ELECTROCHEMISTRY

CHEMISTRY

Single Correct Answer Type

c) $3 \times 96500 \, \text{C}$

The desired amount of charge for obtaining one mole of Al from Al^{3+} is

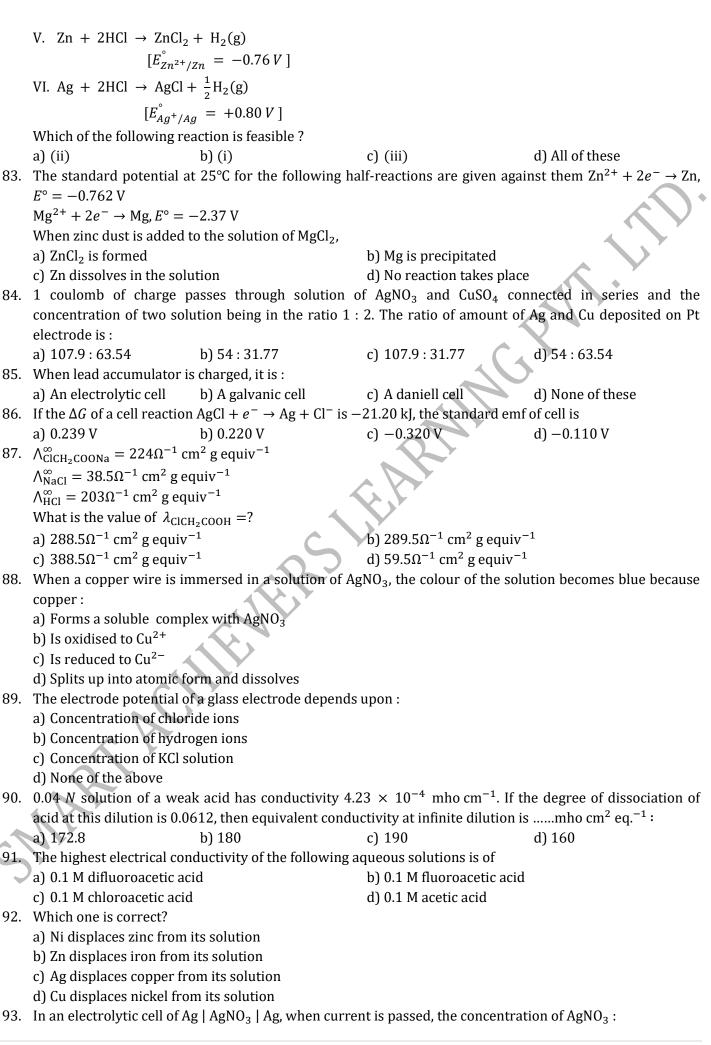
b) 2 × 96500 C

1.

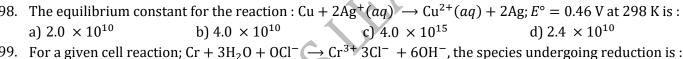
a) 96500 C

2.	A certain current liberates 0.504 g of hydrogen in 2	hr. How many gram of co	2 pper can be liberated by the
	same current flowing for the same time in CuSO ₄ sol	· · · · · · · · · · · · · · · · ·	PP-1
	a) 12.7 b) 16	c) 31.8	d) 63.5
3.	î	•	
	a) $\Lambda C^{\circ} > 0$: $K < 1$ b) $\Lambda C^{\circ} > 0$: $K > 1$	c) $\Lambda G^{\circ} < 0$: $K > 1$	d) $\Lambda G^{\circ} < 0$: $K < 1$
4	The Edison stances call is represented as	c) du < 0, R _{eq} > 1	$u_j \Delta u < v, \kappa_{eq} < 1$
4.	3 1		
	re(3) + reo(3) Rom(aq) M2O3(3) M2O3(3) M(3)		
	The half reactions are Ni ₂ O ₃ (s) + H ₂ O(l) + 2e ⁻ \rightarrow 2		.40 V
	$FeO(s) + H_2O(l) + 2e^- \rightarrow Fe(s) + 2OH^-; E^\circ = -0.$	87 V	
	Choose the incorrect statement	00117	
	a) E_{anode} increases with increase in concentration of		
	b) E_{cathode} decreases with increase in concentration	of OH	
	c) $E_{\text{cell}}^{\circ} = 1.27 \text{ V}$		
	d) E_{cell} increases with increase in concentration of F		
5.	1	re given below :	
	$F_2(g) + 2e^- \rightarrow 2F^-(aq); \qquad E^\circ = +2.85 \text{ V}$		
	$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq);$ $E^\circ = +1.36 \text{ V}$ $Br_2(l) + 2e^- \rightarrow 2Br^-(aq);$ $E^\circ = +1.06 \text{ V}$ $I_2(s) + 2e^- \rightarrow 2I^-(aq);$ $E^\circ = +0.53 \text{ V}$		
	$Br_2(l) + 2e^- \to 2Br^-(aq); \qquad E^\circ = +1.06 \text{ V}$		
	$I_2(s) + 2e^- \rightarrow 2I^-(aq); \qquad E^\circ = +0.53 V$		
	The strongest oxidising and reducing agents respect	=	
	a) F ₂ and I ⁻ b) Br ₂ and Cl ⁻	c) Cl ₂ and Br ⁻	d) Cl ₂ and I ₂
6.	1	-	
	respectively. For the cell reaction, $Fe^{2+} + Sn \rightarrow Fe$	+ Sn ²⁺ , the standard e.m.f	is:
	a) + 0.30 V b) 0.58 V	c) $+ 0.58 \text{ V}$	d) - 0.30 V
7.	Electrolytes when dissolved in water dissociates into	o ions because	
	a) They are unstable		
	b) The water dissolves it		
	c) The force of repulsion increases		
	d) The force of electrostatic attraction are broken do	own by water	
8.	Which ion has exceptionally higher Λ^{∞} values?		
	a) H ⁺ b) K ⁺	c) NH ₂	d) OH
9.	Limiting molar ionic conductivities of a uni-univa	alent electrolyte are 57 a	and 73. The limiting mola
	conductivity of the solution will be:		
	a) $130 S \text{ cm}^2 \text{ mol}^{-1}$ b) $65 S \text{ cm}^2 \text{ mol}^{-1}$	c) $260 S \text{ cm}^2 \text{ mol}^{-1}$	d) $187 S \text{ cm}^2 \text{ mol}^{-1}$
10.). Molten NaCl conducts electricity due to the presence	e of:	
	a) Free electrons b) Free molecules	c) Free ions	d) Atoms of Na and Cl
11.	1. The emf of the cell, $(E_{\rm Zn^{2+}/Zn} = -0.76 V)$		
	Zn / Zn ²⁺ (1 M) Cu ²⁺ (1 M) Cu		
			D = = = 1 :

	$(E_{\text{Cu}^{2+}/\text{Cu}} = +0.34 V)$	will be					
	a) +1.10 V	b) -1.10 V	c) +0.42 V	d) -0.42 V			
12.	Which represents a con		c) 1011 2 1	a) 0.12 v			
	_		Pt				
	a) $\frac{\text{PtH}_2 \text{HCl} \text{HCl} \text{PtH}_2}{c_1}$	b) c_1	c) Zn Zn ²⁺ Cu ²⁺	Cu d) Fe Fe ²⁺ Cu ²⁺ Cu			
13.	= =	-	ne gas at anode and cathod	e are			
	a) O_2 and H_2	b) H_2 and O_2	c) SO_2 and H_2	d) SO_3 and O_2			
14.	Consider the reaction,	$M^{n+}(aq) + ne \longrightarrow M$		tion potential values of the metals			
		M_1 , M_2 and M_3 are -0.34 V, -3.05 V and -1.66 V respectively. The order of their reducing power will be:					
	a) $M_1 > M_2 > M_3$	b) $M_3 > M_2 > M_1$	c) $M_1 > M_3 > M_2$	d) $M_2 > M_3 > M_1$			
15.	The charge required to	liberate one gram equ	uivalent of an element is				
	a) 96500 F	b) 1 F	c) 1 C	d) None of these			
16.	What will be pH of aque	eous solution of electr	olyte in electrolytic cell du	ring electrolysis of $CuSO_4(aq)$			
	between graphite electr	rodes?					
	a) $pH = 14.0$	b) $pH > 7.0$	c) $pH < 7.0$	d) $pH = 7.0$			
17.	In an electrolytic cell, the	ne anode and cathode	are respectively represent	ted as:			
	a) Positive electrode, no	_					
	b) Negative electrode, p						
	c) Both positive and ne	gative electrode					
4.0	d) None of the above						
18.	The cell reaction is spor			N + 6° .			
10				d) ΔG° is positive			
19.	The emf of the	cell Mg \mid Mg $^{2+}$ (0.01 M	$ Sn^{2+}(0.1 M) Sn $ at	298 K is (Given, $E_{\text{Mg}^{2+},\text{Mg}}^{\circ} =$			
	$-2.34 \text{ V}, -2.34 \text{ V}, E_{\text{Sn}^{24}}^{\circ}$	$t_{Sn} = -0.14 \text{ V}$					
	a) 2.23 V	b) 1.86 V	c) 1.56 V	d) 3.26 V			
20.	When an aqueous solut	ion of lithium chlorid	e is electrolysed using grap	phite electrodes :			
	a) pH of the resulting so	olution increases					
	b) pH of the resulting so						
	=	pH of the solution ar	ound the cathode increase	S			
	d) None of the above						
21.			wing is made of impure mo				
20	a) Anode	b) Cathode	c) Both (a) and (l				
22.			n is $0.0129 \Omega^{-1} \text{cm}^{-1}$. The	resistance of the solution in the cell			
	100Ω. The cell constant α) 1.10		a) 0.50	4) 2 00			
22	a) 1.10 Which graph correctly	b) 1.29	c) 0.56	d) 2.80 for the cell (for different values of M			
25.	and M')?	correlates L _{Cell} as a re	inction of concentrations i	of the cen (for unferent values of M			
	$\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(M) \to \operatorname{Zn}(s)$	$n^{2+}(M') + Cu(s)$:					
	$E^{\circ}_{\text{Cell}} = 1.10 V$	1 (11) Gu(5))					
	$X - axis : log_{10} \frac{[Zn^{2+}]}{[Cu^{2+}]},$	V ovig t E					
7	$\lambda - axis \cdot \log_{10} \frac{1}{[Cu^{2+}]}$	$I - axis \cdot E_{Cell}$					
		↓	^	^			
	1.10V		1.10 V				
	a) 1.10V	b) 1	.10V c)	d) 1.10V			
	-1.0 0 +1.0	-1.0 0 -	-1.0 0 +	1.0 -1.0 0 +1.0			
24.	In acidic medium MnO	is converted to Mn ²⁻¹	The quantity of electricit	y in faraday required to reduce 0.5			
	mole of MnO ₄ to Mn ²⁺		-	-			
	a) 2.5	b) 5	c) 1	d) 0.5			


25.	In electrolysis, oxidation takes place at:				
	a) Anode				
	b) Cathode				
	c) The anode as well as cathode				
	d) The surface of electrolyte solution				
26.	A depolariser used in dry cell batteries is :				
	•	c) Potassium hydroxid	e d) Sodium phosphate		
27.	, ,				
	one of these metals, the change in oxidation state f				
	a) Fe b) Mn	c) Co	d) Cr		
28.	The standard reduction electrode potential values	•			
20.			C are $+$ 0.00, -2.50 and $-$ 0.50		
	V respectively. The order of their reducing power i		d) $B > C > A$		
20	a) $A > B > C$ b) $A > C > B$	c) $C > B > A$			
29.	The number of electrons involved in the reaction	on when a faraday of ele	ectricity is passed through an		
	electrolyte in solution is:	. 0 4016	1023		
	a) 12×10^{46} b) 96500	c) 8×10^{16}	d) 6.02×10^{23}		
30.	The electrolysis of a solution resulted in the forma	tion of H ₂ at the cathode a	and Cl ₂ at the anode. The liquic		
	is:				
	a) Pure water		•		
	b) H ₂ SO ₄ solution				
	c) NaCl solution in water				
	d) CuCl ₂ solution in water				
31.	The passage of electricity in the Daniell cell when 2	In and Cu electrodes are c	onnected:		
	a) From Cu to Zn inside the cell				
	b) From Cu to Zn outside the cell				
	c) From Zn to Cu outside the cell				
	d) None of the above				
32.	Ni / Ni ²⁺ [1.0 M] Au ³⁺ [1.0 M] / Au where E°				
	for Ni ²⁺ /Ni is -0.250 V; and E° for				
	$\mathrm{Au^{3+}}$ / Au is 0.150 V. The emf of the cell is				
	a) +1.25 V b) -1.75 V	c) +1.75 V	d) +0.4 V		
33.	The product obtained at anode when 50% H ₂ SO ₄ a	queous solution is electro	olysed using platinum		
	electrodes is				
	a) H ₂ SO ₃ b) H ₂ S ₂ O ₈	c) 0 ₂	d) H ₂		
34.	The approximate e.m.f. of a dry cell is:				
	a) 2.0 V b) 1.2 V	c) 6 V	d) 1.5 V		
35.	E_1 , E_2 , and E_3 are the emfs of the following three ga	alvanic cells respectively	•		
	I. $\operatorname{Zn}(s) Zn^{2+}(0.1 \text{ M}) \operatorname{Cu}^{2+}(1 \text{ M}) \operatorname{Cu}(s)$				
	II. $\operatorname{Zn}(s) Zn^{2+} (1 \text{ M}) \operatorname{Cu}^{2+} (1 \text{ M}) \operatorname{Cu}(s)$				
	III. Zn (s) $ Zn^{2+}(1 \text{ M}) Cu^{2+}(0.1 \text{ M}) Cu (s)$				
4	Which one of the following is true?				
	a) $E_2 > E_1 > E_3$ b) $E_1 > E_2 > E_3$	c) $E_2 > E_1 > E_2$	d) $E_3 > E_2 > E_1$		
36.	The fraction of the total current carried by an ion i		2 1		
	a) Transport number of that ion				
	b) Conductance of that ion				
	c) Both(a) and (b)				
	d) None of the above				
37	In a galvanic cell, which is wrong?				
57.	a) Anode has negative polarity				
	b) Cathode has positive polarity				
	-) F - 2 - 0 P - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -				

