H ₂ O(med when saturated	d) All of the abov
a) Solut	$g) + 3H_2(g) =$ cipitate is form ion becomes so value of ionic r	\Rightarrow CH ₄ (g) + H ₂ O(ned when saturated	d) All of the abov

	d) The value of ionic pro	duct is greater than the val	ue of solubility product	
13	4. At 25°C, <i>K_b</i> for a base BO	H is 1.0×10^{-12} . The [OH ⁻] in 0.01 <i>M</i> aqueous solutio	n of base is:
	a) $1.0 \times 10^{-6} M$	b) 1.0 × 10 ⁻⁷ M	c) $1.0 \times 10^{-5} M$	d) $2.0 \times 10^{-6} M$
13	5. The pH of a 10 ^{–9} M solut	tion of HCl in water is		
	a) 8	b) —8	c) Between 7 and 8	d) Between 6 and 7
13	6. If pH of a saturated solut	tion of $Ba(OH)_2$ is 12, the value	alue of its <i>K_{sp}</i> is:	
	a) $4.0 \times 10^{-6} M^3$	b) $4.0 \times 10^{-7} M^3$	c) $5.0 \times 10^{-6} M^3$	d) $5.0 \times 10^{-7} M^3$
13	7. Liquid ammonia ionises	to a slight extent. At –50°C	, its self ionisation constant	$K_{\rm NH} = [\rm NH_4^+][\rm NH_2^-] =$
	10^{-30} How many amide	ions are present per cm^3 (, of nure liquid ammonia? (A	sume $N = 6.0 \times 10^{23}$
	a) 6×10^6 ions	h) 6×10^5 ions	c) 6×10^{-5} ions	d) 6×10^{-6} ions
13	8 The first and second di	issociation constants of a	n acid	
15	H A are 1.0 × 10 ⁻⁵ and	$d = 0 \times 10^{-10}$ respective	lu The overall discosiati	on constant of the acid
	$\Pi_2 A \text{ are } 1.0 \times 10^{-5} \text{ and}$	a s.0 × 10 ⁻⁵ respective	ly. The overall dissociatio	on constant of the actu
	will be			
	a) 5.0×10^{-5}	b) 5.0×10^{15}	c) 5.0×10^{-15}	d) 0.2×10^{5}
13	9. Which is the strongest ac	cid?		\mathbf{v}
	a) CH ₃ COOH	b) CH ₂ ClCOOH	c) CHCl ₂ COOH	d) CCl ₃ COOH
14	0. A 0.01 <i>M</i> ammonia solut	ion is 5% ionized. The conc	centration of $[OH^-]$ ion is:	
	a) 0.005 <i>M</i>	b) 0.0001 <i>M</i>	c) 0.0005 <i>M</i>	d) 0.05 <i>M</i>
14	1. Nucleophiles are:			
	a) Lewis acids	b) Lewis bases	c) Bronsted acids	d) Bronsted bases
14	2. Theory of ionisation was	given by		
	a) Rutherford	b) Graham	c) Faraday	d) Arrhenius
14	3. 0.01 mole of lime (CaO)	was dissolved in 100 cm ³ o	f water. Assuming the base	is completely ionised in the
	solution, the pH of the so	olution will be	× v	
	a) 13.3	b) 8.5	c) 6	d) 8
14	 Consider the following 	solutions of equal conce	ntrations	
	$A = NH_4Cl$	$B = CH_3COONa$		
	$C = NH_4OH$	$D = CH_3COOH$		
	A buffer solution can b	e obtained by mixing equ	ual volumes of	
	a) C and D	b) A and B	c) A and C	d) C and D
14	5. At 600°C. K., for the fol	lowing reaction is 1 atm.		,
	$V(\alpha) \rightarrow V$	$V(\alpha) + 7(\alpha)$		
	$\Delta(g) \leftarrow 1$	(g) + 2(g)	tatal	ilibuiuu aastaa is a staa
	At equilibrium, 50% of	(g) is dissociated. The	total pressure of the equ	mbrium system is <i>p</i> atm.
	What is the partial pre	ssure (in atm) of X (g) at	equilibrium?	
	a) 1	b) 4	c) 2	d) 0.5
14	6. Equilibrium constants <i>K</i>	$_1$ and K_2 for the following e	quilibria are related as :	
	$NO(g) + \frac{1}{2}O_2(g) \rightleftharpoons NO_2$	(g); K_1		
	$2NO_2(g) \rightleftharpoons 2NO_2(g)$	$O(g) + O_2(g); K_2$		
	1	1) <i>w w</i> ²	K_1
C	a) $K_2 = \frac{1}{K_1^2}$	b) $K_2 = \frac{1}{K_1}$	c) $K_2 = K_1^2$	d) $K_2 = \frac{1}{2}$
14	7. If K_1 and K_2 are equilibri	um constants for reactions	(I) and (II) respectively fo	r,
	$N_2 + O_2 \rightleftharpoons 2NO$ (i)			
		N N		
	$\frac{1}{2}N_2 + \frac{1}{2}O_2 \rightleftharpoons NO \dots (11)$)		
	Then:			
	a) $K_2 = K_1$	b) $K_2 = \sqrt{K_4}$	c) $K_1 = 2K_2$	d) $K_{4} = \frac{1}{K_{2}}$
		$\sim j m_2 = \sqrt{m_1}$	-, <u> </u>	$2^{n_1} 2^{n_2}$
14	8. All reactions which have	chemical disintegration ar	e	

a) Exothermic

b) Reversible

c) Reversible and exothermic

d) Reversible of irreversible and endothermic or exothermic

149. For which of the following sparingly soluble salt, the solubility (*s*) and solubility product (K_{sp})

are related by the expression $s = (K_{sp}/4)^{1/3}$?

a) $BaSO_4$ b) $Ca_3(PO_4)_2$ c) Hg_2Cl_2 d) Ag_3PO_4 150. For $PCl_5 \Rightarrow PCl_3 + Cl_2$, initial concentration of each reactant and product is 1 M. If $K_{eq} = 0.41$ then a) More PCl_3 will form b) More Cl_2 will form c) More PCl_5 will form d) No change

151. The exothermic formation of ClF_3 is represented by the equation

 $Cl_2(g) + 3F_2(g) \rightleftharpoons 2ClF_3(g);$

$$\Delta H = -329 \text{ kJ}$$

Which of the following will increase the quantity of ClF₃ in an equilibrium mixture of

- Cl₂, F₂ and ClF₃?
- a) Adding F₂
- c) Removing Cl₂

b) Increasing the volume of the containerd) Increasing the temperature

152. For which of the following reactions, does the equilibrium constant depend on the units of concentration?

a) NO(g)
$$\Rightarrow \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$$

- b) $\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(aq) \rightleftharpoons \operatorname{Cu}(s) + \operatorname{Zn}^{2+}(aq)$
- c) $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$
- d) $C_2H_5OH(l) + CH_3COOH(l) \rightleftharpoons CH_3COOC_2H_5(l) + H_2O(l)$
- 153. If the solubility product of lead iodide (PbI₂) is 3.2×10^{-8} , its solubility will be:

a) $2 \times 10^{-3} M$ b) $4 \times 10^{-4} M$ c) $1.6 \times 10^{-5} M$

154. At 30°C the solubility of Ag_2CO_3 ($K_{sp} = 8 \times 10^{-12}$) would be greatest in 1 L of

a) $0.05 \text{ M Na}_2\text{CO}_3$ b) 0.05 M AgNO_3 c) Pure water d) 0.05 M NH_3

155. The interfering radicals interfere in the test of usual inorganic analysis after II group analysis due to: a) Their solubility in acid medium

- b) Their solubility in alkaline medium
- c) Their insoluble nature in alkaline medium
- d) None of the above
- 156. The p K_b value of NH₃ is 5. Calculate the pH of the buffer solution, 1 L of which contains 0.01 M NH₄Cl and 0.10 M NH₄OH

a) 4

c) 8

d) 10

d) $1.8 \times 10^{-5} M$

157. The equilibrium constant *K* for the reaction $2\text{HI}(g) \rightleftharpoons \text{H}_2(g) + \text{I}_2(g)$ at room temperature 300 K is 2.85 and at 698 K 1.84×10^{-2} . Hence the reason that HI exists as a stable compound at room temperature is because:

a) It decomposes so slowly that equilibrium is not readily achieved

b) The HI bond has a large covalent contribution

c) The heat of reaction at room temperature is -5.31 kcal

b) 6

- d) It is uncatalytic reaction
- 158. A mixture of 0.3 mole of H_2 and 0.3 mole of I_2 is allowed to react in a 10 L evacuated flask at 500°C. The reaction is $H_2 + I_2 \rightleftharpoons 2HI$, the *K* is found to be 64. The amount of unreacted I_2 at equilibrium is a) 0.03 mol b) 0.06 mol c) 0.09 mol d) 3.6 mol
- 159. In a solution of a weak electrolyte at infinite dilution we have:
 - a) Only cations and electrolyte in 10% dissociated
 - b) Only anions and electrolyte is 10% dissociated
 - c) Both cations and anions and electrolyte is 100% dissociated
 - d) Cations, anions and unionised electrolyte

160. In the reaction, $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, the equilibrium concentration of PCl_5 and PCl_3 are 0.4 and 0.2 mol/L respectively. If the value of K_c is 0.5 what is the concentration of Cl₂ in mol/L? a) 0.5 b) 1.0 c) 1.5 d) 2.0 161. The reaction that proceeds in the forward direction is : a) $SnCl_4 + Hg_2Cl_2 \rightarrow SnCl_2 + 2HgCl_2$ b) $NH_4Cl + NaOH \rightarrow H_2O + NH_3 + NaCl$ c) $Mn^{2+} + 2H_2O + Cl_2 \rightarrow MnO_2 + 4H^+ + 2Cl^$ d) $S_4 O_6^{2-} + 2I^- \rightarrow 2S_2 O_3^{2-} + I_2$ 162. Which is a Lewis base $I_2 + I^- \rightarrow I_3^-$? b) I₃⁻ c) I⁻ d) None of these a) I_2 163. A solution contains 10 mL of 0.1 N NaOH and 10 mL of 0.05 N H₂SO₄, pH of this solution is a) Less than 7 b) 7 d) Greater than 7 c) Zero 164. The solubility of PbCl₂ in water is 0.01 *M* at 25°C. Its maximum concentration in 0.1 *M* NaCl will be: a) $2 \times 10^{-3} M$ b) $1 \times 10^{-4} M$ c) $1.6 \times 10^{-2} M$ d) $4 \times 10^{-4} M$ 165. HX is a weak acid ($K_a = 10^{-5}$). It forms a salt NaX (0.1 M on reacting with caustic soda. The degree of hydrolysis of NaX is a) 0.01% b) 0.0001 % d) 0.5 % c) 0.1 % 166. Which species acts as stronger acid than formic acid in aqueous solution? d) HPO_4^{2-} a) CH₃COOH b) H_2SO_4 c) NH_{4}^{+} 167. In a reaction at equilibrium 'X' mole of the reactant A decompose to give 1 mole each of C and D. If the fraction of A decomposed at equilibrium is independent of initial concentration of A, then the value of 'X' is a) 1 b) 3 c) 2 d) 4 168. Starting with 1 mole of N₂O₄, if α is the degree of dissociation of N₂O₄ for the reaction, N₂O₄ \Rightarrow 2NO₂ then at equilibrium the total number of moles of N₂O₄ and NO₂ present is a) 2 b) $(1 - \alpha)$ c) $(1 - \alpha)^2$ d) $(1 + \alpha)$ 169. A saturated solution of Mg(OH)₂ in water at 25°C contains 0.11 g Mg(OH)₂ per litre of solution. The solubility product of $Mg(OH)_2$ is: c) $4 \times (0.11)^3$ d) $4 \times (0.11)^3 / (58)^3$ a) $(0.11)^2$ b) $(0.11)^3$ 170. For the reaction, $2NO_3(g) \rightleftharpoons 2NO(g) + O_2(g)$ $(K_c = 1.8 \times 10^{-6} \text{ at } 184^{\circ}\text{C})$ $(R = 0.00831 \, \text{k}]/(\text{mol K})$ When K_p and K_c are compared at 184°C, it is found that Whether K_p is greater than less than or equal a) to K_c depends upon the total gas pressure b) $K_p = K_c$ d) K_p is greater than K_c c) K_p is less than K_c 171. Which is the best choice for weak base-strong acid titration? a) Methyl red b) Litmus d) Phenolphthalein c) Phenol red 172. The value of the ionic product of water depends a) On volume of water b) On temperature c) Changes by adding acid or alkali d) Always remain constant 173. The formation of SO₃ takes place according to the following reaction, $2SO_2 + O_2 \rightleftharpoons 2SO_3$, $\Delta H = -45.2$ kcal. The formation of SO₃ is favoured by a) Increase of volume b) Increase in pressure c) Increase in temperature d) Removal of oxygen 174. Which one is strongest electrolyte in the following?

	a) NaCl	b) CH ₃ COOH	c) NH ₄ OH	d) C ₆ H ₁₂ O ₆
	175. For which of the f	ollowing reactions, $K_p = K$	c?	
	a) $N_2 + 3H_2 \rightleftharpoons 2N_2$	MH_3 b) $N_2 + O_2 \rightleftharpoons 2NO$	c) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$	d) $2SO_3 \rightleftharpoons 2SO_2 + O_2$
	176. The solubility of Ag	I in Nal solution is less than t	hat in pure water because	
	a) Agl forms compl	ex with Nal	b) Of common ion effect	
	CJ Solubility produ	ct of Agi is less	a) The temperature of t	the solution decreases $CO(\alpha)$
	$2H_2(g) \rightleftharpoons CH_3OH(g)$	g) are 2.0, 1.0 and 0.1 atm res	pectively at 427°C. The value	e of K_p for the decomposition
	of CH ₃ OH to CO and	d H ₂ is :		
	a) 10² atm	b) 2 \times 10 ² atm ⁻¹	c) 50 atm ²	d) $5 \times 10^{-3} \text{ atm}^2$
	178. What happens to p	H of a solution when NH ₄ Cl cr	ystal is added to a dilute sol	ution of NH ₄ OH?
	a) Decreases	b) Increases	c) Remains unaffected	d) All of these
	179. What mole of Ca(O	H) ₂ is dissolved in 250 mL aq	ueous solution to given a sol	ution of pH 10.65, assuming
	full dissociation?			
	a) 0.47×10^{-4}	b) 0.48×10^{-4}	c) 0.56×10^{-4}	d) 0.58×10^{-4}
	180. The volume of the $Cl_{1}(z)$ is in successful to $cl_{2}(z)$	reaction vessel containing an	equilibrium mixture in the r	reaction, $SO_2CI_2(g) \rightleftharpoons SO_2(g) +$
	$Cl_2(g)$ is increased.	When equilibrium is reestabl	Isned:	S
	a) The amount of S	$O_2(g)$ will decrease $O_2(l_2(g) will increase$		
	c) The amount of C	$l_2(\sigma)$ will increase		
	d) The amount of C	$l_2(g)$ will remain unchanged		
	181. The acidic nature o	f zinc oxide is shown from the	e formation of salt:	
	a) NaZnO ₂	b) Na_2ZnO_2	c) $Na_2Zn_2O_2$	d) None of these
	182. Consider the follo	wing reaction equilibrium		-
	$N_2(g) + 3H_2(g)$	$) \rightleftharpoons 2NH_3(g)$		
	Initially, 1 mole o	f N ₂ and 3 moles of H ₂ are t	ake in a 2 L flask. At equili	ibrium state if, the number
	of moles of N ₂ is 0	.6, what is the total number	of moles of all gases pres	ent in the flask?
	a) 0.8	b) 1.6	c) 3.2	d) 6.4
	183. If 0.1 mole of I_2 is	s introduced into 1.0 litre fla	ask at 1000 K, at equilibriu	m ($K_c = 10^{-6}$), which one is
	correct?		· •	
	a) $[1, (a)] > [1(a)]$	h $[I, (\alpha)] < [I(\alpha)]$	c) $[I_{1}(a)] = [I(a)]$	d) $[1, (a)] = \frac{1}{2} [1(a)]$
	a) $[I_2(g)] > [I(g)]$	$U_2(g) = [I(g)]$	$[I_2(g)] = [I(g)]$	$\frac{u_1[l_2(g)]}{2} = \frac{1}{2}[l(g)]$
	184. The equilibrium co $a_1(4) = 0.01$	A(g) = B(g) is J	(.1, Gas B Will nave motar collection (4) > 1	d) At all those
	aj (A) = 0.91 185 The equilibrium wi	(A) > 0.91	(A) > 1	u) At all these
	105. The equilibrium wi			
	a) $N_{a}(g) + O_{b}(g) =$	≥ 2NO(g)	h) $2SO_{2}(g) + O_{2}(g) \Rightarrow 3$	$2SO_{\alpha}(\sigma)$
	a) $N_2(g) + O_2(g) =$ c) $2O_2(g) \rightleftharpoons 3O_2(g)$	2NO(g)	b) $2SO_2(g) + O_2(g) \rightleftharpoons 2$ d) $2NO_2 \rightleftharpoons N_2O_4(g)$	2SO ₃ (g)
	a) N ₂ (g) + O ₂ (g) = c) 2O ₃ (g) \rightleftharpoons 3O ₂ (g 186. The pH value of 0	2NO(g)) .001 M aqueous solution of	b) $2SO_2(g) + O_2(g) \rightleftharpoons 2$ d) $2NO_2 \rightleftharpoons N_2O_4(g)$ TNaCl is	2SO ₃ (g)
	a) N ₂ (g) + O ₂ (g) ≠ c) 2O ₃ (g) ⇒ 3O ₂ (g 186. The pH value of 0 a) 7	2NO(g)) .001 M aqueous solution of b) 4	b) $2SO_2(g) + O_2(g) \rightleftharpoons 2$ d) $2NO_2 \rightleftharpoons N_2O_4(g)$ TNaCl is c) 11	d) unpredictable
	a) $N_2(g) + O_2(g) =$ c) $2O_3(g) \rightleftharpoons 3O_2(g)$ 186. The pH value of 0 a) 7 187. The solution of Ag(2NO(g)) .001 M aqueous solution of b) 4 Cl is unsaturated if:	b) $2SO_2(g) + O_2(g) \rightleftharpoons 2$ d) $2NO_2 \rightleftharpoons N_2O_4(g)$ FNaCl is c) 11	d) unpredictable
	a) $N_2(g) + O_2(g) =$ c) $2O_3(g) \Rightarrow 3O_2(g)$ 186. The pH value of 0 a) 7 187. The solution of Ag(a) $[Ag^+][Cl^-] < K_s$	2NO(g) 001 M aqueous solution of b) 4 Cl is unsaturated if: $b) [Ag^+][Cl^-] > K_{sn}$	b) $2SO_2(g) + O_2(g) \rightleftharpoons Z$ d) $2NO_2 \rightleftharpoons N_2O_4(g)$ TNaCl is c) $[Ag^+][Cl^-] = K_{sp}$	d) unpredictable d) None of these
(a) $N_2(g) + O_2(g) =$ c) $2O_3(g) \rightleftharpoons 3O_2(g)$ 186. The pH value of 0 a) 7 187. The solution of Ag(a) $[Ag^+][Cl^-] < K_{s_1}$ 188. A decimolar solution	2NO(g) .001 M aqueous solution of b) 4 Cl is unsaturated if: b) $[Ag^+][Cl^-] > K_{sp}$ on of ammonium hydroxide is	b) $2SO_2(g) + O_2(g) \rightleftharpoons Z$ d) $2NO_2 \rightleftharpoons N_2O_4(g)$ FNaCl is c) $[Ag^+][Cl^-] = K_{sp}$ ionised to the extent of 1.3%	d) unpredictable d) None of these 6. If log 1.3. If log 1.3 = 0.11,
(a) $N_2(g) + O_2(g) =$ c) $2O_3(g) \Rightarrow 3O_2(g)$ 186. The pH value of 0 a) 7 187. The solution of Ag(a) $[Ag^+][Cl^-] < K_{s_1}$ 188. A decimolar solution what is the pH of the solution	 2NO(g) .001 M aqueous solution of b) 4 Cl is unsaturated if: b) [Ag⁺][Cl⁻] > K_{sp} on of ammonium hydroxide is ne solution? 	b) $2SO_2(g) + O_2(g) \rightleftharpoons Z$ d) $2NO_2 \rightleftharpoons N_2O_4(g)$ TNaCl is c) $[Ag^+][Cl^-] = K_{sp}$ ionised to the extent of 1.3%	 d) unpredictable d) None of these 6. If log 1.3. If log 1.3 = 0.11,
	a) $N_2(g) + O_2(g) \neq$ c) $2O_3(g) \rightleftharpoons 3O_2(g)$ 186. The pH value of 0 a) 7 187. The solution of Ag(a) $[Ag^+][Cl^-] < K_{s_1}$ 188. A decimolar solution what is the pH of that is that pH of that is the pH of that is that pH of that pH o	 2NO(g) .001 M aqueous solution of b) 4 Cl is unsaturated if: b) [Ag⁺][Cl⁻] > K_{sp} on of ammonium hydroxide is ne solution? b) 9.11 	b) $2SO_2(g) + O_2(g) \rightleftharpoons Z$ d) $2NO_2 \rightleftharpoons N_2O_4(g)$ TNaCl is c) 11 c) $[Ag^+][Cl^-] = K_{sp}$ ionised to the extent of 1.3% c) 8.11	 d) unpredictable d) None of these 6. If log 1.3. If log 1.3 = 0.11, d) Unpredictable
(a) $N_2(g) + O_2(g) \neq$ c) $2O_3(g) \rightleftharpoons 3O_2(g)$ 186. The pH value of 0 a) 7 187. The solution of Ag(a) $[Ag^+][Cl^-] < K_{s_1}$ 188. A decimolar solution what is the pH of that is that pH of that is the pH of that is the	2NO(g) 001 M aqueous solution of b) 4 Cl is unsaturated if: $b \text{ (Ag^+)[Cl^-]} > K_{sp}$ on of ammonium hydroxide is the solution? b) 9.11 ductance of $\frac{M}{r}$ solution of a way	b) $2SO_2(g) + O_2(g) \rightleftharpoons Z$ d) $2NO_2 \rightleftharpoons N_2O_4(g)$ FNaCl is c) 11 c) $[Ag^+][Cl^-] = K_{sp}$ ionised to the extent of 1.3% c) 8.11 eak monobasic acid is 8.0 ml	d) unpredictable d) None of these 6. If log 1.3. If log 1.3 = 0.11, d) Unpredictable hos cm ² and at infinite
(a) $N_2(g) + O_2(g) =$ c) $2O_3(g) \rightleftharpoons 3O_2(g)$ 186. The pH value of 0 a) 7 187. The solution of Ag(a) $[Ag^+][Cl^-] < K_{s_1}$ 188. A decimolar solution what is the pH of that is that pH of that is the pH of that pH of t	2NO(g) .001 M aqueous solution of b) 4 Cl is unsaturated if: b) $[Ag^+][Cl^-] > K_{sp}$ on of ammonium hydroxide is the solution? b) 9.11 ductance of $\frac{M}{32}$ solution of a ways cm ² . The dissociation const	b) $2SO_2(g) + O_2(g) \rightleftharpoons Z$ d) $2NO_2 \rightleftharpoons N_2O_4(g)$ FNaCl is c) 11 c) $[Ag^+][Cl^-] = K_{sp}$ ionised to the extent of 1.3% c) 8.11 eak monobasic acid is 8.0 ml ant of this acid is:	 d) unpredictable d) unpredictable d) None of these 6. If log 1.3. If log 1.3 = 0.11, d) Unpredictable hos cm² and at infinite
(a) $N_2(g) + O_2(g) \neq$ c) $2O_3(g) \rightleftharpoons 3O_2(g)$ 186. The pH value of 0 a) 7 187. The solution of Ag(a) $[Ag^+][Cl^-] < K_{s_1}$ 188. A decimolar solution what is the pH of that that the pH of the pH of that the pH of the pH of that the pH of that th	2NO(g) (001 M aqueous solution of b) 4 $(1 \text{ is unsaturated if:} b) [Ag^+][Cl^-] > K_{sp}$ on of ammonium hydroxide is the solution? (1 b) 9.11 $(1 \text{ ductance of } \frac{M}{32} \text{ solution of a way on a solution } constant b) 1.25 \times 10^{-5}$	b) $2SO_2(g) + O_2(g) \rightleftharpoons Z$ d) $2NO_2 \rightleftharpoons N_2O_4(g)$ FNaCl is c) $[Ag^+][Cl^-] = K_{sp}$ ionised to the extent of 1.3% c) 8.11 eak monobasic acid is 8.0 ml ant of this acid is: c) 1.25 × 10^{-6}	d) unpredictable d) None of these 6. If log 1.3. If log 1.3 = 0.11, d) Unpredictable hos cm ² and at infinite d) 6.25×10^{-4}
	a) $N_2(g) + O_2(g) \neq$ c) $2O_3(g) \Rightarrow 3O_2(g)$ 186. The pH value of 0 a) 7 187. The solution of Ag(a) $[Ag^+][Cl^-] < K_{s_1}$ 188. A decimolar solution what is the pH of that is 11.11 189. The equivalent condition is 400 mhotodown	2NO(g) .001 M aqueous solution of b) 4 Cl is unsaturated if: b) $[Ag^+][Cl^-] > K_{sp}$ on of ammonium hydroxide is the solution? b) 9.11 ductance of $\frac{M}{32}$ solution of a way os cm ² . The dissociation const b) 1.25 × 10 ⁻⁵ eion in water produces:	b) $2SO_2(g) + O_2(g) \rightleftharpoons T$ d) $2NO_2 \rightleftharpoons N_2O_4(g)$ TNaCl is c) 11 c) $[Ag^+][Cl^-] = K_{sp}$ ionised to the extent of 1.3% c) 8.11 eak monobasic acid is 8.0 ml ant of this acid is: c) 1.25 × 10 ⁻⁶	d) unpredictable d) None of these 6. If log 1.3. If log 1.3 = 0.11, d) Unpredictable hos cm ² and at infinite d) 6.25×10^{-4}
	a) $N_2(g) + O_2(g) =$ c) $2O_3(g) \rightleftharpoons 3O_2(g)$ 186. The pH value of 0 a) 7 187. The solution of Ag(a) $[Ag^+][Cl^-] < K_{s_1}$ 188. A decimolar solution what is the pH of that a) 11.11 189. The equivalent condition is 400 mbox a) 1.25 × 10 ⁻⁴ 190. Hydrolysis of oxider a) H ⁺	2NO(g) 2NO(g) .001 M aqueous solution of b) 4 Cl is unsaturated if: b) $[Ag^+][Cl^-] > K_{sp}$ on of ammonium hydroxide is the solution? b) 9.11 ductance of $\frac{M}{32}$ solution of a way os cm ² . The dissociation const b) 1.25 × 10 ⁻⁵ e ion in water produces: b) OH ⁻	b) $2SO_2(g) + O_2(g) \rightleftharpoons 2$ d) $2NO_2 \rightleftharpoons N_2O_4(g)$ FNaCl is c) 11 c) $[Ag^+][Cl^-] = K_{sp}$ ionised to the extent of 1.3% c) 8.11 eak monobasic acid is 8.0 ml ant of this acid is: c) 1.25×10^{-6} c) O_2	d) unpredictable d) None of these 6. If log 1.3. If log 1.3 = 0.11, d) Unpredictable hos cm ² and at infinite d) 6.25×10^{-4} d) H ₂ O

191. A weak acid HX has the dissociation constant 1×10^{-5} M. It forms a salt NaX on reaction with alkali. The				
	.1 M Solution of Nax IS	-2.0.10/		
a) 0.0001%	b) 0.01%	CJ 0.1%	a) 0.15%	
192. The species among the fo	bilowing which can act as a	n acid and a base is:		
a) HSO ₄	b) SO_4^2	c) H ₃ 0 ⁺	d) Cl ⁻	
193. For the reactions,				
$A \rightleftharpoons B; K_c = 2$ $B \Rightarrow C; K = 4$				
$B = C; K_c = 4$ $C \rightarrow D; K = 6$				
$C \leftarrow D, K_c = 0$ K for the reaction $A \rightarrow b$	Dic			
a) $(2 + 4 + 6)$	b) $(2 \times 4)/6$	c) $(4 \times 6)/2$	d) 2 x 4 x 6	
194.0.365 g of HC gas was	1000000000000000000000000000000000000	of 0.2 M N2OH solution	The nH of the resulting	
colution would be	passed through 100 cm		The ph of the resulting	
	ь) г	a) ()	J) 12	
	DJ 5	C) 8	a) 13	
195. The pH of a 0.0001 N soli	ution of KOH will be			
a) 4	b) 6	c_{j} 10		
196. The equilibrium constan	t for a reaction is 1×10^2	²⁰ at 300 K. The standard (abbs energy change for this	
reaction is :				
$a_j = 115 \text{ KJ}$	DJ + 115KJ	CJ + 166 KJ	d) — 116 kj	
197. The equilibrium constant	t for the reaction; $P_4(s) + s$	$SO_2(g) \neq P_4O_{10}(s)Is$		
a) $K_c = \frac{1}{10^{-15}}$	b) $K_c = [0_2]^5$	c) $K_c = \frac{[P_4 O_{10}]}{r[P_4 V_{10}]}$	d) $K_c = \frac{[P_4 O_{10}]}{[P_4 V_{10}]^5}$	
$[U_2]^3$		$5[P_4][U_2]$	$[P_4][O_2]^3$	
198. The correct relation for h	lydrolysis constant of NH ₄ C	JN 1S:		
K_{w}	K_{W}	$\sqrt{K_H}$	K_a	
$\frac{a}{\sqrt{K_a}}$	$K_a \times K_b$	c) <u>-</u>	$\frac{dJ}{K_b}$	
199. The gaseous reaction	Ċ			
$4 + B \rightarrow 2C + D + O$ is	most favoured at			
a) Low tomporature an	d high proceuro	h) High tomporature ar	d low high proceuro	
a) Low temperature an	d loui pressure	d) Loss tomporature an	d low more and	
200 An annual solution of 0	1 MANU Classific and a	u) Low temperature an	a low pressure	
200. An aqueous solution of 0	$M NH_4 CI WIII nave a pH C$	closer to: 2 7 1	- - - - - - - - - - - - - -	
a) 9.1	0 0 0 1	$(J / .1) = E_{2}^{3+}(a_{2} a_{3} + a_{3}) + E_{2}^{3+}(a_{2} + a_{3}) + E_{2}^{3+}(a_{2} + a_{3}) + E_{2}$	(0) 5.1	
	OF IONS IS the reaction	$\operatorname{Fe}(\operatorname{OH})_3(s) \rightleftharpoons \operatorname{Fe}^{s}(aq) +$	30H (<i>aq</i>), is decreased by	
$\frac{-}{4}$ times, then equilibrium	concentration of Fe ³⁺ will	increase by :		
a) 16 times	b) 64 times	c) 4 times	d) 8 times	
$202. A(g) + 3B(g) \rightleftharpoons 4C(g)$).			
Initially concentration	of A is equal to that of B.	The equilibrium concent	trations of A and C are	
equal. K _c is				
a) 0.08	b) 0.08	c) 8	d) 80	
203. 18 mL of mixture of aceti	c acid and sodium acetate	required 6 mL of 0.1 <i>M</i> Na()H for neutralization of the	
acid and 12 mL of $0.1 M$	HCl for reaction with salt. s	eparately. If pK_a of the acid	l is 4.75. what is the pH of	
the mixture?	,-	r u r		
a) 5.05	b) 4.75	c) 4.5	d) 4.6	
204. 50 mL of 0.1 M HCl and	50 mL of 0.2 M NaOH ar	e mixed. The pH of the r	esulting solution is	
a) 1 30	h) 4.2	c) 12 70	d) 11 70	
205 K for the reaction : [Ag	$(CN) = \rightarrow \Lambda a^{+} \pm 2CN^{-} + t$	o oquilibrium constant at	$25^{\circ}C$ is 4.0×10^{-19} then the	
$L_{0,0}$ R_{c} for the redution : [Ag]	$(u_1 y_2) \leftarrow Hg + 2U_1 , U_1$	ainally 0.1 malar in VCN an	$d \cap O$ molar in $A \cap O$ is .	
a) 75×10^{18}	h) 7.5 \times 10-18	c) 75 \times 1019	d) 7 5 \times 10 ⁻¹⁹	
$a_j = 0 \land 10^{\circ}$	of 7.5 A IV	c_{j} $r_{,j}$ $r_{,j}$ $r_{,j}$ $r_{,j}$	uj 1.3 × 10	
200. The pra for acturate grea	ater than pra for actu D. II	ic su ong aciu is.		

a) Acid A b) Acid B c) Are equally strong d) None of these 207. When 100 mL of 1 M NaOH solution is mixed with 10 mL of 10 M H₂SO₄, the resulting mixture will be a) Acidic b) Alkaline c) $HClO_3$ d) H_3PO_3 208. The $[H_3O^+]$ in the rain water of pH = 4.35 is: a) $4.5 \times 10^{-5} M$ b) $6.5 \times 10^{-5} M$ c) $9.5 \times 10^{-5} M$ d) $12.5 \times 10^{-5} M$ 209. For which salt the pH of its solution does not change with dilution? a) NH₄Cl b) CH₃COONH₄ c) CH₃COONa d) None of these 210. When hydrogen molecules decomposed into it's atoms which conditions gives maximum yield of H atom? b) Low temperature and high pressure a) High temperature and low pressure d) Low temperature and low pressure c) High temperature and high pressure 211. Which is not and acid salt? a) NaH_2PO_2 b) NaH_2PO_3 c) NaH₂PO₄ d) NaHSO₃ 212. Which is a Lewis base? d) NH₂ b) LiAlH₄ c) AlH₃ a) B_2H_6 213. Final pressure is higher than initial pressure of a container filled with an ideal gas at constant temperature. What will be the value of equilibrium constant? b) K = 10.0a) K = 1.0c) K > 1.0d) K < 1.0214. In which of the following cases, does not reaction go farthest to completion? b) $K = 10^{-2}$ a) $K = 10^3$ c) K = 10d) K = 1215. For the reaction, $H_2(g) + I_2(g) \rightarrow 2HI(g)$, the equilibrium constant K_p changes with b) Catalyst a) Total pressure d) Temperature c) The amount H_2 and I_2 216. The equilibrium constant for the reaction, $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ At temperature *T* is 4×10^{-4} . The value of *K_e* for the reaction $NO(g) \rightleftharpoons \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$ at the same temperature is c) 4×10^{-4} a) 2.5×10^2 b) 50 d) 0.02 217. The reaction, $2A_{(g)} + B_{(g)} \neq 3C_{(g)} + D_{(g)}$ is begun with the concentration of A and B both at an initial value of 1.00*M*. When equilibrium is reached, the concentration of *D* is measured and found to be 0.25 *M*. The value for the equilibrium constant for this reaction is given by the expression : a) $[(0.75)^3 (0.25)] \div [(1.00)^2 (1.00)]$ b) $[(0.75)^3 (0.25)] \div [(0.50)^2 (0.75)]$ c) $[(0.75)^3 (0.25)] \div [(0.50)^2 (0.25)]$ d) $[(0.75)^3 (0.25)] \div [(0.75)^2 (0.25)]$ 218. In HS^- , I^- , $R - NH_2$, NH_3 order of proton accepting tendency will be: a) $I^- > NH_3 > RNH_2 > HS^$ b) $NH_3 > RNH_2 > HS^- > I^$ c) $RNH_2 > NH_3 > HS^- > I^$ d) $HS^- > RNH_2 > NH_3 > I^-$ 219. Strong electrolytes are those which: a) Dissolve readily in non-polar solvent b) Conduct electricity in aqueous solution c) Dissociate into ions at high concentration d) None of the above 220. The pH of 0.1 *N* HCl solution is: d) 4.0 a) 1.0 b) 7.0 c) 14.0

221. A solution of FeCl ₃ in water acts	as acidic due to:		
a) Acidic impurities b) Ior	nisation	c) Hydrolysis of Fe ³⁺	d) Dissociation
222. The concept that an acid is a pro	ton donor and a bas	e is a proton acceptor was	introduced by:
a) Arrhenius b) Bro	onsted-Lowry	c) Lewis	d) Faraday
223. Which is decreasing order of	strength of bases?		
$\overline{O}H, \overline{N}H_2, HC \equiv C^{-1}$	and $CH_3CH_2^-$		
a) $H_2CCH_2 > NH_2 > HC \equiv C$	⁻ > 0H ⁻	b) HC \equiv C ⁻ > CH ₂ CH ₂ ⁻	$> NH_{2}^{-} > OH^{-}$
c) $OH^- > NH^- > CH \equiv C^- >$	H ₂ CCH ₂	d) NH ₂ > $HC \equiv C^{-} > C$	$H^- > H_2 C C H_2^-$
224. The strength of an acid depends	on its tendency to		
a) Accept protons b) Do	nate protons	c) Accept electrons	d) Donate electrons
225. The following reactions are know	wn to occur in the bo	odv.	
$CO_2 + H_2O \rightleftharpoons H_2CO_2 \rightleftharpoons H^+ + HO_2$	$CO_{\overline{2}}$		
If CO_2 escapes from the system,	then:		
a) pH will decrease			
b) Hydrogen ion concentration v	vill diminish		\sim
c) H_2CO_3 concentration will be u	unaltered		X
d) The forward reaction will be	promoted		
226. The common ion effect is shown	by which of the foll	owing sets of solutions?	7
a) $BaCl_2 + BaNO_3$ b) Na	Cl + HCl	c) $NH_4OH + NH_4Cl$	d) None of these
227. In the reaction, $C(s) + CO_2(g) =$	≥ 2CO(g), the equili	orium pressure is 12 atm.	If 50% of CO_2 reacts, K_p for
the change is :			•
a) 12 atm b) 16	atm	c) 20 atm	d) 6 atm
228. For a given solution $pH = 6.9$ at	60° C, where $K_w = 1$	0^{-12} . The solution is:	
a) Acidic b) Ba	sic	c) Neutral	d) Unpredictable
229. A quantity of PCl_5 was heated in	a 10 litre vessel at	250°C to show $PCl_5(g) \rightleftharpoons P$	$Cl_3(g) + Cl_2(g)$. At
equilibrium the vessel contains	0.1 mole of PCl ₅ , 0.2	0 mole of PCl_3 and 0.20 mo	le of Cl ₂ . The equilibrium
constant of the reaction is :	\sim		
a) 0.02 b) 0.0	5	c) 0.04	d) 0.025
230. One mole of ethyl alcohol was t	reated with one mo	ole of acetic acid at 25°C. 2	2/3 of the acid changes into
ester at equilibrium. The equilib	rium constant for th	e reaction will be:	
a) 1 b) 2		c) 3	d) 4
231. 9.2 g of $N_2O_4(g)$ is taken in a clo	sed 1 L vessel and h	eated till the following equ	ilibrium is reached
$N_2O_4(g) \rightleftharpoons 2NO_2(g)$			
At equilibrium, $50\% N_2 O_4(g)$ is	dissociated. What is	the equilibrium constant (in molL ⁻¹)? (Molecular
weight of $N_2O_4 = 92$)			
a) 0.1 b) 0.2		c) 0.3	d) 0.4
232. Assuming complete dissociation	which of the follow	ing aqueous solutions will	have the same pH value?
(i)100 mL of 0.01 M HCl			
(ii)100 mL of 0.01 MH ₂ SO ₄			
(iii)50 mL of 0.01 M HCl			
(iv)Mixture of 50 mL of 0.02 M F	H_2SO_4 and 50 mL of	0.02 M NaOH	
$a_{j}(i), (ii)$ $b_{j}(i)$, (iii)	c) (ii), (iv)	d) (i), (iv)
233. At 3000 K, the equilibrium press	sure of CO ₂ , CO and C	D_2 are 0.6, 0.4 and 0.2 atm 1	respectively. K_p for the
reaction $2CO_2 \rightleftharpoons 2CO + O_2$, is		2.0.400	10.0.100
a) 0.089 b) 0.0	198 N OH (c) 0.189	d) 0.198
234. The pK _a of weak acid H_A is 4.5. The pK _a of weak acid H_A is 4.5.	ne pOH of an aqueo	us putter solution of HA in	which 50% of the acid is
ionised:		a) 2 F	4) 0 L
aj /.u b) 4.5			$u_{J} 9.5$
235. An amphoteric buffer solution	i in which conc. of	H and HX is same. The	value of K_a of HX is 10^{-6} ,
then pH of buffer solution is			

a) 3 b) 8 c) 10 d) 14 236. In the reaction, $3A + 2B \rightarrow 2C$, the equilibrium constant K_c is given by a) $\frac{[3A] \times [2B]}{[C]}$ b) $\frac{[A]^3 \times [B]}{[C]}$ c) $\frac{[C]^2}{[A]^3 \times [B]^2}$ d) $\frac{[C]}{[3A][2B]}$ 237. Which reaction is not affected by change in pressure? a) $H_2 + I_2 \rightleftharpoons 2HI$ b) $N_2 + 3H_2 \rightleftharpoons 2NH_3$ c) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ d) $2C + O_2 \rightleftharpoons 2CO$ 238. Three reactions involving $H_2PO_4^-$ are given below $(i)H_3PO_4 + H_2O \rightarrow H_3O^+ + H_2PO_4^-$ (ii) $H_2PO_4^- + H_2O \rightarrow HPO_4^{2-} + H_3O^+$ (iii) $H_2PO_4^- + OH^- \rightarrow H_3PO_4 + O^{2-}$ In which of the above does $H_2PO_4^-$ act as an acid? b) (i) and (ii) d) (i) only a) (ii) only c) (iii) only 239. pH for the solution of salt undergoing anionic hydrolysis (say CH₃COONa) is given by: a) $pH = \frac{1}{2} [pK_w + pK_a + \log c]$ b) pH = $\frac{1}{2} [pK_w + pK_a - \log c]$ c) $pH = \frac{1}{2} [pK_w + pK_b - \log c]$ d) None of the above 240. For the reactions, $A + B + Q \rightleftharpoons C + D$, if the temperature is increased then concentration of the products will c) Remains the same a) Increase b) Decrease d) Become zero 241. Under what conditions of temperature and pressure, the formation of atomic hydrogen from molecular hydrogen will be favoured most? a) High temperature and high pressure b) High temperature and low pressure c) Low temperature and low pressure d) Low temperature and high pressure 242. Mohr's salt is a: b) Acid salt a) Normal salt c) Basic salt d) Double salt 243. pH of 0.05 *M* Mg(OH)₂ is: c) 1 d) Zero a) 13 244. In which of the following reactions, the concentration of product is higher than the concentration of reactant at equilibrium? (K = equilibrium constant) a) $A \rightleftharpoons B$; K = 0.001 b) $M \rightleftharpoons N$; K = 10c) $X \rightleftharpoons Y$; K = 0.005d) $R \rightleftharpoons P$; K = 0.01245. The values of dissociation constant of bases are given below. Which is the weakest base? b) 4.8×10^{-10} c) 7.2×10^{-11} a) 1.8×10^{-5} d) 7.07×10^{-7} 246. The dissociation equilibrium of a gas AB₂ can be represented as : $2AB_2(g) \rightleftharpoons 2AB(g) + B_2(g)$ The degree of dissociation is 'x' and is small compared to 1. The expression relating the degree of dissociation (x) with equilibrium constant K_p and total pressure p is : a) $(2K_p/P)^{1/3}$ b) $(2K_p/P)^{1/2}$ c) (K_p/P) d) $(2K_p/P)$ 247. In which one of the following gaseous equilibria, K_n is less than K_c ? a) $N_2O_4 \rightleftharpoons 2NO_2$ b) $2SO_2 + O_2 \rightleftharpoons 2SO_3$ c) $2HI \rightleftharpoons H_2 + I_2$ d) $N_2 + O_2 \rightleftharpoons 2NO$ 248. K_{sp} for Cr(OH)₃ is 2.7 × 10⁻³¹. What is its solubility in mol/L? b) 8×10^{-8} c) 1.1×10^{-8} d) 0.18×10^{-8} a) 1×10^{-8} 249. N₂O₄ is dissociated to 33% and 40% at total pressure P_1 and P_2 atm respectively. Then the ratio P_1/P_2 is: a) 7/4 b) 7/3 c) 8/3 d) 8/5 250. In the reactions, $A + 2B \rightleftharpoons 2C$, if 2 moles of A, 3.0 moles of B and 2.0 moles of C are placed in a 2 L flask and the equilibrium concentration of C is 0.5 mol/L, the equilibrium constant (K_c) for the reactions is

a) 0.21 b) 0.50	c) 0.75	d) 0.025
251. The pH value of 1/1000 N KOH solution is	-	-
a) 3 b) 10^{-11}	c) 2	d) 11
252. The pH of tears coming out of a person's eye is:		
a) 7.4 b) 6.4	c) 7.0	d) 2.36
253. The solubility of CaF ₂ is 2×10^{-4} mol/L. Its solu	bility product (K_{sp}) is	
a) 2.0×10^{-4} b) 4.0×10^{-3}	c) 8.0×10^{-12}	d) 3.2×10^{-11}
254. The solubility product of a salt having general fo	rmula MX_2 in water is 4 \times	10^{-12} . The concentration of
M^{2+} ions in the aqueous solution of the salt is	2	
a) 2.0×10^{-6} M b) 1.0×10^{-4} M	c) 1.6×10^{-4} M	d) 4.0×10^{-10} M
255. The solubility product of barium sulphate is	1.5×10^{-9} at 18°C. Its so	lubility in water at 18°C is
a) 1.5×10^{-9} b) 1.5×10^{-5}	c) 3.9 × 10 ⁻⁹	d) 3.9×10^{-5}
256. The strongest Bronsted base is	-)	*
a) $C O_{\overline{a}}$ b) $C O_{\overline{a}}$	c) ClO7	d) Cl0=
257 The reaction quotient (0) at equilibrium is:	cj dio ₄	
a) = 1 $b) = K$	C > K	$dl \leq K$
258 The concentration of oxalic acid is 'r'mol L ⁻²	1 40 mL of this solution	reacts with 16 mL of 0.05 M
250. The concentration of oxalle actuals x' more actually actually x'' M ave	lic acid solution?	
(Assume that evaluated discognizes complete		
(Assume that oxanc actu dissociates complet		d) 2
a) 1.5 b) 1.099 250 Matal iona like $Aa^+ C v^{2+}$ at a set as		u) 2
237. Metal Iolis like Ag, Cu etc. act as		
a) Bronsted acids b) Bronsted bases	c) Lewis acids	u) Lewis bases
260. The pR_a of acetylsancylic acid (aspirin) is 3.5. In	e pH of gastric juice in num	ian stomach is about 2 – 3 and
the pH in the small intestine is about 8. Aspirin v	viii de	
a) Unionised in the small intestine and in the sto	in the stomach	
c) Jonised in the stomach and almost unionised in	in the small intesting	
d) Ionised in the small intestine and almost union	nised in the stomach	
261 A solution is called saturated if	mseu m the stomach	
a) Ionic concentration product \lt solubility prod	uct	
b) Ionic concentration product $>$ solubility prod	uct	
c) Ionic concentration product > solubility prod	uct	
d) None of the above		
262. The auto protonation constant of H_2O is:		
a) 1×10^{-14} b) 3.23×10^{-18}	c) 1.8×10^{-18}	d) 3.23×10^{-20}
263. K_c for $m_1A + m_2B = n_1C + n_2D$ is given by:	-	-
$[A]^{m_1}[B]^{m_2} \qquad [A]^{n_1}[B]^{n_2}$	$[C]^{n_1}[D]^{n_2}$	$[C]^{m_1} \times [D]^{m_2}$
a) $K_c = [C] \times [D]$ b) $K_c = [C]^{m_1} [D]^{m_2}$	C) $K_c = \frac{1}{[A]^{m_1}[B]^{m_2}}$	$dJ K_c = \overline{[A]^{n_1} \times [B]^{n_2}}$
264. The pH of millimolar HCl is		
a) 1 b) 3	c) 2	d) 4
265. Partial pressure of A, B, C and D on the basis of g	gaseous system, $A + 2B \rightleftharpoons$	C + 3D, are $A = 0.20, B =$
0.10, C = 0.30 and $D = 0.50$ atm. The numerical	value of equilibrium consta	nt is
a) 3.75 b) 18.75	c) 17.85	d) 15.87
266. Which equilibrium can be described as Lewis aci	id-base reaction but not Bro	onsted acid-base reaction?
a) $H_2O + CH_3COOH \rightleftharpoons H_3O^+ + CH_3COO^-$		
b) $2NH_3 + H_2SO_4 \rightleftharpoons 2NH_4^+ + SO_4^{2-}$		
c) $NH_3 + CH_3COOH \rightleftharpoons NH_4^+ + CH_3COO^-$		
d) $[Cu(H_20)_4]^{2+} + 4NH_3 \rightleftharpoons [Cu(NH_3)_4]^{2+} + 4H_2$	20	
267. SnCl ₂ and HgCl ₂ cannot co-exist in a solution bec	cause of:	

٠

b) Le – Chatelier's principle c) Conc. of Cl⁻ increases to precipitate both d) Redox change 268. The species which acts as a Lewis but not a Bronsted acid is b) 0^{2-} d) 0H⁻ a) $NH_2^$ c) BF_3 269. What is the best description of the change that occurs when $Na_2O(s)$ is dissolved in water? a) Oxidation number of sodium decreases b) Oxide ion accepts sharing in a pair of electrons c) Oxide ion donates a pair of electrons d) Oxidation number of oxygen increases 270. pH of 0.005 M calcium acetate is $(pK_a of CH_3 COOH = 4.74)$ a) 7.04 b) 9.37 c) 9.26 271. Relation between hydrolysis constant and dissociation constant are given. Which is the correct formula for MgCl₂? d) $K_w = \frac{K_h}{K_b}$ b) $K_h = \frac{K_w}{K_b}$ c) $K_h = \frac{K_w}{K_a \times K_b}$ a) $K_h = \frac{K_w}{K_a}$ 272. Theory's 'active mass' indicates that the rate of chemical reaction is directly proportional to the b) Volume of apparatus a) Equilibrium constant c) Properties of reactants d) Concentration of reactants 273. In which of the following reactions, the value of K_p will be equal to K_c ? b) $2NH_3 \rightleftharpoons N_2 + 3H_2$ c) $H_2 + I_2 \rightleftharpoons 2HI$ a) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ d) $2SO_2 + O_2 \rightleftharpoons 2SO_3$ 274. In the hydrolysis of a salt of weak acid and weak base, the hydrolysis constant K_h is equal to c) $\frac{K_w}{K_a, K_b}$ a) $\frac{K_w}{K_h}$ b) $\frac{K_w}{K_a}$ d) K_a . K_b 275. In which reaction ammonia acts as an acid a) $NH_3 + HCl \rightarrow NH_4Cl$ b) $NH_3 + H^+ \rightarrow NH_4^+$ c) $NH_3 + Na \rightarrow NaNH_2 + \frac{1}{2}H_2$ d) NH₃ cannot act as an acid 276. The compounds *A* and *B* are mixed in equimolar proportion to form the products, $A + B \rightleftharpoons C + D$. At equilibrium, one third of A and B are consumed. The equilibrium constant for the reaction is a) 0.5 b) 4.0 c) 2.5 d) 0.25 277. 40% of a mixture of 0.2 mole of N_2 and 0.6 mole of H_2 react to give NH_3 according to the equation, $N_2(g) + C_2(g) + C_2(g$ $3H_2$ (g) $\Rightarrow 2NH_3$ (g) at constant temperature and pressure. Then the ratio of the final volume to the initial volume of gases is : a) 4:5 b) 5:4 c) 7:10 d) 8 : 5 278. An aqueous solution contains a substance which yields 4×10^{-3} mol litre⁻¹ ion of H₃O⁺. If log 2 = 0.3010, the pH of the solution is: a) 1.5 b) 2.398 c) 3.0 d) 3.4

a) Common ion effect

279. For preparing a buffer solution of pH 6 by mixing sodium acetate and acetic acid, the ration of concentration of salt and acid ($K_a = 10^{-5}$) should be:

a) 1: 10b) 10: 1c) 100: 1d) 1: 100280. The concentration of hydrogen ion $[H^+]$ and pH in 10 M HCl is:a) 10^1 , zerob) 10^1 , -1c) 10^2 , 1d) 10^1 , 1

281. Solubility product of Mg(OH)₂ at ordinary temperature is 1.96×10^{-11} . pH of a saturated solution of Mg(OH)₂ will be

a) 10.53	b) 8.47	c) 6.94	d) 3.47
282. For the reaction H	$I_2 + I_2 \rightleftharpoons 2HI:$		
a) $K_c = 2K_p$	b) $K_c > K_p$	c) $K_c = K_p$	d) $K_c < K_p$
283. When $CaCO_3$ is he	eated at a constant temperat	ture in a closed container	, the pressure due to CO ₂ produced
will:			
a) Change with th	e amount of CaCO ₃ taken		
b) Change with th	e size of the container		
c) Remain consta	nt so long as temperature is o	constant	
d) Remain consta	nt even if temperature is cha	nged	· · ·
284. Four species are	listed below		
IV. HCO_3^-			
V. H ₃ 0 ⁺			
VI. HSO₄			
VII.HSO ₂ F			
Which one of the	e following is the correct s	equence of their acid st	rength?
a) (iv) \leq (ii) \leq ((iii) < (i)	h) (ii) < (iii) < ((i) < (iv)
c) (i) \leq (iii) \leq ((ii) < (iv)	d(iii) < (ii)	iv > (ii)
$285 \ 1 \ dm^3$ colution of	10 < (10)	of Clions and CrO^2 ion	s is tracted with 10^4 moles of
205. I um ² Solution C	bish one of the following of	of CI folls and CIO_4 for	s is treated with 10 moles of
silver intrate. w			× i
[K	$_{\rm sp}{\rm Ag}_2{\rm Cr}{\rm U}_4$ 4 10 ⁻¹		
	$[K_{sp}AgCl \ 1 \ 10^{10}]$		
a) Precipitation	does not occur		
b) Silver chroma	te gets precipitated first		
c) Silver chlorid	e gets precipitated first 🚬	NY N	
d) Both silver ch	romate and silver chloride	e start precipitating sim	ultaneously
286. Which is a basic s	alt?		
a) PbS	b) PbCO ₃	c) PbSO ₄	d) 2PbCO ₃ Pb(OH) ₂
287. A reversible react	tion, $H_2 + Cl_2 \rightleftharpoons 2HCl$ is carri	ied out in one litre flask. I	f the same reaction is carried out in
two litre flask, the	e equilibrium constant will be	e:	
a) Doubled	b) Decreased	c) Halved	d) Same
288. In the system, C	$aF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2F^{-}(aq)$	uq), increasing the conce	ntration of Ca ²⁺ ions 4 times will
cause the equilibr	ium concentration of F^- ions	s to change to :	
a) $\frac{1}{4}$ of the initial	value		
b) ½ of the initial	value		
c) 2 times of the i	nitial value		
d) None of the abo	ove		
289. Hydrogen ion con	centration in mol/L in a solu	ition of pH = 5.4 will be	
a) 3.98 × 10°	b) 3.88×10^{6}	c) 3.68×10^{-6}	d) 3.98×10^{-5}
290. The strongest co	onjugate base is		
a) NO_3^-	b) Cl ⁻	c) SO_4^{2-}	d) CH ₃ COO ⁻
291. In the reaction I_2	+ $I^- = I_3^-$, the Lewis base is:		
a) I ₂	b) I ⁻	c) I ₃	d) None of these
292. HI was heated in	n a sealed tube at 440°C ti	Il the equilibrium was r	reached, HI was found to be 22%
decomposed. The	equilibrium constant for dis	sociation is :	
a) 0.282	b) 0.0796	c) 0.0199	d) 1.99
293. Which one is amp	hoteric oxide?		
aj SU ₂	b) $B_2 U_3$	cJ ZnO	d) Na_2O
294. For which reactio	n K _p is less than K _c ?		

a) $N_2O_4 \rightleftharpoons 2NO_2$	b) $2HI \rightleftharpoons H_2 + I_2$	c) $2SO_2 + O_2 \rightleftharpoons 2SO_3$	d) $N_2 + O_2 \rightleftharpoons 2NO$
295. For the reactions, $H_2(g)$	$() + CO_2(g) \rightleftharpoons CO(g) + H_2O$	(g) if the initial concentration	ion of $[H_2] = [CO_2]$ and x
mol/L of hydrogen is co	onsumed at equilibrium, th	e correct expression of K_n i	S
x^2	χ^2	r^{2}	$(1+x)^2$
a) $\frac{\pi}{(1-r)^2}$	b) $\frac{\pi}{(2+r)^2}$	c) $\frac{x}{1-x^3}$	d) $\frac{(1+x)^2}{(1-x)^2}$
(1 x) 296 In the given reaction	$(2 + \lambda)$	$1 - \lambda^{-1}$	(1λ)
$2y_{(\alpha)} + V(\alpha) =$	27(a) + 00 keel		
$2\lambda(g) + I(g) =$	-22(g) + 00 K(d),		
which combination o	f pressure and temperat	ure will give the highest y	yield of Z at equilibrium?
a) 1000 atm and 200°	Ċ	b) 500 atm and 500°C	
c) 1000 atm and 100°	°C	d) 500 atm and 100°C	
297. Equimolar solutions of	the following were prepa	red in water separately. W	hich one of the solutions will
record the highest pH?			
a) BaCl ₂	b) MgCl ₂	c) CaCl ₂	d) SrCl ₂
298. Which is not correct for	· Lewis acids?		
a) They contain at least	one vacant orbital		
b) They have a tendenc	y to accept electrons	Ć	
c) The smaller ion has g	greater acidic strength		3
d) In case of ions, the st	rength of acid is inversely	proportional to its charge	
299. The vapour density of N	N ₂ O ₄ at a certain temperatu	re is 30. What is the percen	tage dissociation of N_2O_4 at
this temperature?			
a) 46.5%	b) 36.2%	c) 53.3%	d) 64.2%
300. For which reaction K_p =	$\neq K_c$?		
a) $2NO_2(g) \rightleftharpoons N_2(g) + 0$	$D_2(g)$		
b) $SO_2(g) + NO_2(g) \rightleftharpoons S$	$O_3(g) + NO(g)$		
c) $I_2(g) + H_2(g) \rightleftharpoons 2HI$	(g)		
d) $2C(s) + O_2(g) \rightarrow 2CC$	D(g)	Y	
301. A buffer mixture of ace	tic acid and potassium ace	tate has $pH = 5.24$. The ra	tio of $[CH_3COO^-]/[CH_3COOH]$
in this buffer is, $(pK_a =$	4.74):		
a) 3 : 1	b) 1 : 3	c) 1 : 1	d) 1 : 2
302. p K_a of acetic acid is 4	.74. The concentration o	f CH ₃ COONa is 0.01 M. Th	ne pH of CH ₃ COONa is
a) 3.37	b) 4.37	c) 4.74	d) 0.474
303. If $1 M CH_3 COONa$ is add	led to 1 <i>M</i> CH ₃ COOH:		
a) pH of the solution in	creases		
b) pH decreases)		
c) pH does not change			
d) None of the above			
$304.2.5 \text{ mL of } \frac{2}{5} \text{ M weak n}$	nonoacidic base ($K_b = 1$	\times 10 ⁻¹² at 25°C) is titrat	ed with $\frac{2}{15}$ M HCl in water
at 25°C. The concentr	ation of H ⁺ at equivalent	ce noint is	15
$(K = 1 \times 10^{-14} \text{ at } 2)$	5°C)		
$n_W = 1 \times 10^{-13} \text{ M}$	b) 2.2×10^{-7} M	c) 2.2×10^{-2} M	d) 2.7×10^{-2} M
205 Colubility and duct of	UJ J J A I U M	$0.3.2 \times 10$ M	$4JZ.7 \times 10$ M
10-3 M The h			
is 10 [°] M. The salt wi	Il precipitate when the c	oncentration of B ions i	s kept
a) Between 10^{-6} to 1	0 ⁻⁷ M	b) Between 10^{-7} M to	10 ⁻⁸ M
c) > 10^{-5} M		d) $< 10^{-8}$ M	
306. For the gaseous react	ion, $C_2H_4 + H_2 \rightleftharpoons C_2H_6$,	$\Delta H = -130 \text{ kJ mol}^{-1} \text{ carr}$	ried in a closed vessel, the
equilibrium concentr	ation of the C ₂ H ₆ can def	finitely be increased by	
a) Increasing temp	erature and decreas	ingb) Decreasing temper	ature and increasing
pressure		pressure	

- c) Increasing temperature and pressure both
- d) Decreasing temperature and pressure only
- 307. Chemical equilibrium is dynamic in nature because:
 - a) The equilibrium is maintained rapidly
 - b) The concentration of reactants and products become same at equilibrium
 - c) The concentration of reactants and products decrease with time
 - d) Both forward and backward reactions occur at all times with same speed
- 308. What happens to the yield on application of high pressure in the Haber's synthesis of ammonia?

a) Increases b) Decreases c) Unaffected d) Reaction stops

- 309. The buffering action of an acidic buffer is maximum when its pH is equal to
 - a) 5 b) 7 c) 1 d) pK_a
- 310. HA is a weak acid. The pH of 0.1 M HA solution is 2. What is the degree of dissociation (α) of HA?a) 0.5b) 0.2c) 0.1d) 0.301
- 311. Which of the following is a wrong statement about equilibrium state?
 - a) Rate of forward reaction= Rate of backward reaction
 - b) Equilibrium is dynamic
 - c) Catalysts increase value of equilibrium constant
 - d) Free energy change is zero
- 312. In an experiment to determine the enthalpy of neutralization of sodium hydroxide with sulphuric acid, 50 cm³ of 0.4 *M* sodium hydroxide were titrated thermometrically with 0.25 *M* sulphuric acid. Which of the following plots gives the correct representation?

313. H⁺ ion produces common ion effect in the wet analysis of:a) Group I metalsb) Group II metalsc) Group III metals

d) Group IV metals

314. 15 moles of H_2 an	d 5.2 moles of I ₂ are mixe	d and allowed to attain equ	uilibrium at 500°C. At
equilibrium, the c	oncentration of HI is foun	d to be 10 moles. The equi	librium constant for the
formation of HI is		•	
a) 50	b) 15	c) 100	d) 25
315. $10^{-6}M$ HCl is dilute	d to 100 times. Its pH is:		-
a) 6.0	b) 8.0	c) 6.95	d) 9.5
316. For the reaction, PC	$l_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g), th$	e position of equilibrium can	be shifted to the right by
a) Doubling the vol	ume		
b) Increasing the te	mperature		
c) Addition of Cl ₂ at	constant volume		\sim
d) Addition of equir	nolar quantities of PCl_3 and	PCl ₅	
317. The pH of an aque	ous solution containing [H ⁺] concentration =3.0 ×	10 ^{–3} M. The pH of the
solution is			
a) 2.523	b) 3.0	c) 2.471	d) None of these
318. The addition of whi	ch salt will decrease the H ⁺	concentration of HCN solution	on?
a) NH ₄ Cl	b) $Al_2(SO_4)_3$	c) AgNO ₃	d) NaCN
319. The pH of the soluti	on obtained by mixing 10 m	L of $10^{-1}N$ HCl and 10 mL or	$f 10^{-1} N$ NaOH is:
a) 8	b) 2	c) 7	d) None of these
320. The solubility pro	duct of PbCl ₂ is 2.3×10^{-1}	³² . Its solubility will be	·
a) 1.78×10^{-11} g/	′L b) 2.95 × 10 ⁻⁹ g/L	c) 3.42 × 10 ⁻⁹ g/L	d) 4.95×10^{-9} g/L
321. A white salt is read	ly soluble in water and give	es a colourless solution with	a pH of about 9. The salt would
be:			
a) NH ₄ NO ₃	b) CH ₃ COONa	c) CH ₃ COONH ₄	d) CaCO ₃
322. The dissociation co	nstant of NH ₄ OH is $1.8 imes10$	⁻⁵ . The hydrolysis constant o	of NH ₄ Cl would be:
a) 1.8 × 10 ⁻¹⁹	b) 1.8 × 10 ⁻⁵	c) 5.55 × 10 ⁻⁵	d) 5.55×10^{-10}
323. 50 mL of H_2O is a	dded to 50 mL of $1 imes 10^{-1}$	⁻³ M barium hydroxide sol	ution. What is the pH of the
resulting solution	?		
a) 3.0	b) 3.3	c) 11.0	d) 11.7
324. The indicator used	n titration of oxalic acid wit	h caustic soda solution is	
a) Methyl orange	b) Methyl red	c) Fluorescein	d) Phenolphthalein
325. For $H_2 + I_2 \rightleftharpoons 2HI$,	at equilibrium some I ₂ is ad	ded. What happens to the eq	uilibrium?
a) It is shifted to the	e right b) It gets shifted to t	he leftc) It remains unchang	ed d) None of the above
326. Which of the follow	ing is a characteristic of a re	eversible reaction?	
a) It can never proc	eed to completion		
b) It can be influence	ed by a catalyst		
c) Number of moles	s of reactants and products a	are equal	
d) None of the abov	e	.1 .1.1 .	
327. An aqueous solution	r of hydrogen sulphide show	vs the equilibrium,	
Π If dilute hydrochles	$_2$ \gtrsim H^2 + H^2	acus solution of hudrogon a	ulphido without ony change in
tomporature then:	ic actu is actued to all aque	eous solution of hydrogen s	uipilide without any change in
a) The equilibrium	constant will change		
b) The concentration	n of HS ⁻ will increase		
c) The concentration	n of undissociated hydroge	n sulphide will decrease	
d) The concentration	n of HS ⁻ will decreases	in surplinee will deer cuse	
328. Le-Chatelier's princ	iple is not applicable to:		
a) Homogeneous re	actions		
b) Heterogeneous r	eactions		
c) Homogeneous or	heterogeneous systems in	equilibrium	
	-		

d) Systems not in equilibriu	m		
329. If pK_a values of four acids	are given below at 25°	C, the strongest acid is	
a) 2.0 b) 2.5	c) 3.0	d) 4.0
330. Weakest base among the fol	lowing is:		
a) NaOH b) $Ca(OH)_2$	c) $Zn(OH)_2$	d) KOH
331. A solution of pH 9.0 is one th	nousand times as basic as	a solution of pH:	
a) 6 b) 7	c) 4	d) 10
332. Aprotic solvent is:	-		
a) CCl_4 b) C ₆ H ₆	c) SO ₂	d) All of these
333. The hydroxide with highest	solubility product is:		
a) Al(OH) ₃ b) Co(OH) ₂	c) Cr(OH) ₃	d) Fe(OH) ₃
334. In the absence of formation	of complex ions by the a	ddition of a common ion, t	he solubility of a given salt
is:			
a) Increased			
b) Decreased			
c) Unaffected			
d) First increased and then a	decreased		× •
335. The pH of 0.1 M NaHS is, K_{a_2}	$_{1}$ and $K_{a_{2}}$ for H ₂ S are 1.3 >	$\times 10^{-7}$ and 7.1 $\times 10^{-15}$ res	spectively:
a) 10.52 b) 9.52	c) 12.52	d) 13.52
336. $A + B \rightleftharpoons C + D$			
Initially moles of A and B	are equal. At equilibriu	m, moles of <i>C</i> are three t	imes that of <i>A</i> . the
equilibrium constant of th	ne reaction will be		
a) 1 b) 3	c) 4	d) 9
337. The strongest acid among th	e following is:		
a) ClO ₂ (OH)		X	
b) $ClO_2(OH)$	ĊY		
c) $SO(OH_2)$	00		
d) $SO_2(OH)_2$			
338. The equilibrium constant in	a reversible reaction at a	given temperature	
a) Does not depend on the in	nitial concentrations		
b) Depends on the initial cor	ncentrations of the reacta	nts	
c) Depends on the concentra	ation of the products at ec	quilibrium	
d) It is not characteristic of t	the reaction		
339. For the reaction, $H_2(g) +$	$I_2(g) \rightleftharpoons 2HI(g)$ at 720 I	K, the value of equilibri	um constant is 50, when
equilibrium concentration o	f both H_2 and I_2 is 0.5 <i>M</i> .	K_p under the same conditi	ons will be :
a) 0.02 🔥 b) 0.2	c) 50	d) 50 <i>RT</i>
340. If 340 g of a mixture of N_2 a	and H_2 in the correct ratio) gave a 20% yield of NH_3 .	The mass produced would
be :			
a) 16 g b) 17 g	c) 20 g	d) 68 g
341. The conjugate acid of CO_3^{2-} i	S:		
a) H_2O b) H ₂ CO ₃	c) OH-	d) HCO ₃
342. Calculate the partial press	sure of carbon monoxid	e from the following dat	as
\checkmark $(a(0, c) \xrightarrow{\Delta} (a)(a) + (0, c)$	$f K = 8 \times 10^{-2}$		
0 (g) + 0 (g) $\rightarrow 200$ (g)	$V_{p} = 0 \times 10$		
$O_2(g) + C(s) \rightarrow 2CO(g),$	$K_p = 2$		
aj U.2 b	J U.4	CJ 1.6	aj 4
343. In aqueous solution, the id	onisation constants for	carbonic acid are,	
$K_1 = 4.2 \times 10^{-7}$ and $R_1 = 4.2 \times 10^{-7}$	$K_2 = 4.8 \times 10^{-11}$		
Select the correct stateme	ent for a saturated 0.034	4 M solution of the carbo	nic acid.