	$2H^{+} + 2e^{-} + \frac{1}{2}O_{2} \rightarrow$	H ₂ O (<i>l</i>):		
	$E^{\circ} = +1.23 V$	2 - (-),		
	$E = +1.25 V$ $Fe^{2+} + 2e^{-} \rightarrow Fe(s);$	$F^{\circ} - 0.44 \text{ W}$		
	Calculate ΔG° for the net			
	a) -322 kJ mol^{-1}	•	c) -152 kJ mol ⁻¹	d) -76 kJ mol ⁻¹
20	•	•	*	through a solution of Cu(II)
39.	salt?	will be deposited by passif	ig 2 laraday of electricity	unrough a solution of Cu(n)
	a) 35.6 g	b) 63.5 g	c) 6.35 g	d) 3.56 g
40.		, ,	.,	
	a) Fluorine from NaF	b) Iodine from NaI	c) Bromine from NaBr	d) None of these
41.	•	ing Atwo-electron change, t		
	25°C. The equilibrium con	nstant of the reaction at 25	°C will be	
	a) 1×10^{-10}	b) 29.5×10^{-2}	c) 10	d) 1×10^{10}
42.	The resistance of a decir	normal solution of a salt o	occupying a volume betwe	en two platinum electrodes
	1.80 cm apart and 5.4 cm	m ² in area was formed to	be 32 ohm. The specific	and equivalent conductivity
	respectively in their prop	oer units are :		
	a) 104.1 and 0.0104	b) 208.2 and 0.0208	c) 0.0104 and 104.0	d) None of these
43.	The value of equilibrium	constant for a feasible cell	reaction is :	
	a) < 1	b) Zero	c) = 1	d) > 1
44.	At 25°C, the standard e.m	n.f. of cell having reactions	involving a two electron cl	hange is found to be 0.295 V.
	The equilibrium constant	t of the reaction is:		
	a) 29.5×10^{-2}	b) 10	c) 10 ¹⁰	d) 29.5×10^{10}
45.	E° for Fe ²⁺ + 2e ⁻ \rightarrow Fe			
	$Zn^{2+} + 2e^- \rightarrow Zn \text{ is } -0.$			
	a) Zn is more electroposi		b) Zn is more electronega	ative than Fe
	c) Fe is more electroposi		d) None of the above	
46.				O ₃ and CuSO ₄ connected in
		leposited at the cathode is	1.08 g then Cu deposited a	t the cathode is (at. wt. of Cu
	is 63.53):	110.045) o co#4	D 0.455
	,	b) 0.317 g	c) 0.6354 g	d) 3.177 g
4/.			$H_2(1 \text{ bar}) \text{ Pt half-cell and } \epsilon$	emf is found to be 0.7714 V.
	If $E_{I_2/I^-}^{\circ} = 0.535 \text{ V, find th}$			
	a) 1	b) 2	c) 3	d) 5
48.	The $E_{M^{3+}/M^{2+}}$ values for	Cr, Mn, Fe and Co are -0.41	V, +1.57 V, +0.77 V and +	1.97 V respectively. For
	which one of these metal	s the change in oxidation st	tate from $+2$ to $+3$ is easies	st?
	a) Cr	b) Mn	c) Fe	d) Co
		tion potential need to be eli	minated?	
	a) $Pt/H_{2(P_1)} HCl Pt/H_2(F_1)$	\mathcal{O}_2)		
	b) Pt/H_2 HCl HCl Pt/H_2	2		
	c) Nicad cell			
	d) Lead storage battery			
50.	,	ng nitrates will leave behin	d Ametal on strong heating	₅ ?
	a) Ferric nitrate	b) Copper nitrate	c) Manganese nitrate	d) Silver nitrate
51.	=		, ,	0.01 M CuSO ₄ solution at its
-	electrodes. EMF of the ce			
				Page 4


c) Reduction takes place at anoded) Reduction takes place at cathode38. The rusting of iron takes place as follows

	a) 1.10 V	b) 1.04 V	c) 1.16 V	d) 1.07 V
52.	The E° of Fe ²⁺ / Fe and	$1 \text{ Sn}^{2+} / \text{Sn are } -0.44 \text{ V and } -0.5$	14 V respectively. If cell rea	action is
	$Fe + Sn^{2+} \rightarrow Fe^{2+} +$	Sn		
	then emf of the cell is			
	a) +0.30 V	b) -0.58 V	c) +0.58 V	d) -0.30 V
53.	Electrolysis rules of Far	raday's states that mass depos	sited on electrode is propo	rtional to
	a) Q	b) Q ²	c) I^2	d) None of these
54.	A silver cup is plated w	rith silver by passing 965 C of	electricity. The amount of	Ag deposited is
	a) 107.89 g	b) 9.89 g	c) 1.0002 g	d) 1.08 g
55.	The molecular conduct	ivity and equivalent conductiv	vity are same for the soluti	on of :
	a) 1 <i>M</i> NaCl	b) 1 M Ba(NO ₃) ₂	c) 1 $M \text{ La}(NO_3)_3$	d) $1 M \text{ Th}(NO_3)_4$
56.	Dipping iron article int	o a strongly alkaline solution	of sodium phosphate	
	a) Does not affect the a	rticle	b) Forms Fe_2O_3 . xH_2O on	the surface
	c) Forms iron phospha	te film	d) Forms ferric hydroxide	
57.	When an electric curre	nt is passed through an aqueo	ous solution of sodium chlo	ride :
	a) H ₂ is evolved at the	anode		V
	b) Oxygen is evolved at	the cathode	. (4	Y
	c) Its pH progressively	decreases		
	d) Its pH progressively	increases		
58.	The cell reaction of the	galvanic cell		
	$Cu(s) Cu^{2+}(aq) H_s$	$g^{2+}(aq) \mid Hg(l)$ is		
	a) Hg + Cu ²⁺ \rightarrow Hg ²	²⁺ + Cu	b) Hg + $Cu^{2+} \rightarrow Cu^{+} +$	- Hg ⁺
	c) $Cu + Hg \rightarrow CuHg$		d) $Cu + Hg^{2+} \rightarrow Cu^{2+}$	
59.	Calculate the volume of	of hydrogen at NTP obtained	by passing a current of 0.	4 ampere through acidified
	water for 30 minute :	4		
	a) 0.0836 litre	b) 0.1672 litre	c) 0.0432 litre	d) 0.836 litre
60.	The standard emf of a c	cell involving one electron cha	ange is found to be 0.591 V	and 25 °C. The equilibrium
		n is $(F = 96500 \text{C mol}^{-1})$		
	a) 1.0×10^{1}		c) 1.0×10^{10}	d) 1.0×10^{30}
61.	The relationship between	een Gibbs' free energy change	(ΔG) and emf (E) of a reve	rsible electrochemical cell
	is given by			
	a) $\Delta G = nFE$		c) $\Delta G = -nFE$	d) $\Delta G = E/nF$
62.		e potential, E of $0.1\mathrm{M}$ solution	n of M ⁺ ions	
	$(E_{RP} = -2.36 V)$ is			
	a) -4.82 V	b) -2.41 V	c) +2.41 V	d) None of these
63.	-	electricity through a solution	= =	
	a) 1 mole of Cu	b) 1 g-atom of Cu	c) 1 molecule of Cu	d) 1 g equivalent of Cu
64.		50 solution of KCl in a cell at		⁻¹ . If the resistance of a cell
		n is 400 ohm, the cell constant		
	a) 1.106 cm	b) 1.106 cm ⁻¹	c) 1 cm	d) 1 cm ⁻¹
65.		int for the reaction given belo	w at 298 K is :	
	$\operatorname{Zn}(s) + \operatorname{Fe}^{2+}(aq) \to \operatorname{Z}$			
	$E_{\rm cell}^{\circ} = 2905 \text{V} \text{ at } 298 \text{K}$			
	a) $e^{0.32/0.0295}$	b) 10 ^{0.595/0.76}	c) $10^{0.0250/0.32}$	d) 10 ^{0.32/0.295}
66.	When the sample of co	pper with zinc impurity is to b	oe purified by electrolysis, t	the appropriate electrodes
	are			
		ode		
		ire copper		
		ire copper		
	c) Impure zinc in	npure sample		

	d) Pure copper impure sample				
67.	A current of 12 A is passed through an electrolytic of	ell containing aqueous NiS	${ m O_4}$ solution. Both Ni and ${ m H_2}$		
	gas are formed at the cathode. The current efficiency is 60%. What is the mass of nickel deposited on the				
	cathode per hour?				
	a) 7.883 g b) 3.941 g	c) 5.91 g	d) 2.645 g		
68.	10^{-2} g atom of Ag can be oxidised to Ag ⁺ during the	ne electrolysis of AgNO ₃ so	lution using silver electrode		
	by:				
	a) 965 coulomb b) 96500 coulomb	c) 9650 coulomb	d) 96.500 coulomb		
69.	A gas <i>X</i> at 1 atm is bubbled through a solution conta	aining a mixture of 1 M y^-	and 1 M z^- at 25°C. If the		
	order of reduction potential is $z > y > x$ then		\sim V		
	a) y will oxidize x and not z	b) y will oxidize x and z	4 7		
	c) y will oxidize z and not x	d) y will reduce both x ar	$\operatorname{nd} z$		
70.	Which one of the following solutions will have higher	est conductivity?			
	a) 0.1 M CH ₃ COOH b) 0.1 M NaCl	c) 0.1 M KNO ₃	d) 0.1 M HCl		
71.	A current of strength 2.5 A was passed through CuS	O_4 solution for 6 min 26 s.	The amount of copper		
	deposited is (At. Wt. of $Cu = 63.5$, $1F = 96500 C$)		V		
	a) 0.3175 g b) 3.175 g	c) 0.635 g	d) 6.35 g		
72.	A student made the following observations in the la	boratory,			
	i) Clean copper metal did not react with 1 molar Pb	$(NO_3)_2$ solution.			
	ii) Clean lead metal dissolved in a 1 molar ${\rm AgNO_3}$ so	olution and crystals of Ag m	etal appeared.		
	iii) Clean silver metal did not react with 1 molar Cu	$(NO_3)_2$ solution.			
	The order of decreasing reducing character of the th	nree metals is :			
	a) Cu, Pb, Ag b) Cu, Ag, Pb	c) Pb, Cu, Ag	d) Pb, Ag, Cu		
73.	The e. m. f. of the cell $\operatorname{Zn} \operatorname{Zn}^{2+}(1 M) \operatorname{Cu}^{2+} \operatorname{Cu}(1 M) $		dard reduction potential of		
	$Zn^{2-} Zn$ is -0.78 volt, what is the oxidation potent				
		c) - 0.32 V	d) -1.86 V		
74.	Standard reduction electrode potentials of three me	etals A , B and C are respect	ively + 0.5 V, -3.0 V and -		
	1.2 V. The reducing powers of these metals are				
	a) $A > B > C$ b) $C > B > A$	c) $A > C > B$	d) $B > C > A$		
75.	Quantity of charge is measured in :				
		c) ampere sec ⁻¹ .	d) amphere ⁻¹ sec.		
76.	Which of the following will form a cell with the high		21		
	a) 0.1 M Ag ⁺ , 2 M Co ²⁺ b) 2 M Ag ⁺ , 2 M Co ²⁺				
77.	When electric current is passed through acidified w		H ₂ gas is collected (at STP)		
	at the cathode. What is the current passed in amper		12.50		
70	a) 0.05 b) 0.50	c) 5.0	d) 50		
78.	In which of the following pairs, the constants/ quan	itities are not mathematical	ly related to each other?		
	a) Gibbs free energy and standard cell potential				
	b) Equilibrium constant and standard cell potential				
	c) Rate constant and activation energy				
70	d) Rate constant and standard cell potential	2-1			
79.	The charge required for reduction of 1 mole of Cr ₂ O		4) C × 0CF00 C		
00	a) 96500 C b) 2 × 96500 C	c) 3 × 96500 C	d) 6 × 96500 C		
80.	Cell constant has the unit:	a)2	d)1		
01	a) cm b) cm ⁻¹ The registance of 0.01 N solution of an electrolyte v	c) cm ²	d) cm sec ⁻¹		
δ1.	The resistance of 0.01 N solution of an electrolyte v		t 496 K, using a conductivity		
	cell of cell constant 0.66 cm^{-1} . The equivalent conduction $\frac{1}{2}$ $\frac{1}{2$	=	=id) 2.14 mb = 1 = -2 = -1		
02	a) $314.28 \text{ mho cm}^2\text{eq.}^{-1}$ b) $3.14 \text{ mho cm}^2\text{eq.}^{-1}$	CJ 314.28 Mn0 * cm*eq.	. uj 3.14 inno - cm-eq		
٥Z.	IV. $Cu + 2HCl \rightarrow CuCl_2 + H_2(g)$				
	$[E_{Cu^{2+}/Cu}^{\circ} = +0.34 V]$				

	a) Increases	b) Decreases	c) Remains same	d) None of these
94.			when measured in a cell l	_
	-	·	⁻¹ cm ² equiv ⁻¹) of 1N acet	
	a) 2.3	b) 4.6	c) 9.2	d) 18.4
95.		on potential E° for the ha	alf reactions are as	
	$Zn \rightarrow Zn^{2+} + 2e^-$			
	$Cu \rightarrow Cu^{2+} + 2e^{-}$			
	The emf for the cell re	·		
	$Zn + Cu^{2+} \rightarrow Zn^{2+}$			
	a) 0.42 V	b) -0.42 V	c) -1.1 V	d) 1.1 V
96.	Ionic mobility is equa	ll to:		4,7
	a) Speed of ions			
	b) Speed of ion under	potential difference of 1	volt	
		er unit potential gradient		
	d) None of the above			
97.	At pH = 2 , $E^{\circ}_{Quinhydr}$	$_{\rm one} = 1.30 V$, $E_{\rm Quinhydron}$	_{ie} will be :	^ X
	OH O			
	\downarrow			
		$+2H^{+}+2e^{-}$		
	OH O		Plan	
	a) 1.36 V	b) 1.30 V	c) 1.42 V	d) 1.20 V
98.	The equilibrium cons	tant for the reaction : Cu	$+ 2Ag^+(aq) \rightarrow Cu^{2+}(aq)$	$+ 2Ag; E^{\circ} = 0.46 \text{ V} \text{ at } 298 \text{ K is}$

- 99. For a given cell reaction; $Cr + 3H_2O + OCl^- \rightarrow Cr^{3+}3Cl^- + 6OH^-$, the species undergonal Cr b) Cr^{6+} c) OCl^- d) Cl^-
- 100. If the H⁺ concentration is decreased from 1 M to 10^{-4} M at 25 °C for the couple MnO₄⁻/ Mn²⁺, then the oxidising power of the MnO₄⁻/ Mn²⁺ couple decreases by
 - a) -0.18 V b) 0.18 V c) 0.38 V d) -0.38 V
- 101. The standard e.m.f. of a galvanic cell involving the cell reaction with n=2 is found to be 0.295 V at 25° C. The equilibrium constant of the reaction is :
- a) 2.0×10^{11} b) 4.0×10^{12} c) 1.0×10^{2} d) 1.0×10^{10}
- 102. If an iron rod is dipped in CuSO_4 solution, then :
 - a) Blue colour of the solution turns red
 - b) Brown layer is deposited on iron rod
 - c) No change occurs in the colour of the solution
 - d) None of the above
- 103. Which of the following liberates hydrogen on reaction with dilute H₂SO₄?
- a) Al b) Fe c) Cu d) Hg
- 104. Agalvanic cell with electrode potential of 'A' = +2.23 V and 'B' = -1.43 V. The value of E_{cell}° is a) 3.66 V b) 0.80 V c) -0.80 V d) -3.66 V
- 105. A galvanic cell is composed of two hydrogen electrodes, one of which is a standard one. In which of the
- following solutions should the other electrode be immersed to get maximum e. m. f.? a) 0.1 M HCl b) $0.1 M CH_3COOH$ c) $0.1 M H_3PO_4$ d) $0.1 M H_2SO_4$
- 106. Which metal does not give the following reaction?
 - $M + \text{water or steam} \longrightarrow \text{oxide} + \text{H}_2 \uparrow$ a) Iron b) Sodium c) Mercury
- 107. 4.5 g of Al (at. mass 27 amu) is deposited at cathode from Al^{3+} solution by a certain quantity of charge. The volume of H_2 produced at STP from H^+ ions in solution by the same quantity of charge will be :

d) Magnesium

a) 11.2 L	b) 44.8 L	c) 5.6 L	d) 22.4 L			
108. In the electrolysis of	acidulated water, it is desi	red to obtain 1.12 cc of hydro	gen per second under STP			
condition. The current to be passed is						
a) 1.93 A	b) 9.65 A	c) 19.3 A	d) 0.965 A			
109. The speed of ions du	ring passage of current de	pends upon :				
a) Nature of ion	b) Potential gradien	t c) Dilution of solution	d) All of these			
110. The best way to prev	vent rusting of iron is					
a) Making it cathode	}	b) Putting in saline wa	ter			
c) Both (a) and (b)		d) None of these				
111. The hydrogen electr	ode is dipped in a solution	of pH = 3 at 25 °C. The reduc	tion potential of the cell would			
be:						
a) 0.177 V	b) – 0.177 V	c) 0.087 V	d) 0.059 V			
112. Conductivity (unit S	iemen) is directly proporti	onal to area of the vessel and	the concentration of the			
solution in it and is i	nversely proportional to th	ne length of the vessel. Then,	the units of the constant of			
proportionality is						
a) S ² m ² mol	b) $S^2 m^2 mol^{-2}$	c) $S m^2 mol^{-1}$	d) S m mol ⁻¹			
113. The metal that cannot	ot be produced on reductio	on of its oxide by aluminium is				
a) K	b) Mn	c) Cr	d) Fe			
114. In the concentration	cells, the electrical energy	is produced due to:				
a) Oxidation of fuel						
b) Heat energy						
c) Chemical reaction	1					
d) Transfer of a subs	stance from one concentrat	ion to other				
115. How many faraday a	re needed to reduce a mole	e of MnO ₄ of Mn ²⁺ ?				
a) 4	b) 5	c) 3	d) 2			
116. For the cell,						
T1 T1 ⁺ (0.001 M)	Cu ²⁺ (0.1 M) Cu	7				
$E_{\rm cell}$ at 25°C is 0.83 V	<i>I. E</i> _{cell} can be increased					
a) By decreasing [Cu	1 ²⁺]	b) By increasing [Cu ²⁺]			
c) By increasing [T1	+]	d) None of these				
117. In an aqueous soluti	on, hydrogen (H ₂) will not	reduce:				
a) Fe ³⁺	b) Cu ²⁺	c) Zn ²⁺	d) Ag ⁺			
118. How many faradays	of electricity are required	to electrolyse 1 mole CuCl_2 to	copper metal and chlorine			
gas?	* * *					
a) 1 F	b) 2 F	c) 3 F	d) 4 F			
119. Which statement is a	not correct?					
a) Conductance of a	n electrolytic solution incre	eases with dilution				
b) Conductance of a	n electrolytic solution decre	eases with dilution				
c) Specific conducta	nce of an electrolytic soluti	on decreases with dilution				
d) Equivalent condu	ctance of an electrolytic so	lution increase with dilution				
120. The correct value of	e.m.f. of cell is given by :					
i) $E_{\text{cell}} = E_{\text{OP}}$ anode	$-E_{RP}$ cathode					
ii) $E_{\text{cell}} = E_{\text{OP}}$ anode	$e + E_{RP}$ cathode					
iii) $E_{\text{cell}} = E_{\text{RP}}$ anod	$e + E_{RP}$ cathode					
iv) $E_{\text{cell}} = E_{\text{OP}}$ anod	$e - E_{OP}$ cathode					
a) (iii) and (i)	b) (i) and (ii)	c) (iii) and (iv)	d) (ii) and (iv)			
121. $\operatorname{Zn}^{2+} \to \operatorname{Zn}(s)$; E°	= -0.76 V					
$Cu^{2+} \rightarrow Cu(s); E^{\circ}$	= -0.34 V					
Which of the followi	ng is spontaneous?					
a) $7n^{2+} + Cu \rightarrow 7$	$n \perp Cu^{2+}$	h) $Cu^{2+} + 7n \rightarrow Cu$	+ 7n ²⁺			

-) 72+ + C2+ 7 + C	J) Nama a Cala a ala assa		
c) $Zn^{2+} + Cu^{2+} \rightarrow Zn + Cu$	d) None of the above		.1
122. Reduction potentials of <i>A, B, C,</i> and <i>D</i> are 0.8 V, 0.7	'9 v, 0.34 v and -2.37 v r	espectively. which	element
displaces all the other three elements?) D	D. C	
a) <i>B</i> b) <i>A</i>	c) <i>D</i>	d) <i>C</i>	
123. Given,			
$E^{\circ}_{Cr^{3+}/Cr} = 0.72 V$, $E^{\circ}_{Fe^{2+}/Fe} = 0.42 V$.			
The potential for the cell			
Cr/Cr^{3+} (0.1 M) Fe^{2+} (0.01 M) Fe is			
a) 0.26 V b) 0.399 V	c) -0.339 V	d) -0.26 V	~\)'
124. The electroplating with chromium is undertaken h	pecause :		AY
a) Electrolysis of chromium is easier		4	7
b) Chromium can form alloys with other metals			
c) Chromium gives a protective and decorative co	ating to the base metal		•
d) Of high reactivity of chromium metal		4/ >	
125. Which of the following is not correct?		07	
a) Aqueous solution of NaCl is an electrolyte.		~ X	
b) The units of electrochemical equivalent are g-co			
c) In the Nernst equation, n represents the number		d in the electrode	reaction.
d) Standard reduction potential of hydrogen elect	rode is zero volt.		
126. H ₂ cannot be displaced by			
a) Li ⁺ b) Sr ²⁺	c) Al ³⁺	d) Ag ⁺	
127. The standard reduction potential of Zn and Ag in v	vater at 298 K are,		
$Zn^{2+} + 2e^{-} \rightleftharpoons Zn$; $E^{\circ} = -0.76 \text{ V}$ and			
$Ag^+ + e^- \rightleftharpoons Ag$; $E^\circ = +0.80 V$. Which of th			
a) Zn^{2+} (aq) + $ZAg(s) \rightarrow ZAg^{+}$ (aq) + $Zn(s)$ c) Zn^{2+} (aq) + $Zn(s)$ + $Zn(s)$	b) $Zn(s) + 2Ag^{+}(a)$	$q) \rightarrow Zn^{2+} (aq) +$	- 2Ag (s)
c) Zn^{2+} (aq) + Ag^{+} (aq) $\rightarrow Zn$ (s) + Ag (s)	d) $Zn(s) + Ag(s) -$	\rightarrow Zn ²⁺ (aq) + Ag	+ (aq)
128. The amount of an ion discharged during electrolys	sis is not dependent of:		
a) Resistance of solution			
b) Time			
c) Current strength			
d) Electrochemical equivalent of the element			
129. The conductivity of a 0.1 N KCl solution at 23°C is	$0.012 \text{ ohm}^{-1} \text{ cm}^{-1}$.The	resistance of the	cell containing
the solution at the same temperature was found to		nstant will be :	
a) 0.918 cm^{-1} b) 0.66 cm^{-1}	c) 1.142 cm^{-1}	d) 1.12 cm ⁻¹	-
130. Reduction potential of four elements P , Q , R , S is $-$	-2.90, +0.34, +1.20 and -	−0.76. Reactivity of	lecreases in
the order			
a) $P > Q > R > S$ b) $S > R > Q > P$	c) $P > S > Q > R$	d) $Q > S > I$	R > P
131. Which of the following statements are correct con	cerning redox propertie	s?	
I Ametal M for which E° for the half reaction			
$M^{n+} + ne^- = M$, is very negative will be A	good reducing agent.		
II The oxidizing power of the halogens decrea	ses from chlorine to iodi	ne.	
III The reducing power of hydrogen halides in	creases from hydrogen	chloride to	hydrogen
iodide.			
a) I, II and III b) I and II	c) I only	d) II and III o	only
132. A cell with two electrodes, one of grey tin and the		pping in solution o	$f(NH_4)_2SnCl_6$
showed zero e.m.f. at $18^{\circ}C$. What conclusion may	be drawn from this?		
a) The e.m.f. developed at the electrode-solution p	= = = = = = = = = = = = = = = = = = =		
b) Grey tin being non-metallic ceases to provide a			
c) Electrode surface develops a protective layer a	=	ry large internal re	sistance
d) The standard Gibbs energy change of the cell be	ecomes zero		

133. Aluminium displaces hydrogen from dilute HCl whe	reas silver does not. The en	nf of Acell prepared by			
combining Al/Al $^{3+}$ and Ag / Ag $^{+}$ is 2.46 V. The reduction potential of silver electrode is $+0.80$ V. The					
reduction potential of aluminium electrode is	•				
a) +1.66 V b) -3.26 V	c) 3.26 V	d) -1.66 V			
134. For $I_2 + 2e \rightarrow 2I^-$, standard reduction potential	= + 0.54 volt. For 2B ₁	•			
oxidation potential = -1.09 volt. For Fe \rightarrow Fe ²⁻					
Which of the following reactions is non-spontaneous		,			
a) $Br_2 + 2I^- \rightarrow 2Br^- + I_2$					
b) Fe + Br ₂ \rightarrow Fe ²⁺ + 2Br ⁻					
c) Fe + $I_2 \rightarrow Fe^{2+} + 2I^-$					
d) $I_2 + 2Br^- \rightarrow 2I^- + Br_2$					
135. When $KMnO_4$ acts as an oxidizing agent and ultimat	ely forms $Mn\Omega^{2-}$ $Mn\Omega_{o}$ M_{1}	$n_0 \Omega_0$ and Mn^{2+} then the			
number of electrons transferred in each case respec		1203 and will then the			
a) 4, 3, 1, 5 b) 1, 5, 3, 7	c) 1, 3, 4, 5	d) 3, 5, 7, 1			
136. For a cell reaction involving a two electron change, t					
25°C. The equilibrium constant of the reaction, at 25°C.		is found to be 0.275 v at			
a) 10 b) 1×10^{10}	c) 1 × 10 ⁻¹⁰	d) 10×10^{-2}			
137. Which one of the following has the highest molar co	c) 1×10^{-10}	u) 10 × 10			
		halt (III) ablavida			
a) Diaminedichloroplatinum (III)	b) Tetraaminedichloroco	` '			
c) Potassium hexacyanoferrate (II)	d) Hexaaquochromium (I	•			
138. Electrode potential of Zn^{2+}/Zn is – 0.76 V and that of	of Cu^{-1}/Cu is $+ 0.34$ V. In	e emi of the cell constructed			
between these two electrodes is	c) 2.20 V	D 220 W			
a) 1.10 V b) -1.10 V	A V Y	d) – 2.20 V			
139. The standard reduction potentials at 298 K for the for	ollowing half-cell reactions	are given			
$\operatorname{Zn}^{2+}(aq) + 2e^{-} \rightleftharpoons \operatorname{Zn}(s); -0.762 V$					
$\operatorname{Cr}^{3+}(aq) + 3e^{-} \rightleftharpoons \operatorname{Cr}(s); -0.74V$					
$2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g); +0.00 V$					
$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq); +0.77 V$					
Which one of the following is the strongest reducing	_	21			
a) Zn (s) b) Cr(s)	c) H ₂ (s)	d) Fe ²⁺ (aq)			
140. How long (in hours) must a current of 5.0 A be main	tained to electroplate 60 g	of calcium from molten			
CaCl ₂ ?					
a) 27 h b) 8.3 h	c) 11 h	d) 16 h			
141. Use of electrolysis is					
a) Electrorefining b) Electroplating	c) Both (a) and (b)	d) None of these			
142. What is the cell reaction occurring in Daniel cell (Ga	lvanic cell)?				
a) $Cu(s) + ZnSO_4(aq) \rightarrow CuSO_4(aq) + Zn(s)$					
b) $Zn(s) + CuSO_4(aq) \rightarrow Cu(s) + ZnSO_4(aq)$					
c) $Ni(s) + ZnSO_4(aq) \rightarrow NiSO_4(aq) + Zn(s)$					
d) $2Na(s) + CdSO_4(aq) \rightarrow Na_2SO_4(aq) + Cd(s)$					
143. Electr KCl KNO ₃ HCl NaO NaCl					
olyte Ac					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \mathbf{mol}^{-1}) 9 0 2 5$					
Calculate Λ^{∞} using appropriate maler conductor	cas of the alactrolytee lister	d ahove at infinite dilution			
Calculate Λ_{HOAc}^{∞} using appropriate molar conductan	ces of the electrolytes lister	a above at illillite Ullutiofi			
in H ₂ O at 25°C. a) 217.5 b) 390.7	a) 552.7	d) 517.2			
144. Is the reaction, $2Al + 3Fe^{2+} \rightarrow 2Al^{3+} + 3Fe$ possible	c) 552.7	d) 517.2			
177. IS the reaction, $\angle AI + SFE \longrightarrow \angle AI^{-1} + SFE \text{ possible}$	€:				

a) No, because standard oxidation potential of Al < Fe b) Yes, because standard oxidation potential of Al > Fe

Page | **11**

	c) Neither (a) nor (b)			
	d) Data are unpredictable			
145.	a) -59.15 V	e potential of that hydroger b) +59.15	n electrode is filled with HC $c) +59.15 mV$	d) -59.15 mV
146		1 N solution is found to be 0		u) 57.15 mv
110.	equivalent conductivity		.005 omii em . inc	
	a) 5×10^{-2} ohm ⁻¹ cm ² e		b) 5.00×10^{-3} ohm ⁻¹ cm	2
	c) $500 \text{ ohm}^{-1} \text{ cm}^{-2} \text{ equiv}$		d) $0.5 \text{ ohm}^{-1} \text{ cm}^2 \text{ equiv}^{-2}$	
147.				Fe, Pb, H, Cu, Hg, Ag, Au by
	interchanging:		, , , , ,	, , , , , , ,
	a) Al and Mg	b) Zn and Fe	c) Zn and Pb	d) Pb and H
148.	=	n ²⁺ (0.01 M) Fe ²⁺ (0.001 l	=	The value of equilibrium
	constant for the cell react			
	a) $10^{10^{\frac{0.32}{0.0298}}}$	b) $\rho_{0.0295}^{0.32}$	c) $10^{\frac{0.32}{0.0591}}$	d) $10^{\frac{0.26}{0.0295}}$
140		3 0 1 1 1	o) 100.0591	4) IO0.0295
147.	When Alead storage batte	=	b) SO ₂ is evolved	V
	a) Lead sulphate is consuc) Lead is formed	illeu	d) Sulphuric acid is consu	mod
150	•	de in term of pH is (at 1 atm	· ·	meu
150.		de in term of pir is (at I atil	RT = 1	
	a) $E_{H_2} = \frac{RT}{F} \times pH$		b) $E_{H_2} = \frac{RT}{F} \cdot \frac{1}{pH}$	
	2.303 <i>RT</i>		d) $E_{H_2} = -0.0591 \text{ pH}$	
	c) $E_{H_2} = \frac{2.303RT}{F} . pH$		_	
151.	If $E_{\text{Fe}^{2+}/\text{Fe}}^{\circ} = -0.441 \text{ V}$ as	nd $E_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{\circ} = 0.771 \text{ V, th}$	e standard e.m.f. of the rea	action Fe + 2Fe ³⁺ \rightarrow 3Fe ²⁺
	will be:			
	a) 1.212 V	b) 0.111 V	c) 0.330 V	d) 1.653 V
152.	When Zn piece is kept in	CuSO ₄ solution, copper gets		
	a) Standard reduction po	tential of zinc is more than	copper	
	b) Standard reduction po	tential of zinc is less than co	opper	
	c) Atomic number of zinc	is larger than copper		
	d) Atomic number of zinc	is lower than copper		
153.	Ionic mobility of of electr			
		b) H ₂ SO ₄	c) H_3PO_4	d) Boric acid
154.			00 times less than that at i	nfinite dilution. The degree
	of dissociation of weak el			
	a) 100	b) 10	c) 0.01	d) 0.001
155.		tial of cell H ₂ H ⁺ Ag ⁺ Ag		V)
	a) 0.4 V	b) 0.8 V	c) 1.4 V	d) 1.8 V
156.	•	to the solution of an electro		
		anode, cations towards catl	node	
	b) Anions and cations bot			
		cathode, cations towards ar	node	
100	d) No movement of ions t	•		
157.	The element that is easies		a) A =	4) C
1 5 0	a) Fe	b) Cu	c) Ag	d) Sn
190.	80 V. Which has highest r		, ii n ₂ allu Ag Ag IS	- 3.05, -0.762, 0.00 and +
	a) Ag	b) H ₂	c) Zn	d) Li
150	· -	ectricity (in Coulombs) req		•
109.	MAgNO ₃ solution?	certainly (in comonius) req	an ca to acposit all tile silvi	
	a) 2412.5	b) 24125	c) 4825.0	d) 48250

160. When	1 faraday of electr	ricity is passed through CuS	$\mathrm{O_4}$ solution, number of ator	ns formed is :
a) 6.02	2×10^{23}	b) 3.01×10^{23}	c) 2	d) 6.02×10^{23}
161. Hydro	gen gas is not libe	rated when the following m	netal is added to dil. HCl	
a) Ag		b) Zn	c) Mg	d) Sn
162. In Ahy	drogen-oxygen fu	el cell, combustion of hydro	ogen occurs to	
a) Ger	erate heat			
b) Cre	ate potential diffei	rence between the two elec	trodes	
c) Pro	duce high purity w	vater		
d) Rer	nove adsorbed oxy	ygen from electrode surface	es.	
163. The su	m of the two trans	sport number of ions for an	electrolyte is always equal	to:
a) 1		b) 2	c) 1/2	d) None of these
164. On pas	ssing 0.5 F electric	ity through molten sodium	chloride, sodium deposited	at cathode will be
a) 29.		b) 11.50 g	c) 58.50 g	d) 0.00 g
165. A solu	tion of CuSO ₄ is el	ectrolysed for 10 min with	a current of 1.5 A. What is the	he mass of copper deposited
	cathode?	•		
a) 2.09	96 g	b) 0.296 g	c) 3.029 g	d) 2.906 g
166. The co	orrect order of mol	lar conductivity at infinite d	lilution of LiCl, NaCl and KC	lis
	l > KCl > NaCl	b) KCl > NaCl > LiCl	c) LiCl > NaCl > KCl	
167. Salts	of A (atomic weig	ht 7), B (atomic weight 2)	7) and C (atomic weight 4	8) were electrolyzed under
	, –			nen $2.1 \mathrm{g}$ of A was deposited,
		= -	2 g. The valencies of A , B and	=
a) 3,1	_	b) 1, 3 and 2	c) 3,1 and 3	d) 2,3 and 2
168. Indica	tor electrode is :			•
a) SHI	2		C Y	
=	omel electrode	4		
-	AgCl electrode		>	
=	nhydrone electrod	de	Y	
169. Molar	conductance of ele	ectrolytic solution Λ_m is		
a) ∝ <i>l</i>		b) $\propto (1/A)$	c) $\propto (1/C)$	d) $\propto (\sqrt{C})$
170. Which	metal is most rea	dily corroded in moist air?	, , ,	
a) Cop		b) Iron	c) Silver	d) Nickel
	•		ried out by passing 10mA c	
	_	$\rm H_2$ gas at the cathode is (1F		•
	$5 \times 10^4 s$	_	c) $28.95 \times 10^4 s$	d) $38.6 \times 10^4 s$
•			•	'he Mg in chemical reactions
:		<i>g</i>	, , , , , , , , , , , , , , , , , , ,	8
a) Wil	l be replaced by Al	1		
-	l replace Al			
-	l not be able to rep	olace Al		
-	ne of the above			
	· ·	g. wt. = 108) displaced by	that quantity of current w	vhich displaced 5600 mL of
	gen at STP is :		1 ,	1
a) 54	_	b) 108 g	c) 5.4 g	d) None of these
-	=	, ,	0650 C of charge pass throug	_
	= -	ited on the cathode will be	0 1	1 5
a) 1.0	-	b) 10.8 g	c) 21.6 g	d) 108 g
		, ,	, ,	²⁺ , Pb Pb ²⁺ are – 0.8, 0.136,
			oxidising agent among thes	
a) Pb ²		b) Ca ²⁺	c) Sn ²⁺	d) Ag ⁺
•		duct electricity because it	,	, ,