The concentration of CO_3^{2-} is greater than that of HCO_3^{-} a) The concentration of CO_3^{2-} is 0.034 M The concentration of H^+ is double that of CO_3^{2-} c) The concentration of H^+ and HCO_3^- are approximately equal 344. The rapid change of pH near the stoichiometric point of an acid base titration is the basis of indicator detection. pH of the solution is related to the ratio of the concentration of the conjugate acid (HIn) and base (In⁻) forms of the indicator given by the expression a) $\log \frac{[In^-]}{[HIn]} = pK_{In} - pH$ b) $\log \frac{[HIn]}{[In^-]} = pK_{In} - pH$ c) $\log \frac{[HIn]}{[In^-]} = PH - pK_{In}$ d) $\log \frac{[In^-]}{[HIn]} = pH - pK_{In}$ 345. The number of mole of hydroxide $[OH^-]$ ion in 0.3 litre of 0.005 M solution of Ba $(OH)_2$ is: c) 0.0030 d) 0.0050 b) 0.0015 a) 0.0075 346. 4.5 moles each of hydrogen and iodine heated in a sealed 10 L vessel. At equilibrium 3 moles of HI were found. The equilibrium constant for $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ is d) 0.5 a) 1 b) 5 c) 10 347. The degree of hydrolysis in hydrolytic equilibrium $A^- + H_2 O \rightleftharpoons HA + OH^-$ at salt concentration of 0.001 M is $(K_a = 1 \times 10^{-5})$ c) 5 × 10⁻⁴ b) 1×10^{-4} d) 1×10^{-6} a) 1×10^{-3} 348. For a hypothetical equilibrium: $4A + 5B \rightleftharpoons 4x + 6y$; the equilibrium constant K_c has the unit: c) litre²mol⁻² a) $mol^2 litre^{-2}$ d) mol litre⁻¹ b) litre mol^{-1} 349. Salting out action of soap is based on: a) Complex ion formation b) Common ion effect c) Solubility product d) Acid-base neutralization 350. The equilibrium constant for the reaction, $SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$ is 5×10^{-2} atm. The equilibrium constant of the reaction $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$ would be c) 4×10^2 atm d) 6.25×10^4 atm b) 200 atm a) 100 atm 4 351. Which can be explained as applications of Le-Chatelier's principle? a) Transport of oxygen by haemoglobin in blood b) Removal of CO₂ from tissues by blood c) Tooth decay due to use of sweet substances d) All of the above 352. Which equilibrium in gaseous phase would be unaffected by an increase in pressure? c) $N_2 + 3H_2 \rightleftharpoons 2NH_3$ d) $CO + \frac{1}{2}O_2 \rightleftharpoons CO_2$ a) $N_2O_4 \rightleftharpoons 2NO_2$ b) $N_2 + O_2 \rightleftharpoons 2NO$ 353. The aqueous solution of $AlCl_3$ is acidic due to the hydrolysis of a) Aluminum ion b) Chloride ion c) Both aluminium and chloride ion d) None of the above 354. The percentage error in [H⁺] made by neglecting the ionisation of water in $1.0 \times 10^{-6} M$ NaOH is: b) 2% c) 3% d) 4% a) 1% 355. The colour of $CuCr_2O_7$ solution in water is green because: a) Cu²⁺ ions is green b) $Cr_2 O_7^{2-}$ ion is green c) Both the ions are green

d) Cu^{2+} ion is blue and $Cr_2O_7^{2-}$ ion is yellow

356. Ammonium carbonate decomposes as $NH_2COONH_4(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$ For the reaction, $K_p = 2.9 \times 10^{-5}$ atm⁻³. If we start with 1 mole of the compound, the total pressure at equilibrium would be a) 0.0766 atm b) 0.0582 atm c) 0.388 atm d) 0.0194 atm 357. Ionic product of water increases if a) Pressure is reduced b) H⁺ is added c) OH⁻ is added d) Temperature increase 358. In which of the following reactions, increases in the volume at constant temperature do not affect the number of moles at equilibrium? b) $C(s) + \frac{1}{2}O_2(g) \to CO(g)$ a) $2NH_3 \rightleftharpoons N_2 + 3H_2$ d) None of the above c) $H_2(g) + O_2(g) \rightarrow H_2O_2(g)$ 359. Which one of the following is least likely to act as a Lewis base? d) PC a) I+ b) I c) SCl_2 360. An aqueous solution of ammonium acetate is: c) Faintly alkaline a) Faintly acidic b) Fair acidic d) Almost neutral 361. The strongest Lewis base in the following is d) 0H⁻ a) $CH_3^$ b) F⁻ c) NH_2^- 362. For anionic hydrolysis, pH is given by $\mathbf{p}K_w + \frac{1}{2}\mathbf{p}K_a - \frac{1}{2}\mathbf{p}K_b$ a) pH = $\frac{1}{2}$ p $K_w - \frac{1}{2}$ p $K_b - \frac{1}{2}$ log C c) pH = $\frac{1}{2}pK_w + \frac{1}{2}pK_a + \frac{1}{2}\log C$ $\frac{1}{2}(\mathbf{p}K_w - \mathbf{p}K_a - \mathbf{p}K_b)$ 363. Which of the following is a conjugated acid-base pair? b) NH₄Cl, NH₄OH a) HCl, NaOH c) H_2SO_4 , $HSO_4^$ d) KCN, HCN 364. In the hydrolytic equilibrium, $A^- + H_2 0 \rightleftharpoons HA + OH^ K_a = 1.0 \times 10^{-5}$. The degree of hydrolysis of 0.001 *M* solution of the salt is: a) 10⁻³ b) 10⁻⁴ c) 10⁻⁵ d) 10⁻⁶ 365. The equilibrium constant (K_c) for the reaction, $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ at room temperature T is 4 \times 10⁻⁴. The value of K_c for NO(g) $\Rightarrow \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$ at the same T is : c) 4 \times 10⁻⁴ a) 0.02 b) 50 d) 2.5×10^{-2} 366. For the reaction, $CuSO_4 \cdot 5H_2O(s) \rightleftharpoons CuSO_4 \cdot 3H_2O(s) + 2H_2O(v)$ which one is correct representation? a) $K_p = (P_{H_2O})^2$ d) All of these b) $K_c = [H_2 0]^2$ c) $K_p = K_c (RT)^2$ 367. The correct order of increasing $[H_3O^+]$ in the following aqueous solutions is: a) $0.01 M H_2 S < 0.01 M H_2 SO_4 < 0.01 M NaCl < 0.01 M NaNO_2$ b) $0.01 M \text{ NaCl} < 0.01 M \text{ NaNO}_2 < 0.01 M \text{ H}_2\text{S} < 0.01 M \text{ H}_2\text{SO}_4$ c) $0.01 M \text{ NaNO}_2 < 0.01 M \text{ NaCl} < 0.01 M \text{ H}_2\text{S} < 0.01 M \text{ H}_2\text{SO}_4$ d) $0.01 M H_2 S < 0.01 M NaNO_2 < 0.01 M NaCl < 0.01 M H_2 SO_4$ 368. K_C for $A + B \rightleftharpoons C + D$ is 10 at 25°C. If a container contains 1, 2, 3 and 4 mole per litre of A, B, C and D respectively at 25°C, the reaction shall: a) Proceed from left to right b) Proceed from right to left c) Be at equilibrium d) None of the above 369. The compound whose 0.1 M solution is basic is a) Ammonium acetate b) Ammonium chloride c) Ammonium sulphate d) Sodium acetate

370. l	Isoelectric point is defined	d as the pH at which:		
ä	a) An amino acid become	s acidic		
	b) An amino acid become	s basic		
(c) Zwitter ion has positive	e charge		
(d) Zwitter ion has zero ch	arge		
371.7	The equilibrium consta	nt of a reaction is 300. If	the volume of reaction fl	ask is tripled, the
(equilibrium constant is			
ć	a) 300	b) 600	c) 900	d) 100
372.7	The oxoacid of SO ₂ is:			
ä	a) H_2SO_3	b) H ₂ SO ₄	c) $H_2S_2O_8$	d) None of these
373.7	The solubility of CaF ₂ ir	1 pure water is 2.3×10^{-1}	⁻⁶ mol dm ⁻³ . Its solubility	/ product will be
ä	a) 4.8×10^{-18}	b) 48.66 × 10 ⁻¹⁸	c) 4.9 × 10 ⁻¹¹	d) 48.66 × 10 ⁻¹⁵
374. j	pH value of which one o	of the following is not equ	ual to one?	
ä	a) 0.1 M HNO ₃		b) 0.05 M H ₂ SO ₄	A Y
(c) 0.1 M CH ₃ COOH		d) 50 cm ³ of 0.4 M HCl +	- 50 cm ³ of 0.2 M NaOH
375. 5	50 mL of 2 N acetic mixe	ed with 10 mL of 1 <i>N</i> sodi	ium acetate solution will h	nave an approximate pH of
($(K_a = 10^{-5})$:			
ä	a) 4	b) 5	c) 6	d) 7
376.′	The solubility of AgCl in	0.2 M NaCl is		
	$(K_{\rm sp} \text{ of AgCl} = 1.8 \times 10$	⁻¹⁰)		
	a) $1.8 \times 10^{-11} \text{ M}$	b) 9×10^{-10} M	c) 6.5×10^{-12} M	d) 5.6 $\times 10^{-11}$ M
377.7	The dissociation of wate	er at 25°C is 1.9×10^{-7}	percent and the density	of water is 1.0 g/cm^3 . The
i	onisation constant of wat	ter is:		
-	a) 3.42×10^{-6}	b) 3.42×10^{-8}	c) 1.00×10^{-14}	d) 2.00×10^{-16}
378.]	$N_2 + 3H_2 \rightleftharpoons 2NH_2 + he$	at. What is the effect of t	he increase of temperatu	re on the equilibrium of
1	the reaction?			
2	a) Equilibrium is shifted	l to the left	b) Equilibrium is shifted	d to the right
(c) Equilibrium is unalte	red	d) Reaction rate does no	a to the right
379.7	The expression for the	solubility product of Ag	CO ₂ will be	
	$K = s^2$	b) $K = 4s^3$	c) $K = 27s^4$	d) K s
280 4	The colubility of AcCl in	0.2 M NaCl colution is	cj n _{sp} 275	uj n _{sp} s
500.	$\begin{bmatrix} V & of A \\ C \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	10.2 M Naci Solution IS		
	$[\Lambda_{sp} \text{ of Agel } 1.2]$			N 0 0 4 0 10 M
6	a) $6.0 10^{10} \text{ M}$	b) 0.2 M	c) $1.2 10^{10} \text{ M}$	d) 0.2 10 ¹⁰ M
381.	Which of the following wi	ll not function as a buffer s	solution?	
((i) NaCl and NaOH			
((11) NaOH and NH_4OH			
	(III) CH_3COUNH_4 and HCI			
	(iv) bol ax allu bol ic aciu	h (iii) (iiii) (iv)	c) (i) (iii) (iv)	d) (i) (ii) (iii) (iv)
202	$\frac{1}{1} (1), (11), (11)$	DJ (II), (III), (IV) $P_{\rm are} 4.0 \times 10^{-8} 2.2 \times 10^{-8}$	(1), (11), (10) 0^{-14} and 2.7 x 10^{-15} rooms	(1), (1), (11), (11), (1)
502.1	N _{SP} OI Saits AD, AD ₂ allu A The solubility order of the	1_{3D} are 4.0 \times 10 $, 5.2 \times$ 10	0 all 2.7×10 lespe	cuvely at temperature 1.
	AB > AB > AB > AB	b) $\Lambda B > \Lambda B > \Lambda B$	(111110111110-)15.	d $AB > AB > AB$
383 1	Which does not act as Bro	$D_1 A_3 D > A D_2 > A D$	$C_{J} H D_{2} > H_{3} D > H D$	$d_1 H D > H_3 D > H D_2$
505.	a) NH ⁺	b) $CH_{a}COO^{-}$	c) HCO=	4) H2O2
384.1	Which of the following	solutions will have nH=0	9 at 298 K?	., 11003
	a) 1 \times 10 ⁻⁹ M HCl colut	ion	h) 1 × 10^{-5} M N ₂ OH col	lution
	$r = 1 \times 10^{-9} M KOH column$	tion	d) Roth (a) and (b)	
205	Acidosis is diamagad who	an blood n ^H	α β	
	nciuusis is ulagiluseu Wilt	uuuu pii.		

a) Falls below 7.35 b) Rises above 7.45	c) Both (a) and (b)	d) None of these
386. Which statement is false? (Assume complete di	ssociation in each case)	
a) If 2.0 L of a solution of H ₂ SO ₄ contains 0.1 mo	ole, then pH of the solution	on is 2
b) The concentration of OH^- in 0.005 M HNO ₃ is	10^{-12} mol/L	
c) The pH of 0.01 M KOH is 12		
d) In a 0.001 M solution of NaOH the concentrat	tion of H ⁺ is 10^{-3} mol/L	
387. 10 mL of a solution contains $0.1 M \text{ NH}_4 \text{Cl} + 0.01 M$	1 NH ₄ OH. Which addition v	would not change the pH of
the solution?		
a) Adding 1 mL water		
b) Adding 5 mL of 0.1 <i>M</i> NH ₄ Cl		
c) Adding 5 mL of 0.1 <i>M</i> NH ₄ OH		
d) Adding10 mL of 0.1 <i>M</i> NH ₄ Cl		
388. Arrhenius theory of acid-base is not valid for:		
a) Aqueous solution		
b) In presence of water	A	\circ
c) Non-aqueous solution	Ċ	X
d) None of these		
389. The solubility in water of a sparingly soluble sa	lt AB_2 is 1×10^{-5} mol L ⁻	¹ . Its solubility product
number will be		
a) 4×10^{-15} b) 4×10^{-10}	c) 1 × 10 ⁻¹⁵	d) 1×10^{-10}
390. The equilibrium constant (K_p) for the reaction, PCl ₅	$g(g) \rightarrow PCl_3(g) + Cl_2(g)$ is 1	6. If the volume of the
container is reduced to one half its original volume,	the value of K_p for the read	tion at the same
temperature will be		
a) 8 b) 16 🔨	c) 32	d) 64
391. The indicators used in the titration of iodine against	t sodium thiosulphate is	
a) Starch b) K ₃ Fe(CN) ₆	c) K ₂ CrO ₄	d) Potassium
392. For the reaction,		
$2HI(g) \rightleftharpoons H_2(g) + I_2(g) - Q kJ$, the equilibrium	constant depends upon	
a) Temperature b) Pressure	c) Catalyst	d) Volume
393. In the dissociation of $2HI \rightleftharpoons H_2 + I_2$, the degree of d	issociation will be influence	ed by the:
a) Addition of inert gas at constant volume		
b) Addition of inert gas at constant pressure		
c) Increase of temperature		
d) Increase of pressure		
394. If pressure increases then its effect on given equ	uilibrium	
$2NO(g) \rightleftharpoons N_2(g) + O_2(g)$ is shift in		
a) Forward direction	b) Backward direction	
c) No effect	d) None of these	
395. Which one of the molecular hydride acts as Lewis ad	cid?	
a) NH_3 b) H_2O	c) B ₂ H ₆	d) CH ₄
396. For the reversible reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_2$	$_{3}(g)$ at 500°C, the value of <i>K</i>	T_p is 1.44×10^{-5} when
partial pressure is measured in atmospheres. The comparison of the second se	orresponding value of <i>K_c</i> w	ith concentration in
mol L^{-1} , is		
1.44×10^{-5} 1.44×10^{-5}	1.44×10^{-5}	1.44×10^{-5}
a) $\frac{(0.082 \times 773)^{-2}}{(0.082 \times 773)^2}$ b) $\frac{(0.082 \times 773)^2}{(0.082 \times 773)^2}$	$(8.314 \times 773)^{-2}$	$(0.082 \times 500)^{-2}$
397. The compound that does not act as Lewis acid, is:	· · · · ·	· · · · ·
a) AlCl ₃ b) BF ₃	c) NH ₃	d) FeCl ₃
398. For the following reaction in gaseous phase		

$CO(\sigma) + \frac{1}{2}O_{\sigma}(\sigma) \rightarrow CO_{\sigma}(\sigma)K_{\sigma}/K_{\sigma}$ is		
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	(DT)	גע <i>הע</i> ת און 1
a) $(RI)^{1/2}$ b) $(RI)^{1/2}$	CJ(RI)	$a)(RI)^{-1}$
399. For the reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$, the equation $H_2(g) \to H_2(g)$	ullibrium constants expi	ressed in terms of
concentrations K_c and in terms of partial pressu	are K_p , are related as	
a) $K_p = K_c (RT)^2$ b) $K_p = K_c (RT)^{-2}$	c) $K_p = K_c$	d) $K_c = K_p(RT)$
400. In the titration of Na_2CO_3 and HCl, the indicator	used is	
a) Methyl orange b) Methylene blue	c) Phenolphthalein	d) Litmus
$401. \text{ HSO}_{4}^{-} + \text{OH}^{-} \rightarrow \text{SO}_{4}^{2-} + \text{H}_{2}\text{O}$		
Which is correct about conjugate acid base pair?	?	\sim
a) HSO ₄ is conjugate acid of base SO ₄ ²⁻	b) HSO₄ is conjugate b	ase of base SO_4^{2-}
c) SO_4^2 is conjugate acid of acid HSO_4	d) None of the above	
402. In the reaction, $A_2(g) + 4B_2(g) \rightleftharpoons 2AB_4(g), \Delta H < 0$,	the formation of AB_4 will l	pe favoured at
a) Low temperature, high pressure	b) High temperature, lov	v pressure
c) Low temperature, low pressure	d) High temperature, hig	h pressure
403. On applying pressure to the equilibrium,		
ice ≓ water		
Which phenomenon will happen?		
a) More ice will be formed		
b) More water will be formed		
c) Equilibrium will not be disturbed		
d) Water will evaporate		
404. A saturated solution of Ag_2SO_4 is 2.5×10^{-2} M.	The value of its solubilit	y product is
a) 62.5×10^{-6} b) 6.25×10^{-4}	c) 15.625 × 10 ^{−6}	d) 3.125 × 10 ⁻⁶
405. Aqueous solutions of two acids having same concent	trations of common ion (H	⁺) are called:
a) Isohydric solutions b) Isotonic solutions	c) Isomeric solutions	d) Hypotonic solutions
406. The hydrolysis constant of a salt of weak acid ar	nd weak base is inversel	y proportional to
a) Ionic product of water		
b) Dissociation constant of both weak acid and v	veak base	
c) Dissociation constant of weak acid		
d) Dissociation constant of weak base		
407. If in the reaction $N_2O_4 \rightleftharpoons 2NO_2$, <i>x</i> is that part of	N ₂ O ₄ which dissociates	, then the number of
molecules at equilibrium will be		
a) 1 b) 3	c) 1 + <i>x</i>	d) $(1 + x)^2$
408. The p K_a of a weak acid (HA) is 4.5. The pOH of a	an aqueous buffered solu	ution of HA in which 50%
of the acid ionised is	•	
a) 4.5 b) 2.5	c) 9.5	d) 7.0
409. Number of H ⁺ ions present in 10 mL of a solution of	pH = 3 is:	,
a) 10^{13} b) 6.02×10^{18}	c) 6.02×10^{13}	d) 6.02×10^{10}
410. The pH of gastric juice is normally:		
a) Greater than 1.5 and less than 1.2		
b) Less than 1.5		
c) Greater than 1 and less than 3		
d) Less than 1 and greater than zero		
411. With reference to protonic acids, the correct stateme	ent is:	
a) PH_3 is more basic than NH_3		
b) PH_3 is less basic than NH_3		
c) PH_3 is amphoteric while NH_3 is basic		
d) None of the above		

412. In a 500 mL flask, the degree of dissociation of F	Cl ₅ at equilibrium is 40%	% and the initial amount
is 5 moles. The value of equilibrium constant in	mol L ⁻¹ for the decompo	osition of PCl ₅ is
a) 2.33 b) 2.66	c) 5.32	d) 4.66
413. The unit of ionic product of water (K_w) is:		
a) $mol^{-1}litre^{-1}$ b) $mol^{-1}litre^{-2}$	c) mol ⁻² litre ⁻¹	d) mol ² litre ⁻²
414. In a reversible reaction two substance are in equ	uilibrium. If the concentr	ration each one is
doubled, the equilibrium constant will be		
a) Reduced to one fourth of its original value	h) Reduced to half of its	s original value
c) Constant	d) Doubled	soriginal value
415 La Chatalian principle is applicable only to a	u) Doubleu	
a) System in equilibrium	h) Swatam nat in aquilibr	
a) System in equilibrium	d) Heterogeneous reaction	
() Holliogeneous reaction	u) neterogeneous reactio	0^{-4} The pU of 0.01 M
410. The dissociation constant of a substituted benzo	$\int C a C I U a U a U a U a U a U a U a U a U a U$	0 ·. 1 he pH 01 0.01 M
solution of its sodium salt is		
a) 3 b) 7	c) 8	d) 6
417. A mixture of sodium oxide and calcium oxide ar	e dissolved in water and	saturated with excess
carbon dioxide gas. The resulting solution is	.It contains	
a) Basic; NaOH and Ca(OH) ₂	b) Neutral; Na ₂ CO ₃ and	CaCO ₃
c) Basic; Na ₂ CO ₃ and CaCO ₃	d) Acidic; NaOH and Ca	CO ₃
418. Conjugate acid of HF_2^- is		-
a) H^+ b) HF	c) E_{2}^{-}	d) H ₂ F ₂
419. Consider the reaction. $CH_2COOH + C_2H_5OH \rightleftharpoons CH_2CO$	$00C_2H_5 + H_2O$. One mole ea	ach of $CH_{3}COOH$ and $C_{2}H_{5}OH$
are heated in the presence of little concentrated H ₂ S	04. On equilibrium:	
a) 1 mole of ethyl acetate is formed	or, on equilibrium	
b) 2 mole of ethyl acetate are formed		
c) 1/2 mole of ethyl acetate is formed		
d) 2/3 mole of ethyl acetate is formed		
420 <i>K</i> _b for the hydrolysis reaction		
$B^+ + H_2 O \Rightarrow BOH + H^+$ is 1.0×10^{-6} the hydrolysis	constant of the salt is:	
a) 10^{-6} b) 10^{-7}	c) 10^{-8}	d) 10 ⁻⁹
421 The nH of a 0.001 M NaOH will be		a) 10
a) 3 b) 2	c) 11	d) 12
422. In lime kiln, the reversible reaction, $CaCO_3$ (s) \Rightarrow CaC	$(s) + CO_2(g)$ proceeds to	completion because :
a) Of high temperature	(c) + cc2 (g) proceeds to	
b) CO ₂ escapes out		
c) CaO is removed		
d) Of low temperature		
423. Solid Ba(NO ₂) ₂ is gradually dissolved in a 1.0 \times	10^{-4} M Na ₂ CO ₂ solution	At what concentration
of Ba^{2+} will a precipitate begin to form?	10 1111122033001411011	
$(K \text{ for } \text{Pac}(0) = 5.1 \times 10^{-9})$		
$(A_{sp} \text{ for } BacO_3 - 5.1 \times 10^{-5})$		\sim
(a) 4.1×10^{-5} M b) 5.1×10^{-5} M	c) 8.1 × 10 ⁻ M	d) 8.1×10^{-7} M
424. The solubility of AgCl is 0.0015 g/litre. The solubility	y product of AgCl will be:	
a) 2×10^{-10} b) 1.1×10^{-10}	c) 3.1×10^{-10}	d) 4.1×10^{-10}
425. Although CO is neutral but it shows acidic nature on	reaction with high <i>P</i> and <i>T</i>	:
a) $Ca(OH)_2$ b) NaOH	c) $Mg(OH)_2$	d) LiOH
426. The acidic character order for given oxy-acids of hal	ogens is:	
a) HOCl > HOBr > HOI b) HOI > HOBr > HOCl		
	c) $HOBr > HOCl > HOI$	d) $HOI > HOCI > HOBr$

-1 ClO = -		
a) CIO b) CIO_2	c) ClO ₃	d) ClO_4^-
428. The indicator used in the titration of sodium	carbonate with sulphuric acid is	
a) Potassium ferrocyanide		
b) Potassium ferricyanide		
c) Methyl orange		
d) Phenolphthalein		
429. A cylinder fitted with a movable piston con	tains liquid water in equilibrium	with water vapour at 25°C.
Which operation result in a decrease in the e	auilibrium vapour pressure?	
a) Moving the niston downward a short dista		\frown
b) Pomoving a small amount of vapour		
c) Removing a small amount of the liquid wa	tor	
d) Discolving colt in the water	ter	
420 If a actia acid is mixed with acdium acatata th	on II ⁺ ion concentration will	
430. If acetic acid is mixed with sodium acetate th	en H ⁺ ion concentration will	
a) Increase b) Decrease	c) Remain unchanged	d) pH decrease
431. The reverse process of neutralization is:		
a) Hydrolysis b) Decomposition	c) Dehydration	d) Synthesis
432. The hydrogen ion concentration of a $10^{-8} M$	HCl aqueous solution at 298 K (k	$T_w = 10^{-14}$) is:
a) $9.525 \times 10^{-8} M$		<i>y</i>
b) $1.0 \times 10^{-8} M$		
c) $1.0 \times 10^{-6} M$		
d) $1.0525 \times 10^{-7} M$		
433. The number of ions formed when cuprammo	nium sulphate dissolves in water	is:
a) One b) Two	c) Four	d) Zero
434. A reversible chemical reaction have two reac	tants in equilibrium. If the conce	ntrations of the reactants are
doubled then the equilibrium constant will		
a) Be halved b) Also be doubled	t c) Remains the same	d) None of these
435. According to Arrhenius concept, base is a sub	ostance that:	
a) Gives a pair of protons		
b) Donates a proton		
a) Accorta an alactron nair		
d) Gives OH^- ions in aqueous solution		
d) Gives OH ⁻ ions in aqueous solution 436. What is the effect of increasing pressure	on the dissociation of PCL acco	ording to the equation?
d) Gives OH ⁻ ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_{\sigma}(\sigma) \Rightarrow PCl_{\sigma}(\sigma) + Cl_{\sigma}(\sigma)$	on the dissociation of PCl ₅ acco	ording to the equation?
d) Gives OH^- ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$	on the dissociation of PCl ₅ acco	ording to the equation?
d) Gives OH^- ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a) Dissociation decreases	on the dissociation of PCl ₅ according to the dissociation of PCl ₅ according to the second s	ording to the equation? ses
d) Gives OH^- ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a) Dissociation decreases c) Dissociation does not change	on the dissociation of PCl ₅ acco b) Dissociation increas d) None of the above	ording to the equation? ses
c) Accepts an electron pair d) Gives OH^- ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a) Dissociation decreases c) Dissociation does not change 437. Which is Lewis acid?	on the dissociation of PCl ₅ acco b) Dissociation increas d) None of the above	ording to the equation? ses
c) Accepts an electron pair d) Gives OH^- ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a) Dissociation decreases c) Dissociation does not change 437. Which is Lewis acid? a) BF ₃ b) NF ₃	on the dissociation of PCl ₅ acco b) Dissociation increas d) None of the above c) Cl [–]	brding to the equation? Ses d) H_2O
d) Gives OH^- ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a) Dissociation decreases c) Dissociation does not change 437. Which is Lewis acid? a) BF_3 b) NF_3 438. Which one of the following substances has the	on the dissociation of PCl ₅ acco b) Dissociation increas d) None of the above c) Cl [–] te highest proton affinity?	bording to the equation? Sets d) H_2O
c) Accepts an electron pair d) Gives OH^- ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a) Dissociation decreases c) Dissociation does not change 437. Which is Lewis acid? a) BF_3 b) NF_3 438. Which one of the following substances has th a) H_2O b) H_2S	on the dissociation of PCl ₅ acco b) Dissociation increas d) None of the above c) Cl ⁻ te highest proton affinity? c) NH ₃	ording to the equation? ses d) H ₂ O d) CH ₃ COOH
c) Accepts an electron pair d) Gives OH^- ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a) Dissociation decreases c) Dissociation does not change 437. Which is Lewis acid? a) BF_3 b) NF_3 438. Which one of the following substances has th a) H_2O b) H_2S 439. The solubility product of a salt AB_2 is 4×10^{-10}	on the dissociation of PCl_5 according to the dissociation increases d) Dissociation increased) None of the above c) Cl^- the highest proton affinity? c) NH_3 ⁻⁹ at 373 K. The solubility of AB_2	ording to the equation? ses d) H ₂ O d) CH ₃ COOH in boiling water will be:
c) Accepts an electron pair d) Gives OH^- ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a) Dissociation decreases c) Dissociation does not change 437. Which is Lewis acid? a) BF_3 b) NF_3 438. Which one of the following substances has th a) H_2O b) H_2S 439. The solubility product of a salt AB_2 is $4 \times 10^{-4}M$	on the dissociation of PCl_5 according b) Dissociation increas d) None of the above c) Cl^- the highest proton affinity? c) NH_3 ⁻⁹ at 373 K. The solubility of AB_2 c) $1 \times 10^{-10}M$	brding to the equation? Ses d) H_2O d) CH_3COOH in boiling water will be: d) $1 \times 10^{-3}M$
c) Accepts an electron pair d) Gives OH^- ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a) Dissociation decreases c) Dissociation does not change 437. Which is Lewis acid? a) BF_3 b) NF_3 438. Which one of the following substances has th a) H_2O b) H_2S 439. The solubility product of a salt AB_2 is $4 \times 10^{-3}M$ b) $4 \times 10^{-3}M$ b) $4 \times 10^{-4}M$ 440. Which pair will show common ion effect?	on the dissociation of PCl_5 according b) Dissociation increas d) None of the above c) Cl^- the highest proton affinity? c) NH_3 ⁻⁹ at 373 K. The solubility of AB_2 c) $1 \times 10^{-10}M$	bording to the equation? ess d) H_2O d) CH_3COOH in boiling water will be: d) $1 \times 10^{-3}M$
c) Accepts an electron pair d) Gives OH^- ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a) Dissociation decreases c) Dissociation does not change 437. Which is Lewis acid? a) BF_3 b) NF_3 438. Which one of the following substances has th a) H_2O b) H_2S 439. The solubility product of a salt AB_2 is 4×10^{-3} a) $4 \times 10^{-3}M$ b) $4 \times 10^{-4}M$ 440. Which pair will show common ion effect? a) $BaCl_2 + Ba(NO_3)_2$ b) $NaCl + HCl$	on the dissociation of PCl_5 according b) Dissociation increased) None of the above c) Cl ⁻ the highest proton affinity? c) NH ₃ ⁻⁹ at 373 K. The solubility of AB_2 c) $1 \times 10^{-10}M$ c) NH ₄ OH + NH ₄ Cl	bording to the equation? ess d) H_2O d) CH_3COOH in boiling water will be: d) $1 \times 10^{-3}M$ d) $AgCN + KCN$
c) Accepts an electron pair d) Gives OH^- ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a) Dissociation decreases c) Dissociation does not change 437. Which is Lewis acid? a) BF ₃ b) NF ₃ 438. Which one of the following substances has th a) H ₂ O b) H ₂ S 439. The solubility product of a salt AB_2 is 4×10^{-3} a) $4 \times 10^{-3}M$ b) $4 \times 10^{-4}M$ 440. Which pair will show common ion effect? a) BaCl ₂ + Ba(NO ₃) ₂ b) NaCl + HCl 441. In the case of gaseous homogeneous reaction	on the dissociation of PCl_5 according b) Dissociation increased) None of the above c) Cl ⁻ the highest proton affinity? c) NH ₃ ⁻⁹ at 373 K. The solubility of AB_2 c) $1 \times 10^{-10}M$ c) NH ₄ OH + NH ₄ Cl a, the concentrations of the reacta	brding to the equation? Ses d) H_2O d) CH_3COOH in boiling water will be: d) $1 \times 10^{-3}M$ d) AgCN + KCN nts may be given by:
c) Accepts an electron pair d) Gives OH^- ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a) Dissociation decreases c) Dissociation does not change 437. Which is Lewis acid? a) BF_3 b) NF_3 438. Which one of the following substances has th a) H_2O b) H_2S 439. The solubility product of a salt AB_2 is $4 \times 10^-$ a) $4 \times 10^{-3}M$ b) $4 \times 10^{-4}M$ 440. Which pair will show common ion effect? a) $BaCl_2 + Ba(NO_3)_2$ b) $NaCl + HCl$ 441. In the case of gaseous homogeneous reaction PV b) P	on the dissociation of PCl_5 according b) Dissociation increased) None of the above c) Cl^- the highest proton affinity? c) NH_3 -9 at 373 K. The solubility of AB_2 c) $1 \times 10^{-10}M$ c) $NH_4OH + NH_4Cl$ the concentrations of the reactance c) $n PT$	bording to the equation? ess d) H_2O d) CH_3COOH in boiling water will be: d) $1 \times 10^{-3}M$ d) $AgCN + KCN$ ints may be given by: d) RT
c) Accepts an electron pair d) Gives OH^- ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a) Dissociation decreases c) Dissociation does not change 437. Which is Lewis acid? a) BF ₃ b) NF ₃ 438. Which one of the following substances has th a) H ₂ O b) H ₂ S 439. The solubility product of a salt AB_2 is 4×10^{-3} a) $4 \times 10^{-3}M$ b) $4 \times 10^{-4}M$ 440. Which pair will show common ion effect? a) BaCl ₂ + Ba(NO ₃) ₂ b) NaCl + HCl 441. In the case of gaseous homogeneous reaction a) $\frac{PV}{RT}$ b) $\frac{P}{RT}$	on the dissociation of PCl_5 accord b) Dissociation increase d) None of the above c) Cl ⁻ the highest proton affinity? c) NH ₃ ⁻⁹ at 373 K. The solubility of AB_2 c) $1 \times 10^{-10}M$ c) NH ₄ OH + NH ₄ Cl a, the concentrations of the reactance c) $\frac{n}{V}RT$	bording to the equation? Setsion of the equation? d) H_2O d) CH_3COOH in boiling water will be: d) $1 \times 10^{-3}M$ d) AgCN + KCN ints may be given by: d) $\frac{RT}{P}$
c) Accepts an electron pair d) Gives OH^- ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a) Dissociation decreases c) Dissociation does not change 437. Which is Lewis acid? a) BF ₃ b) NF ₃ 438. Which one of the following substances has th a) H ₂ O b) H ₂ S 439. The solubility product of a salt AB_2 is $4 \times 10^-$ a) $4 \times 10^{-3}M$ b) $4 \times 10^{-4}M$ 440. Which pair will show common ion effect? a) BaCl ₂ + Ba(NO ₃) ₂ b) NaCl + HCl 441. In the case of gaseous homogeneous reaction a) $\frac{PV}{RT}$ b) $\frac{P}{RT}$ 442. 0.5 M ammonium benzoate is hydrolysed to 0	on the dissociation of PCl_5 accord b) Dissociation increas d) None of the above c) Cl ⁻ the highest proton affinity? c) NH ₃ ⁻⁹ at 373 K. The solubility of AB_2 c) 1 × 10 ⁻¹⁰ M c) NH ₄ OH + NH ₄ Cl a, the concentrations of the reacta c) $\frac{n}{V}RT$ D.25 percent. Hence, its hydrolysi	bording to the equation? Sets d) H ₂ O d) CH ₃ COOH in boiling water will be: d) $1 \times 10^{-3}M$ d) AgCN + KCN ints may be given by: d) $\frac{RT}{P}$ is constant is
c) Accepts an electron pair d) Gives OH^- ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a) Dissociation decreases c) Dissociation does not change 437. Which is Lewis acid? a) BF_3 b) NF_3 438. Which one of the following substances has th a) H_2O b) H_2S 439. The solubility product of a salt AB_2 is 4×10^{-3} a) $4 \times 10^{-3}M$ b) $4 \times 10^{-4}M$ 440. Which pair will show common ion effect? a) $BaCl_2 + Ba(NO_3)_2$ b) $NaCl + HCl$ 441. In the case of gaseous homogeneous reaction a) $\frac{PV}{RT}$ b) $\frac{P}{RT}$ 442. 0.5 M ammonium benzoate is hydrolysed to (a) 2.5×10^{-5} b) 1.25×10^{-5}	on the dissociation of PCl_5 accord b) Dissociation increase d) None of the above c) Cl ⁻ the highest proton affinity? c) NH ₃ ⁻⁹ at 373 K. The solubility of AB_2 c) $1 \times 10^{-10}M$ c) NH ₄ OH + NH ₄ Cl b, the concentrations of the reactact c) $\frac{n}{V}RT$ D.25 percent. Hence, its hydrolysic c) 3.125×10^{-6}	brding to the equation? Sets d) H_2O d) CH_3COOH in boiling water will be: d) $1 \times 10^{-3}M$ d) AgCN + KCN ints may be given by: d) $\frac{RT}{P}$ is constant is d) 6.25×10^{-6}
c) Accepts an electron pair d) Gives OH^- ions in aqueous solution 436. What is the effect of increasing pressure of $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a) Dissociation decreases c) Dissociation does not change 437. Which is Lewis acid? a) BF_3 b) NF_3 438. Which one of the following substances has th a) H_2O b) H_2S 439. The solubility product of a salt AB_2 is 4×10^{-3} a) $4 \times 10^{-3}M$ b) $4 \times 10^{-4}M$ 440. Which pair will show common ion effect? a) $BaCl_2 + Ba(NO_3)_2$ b) $NaCl + HCl$ 441. In the case of gaseous homogeneous reaction a) $\frac{PV}{RT}$ b) $\frac{P}{RT}$ 442. 0.5 M ammonium benzoate is hydrolysed to (a) 2.5×10^{-5} b) 1.25×10^{-5} 443. The K_{sp} of PbCO ₃ and MgCO ₃ are 1.5×10^{-5}	on the dissociation of PCl_5 accord b) Dissociation increas d) None of the above c) Cl^- the highest proton affinity? c) NH_3 -9 at 373 K. The solubility of AB_2 c) $1 \times 10^{-10}M$ c) $NH_4OH + NH_4Cl$ the concentrations of the reacta c) $\frac{n}{V}RT$ 0.25 percent. Hence, its hydrolysi c) 3.125×10^{-6} ¹⁵ and 1×10^{-15} respectively at	brding to the equation? Set d) H_2O d) CH_3COOH in boiling water will be: d) $1 \times 10^{-3}M$ d) AgCN + KCN ints may be given by: d) $\frac{RT}{P}$ s constant is d) 6.25×10^{-6} 298 K. The concentration of

a) $1.5 \times 10^{-4} M$	b) 3 × 10 ⁻⁸ <i>M</i>	c) $2 \times 10^{-8} M$	d) $2.5 \times 10^{-8} M$
444. The [H ⁺] ion conce	ntration in 0.001 M acetic a	cid is 1.34×10^{-4} g ion/litre	e. The [H ⁺] ion concentration of
0.164g of CH ₃ COONa is added to a litre of $0.001 M$ CH ₃ COOH will be:			
a) 9 × 10 ⁻⁶	b) 18 × 10 ⁻⁶	c) 4.5 × 10 ⁻⁶	d) 5×10^{-6}
445. pH scale was intro	oduced by		
a) Arrhenius	b) Sorensen	c) Lewis	d) Lowry
446.28 g N ₂ and 6 g 1	H_2 were mixed. At equilibr	ium 17g NH ₃ was formed	I. The weight of N_2 and H_2 of
equilibrium are res	pectively :		
a) 11 g, zero	b) 1 g, 3 g	c) 14 g, 3 g	d) 11 g, 3 g
447. An equilibrium mix	ture of the reaction, 2H ₂ S(g)	$a \rightleftharpoons 2H_2(g) + S_2(g)$ has 0.5 i	mole H_2S , 0.10 mole H_2 and 0.4
mole S ₂ in 1 L vess	el. The value of equilibrium c	onstant (K) in mol L^{-1} , is	
a) 0.004	b) 0.008	c) 0.016	d) 0.032
448. 1 mole of $N_2O_4(g)$) at 300 K is kept in a close	ed container under 1 atm.	It is heated to 600 K when
20% by mass of N	$^{1}_{2}O_{4}(g)$ decomposes to NO	$_2(g)$. The resultant press	ure is
a) 1.2 atm	b) 2.4 atm	c) 2.0 atm	d) 1.0 atm
449. Equivalent amour	ts of H_2 and I_2 are heated	in a closed vessel till equ	ilibrium is obtained. If 80%
of the hydrogen c	an be converted to H, the <i>k</i>	X_c at this temperature is	3
a) 64	b) 16	c) 0.25	d) 4
450. A litre of solution	is saturated with AgCl. To	this solution if 1.0×10^{-4}	⁴ mole of solid NaCl is added,
what will be the [Ag ⁺], assuming no volume	change?	
a) More	b) Less	c) Equal	d) Zero
451. The vapour density	v of undecomposed N_2O_4 is	46. When heated, vapour d	ensity decreases to 24.5 due to
its dissociation to N	10 ₂ . The per cent dissociation	n of N ₂ O ₄ at the final tempe	rature is :
a) 87	b) 60	c) 40	d) 70
452. A precipitate of A	gCl is formed when equal v	volumes of the following a	are mixed
$[K_{\rm sp} \text{for AgCl} = 10]$	[-10]		
a) 10 ⁻⁴ M AgNO ₃	and 10 ⁻⁷ M HCl	b) 10 ⁻⁵ M AgNO ₃ an	d 10 ⁻⁶ M HCl
c) 10 ⁻⁵ M AgNO ₃ a	and 10 ⁻⁴ M HCl	d) 10 ⁻⁶ M AgNO ₃ an	d 10 ⁻⁶ M HCl
453. For the reaction			
$CO(g) + 0.5O_2(g)$	$\rightarrow CO_2(g) K_p/K_c$ is equal	to	
a) \sqrt{PT}	$b) \frac{1}{2}$	c) 1	d) RT^2
	\sqrt{RT}	-	
454. Central metal ion ir	a complex or a cation acts a	S:	d) Anthonius said
455 The degree of disc	D) Lewis actu	onced by:	u) Al menius aciu
a) HC	b) CH_2COON_2	c) NH.OH	d) Fither of these
456 Solubility of Ca(O	H), is a s mol L^{-1} The solu	1 $hility product (K) under$	er the same condition is
$a) 4a^3$	$h) 2a^4$	$\frac{1}{2}$	d a^3
dJ 45 457 Which and of the	UJ 38 fallowing substances has t	U 45 ha high act proton offinity	u j s
437. Which one of the			יי וום גר
d) $\Pi_2 U$	$U \int \Pi_2 S$	$C \int N\Pi_3$	u) P H ₃
430. Which of the follo	wing is not a conjugate act	iu base pair?	\mathbb{D} IL DOT DO ³
a) HPO_3^2 , PO_3^2	b) H_2PO_4 , HPO_4^2	C) H_3PO_4 , H_2PO_4	a) H_2PO_4 , PO_3°
459. In an equilibrium r	eaction, if $\Delta G^{\circ} = 0$ the equilibrium of ΔG°	orium constant, K should be	e equal to:
a) U	D) I	C) Z	d to make the hydrogen ion
concentration above	In our scomach contains $(0.01 \text{ mol})/litre Theory of the set of the set$	enough nyurochioriue acl	u to make the hydrogen ion
a) 0.01	h) 1	c) 2	d) 14
461 At 550 K the K fi	or the following reaction is	$10^4 \text{ mol}^{-1}\text{I}$	uj 1 i
1020 m 000 m, the $M_{\rm C}$ m	si une iono wing reaction is		

X(g) +	$Y(g) \rightleftharpoons Z(g)$		
At equilibrium,	it was observed that		
$[X] = \frac{1}{2}$	$[Y] = \frac{1}{2}[Z]$		
What is the valu	ue of $[Z]$ (in mol L ⁻¹) at equi	librium?	
a) 2 × 10 ⁻⁴	b) 10 ⁻⁴	c) 2 × 10 ⁴	d) 10 ⁴
462. A vessel at 100) K contains CO ₂ with a pres	ssure of 0.5 atm. Some of	the CO ₂ is converted into CO
on the addition	of graphite. If the total pres	sure at equilibrium is 0.8	B atm, the value of K_p is
a) 1.8 atm	b) 3 atm	c) 0.3 atm	d) 0.18 atm
463. Ammonium car	bonate decomposes as		$\langle \langle \rangle$
NH ₂ COO	$NH_4(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$	g)	
For the reaction	$K_n = 2.9 \times 10^{-5} \text{ atm}^3$. If v	ve start with 1 mole of th	e compound, the total
pressure at equ	ilibrium would be		
a) 0.766 atm	b) 0.0582 atm	c) 0.0388 atm	d) 0.0194 atm
464. The p K_a of a we	eak acid, H <i>A</i> , is 4.80. The p <i>K</i>	$_{b}$ of a weak base, BOH is	4.78. The pH of an aqueous
solution of the	corresponding salt, BA, will	be	
a) 9.58	b) 4.79	c) 7.01	d) 9.22
465. The species am	ong the following , which ca	n act as an acid and a ba	se is
a) HSO ₄	b) SO ₄ ²⁻	c) H ₃ 0 ⁺	d) Cl ⁻
466. A monoprotic w	veak acid (HA) is ionised 5%	6 in 0.1 M aqueous soluti	on. What is the equilibrium
constant for its	ionisation?		
$HA(aq) + H_2O$	$(l) \rightleftharpoons \mathrm{H}_3\mathrm{O}^+(aq) + A^-(aq)$		
a) 2.63×10^4	b) 2.63 × 10 ³	c) 2.63×10^{-4}	d) 2.63×10^{-3}
467. Strongest acid i	S		
a) C ₂ H ₆	b) CH ₃ OH	c) HC \equiv HC	d) C ₆ H ₆
468. Which of the fo	lowing will have maximum	pH?	
a) M/II HCl	b) $\frac{M}{100}$ HCl	c) M NaOH	d) $\frac{M}{100}$ NaOH
469. The pH of 1.0 M	aqueous solution of a weak act	id HA is 6.0. Its dissociation	a constant is:
a) 10 ⁻⁶	b) 10 ⁻¹²	c) 1.0	d) 6.0
470. In which of the fo	ollowing, the reaction proceed	s towards completion?	-
a) <i>K</i> = 1	b) <i>K</i> = 10	c) $K = 10^2$	d) $K = 10^3$
471. The mixed salt a	nong the following is:		
CHOHCOOK	b) NaKSO		d) All of these
CHOHCOONa	DJ Naks04	cj caoci ₂	
472. What volume of	f M/10 NaOH added in 50 r	nL, M/10 acetic acid solu	tion to get a buffer solution
having highest	ouffer capacity?		
a) 50 mL	b) 25 mL	c) 10 mL	d) 40 mL
473. The pH value of	an acid is 5 and its concent	ration is 1 M. What is the	e value of K_a for the acid?
a) 10 ⁻⁷	b) 10 ⁻⁵	c) 10 ⁻¹⁰	d) 10 ⁻⁸
474. The pH of a neu	tral water sample is 6.5. Th	en the temperature of wa	ater
a) is 25°C		b) is more than 25	°C
c) is less than 2	5°C	d) can be more or l	less than 25°C
475. The formation o	f phosgene is represented as	$, CO + Cl_2 \rightleftharpoons COCl_2.$ The re	eaction is carried out in 500 mL
flask. At equilibr	um 0.3 mole of phosgene, 0.1	mole of CO and 0.1 mole of	f Cl ₂ are present. The equilibrium
constant of the re	eaction is:	-) F	
aj 30 476 In avalitation -	D) 15	CJ 5	a) 3
+/0. In qualitative al	ialysis, in order to detect se	cond group basic redical	, π ₂ 5 gas is passed in the

presence of dilute HCl to b) Decrease the dissociation of salt solution a) Increase the dissociation of H₂S c) Decrease the dissociation of H₂S d) Increase the dissociation of salt solution 477. For two acids A and $pK_a = 1.2$, and 2.8 respectively in value then which is true? a) A and B both are equally acidic b) A is stronger than B d) Neither A nor B is strong c) B is stronger than A 478. The weakest base among the following is: d) Cl⁻ a) H⁻ b) $CH_3^$ c) CH₃0⁻ 479. The hydrogen ion concentration in mol/litre of a solution of pH = 0 is: b) 10⁻⁷ a) Zero c) 1 M d) None of these 480. For which reaction is $K_p = K_c$? a) $2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$ b) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ c) $H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$ d) $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ 481. For the reaction, $H_2(g) + CO_2(g) \rightleftharpoons CO(g) + H_2O(g)$, if the initial concentration of $[H_2] = [CO_2]$ and x mol/L of hydrogen is consumed at equilibrium, the correct expression of K_p is a) $\frac{x^2}{(1-x)^2}$ b) $\frac{(1+x)^2}{(1-x)^2}$ c) $\frac{x^2}{(2+x)^2}$ d) $\frac{x^2}{1-x^2}$ 482. $K_{sp} = [A]^3 [B]^2$ for the salt where A and B are the cation and anion as the case may be stand true for: c) Bi_2S_3 d) All are correct a) $Ca_3(PO_4)_2$ b) As_2S_3 483. The dissociation constant for acetic acid and HCN at 25° C are 1.5×10^{-3} and 4.5×10^{-10} respectively. the equilibrium constant for the equilibrium, $CN^- + CH_3COOH \rightleftharpoons HCN + CH_3COO^-$ would be: a) 3.0×10^4 b) 3.0×10^5 c) 3.0×10^{-5} d) 3.0×10^{-4} 484. The pH of the solution 5 mL $\frac{M}{5}$ HCl + 10 mL of $\frac{M}{10}$ NaOH is a) 5 b) 3 c) 7 d) 8 485. In the reaction, $AlCl_3 + Cl^- \rightarrow [AlCl_4]^-$, $AlCl_3$ acts as: b) Lewis base a) Salt c) Lewis acid d) Bronsted acid 486. A weak acid HX has dissociation constant 10^{-5} . The pH of 0.1 M solution of this acid will be **b**) 3 c) 4 a) 2 d) 5 487. The pK_a of HCN is 9.30. The pH of a solution prepared by mixing 2.5 moles of KCN and 2.5 moles of KCN and 2.5 moles of HCN in water and making up the total volume of 500 mL, is b) 7.30 c) 10.30 a) 9.30 d) 8.30 488. 30 cc of $\frac{M}{3}$ HCl, 20 cc of $\frac{M}{2}$ HNO₃ and 40 cc of $\frac{M}{4}$ NaOH solutions are mixed and the volume was made up to 1 dm³. The pH of the resulting solution is a) 8 b) 2 c) 1 d) 3 489. A solution contains 10 mL 0.1 N NaOH and 10 mL 0.05 N $m NH_2SO_4$, pH of this solution is a) Less than 7 b) 7 c) Zero d) Greater than 7 490. A reversible chemical reaction is having two reactants, in equilibrium. If the concentration of the reactants are doubled then the equilibrium constant will a) Bo doubled b) Become one fourth c) Be halved d) Remain the same 491. Conjugate bade of $H_2PO_4^-$ is d) HPO_4^{2-} c) PO_4^{3-} a) H_3PO_4 b) $P_2 O_5$

492. The equilibrium constant for the reaction $N_2 + 3H_2 \rightleftharpoons 2NH_3$ is *K* then the equilibrium constant for the equilibrium,

equiidi luii,				
$NH_3 \rightleftharpoons \frac{1}{2}N_2 + \frac{3}{2}$	H ₂ is			
a) $\frac{1}{K}$	b) \sqrt{K}	c) $\frac{1}{K^2}$	d) $\frac{1}{\sqrt{K}}$	
493. An acid type inc	licator HIn differs in colour fr	om its conjugate base (Ir	n^-). The human eye is se	ensitive to
colour differenc	tes only when the ratio $[In^-]/$	[HIn] is greater than 10 o	or smaller than 0.1. What	at should be
the minimum cl	nange in the pH of the solution	n to observe a complete o	colour change ($K_a = 1.0$	$1 \times 10^{-5})?$
a) 4	b) 2	c) 6	d) 1	
494. Which is an exa	mple of Lewis acid?			
a) HCl	b) H ₂ SO ₄	c) SO ₂	d) HNO ₃	
495. A student wants	s to prepare a saturated solut	ion of Ag ⁺ ion. He has go	t three samples AgCl(<i>K</i>	$_{sp}$ =
10^{-10}), AgBr(K	$S_{p} = 10^{-13}$) and $Ag_2 CrO_4 (K_{sp})$	$_{0} = 10^{-12}$). Which of the	above compound will b	e used by him
using minimum	weight to prepare the satura	ted solution?		
a) AgCl	b) AgBr	c) Ag_2CrO_4	d) All of thes	se
496. Acetic acid and	l propionic acid have K_a va	alues 1.75×10^{-5} and 1	1.3×10^{-5} respectively	y at a certain
temperature. A	n equimolar solution of a mix	ture of the two acids is p	partially neutralized by	NaOH. How is
the ratio of the contents of acetate and propionate ions related to the K_a values and the molarity?				
a) $\left(\frac{\alpha}{1-\alpha}\right) = \frac{1.75}{1.3}$	$\times \left(\frac{\beta}{1-\beta}\right)$, 0 where α and β are	ionised fractions of the a	acids	
b) The ratio is u	nrelated to the K_a values			
c) The ratio is unrelated to the molarity				
d) The ratio is unrelated to the pH of the solution				
497. The equivalent conductance of 0.1 N acetic acid is 5 cm ² ohm ⁻¹ eq. ⁻¹ at 298 K while λ_{∞} is				
$390 \text{cm}^2 \text{ohm}^{-1}$	eq. ⁻¹ . The degree of dissociation	ion of 0.1 N acetic acid w	ill be:	
a) 0.0013	b) 0.013	c) 0.13	d) 0.5	
498. Raising the tem	perature of a reversible chem	lical reaction :		
a) Favours the backward rate only				
b) Favours both the forward and backward rates as the case may be				
d) Favours neither the forward nor backward rates				
499 7n salt is mixed with (NH) S of molarity 0.021 M. The amount of $7n^{2+}$ remains unprecipitated in 12 mJ				
of this solution (K of $7nS = 4.51 \times 10^{-24}$) which is:				
a) 1.677×10^{-2}	$(1.57 \times 10^{-22} \text{ m}) = 1.57 \times 10^{-22} \text{ m}$	c) 2.01×10^{-23}	d) None of th	1050
500 Pure ammonia i	s nlaced in a vessel at temper	$c_{j} 2.01 \times 10$	g = u f None of u	reciphle At
equilibrium	s placed in a vessel at temper		ion constant (u) is app	celable. It
a) K., does not o	hange significantly with pres	sure		
h) α does not ch	ange with pressure			
c) Concentratio	n of NH ₂ does not change wit	h pressure		
d) Concentratio	n of H_2 is less than that of N_2	in prosouro		
501. A chemical read	tion $A \rightleftharpoons B$ is said to be at equ	uilibrium when:		
a) Complete con	version of A to B has taken p	lace		
b) Conversion o	f <i>A</i> to <i>B</i> is only 50% complete	<u>j</u>		
c) Only 10% conversion of A to B has taken place				
d) The rate of transformation of A and B is just equal to the rate of transformation of B to A in the system				
502. As the temperature increases, the pH of a KOH solution				
a) Will decrease	2			
b) Will increase				
c) Remains con	stant			
d) Depends upo	n the concentration of KOH se	olution		
503. Tribasic acid furnishes...type of anions. d) 4 a) 2 b) 1 c) 3 504. Which of the following pairs constitutes buffer? a) HNO_3 and NH_4NO_3 b) HCl and KCl c) HNO₂ and NaNO₂ d) NaOH and NaCl 505. What will be the pH and % α respectively for the salt *BA* of 0.1 M concentration? Given, K_a for HA = 10⁻⁶ and K_b for $BOH = 10^{-6}$ a) 7,10% b) 5, 10% c) 5, 0.1% d) 7, 1% 506. The indicator used in titrating oxalic acid with caustic soda solution is: c) Fluorescein d) Phenolphthalein a) Methyl orange b) Methyl red 507. The pH of a 0.02 *M* solution of hydrochloric acid is: a) 2.0 b) 1.7 c) 0.3 d) 2.2 508. For the reaction, $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$, at a given temperature, the equilibrium amount of $CO_2(g)$ can be increased by b) Decreasing the volume of the container a) Increasing the amount of CO(g) c) Adding a suitable catalyst d) Adding an inert gas 509. $Ag^+ + NH_3 \rightleftharpoons [Ag(NH_3)]^+; K_1 = 3.5 \times 10^{-3}$ $[Ag(NH_3)]^+ + NH_3 \rightleftharpoons [Ag(NH_3)_2]^+;$ $K_2 = 1.7 \times 10^{-3}$ Then the formation constant of $[Ag(NH_3)_2]^+$ is a) 6.08×10^{-6} b) 6.08×10^{6} c) $6.08 \times 10^{\circ}$ d) None of these 510. 1 mL of 0.1 *N* HCl is added to 999 mL solution of NaCl. The pH of the resulting solution will be: a) 7 b) 4 d) 1 511. The role of catalyst in reversible reaction is : a) To increase the rate of forward reaction b) Decrease the rate after equilibrium c) Allow equilibrium to be achieved quickly d) None of the above 512. Which one is correct representation for, $2SO_3 \rightleftharpoons 2SO_2 + O_2?$ a) $K_p = \frac{(p_{SO_2})^2(p_{O_2})}{(p_{SO_3})^2}$ b) $K_c = \frac{[SO_2]^2[O_2]}{[SO_3]^2}$ c) $K_p = \frac{(\text{mole of } SO_2)^2 \times (\text{mole of } O_2)}{(\text{mole of } SO_3)^2} \times \left[\frac{P}{\text{total mole at equilibrium}}\right]$ d) All of the above 513. The solubility of $Ca_3(PO_4)_2$ in water is y moles/litre. Its solubility product is a) 6 y⁴ b) $36 y^4$ c) $64 v^5$ d) 108 y⁵ 514. For the reaction $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$, the equilibrium constant is K_1 , the equilibrium constant is K_2 , for the reaction $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$. What is *K*. for the reaction $NO_2(g) \rightleftharpoons 1/2N_2(g) + O_2(g)$? b) $\frac{1}{(2K_1K_2)}$ c) $\frac{1}{(4K_1K_2)}$ a) $\frac{1}{(K_1 K_2)}$ d) $\left(\frac{1}{(K_1K_2)}\right)^{1/2}$ 515. The equilibrium constant for the reaction $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ at temperature *T* is 4×10^{-4} . The value of K_c for the reaction NO(g) $\Rightarrow \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$ at the same temperature is b) 50 a) 25 c) 75 d) 100 516. If the value of K_c for an equilibrium reaction is 10^{-4} , then the reaction is in a) Backward direction b) Forward direction c) Equilibrium d) Reaction is not possible

517. 5 moles of <i>X</i> are	mixed with 3 moles of <i>Y</i> .	At equilibrium for the reactio	n, $X + Y \rightleftharpoons Z$, 2 moles of Z are
formed. The equ	ulibrium constant for the	reaction will be	
a) $\frac{2}{3}$	b) $\frac{1}{2}$	c) $\frac{3}{2}$	d) $\frac{1}{4}$
518. If in the reaction	$n: N_2O_4 \rightleftharpoons 2NO_2, \alpha$ is deg	ree of dissociation of N_2O_4 , th	en the number of molecules at
equilibrium will	be:		
a) 3	b) 1	c) $(1 - \alpha)^2$	d) $(1 + \alpha)$
519. The hydroxide h	naving the lowest value of	K_{sn} at 25°C is:	
a) $Mg(OH)_2$	b) $Ca(OH)_{2}$	c) $Ba(OH)_2$	d) Be(OH) ₂
520. The effect of inc	reasing the pressure on th	the equilibrium $2A + 3B \rightleftharpoons 3A$	+ 2 <i>B</i> is
a) Forward read	ction is favoured	b) Backward reac	tion is favoured
c) No effect		d) None of the ab	ove
521. Conjugate base	of hydrazoic acid is:	-	
a) HN_3^-	b) N_{3}^{-}	c) N ³⁻	d) N_2^-
522. A reaction is, A	$+ B \rightarrow C + D$. Initially we	start with equal concentration	ns of Aand B. At equilibrium, we
find the moles o	f C are two times of A. Wh	nat is the equilibrium constant	t of the reaction?
a) 2	b) 4	c) ¹	
		$c_{j}\frac{1}{2}$	
523. Which of the fol	lowing is the strongest co	njugate base?	
a) Cl ⁻	b) CH ₃ COO ⁻	c) SO ₄ ²⁻	d) NO_2^-
524. Consider the for $N_2O_4(g) \rightleftharpoons$	ollowing equilibrium in 2NO ₂ (g)	a closed container	
At a fixed tem	perature, the volume of	the reaction container is ha	lved. For this change which of
the following s	tatement holds true reg	arding the equilibrium con	stant (K_n) and degree of
dissociation (o	() ?		
a) Neither K	or a changes	b) Both K and α	changes
a) K shanges	but a doog not	\downarrow K does not a	hanga hut a shangas
$CJ K_p$ changes		a) K _p does not ch	nange but a changes
525. If K_a for a weak	acid is 10^{-5} . pK _b value of	its conjugate base is:	
aj 5 F2C Asserdina to las	DJ 6	cj /	a) 9
526. According to law $24 \perp B$ produce	v of mass action, for the re	eaction	
$2A + D \rightarrow PIOU$	$\frac{1}{1}$	2[D] a) Data $= h[A][D]$	12 d) Deta $L[4]1/2[D]$
a) $Rate = R[A][A$	D = D = R[A]	$\begin{bmatrix} D \end{bmatrix} \qquad C \end{bmatrix} Kate = K[A][D]$	
527. The equilibrium	f V at aquilibrium with 2 ($\operatorname{Min}_{2X}(g) + f(g) = 2L(g) \operatorname{Is} 2$	n one litro voccol?
2 1.0 M	h) 2.5 M	c > 2.0 M	d) 4.0 M
$a_{J} 1.0 M$ $528 A(a) \pm B(a) \rightarrow a$	AB(q) is a reversible read	$C_{1} 2.0 M$	$a_1 + 0 M$
(g) + D(g) =	ole How much of 4 change	$\frac{1001}{4}$ At equilibrium 0.4 more $\frac{1}{4}$	of AD is formed when each A and D
	h) 40%	c) 60%	d) 4%
529 A solute underg	oes complex formation wi	ith ions of sparingly soluble sa	alt the solubility of salt
a) Increases	h) Decreases	c) Is unaffected	d) Either of these
530. The pH of the so	olution containing 0.1 N N	aOH and $0.1N$ NH ₄ OH is:	
al 1	b) 7	c) 2	d) 13
531. Which buffer s	olution comprising of th	ne following has its pH value	e greater than 7?
a) CH2COOH +	CH ₂ COONa	h) HCOOH + HC	ООК
		4) NH OH + NH	.01
532 Which of the fel	ł lowing bebayes as both L	$u_j NII_4 OII + NII_4$	401
332. which of the lot a RF.	h) Cl-	er CU	d) None of these
533 If a hubeline of	oloium hudrouida ia /	then its caluality	
solubility of	calcium nyuroxide is $\sqrt{3}$	s, then its solubility product	
a) 27	b) 3	c) 9	d) 12√3

534. Pure water is kept in	n a vessel and it remains ex	posed to atmospheric	CO_2 which is absorbed. Then the pH
a) Greater than 7			
b) Less than 7			
c) 7			
d) Depends on ionic	product of water		
535. The decomposition of	of N ₂ O ₄ to NO ₂ is carried ou	t at 280 K in chlorofori	m. When equilibrium has been
established, 0.2 mole	e of N ₂ O ₄ and 2 \times 10 ⁻³ mole	$e of NO_2$ are present in	2 L solution. The equilibrium
constant for reaction	$1 N_2 O_4 \rightleftharpoons 2NO_2$ is	> 4 4 2 - 4	
a) 1×10^{-2}	b) 1×10^{-3}	c) 1×10^{-4}	d) 1×10^{-5}
536. The most favourab	le condition for the manu	facture of NH ₃ is	
a) high temperatur	e and high pressure	b) low temperat	ture and low pressure
c) high temperatur	'e and low pressure	a) low temperation $(z) + S(z) = 1$	ture and high pressure 1.2×10^{-2} at 100 EVC. The makes of
537. The value of K_p for the	ne following reaction $2H_2S($	$g \equiv 2H_2(g) + S_2(g), I$	$s 1.2 \times 10^{-4}$ at 106.5°C. The value of
K_c for this reaction is a) -1.2×10^{-2}	s b) < 1.2×10^{-2}	c) $> 1.2 \times 10^{-2}$	d) None of these
$a_{J} = 1.2 \times 10$ 538 In hydrolysis of a sal	$0 > 1.2 \times 10$	$C_J > 1.2 \times 10^{-1}$ ase $A^- + H_0 O \Rightarrow HA + I_0$	OH^- the hydrolysis constant (K _k) is
equal to	t of weak dela and strong be		(\mathbf{r}_h) is
K	K		K
a) $\frac{K_w}{K}$	b) $\frac{K_W}{K_V}$	c) $\left \frac{K_a}{C}\right $	d) $\frac{K_W}{K_W \times K_W}$
R _a	м _b	VC	$\Lambda_a \wedge \Lambda_b$
539. The pH of 7×10^{-8}	$I CH_3 COOH is:$		
a) 8.1	b) 7.9	CJ 7.1	a) 6.85
a) NH ₋	h) H ₂ SO.	C.H.	d) HCl
541. Which statement is/	are correct?	c) c ₆ 11 ₆	
a) All Bronsted base	s are also Lewis bases		
b) All Bronsted acids	s are not Lewis acids		
c) All cations are aci	ds and all anions are bases		
d) All of the above			
542. Three moles of PCl	$_5$, three moles of PCl ₃ and	l two moles of Cl ₂ are	e taken in a closed vessel. If at
equilibrium the ve	ssel has 1.5 moles of PCl ₅ ,	, the number of mole	s of PCl ₃ present in it is
a) 5	b) 3	c) 6	d) 4.5
543. Ice and water are in	equilibrium at 273 K, which	of the following state	ments is correct?
a) $G_{(ice)} > G_{(H_20)}$	b) $G_{(ice)} < G_{(H_20)}$	c) $G_{(ice)} = G_{(H_2O)}$	$a_{\rm 0} = 0$ d) $G_{\rm (ice)} = G_{\rm (H_2O)} \neq 0$
2nd order. The units	eaction involving gases, the $V = K = \frac{1}{2} \int \frac{1}{2}$	forward reaction is is	st order while the reverse reaction is
2) atm	b) atm^2	c) atm^{-1}	d) atm^{-2}
545. A huffer solution h	as equal volumes of 0.2 M	$NH_{1}OH$ and 0.02 M	NH ₄ Cl The n $K_{\rm L}$ of the base is 5
The nH is	us equal volumes of 0.2 m	11114011 und 0.02 M	the properties base is 5.
a) 10	b) 9	c) 4	d) 7
546. Which of the followi	ng will supress the ionisatio	on of acetic acid is aque	ous solution?
a) NaCl	b) HCl	c) KCl	d) Unpredictable
547. The Henderson's equ	uation used to calculate the	pOH of basic buffer is:	
a) $nOH = nK_1 \pm \log R_2$	[Conjugate acid]		
$a_{j} poir - pr_{b} + log$	[Base]		
b) $pOH = pK_h - \log R_h$	[Conjugate acid]		
,	[Base]		
c) $pOH = pK_b + \log b$	[Dase]		
	[conjugate actu]		

d) $nOH = nK = log$	[Base]			
$u_j pon = p \kappa_b = log$	[Conjugate acid]			
548. Which of the follow	ving is the weak	test acid?		
a) HCl	b) HF	c) H ₂ SO ₄	d) HNO ₃	
549. How many gram of N	laOH must be pro	esent in one litre of the solution	on to give it a $pH = 12?$	
a) 0.20 g litre ⁻¹	b) 0.4 g lit	re^{-1} c) 4.0 g litre	-1 d) $0.10 \text{ g litre}^{-1}$	
550. Approximate pH of (.10 <i>M</i> aqueous H	I_2 S solution having K_1 and K_2	for H_2S at 25°C 10^{-7} and 10^{-13}	
respectively, is:				
	b) 5	c) 9	d) 8)ľ
551. An aqueous solutio	on whose pH is z	zero will be called as		
a) Acidic	DJ Basic	c) Neutral	d) Amphoteric	
552. The concentration	of KI and KCI in	a certain solution containi	ng both is 0.001 M each. If 20 m	L Of
this solution is add	ed to 20 mL of a	a saturated solution of Agl	in water. What will happen?	
$(K_{\rm sp} \operatorname{AgCl} = 10^{-10})$	$K_{\rm sp}$ Agl = 10^{-1}	.")		
a) AgI will be preci	pitated	b) AgCl will	be precipitated	
c) There will be no	precipitate	d) Both AgC	l and AgI will be precipitated	
553. The equilibrium re	action that is no	ot influenced by volume cha	ange at constant temperature is	
a) $H_2(g) + I_2(g) \rightleftharpoons$	2HI(g)	b) $N_2(g) + 3$	$3H_2(g) \rightleftharpoons 2NH_3(g)$	
c) $N_2O_4(g) \rightleftharpoons 2NO$	₂ (g)	d) 2NO(g) +	$0_2 \rightleftharpoons 2NO_2(g)$	
554. Group IA metals read	ct violently with v	water to produce nature in	solution.	
a) Acidic	b) Basic	c) Amphoter	ic d) Neutral	
555. A + B = C + D. If 1	nitially the cond	centration of A and B are b	oth equal but at equilibrium,	
concentration of D	will be twice of	that of A, then what will b	e the equilibrium constant of	
reaction?	0			
a) $\frac{4}{9}$	b) $\frac{9}{4}$	c) $\frac{1}{9}$	d) 4	
556. The phenomenon of	interaction of an	ions and cations furnished by	γ a electrolyte with the H ⁺ and OH ⁺	[–] ions
of water to produce	acidic nature or a	llkalinity is known as hydroly	sis. In hydrolysis:	
a) The pH may eithe	r increase or dec	rease		
b) All the salts (exce	pt those made up	with strong acid and base) u	ndergo hydrolysis	
c) The variation of p	H depends upon	the nature of salts as well as o	on the temperature	
a) All of the above $EE7 A (a) + B (a) \rightarrow 2A$	$P(q) \wedge H = -w_0$			
$557. A_2(g) + D_2(g) \leftarrow 2A$	$D(g), \Delta H = -ve$			
a) Remains unaffect	d by pressure	b) Occurs at	1000 atm pressure	
c) Occurs at high ter	nperature	d) Occurs at 1	high pressure and high temperatur	e
558. 20 mL of 0.5 N HCl	and 35 mL of 0	.1 N NaOH are mixed. The r	esulting solution will	
a) Be neutral		b) Be basic	5	
c) Turn phenolpht	nalein solution	oink d) Turn met	hyl orange red	
559. A solution which is	10^{-3} M each in	Mn^{2+} , Fe^{2+} , Zn^{2+} and Hg^{2+}	is treated with 10^{-16} M sulphid	le
ion. If K _{en} of MnS. H	eS.ZnS and Hg	S are 10^{-15} .	1	
10^{-23} 10^{-20} and 1	0^{-54} respective	ly which one will		
nrecinitate first?	o respective	ly, which one whi		
a) FeS	h) ΜσS	c) Hos	d) ZnS	
560. Ostwald's dilution	law is annlicahl	e for	uj 200	
a) Weak electrolyt	an is applicabl			
	د 	h) Strong al	ectrolyte	
c) Roth weak and a	e trong electroly	b) Strong elect	ectrolyte	
c) Both weak and s	trong electroly $(g) \rightleftharpoons PCl_{2}(g) +$	b) Strong electer d Non-elect	ectrolyte trolyte 3 times the value of <i>K</i> , at a particula	ar

temperature T. The	en T (in K) is:		
a) 200	b) 100	c) 300	d) 400
562. At 90°C, pure water	$f(H^+) = 10^{-6} \text{ M, if } 100$) mL of 0.2 M HCl is add	ed to 200 mL of 0.1 M KOH at 90°C
then pH of the resu	lting solution will be		
a) 7	b) 8	c) 4	d) 6
563. In a reaction, the ra	te of reactions is proportio	onal to its active mass. T	'his statement is known as
a) Law of mass-act	ion	b) Le-Chatelier	principle
c) Faraday law of e	lectrolysis	d) Law of const	ant proportion
564. The values of K_{p_1} a	nd K_{p_2} for the reactions		· · · · ·
$X \rightleftharpoons Y + Z$	(1)		
and $A \rightleftharpoons 2B$	(2)		
are in the ration 9	: 1. If degree of dissociatio	n of X and A be equal, t	then total pressure at equilibrium (1)
and (2) are in the r	atio :		
a) 1:9	b) 36 : 1	c) 1:1	d) 3 : 1
565. Which of the follo	wing is not a characteris	stic property of chemi	cal equilibrium?
a) Rate of forward	l reaction is equal to rate	e of backward reaction	n at equilibrium
b) After reaching	the chemical equilibrium	n, the concentrations o	of reactants and products remain
unchanged wit	h time		
For $A(g) \rightleftharpoons B(g)$	g), K_c is 10^{-2} . If this reac	tion is carried out in t	he presence of catalyst, the value
c) of K_c decreases			, , , , , , , , , , , , , , , , , , ,
d) After reaching	the equilibrium both for	ward and backward r	eactions continue to take place
566 Which molecule i	s an electron donor?	ward and backward r	eactions continue to take place
	b) RE	a) PE	d) AcE
$a_{\rm J}$ NII ₃	UJ DF3	$C_{1} \Gamma_{5}$	uj Asr ₅
567. The correct expre	ssion for the solubility p	Found of $Ca_3(PO_4)_2$ I	S
a) $108 s^{\circ}$	b) Z/S^3	c) 16 s ⁻¹	d) 81 s ⁻
568. pH of solution can	be expressed as		
a) $-\log_e[H^+]$	$b) - \log_{10}[H^{-}]$	\sim C) $\log_e[H^+]$	d) $\log_{10}[H^{-1}]$
569. Which aqueous sol	ation will nave pH less that	n / /	
a) KNU_3	DJ NAUH	CJ NAUN	a) Feul ₃
$570.$ If the salts $M_2\Lambda$, QI	$_2$ and $_7Z_3$ have the same so	olubilities, Λ_{sp} values al	e relateu as.
a) $K_{sp}(M_2X) = K_{sp}$	$(QY_2) < K_{sp}(PZ_3)$		
b) $K_{sp}(M_2X) > K_{sp}$	$(QY_2) = K_{sp}(PZ_3)$		
c) $K_{sp}(M_2X) = K_{sp}$	$(QY_2) = K_{sp}(PZ_3)$		
d) $K_{sp}(M_2X) > K_{sp}$	$(QY_2) > K_{sp}(PZ_3)$		
571. The pH values of	0.1 M solution of HCl, CH	$_{3}$ COOH, NH ₄ Cl and CH	I_3 COONa will have the order
a) HCl < <i>C</i> H ₃ COO	$H < NH_4Cl < CH_3COON$	b) CH ₃ COONa	$< NH_4Cl < CH_3COOH < HCl$
c) $NH_4Cl < CH_3Cl$	$OONa < CH_3COOH < HC$	Cl d) All will have	e same of pH value
572. When rain is accom	panied by a thunderstorm	the collected rain wate	r will have a pH value:
a) Uninfluenced by	occurrence of thunderstor	rm	
b) Depending on th	e amount of dust in air		
c) Slightly lower th	an that of rain water witho	out thunderstorm	
d) Slightly higher t	nan that when the thunder	storm is not there	
573. Ammonia gas disso	lves in water to form NH_4 (OH. In this reaction wate	er acts as
a) A conjugate base	b) A non-polar solv	vent c) An acid	d) A base
574. pH scale was intro	luced by		
a) Arrhenius	b) Sorensen	c) Lewis	d) Lowry
575. Given : $[Ag(NH_3)_2]$	$^+ \rightleftharpoons \operatorname{Ag}(\operatorname{NH}_3)^+ + \operatorname{NH}_3;$	$K_1^{\circ} = 1.4 \times 10^{-4}$	
$Ag(NH_3)^+$:	\Rightarrow Ag ⁺ + NH ₃ ;	$K_2^0 = 4.3 \ge 10^{-4}$	
The instability cons	stant of the complex Ag (NI	$H_3)_2^+$ is equal to :	