	a) Is neutral	b) Is readily decomposed	
	c) Is almost totally unionized	d) Has a low boiling point	t
177	The minimum equivalent conductance in fused state	e is shown by :	
	a) MgCl ₂ b) BeCl ₂	c) CaCl ₂	d) SrCl ₂
178	A cell necessarily does not contain:		
	a) An anode		
	b) A cathode		
	c) An electrolyte or a fuel		
	d) A porous diaphragm		
179	The standard redox potentials for the reactions		(V)
	$Mn^{2+} + 2e^{-} \rightarrow and Mn^{3+} + e^{-} \rightarrow M^{2+} are -1.18$	V and 1.51 V respectively.	What is the redox potenital
	for the reaction		
	$Mn^{3+} + 3e^- \rightarrow Mn$?		
	a) 0.33 V b) 1.69 V	c) -0.28 V	d) - 0.85
180	During electrolysis of fused CaH_2 , H_2 is liberated at :		
	a) Anode b) Cathode	c) Either electrode	d) Not at all
181	Total charge on 1 mole of a monovalent metal ion is	equal to:	Y
	a) 6.28×10^{18} coulomb b) 1.6×10^{-19} coulomb	c) 9.65×10^4 coulomb	d) None of these
182	For which case Λ values $vs\sqrt{c}$ show a straight line?		
	a) KCl b) HCOOH	c) CH ₃ NH ₂	d) CH ₃ COOH
183	Which is not true for a standard hydrogen electrode	?	
	a) The hydrogen ion concentration is 1M		
	b) Temperature is 25°C		
	c) Pressure of hydrogen is 1 atmosphere		
	d) It contains a metallic conductor which does not a	dsorb hydrogen	
184	The laws of electrolysis were proposed by		
	a) Kohlrausch b) Faraday	c) Haber	d) Bergius
185	The metal that cannot be obtained by electrolysis of	the aqueous solution of its	salts is:
	a) Ag b) Cr	c) Cu	d) Al
186	A certain current liberated 0.504 g of hydrogen in 2	h. How many grams of co	pper can be liberated by the
	same current flowing for the same time in a copper	•	
	a) 12.9 g b) 15.9 g	c) 31.7 g	d) 36.9 g
187	If mercury is used as cathode in the electrolysis of	aqueous NaCl solution, the	ions discharged at cathode
	are:		
	a) H ⁺ b) Na ⁺	c) OH ⁻	d) Cl ⁻
188	Specific conductivity of a solution		
	a) Increases with dilition	b) Decreases with dilutio	
	c) Remains unchanged with dilution	d) Depends on mass of el	ectrolyte
189	When an electrolytic solution conducts electricity, conducts		
	a) Electrons b) Cations and anions	•	d) None of these
	e.m.f. of a cell in terms of reduction potential of its le		
	a) $E = E_L + E_R$ b) $E = E_L - E_R$		$d) E = -[E_R + E_L]$
191	Which defines the standard reduction electrode potential	ential of Zn ²⁺ ions?	
	a) $Zn^{2+}(aq) + 2e \rightarrow Zn(s)$; $[Zn^{2+}] = 1M$		
	b) $Zn(g) \to Zn^{2+} + 2e;$ $[Zn^{2+}] = 1M$		
	c) $Zn^{2+}(aq) \to Zn(s) + 2e$; $[Zn^{2+}] = 1M$		
	d) $Zn^{2+}(g) \rightarrow Zn(s) - 2e; [Zn^{2+}] = 1M$		
192	Given, the data at 25 °C ,		
	$Ag + I^- \rightarrow AgI + e^-; E^\circ = 0.152 V$		
	$Ag \rightarrow Ag^{+} + e^{-}; \qquad E^{\circ} = -0.800V$		

	What is the value of $\log K$	_{sp} for AgI?			
	$\left(2.303 \; \frac{RT}{F} = 0.059 \; V\right)$	•			
	a) - 8.12	b) +8.612	c) -37.83	d) -16.13	
193.		of HCl, NaCl and CH ₃ COON at the same temperature is		mol ^{–1} at 298 K. The molar	
	a) 333	b) 451	c) 325	d) 550	
194.	In the electrolysis of CuO	Cl ₂ solution using Cu elect	rodes the mass of cathode	e increases by 3.18 g. What	
	happened at the other ele	ctrode?			
	a) 0.05 mole of Cu^{2+} ions	passed into solution		$\langle V \rangle$	
	b) 0.112 litre of Cl ₂ was li	berated			
	c) 0.56 litre 0 ₂ was libera				
	d) 0.1 mole of Cu ²⁺ ions p				
195.		city is passed through CuS			
			ated water, then the volum	e of H_2 liberated at STP will	
	be [Given, atomic weight	_	2	1000 0 2	
106	a) 4.0 cm ³	b) 56 cm ³	c) 604 cm ³	d) 8.0 cm ³	
196.	Faraday's laws hold good		2.1.1.00	D All a Calcasa	
107	a) All pressures	b) Only at 298 K	c) In different solvents		
197.		on potentials at 25°C			
	a) Li	2.37 V respectively. Which b) Ba	c) Na		
10Ω	=	ergy is converted into cher		d) Mg	
170.	a) Water voltameter		c) Coulometer	d) Either of these	
199	-	b of electricity liberatesl		-	
177.	a) 5.6	b) 6.5	c) 22.2	d) 11.2	
200.		required for the deposition	,	u) 1112	
	a) 96500	b) 48250	c) 1	d) 10000	
201.	The units of equivalent co		,	,	
	a) Ω cm ² equiv ⁻¹	b) Ω cm² equiv	c) Ω^{-1} cm ² equiv ⁻¹	d) Ω cm² equiv	
202.		e plot of molar conductance	e $vs\sqrt{C}$ is		
	a) Parabolic	b) Linear	c) Sinusoidal	d) Circular	
203.	The value of Λ_{eq}^{∞} for NH ₄ O	l, NaOH and NaCl are respe	ectively,149.74,248.1 and 1	$26.4\Omega^{-1}~\mathrm{cm^2equiv^{-1}}$. The	
	value of Λ_{eq}^{∞} of NH ₄ OH is				
	a) 371.44		b) 271.44		
	c) 71.44		d) Cannot be predicted fr	om given data	
204.	The standard electrode po	otentials of Ag^+ / Ag is $+0.8$	80 V and Cu^+ /Cu is $+0.34$	V. These electrodes are	
	connected through Asalt bridge and if				
	a) Copper electrode acts a	as Acathode then $E_{ m cell}^{\circ}$ is $+0$).46 V		
	b) Silver electrode acts as	anode then $E_{\rm cell}^{\circ}$ is -0.34 V			
7	c) Copper electrode acts a	as anode then $E_{\rm cell}^{\circ}$ is $+0.46$	5 V		
	d) Silver electrode acts as	Acathode then E_{cell}° is -0.3	4 V		
205.	e.m.f. of cell Ni Ni ²⁺ (0.1 M a) + 1.25 V	() Au ³⁺ (1.0 <i>M</i>) Au <i>is</i> , b) -1.75 V	if E° for Ni ²⁺ Ni is -0.25 c) + 1.75 V	V, E° for $Au^{3+} Au$ is 1.50 V . d) + 4.0 V	
206.	•			opositive character is given	
	as $Mg > Al > Zn > Cu >$ nitrate?	Ag. What will happen, if a	copper spoon is used to s	stir a solution of aluminium	
	a) The spoon will get coat	ed with aluminium			
	b) An alloy of copper and	aluminium is formed			
	c) The solution becomes l	olue			

	d) There is no reaction			
207	. Which of the following sta	atements is correct? Galva	nic cell converts	
	a) Chemical energy into e	electrical energy		
	b) Electrical energy into o	chemical energy		
	c) Metal from its element	tal state to the combined st	ate	
	d) Electrolyte into individ	dual ions		
208	. For cell reaction,			
	$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu^{2+}$	Cu		
	Cell representation is			
	a) Zn Zn ²⁺ Cu ²⁺ Cu		b) Cu Cu ²⁺ Zn ²⁺ Zn	
	c) Cu Zn ²⁺ Zn Cu ²⁺		d) Cu ²⁺ Zn Zn ²⁺ Cu	
209		t for 16 min 40 s , the volur	=	
	a) 280 mL	b) 560 mL	c) 1120 mL	d) 2240 mL
210	. Consider the following di	sproportionation		
	$2ClO_3^- \rightleftharpoons ClO_2^- + ClO_4^-$			0/
		n of perchlorate ion is 0.1 M	I what it would be at equili	ibrium at 298 K?
	$(E_{\text{ClO}_4^-/\text{ClO}_3^-}^{\circ} = 0.36 \text{ V and}$	$d E_{\text{ClO}_3^-/\text{ClO}_2^-}^{\circ} = 0.33 \text{ V}$	4 (4	
	a) 0.1 M	b) 0.05 M	c) 0.07 M	d) 0.19 M
211	. When Cu reacts with AgN	10_3 solution, the reaction ta	akes place is	
	a) Oxidation of Cu	b) Reduction of Cu	c) Oxidation of Ag	d) Reduction of NO ₃
212	E° for $F_{2+} + 2e = 2F^{-}$ is	2.8 V, E° for $1/2 F_2 + e = F$		
	a) 2.8 V	b) 1.4 V	c) – 2.8 V	d) – 1.4 V
213	. Which one of the following	ng solutions has highest cor	nductance power?	
	a) 0.1 <i>M</i> CH ₃ COOH		3	d) 0.1 <i>M</i> HCl
214				re $-$ 440 V and -0.036 V
	respectively. The standar	d electrode potential (E°)		
	a) – 0.476 V	b) - 0.404 V	c) $+ 0.404 \text{ V}$	d) + 0.772 V
215	. Stainless steel does not rus	st because		
	a) Chromium and nickel			
		kide layer and protects iron	n from rusting	
	c) Nickel present in it, do			
	, '	nical compound with chron	•	
216	, , , <u>-</u>	s treated separately with K		
	a) With KCl	b) With KI	c) With both (a) and (b)	d) None of these
217	. The main function of the			
	a) To allow ions to go from			
	b) To provide link between			
	c) To keep the e.m.f. of th	•		
240		neutrality of the solution in		·] . CA 407.07
218		y is passed through a soluti	on of silver nitrate (atomic	weight of $Ag = 107.87$
	taking as 108), the amoun	-) 45 0	1) 20 0
210	a) 5.8 mg	b) 10.8 mg	c) 15.8 mg	d) 20.8 mg
219	The oxidation number of	$5 \text{ in Na}_2 S_4 O_6 \text{ is}$		
	a) 2.5 for each S atom	o 12 and other true have 1	2)	
	- ,	e +2 and other two have +	3)	
	c) $+2$ and $+3$ (three S have	•	a)	
220		+5 and other two have zero -2.37 V, of Zn ²⁺ / Zn is -0.7	-	N/
220	Which of the statements i		ovanure / reis-0.44	V .
	a) Zn will reduce Fe ²⁺	13 (0115();	b) Zn will reduce Mg ²⁺	
	a) Lii wiii i Euule i'e		b) Lii wiii i caace Mg	

	c) Mg oxidises Fe		d) Zn oxidises Fe		
221.	. Kohlrausch's law states t	hat at :	,		
	a) Infinite dilution each i	on makes definite contribut	tion to equivalent conducta	nce of an electrolyte	
	depending on the nature of the other ion of the electrolyte				
	b) Infinite dilution, each i	ion makes definite contribu	tion to conductance of an e	electrolyte whatever be the	
	nature of the other ion	of the electrolyte			
	c) Infinite dilution, each i	ion makes definite contribu	tion to equivalent conducta	ance of an electrolyte,	
	whatever be the natur	e of the other ion of the elec	ctrolyte		
	d) Finite dilution, each io	n makes definite contributi	on to equivalent conductar	nce of an electrolyte,	
		e of the other ion of the elec	-		
222.	What is the potential of p	olatinum wire dipped into A	solution of 0.1 M in Sn ²⁺ ar	nd 0.01 M in Sn ⁴⁺ ?	
	a) E°	b) $E^{\circ} + 0.059$	c) $E^{\circ} + \frac{0.059}{3}$	d) E° - 0.059	
223.	Electrolysis involves oxid	lation and reduction respec	tively at		
	a) Anode and cathode	1	b) Cathode and anode		
	c) At both the electrodes		d) None of these		
224.	=	rity of two strong electrolyte	es at infinite dilution are:	X.	
	$\mathring{\Lambda}_{\text{CH}_3\text{COONa(aq.)}} = 91.0 \text{ S c}$		4 (4	Y	
	$\mathring{\Lambda}_{HCl(aq.)} = 426.2 \text{ S c}$			7	
	` -/	tion one needs to calculate <i>l</i>	Å of an aguagus CU COOU?)	
			c) Å of NaCl	d) Å of H ⁺	
225	a) Λ of ClCH ₂ COOH	S		u) A of H	
ZZ 3.	a) Anode	O ₄ , the reaction Cu ²⁺ + 2e ⁻ b) Cathode	→ Cu, takes place at:c) In solution	d) None of these	
226	•	lvanic cell involving 2 moles		•	
220.		the redox reaction of the ce		eaction is 0.57 v. The	
	a) 10^{20}	b) 10 ⁵	c) 10	d) 10 ¹⁰	
227	•	osited by passing 241.25C o	,	,	
	a) 2.7 g	b) 2.7 mg	c) 0.27 g	d) 0.54 g	
228.	, .	urated solution of CaF ₂ is		, ,	
		The conductivity of CaF_2 al		and that of water about 10.	
	a) 3.71×10^{-5}	b) 4.01×10^{-5}	c) 3.7×10^{-4}	d) 3.86×10^{-4}	
229.		and <i>D</i> are having respective	-	-	
		0.80. Which one will be the			
	a) A	b) <i>B</i>	c) C	d) <i>D</i>	
230.	An increase in equivalent	conductivity of strong elec	trolyte with dilution is mai	inly due to:	
	a) Increase in ionic molility ions				
	b) 100% ionisation of electrolyte at normal dilution				
	c) Increase in both i.e., no	o. of ions and ionic mobility			
	d) Increase in no. of ions				
231.	The number of coulombs	required to reduce 12.3 g o	of nitrobenzene to aniline is	S	
4	a) 115800 C	b) 5790 C	c) 28950 C	d) 57900 C	
232.	The cell constant is				
	a) $\frac{l}{a}$	b) $\frac{a}{l}$	c) $a \times l$	d) $\frac{\kappa}{R}$	
222	a	ι	-	R	
233 .		nce the conductance of solut	ion.		
	a) Solute-solute interacti				
	b) Solute-solvent interactions. Tomporature	LIUII			
	c) Temperature d) All of the above				
221	•	electrode and standard hydr	rogen electroda(SHF) than	zinc electrode acts as :	
4 J4.	a) Anode	iccii ouc anu stanuaru nyur	ogen cicca oue(site), tile 2	and cicciout acis as.	
	aj miouc				