	-		-	_
	a) 7.14 × 10^3	b) 2.33 × 10 ³	c) 6.02×10^{-8}	d) 1.66×10^7
576	. An aqueous solution co	ntains Ni ²⁺ , Co ²⁺ and Pb	²⁺ ions at equal concent	rations. The solubility
	product of NiS, PbS and	CoS in water at 25°C are	$2 \times 1.4 \times 10^{-24}$, 3.4×10^{-28}	3 and 3 × 10 ⁻²⁶ ,
	respectively. Indicate w	which of these ions will be	e precipitated first and la	st when sulphide
	concentration is progre	essively increased from z	ero?	
	a) NiS and PbS	b) NiS and CoS	c) CoS and NiS	d) PbS and NiS
577	10^{-6} M NaOH is diluted	100 times. The pH of th	e diluted base is	-
	a) Between 7 and 8	b) Between 5 and 6	c) Between 6 and 7	d) Between 10 and 11
578	. An acid with molecular fo	$c_{7}H_{c}O_{2}$ forms three	types of sodium salts. <i>i.e.</i>	$C_{7}H_{F}O_{2}Na$, $C_{7}H_{4}O_{2}Na$, and
070	$C_7H_2O_2Na_2$. The basicity	of the acid is:	, types of boardin saids, not	, c/11503114, c/114031142 und
	a) One	b) Two	c) Three	d) Four
579	. If the concentration of Cr	0_4^{2-} ion in a saturated solu	tion of silver chromate be 2	$2 \times 10^{-4} M$, solubility
	product of silver chromat	e will be:		
	a) 4×10^{-8}	b) 8×10^{-12}	c) 32×10^{-12}	d) 6×10^{-12}
580	. What would be the effec	t on addition of $CaCO_3$ on	the equilibrium of $CaCO_3$	$(s) \rightleftharpoons CaO(s) + CO_2(g)$ in a
	closed container:		Ċ	
	a) conc. of CO ₂ increases			
	b) conc. of CO ₂ decreases			
	c) Remains unaffected			
	d) Cannot be predicted			
581	. In a chemical equilibrium	, the rate constant of the ba	ackward reaction is 7.5 $ imes$ 1	0^{-4} and the equilibrium
	constant is 1.5. So, the rat	e constant of the forward r	eaction is	
	a) 1.125 × 10 ⁻³	b) 2.225×10^{-3}	c) 3.335×10^{-5}	d) 1.125×10^{-1}
582	. 0.1 <i>M</i> acetic acid solutio	n is titrated against 0.1 M	NaOH solution. What wo	uld be the difference in pH
	between 1/4 and 3/4 stag	ges of neutralization of acid	1?	
-00	a) 2 log 3/4	b) 2 log 1/4	c) log 1/3	d) 2 log 3
583	. For a concentrated solu	ition of a weak electrolyt	te $A_x B_y$ of concentration	<i>C</i> , the degree of
	dissociation ' α ' is given	as		
	a) $\alpha = \frac{K_{ex}}{C(x+y)}$		h) $\alpha = \frac{K_{rr}C}{(xy)}$	
	$\sqrt{\frac{1}{\sqrt{1}}}$		$\sqrt{\frac{1}{\sqrt{1}}}$	
	c) $\alpha = (K_{eq}/C^{x+y-1}x^x)$	$(y^y)^{1/(x+y)}$	d) $\alpha = (K_{eq}/Cxy)$	
584	. The values of dissociatior	n constant of some acids (a	t 25°C) are given below. Th	e strongest acid in water is:
	a) 1.4×10^{-2}	b) 1.6×10^{-4}	c) 4.4×10^{-10}	d) 4.3×10^{-7}
585	In a mixture of acetic ad	cid and sodium acetate th	ne ratio of concentration	of the salt to the acid is
	increased ten times. Th	en, the pH of the solution	1	
	a) Increases by one	b) Decreases by one	c) Decreases ten fold	d) Increased ten fold
586	. Which of the following	salts is most soluble?		
	a) $Bi_2S_3(K_{sp} = 1 \times 10^{-1})$	¹⁷)	b) MnS($K_{sn} = 7 \times 10^{-1}$	⁶)
	c) $CuS(K_{m} = 8 \times 10^{-37})$	Ž)	d) Ag ₂ S($K_{rr} = 6 \times 10^{-1}$	51)
587	van't Hoff's equation givi) ng the effect of temperatur	a on chemical equilibrium	; represented as:
507	$d \ln F \wedge H$	$d \ln K = \Lambda H T^2$	$d \ln K = \Lambda H$	$d \ln K = RT^2$
-	a) $\frac{dT}{dT} = \frac{2T}{RT^2}$	b) $\frac{d m n_p}{dT} = \frac{\Delta m}{P}$	c) $\frac{d m n_p}{dT} = \frac{\Delta m}{RT^2}$	d) $\frac{d \ln R_p}{dT} = \frac{RT}{\Delta H}$
588	. Hvdrogen and oxvgen w	vere heated together in a	closed vessel. The equili	brium constant is found to
	decrease after 2000°C. W	hich is responsible for this	?	
	a) Backward reaction pre	edominates		
	b) Forward reaction pred	ominates		
	c) Both forward and back	ward reactions have same	rate	
			.1	

d) It is a property of the system, hence no reason for lower value

589. The dissociation constant of HCN is 1.3×10^{-9} . The value of hydrolysis constant of KCN will be: b) 10⁻¹⁴ a) 1.3×10^{-9} c) 7.7×10^{-5} d) 0.77×10^{-5} 590. Solubility product of silver bromide is 5.0 10¹³. The quantity of potassium bromide (molar mass taken as 120 g mol¹) to be added to 1 L of 0.05 M solution of silver nitrate to start the precipitation of AgBr is a) 1.2 10¹⁰ g c) 6.2 10⁵ g b) 1.2 10⁹ g d) 5.0 10⁸ g 591. In the thermal decomposition of potassium chlorate given as $2\text{KClO}_3 \rightarrow 2\text{KCl} + 30_2$, law of mass action a) Can be applied b) Cannot be applied c) Can be applied at low temperature d) Can be applied at high temperature and pressure 592. The solubility product of a sparingly soluble salt AB at room temperature is 1.21×10^{-6} . Its mola solubility is a) 1.21×10^{-6} b) 1.21×10^{-3} c) 1.1×10^{-4} d) 1.1 × 10 593. What is the correct representation for the solubility product of SnS₂? a) $[Sn^{2+}][S^{2-}]^2$ b) $[Sn^{4+}][S^{2-}]^2$ c) $[Sn^{2+}][2S^{2-}]$ 594. Which of the following pK_a values, represent the strongest acid? d) 10⁻² b) 10⁻⁸ a) 10⁻⁴ c) 10⁻⁵ 595. An electrolyte b) Dissolves in water to give ions a) Gives complex ions in solution c) Is ionised in the solid state d) Generates ions on passing electric current 596. The strongest base among the following is: c) $NH_2^$ a) CH_{3}^{-} b) F⁻ d) 0H⁻ 597. Given the reaction between 2 gases represented by A_2 and B_2 to give the compound $AB_{(g)}$. $A_{2(g)} + B_{2(g)} \rightleftharpoons 2AB_{(g)}$ At equilibrium, the concentration of $A_2 = 3.0 \times 10^{-3}$ M of $B_2 = 4.2 \times 10^{-3} \text{ M}$ of $AB = 2.8 \times 10^{-3} \text{ M}$ If the reaction takes place in a sealed vessel at 527°C, then the value of K_c will be : b) 1.9 a) 2.0 c) 0.62 d) 4.5 598. For the reaction, $A + B \rightleftharpoons C + D$, the initial concentration of A and B are equal, but the equilibrium concentration of *C* is twice that of equilibrium concentration of *A*. The equilibrium constant is : b) 9 d) 1/9 a) 4 c) 1/4 599. For the reaction. $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$ the position of equilibrium can be shifted to the right by a) Doubling the volume b) Increasing the temperature c) Addition of equimolar quantities of PCl₃ and PCl₅ d) Addition of Cl₂ at constant volume 600. The solubility of AgCl ($K_{sp} = 1.2 \times 10^{-10}$) in a 0.10 *M* NaCl solution is: c) $1.2 \times 10^{-9} M$ d) $1.2 \times 10^{-10} M$ b) $1.2 \times 10^{-6} M$ a) 0.1 M 601. The following equilibrium exists in aqueous solution $CH_3COOH \Rightarrow H^+ + CH_3COO^-$. If dilute HCl is added to this solution: a) The equilibrium constant will increase b) The equilibrium constant will decrease c) Acetate ion concentration will increase d) Acetate ion concentration will decrease

602. What is the solubility product of CaF₂, if its saturated solution contains 0.017 g of CaF₂ per litre?

a) 1.44×10^{-4} b) 4.14×10^{-11} c) 4.14×10^{-18} d) 41.4×10^{-24} 603. Which of the following will occur if a 0.1 M solution of weak acid is diluted to 0.01 M at constant temperature? a) pH will increase b) *K*_a will decrease c) [H⁺] will decrease to 0.01 M d) % ionisation will increase 604. Passing H₂S gas into a mixture of Mn², Ni², Cu² and Hg² ions in an acidified aqueous solution precipitates a) CuS and HgS b) MnS and CuS c) MnS and NiS d) NiS and HgS 605. The pH of an aqueous solution of CH_3COONa of concentration C(M) is given by a) $7 - \frac{1}{2}pK_a - \frac{1}{2}\log C$ b) $\frac{1}{2}pK_w + \frac{1}{2}pK_b + \frac{1}{2}\log C$ c) $\frac{1}{2}pK_w - \frac{1}{2}pK_b - \frac{1}{2}\log C$ d) $\frac{1}{2}pK_w + \frac{1}{2}pK_a + \frac{1}{2}\log C$ 606. The concentration of [H⁺] and concentration of [OH⁻] of a 0.1 *M* aqueous solution of 2% ionised weak acid is: [ionic product of water = 1×10^{-14}] a) $0.02 \times 10^{-3} M$ and $5 \times 10^{-11} M$ b) $1 \times 10^{-3} M$ and $3 \times 10^{-11} M$ c) $2 \times 10^{-3} M$ and $5 \times 10^{-12} M$ d) $3 \times 10^{-2} M$ and $4 \times 10^{-13} M$ 607. For a weak acid p K_a is 4.8. What will be the ratio of concentration of acid and salt in pH 5.8 solution? a) 10 b) 3 d) 0.1 c) 9 608. Two system $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ and $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$ are simultaneously in equilibrium in a vessel at constant volume. If some CO is introduced into the vessel then at the new equilibrium the concentration of : a) PCl₅ is greater b) PCl₃ remains unchanged c) PCl₅ is less d) Cl₂ is greater 609. The solubility product of Ag₂CrO₄ in water at 298 K is 3.2×10^{-11} . What will be the concentration of CrO_4^{2-} ions in the saturated solution of Ag_2CrO_4 ? a) 2×10^{-4} M d) 3.2×10^{-11} M b) 5.7×10^{-5} M c) 5.7 × 10⁻⁶ M 610. Sulphide ions in alkaline solution react with solid sulphur to form polyvalent sulphide ions. The equilibrium constant for the formation of S_2^{2-} and S_3^{2-} from S and S^{2-} ions are 1.7 and 5.3 respectively. Equilibrium constant for the formation of S_3^{2-} from S_2^{2-} and S is: a) 1.33 d) 1.63 b) 3.11 c) 4.21 611. The pH of water is 7 at 25°C. If water is heated to 50°C, which of the following should be true? a) pH will decrease b) pH will increase c) pH will remain seven d) [H⁺] will increase but [OH⁻] will decrease 612. The conjugate acid of NH_2^- is a) N_2H_4 b) NH_4^+ c) NH₂OH d) NH₃ 613. pH of a solution of the mixture of 0.1 *N* HCl and 0.1 *N* CH₃COOH is: d) None of these b) 2 a) 1 c) 1.7 614. A buffer solution is prepared by mixing 10 mL of 1.0 M acetic and 20 mL of 0.5 M sodium acetate and then diluted to 100 mL with distilled water. If the pK_a of CH_3COOH is 4.76, what is the pH of the buffer solution prepared? a) 5.21 c) 4.34 d) 5.21 b) 4.76

615. $CH_3COOH(l) + C_2$	$H_5OH(l) \rightleftharpoons CH_3COOC_2H_5(l)$	$+ H_2 O(l)$	
In the above react	ion, one mole of each of acet	ic acid and alcohol are heat	ed in the presence of little
$conc.H_2SO_4$. On eq	agotato is formed	b) 2 male of other ac	votato is formed
a) 1 mole of ethyl		b) 2 mole of ethyl ac	
c) $\frac{1}{3}$ mole of ethyl a	acetate is formed	d) $\frac{1}{2}$ mole of ethyl ac	etate is formed
616. When the pH of a	solution is 2, the hydrogen io	on concentration is:	10
a) $1 \times 10^{-14} M$	b) $1 \times 10^{-2} M$	c) $1 \times 10^{-7} M$	d) $1 \times 10^{-12} M$
617. On adding <i>A</i> to th	e reaction at equilibrium, Al	$B(s) \rightleftharpoons A(g) + B(g)$, the new	w equilibrium concentration of A
becomes double, t	the equilibrium concentration	n of B would become :	\sim
a) $1/2$ of its origin b) $1/4$ of its origin	ial value		
b) $1/4$ of its origin			
d) Twice of its origin	ainal value		
618 The change in n	gillal value ressure will not affect the e	auilibrium constant for	
$_{2}$ N \perp 2U \rightarrow 2	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	$\frac{1}{2} \qquad \qquad$	d) All of those
a) $N_2 + 3\Pi_2 \leftarrow 2$	$\Pi_3 \qquad D \Gamma \Pi_5 \leftarrow \Gamma \Pi_3 + 0$	$I_2 = I_1 = I_2 + I_2 - 2\Pi I_1$	d) All of these
the reaction I_{\pm}	$\frac{2}{H} \rightarrow 2H_{16}$	J.7, 0.1 and 0.1M Tespectiv	ery. The equilibrium constant for
a) 0.36	$h_2 \leftarrow 2 m h_3$	c) 49	d) 0 49
620. The dissociation	constant of acetic acid K	is 1.74×10^{-5} at 298 K 3	The nH of a solution of 0.1 M
acetic acid is	constant of acctic acta N _a	13 1.7 1 × 10 dt 250 K.	
a $(200 actuals)$	h) 2.6		d) 1 0
a) 2.00 621 What is the offect	of increasing pressure on the	dissociation of PCL accord	ding to the equation
$P(l_{\sigma}(\sigma) \Rightarrow P(l_{\sigma}(\sigma))$	$(\sigma) + C_{\alpha}(\sigma) - r cal^{2}$		
a) Dissociation de	rreases	h) Dissociation incre	23565
c) Dissociation do	es not change	d) None of the above	2
622. The ionic product	of water at 60°C is 9.61 \times 10	$^{-14}$. The pH of water at 60°	C is:
a) 6.51	b) 6.70	c) 9.61	d) 7.0
623. For the reaction e	quilibrium, $N_2O_4(g) \rightleftharpoons 2NO_2$	(g), the concentration of N	$_{2}O_{4}$ and NO_{2} at equilibrium are
4.8×10^{-2} and 1.2	2×10^{-2} mol/L respectively.	The value of K_c for the read	ction is
a) 3 × 10 ⁻³ mol/L	b) 3.3 × 10 ⁻³ mol/L	c) 3×10^{-1} mol/L	d) 3.3×10^{-1} mol/L
624. If first dissociation	n of X(OH) ₃ is 100% where a	as second dissociation is 50 ⁰	% and third dissociation is
negligible then th	e pH of 4 $ imes$ 10 ⁻³ M X(OH) ₃ is	5	
a) 7.5	b) 9.54	c) 11.78	d) 13.25
625. The equilibrium of	constant for the reaction, $3C_2$	$H_2 \rightleftharpoons C_6 H_6$ is 4.0 at T K. If	the equilibrium concentration of
C_2H_2 is 0.5 mol/li	tre, the concentration of C_6H	₆ is :	
a) 0.5 <i>M</i>	b) 1.5 <i>M</i>	c) $5 \ge 10^{-2} M$	d) 0.25 <i>M</i>
626. For the reaction, ($H_4(g) + 2O_2(g) \rightleftharpoons CO_2(g) + A$	$2H_2O(l),$	
Which of the falle	$\Delta_{\rm r} H = -170.8 \text{ KJ mol}^{-1}$		
a) Addition of CH	(a) or (a) ot equilibrium i	will cause a shift to the righ	t
b) The reaction is	evothermic	will cause a sinit to the righ	t .
c) At equilibrium	the concentrations of CO_2 (g) and $H_2O(l)$ are not equal	
d) The equilibrium	n constant for the reaction is	given by $K = \begin{bmatrix} CO_2 \end{bmatrix}$	
a) The equilibrium	Il constant for the reaction is	given by $K_p = \frac{1}{[CH_4][O_2]}$	
627. The law of mass a	ction was enunciated by		
a) Graham	b) Bodestein	c) Rutherford	d) Guldberg and Waage
628. The correct stater	nent about buffer solution is:		
a) It contains a we	зак acid and its conjugate bas	se	
o) It contains a W	eak base and its conjugate act	iu	
	mange in pri on adding small	amount of all actu of base	

d) All of the above 629. Which reaction has $\Delta n = 2$? a) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ b) $3Fe(s) + 4H_2O(g) \rightleftharpoons Fe_3O_4(s) + 4H_2(g)$ c) $NH_4Cl(g) \rightleftharpoons NH_3(g) + HCl(g)$ d) $CuSO_4 \cdot 5H_2O(s) \rightleftharpoons CuSO_4 \cdot 3H_2O(s) + 2H_2O(g)$ 630. In the reaction, $N_2O_4 \rightleftharpoons 2NO_2$, α is that part of N_2O_4 which dissociates, then the number of moles at equilibrium will be a) 1 b) 3 c) $(1 + \alpha)$ d) $(1 - \alpha)^2$ 631. Decreasing acid strengths of HI, HBr, HCl and HF is: a) HF > HCl > HBr > HIb) HI > HBr > HCl > HFc) HI > HCl > HBr > HFd) HI > HF > HCI > HBr632. A monoprotic acid in 0.1 *M* solution has $K_a = 1.0 \times 10^{-5}$. The degree of dissociation acid is: b) 99.9% d) 99% a) 1.0% c) 0.1% 633. In what manner will increase of pressure affect the following equation? $C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2O(g)$ b) Shift in the forward direction a) Shift in the reverse direction c) Increase in the yield of hydrogen d) No effect 634. Which one of the following pair shows buffer's solution? b) CH₃COONa + CH₃COOH a) NaCl + NaOH c) $CH_3COOH + CH_3COONH_4$ d) $H_2SO_4 + CuSO_4$ 635. A buffer solution is prepared in which the concentration of NH_3 is 0.30 M and the concentration of NH_4^+ is 0.20 *M*. If the equilibrium constant, K_b for NH₃ equals 1.8×10^{-5} what is the pH of this solution? $(\log 2.7 = 0.43)$ b) 9.08 c) 9.43 d) 11.72 a) 8.73 636. The degree of ionisation of a compound depends a) Size of solute molecules b) Nature of solute molecules c) Nature of vessel used d) Quantity of electricity passed 637. Amongst the following, the total number of compounds whose aqueous solution turns red litmus paper blue is K_2SO_4 (NH₄)₂C₂O₄ NaCl KCN $Zn(NO_3)_2$ FeCl₃ K₂CO₃ NH₄NO₃ LiCN d) 4 a) 1 b) 2 c) 3 638. The aqueous solution of a salt is alkaline. This shows that salt is made from: a) A strong acid and strong base b) A strong acid and weak base c) A weak acid and weak base d) A weak acid and strong base 639. Which of the following solutions cannot act as a buffer? a) $NaH_2PO_4 + H_3PO_4$ b) $CH_3COOH + CH_3COONa$ c) $HCl + NH_4Cl$ d) $H_3PO_4 + Na_2HPO_4$ 640. The relation for calculating pH of a solution containing weak acid and its salt is: a) pH = p K_a + log $\frac{[Conjugate base]}{[Acid]}$ b) pH = p $K_a - \log \frac{[\text{Conjugate base}]}{[\text{Acid}]}$

c) pH = p K_a + log $\frac{[\text{Conjugate base}]}{[\text{Salt}]}$ d) pOH = p K_a - log $\frac{[\text{Acid}]}{[\text{Conjugate base}]}$ 641. The pH of a 0.01 *M* solution of acetic acid having degree of dissociation 12.5% is: a) 4.509 b) 3.723 c) 2.903 d) 5.623 642. Which one is more acidic in aqueous solution? d) BeCl₂ a) NiCl₂ b) FeCl₃ c) $AlCl_3$ 643. In any chemical reaction, equilibrium is supposed to be establish when a) Mutual opposite reactions undergo b) Velocity of mutual reactions become equal c) Concentration of reactants and resulting products are equal d) The temperature of mutual opposite reactions become equal 644. Of the following which change will shift the reaction towards the product? $I_2(g) \rightleftharpoons 2I(g), \Delta H^\circ_r(298 \text{ K}) = +150 \text{ kJ}$ a) Increase in temperature b) Increase in total pressure c) Increase in concentration of I d) Decrease in concentration of I₂ 645. Electrophiles are: a) Lewis acids b) Lewis bases c) Bronsted acids d) Bronsted bases 646. Buffer solutions have constant acidity and alkalinity because: a) They have large excess of H^+ or OH^- ions b) They have fixed value of pH c) These give unionised acid or base on reaction with added acid or alkali d) Acids and alkalies in these solutions are shielded from attack by other ions 647. A precipitate of AgCl is formed when equal volumes of the following are mixed [K_{sp} for AgCl = 10^{-10}] a) 10^{-4} M AgNO₃ and 10^{-7} M HCl b) 10^{-5} M AgNO₃ and 10^{-6} M HCl d) 10^{-6} M AgNO₃ and 10^{-6} M HCl c) 10^{-5} M AgNO₃ and 10^{-4} M HCl 648. When different types of salts have nearly same solubility product constant K_{sp} but less than one the most soluble salt is that: a) Which produces maximum number of ions b) Which produces minimum number of ions c) Which produces more charge on ion d) None of the above 649. In a flask, colourless N_2O_4 is in equilibrium with brown coloured NO_2 . At equilibrium, when the flask is heated at 100°C the brown colour deepens and on cooling it becomes less coloured. The change in enthalpy ΔH , for the system is : a) Negative b) Positive c) Zero d) Undefined 650. 56 g of nitrogen and 8 g of hydrogen gas heated in a closed vessel. At equilibrium, 34 g of ammonia are present. The equilibrium number of moles of nitrogen, hydrogen and ammonia are, respectively a) 1, 1, 2 b) 1, 2, 2 c) 2, 1, 1 d) 2, 2, 1 651. Calculate pOH of 0.001 M NH₄OH, when it is 1 % dissociated in the solution a) 5 b) 2.96 c) 9.04 d) 11.4 652. On addition of an inert gas at constant volume to the reaction, $N_2 + 3H_2 \rightleftharpoons 2NH_3$ at equilibrium: a) The reaction halts b) Forward reaction is favoured c) The reaction remains unaffected d) Backward reaction is favoured 653. The reaction quotient (Q) for the reaction is given by: $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3; \quad Q = \frac{[NH_3]^2}{[N_2][H_2]^3}$

The reaction will proceed from right to left if: c) $Q < K_c$ d) $Q > K_c$ a) Q = 0b) $Q = K_c$ 654. Sulphuric acid is a dibasic acid. Hence, it forms: a) Acidic salt b) Basic and acidic salt c) Acidic and normal salt d) Double salt 655. Solubility of AgCl at 20°C is $1.435\times10^{-3}\,$ g/L . The solubility product of AgCl is b) 1×10^{-10} a) 1×10^{-5} c) 1.435×10^{-5} d) 108 × 10 656. Le-Chatelier's principle is not applicable to: a) $Fe(s) + S(s) \rightleftharpoons FeS(s)$ b) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ c) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ d) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ 657. 4 moles each of SO₂ and O₂ gases are allowed to react to form SO₃ in a closed vessel. At equilibrium 25% of O_2 is used up. The total number of moles of all the gases at equilibrium is a) 6.5 b) 7.0 c) 8.0 d) 2.0 658. The pH of a 0.005 *M* aqueous solution of sulphuric acid is approximately: d) 0.01 a) 0.005 b) 2 c) 1 659. When ammonium chloride is added to ammonia solution, the pH of the resulting solution will be a) Increased b) Seven c) Decreased d) Unchanged 660. The pH at which an acid indicator with $K_a = 1 \times 10^{-5}$ changes colour when the indicator concentration is $1 \times 10^{-3} M$, is: d) 3 a) 4 b) 5 661. The equilibrium, $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ shifts forward if: a) A catalyst is used b) An absorbent is used to remove SO₃ as soon as it is formed c) Small amounts of reactants are used d) None of the above 662. 56 g of nitrogen and 8 g of hydrogen gas are heated in a closed vessel. At equilibrium 34 g of ammonia are present. The equilibrium number of moles of nitrogen, hydrogen and ammonia are respectively b) 2, 2, 1 a) 1, 2, 2 c) 1, 1, 2 d) 2, 1, 2 663. A white substance having alkaline nature in solution is a) NaNO₃ b) NH₄Cl c) Na_2CO_3 d) Fe_2O_3 664. Which of the following is not a buffer solution? a) 100 mL 0.1 M CH₃COOH + 50 mL 0.1 M CH₃COONa b) 100 mL 0.1 M CH₃COOH + 50 mL 0.1 M NaOH c) 50 mL 0.1 M CH₃COOH + 100 mL 0.1 M NaOH d) 100 mL 0.1 M NH₄OH + 50 mL 0.1 M HCl 665. For the reaction, $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$, the partial pressure of CO_2 and CO are 4 and 8 atm respectively, K_p for the reaction is : a) 16 atm c) 5 atm b) 2 atm d) 4 atm 666. For the reaction, $H_2 + I_2 \rightleftharpoons 2HI$, the equilibrium concetratio of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 mol/L respectively. The equilibrium constant of the reaction is d) 11.22 a) 32.66 b) 34.33 c) 22.44 667. The solubility product of Ag₂CrO₄ is 32×10^{-12} . What is the concentration of CrO₄⁻ ions in that solution? a) 2×10^{-4} M b) 16×10^{-4} M c) 8×10^{-4} M d) 8×10^{-8} M 668. The equilibrium constant for the reaction,

	$2NO_2(g) \rightleftharpoons 2N$	$0(g) + 0_2(g)$ is 2×10^{-6}	at 185°C.	
	Then the equilibrium	constant for the reaction	l,	
	$4NO(g) + 2O_2(g) \rightleftharpoons 4$	$4NO_2(g)$ at the same temp	perature would be	
	a) 2.5×10^{-5}	b) 4×10^{-12}	c) 2.5×10^{11}	d) 2×10^{6}
6	69. At 25°C. the solubility	v product of Mg(OH), is	1.0 10 ¹¹ . At which pH. w	ill Mg ² ions start
	precipitating in the fo	$rm of Mg(OH)_{2}$ from a sc	olution of 0.001 M Mg ² io	ons?
	a) 9	b) 10	c) 11	d) 8
6'	70. Precinitation just takes	s place when the product of	concentration of ions:	
Ũ	a) Equals their solubili	ty product		
	b) Exceeds their solubi	lity product		
	c) Is less than their sol	ubility product		
	d) Is negligible			
6	71. The suitable indicator f	for the titration of strong ac	id and weak base is	
	a) Methyl orange	b) Methyl red	c) Phenol red	d) Phenolphthalein
6	72. Tetramine copper (II) s	sulphate is an example of:		\sim
	a) Simple salt	b) Double salt	c) Complex salt	d) Normal salt
6	73. The self ionisation con	stant for pure formic acid,	$K = [\mathrm{HCOOH}_2^+][\mathrm{HCOO}^-] \mathrm{h}$	as been estimated as 10^{-6} at
	1.22 g/cm ³ . The percer	ntage of formic acid molecul	es in pure formic acid conv	verted to formate ion is:
	a) 0.002%	b) 0.004%	c) 0.006%	d) 0.008%
6	4. The pH of blood is mail	ntained by CO_2 and H_2CO_3 i	n the body and chemical co	onstituents of blood. This
	a) Colloidal	h) Buffor action	c) Acidity	d) Salt halanco
6'	75 Weak electrolytes are	only partly dissociated in a	c) Actuacy	uj sait balance
0	given solution is know	n as the 'Degree of dissociated in s	ion' Which of the following	statements for this degree of
	dissociation in aqueous	s solution is true?		
	a) It is inversely propo	rtional to the square root of	initial concentration of the	e electrolyte
	b) It is directly proport	tional to the initial concentration	ation of the electrolyte	-
	c) It is independent of	the initial concentration of t	he electrolyte	
	d) It depends on the eq	uilibrium concentration of	the electrolyte	
6	76. At a certain temperat	ture, the dissociation cons	stants of formic acid and	acetic acid are 1.8 $ imes$
	10^{-4} and 1.8×10^{-5}	respectively. The concent	ration of acetic acid solu	tion in which the hydrogen
	ion has the same con	centration as in 0.001 M f	ormic acid solution is eq	ual to
	a) 0.01 M	b) 0.001 M	c) 0.1 M	d) 0.0001 M
6	77. Partial pressure of O ₂	₂ in the reaction		
	$2Ag_2O(s) \rightleftharpoons 4A$	$Ag(s) + O_2(g)$ is		
	a) K_p	b) $\sqrt{K_p}$	c) $3\sqrt{K_p}$	d) $2K_p$
6	78. The solubility produc	ct of a salt having general	formula MX_{2} , in water is	4×10^{-12} . The
-	concentration of M^{2+}	ions in the aqueous solu	tion of the salt is	
	a) 4.0×10^{-10} M	b) 1.6×10^{-4} M	c) 1.0×10^{-4} M	d) 2.0 × 10^{-6} M
6	79 In a lime kiln to get h	higher yield of CO_{-} the matrix	easure that can be taken	is
C	(2) To remove (2)	inglier yield of doy, the inc	b) To add more CaCO.	
	c) To maintain high t	omnoraturo	d) To nump out CO.	3
6	R0 Which of the following	is a Bronsted acid as well as	s Bronsted base	
0	a) Na $_{2}CO_{2}$	h) $H_{2}O$	c) NH ₂	d) BF ₂
6	81. The rate constant for for	orward reaction and backwa	ard reaction of hydrolysis of	of ester are 1.1×10^{-2} and
0	1.5×10^{-3} per minute	respectively. Equilibrium co	onstant for the reaction is	
	$CH_3COOC_2H_5 + H_2O \rightleftharpoons$	$CH_3COOH + C_2H_5OH$		
	a) 33.7	b) 7.33	c) 5.33	d) 33.3

(682. Which acid is involved i	in digestion process?		
	a) HF	b) HCl	c) HBr	d) HI
(683. For $NH_4HS(s) \rightleftharpoons NH_3(s)$	g) + $H_2S(g)$, the observed	pressure for reaction mixtu	re in equilibrium is 1.12 atm
	at 106°C. The value of <i>F</i>	X_p for the reaction is :		
	a) 3.136 atm ²	b) 0.3136 atm ²	c) 31.36 atm ²	d) 6.98 atm ²
(684. A solution of NaCl in co	ntact with atmosphere has	a pH of about:	-
	a) 3.2	b) 5.4	c) 7.0	d) 14
6	685. Amines behave as			
	a) Lewis acid	b) Lewis base	c) Aprotic acid	d) Neutral compound
(686. The two Bronsted base	s in the reaction are	-	
	$HC_2O_4^- + PO_4^{3-} \rightarrow HPO$	$^{2-}_{4}$ + C ₂ O ₄ ²⁻ :		
	a) $HC_2O_4^-$ and PO_4^{2-}	b) HPO $_{4}^{3-}$ and C $_{2}O_{4}^{3-}$	c) PO_4^{3-} and $C_2O_4^{2-}$	d) $HC_2O_4^-$ and HPO_4^{2-}
(687.1 M NaCl and 1 M HCl a	re present in an aqueous so	olution. The solution is	
	a) Not a buffer solution	with pH < 7	b) Not a buffer solution	with pH > 7
	c) A buffer solution wit	h pH < 7	d) A buffer solution with	1 pH > 7
(688. The use of methyl orai	nge as an indicator in the	volumetric determination	of the equivalent weight of a
	weak acid would lead to	0:		
	a) A low value for the e	quivalent weight		
	b) A high value for the e	equivalent weight		
	c) No error in the value	<u>,</u>		
	d) Improved accuracy			
6	689. Arrange NH_4^+ , H_2O , H_3	₃ 0 ⁺ , HF and OH [–] in incre	asing order of acidic natu	ire
	a) $H_30^+ < NH_4^+ < HF_4$	$V < 0H^{-} < H_{2}0$	b) $NH_4^+ < HF < H_3O^+$	$< H_2 0 < 0 H^-$
	c) $0H^- < H_2 0 < NH_4^+$	$T < HF < H_30^+$	d) $H_30^+ > HF > H_20$	$> NH_4^+ > OH^-$
6	690. Which of the following	is a Lewis base?	$\mathbf{v}^{\mathbf{v}}$	
	a) CH ₄	b) C ₂ H ₅ OH	c) Acetone	d) Secondary
6	691. An aqueous solution of	sodium carbonate is alkali	ne because sodium carbona	te is a salt of
	a) Weak acid and weak	base	b) Strong acid and weak	base
	c) Weak acid and stron	g base	d) Strong acid and stron	g base
6	692. Which of the following	is least likely to behave as l	Lewis acid?	
	a) OH ⁻	b) $H_2 U$	c) NH_3	d) BF ₃
(693. Which statement is fals	e in case of equilibrium sta	te?	
	a) There is no apparent	change in properties with	time	
	c) It can be attained fro	re maithar side of the reaction	n	
	d) It can be attained fro	on the side of the reactants	only	
í	694 The active mass of 45σ	of KCl in a 3 L flask would	he	
	a) 0.20	b) 2.0	c) 3	d) 4
(695. A litre of solution is sat	urated with AgCl.To this so	lution if 1.0×10^{-4} mole of	solid NaCl is added. what
	will be the [Ag ⁺] assum	ing no volume change?		,
	a) More	b) Less	c) Equal	d) Zero
	696. 9.2g N ₂ O ₄ is heated in	n a 1L vessel till equilibri	um state is established	,
	$V_2 V_4$ N ₂ O ₄ (g) \rightleftharpoons	$2NO_2(g)$		
	In equilibrium state 5	50% N ₂ O ₄ was dissociate	d. Equilibrium constant v	vill be (mol. wt. of $N_2 O_4 =$
	92)		a, Equilibriani constant (
	a) 0 1	b) በ 4	c) 0 3	d) 0 2
	697 At 2000 K the equilib	rium nartial prossure of	(0, 0, 0)	4 and 0.2 atm
,	respectively V for th	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	± 0 is	. i alia 0.2 attii
	$respectively. \Lambda_p$ for the spectrum of the s	= 1 = 1 = a = 1 = 1, 2 = 2 = 0	$+ U_2$ is	
	a) 0.088	b) 0.0533	cJ 0.133	a) 0.177

	us solution of sodi	um cyanide is		
aj Acio	ic	b) Amphoteric	c) Basic	d) Neutral
699. A mixt	ure of N_2 and H_2	in the mole ratio 1:3 is all	lowed to attain equilibrium	n when 50% of mixture has
reacte	I. If <i>P</i> is the equilib	orium pressure, then partia	l pressure of NH ₃ formed is	:
a) <i>P</i> /6	_	b) <i>P</i> /2	c) <i>P</i> /3	d) <i>P</i> /4
700. CH ₃ CO	OH is weaker ac	id than H_2SO_4 . It is due to	0	
a) Mo	e ionisation	b) Less ionisation	c) Covalent bond	d) Electrovalent bond
701. Equal	volume of three ac	id solutions of pH 3,4 and 5	are mixed in a vessel. Wha	t will be the H ⁺ ion
concer	tration in the mixt	ture?	2	
a) 3.7	< 10 ⁻⁴ M	b) 3.7×10^{-3} M	c) 1.11×10^{-3} M	d) 1.11×10^{-4} M
702. The to	nisation of strong	g electrolytes in acetic ac	cid, compared to in water	, 1S
a) We	ik, low		b) Strong, more	
c) Mee	lium, the same		d) No ionisation, 100%	
703. A satu	rated solution of	CaF_2 is 2×10^{-4} mol/L.	Its solubility product con	stant is
a) 2.6	$\times 10^{-9}$	b) 4×10^{-8}	c) 4×10^{-12}	d) 3.2×10^{-11}
704. The va	pour density of PC	l_5 is 104.16, but when heat	ed at 230°C. Its vapour den	sity is reduced to 62. The
percer	tage of dissociatio	n of PCl ₅ at this temperatur	re will be	
a) 6.8%	ю 	b) 68%	c) 46%	d) 64%
/05. Which	is not amphoteric:	/ 	-) IL DO-	1) UCOO-
ај нъс 706 Ар ат	4 ount of colid NU	DJ $\Pi U U_3$	$C_{\rm J}$ $\Pi_2 P U_4$	u) HLUU
700. All all	vature and 0 E0	$_4$ Π $_5$ Π $_5$ Π $_6$ Π $_6$ Π	n hudrogen gulnhide deg	ild gas at a tel talli
tempe	rature and 0.50 a	he fleels When the decor	n nyurogen sulpinue ueu	Diliposes to yield
NП ₃ а	IU H ₂ S gases In U	ne nask. when the decon		
pressu	re in the hask ris	ses to 0.84 atm? The equi	Indrium constant for NH ₄	As decomposition at this
tempe	rature is			1) 0 20
a) 0.1.		DJ U.17	c) 0.18	a) 0.30
/U/. The co	rrect order of acet	ic strength is:		
b) CO_2	$r_7 > 30_2 > r_40_{10}$			
0,002	$0 > M_2 O_5 > 3 O_3$			
c) Na ₂	1 / 1000 / 1000			
c) Na ₂ d) K ₂ C	$O > MgO > Al_2O_3$ > CaO > MgO			
c) Na ₂ d) K ₂ C 708. The eo	> CaO > MgO > MgO > CaO > MgO	unt K_n for the reaction.		
c) Na ₂ d) K ₂ C 708. The ea H ₂ (g)	> CaO > MgO > MgO > CaO > MgO [uilibrium constated + $I_{2}(g) \Rightarrow 2HI(g)$	unt K_p for the reaction,		
c) Na ₂ d) K ₂ C 708. The ec H ₂ (g) a) Mor	> CaO > MgO > MgO > CaO > MgO juilibrium consta + I ₂ (g) \rightleftharpoons 2HI(g) ie than one	ant K_p for the reaction,) is b) Less than one	c) Equal to $K_{\rm c}$	d) Zero
c) Na ₂ d) K ₂ C 708. The ea H ₂ (g) a) Mor 709. Which	> CaO > MgO > MgO > CaO > MgO [uilibrium consta + $I_2(g) \rightleftharpoons 2HI(g)$ re than one of the following is	unt <i>K_p</i> for the reaction,) is b) Less than one least soluble?	c) Equal to <i>K_c</i>	d) Zero
c) Na ₂ d) K ₂ C 708. The ea H ₂ (g) a) Mor 709. Which a) MnS	> CaO > MgO > MgO > CaO > MgO [uilibrium consta + I ₂ (g) \rightleftharpoons 2HI(g) re than one of the following is ($K_{cn} = 7 \times 10^{-16}$)	unt K _p for the reaction,) is b) Less than one least soluble?	c) Equal to <i>K_c</i>	d) Zero
c) Na ₂ d) K ₂ C 708. The ea H ₂ (g) a) Mor 709. Which a) MnS b) FeS	> CaO > MgO > MgO a CaO > MgO	unt K _p for the reaction,) is b) Less than one least soluble?)	c) Equal to <i>K_c</i>	d) Zero
c) Na ₂ d) K ₂ C 708. The ec H ₂ (g) a) Mor 709. Which a) MnS b) FeS c) PtS(> CaO > MgO > MgO > CaO > MgO quilibrium consta + I ₂ (g) \rightleftharpoons 2HI(g) re than one of the following is ($K_{sp} = 7 \times 10^{-16}$) ($K_{sp} = 8 \times 10^{-73}$)	unt K _p for the reaction,) is b) Less than one least soluble?)	c) Equal to <i>K_c</i>	d) Zero
c) Na ₂ d) K ₂ C 708. The ec H ₂ (g) a) Mor 709. Which a) MnS b) FeS c) PtS($CaO > MgO > MgO$ $CaO > MgO$ $Iuilibrium consta$ $+ I_2(g) \rightleftharpoons 2HI(g)$ $e than one$ of the following is $(K_{sp} = 7 \times 10^{-16})$ $(K_{sp} = 8 \times 10^{-73})$ $K_{sp} = 3 \times 10^{-12})$	ant K _p for the reaction,) is b) Less than one least soluble?)	c) Equal to <i>K_c</i>	d) Zero
c) Na ₂ d) K ₂ C 708. The ec H ₂ (g) a) Mor 709. Which a) MnS b) FeS c) PtS d) NiS	> CaO > MgO > MgO > CaO > MgO puilibrium consta + I ₂ (g) \rightleftharpoons 2HI(g) re than one of the following is ($K_{sp} = 7 \times 10^{-16}$) ($K_{sp} = 7 \times 10^{-19}$) $K_{sp} = 8 \times 10^{-73}$) $K_{sp} = 3 \times 10^{-12}$) st explanation for	ant K _p for the reaction,) is b) Less than one least soluble?) the solubility of MnS in dil	c) Equal to K_c	d) Zero
c) Na ₂ d) K ₂ C 708. The ec H ₂ (g) a) Mor 709. Which a) MnS b) FeS c) PtS(d) NiS 710. The be a) Solu	> CaO > MgO > MgO puilibrium consta + I ₂ (g) \Rightarrow 2HI(g) re than one of the following is ($K_{sp} = 7 \times 10^{-16}$) ($K_{sp} = 8 \times 10^{-73}$) ($K_{sp} = 3 \times 10^{-12}$) st explanation for bility product of M	ant <i>K_p</i> for the reaction,) is b) Less than one least soluble?) the solubility of MnS in dil. InCl ₂ is less than that of Mr	c) Equal to <i>K_c</i> HCl is that:	d) Zero
c) Na ₂ d) K ₂ C 708. The ec H ₂ (g) a) Mor 709. Which a) MnS b) FeS c) PtS d) NiS 710. The be a) Solu b) Con	> CaO > MgO > MgO puilibrium consta + I ₂ (g) \rightleftharpoons 2HI(g re than one of the following is ($K_{sp} = 7 \times 10^{-16}$) ($K_{sp} = 8 \times 10^{-73}$) ($K_{sp} = 3 \times 10^{-12}$) st explanation for bility product of M centration of Mn ²⁺	ant <i>K_p</i> for the reaction,) is b) Less than one least soluble?) the solubility of MnS in dil. InCl ₂ is less than that of Mr	c) Equal to <i>K_c</i> HCl is that: 1S on of complex ions with chl	d) Zero oride ions
c) Na ₂ d) K ₂ C 708. The ec H ₂ (g) a) Mor 709. Which a) MnS b) FeS c) PtS(d) NiS 710. The be a) Solu b) Con c) Con	> CaO > MgO > CaO > MgO quilibrium consta + I ₂ (g) \Rightarrow 2HI(g) re than one of the following is $K_{sp} = 7 \times 10^{-16}$ $K_{sp} = 7 \times 10^{-16}$ $K_{sp} = 8 \times 10^{-73}$) $K_{sp} = 3 \times 10^{-73}$) st explanation for bility product of Mn ²⁺¹ centration of Sulph	<pre>ant K_p for the reaction,) is b) Less than one least soluble?) the solubility of MnS in dil. InCl₂ is less than that of Mr is lowered by the formation ide ions is lowered by oxide</pre>	c) Equal to <i>K_c</i> HCl is that: 1S on of complex ions with chl- dation to free sulphur	d) Zero oride ions
c) Na ₂ d) K ₂ C 708. The ed H ₂ (g) a) Mor 709. Which a) MnS b) FeS c) PtS d) NiS 710. The be a) Solu b) Con c) Con d) Con	> CaO > MgO > CaO > MgO quilibrium consta + I ₂ (g) \rightleftharpoons 2HI(g re than one of the following is ($K_{sp} = 7 \times 10^{-16}$) ($K_{sp} = 7 \times 10^{-16}$) ($K_{sp} = 8 \times 10^{-73}$) ($K_{sp} = 3 \times 10^{-12}$) st explanation for bility product of M centration of Sulph centration of sulph	ant <i>K_p</i> for the reaction,) is b) Less than one least soluble?) the solubility of MnS in dil. InCl ₂ is less than that of Mr ⁻ is lowered by the formation ide ions is lowered by oxidonide ions is lowered by form	c) Equal to K_c HCl is that: nS on of complex ions with chl- lation to free sulphur nation of the weak acid H ₂ S	d) Zero oride ions
c) Na ₂ d) K ₂ C 708. The ec H ₂ (g) a) Mor 709. Which a) MnS b) FeS c) PtS d) NiS 710. The be a) Solu b) Con c) Con d) Con 711. If the p	> CaO > MgO > CaO > MgO quilibrium consta + I ₂ (g) \Rightarrow 2HI(g) re than one of the following is $K_{sp} = 7 \times 10^{-16}$ $K_{sp} = 7 \times 10^{-16}$ $K_{sp} = 8 \times 10^{-73}$) $K_{sp} = 3 \times 10^{-73}$) st explanation for bility product of M centration of Mn ²⁺¹ centration of sulph OH of a solution is	<pre>ant K_p for the reaction,) is b) Less than one least soluble?) the solubility of MnS in dil. InCl₂ is less than that of Mr is lowered by the formation ide ions is lowered by form ; 6.0, then pH is:</pre>	c) Equal to K_c HCl is that: 1S on of complex ions with chl- lation to free sulphur nation of the weak acid H ₂ S	d) Zero oride ions
 c) Na₂ d) K₂C 708. The ed H₂(g) a) Mon 709. Which a) MnS b) FeS c) PtS d) NiS 710. The bes a) Solu b) Con c) Con d) Con 711. If the p a) 6 	> CaO > MgO > CaO > MgO quilibrium consta + I ₂ (g) \rightleftharpoons 2HI(g re than one of the following is $(K_{sp} = 7 \times 10^{-16})$ $(K_{sp} = 7 \times 10^{-19})$ $(K_{sp} = 8 \times 10^{-73})$ $(K_{sp} = 3 \times 10^{-12})$ st explanation for bility product of M centration of Sulph centration of sulph centration of sulph OH of a solution is	<pre>ant K_p for the reaction,) is b) Less than one least soluble?) the solubility of MnS in dil. InCl₂ is less than that of Mr ' is lowered by the formation ide ions is lowered by oxid ide ions is lowered by form ; 6.0, then pH is: b) 8</pre>	c) Equal to K_c HCl is that: nS on of complex ions with chl- lation to free sulphur nation of the weak acid H ₂ S c) 10	d) Zero oride ions d) 14
 c) Na₂ d) K₂C 708. The eq H₂(g) a) Mor 709. Which a) MnS b) FeS c) PtS d) NiS 710. The be a) Solu b) Con c) Con d) Con 711. If the p a) 6 712. If the p 	S > Kago > Kago > Kago > Kago > CaO > MgO quilibrium constation of the following is $S(K_{sp} = 7 \times 10^{-16})$ $K_{sp} = 7 \times 10^{-16})$ $K_{sp} = 8 \times 10^{-73})$ $K_{sp} = 3 \times 10^{-12})$ st explanation for bility product of Model of Model of Model of Sulphone o	<pre>ant K_p for the reaction,) is b) Less than one least soluble?) the solubility of MnS in dil. InCl₂ is less than that of Mr is lowered by the formation ide ions is lowered by oxid ide ions is lowered by form ; 6.0, then pH is: b) 8 2, its normality will be:</pre>	c) Equal to K_c HCl is that: 1S on of complex ions with chl- lation to free sulphur nation of the weak acid H ₂ S c) 10	d) Zero oride ions d) 14

713. The pH of solution, wl	hose hydrogen ion concentr	ration is one mole per litr	e, will be:
a) 1.0	b) 0.1	c) Zero	d) 1.5
714. Consider the reaction	ı equilibrium		
$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_2(g)$	$SO_3(g), \Delta H^\circ = -198 \text{ kJ}$		
On the basis of Le-Cha	atelier's principle, the condi	tion favourable for the fo	rward reaction is
a) Lowering of tempe	rature as well as pressure		
b) Lowering the temp	erature and increasing the	pressure	
c) Increasing the tem	perature and pressure		
d) Any value of tempe	erature and pressure		
715. NH ₄ Cl is acidic beca	use		
a) On hydrolysis NH	4 Cl gives weak base NH4	OH and strong acid HCl	
b) Nitrogen donates	a pair of electrons		
c) It is a salt of weak	acid and strong base		A +
d) On hydrolysis NH	4Cl gives strong base and	l weak acid	
716. In a buffer solution co	onsisting of a weak acid and	its conjugate base, the ra	atio of concentration of conjugate
base to acid is increas	ed tenfold; then the pH of t	he solution will:	\sim \sim
a) Increase by one	b) Increase tenfold	c) Decrease by one	d) Decrease tenfold
717. The solubility in wate	r of a sparingly soluble salt	AB_2 is 1.0×10^{-5} mol/lit	tre. Its solubility product is:
a) 1 × 10 ⁻¹⁵	b) 1×10^{-10}	c) 4×10^{-15}	d) 4×10^{-10}
718. If ClO_3^- is chlorate ion	, then HClO ₃ is:		
a) Hydrochloride acid	l b) Chlorous acid	c) Chloric acid	d) Chlorate acid
719. Which of the followi	ing is not a Lewis base?		
a) H ₂ O	b) Ag ⁺	c) NH ₃	d) OH ⁻
720. For a system in equili	brium, $\Delta G = 0$, under condi	tions of constant	
a) Temperature and p	oressure	b) Energy and volun	ne
c) Temperature and v	volume C	d) Pressure and volu	ime
721. In 100 mL of an aqueo	ous HCl of pH 1.0, 900 mL of	f distilled water is added,	the pH of the resultant solution
becomes:			
a) 1.0	b) 2.0	c) 4.0	d) 7.0
722. 20 mL of a 0.1 <i>N</i> HCl i	s mixed with 20 mL of a 0.1	N KOH solution. The pH	of the solution would be:
a) Zero	b) 7	c) 2	d) 9
723. In a system : $A(s) \rightleftharpoons$	2B(g) + 3C(g). If the conce	entration of <i>C</i> at equilibr	ium is increased by a factor 2, it
will cause the equilibr	rium concentration of <i>B</i> to c	change to:	
a) Two times of its or	iginal value		
b) One half of its origi	nal value		
c) $2\sqrt{2}$ times of its ori	ginal value		
d) $\frac{1}{2\sqrt{2}}$ times of its orig	ginal value		
724. The Bronsted acid wh	ich gives the weakest conju	gate base is:	
a) HF	b) H ₂ S	c) H ₂ 0	d) HCl
725. How much sodium ac	etate should be added to 0.2	1 M solution of CH ₃ COOH	to give a solution of pH =
5.5 (p <i>K</i> _{<i>a</i>} of CH ₃ COOH	= 4.5)?		
a) 0.1 M	b) 0.01 M	c) 1.0 M	d) 10.0 M
726. Which solution has	pH equal to 10?		
a) 10 ⁻⁴ M KOH	b) 10 ⁻¹⁰ M KOH	c) 10 ⁻¹⁰ M HCl	d) 10 ⁻⁴ M HCl
727. A saturated solution p	prepared by dissolved CaF ₂	(s) in water, has $[Ca^{2+}] =$	$= 3.3 \times 10^{-4}$ M. What is the $K_{\rm sp}$ of
CaF ₂ ?			46
a) 1.44×10^{-10}	b) 2.24 × 10 ⁻⁸	c) 1.58 × 10 ⁻⁸	d) 1.67×10^{-8}
728. When 1.0 mL of dil. H	Cl acid is added to 100 mL c	of a buffer solution of pH	4.0, the pH of the solution:
a) Becomes 7	b) Does not change	c) Becomes 2	d) Becomes 10

729. The pH of blood is: a) Less than 6 b) Greater than 7 and less than 8 c) Greater than 8 and less than 9 d) Greater than 10 730. The unit of equilibrium constant, *K* for the reaction, $A + B \rightleftharpoons C$, would be a) mol L^{-1} b) mol L c) $L \text{ mol}^{-1}$ d) Dimensionless 731. Which statement is correct? a) An acid and its conjugate base react to form salt and water b) The acid H_2O is its own conjugate base c) The conjugate base of a weak acid is a strong base d) The conjugate base of a strong acid is strong base 732. From separate solutions of four sodium salts NaW, NaX, NaY and NaZ had pH 7.0, 9.0, 10.0 and 11.0 respectively. When each solution was 0.1 *M*, the strongest acid is: a) HW b) *HX* c) HY d) *HZ* 733. Which information can be obtained from Le-Chatelier's principle? a) Shift in equilibrium position on changing *P*, *T* and concentration b) Dissociation constant of a weak acid c) Energy change in a reaction d) Equilibrium constant of a chemical reaction 734. The solubility product of Hg_2I_2 is equal to: b) $[Hg^{2+}][I^{-}]$ a) $[Hg_2^{2+}][I^-]$ c) $[Hg_2^{2+}][I^{-}]^2$ d) $[Hg^{2+}]^2[I^{-}]^2$ 735. The pH of a solution formed by mixing 40 mL of 0.10 M HCl and 10 mL of 0.45 M NaOH is: a) 5 b) 8 c) 12 d) 10 736. The correct relationship between K_c and K_p in gaseous equilibrium is : a) $K_{\rm c} = K_{\rm p} \, (\rm RT)^{\Delta n}$ b) $K_{\rm p} = K_{\rm c} \, ({\rm RT})^{\Delta n}$ c) $\frac{K_c}{RT} = (K_p)^{\Delta n}$ d) $\frac{K_P}{RT} = (K_c) \Delta n$ 737. In a mixture of CH₃COOH and CH₃COONa, the ratio of salt to acid concentration is increased by ten folds. The pH of the solution will increase by: c) 2 a) Zero b) 1 d) 3 738. NaOH(aq), HCl(aq) and NaCl(aq) concentration of each is 10^{-3} M. Their pH will be respectively a) 10, 6, 2 b) 11, 3, 7 c) 10, 2, 6 d) 3, 4, 7 739. At 25°C, the equilibrium K_1 , K_2 and K_3 of three reactions are : $N_2 + 3H_2 \rightleftharpoons 2NH_3; K_1$ $N_2 + O_2 \rightleftharpoons 2NO; K_2$ $H_2 + \frac{1}{2}O_2 \rightleftharpoons H_2O; K_3$ The equilibrium constants for the oxidation of NH₃ by oxygen to give NO is : a) K_3^2/K_1 b) $K_2^2 K_3 / K_1$ c) $K_1 K_2 / K_3$ d) $K_2 K_3^3 / K_1$ 740. Which of the following is the strongest base? a) $C_2 H_5^$ b) C₂H₅COO⁻ c) $C_2 H_5 O^$ d) H_2PO_4 741. The equilibrium constant, *K* for the reaction $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$ At room temperature is 2.85 and that at 698 K, it is 1.4×10^{-2} . This implies that b) HI is exothermic compound a) HI is resonance stabilised

c) HI is stable at room temperature d) HI is less stable than H_2 and I_2 742. If the solubility product of $BaSO_4$ is 1.5×10^{-10} in water. Its solubility, in moles per litre, is a) 1.5×10^{-9} b) 3.9×10^{-5} c) 7.5×10^{-5} d) 1.5×10^{-5} 743. Soda water has a pH value: a) Less than 7 b) More than 7 c) 7 d) Greater than 14 744. According to Le-Chatelier's principle, if heat is given to solid-liquid system, then a) Quantity of solid will reduce b) Quantity of liquid will reduce d) Temperature will decrease c) Temperature will increase 745. The salt that does not hydrolyse, is: a) $SnCl_2$ b) FeCl₃ c) SnCl₄ d) $CaCl_2$ 746. An acid-base indicator has $K_a = 3.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. The [H⁺] required to change the indicator from 75% red to 75% blue is: a) $8 \times 10^{-5} M$ b) $9 \times 10^{-5} M$ c) $1 \times 10^{-5} M$ d) $3 \times 10^{-4} M$ 747. When ammonium chloride is added to a solution of ammonium hydroxide, a) Dissociation of NH₄OH increases b) Concentration of OH⁻ increases c) Concentration of NH⁺₄ and OH⁻ increases d) Concentration of NH_4^+ decreases 748. The pH of an aqueous solution having hydroxide ion concentration as 1×10^{-5} is a) 5 b) 9 c) 4.5 d) 11 749. In the manufacture of NH₃ by Haber's process, the condition which would give maximum yield is $N_2 + 3H_2 \rightleftharpoons 2NH_3 + Q$ kcal a) Low temperature and high pressure b) Low temperature, low pressure and low concentration of H_2 c) High temperature, low pressure and low concentration d) High temperature, high pressure and high concentration 750. In water, the acid HClO₄, HCl, H₂SO₄ and HNO₃ exhibit the same strength as they are completely ionised in water (a base). This is called ... of the solvent water. a) Strength b) Capacity c) Buffer effect d) Levelling effect 751. Which of the following solutions will have pH close to 1.0? a) 100 mL of $\frac{M}{10}$ HCl + 100 mL of $\frac{M}{10}$ NaOH b) 55 mL of $\frac{M}{10}$ HCl + 45 mL of $\frac{M}{10}$ NaOH c) 10 mL of $\frac{M}{10}$ HCl + 90 mL of $\frac{M}{10}$ NaOH d) 75 mL of $\frac{M}{5}$ HCl + 25 mL of $\frac{M}{5}$ NaOH 752. For the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$; $\Delta H = -93.6 \text{ kJ mol}^{-1}$, the concentration of NH_3 at equilibrium can be increased by (I) lowering the temperature (II)low pressure (III) excess of N₂ (IV) excess of H₂ a) (II) and (IV) are correct b) (II) only is correct c) (I), (II) and (III) are correct d) (III) and (IV) are correct 753. Some salts although containing two different metallic elements give test for only one of them in solution. Such salts are: a) Double salts b) Normal salts c) Complex salts d) None of these 754. Which statement is correct? a) NH₄OH is a strong base b) CH₃COONa given acidic solution in water c) CH₃COOH is a weak acid d) NH₄Cl gives alkaline solution in water 755. Which one of the following species acts as both Bronsted acid and base? b) HPO_3^{2-} c) HPO_4^{2-} a) $H_2PO_2^$ d) All of these

756. Which one is the str	ongest base?		
a) OH ⁻	b) <i>RO</i> -	c) NH ₂	d) <i>R</i> ⁻
757. To a mixture of acet	ic acid and sodium acetate	a further amount of sod	ium acetate is added. The pH of the
mixture:			
a) Increases	b) Decreases	c) Remains unch	anged d) Not predictable
758. Ionisation constant CH ₃ COOH molecule	of CH_3COOH is 1.7×10^{-5} as is	and [H ⁺] ions is 3.4×10	⁻⁴ . Then, initial concentration of
a) 6.8×10^{-3}	b) 2.5×10^{-4}	c) 3.5×10^{-3}	d) 4.5×10^{-3}
759. 0.023 g of sodium	metal is reached with 10	0 cm ³ of water. The pl	H of the resulting solution is
a) 10	h) 11	c) 9	d) 12
760 For the reaction N	$\pm 3H \rightarrow 2NH$ in a vace	l after the addition of e	$a_{\rm N}$ 12
equilibrium state is	formed Which of the follow	ving is correct?	equal number of more of N ₂ and N ₂ ,
$2 \left[H \right] - \left[N \right]$	b) [H] \sim [N]	c) [H] $>$ [N]	(1) [H1 > [NH]
a) $[11_2] = [11_2]$	$[0] [11_2] \setminus [11_2]$	$C_{J} [\Pi_{2}] \ge [\Pi_{2}]$	$u_j [11_2] > [111_3]$
701. 1.1 III0le Of A die	111111111111111111111111111111111111	the equilibrium 0.2 me	hen kept in one nice hask till the
equilibrium is attai	tion is :	the equilibrium 0.2 mo	le of c are formed. The equilibrium
	LIUIT IS :	a) 0.002	
a) 0.001	DJ U.UUZ	$(V = 2 \times 10^{-4})$ with N	
762.50% neutralization	of a solution of formic acid	$(K_a = 2 \times 10^{-1})$ with N	aon would result in a solution
naving a nydrogen i	on concentration of:		D 1 05
a) 2×10^{-1}	b) 3.7	c) 2./	a) 1.85
763. pH of K_2 S solution 1	S:		
a) > 7	b) < 7	c) 7	d) Zero
764. If pressure is applie	d to the following equilibriu	um, Liquid ⇒ Vapour. Ti	he boiling point of the liquid:
a) Will decrease	b) Will increase	c) May not chang	d) Will not change
765. The extent of ionisa	tion increases		
a) With the increase	in concentration	b) On addition of	excess water to the solution
c) On decreasing th	e temperature of solution	d) On stirring the	solution vigorously
766. Which one of the f	ollowing salts will produ	ce an alkaline solutior	while dissolving in water?
a) NH ₄ Cl	b) Na ₂ CO ₃	c) NaNO ₃	d) Na ₂ SO ₄
767. Which addition wou	ıld not change the pH of 10	mL of dilute hydrochlor	ic acid?
a) 20 mL of the sam	e dilute hydrochloric acid		
b) 5 mL of pure wat	er		
c) 20 mL of pure wa	iter		
d) 10 mL of concent	rated hydrochloric acid		
768. Which does not con	tribute significantly to acid	rains?	
a) SO ₃	b) NO ₂	c) CO ₂	d) CO
769. Given that the equil	ibrium constant for the read	ction	
$2SO_{2(g)} +$	$0_{2(g)} \rightleftharpoons 2SO_{3(g)}$		
has a value of 278	at a particular temperatu	re. What is the value of	of the equilibrium constant for the
following reaction a	t the same temperature?		-
$SO_{2}(z) \neq SO_{2}$	$(-) + \frac{1}{2} 0_{2} (-)$		
10×10^{-3}	$(g) + 2^{\circ} 2(g)$	$-2 (0 \times 10^{-2})$	1) 1 2 · · · 10 = 5
a) 1.8×10^{-5}	$0 J 3.0 \times 10^{-5}$	C = C = C = C = C = C = C = C = C = C =	$(1) 1.3 \times 10^{-5}$
//0. The equilibrium con	istant for the reaction, HUN	$10 + CN \rightarrow HCN + ON$	U is I × 10 ⁻¹¹ . The magnitude of
the equilibrium con	stant suggests that:		
a) UN is stronger t	ase than UNU		
b) HUN is stronger a	icia than HUNU		
c) UNU^- is the conj	agate base of HUNU		
d) The conjugate ac	a of CN is HCN		
771. A buffer solution of	ontains 0.1 mole of sodiu	ım acetate dissolved iı	n 1000 cm [°] of 0.1 M acetic acid.

To the above buffer solution, 0.1 mole of sodium acetate is further added and dissolved. The pH of the resulting buffer is

b) $pK_a + 2$ c) $pK_a - \log 2$ a) p*K*a d) $pK_a + \log 2$ 772. Some chemists at ISRO wished to prepare a saturated solution of a silver compound and they wanted it to have the highest concentration of silver ion possible. Which of the following compounds, would they use? $K_{\rm sp}({\rm AgCl}) = 1.8 \times 10^{-10}$ $K_{\rm sp}({\rm AgBr}) = 5.0 \times 10^{-13}$ $K_{\rm sp}({\rm Ag}_2{\rm Cr}{\rm O}_4) = 2.4 \times 10^{-12}$ d) None of these a) AgCl b) AgBr c) Ag_2CrO_4 773. Ostwald's dilution law is applicable in the case of the solution of: b) NaCl c) NaOH a) CH₂COOH d) H_2SO_4 774. H₂S is passed into one dm³ of a solution containing 0.1 mole of Zn³ and 0.01 mole of Cu² till the sulphide ion concentration reaches 8.1 10¹⁰ moles. Which one of the following statements is true? $[K_{\rm sp}~{\rm of}~{\rm Zn}~{\rm and}~{\rm CuS}~{\rm are}~3~~10^{22}~{\rm and}~8~~10^{36}$ respectively] a) Only ZnS precipitates b) Both CuS and ZnS precipita^c) Only CuS precipitates d) No precipitation occurs 775. The degree of dissociation of 0.1 M HCN solution is 0.01% its ionisation constant would be a) 10^{-3} b) 10⁻⁵ d) 10⁻⁹ c) 10[.] 776. Solubility of a gas in liquid increases on: a) Addition of a catalyst b) Increasing the pressure c) Decreasing the pressure d) Increasing the temperature 777. In chemical reaction, $A \rightleftharpoons B$, the system will be known in equilibrium when a) 50% of A changes to B b) A completely changes to B c) Only 10% of A changes to B d) The rate of change of A to B and B to A on both the sides are same 778. For a polyprotic acid say H_3PO_4 , its three dissociation constant K_1 , K_2 and K_3 are in the order: a) $K_1 < K_2 < K_3$ b) $K_1 > K_2 > K_3$ c) $K_1 = K_2 = K_3$ d) $K_1 = K_2 > K_3$ 779. The reaction, $A + 2B \rightleftharpoons 2C + D$ was studied using an initial concentration of B which was 1.5 times that of A. But the equilibrium concentration of A and C were found to be equal. Then the K_c for the equilibrium is : a) 4 b) 8 c) 6 d) 0.32 780. The expression for the solubility product of $Al_2(SO_4)_3$ is a) $K_{sp} = [Al^{3+}] [SO_4^{2-}]$ b) $K_{sp} = [Al^{3+}]^2 [SO_4^{2-}]^3$ c) $K_{sp} = [Al^{3+}]^3 [SO_4^{2-}]^2$ d) $K_{sp} = [Al^{3+}]^2 [SO_4^{2-}]^2$ 781. If the dissociation constant of an acid HA is 1×10^{-5} , the pH of a 0.1 M solution of the acid HA will be approximately: a) 3 b) 5 c) 1 d) 6 782. Calculate the pOH of a solution at 25°C that contains 1×10^{-10} M of hydronium ions *i.e.*, H₃⁺0: a) 4 b) 9 c) 1 d) 7 783. When a strong acid-strong base or their salt are dissolved in water, they are completely ionised. If a strong acid is added to a strong base, H⁺ ions from the former combines with OH⁻ ions of the latter forming water. The formation of each water molecule liberates a certain quantity of energy and the reaction is exothermic. The heat liberated when one mole of water is formed by combining hydrochloric acid and

sodium hydroxide is 13.7 kcal. The heat liberated when one mole of water is formed by combining

sulphuric acid and sodium hydroxide is: a) 34 kcal b) 13.7 kcal c) 8.5 kcal d) 25.5 kcal 784. K_a for HCN is 5 × 10⁻¹⁰ at 25°C. For maintaining a constant pH = 9, the volume of 5 M KCN solution required to be added to 10 mL of 2 M HCN solution is a) 2 mL b) 4 mL c) 8.2 mL d) 6.4 mL 785. The equilibrium constants for the reactions are: $H_3PO_4 \longrightarrow H^+ + H_2PO_4^-;$ K_1 $H_2PO_4^ K_2$ $H^+ + H_2PO_4^2$; K₂ HPO₄²⁻ K_3 H⁺ + PO₄³⁻; K₂ The equilibrium constant for $H_3PO_4 \rightleftharpoons 3H^+ + PO_4^{3-}$ will be: c) K_2/K_1K_3 b) $K_1 \times K_2 \times K_3$ a) K_1/K_2K_3 d) $K_1 + K_2 + K_3$ 786. Four moles of PCl₅ are heated in a closed 4 dm³ container to reach equilibrium at 400 K. at equilibrium 50% of PCl₅ is dissociated. What is the value of K_c for the dissociation of PCl₅ into PCl₃ and Cl₂ at 400 K? d) 0.05 a) 0.50 b) 1.00 c) 1.15 787. Favourable conditions for manufacture of ammonia by the reaction. $N_2 + 3H_2 \rightleftharpoons 2NH_3$; $\Delta H = -21.9$ kcal are: a) Low temperature, low pressure and catalyst b) Low temperature, high pressure and catalyst c) High temperature, low pressure and catalyst d) High temperature, high pressure and catalyst 788. If K_{sp} of Ag₂S is 10⁻¹⁷, the solubility of Ag₂S in 0.1 M solution of Na₂S will be a) 10⁻⁸ b) 5×10^{-9} c) 10⁻¹⁵ d) 10^{-16} 789. 5 moles of SO₂ and 5 moles of O₂ are allowed to react to forms SO₃ in a closed vessel. At the equilibrium stage 60% of SO₂ is used up. The total number of moles of SO₂, O₂ and SO₃ in the vessel now is d) 10.5 a) 8.5 b) 9.5 c) 10 790. How many gram of CaC₂O₄ will dissolve in one litre of saturated solution? K_{sp} of CaC₂O₄ is 2.5×10^{-9} M⁻² and its molecular weight is 128: a) 0.0064 g b) 0.0128 g c) 0.0032 g d) 0.0640 g 791. In the iodometric estimation in laboratory which process is involved? b) $MnO_4^- + H^+ + I^- \rightarrow Mn^{2+} + I_2$ a) $Cr_2 O_7^{2-} + H^+ + I^- \rightarrow 2Cr^{5+} + I_2$ a) $M_2O_7 \to M_1O_2 \to S_4O_6^{2-} + I^-$ c) $MnO_4^- + OH^- + I^- \to MnO_2 + I_2$ $I_2 + S_2O_3^{2-} \to S_4O_6^{2-} + I^$ b) $I_2 + S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} + I_2$ d) $Cr_2 O_7^{2-} + OH^- + I^- \rightarrow 2Cr^{3+} + I_2$ $I_2 + S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} + I^-$ 792. Equilibrium constant K_1 and K_2 for the following equilibria $NO(g) + \frac{1}{2}O_2 \stackrel{K_1}{\longleftrightarrow} NO_2(g)$ and, $2NO_2(g) \stackrel{K_2}{\longleftarrow} 2NO(g) + O_2(g)$ are related as c) $K_2 = \frac{1}{K_1^2}$ d) $K_1 = \frac{1}{K_2^2}$ a) $K_1 = \frac{1}{K_2}$ b) $K_2 = \frac{1}{K_1}$ 793. A sample of $Na_2CO_3 \cdot H_2O$ weighing 0.62 g is added to 100 mL of 0.1 N (NH_4)₂SO₄ solution. What will be the resulting solution? d) None of these a) Acidic b) Neutral c) Basic 794. For which one of the following reactions $K_p = K_c$?