b) Cathode			
c) Neither cathode nor a	node		
d) Both anode and catho	ode		
235. The best conductor of el	ectricity is a $0.1~M$ solution	of:	
a) Boric acid	b) Sulphuric acid	c) Acetic acid	d) Propionic acid
236. Electrode potential of hy	drogen electrode is vo	lt.	
a) 0	b) +1	c) -1	d) None of these
237. Which aqueous solution	will conduct an electric cur	rent quite well?	
a) Glycerol	b) Sugar	c) Hydrochloric acid	d) Pure water
238. Use of electrolysis is not	done in		$\langle V \rangle$
a) Production of Na		b) Production of water	4
c) Purification of metals		d) Production of KOH	
239. Beryllium is placed abo	ve magnesium in the II gr	oup. Beryllium dust, there	fore, when added to MgCl ₂
solution will:			
a) Have no effect			
b) Precipitate Mg metal		<i>*</i>	V ·
c) Precipitate MgO			
d) Lead to dissolution of	Be metal		
240. When electric current is		dride in molten state	
a) Hydrogen is liberated	-	b) Hydrogen is liberated	at cathode
c) No change takes place		d) Hydride ions migrates	
241. Which of the following e			
a) 0.02 N	b) 0.2 N	c) 2 N	d) 0.002 N
242. During the electrolysis of	•	A V	•
a) Time consumed	A	b) Mass of electrons	, y P
c) Quantity of electricity	passed	d) Electrochemical equiv	alent of electrolytes
243. 1.8 g of metal were depo	-		
a) 20.5	b) 25.8	c) 19.3	d) 30.7
244. Which substance is obta		•	,
electrodes?			29 9. a.b
a) H ₂ 0	b) H ₂ SO ₄	c) Na ₂ SO ₄	d) $Cu(OH)_2$
245. During the electrolysis of			a,()2
a) Chloride ions are oxid		b) Sodium ions are oxidiz	zed
c) Chloride ions are red		d) Sodium ions are reduc	
246. Which one of the following		=	
$Cu(s) + 2Ag^{+}(aq) \rightleftharpoons 0$	/ =	no vorando er une con repres	someou sy une equation.
a) Increase in the dimen		b) Increase in the dimens	sion of Ag electrode
c) Increase in the concer		d) Increase in the concen	_
247. Which will reduce zinc of		aj mercase m are concen	duding high long
a) Mg	b) Pb	c) Cu	d) Fe
248. The unit of electrochemic	•	c) du	d) I c
	b) Gram/ampere	c) Kg/coulomb	d) Coulomb/gram
249. $\text{Sn}^{4+} + 3e^- \rightarrow \text{Sn}^{2+}$,		c) Rg/couloillo	d) Coulonib/ grain
$Br_2 + 2e^- \rightarrow 2Br^-$,		l leve terro al actua da a	
-	reaction for the cell formed		12 4 0 = 42
a) 10 ⁴¹	b) 10 ³²	c) 10^{-32}	d) 10 ⁻⁴²
250. SI unit of conductivity is		1	12 1 -1
a) ohm ⁻¹ cm ⁻¹	b) $ohm^{-1} cm^{-1} or Sm^{-1}$	c) ohm m ⁻¹	d) ohm cm ⁻¹
251. Ionic mobility of Ag ⁺ is	2 1.		
$(\lambda_{Ag^{+}} = 5 \times 10^{-1} \Omega^{-1})$	cm² equiv ⁻¹)		

	a) 5.2×10^{-9}	b) 2.4×10^{-9}	c) 1.52×10^{-9}	d) 8.25×10^{-9}
252	$E E_{Fe^{3+}/Fe}^{\circ} = -0.036 \text{V}$, E	$r_{Fe^{2+}/Fe}^{\circ} = -0.439 \text{ V. The}$	e value of standard electro	de potential for the charge,
	$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{-}$,		
	a) -0.072 V	b) 0.385 V	c) 0.770 V	d) -0.270 V
253	. Whether tin can displace	•	•	.,
	a) No	1		
	b) Yes, because standard	reduction potential of S	n < Pb	
	c) Yes, because standard	=		
	d) None of the above	•		
254	Given the standard redu	ction potentials		
	$Zn^{2+}/Zn = -0.74 V$, C	$l_2 / Cl^- = 1.36 V$		
	$H^+/\frac{1}{2}H_2 = 0 V$ and F	o ²⁺ / Fo ³⁺ - 0.77 V		
	_			4
	The order of increasing s			21
~	-	=	c) Cl ⁻ , Fe ²⁺ , Zn, H ₂	d) Cl ⁻ , Fe ²⁺ , H ₂ , Zn
255				Na are 126.4, 425.9 and 91.0
	S cm ² mol ⁻¹ respectively	y. Λ_m for CH ₃ COOH will b	oe:	d) 390.5 S cm ² mol ⁻¹
256			$ \operatorname{Cu}(s) \operatorname{CuSO}_4(aq) \operatorname{AgNO}_4(aq) \operatorname{AgNO}_4(aq) $	
055			c) AgCl is precipitated	
257		_	ctively 127 and 76 Ω^{-1} cm	² at infinite dilution. The
	equivalent conductance			J) 101 F
250	a) 139.5	b) 203	c) 279	d) 101.5
250	8. The Gibbs energy for the	A		
	$\frac{2}{3}$ Al ₂ O ₃ $\rightarrow \frac{4}{3}$ Al + O ₂ , $\Delta_{\rm r}$	$G = +966 \mathrm{kJ} \mathrm{mol}^{-1}$		
	The potential difference	needed for electrolytic r	eduction of Al ₂ O ₃ at 500°C	is atleast :
	a) 5.0 V	b) 4.5 V	c) 3.0 V	d) 2.5 V
259	. Which of the following s	tatements (or equation)	is correct?	
	a) The units of cell emf a	re V. cm ⁻¹		
	b) $\Delta G = -\frac{nF}{E_{\text{cell}}}$			
	c) In galvanic cell, chemi	<u>.</u>	0,	
	d) Oxidation state of Mn		nate is +6	
260	. Faraday's law of electrol			
	a) Temperature is increa			
	b) Inert electrodes are u			
	c) A mixture of electroly			
261	d) In none of the above of		the area of the electrode a	and concentration and inversely
201			the unit of constant of pro	and concentration and inversely
	a) S m mol $^{-1}$	b) S m^2 mol ⁻¹		
262		•		n. However, it displaces Ag from
202	$AgNO_3$ solution. Which a			i. However, it displaces hig from
	a) Mg	b) Fe	c) Cu	d) Cd
263	5. For the cell reaction Fe +	,	_	a) sa
	a) One cell can be constr		F	
	b) Three different cells v		ssible	
			electrons used in redox rea	action are possible
	d) Three different cells v			
	,		. - - -	

264. Copper sulphate solution does not react with		
a) Zinc b) Iron	c) Silver	d) All of these
265. Rust is	- ,	.,
a) $FeO + Fe(OH)_2$	b) Fe ₂ O ₃	
c) $\operatorname{Fe}_2 \operatorname{O}_3 + \operatorname{Fe}(\operatorname{OH})_2$	d) $Fe_2 O_3$ and $Fe(OH)_3$	
266. The conductivity of strong electrolyte	, 2 3	
a) Increases on dilution slightly	b) Decreases on dilution	
c) Does not change with dilution	d) Depends upon density	y of electrolyte itself
267. An electric current of <i>c</i> ampere was passed through	h a solution of an electroly	te for $'t'$ second depositing P
g of the metal M on the cathode. The equivalent we	ight E of the metal will be:	
a) $F = \frac{c \times t}{c}$ b) $F = \frac{c \times P}{c}$	$_{C}$ = $_{D}$ = $_{D}$ = $_{D}$ = $_{D}$ = $_{D}$	d) $E = c \times t \times 9650$
a) $E = \frac{c \times t}{P \times 96500}$ b) $E = \frac{c \times P}{t \times 96500}$		
268. Cu ⁺ ion is not stable in aqueous solution be		tion reaction. E value for
disproportionation of Cu^+ is (given, $E_{Cu^{2+}/Cu^+}^{\circ} = 0$)	(15, $E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = 0.34 \text{ V}$) c) + 0.49 V	
269. The molar conductivities Λ°_{NaOAc} and Λ°_{HCl} at infin		
cm ² /mol respectively. To calculate Λ°_{HOAc} , the addition a) $\Lambda^{\circ}_{H_2O}$ b) Λ°_{KCl}	itional value required is	
270. The molar conductivity of NaCl, HCl and CH ₃ CO		
ohm ⁻¹ cm ² mol ⁻¹ respectively. The molar conducti	vity of CH ₃ COOH at infinite	e dilution is :
a) 201.28 ohm ⁻¹ cm ² mol ⁻¹		
b) 698.28 ohm ⁻¹ cm ² mol ⁻¹		
c) 390.71 ohm ⁻¹ cm ² mol ⁻¹	C Y	
d) 540.48 ohm ⁻¹ cm ² mol ⁻¹		
271. If the electrolyte used in problem 4 is $Ba(NO_3)_2$, the		
a) 628.56 mho ⁻¹ cm ² molb) 628.56 mho cm ² mol	_	-
272. The equivalent conductivity of KCl at infinite dilut		
ion in KCl at the same temperature is 0,505. The tra		
a) 0.495 b) 0.505 273. A cell in which electric current is produced by net o	c) 0.0495	d) Cannot be predicted
a) Voltaic cell b) Electrolytic cell		
274. Electrolysis of aq. Solution of LiCl shows:	c) concentration cen	uj None of these
a) pH < 7 b) pH = 7	c) pH > 7	d) No change
275. On the basis of the following E° values, the stronges	7 1	a) No change
$[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{3-} + e^-; E^\circ = -0.35 \text{ V}$		
$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$: $E^{\circ} = 0.77 \text{ V}$		
Fe ²⁺ \rightarrow Fe ³⁺ + e ⁻ ; $E^{\circ} = 0.77 \text{ V}$ a) Fe ²⁺ b) Fe ³⁺	c) [Fe(CN) ₆] ³⁻	d) $[Fe(CN)_6]^{4-}$
276. The specific conductance of 0.1 N KCl solution at 23	· · · · · · ·	
containing the solution at the same temperature wa		
a) 0.66 cm ⁻¹ b) 1.12 cm ⁻¹	c) 0.918 cm ⁻¹	d) 1.66 cm ⁻¹
277. 20 g of chlorine are evolved in 6 hour from sodium	chloride solution by the cu	rrent of :
a) 5 ampere b) 10 ampere	c) 2.5 ampere	d) 50 ampere
278. For the electrochemical cell, $M \mid M^+ \mid \mid X^- \mid X$,		
$E^{\circ}(M^{+} M) = 0.44 V, E^{\circ} = (X X^{-}) = 0.33 V. F$	rom this datAone can dedu	ce that
a) $E_{\text{cell}}^{\circ} = -0.77 V$		
b) $M^+ + X^- \rightarrow M + X$ is the spontaneous reaction	on	
c) $M + X \rightarrow M^+ + X^-$ is the spontaneous react	ion	
d) $E_{\text{cell}}^{\circ} = 0.77 V$		
279. The standard reduction potential of the reaction,		

a) $E^{\circ} = \frac{RT}{F} \operatorname{Iln} K_{w}$	b) $E^{\circ} = -\frac{RT}{F} \ln[P_{H_2}]^{1/2}$	[OH-]
F c) $E^{\circ} = -\frac{RT}{F} \ln \frac{[p_{H_2}]^{1/2}}{[H^+]}$	d) $E^{\circ} = -\frac{RT}{E} \ln K_W$	
L 3	Γ	
280. The correct order $E_{M^{2+}/M}^{\circ}$ values with negative sign		
 a) Cr > Mn > Fe > Co b) Mn > Cr > Fe > Co 281. The increase in equivalent conductivity of a weak each of the increase in degree of dissociation 		
b) Increase in ionic mobility		
c) Both (a) and (b)		
d) None of the above		
282. Resistance of 0.2 M solution of an electrolyte is 50 s		
If resistance of the 0.4M solution of the same electr		
a) $6250 \text{ Sm}^2 \text{ mol}^{-1}$	b) $6.25 \times 10^{-4} \text{ Sm}^2 \text{ mol}^2$	
c) $625 \times 10^{-4} \text{Sm}^2 \text{mol}^{-1}$	d) $62.5 \text{ Sm}^2 \text{ mol}^{-1}$	
283. When electric current is passed through a cell have		
cathode and the negative ions towards the anode. I a) The positive and the negative ions both will move		i the solution :
b) The positive and the negative ions both will move		Leton moving
c) The negative ions will continue to move towards		
d) The positive ions and the negative ions will start		s win stop moving
284. Cu^+ (aq) is unstable in solution and undergoes sim		duction, according to the
reaction		,
$2Cu^{+}(aq) \rightleftharpoons Cu^{2+}(aq) + Cu(s)$		
choose correct E° for the above reaction if	X) ^r	
$E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = 0.34 \text{V}, E_{\text{Cu}^{2+}/\text{Cu}^{+}}^{\circ} = 0.15 \text{V}$	C) Y	
a) -0.38 V b) +0.49 V	c) +0.38 V	d) -0.19 V
285. Standard electrode potential of NHE at 298 K is	c) 10.50 v	uj 0.17 v
a) 0.05 V b) 0.10 V	c) 0.50 V	d) 0.00 V
286. Agalvanic cell is constructed using the redox reacti	,	-,
$\frac{1}{2}H_2(g) + AgCl(s) \rightleftharpoons H^+(aq) + Cl^-(aq) + Ag(s)$ It is represented as	5)	
it is represented as		
Pt $H_2(g)$ HCl solution AgNO ₃ solution		
Ag		
b) $\frac{Ag \mid AgCl(s) \mid KCl \text{ solution} \mid \mid HCl \text{ solution} \mid}{\mid H_2(g) \mid Pt}$		
$ \Pi_2(g) $ Pt		
c) Pt H ₂ (g) KCl solution AgCl(s) Ag d) Pt H ₂ (g) , HCl solution AgCl(s) Ag		
287. Zn Zn^{2+} (A = 0.1 M) Fe ²⁺ (A = 0.01 M) Fe.		
The emf of the above cell is 0.2905 V. Equilibrium of	onstant for the cell reaction	is
a) $10^{0.32/0.0591}$ b) $10^{0.32/0.0295}$	c) 10 ^{0.26/0.0295}	d) $e^{0.32/0.0295}$
288. The conductance of a solution of an electrolyte is s	,	, ·
to have cell constant equal to:		
a) 1 b) Zero	c) 100	d) 10
289. A conductivity cell has two platinum electrodes of	•	•
constant is :	- *	
a) 0.66 cm ⁻¹ b) 1.5 cm ⁻¹	c) 0.96 cm ⁻¹	d) 0.66 cm
290. A current of i ampere was passed for t second the	rough three cells P,Q and F	R connected in series. These
contain respectively silver nitrate, mercuric nitra	te and mercurous nitrate. <i>I</i>	At the cathode of the cell P ,

	0.216 g of Ag was deposited. The weights of mercury a) 0.4012 and 0.8024 g b) 0.4012 and 0.2006 g		
291	Out of Cu, Al, Fe and Zn, metal which can displace al a) Al b) Cu	l others from their salt solu c) Zn	ntion is d) Fe
202	The equivalent conductances of two strong electroly	,	,
27 2	through a solution) at 25°C are given below	rtes at mininte unution in ri	₂ O (where lons move freely
	$\Lambda^{\circ}_{\text{CH}_{3}\text{COONa}} = 91.0 \text{ S cm}^{2}/\text{equiv}$		
	$\Lambda^{\circ}_{HCl} = 426.2 \text{ S cm}^2/\text{equiv}$		
	What additional information/quantity one needs to	calculate Λ° of an aqueous	solution of acetic acid?
	a) Λ° of NaCl		
	b) Λ° of CH ₃ COOK		
	c) The limiting equivalent conductance of $H^+(\lambda^{\circ}{}_{H^+})$		
	d) Λ° of chloroacetic acid (ClCH ₂ COOH)		
293	The emf of the cell		
	Ni Ni ²⁺ (1.0 M) Au ³⁺ (1.0 M) Au		0
	is $[E^{\circ} (Ni^{2+}/Ni) = -0.25 \text{ V} \text{ and}$		X.
	$E^{\circ} (Au^{3+}/Au) = +1.5 \text{ V}]$	4 (4	Y
	a) 2.00 V b) 1.25 V	c) -1.25 V	d) 1.75 V
294	The standard reduction potential for Fe ²⁺ /Fe and Si		
	respectively. For the given cell reaction, $Fe^{2+} + Sn$	\rightarrow Fe + Sn ²⁺ , the standard	emf is
	a) 0.42 V b) -0.42 V	c) -0.30 V	d) – 1.10 V
295	In Acell that utilises the reaction,		
	$Zn(s) + 2H^{+}(aq) \rightarrow Zn^{2+}(aq) + H_{2}(g)$	A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	addition of H ₂ SO ₄ to cathode compartment, will	V	
	a) Lower the <i>E</i> and shift the equilibrium to the left		
	b) Lower the <i>E</i> and shift the equilibrium to the right	¥	
	c) Increase the <i>E</i> and shift the equilibrium to the rig		
	d) Increase the E and shift the equilibrium to the left		
296	Which will increase the voltage of the cell $Sn(s) + 2$	$2Ag^{+}(aq) \rightarrow Sn^{2+}(aq) + 2$	Ag(s)?
	a) Increase in size of the silver rod		
	b) Increase in the concentration of Sn ²⁺ ions		
	c) Increase in the concentration of Ag ⁺ ions		
207	d) None of the above		
297	Given standard electrode potentials		
	$Fe^{2+} + 2e^{-} \rightarrow Fe$ $E^{\circ} = -0.440 \text{ V}$ $Fe^{3+} + 3e^{-} \rightarrow Fe$ $E^{\circ} = -0.036 \text{ V}$		
	The standard electrode potential (E°) for		
	$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$ is) + 0 44574	D 0 44 4 II
200	a) +0.772 V b) -0.772 V	c) +0.417 V	d) -0.414 V
298	Normal Al – AlCl ₃ coupled with normal hydrogen	n electrode gives an e.m.	i. of 1.66 v. The standard
	oxidation electrode potential of aluminium is:	a) 0.02 W	4) + 0.03 A
200	a) $-1.66 \mathrm{V}$ b) $+1.66 \mathrm{V}$	•	d) + 0.83 V
299	Which of the following statements is true for fuel cel		lution
	a) They are more efficient	b) They are free from pol	iution
200	c) They run till reactants are active	d) All of the above $\int_{0}^{2} dx dx = 1$ Civon $\int_{0}^{\infty} dx dx = 1$	74.1° - 66 and 1° -
300	The Λ^{∞} of NH ₄ OH at infinite dilution is S cn	$n = 4$. Given $n_{OH} = 1$	1.4 , n_{Cl} – oo and $n_{\text{NH}_4\text{Cl}}$ =
	$130 \mathrm{S} \mathrm{cm}^2 \mathrm{eq}^{-1}$:	.) 100	D 160
204	a) 238 b) 218	c) 198	d) 160
301	The metal that forms a self protecting film of oxide t		J) A
	a) Na b) Al	c) Cu	d) Au