795. K_{sp} of AgCl at 18°C is 1.8×10^{-10} . If Ag ⁺ of sodiu: AgCl is precipitated would be: a) 4.5×10^{-8} mol/litre b) 7.2×10^{-13} mol/litre c) 4.0×10^{-3} mol/litre d) 4.5×10^{-7} mol/litre 796. The equilibrium constant (K_p) for the decom	c) $N_2 + 3H_2 \rightleftharpoons 2NH_3$ m is 4×10^{-3} mol/litre the Cl position of gaseous H_2O	d) $2SO_3 \rightleftharpoons 2SO_2 + O_2$ - that must exceed before
$H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2}O_2(g)$		
is related to degree of disperiation (a) at a to	tal proceuro n ic giuan bu	
Is related to degree of dissociation (<i>a</i>) at a to $a^{3n^{1/2}}$	$a^{3/2}n^2$	$a^{3/2}n^{1/2}$
a) $K_p = \frac{\alpha p}{(1+\alpha)(2+\alpha)^{1/2}}$ b) $K_p = \frac{\alpha p}{(1-\alpha)(2+\alpha)^{1/2}}$	c) $K_p = \frac{\alpha - p}{(1 - \alpha)(2 + \alpha)^{1/2}}$	d) $K_p = \frac{\alpha}{(1-\alpha)(2+\alpha)^{1/2}}$
797. A monoprotic acid in 1.00 M solution is 0.01	% ionised. The dissociation	constant of this acid is
a) 1×10^{-8} b) 1×10^{-4}	c) 1×10^{-6}	d) 1×10^{-5}
798. pH of 1 M NH $_3$ aqueous solution is		X Č
$(K_b = 1.8 \times 10^{-5})$		Y
a) 11.13 b) 12.5	c) 13.42	d) 11.55
799. K_a for formic acid and acetic acid are 2.1×10^{-4}	and 1.1×10^{-5} respectively.	Γhe relative strength of acids
is:		
a) 2 : 1 b) 2.3 : 1	c) 1 : 2.1	d) 4.36 : 1
800. Would gaseous HCl be considered as an Arrh	enius acid?	
a) Yes	b) Nor	
c) Not known	d) Gaseous HCl does no	ot exist
801. According to Le-Chatelier's principle, the add	lition of temperature to the	following reaction
$\mathrm{CO}_2(\mathrm{g}) + 2\mathrm{H}_2\mathrm{O}(\mathrm{g}) \to \mathrm{CH}_4(\mathrm{g}) + 2\mathrm{O}_2(\mathrm{g})$		
will cause it to the right. This reaction is, the	refore	
a) Exothermic b) Unimolecular	c) Endothermic	d) Spontaneous
a) Exothermic b) Unimolecular 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the	c) Endothermic e equilibrium,	d) Spontaneous
a) Exothermic b) Unimolecular 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, is approximately rela	c) Endothermic e equilibrium, ated to the pressure at equilib	d) Spontaneous rium by:
a) Exothermic b) Unimolecular 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, is approximately relation a) $\alpha \propto P$ b) $\alpha \propto \frac{1}{\sqrt{2}}$	c) Endothermic e equilibrium, ated to the pressure at equilib c) $\alpha \propto \frac{1}{\pi^2}$	d) Spontaneous rium by: d) $\alpha \propto \frac{1}{\pi 4}$
a) Exothermic b) Unimolecular 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, is approximately related a) $\alpha \propto P$ b) $\alpha \propto \frac{1}{\sqrt{P}}$	c) Endothermic e equilibrium, ated to the pressure at equilib c) $\alpha \propto \frac{1}{P^2}$	d) Spontaneous rium by: d) $\alpha \propto \frac{1}{P^4}$
a) Exothermic b) Unimolecular 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, is approximately related a) $\alpha \propto P$ b) $\alpha \propto \frac{1}{\sqrt{P}}$ 803. Solubility product of MX_2 at 298 K is 4×10^{-12} . A mol per litre is:	c) Endothermic e equilibrium, ated to the pressure at equilib c) $\alpha \propto \frac{1}{P^2}$ At this temperature concentra	d) Spontaneous rium by: d) $\alpha \propto \frac{1}{P^4}$ tion of M ²⁺ ion in
a) Exothermic b) Unimolecular 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, is approximately relation a) $\alpha \propto P$ b) $\alpha \propto \frac{1}{\sqrt{P}}$ 803. Solubility product of MX_2 at 298 K is 4×10^{-12} . A mol per litre is: a) $2 \times 10^{-6} M$ b) $1 \times 10^{-4} M$	c) Endothermic e equilibrium, ated to the pressure at equilib c) $\alpha \propto \frac{1}{P^2}$ At this temperature concentra	d) Spontaneous rium by: d) $\alpha \propto \frac{1}{P^4}$ tion of M ²⁺ ion in d) 4 × 10 ⁻⁶ M
a) Exothermic b) Unimolecular 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, is approximately related a) $\alpha \propto P$ b) $\alpha \propto \frac{1}{\sqrt{P}}$ 803. Solubility product of MX_2 at 298 K is 4×10^{-12} . A mol per litre is: a) $2 \times 10^{-6}M$ b) $1 \times 10^{-4}M$ 804. A reaction attains equilibrium when the Gibbs en	c) Endothermic e equilibrium, ated to the pressure at equilib c) $\alpha \propto \frac{1}{P^2}$ At this temperature concentra c) $1.6 \times 10^{-4}M$ ergy change accompanying th	d) Spontaneous rium by: d) $\alpha \propto \frac{1}{P^4}$ tion of M ²⁺ ion in d) 4 × 10 ⁻⁶ M he reaction is:
a) Exothermic b) Unimolecular 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, is approximately related a) $\alpha \propto P$ b) $\alpha \propto \frac{1}{\sqrt{P}}$ 803. Solubility product of MX_2 at 298 K is 4×10^{-12} . A mol per litre is: a) $2 \times 10^{-6}M$ b) $1 \times 10^{-4}M$ 804. A reaction attains equilibrium when the Gibbs end a) Positive and large b) Zero	c) Endothermic e equilibrium, ated to the pressure at equilib c) $\alpha \propto \frac{1}{P^2}$ At this temperature concentra c) $1.6 \times 10^{-4}M$ ergy change accompanying th c) Negative and large	d) Spontaneous rium by: d) $\alpha \propto \frac{1}{P^4}$ tion of M ²⁺ ion in d) 4 × 10 ⁻⁶ M he reaction is: d) Negative and small
a) Exothermic b) Unimolecular 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, is approximately related a) $\alpha \propto P$ b) $\alpha \propto \frac{1}{\sqrt{P}}$ 803. Solubility product of MX_2 at 298 K is 4×10^{-12} . A mol per litre is: a) $2 \times 10^{-6}M$ b) $1 \times 10^{-4}M$ 804. A reaction attains equilibrium when the Gibbs end a) Positive and large b) Zero 805. $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$	c) Endothermic e equilibrium, ated to the pressure at equilib c) $\alpha \propto \frac{1}{P^2}$ At this temperature concentra c) $1.6 \times 10^{-4}M$ ergy change accompanying th c) Negative and large	d) Spontaneous rium by: d) $\alpha \propto \frac{1}{P^4}$ tion of M ²⁺ ion in d) 4 × 10 ⁻⁶ M he reaction is: d) Negative and small
a) Exothermic b) Unimolecular 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, is approximately related a) $\alpha \propto P$ b) $\alpha \propto \frac{1}{\sqrt{P}}$ 803. Solubility product of MX_2 at 298 K is 4×10^{-12} . A mol per litre is: a) $2 \times 10^{-6}M$ b) $1 \times 10^{-4}M$ 804. A reaction attains equilibrium when the Gibbs end a) Positive and large b) Zero 805. $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$ In the above reaction, if the pressure at equilibrium of the pressure o	c) Endothermic e equilibrium, ated to the pressure at equilib c) $\alpha \propto \frac{1}{P^2}$ At this temperature concentra c) $1.6 \times 10^{-4}M$ ergy change accompanying th c) Negative and large ibrium and at 300 K is 100	d) Spontaneous rium by: d) $\alpha \propto \frac{1}{P^4}$ tion of M ²⁺ ion in d) 4 × 10 ⁻⁶ M he reaction is: d) Negative and small atm then what will be the
a) Exothermic b) Unimolecular 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, is approximately related a) $\alpha \propto P$ b) $\alpha \propto \frac{1}{\sqrt{P}}$ 803. Solubility product of MX_2 at 298 K is 4×10^{-12} . A mol per litre is: a) $2 \times 10^{-6}M$ b) $1 \times 10^{-4}M$ 804. A reaction attains equilibrium when the Gibbs end a) Positive and large b) Zero 805. $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$ In the above reaction, if the pressure at equilibrium constant K_n ?	c) Endothermic e equilibrium, ated to the pressure at equilib c) $\alpha \propto \frac{1}{P^2}$ At this temperature concentra c) $1.6 \times 10^{-4}M$ ergy change accompanying th c) Negative and large ibrium and at 300 K is 100	d) Spontaneous rium by: d) $\alpha \propto \frac{1}{P^4}$ tion of M ²⁺ ion in d) 4 × 10 ⁻⁶ M he reaction is: d) Negative and small atm then what will be the
a) Exothermic b) Unimolecular 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, is approximately related a) $\alpha \propto P$ b) $\alpha \propto \frac{1}{\sqrt{P}}$ 803. Solubility product of MX_2 at 298 K is 4×10^{-12} . A mol per litre is: a) $2 \times 10^{-6}M$ b) $1 \times 10^{-4}M$ 804. A reaction attains equilibrium when the Gibbs end a) Positive and large b) Zero 805. NH ₄ HS(s) \rightleftharpoons NH ₃ (g) + H ₂ S(g) In the above reaction, if the pressure at equilibrium constant K_p ? a) 2500 atm ² b) 50 atm ²	c) Endothermic e equilibrium, ated to the pressure at equilib c) $\alpha \propto \frac{1}{P^2}$ At this temperature concentra c) $1.6 \times 10^{-4}M$ ergy change accompanying th c) Negative and large ibrium and at 300 K is 100 c) 100 atm ²	d) Spontaneous rium by: d) $\alpha \propto \frac{1}{P^4}$ tion of M ²⁺ ion in d) 4 × 10 ⁻⁶ M he reaction is: d) Negative and small atm then what will be the d) 200 atm ²
a) Exothermic b) Unimolecular 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, is approximately relative a) $\alpha \propto P$ b) $\alpha \propto \frac{1}{\sqrt{P}}$ 803. Solubility product of MX_2 at 298 K is 4×10^{-12} . A mol per litre is: a) $2 \times 10^{-6}M$ b) $1 \times 10^{-4}M$ 804. A reaction attains equilibrium when the Gibbs end a) Positive and large b) Zero 805. $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$ In the above reaction, if the pressure at equilibrium constant K_p ? a) 2500 atm ² b) 50 atm ² 806. The solubility product of a sparingly salt AX_2	c) Endothermic e equilibrium, ated to the pressure at equilib c) $\alpha \propto \frac{1}{p^2}$ at this temperature concentra c) $1.6 \times 10^{-4}M$ ergy change accompanying th c) Negative and large ibrium and at 300 K is 100 c) 100 atm ² is 3.2×10^{-11} . Its solubilit	d) Spontaneous rium by: d) $\alpha \propto \frac{1}{P^4}$ tion of M ²⁺ ion in d) 4 × 10 ⁻⁶ M he reaction is: d) Negative and small atm then what will be the d) 200 atm ² v (in mol/L) is
a) Exothermic b) Unimolecular 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, is approximately related a) $\alpha \propto P$ b) $\alpha \propto \frac{1}{\sqrt{P}}$ 803. Solubility product of MX_2 at 298 K is 4×10^{-12} . A mol per litre is: a) $2 \times 10^{-6}M$ b) $1 \times 10^{-4}M$ 804. A reaction attains equilibrium when the Gibbs end a) Positive and large b) Zero 805. $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$ In the above reaction, if the pressure at equilibrium constant K_p ? a) 2500 atm ² b) 50 atm ² 806. The solubility product of a sparingly salt AX_2 a) 5.6×10^{-6} b) 3.1×10^{-4}	c) Endothermic e equilibrium, ated to the pressure at equilib c) $\alpha \propto \frac{1}{P^2}$ At this temperature concentra c) $1.6 \times 10^{-4}M$ ergy change accompanying th c) Negative and large ibrium and at 300 K is 100 c) 100 atm ² is 3.2×10^{-11} . Its solubility c) 2×10^{-4}	d) Spontaneous rium by: d) $\alpha \propto \frac{1}{P^4}$ tion of M ²⁺ ion in d) $4 \times 10^{-6}M$ he reaction is: d) Negative and small atm then what will be the d) 200 atm ² y (in mol/L) is d) 4×10^{-4}
a) Exothermic b) Unimolecular 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, is approximately relative a) $\alpha \propto P$ b) $\alpha \propto \frac{1}{\sqrt{P}}$ 803. Solubility product of MX_2 at 298 K is 4×10^{-12} . A mol per litre is: a) $2 \times 10^{-6}M$ b) $1 \times 10^{-4}M$ 804. A reaction attains equilibrium when the Gibbs end a) Positive and large b) Zero 805. $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$ In the above reaction, if the pressure at equilibrium constant K_p ? a) 2500 atm ² b) 50 atm ² 806. The solubility product of a sparingly salt AX_2 a) 5.6×10^{-6} b) 3.1×10^{-4}	c) Endothermic e equilibrium, ated to the pressure at equilib c) $\alpha \propto \frac{1}{P^2}$ At this temperature concentra c) $1.6 \times 10^{-4}M$ ergy change accompanying th c) Negative and large ibrium and at 300 K is 100 c) 100 atm ² is 3.2×10^{-11} . Its solubilit, c) 2×10^{-4} are 2×10^{-5} and 5.5×10^{-5} r	d) Spontaneous rium by: d) $\alpha \propto \frac{1}{P^4}$ tion of M ²⁺ ion in d) $4 \times 10^{-6}M$ he reaction is: d) Negative and small atm then what will be the d) 200 atm ² y (in mol/L) is d) 4×10^{-4}
a) Exothermic b) Unimolecular 802. The degree of dissociation of PCl ₅ (α) obeying the PCl ₅ (g) \rightleftharpoons PCl ₃ (g) + Cl ₂ (g), is approximately related a) $\alpha \propto P$ b) $\alpha \propto \frac{1}{\sqrt{P}}$ 803. Solubility product of MX ₂ at 298 K is 4×10^{-12} . A mol per litre is: a) $2 \times 10^{-6}M$ b) $1 \times 10^{-4}M$ 804. A reaction attains equilibrium when the Gibbs end a) Positive and large b) Zero 805. NH ₄ HS(s) \rightleftharpoons NH ₃ (g) + H ₂ S(g) In the above reaction, if the pressure at equilibrium constant K_p ? a) 2500 atm ² b) 50 atm ² 806. The solubility product of a sparingly salt AX_2 a) 5.6×10^{-6} b) 3.1×10^{-4} 807. If the solubility product of AgBrO ₃ and Ag ₂ SO ₄ a between the solubilities of these can be correctly	c) Endothermic e equilibrium, ated to the pressure at equilib c) $\alpha \propto \frac{1}{P^2}$ At this temperature concentra c) $1.6 \times 10^{-4}M$ ergy change accompanying th c) Negative and large ibrium and at 300 K is 100 c) 100 atm ² is 3.2×10^{-11} . Its solubilit c) 2×10^{-4} are 2×10^{-5} and 5.5×10^{-5} m represented as:	d) Spontaneous rium by: d) $\alpha \propto \frac{1}{P^4}$ tion of M ²⁺ ion in d) $4 \times 10^{-6}M$ he reaction is: d) Negative and small atm then what will be the d) 200 atm ² y (in mol/L) is d) 4×10^{-4} respectively, the relationship
a) Exothermic b) Unimolecular 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the $PCl_5(g) \Rightarrow PCl_3(g) + Cl_2(g)$, is approximately related a) $\alpha \propto P$ b) $\alpha \propto \frac{1}{\sqrt{P}}$ 803. Solubility product of MX_2 at 298 K is 4×10^{-12} . A mol per litre is: a) $2 \times 10^{-6}M$ b) $1 \times 10^{-4}M$ 804. A reaction attains equilibrium when the Gibbs end a) Positive and large b) Zero 805. $NH_4HS(s) \Rightarrow NH_3(g) + H_2S(g)$ In the above reaction, if the pressure at equilibrium constant K_p ? a) 2500 atm ² b) 50 atm ² 806. The solubility product of a sparingly salt AX_2 a) 5.6×10^{-6} b) 3.1×10^{-4} 807. If the solubility product of AgBrO ₃ and Ag ₂ SO ₄ as between the solubilities of these can be correctly a) $sAgBrO_3 > sAg_2SO_4$ b) $sAgBrO_3 < sAg_2SO_4$	c) Endothermic e equilibrium, ated to the pressure at equilib c) $\alpha \propto \frac{1}{P^2}$ At this temperature concentra c) $1.6 \times 10^{-4}M$ ergy change accompanying th c) Negative and large ibrium and at 300 K is 100 c) 100 atm ² is 3.2×10^{-11} . Its solubility c) 2×10^{-4} are 2×10^{-5} and 5.5×10^{-5} r represented as: 4 c) sAgBrO ₃ = sAg ₂ SO ₄	d) Spontaneous rium by: d) $\alpha \propto \frac{1}{P^4}$ tion of M ²⁺ ion in d) $4 \times 10^{-6}M$ he reaction is: d) Negative and small atm then what will be the d) 200 atm ² y (in mol/L) is d) 4×10^{-4} respectively, the relationship d) $sAgBrO_3 \equiv sAg_2SO_4$
a) Exothermic b) Unimolecular 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, is approximately related a) $\alpha \propto P$ b) $\alpha \propto \frac{1}{\sqrt{P}}$ 803. Solubility product of MX_2 at 298 K is 4×10^{-12} . A mol per litre is: a) $2 \times 10^{-6}M$ b) $1 \times 10^{-4}M$ 804. A reaction attains equilibrium when the Gibbs end a) Positive and large b) Zero 805. $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$ In the above reaction, if the pressure at equilibrium constant K_p ? a) 2500 atm ² b) 50 atm ² 806. The solubility product of a sparingly salt AX_2 a) 5.6×10^{-6} b) 3.1×10^{-4} 807. If the solubility product of AgBrO ₃ and Ag ₂ SO ₄ at between the solubilities of these can be correctly a) $sAgBrO_3 > sAg_2SO_4$ b) $sAgBrO_3 < sAg_2SO_4$ 808. The conjugate acid of $HPO_4^{2^-}$ is:	c) Endothermic e equilibrium, ated to the pressure at equilib c) $\alpha \propto \frac{1}{P^2}$ At this temperature concentra c) $1.6 \times 10^{-4}M$ ergy change accompanying th c) Negative and large ibrium and at 300 K is 100 c) 100 atm ² is 3.2×10^{-11} . Its solubility c) 2×10^{-4} are 2×10^{-5} and 5.5×10^{-5} m represented as: 4 c) sAgBrO ₃ = sAg ₂ SO ₄	d) Spontaneous rium by: d) $\alpha \propto \frac{1}{P^4}$ tion of M ²⁺ ion in d) $4 \times 10^{-6}M$ he reaction is: d) Negative and small atm then what will be the d) 200 atm ² y (in mol/L) is d) 4×10^{-4} respectively, the relationship d) $sAgBrO_3 \equiv sAg_2SO_4$
a) Exothermic b) Unimolecular 802. The degree of dissociation of PCl ₅ (<i>a</i>) obeying the PCl ₅ (g) \rightleftharpoons PCl ₃ (g) + Cl ₂ (g), is approximately related a) $\alpha \propto P$ b) $\alpha \propto \frac{1}{\sqrt{P}}$ 803. Solubility product of MX ₂ at 298 K is 4×10^{-12} . A mol per litre is: a) $2 \times 10^{-6}M$ b) $1 \times 10^{-4}M$ 804. A reaction attains equilibrium when the Gibbs end a) Positive and large b) Zero 805. NH ₄ HS(s) \rightleftharpoons NH ₃ (g) + H ₂ S(g) In the above reaction, if the pressure at equilibrium constant K_p ? a) 2500 atm ² b) 50 atm ² 806. The solubility product of a sparingly salt AX_2 a) 5.6×10^{-6} b) 3.1×10^{-4} 807. If the solubility product of AgBrO ₃ and Ag ₂ SO ₄ a between the solubilities of these can be correctly a) $sAgBrO_3 > sAg_2SO_4$ b) $sAgBrO_3 < sAg_2SO_4$ 808. The conjugate acid of HPO ₄ ²⁻ is: a) H ₂ PO ₄ b) PO ₄ ³⁻	c) Endothermic e equilibrium, ated to the pressure at equilib c) $\alpha \propto \frac{1}{P^2}$ At this temperature concentra c) $1.6 \times 10^{-4}M$ ergy change accompanying th c) Negative and large ibrium and at 300 K is 100 c) 100 atm ² is 3.2×10^{-11} . Its solubility c) 2×10^{-4} are 2×10^{-5} and 5.5×10^{-5} m represented as: 4 c) $sAgBrO_3 = sAg_2SO_4$ c) H_3PO_4	d) Spontaneous rium by: d) $\alpha \propto \frac{1}{p^4}$ tion of M ²⁺ ion in d) $4 \times 10^{-6}M$ he reaction is: d) Negative and small atm then what will be the d) 200 atm ² y (in mol/L) is d) 4×10^{-4} respectively, the relationship d) $sAgBrO_3 \equiv sAg_2SO_4$ d) H ₃ PO ₃

a) The nature of the anion b) The nature of the cation c) The nature of both the ions d) The nature of the solvent 810. The resultant pH of a solution on mixing 200 mL of an aqueous solution of HCl (pH = 2.0) is mixed with 300 mL of an aqueous solution of NaOH (pH = 12.0) is: a) 11.0310 b) 11.3010 c) 10.000 d) None of these 811. If ΔG^0 for the reaction given below is 1.7 kJ; the equilibrium constant of the reaction, $2HI(g) \rightleftharpoons H_2(g) +$ $I_2(g)$ at 25°C is : a) 24.0 b) 3.9 c) 2.0 d) 0.5 812. In a reaction, $A + B \rightleftharpoons C + D$, the concentrations of A, B, C and D (in mol/L) are 0.5, 0.8, 0.4 and 1.0 respectively. The equilibrium constant is a) 0.1 b) 1.0 c) 0.5 813. The solvent which is neither proton donor nor proton acceptor is called: a) Amphoteric b) Neutral c) Aprotic d) Protonic 814. The equilibrium constant of a reaction is 20.0. At equilibrium, the rate constant of forward reaction is 10.0. The rate constant for backward reaction is : d) 200.0 c) 10.0 a) 0.5 b) 2.0 815. For the reversible reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ at 500°C, the value of K_p is 1.44×10^{-5} . When partial pressure is measured in atmospheres. The corresponding value of K_c with concentration in mol L⁻¹ is a) $1.44 \times 10^{-5} / (0.082 \times 773)^{-3}$ b) $1.44 \times 10^{-5} / (0.082 \times 500)^{-2}$ c) $1.44 \times 10^{-5} / (8.314 \times 773)^2$ d) $1.44 \times 10^{-5} / (0.082 \times 773)^{-2}$ 816. The pH of the solution produced when an aqueous solution of strong acid pH 5 is mixed with equal volume of an aqueous solution of strong acid of pH 3 is: a) 3.3 c) 4.5 b) 3.5 d) 4.0 817. Given, $HF + H_2O \xrightarrow{K_a} H_2O^+ + F^-$. $F^- + H_2 O \xrightarrow{K_b} HF + OH^-$ Which relation is correct? d) $\frac{K_a}{K_b} = K_w$ c) $K_a \times K_b = K_w$ a) $K_b = K_w$ 818. The pH of a solution is 4. The hydrogen ion concentration of the solution in mol/L is b) 10⁻⁴ d) 10⁻² a) 9.5 c) 10⁴ 819. Which one of the following statements is not true? a) The conjugate base of $H_2PO_4^-$ is HPO_4^{2-} b) pH + pOH = 14 for all aqueous solutions c) The pH of 1×10^{-8} M HCl is 8 96,500 C of electricity when passed through a $CuSO_4$ solution deposits 1 g equivalent of copper at the d) cathode 820. The correct representation for the solubility product constant of Ag_2CrO_4 is: a) $[Ag^+]^2 [CrO_4^{2-}]$ b) $[Ag^+][CrO_4^{2-}]$ c) $[2Ag^+][CrO_4^{2-}]$ d) $[2Ag^+]^2 [CrO_4^{2-}]$ 821. For a reversible reaction, the rate constant for the forward reaction is 2.38×10^{-4} and for the backward reaction is 8.15×10^{-5} . The K_c for the reaction is : a) 0.342 b) 2.92 c) 0.292 d) 3.42 822. The pH of a soft drink is 3.82. Its H^+ ion concentration will be: a) 1.96×10^{-2} mol/litre b) 1.96×10^{-3} mol/litre c) 1.5×10^{-4} mol/litre d) 1.96×10^{-1} mol/litre 823. The decreasing order of strength of the bases, OH^- , NH_2^- , $H-C \equiv C^-$ and $CH_3-CH_2^-$, is: a) $CH_3 - CH_2^- > NH_2^- > H - C \equiv C^- > OH^-$

b) $H-C \equiv C^- > CH_3 - CH_2^- > NH_2^- > OH_2^-$	I-	
c) $OH^- > NH_2^- > H - C \equiv C^- > CH_3 - CH_3$	I_2^-	
d) $NH_2^- > H - C \equiv C^- > OH^- > CH_3 - CH_3$	- 1 ₂	
824. The metallic sulphide not precipitated	if H_2S gas is passed through	an aqueous solution containing
cuprous chloride, bismuth chloride, mercu	uric chloride and sodium chlor	ide is:
a) CuS b) Bi_2SO_2	c) HgS	d) Na ₂ S
825 , pH of 1 x 10^{-8} M nitric acid solution will l	be	2) 1.220
a) 6 b) 6.96	c) 796	9 (J
826 Indicate the correct answer out of the follo	owing for the reaction	
$NH_{c}C] + H_{a}O \Rightarrow NH_{c}OH + HC]$	owing for the reaction,	
a) The reaction is retarded by the addition	n of KOH	
b) The reaction is favoured by the addition	n of NH OH	
c) The reaction is retarded by the addition	n of hvdrogen ion	
d) None of the above	n of nyur ogen fon	
927 The salt of strong acid and weak base (Ee)		
o27. The salt of strong actu and weak base (rec	(12) 15	d) Nana of these
a) Actuic D) Basic	C) Neutrai	d) None of these
828. For the following reaction in gaseous p	onase	
$CO + \frac{1}{2}O_2 \rightarrow CO_2$		
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
K_c/K_p is		,
a) $(RT)^{1/2}$		
b) $(RT)^{-1/2}$		
(RT)		
d) $(RT)^{-1}$		
829 For a reaction if $K > K$ the forward r	vanction is favoured by	
$K_p > K_c$ the following reaction in $K_p > K_c$ the following r		
a) Low pressure b) High pressu	c) High temperat	ure d) Low temperature
830. What will be the pH value of 0.05M Ba	(OH) ₂ solution?	
a) 12 b) 13	c) 1	d) 12.96
831. pH of a saturated solution of $Ba(OH)_2$ is 1	2. The value of solubility produ	act (K_{sp}) of Ba $(OH)_2$ is:
a) 4.0×10^{-6} b) 5.0×10^{-6}	c) 3.3×10^{-7}	d) 5.0×10^{-7}
832. The conjugate base of H_2SO_4 is		
a) SO_4^{2-} b) HSO_4^{-}	c) HSO_4^+	d) H₃SO₄
833. For the reaction, $PCl_2(g) + Cl_2(g) \rightleftharpoons PCl_{\epsilon}(g)$	(g), the value of K_c at 250°C is 2	26. The value of K_n at this
temperature will be		p i i i i i i i i i i i i i i i i i i i
a) 0.41 b) 0.51	c) 0.61	d) 0 71
834 The nH of a 10^{-10} M NaOH solution is nea	rest to	
a) 10 b) 7	c) 4	d) –10
835 Which can act as huffer?	cj i	uj 10
$_{2}$ NH, CI \pm NH, OH		
b) $CH_1COOH + CH_1COON_2$		
$c_1 40 \text{ mL of } 0.1 \text{ M NaCN} \pm 20 \text{ mL of } 0.1 \text{ M}$	HCI	
d) All of the above	lici	
926 The pH indicators are		
a) Salta of strong agids and strong bases	b) Salta of woals as	id and weak bacas
a) Saits of strong actus and strong bases	d) Fither strong as	id or strong bases
027 Dhonolnhthaloin is a	uj Enner strong ac	וע טו או טווצ שמשבש
a) Weak acid b) Weak been	a) Strong agid	d) Strong base
a) Weak actu DJ Weak Dase	cj su olig aciu	uj su olig base
\sim 1 II = Solubility product of Hg ₂ I ₂ IS equa	11 LU ג דיז 2 זיז 12	J) FTT 2 JFT 12
a) [Hg ²][I] b) [Hg ²][I]	c) [Hg ₂][I] ²	а) [Hg²][I]²

839. The rate at which a s	ubstance reacts depends	on its	
a) Atomic weight	b) Atomic number	c) Molecular weight	d) Active mass
840. The compound HCl be	naves as in the reaction,		
$\mathrm{HCl} + \mathrm{HF} \longrightarrow \mathrm{H}_2^+\mathrm{Cl} + \mathrm{F}$	_		
a) Strong acid	b) Strong base	c) Weak acid	d) Weak base
841. At temperature <i>T</i> , a co	ompound AB_2 (g) dissociate	d according to the reaction	$12AB_2(g) \rightleftharpoons 2AB(g) + B_2(g)$
with a degree of disso	ciation <i>x</i> , which is small con	npared with unity. The exp	pression for K_p , in terms of x
and the total pressure	<i>P</i> , is:	2	
a) $\frac{Px^3}{m}$	b) $\frac{Px^2}{2}$	c) $\frac{Px^{3}}{2}$	d) $\frac{Px^2}{2}$
2	3 	3	2
o42. Which of the followi	ig is not a Lewis aciu?	-) 50	
a) BF_3	DJ AICI ₃	CJ SU ₂	a) $H_2 U$
843. The pH of a 0.1 molar (2) 1 × 10 ⁻³	solution of the acid HQ is 3.	I ne value of the ionization 1×10^{-7}	constant, K_a of this aid is:
$a_{J} = 1 \times 10^{-2}$	DJ I X IU f Und group gations only the	CJIXIU colution is made asidis so	d) 3 X 10 -
a) The sulphide ion co	n contration may increase	solution is made acture so	that.
b) The sulphide ion co	ncentration may decrease	C	
c) The H ⁺ ion concent	ration may increase		>
d) The cations concent	ration may increase		
845. Let the solubility of an	aqueous solution of Mg(OH)	P_2 be X then its K_{sp} is	
a) $4x^3$	b) 108 <i>x</i> ⁵	c) $27x^4$	d) 9 <i>x</i>
846. In the equilibrium,2S	$O_2(g) + O_2(g) \rightleftharpoons 2SO_3(g), th$	ne partial pressure of SO_2 ,	O_2 and SO_3 are 0.662, 0.101
and 0.331 atm respe	ctively. What should be the	e partial pressure of oxy	gen so that the equilibrium
concentration of SO ₂ a	nd SO ₃ are equal?	$\mathbf{\mathcal{X}}$	
a) 0.4 atm	b) 1.0 atm	c) 0.8 atm	d) 0.25 atm
847. In the following read	tion, C	Y	
$AgCl + KI \rightleftharpoons KCl + A$	gl		
as KI is added, the eo	uilibrium is shifted towar	ds right giving more AgI	precipitate. because
a) Both AgCl and Agl	are sparingly soluble		
b) The K _{sp} of AgI is le	ower than K _{sp} of AgCl		
c) The K_{sp} of AgI is h	gher than K _{sp} of AgCl		
d) Both AgCl and Ag	have same solubility proc	luct	
848. Which of the followi	ng is a Lewis base?		
a) NaOH	b) NH ₂	c) BCl ₂	d) All of these
849. The ionisation constant	it of NH ⁺ in water is 5.6 \times 1	0^{-10} at 25°C. The rate con	stant for the reaction of NH ⁺
and OH ⁻ to form NH ₂	and H ₂ O at 25°C is 3.4×10^{1}	0 L mol ⁻¹ s ⁻¹ . The rate cons	stant for proton transfer from
water to NH ₃ is:	Σ		r
a) $6.07 \times 10^5 \text{ s}^{-1}$	b) $6.07 \times 10^{-10} \text{ s}^{-1}$	c) $6.07 \times 10^{-5} \text{ s}^{-1}$	d) $6.07 \times 10^{10} \text{ s}^{-1}$
850. K_{sn} for AgCl in water a	t 25°C is 1.8×10^{-10} . If 10^{-5}	mol of Ag ⁺ ions are added	to this solution. <i>K</i> _{sp} will be:
a) 1.8×10^{-16}	b) 1.8 × 10 ⁻¹⁰	c) 1.8×10^{-5}	d) None of these
851. The reaction which pr	oceeds in the forward direct	ion is :	
a) $Fe_2O_3 + 6HCl = 2F$	$eCl_3 + 3H_2O$		
b) $SnCl_4 + Hg_2Cl_2 = S$			
	$nCl_2 + 2HgCl_2$		
c) $NH_3 + H_2O + NaCl$	$nCl_2 + 2HgCl_2$ = NH ₄ Cl + NaOH		
c) $NH_3 + H_2O + NaCld) 2CuI + I_2 + 4K^+ =$	$nCl_2 + 2HgCl_2$ = NH ₄ Cl + NaOH 2Cu ²⁺ + 3KI		
c) $NH_3 + H_2O + NaCl$ d) $2CuI + I_2 + 4K^+ =$ 852. The chemical equilit	nCl ₂ + 2HgCl ₂ = NH ₄ Cl + NaOH 2Cu ²⁺ + 3KI rium of a reversible react	ion is not influenced by	
c) $NH_3 + H_2O + NaCl$ d) $2CuI + I_2 + 4K^+ =$ 852. The chemical equilib a) Pressure	nCl ₂ + 2HgCl ₂ = NH ₄ Cl + NaOH 2Cu ²⁺ + 3KI rium of a reversible react	ion is not influenced by b) Catalyst	

853. A 0.01 M ammo	nia solution is 5 % ionised,	, its pH will be		
a) 11.80	b) 10.69	c) 7.22	d) 12.24	
854. For the decompo	sition reaction	-	-	
$NH_2COONH_4(s)$	\Rightarrow 2NH ₃ (g) + CO ₂ (g)			
The $K_p = 2.9 \times 1$	0^{-5} atm ³ . The total pressure	of gases at equilibrium whe	n 1 mole of $NH_2COONH_4(g)$ was	
taken to start wit	h would be			
a) 0.0766 atm	b) 0.0582 atm	c) 0.0388 atm	d) 0.0194 atm	
855. 3 moles of <i>A</i> and	d 4 moles of <i>B</i> are mixed to	gether and allowed to co	me into equilibrium according	
to the following	reaction.	0	1	
3A(g) + 4i	$B(g) \rightleftharpoons 2C(g) + 3D(g)$			
When equilibri	im is reached there is 1 m	ole of C		
The equilibrium	extent of the reaction is			
1	1	1	A	
a) $\frac{1}{4}$	b) $\frac{1}{3}$	c) $\frac{1}{2}$	d) 1	
856. For the reaction	$C_{2}H_{4} + H_{2} \rightleftharpoons C_{2}H_{4}$	L		
The correct rela	tion is		\sim	
K = K	K = K [RT]	c) $K = K [RT]^{-2}$	d) $K = K [RT]^{-1}$	
$a_j R_p = R_c$	$U_{j} R_{p} = R_{c} [R_{l}]$	$C_j K_p = K_c [K_l]$	$u_j n_p = n_c [n_j]$	
a $100 mL of (M)$	(10) $H(1 \pm 100 \text{ mL of } (M/10))$	NoOH		
h) 55 mL of $(M/1)$	($M/10$) HCl ± 45 mL of ($M/10$) N			
c) 10 mL of $(M/1)$	(0) HCl + 90 mL of $(M/10)$ N	аон		
d) 75 mL of $(M/5)$	(i) HCl + 25 mL of $(M/5)$ NaO	Н		
858. Which of the fol	lowing is a Lewis acid?			
a) Cl ⁻	b) H_2O^+	C) PF	$H_{\rm C}$	
859. A buffer solution	can be prepared from a mixt	ure of	a) 0 <u>2</u> 115011	
(i)sodium acetate	e and acetic acid in water			
(ii) sodium aceta	te and hydrochloric acid in w	ater		
(iii) ammonia and	d ammonium chloride in wat	er		
(iv) ammonia and	d sodium hydroxide in water			
a) (i), (ii)	b) (ii), (iii)	c) (iii), (iv)	d) (i), (iii)	
860. An equilibrium r	nixture of the reaction, 2NO	$(g) + O_2(g) \rightleftharpoons 2NO_2(g) \text{ con}$	ntains 0.120 mole of NO ₂ , 0.080	
mole of NO and 0	.640 mole of 0_2 in a 4 litre fl	ask at constant temperatur	e. The value of K_c for the reaction	
at this temperatu	re is:			
a) 14	b) 24	c) 7	d) 28	
861. For the reaction				
$N_2(g) + O_2(g) =$	\Rightarrow 2NO(g), the value of K_c a	at 800°C is 0.1. When the	equilibrium concentration of	
both the reactar	nts is 0.5 mole, what is the	value of K_p at the same te	emperature?	
a) 0.5	b) 0.1	c) 0.01	d) 0.025	
862. The equilibrium	l,			
$P_4(s) + 6Cl_2(g)$	\Rightarrow 4PCl ₃ (g) attained by mi	xing equal moles of P_4 an	d Cl ₂ in a evacuated vessel.	
Then, at equilib	rium,		-	
a) $[C]_{2}] > [PC]_{2}$	b) $[Cl_2] > [P_1]$	c) $[P_4] > [C]_2$	d) $[PC]_{2} > [P_{4}]$	
863. The vield of prod	uct in the reaction $A_2(g) + 2$	$B(g) \rightleftharpoons C(g) + 0$ kI would b	be high at	
a) High temperat	ure and high pressure	b) High temperature	e and low pressure	
c) Low temperat	ure and high pressure	d) Low temperature	and low pressure	
864. According to law	of mass action, rate of a chen	nical reaction is proportiona	al to	
a) Molar concent	ration of reactants	b) Concentration of	reactants	
c) Concentration of products		d) Molar concentrat	d) Molar concentration of products	

865. If NaOH is added to a solution of acetic acid:

a) H⁺ ions increases b) pH decreases c) $[C_2H_3O_2]^-$ increases d) $[HC_2H_3O_2]$ increases 866. What is the effect of having the pressure by doubling the volume on the following system at 500°C?

- $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
- a) Shift to reactant side
- c) Liquefaction of HI

- b) Shift to product formation d) No effect

867. The solubility product (K_{sp}) of the following compounds are given at 25°C

Compound	K _{sp}
AgCl	1.1 10 ¹⁰
AgI	1.0 10 ¹⁶
PbCrO ₄	4.0 10 ¹⁴
Ag_2CO_3	8.0 10 ¹²

The most soluble and least soluble compounds are

b) -10

a) AgCl and PbCrO₄ b) AgI and Ag_2CO_3 c) AgCl and Ag_2CO_3 d) Ag₂CO₃ and AgI 868. The pH of 10^{-10} M NaOH solution is nearest to

a) –4

- 869. The conjugate base of $H_2PO_4^-$ is a) H_3PO_4 b) $P_2 O_5$
- c) PO³

c) 4

d) HPO_4^{2-}

d) 7

- 870. The ionization constant of ammonium hydroxide is 1.77×10^{-1} ⁻⁵ at 298 K. Hydrolysis constant of ammonium chloride is: b) 5.65×10^{-10}
- c) 6.50×10^{-12} a) 5.65×10^{-12} d) 5.65×10^{-13} 871.1 *M* solution of an acid has a pH of 5. Which of the following is the most reasonable explanation for this acid?

a) The acid is too dilute

b) It is a strong acid

c) It reacts with water to produce a high concentration of hydronium ions

d) It is a weak acid

872. The solubility product K_{sp} , of a sparingly soluble salt AgIO₃ is 1.0×10^{-8} at a given temperature. What is the mass of $AgIO_3$ (mol. Mass = 283) contained in 100 mL solution at this temperature is:

a) 1.0×10^{-4} g b) 28.3×10^{-2} g c) 2.83×10^{-3} g d) 1.0×10^{-7} g 873. The pH of a buffer solution containing equal molal concentration of a weak base and its chloride (K_b for weak base = 2×10^{-5}) is

b) 9 d) 9.3 a) 5 c) 4.7

874. In qualitative analysis, in III group NH₄Cl is added before NH₄OH because

- a) To increase the concentration of NH⁺₄ ions b) To increase the concentration of Cl⁻ ions
- c) To reduce the concentration of OH⁻ ions d) To increase the concentration of OH⁻ ions 875. The K_{sp} for Cr(OH)₃ is 1.6 10³⁰. The molar solubility of this compound in water is

c) $\sqrt[4]{1.6 \ 10^{30}/27}$ a) $\sqrt[2]{1.6 \ 10^{30}}$ b) $\sqrt[4]{1.6 \ 10^{30}}$ d) 1.6 $10^{30}/27$

876. ΔG^0 for the reaction $X + Y \rightleftharpoons Z$ is -4.606 kcal. The equilibrium constant for the reaction at 227°C is : b) 10 a) 100 c) 2 d) 0.01

877. For the reaction, $2A(g) \rightleftharpoons 3C(g) + D(s)$, the value of K_c will be equal to b) K_p/RT a) $K_p(RT)$

c) = K_p

d) None of these

- 878. Reaction between barium chloride and sodium sulphate goes to completion because: a) Barium sulphate is almost insoluble
 - b) The reaction is reversible
 - c) The solubility of barium chloride decreases

d) None of the above

879. Which of the follow	ving cannot act as a Lewis	s of Bronsted acid?	
a) BF ₃	b) AlCl ₃	c) SnCl ₄	d) CCl ₄
880. Consider the read	ction,		
$NO_2 \rightleftharpoons \frac{1}{2}N_2$	$_2 + 0_2, K_1; N_2 0_4 \rightleftharpoons 2N0$	2, K2	
Give the equilibri	um constant for the for	mation of N_2O_4 from N_2 a	and O ₂ .
a) $\frac{1}{K_1^2} + \frac{1}{K_2}$	b) $\frac{1}{K_1 K_2}$	c) $\sqrt{\frac{1}{K_1K_2}}$	d) $\frac{K_2}{K_1}$
881. A weak monobas	ic acid is 1% ionised in	0.1 M solution at 25°C. Th	ne percentage of ionisation in its
0.025 M solution	is		
a) 1	b) 2	c) 3	d) 4
882. In $K_p = K_c [RT]^{\Delta n}$,	Δn may have:		
a) +ve values			
b) –ve values			
c) Integer of fraction	onal values		
d) Either of the abo	ove	å	
383.1 he conjugate acid	OFH IONIS:	a) 04-	4) H 0
884 The addition of HC	l does not suppresses the	ionisation of	u) 1120
a) Acetic acid	b) Benzoic acid	c) H ₂ S	d) H₂SO₄
885. A colourless solution	on liberates CO_2 gas when	n added to a metal bicarbon	ate. The solution is:
a) Basic	b) Acidic	c) Amphoteric	d) Neutral
886. Which one of the	following statement is	not true?	
a) The conjugate	base of $H_2PO_4^-$ is HPO_4^{2-}		
b) $pH + pOH = 1$	4 for all aqueous soluti	ons	
c) The pH of 1×1	10^{-8} M HCl is 8	$\mathbf{\mathcal{T}}$	
96500 C of ele	ctricity when passed th	rough a CuSO ₄ solution d	eposit 1 g equivalent of copper
at the cathode			an the equilibrium is attained
400/ of it has has	I_5 is neated in a closed '	vessel of 2 L capacity. wn	en the equilibrium is attained
40% of it has bee	h) 0.266	eu. What is the Λ_c in more	d) 0 174
$a_{J} 0.552$	0) 0.200	UUIDD eat it's bailing point. On th	0.174
obo. A liquiu is ili equi	lindrium with its vapour	at it's boining point. On th	ne average, the molecules in two
a) Inter-molecula	r forces	h) Potential ener	°017
c) Kinetic energy	ii lorces	d) Total energy	gy
889 At equilibrium the	amount of HI in a 3 litre	vessel was 12.8 g Its equilib	rium concentration is ·
a) 4.267 <i>M</i>	b) 0.033 <i>M</i>	c) 0.1 <i>M</i>	d) 0.2 <i>M</i>
890. Which one of the	following salts give an	acidic solution in water?	,
a) CH ₃ COONa	b) NH₄Cl	c) NaCl	d) CH ₃ COONH ₄
891. For which reaction	does the equilibrium cor	istant depend on the units o	of concentration?
a) NO(g) $\rightleftharpoons \frac{1}{2}$ N ₂ (g	$(1) + \frac{1}{2}O_2(g)$		
b) $Zn(s) + Cu^{2+}(a)$	$q) \rightleftharpoons \operatorname{Cu}(s) + \operatorname{Zn}^{2+}(aq)$		
c) $C_2H_5OH(l) + CH$	$H_3COOH(l) \rightleftharpoons CH_3COOC_2$	$\mathrm{H}_{5}(l) + \mathrm{H}_{2}\mathrm{O}(l)$	
d) $COCl_2(g) \rightleftharpoons CO(g)$	$(g) + Cl_2(g)$	-	
892. The solubility pro	oduct of As_2S_3 is 2.8×10^{-10}	10^{-72} . What is the solubility	ity of As ₂ S ₃ ?
a) 1.92×10^{-15} n	nol/L	b) 1.72×10^{-15} m	mol/L
c) 2.3×10^{-16} m	ol/L	d) 1.65×10^{-36} s	mol/L

893. When CO_2 dissolves in	water, the following equilib	prium is established, CO_2 +	$2H_20 \rightleftharpoons H_30^+ + HCO_3^-$, for
which the equilibrium o	constant is 3.8 \times 10 ⁻⁷ and j	pH = 6.0. The ratio of [HCO]	$\frac{1}{3}$]/[CO ₂] is :
a) 3.8×10^{-18}	b) 3.8	c) 0.38	d) 13.8
894. The blood buffers are m	ost often involved in stabil	izing the pH in presence of	metabolically produced:
a) Acids	b) Bases	c) Salts	d) None of these
895. If concentration of N_2 , H	I_2 and NH_3 are 1, 2 and 3 re	espectively, their concentrat	tions at equilibrium will be:
$N_2 + 3H_2 \rightleftharpoons 2NH_3$			
a) $(1-x)$ $(2-3x)$	2b) $(1 - x/3)$ $(2 - x)$	2xc)(1-x)(2-x)	(3d)(1-x) $(2-3x)$ (
896. For the reaction, $N_2 + 3$	$\mathrm{SH}_2 \rightleftharpoons \mathrm{2NH}_3$ at 500°C, the v	value of K_p is 1.44 $ imes$ 10 ⁻⁵ . W	That will be the value of K_p at
low pressure where the	gases are behaving almost	ideally?	
	$(0.082 \times 773)^2$	1.44×10^{-5}	1.44×10^{-5}
a) 1.44×10^{-5}	b) × 1.4 × 10 ⁻	$(4 c) \times (0.082 \times 500)^2 \times (0.082 \times 500)^2$	d) $\times (0.082 \times 773)^3$
897. The range of pH in whic	h methyl orange works as i	ndicator:	
a) 3-4	b) 10-12	c) 8-10	d) 6-8
898. For the reaction : CO(g)	$+\frac{1}{2}O_2(g) \rightleftharpoons CO_2(g), K_p/K_q$; is:	X
a) <i>RT</i>	b) $(RT)^{-1}$	c) $(RT)^{-1/2}$	d) $(RT)^{1/2}$
899. K., of CuS Ag ₂ S and 1	HgS are 10^{-31} , 10^{-44} and	10^{-54} respectively. Select	the correct order for their
solubility in water.		10 100p00101, 50000	
a) $A\sigma_{-}S > H\sigma_{-}S > CuS$	b) $H\sigma S > Cu S > A\sigma_s S$	c) $Has > Aa < S > Cus$	d) $A\sigma_2 S > CuS > H\sigma S$
900 pH of a 0.0001 M HC	solution is		
2) 4 0	b) 2 0	0.60	d) 7 0
$a_{J} + 0$	0) 2.0	v_{i}	u) 7.0
	b) 0 E	1	
a) 0.05	b) 0.5	CJ I	u) 2
2) Red colour	h) Vellow colour	c) Pink colour	d) No colour
903 The $[OH^{-}]$ in 100 mL of	50.015 M HCl (aa) is:	c) i liik coloui	
a) $5 \times 10^{-12} M$	b) $3 \times 10^{-10} M$	c) 6.7 × 10 ⁻¹³ M	d) 2.0 × 10 ⁻⁹ M
904 For an equilibrium re-	b) 5×10 M	\sim 1 then the reaction factor	$a_{12} a_{12} a_{13} a_{14} a_{15} a_{16} $
a) Packward	action in the value of $K_c \sim$	b) Forward	oured more towards
a) Dackwalu		d) Decetion will store	
c) Equilibrium will be		u) Reaction will stop	
905. K_c for $A + B \rightleftharpoons 3C$ is 2	0 at 25°C. If a 2 litre vessel	I contains 1,2 and 4 mole o	f A, B and C respectively, the
reaction at 25°C shall :			
a) Proceed from left to p	right		
b) Proceed from right to	Dieft		
c) Be at equilibrium			
d) Not occur		$r = \frac{1}{2} + $	
906. Solution prepared by di	ssolving equal number of n	$1010 \text{ of } \text{HOU}(\text{K}_a = 3.2 \times 10)$	^o) and NaOCI is a buller of
$\mathbf{p}\mathbf{n}$	h) 3 2	c) 7 5	d) 4.8
907 An increase in the temp	erature of an equilibrium s	vstem:	u) 4.0
a) Favours the evother	nic reaction	ystem.	
b) Favours the endother	rmic reaction		
c) Favours both the exo	thermic and endothermic r	reactions	
d) Favours neither the e	exothermic nor endothermi	c reactions	
908. Which of these is a Le	wis acid?		
a) AlCl _a	h) NCla	c) HCl	d) $R \cap R$
909 The nH of a colution is /	L The hydrogen ion concer	tration of the solution if n ^U	is to be increased to 5 is
a) Halved	. The nyarogen fon concent	a addition of the solution in pli	is to be mereased to J 15.

b) Doubled			
c) Decreased by 10 times	;		
d) Decreased to half of its	s original value of concentra	ation	
910. The oxo-acid of anhydrid	$e P_2 O_5$ is:		
a) H₃PO₄	b) $H_4P_2O_7$	c) HPO3	d) All of these
911. In a saturated solution	of the sparingly soluble s	strong electrolyte AgIO ₂ (molecular mass=283)
the equilibrium which	sets in is		
$AgIO_{1}(s) \rightarrow A$	$a^{+}(aa) \pm 10^{-}(aa)$		
$\operatorname{AglO}_3(3) \leftarrow \operatorname{AglO}_3(3)$	$g(uq) + 10_3(uq)$	a given tomproture is 1 (10^{-8} what is the
	L_{sp} of Agroad		J×10, what is the
mass of $AgIO_3$ containe	ed in 100 mL of its satura	ted solution?	
a) 28.3×10^{-2} g	b) 2.83×10^{-3} g	c) 1.0×10^{-7} g	d) 1.0×10^{-4} g
912. H ₃ BO ₃ is:			
a) Monobasic and weak	b) Monobasic and weak	c) Monobasic and strong	d) Tribasic and weak
Lewis acid	Bronsted acid	Lewis acid	Bronsted acid
913. All Lewis acids are not ne	ecessarily:		
a) Proton donor	b) Bronsted acids	c) Arrhenius acids	d) All of these
914. In the reaction,			
$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$) . Which of the following	; is correct?	
a) $K_p = K_c$	b) $K_p > K_c$	c) $K_p < K_c$	d) $K_p \ge K_c$
915. Which of the following is	most soluble in water?		
a) Bi_2S_3 ($K_{sp} = 10^{-70}$)	b) MnS($K_{sp} = 7 \times 10^{-16}$)) c) $CuS(K_{sp} = 8 \times 10^{-37})$	d) $Ag_2S(K_{sp} = 6 \times 10^{-51}).$
916. The equilibrium consta	nt for the reaction		
$SO_{2}(a) \Rightarrow SO_{2}(a) =$	$+\frac{1}{2}$ $\Omega_{-}(\sigma)$	G.Y	
$50_3(g) \leftarrow 50_2(g)$			
$rs K_c = 4.9 \times 10^{-2}$. The	value of K_c for the react	10n	
$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_2(g)$	$J_3(g)$ will be		
a) 416	b) 2.40×10^{-3}	c) 9.8×10^{-2}	d) 4.9×10^{-2}
917. pK_a or a weak acid is d	efined as		
a) log K_a	b) $\frac{1}{100 K}$	c) $\log \frac{1}{v}$	d) $-\log \frac{1}{\kappa}$
918 In the equilibrium $AB \rightarrow$	$A \perp R$ if the equilibrium c	π_a	Λ_a
concentration of <i>B</i> would	hecome		a, the equilibrium
a) Half	h) Twice	1	1
	by I will	c) $\frac{-}{4}$ th	d) $\frac{-}{8}$ th
919. Two moles of PCl ₅ wer	e heated in a closed vess	el of 2 L. At equilibrium 4	0% of PCl ₅ is dissociated
into PCl_2 and Cl_2 . The v	alue of equilibrium cons	tant is	0
a) 0.53	b) 0.267	c) 2.63	d) 5.3
920. When NaOH is dissolved	in water, heat is evolved. If	the temperature is raised.	the solubility of NaOH:
a) Increases		the temperature is rubed,	the solubility of Nuori.
h) Decreases			
c) Remains the same			
d) Cannot be predicted			
921. In which of the following	equilibrium, change in volu	ume of the system does not	alter the number of moles?
a) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$	(g)		
b) $PCl_{r}(g) \rightleftharpoons PCl_{2}(g) + C$	l ₂ (g)		
c) $N_2(g) + 3H_2(g) \rightleftharpoons 2N$	$H_2(g)$		
d) SOCl ₂ (g) \rightleftharpoons SO ₂ (g) + ($\operatorname{Sl}_2(g)$		
922. Conjugate base of HSO ₇ i	S		
a) SO ⁴	b) H ₂ SO ₄	c) $H_3SO_4^+$	d) None of these
923. Which favours the backw	ard reaction in a chemical	equilibrium?	-

a) Increasing the co	ncentration of one of the read	ctants	
b) Removal of at leas	st one of the products at regu	ılar intervals	
c) Increasing the co	ncentration of one or more o	f the products	
d) None of the above	2		
924. A weak acid $HX(K_a)$	$= 1 \times 10^{-5}$) on reaction with	n NaOH gives NaX. For 0.1	<i>M</i> aqueous solution of Na <i>X</i> , the
% hydrolysis is:			10/
a) 0.001%	b) 0.01%	c) 0.15%	d) 1%
925. For the reaction: 2N	$O_2(g) \rightleftharpoons 2NO(g) + O_2(g); I$	$K_c = 1.8 \times 10^{\circ} \text{ at } 184^{\circ}\text{C}$	and
R = 0.083 litre atm	K fmol f. when K_p and K_c a	are compared at 184°C, it is	s round that :
a) $K_p > K_c$	b) $K_p < K_c$	c) $K_p = K_c$	d) $K_p \ge K_c$
926. Mg(OH)Cl is an exam	nple of:		
a) Acidic salt	b) Basic salt	c) Neutral salt	d) Amphoteric salt
927. The degree of dissoc	ciation of a weak acid is 1.34	% at 0.1 <i>M</i> concentration.	Its dissociation constant is:
$a_{\rm J} 8 \times 10^{-9}$	$D J 1./9 \times 10^{-5}$	$CJ 0.182 \times 10^{-5}$	a) 8 x 10 ×
928. In the reaction HCI -	$H_2 0 \rightleftharpoons H_3 0^+ + Cl$	h) Cl=is the series set	
a) $H_2 O$ is the conjug	ate base of HCI acid	d) U O ⁺ is the conjugate	base of HCl
C) CI IS the conjugat	te acid of H_2 Obase	a) H_3O^{-1} is the conjugation	ate base of HCI
^{929.} Slope and intercepts	s of the plots log $_{10}Kvs{T}are$	given respectively by :	
a) $-\frac{\Delta H^{\circ}}{\Delta S^{\circ}}$	h) $\frac{-\Delta H^{\circ}}{\Delta S^{\circ}}$	c) $-\Delta H^{\circ}$ ΔS°	d) ΔH° $-\Delta S^{\circ}$
R' R	2.303 <i>R</i> '2.303	2.303R '2.303R	2.303 '2.303 <i>R</i>
930. On adding 0.1 M sc	olution each of [Ag ⁺], [Ba ²⁻	+], [Ca ²⁺]in a Na ₂ SO ₄ sol	ution, species first
precipitated is			
$\left[K_{\rm sp} {\rm BaSO}_4 = 10^{-1} \right]$	$K_{\rm sp} {\rm CaSO}_4 = 10^{-6}$, $K_{\rm sp} K_{\rm sp}$	$\operatorname{AgSO}_4 = 10^{-5}]$	
a) Ag ₂ SO ₄	b) BaSO ₄	c) CaSO ₄	d) All of these
931. <i>K</i> for the synthesis of	of HI is 50. <i>K</i> for the dissociat	tion of HI is	
a) 0.2	b) 0.02	c) 0.4	d) 0.04
932. Which of the followi	ng factors will favour the rev	verse reaction in a chemica	l equilibrium?
a) Increase in the co	ncentration of one of the rea	ctants	
b) Increase in the co	ncentration of one or more p	products	
c) Removal of at leas	st one of the product at regul	lar time intervals	
d) None of the above	e		
933. The anhydride of HN	NO ₃ is:		
a) P_2O_5	b) N ₂ O ₃	c) NO	d) N ₂ O ₅
934. According to Le-Ch	natelier principle, adding h	eat a solid and liquid in	equilibrium will cause the
a) Amount of solid	to decrease	b) Amount of liquid	to decrease
c) Temperature to	rise	d) Temperature to f	fall
935. What is the conjug	ate base of OH ⁻ ?		
a) 0 ²⁻	b) 0 ⁻	c) H ₂ 0	d) 0_2
936. The solubility of Al(OH) ₃ is s' mol per litre, the s	olubility product of Al(OH	$)_3$ is:
a) s ³	b) 27 <i>s</i> ⁴	c) s^{2}	d) $4s^2$
937. The pH of 0.1 M so	lution of the following salt	s increases in the order	
a) NaCl < NH₄Cl <	:NaCN < HCl	b) HCl $< NH_4$ Cl $< N$	NaCl < NaCN
c) NaCN < NH₄Cl ·	< NaCl < HCl	d) HCl $< NaCl < Nacl$	$aCN < NH_{4}Cl$
938. For the Haber's proc	cess for the formation of NH ₂	at 298 K is :	T
$N_2 + 3F$	$H_2 \rightleftharpoons 2NH_3; \Delta H = -460 \text{ kI}$	-	
Which of the followi	ng is correct?		
The condition for	equilibrium is $G_{N_2} + 3G_{H_2} =$	= 2G _{NH3} , where <i>G</i> is Gibbs	energy per mole of gaseous
aj species measured	l at that partial pressure	č	
Which of the followi The condition for a) species measured	ng is correct? equilibrium is G _{N2} + 3G _{H2} = l at that partial pressure	= 2G _{NH3} , where <i>G</i> is Gibbs	energy per mole of gaseous

- On addition N₂, the equilibrium will shift to forward direction because according to II law of
- b) thermodynamics the entropy must decrease in the direction of spontaneous reaction.
- c) The catalyst will increase the rate of forward reaction by 2 times and that of backward reaction by 1.5 times
- d) Name of the above
- 939. Consider the reversible reaction,

 $HCN(aq) \rightleftharpoons H^+(aq) + CN^-(aq)$ At equilibrium, the addition of $CN^{-}(aq)$ would: a) Reduce HCN(aq) concentration b) Decrease the $H^+(aq)$ ion concentration c) Increase the equilibrium constant d) Decrease the equilibrium constant 940. The solubility product of iron (III) hydroxide is 1.6×10^{-39} . If X is the solubility of iron (III) hydroxide, which one of the following expression can be used to calculate X? a) $K_{sn} = X^4$ b) $K_{sn} = 9X^4$ c) $K_{sp} = 27X^3$ d) $K_{sn} = 27X^4$ 941. Baking soda is a/an: c) Complex salt a) Basic salt b) Double salt d) Acidic salt 942. An aqueous solution of sodium carbonate has a pH greater than 7 because a) It contains more carbonate ions than H₂O molecules b) Contains more hydroxide ions than carbonate ions c) Na⁺ ions react with water d) Carbonate ions react with H_2O 943. The pH of a solution obtained by mixing 10 mL of 0.1 *M* HCl and 40 mL of 0.2 *M* H₂SO₄ is: a) 1.4865 b) 0.4865 c) 0.4685 d) 3 944. Just before a reversible reaction attains equilibrium it is found that: a) The velocity of both forward reaction and backward reaction is also increasing b) The velocity of the forward reaction is decreasing and that of backward reaction in increasing c) The velocity of both forward and backward reactions is decreasing d) All of the above 945. How many mole of HCl are required to prepare one litre of buffer solution (containing NaCN + HCl) of pH 8.5 using 0.01 g formula weight of NaCN ($K_{\text{HCN}} = 4.1 \times 10^{-10}$)? d) 8.85×10^{-2} a) 8.85×10^{-3} b) 8.75×10^{-2} c) 8.85×10^{-4} 946. For the reaction A + B = 3C at 25°C, a 3 litre vessel contains 1, 2, 4 mole of A, B and C respectively. If K_c for the reaction is 10, the reaction will proceed in : a) Forward direction b) Backward direction c) In either direction d) In equilibrium 947. What is the pH of a 1*M*CH₃COONa solution? K_a of acetic acid = 1.8×10^{-5} , $K_w = 10^{-14}$ mol²litre⁻²: a) 2.4 b) 3.6 c) 4.8 d) 9.4 948. Formaldehyde polymerizes to form glucose according to the reaction, $6 \text{ HCHO} \rightleftharpoons C_6 \text{H}_{12} \text{O}_6$ The theoretically computed equilibrium constant for this reaction is found to be 6×10^{22} . If 1 M solution of glucose dissociates according to the above equilibrium, the concentration of formaldehyde in the solution will be a) 1.6×10^{-2} M b) 1.6×10^{-4} M c) 1.6×10^{-6} M d) 1.6×10^{-8} M 949. The polyprotic acid is: a) HCl b) HClO₄ c) H_3PO_4 d) HNO_3

950. The solubility of Sb₂S₃ in water is 1.0×10^{-5} mol/L at 298 K. What will be its solubility product?

a) 108×10^{-25}	b) 1.0×10^{-25}	c) 144×10^{-25}	d) 126×10^{-24}
951. The pH of 1/1000	N KOH solution is:		
a) 10 ⁻¹¹	b) 3	c) 2	d) 11
952. Which acts both a	s Lowry Bronsted acid and bas	e?	
a) OH-	b) Na ₂ CO ₃	c) NH ₃	d) HSO ₄
953. By applying law	of mass action, the equilibri	um constant, <i>K</i> for the re	eaction
HA + H	$_20 \rightleftharpoons H_30^+ + A^-$, is given as	5	
$HA][H_2]$	0] $[H_30^+][A^-]$	$[H_30^+][H_20]$	$\left[HA\right] \left[A^{-}\right]$
$H_{3} = \frac{1}{[H_{3}0^{+}][A]}$	$\frac{1}{1} \text{DJK} = \frac{1}{[\text{HA}][\text{H}_2\text{O}]}$	$CJ K = - [A^-][HA]$	$- \text{ u) } \mathbf{K} = \frac{1}{[\text{H}_2\text{O}][\text{H}_3\text{O}^+]}$
954. The Haber's proce	ess for the manufacture of amn	nonia is usually carried out	at about 500°C. If a
temperature of al	oout 250°C was used instead of	500°C:	
a) Ammonia woul	d not be formed at all		
b) The percentage	e of ammonia in the equilibriun	n mixture would be too low	
c) A catalyst woul	d be of no use at all at this tem	perature	
d) The rate of form	nation of ammonia would be to	po slow	\sim
955. The equilibrium of	constant for, $H_2(g) + CO_2(g) =$	= H ₂ O(g) + CO(g) is 1.80 a	$t \ 1000^{\circ}$ C. If 1.0 mole of H ₂ and
1.0 mole of CO_2 and	re placed in one litre flask, the f	final equilibrium concentra	ation of CO at 1000°C will be:
a) 0.573 <i>M</i>	b) 0.385 <i>M</i>	c) 5.73 <i>M</i>	d) 0.295 <i>M</i>
956. For a reaction H	$_2 + I_2 \rightleftharpoons 2HI$ at 721 K, the va	alue of equilibrium const	ant is 50. If 0.5 moles each of
H_2 and I_2 is adde	ed to the system the value of	equilibrium constant wi	ll be
a) 40	b) 60	c) 50	d) 30
957. Among BMe ₃ , BI	F_3 , BCl ₃ and B ₂ H ₆ which one	will be the best Lewis ac	id?
a) BCl ₃	b) BMe ₃	c) B_2H_6	d) BF3
958. Potassium ferro	cvanide is a		2
a) Mixed salt	b) Normal salt 🔿	c) Complex salt	d) Double salt
959. The pH of pure wa	ater at 25°C and 35°C are 7 and	6 respectively. The heat of	f formation of water from H^+
and OH^- is:		·····	
a) 84.55 kcal mol	-1		
b) –84.55 kcal mo	pl^{-1}		
c) 74.55 kcal mol	-1		
d) –74.55 kcal mo	pl^{-1}		
960. The pH of solution	n A, B, C, D are 9.5, 2.5, 3.5 and	5.5 respectively. The most	acidic solution is:
a) <i>A</i>	b) <i>B</i>	c) <i>C</i>	d) <i>D</i>
961. According to Deb	ve-Hückel theory of strong elec	trolytes, increase in condu	ctivity on dilution is due to:
a) Increase in nur	nber of ions		
b) Increase in the	mobility of ions		
c) Decrease in the	e number of ions		
d) Decrease in the	e mobility of ions		
962. If K_1 and K_2 are the	ie respective equilibrium const	tants for the two reactions,	
$XeF_6(g) + H_2O(g)$	\Rightarrow XeOF ₄ (g) + 2HF(g)		
$XeO_4(g) + XeF_6(g)$	$f_3 \rightleftharpoons XeOF_4(g) + XeO_3F_2(g)$		
The equilibrium c	onstant for the reaction,		
$XeO_4(g) + 2HF(g)$	$\Rightarrow XeO_3F_2(g) + H_2O(g)$ is:		
a) $K_1 K_2$	b) K_1/K_2^2	c) K_2/K_1	d) K_1/K_2
963. The solubility of a	saturated solution of calcium	tluoride is 2×10^{-4} moles	per litre. Its solubility product
ÌS:	$1200 40^{-9}$	$) 00 10^{-14}$	1222 + 42 = 12
a) 32×10^{-10}	b) 32 × 10 ^{-∞}	c) 32×10^{-14}	d) 32×10^{-12}
964. The equilibrium c	onstant $Br_2 \rightleftharpoons 2Br$ at 500 K an	d /00 K are 10^{-10} and 10^{-10}	respectively. The reaction is:
a) Endothermic	b) Exothermic	c) Fast	d) Slow

965. For the homogenous reaction, $4NH_3 + 5O_2 \rightleftharpoons 4NO + 6H_2O$ the equilibrium constant K_c has the units a) conc.⁺¹⁰ b) conc.⁺¹ c) conc. $^{-1}$ d) It is dimensionless 966. 1 mole of H₂ and 2 moles of I₂ are taken initially in a 2 L vessel. The number of moles of H₂ at equilibrium is 0.2. Then, the number of moles of I₂ and HI at equilibrium are a) 1.2, 1.6 b) 1.8, 1.0 c) 0.4, 2.4 d) 0.8, 2.0 967. If the ionic product of water (K_w) is 1.96×10^{-14} at 35°C, what is its value at 10°C? a) 1.96×10^{-14} b) 3.92×10^{-14} c) 2.95×10^{-15} d) 1.96×10^{-13} 968. 0.1 mole of CH_3NH_2 ($K_b = 5 \times 10^{-4}$) is mixed with 0.08 mole of HCl diluted to 1 L. What will be the H⁺ concentration in the solution? a) 8×10^{-2} M b) 8×10^{-11} M c) 1.6×10^{-11} M 969. The conjugate base of H_3BO_3 is: c) HBO_3^{2-} a) $B(OH)_{4}^{-}$ b) $H_2BO_3^-$ 970. For the reaction, $CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$ the value of K_p/K_c is equal to : c) \sqrt{RT} a) 1.0 b) *RT* 971. One mole of nitrogen is mixed with 3 mole of hydrogen in a closed 3 litre vessel. 20% of nitrogen is converted into NH₃. Then K_c for the $\frac{1}{2}$ N₂ + $\frac{3}{2}$ H₂ \rightleftharpoons NH₃ is: b) 0.46 litre mol^{-1} a) 0.36 litre mol^{-1} c) 0.5 litre mol^{-1} d) 0.2 litre mol^{-1} 972. Which is a reversible reaction? a) $H_2 + I_2 \rightarrow 2HI$ b) $H_2SO_4 + Ba(OH)_2 \rightarrow BaSO_4 \downarrow + 2H_2O$ c) NaCl + AgNO₃ \rightarrow NaNO₃ + AgCl \downarrow d) $2KClO_3 \rightarrow 2KCl + 3O_2 \uparrow$ 973. 2HI(g) \rightleftharpoons H₂(g) + I₂(g) The equilibrium constant of the above reaction is 6.4 at 300 K. If 0.25 mole each of H₂ and I₂ are added to the system, the equilibrium constant will be a) 6.4 b) 0.8 c) 3.2 d) 1.6 974. Would gaseous HCl be considered as an Arrhenius acid? a) Yes b) No d) Gaseous HCl does not exsit c) Not known 975. Buffer solution is prepared by mixing a) Strong acid + its salt of strong base b) Weak acid + its salt of weak base c) Strong acid + its salt of weak base d) Weak acid + its salt of strong base 976. Which of the following acids will have lowest value of pK_a ? CH₃CHCOOH a) CH₃CH₂COOH b) Br CH₃CHCOOH d) FCH₂CH₂COOH F 977. 2 moles of PCl₅ were heated in a closed vessel of 2 L capacity. At equilibrium 40% of PCl₅ is dissociated into PCl₃and Cl₂. The value of equilibrium constant is a) 0.266 b) 0.366 c) 2.66 d) 3.66 978. p K_a of a weak acid is defined as b) $\frac{1}{\log_{10} K_a}$ d) $-\log_{10}\frac{1}{K_a}$ c) $\log_{10} \frac{1}{K}$ a) $\log_{10} K_a$

979. For a reaction equilibrium, $N_2O_4(g) \rightleftharpoons 2NO_2(g)$, the concentrations of N_2O_4 and NO_2 at equilibrium are 4.8×10^{-2} and 1.2×10^{-2} mol/L respectively. The value of K_c for the reaction is c) 3×10^{-1} mol/L b) 3.3×10^{-3} mol/L a) 3×10^{-3} mol/L d) 3.3×10^{-1} mol/L 980. If α is the degree of ionisation, C the concentration of a weak electrolyte and K_a the acid ionisation constant then the correct relationship between α , *C* and K_a is b) $\alpha^2 = \left| \frac{C}{K_a} \right|$ c) $\alpha = \left| \frac{K_a}{C} \right|$ a) $\alpha^2 = \left| \frac{K_a}{c} \right|$ d) $\alpha = \left| \frac{C}{K_{\alpha}} \right|$ 981. Which of the following behaves as Lewis acid and not as Bronsted acid? a) HCl c) $HSO_3^$ b) H_2SO_4 d) SO_2 982. If little heat is added to ice \rightleftharpoons liquid equilibrium in a sealed container, then: b) Temperature will rise c) Temperature will fall d) No change in *P* and *T* a) Pressure will rise 983. An aqueous solution in which the H⁺ ion concentration is greater than 10^{-7} M is said to be b) Alkaline d) None of these a) Acidic c) Neutral 984. The conjugate base of H_2SO_4 in the following reaction is: $H_2SO_4 + H_2O \rightleftharpoons H_3O^+ + HSO_4^$ d) SO_4^{2-} a) H_2O b) $HSO_4^$ c) H_30^+ 985. For the reaction, $H_2 + I_2 \Rightarrow 2HI$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 mol/L respectively. The equilibrium constant is a) 28.34 b) 32.66 d) 38.88 c) 34.78 986. HClO is a weak acid. The concentrations of [H⁺] ions in 0.1 *M* solution of HClO ($K_a = 5 \times 10^{-8}$) will be equal to: b) $5 \times 10^{-7} M$ c) $6 \times 10^{-7} M$ d) $7 \times 10^{-4} M$ a) $7.07 \times 10^{-5} M$ 987. At a certain temperature, 2HI \Rightarrow H₂ + I₂ only 50% HI is dissociated at equilibrium. The equilibrium constant is : c) 0.5 a) 1.0 b) 3.0 d) 0.25 988. Aqueous solution of CH₃COOH contains: b) CH₃COO⁻, H₃O⁺, CH₃COc) CH₃COO⁻, H₃O⁺, H⁺ d) CH₃COOH, CH₃COO⁻, H⁴ a) CH_3COOH, H^+ 989. In the manufacture of ammonia by Haber's process, $N_2(g) + 3H_2 \rightleftharpoons 2NH_3(g) + 92.3 \text{ kJ}$ Which of the following condition is unfavourable? a) Increasing the temperature b) Increasing the pressure c) Reducing the temperature d) Removing ammonia as it is formed 990. If $CuSO_4$. $5H_2O(s) \rightleftharpoons CuSO_4$. $3H_2O(s) + 2H_2O(v) K_p = 1.086 \times 10^{-4} \text{ atm}^2$ at 25°C. The efflorescent nature of $CuSO_4$. $5H_2O$ can be noticed when vapour pressure of H_2O in atmosphere is : a) > 7.92 mm b) < 7.92 mm c) ≥ 7.92 mm d) None of these 991. Conjugate acid-base pair differs by a/an: a) Electron b) Electron pair c) Proton d) Neutron 992. The hydrogen ion concentration in a solution of weak acid of dissociation constant K_a and concentration cis nearly equal to: b) $\frac{c}{K}$ d) $\sqrt{K_a c}$ c) *K_ac* 993. For the liquefaction of gas, the favourable conditions are: a) Low T and high P b) Low T and low P

c) Low *T* and high *P* and a catalyst

י רב . . -

d) Low T and catalyst			
994. 0.5 M ammonium ber	zoate is hydrolysed to 0.	25 percent, hence, its hy	drolysis constant is
a) 2.5 × 10 ⁻⁵	b) 1.5×10^{-4}	c) 3.125×10^{-6}	d) 6.25×10^{-6}
995. For the equilibrium, Ca	$\mathrm{CO}_3(s) \rightleftharpoons \mathrm{CaO}(s) + \mathrm{CO}_2(g)$, which of the following ex	pression is correct?
K.,	$K_{\rm m} = (n_{\rm CoO} + n_{\rm CO})$		K_p
a) $\frac{n^p}{n}$	(b) $(P_{10} + P_{10})$	c) $K_p = p_{CO_2}$	$d) = (p_{CaO})$
$= [CaO][CO_2]/[CaO]$	J ₃] / ¹ CaC	03	$+ p_{\rm CO_2}/p_{\rm CaCO_3})$
996. When $NaNO_3$ is heated	in a closed vessel, O_2 is libe	erated and NaNO ₂ is left be	ehind. At equilibrium,
(i)Addition of NaNO ₃ fa	vours forward reaction		
(ii) Addition of NaNO ₂ f	avours backward reaction		
(iii) Increasing pressur	e favours reverse reaction		
(iv) Increasing tempera	ature favours forward react	tion	
Correct option is			*
a) (i), (ii), (iii)	b) (ii), (iii), (iv)	c) (i), (iii), (iv)	d) (i), (ii) (iii), (iv)
997. Given pH of a solution A	4 is 3 and it is mixed with a	nother solution <i>B</i> having p	oH 2. After mixing are
resultant pH of the solu	ition will be		
a) 3.2	b) 1.9	c) 3.4	d) 3.5
998. To neutralise complete	ly 20 mL of 0.1 <i>M</i> aqueous s	solution of phosphorus aci	d H_3PO_3 , the volume of
0.1 <i>M</i> KOH solution rec	uired is:		
a) 60 mL	b) 20 mL	c) 40 mL	d) 10 mL
999. The relation between e	quilibrium constant K_p and	K_c is	
a) $K = K (RT)^{\Delta n_g}$	b) $K = K (RT)^{\Delta n_g}$	$(K_c)^{\Delta n_g}$	d) $K = K = (RT)^{\Delta n_g}$
a) $R_p = R_c(R_1)^{-1}$	$M_{c} = N_{p}(NT)^{-1}$	$CJK_p = (\overline{RT})$	$u_j n_p n_c = (n_j)^{-1}$
100 On mixing equal volu	mes of two buffer solutio	ns of pH value 3 and 5, t	he pH of the resultant
0. solution will be			
a) 3.3	b) 4.0	c) 4.7	d) 5.3
ć	\mathbf{V}		
CNY			
5			
\checkmark			
ACTIVE SITE TUTORIALS

Date : 23-07-2019 Time : 16:40:00 Marks : 4000 TEST ID: 137 CHEMISTRY

7.EQUILIBRIUM

						ANS	W	ER K	EY:						
1)	d	2)	а	3)	а	4)	а	165)	а	166)	b	167)	С	168)	d
5)	С	6)	b	7)	а	8)	d	169)	d	170)	d	171)	a	172)	b
9)	d	10)	d	11)	b	12)	а	173)	b	174)	а	175)	b	176)	b
13)	С	14)	d	15)	С	16)	С	177)	d	178)	а	179)	C	180)	С
17)	а	18)	С	19)	а	20)	d	181)	b	182)	С	183)	a	184)	d
21)	b	22)	С	23)	а	24)	а	185)	а	186)	a	187)	а	188)	а
25)	С	26)	С	27)	b	28)	а	189)	b	190)	b	191)	b	192)	а
29)	d	30)	d	31)	С	32)	b	193)	d	194)	d	195)	С	196)	а
33)	b	34)	а	35)	a	36)	d	197)	а	198)	b	199)	d	200)	d
37)	С	38)	b	39)	а	40)	b	201)	b	202)	С	203)	а	204)	С
41)	а	42)	а	43)	а	44)	С	205)	b	206)	b	207)	а	208)	а
45)	d	46)	b	47)	С	48)	d	209)	b	210)	а	211)	а	212)	d
49)	b	50)	d	51)	d	52)	а	213)	d	214)	b	215)	d	216)	b
53)	а	54)	d	55)	а	56)	а	217)	b	218)	С	219)	b	220)	а
57)	d	58)	С	59)	d	60)	a	221)	C	222)	b	223)	а	224)	b
61)	b	62)	С	63)	b	64)	С	225)	b	226)	С	227)	b	228)	b
65)	а	66)	b	67)	а	68)	d	229)	С	230)	d	231)	b	232)	d
69)	d	70)	а	71)	d	72)	С	233)	а	234)	d	235)	b	236)	С
73)	а	74)	d	75)	a	76)	d	237)	а	238)	а	239)	а	240)	а
77)	d	78)	d	79)	a	80)	d	241)	b	242)	d	243)	a	244)	b
81)	b	82)	b	83)	а	84)	а	245)	С	246)	а	247)	b	248)	а
85)	b	86)	С	87)	С	88)	а	249)	d	250)	а	251)	d	252)	а
89)	a	90)	b	91)	a	92)	d	253)	d	254)	b	255)	d	256)	d
93)	b	94)	С	95)	b	96)	b	257)	b	258)	a	259)	С	260)	d
97)	а	98)	a	99)	С	100)	С	261)	С	262)	b	263)	С	264)	b
101)	С	102)	d	103)	b	104)	а	265)	b	266)	d	267)	d	268)	C
105)	a	106)	C	107)	b	108)	а	269)	С	270)	d	271)	b	272)	d
109)	d	110)	á ,	111)	b	112)	a	273)	С	274)	C	275)	C	276)	С
113)	C	114	b	115)	C	116)	b	277)	а	278)	b	279)	b	280)	а
117)	а	118)	b	119)	b	120)	С	281)	а	282)	C	283)	C	284)	C
121)	a	122)	b	123)	D L	124)	а	285)	C	286)	a J	287)	a L	288)	b
125	C	126)	a	127)	D	128)	С	289)	a	290)	a	291) 205)	D	292)	С
129)	, D	130)	C	131) 125)	a J	132)	C J	293)	C	294J	C	295J	a	296J	C J
133)	a h	134)	a	135)	a J	130	a	297	a	298J	a	299J	C	300)	a J
13/J	D h	138)	C d	139)	a	140J	C	301)	a	302)	a h	303J	a d	304J	a
141) 145)	D	142J	a	143J 147)	d L	144J 140)	C d	305)	C d	300)	D	307J	a	308J	a a
143J 140)	a	140J 160)	a	14/J 151)	U	140J 159)	u	309J 212)	u h	31UJ 214)	U A	311J 21E)	C C	314J 214)	u
147J 152)	ι a	150J 157)	ι d	151J 155)	d C	154J 156)	с А	313)	U a	314J 219)	a d	313J 310)	L C	320) 210]	с Л
153J 157)	a	154J 150)	u h	133J 150)	L C	130J 160)	u h	31/J 221)	a h	310J 377)	u d	222) 272]	L C	340J 224)	u a
13/J 161)	ι h	120J 162)	U C	127) 162)	L d	100J	U A	341J 22E)	U D	344J 224)	u a	323J 227)	L d	324J 220)	u a
101)	D	102J	C	103)	u	104J	a	325J	d	320J	d	34/J	u	328J	a

329)	а	330)	С	331)	а	332)	d	533)	d	534)	b	535)	d	536) d
333)	b	334)	b	335)	а	336)	d	537)	b	538)	а	539)	d	540) a
337)	a	338)	а	339)	С	340)	d	541)	d	542)	d	543)	d	544) a
341)	d	342)	b	343)	С	344)	d	545)	а	546)	b	547)	а	548) b
345)	С	346)	а	347)	а	348)	d	549)	b	550)	а	551)	a	552) a
349)	С	350)	С	351)	d	352)	b	553)	а	554)	b	555)	d	556) d
353)	а	354)	а	355)	d	356)	b	557)	а	558)	С	559)	С	560) a
357)	d	358)	d	359)	а	360)	d	561)	С	562)	d	563)	a	564) b
361)	а	362)	С	363)	С	364)	а	565)	С	566)	а	567)	а	568) b
365)	b	366)	d	367)	С	368)	а	569)	d	570)	а	571)	а	572) c
369)	d	370)	d	371)	а	372)	а	573)	С	574)	b	575)	C ,	576) d
373)	b	374)	С	375)	а	376)	b	577)	b	578)	С	579)	С	580) c
377)	d	378)	а	379)	b	380)	а	581)	а	582)	d	583)	С	584) a
381)	а	382)	d	383)	b	384)	b	585)	а	586)	а	587)	C	588) d
385)	а	386)	d	387)	а	388)	С	589)	d	590)	b	591)	b	592) d
389)	а	390)	b	391)	а	392)	а	593)	b	594)	b	595)	b	596) a
393)	С	394)	С	395)	С	396)	а	597)	С	598)	a	599)	d	600) c
397)	С	398)	b	399)	С	400)	а	601)	d	602)	b	603)	d	604) a
401)	а	402)	а	403)	b	404)	а	605)	d	606)	С	607)	d	608) c
405)	а	406)	b	407)	С	408)	С	609)	а	610)	b	611)	a	612) d
409)	b	410)	С	411)	b	412)	b	613)	а	614)	b	615)	С	616) b
413)	d	414)	С	415)	а	416)	С	617)	а	618)	d	619)	С	620) a
417)	С	418)	d	419)	d	420)	С	621)	a	622)	а	623)	a	624) c
421)	С	422)	b	423)	b	424)	b	625)	а	626)	d	627)	d	628) d
425)	b	426)	а	427)	а	428)	C	629)	d	630)	С	631)	b	632) a
429)	d	430)	b	431)	а	432)	d	633)	а	634)	b	635)	С	636) b
433)	b	434)	С	435)	d	436)	а	637)	С	638)	d	639)	С	640) a
437)	а	438)	С	439)	d	440)	С	641)	С	642)	С	643)	b	644) a
441)	b	442)	С	443)	b	444)	а	645)	а	646)	С	647)	С	648) a
445)	b	446)	С	447)	С	448)	b	649)	b	650)	а	651)	a	652) c
449)	а	450)	b	451)	a	452)	С	653)	d	654)	С	655)	b	656) a
453)	b	454)	b	455)	d	456)	а	657)	а	658)	b	659)	С	660) b
457)	С	458)	d	459)	b	460)	С	661)	b	662)	С	663)	С	664) c
461)	а	462)	а	463)	b	464)	С	665)	а	666)	а	667)	a	668) c
465)	а	466)	С	467)	b	468)	С	669)	b	670)	a	671)	a	672) c
469)	b	470)	d	471)	d	472)	b	673)	b	674)	b	675)	a	676) a
473)	С	474)	b	475)	b	476)	С	677)	а	678)	С	679)	d	680) b
477)	b	478)	d	479)	С	480)	С	681)	b	682)	b	683)	b	684) c
481)	a	482)	d	483)	а	484)	С	685)	b	686)	С	687)	a	688) a
485)	С	486)	b	487)	а	488)	b	689)	С	690)	b	691)	С	692) d
489)	b	490)	d	491)	d	492)	d	693)	d	694)	а	695)	b	696) d
493)	b	494)	С	495)	b	496)	а	697)	а	698)	С	699)	С	700) b
497)	b	498)	С	499)	а	500)	d	701)	а	702)	а	703)	d	704) b
501)	d	502)	b	503)	С	504)	С	705)	d	706)	а	707)	a	708) c
505)	а	506)	d	507)	b	508)	а	709)	С	710)	d	711)	b	712) d
509)	а	510)	b	511)	С	512)	d	713)	С	714)	b	715)	a	716) a
513)	d	514)	d	515)	b	516)	a	717)	C	718)	C	719)	b	720) a
517)	a	518)	d	519)	d	520)	С	721)	b	722)	b	723)	d	724) d
521)	b	522)	b	523)	b	524)	d	725)	С	726)	а	727)	а	728) b
525)	d	526)	b	527)	a	528)	b	729)	b	730)	С	731)	С	732) a
529)	а	530)	d	531)	d	532)	b	733)	а	734)	С	735)	С	736) b

737)	b	738)	b	739) d	ł	740) a	873) d	874)	С	875)	С	876)	a
741)	d	742)	b	743) a	a	744) a	877) b	878)	а	879)	d	880)	a
745)	d	746)	С	747) b)	748) b	881) b	882)	d	883)	b	884)	d
749)	а	750)	d	751) d	ł	752) c	885) b	886)	С	887)	b	888)	с
753)	с	754)	С	755) c	2	756) d	889) b	890)	b	891)	d	892)	a
757)	а	758)	а	759) d	ł	760) b	893) с	894)	а	895)	d	896)	a
761)	а	762)	а	763) a	a	764) b	897) a	898)	С	899)	d	900)	a
765)	b	766)	b	767) a	a	768) d	901)) C	902)	d	903)	С	904)	b
769)	С	770)	b	771) d	ł	772) c	905]) a	906)	b	907)	b	908)	a
773)	а	774)	b	775) d	ł	776) b	909) C	910)	d	911)	b	912)	a
777)	d	778)	b	779) d	ł	780) b	913]) d	914)	а	915)	b	916)	a
781)	а	782)	а	783) b)	784) a	917]) C	918)	а	919)	b	920)	a
785)	b	786)	а	787) b)	788) b	921]) a	922)	а	923)	С	924)	b
789)	а	790)	а	791) b)	792) c	925)) a	926)	b	927)	b	928)	b
793)	а	794)	b	795) a	a	796) d	929)) C	930)	b	931)	b	932)	b
797)	а	798)	а	799) d	ł	800) b	933]) d	934)	a	935)	а	936)	b
801)	С	802)	b	803) b)	804) b	937]) b	938)	a	939)	b	940)	d
805)	а	806)	С	807) b)	808) a	941]) d	942)	b	943)	С	944)	b
809)	С	810)	b	811) d	ł	812) b	945)) a	946)	b	947)	d	948)	b
813)	С	814)	а	815) d	ł	816) a	949) C	950)	a	951)	d	952)	d
817)	С	818)	b	819) c	2	820) a	953]) b	954)	d	955)	а	956)	с
821)	b	822)	С	823) a	a	824) d	957]) a	958)	С	959)	b	960)	b
825)	b	826)	С	827) a	a	828) a	961) b	962)	С	963)	d	964)	a
829)	а	830)	b	831) d	ł	832) b	965)) b	966)	а	967)	С	968)	b
833)	С	834)	а	835) d	ł	836) 🗸 c	969]	a	970)	d	971)	а	972)	a
837)	а	838)	С	839) d	ł	840) d	973]) a	974)	b	975)	d	976)	a
841)	а	842)	d	843) b)	844) b	977]) a	978)	С	979)	а	980)	с
845)	а	846)	а	847) b)	848) b	981)) d	982)	d	983)	а	984)	b
849)	а	850)	b	851) a	ı –	852) b	985)) b	986)	а	987)	d	988)	b
853)	b	854)	b	855) c	-	856) d	989]) a	990)	b	991)	С	992)	d
857)	d	858)	b	859) d	ł	860) a	993]) a	994)	С	995)	С	996)	d
861)	b	862)	С	863) c		864) a	997]) b	998)	С	999)	а	1000)	a
865)	С	866)	d	867) d	ł	868) d								
869)	d	870)	b	871) d	ł	872) b								
							I							
				·										
				*										
		$ \rightarrow $												
$c \times$														
7	~													

ACTIVE SITE TUTORIALS

Date : 23-07-2019 Time : 16:40:00 Marks : 4000 TEST ID: 137 CHEMISTRY

7.EQUILIBRIUM

: HINTS AND SOLUTIONS :

 $K_n = K_c$ 1 (d) $HC_2H_3O_2 + NaOH \rightarrow C_2H_3O_2Na + H_2O$ 7 (a) 0.5 0 $NaH_2PO_4 + H_3PO_4$; $NaH_2PO_4 +$ 0.5 0 0.5 0.5 Na_2HPO_4 ; $Na_2HPO_4 + Na_3PO_4$. The solution contains weak acid + its conjugate 9 (d) base pH of a solution \propto [OH⁻] $\frac{M}{4}$ Ca(OH)₂ solution 0.5 Mol 0.5 Mol and thus, acts as buffer. will give highest concentration of [OH⁻]. 2 (a) Hence, it has highest pH. Aqueous solution of 1M NaCl and 1M HCl is 10 (d) not a buffer but pH < 7. Solubility Salt Solubility 3 (a) product Reaction is exothermic and volume is decreasing $S_1^2 = 4.0 \times$ $S_1 = 2 \times$ MΧ from left to right, so for higher production of SO_3 , 10^{-8} 10^{-4} there should be low temperature and high $\overline{S_2 = 2 \times}$ MX_2 $4S_2^3 = 3.2 \times$ pressure 10^{-14} 10^{-5} 4 (a) $27S_3^4 = 2.7 \times$ M_3X $S_3 = 1 \times$ 10-4 The acid is called strong acid when it ionise 10^{-15} up to great extent i.e., if its K_a value is large. Thus, solubility order = $MX > M_3X > MX_2$ 11 **(b)** $pK_a = \log \frac{1}{\kappa}$ We know that Basic strength \propto dissociation constant of base 5 (c) (K_h) . $[OH^{-}] = \sqrt{K_b \times C}$ So, smaller the value of K_b weaker will be the $=\sqrt{1\times10^{-5}\times10^{-5}}$ base. $=\sqrt{10^{-6}}=10^{-3}$ The weakest base will have smallest value of $K_w = [\mathrm{H}^+][\mathrm{OH}^-]$ K_h . $10^{-14} = [H^+][10^{-3}]$ $: C_6H_5NH_2$ (aniline) has smallest value of K_b $[H^+] = 10^{-11}$ Hence, $pH = -\log H^+$ ∴ It is weakest base. 12 (a) $= -\log(1 \times 10^{-11}) = 11$ number of mole dissociated (b) 6 $\alpha =$ total mole present $H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$ $=\frac{10^{-7}}{1000/18}=1.8\times10^{-9}=1.8\times10^{-7}\%$ We know that, $K_p = K_c. (RT)^{\Delta n_g}$ Total mole of H₂O in 1 litre = $\frac{1000}{18}$ $\Delta n_g =$ no. of moles of gaseous products – no. 13 (c) of moles of gaseous reactants A precipitate is formed when the ionic =2-2=0product exceeds the solubility product. $K_n = K_c \cdot (RT)^0$ i.e., $[A^+][B^-] > K_{sp}$

14	(d)		incomplete octet. So, it is an electron deficient
	$2 \text{HgNO}_3 + 2 \text{HCl} \rightarrow \text{Hg}_2 \text{Cl}_2 + 2 \text{HNO}_3;$		molecule.
	Hg_2Cl_2 in insoluble in water.	23	(a)
15	(c)		Metal oxides are basic, non-metal oxides are
	Lewis bases are electrons rich compounds.		acidic. CaO is more basic than CuO. Water (H_2O) is
	(i) NH_3 and H_2O are Lewis bases because they		amphoteric.
	have long pair of electron	24	(a)
	(ii) AICL is Lewis acid because it can accent		The acidic character of oxy-acids decreases down
	(II)AICI ₃ IS LEWIS ACIU DECAUSE IT CAII ACCEPT		the group and increases along the period. Also
10	electrons.		higher ox.no. of non-metal in oxy-acid shows
16	(c) $P_{\alpha}(N_{\alpha}) = P_{\alpha}^{2} + i n n n n n n n n n n n n n n n n n n$		more acidic nature.
	$Ba(NO_3)_2$ gives NO_3 , Ba^{-1} Iolis, lience Ba^{-1} Ioli	25	(c)
	increases. To keep Λ_{sp} constant, [F] decreases.	27	Follow Arrhenius concept.
	Thus, it is represented as $\frac{1}{2}[F^-]$	27	
18	(c)		$N_{\rm NaOH} = \frac{0.04}{40 \times 10} = 10^{-4} N$
	As equation 'III' is obtained on adding		$\therefore \text{ pOH} = 4$
	equation 'I' and equation 'II', so $K_3 = K_1$. K_2 .		$\therefore \text{ pH} = 10$
19	(a)	28	(a)
	$N_2O_4 \rightleftharpoons 2NO_2$		$P_4(s) + 5O_2(g) \neq P_4O_{10}(s)$
	0.1 0 initialy		$V = [P_4 O_{10}(s)]$
	$(0.1 - \alpha)$ 2 α at equilibrium		${}^{K_{\mathcal{C}}} = [P_4(s)][O_2(g)]^5$
	$\frac{0.1-\alpha}{0.1+\alpha}p \frac{2\alpha}{0.1+\alpha}p \operatorname{at} p_i$		We know that concentration of a solid component
	$(1 + \alpha - 0.1 + \alpha)$ $(NO_2)^2$	K,	is always taken as unity
	$K_p = \frac{\left[1 + \frac{1}{2}\right]}{\left[N_2 O_4\right]}$		$K_{c} = \frac{1}{\Gamma_{c} - 15}$
	$(2\alpha \times p)^2$ $(0.1 + \alpha)$	20	$[0_2]^3$
	$0.14 = \left(\frac{p}{0.1 + \alpha}\right) \times \left(\frac{1}{0.1 - \alpha}\right)p$	29	$[HC] = 10^{-8} M \text{ Being very dilute pH < 7}$
	$4\alpha^2$		New concentration of
	$=\frac{1}{(0.1+\alpha)(0.1-\alpha)}p$		10^{-6}
	$-\frac{4\alpha}{1} \times 1$		$HCl = \frac{10}{100} = 10^{-8} M$
	$-0.01 - \alpha^2$		$\therefore [\mathrm{H}^+] = 10^{-18} + 10^{-7}$
	or $\alpha = 0.018$		$= 1.1 \times 10^{-7} M$
20	$1 \text{ hus}, [\text{NO}_2] = 2 \times 0.018 = 0.036 \text{ mol}$		\therefore pH \approx 7
20	(a) From Hondorson equation	30	(d)
			A buffer solution is more effective in the pH range
	$pOH = pK_b + \log \frac{ Jull }{ base }$		of p $K_a \pm 1$.
	pH + pOH = 14	31	(c)
	$nOH = 5.0 \pm \log \frac{[1.0]}{2} = 5 \pm \log 10 = 5 \pm 1$		From H_2O , $[H^+] = 1 \times 10^{-7} M$
	$poin = 3.0 + log_{[0.1]} = 3 + log_{10} = 3 + 1$		From $HCl[H^+] = 1 \times 10^{-8}M$
	pOH = 6		Total $[H^+] = (1 \times 10^{-7} + 1 \times 10^{-8})M$
C	pH + pOH = 14		$= (1 \times 10^{-7} + 0.1 \times 10^{-7}) M$
	pH + 6 = 14		$= 1.1 \times 10^{-7} M$
	pH = 14 - 6 = 8		$pH = -\log(1.1 \times 10^{-7}) = 6.9586$
21	(b)	32	(b)
	It has sextet of electron and can accept lone pair		$nH = -\log K_{r} + \log \frac{[Conjugate base]}{[Conjugate base]}$
	of electron.		[Acid]
22		33	(b)
	BF ₃ is electron deficient compound because B		100 mL of 0.01 M NaOH solution is diluted to
	has six electrons in outermost orbit. It has		1 dm ³ (<i>i.e.</i> , 10 times diluted hence, the

resultant solution will be 0.001 M)

$$[OH^{-}] = 0.001 = 10^{-3}$$

$$[H^{+}] = \frac{10^{-14}}{[OH^{-}]} = \frac{10^{-14}}{10^{-3}} = 10^{-11}$$

$$pH = -\log[H^{+}]$$

$$= -\log[10^{-11}]$$

$$pH=11$$
(a)
Only salts of (weak acid+ strong base) and
(strong acid + weak base) get hydrolysed
(*i. e.*, show alkalinity or acidity in water).
KClO₄ a salt of strong acid and strong base,
therefore, it does not get hydrolysed in water
KClO₄ \rightleftharpoons K⁺ + ClO₄⁻
H₂O OH⁻ + H⁺

34

er. Į Į HClO₄ KOH strong strong base acid 35 (a) Higher is the value of K_c or K_p more is feasibility for reaction to show forward reaction. 36 (d) A +ve inductive effect of C_6H_5 intensifies +ve charge on N atom and thus, availability of coordination for electron pair decreases; The basic character order is $\mathrm{C_2H_5NH_2} > \mathrm{CH_3NH_2} > \mathrm{NH_3} > \mathrm{C_6H_5} - \mathrm{NH_2}$ 37 **(c)** Na_2HPO_4 on hydrolysis of HPO_4^{2-} ion produces free OH⁻ ion in solution. 38 (b) $2\mathrm{HI} \rightleftharpoons \mathrm{H}_2 + \mathrm{I}_2$ 0 initially 3.2 0 3.2 - x xx at equilibrium x = 22% of 3.2 22×3.2 100 = 0.704Hence, number of moles of HI present at equilibrium = 3.2 - x= 3.2 - 0.704= 2.49639 (a) $K_p = \frac{{}^{n}\mathrm{Cl}_2 \times {}^{n}\mathrm{PCl}_3}{{}^{n}\mathrm{PCl}_5} \times \left[\frac{p}{\sum n}\right]^{1}$

$$= 2 \times \frac{2}{2} \times \left[\frac{3}{6}\right]^{1}$$

$$= 1 \text{ atm}$$
40 (b)

$$N_{2}(g) + 3H_{2}(g) \approx 2NH_{3}(g)$$

$$\Delta n = n_{p} - n_{r}$$

$$= 2 - 4$$

$$= -2$$

$$\therefore \quad K_{p} = K_{c}(RT)^{-2}$$
or

$$K_{p} = \frac{K_{c}}{(RT)^{2}}$$
or

$$K_{p} < K_{c}$$
41 (a)

$$In \frac{K_{2}}{K_{1}} = \frac{\Delta H}{R} \left[\frac{T_{2} - T_{1}}{T_{1}T_{2}}\right]$$
K increase with $\frac{1}{T}$ or decreases with T it is decided
by ΔH .
Here, K decrease with T. Thus, $\Delta H = -ve$.
42 (a)

$$CdSO_{4} + \frac{HCl}{10\times0.08} + H_{2}S \rightarrow CdS + H_{2}SO_{4}$$
Mittimole
added

$$Mittimole$$

$$0.1 = \frac{10\times0.08}{0.8} = 0.1 \times 22$$

$$(rrom HCl) + (rrom H_{2}SO_{4}) = 1.0$$
Total volume = 100 mL

$$\therefore \quad [H^{+}] = \frac{1}{100} = 10^{-2}M$$

$$\therefore \quad pH = 2$$
43 (a)

$$pH = -\log[H^{+}] = -\log[0.005]$$

$$= -\log[5 \times 10^{-3}] = 2.3$$
44 (c)
It is a case of simultaneous solubility of salts
with a common ion. Here solubility product of
CuCl is much greater than that of AgCl, it can
be assumed that Cl⁻ in solution comes mainly
from CuCl.

$$\Rightarrow \quad [Cl^{-}] = \sqrt{K_{sp}(CuCl)} = 10^{-3} M$$
Now for AgCl: $K_{sp} = 1.6 \times 10^{-10}$

$$= [Ag^{+}][Cl^{-}]$$

$$= [Ag^{+}] \times 10^{-3}$$

$$\Rightarrow [Ag^{+}] = 1.6 \times 10^{-7}$$
45 (d)

$$2AB_{3}(g) \approx A_{2}(g) + 3B_{2}(g)$$

$$A_{1} = \frac{1}{4} [Ag_{1}]^{2}; [B_{2}] = \frac{6}{7}$$

Thus,
$$K_c = \frac{2 \times 6^3}{4^2} = 27 \text{ mol}^2 \text{L}^{-2}$$

46 (b)
Find solubility for each separately by $s^2 = K_{sp}$ for
MnS and ZnS, $108s^5 = K_{sp}$ for Bi_2S_3 and $4s^3 = K_{sp}$ for Ag_2S .
47 (c)
 $K_{c_1} = \frac{1}{K_{c_2}} = \frac{1}{2.4 \times 10^{-3}} = 4.2 \times 10^2$
48 (d)
Li₃Na₃(AlF₆)₂ = 3Li⁺ + 3Na⁺ + 2AlF₆³⁻
 $\therefore K_{sp} = (3a)^3(3a)^3(2a^2) = 2916a^8$.
49 (b)
Dissociation constant
 $H_2 \text{O} \approx \text{H}^+ + \text{OH}^-: [\text{H}^+] = \text{OH}^- = 1 \times 10^{-7} \text{ M}$
And $[\text{H}_2\text{O}] = 1 \text{ g/mL} = 1000 \text{ gL}^{-1}$
 $= \frac{1000}{18} \text{ mol } \text{L}^{-1} = 55.56 \text{ M}$
 $K = \frac{[\text{H}^+][\text{OH}^-]}{H_2\text{O}} = \frac{10^{-14}}{55.6}$
 $K_w = 1 \times 10^{-14}$
So, $K_w = 55.6 \times K$
50 (d)
 $K_a = C\alpha^2 \text{ and } \alpha = \sqrt{\frac{K_a}{C}}$
 $\alpha = \sqrt{\frac{10^{-5}}{10^{-1}}} = 10^{-2}$
51 (d)
 $K_{sp} = 4s^3 = 4 \times (\sqrt{3})^3 = 12\sqrt{3}$.
52 (a)
 $\text{pH} = \frac{1}{2} [\text{p}K_{a_1} + \text{p}K_{a_2}] \text{ and } \text{pH} = \frac{1}{2} [\text{p}K_{a_2} + \text{p}K_{a_3}]$.
53 (a)
In the given equilibrium reaction, if inert gas
is added at constant pressure, it will result in
increased volume. Due to which, the
equilibrium will shift towards the left hand
side (LHS) *i.e.*, reaction goes in back direction.
54 (d)
Hard base is that anion which is small and difficult
to polarise.
55 (a)
HSO₄ is an acid and conjugate base of H₂SO₄.
56 (a)
An increase in temperature favours endothermic
reaction whereas an increase in mole or volume.
57 (d)

 K_{sp} for AgCl = s^2 . 58 **(c)**

According to Le-Chatelier's principle when a system at equilibrium is subjected to change in pressure, temperature or concentration then the equilibrium is disturbed and shifts in a direction where the effect of change is annuled.

Ice \rightleftharpoons water

When pressure is increased in this system, the melting point of ice is decreased *i.e.*, more ice melts and more water is formed.

59 (d)

$$\therefore 2SO_{3} \rightleftharpoons 2SO_{2} + O_{2}$$

$$(1 - 0.6) \qquad 0.6 \qquad 0.3$$

$$K_{c} = \frac{[SO_{2}]^{2}[O_{2}]}{[SO_{3}]^{2}} = \frac{0.6 \times 0.6 \times 0.3}{0.4 \times 0.4} = 0.675$$
60 (a)

$$CaCO_{3}(s) \rightleftharpoons CaO(s) + CO_{2}(g)$$
Mole before $\frac{20}{100} \times \frac{65}{100}$ $\left[\frac{20}{100} \times \frac{65}{100}\right]$

$$\int Mole after \frac{20}{[100 \times \frac{35}{100}]} \frac{0}{[100 \times \frac{65}{100}]} \frac{0}{[100 \times \frac{65}{100}]}$$

$$\therefore Mole of CO_{2} formed = \frac{20 \times 65}{10^{4}} = 1.3 \times 10^{-1}$$

$$\therefore PV = nRT$$

$$p_{CO_{2}} = \frac{1.3 \times 10^{-1}}{10} \times 0.0821 \times 1073$$

$$= 1.145 \text{ atm}$$
Now, $K_{p} = p_{CO_{2}} = 1.145 \text{ atm}$
61 (b)

$$2NOBr(g) \rightleftharpoons 2NO + Br_{2}$$

$$\frac{6P}{9} = \frac{2P}{9} = \frac{P}{9}$$

$$Total pressure = \frac{6P}{9} + \frac{2P}{9} + \frac{P}{9} = P$$

$$K_{P} = \frac{(P_{NO})^{2}(P_{Br_{2}})}{(P_{NOBr})^{2}} = \frac{(2P/9)^{2}(P/9)}{\left(\frac{6P}{9}\right)^{2}} = \frac{P}{81}$$
62 (c)

$$K_{sp} = 4s^{3}$$
or $s = \left[\frac{1.2 \times 10^{-5}}{4}\right]^{1/3} = 1.44 \times 10^{-2}$

$$\therefore [M^{+}] = 1.44 \times 10^{-2} \times 2$$

63 **(b)**

64

6

Due to back bonding (BF₃ shows maximum tendency due to small size of F).

(c)

$$Cr(OH)_3 \rightleftharpoons Cr^{3+} + 3OH^-$$

For precipitate to be dissolved
 $K_{sp} \le [Cr^{3+}][OH^-]^3$

 $= 2.88 \times 10^{-2} M.$

	or $6 \times 10^{-31} \le [0.1] [0H^{-}]^{3}$		$RCOOH > CH \equiv CH > NH_3 > RH$
	\therefore [0H ⁻] > 1.79 × 10 ⁻¹⁰		Stronger is acid, weaker is its conjugate base.
	10^{-14}	74	(d)
	So, $[H^+] \le \frac{1.79 \times 10^{-10}}{1.79 \times 10^{-10}} \le 5.59 \times 10^{-9}$		In the expression for equilibrium constant
	$pH \ge -\log(5.59 \times 10^{-5})$ or $pH \ge$		$(K_p \text{ or } K_c)$ species in solid state are not
	4.253		written (<i>i.e.</i> , their molar concentrations are
65	(a)		taken as 1)
	KCN is a salt of weak acid and strong base		$P_{1}(s) + 5\Omega_{2}(\sigma) \rightarrow P_{1}\Omega_{12}(s) \qquad \qquad$
	hence, on being dissolved in water gives basic		$1_4(3) + 30_2(g) \leftarrow 1_40_{10}(3)$
	solution <i>i.e.</i> , $pH > 7$ at 25°C.		1 nus, $K_c = \frac{1}{[0_2]^5}$
66	(b)	75	(a)
	NH_4Cl is acidic due to hydrolysis of NH_4^+ ;		Reversible reaction always attains equilibrium
	$NH_4^+ + H_20 \rightleftharpoons NH_4OH + H^+; pH < 7.$		and never go for completion.
67	(a)	76	(d)
	When the number of moles of gaseous		$K = \frac{[CO_2]}{[CO_2]}$
	reactants and products is same, then		$R_c = [CO]$
	equilibrium is not affected by pressure and		$\therefore 5 = \frac{[CO_2]}{[CO_2]}$
	hence the equilibrium constant is unaffected		2.5×10^{-2}
68	(d)		$\therefore [CO_2] = 0.125 M$
00	Glycine the simplest amino acid $(CH_{2}NH_{2}COOH)$	77	(d)
	has the tendency to donate H^+ by $-COOH$ gn and		$H_2 + I_2 \rightleftharpoons 2HI$
	the tendency to donate lone pair by N-atom of		Initial 0.4 0.4 0
	$-NH_{2}$ gn, and also exists as Zwitter ion .		At equilibrium 0.4-0.25 0.4-0.25 0.05
	$H_2 NCH_2 : COOH \Rightarrow H_2 N^+ CH_2 COO^-$	\sim	=0.15 =0.15
69	(d)		$K_{c} = \frac{[\mathrm{HI}]^{2}}{}$
07	$H_2 + I_2 \rightleftharpoons 2HI$		$[H_2][I_2]$
	$[HI] = 0.80, [H_2] = 0.10, [I_2] = 0.10$		$-\frac{\left(\frac{0.50}{2}\right)^2}{2} - \frac{0.5 \times 0.5}{2} - 11.11$
	$[HI]^2 0.80 \times 0.80$		$-\frac{(0.15)}{(\frac{0.15}{2})(\frac{0.15}{2})}-\frac{0.15\times0.15}{0.15\times0.15}-11.11$
	$K_c = \frac{1}{[H_2][I_2]} = \frac{1}{0.10 \times 0.10} = 64$	78	(d)
70	(a)		We know that,
	$[H^+] = 10^{-1} M$		
	$w^{-10^{-1}}$		$[H^+] = 10^{-pH} = 10^{-5}$
	$\frac{36.5}{36.5} = 10$		
	or $w = 36.5 \times 10^{-1} = 3.65 \text{ g}$		
71	(d)		$\alpha = \frac{\text{actual concentration}}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$
	mM before reaction $MgCl_2 + 2NaOH \rightarrow Mg(OH)_2 + 1$		$\alpha - \frac{1}{molar concentration}$
	mM after reaction 0 0 10		
	Thus, 10 m mole of Mg(OH) ₂ are formed. The		
	product of $[Mg^{2+}][OH^{-}]^2$ is therefore		$-\frac{10^{-5}}{-10^{-5}}$ - 0.2 × 10^{-2}
	$\begin{bmatrix} 10 \\ 10 \end{bmatrix} \times \begin{bmatrix} 20 \\ 20 \end{bmatrix}^2 = 5 \times 10^{-4}$ which is more than K_{sn}		$-\frac{1}{0.005}-0.2\times10$
	[200] $[200]$ $[200]$ of Mg(OH). Con		
5	be derived by $K = 4s^3$		
72	(c) $(s) = 13$		\therefore Percentage ionisation = $0.2 \times 10^{-2} \times 100$
12	(v) At chamical aquilibrium, rate of forward		-
	reaction is equal to the rate of healward		= 0.2%
	reaction is equal to the fate of Datkwalu	70	(2)
	reaction.	13	(a) More is nH more basic is solution
73	(a)	80	(d)
-	Acidic nature is	00	Roth Arrhenius and Bronsted bases are source of

Both Arrhenius and Bronsted bases are source of

 H^+ Arrhenius base (OH⁻ furnish) may not be capable of accepting proton (*i.e.*, Bronsted based). H^+ exists as $H_9^+O_4$.

81 **(b)**

 $\begin{array}{l} \text{Mole before dissociation} \\ \text{Mole after dissociation} \\ \text{Given, [H^+]} = c\alpha = 1.5 \times 10^{-3} \text{ mol litre}^{-1} \\ \hline \\ K_a = \frac{(c\alpha)(c\alpha)}{c(1-\alpha)} = \frac{c\alpha^2}{(1-\alpha)} \\ 2.6 \times 10^{-3} = \frac{1.5 \times 10^{-3} \times \alpha}{(1-\alpha)} \\ \hline \\ & \alpha = 0.634 \\ \text{Now, } c\alpha = 1.50 \times 10^{-3} \\ \hline \\ \\ & \alpha = \frac{1.50 \times 10^{-3}}{0.634} = 2.37 \times 10^{-3} M \end{array}$

Note: Since K_a is of the order of $10^{-3}M$ and thus, it is not advisable to use $K_a = c\alpha^2$. Because $(1 - \alpha)$ is not equal to 1 since α is not small.

82 **(b)**

For oxoacids of the same element, the acidic strength increases with increase in the oxidation number of the element

 $\stackrel{+1}{\operatorname{HClO}} \stackrel{+3}{<} \stackrel{+5}{\operatorname{HClO}} \stackrel{+7}{<} \stackrel{+7}{\operatorname{HClO}}_{4}$

83 **(a)**

 HNO_3 (nitric acid) is generally not an amphoteric substance. It is a strong acid (proton-donating) though sometimes, in presence of stronger acid, it also acts as a base (*e.g.*, in nitration of atomic compounds, it acts as a base and accept proton from H_2SO_4). However HCO_3^- , H_2O and NH_3 frequently act both as an acid as well as a base (*i.e.*, amphoteric in nature).

85 **(b)**

$$K_p = K_c (RT)^{-1/2}$$
$$\therefore \Delta n = -1/2$$

86 (c)

Le-Chatelier's principle is not valid for solid-solid equilibrium.

BaCl₂ → Ba²⁺ + 2Cl⁻ Let the solubility of BaCl₂ is x mol/L \therefore $K_{cn} = [Ba^{2+}][Cl^{-}]^2$

$$K_{\rm sp} = [\text{Ba}^{2+}][\text{Cl}^-]^2$$
$$= (x) \times (2x)^2$$
$$= x \times 4x^2 = 4x^3$$

or solubility of $BaCl_2 =$ (solubility product of $BaCl_2$)^{1/3}

4

88 **(a)**

Addition of sodium acetate in acetic acid solution, due to common ion NH_4^+ the ionisation of acetic acid is supressed so concentration of [H⁺] decreases. Hence, pH of solution increases.

 $=\frac{(4\times10^{-9})^{1/3}}{4}$

$$AB_{2} \rightleftharpoons A^{+} + 2B^{-}$$

1 × 10⁻³ 2 × 10⁻³
$$K_{sp} = [1 × 10^{-3}][2 × 10^{-3}]^{2} = 4 × 10^{-9}$$

- 90 **(b)** NaHCO₃ + NaOH \rightarrow Na₂CO₃ + H₂O. Acid salt
- 91 **(a)**

$$\underbrace{2\text{SO}_2(g) + \text{O}_2(g)}_{3 \text{ mol}} \underbrace{2\text{SO}_3(g)}_{2 \text{ mol}}$$

Formation of

 SO_3 (sulphur trioxide)from SO_2 and O_2 is accompanied by decrease in volume. So, increase in pressure favours SO_3 formation (also due to Le-Chatelier's principle).

92 **(d)**

93

 $NH_{4}HS(s) \rightleftharpoons NH_{3}(g) + H_{2}S(g)$ at t = 0 0.5 0 t = eq. 0.5+P P $P_{T} = 0.5 + P + P = 0.84$ $\therefore P = 0.17 \text{ atm}$ $K_{p} = P_{NH_{3}} \times P_{H_{2}S} = (0.5 + 0.17) \times 0.17$ = 0.11 atm(b)

 $[H^+][OH^-] = 10^{-14}$ where K_w =ionic product of water $[10^{-2}][OH^{-}] = 10^{-14}$ $= 1 \times 10^{-14}$ $[OH^{-}] = \frac{10^{-14}}{10^{-2}}$ K_b =degree of dissociation of NH₄OH = 1.8×10^{-5} $= 10^{-12} \text{ mol dm}^{-3}$ $K_h = \frac{1 \times 10^{-14}}{1.8 \times 10^{-5}}$ 94 (c) It is condition for chemical equilibrium. $= 0.555 \times 10^{-9}$ 95 (b) $= 5.55 \times 10^{-10}$ Solution of $CuSO_4$ is acidic due to hydrolysis of |103 (b) Cu²⁺ ion. Let V mL of 0.1 M HCOONa be mixed to 50 mL of 97 (a) 0.05 M HCOOH. $[H^+]_I = 10^{-5}$ $\left[\because [] = \frac{\text{Total millimole}}{\text{Total volume}} \right]$ $[H^+]_{II} = 10^{-2}$ Thus, increase in $[H^+] = \frac{10^{-2}}{10^{-5}} = 1000$ times. ∴ In mixture [HCOONa] = 98 (a) $\therefore [\text{HCOOH}] = \frac{50 \times 0.05}{V + 50}$ According to Lewis acid is any species $:: pH = -\log K_a + \log \frac{[Conjugate base]}{[Conjugate base]}$ (molecule, radial or ion) that can accept an electron pair to form a coordinate covalent $\therefore 4.0 = 3.80 + \log \frac{(0.1 \times V)(V + 50)}{2.5/(V + 50)}$ bond. Thus, acid is an electron deficient species *e.g.*, BF₃, AlCl₃, SO₃ and all cations etc. : V = 39.62 mL. $AlCl_3 + Cl \rightarrow Cl_3Al \leftarrow Cl$ Lewis acid Lewis base Adduct 104 (a) HA (a weak acid) ionises as Or AlCl₄ \rightleftharpoons H⁺ + A⁻ ΗA 99 (c) 1 0 $K_{\rm sp}$ of AgCl = (solubility of AgCl)² $(1 - 10^{-5})$ 10^{-5} 10^{-5} $=(1 \times 10^{-5})^2 = 1 \times 10^{-10}$ $[A^{-}] = [H^{+}] = 10^{-pH} = 10^{-5}M$ Suppose its solubility in 0.1 M $K_a = \frac{[H^+][A^-]}{[HA]} = \frac{10^{-5} \times 10^{-5}}{(1-10^{-5})} = \frac{10^{-10}}{1}$ NaCl is $x \mod L$ $AgCl \rightleftharpoons Ag^+ + Cl^ (: 1 >>> 10^{-5})$ x x $=1 \times 10^{-10} \text{ M}$ $NaCl \rightleftharpoons Na^+ + Cl^-$ 105 (a) 0.1 M 0.1 M $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ $[Cl^{-}] = (x + 0.1) M$ (1 - x)x x $K_{\rm sp}$ of AgCl = [Ag⁺][Cl⁻] Total number of moles at equilibrium $= x \times (x + 0.1)$ = (1 - x) + x + x $1 \times 10^{-10} = x^2 + 0.1x$ = 1 + xHigher power of *x* are neglecated $p_{\mathrm{PCl}_3} = \left(\frac{x}{1+x}\right) \times p$ $1 \times 10^{-10} = 0.1x$ 106 (c) $x = 1 \times 10^{-9} \text{ M}$ $2.303 \log \frac{K_2}{K_1} = \frac{\Delta H}{R} \frac{[T_2 - T_1]}{T_1 T_2}$ 100 (c) For reaction, $2SO_3 \rightleftharpoons O_2 + 2SO_2$ $\Delta H = +$ ve for the reaction, Here, $\Delta n_g = 3 - 2 = 1$, *ie*, +ve, thus, K_p is more $N_2 + O_2 \rightleftharpoons 2NO.$ than K_c [:: $K_p = K_c (RT)^{\Delta n_g}$] 107 (b) Now [H⁺] = $\frac{25 \times 0.01 + 25 \times 0.02}{52}$ 101 (c) $s = \sqrt{K_{sp}} = \sqrt{36} = 6M.$ $=\frac{0.75}{50}=0.015 M$ 102 (d) $K_h = \frac{K_W}{K_h}$ and thus, pH will decrease, as [H⁺] increases.

108 (a) K_p and K_c values do not change with catalyst. Carbon cannot expand its octet. 117 (a) 109 (d) $\Delta H = E_{a_{(f)}} - E_{a_{(b)}} = 180 - 200$ N of NH₃ possesses lone pair of electron available $= -20 \text{ kJ mol}^{-1}$ (in absence of for donation. catalyst) 110 (a) $\therefore \Delta H = E_{a_{(f)}} - E_{a_{(b)}}$ $2NH_3 \rightleftharpoons N_2 + 3H_2$ = [180 - 100] - [200 - 100]Initial moles а 0 $= -20 \text{ kJ mol}^{-1}$ (in presence At equilibrium(a - 2x) x 3xof catalyst) Initial pressure of NH_3 of 'a'mole = Catalyst's have no influence on ΔH 15 atm at 27°C. The pressure of 'a' mole of $NH_3 =$ 118 (b) p atm at 347°C $C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g); Here, \Delta n >$ $\therefore \frac{15}{300} = \frac{p}{620}$ 1 Hence, decrease of pressure shifts the $\therefore p = 31 \, \text{atm}$ At constant volume and at 347°C, equilibrium in forward direction and increase mole ∝ pressure of pressure shift the equilibrium in backward $a \propto 31$ (before equilibrium) (reverse) direction. \therefore $(a - 2x) \propto 50$ (after equilibrium) 119 **(b)** $\therefore \frac{(a-2x)}{a} = \frac{50}{31}$ 20% mixture reacts to form 10% NH₃; Thus, 80% mixture and 10% NH₃ left or total $\therefore x = \frac{19}{62}a$ pressure left = 90 atm, since 100% mixture has 100 atm. \therefore % of NH₃ decomposed = $\frac{2x}{a} \times 100$ 120 (c) $=\frac{2\times19a}{62\times a}\times100$ \mathcal{C}_2 H₅O⁻ is conjugate strong base of C₂H₅OH. 121 (a) = 61.33% Borate ions are hydrolysed to develop alkaline 111 **(b)** nature in solution. Equilibrium constant for the reaction, 123 (b) $3A + 2B \rightleftharpoons C$, is For a buffer solution, pH is given by $K = \frac{[C]}{[A]^3 [B]^2}$ Henderson equation. $pH = pK_a + \log \frac{[salt]}{[acid]}$ 112 (a) $HA \rightleftharpoons H^+ + A^$ hence, pH is least when concentration of acid $K = C \alpha^2$ is higher than that of salt. $= 0.1 \times (10^{-5})^2$ 124 (a) $= 0.1 \times 10^{-10} \text{ or } 1 \times 10^{-11}$ Phenolphthalein is good indicator in the range of 113 (c) pH 8 to 9.8. 125 (c) $N = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2}$ 114 **(b)** $\frac{\text{normal.mol.wt.}}{\text{exp.mol.wt.}} = 1 + \alpha$ (:: for HCl N = M) $= \frac{\frac{0.015 \times 100 + 0.005 \times 100}{100 + 100}}{\frac{1.5 + 1.5}{200}} = \frac{1}{100} = 10^{-2}$ For, $NH_4Cl \rightleftharpoons NH_3 + HCl$; $\therefore \alpha = 1$ $\therefore \text{ Exp. Mol.wt.} = \frac{\text{normal.mol.wt.}}{2}$ Resulting solution is acidic in nature. 115 (c) Then, $[H^+] = 10^{-2}$ $Al(OH)_3$ is weak base than $Mg(OH)_2$. Hydroxides $pH = -\log[H^+]$ of I and II group metals are strong base, stronger $= \log \frac{1}{[H^+]} = \log \frac{1}{10^{-2}}$ is base, weaker is its conjugate acid. 116 (b) $= 2 \log 10$

= 2126 (d) $K_{sp} = [A^{3+}]^2 [X^{2-}]^3 = (2y)^2 (3y)^3 = 108 y^5$ 127 (b) Solubility of BaSO₄ = $\sqrt{K_{sp}}$ $=\sqrt{1.1 \times 10^{-10}}$ $= 1.05 \times 10^{-5} M$: wt. of BaSO₄ = $1.05 \times 10^{-5} \times 233$ $w_{\text{BaSO}_4} = 244.37 \times 10^{-5} \text{ g/litre}$ or : Volume of water needed to dissolve 1 g. BaSO₄ is equal to $\frac{1}{244.37 \times 10^{-5}} = 410$ litre. 128 (c) Addition of inert gas at constant volume does not influence the equilibrium concentration. 129 (b) $H_4Cl(s) \rightleftharpoons NH_4^+(aq) + Cl^-(aq);$ $\Delta H =$ +3.5 kcal/mol This is the endothermic reaction hence, increasing the temperature will shift the equilibrium to the right. 130 (c) $K_{\rm sp}$ of BaSO₄ = 1.5×10^{-9} : [Ba²⁺] = 0.01 M $[SO_4^{2-}] = \frac{1.5 \times 10^{-9}}{0.01} = 1.5 \times 10^{-7}$ 131 (d) $Pb(OH)_2 \rightleftharpoons Pb^{2+} + 2OH^{-1}$ $K_{\rm sp} = [{\rm Pb}^{2+}][{\rm OH}^{-}]^2 = S \times (2S)$ $K_{\rm sp} = 4s^3 = 4 \times (6.7 \times 10^{-6})^3$ $= 1.20 \times 10^{-15}$ In a solution with pH=8 $[H^+] = 10^{-8}$ $[OH^{-}] = 10^{-6}$ and $1.20 \times 10^{-15} = [Pb^{2+}][10^{-6}]^2$ $[Pb^{2+}] = \frac{1.2 \times 10^{-15}}{[10^{-6}]^2}$ $= 1.2 \times 10^{-3} M$ 132 (c) $_{2}(g) \rightleftharpoons 2I(g)$ $\Delta n = n_p - n_r$ = 2 - 1 = 1 $K_n = K_c(RT)$ $2BrCl(g) \rightleftharpoons Cl_2(g) + Br_2(g)$ $\Delta n = 0$ $K_n = K_c (RT)^0$ $K_p = K_c$ $CO(g) + 3H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)$ $\Delta n = 2 - 4 = -2$

$$K_p = K_c (RT)^{-2}$$
$$K_p < K_c$$

133 (d)

When the value of ionic product is greater than the solubility product, precipitation takes place 134 (a)

$$\begin{array}{l} \text{BOH} \rightleftharpoons B^+_{c \alpha} + \text{OH}^-_{c \alpha} \\ K_b = \frac{[\text{B}^+][\text{OH}^-]}{\text{BOH}} = [\text{OH}^-]^2 \\ \therefore \quad [\text{OH}^-] = 1.0 \times 10^{-6} M. \end{array}$$

135 (d)

As the solution is acidic pH < 7. This is because $[H^+]$ from H₂O[10⁻⁷]M cannot be neglected in comparison to 10⁻⁹ M

pH = 12
∴ pOH = 2
or [OH⁻] = 10⁻²; ∴ [Ba²⁺] =
$$\frac{10^{-2}}{2}$$

 K_{sp} Ba(OH)₂ = [Ba²⁺][OH⁻]² = $\frac{10^{-2}}{2} \times (10^{-2})^2$
= 5 × 10⁻⁷M³.

137 **(b)**

 $2NH_3 \rightleftharpoons NH_4^+ + NH_2^-$ (self ionisation) and $K = [NH_4^+][NH_2^-]$ $\therefore [\mathrm{NH}_4^+] = [\mathrm{NH}_2^-]$ $\therefore [NH_2^-] = \sqrt{K} = \sqrt{10^{-30}} = 10^{-15} M$ Number of amide ions in 10^3 cm³ = $10^{-15} \times 6 \times$ 10^{23} \therefore Number of amide ions in one cm³ = $\frac{10^{-15} \times 6 \times 10^{23}}{10^3}$ ions

$$= 6 \times 10^5$$
 i

 $K = k_1 \times k_2$ $= 1.8 \times 10^{-5} \times 5.0 \times 10^{-10}$ $= 5 \times 10^{-15}$

139 (d)

Trichloroacetic acid is almost of same strength as HCl due to inductive effect of Cl-atoms.

$$[OH^{-}] = c \cdot \alpha = 0.01 \times \frac{5}{100} \times 5 \times 10^{-5}.$$

141 (b)

Nucleophiles are electron rich species and donate electron pair.

143 (a)

 $[Ca(OH)_2] = 0.01 \text{ mol}/100 \text{ cc} = 0.1 \text{ mol } L^{-1}$ Assuming complete ionisation,

$$[OH^{-}] = 0.2 \text{ M}, [H^{+}] = \frac{10^{-14}}{0.2} = 5 \times 10^{-14}$$

 $pH = -\log[H^+]$ $[product] = 0.41 \times [reactant]$ ⇒ $= -\log(5 \times 10^{-14})$ [product] < [reactant] ⇒ = 14 - 0.669 = 13.3Therefore, reaction proceeds in backward 144 (c) direction, *i.e.*, more PCl₅ will be formed. A solution with reverse acidity or basically is 151 (a) known as buffer solution. It is of two types : Reaction is exothermic. By Le-Chatelier's (I)Acidic buffer solution : A mixture of weak principle, a reaction is spontaneous in acid and its salt with strong base forward side (in the direction of formation of e.g., $CH_3COOH + CH_3COONa$ more ClF_3) if F_2 is added, temperature is (II)Basic buffer solution : A mixture of a weak lowered and ClF₃ is removed. base and its salt with strong acid. 152 (c) $NH_4OH + NH_4Cl$ e.g., $\Delta ng = 1$ for this change, so the equilibrium 145 (a) constant depends on the units of concentration X(g)153 (a) $K_{sp} = 4s^3$ $\therefore \quad 4s^3 = 3.2 \times 10^{-8}$ Y(g)Z(g)Initial 0 1 $s = 2 \times 10^{-3} M$ 0 :. At equilibrium 0.5 0.5 154 (d) 0.5 $Ag_2CO_3 \rightleftharpoons 2Ag^+ + CO_3^{2-}$ $\frac{0.5}{1.5} p$ $\frac{0.5}{1.5} p$ Partial pressure Due to the common ion effect, the solubility $\frac{0.5}{1.5} p$ decreases, so the solubility of Ag₂CO₃ would ÷ K_p be greatest 1 L of 0.05 M NH₃ due to the absence of common ion either Ag^+ or CO_3^{2-} . 1 Ag⁺form complex with NH₃. $Ag^+ + 2NH_3 \rightleftharpoons [Ag(NH_3)_2]^+$ 3 atm p 155 (c) 3 $\frac{p}{3}$ Partial pressure of X 1 atm The interferring radicals are PO_4^{3-} , BO_3^{3-} , $C_2O_4^{2-}$ 146 (a) and F⁻ give insoluble matter in alkaline medium. $K_1 = \frac{[\text{NO}_2]}{[\text{NO}][\text{O}_2]}$ and $K_2 = \frac{[\text{NO}]^2[\text{O}_2]}{[\text{NO}_2]^2}$ 156 (d) $pOH = K_b + \log \frac{[salt]}{[base]}$ \therefore $K_2 = \frac{1}{\kappa^2}$ given, $pK_b = 5$, [Base] = 0.10 M, 147 (b) $K_1 = \frac{[\text{NO}]^2}{[\text{N}_2][\text{O}_2]}$ [salt] = 0.01 M $pOH = 5 + log \frac{0.01}{0.10} = 4$:. $K_2 = \frac{[\text{NO}]}{[\text{N}_2]^{1/2} [\text{O}_2]^{1/2}}$ pH + pOH = 14pH = 14 - 4 = 10 $\therefore K_1 = K_2^2.$:. 157 (c) 149 (c) $Hg_{2}Cl_{2} \rightleftharpoons Hg_{2}^{2+} + 2Cl^{-}$ $K_{sp} = [Hg_{2}^{2+}][Cl^{-}]^{2}$ $K_{sp} = (s)(2s)^{2}$ 2.303 $\log \frac{K_2}{K_1} = \frac{\Delta H}{R} \frac{[T_2 - T_1]}{T_1 T_2}$; find ΔH . 158 (b) $K_c = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]}$ $K_{\rm sp} = 4s^3$ $\therefore 64 = \frac{x}{0.03 \times 0.03}$ $s = \left(\frac{K_{\rm sp}}{4}\right)^{1/3}$ $\therefore x^2 = 64 \times 9 \times 10^{-4}$ 150 (c) or, $x = 8 \times 3 \times 10^{-2}$ $K_c = \frac{[\text{product}]}{[\text{reactant}]}$ x is the amount of HI At equilibrium, amount of I₂ will be $0.41 = \frac{[\text{product}]}{[\text{reactant}]}$ 0.30 - 0.24 = 0.06

159 (c) Weak electrolytes are completely ionised at infinite dilution. 160 **(b)** $K_c = \frac{[PCl_3][Cl_2]}{[PCl_5]} = \frac{0.2 \times x}{0.4} = 0.5$ $\therefore x = 1$ 161 **(b)** Rest all occur in backward direction. 162 (c) Electron donors are Lewis base. In the reaction $I_2 + I^- \rightarrow I_3^-$, I^- donates a pair of electron and I_2 accepts it to form I_3^- . 1⁻ is Lewis base. *.*.. 163 (d) Number of milliequivalents of $NaOH = 10 \times 0.1 = 1$ Number of milliequivalents of $H_2SO_4 = 10 \times 0.05 = 0.5$ Milliequivalent of H₂SO₄ will neutralise NaOH so, that (1-0.5)=0.5 millieq. Of NaOH is left unneutralised. Hence, pH of the resulting solution will be greater than seven (pH>7). 164 (d) K_{sp} PbCl₂ = 4s³ = 4 × (0.01)³ = 4 × 10⁻ In NaCl solution for PbCl₂; $K_{sp} = [pb^{2+}][Cl^{-}]^2$ or $4 \times 10^{-6} = [pb^{2+}][0.1]^2$ $[Pb^{2+}] = 4 \times 10^{-4} M.$:. 165 (a) $aX + H_20 \rightleftharpoons NaOH + HX$ In it HX is weak acid, so NaX is a salt of weak acid and strong base. Hydrolysis constant of NaX :. $K_h = \frac{K_w}{K_a} = \frac{1 \times 10^{-14}}{10^{-5}} = 1 \times 10^{-9}$ For this type of salt $K_h = \frac{h^2}{v} = Ch^2$ h =degree of hydrolysis $1 \times 10^{-9} = 0.1 \times h^2$ $h^2 = \frac{1 \times 10^{-9}}{0.1} = 1 \times 10^{-8}$ or $h = 1 \times 10^{-4}$ ∴ % of degree of hydrolysis on NaX salt $= 1 \times 10^{-4} \times 100 = 1 \times 10^{-2} = 0.01\%$ 166 **(b)** H₂SO₄ is almost completely ionised in aqueous

solution. 167 (c) $XA \rightleftharpoons C + D$ $\begin{array}{c} 0 & 0\\ a(1-\alpha) & \frac{a\alpha}{\alpha} \end{array}$ $\therefore K = \frac{[C][D]}{[A]^X} = \left[\frac{a^2 \alpha^2}{x^2 V^2}\right] / \left[\frac{a(1-\alpha)}{V}\right]^X$ $=\frac{\alpha \cdot \alpha}{x^2(1-\alpha)^X \cdot V^{2-X}}$ If α is independent of a, then 2 - X =0r X = 2168 (d) $N_2O_4 \rightleftharpoons 2NO_2$ $(1-\alpha)$ 2α Total number of moles = 1 - $\alpha + 2\alpha = 1 + \alpha$ 169 (d) $K_{sp} = 4s^3$ $=\frac{0.11}{58}$ mol litre Also, :. 170 (d) $2NO_3(g) \rightleftharpoons 2NO(g) + O_2(g)$ $K_c = 1.8 \times 10^{-6}$ at 184°C(= 457K) $R = 0.00831 \text{ kJ mol}^{-1} \text{K}^{-1}$ $K_p = K_c (RT)^{\Delta n_g}$ Where, $\Delta n_{\rm g} = (\text{gaseous products} - \text{gaseous})$ reactants) =3-2=1 $\therefore K_p = 1.8 \times 10^{-6} \times 0.00831 \times 457$ $= 6.836 \times 10^{-6} > 1.8 \times 10^{-6}$ Thus, $K_p > K_c$ 171 (a) pH curve of strong acid with weak base is vertical over the pH range of 4 to 7.

The indicator that shows colour change

within this range is suitable. Methyl red (pH range 4.4 to 6.5) is suitable indicator for titration of weak base *vs* strong acid.

172 **(b)**

The value of the ionic product of water depends on temperature.

173 **(b)**

In this reaction, ΔH is negative, so reaction moves forward by decrease in temperature while value of $\Delta n_{\rm g} = 2 - 3 = -1$, *ie*, negative, so the reaction moves in forward direction by increase in pressure

175 **(b)**

 $K_p = K_c (RT)^{\Delta n}$

For the reaction,

$$N_2 + O_2 \rightleftharpoons 2NO$$

 $\Delta n = 2 - 2 = 0$
 $\therefore K_n = K_c (RT)^0$

$$K_p = K_c (RT)$$
$$K_p = K_c$$

176 **(b)**

Solubility is decreased due to common ion effect

AgI
$$\implies$$
 Ag⁺ + I
NaI \implies Na⁺ + I

177 (d)

$$K_p = \frac{p_{\text{CH}_3\text{OH}}}{P_{\text{CO}} \times p_{\text{H}_2}^2} = \frac{2}{1 \times (0.1)^2} = 200$$

$$K_p \text{ for reverse reaction is}$$

$$= \frac{1}{K_p} = \frac{1}{200} = 5 \times 10^{-3} \text{ atm}^2$$

178 **(a)**

Due to common ion effect, dissociation of NH_4OH decreases and thus, pOH increases or pH decreases.