302. The number of Faraday's	needed to reduce 4 g-equiv	valents of Cu ²⁺ to Cu metal	will be
a) 1	b) 2	c) 4	d) 8
303. The atomic weight of Al wt.of Al deposited is :	is 27. When a current of 5	faraday is passed through	a solution of Al ³⁺ ions, the
a) 27 g	b) 36 g	c) 45 g	d) 9 g
304. Which is correct representation a) $\Delta G^{\circ} = -2.303 RT \log G$ b) $E^{\circ} = \frac{2.303 RT}{nF} \log K_{eq}$. c) $-\Delta G^{\circ} = RT \ln K_{eq}$. d) All of the above.	——————————————————————————————————————	ium?	
305. Consider the following <i>E</i>	o values		
$E^{\circ}_{Fe^{3+}/Fe^{2+}} = +0.77 \text{ V}$	values		A Y
$E^{\circ}_{\text{Sn}^2+/\text{Sn}} = -0.14 \text{ V}$			
•	na the notential for the read	ation	
Sn(s) + 2Fe ³⁺ (aq) \rightarrow 2F	ns, the potential for the reac $e^{2+}(gg) + Sp^{2+}(gg)$ is	CUOII	
a) -0.91 V	b) + 0.91 V	c) -0.41 V	d) + 0.41 V
306. According to Kohlrausch	-	,	-
by:	s law the minting value of	equivalent conductivity of	an electrolyte 112D is given
_	1	1	2200 . 200
a) $\lambda_{A^+}^{\infty} + \lambda_{B^{-2}}^{\infty}$	b) $\frac{1}{2}\lambda_{A^+}^{\infty} + \lambda_{B^{-2}}^{\infty}$	c) $\lambda_{A^+}^{\infty} + \frac{1}{2} \lambda_{B^{-2}}^{\infty}$	d) $2\lambda_{A^+}^{\infty} + \lambda_{B^{-2}}^{\infty}$
307. Standard reduction poter	ntial of an element is equal t	to:	
a) + 1 \times its reduction po	otential		
b) $-1 \times its$ standard oxi	dation potential		
c) 0.00 V			
d) + 1 \times its standard oxi			
308. Rusting of iron is catalyse			
a) Fe	b) Zn	c) 0 ₂	d) H ⁺
309. The equivalent conductiv			
	ng 15 g acid (mol. wt. 49)) in 1 litre is 18.5 ohm	cm, what is the degree of
dissociation of acid?	b) 40.2%	a) 60 40/	d) E0 70/
a) 45.9% 310. The standard reduction p	2	c) 60.4%	d) 50.7%
310. The standard reduction r	— 1 0 76 V	is are	
$Zn = Zn^{2+} + Ze$ E° $Fe = Fe^{2+} + Ze$ E°	— + 0.70 V — + 0.41 V		
The emf of the cell reacti			
$Fe^{2+} + Zn = Zn^{2+} +$			
a) - 0.35 V	b) +0.35	c) +1.17 V	d) -1.`17 V
311. If a salt bridge is remove	,	•	-,
a) Drops to zero	b) Does not change	=	d) Increase rapidly
312. The standard oxidation p	,	, ,	•
-0.80 and +0.25 V respec	ctively. Which of the following	ng reaction will provide ma	aximum voltage?
a) Cu + 2 Ag ⁺ (aq) \rightarrow	$Cu^{2+}(aq) + 2 Ag$	b) $Zn + 2 Ag^+ (aq) \rightarrow Z$	$\ln^{2+}(aq) + 2 \operatorname{Ag}$
c) $H_2 + Ni^{2+} (aq) \rightarrow 2$	$H^+(aq) + Ni$	d) $Zn + Cu^{2+}(aq) \rightarrow Zr$	$n^{2+}(aq) + Cu$
313. An apparatus used for th	e measurement of quantity	of electricity is known as a	:
a) Calorimeter	b) Cathetometer	c) Coulometer	d) colorimeter
314. For the cell prepared fro	m electrode A and B ; Electr	ode A : $\operatorname{Cr}_2\operatorname{O}_7^{2-} \operatorname{Cr}^{3+}, \operatorname{E}_{\operatorname{red}}^{\circ}$	= +1.33 V and Electrode B
: $Fe^{3+} Fe^{2+}, E_{red}^{\circ} = 0.77$	V. Which of the following sta	atement is correct?	
a) The electrons will flow	v from B to A when connect	ion is made	
b) The e.m.f. of the cell w	ill be 0.56 V		

	c) A will be positive electrode		
~-	d) All of the above		
315.	Which colourless gas evolves when NH ₄ Cl		
	a) NH ₃ b) N ₂	c) H ₂	d) Cl ₂
316.	The standard E_{red}° values of A , B and C are	e +0.68 V, - 2.54 V, - 0.50 V resp	ectively. The order of their
	reducing power is		
	a) $A > B > C$ b) $A > C > B$	c) $C > B > A$	d) $B > C > A$
317.	Based on the data given below, the correc	order of reducing power is :	
	$Fe^{3+}(aq) + e \rightarrow Fe^{2+}(aq); E^{\circ} = +0.77 \text{ N}$,	
	$Al^{3+}(aq) + 3e \rightarrow Al(s); E^{\circ} = -1.66 V$		X
	$\mathrm{Br}_2\left(aq\right) + 2e \longrightarrow 2\mathrm{Br}^-(aq); E^\circ = +1.08$		
	a) $Br^- < Fe^{2+} < Al$ b) $Fe^{2+} < Al <$	Br^- c) Al $< Br^- < Fe^{2-}$	d) Al $< Fe^{2+} < Br^{-}$
318.	Small quantities of solutions of compound	s TX , TY and TZ are put into se	parate test tubes containing X , Y
	and Z solutions. TX does not react with an	y of these. TY reacts with both	X and Z . TZ reacts with X . The
	decreasing order of ease of oxidation of th	e anions X^-, Y^-, Z^- is	
	a) Y^-, Z^-, X^- b) Z^-, X^-, Y^-	c) Y^-, X^-, Z^-	d) X^-, Z^-, Y^-
319.	What flows in the internal circuit of Agalv	anic cell?	CAY
	a) Ions b) Electrons	c) Electricity	d) Atoms
320.	The standard electrode potential of Zn ²	$^{-}$ /Zn and Ag $^{+}$ /Ag are -0.763 V	V and $+0.799$ V respectively. The
	standard potential of the cell is		Y
	a) 1.56 V b) – 1.56 V	c) 0.036 V	d) — 0.036 V
321.	Consider the following E° values		
	$E^{\circ}_{Fe^{3+}/Fe^{2+}} = +0.77 V$		
	$E^{\circ}_{\text{Sn}^{2+}/\text{Sn}} = -0.14 V$		
	Under standard conditions the potential for	or the reaction	
	Sn (s) + 2Fe ³⁺ (aq) \rightarrow 2Fe ²⁺ (aq) + Sn		
	a) 1.68 V b) 1.40 V	c) 0.91 V	d) 0.63 V
322	The standard electrode potential for the h		uj 0.03 v
322.	$Zn^{2+} + 2e^{-} \rightarrow Zn$; $E^{\circ} = -0.76 \text{ V}$	an – cen reactions are	
	Fe ²⁺ + 2e ⁻ \rightarrow Fe; E° = -0.44 V		
	The emf of the cell reaction, $Fe^{2+} + Zn \rightarrow Zn^{2+} + Fe$ is		
	a) -0.32 V b) -1.20 V	a) +1.20 V	4) +0.22 W
222	The reduction potential of hydrogen half-	c) +1.20 V	d) +0.32 V
323.		_	ad [U+] = 1.0 M
	a) $p(H_2) = 1$ atm and $[H^+] = 2.0$ M c) $p(H_2) = 2$ atm and $[H^+] = 1.0$ M	b) $p(H_2) = 1$ atm and	
224		d) $p(H_2) = 2$ atm at	
324.	Give the products available on the cathodo		iring the electrolysis of an
	aqueous solution of MgSO ₄ between inert		d) 0 (g) and 00 (g)
225	a) $H_2(g)$ and $O_2(g)$ b) $O_2(g)$ and $H_2(g)$		2 - 1-1
325.	Which of the following statements is not a	-	ctors?
	a) A single stream of electrons flows from		
	b) Show a positive temperature coefficien		
	c) New products show up at the electrode		
226	d) Ions are responsible for carrying the cu		1
3 2 6.	Which of the following expressions corre		
	${\rm Al}_2({\rm SO}_4)_3.$ Given that $\Lambda_{{\rm Al}^{3+}}^{\infty}$ and $\Lambda_{{\rm SO}_4^{2-}}^{\infty}$ are	me equivalent conductances a	t infinite unution of the respective
	ions?		
	a) $2\Lambda_{Al^{3+}}^{\infty} + 3\Lambda_{SO^{2-}}^{\infty}$ b) $2\Lambda_{Al^{3+}}^{\infty} + \Lambda_{SO}^{\infty}$	$(1)^{1/2}$ c) $(\Lambda_{Al^{3+}}^{\infty} + \Lambda_{SO^{2-}}^{\infty})$	$\times 6$ d) $\frac{1}{2} \Lambda_{\Lambda 1^{3+}}^{\infty} + \frac{1}{2} \Lambda_{SO^{2-}}^{\infty}$

327. Conductivity of a strong electrolyte

a) Decreases on dilution	b) Increases on dilution	
c) Does not change considerably on dilution	d) Depends on density	
328. Which of the following compounds will not undergo	decomposition on passing	g electricity through aqueous
solution?		
a) Sugar b) Sodium acetate	c) Sodium chloride	d) Sodium bromide
329. Which loses charge at cathode?		
a) Ions		
b) Cations		
c) Anions		
d) Both anions and cations		
330. An electrochemical cell is set up as follows		
$Pt(H_2, 1 atm) \mid 0.1 M HCl \mid \mid 0.1 M acetic acid \mid$		
(H ₂ , 1 atm)Pt Emf		
of this cell will not be zero because		
The pH of 0.1 M HCl and 0.1 M acetic acid is	b) Acids used in two com	partments are different
a) not the same	•	V
c) Emf of a cell depends on the molarities	d) The temperature is co	nstant
of acids used		>
331. Which of the following reactions cannot be Abase for	r electrochemical cell?	
a) $H_2 + O_2 \rightarrow H_2O$		
b) $AgNO_3 + Zn \rightarrow Zn (NO_3)_2 + Ag$		
c) $AgNO_3 + NaCl \rightarrow AgCl \downarrow + NaNO_2$		
d) $\frac{\text{KMnO}_4 + \text{FeSO}_4 + \text{H}_2\text{SO}_4 \rightarrow}{\text{K}_2\text{SO}_4 + \text{Fe}_2(\text{SO}_4)_3 + \text{MnSO}_4 + \text{H}_2\text{O}}$		
$^{\text{U}_{3}} \text{K}_{2}\text{SO}_{4} + \text{Fe}_{2}(\text{SO}_{4})_{3} + \text{MnSO}_{4} + \text{H}_{2}\text{O}$		
332. The emf of a galvanic cell, with electrode potentials of	of silver $= +0.80 \text{ V}$ and the	at of copper $= +0.34$ V, is
a) + 0.46 V b) + 0.66 V	c) + 0.86 V	d) – 0.66 V
333. The standard oxidation potentials of Zn and Ag in wa	ater at 25°C are,	
$Zn(s) \to Zn^{2+} + 2e; E^{\circ} = 0.76 V$		
$Ag(s) \rightarrow Ag^+ + e; E^\circ = -0.80 \text{ V}$		
Which reaction actually takes place?		
a) $\operatorname{Zn}(s) + 2\operatorname{Ag}^+(aq) \to \operatorname{Zn}^{2+}\operatorname{Ag}(s)$		
b) $Zn^{2+} + 2Ag^{+}(s) \rightarrow 2Ag^{+}(aq) + Zn(s)$		
c) $\operatorname{Zn}(s) + 2\operatorname{Ag}(s) \to \operatorname{Zn}^{2+}(aq) + \operatorname{Ag}^{+}(aq)$		
d) $\operatorname{Zn}^{2+}(aq) + \operatorname{Ag}^{+}(aq) \to \operatorname{Zn}(s) + \operatorname{Ag}(s)$		
334. Amount of electricity that can deposit 108 g of silver	from AgNO ₃ solution is	
a) 1 F b) 1 A	c) 1 C	d) None of these
335. Also the $[H^+]$ for problem 9 using the same data is :		
a) 0.00133 <i>M</i> b) 0.133 <i>M</i>	c) 0.0133 <i>M</i>	d) None of these
336. A hydrogen electrode placed in a buffer solution of	${ m CH_3COONa}$ and acetic acid	I in the ratio's $x : y$ and $y : x$
has electrode potential values E_1 volt and E_2 volt	respectively at 25°C. The	pKa values of acetic acid is
$(E_1 \text{ and } E_2 \text{ are oxidation potential})$:		
a) $\frac{E_1 + E_2}{0.118}$ b) $\frac{E_2 - E_1}{0.118}$		
0.118		
b) $\frac{E_2 - E_1}{2.112}$		
c) $\frac{E_1 + E_2}{0.118}$		
d) $\frac{E_1 - E_2}{0.118}$		
337. When an electric current is passed through acidulate	ed water, 112 mL of hydro	gen gas at STP collects at the

cathode in 965 second. The current passed, in ampere is :

- - -

	2.4.0	1305) 0.4	D 2 0	
220	a) 1.0	b) 0.5	c) 0.1	d) 2.0	
338	38. The hydrogen electrode is dipped in Asolution of pH 3 at 25°C. The potential would be (the value of 2.303				
	RT /F is 0.059 V)	1.) 0.00777		D 0.455.V	
000	a) 0.177 V	b) 0.087 V	_	d) -0.177 V	
339	-	wing cell is 0.34 V at 25°C	C. Calculate the standard red	luction potential of the	
	copper half-cell.				
	$Pt \mid H_2(1 \text{ atm}) \mid H^+(1 \text{ M})$				
	a) -3.4 V	b) +3.4 V	c) -0.34 V	d) +0.34 V	
340	_	= = =	pH = 3 at 25° C. The potenti	al of the cell would be	
	(the value of $\frac{2.303RT}{T}$ is 0	.059 V)			
	a) 0.059 V	b) 0.088 V	c) 0.178 V	d) -0.177 V	
341	,	•	rted into chemical energy is	,	
011	a) Voltameter	b) Coulometer	c) Both (a) and (b)	d) None of these	
342	. When 1 F of electricity is		, , , , , ,	d) Holle of these	
512	a) 1.0 dm^3	b) 5.6 dm ³	c) 11.2 dm ³	d) 22.4 dm ³	
2/2	,	•	,	26 s. The amount of copper	
343	deposited is:	A was passed tillough	cuso ₄ solution for 6 mm	20 s. The amount of copper	
	(Atomic weight of $Cu = 6$	2 E) (1 E — 06E00 C)		>	
	a) $0.3175 \mathrm{g}$	b) 3.0175 g	c) 7.0135 g	d) 6.0275 g	
211	. The potential of the cell fo	_	C) 7.0155 g	u) 0.0273 g	
344			11 M)'		
	$M(s) + 2H^{+}(1M) \rightarrow H$				
	is 1.500 V. The standard i	-		J. N of the sec	
245	a) 0.1470 V	b) 1.470 V	c) 14.70 V	d) None of these	
345				loubled, the e.m.f. of the cell:	
246	a) Doubles	b) Reduces to half		d) Becomes zero	
346				no $cm^2 eq^{-1}$ respectively. The	
	equivalent conductivity o	_		1) 54.00	
0.45	a) 548.3	b) 151.3	c) 699.6	d) 54.83	
34/		vity of a solution conta	aining 2.54 g of $CuSO_4$ pe	er L is $91.0 \Omega^{-1} \text{ cm}^2 \text{ eq}^{-1}$. Its	
	conductivity would be	1222221 2	3.0.1.1.0-4.0-1.2	12.0 (10.2 0.1 2	
0.40	- ·		c) $2.4 \times 10^{-4} \Omega^{-1} \text{cm}^2$	-	
348			-	lity of an oxidant in a redox	
			rd potentials are given belo	ow;	
	$MnO_4^-(aq) + 8H^+(aq) +$				
		$H_2O; E^\circ = 1.51 V$			
	$\operatorname{Cr}_2 \operatorname{O}_7^{2-}(aq) + 14 \operatorname{H}^+(aq)$				
	$2Cr^{3+}(aq) + 7I$	2			
	$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}($	• •			
	$Cl_2(g) + 2e^- \rightarrow 2Cl^- (c)$	- ·			
			e quantitative estimation of	f aqueous Fe(NO ₃) ₂ :	
	a) MnO_4^- can be used in				
	b) $Cr_2O_7^{2-}$ can be used in				
	c) MnO_4^- can be used in				
	d) $Cr_2O_7^{2-}$ can be used in	aqueous H ₂ SO ₄			
349	. The standard H electrode	is written as :			
	a) Pt, H_2 , $H^+(a = 1)$				
	b) $PtH_2/H^+(a = 1)$				
	c) $PtH_2(g)(1 atm)/H^+(a$	= 1)			
	d) None of the above				
350	. Standard electrode poten	tial of cell H ₂ H ⁺ Ag ⁺	Ag is		

a) 0.8 V	b) -0.8 V	c) -1.2 V	d) 1.2 V
351. A dilute solution of Li ₂ S	50_4 is electrolyzed. The pr	roducts formed at the an	ode and cathode, respectively are
:			
a) S and Li	b) O ₂ and Li	c) SO_2 and O_2	d) O_2 and H_2
352. 3 F electricity was pass	ed through an aqueous so	lution of iron (II) bromid	le. The weight of iron metal (at.
Wt. $= 56$) deposited at	the cathode (in g) is		
a) 65	b) 84	c) 112	d) 168
353. 5 A is passed through a	solution of zinc sulphate	for 40 min. Find the amo	unt of zinc deposited at the
cathode			
a) 4.065 g	b) 8.065 g	c) 16.065 g	d) 32.065 g
354. Saturated solution of K	•		
	and NO_3^- are nearly the s	ame	
b) Velocity of K ⁺ is grea			4
c) Velocity of NO ₃ is gr			
d) KNO ₃ is highly solub 355. The calomel electrode i			0 7
a) Standard hydrogen			
b) Reference electrode	:lectione	4	
c) Platinum electrode			
d) Mercury electrode			
356. Calculate the emf of the	· cell		
Cu (s) Cu ²⁺ (aq) Ag			
Given,	(-1) 18 (-)		
$E_{\text{Cu}^{2+}/\text{cu}}^{\circ} = +0.34 V$,	$E_{\Lambda}^{\circ} = 0.80 V$.	C V	
a) +0.46 V	b) +1.14 V	c) +0.57 V	d) -0.46 V
357. The electrolytic conduc		2	u) 0.10 v
a) Resistance	b) Potential	c) Dissociation	d) Concentration
358. On the basis of electroc	· 4 1 J	,	
a) $O_2(g) + 4H^+(aq) + 4H^+(aq)$		b) $H_2(g) + 20H^-(aa)$	_
c) $Fe(s) \rightarrow Fe^{2+}(aq) +$		d) $Fe^{2+}(aq) \rightarrow Fe^{3+}$	
		$< 10^3 \Omega$. The equivalent c	onductance of the solution is
(cell constant = 1.25 cm		1	
a) $2.5\Omega^{-1}$ cm ² equiv ⁻¹		b) $5.0\Omega^{-1}$ cm ² equiv	,-1
c) $2.5\Omega^{-1}$ cm ⁻² equiv		d) $5.0\Omega^{-1}$ cm ⁻² equiv	
360. In a concentration cell:		a) 5.012 cm equ	ıv
a) Two electrodes are of	of different elements		
	itions of the same electrol	vte but having different o	concentrations are used
	rength but electrodes of tv	=	
d) Both (b) and (c)	8		
361. Using the following dat	a, for the electrode potent	tials calculate ΔG° , in kJ, f	or the indicated reaction
	$0 + 4H_2O(l) \rightarrow 5Ce^{3+}(aq)$		
$MnO_{4}^{-}(aq) + 8H^{+}(aq)$	$+ 5e^- \rightarrow Mn^{2+}(aq) + 4H_2$	$E_0(l) E^{\circ} = +1.51 \text{ V}$	
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	$(aq) E^{\circ} = +1.61 V$		
a) -36.24	b) -48.25	c) -31.54	d) -19.65
362. During electrolysis of a	n aqueous solution of Cu	$^{2+}$ sulphate, 0.635 g of c	copper was deposited at cathode.
The amount of electrici	ty consumed in coulomb i	s:	
a) 1930	b) 3860	c) 9650	d) 4825
363. Each of the three metal	-	-	
, ,	Y(or Z) + Salt of X. Which	observation is probably	incorrect?
a) $Y + \text{Salt of } X = \text{No ac}$	ction observed		

	b) $Y + \text{Salt of } Z = \text{Nothing can be decided}$				
	c) $Z + \text{Salt of } X = X + \text{Salt of } Z$				
	d) $Z + \text{Salt of } X = \text{No action observed}$				
364	. During the charging of lea	nd storage battery, the reac	tion at anode is represente	ed by :	
	a) $Pb^{2+} + SO_4^{2-} \longrightarrow PbSO$	4			
	b) $PbSO_4 + H_2O \rightarrow PbO_2$	$2 + SO_4^{2-} + 2H^+$			
	c) Pb \rightarrow Pb ²⁺ + 2e				
	d) $Pb^{2+} + 2e \rightarrow Pb$				
365	. Which of the formula give	en below is correct?			
	a) $\kappa = \frac{1}{2} \times \frac{1}{2}$	b) $\kappa = C \times \frac{1}{a}$	c) $\Lambda_{eq} = \kappa \times V_{\text{in mL}}$	d) All of these	
266		a quired to generate 1 g-ator		4 7	
300	a) 1	b) 2	c) 3	d) 4	
367	•	molten NaCl solution, 230	•		
307	=	ine will be obtained at anoc	= = =	ited off the cathode, then	
	a) 10.0	b) 5.0	c) 35.5	d) 17.0	
368	-		,	lume was made 350 mL. An	
300	Ag electrode was dipped i	in the solution. $Pt(H_2) H^+$	(1 M) Ag ⁺ Ag		
	The E_{cell} is 0.503 V at 298	K. The percent of lead in t	the ore is $\left(E_{Ag}^{\circ}\right)_{Ag} = 0.80 \text{ V}$	V	
	a) 0.033%	b) 0.050%	c) 0.066%	d) 0.13%	
369	,	vity of $0.05 N$ solution of a		$^{\circ}$ nho cm 2 eq $^{-1}$.If equivalent	
				ne temperature. What is its	
	degree of dissociation?			1	
	a) 0.04514	b) 0.4514	c) 4.514	d) 0.004514	
370	. What is the potential of th	ne cell containing two hydro	ogen electrodes as represe	nted ahead,	
	1	H ⁺ (0.001 <i>M</i>) 1/2H ₂ (g)Pt?	7		
	2 205 V	b) - 0.0591 V	c) 0.295 V	d) 0.0591 V	
271	The standard omf for the	given cell reaction $7n \pm C$	0.293 V 0.293 V 0.273 V		
3/1	371. The standard emf for the given cell reaction, $Zn + Cu^{2+} \rightarrow Cu + Zn^{2+}$ is 1.10 V at 25°C. The emf for the cell reaction, when 0.1 M Cu^{2+} and 0.1 M Zn^{2+} solutions are used, at 25°C, is				
	a) 1.10 V	b) -1.10 V	c) 2.20 V	d) -2.20 V	
372	•			of copper is placed in each.	
3, <u>2</u>	Which solution finally tur		te test tabes and a strip t	or copper is placed in each.	
		b) Zn(NO ₃) ₂	c) AgNO ₃	d) $Cd(NO_3)_2$	
373				cells containing solutions of	
0.0				posited in the first cell, the	
	amount of chromium dep			, , , , , , , ,	
	(at. wt. $Ni = 59$, $Cr = 52$)				
	a) 0.1 g	b) 0.17 g	c) 0.3 g	d) 0.6 g	
374		of KCl, NaCl and KNO ₃ are 1	, ,	, ,	
4	the molar conductivity of		•	1 5	
		b) 87 S cm ² mol ⁻¹	c) $-101 \mathrm{S} \mathrm{cm}^2 \mathrm{mol}^{-1}$	d) $-391 \text{S cm}^2 \text{mol}^{-1}$	
375		of weak electrolytes is influ		•	
	a) Temperature	J	•		
	b) Concentration of elect	rolyte			
	c) Nature of solvent	•			
	d) All of the above				
376	376. At 25°C temperature, the cell potential of a given electrochemical cell is 1.92 V. Find the value of <i>x</i> .				
	$Mg(s) Mg^{2+}(aq) x M Fe^{2+}(aq) 0.01 M Fe(s)$				
	$E^{\circ} \operatorname{Mg}/\operatorname{Mg}^{2+}(aq) = 2.3$	$87 V E^{\circ} \text{ Fe/ Fe}^{2+}(aq) = 0.$	45 <i>V</i>		

a) x = 0.01 M

b) x < 0.01 M

c) x > 0.01 M

- d) x cannot be predicted
- 377. The corrosion of iron object is favoured by :
 - a) Presence of H⁺ ion
 - b) Presence of moisture in air
 - c) Presence of impurities in iron object
 - d) All of the above
- 378. The cathodic reaction of a dry cell is represented by

$$2MnO_2(s) + Zn^2 + 2e^- \rightarrow ZnMn_2O_4(s)$$

If, there are 8 g of MnO₂ in the cathodic compartment then the time for which the dry cell will continue to give a current of 2 mA is

- a) 25.675 day
- b) 51.35 day
- c) 12.8 day

379. The standard emf of the cell,

$$Cd(s) | CdCl_2(aq)(0.1 M) | | AgCl(s) | Ag(s)$$

In which the cell reaction is

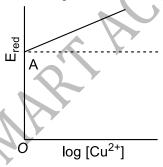
$$Cd(s) + 2AgCl(s)$$

$$\rightarrow$$
 2 Ag (s) + Cd²⁺ (aq) + 2Cl⁻ (aq)

is 0.6915 V at 0°C and 0.6753 V at 25 °C. The enthalpy change of the reaction at 25°C is

- a) -176 kJ
- b) -234.7 kJ
- c) +123.5 kJ
- d) -167.26kJ
- 380. The factor which is not affecting the conductivity of any solution is
 - a) Temperature
- b) Dilution
- c) Nature of electrolyte
- d) None of these
- 381. The standard reduction potential for the half-cell having reaction

$$NO_3^-(aq) + 2H^+(aq) + e^- \rightarrow NO_2(g) + H_2O$$


Is 0.78 V. What will be the reduction potential of the half-cell is a neutral solution?

- a) 0.78 V
- b) 0.89 V
- c) 0.36 V
- 382. Two different electrolytic cells filled with molten Cu(NO₃)₂ and molten Al(NO₃)₃ respectively are connected in series. When electricity is passed 2.7 g Al is deposited on electrode. Calculate the weight of Cu deposited on cathode.

$$[Cu = 63.5; Al = 27.0 \text{ g mol}^{-1}]$$

- a) 190.5 g
- c) 63.5 g
- d) 31.75 g

- 383. 1 volt coulomb is:
 - a) Equal to 1 joule
- b) Equal to 10^7 erg
- c) An unit of energy
- d) All of these
- 384. $Cu^{2+} + 2e \rightarrow Cu$; $log[Cu^{2+}] vs. E_{red}$ graph is of the type as shown in figure where OA = 0.34 V, then electrode potential of the half cell of Cu $|Cu^{2+}(0.1 M)|$ will be :

- b) 0.34 + 0.0591 V
- c) 0.34 V
- d) None of these

- 385. If ϕ denotes standard reduction potential, which is true:
 - a) $E_{\text{cell}}^{\circ} = \phi_R \phi_L$
- b) $E_{\text{cell}}^{\circ} = \phi_L + \phi_R$ c) $E_{\text{cell}}^{\circ} = \phi_L \phi_R$ d) $E_{\text{cell}}^{\circ} = (\phi_L + \phi_R)$
- 386. A substance that will reduce Ag⁺ to Ag but will not reduce Ni²⁺ to Ni is:

b) Pb

- d) Al
- 387. The correct order of the mobility of the alkali metal ions in aqueous solution is:
 - a) $K^+ > Rb^+ > Na^+ > Li^+$

- b) $Rb^+ > K^+ > Na^+ > Li^+$ c) $Li^+ > Na^+ > K^+ > Rb^+$ d) $Na^+ > K^+ > Rb^+ > Li^+$ 388. Calculate the volume of H₂ gas at NTP obtained by passing 4 A through acidified H₂O for 30 min is c) 0.1672 L a) 0.0836 L b) 0.0432 L d) 0.836 L 389. Resistance of a conductivity cell filled with a solution of an electrolyte of concentration 0.1 M is 100Ω . The conductivity of this solution is 1.29 S m⁻¹. Resistance of the same cell when filled with 0.2 M of the same solution is 520Ω . The molar conductivity of 0.02 M solution of the electrolyte will be a) $124 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$ b) $1240 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$ c) $1.24 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$ d) $12.4 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$ 390. Ionic mobility of Ag⁺ at infinite dilution is: $(\lambda_{Ag^{+}}^{0} = 5 \times 10^{-3} \, \text{S m}^{2} \, \text{eq}^{-1})$ a) 5.2×10^{-8} b) 2.4×10^{-8} c) 1.52×10^{-8} 391. The number of electrons passing per second through a cross-section of copper wire carrying 10^{-6} ampere c) 6.2×10^{10} a) 6.2×10^{23} b) 6.2×10^{12} d) None of these 392. The amount of substance deposited by the passage of 1 A of current for 1 s is equal to a) Equivalent mass b) Molecular mass c) Electrochemical equivalent d) Specific equivalent 393. 9.65 C electric current is passed through fused anhydrous MgCl₂. The magnesium metal thus obtained is completely converted into a Grignard reagent. The number of moles of Grignard reagent obtained is b) 1×10^{-4} a) 5×10^{-4} 394. Which one is correct relation: a) $\Delta S = \left(\frac{\partial E}{\partial T}\right)_{P} \times nF$ b) $\left(\frac{\partial E}{\partial T}\right)_{R} = \frac{\Delta G - \Delta H}{T}$ c) $\left(\frac{\partial E}{\partial T}\right)_{D} = \frac{\partial (\Delta S)}{\partial T}$ d) $-\Delta S = \left(\frac{\partial E}{\partial T}\right)_{n} \times nF$ 395. A current is passed through two voltameters connected in series. The first voltameter contains XSO_4 (aq) while the second voltameter contains Y_2SO_4 (aq). The relative atomic masses ox X and Y are in the ratio of 2 : 1. The ratio of the mass of *X* liberated to the mass of *Y* liberated is : **b**) 1 : 2 d) None of these c) 2:1396. Given, standard electrode potentials $Fe^{2+} + 2e^{-} \rightarrow Fe, E^{\circ} = -0.440 \text{ V}$ $Fe^{3+} + 3e^{-} \rightarrow Fe, E^{\circ} = -0.036 \text{ V}$ The standard electrode potential (E°) for $Fe^{3+} + e^{-} \rightarrow Fe^{2+}$ is a) + 0.771 Vb) -0.771 Vd) - 0.417 V397. The standard cell potential for the cell is : $Zn \mid Zn^{2+}(1M) \mid |Cu^{2+}(1M)|Cu$ E° for $Zn^{2+}/Zn = -0.76$; E° for $Cu^{2+}/Cu = +0.34$ a) -0.76 + 0.34 = -0.42 Vb) -0.34 - (-0.76) = +0.42 Vc) 0.34 - (-0.76) = +1.10 V
- 398. The speed of migration of Ag^+ ion and NO_3^- ion are 0.00057 cm sec^{-1} and 0.00063 cm sec^{-1} at infinite dilution. The equivalent conductivity of $AgNO_3$ at infinite dilution is:
 - a) 140.2