179 **(c)**

$$pOH = 14 - pH = 14 - 10.65 = 3.35$$

$$pOH = -\log[OH^{-}]$$

$$-3.35 = \log[OH^{-}]$$

$$\therefore [OH^{-}] = 4.447 \times 10^{-4} \text{ M}$$

$$Ca(OH)_{2} = Ca^{2+} + 2OH^{-}$$

$$4.447 \times 10^{-4} \text{ M}$$

$$\frac{[OH^{-}]}{2} = [Ca(OH)_{2}] = 2.2235 \times 10^{-4} \text{ M}$$

Hence, in 250 mL, moles of

$$Ca(OH)_{2} = \frac{2.2235 \times 10^{-4} \times 250}{1000}$$

$$= 0.56 \times 10^{-4}$$

180 **(c)**

An increase in volume for the equilibrium having,

 $K_{c} = \frac{[\mathrm{SO}_{2}][\mathrm{Cl}_{2}]}{[\mathrm{SO}_{2}\mathrm{Cl}_{2}]} = \frac{[\mathrm{mole} \text{ of } \mathrm{SO}_{2}][\mathrm{mole} \text{ of } \mathrm{Cl}_{2}]}{[\mathrm{mole} \text{ of } \mathrm{SO}_{2}\mathrm{Cl}_{2}] \times \mathrm{volume}}$ Will increase the mole of Cl_2 or SO_2 to maintain K_c values constant. 181 **(b)** $ZnO + 2NaOH \rightarrow Na_2ZnO2_2 + H_2.$ 182 (c) $N_2(g)$ $3H_2(g)$ \rightleftharpoons 2NH₃(g) (Initially) 1 mole 3 mole 0 moles(2L)(At equilibrium) 0.6 or 2x moles (1-x) moles moles Number of moles of $N_2 = 0.6 = 1 - x$ x = 1 - 0.6 = 0.4:. $3 - 3x = 3 - 3 \times 0.4 = 1.8$ So. $2x = 2 \times 0.4 = 0.8$ and Therefore, the total number of moles at equilibrium. = (1 - x) + (3 - 3x) + 2x= 0.6 + 1.8 + 0.8= 3.2 mol183 (a) $I_2 \rightleftharpoons 2I^-;$ Find x, using $K_c = 10^{-6} = \frac{4x^2}{(1-x)^2}$, find x and notice 2x < (1 - x).184 (d) $K_c = \frac{[B]}{[A]} = 1.1$ 185 (a) In the reaction, $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$, the number of moles of reactants and products are equal, thus it remain unaffected by change in pressure 186 (a) Aqueous solution of NaCl is neutral. So, its pH value is 7. 187 (a) If saturated solution $[Ag^+][Cl^-] = K_{sp}$ if the product of ionic concentration is lower than K_{sp} , solution is unsaturated. 188 (a) $NH_4OH \rightleftharpoons NH_4^+ + OH^-$ At t = 00.1 *M* 0 0 At equilibrium (0.1 – $\frac{1.3 \times 0.1}{100}$ M) 0.0013 M(0.0013 M)

 $= 0.1 \, \text{M}$ $= [OH^{-}] = 0.0013 \text{ M} = 13 \times 10^{-4} \text{ M}$ $pOH = -\log[OH^{-}] = -\log(13 \times 10^{-4}) = 2.89$ pH = 14 - 2.89 = 11.11189 (b) $\alpha = \frac{\Lambda_v}{\Lambda_{\infty}} = \frac{8}{400} = 0.02$ Now $K_a = c\alpha^2 = \frac{1}{22} \times (0.02)^2$ $= 1.25 \times 10^{-5}$. 190 (b) $0^{2-} + H_2 0 \rightarrow 20 H^-$. 191 (b) $X^- + H_2 0 \rightleftharpoons HX + 0H^ K_h = \frac{10^{-14}}{10^{-5}}$ so, $h = \sqrt{\frac{K_h}{C}} = \sqrt{\frac{10^{-9}}{10^{-1}}} = 10^{-4}$ $= 100 \times 10^{-4} = 10^{-2}$ So, degree of hydrolysis is 0.01% 192 (a) The species which can accept as well as donate H⁺ can act both as an acid and a base $HSO_4^- + H^+ \rightleftharpoons H_2SO_4$ base $HSO_4^- \rightleftharpoons SO_4^{2-} + H^+$ acid 193 (d) $2 = \frac{[B]}{[A]}$; $4 = \frac{[C]}{[B]}$ and $6 = \frac{[D]}{[C]}$ Thus, on multiplying $2 \times 4 \times 6 = \frac{[D]}{[A]}$, i.e., K_c for the reaction. 194 (d) Moles of HCl = $\frac{0.365}{36.5} = 0.01$ Moles of NaOH in 100 $\rm cm^3$ of 0.2 M NaOH $0.2 = \frac{n \times 1000}{100} = 0.02$ Moles of NaOH left=0.02-0.01=0.01 Moles of NaOH per litre $\frac{0.01 \times 1000}{100} = 0.1$ $[\mathrm{H}^+] = \frac{10^{-14}}{0.1} = 10^{-13}; \ (K_w = [\mathrm{H}^+]. \ [\mathrm{OH}^-])$ $pH = -\log[H^+] = -\log[10^{-13}]$ pH = 13195 (c) $[OH^{-}] = 0.0001N, pOH = 4$ pH + pOH = 14pH = 14 - pOH = 14 - 4 = 10196 (a) $\Delta G^0 = -2.303RT \log K_p$ $= -2.303 \times 8.314 \times 300 \log 10^{20}$

= -114.88 kJ197 (a) $K_c = \frac{1}{[0_2]^5}$; note that the expression does not involve the concentration terms of solid species. 198 (b) NH₄CN Is a salt of weak acid and weak base and thus, for it, $K_H = \frac{K_w}{K_a \times K_b}$ 199 (d) The forward reaction is exothermic and an increase in volume is taking place, Hence, according to Le-Chatelier's principle, forward reaction will be favoured by low temperature and low pressure. 200 (d) NH₄Cl on hydrolysis gives acidic nature. 201 (b) $K_c = [Fe^{3+}][OH^-]^3$ If $[OH^-] = \frac{1}{4} \times [OH^-]_{initial}$, than $[Fe^{3+}] =$ 64 $[Fe^{3+}]_{initial}$ to have K_c constant 202 (c) $A(g) + 3B(g) \rightleftharpoons 4C(g)$ 0 Initial concentration (1 - 3x)(1 - x)4xFinal concentration (at equilibrium) According to question, 1 - x = 4x $x = \frac{1}{2}$:. For above reaction, $K_{C} = \frac{[C]^{4}}{[A][B]^{3}} = \frac{(4x)^{4}}{(1-x)(1-3x)^{3}}$ $K_{c} = \frac{\left(4 \times \frac{1}{5}\right)^{4}}{\left(1 - \frac{1}{r}\right)\left(1 - 3 \times \frac{1}{r}\right)^{3}} = 8.0$ 203 (a) *m* Mole of acid = $6 \times 0.1 = 0.6$ *m* Mole of salt = $12 \times 0.1 = 1.2$ $\therefore \text{ pH} = 4.75 + \log \frac{1.2}{0.6} = 4.75 + 0.3010 = 5.05.$ 204 (c) 50 mL of 0.1 M HCl = $\frac{0.1 \times 50}{1000} = 5 \times 10^{-3}$ 50 mL of 0.2 M NaOH = $\frac{0.2 \times 50}{1000}$ = 10 × 10⁻³ Hence, after neutralisation NaOH is left $= 10 \times 10^{-3} - 5 \times 10^{-3}$ $= 5 \times 10^{-3}$

Total volume= 100 cc

The concentration of NaOH $=\frac{5\times10^{-3}\times1000}{100}=0.05\ \mathrm{M}$ $[OH^{-}] = 0.05 \text{ M} = 5 \times 10^{-2} \text{ M}$ $pOH = -\log [OH^{-}]$ $= -\log [5 \times 10^{-2}]$ = 1.3010pH + pOH = 14pH = 14 - 1.3010 = 12.699205 (b) $2\text{KCN} + \text{AgNO}_3 \rightarrow \text{Ag}(\text{CN})_2^- + \text{KNO}_3 + \text{K}^+$:. $[Ag(CN)_2^-] = 0.03$ $Ag(CN)_2^- \rightleftharpoons Ag^+ + 2CN^-$ Now. $\begin{array}{ccc} 0.03 \\ (0.03-a) \end{array} & \begin{array}{c} 0 & 0.04 \\ a & (0.04+a) \end{array} (left from KCN) \end{array}$ K_c is small $\therefore 0.03 - a \approx 0.03$ and $0.04 + a \approx 0.04$ $\therefore K_c = 4 \times 10^{-19} = \frac{(0.04)^2 \times a}{0.03}; \therefore a = 7.5 \times 10^{-18}$ 206 **(b)** Higher $pK_a(-\log K_a)$ means lower K_a for acid. 207 (a) $N_{\rm NaOH} = 1 \times 1 = 1 \,\rm N$ $N_{\rm H_2SO_4} = 2 \times 10 = 20 \,\rm N$ Millieq. of NaOH = $1 \times 100 = 100$ Millieq. of $H_2SO_4 = 20 \times 10 = 200$ Thus, Millieq. of acid are left and therefore pH < 7. So, the resulting mixture will be acidic 208 (a) pH = 4.35 $\therefore 4.35 = -\log[H^+]$ or $[H^+]$ = antilog of (-4.35 $= 4.5 \times 10^{-5} M$ 209 (b) pH of salts of weak acid and weak base is derived by the relation : [H⁺] = $\sqrt{K_H} = \sqrt{\frac{K_W}{K_C \cdot K_E}}$ 210 (a) $\xrightarrow{\text{Electric arc}} 2H - 104.5 \text{ kcal}$ H₂ ______ hydrogen atomic molecule hydrogen The reaction is endothermic. For endothermic reaction increase in temperature shift the equilibrium in forward direction. To proceed forward the pressure must be low because for the above reaction, increase of pressure will favoured backward reaction. So, for maximum yield the conditions are high

temperature and low pressure. 211 (a) H₃PO₂ is monobasic acid and thus, it forms only one normal salt. 212 (d) According to Lewis, "A base is a species which can donate an electron pair." In NH₃, N has one lone pair. Thus, NH₃is a Lewis base 213 (d) K < 1.0214 (b) Higher is the value of *K*, more is the probability for a reaction to go for completion. 215 (d) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ The equilibrium constant (K_n) changes with the change in temperature. Note : Variation of equilibrium constant with temperature can be express as: $\log \frac{K_2}{K_1} = \frac{\Delta H}{2.303R} \left[\frac{T_2 - T_1}{T_1 \cdot T_2} \right]$ 216 **(b)** $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ $K_c = \frac{[\text{NO}]^2}{[\text{N}_2][\text{O}_2]} = 4 \times 10^{-4}$ $N0 \rightleftharpoons \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$ $K_c' = \frac{[N_2]^{1/2} [O_2]^{1/2}}{[NO]}$ $=\sqrt{\frac{1}{K_c}}=\sqrt{\frac{1}{4\times 10^{-4}}}=50$ 217 (b) $2A_{(g)} + B_{(g)} \rightleftharpoons 3C_{(g)} + D_{(g)}$ Initial 1.0 1.0 0 0 At.Eq. 0.5 0.75 0.75 0.25 $K_c = \frac{(0.25) \times (0.75)^3}{(0.5)^2 \times 0.75}$

218 (c)

 RNH_2 is stronger base than NH_3 . Also HI is strong acid and thus, I^- is weak base.

219 **(b)**

Due to ionisation in water.

```
220 (a)

[H^+] = 10^{-1}

\therefore pH = 1
```

```
221 (c)
```

```
\mathrm{Fe}^{3+} + 3\mathrm{H}_2\mathrm{O} \longrightarrow \mathrm{Fe}(\mathrm{OH})_3 + 3\mathrm{H}^+.
```

```
222 (b)
```

This is Bronsted-Lowry concept of acid base.

```
223 (a)
```

The conjugate acids of $\overline{O}H$, $\overline{N}H_2$, HC \equiv

	C^{-} and $CH_{3}CH_{2}^{-}$ are	ĺ
	$H_2O, NH_2, HC = CH$ and $CH_2 -$	
	CH ₂ respectively. Their acidic strength is as	
	$HOH > HC = CH > NH_0 > CH_0CH_0$	
	A strong acid has a weak conjugate hase	
	A strong actual as a weak conjugate base,	2
	$CH_3CH_2^- > NH_2^- > HC \equiv C^- > OH^-$	2
225	(b)	
	On removal of CO_2 (one of the reaction), reaction	
	will proceed in backward direction.	
226	(c)	
	Common ion effect includes two necessary points;	2
	one presence of common ion and the other a weak	
~~~	electrolyte.	
227	(b)	
	$C(s) + CO_2 \rightleftharpoons 2CO(g)$	
	Gaseous mole before - 1 0	
	dissociation	
	Gaseous mole after - $\left(1 - \frac{50}{100}\right) \left(\frac{2 \times 50}{100}\right)$	2
	dissociation	
	1. 0.5 1	K
	: Total mole $-15$ and $\Lambda n - 1$	
	$\cdots$ Total mole = 1.5 and $\Delta n = 1$	
	Total pressure given at equilibrium = 12 atm	2
	$(n_{\rm CO})^2$ [P] ^{$\Delta n$} (1) ² (12) ¹	
	$K_p = \frac{1}{(n_{co})} \times \left[\frac{\overline{\Sigma n}}{\overline{\Sigma n}}\right] = \frac{1}{0.5} \times \left(\frac{1}{1.5}\right)$	2
		[
	$K_n = \frac{12}{1000} = 16 \text{ atm}$	
	p 1.5 × 0.5	
228	(b)	
	If $K_w = 10^{-12}$ , then [H ⁺ ] for neutral scale = $10^{-6}$	
	or $pH = 6$ ; thus, pH 6.9 refers for alkaline nature.	
229	(c)	
	$[C1, ][PC1, 1] = \frac{0.2}{2} \times \frac{0.2}{2}$	
	$K_c = \frac{102111031}{10011} = \frac{10}{0.1} = 0.04$	
230	(d)	2
$\sim$	$CH_3COOH + C_2H_5OH \rightleftharpoons CH_3COOC_2H_5 + H_2O$	
	1 1 0 0 (1-2/3) (1-2/3) 2/3 2/3	
	(1-2/3) $(1-2/3)$ $2/3$ $2/3$	
	$\therefore K_c = \frac{3 \times 3}{1 \times 1} = 4$	
221	$\frac{1}{3}$ 3	
231	$\begin{bmatrix} \mathbf{U} \end{bmatrix}$	2
	$K_c = \frac{[100_2]}{[100_2]} = \frac{4 \times (0.05)^2}{0.05} = 4 \times 0.05 = 0.2$	-
222	$[N_2 U_4] = 0.05$	2
232	(u)	
	Millieq. of 0.01 M HCl = $\frac{1000}{1000} = 1 \times 10^{-5}$	l

 $\therefore pH = 3$ Millieq. of 0.02 M H₂SO₄ =  $\frac{0.04 \times 50}{1000}$  = 2 × 10⁻³ Millieq. of 0.02 M NaOH  $= \frac{0.02 \times 50}{1000} = 1 \times 10^{-3}$ Left  $[H^+] = 2 \times 10^{-3} - 1 \times 10^{-3}$ ;  $\therefore pH = 3$ 33 **(a)**  $K_p = \frac{p_{C0}^2 p_{O_2}}{p_{C0}^2} = \frac{[0.4]^2 \times [0.2]}{(0.6)^2} = 0.0888$ 234 (d)  $pH = 4.5 + log \frac{[Conjugate base]}{[Acid]}$  $\therefore$  [Salt] = [Acid], since  $[A^-] = [H_A]$  $\therefore$  pH = 4.5  $\therefore$  pOH = 9.5 35 (b) We know that,  $pH = pK_a + \log \frac{[salt]}{[acid]}$ or  $pH = -\log 10^{-8} + \log \frac{1}{1}$ (: [salt] = [acid])pH = 8or 36 **(c)**  $3A + 2B \rightarrow 2C$  $K_{c} = \frac{\text{concentration of products}}{\text{concnetration of reactants}}$  $= \frac{[C]^{2}}{[A]^{3} \times [B]^{2}}$ 38 **(a)** Only in reaction (ii)  $H_2PO_4^-$ , gives  $H^+$  to  $H_2O_4$ , thus behaves as an acid. 239 (a)  $CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^ [OH^{-}] = c \cdot h = c \sqrt{\frac{K_{H}}{c}} = \sqrt{K_{H} \cdot c} = \sqrt{\frac{K_{w}}{K_{a}}} \cdot c$ *.*:. or  $-\log OH = -\frac{1}{2}[\log K_w + \log c - \log K_a]$ or  $pOH = \frac{1}{2} [pK_w - \log c - pK_a]$ Now,  $pH + pOH = pK_w$  $\mathrm{pH} = \frac{1}{2} [\mathrm{p}K_w + \log c + \mathrm{p}K_a].$ :. 240 **(a)**  $\underbrace{A+B}_{2} + Q \rightleftharpoons \underbrace{C+D}_{2}$ The reaction is endothermic so, on increase temperature concentration of product will increase 242 (d) It is  $FeSO_4 \cdot (NH_4)_2 SO_4 \cdot 10H_2 O_2$ . 243 (a)  $[OH^{-}] = 2 \times 0.05 = 0.1$  $\therefore$  pOH = 1 and pH = 13.

244 (b) For a reaction,  $K_c = \frac{[\text{product}]}{[\text{reactant}]}$ Hence, if  $K_c > 1$ , then [Product]>[Reactant] 245 (c) For base BOH  $BOH \rightleftharpoons B^+ + OH^-$ Dissociation constant  $K_b = \frac{[B^+][OH^-]}{[BOH]}$ : Higher the value of  $K_b$ , more will be dissociation of base and stronger will be base and vice-versa. ∴ Weakest base among given choices is having  $K_b = 7.2 \times 10^{-11}$ . 246 (a)  $2AB_2(g) \rightleftharpoons 2AB(g) + B_2(g)$  $\begin{array}{c}
 1 \\
 1 - x
 \end{array}$  $K_p = \frac{x^2 \cdot x}{2(1-x)^2} \cdot \left[\frac{P}{1+\frac{x}{2}}\right]^1 = \frac{x^3 \cdot P}{2}$  $\left(1-x \approx 1 \text{ and } 1+\frac{x}{2} \approx 1, \text{ since } x \ll 1\right)$  $P = \frac{3\sqrt{2K_p}}{2K_p}$ 0r 247 (b)  $K_p = K_c (RT)^{\Delta ng}$  $\Delta ng = -1$  (For the reaction,  $2SO_2 + O_2 \rightleftharpoons 2SO_3$ ). Thus, for this reaction,  $K_p$  is less than  $R_c$ 248 (a)  $Cr(OH)_3 \rightleftharpoons Cr^{3+} + 3OH^{-1}$  $K_{\rm sp} = s \times (3s)^3$ = 27s⁴ 2.7 × 10⁻³¹ = 27s⁴  $s = \sqrt[4]{\frac{K_{\rm sp}}{27}} = \sqrt[4]{\frac{2.7 \times 10^{-31}}{27}}$ :.  $= 10^{-8} \text{ mol/L}$ 249 (d)  $N_2O_4 \rightleftharpoons 2NO_2$  $K_p = \frac{\left(n_{\rm NO_2}\right)^2}{n_{\rm NO_2}} \times \left[\frac{P}{\Sigma n}\right]^1$ For 33% dissociation:  $K_p = \frac{(2 \times 0.33)^2}{0.67} \times \left[\frac{P}{1.33}\right]$ For 40% dissociation:  $K_p = \frac{(2 \times 0.40)^2}{0.60} \times \left[\frac{P}{1.40}\right]$ 

 $\therefore \frac{P_1}{P_2} = 1.56 \approx 1.60 = \frac{8}{5}$ 250 (a)  $A + 2B \rightleftharpoons 2C$ 2 3 2 initial moles  $(2 - 0.5)(3 - 0.5)(2 \times 0.5)$  at equilibrium Molar concentration of  $A = \frac{1.5}{2}$ Molar concentration of  $B = \frac{2.5}{2}$ Molar concentration of C = $K = \frac{[C]^2}{[A][B]^2} = \frac{1 \times 1 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 1.5 \times 2.5 \times 2.5 \times 2.5}$  $=\frac{2}{1.5 \times 2.5 \times 2.5} = 0.21$ 251 (d)  $\ln \frac{N}{1000}$  KOH solution,  $[OH^{-}] = 10^{-3}$  M  $pOH = -\log[OH^{-}] = -\log[10^{-3}]$  $= +3 \log 10 = 3$ pH + pOH = 14pH = 14 - pOH= 14 - 3= 11252 (a) Tears are alkaline in nature. 254 (b)  $MX_2 = M^{2+} + 2X^{-}$  $K_{\rm sp} = (2s)^2(s) = 4s^3$  $\Rightarrow s = \frac{3}{2} \left| \frac{K_{\rm sp}}{4} = \frac{3}{2} \right| \frac{4 \times 10^{-12}}{4} = 1.0 \times 10^{-4} {\rm M}$ 255 (d) Let solubility of  $BaSO_4 = mol L^{-1}$  $BaSO_4 \rightleftharpoons Ba^{2+} + SO_4^{2-}$ x x x ∴ Ions at equilibrium  $K_{\rm sp} = [{\rm Ba}^{2+}][{\rm SO}_4^{2-}]$  $= x \times x$  $r^2$ Given,  $K_{\rm sp} = 1.5 \times 10^{-9}$  $(1.5 \times 10^{-9}) = x^2$  $\sqrt{1.5 \times 10^{-9}} = x$ or  $x = 3.9 \times 10^{-5} \text{ mol/L}$ 256 (d)

Strongest Bronsted base is that which has weakest conjugate acid.

Base	Conjugate
	acid (base
	+ H+)
ClO ⁻	HClO
$ClO_2^-$	HClO ₂
$ClO_3^-$	HClO ₃
$ClO_{4}^{-}$	HClO4

• HClO is weak conjugate acid.

∵ ClO[−] is strongest Bronsted base.

#### 257 (b)

At equilibrium  $Q = K_c$  (or  $Q = K_p$ )

#### 258 (a)

Oxalic acid =  $x \mod/L$ 

Oxalic acid KMnO₄

$$M_{1}V_{1} = M_{2}V_{2}$$
40 mL × x = 16 mL × 0.05  

$$x = \frac{16 \times 0.05}{40} = \frac{1}{50}$$

$$x = \frac{1}{50}$$
 M

Now, convert molarity into normality  $N \times eq. wt = M \times mol. wt. of oxalic acid$ 

$$N \times 45 = \frac{1}{50} \times 90$$
$$N = \frac{1}{25}$$

This normality represents the hydrogen ion concentration.

So,

$$[H^+] = \frac{1}{25}$$

$$pH = \log \frac{1}{[H^+]}$$

$$= \log 25 = 1.3$$

Гтт **–** Т

259 (c)

Simple cations such as Ag⁺, Cu²⁺, Fe³⁺ etc. can accept pairs of electrons and hence are Lewis acids.

260 **(d)** 

Aspirin is a weak acid. Due to common ion effect, it is unionised in acid medium but completely ionised in alkaline medium

# 261 (c)

For a saturated solution product of ionic concentrations  $\geq K_{sp}$ .

262 **(b)** 

$$H_2 0 + H_2 0 = H_3 0^+ + 0 H^-$$
  
 $K_{S.I} = \frac{K_w}{[H_2 0]^2} = \frac{10^{-14}}{(55.6)^2} = 3.23 \times 10^{-18}$ 

263 (c)

Follow the method to write  $K_c$  or  $K_p$  values. It is

the ratio of concentrations of products with suitable powers to concentration of reactants e.g.,  $3A(g) + 2B(g) \rightleftharpoons 4C(g) + 5D(g)$  $K_c = \frac{[C]^4 [D]^5}{[A]^3 [B]^2}$  $K_p = \frac{[P_C]^4 \cdot [P_D]^5}{[P_A]^3 \cdot [P_B]^2}$ 264 (b) (i)Millimolar= $10^{-3}$ M (ii)pH =  $-\log[H^+]$  $pH = -\log(10^{-3}) = 3.$ 265 (b)  $A + 2B \rightleftharpoons C + 3D$  $K_c = \frac{p_C p_D^3}{p_A p_B^2} = \frac{0.30 \times (0.50)^3}{0.20 \times (0.10)^2}$ = 18.75266 (d) It involves gain and loss of electron pair (Lewis concept). 267 (d)  $SnCl_2 + 2HgCl_2 \rightarrow SnCl_4 + Hg_2Cl_2$ (white ppt.)  $SnCl_2 + Hg_2Cl_2 \rightarrow SnCl_4 + Hg_2$ 268 (c) BF₃ can accept a pair of electrons, but it cannot give  $H^+$  ions in the aqueous solution, hence  $BF_3$ acts as Lewis acid but not as a Bronsted acid 269 (c)  $Na_2O + H_2O \rightarrow 2NaOH$ ↑ +1Oxidation number of Na +1Oxygen -2 -2 -2 No change in oxidation number, so (a) and (d) are not true. (b) is also not true. + H—O—H → 2.0H Oxide ion donates a pair of electrons, thus changes to OH⁻ 270 (d)  $pH = \frac{1}{2}pK_w + \frac{1}{2}\log C + \frac{1}{2}pK_a$  $= \frac{14}{2} + \frac{1}{2}\log(5 \times 10^{-3}) + \frac{1}{2} \times 4.74$  $=7+\frac{1}{2}[0.6990-3]+2.3$ 

pH = 8.2195

271 (b)

For a salt of weak base and strong acid like MgCl₂ the relation is as

$$K_h = \frac{K_w}{K_b}$$

272 (d)

Theory of active mass indicates that the rate of chemical reaction is directly proportional to the concentration of reactants

273 (c)

If  $n_P = n_R$ , then  $K_p = K_c$ where,  $n_p$  = number of moles of products  $n_R$  = number of moles of reactants 274 (c)

 $K_h = \frac{K_w}{K_a \times K_h}$ 

275 (c)

N— H bond behaves as an acid.

A

x mol

В

x mol

276 (c)

D

Initial

 $\frac{x}{3}$ 

277 (a)

At equilibrium  $x - \frac{x}{3} = \frac{2x}{3}$  $\frac{x}{3}$ Hence,  $K_c = \frac{[C][D]}{[A][B]} = \frac{\left(\frac{\lambda}{3V}\right)\left(\frac{\lambda}{3V}\right)}{\left(\frac{2\lambda}{2V}\right)\left(\frac{2\lambda}{2V}\right)}$  $\begin{array}{c} N_2 + 3H_2 \rightleftharpoons 2NH_3 \\ 0.2 & 0.6 & 0 \\ (0.2-a) & (0.6-3a) & 2a \end{array}$ Initially at eq. Total mixture is 0.8; 40% of it reacts, i.e.,  $\frac{0.8 \times 40}{100}$ reacts to give  $\frac{0.8 \times 40}{100} \times \frac{1}{2}$  mole of NH₃ or NH₃ formed is 0.16 mole 2a = 0.160r a = 0.08...  $\therefore$  initial mole = 0.8 Final mole = (0.2 - 0.08) + (0.6 - 0.24) + 0.16= 0.12 + 0.36 + 0.16 = 0.64Ratio of final to initial mole  $=\frac{0.64}{0.8}=0.8=\frac{4}{5}$ 278 (b)  $[H^+] = 4 \times 10^{-3} M$  $\therefore$  pH =  $-\log 4 \times 10^{-3} = 2.398$ . 279 (b)  $pH = pK_a + \log \frac{[Salt]}{[Acid]}$  $= 5 + \log \frac{10}{1} \text{ if } \frac{[\text{Salt}]}{[\text{Acid}]} = 10 : 1$ , Then, pH = 6.

280 (a) 10 *M* HCl will give  $[H^+] = 10^1$ ; pH of such solution = 0.281 (a)  $Mg(OH)_2 \rightleftharpoons Mg^{2+} + 2OH^ K_{\rm sp} Mg(OH)_2 = [Mg^{2+}][OH^{-}]^2$  $K_{\rm sp} \, {\rm Mg(OH)}_2 = 4S^3$ ⇒  $1.96 \times 10^{-11} = 4S^3$  $S = \left[\frac{1.96 \times 10^{-11}}{4}\right]^{1/3}$  $S = (4.9 \times 10^{-12})^{1/3}$ or or  $S = 1.96 \times 10^{-4}$ :. So, concentration of  $[OH^{-}] = 2S$  $[OH^{-}] = 3.38 \times 10^{-4}$ :.  $pOH = -\log[OH^{-}]$ ⇒  $= -\log[3.38 \times$  $10^{-4}$ ] pOH = 3.471 $\neq$  C + pH = 14 - pOH= 14 - 3.471pH=10.529 282 (c)  $K_p = K_c (RT)^{\Delta n}$ ; 283 (c)  $K_c$  is characteristic constant for a given reaction at a temperature ;  $K_p = P_{CO_2}$ . 284 (c) Acidity order (Conjugate anion decreases acidity) 285 (c) For precipitation, ionic product > solubility product ( $K_{sp}$ ) For, Ag₂CrO₄ ionic product =  $[Ag^+]^2[CrO_4^-]$  $=(10^{-4})^2(10^{-5})=10^{-13}$  $K_{\rm sp}$  of Ag₂CrO₄ = 4 × 10⁻¹² Here,  $K_{sp} > IP$ This, no precipitate is obtained. For AgCl, ionic product =  $[Ag^+][Cl^-] =$ 

 $[10^{-4}][10^{-5}]$  $= 10^{-9}$  $K_{\rm sp}({\rm AgCl}) = 1 \times 10^{-10}$ Here.  $IP > K_{sp}$ So, precipitate will form. Thus, silver chloride gets precipitated first. 286 (d) It is basic lead carbonate. 287 (d)  $K_p$  or  $K_c$  are characteristic constants for a given reaction. 288 (b)  $K_c = [Ca^{2+}][F^{-}]^2;$ If  $[Ca^{2+}] = 4 \times [Ca^{2+}];$ To have  $K_c$  constant [F⁻] should be  $\frac{[F^-]}{2}$ . 290 (d) Strong conjugate base has a weak conjugate acid. Weakest conjugate acid is CH₃COOH. 291 (b) I[–] is electron pair donor. 292 (c)  $2HI \rightleftharpoons H_2 + I_2;$  $K_c = \frac{\alpha^2}{4(1-\alpha)^2}$ Where  $\alpha$  is degree of dissociation, Also,  $\alpha = \frac{22}{100}$  $:: K_c = 0.0199$ 293 (c) ZnO reacts with acid and alkalies both. 294 (c)  $\Delta n = -1$  and  $K_p = K_c \ge (RT)^{\Delta n}$ 295 (a)  $H_2(g) + CO_2(g) \rightleftharpoons CO(g) + H_2O(l)$ Initial conc. 0 0 At equilibrium (1 - x)(1 - x) $K_p = \frac{p_{\text{CO}} \cdot p_{\text{H}_2\text{O}}}{p_{\text{H}_2} \cdot p_{\text{CO}_2}} = \frac{x \cdot x}{(1-x)(1-x)} = \frac{x^2}{(1-x)^2}$ 296 (c) In this equation, volume is decreasing and the reaction is exothermic. So, for the highest vield of Z, pressure should be high and temperature should be low. 297 (a) The pH of salt  $BaCl_2 = 7$  whereas  $SrCl_2$  and  $CaCl_2 \simeq 7$  and  $MgCl_2 < 7$ . 298 (d) Lewis definition suggests that an acid must be capable of accepting lone pair in its vacant orbital.

Smaller ion shows more attraction towards lone pair of electron. 299 (c) Degree of dissociation,  $\alpha = \frac{D-d}{d}$ 46 – 30 30 = 0.533 or 53.3% 300 (d)  $\Delta n = 0$  then,  $K_p = K_c$ For  $(d)\Delta n = 1$ 301 (a)  $pH = pK_a + \log \frac{[Conjugate base]}{[Acid]}$ or  $5.24 = 4.74 + \log \frac{[Conjugate base]}{[Acid]}$  $\therefore \frac{[\text{Conjugate base}]}{[\text{base}]} = 3.$ 302 (a)  $[\mathrm{H}^+] = C\alpha = \sqrt{K_a.C}$  $\mathrm{pH} = -\log(K_a, C)^{1/2}$  $=\frac{1}{2}\left[-\log K_a - \log C\right]$  $=\frac{1}{2}[4.74 - \log 10^{-2}]$  $=\frac{1}{2}[4.74+2]=3.37$ 

# 303 (a)

1M solution of CH₃COONa on addition to acid shows a decrease in dissociation of acid due to common ion effect.

# 304 **(d)**

Weak monoacidic base *e.g., BOH* is neutralised as follows

 $BOH + HCl \rightarrow BCl + H_2O$ 

At equivalence point all *B*OH gets converted into salt and remember! The concentration of H⁺ (or pH of solution) is due to hydrolysis of resultant salt (BCl, cationic, hydrolysis here)

$$B^{+} + H_{2}0 \rightleftharpoons BOH + H^{+}$$

$$C(1-h) \qquad Ch \qquad Ch$$
Volume of HCl used up

$$V_a = \frac{N_b V_b}{N_a} = \frac{2.5 \times 2 \times 15}{2 \times 5} = 7.5 \text{ mL}$$

Concentration of salt

$$[BCI] = \frac{\text{conc.of base}}{\text{total volume}} = \frac{2 \times 2.5}{5(7.5 + 2.5)} = \frac{1}{10} = 0.1$$
$$K_h = \frac{Ch^2}{1 - h} = \frac{K_W}{K_b}$$

(*h* should be estimated whether that can be neglected or not) on calculating h=0.27 (significant, not

 $[H^+] = 10^{-2}$ negligible) :.  $[H^+] = Ch = 0.1 \times 0.27 = 2.7 \times 10^{-2} M$  $[H^+] = N.\alpha$ 305 (c)  $10^{-2} = 0.1 \times \alpha$  $\alpha = \frac{10^{-2}}{0.1}$ A salt is precipitated only when the product of ionic concentration is more than its  $\alpha = 0.1$ solubility product. 311 (c)  $K_{\rm sp} = 1 \times 10^{-8}$ Since, catalyst increases the rate of forward  $[A^+] = 10^{-3} \text{ M}$ reaction as well as the rate of backward  $[B^{-}] = \frac{1 \times 10^{-8}}{10^{-3}} = 10^{-5} \text{ M}$ reaction, it does not affect the equilibrium constant. So, *AB* will be more precipitated only when 312 (d) the concentration of  $[B^-]$  is more than  $10^{-5}$ Meq. of  $H_2SO_4$  needed for 20 Meq. of NaOH = 20 Μ. Thus, volume of  $H_2SO_4$  needed =  $V_{mL}$ 306 (b)  $V \times 0.25 \times 2 = 20$ or According to Le-Chatelier's principle :. V = 40 mLexothermic reactions are favourable at low Also, temperature increases during neutralization pressure. The reaction in which number of and then decreases after neutralization on further moles decreases are favourable at high addition of acid. pressure or low volume. 313 (b)  $C_2H_4 + H_2 \rightleftharpoons C_2H_6$ ,  $\Delta H = -130 \text{ kJ mol}^{-1}$ The dissociation of H₂S decreases in presence of : The reaction is exothermic and number of acid (or H⁺ a common ion furnished by an acid). moles of reactants are decreasing. 314 (a)  $H_2$ ⇒ 2HI : The reaction rate is increased by decreasing + $I_2$ temperature and increasing pressure. 15 5.2 0 307 (d) (5.2-5)10 (15-5)The reaction does not cease up but goes in both Equilibrium constant  $(K_c) = \frac{[\text{HI}]^2}{[\text{Ha}][\text{Ia}]} = \frac{10 \times 10}{10 \times 0.2} =$ directions with same speed. 308 (a) Haber's process of synthesis of ammonia 50 315 (c)  $N_2 + 3H_2 \rightleftharpoons 2NH_3$  $N_2 + 3H_2 \xrightarrow{\text{Fe, Mo}} 2NH_3$  750 K 2000 atmNew concentration of,  $HCl = \frac{10^{-6}}{100} = 10^{-8} M$  $\therefore$  [H⁺] = 10⁻¹⁸ + 10⁻⁷ Since, the number of molecules of gaseous  $= 1.1 \times 10^{-7} M$ products are less than the number of  $pH \approx 7$ :. molecules of gaseous reactants, thus 317 (a) according to Le-Chatelier's principle, high  $pH = -\log[H^+]$ pressure favours the forward reaction i.e.,  $= -\log(3 \times 10^{-3})$ more ammonia will be obtained.  $= 3 - \log 3$ 309 (d) = 3 - 0.4771Buffer capacity of an acidic buffer is = 2.5229maximum when the ratio of HA to  $A^-$  is unity. 318 (d) Since, pH of acidic buffer =  $pK_a + \log \frac{[A^-]}{[HA]}$ The dissociation of HCN will decrease in presence of NaCN due to common ion effect. For maximum buffer capacity,  $[A^-] = [HA]$ 319 (c)  $pH = pK_a$ :. Meq. of HCl =  $10 \times 10^{-1} = 1$ 310 (c) Meq. of NaOH =  $10 \times 10^{-1} = 1$ :. pH = 2

Thus, both are neutralized and 1 Meq. Of NaCl (a effect of *P*, *T* and *C* on systems in equilibrium. salt of strong acid and strong base) which does 329 (a) not hydrolyse and thus, pH = 7.  $pK_a = -\log K_a$ 320 (d) Higher the value of  $pK_a$ , weaker is the acid.  $PbCl_2 \rightleftharpoons Pb^{2+} + 2I^-$ Among given choices 2.0, 2.5, 3.0 and 4.0 the s mol/L value 2.0 is lowest so this acid is strongest. Hence,  $K_{sp} = [Pb^{2+}][I^{-}]^2$ 330 (c)  $= (s)(2s)^2$ Alkali and alkaline earth metal hydroxides are  $= 4s^3$ strong base.  $s = \sqrt[3]{\frac{K_{\rm sp}}{4}} = \sqrt[3]{\frac{2.3 \times 10^{-32}}{10}}$ 331 (a) :.  $pH = 9 \therefore [H^+] = 10^{-9}$  $pH = 6 \therefore [H^+] = 10^{-6}$  $= 1.78 \times 10^{-11} \text{mol/L}$ 332 (d)  $= 1.78 \times 10^{-11} \times 278 \text{ g/L}$ Aprotic solvents are those from which hydrogen  $= 4.95 \times 10^{-9} \text{ g/L}$ ion or  $OH^-$  cannot be derived. 321 **(b)** 333 (b) Hydrolysis of  $CH_3COO^-$  give alkaline solution. Co(OH)₂ is not precipitated in III gp. or it more 322 (d) soluble and thus, has high  $K_{sp}$ . For hydrolysis of NH₄⁺; 334 **(b)**  $K_H = \frac{K_w}{K_p} = \frac{10^{-14}}{1.8 \times 10^{-5}} = 5.5 \times 10^{-10}$  $[A^+][B^-] > K_{sn}$ 335 (a) 323 (c)  $pH = \frac{1}{2} \left[ pK_{a_1} + pK_{a_2} \right] = \frac{1}{2} \left[ 14.15 + 6.89 \right] = 10.52$ In water, barium hydroxide is hydrolysed as followers 336 (d)  $Ba(OH)_2 \rightleftharpoons Ba^{2+} + 2OH^{-}$ Α +В  $\Rightarrow$ *C* + D Conc. Of  $Ba^{2+} = 1 \times 10^{-3} M$ 0 0 Initially 1 1 Conc. of  $[OH^{-}] = 2 \times 1 \times 10^{-3} M$ (1-3x)(1-3x)3*x* 3x At  $= 2 \times 10^{-3} M$ equilibrium (given)  $pOH = -\log[OH^{-}]$ At equilibrium, the remaining moles of *A* is *x*,  $= -\log(2 \times 10^{-3})$ because 3*x* moles of *C* are produced. = 2.691 - 3x = x⇒ pH + pOH = 14 $x = \frac{1}{4}$ :. pH = 14 - pOHEquilibrium constant,  $K_c = \frac{[C][D]}{[A][B]} = \frac{3x.3x}{(1-3x)^2}$ On putting the value of *x*, we get, 324 (d)  $K_c = \frac{9 \times \frac{1}{16}}{1 + \frac{9}{16} - \frac{6}{16}} = \frac{9}{1} = 9$ In the titrationof weak acid with strong base, phenolphthalein is used 337 (a) 326 (a) The acidic character of HClO₄ is maximum. The In a reversible reaction some amount of the order is reactants remains unconverted into products and  $HClO_4 > HClO_3 > H_2SO_4 > H_2SO_3$ . it never go for completion 339 (c) 327 (d)  $K_p$  is independent of initial concentration.  $K_a$  for H₂S =  $\frac{[H^+][HS^-]}{[H_2S]}$ ; 340 (d) 20% yield of  $NH_3$  and thus, 20% of 340 g is An increase in [H⁺] will show a decrease in [HS⁻]  $=\frac{20\times340}{100}=68$  g to maintain constant  $K_a$  value. 328 (d) 341 (d) Le-Chatelier proposed a principle to explain the

 $CO_3^{2-} + H^+ \rightarrow HCO_3^-$  (acid). 342 **(b)**  $CaCO_3(s) \xrightarrow{\Delta} CaO(g)(s) + CO_2(g) \uparrow$ 2.  $K_n = 8 \times 10^{-2}$  $K_p = \frac{p_{CaO(s)} \times p_{CO_2(g)}}{p_{CaCO_3(s)}}$ (Heterogenous equilibrium)  $K_p = p_{CO_2}$  $p_{\rm CO_2} = 8 \times 10^{-2}$  $CO_2(g) + C(s) \rightarrow 2CO(g), K_p = 2$ 3.  $K_p = \frac{p_{\rm CO(g)}^2}{p_{\rm CO_2} \times p_{\rm C(s)}}$ (Heterogenous equilibrium)  $K_p = \frac{p_{\rm CO}^2}{p_{\rm CO_2}}$  $2 = \frac{p_{CO}^2}{8 \times 10^{-2}}$  $p_{\rm CO}^2 = 2 \times 8 \times 10^{-2}$  $p_{\rm CO} = 0.4 \, \rm{atm}$ 343 (c)  $\begin{array}{ll} \mathrm{H}_{2}\mathrm{CO}_{3}\rightleftharpoons\mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}; & K_{1}=4.2\times10^{-7}\\ \mathrm{HCO}_{3}^{-}\rightleftharpoons\mathrm{H}^{+}+\mathrm{CO}_{3}^{2^{-}}; & K_{2}=4.8\times10^{-1} \end{array}$  $K_1 >> K_2$  $\therefore$  [H⁺] = [HCO₃⁻]  $K_2 = \frac{[\mathrm{H}^+][\mathrm{CO}_3^{2^-}]}{[\mathrm{HCO}_3^{-}]}$ So,  $[CO_3^{2-}] = K_2 = 4.8 \times 10$ 344 (d) Acid indicators are generally weak acid. The dissociation of indicator HIn takes place as follows  $HIn \rightleftharpoons H^+ + In^ K_{\rm In} = \frac{[{\rm H}^+][{\rm In}^-]}{[{\rm HIn}]}$  $[{\rm H}^+] = K_{\rm In} \frac{[{\rm HIn}]}{[{\rm In}^-]}$  $p{\rm H} = -\log[{\rm H}^+]$  $= -\log\left(K_{\rm In} \frac{[{\rm HIn}]}{[{\rm In}^-]}\right)$  $= -\log K_{\rm In} + \log \frac{[{\rm In}^-]}{[{\rm HIn}]}$  $= pK_{In} + \log \frac{[In^-]}{[HIn]}$ or  $\log \frac{[In^-]}{[HIn]} = pH - pK_{In}$ 345 (c) Mole  $OH^- = M \times V_{\text{in litre}}$ 

 $\therefore$  No of OH⁻ = 0.3 × 0.005 × 2 = 0.0030. 346 (a)  $H_2 +$  $I_2 \rightleftharpoons 2HI$ Initial concentration 4.5 4.5 0 (4.5 - x)(4.5 - x) 2xFrom equation, 2x = 3 $\therefore x = \frac{3}{2} = 1.5$ So, concentration at equilibrium  $[H_2] = 4.5 - 1.5 = 3$  $[I_2] = 4.5 - 1.5 = 3$ [HI] = 3 $\therefore K_c = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} = \frac{3 \times 3}{3 \times 3} = 1$ 347 (a) Given,  $K_w = 10^{-14}, K_a = 10^{-5}$ Concentration of salt = 0.001 M  $K_h = \frac{K_w}{K_a} = \frac{10^{-14}}{10^{-5}} = 10^{-9}$ According to equation  $A^- + H_2 0 \rightleftharpoons HA + OH^-$ Let degree of hydrolysis=h $0.001(1-h)(0.001 \times h)(0.001 \times h)$  $K_h = \frac{[\text{HA}][\text{OH}^-]}{[A^-]} = \frac{(0.001 \times h)(0.001 \times h)}{0.001(1-h)}$  $10^{-9} = (0.001h)^2$  [:: 0.001(1 - h) = or 1]  $10^{-6} = h^2$ or  $10^{-3} = h$ :. 348 (d) Unit of  $K_c = [ ]^{\Delta n} \Delta n = +1.$ 349 (c) To precipitate soap from its saturated solution on addition of salt is called salting out action of soap.  $RCOONa \rightleftharpoons RCOO^- + Na^+$  $K_{sp} = [RC00^{-}][Na^{+}]$ In presence of NaCl, [Na⁺] increases and thus, the product of  $[Na^+][RCOO^-]$  exceeds in  $K_{sp}$  to show precipitation of soap. 350 (c)  $SO_2 + \frac{1}{2}O_2 \rightleftharpoons SO_3$  $K_1 = \frac{[SO_3]}{[SO_2][O_2]^{1/2}}$ ...(i)  $2SO_3 \rightleftharpoons 2SO_2 + O_2$  $K_2 = \frac{[SO_2]^2[O_2]}{[SO_2]^2}$ ...(ii) From Eqs. (i) and (ii)

$$K_{2} = \frac{1}{\kappa_{1}^{2}}$$
  
=  $\frac{1}{(5 \times 10^{-2})^{2}} = \frac{1}{25 \times 10^{-4}}$   
=  $\frac{100 \times 10^{2}}{25}$   
=  $4 \times 10^{2}$  atm

#### 351 (d)

(i) The haemoglobin of RBC combines with oxygen in lungs following the equilibrium,

 $H_b(s) + O_2(g) \rightleftharpoons H_bO_2(s)$ 

When these are at lungs, the partial pressure of  $O_2$  being appreciable to show forward reaction, however, when they pass to tissues, the partial pressure of  $O_2$  decreases to favour backward reaction releasing  $O_2$ .

(ii) Removal of CO₂ from blood is based on the equilibrium,

$$\text{CO}_2(\text{g}) + \text{H}_2\text{O}(l) \rightleftharpoons \text{H}^+(aq) + \text{HCO}_3^-(aq)$$

In tissues  $CO_2$  gets dissolved in  $H_2O$  due to high pressure whereas in lungs, the  $CO_2$  is released out because of low pressure of  $CO_2$ .

(iii) Tooth enamel substance (hydroxyapatite) Ca₅(PO₄)₃OH shows the following equilibrium,

$$Ca_5(PO_4)_3OH \xrightarrow{\text{Demineralization}} 5Ca^{2+}(aq) + 3PO_4^{3-}(aq) + OH^{-}(aq)$$

The use of sweet material or fermentation produces H⁺, which combines with OH⁻ to favour demineralization of enamel causing tooth decay.

# 352 **(b)** Pressure has no effect on equilibrium if $\Delta n = 0$ 353 (a) Aqueous solution of AlCl₃ is acidic due to the hydrolysis of aluminium ion $AlCl_3 \xrightarrow{Hydrolysis} Al(OH)_3$ 354 (a) $H^+ = 1.0 \times 10^{-8} = 10 \times 10^{-9}$ Also, if ionisation is not neglected $H_20 \rightleftharpoons H_{10^{-8}+a}^+ + OH_a^$ $a \times (10^{-8} + a) = 10^{-14}$ $a = 9.9 \times 10^{-9}$ $\frac{10 \times 10^{-9} - 9.9 \times 10^{-9}}{10 \times 10^{-9}}$ = 1%355 (d) Thus, a solution of blue and yellow ions appears green. 356 **(b)** $NH_2COONH_4(g) \rightleftharpoons 2NH_3(g) + CO_2(g)$ At eq. if partial pressure of $CO_2 = p$ Then that of $NH_3 = 2p$ $K_p = p_{\rm NH_3}^2 \times p_{\rm CO_2} = (2p)^2 \times p = 4p^3$

 $= 2.9 \times 10^{-5}$  or  $p^3 = 0.725 \times 10^{-5}$ or  $p = 1.935 \times 10^{-2}$ Hence, total pressure =  $p = 5.81 \times 10^{-2} =$ 0.0581 atm 357 (d)  $K_w$  increases with increase in temperature 358 (d) In all the given reactions, equilibrium is affected by the increase in volume at constant temperature 359 (a) Lewis bases are electron pair donor. I⁺ is electron deficient, hence do not act as Lewis base. 360 (d) CH₃COONH₄ is a salt of weak acid and weak base and  $K_{\text{acid}} \approx K_{\text{base}}$ CH₃COOH NH₄OH 361 **(a)**  $CH_4$  has almost no acidic nature and thus,  $CH_3^-$  is the strongest base

363 **(c)** 

H₂S0₄ ∉ H⁺ + HS0₄  
364 (a)  
h = 
$$\sqrt{\frac{|K_{h}|}{|K_{h}|^{2}}} = \sqrt{\frac{|K_{h}|}{|K_{h}|^{2}}}$$
  
=  $\sqrt{\frac{|K_{h}|}{|K_{h}|^{2}}} = \sqrt{\frac{|K_{h}|}{|K_{h}|^{2}}}$   
=  $\sqrt{\frac{|K_{h}|}{|K_{h}|^{2}}} = 4 \times 10^{-4}$   
K_{c₂} =  $\frac{|N_{1}|^{2/2}|N_{1}|^{2/2}}{|N_{1}|^{2/2}}$   
K_{c₃} =  $\frac{|N_{1}|^{2/2}|N_{1}|^{2/2}}{|N_{1}|^{2/2}}$   
 $N_{c_{5}} = \sqrt{\frac{|K_{h}|}{|K_{h}|}} = \frac{1}{\sqrt{\frac{1}{2}}} = 50$   
366 (d)  
K<sub>c₄ =  $\frac{|N_{1}|^{2/2}|N_{1}|^{2/2}}{|N_{1}|^{2/2}}$   
 $N_{c_{5}} = \sqrt{\frac{|K_{h}|}{|K_{h}|}} = \frac{1}{\sqrt{\frac{1}{2}}} = 50$   
367 (c)  
H₂S0₄ is strong acid having pH < 7. NAN₂ on  
hydrolysis gives alkaline solution of pH > 7. NAN₂ on  
hydrolysis gives alkaline solution of pH > 7. NAN₂ on  
hydrolysis gives alkaline solution of pH > 7. NAN₂ on  
hydrolysis gives alkaline solution of pH > 7. NAN₂ on  
hydrolysis gives alkaline solution of pH > 7. NAN₂ on  
hydrolysis gives alkaline solution of pH > 7. NAN₂ on  
hydrolysis gives alkaline solution of pH > 7. NAN₂ on  
hydrolysis gives alkaline solution of pH > 7. NAN₂ on  
hydrolysis gives alkaline solution of pH > 7. NAN₂ on  
hydrolysis gives alkaline solution of pH > 7. NAN₂ on  
hydrolysis gives alkaline solution of pH > 7. NAN₂ on  
hydrolysis gives alkaline solution of pH > 7. NAN₂ on  
hydrolysis gives alkaline solution of pH > 7. NAN₂ on  
hydrolysis gives alkaline solution of pH > 7. NAN₂ on  
hydrolysis gives alkaline solution of pH > 7. NAN₂ on  
the equal to one as CH₂COOH is not  
equal to one as CH₂COOH is not  
equal to one as CH₂COOH is a weak acid.  
369 (d)  
(A)CH₃COOH₁ + H₂O → CH₃COOH + HCl  
ammonium sulphate  
vrong god  
abace  
NOH  
solution is acidic in nature.  
(C) ((H₄)₂SO₄ + H₂O → CH₃COOH + H  
N₃OH  
solution sacidic in nature.  
(D)CH₃COON₄ + H₂O → CH₃COOH + H  
N₃OH  
solution sacidic in nature.  
(D)CH₃COON₄ + H₂O → CH₃COOH + H  
N₃OH  
solution acetate  
srong base</sub>

$$S = \frac{1.8 \times 10^{-10}}{0.2}$$

$$= 9.0 \times 10^{-10} M$$
377 (d)
$$a = 1.9 \times 10^{-9}; c = \frac{1000}{18}$$

$$K = \frac{[H^+][0H^-]}{[H_20]} = ca^2$$

$$= 1.9 \times 10^{-9} \times 1.9 \times 10^{-9} \times \frac{1000}{18}$$

$$= 2.0 \times 10^{-16}$$
378 (a)
$$N_2 + 3H_2 \rightleftharpoons 2NH_3 + heat$$
It is an exothermic reaction, so high  
temperature favours backward reaction.  
Hence, equilibrium is shifted towards the left.  
379 (b)
$$Ag_2CO_3(s) \rightleftharpoons 2Ag^+ + CO_3^{-7}$$

$$s \quad 2s \quad s$$

$$K_{sp} = [Ag^+]^2[CO_3^{-7}] = (2s)^2.s$$

$$\therefore \quad K_{sp} = 4s^3$$
380 (a)
Given, concentration of NaCl = 0.2 M  

$$K_{sp}(AgCl) = 1.20 \times 10^{-10}$$
Let the solubility of AgCl in NaCl = x
$$AgCl \rightarrow Ag^+ + Cl^-$$

$$s \quad x \quad x$$
Solubility NaCl  $\rightarrow Na^+ + Cl^-$ 

$$ax \quad x \quad x$$
Solubility NaCl  $\rightarrow Na^+ + Cl^-$ 

$$(Ag^+] = x and [Cl^-] = (x + 0.2)$$

$$\therefore \quad [Ag^+] = x and [Cl^-] = (x + 0.2)$$

$$\approx x + 0.2x$$

$$x = 6 \times 10^{-10}$$
381 (a)
Because buffer solutions are mixture of weak acid  
or weak base and their salt  
382 (d)
Let solubility be  $S_1, S_2, S_3$  for  $AB, AB_2$  and  $A_3B$   
respectively.
$$\therefore \quad S_1 = \sqrt{K_{sp}} = \sqrt{4 \times 10^{-8}} = 2 \times 10^{-4} M$$

$$S_2 = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{3.2 \times 10^{-14}} = 2 \times 10^{-5} M$$

$$S_{3} = \sqrt[4]{\frac{K_{Sp}}{27}} = \sqrt[4]{\frac{2.7 \times 10^{-15}}{27}} = 1 \times 10^{-4} M$$
383 (b)  
It is Bronsted base and can accept H⁺ only.  
384 (b)  
(a)pH of 10⁻⁹ M HCl will be < 7  
(b)pOH of 10⁻⁵ M NaOH  
= -log[0H⁻]  
= -log[1 × 10⁻⁵] = 5  
pH + pOH = 14  
pH = 14 - 5 = 9  
(c)pH of 10⁻⁹ M KOH will be slightly greater  
than 7.  
385 (a)  
The loss in pH of blood is called acidosis.  
386 (d)  
In 0,001 M NaOH,  
[OH⁻] = 0.001 = 10⁻³  
 $\therefore$  [H⁺] =  $\frac{10^{-14}}{[0H-]} = \frac{10^{-14}}{10^{-3}} = 10^{-11}$   
387 (a)  
Both NH₄Cl and NH₄OH are diluted to same  
extent;  
pOH = -log K_b + log  $\frac{[Conjugate base]}{[Base]}$   
388 (c)  
According to Arrhenius concept-Acids are the  
substances which furnish H⁺ ions in water and a  
base is a substance which furnishes OH⁻ ions in  
water.  
389 (a)  
 $AB_{2} \rightleftharpoons A^{2+} + 2B^{-}$   
 $s \quad 2s$   
 $K_{Sp} = [A^{2+}][B^{-}]^{2}$   
 $= (S)(2S)^{2} = 4S^{3}$   
 $= 4(1 \times 10^{-5})^{3}$   
 $= 4 \times 10^{-15}$   
390 (b)  
 $pV = nRT$   
Volume become  $\frac{1}{2}V$  then pressure become 2p,  
So,  $2p \times \frac{1}{2}V = pV = nRT$   
Hence, there is no effect on  $K_{p}$   
391 (a)

Starch is used as an indicator in the titration of iodine against sodium thiosulphate

392 (a)

 $2HI(g) \rightleftharpoons H_2(g) + I_2(g); -QkJ$ 

 $n_a$  No. of moles of gaseous products – No. of moles of gaseous reactants

2 - 2 = 0

As the number of moles of products and reactants are equal, so equilibrium constant is not affected by any change in pressure and volume. Catalyst also does not affect the equilibrium constant. It is an endothermic reaction, hence equilibrium constant depends only upon the temperature.

# 393 (c)

An increase in temperature will change  $K_c$ . Addition of inert gas has no effect in  $\Delta n = 0$ . Also increase in pressure has no effect if  $\Delta n = 0$ .

394 (c)

According to Le-Chatelier principle the reactions in which number of moles of reactants is equal to number of moles of products, is not effected by change in pressure.

> $2NO(g) \rightleftharpoons N_2(g) + O_2(g)$ Moles of reactants =2Moles of products =

2

: There is no change in number of moles of reactants and products.

:The reaction is not effected by change in pressure.

395 (c)

 $B_2H_6$  is electron deficient and thus electron pair acceptor or Lewis acid.

396 (a)  $N_2 + 3H_2 \rightleftharpoons 2NH$ 

$$\frac{1}{4} \frac{3}{4} \frac{2}{4}$$

$$\Delta n_{g} = 2 - 4 = -2$$

$$K_{p} = K_{c}(RT)^{\Delta n_{g}}$$

$$\therefore K_{p} = K_{c}(RT)^{-2}$$

$$\therefore K_{c} = \frac{K_{p}}{(RT)^{-2}} = \frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$$
397 (c)

NH₃ is Lewis base.

398 (b)  $K_p \quad K_c(RT)^{n_g}$ 

> Where,  $n_q$  No. of moles of gaseous products – No. of moles of gaseous reactants

> > $\frac{1}{2}0_2(g)$

 $CO_2(g)$ 

CO(g)  $n_g = 1 - 1.5 - \frac{1}{2}$  $K_p \quad K_c (RT)^{n_g}$  $K_p \quad K_c(RT)^{-1/2}$  $\frac{K_p}{K_c}$  $(RT)^{-1/2}$ 

399 (c)

÷

For the reaction.  $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$  $K_p = K_c (RT)^{\Delta n}$  $\Delta n = 2 - 2 = 0$  $K_p = K_c$ SO,

(where,  $K_p$  and  $K_c$  are equilibrium constants in terms of partial pressures and concentrations.)

400 (a)

pH of the solution at the equivalence point is on the acidic side due to dissolution of  $CO_2$ formed. A slight excess of strong acid lowers pH to 3.5 when methyl orange produces red colour.

# 401 (a)

The residual part of the acid after removal of a proton from the molecule of an acid, is called its conjugate base. Thus, conjugate base=Acid-H⁺ and a base after accepting a proton gets converted into its conjugate acid. Thus,  $HSO_4^-$  is conjugate acid of base  $SO_4^{2-}$ .

403 (b)

Volume of ice>volume of water and thus, increase in pressure favours forward reaction showing decrease in volume.

# 404 (a)

 $Ag_2SO_4 \rightarrow 2Ag^+ + SO_4^{2-}$ Ag₂SO₄ is a 2:1 type electrolyte *i. e.*, it gives two  $Ag^+$  ions and one  $SO_4^{2-}$  ion on ionisation. Given,  $s = 2.5 \times 10^{-2} \text{ M}$ 

Hence, its  $K_{sp} = 4s^3$ 

(where, 
$$s = \text{molar solubility}$$
)  
 $K_{cn} = 4(2.5 \times 10^{-2})^3$ 

$$A_{sp} = 4(2.3 \times 10^{-6})^{-6}$$
  
= 4 × 15.63 × 10⁻⁶

405 (a)

Isohydric solutions of two acids contains same [H⁺] ion in them.

# 406 **(b)**

$$K_h = \frac{K_w}{K_a \times K_b}$$

From this, it is clear that hydrolysis constant of a salt of weak and weak base is inversely proportional to dissociation constant of both weak acid and weak base.

# 407 **(c)**

 $N_2O_4$  ⇒  $2NO_2$ 1 0 Before dissociation 1-x 2x After dissociation Total number of moles at equilibrium = 1-x+2x = 1+x

# 408 **(c)**

From the aqueous buffered solution of H*A*, 50% HA is ionised

 $[HA] = [A^{-}]$ Buffer solution of weak acid HA  $\rightarrow$  acidic buffer

 $pH = pK_a + \log \frac{[A^+]}{[HA]}$ 

pOH = 14 - 4.5 = 9.5

 $pH = pK_a = 4.5$ 

 $pOH = pK_w - pH$ 

or

409 **(b**)

9 (b)  
Meq. of H⁺ = 
$$10^{-3} \times 10 = 10^{-2}$$
  
 $\therefore$  No. of H⁺ =  $\frac{10^{-2} \times 6.02 \times 10^{23}}{1000} = 6.02 \times 10^{18}$ 

410 (c)pH of gastric juice is in between 1 and 3.411 (b)

PCla +

The basic character of hydrides decreases down the group.

Cla

Initial

#### 412 **(b)** PCl-

 $[Cl_3][Cl_2]$ 

[PCl₅]

 $K_c$ 

$$\frac{\frac{5 \quad 0.4}{0.5}}{\frac{5 \quad 0.6}{0.5}} = \frac{\frac{16}{6}}{\frac{5}{0.5}}$$

 $K_w = [\mathrm{H}^+][\mathrm{OH}^-].$ 

1

414 **(c)** 

The equilibrium constant does not depend on concentration, when reversible reaction at equilibrium hence, equilibrium constant will be constant.

# 416 **(c)**

The hydrolysis reaction of conjugate base of acid is

$$A^{-}(aq) + H_2 O \rightarrow HO^{-} + HA$$
  
 $K_h = \frac{K_w}{K_q} = \frac{10^{-14}}{10^{-4}} = 10^{-10}$ 

Since, degree of hydrolysis is negligible;

$$[OH^{-}] = \sqrt{K_h C} = 10^{-6} \cdot p[OH] = 6$$
  
pH=14-6=8

and 417 **(c)** 

 $Na_2O + CaO + H_2O + CO_2 \rightarrow Na_2CO_3 + CaCO_3$ Solution is basic. It can be proved as

$$CO_3^{2-} + 2H_2O \rightarrow H_2CO_3 + 2OH^{-1}$$

# 418 **(d)**

When a base accepts a proton, then an acid is formed. This acid is known as conjugated acid of that base. For example :

 $NH_3 + H^+ \rightleftharpoons NH_4^+$ base conjugated acid The conjugated acid of  $HF_2^-$  is  $H_2F_2$ .

$$HF_2 + H^- \rightleftharpoons H_2F_2$$
  
base conjugated acid

419 (d)

2/3 rd of alcohol and acid react to form ester at equilibrium.

420 **(c)** 

For hydrolysis of

$$B^+; K_H = \frac{K_w}{K_h} = \frac{10^{-14}}{10^{-6}} = 10^{-8}$$

421 **(c)** 

0.001 M of NaOH means  $[OH^-] = 0.001$ =  $10^{-3}M \Rightarrow pOH = 3$ pH + pOH =  $14 \Rightarrow pH = 14 - 3 = 11$ 422 **(b)** 

Removal of product always favours forward reaction.

$$K_{sp}[BaCO_3] = [Ba^{2+}][CO_3^{2-}]$$
$$[Ba^{2+}] = \frac{K_{sp}}{[CO_3^{2-}]} = \frac{5.1 \times 10^{-9}}{1 \times 10^{-4}}$$
$$[Ba^{2+}] = 5.1 \times 10^{-5} M$$

424 (b)

$$K_{sp} = s^2 = \left(\frac{0.0015}{143.5}\right)^2 = 1.1 \times 10^{-10}$$

425 (b)

 $\underset{\text{Acid}}{\text{CO}} + \underset{\text{Base}}{\text{NaOH}} \xrightarrow{P,T} \text{HCOONA.}$ 

## 426 (a)

The acidic character has been explained in term of  $|437\rangle$  (a) electronegativity of halogens.

# 427 (a)

Higher is the ox. no. of central atom in oxy-acid,  $e.g., acid (HClO_4), more is its acidic nature and$ weaker is its conjugate base,  $(e.g., ClO_4^-)$ .

#### 428 (c)

Methyl orange is used for strong acid titration; Alkali may be weak or strong.

# 429 (d)

Addition of salt always lowers the vapour pressure. Also, vapour pressure of a liquid is its characteristic pressure and depends only on temperature.

## 430 **(b)**

 $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$ 

#### 431 (a)

Neutralization is exothermic whereas hydrolysis is endothermic.

# 432 (d)

 $HCl \rightarrow H^+_{10^{-8}} + Cl^-$ The dissociation of H₂O is suppressed due to  $\mathrm{H}_{2}\mathrm{O} \rightleftharpoons \mathrm{H}_{10^{-8}+a}^{+} + \mathrm{OH}_{a}^{-}$ common ion effect :.  $K_w = [H^+][OH^-]$ or  $10^{-14} = (10^{-8} + a) \times a$  $a = 0.95 \times 10^{-7}$  $[H^+] = 10^{-8} + 0.95 \times 10^{-7} = 1.05 \times 10^{-7} M.$ 433 **(b)**  $Cu(NH_3)_4SO_4 \rightleftharpoons Cu(NH_3)_4^{2+} + SO_4^{2-}.$ 434 (c)

 $K_c$  is a characteristic constant for the given reaction

435 (d)

According to Arrhenius concept-Acids are the substances which furnish H⁺ ions in water and a base is a substance which furnishes OH⁻ ions in water.

According to Le-chatelier principle the reactions in which number of moles are increasing in forward reaction are favoured at low pressure or high volume.

 $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ 

: Number of moles are increasing in the forward reaction in above reaction.

·· Reaction is favoured at low pressure. : At high pressure, rate of dissociation of PCl

decreases.

Electron acceptors are Lewis acids. They are electron deficient compounds. BF₃ is Lewis acid because B has only 6 electrons in its valence shell and it can accept electrons.  $NF_3$ ,  $Cl^-$  and  $H_2O$  have lone pair of electrons. Thus, they are electron donors and Lewis bases.

# 438 (c)

4

4

4

4

Stronger the base, higher the tendency to accept protons. Among the given,  $CH_3COOH$  and  $H_2S$ both are acids, thus have very low tendency to accept a proton. Between NH₃ and H₂O, NH₃ is a stronger base (due to less electronegativity of N as compared to 0) and hence, it has the highest tendency to accept a proton among the given. Moreover, the conjugate base formed by it also stable one NIT+

NH₃ + H² → NH₄  
(stable)  
39 (d)  

$$K_{sp} = 4s^{3}$$
  
 $\therefore s^{3} = \frac{4 \times 10^{-9}}{4} = 10^{-9}$   
 $\therefore s = 10^{-3}M$   
41 (b)  
 $PV = nRT \therefore \frac{n}{V} = \frac{P}{RT}$   
42 (c)  
 $K_{h} = Ch^{2}$   
 $= 0.5 \times \left(\frac{0.25}{100}\right)^{2}$   
 $= 3.125 \times 10^{-6}$   
43 (b)  
PbCO₃  $\Rightarrow$  Pb²⁺ + CO₃²⁻  
 $s + y$   
MgCO₃  $\Rightarrow$  Mg²⁺ + CO₃²⁻  
 $y + y$ 

(Since both are present in same solutes)

436 (a)

$$\begin{array}{ll} \therefore & \frac{K_{sp} \operatorname{PbCO}_{3}}{K_{sp} \operatorname{MgCO}_{3}} = \frac{x}{y} \\ \therefore & \frac{x}{y} = \frac{1.5 \times 10^{-15}}{1 \times 10^{-15}} \\ \text{or} & x = 1.5 y \\ \text{Now,} & x(x+y) = 1.5 \times 10^{-15} \\ \text{or} & 1.5 y(1.5 y+y) = 1.5 \times 10^{-15} \\ \text{or} & y = \left[\frac{1.5 \times 10^{-15}}{3.75}\right]^{1/2} \\ & = 2 \times 10^{-8} \\ \therefore & x = 1.5 \times 2 \times 10^{-8} \\ & = 3.0 \times 10^{-8} M. \end{array}$$
  

$$\begin{array}{ll} 444 \text{ (a)} \\ [\mathrm{H}^+] = c\alpha = 1.34 \times 10^{-4} \\ \therefore & \alpha = 1.34 \times 10^{-1} \\ \therefore & K_c = c\alpha^2 = 1.8 \times 10^{-5} \\ \mathrm{pH} = -\log 1.8 \times 10^{-5} + \log \frac{0.164/82}{0.001} \\ & = +4.7447 + 0.3010 = 5.0457 \\ \therefore & [\mathrm{H}^+] = 9 \times 10^{-6}. \end{array}$$
  

$$\begin{array}{ll} 445 \text{ (b)} \\ \text{Sorensen in 1909 gave pH scale to indicate the strength of the hydrogen ion concentration expressed in g/L. Here p stands for potenz meaning strength. \end{array}$$
  

$$\begin{array}{ll} 446 \text{ (c)} \\ \mathrm{N}_2 + 3\mathrm{H}_2 & \approx 2\mathrm{NH}_3 \\ \frac{2^38}{2^38} = 1 & \frac{6}{2} = 3 & 0 & \text{mole before reaction} \\ 1 - \frac{1}{2} & 3 - \frac{3}{2} & \frac{17}{17} = 1 & \text{mole after reaction} \\ \frac{1}{1-\frac{1}{2}} & 3 - \frac{3}{2} & \frac{17}{17} = 1 & \text{mole after reaction} \\ \frac{1}{10.51^2} & \text{wt of } \mathrm{N}_2 = \frac{14}{2} \\ \frac{1}{10.51^2} & \frac{1}{10.51^2} = 0.016 \\ \end{array}$$
  

$$\begin{array}{ll} 448 \text{ (b)} \\ \mathrm{N}_2\mathrm{O}_4 \approx 2\mathrm{NO}_2 \\ \mathrm{Initial} & 1 & \mathrm{mol} & 0 \\ \mathrm{At eqm} & 1-0.20 & 0.40 & \mathrm{mol} \\ \mathrm{p}V = nRT \\ 1 \times V = 1 \times R \times 300 \\ \ldots(\mathrm{i}) \\ \mathrm{p} \times V = 1.2 \times R \times 600 \\ \ldots(\mathrm{ii}) \end{array}$$

On dividing (ii) by (i)  $p = 2.4 \, \text{atm}$ 449 (a)  $H_2$ 2HI  $I_2$  $\rightleftharpoons$ 1 1 0 (1-0.8)(1-0.8) $2 \times 0.8$ =0.2=0.2=1.6 $K_c = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]}$  $=\frac{1.6\times1.6}{0.2\times0.2}$  $K_c = 64$ 450 (b) According to common ion effect, dissociation of weak electrolyte is further suppressed in presence of strong electrolyte having common ion. ∴ AgCl is weak electrolyte and NaCl is strong electrolyte having common anion. ∴ Solubility as well as concentration of Ag⁺ and Cl⁻ will decrease. 451 (a)  $\frac{\text{normal mol.wt.}}{\text{exp.mol.wt.}} = 1 + \alpha; (\text{Mol. wt} = 2 \times \text{VD})$  $\frac{92}{49} = 1 + \alpha$  $\alpha = 0.87$ :. 452 (c) A precipitation of AgCl is formed when equal volumes of  $10^{-5}$  M AgNO₃ and  $10^{-4}$ M HCl are mixed, because ionic product will be  $10^{-9}$ which is greater than  $K_{\rm sp}(10^{-10})$ . For the precipitation of an electrolyte, it is necessary that the ionic product must exceed its solubility product. 453 (b)  $CO(g) + 0.5O_2(g) \rightarrow CO_2(g)$  $\Delta n_a = n_p - n_r = 1 - 1.5 = -0.5$  $K_p = K_c (RT)^{\Delta n} = K_c (RT)^{-0.5}$  $\frac{K_p}{K_c} = \frac{1}{\sqrt{RT}}$ 

#### 454 (b)

action

Metal cation possesses the tendency to accept electron pair from ligands.

455 (d)

Any acid or salt having an ion common (due to common ion effect) or any base (due to acid-base reaction) will influence degree of dissociation of

weak acid. 456 (a)  $Ca(OH)_2 \rightleftharpoons Ca^{2+} + 2OH^ K_{\rm sp} = [{\rm Ca}^{2+}][{\rm OH}^{-}]^2$  $= (s)(2s)^2 = 4s^3$ 457 (c) Proton affinity means affinity for proton *i.e.*, basicity. In NH₃ nitrogen has pair of electron to donate as well as higher tendency to donate due to lower electronegativity. In PH₃, P is not suitable as that has large size. 458 (d)  $Acid_1 + Base_2 \rightleftharpoons Acid_2 + Base_1$  $\mathrm{HPO}_{3}^{2-} + \mathrm{H}_{2}\mathrm{O} \rightleftharpoons \mathrm{H}_{3}\mathrm{O}^{+} + \mathrm{PO}_{3}^{3-}$  $H_2PO_4^- + H_2O \rightleftharpoons H_3O^+ + HPO_4^{2-}$  $H_3PO_4 + H_2O \rightleftharpoons H_3O^+ + H_2PO_4^-$ 459 **(b)**  $\Delta G^0 = -RT \ln K_p$  if  $\Delta G^\circ = 0$ ;  $\ln K_p = 0$  or  $K_p = 1$ 460 (c)  $[H^+] = 10^{-2} M$  $\therefore$  pH = 2. 461 (a)  $X(g) + Y(g) \rightleftharpoons Z(g)$  $K_c = \frac{[Z]}{[X][Y]}$  or  $10^4 = \frac{[Z]}{[X][Y]}$  $\therefore$  [Z] = 10⁴[X][Y]  $= 10^4 \times \frac{1}{2} [Z] [Z]$ (Given,  $[X] = \frac{1}{2}[Y] = \frac{1}{2}[Z]$ )  $\therefore \quad [Z] = 2 \times 10^{-4} \text{ mol } \text{L}^{-1}$ 462 (a)  $CO_2(g) + C(s) \rightleftharpoons 2CO(g)$ Initial : 0.5 atm :(0.5-p)At equili 2p atm This is a case of heterogeneous equilibrium. C(s) being solid is not considered Total pressure of CO₂ and CO gases.  $p_{\rm CO_2} + p_{\rm CO} = p_{\rm total}$ 0.5 - p + 2p = 0.8 $p = 0.3 \, \text{atm}$  $p_{CO_2} = 0.5 - 0.3 = 0.2$  atm  $p_{\rm CO} = 2p = 0.6$  atm  $K_p = \frac{p_{\rm CO}^2}{p_{\rm CO_2}} = \frac{0.6 \times 0.6}{0.2}$  $= 1.8 \, \text{atm}$ 463 **(b)**  $NH_2COONH_4(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$ At equilibrium if partial pressure of  $CO_2$  p

then that of  $NH_3 2p$  $K_p p_{\rm NH_3}^2 p_{\rm CO_2} (2p)^2 p$  $4p^3$ 2.9  $10^{-5}$   $4p^3$  $p^3$  0.725  $10^{-5}$ or  $p^3$  7.25  $10^{-6}$  or p 1.935  $10^{-2}$ hence, total pressure *p* 3p $10^{-2}$  0.0581 atm. 5.81 464 (c) For salt of weak acid and weak base  $pH = \frac{1}{2} \left[ \log K_a + \log K_w - \log K_b \right]$  $=\frac{1}{2}pK_{a}+\frac{1}{2}pK_{w}-\frac{1}{2}pK_{b}$  $= \frac{1}{2} \times 4.80 + 7 - \frac{1}{2} \times 4.78$ = 7.01 465 (a) The species which can accept as well as donate H⁺ can act both as an acid and a base.  $HSO_4^- + H^+ \rightleftharpoons H_2SO_4$ base  $HSO_4^- \rightleftharpoons SO_4^{2-} + H^+$ 466 (c)  $HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) +$  $A^{-}(aq)$ Initial 0.1 M 0  $-\frac{0.1\times5}{100}$   $+\frac{0.1\times5}{100}$  $+\frac{0.1\times 5}{100}$ Change Equi conc. 0.095 0.005 0.005  $K_c = \frac{[H_3O^+][A^-]}{[HA]} = \frac{0.005 \times 0.005}{0.095}$  $= 2.63 \times 10^{-4}$ 467 (b) Acetylene is more acidic than both ethane and benzene but methyl alcohol is slightly more acidic (p $K_a$  < 25) than acetylene. 468 (c)  $pH = -\log[H^+]$ pH=14-pOH Calculate pH of all the solution to find which will have maximum pH. (A)M/10 HCl :.  $[H^+] = 10^{-1}$  $pH = -log [H^+]$  $= -\log[10^{-1}]$ = 1(B)M/100 HCl  $[H^+] = 10^{-2}$ :.  $pH = -\log[H^+]$ 

 $= -\log[10^{-2}]$ = 2(C)M/10 NaOH  $[OH^{-}] = 10^{-1}$ :. pH = 14 - pOH $= 14[-\log 10^{-1}]$ = 14 - 1= 13(D)M/100 NaOH  $[OH^{-}] = 10^{-2}$ ... pH = 14 - pOH $= 14 - [\log 10^{-2}]$ = 14 - 2 = 12 $\therefore$  M/100 NaOH solution has highest pH. 469 (b)  $[H^+] = 10^{-6}$  or  $c\alpha = 10^{-6}$ ; also,  $c = 1.0 M : \alpha =$  $10^{-6}$  $K_a = c\alpha^2 = 10^{-6} \times 10^{-6} = 10^{-12}$ 470 (d) Those reactions which have high value of *K*, proceeds towards completion 471 (d) A mixed salt is one which furnishes two types of cations or anions. 472 (b) Buffer capacity of a buffer solution is maximum when the concentration of the weak acid and its salt or weak base and its salt are equal, *i.e.*, for highest buffer capacity  $pH = pK_a$ For this [salt] = [acid]Thus, 25 mL. 473 (c) By using pH= $-\log \sqrt{K_a.C}$  $5 = -\log \sqrt{K_a \times 1} = -\frac{1}{2}\log K_a$  $\log K_a = -10$  $K_a = 10^{-10}$ Hence, dissociation constant  $(K_a) = 10^{-10}$ . 474 (b) pH varies inversely with temperature. Thus, if the pH of neutral water is 6.5, the temperature of water is more than 25°C. 475 (b)  $[CO] = \frac{0.1}{0.5}$ 

 $[Cl_2] = \frac{0.1}{0.5}$  $[COCl_2] = \frac{0.3}{0.5}$  $\therefore \ K_c = \frac{0.3/0.5}{\frac{0.1}{0.5} \times \frac{0.1}{0.5}} = 15$ 476 (c) In qualitative analysis, in order to detect IInd group radicals, H₂S gas is passed in the presence of dilute HCl to decrease the dissociation of H₂S by common-ion effect so that less  $S^{2-}$  ions are obtained and only IInd group radical could precipitate. 477 (b) The value of  $pK_a$  for strong acid is less 478 (d) HCl a mineral acid is strong acid and thus, Cl⁻ is weak base. 479 (c)  $[H^+] = 10^0 = 1 M$ 480 (c)  $\Delta n = 0$  and thus,  $K_p = K_c$ . 481 (a)  $H_2(g) + CO_2(g) \rightleftharpoons CO(g) + H_2O(g)$ Initial conc. 1 0 0 1 At equilibrium (1 - x) (1 - x)x х  $K_p = \frac{p_{\rm CO}.p_{\rm H_2O}}{p_{\rm H_2}.p_{\rm CO_2}}$ :.  $=\frac{x.x}{(1-x)(1-x)}=\frac{x^2}{(1-x)^2}$ 482 (d) For each case  $K_{sp} = [A^{2+}]^3 [B^{3-}]^2$ . 483 (a)  $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$  $K_{a_1} = 1.5 \times 10^{-5}$  $=\frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]} \qquad ... (i)$  $HCN \rightleftharpoons H^+ + CN^ K_{a_2} = 4.5 \times 10^{-10}$  $=\frac{[\mathrm{H}^+][\mathrm{CN}^-]}{[\mathrm{HCN}]}$ ... (ii) By(i)/(ii) $K = \frac{K_{a_1}}{K_{a_2}} = \frac{[\text{HCN}][\text{CH}_3\text{COO}^-]}{[\text{CN}^-][\text{CH}_3\text{COOH}]} = \frac{1.5 \times 10^{-5}}{4.5 \times 10^{-10}}$  $= 3 \times 10^4$ 484 (c) Given, vol. of HCl = 5 mL, molarity = M/5

Vol. of NaOH = 10 mL, molarity =M/10

Page | 106

Mulliequivalents of HCl =  $5 \times \frac{1}{5} = 1$ Mulliequivalents of NaOH =  $10 \times \frac{1}{10} = 1$  $HCl + NaOH \rightarrow NaCl + H_2O$  $\therefore$  Mulliequivalents of HCl = Mulliequivalents of NaOH  $\therefore$  Solution is neutral and pH=7. 485 (c) AlCl₃ accepts electron pair. 486 (b)  $[\mathrm{H}^+] = \sqrt{K_a \times C}$  $=\sqrt{10^{-5} \times 0.1}$  $=\sqrt{10^{-6}}=10^{-3}$  $pH = -\log[H^+] = -\log 10^{-3} = 3$ 487 (a)  $pH = pK_a + \log \frac{[KCN]}{[HCN]} = 9.3 + \log \frac{2.5}{2.5} = 9.30$ 488 (b) Total milliequivalent of H⁺  $= 30 \times \frac{1}{3} + 20 \times \frac{1}{2} = 20$ Total milliequivalent of OH⁻  $=40 \times \frac{1}{4} = 10$ Milliequivalent of H⁺ left = 20 - 10 = 10 $[H^+] = \frac{10}{1000} \text{ g ions/dm}^3 = 10^-$ :. :. pH=2489 (b) Given, for NaOH, V = 10 mL, N = 0.1 NFor  $H_2SO_4$ , V = 10 mL, N = 0.05 NMiliequivalents of NaOH =  $10 \times 0.1 = 1$ Miliequivalents of  $H_2SO_4 = 10 \times 0.05 = 0.5$  $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 +$  $H_2O$ 1 equivalent 2 equivalent : 0.5 equivalent of H₂SO₄ will react with 1 equivalent of NaOH  $\therefore$  The pH of solution = 7 (neutral) 491 (d)  $H_2PO_4^- + H_2O \rightarrow H_3O^+$  $HPO_4^{2-}$ acid conjugated base  $H_2PO_4^-$  gives  $HPO_4^{2-}$  (conjugated base) in aqueous solution. It acts as proton donor.

 $K_1$  for,  $N_2 + 3H_2 \rightleftharpoons 2NH_3$ 

$$K_{2} \text{ for, } NH_{3} \rightleftharpoons \frac{1}{2}N_{2} + \frac{3}{2}H_{2}$$
  

$$\therefore K_{1} \times K_{2} = \frac{[NH_{3}]^{2}}{[N_{2}][H_{2}]^{3}} \times \frac{[N_{2}]^{1/2}[H_{2}]^{3/2}}{[NH_{3}]}$$
  
or,  $K_{1} \times K_{2} = \frac{1}{K_{2}}$   

$$\therefore K_{2} = \frac{1}{\sqrt{K_{1}}}$$
  
493 **(b)**  
The two conditions when colour of indicator  
be visible are derived by  
 $pH = pK_{a} + \log \frac{[In^{-}]}{[HIn]}$ 

(i) pH = 5 + log 10 = 6(ii) pH = 5 + log 0.1 = 4

Thus, minimum change in pH = 2.

(s) or mole of AgCl needed =  $\sqrt{K_{sp}} = 10^{-5}$ (s) or mole of AgBr needed =  $\sqrt{K_{sp}} = 3.16 \times 10^{-7}$ (s) or mole of Ag₂CrO₄ needed =  $\sqrt[3]{\frac{K_{sp}}{4}} = 0.62 \times 10^{-4}$ : Weight of AgCl =  $10^{-5} \times 143.5 = 1.435 \times 10^{-3}$  g : Weight of AgBr =  $3.16 \times 10^{-7} \times 188 = 5.94 \times 10^{-5}$ g

:. Weight of  $Ag_2CrO_4 = 6.2 \times 10^{-5} \times 332 = 2.058 \times 10^{-2}g$ 

# 496 **(a)**

In a given mixture, the ionisation of two acids can be written as: Let  $\alpha$ ,  $\beta$  be degree of ionisation at same concentration.

$$CH_{3}COOH \rightleftharpoons CH_{3}COO^{-} + H^{+}_{\alpha+\beta}$$

$$C_{2}H_{5}COOH \rightleftharpoons C_{2}H_{5}COO^{-} + H^{+}_{\alpha+\beta}$$

$$\therefore \quad K_{AA} = \frac{[\alpha][\alpha+\beta] \cdot c}{[1-\alpha]}$$

$$K_{PA} = \frac{[\beta][\alpha+\beta] \cdot c}{[1-\beta]}$$

$$\therefore \quad \frac{K_{AA}}{K_{PA}} = \frac{\alpha}{1-\alpha} \times \frac{(1-\beta)}{\beta}$$
or
$$\frac{\alpha}{1-\alpha} = \frac{1.75}{1.3} \times \left[\frac{\beta}{1-\beta}\right]$$
497 (b)
$$\alpha = \frac{\lambda_{u}}{\lambda_{\infty}} = \frac{5}{390} = 0.013$$
498 (c)
Follow Le-Chatelier's principle.
499 (a)

 $[(NH_4)_2S] = 0.021 M$  $\therefore [S^{2-}] = 0.021 M$ 

: At equilibrium  $[Zn^{2+}][S^{2-}] = K_{sp}$  of ZnS  $[\mathrm{Zn}^{2+}] = \frac{4.51 \times 10^{-24}}{0.021} = 2.15 \times 10^{-22} \, M$ :.  $\therefore$  [Zn²⁺] left in solution = 2.15 × 10⁻²² × 65 g/litre  $= \frac{2.15 \times 10^{-22} \times 65 \times 12}{1000} \text{ g/12 mL}$  $= 1.677 \times 10^{-22} \text{ g/12 mL}.$ 500 (d)  $K_p$  is a constant and does not change with pressure 501 (d) A chemical equilibrium is the state when concentration of reactants and products do not change with time. It is attained when rate of forward reaction becomes equal to rate of backward reaction. 503 (c)  $H_3PO_4$  furnishes  $H_2PO_4^-$ ,  $HPO_4^{2-}$  and  $PO_4^{3-}$  anions. 504 (c) The mixture containing a weak acid  $(HNO_2)$  and its conjugate base  $(NO_2^-)$  acts as acidic buffer. 505 (a)  $: \text{pH} = \frac{1}{2} pK_w + \frac{1}{2} pK_a - \frac{1}{2} pK_b$  $=\frac{1}{2} \times 14 + \frac{1}{2} \times 6 - \frac{1}{2} \times 6$ pH = 7 $\alpha = \sqrt{\frac{K_w}{K_a \times K_b}} = \sqrt{\frac{10^{-14}}{10^{-6} \times 10^{-6}}}$  $= 10^{-1} = 0.1$  or 10%506 (d) Phenolphthalein is used for strong alkali titrations; Acid may be weak or strong. 507 **(b)**  $[H^+] = 2 \times 10^{-2}$  $\therefore \text{pH} = -\log 2 \times 10^{-2}$ i.e., in between 1 and 2. 509 (a)  $(i)Ag^+ + NH_3 \rightleftharpoons [Ag(NH_3)]^+;$  $K_1 = 3.5 \times 10^{-3}$ (ii)  $[Ag(NH_3)]^+ + NH_3 \rightarrow [Ag(NH_3)_2]^+;$  $K_2 = 1.7 \times 10^{-3}$ On the basis of above reaction,  $K_1 = \frac{[Ag(NH_3)]^+}{[Ag^+][NH_3]}$ ...(i)  $K_2 = \frac{[\text{Ag}(\text{NH}_3)_2]^+}{[\text{Ag}(\text{NH}_2)]^+[\text{NH}_2]}$ ...(ii) For the formation of  $[Ag(NH_3)_2]^+$  $Ag^+ + 2NH_3 \rightleftharpoons [Ag(NH_3)_2]^+$ 

Formation constant (*K*)  $=\frac{[Ag(NH_3)_2]^+}{[Ag^+][NH_3]^2}$ ...(iii) From Eqs. (i) and (ii)  $K = K_1 \times K_2$  $= 3.5 \times 10^{-3} \times 1.7 \times 10^{-3}$  $= 5.95 \times 10^{-6} \approx 6.08 \times 10^{-6}$ 510 (b)  $0.1 \times 1 = N \times 1000$  $\therefore$  *N* dilute acid =  $10^{-4}$ or  $[H^+] = 10^{-4}$  and so ph = 4. 511 (c) Catalyst provides a new pathway to attain equilibrium earlier. 512 (d) Follow law of mass action equations. 513 (d)  $Ca_3(PO_4)_2(s) \Rightarrow 3Ca^{2+}(aq) + 2PO_4^{3-}(aq)$  $K_{sp} = [Ca^{2+}]^3 . [PO_4^{3-}]^2$  $= (3y)^3 . (2y)^2$  $= 27y^3 \times 4y^2$ 514 (d)  $N_2 + O_2 \rightleftharpoons 2NO;$  $K_1$  $=\frac{[NO]^2}{[N_2][O_2]}$ ...(1)  $2NO + O_2 \rightleftharpoons 2NO_2; \qquad K_2$  $= \frac{[NO_2]^2}{[NO]^2[O_2]}$ ...(2)  $NO_2 \rightarrow \frac{1}{2}N_2 + O_2; \rightleftharpoons K_3$  $=\frac{[N_2]^{1/2} [O_2]}{[NO_2]}$ ...(3) By observation  $K_3 = \frac{\sqrt{1}}{\kappa}$ 515 **(b)**  $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$  $K_c = \frac{[\text{NO}]^2}{[\text{N}_2][\text{O}_2]} = 4 \times 10^{-4}$  $NO(g) \rightleftharpoons \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$  $K_c' = \frac{[N_2]^{\frac{1}{2}}[O_2]^{\frac{1}{2}}}{[NO]}$  $=\frac{1}{\sqrt{K_c}}=\frac{1}{\sqrt{4\times 10^{-4}}}$  $=\frac{1}{2 \times 10^{-2}}=\frac{100}{2}=50$ 516 (a) From the value of  $K_c$ , the direction of the
reaction may be predicated as follows :



Since, for given reaction  $K_c = 10^{-4}$  therefore, the reaction proceeds in backward direction. 517 (a)  $X + Y \rightleftharpoons Z$ 

Initial conc., 5 3 0 At equilibrium (5-2)(3-2) 2 Equilibrium constant  $(K_c) = \frac{[Z]}{[X][Y]}$   $= \frac{2}{3 \times 1} = \frac{2}{3}$ 518 (d)  $N_2O_4 \rightleftharpoons 2NO_2$   $\frac{1}{1-\alpha}$   $O_{2\alpha}$  $\therefore$  Total mole at equilibrium

 $= 1 - \alpha + 2\alpha = 1 + \alpha$ 

#### 519 **(d)**

The solubility order of alkaline earth metal hydroxides is

 $Ba(OH)_2 > Ca(OH)_2 > Mg(OH)_2 > Be(OH)_2.$ 

# 521 **(b)**

 $N_3H \xrightarrow{-H^+} N_3^-.$ 

 $A + B \rightleftharpoons C + D$ a a 2a 2a at equilibrium

$$\therefore \quad K_c = \frac{[C][D]}{[A][B]}$$

 $=\frac{2a\times 2a}{a\times a}=4$ 

523 **(b)** 

 $CH_3COO^-$ , because it is the conjugate base of weak acid

 $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$ 

524 **(d)** 

 $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ 

Given, volume is halved

∴ Pressure is doubled

 $\therefore$  Equilibrium will shift backeard and degree of dissociation ( $\alpha$ ) will decreases.

 $K_p$  is constant at constant temperature.

525 (d)

 $pK_a = 5$ ; Also,  $pK_a + pK_b = 14$  $\therefore pK_b = 9.$  527 (a)  $K_c = \frac{[Z]^2}{[X]^2[Y]} = \frac{(3)^2}{(2)^2(Y)} = 2.25, \therefore [Y] = 1M$ 528 (b)  $A + B \rightleftharpoons AB;$  $\begin{array}{cccc} 1 & 1 & 0 \\ (1-x) & (1-x) & x \end{array}$ Given, x = 0.4 $\therefore \text{ Percentage of } A \text{ changing to } AB = \frac{0.4 \times 100}{1}$ 529 (a)  $I^-_{ion} + I_2_{solute} \rightarrow I_3^-$ ; It is therefore  $I_2$  is more soluble in KI. 530 (d) If strong base is present in a solution, then pH is calculated from its concentration.  $[OH^{-}] = 10^{-1} \text{ or } pOH = 1$ *.*.. pH = 13.531 (d)  $NH_4OH + NH_4Cl$  is an example of basic buffer. Its pH value is greater than 7. 533 (d)  $Ca(OH)_2 \rightleftharpoons Ca^{2+} + 2OH^ K_{\rm sp} = [S][2S]^2$ (where *S*=solubility)  $K_{\rm sp} = 4S^3$  $K_{\rm sp} = 4. \left(\sqrt{3}\right)^3$  $= 12\sqrt{3}$ 534 (b) CO₂ is acidic oxide which on dissolution in water develops acidic nature. 535 (d)  $K_{c} = \frac{[\text{NO}_{2}]^{2}}{[\text{N}_{2}\text{O}_{4}]} = \frac{\left[2 \times \frac{10^{-3}}{2}\right]^{2}}{\left[\frac{0.2}{2}\right]}$  $=\frac{10^{-6}}{10^{-1}}=10^{-5}$ 536 (d)  $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3; \Delta H =$  $-92.38 \text{ kJ mol}^{-1}$ Forward reaction, the volume decreases and it is exothermic reaction. According to Le-Chatelier principle, such reactions are

favoured at low temperature and high pressure.

537 **(b)**  $K_p = K_c (RT)^{\Delta n_g}$  Here,  $\Delta ng = 1$ 

Thus,  $K_c$  will be less than  $K_p$ 

#### 539 (d)

Acetic acid is weak acid and only pH in given range is 6.85 for acids.

#### 540 (a)

 $\rm NH_3$  is proton acceptor and thus,  $\rm H_2O$  behaves as proton donor.

#### 541 **(d)**

Bronsted bases are proton acceptor and each Lewis base contains one or more electron pair and thus, accept proton. On the other hand, Bronsted acids are proton donor and may or may not be capable of accepting lone pair of electron,  $e. g., H_2SO_4$  is Bronsted acid not Lewis acid; BF₃ is Lewis acid but not Bronsted acid. Also each cation is acid and each anion is base. 551 (a)

#### 542 (d)

PCl₅  $\Rightarrow$  PCl₃  $+ Cl_2$ 3 mol 3 mol 2 mol initially  $(3-x) \mod (3 x) \mod (2 x) \mod at$ equilibrium  $\therefore$  3 – x 1.5 1.5 x Number of moles of  $PCl_3 = 3 x$ 1.5 3 4.5 543 (d) At equilibrium,  $\Delta G = 0$ , *ie*,  $G_{ice} = G_{H_2O} \neq 0$ 544 (a)  $K = \frac{K_f}{K_b} = \frac{\left[P_{\text{product}}\right]^2}{\left[P_{\text{reaction}}\right]^1}$ K = atm.545 (a)  $pOH = pK_b + \log \frac{[salt]}{[base]}$ (Henderson's equation) =  $5 + \log \frac{0.02}{0.2} = 5 + \log \frac{1}{10}$ 5 + (-1) = 4pH = 14 - pOH = 14 - 4 = 10546 (b) HCl provides common H⁺ ions to CH₃COOH

 $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$ 

### 547 **(a)**

This is Henderson equation for basic buffer mixtures.

548 **(b)** 

Higher the tendency to give H⁺ ion (*i.e.*, to undergo ionisation), stronger will be the acid

#### or vice-versa.

HF has poor tendency to give H⁺ ion, hence it is the weakest acid among the given. The order of acidity of given acids is

 $H_2SO_4 > HNO_3 > HCl > HF.$ 

#### 549 (b) $[H^+] = 10^{-12}$ $[OH^-] = 10^{-2}$ W

 $\frac{w}{40} = 10^{-2}$ or  $w = 0.4 \text{ g litre}^{-1}$ (a)

pH of 0.1 *M* H₂S solution can be derived as:  $H_2S = H^+ + HS^-; K_a = 10^{-7}$   $\therefore [H^+] = c \cdot \alpha = \sqrt{K.c} = \sqrt{10^{-7} \times 0.1} = 10^{-4}$   $\therefore pH = 4$ 551 (a) pH=0 means  $[H^+] = 10^\circ = 1$  M. hence, solution is strongly acidic. 552 (a) The saturated solution of AgI means that  $[Ag^+][I^-] = K_{sp} AgI$ Hence, in this solution, if a mixture of KI + KCl is added, then the concentration of  $[I^-]$  ions will increase quite a bit in the solution. Hence,

now the ionic product of AgI will be more than its solubility product and therefore, AgI will precipitate out.

### 553 **(a)**

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ 

Here,  $\Delta n = 2 - 2 = 0$ 

Hence, this equilibrium reaction is not influenced by volume change at constant temperature.

### 554 **(b)**

х

5

$$2Na + 2H_2O \rightarrow 2NaOH + H_2.$$
55 (d)  

$$A + B = C + D$$

$$x \quad 0 \quad 0 \qquad \text{At initial} \\ 2x \quad 2x \qquad \text{At equilibrium} \\ K_c = \frac{[C][D]}{[A][B]} = \frac{2x \times 2x}{x \times x} = 4$$

556 **(d)** 

These are characteristics of salt hydrolysis. 558 **(c)** 

(i)20 mL of 0.5 N HCl 0.5N⇒ 1000 mL of 0.5 mol of HCl HCl present in 20 mL= $\frac{20\times0.5}{1000}$  = 1.0 × 10⁻²

(ii)35mL of 0.1 N NaOH  $0.1 \text{ N} \Rightarrow 1000 \text{ mL of } 0.1 \text{ mol of NaOH}$ ⇒ NaOH present in 35 mol =  $\frac{3.5 \times 0.1}{1000}$  $= 0.35 \times 10^{-2}$ Total volume = 20+35=55 mL  $\Rightarrow$  Resulting mole in solution,  $(1.0 - 0.35)10^{-2} = 0.65 \times$  $10^{-2}$  mol HCl  $HCl = H^+ + Cl^ [HCl] = [H^+] + [Cl^-]$ 55 mL contains  $0.65 \times 10^{-2}$  mole of H⁺ ions  $1000 \text{ mL} = \frac{0.65 \times 10^{-2} \times 10^3}{55} = \frac{6.5}{55}$  $pH = -\log[H^+] = -\log(6.5/55)$  $= \log 55 - \log 6.5 = 0.92$ Due to acidic nature of solution the colour of phenolphthalein becomes pink. 559 (c) On the basis of precipitation concept an electrolyte will be precipitated firstly whose ionic product is exceeded to its solubility product. In similar ionic conc. of cations, an electrolyte is precipitated firstly for which K_{sp} is lower. In these electrolytes MnS, FeS, ZnS and HgS, HgS is precipitated firstly. 560 (a) Ostwald's dilution law is applicable for weak electrolyte 561 (c)  $\frac{K_p}{K_c} = (RT)^{\Delta n}$  $24.63 = (0.0821 \text{ x})^{-1}$  $\therefore T = 300K$ 562 (d) 20 M eq. of HCl reacts completely with 20 Meq. Of KOH. Hence, the final solution is neutral. Thus, at  $90^{\circ}C, pH = 6$ 564 **(b)**  $K_{P_1} = \frac{n_Y \cdot n_Z}{n_X} \left[ \frac{P_1}{\sum n_1} \right]^1 K_{P_2} - \frac{(n_B)^2}{n_A} \times \left[ \frac{P_2}{\sum n_2} \right]^1$ For  $X \rightleftharpoons Y + Z$  for  $A \rightleftharpoons 2B$  $\begin{array}{cccc} 1 & 0 & 0 \\ 1-\alpha & \alpha & \alpha \end{array}$  $1_{1-\alpha}$  $\frac{0}{2\alpha}$  $\therefore \frac{K_{P_1}}{K_{P_2}} = \frac{P_1}{P_2} \times \frac{n_Y \cdot n_Z}{n_Y} \times \frac{(n_A)}{(n_P)^2} \times \left[\frac{\sum_{n_2}}{\sum_{n_1}}\right]$  $9 = \frac{P_1}{P_2} \times \frac{\alpha \cdot \alpha}{1 - \alpha} \times \frac{(1 - \alpha)}{(2\alpha)^2} \times \frac{(1 + \alpha)}{(1 + \alpha)}$ 

$$\therefore \frac{P_1}{P_2} = 4 \times 9 = 36$$

565 **(c)** 

There will be no effect on equilibrium constant  $(K_c)$  in presence of catalyst. So, statement (c) is wrong.

566 **(a)** 

 $NH_3$  (ammonia) possess an unshared electron pair on N-atom hence, it can donate electron pair. Such species are called Lewis bases.  $BF_3$ acts as Lewis acid.

# 567 **(a)**

569 **(d)** 

Fe³⁺ ions are hydrolysed to develop acidic nature in solution.

570 (a)  

$$K_{sp}$$
 of  $M_2 X = 4s^3$   
 $K_{sp}$  of  $QY_2 = 4s^3$   
 $K_{sp}$  of  $PZ_3 = 27s^4$ 

571 (a)

Strong acids have low pH value while strong bases have high pH value. Hence, the order of pH is

HCl  $< CH_3COOH < NH_4Cl < CH_3COONa$ strong weak (salt of weak base

(salt of weak acid Acid acid and strong acid) and strong base)

572 **(c)** 

Thunderstorm produces acidic oxides of N, S which produce acidic rain on dissolution in water.

# 573 **(c)**

 $H_2O + NH_3 \rightleftharpoons NH_4^+ + OH^-$ 

In this reaction,  $\rm H_2O$  acts as an acid because it donates a proton

# 575 **(c)**

K° for  $[Ag(NH_3)_2]^+ \rightleftharpoons Ag^+ + 2NH_3$   $K^{\circ} = \frac{[Ag^+][NH_3]^2}{[Ag(NH_3)_2]^+}$ Also,  $K_1^0 = 1.4 \times 10^{-4} = \frac{[Ag(NH_3)]^+[NH_3]}{[Ag(NH_3)_2]^{+2}}$ 

and  $K_2^0 = 4.3 \times 10^{-4} = \frac{[\text{Ag}^+][\text{NH}_3]}{[\text{Ag}(\text{NH}_3)]^+}$  $\therefore \quad K^0 = K_1^0 \times K_2^0 = 1.4 \times 10^{-4} \times 4.3 \times 10^{-4}$  $= 6.02 \times 10^{-8}$ 576 (d) For precipitation, ionic product > solubility product  $\therefore$  The metal sulphide with lowest  $K_{sp}$  (PbS) will precipitate out first because its inonic product will exceed its  $K_{sp}$  first and the metal sulphide with highest  $K_{sp}(NiS)$  will precipitate out at last. 577 (b)  $[OH^{-}]$  in the diluted base  $=\frac{10^{-6}}{10^{2}}=10^{-8}$ Total  $[OH^{-}] = 10^{-8} + [OH^{-}]$  of water  $=(10^{-8}+10^{-7})M$  $= 10^{-8}(1+10)M$  $= 11 \times 10^{-8} \text{ M}$  $pOH = -\log 11 \times 10^{-8}$  $= -\log 11 + 8\log 10$ = 6.9586pH = 14 - 6.9586= 7.0414578 (c) The molecule shows three H-atoms are replaceable, *i. e.*, basicity of acid. 579 (c)  $K_{sp}$  of Ag₂CrO₄ = [Ag⁺]²[CrO₄²⁻] Also, if  $CrO_4^{2-} = 2 \times 10^{-4}$  $Ag^+ = 2 \times 2 \times 10^{-4}$ Then  $K_{sp} = (4 \times 10^{-4})^2 (2 \times 10^{-4})$ :.  $= 32 \times 10^{-12}$ 580 (c)  $K_p$ 581 (a)  $K_c \times k_b = 1.5 \times 7.5 \times 10^{-4}$  $= 1.125 \times 10^{-3}$ 582 (d)  $CH_{3}COOH + NaOH \longrightarrow CH_{3}COONH_{4} + H_{2}O$   $\xrightarrow{0.3}{4} \xrightarrow{-} \xrightarrow{0.1}{4} (14 \text{ neutralization})$  $\therefore \text{ pH}_1 = \text{p}K_a + \log \frac{1}{3}$  $CH_3COOH + NaOH \rightarrow CH_3COONH_4 + H_2O$  $\therefore \mathrm{pH}_2 = \mathrm{p}K_a + \log 3$  $\therefore pH_1 \sim pH_2 = \log \frac{1}{3} \sim \log 3 = 2\log 3$ 

583 **(c)** 

The weak electrolyte  $A_x B_y$  dissociates as follows

follows  

$$A_{x}B_{y} \rightleftharpoons xA^{y+} + yB^{x-}$$

$$C = 0 = 0$$

$$C(1-\alpha) = xC_{\alpha} = yC_{\alpha}$$
Where,  $\alpha = \text{degree of dissociation}$ 

$$C = \text{concentration}$$

$$K_{eq} = \frac{[A^{y+}]^{x}[B^{x-}]^{y}}{[A_{x}B_{y}]}$$

$$= \frac{[xC\alpha]^{x}[yC\alpha]^{y}}{C(1-\alpha)}$$

$$= \frac{x^{x}.C^{x}\alpha^{x}.y^{y}.C^{y}.a^{y}}{C}$$

$$[\because 1-\alpha \approx 1]$$

$$= x^{x}.y^{y}.\alpha^{x+y}.C^{x+y-1}$$

$$\alpha^{x+y} = \frac{K_{eq}}{x^{x}.y^{y}.C^{x+y-1}}$$

$$\alpha = \left(\frac{K_{eq}}{x^{x}.y^{y}.C^{x+y-1}}\right)^{\left(\frac{1}{x+y}\right)}$$
584 (a)

-do -585 **(a)** 

Mixture of acetic and sodium acetate is an acidic buffer. Hence, from Henderson equation,

$$pH = pK_a + \log\frac{[\text{salt}]}{[\text{acid}]}$$

On increasing [salt] ten times of that of [acid], the pH will increase by one.

586 (a)  
Bi₂S₃ 
$$\rightleftharpoons 2Bi^{3+} + 3S^{2-}$$
  
 $2s \quad 3s$   
 $K_{sp} = (2s)^2(3s)^3 = 108s^5$   
 $108s^5 = 1 \times 10^{-17}$   
 $s = \left(\frac{1 \times 10^{-17}}{108}\right)^{1/5} = 1.56 \times 10^{-4}$   
MnS  $\rightleftharpoons Mn^{2+} + S^{2-}$   
 $K_{sp} = s^2$   
 $s = \sqrt{K_{sp}} = \sqrt{7 \times 10^{-16}}$   
 $= 2.64 \times 10^{-8}$   
CuS  $\rightleftharpoons Cu^{2+} + S^{2-}$   
 $K_{sp} = s^2$   
 $8 \times 10^{-37} = s^2$   
 $s = \sqrt{8 \times 10^{-37}} = 0.89 \times 10^{-18}$   
Ag₂S  $\rightleftharpoons 2Ag^{+} + S^{2-}$   
 $2s \quad s$ 

$$K_{\rm sp} = 4s^3 \text{ or } 4s^3 = 6 \times 10^{-51}$$
$$s = \sqrt[3]{\frac{6 \times 10^{-51}}{4}}$$
$$= \sqrt[3]{1.5 \times 10^{-51}} = 1.14 \times 10^{-17}$$

The solubility of  $Bi_2S_3$  is maximum. Hence, it is the most soluble.

587 (c)

The variation of equilibrium constant with temperature is given by van't Hoff isochore as:

$$\frac{d}{dt} \ln K_{\rm c} = \frac{\Delta H}{RT^2}$$

588 **(d)** 

It is the characteristic of reaction. 589 **(d)** 

$$K_h = \frac{K_w}{K_a} = \frac{10^{-14}}{1.3 \times 10^{-9}} = 7.7 \times 10^{-6}$$
  
590 **(b)**

$$K_{sp} = [Ag^+][Br^-] = 5.0 \times 10^{-13}$$

$$[Ag^+] = 0.05 \text{ M}$$

$$[Br^-] = \frac{5.0 \times 10^{-13}}{0.05} = 1 \times 10^{-11} \text{ M}$$
Moles of KBr = 1 × 10⁻¹¹ × 1 = 1 × 10⁻¹¹  
Weight of KBr = 1 × 10⁻¹¹ × 120 = 1.2 × 10⁻⁹g

#### 591 **(b)**

Thermal decomposition of potassium chlorate is irreversible. So, law of mass action cannot be applied on this reaction

592 (d)

AB is binary electrolyte,

 $s = \sqrt{K_{\rm sp}} = \sqrt{1.21 \times 10^{-6}} = 1.1 \times 10^{-3} \, {\rm M}$ 

 $SnS_2 = Sn^{4+} + 2S^{2-}$ .

594 **(b)** 

 $pK_a = -\log K_a$ 

Where,  $K_a$  = ionisation constant of weak acid. Smaller the value of p $K_a$ , stronger will be the acid. So, p $K_a$  = 10⁻⁸ is strongest acid.

596 **(a)** 

 $CH_4$  has almost no acidic nature and thus,  $CH_3^-$  is strongest base.

$$K_{c} = \frac{[AB]^{2}}{[A_{2}][B_{2}]}$$

$$K_{c} = \frac{(2.8 \times 10^{-3})^{2}}{3 \times 10^{-3} \times 4.2 \times 10^{-3}} = 0.62$$
598 (a)
$$A + B \rightleftharpoons C + D$$

$$\binom{a}{(a-x)} \qquad \binom{a}{(a-x)} \qquad \binom{0}{x} \qquad \binom{0}{x}$$

Given, x = 2(a - x) or  $x = \frac{2a}{3}$  $K_c = \frac{x^2}{(a - x)^2} = \frac{(2a/3)^2}{(a - 2a/3)^2} = 4$ 

 $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$ According to Le-Chatelier's principle, on increasing volume of a reactant, the reaction proceeds in forward direction. Hence, on addition of  $Cl_2$  to above reaction, the equilibrium will shift to the right.

 $K_{sp} \text{ AgCl} = 1.2 \times 10^{-10} = [\text{Ag}^+][\text{Cl}^-] = [s][s + 0.1]$  where, *s* is solubility of AgCl  $\therefore K_{sp} = s \times 0.1 = 1.2 \times 10^{-10}$ 

$$\therefore \qquad s = 1.2 \times 10^{-9} M$$

601 **(d)** 

Dissociation weak acid decreases in presence of common ion.

$$K_{sp} = 4s^{3}$$
  
Also,  $s = \frac{0.017}{78}M$   
 $\therefore K_{sp} = 4 \times \left(\frac{0.017}{78}\right)^{3} = 4.14 \times 10^{-11}$ 

603 **(d)** 

For weak acid,

$$\alpha = \sqrt{\frac{K_a}{C}}$$

As C' decreases,  $\alpha$  increases therefore, percentage ionisation will increase

604 **(a)** 

In acidic medium, H₂S is very feebly ionised giving very small concentration of sulphide ion for precipitation. Therefore, the most insoluble salts CuS and HgS are precipitated only.

# 605 **(d)**

In case of hydrolysis of salt of weak acid and strong base, the pH is given by

$$\frac{1}{2}\mathbf{p}K_w + \frac{1}{2}\mathbf{p}K_a + \frac{1}{2}\log C$$

606 **(c)** 

 $[H^{+}] = c\alpha = 0.1 \times \frac{2}{100} = 2 \times 10^{-3} M$ Also, [H^{+}] × [OH^{-}] = 10^{-14}. 607 (d)  $\therefore$  pH = pK_a + log  $\frac{[salt]}{[acid]}$ 

or 
$$5.8 = 4.8 + \log \frac{[\text{salt}]}{[\text{acid}]}$$
  
or  $\log \frac{[\text{salt}]}{[\text{acid}]} = 1.0$   
 $\frac{[\text{salt}]}{[\text{acid}]} = \text{anti} - \log 1.0 = 10$   
 $\therefore \qquad \frac{[\text{acid}]}{[\text{salt}]} = \frac{1}{10} = 0.1$ 

608 (c)

$$PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g); K_{p} = \frac{p_{PCl_{3}} \times p_{Cl_{2}}}{p_{PCl_{5}}}$$
$$COCl_{2}(g) \rightleftharpoons CO(g) + Cl_{2}(g); K_{p} = \frac{p_{CO} \times p_{Cl_{2}}}{p_{COCl_{2}}}$$

If CO is introduced, the dissociation of  $COCl_2$  will decrease and  $p_{Cl_2}$  will decrease. This will favour dissociation of  $p_{Cl_s}$ , because both reactions are attained in same vessel.

#### 609 (a)

For saturated solution of  $Ag_2CrO_4$ , if solubility is 's' mol  $L^{-1}$ . Then  $K_{\rm sp} = 3.2 \times 10^{-11}$  (given)  $3.2 \times 10^{-11} = 4s^3$ :.  $s^3 = \frac{3.2 \times 10^{-11}}{4} = 8 \times 10^{-12}$  $s = \sqrt{8 \times 10^{-12}} = 2 \times 10^{-4} \text{ M}$ 

*.*..

Given,  $S(s) + S^{2-} \rightleftharpoons S_2^{2-}$  $2S(s) + S^{2-} \rightleftharpoons S_3^{2-}$ K_{c2} 5.3  $\therefore K_{c_1} = \frac{[S_2^{2^-}]}{[S_2^{2^-}]} = 1.7$ ..(i)  $K_{c_2} = \frac{[S_3^{2^-}]}{[S^{2^-}]} = 5.3$ ..(ii) Now for,  $S_2^{2-}(s) + S(s) \Rightarrow S_2^{2-}(s) = S_2^{2-}(s)$ 

$$K_{c} = \frac{[S_{2}^{2^{-}}]}{[S_{2}^{2^{-}}]}$$
  

$$\therefore \text{ By Eqs. (ii) and (i), } \frac{K_{c_{2}}}{K_{c_{1}}} = \frac{[S_{3}^{2^{-}}]}{[S_{2}^{2^{-}}]} = K_{c}$$
  

$$\therefore K_{c} = 3.11$$

pH will decrease as *K_w* will increase and [H⁺] will increase but  $[H^+] = [OH^-]$  and thus, solution will be neutral or we can say scale of pH will change.

#### 612 (d)

The conjugate acid of  $NH_2^-$  is  $NH_3$ .  $NH_2^- + H^+ \rightleftharpoons NH_3$ base conjugate acid

If strong acid is present in a solution, then pH is calculated from its concentration,

 $\therefore$  [OH⁻] = 10⁻¹ or pH = 1. 614 **(b)**  $pH = pK_a + log \frac{[Conjugate base]}{[Acid]}$ [Conjugate base] =  $\frac{20 \times 0.5}{30}$ ; [Acid] =  $\frac{10 \times 1}{30}$  $\therefore$  pH = 4.76 + log  $\frac{1}{1}$  = 4.76 615 (c) In the presence of little  $H_2SO_4$  (as catalyst) about 2/3 mole of each of CH₃COOH and C₂H₅OH to form  $\frac{2}{3}$  mole of the product at equilibrium 616 (b) pH = 2 $\therefore$  [H⁺] = 10^{-pH} = 10⁻²M 617 (a)  $K_c = \frac{[A][B]}{[AB]};$ If  $[A] = 2 \times [A];$ To have  $K_c$  constant [B] should be  $[B] \times \frac{1}{2}$ 618 (d) The change in pressure will not affect the equilibrium constant. Equilibrium constant changes with change in temperature. 619 (c)  $K_c = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} = \frac{0.7 \times 0.7}{0.1 \times 0.1} = 49$ 620 (a) For 0.1 M acetic acid, or  $C = 0.1 \text{ mol } L^{-1}$  $K_a = 1.74 \times 10^{-5}$ pH=? According to Ostwald dilution formula,  $[\mathrm{H}^+] = \sqrt{K_a \times C}$  $=\sqrt{1.7 \times 10^{-5} \times 0.1}$  $=\sqrt{0.017 \times 10^{-4}}$  $pH = -\log_{10}[H^+]$  $= -\log_{10}\sqrt{0.017 \times 10^{-4}}$ pH=2.88 621 (a)  $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ For this reaction,  $\Delta n_{\rm g} = 2 - 1 = 1$ Value of  $\Delta n_{\rm g}$  is positive, so the dissociation of PCl₅ increases by decrease in pressure and by increase in pressure, the dissociation of PCl₅ decreases 622 (a)  $pH = -\log[H^+]$  and  $[H^+] = \sqrt{9.61 \times 10^{-14}}$ : pH = 6.51

First dissociation  $X(OH)_3 \rightarrow X(OH)_2^+ + OH^-$ Second dissociation  $X(OH)_2^+ \rightarrow X(OH)^{2+} + OH^-$ Total  $[OH^{-}] = 4 \times 10^{-3} + 2 \times 10^{-3}$  $= 6 \times 10^{-3}$  $pOH = 3 - \log 6$ = 3 - 0.78 = 2.22pH = 14 - 2.22 = 11.78625 (a)  $K_c = \frac{[C_6H_6]}{[C_2H_2]}$ Or 4 =  $\frac{[C_6H_6]}{(0.5)^3}$ ;  $\therefore [C_6 H_6] = 0.5 M$ 626 (d)  $K_p$  of the reaction is :  $K_p = \frac{P'_{CO_2}}{(P'_{CH_*})(P'_{O_*})}$ . 628 (d) Buffer is  $CH_3COOH + CHCOO^$ and has pH fixed. 629 (d)  $\Delta n$  = Mole of product – Mole of reactant; count only gaseous phase reactants. 630 (c)  $N_2O_4 \rightleftharpoons 2NO_2$ initially 1 0  $(1 - \alpha)$  2 $\alpha$  at equilibrium Total moles at equilibrium =  $(1 - \alpha) + 2\alpha$  $= 1 + \alpha$ 631 (b) Larger is bond length, more is acidic nature. 632 (a)  $K_a = c\alpha^2 \text{ or } 1.0 \times 10^{-5} = 0.1 \times \alpha^2$  $\therefore \alpha = 10^{-2} \text{ or } 1\%$ 633 (a) By Le-Chatelier principle  $n_p > n_r$  (gaseous) So, reaction shift in the backward direction 634 **(b)** The buffer solutions are those solutions which resists the change in its pH value on addition of small amount of a base or an acid. CH₃COOH and CH₃COONa solution is buffer solution because it is a solution of weak acid and its salt with strong base.

635 (c)  $pOH = pK_b + \log \frac{[Conjugate acid]}{[base]}$ 0.2  $= -\log 1.8 \times 10^{-5} + \log \frac{0.2}{0.3}$  $= -\log 1.8 \times 10^{-5} + \log 0.66$ = 4.744 - 0.176 = 4.567 $\therefore$  pH = 14 - 4.567 = 9.423. 637 (c) The aqueous solution of KCN, K₂CO₃ and LiCN turn red litmus blue because of alkaline nature. The anionic hydrolysis turns the solution alkaline. 638 (d) e.g., CH₃COONa;  $CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$ . 640 (a) This is Henderson equation for acidic buffer mixtures. 641 (c)  $[\mathrm{H}^+] = c.\,\alpha = 0.01 \times \frac{12.5}{100}$  $= 1.25 \times 10^{-3}$ . Thus, pH =  $-\log 1.25 \times 10^{-3}$ *i.e.*, in between 2 and 3. 642 (c) AlCl₃ on hydrolysis gives weak base and strong acid. 643 (b) When rate of forward reaction is equal to the rate of backward reaction then equilibrium is supposed to be established 644 (a)  $\Delta H$  is positive, so it will shift toward the product by increasing temperature 645 (a) Electrophiles are electron deficient compounds and accept pair of electron.

Page | 115

#### 646 (c)

Consider a buffer of  $CH_3COOH + CH_3COONa$ 

Addition of Acid :  $H^+ + CH_3COO^- \rightarrow CH_3COOH$ 

Addition of alkali :

 $OH^- + CH_3COOH \rightarrow H_2O_{(Weak electrolyte)} + CH_3COO^-$ 

Thus addition of acid or alkali does not cause any change in pH.

#### 647 **(c)**

For the precipitation of an electrolyte, it is necessary that the ionic product must exceed its solubility product

#### 648 (a)

For different salts such as AB,  $AB_2$ ,  $AB_3$  ... etc.  $K_{sp} = s^2$ ,  $4s^3$ ,  $27s^4$  ... respectively. If  $K_{sp}$  is same for different salts, then *s* is more for the salt in which is more number of ions.

#### 649 (b)

An increase in temperature favours forward reaction, if  $\Delta H = +ve$ ,

$$N_2O_4 \rightleftharpoons 2NO_2; \Delta H = +ve$$

650 **(a)** 

 $\begin{array}{rl} N_2 + & 3H_2 \rightleftharpoons 2NH_3 \\ 56 \ g & 8 \ g & 0 \ g \\ (= 2 \ mol)(= 4 \ mol) \ (0 \ mol) \ initially \\ (2 - 1)(4 - 3) \ 34 \ g & at \ equilibrium \\ = 1 & = 1 \quad (= 2 \ mol) \\ According \ to \ Eq.(1) \ 2 \ moles \ of \ ammonia \ are \\ present \ a \ produce \ 2 \ moles \ of \ NH_3, \ we \ need \ 1 \\ mole \ of \ N_2 \ and \ 3 \ of \ H_2, \ hence \ 2 - 1 = 1 \ mole \ of \\ N_2 \ and \ 4 - 3 = 1 \ mole \ are \ present \ at \ equilibrium \end{array}$ 

in vessel 651 **(a)** 

 $[OH^{-}]in NH_{4}OH solution = C\alpha$ = 0.001 ×  $\frac{1}{100}$  = 1 × 10⁻⁵ pOH =  $-\log[OH^{-}]$ pOH =  $-\log[1 \times 10^{-5}]$ pOH = 5

652 (c)

Addition of inert gas at constant volume condition to an equilibrium has no effect.

653 **(d)** 

 $Q > K_c$  thus, Q must decrease so that [NH₃] may decrease to have backward reaction.

654 (c)

NaHSO₄ (acidic salt) and  $Na_2SO_4$  normal salt. 655 **(b)** 

AgCl 
$$\rightleftharpoons$$
 Ag⁺ + Cl⁻  
 $K_{sp} = [Ag^+][Cl^-]$   
 $K_{sp} = S^2$   
(S=solubility in mol/L)

 $S = \frac{1.435 \times 10^{-3} \text{ g/L}}{1435} = 1 \times 10^{-10} \text{ mol/L}$ 656 (a) Le-Chatelier's principle is not applicable to solidsolid heterogeneous equilibrium. 657 (a)  $2SO_2 + O_2$ Initially 4 0 At equili. 4(1-0.25) (4(1-0.25))  $0.25 \times$ 2 Total number of moles at equilibrium 4(1-0.25) 4(1-0.25) 0.5 4-1 4-1 0.5 6.5 658 (b)  $0.005 M H_2 SO_4 = 2 \times 0.005 N H_2 SO_4$  $= 0.01 N H_2 SO_4;$  $[H^+] = 10^{-2}M$ Thus, pH = 2.659 (c) Due to common ion effect, rate of ionisation of NH₄OH decreases, so power [OH⁻] is obtained. Hence, pH value decrease. 660 **(b)** For indicator dissociation equilibrium; being an acid  $\operatorname{HIn}_{\operatorname{Colour} A} \rightleftharpoons \operatorname{H}^+_{\operatorname{Colour} B} + \operatorname{In}^-_{\operatorname{Colour} B}$  $K_{\rm In} = \frac{[\rm H^+][\rm In^-]}{[\rm HIn]}$ The mid point of the colour range of an indicator HIn is the point at which  $[In^{-}] = [HIn]$ .  $K_{\rm In} = [{\rm H}^+] = 1 \times 10^{-5}$ :.  $[H^+] = 1 \times 10^{-5}$ *.*.. or pH = 5.661 (b) Follow Le-Chatelier's principle 662 (c)  $+ 3H_2 \rightleftharpoons 2NH_3$  $\frac{56}{28} = 2 \qquad \frac{8}{2} = 4$   $(2 - x) \qquad (4 - 3x) \qquad 2x = \frac{34}{17} = 2$ Initial At

moles equilibrium mole

equilibrium mole mole Hence, *x* = 1 mole

Hence, number of moles of N₂ at equilibrium

### =2-1=1 mole Number of moles of $H_2$ at equilibrium

=4-3=1 mole Number of moles of NH₃ at equilibrium=2 moles

### 663 **(c)**

 $Na_2CO_3$ , on hydrolysis gives alkaline solution as the solution contains strong base and weak acid.

strong base

 $Na_2CO_3 \xrightarrow{2H_2O} 2NaOH - H_2CO_3$ 

acid

White

664 (c) Acidic buffer is a mixture of weak acid and its salt with strong base. Similarly, basic buffer is a mixture of weak base and its salt with strong acid. Hence, 50 mL 0.1 M  $CH_3COOH +$ 100 mL 0.1 M NaOH does not constitute a buffer solution because in this case millimoles of acid are less than that of strong base, which after reaction with strong base gives salt. Now, the solution contains only strong base and salt but no weak acid. Hence, no buffer is formed.

$$K_{p} = \frac{(p_{CO})^{2}}{(p_{CO_{2}})} = \frac{8 \times 8}{4} = 16 \text{ atm.}$$
667 (a)  
Ag_{2}CrO_{4} \rightarrow 2Ag^{+} + CrO_{4}^{2-}  
 $s \quad 2s \quad s$   
 $K_{sp} = (2s)^{2}s = 4s^{3}$   
 $s = \left(\frac{K_{sp}}{4}\right)^{1/3} = \left(\frac{32 \times 10^{-12}}{4}\right)^{1/3} = 2 \times 10^{-4} \text{M}$   
668 (c)  
 $2NO_{2}(g) \rightleftharpoons 2NO(g) + O_{2}(g)$   
 $K = \frac{[NO]^{2}[O_{2}]}{[NO_{2}]^{2}} = 2 \times 10^{-6}$   
 $4NO(g) + O_{2}(g) \rightleftharpoons 4NO_{2}(g)$   
 $K' = \frac{[NO_{2}]^{4}}{[NO]^{4}[O_{2}]^{2}}$ 

 $= \frac{1}{(K)^2} = \frac{1}{(2 \times 10^{-6})^2}$ Equilibrium constant  $K' = 0.25 \times 10^{12}$  $= 2.5 \times 10^{11}$ 

669 **(b)** Mg(OH)₂  $\rightleftharpoons$  Mg²⁺ + 2OH⁻  $K_{sp} = [Mg^{2+}][OH^{-}]^{2}$ 

$$[OH^{-}] = \sqrt{\frac{K_{sp}}{[Mg^{2+}]}}$$
$$[OH^{-}] = \sqrt{\frac{1.0 \times 10^{-11}}{0.001}} = 10^{-4}$$

### 670 **(a)**

Precipitation just starts when the product of ionic concentration is equal to  $K_{sp}$ . [Ag⁺][Cl⁻] =  $K_{spAgCl}$ . This is the limiting case at

which precipitation just starts or no precipitation up to this limit.

### 671 **(a)**

weak

Such solutions are acidic and methyl orange act on acidic pH

# 672 **(c)**

 $[Cu(NH_3)_4]SO_4 \rightarrow [Cu(NH_3)_4]^{2+} + SO_4^{2-}$ ; The complex ion is not ionised.

673 **(b)** 

Given density of formic acid =  $1.22 \text{ g/cm}^3$   $\therefore$  Weight of formic acid in 1 litre solution =  $1.22 \times 10^3 \text{ g}$ Thus, [HCOOH] =  $\frac{1.22 \times 10^3}{46}$  = 26.5 *M* Since in case of auto ionisation [HCOOH₂⁺] = [HCOO⁻] and [HCOO⁻][HCOOH₂⁺] =  $10^{-6}$  $\therefore$  [HCOO⁻] =  $10^{-3}$ 

$$= \frac{[\text{HCOO}^-] \times 100}{[\text{HCOOH}]} = \frac{10^{-3}}{26.5} \times 100 = 0.004\%$$

### 674 **(b)**

A buffer of  $H_2CO_3$  and  $HCO_3^-$  is formed.

$$c\alpha^2 = K_a$$
  $\therefore \alpha = \sqrt{\left[\frac{K_a}{c}\right]}$  or  $\alpha = \frac{1}{\sqrt{c}}$ .

676 (a)  $[H^{+}] = K_{a}.C$ Given,  $[H^{+}]_{HCOOH} = [H^{+}]_{CH_{3}COOH}$   $K_{a}.C = K'_{a}C'$   $\Rightarrow 1.8 \times 10^{-4} \times 0.001 = 1.8 \times 10^{-5} \times C'$   $\therefore C' = 0.01M$ 677 (a)  $2Ag_{2}O(s) \rightleftharpoons 4Ag(s) + O_{2}(g)$   $K_{p} = p_{O_{2}}$ (: Ag and Ag_{2}O are solids) 678 (c)  $MX_{2} \rightleftharpoons M^{2+} + 2X^{-}$  s 2s  $K_{sp} = [M^{2+}][X^{-}]^{2}$ 

	If solubility be <i>s</i> then	1	OH [–] is a basic (i.e., it tends to gain a proton)
	$K_{\rm sn} = (s)(2s)^2 = 4s^3$		and hence is least acidic. $H_2O$ is neutral
	$4s^3 = 4 \times 10^{-12}$		species. $H_30^+$ is most acidic as it readily lose
	$\therefore$ $s = 1 \times 10^{-4} \text{ M}$		proton.
	:. $M^{2+} = s = 1 \times 10^{-4} M$	690	(b)
679	(d)		Presence of lone pair of electron and they donate
	$CaCO(s) \rightleftharpoons CaO(s) + CO_2(g)$		two electron pairs
	The equilibrium constant for this reaction is	691	(c)
	given by $K = [CO_2]$ (as CaCO ₂ and CaO are		$Na_2CO_3 + 2H_2O \rightleftharpoons 2NaOH + H_2CO_3$ . It is a salt of
	solid).		strong base and weak acid, so it is basic
	Hence to get more $CO_{\alpha}$ we need to nump out	692	(d)
	continuously the $CO_{\alpha}$ gas		$BF_3$ has incomplete octet and will act as Lewis
680	(h)		acid $NH_3$ has lone pair of electron available for
000	$H_2O$ can accept $H^+$ or donate $H^-$ .	602	donation and thus Lewis base.
681	(b)	093	(u) These are the characteristics of a reaction in
	$k_f = 1.1 \times 10^{-2}, k_h = 1.5 \times 10^{-3}$		equilibrium
	$k_f = 1.1 \times 10^{-2}$	695	(h)
	$K_c = \frac{f}{k_b} = \frac{1.5 \times 10^{-3}}{1.5 \times 10^{-3}} = 7.33$	0,0	$AgCI \rightarrow Ag^+ + CI^-$
682	(b)		XX
	HCl is metabolically produced in human body.		After NaCl is added $X  X + 1 \times 10^{-4}$
683	(b)		That is why Ag ⁺ will be less
	$NH_4HS(s) \Rightarrow NH_3(g) + H_2S(g)$	696	(d)
	Pressure at equilibrium $P = P$ • Total pressure at equilibrium $-2P = 1.12$ atm	$\sim$	$N_2O_4(g) \rightleftharpoons 2NO_2(g)$
	P = 1.12/2  atm		Molar concentration of
	$:: K_n = P'_{\rm NH} \ge P'_{\rm H} \le C$		$[N_2O_4] = \frac{9.2}{22} = 0.1 \text{ mol/L}$
			In equilibrium state
	$\therefore K_p = \frac{1}{2} \times \frac{1}{2} = 0.3136 \text{ atm}^2$		(When it 50% dissociates)
684	(c)		$[N_{-}O_{-}] = 0.05 \text{ M}$
	NaCl does not hydrolyse.		$[NO_{-}] = 0.1 M$
685	(b)		$[NO_2] = 0.1 \text{ M}$ $[NO_2]^2$
	The substance which can donate a pair of		$\therefore \qquad K_c = \frac{[N-2]}{[N_2O_4]}$
	electrons is called Lewis base.		$\therefore \qquad K_c = \frac{0.1 \times 0.1}{1000}$
	Amines contain lone pair of electron on		
	nitrogen atom, so behave as Lewis base.	607	- 0.2
686	(c)	097	$\begin{array}{c} (a) \\ 2CO \rightarrow 2CO + 0 \end{array}$
	Both possess the tendency to accept proton.		At equili $0.6 \text{ atm} 0.4 \text{ atm} 0.2 \text{ atm}$
687			At equility $0.0$ at $110.4$ at $1110.2$ at $111$
	It is an acidic solution with $pH < 7$ as NaCl		$\therefore \qquad K_p = \frac{p_{CO} \wedge p_{O_2}}{p_{CO}^2}$
600	solution is neutral but HCI is a strong acid		$(0.4)^2(0.2)$
000	A Mathyl orange will give colour only when more of		$=\frac{(0.1)^{2}(0.6)^{2}}{(0.6)^{2}}=0.088$
	weak acid is used, <i>i.e.</i> more milli equivalents are	698	(0.0 <i>)</i>
	added. Thus, $\frac{w}{2} \times 1000 = \text{Meg. Thus, } F$ will be		Aqueous solution of NaCN is basic because it is a
	$\lim_{E} x = \max_{E} x = \max_{E$		salt of strong base and weak acid
600		699	(c)
009	Among the given species, correct order of		$N_2 + 3H_2 \rightleftharpoons 2NH_3$
	increasing acidic strength is		
	$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{10000000000000000000000000000000000$		1-x $3-3x$ $2x\therefore 50% mixture reacts$
	$11_{20} < 11_{4} < 11_{11} < 11_{30}$		

$$\therefore 1 - x + 3 - 3x = \frac{4}{2} = 2$$

$$x = 0.5$$

$$\therefore P_{NH_3}^1 = P_T \times mf \text{ of } NH_3$$

$$= \frac{P \times 2 \times 0.5}{(4 - 0.5 \times 2)} = \frac{P}{3}$$

#### 700 **(b)**

The  $CH_3COOH$  is weaker acid than  $H_2SO_4$ . The reason is that  $CH_3COOH$  is weakly ionised in comparison with  $H_2SO_4$ .

#### 701 (a)

The problem is valid only if strong acids are mixed. After mixing equal volumes of three acids, total volume = 3 V

 $\therefore$  [H⁺] after mixing

$$= \frac{10^{-3} \times V}{3V} + \frac{10^{-4} \times V}{3V} + \frac{10^{-5} \times V}{3V} = \frac{1.11 \times 10^{-3}}{3} = 3.7 \times 10^{-4}$$

702 (a)

The ionisation of strong electrolytes in acetic acid, compared to water, is weak and low because acetic acid is a non-polar solvent.

### 703 **(d)**

:.

Solubility of  $CaF_2 = 2 \times 10^{-4} \text{ mol/L}$ Each mole of CaF₂ dissolving in H₂O gives one mole of  $Ca^{2+}$  and two moles of F⁻ions.  $CaF_2 \rightleftharpoons Ca^{2+}$ + $2F^{-}$  $2 \times 2 \times 10^{-4} M$  $2 \times 10^{-4} \text{ M}$  $K_{\rm sp} = [{\rm Ca}^{2+}][{\rm F}^{-}]^2$  $= [2 \times 10^{-4}] [2 \times 2 \times 10^{-4}]^2$  $K_{\rm sp} = 3.2 \times 10^{11}$ 704 **(b)**  $\alpha = \frac{D-d}{d} = \frac{104.16 - 62}{62}$ = 0.68 = 68%705 (d) HCOO⁻ is base having conjugate acid HCOOH (a monobasic acid). 706 (a)  $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$ 1 0.5 Initially 0 At equilibrium (1 - x) (0.5 + x)х Total pressure at equilibrium

$$- p_{\rm NH_3} + p_{\rm H_2S} = 0.5 + x + x = 0.84$$
$$x = 0.17 \text{ atm}$$

∴  $p_{\text{NH}_3} = 0.50 + 0.17 = 0.67$  atm  $p_{\text{H}_2\text{S}} = 0.17$  atm ∴  $K_p = p_{\text{NH}_3} \cdot p_{\text{H}_2\text{S}}$  $= 0.67 \times 0.17 = 0.114$  atm

707 (a)

The acidic character of non-metallic oxides increases along the period.

708 **(c)** 

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ We know that,  $K_p = K_c (RT)^{\Delta n_g}$ Here,  $\Delta n_g = 2 - 2 = 0$ ∴  $K_p = K_c (RT)^0 = K_c$ 

709 **(c)** 

Lower is  $K_{sp}$ , lower is solubility of salt.

### 710 **(d)**

 $MnS + 2HCl \rightarrow MnCl_2 + H_2S;$ The dissociation of  $H_2S$  (formed) is suppressed due to the presence of HCl.

# 711 **(b)**

$$pH + pOH = 14$$

712 **(d)** 

The problem does not have suggests about the nature of acid, *i. e.*, weak or strong. The normality will be  $10^{-2}$  for strong acid. If weak acid, normality can be obtained only if  $K_a$  is known.

713 (c)

$$[H^+] = 1$$
  
: pH =  $-\log 1 = 0.$ 

714 **(b)** 

It is an exothermic reaction, hence low temperature and increasing pressure will favour forward reaction

### 715 **(a)**

 $\rm NH_4Cl$  is acidic because it is a salt of weak base  $\rm NH_4OH$  and a strong acid HCl. Thus, on hydrolysis, it gives strong acid HCl and weak base  $\rm NH_4OH$ .

$$\rm NH_4Cl + H_2O \rightarrow \rm NH_4OH + HCl$$

716 **(a)** 

$$pH = -\log K_a + \log \frac{[C. B]}{[Acid]}; \therefore pH$$
$$= pK_a \left[ \frac{[C. B]}{[Acid]} = 1 \right]$$

Find pH by  $\frac{[C.B]}{[Acid]} = 10, i.e., pH = pK_a + 1$ 

717 **(c)** For *AB* 

For  $AB_2$ :  $K_{sp} = 4s^3 = 4 \times (1.0 \times 10^{-5})^3 = 4 \times 10^{-15}$ .

718 (c)  $HClO_3$  is called chloride acid. 731 (c) 719 (b) Ag⁺ is not a Lewis base as it has no lone pair of electron. 732 (a) 721 (b)  $100 \times 10^{-1} = 1000 \times N$  $N_{\rm HCl} = 10^{-2} \therefore \rm{pH} = 2.$ :. 722 (b) Meq. of  $HCl = 20 \times 0.1 = 2$ 733 (a) Meq. of KOH =  $20 \times 0.1 = 2$ Both are neutralized to give 2 Meq. of KCl (a salt 734 (c) of strong acid + strong base) and thus, does not hydrolyse and shows pH = 7. 723 (d) 735 (c) For  $A(s) \rightleftharpoons 2B(g) + 3C(g)$  $\therefore K_c = [C]^3 [B]^2$ ; if [C] becomes twice, Then let conc. of B becomes B', then  $K_c = [2C]^3 [B']^2$  $[C]^3$ .  $[B]^2 = [2C]^3$ .  $[B']^2$ 0r  $\frac{[B']}{[B]} = \frac{1}{8} = \frac{1}{2\sqrt{2}}$ ... 736 **(b)** 724 (d) The acidic character is  $HCl > HF > H_2S > H_2O$ and thus, basic character of conjugate base will be 737 (b)  $Cl^{-} < F^{-} < HS^{-} < OH^{-}.$ 725 (c) We know that,  $pH = pK_a + \log \frac{[salt]}{[acid]}$ 738 (b)  $5.5 = 4.5 + \log \frac{[\text{salt}]}{[0.1]}$ [salt] = 1.0 M727 (a)  $CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2F^{-}(aq)$  $[F^{-}] = 2[Ca^{2+}]$  $= 2 \times 3.3 \times 10^{-4}$  $= 6.6 \times 10^{-4} \text{ M}$  $K_{\rm sp} = [{\rm Ca}^{2+}][{\rm F}^{-}]^2$ 739 (d)  $= (3.3 \times 10^{-4})(6.6 \times 10^{-4})^2$  $= 1.44 \times 10^{-10}$ 728 (b) Buffer solutions do not change their pH on addition of small amount of acid or base. 729 (b) Blood is alkaline having pH between 7.0 to 7.4. 730 (c)  $A + B \rightleftharpoons C$  $K = \frac{[C]}{[A][B]}$ 741 (d)

 $\frac{\text{mol } L^{-1}}{\text{mol } L^{-1} \times \text{mol } L^{-1}} = (\text{mol } L^{-1})^{-1} = \text{mol}^{-1}L$ Stronger is acid, weaker is its conjugate base and vice-versa. The salt hydrolysis in each case occurs except NaW because its pH = 7. Thus, HW is strongest acid. More is the pH of salt solution, weaker is its acid part. Follow Le-Chatelier's principle. Hg exist as  $Hg_2^{2+}$  and not as  $Hg^+$ . Thus  $K_{sp} =$  $[Hg_2^{2+}][I^{-}]^2.$ Meq. of HCl =  $40 \times 0.1 = 4$ Meq. of NaOH =  $10 \times 0.45 = 4.5$  $\therefore$  Meq. of NaOH left = 0.5 Now,  $[OH^+] = \frac{0.5}{50} = 10^{-2}$ pOH = 2 and pH = 12 $K_n = K_c \ge (RT)^{\Delta n}.$ Where  $\Delta n =$  mole of products – mole of reactants.  $pH = pK_a + \log \frac{[Salt]}{[Acid]}$  if  $\frac{[Salt]}{[Acid]}$  increases by 10 times  $pH = pK_a + 1$ .  $NaOH = [OH^{-}] = 10^{-3}$  $[H^+][OH^-] = 10^{-14}$  $[H^+] = 10^{-11}$  $pH = -\log[H^+]$  $= -\log[10^{-11}] = 11$  $HCl(ag) = [H^+] = 10^{-3}$  $pH = -\log[10^{-3}] = 3$ NaCl(aq) =Neutral; [H⁺] = [OH⁻] = 10⁻⁷ ie, pH = 7 $K_1 = \frac{[\rm NH_3]^2}{[\rm N_2][\rm H_2]^3}$  $K_2 = \frac{[NO]^2}{[N_2][O_2]}$  $K_3 = \frac{[\text{H}_2\text{O}]}{[\text{H}_2][\text{O}_2]^{1/2}}$  $\therefore \text{ For } \text{NH}_3 + \frac{5}{2}\text{O}_2 \rightarrow 2\text{NO} + 3\text{H}_2\text{O}$  $K = \frac{[\text{NO}]^2 [\text{H}_2\text{O}]^3}{[\text{NH}_2]^2 [\text{O}_2]^{5/2}} = \frac{K_2 K_3^3}{K_1}$ 

Decrease of K with rise of temperature means

that the forward reaction is exothermic. As the given reaction is exothermic, energy of HI is greater or stability is less than  $H_2$  and  $I_2$ 

742 **(b)** 

BaSO₄  $\rightleftharpoons$  Ba²⁺ + SO₄²⁻ Solubility product = s × s 15 × 10⁻¹⁰ = s²: s = √15 × 10⁻¹⁰: s = 3.9 × 10⁻⁵

743 (a)

 $CO_2$  is present in soda water bottle which increases H⁺ in solution,

 $H_2O + CO_2 \rightarrow H_2CO_3 \rightleftharpoons H^+ + HCO_3^-.$ 744 (a)

On increasing temperature, equilibrium will shift in forward direction due to decrease in intermolecular forces of solid

#### 745 **(d)**

 $CaCl_2$  is a salt of strong acid and strong base.

746 (c)  $K_{a} = \frac{[H^{+}][In^{-}]}{[HIn]}$ or  $3 \times 10^{-5} = \frac{[H^{+}] \times 75}{25}$   $\therefore [H^{+}] = 1 \times 10^{-5}M$ 748 (b)  $[OH^{-}] = 1 \times 10^{-5}$   $nOH = -\log[OH^{-}]$ 

$$pOH = -\log[OH^{-}] \\ = -\log[1 \times 10^{-5}] \\ pOH = 5 \\ pH + pOH = 14 \\ pH = 14 - pOH \\ = 14 - 5 \\ pH = 9$$

750 **(d)** 

It is definition of Levelling effect. 751 (d)

$$N = \frac{75 \times \frac{1}{5} - 25 \times \frac{1}{5}}{100} = 15 - 5 = \frac{10}{100} = 0.1$$
  
pH = -log[H⁺] = -log[0.1] = 1  
752 (c)  
N₂(g) + 3H₂(g) \Rightarrow 2NH₃(g);

 $\Delta H = -93.6 \text{ kJ mol}^{-1}$ This reaction is exothermic therefore the concentration of NH₃ can be increased by lowering the temperature, high pressure ( $\Delta n < 0$ ) excess N₂ and H₂.

753 **(c)** 

 $e.\,g.\,,K_4\mathrm{Fe}(\mathrm{CN})_6$  does not give test for  $\mathrm{Fe}^{3+}$  ions. 754  $(\mathbf{c})$ 

 $CH_3COONa$  in water gives alkaline solution due to hydrolysis of acetate ions.  $NH_4Cl$  gives acidic solution due to hydrolysis of  $NH_4^+$  ions. Also  $NH_4OH$  is a weak base due to less dissociation.

755 (c)  $HPO_4^{2-} + H_2O \rightleftharpoons H_2PO_4^{2-} + OH^{-}$  $HPO_4^{2-} + H_2O \rightleftharpoons PO_4^{3-} + H_3O^+$  $H_2PO_2^-$  is a conjugate base of  $H_3PO_2$  (a monobasic acid) and does not give  $H^+$ ,  $HPO_3^{2-}$ is a conjugate base of  $H_2PO_3^-$  and does not ionise further, since  $H_3PO_3$  is a dibasic acid. 756 (d) Alkanes are not acidic and thus,  $R^-$  is strongest base. 757 (a)  $pH = -\log K_a + \log \frac{[Conjugate base]}{[Acid]}$ 758 (a)  $[\mathrm{H}^+] = \sqrt{K_a \cdot C}$ Where, C =initial concentration of the weak acid  $(3.4 \times 10^{-4})^2$  $1.7 \times 10^{-5}$  $C = 6.8 \times 10^{-3} \text{ M}$ 759 (d)  $2Na + 2H_2O \rightarrow 2NaOH + H_2$ 2 mol 2 mol 2 mol 2 mol Given,  $\frac{0.023}{23}$  mol  $\frac{100}{22400}$  mol  $= 1 \times 10^{-3}$  mol  $= 4.46 \times 10^{-3}$  mol Thus, Na is the limiting reagent and decide the amount of NaOH formed. : 1 mole Na give NaOH = 1 mol  $\therefore 1 \times 10^{-3}$  mole Na will give NaOH  $= 1 \times 10^{-3}$  mol Concentration of  $[OH^{-}] = \frac{1 \times 10^{-3} \times 1000}{100} = 1 \times 10^{-2}$  $pOH = -\log[OH^{-}]$  $= -\log(1 \times 10^{-2})$ = 2

$$pH = 14 - 2 = 12$$

760 **(b)** 1 mole of N₂ reacts with 3 mole of H₂ thus, for N₂ + 3H₂  $\rightleftharpoons$  2NH₃; (a - x) > (a - 3x) $(a - x) \quad (a - 3x) \quad 2x$ 

 $2B \rightleftharpoons 2C + D$ 

761 **(a)** A +

a b 0 0  
(a-x) (b-2x) 2x x  
Given, 2x = 0.2, Also, a=1.1  
x = 0.1 b = 2.2  

$$\therefore K_{c} = \frac{2x^{2}}{(a-x)(b-2x)}$$

$$= \frac{(2 \times 0.1)^{2} \times 0.1}{(1.1 - 0.1)(2.2 - 0.2)^{2}} = 0.001$$
762 (a)  
pH = pK_{a} + log [Conjugate base]  
pH = pK_{a} + log 1 ( $\because$  50% neutralization)  

$$\therefore \ \log H^{+} = -\log 2 \times 10^{-4}$$
763 (a)  
K₂S shows alakaline nature due to hydrolysis of  
S²⁻ ions,  
S²⁻ + H₂O  $\rightleftharpoons$  HS⁻ + OH⁻.  
764 (b)  
B.p.t. increases with increase in pressure.  
766 (b)  
Na₂CO₃ salt gives strong base and weak acid  
on dissolving in water. Hence, it produces an  
alkaline solution.  
Na₂CO₃ + H₂O  $\rightarrow$  NaOH + H₂CO₃  
Strong base Weak acid  
773 (c)  
767 (a)  
Addition of some concentration HCl does not  
change pH.  
768 (d)  
CO is neutral.  
769 (c)  
2SO₂ + O₂  $\Rightarrow$  2SO₃; K = 278  
SO₃  $\Rightarrow$  SO₂ +  $\frac{1}{2}O_{2}$ ; K'  $= \frac{1}{\sqrt{K}}$   
K'  $= \frac{1}{\sqrt{K}} = \frac{1}{\sqrt{273}} = 6 \times 10^{-2}$   
770 (b)  
The reaction shows lower  $K_{eq}$  value in forward  
direction, *i. e.*, more  $K_{eq}$  in backward direction or  
HCN decomposes salt of HNO₂.  
771 (d)  
Initially [CH₃COONA] = 0.1 mol  
[CH₃COONA] = 0.1 mol  
pH = pK_a + log  $\frac{0.2}{0.1}$   
 $= pK_a + log \frac{0.2}{0.1}$   
 $= pK_a + log 2$ 

c) or binary salts (like AgCl, AgBr).  $s = \sqrt{K_{\rm sp}}$ Solubility of AgCl =  $\sqrt{1.8 \times 10^{-10}}$  $= 1.35 \times 10^{-7} \text{ mol/L}$ olubility of AgBr =  $\sqrt{5.0 \times 10^{-13}}$  $= 7.1 \times 10^{-7} \text{ mol/L}$ For,  $Ag_2CrO_4$ ,  $K_{sp} = 4s^3$ Solubility of Ag₂CrO₄  $=\sqrt[3]{600 \times 10^{-15}}$  $= 8.44 \times 10^{-5} \text{ mol/L}$ As Ag₂CrO₄ has maximum solubility, it will ive maximum Ag⁺ ions in solution. Hence, it vill be used. a) stwald's dilution law is valid only for weak lectrolytes. b)  $Zn^{2+}[S^{2-}] = 10^{-1} \times 8.1 \times 10^{-19} = 8.1 \times 10^{-19}$  $0^{-20} > K_{\rm sp}$  of ZnS (3 × 10⁻²²)  $Cu^{2+}[S^{2-}] = 10^{-2} \times 8.1 \times 10^{-19} = 8.1 \times 10^{-19}$  $0^{-21} > K_{sp}$  of CuS (8 × 10⁻³⁶) b) as + Liquid  $\rightleftharpoons$  Solution. An increase in P will avour forward reaction. b)  $X_{a_1} > K_{a_2}.$ d)  $A + 2B \rightleftharpoons 2C + D$ a  $\frac{3}{2}a$   $\begin{array}{c} 0 & 0\\ x & x \end{array}$ (a-x)  $\left(\frac{3}{2}a-2x\right)$ Given, a - x = 2xx = a/3Now,  $K_c = \frac{[C]^2[D]}{[A][B]^2} = \frac{\left(\frac{2a}{3}\right)^2 \times \frac{a}{3}}{\left(a - \frac{a}{2}\right)\left(\frac{3a}{2} - \frac{2a}{2}\right)^2} = 0.32$ b)  $\mathrm{Al}_2(\mathrm{SO}_4)_3 \rightleftharpoons 2\mathrm{Al}^{3+} + 3\mathrm{SO}_4^{2-}$  $X_{\rm sp} = [Al^{3+}]^2 [SO_4^{2-}]^3$ a) H⁺] from weak acid,

 $= 10^{-3}$ pH = 3:. 782 (a)  $[H^+] = 10^{-10}M$ :. pH = 10:. pOH = 4783 (b)  $\mathrm{H^{+}+0H^{-} \rightarrow H_{2}O}$  $\Delta H = -13.7$  kcal. 784 (a)  $pH = -\log(5 \times 10^{-10}) + \log\left[\frac{5 \times V}{V + 10} / \frac{10 \times 2}{V + 10}\right]$  $9 = -\log(5 \times 10^{-10}) + \log\frac{V}{4}$ On solving, V = 2 mL785 (b)  $K_1 = \frac{[\mathrm{H}^+][\mathrm{H}_2\mathrm{PO}_4^-]}{[\mathrm{H}_3\mathrm{PO}_4]}; K_2 = \frac{[\mathrm{H}^+][\mathrm{H}\mathrm{PO}_4^{--}]}{[\mathrm{H}_2\mathrm{PO}_4^{--}]}$  $K_3 = \frac{[\mathrm{H}^+][\mathrm{PO}_4^{3-}]}{[\mathrm{HPO}_4^{2-}]}$  Multiplying these three  $K_1 \times K_2 \times K_3 = \frac{[H^+]^3 [PO_4^{3-}]}{[H_2PO_4]}$ 786 (a)  $PCl_5 \rightleftharpoons PCl_3 + Cl_2$  $\begin{array}{cccc}
 & \frac{4}{4} & 0 \\
c. & \frac{2}{4} & \frac{2}{4} \\
K &= \frac{[\text{PCl}_3][\text{Cl}_2]}{[\text{PCl}_5]} \\
\end{array}$ Initial conc. Equili. conc.  $=\frac{2\times2\times4}{4\times4\times2}=$ 787 (b) Follow Le-Chatelier's principle. 788 (b) Let the solubility of Ag₂S is s.  $Ag_2S \rightleftharpoons 2Ag^+ + S^{2-}$ Na₂S, being a strong electrolyte, dissociates completely and provides  $[S^{2-}]=0.1 \text{ M}$ :.  $[Ag^{+}] = s$  $[S^{2-}] = (s + 0.1) M$  $K_{\rm sp} = [{\rm Ag}^+]^2 [{\rm S}^{2-}]$  $= (2s)^2(s + 0.1)$  $= 4s^3 + 0.4s^2$  $10^{-17} = 0.4s^2$ [: Higher powers are neglected.]

 $SO_2 + \frac{1}{2}O_2 \rightleftharpoons SO_3$ 5 mol 5 mol 0 initially  $(5-x)\left(5-\frac{1}{2}x\right)x$  at equilibrium  $x = \frac{60}{100} \times 5 = 3$ Total number of moles = (5 - x) + (5 - x) $= (5-3) + (5-\frac{1}{2} \times 3) + 3$ = 8.5790 (a) (a)  $s = \sqrt{K_{sp}} = (2.5 \times 10^{-9})^{1/2}$   $= 5 \times 10^{-5} \text{ mol litre}^{-1}$   $W = 10^{-5}$  $\therefore \frac{w}{128} = 5 \times 10^{-5}$  $\therefore w = 6.4 \times 10^{-3} \text{g}.$ 791 (b) In the iodometric estimation in laboratory, this process is involved  $MnO_4^- + H^+ + I^- \rightarrow Mn^{2+} + I_2$  $I_2 + S_2 0_3^{2-} \rightarrow S_4 0_6^{2-} + I^-$ 792 **(c)**  $K_1 = \frac{[NO_2]}{[NO][O_2]^{1/2}}$  ...(i)  $K_2 = \frac{[NO]^2[O_2]}{[NO_2]^2}$  ...(ii)  $\therefore \frac{1}{K_2} = \frac{[NO_2]^2}{[NO]^2[O_2]}$ or,  $\frac{1}{\sqrt{K_2}} = \frac{[NO_2]}{[NO][O_2]^{1/2}}$  ...(iii) From Eqs.(i) and (iii),  $K_1 = \frac{1}{\sqrt{K_2}}$  $\therefore K_2 = \frac{1}{K_2^2}$ 793 **(a)** g equivalent of  $(NH_4)_2 SO_4 = \frac{100}{1000} \times \frac{1}{10} \times 66 =$ 0.66 g equivalent of Na₂CO₃ · H₂O =  $\frac{0.62}{62}$  = 0.01 left  $(NH_4)_2 SO_4$  is 0.66 - 0.01 = 0.65 $(NH_4)_2SO_4$  is a salt of strong acid and weak base 794 (b)  $K_n = K_c (RT)^{\Delta n}$  $K_p = K_c$  only when  $(RT)^{\Delta n} = 0$  $(a)PCl_5 \rightleftharpoons PCl_3 + Cl_2$  $\Delta n = n_n - n_R$ = 2 - 1

$$= 1$$

$$\therefore \Delta K_p \neq K_c$$

$$(b)N_2 + O_2 \rightleftharpoons 2NO$$

$$\Delta n = 2 - 2$$

$$= 0$$

$$\therefore K_p = K_c$$

$$(c)N_2 + 3H_2 \rightleftharpoons 2NH_3$$

$$\Delta n = 2 - 4$$

$$= -2$$

$$\therefore \Delta K_p \neq K_c$$

$$(d)2SO_3 \rightleftharpoons 2SO_2 + O_2$$

$$\Delta n = 3 - 2 = 1$$

$$\therefore \Delta K_p \neq K_c$$

$$(d)2SO_3 \rightleftharpoons (2SO_2 + C_2)$$

$$\Delta n = 3 - 2 = 1$$

$$\therefore \Delta K_p \neq K_c$$

$$(d) = 4 \times 10^{-3} \times [CI^{-1}]$$

$$[CI^{-1}] = 4.5 \times 10^{-8} \text{ mol litre}^{-1}.$$

$$(d) = 4 \times 10^{-3} \times [CI^{-1}]$$

$$[CI^{-1}] = 4.5 \times 10^{-8} \text{ mol litre}^{-1}.$$

$$(f) = 4 \times 10^{-3} \times [CI^{-1}]$$

$$[CI^{-1}] = 4.5 \times 10^{-8} \text{ mol litre}^{-1}.$$

$$(f) = 4 \times 10^{-3} \times [CI^{-1}]$$

$$[CI^{-1}] = 4.5 \times 10^{-8} \text{ mol litre}^{-1}.$$

$$(f) = 4 \times 10^{-3} \times [CI^{-1}]$$

$$[CI^{-1}] = 4.5 \times 10^{-8} \text{ mol litre}^{-1}.$$

$$(f) = 4 \times 10^{-3} \times [CI^{-1}]$$

$$[CI^{-1}] = 4.5 \times 10^{-8} \text{ mol litre}^{-1}.$$

$$(f) = 4 \times 10^{-3} \times [CI^{-1}]$$

$$(f) = 4 \times 10^{-3} \times 10^{-3} \times 10^{-3}$$

$$(f) = 1.8 \times 10^{-5}, [NH_3] = 0.1 \text{ M}$$

$$NH_3 + H_2 O \rightleftharpoons NH_4^{+} + OH^{-1}$$

$$(f) = 1.8 \times 10^{-5}, [NH_3] = 0.1 \text{ M}$$

$$NH_3 + H_2 O \rightleftharpoons NH_4^{+} + OH^{-1}$$

$$(f) = 1.8 \times 10^{-5}, [NH_3] = 0.1 \text{ M}$$

$$NH_3 + H_2 O \rightleftharpoons NH_4^{+} + OH^{-1}$$

$$(f) = 1 \times 10^{-3} \times 10^{-3}$$

$$(f) = 1.8 \times 10^{-5}, [NH_3] = 0.1 \text{ M}$$

$$(f) = 1.8 \times 10^{-5}, [NH_3] = 0.1 \text{ M}$$

$$(f) = 1.8 \times 10^{-5}, [NH_3] = 0.1 \text{ M}$$

$$(f) = 1.8 \times 10^{-5}, [NH_3] = 0.1 \text{ M}$$

$$(f) = 1.8 \times 10^{-5}, [NH_3] = 0.1 \text{ M}$$

$$(f) = 1.8 \times 10^{-5}, [NH$$

 $1.8 \times 10^{-5} = \frac{x^2}{0.1}$ or  $x^2 = 1.8 \times 10^{-6}$ or  $x = 1.35 \times 10^{-3}$ :.  $[OH^{-}] = 1.35 \times 10^{-3}$ :.  $pOH = -\log[OH^{-}]$  $= -\log(1.35 \times 10^{-3})$ = 2.87pH = 14 - pOH = 14 - 2.87 = 11.13799 (d) : Relative strength of weak acids =  $\sqrt{\left(\frac{K_{a_1}}{K_{a_2}} \times \frac{c_1}{c_2}\right)}$ Assume  $c_1$  and  $c_2$  are same (Although not given)  $\therefore \text{ Relative strength} = \left( \frac{K_{a_1}}{K_{a_2}} \right) = \left( \frac{2.1 \times 10^{-4}}{1.1 \times 10^{-5}} \right)$ Relative strength for HCOOH to  $CH_3COOH =$ 4.36:1. 800 (b) According to Arrhenius concepts acids are those substances which give proton in aqueous solution. A Gaseous HCl is not an Arrhenius acid. 801 (c)  $CO_2(g) + 2H_2O(g) \rightarrow CH_4(g) + 2O_2(g)$ According to Le-Chatelier's principle, addition of temperature shifts a endothermic reaction towards right. The addition of temperature to the above reaction will cause it to right, hence it is an endothermic reaction. ( $\Delta H = +ve$ ). 802 **(b)**  $PCl_5 \rightleftharpoons PCl_3 + Cl_2$  $\begin{array}{cccc} 1 & 0 & 0 \\ 1-\alpha & \alpha & \alpha \end{array}$  $\therefore K_p = \frac{\alpha^2}{(1-\alpha)} \left[ \frac{P}{1+\alpha} \right] = \frac{\alpha^2 P}{1-\alpha^2}$ Or  $\alpha = \sqrt{\frac{K_p}{P}}$  if  $1 - \alpha^2 = 1$ 803 (b)  $K_{sp} = 4s^3 \text{ or } s = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{4 \times 10^{-12}}{4}} = 10^{-4}$ 804 (b)  $\Delta G = 0$  at equilibrium 805 (a)  $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$ 1 0 0

At р pequilibrium Given, p + p = 100 atm 2p = 100 atm p = 50 atm  $K_p = p_{\mathrm{NH}_3} \cdot p_{\mathrm{H}_2\mathrm{S}}$  $= 50 \times 50 = 2500$  at m² 806 (c)  $AX_2$  is ionised as follows  $\Rightarrow A^{2+} + 2X^{-}$  $AX_2$  $S \mod L^{-1}$ Solubility product of  $AX_2$  $(K_{\rm sp}) = [A^{2+}][X^{-}]^2 = S \times (2S)^2 = 4S^3$ :  $K_{sp}$  of  $AX_2 = 3.2 \times 10^{-11}$  $\therefore 3.2 \times 10^{-11} = 4S^3$  $S^3 = 0.8 \times 10^{-11} = 8 \times 10^{-11}$ Solubility =  $2 \times 10^{-4}$  mol/L 807 (b)  $s \text{ of } \operatorname{Ag}_2 \operatorname{SO}_4 = \left[\frac{K_{sp}}{4}\right]^{1/3}$  $=\left[\frac{5.5 \times 10^{-5}}{4}\right]^{1/3}$  $= 2.39 \times 10^{-2} M$ s of AgBrO₃ =  $\sqrt{K_{sp}} = (2 \times 10^{-5})^{1/2}$  $= 4.4 \times 10^{-3} M.$ 808 (a) Base +  $H^+ \rightarrow$  Conjugate acid. 809 (c) e.g.,  $CuSO_4$  is blue because  $Cu^{2+}$  ions are blue;  $CuCr_2O_7$  is green because  $Cu^{2+}$  is blue and  $Cr_2O_7^{2-}$ is orange yellow. 810 (b) pH of HCl =  $2 \therefore [HCl] = 10^{-2}M$ pH of NaOH =  $12 \therefore$  [NaOH] =  $10^{-2}M$ HCl 200×10⁻²  $+ \underset{300 \times 10^{-2}}{\text{NaCl}} \rightarrow \text{NaCl} + \text{H}_2\text{O}$ Meq.before reaction =2 Meq.after reaction 0  $\therefore$  [OH⁻] left from NaOH =  $\frac{1}{500}$  = 2 × 10⁻³M  $pOH = -\log OH^{-} = -\log 2 \times 10^{-3}$ pOH = 2.6989pH = 11.3010... 811 (d)  $\Delta G^0 = -2.303 RT \log K_p;$  $1.7 = -2.303 \times 8.314 \times 10^{-3} \times 298 \log K_p$  $\therefore K_p = 0.5$ 813 (c) Aprotic solvents are those from which hydrogen 824 (d)

ion or OH⁻ cannot be derived. 814 (a)  $K_c = \frac{k_f}{k_b}$  $\therefore 20 = \frac{10}{K_h}$ :  $k_b = \frac{1}{2} = 0.5$ 815 (d) For the reversible reaction,  $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$  $\Delta n_g = 2 - (1+3)$ = 2 - 4 = -2 $R = 0.0821 \text{ L} \text{ atm } \text{K}^{-1} \text{mol}^{-1}$ T = 500 + 273 = 773 K $K_n = K_c (RT)^{\Delta n_g}$  $K_p = K_c \times (RT)^{-2}$ or  $1.44 \times 10^{-5} / (0.082 \times 773)^{-2}$ or 816 **(a)**  $\frac{10^{-5} \times V + 10^{-3} \times V}{2V}$  $[H^+] =$  $\frac{1.01\times10^{-3}}{2}$ ∴ pH = 3.2967 817 (c)  $K_a = \frac{[H_3O^+][F^-]}{[HF][H_2O]}$ and  $K_b = \frac{[\mathrm{HF}][\mathrm{OH}^-]}{[\mathrm{F}^-][\mathrm{H}_2\mathrm{O}]}$  $\therefore K_a \times K_b = [\mathrm{H}_3\mathrm{O}^+][\mathrm{OH}^-] = K_w.$ 818 (b)  $[H^+] = 10^{-pH} = 10^{-4} M$ 819 (c) Because pH = 8 shows basic nature but HCl is a strong acid 820 (a)  $[Ag^+]^2[CrO_4^2] = K_{sp} \text{ or } K_{sp} = (2S)^2 \times S = 4S^3.$ 821 (b)  $K_c = \frac{K_f}{K_b} = \frac{2.38 \times 10^{-4}}{8.15 \times 10^{-5}} = 2.92$ 822 (c)  $pH = 3.82 = -\log[H^+]$  $[H^+] = 1.5 \times 10^{-4} M.$ :. 823 (a)  $CH_3 - CH_3$  is neutral or least acidic and thus, its conjugate base should be strongest.

 $K_{sp}$  of Na₂S is very high.

826 **(c)** 

An increase H⁺ favours the backward reaction. 828 **(a)** 

$$K_{p} = K_{c} (RT)^{\Delta n_{g}}$$
  

$$\Delta n_{g} = 1 - 1.5 = -0.5$$
  

$$K_{p} = K_{c} (RT)^{-1/2} = \frac{K_{c}}{(RT)^{1/2}}$$
  

$$\therefore \qquad \frac{K_{c}}{K_{p}} = (RT)^{1/2}$$

829 **(a)** 

For the reaction, we know that

 $K_p = K_c (RT)^{\Delta n_g}$ 

where,  $\Delta n_{\rm g} =$  Number of gaseous moles of product – Number of gaseous moles of reactant

Hence, if  $K_p > K_c$ , then  $\Delta n$  must be positive. It means that there is a decrease in volume of reaction, hence low pressure will favour the forward reaction.

### 830 **(b)**

```
0.05 M Ba(OH)<sub>2</sub> solution
                       \approx 2 \times 0.05 \text{ N Ba(OH)}_2
                       \approx 0.10 \text{ N Ba}(\text{OH})_2
                 pOH = -\log[OH^{-}]
      :.
                        = -\log(0.10) = 1
                   pH = 14 - pOH
                        = 14 - 1 = 13
831 (d)
      pH = 12 \therefore pOH = 2
                  [OH^{-}] = 10^{-2}
      :.
                 Ba(OH)_2 = Ba^{2+} + 2OH^{-1}
      Now
                        K_{sp} = [Ba^{2+}][OH^{-}]^{2}
      ÷
                                              [-2]^2 : [Ba^{2+}]
832 (b)
      HSO_4^- is the conjugate base of H_2SO_4.
           HSO_4^- \rightleftharpoons HSO_4^- + H^+
           acid
                      conjugate
                        base
833 (c)
      K_p = K_c (RT)^{\Delta ng}
      Here, \Delta n_{\rm g} = -1 and K_c = 26
      R = 0.0812, T = 250 + 273 = 523 \text{ K}
      K_p = 26 \times (0.0812 \times 523)^{-1} = 0.605 = 0.61
835 (d)
```

NaCN (4 millimole) and HCl (2 millimole) on reaction give 2 millimole of HCN and 2 millimole of NaCN are left which acts as buffer.

### 837 **(a)**

Phenolphthalein furnishes H⁺ and phenolphthalein anion is solution.

838 (c)

 $\begin{aligned} \mathrm{Hg}_{2}\mathrm{I}_{2} &\rightleftharpoons \mathrm{Hg}_{2}^{2+} + 2\mathrm{I}^{-} \\ K_{\mathrm{sp}} &= [\mathrm{Hg}_{2}^{2+}][\mathrm{I}^{-}]^{2} \end{aligned}$ 

# 839 **(d)**

According to law of mass action, at a given temperature the rate of reaction at a particular instant is proportional to the product of active masses of the reactants at that instant raised to powers which are numerically equal to the numbers of their respective molecules.

840 **(d)** 

HCl is accepting proton in HF medium and acts as weak base .

### 841 **(a)**

$$AB_{2}(g) \rightleftharpoons 2AB(g) + B_{2}(g)$$

$$1 \\ 1-x \qquad 0 \\ x \qquad \frac{x^{2}}{2}$$

$$K_{p} = \frac{x^{2} \cdot x}{2(1-x)^{2}} \left[\frac{P}{1+\frac{x}{2}}\right]^{1}$$

*x* being small  $\therefore 1 - x \approx 1$  and  $1 + \frac{x}{2} \approx 1$ 

$$K_p = \frac{x^{3.P}}{2}$$

842 **(d)** 

:.

According to Lewis, electron deficient species are called acids while bases are the substances which have unshared pair of electron and can donate the electron pair to the formation of coordinate bond. Hence,  $H_2$ Ö: is a Lewis base while

 $BF_3$ , AlCl₃ and  $SO_2$  are Lewis acids.

843 **(b)** 

0.1 M weak acid (HQ) has pH = 3

 $\therefore [\mathrm{H^+}] = C\alpha = 10^{-3}$ 

$$\alpha = 10^{-2}$$
 (:  $C = 10^{-1}$ )

Now for weak acid,

$$K_a = C\alpha^2 = C\alpha \cdot \alpha = 10^{-3} \times 10^{-2} = 10^{-5}$$

844 **(b)** 

So that only II group radicals are precipitated, otherwise III group also get precipitated.

845 (a)  
Mg(OH)₂ 
$$\rightleftharpoons$$
 Mg²⁺ + 2OH⁻  
(x)(2x)²  
 $K_{sp} = 4x^3$   
846 (a)  
 $K_p = \frac{(p_{SO_3})^2}{(p_{SO_2})^2(p_{O_2})} = \frac{(0.331)^2}{(0.662)^2(0.101)} = 2.5$   
Now,  $K_p = \frac{(p_{SO_3})^2}{(p_{SO_2})^2 p_{O_2}}$ ;  
If  $p_{SO_3} = p_{SO_2}$   
Then,  $p_{O_2} = \frac{1}{K_p} = \frac{1}{2.5} = 0.4$  atm  
847 (b)  
The salt with lower solubility product (AgI)  
will precipitate first from the solution by  
adding KI.  
848 (b)  
The species which can donate a lone pair of  
electron, are called Lewis base *e.g.*,  
NH₃, H₂O, Cl⁻ etc.  
849 (a)  
NH₃ + H₂O  $\underbrace{K_f}_{K_p}$  NH₄⁺ + OH⁻;  $K_b = 3.4 \times 10^{10}$   
NH₄⁺ + H₂O  $\underbrace{K_f}_{K_b} = \frac{K_w}{K_{acid} NH_4^+}$  ( $\because K_{acid} \times K_{base}$   
 $= K_w$ )  
or  $\frac{K_f}{3.4 \times 10^{10}} = \frac{10^{-14}}{5.6 \times 10^{-10}}$   
or  $K_f = 6.07 \times 10^5 s^{-1}$ .  
850 (b)  
Kszp is characteristic constant for given electrolyte.  
851 (a)  
It is an acid-base reaction;  
Rest all occurs in reverse direction.  
852 (b)  
Catalyst affect both the forward and  
backward reactions upto same extent, hence  
it, overall does not affect the equilibrium state  
quickly.  
853 (b)

Given, aqueous solution of  $NH_3$  (weak base)C = 0.01 M  $\alpha = 5\% = \frac{5}{100}$   $[OH^-] = C\alpha = 0.01 \times \frac{5}{100} = 5 \times 10^{-4}$  $pOH = -\log[OH^-]$ 

 $= \log(5 \times 10^{-4})$  $= 4 \log 10 - \log 5$ = 4 - 0.6989= 3.3010 $\therefore$  pH = 14 - pOH = 14 - 3.3010 = 10.6990 854 (b)  $NH_2COONH_4(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$ 2 If p is the total pressure at equilibrium  $K_p = \frac{[\mathrm{NH}_3]^2[\mathrm{CO}_2]}{[\mathrm{NH}_2\mathrm{COONH}_4]}$  $2.9 \times 10^{-5} = \frac{\left(\frac{2p}{3}\right)^2 \times \frac{p}{3}}{1}$  $2.9 \times 10^{-5} = \frac{4 \times p^3}{27}$  $\Rightarrow p^3 = \frac{27 \times 2.9 \times 10^{-5}}{4}$ = 1.9575 $p = \sqrt[3]{1.9575} = 0.058$ 855 (c)  $3A + 4B \rightleftharpoons 2C + 3D$  $K_1 = \frac{[C]^2 [D]^3}{[A]^3 [B]^4}$ ...(i) When moles of C = 1, the equation becomes  $\frac{3}{2}A + 2B \rightleftharpoons C + \frac{3}{2}D$  $K_2 = \frac{[C][D]^{3/2}}{[A]^{3/2}[B]^2}$ ...(ii) On comparing Eq.(i) with Eq.(ii), we get  $K_2^2 = K_1$  or  $K_2 = (K_1)^{1/2}$ Hence, equilibrium extent =  $\frac{1}{2}$ 856 (d)  $C_2H_2 + H_2 \rightleftharpoons C_2H_6$  $K_p = K_c (RT)^{\Delta n}$  $\Delta n = 1 - 2 = -1$  $K_p = K_c (RT)^{-1}$ 857 (d) Meq. of HCl =  $75 \times \frac{1}{5} = 15$ Meq. of NaOH =  $25 \times \frac{1}{5} = 5$  $\therefore$  Meq. of HCl left = 15 - 5 = 10Now [HCl]left =  $\frac{10}{100} = 10^{-1}$ :. pH = 1858 (b) A Lewis acid is a substance, which can accept a pair of electrons, *e.g.*,  $H_3O^+$ . 860 (a)

 $K_c = \frac{[\text{NO}_2]^2}{[\text{NO}]^2[\text{O}_2]} = \frac{[0.120/4]^2}{\left(\frac{0.080}{4}\right)^2 \left(\frac{0.64}{4}\right)} = 14.06$ 861 (b)  $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$  $K_{c} = 0.1, K_{p} = K_{c} (RT)^{\Delta n}$  $\Delta n =$  Number of gaseous product – Number of gaseous reactants  $\Delta n = 2 - 2 = 0$  $\Delta n = 0$  $\therefore K_p = K_c = 0.1$ 862 (c) For the reaction,  $P_4(s) + 6Cl_2(g) \rightleftharpoons 4PCl_3(g)$ At *t*=0 1 1 0 (1-x) (1-6x)4xAt eq. (1-x) > (1-6x)As Hence, at equilibrium  $[P_4] > [Cl_2]$ 865 (c) Dissociation of acetic acid increases as,  $CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$ 866 (d) The reaction in which number of moles of reactants = number of moles of products are not effected by change in pressure or volume.  $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$  $\therefore$  Number of moles of reactant = number of moles of products  $\therefore$  This reaction is not effected by change in pressure or volume. 867 (d)  $AgCl \rightleftharpoons Ag^{+} + Cl^{-}$  $K_{sp} = [Ag^{+}][Cl^{-}] = s^{2}$  $s = \sqrt{K_{sp}} = 1.1 \times 10^{-10} = 10^{-5}$ Similarly *s* for AgI is  $10^{-8}$ , s for PbCrO₄is 2  $\times 10^{-7}$  and s for Ag₂CO₃ is 1.26  $\times 10^{-4}$ . Most soluble – Ag₂CO₃, least soluble AgI 868 (d) Given, concentration of NaOH =  $10^{-10}$ M NaOH  $\rightarrow Na^+$  $+ OH^{-}$  $10^{-10}$  $10^{-10}$  $10^{-10}$  $\therefore$  [OH⁻]from NaOH = 10⁻¹⁰ Total  $[OH^{-}] = 10^{-7} + 10^{-10}$ :.

 $= 10^{-7}(1 + 0.001)$  $= 10^{-7} \left( \frac{1001}{1000} \right)$  $= 10^{-10} \times 1001$  $pOH = -\log[OH^{-}]$  $= -\log(1001 \times 10^{-10})$ = -3.004 + 10= 6.9996pH + pOH = 14 $\because$ pH = 14 - 6.9996:. =7.0004=7 870 (b)  $K_H = \frac{K_w}{K_b} = \frac{10^{-14}}{1.77 \times 10^{-5}} = 5.65 \times 10^{-10}$ 871 (d) 1M solution of strong acid must have pH = 1. Since, pH = 5 which is possible only when acid is weak  $[H^+] = c \cdot \alpha$ . 872 (b)  $K_{sn} = s^2$  $\therefore s = 1.0 \times 10^{-4} m/l$  $= 1.0 \times 10^{-4} \times 283 \times \frac{100}{1000} \,\mathrm{mL}$  $= 28.3 \times 10^{-2} \text{ g/100mL}$ 873 (d) For basic buffer,  $pOH = pK_b + \log \frac{[salt]}{[base]}$ Given, [salt]=[base]=1  $K_{h} = 2 \times 10^{-5}$  $pOH = pK_b = -\log(2 \times 10^{-5})$ :.  $= 5 - \log 2$ = 5 - 0.30 = 4.70pH = 14 - pOH= 14 - 4.70 = 9.30874 (c) NH₄Cl being a strong electrolyte, dissociates as  $NH_4Cl \rightarrow NH_4^+ + Cl^$ and NH₄OH as,  $NH_4OH \rightleftharpoons NH_4^+ + OH^$ weak electrolyte common ion Due to the presence of common ion, the degree of dissociation of NH₄OH decreases. Thus, less OH⁻ ions are produced which are sufficient only for the precipitation of hydroxides if III group radicals and not of higher group radicals.

875 (c)

Let molar solubility of  $Cr(OH)_3 = s \mod L^{-1}$  $Cr(OH)_3(s) \rightleftharpoons Cr^{3+}(aq) + 3OH^{-}(aq)$ 882 (d)  $K_{sp} = 1.6 \times 10^{-30} = [\text{Cr}^{3+}][\text{OH}^{-}]^3$  $\therefore \qquad s^4 = \frac{1.6 \times 10^{-30}}{27}$  $\therefore \qquad s = \sqrt[4]{\frac{1.6 \times 10^{-30}}{27}}$ 876 (a)  $\Delta G^0 = -2.303 RT \log K$  $-4.606 \times 10^3 = -2.303 \times 2 \times 500 \log K$  $\therefore K = 100$ 877 (b)  $2A(g) \rightleftharpoons 3C(g) + D(s)$ For this reaction,  $\Delta n_{\rm g} = 3 - 2 = 1$  $\therefore$   $K_p = K_c (RT)^1$  $K_c = \frac{K_p}{PT}$ or 878 (a)  $BaCl_2 + Na_2SO_4 \rightarrow BaSO_4 \downarrow +2NaCl$ 879 (d) CCl₄ is not a Lewis or Bronsted acid as it does not contain H⁺ and has complete ocetet 880 (a) Given,  $NO_2 \rightleftharpoons \frac{1}{2}N_2 + O_2$ ,  $K_1$ ...(i)  $N_2O_4 \rightleftharpoons 2NO_2$ , ...(ii) **Required** reaction  $N_2 + 2O_2 \rightleftharpoons N_2O_4,$ ...(iii) By squaring Eq. (i) we get,  $2NO_2 \rightleftharpoons N_2 + 2O_2$ ,  $K_1^2$ ...(iv) Now, Eq (iii) is obtained by inverting Eq. (ii) and Eq. (iv) and by adding them as.  $N_2 + 2O_2 \rightleftharpoons 2NO_2$ ,  $2NO_2 \rightleftharpoons N_2O_4, \qquad \frac{1}{K_2}$  $N_2 + 2O_2 \rightleftharpoons N_2O_4$ ,  $\frac{1}{\kappa^2} + \frac{1}{\kappa_2}$ 881 **(b)**  $C_1 \alpha_1^2 = C_2 \alpha_2^2$  $0.1\times1^2=0.025\times\alpha_2^2$  $\alpha_{2}^{2} = 4$ 

 $\alpha = 2$ 

 $\Delta n$  may be zero, positive or negative integers or fractional depending upon nature of reaction.  $\Delta n$  = No. of mole of products – No. of mole of reactants.

883 (b)

 $H^- + H^+ \longrightarrow H_2$ Base Conjugate acid

884 (d)

Common ion effect is noticed only for weak electrolyte dissociation H₂SO₄ is strong electrolyte.

885 (b)

Acids liberate CO₂ from bicarbonates.

886 (c)

 $1 \times 10^{-8}$  M HCl solution H₂O is also present there which also undergoes self ionisation.

$$H_2 O \rightleftharpoons H^+ + OH^-$$
  
 $10^{-7} \text{ M at } 25^{\circ} \text{C}$ 

If it is taken simply even without common ion effect, higher concentration must be considered which is 10⁻⁷M but H⁺ from HCl decreases self ionisation which further

decreases self ionisation, hence

 $[H^+]$ from H₂O.

Hence, net concentration must be smaller than  $10^{-7}$  M.

887 (b)

Number of moles of PCl₅ dissociated at equilibrium

$$= 2 \times 40/100 = 0.8$$

 $PCl_5 \rightleftharpoons PCl_3 +$  $Cl_2$ (Initial)2 0

(At equilibrium) (2-0.8) mol 0.8 mol 0.8 mol

$$[PCl_5] = \frac{1.2}{2} = 0.6 \text{ ML}^{-1}$$
$$[PCl_3] = [Cl_2] = \frac{0.8}{2} = 0.4 \text{ ML}^{-1}$$
$$K_c = \frac{[PCl_3][Cl_2]}{[PCl_5]} = \frac{0.4 \times 0.4}{0.6}$$
$$= 0.267 \text{ mol/dm}^3$$

888 (c)

...

In liquid  $\Rightarrow$  vapour, equilibrium the rate at which molecules escape from the liquid surface to gaseous phase equals to rate at which molecules in the gas phase strike the surface and becomes the part of liquid. Hence, the molecules in the two phases have equal

kinetic energy. 889 (b)  $[\mathrm{HI}] = \frac{12.8}{128 \times 3} = 0.033M$ 890 (b) NH₄Cl salt gives an acidic solution in water  $NH_4Cl \rightleftharpoons NH_4^+$  $+ Cl^{-}$  $H_2O + H_2O = OH^- + H_3O^ NH_4OH HCl + H_2O$ weakly ionised strongly ionised 891 (d)  $\Delta n = 1$  for this change; Unit of  $K_p = (atm)^{\Delta n}$ ; Unit of  $K_c = (\text{mol litre}^{-1})^{\Delta n}$ 892 (a)  $As_2S_3 \rightleftharpoons 2As^{3+} + 3S^{2-}$ 5 mol/L  $K_{\rm sp} = [{\rm As}^{3+}]^2 [{\rm S}^{2-}]^3$  $= (2s)^2 (3s)^3$  $= 108s^{5}$  $s = \sqrt[5]{\frac{K_{\rm sp}}{108}}$  or  $(\frac{K_{\rm sp}}{108})^{\frac{1}{5}}$ :  $=\sqrt[5]{\frac{2.8 \times 10^{-72}}{100}}$  $=\sqrt[5]{25.93 \times 10^{-75}}$  $= 1.92 \times 10^{-15} \text{ mol/L}$ 893 (c)  $K_p = \frac{[\text{HCO}_3^-][\text{H}_3\text{O}^+]}{[\text{CO}_2]};$ Given,  $K_p = 3.8 \times 10^{-7}$ and  $[H_30^+] = 10^{-6}$  $\therefore \qquad \frac{[HCO_3^-]}{[CO_2]} = \frac{3.8 \times 10^{-7}}{10^{-6}} = 3.8 \times 10^{-1}$ 894 (a) Blood buffer controls the pH change by acidic components present metabolically. 895 (d)  $N_2 + 3H_2 \rightleftharpoons 2NH_3$ 2 3 : Before reaction (1-x)(2-3x)(3+2x) : After reaction x mole of N₂ will react with 3x mole of H₂ to give 2x mole of NH₃. Notice the stoichiometry of change. 896 (a)  $K_p$  is independent of pressure. 897 (a) Methyl orange is good indicator in the range of pH 3 to 4. Actually working range of good

indicator can be derived as,  $MeOH \rightleftharpoons Me^+ + OH^ K_b = \frac{[\text{Me}^+][\text{OH}^-]}{[\text{MeOH}]}$ ; Taking logarithm  $\log K_b = \log \frac{[\text{Me}^+]}{[\text{MeOH}]} + \log \text{OH}^$ or  $pK_b = \log \frac{[MeOH]}{[Me^+]} + \log pOH$ The indicator is more effective when  $\frac{[\text{MeOH}]}{[\text{Me}^+]} \text{ or } \frac{[\text{Me}^+]}{[\text{MeOH}]} = 1$ Thus, pOH =  $pK_b$ ; Thus, working range is pOH  $\pm$ 898 (c)  $\Delta n = 1 - 1 - \frac{1}{2} = -\frac{1}{2}$   $\therefore K_p = K_c (RT)^{-1/2}$ 899 (d) Find solubility by  $4s^3 = K_{sp}$  for Ag₂S and  $s^2 =$ K_{sp} for CuS and HgS. 900 (a)  $pH = -\log[H^+]$  $[H^+] = 0.0001 = 1 \times 10^{-4}$  $pH = -\log [1 \times 10^{-4}] = 4$ 901 (c)  $N H_2 SO_4 = 0.05 \times 2 = 0.1$ :  $[H^+] = 0.1$  and pH = 1. 902 (d) Phenolphthalein exists as HPh, i.e., undissociated molecule in acid medium and thus, shown no colour. 903 (c)  $[{\rm H^+}] = 1.5 \times 10^{-2}$  $\therefore [OH^{-}] = \frac{10^{-14}}{1.5 \times 10^{-2}} = 6.7 \times 10^{-13} M.$ 904 **(b)**  $K_c = \frac{[\text{product}]}{[\text{reactant}]}$ if  $K_c >> 1$  $\Rightarrow$  [product]>>[reactant]  $\Rightarrow$  Reaction favoured more towards forward. 905 (a)  $Q = \frac{[C]^3}{[A][B]} = \frac{(4/2)^3}{(1/2)(2/2)} = 16;$ Given,  $K_c = 20$ ; Thus, to have  $Q = K_c$ ; The concentration of *C* must increase, i.e., reaction should proceed from left to right 906 (b)  $pH = pK_a$  if [Conjugate base] = [Acid].

907	(b)		$_{3}K_{3}6 \times 10^{-51}$
	An increase in temperature favours endothermic		$= \left  \frac{n_{sp}}{4} \right  = \left  \frac{0 \times 10}{4} \right  = 1.1 \times 10^{-17}$
	reaction.		$\sqrt{4}$ $\sqrt{4}$
908	(a)	916	(a)
	Lewis acids are those species which can		Equilibrium constant for the reaction,
	accept a lone pair of electron.		$SO_2(g) + \frac{1}{2}O_2 \rightleftharpoons SO_3(g)$
	$BF_3$ , AlCl ₃ , SnCl ₄ , FeCl ₃ etc. are Lewis acids.		r 1
	$NCl_2$ and $ROR$ are Lewis bases. HCl is acid		$K_c = \frac{1}{4.9 \times 10^{-2}}$
	according to the concept of Arrhenius and		and for $2SO_2 + O_2 \rightleftharpoons 2SO_3(g)$
	Bronsted-Lowry		$K = \left(\frac{1}{2}\right)^2$
909	(c)		$(4.9 \times 10^{-2})$
505	$nH - 4 \therefore [H^+]_{1} - 10^{-4}$		$=\frac{10^{1}}{(4.9)^2}=416.49$
	$pH = 5 \cdot [H^+]_{11} = 10^{-5} \cdot [H^+]_{11} = [H^+]_{11} \times 10^{-1}$	917	
910	$p_{11} = 5 \cdots p_{11} p_{11} = 10 \cdots p_{11} p_{11} = p_{11} p_{11}$	, 1,	$r_{k}^{V} = \log k = \log \frac{1}{2}$
710	Each acid has P of $\pm 5$ oxidation state as in P ₂ O ₂		$pR_a = -\log R_a - \log \frac{1}{K_a}$
911	(h)	918	(a)
/	$AgIO_{2}(s) \Rightarrow Ag^{+}(ag) + IO_{2}^{-}(ag)$		$AB \rightleftharpoons A + B$
	Let solubility of $\Delta \sigma I \Omega_2$ be S		$K = \frac{[A][B]}{[A][B]}$
	$K = [\Lambda_{\alpha}^{+}][10^{-}]$		[ <i>AB</i> ]
	$n_{sp} = [n_{sp} - [n_{sp} - [n_{sp} - n_{sp} $		If concentration of A is doubled, the equilibrium
	$1.0 \times 10^{-2} = 5^{-1}$ or $5 = 1 \times 10^{-1}$ mol/L	010	concentration of <i>B</i> becomes half
	In 1000 mL of mol of $AgiO_3$ dissolved = 1 ×	919	
	10 ⁺ mol	<b>A</b> .	Degree of dissociation=0.4
	In 100 mL of mol of AgIO ₃ dissolved = $1 \times$	$\mathbb{N}$	$PGI_5 \rightleftharpoons PGI_3 + GI_2$
	10 ⁻⁵ mol		a(1-x) ax ax
	Mass of $AgIO_3$ in 100 mL = 1 × 10 ⁻⁵ × 283		a = 2, x = 0.4, V = 2
	$= 2.83 \times 10^{-3}$		$[PCl_5] = \frac{2(1-0.4)}{2} = 0.6 \text{ mol/L}$
912	(a)		$[PC]_{a}] = \frac{2 \times 0.4}{2} = 0.4 \text{ mol}/L$
	$H_3BO_3$ accepts $OH^-$ ions to act as weak		$2 \times 0.4$
	monobasic Lewis acid.		$[Cl_2] = \frac{1}{2} = 0.4 \text{ mol/L}$
012	$H_3BU_3 + H_2U \rightarrow B(UH)_4 + H^2; K_a = 10^{-5}$		$\therefore \qquad K_{c} = \frac{[PCl_{3}][Cl_{2}]}{[PCl_{3}][Cl_{2}]}$
913	$\begin{bmatrix} \mathbf{u} \end{bmatrix}$		$C [PCI_5]$
	electron but not Lowry-Bronsted acid as it cannot		$=\frac{0.0000}{0.6}=0.267$
	furnish $H_{\alpha}\Omega^{+}$ in solution	920	(a)
914	(a)		An increase in temperature favours endothermic
	For equation $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ , the		reaction, however, in case of NaOH it is an
	value of		exception and solubility of NaOH increase in
	$\Lambda n = 2 - (1 + 1) = 0$	0.01	temperature.
	Hence by using formulae $K = K (RT)^{\Delta n}$	921	(a)
	$K = K (DT)^{0}$	022	$\Delta n = 0$
5	$K_p = K_c(RT)^{T}$	922	$u_{SO}^{-} \rightarrow u^{+} + SO^{2-}$
~	$K_p = K_c$	923	$130_4 \rightarrow 11 + 30_4$
915	(b)	125	An increase in the concentration of products
	$5 K_{sp}$ $5 10^{-70}$		always brings in backward reaction.
	Solubility = $\sqrt{\frac{108}{108}} = \sqrt{\frac{108}{108}} = 9.8 \times 10^{-13}$	924	(b)
	$-\sqrt{7 \times 10^{-16}} - 2.64 \times 10^{-8}$		For Na X
	$-\sqrt{7} \times 10^{-2} - 2.04 \times 10^{-10}$		$X^-$ +H ₂ 0 $\rightleftharpoons$ HX + 0H ⁻
	$= \sqrt{\kappa_{sp}} = \sqrt{8 \times 10^{-57}} = 8.94 \times 10^{-19}$		1-n $n$ $h$

$$\therefore h = \sqrt{\frac{K_H}{c}} = \sqrt{\frac{K_w}{K_a \cdot c}} = \sqrt{\frac{10^{-14}}{10^{-5} \times 0.1}}$$

$$= \sqrt{10^{-8}} = 10^{-4}$$

$$\therefore \% h = 10^{-4} \times 100 = 10^{-2} = 0.01$$
925 (a)  
An = 2 + 1 - 2 = + 1  $\therefore K_p = K_c(RT)^1$   

$$\therefore K_p > K_c$$
926 (b)  
A basic salt has one or more replaceable OH in it.  
927 (b)  
 $K_a = C\alpha^2 = 0.1 \times (1.34 \times 10^{-2})^2 = 1.79 \times 10^{-5}.$ 
928 (b)  
HCl is a strong acid and its conjugate base is a  
very weak base Cl⁻  
929 (c)  
2.303 log₁₀  $K = -\frac{\Delta G^*}{RT}$   
2.303 log₁₀  $K = \frac{-\Delta H^*}{RT} + \frac{\Delta S^*}{R}$   
930 (b)  
The compound which is having least  
solubility will be precipitated first.  
BaSO₄ : Given,  $K_{\rm sp} = 10^{-11}$   
Let the solubility=x mol/L  
BaSO₄  $\rightarrow$  Ba² + SO₄²⁻⁷  
or  $K_{\rm sp} = x \times x$   
 $\therefore$   $K_{\rm sp} = Ra^{2}$   
or  $x = \sqrt{K_{\rm sp}}$   
 $= \sqrt{10^{-11}}$   
 $= 3.16 \times 10^{-6}$  mol/L  
CaSO₃ : Given,  $K_{\rm sp} = 10^{-6}$   
Let the solubility=x mol/L  
CaSO₄  $\rightarrow$  [Ca²⁺][SO₄²⁻⁷]  
or  $K_{\rm sp} = x \times x$   
 $\therefore$   $K_{\rm sp} = [Ca^{2+}][SO_4^{2-7}]$   
or  $K_{\rm sp} = x \times x$   
 $\therefore$   $K_{\rm sp} = x^2$   
or  $x = \sqrt{K_{\rm sp}}$   
 $= \sqrt{10^{-6}}$   
Let the solubility=x mol/L  
AgSO₄ : Given,  $K_{\rm sp} = 10^{-5}$   
Let the solubility=x mol/L  
AgSO₄ : Given,  $K_{\rm sp} = 10^{-5}$   
Let the solubility=x mol/L  
 $Ag_2SO_4 \rightarrow 2Ag^+ + SO_4^{2-7}$   
 $x K_{\rm sp} = [Ag^+]^2[SO_4^{2-7}]$ 

 $=(2x)^{2}(x)$ or  $K_{\rm sp} = 4x^3$ or  $x = \frac{\sqrt[3]{K_{\rm sp}}}{4}$  $= \frac{\sqrt{10^{-5}}}{4}$ or  $= 10^{-2} \text{ mol/L}$ : BaSO₄ has least solubility. ∴ It will precipitated first. 931 (b)  $K_{C_1}$  for  $H_2 + I_2 \rightleftharpoons 2HI$  is 50  $K_{C_2}$  for 2HI  $\rightleftharpoons$  H₂ + I₂  $K_{C_1} = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]}$  $K_{C_2} = \frac{[\text{H}_2][\text{I}_2]}{[\text{HI}]^2}$ ...(i) ...(ii) On reversing Eq.(i)  $\frac{1}{K_{c_1}} = \frac{[H_2][I_2]}{[HI]^2} \qquad \dots (iii)$ From Eqs. (ii) and (iii)  $K_{c_2} + \frac{1}{K_{c_1}} = \frac{1}{50} = 0.02$ 932 **(b)** A reaction which is in equilibrium, will shift in

reverse or backward direction when we increase the concentration of one or more products (from Le-Chatelier'sprinciple)

933 (d)

 $10^{-5}$ .

 $N_2O_5$  and  $HNO_3$  both have ox.no. of N = +5.

934 (a)

Fusion of solid is an endothermic process, so addition of heat is favoured for the forward reaction (solid to melt), the amount of solid become decrease.

#### 935 (a)

Conjugate base is formed by loss of H⁺.

$$0\mathrm{H}^- \rightarrow 0^{2-} + \mathrm{H}^+$$

Conjugate base

 $O^{2-}$  is the conjugate base of  $OH^{-}$ .

# 936 **(b)**

Al(OH)₃ 
$$\rightleftharpoons$$
 Al³⁺ + 30H⁻  
^s  
^s K_{sp} = [Al³⁺][OH⁻]³ = s × (3s)³ = 27s⁴

### 937 (b)

HCl is strong acid. In its 0.1 M solution,  $[H^+] = 0.1 \text{ M}$  and hence, pH = 1 NH₄Cl(*aq*) hydrolysis in solution and give acidic solution which is less than 0.1 M HCl. NaCl is not hydrolysed in aqueous solutions. Its pH=7. NaCN undergoes hydrolysis in solution to give alkaline solution. So, the pH increases in the

order

$$HCl < NH_4Cl < NaCl < NaCN$$

938 (a)

 $\Delta G = 0$ ; at equilibrium

939 (b)

 $K_a = \frac{[\mathrm{H}^+] [\mathrm{CN}^-]}{[\mathrm{H}\mathrm{CN}]};$ 

An increase in [CN⁻] will decrease [H⁺] to maintain K_a constant.

### 940 (d)

The solubility product  $(K_{sp})$  of a sparingly soluble salt at a given temperature may be defined as the product of the molar concentrations of its ions each raised to the power equal to its number of ions present in the equation representing the dissociation of one molecule of the salt.

$$Fe(OH)_{3} \rightleftharpoons Fe^{3+} + 3OH^{-}$$

$$X \qquad X \qquad 3X$$

$$K_{sp} = [Fe^{3+}][OH^{-}]^{3}$$

$$K_{sp} = X(3X)^{3} = 27X^{4}$$

941 (d)

...

Baking soda (NaHCO₃) has one replaceable H. 942 (b)  $Na_2CO_3 + H_2O \rightarrow 2NaOH + H_2CO_3$ ∵ NaOH is strong base. : It will be more ionised and number of Na⁺ and OH⁻ ions will be more.  $:: H_2CO_3$  is weak acid. : It will be less ionised and number of  $H^+$  and  $CO_3^{2-}$  will be less.

: The solution will have more hydroxide ions than carbonate ions.

943 (c)

Milli equivalent of  $H^+$  from  $HCl = 10 \times 0.1 = 1$ Milli equivalent of  $H^+$  from  $H_2SO_4 = 40 \times 0.2 \times$ 2 = 16 Total Meq. of  $H^+$  in solution = 1 + 16 = 17 $\therefore$  [H⁺] =  $\frac{17}{50}$  = 3.4 × 10⁻¹ (: [H⁺] =  $\frac{\text{Meq.}}{V_{\text{in mI}}}$  $\therefore \text{ pH} = -\log[\text{H}^+] = -\log 0.34$ pH = 0.4685.

944 (b)

Before attaining the equilibrium, the rate of forward reaction decreases due to decrease in concentration of reactant with time and the rate of backward reaction increases due to increase in concentration of products with time.

945 (a)

NaCN + HCl is not a buffer but if HCl is in less amount then, it gives a buffer as it produces HCN.  $\begin{array}{c} \text{Mole added} \\ \text{Mole after reaction} \end{array} \begin{array}{c} \text{NaCN} + \text{HCl} \longrightarrow \text{NaCl} + \ \text{HCN} \\ \substack{0.01 \\ (0.01-\alpha) \end{array} \begin{array}{c} \alpha \end{array} \begin{array}{c} 0 \\ \alpha \end{array} \begin{array}{c} \alpha \\ \alpha \end{array} \begin{array}{c} \alpha \\ \alpha \end{array}$ This is buffer of HCN + NaCN. Let *a* mole of HCl be used for this purpose  $\therefore \text{ pH} = -\log K_a + \log \frac{0.01 - a}{a}$  $8.5 = -\log 4.1 \times 10^{-10} + \log \frac{0.01 - 10}{10}$  $\therefore$   $a = 8.85 \times 10^{-3}$  mole of HCl. 946 (b) Quotient  $Q = \frac{[C]^3}{[A][B]} = \frac{4^3 \times 3 \times 3}{3^3 \times 1 \times 2} = 10.66$  $\left[ [C] = \frac{4}{3}; [A] = \frac{1}{3}; [B] = \frac{2}{3} \right]$ Since,  $K_c = 10$ , Thus, Q must decrease to attain value of  $K_c$  and therefore, [C] must decrease or [*A*] or [*B*] must increase, i.e., backward direction. 947 (d)  $CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^ \therefore [OH^{-}] = c \cdot h = c \left| \left[ \frac{K_h}{c} \right] \right|$  $\left\| \frac{K_w}{\nu} \cdot c \right\|$  $= \sqrt{\frac{10^{-14} \times 1}{1.8 \times 10^{-5}}} = 2.35 \times 10^{-5}$ ∴ pOH = 4.6289 ∴ pH = 9.3710 948 (b) A very high value of *K* for the given equilibrium shows that dissociation of glucose to form HCHO is very-very small. Hence, at equilibrium, we can take,  $[C_6H_{12}O_6] = 1 M$  $K = \frac{[C_6 H_{12} O_6]}{[HCHO]^6}$ ,  $i.e., 6 \times 10^{22} = \frac{1}{[HCHO]^6}$ or [HCHO] =  $\left(\frac{1}{6 \times 10^{22}}\right)^{1/6} = 1.6 \times 10^{-4} \text{ M}$ 949 (c) Polyprotic acids furnishes more than one H⁺ ion in solution. 950 (a)  $Sb_2S_3 \rightleftharpoons 2Sb^{3+} + 3S^{2-}$ s mol/L 2s Solubility product  $(K_{sp}) = [Sb^{3+}]^2 [S^{2-}]^3$ 

 $= (2s)^2(3s)^3 =$ 

 $108s^{5}$ 

 $= 108 \times (1.0 \times 10^{-5})^{5} = 108 \times 10^{-25}$ 951 (d) 10⁻³N KOH will give [OH⁻] = 10⁻³  $\therefore$  pOH = 3 Also, pH + pOH = 14  $\therefore$  pH = 11.

#### 952 (d)

 $HSO_4^-$  can accept a proton (forms  $H_2SO_4$ ) or can donate a proton (forms  $SO_4^{2-}$ ).

953 **(b)** 

$$HA + H_2 0 \rightleftharpoons H_3 0^+ + A^-$$
$$K = \frac{[H_3 0^+][A^-]}{[HA][H_2 0]}$$

954 (d)

The minimum temperature at which the combination of  $N_2$  and  $H_2$  occurs at measurable rate is 500°C in Haber's process. No doubt if temperature is raised up, above 500°C, it will favour backward reaction, because the reaction is exothermic.

955 **(a)** 

$$CO_{2} + H_{2} \rightleftharpoons H_{2}O + CO_{1}$$

$$(1-x) \quad (1-x) \qquad x \qquad 0$$

$$\therefore K_{c} = \frac{x^{2}}{(1-x)^{2}}$$

$$Or \frac{x}{1-x} = \sqrt{K_{c}} = \sqrt{1.8};$$

$$\therefore \frac{x}{1-x} = 1.34,$$

$$\therefore x = 0.573 M.$$

956 **(c)** 

The equilibrium constant does not change when concentration of reactant is changed as the concentration of product also get changed accordingly.

957 **(a)** 

(i) BF₃ and BCl₃ are better Lewis acid than BMe₃ and B₂H₆ due to -I-effect of Cl and F. (ii)Between BCl₃ and BF₃, BCl₃ is better Lewis acid due to lesser extent of  $p\pi - p\pi$  back bonding in it.

958 (c)

Potassium ferrocyanide is a complex salt because in it ferrocyanide  $[Fe(CN)_6]^{4-}$  is the complex ion. It does not give test for ferric and cyanide ions.

959 **(b)** 

At 25°C;  $[H^+] = 10^{-7} :: K_{w_1} = 10^{-14}$ 

At 35°C;  $[H^+] = 10^{-6}$   $\therefore K_{w_2} = 10^{-12}$   $\therefore$  2.303 log  $\frac{K_{w_2}}{K_{w_1}} = \frac{\Delta H}{R} \left[ \frac{T_2 - T_1}{T_1 \times T_2} \right]$ 2.303 log  $\frac{10^{-12}}{10^{-14}} = \frac{\Delta H}{2} \left[ \frac{10}{298 \times 308} \right]$   $\therefore$   $\Delta H = 84551.4$  cal/mol = 84.551 kcal/mol Thus,  $H_2O = H^+ + OH^-; \Delta H =$ 84.551 kcal/mol  $\therefore$   $H^+ + OH^- = H_2O; \Delta H =$  -84.551 kcal/mol. 960 **(b)** 

Lesser is the pH, more is acidic nature.

### 961 **(b)**

Strong electrolyte are 100% ionised in solution state and thus number of ions present in solution becomes constant at normal dilution. On further increasing dilution, the mobility of ion increase due to relaxation and electrophoretic effect.

962 (c)  

$$K_1 = \frac{[XeOF_4][HF]^2}{[XeF_6][H_2O]}$$
  
(i)  
 $K_2 = \frac{[XeOF_4][XeO_3F_2]}{[XeO_4][XeF_6]}$   
(ii)  
By Eq.(ii)/(i) we have  $\frac{K_2}{K_1} = \frac{[XeO_3F_2][H_2O]}{[XeO_4][HF]^2} = K_c$ 

$$K_{sp}$$
 of  $CaF_2 = 4s^3 = 4 \times (2 \times 10^{-4})^3 = 32 \times 10^{-12}$ .

964 **(a)** 

2.303  $\log \frac{K_{P2}}{K_{P1}} = \frac{\Delta H}{R} \frac{[T_2 - T_1]}{T_1 T_2}$ Thus, if  $K_{P2} > K_{P1}$ ;  $T_2 > T_1$ , then  $\Delta H = +ve$ 

965 **(b)** 

$$4\text{NH}_{3} + 5\text{O}_{2} \rightleftharpoons 4\text{NO} + 6\text{H}_{2}\text{O}$$
$$K_{c} = \frac{[\text{NO}]^{2}[\text{H}_{2}\text{O}]^{6}}{[\text{NH}_{3}]^{4}[\text{O}_{2}]^{5}}$$
Hence, units of  $K_{c} = \text{Conc}^{+1}$ .

966 **(a)** 

 $H_2$  $I_2 \rightleftharpoons$ 2HI Initially 1 mol 2 mol 2 mol At equili 0.2 mol 2-0.8 2 0.8 1.2 mol 1.6 mol Amount of  $H_2$  (and hence  $I_2$ ) consumed 1 - 0.20.8 967 (c)

Ionic product  $\propto$  temperature So, if the temperature is decreased, the value of ionic product will definitely be less than before.



The value of equilibrium constant remains constant for a given reaction of constant temperature.

974 (b)

Gaseous HCl does not give H⁺ but liquid HCl givesH⁺ in aqueous solution, therefore gaseous HClis not an Arrhenius acid due to covalent bonding in gaseous condition

### 975 (d)

Buffer solution consists of weak acid and its salt with strong base. And a basic buffer solution is a mixture of weak base and its salt with strong acid.

976 (a)

 $pK_a \propto \frac{1}{K_a}$ 

F

Stronger the acid, higher the  $K_a$  value and lower the p*K*_{*a*} value. The order of acidity of given acids is as  $CH_3CHCOOH > CH_3CHCOOH$ >FCH₂CH₂COOH > CH₃CH₂COOH

Br

Since, CH₃CH₂COOH is the weakest acid among the given, its  $pK_a$  value will be highest.

 $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ 0 0 0 initially 2×60 2×40 2×40 at equilibrium 100 100 100 Volume of container = 2L $K_c = \frac{\frac{2 \times 40}{100 \times 2} \times \frac{2 \times 40}{100 \times 2}}{\frac{2 \times 60}{2}} = 0.266$ 

979 (a)

According to law of mass action

$$K_c = \frac{[\text{NO}_2]^2}{[\text{N}_2\text{O}_4]} = \frac{[1.2 \times 10^{-2}]^2}{4.8 \times 10^{-2}} = 0.3 \times 10^{-3} \text{ mol/L}$$

981 (d)

Lewis acid have a tendency to accept electrons while Bronsted acids have a tendency to donate proton.

(A)HCl 
$$\rightarrow$$
 H⁺ + Cl⁻  
Bronsted acid  
(B)H₂SO₄  $\rightarrow$  H⁺ + HSO₄⁻  
Bronsted acid  
(C)HSO₃⁻  $\rightarrow$  H⁺ + SO₃²⁻  
Bronsted acid  
(D)  
SO₃ +  $:O:^{2-}$   $>$  SO₄²⁻

Lewis acid

982 (d) Heat will be used to melt ice. 983 (a) In an acidic solution  $[H^+] > 10^{-7}$ pH is less than 7. In an alkaline solution  $[H^+] < 10^{-7}$ , pH is greater than 7. 984 (b)  $H_2SO_4(acid) \xrightarrow{-H^+} HSO_4^-(Conjugate base).$ 985 (b) Given,  $[H_2] = 8.0 \text{ mol/L}$  $[I_2] = 3.0 \text{ mol/L}$ [HI] = 28 mol/LK = ? $H_2 + I_2 \rightleftharpoons 2HI$  $K = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} = \frac{(28)^2}{(8)\times(3)}$ :.  $=\frac{28\times28}{24}$ = 32.66986 (a)  $[H^+] = c\alpha = \sqrt[c]{\left[\frac{K_a}{c}\right]} = \sqrt{K_a c} = \sqrt{5 \times 10^{-8} \times 0.1}$  $= 7.07 \times 10^{-5} M$ 987 (d)  $K_c = \frac{x^2}{4(1-x)^2};$ If, x = 0.5; $K_c = \frac{0.5 \times 0.5}{4 \times (0.5)^2} = \frac{1}{4} = 0.25$ 988 (b) CH₃COOH is weak acid and thus, partially ionised,  $CH_3COOH + H_2O \rightleftharpoons H_3O^+ + CH_3COO^-.$ 989 (a)  $N_2(g) + 3H_2(g) \Rightarrow 3NH_3(g) + 92.3 \text{ kJ}$ According to Le-Chatelier's principle, the favourable conditions for the reaction are 1.Low temperature (as the reaction is exothermic) 2. High pressure (volume is decreasing) 3.Constant removal of ammonia gas as it is formed. 990 (b) An efflorescent salt is one that loses  $H_2O$  to atmosphere. For the reaction,  $CuSO_4.5H_2O(s) \rightleftharpoons CuSO_4.3H_2O(s) + 2H_2O(v)$ 

 $K_p = \left(P'_{\rm H_20}\right)^2 = 1.086 \times 10^{-4}$  $P'_{\rm H_2O} = 1.042 \times 10^{-2} \, \rm{atm} = 7.92 \, \rm{mm}$ : If  $P'_{\rm H_2O}$  AT 25°C < 7.92 mm only then, reaction will proceed in forward direction. 991 (c) Acid  $\xrightarrow{-H^+}$  conjugate base; Base  $\xrightarrow{+H^+}$  conjugate acid. 992 (d)  $[\mathrm{H}^+] = c \cdot \alpha = \sqrt[c]{\left[\frac{K_a}{c}\right]} = \sqrt{K_a c}$ 993 (a) Gas  $\rightleftharpoons$  Liquid;  $\Delta H = -ve$ ; Apply Le-Chatelier's principle 994 (c)  $h = \sqrt{\frac{K_h}{C}}$ where,  $K_h$  = hydrolysis constant =? h = degree of hydrolysis = 0.25% = 0.25/100 C = concentration = 0.5 M $\frac{0.25}{100} = \sqrt{\frac{K_h}{0.5}}$  $\left(\frac{0.25}{100}\right)^2 = \frac{K_h}{0.5}$  $K_h = \frac{0.25 \times 0.25 \times 0.5}{100 \times 100}$ or ... = 3.125 × 10⁻⁶ 995 (c) Only  $CO_2$  is gas at equilibrium and  $K_p$ ,  $K_c$  formula does not involve solid state. 996 (d)  $2NaNO_3 \rightleftharpoons 2NaNO_2 + O_2$ According to Le-Chatelier principle, low pressure, high temperature and addition of NaNO₃ favour forward reaction 997 (b) pH of the solution A = 3 $[H^+]_A = 10^{-3} M$ pH of the solution B = 2 $[{\rm H^+}]_B = 10^{-2} {\rm ~M}$  $[\mathrm{H^{+}}] = 10^{-3} + 10^{-2} = 11 \times 10^{-3}$  $pH = -\log(11 \times 10^{-3}) = 3 - \log 11$ = 3 - 1.04 = 1.9998 (c) Meq. of KOH = Meq. of  $H_3PO_3$  $0.1 \times v = 20 \times 0.1 \times 2$  (H₃PO₃ is dibasic) v = 40 mL... 100 (a)

0 [H⁺]for the solution of pH  $3 = 1 \times 10^{-3}$ [H⁺]for the solution of pH  $5 = 1 \times 10^{-5}$ Let *V* volumes of both the solutions are added, then concentration of H⁺ in final mixture

$$= \frac{1 \times 10^{-3} \times 4 \times 10^{-5} \times 10^{-5} \times 10^{-5}}{\frac{1}{2}} = \frac{1 \times 10^{-3} \times 10^{-5}}{2} = 5.05 \times 10^{-4}$$
pH of resultant solution =  $-\log[14^{+}]$ 
 $= -\log(5.05 \times 10^{-4})$ 
 $= 3.29$ 
 $\approx 3.3$