d) -0.76 - (+0.34) = -1.10 V

- b) 130.1
- c) 120.8
- d) 115.8

39	9. In electrochemical corrosion of metals	s, the metal ui	ndergoing corrosic	n:		
	a) Acts as anode b) Acts as c	athode	c) Undergoes re	eduction	d) None of these	
40	0. Which does not get oxidised by bromi	ne water?				
	a) Fe ²⁺ to Fe ³⁺ b) Cu ⁺ to Cu	ı ²⁺	c) Mn ²⁺ to MnO	_ 4	d) Sn ²⁺ to Sn ⁴⁺	
40	1. 3 faraday of electricity is passed thro	ugh molten A	l_2O_3 , aqueous solu	ıtion of Cı	ıSO₄ and molten N	NaCl taken
	in three different electrolytic cells. The					
	ratio of :		-			
	a) 1 mole: 2 mole: 3 mole					
	b) 3 mole : 2 mole : 1 mole					
	c) 1 mole : 1.5 mole : 3 mole					CV
	d) 1.5 mole : 2 mole : 3 mole				4	
40	2. In Agalvanic cell, the electrons flow fro	om				> '
	a) Anode to cathode through the solut	ion	b) Cathode to ar	node thro	ugh the solution	,
	c) Anode to cathode through the exter	nal circuit	d) Cathode to ar	node thro	ugh the external ci	ircuit
40	3. Which of the following reactions is con	rect for a giv	en electrochemica	l cell at 25	5 °C?	
	$Pt Br_2(g) Br^-(g) Cl^-(aq) Cl_2(g)$	Pt		4		
	a) $2Br^{-}(aq) + Cl_{2}(g) \rightarrow 2Cl^{-}(aq) +$		b) $Br_2(g) + 20$	Cl ⁻ (aq) -	\rightarrow 2Br ⁻ (aq) + Cl	l ₂ (g)
	c) $Br_2(g) + Cl_2(g) \rightarrow 2Br^-(aq) +$				$\rightarrow Br_2(g) + C$	
40	4. Which gains electrons more easily?			1	_ (6)	2 (0)
	a) H ⁺ b) Na ⁺		c) K ⁺		d) Mg ²⁺	
40	5. Two electrolytic cells, one containing	acidified fer		another a	acidified ferric ch	loride are
	connected in series. The ratio of iron					
	through the cells will be:	•			•	•
	a) 3:1 b) 2:1	d	c) 1:1		d) 3:2	
40	6. Limiting molar conductivity of NH ₄ OF	I, i.e., Å μ(N	(H ₄ OH) is equal to	:	-	
	a) $\mathring{\Lambda}_{m}(NH_{4}OH) + \mathring{\Lambda}_{m}(NH_{4}CI) - \mathring{\Lambda}_{r}$		4,7,11,11			
	b) $\mathring{\Lambda}_{m}(NH_{4}CI) + \mathring{\Lambda}_{m}(NaOH) - \mathring{\Lambda}_{m}(NaOH)$		Y			
	c) $\mathring{\Lambda}_{m}(NH_{4}Cl) + \mathring{\Lambda}_{m}(NaCl) - \mathring{\Lambda}_{m}(NaCl)$					
	d) $\mathring{\Lambda}_{m}(NaOH) + \mathring{\Lambda}_{m}(NaCl) - \mathring{\Lambda}_{m}(NaCl)$					
4.0		іп4Сі)				
40	17. Given: i) $Cu^{2+} + 2e^{-} \rightarrow Cu$, $E^{\circ} = 0.337 \text{ V}$					
	ii) $Cu^{2+} + e^{-} \rightarrow Cu^{+}, E^{\circ} = 0.153 \text{ V}$					
	Electrode potential, E° for the reaction					
	$Cu^+ + e^- \rightarrow Cu$, will be:	1,				
	a) 0.38 V b) 0.52 V		c) 0.90 V		d) 0.30 V	
4.0	18. The reaction taking place at anode	when an agu	,	CuSO ic	,	a inert Dt
40	electrode:	wiieli ali aqu	leous solution of	Cu3O ₄ 13	electrolysed usin	gillertit
	a) $2SO_4^{2-} \rightarrow S_2O_3^{2-} + 2e$					
	b) $Cu^{2+} + 2e \rightarrow Cu$					
	c) $2H_2O \rightarrow O_2 + 4H^+ + 4e$					
4	d) $2H^{+} + 2e \rightarrow H_{2}$					
	19. Deduce from the following E° values of	of half calls w	what combination	of two hal	lf calls would rasu	ılt in a call
	with the largest potential?	or man cens, v	viiat combination (or two ma	ii ceiis would resu	it iii a ceii
	i) $A^{3-} \rightarrow A^{2-} + e$; $E^{\circ} = 1.5 \text{ V}$					
	ii) $B^{2+} + e \rightarrow B^{+}; \qquad E^{\circ} = -2.1 \text{ V}$	7				
	iii) $C^{2+} + e \rightarrow C^+$; $E^{\circ} = +0.5 \text{ V}$	7				
	iv) $D \rightarrow D^{2+} + 2e$; $E = +0.5 \text{ V}$ E = +0.5 V					
	a) (i) and (ii) b) (i) and (c) (ii) and (iv)		d) (iii) and (iv)	
11	.0. An ion is reduced to the element when	•				of the ion
41		1 11 ausulus 0	^ 10 electrons.	ine nuill	bei bi equivalents	or the loll
	is:					

a) 0.10 411. The standard e.m.f. o	b) 0.01 of a galvanic cell can be calcula	c) 0.001 ated from :	d) 0.0001		
a) The size of the electrode					
b) The pH of the solu	ıtion				
c) The amount of me					
d) The E° values of t					
412. The charge in coulor					
a) 3.2×10^{-19}		c) 0.23×10^{-19}	d) 0.32×10^{-19}		
$413. \operatorname{Zn}^{2+} + 2e^{-} \to \operatorname{Zn}(s)$					
$\mathrm{Fe^{3+}} + e^{-} \rightarrow \mathrm{Fe^{2+}}, E$	$^{\circ} = -0.77$		(Y		
$Cr^{3+} + 3e^- \rightarrow Cr, E^\circ$					
$H^{+} + e^{-} \rightarrow \frac{1}{2} H_{2}, E^{\circ}$	= 0.00				
L					
Strongest reducing a		-) E.2+	Die.		
a) H ₂	b) Zn	c) Fe ²⁺	a) or		
	ion potentials at 298 K for the		are given against each		
	$\rightarrow \operatorname{Zn}(s); E^{\circ} = -0.762 V$				
	$\rightarrow \operatorname{Cr}(s); \qquad E^{\circ} = -0.740 V$				
	$\rightarrow H_2(g); E^{\circ} = 0.00 V$,,			
, -,	$Fe^{2+}(aq); E^{\circ} = +0.762$				
The strongest reduction	= =	2 1170	D E 2+4)		
a) Zn (s)	b) Cr (s)	c) <i>H</i> ₂ (g)	d) Fe ²⁺ (aq)		
415. Strong electrolytes a		h) Diagalya yan dilyain			
a) Conduct electricit	5	b) Dissolve readily in			
c) Dissociate into ion 416. The cell reaction of A	-	a) completely dissoc	iate into ions at all dilutions		
	$\rightarrow \operatorname{Cu}(s) + \operatorname{Mg}^{2+}(aq)$.				
		are = 2 37 and ± 0 34 V r	espectively. The emf of the cell		
is	tion potentials of Mg and Gu	arc - 2.37 and 1 0.34 v 10	espectively. The chil of the cen		
a) 2.03 V	h) -2.03 V	c) +2.71 V	d) -2.71 V		
417. Consider the followi	b) -2.03 V	c) 12.71 V	u) 2.71 v		
	$0 \rightarrow 2Ag(s) + C_6H_{12}O_7 + 2H^4$	+			
0 0 12 0 2	0.7 0 11 7		l reaction is affected by pH and		
by how much?			Trouble is uniously promise		
$Ag^+ + e^- \rightarrow Ag; E_{re}^{\circ}$					
	$E_6 H_{12} O_7 + 2H^+ + 2e^-; E_{red}^\circ =$	= -0.05 V			
	$Ag(s) + NH_3$; $E_{red}^{\circ} = 0.337 \text{ V}$				
			e by a factor of 0.65 from $E_{\text{oxid.}}^{\circ}$		
	by a factor of 0.65 from $E_{\text{red.}}^{\circ}$				
-	rs in the electrolysis of aqueou b) $2H^+ + 2e \rightarrow H_2$				
			$0 \text{ NI} \rightarrow \text{NI} + 2e$ $2(\text{NO}_3)_2 \text{ and Mg}(\text{NO}_3)_2 \text{ is being}$		
			$\frac{1}{2}(NO_3)_2$ and $\frac{1}{2}(NO_3)_2$ is being depotentials in volts (reducing		
	=		$Mg/Mg^{2+} = -2$ With increasing		
	e of deposition of metals on the		ng/mg = 2 with hitreasing		
a) Ag, Hg, Cu	b) Cu, Hg, Ag		d) Mg, Cu, Hg, Ag		
, , ,	not displace hydrogen from a	, , , ,	uj Mg, Gu, Mg, Mg		
a) Ca	b) Al	c) Zn	d) Hg		
•	αBy , the molar conductivity at	•	, 0		
a) $\Lambda_{M}^{\circ} = x\lambda^{\circ}A^{Y+} + y$, · - , -		
$\sim 11_{\text{M}}$	• -				

	water will be:					
	a) 1	b) 2.5	c) 5	d) 9		
435.	More electropositive elem	ients have :		,		
	a) Positive reduction pote					
	b) Tendency to gain electr					
	c) Negative reduction pot					
	d) Negative oxidation pote					
436.			nd high currents. If 4.0 ×	10 ⁴ amperes of current is		
				ed? (Assume 100% current		
	efficiency. At mass of Al =		•			
	a) 1.3×10^4 g	b) 9.0×10^3 g	c) 8.05×10^4 g	d) 2.4×10^5 g		
437.	The reaction,	,	,			
	1) + Ol=() + A ()		A . Y		
	$\frac{1}{2} H_2(g) + AgCl(s) \rightarrow H^+$	aq) + CI (aq) + Ag(s)				
	Occurs in the galvanic cell					
	a) Pt/H ₂ (g) KCl (sol) Ag	Cl(s) Ag	b) Pt/H ₂ (g) HCl(sol) Ag	NO_3 (sol) Ag		
	c) Pt/H ₂ (g) HCl(sol) Age	Cl(s) Ag	d) $Ag/AgCl(s)KCl(sol) As$	gNO ₃ Ag		
438.	Which of the following ior	is can be replaced by H ⁺ in	os when $\rm H_2$ gas is bubbled	through the solutions		
	containing these ions?					
	a) Li ⁺	b) Ba ²⁺	c) Cu ²⁺	d) Be ²⁺		
439.		$^{2+} \rightarrow Zn^{2+} + Cu$ is best re				
	a) $Cu/Cu^{2+} Zn^{2+}/Zn$	b) Zn/Zn ²⁺ Cu ²⁺ /Cu	c) Cu ²⁺ /Cu Zn/Zn ²⁺	d) $Pt/Zn^{2+} Pt/Cu^{2+}$		
440.	Ionic mobility (u^{∞}) of an i	ion at infinite dilution is rel	ated to its ionic conductan	ce (λ_{∞}) by :		
	a) $\lambda_{\infty} = u_{\infty} \times Faraday$	b) $u_{\infty} = \lambda_{\infty} \times Faraday$	c) Faraday = $u_{\infty} \times \lambda_{\infty}$	d) None of these		
441.	Coulomb is the quantity o	f current defined as :				
	a) One ampere of current passing for 1 sec					
	b) One which deposits 0.0	01118 g of Ag on cathode				
	c) One which deposits ele	ctrochemical equivalence o	of metal			
	d) All of the above					
442.	The standard electrode po	otential is measured by				
	a) Electrometer	b) Voltmeter	c) Pyrometer	d) Galvanometer		
		to a solution containing KF,	, KI, and KBr and CHCl ₃ is	added. The initial colour in		
	CHCl ₃ layer is:					
	a) Violet due to formation of I_2					
	b) Orange due to formation					
	c) Colourless due to forma	-				
	d) No colour change due t					
444.		ty for 50 min, 1.8 g metal d				
	a) 9.3	b) 19.3	c) 38.3	d) 39.9		
445.	How many atoms of calciu	im will be deposited from a	i solution of CaCl ₂ by a cur	rent 0.25 mA flowing for 60		
1	S?	1.004 4018	3 4 9 4 4 9 18	1) 0 46 4018		
	a) 4.68×10^{18}	b) 2.34×10^{18}	c) 1.24×10^{18}	d) 0.46×10^{18}		
446.	If ' F'' is faraday and ' N' is F''	Avogadro number, then cha	_	essed as		
	a) $F \times N$	b) $\frac{F}{N}$	c) $\frac{N}{F}$	d) F^2N		
4.4.7	By how much is the ovidiz	N sing power of $Cr_2O_7^{2-}/Cr^{3+}$	1	concentration is		
447.	decreased from 1 M to 10		couple decreased if the fi	concentration is		
	a) 0.207 V	b) 0.414 V	c) 0.001 V	d) 0.287 V		
<u>/</u> ,/,0	,	•	CJ 0.001 V	uj 0.207 V		
тто.	Which process involves corrosion? a) Brown deposits on iron articles					
	•					
	b) Green deposits on battery terminals					

	c) Black deposits on silve	r coin		
	d) All of the above			
449.	The electric conduction of	f a salt solution in water de	pends on the	
	a) Size of its molecules		b) Shape of its molecules	
	c) Size of solvent molecul	es	d) Extent of its ionization	
450.	The electrode potentials f	or		
	$Cu^{2+}(aq) + e^- \rightarrow$	$Cu^+(aq)$		
	and $Cu^+(aq) + e^- \rightarrow 0$	Cu(s)		
	are $+ 0.15 \text{ V}$ and $+ 0.50 \text{ V}$	respectively. The value of	$E_{\mathrm{Cu}^{2+}/\mathrm{Cu}}^{\circ}$ will be :	
	a) 0.150 V	b) 0.500 V	c) 0.325 V	d) 0.650 V
451.	By diluting a weak electro	olyte, specific conductivity	(K_c) and equivalent condu	ctivity (λ_c) change as
	a) Both increase		b) K_c increases, λ_c decre	eases
	c) K_c decreases, λ_c increases	ases	d) Both decrease	
452.	The cell reaction for the g	iven cell is :		
	$Pt(H_2) pH = 2 pH = 1$ $P_1 = 1 \text{ atm}$	$\frac{3}{m}$ Pt(H ₂)	4	64
	a) Spontaneous	b) Non-spontaneous	c) In equilibrium	d) Either of these
453.		value of Ca^{2+} and Cl^{-} at inf		=
		$77.33 \times 10^{-4} \text{ m}^2 \text{ mho mol}$		
	a) 118.88×10^{-4}	b) 154.66×10^{-4}	c) 273.54×10^{-4}	d) 196.21×10^{-4}
454.	During electrolysis, the sp	pecies discharged at cathod	e are	
	a) Anion	b) Cation	c) Ions	d) All of these
455.		h solution, OH ⁻ ions are di		
	a) Dilute NaCl	•	c) Fused NaCl	d) Solid NaCl
456.	= =	oling a standard copper ele	_	
		eduction potential of coppe	er electrode is +0.34 V ther	n that of the magnesium
	electrode is	1) 2264	-) + 2.26 W	D 226W
457	a) + 2.36 V	b) – 2.36 V	c) + 3.26 V	d) – 3.26 V
457.		onductivity with concentra	ition of strong electrolyte	is given by Hückel-Onsager
	equation expressed as: $\frac{1}{2} A = A^{\infty} + \sqrt{2}$	b) $\Lambda_{\infty} = \Lambda M - b\sqrt{c}$	a) $\Lambda = h \sqrt{a} \Lambda^{\infty}$	d) None of those
450				
450.				rodes. 10.79 g of silver was ed through copper sulphate
		ctrodes, the weight of copp		
		b) 2.3 g	c) 3.2 g	d) 6.4 g
459	, ,	, ,	, ,	nt for 100 second under a
107.	potential of 115 V is:	mpunaeu auring me passi	age or one ampere carre	101 200 0000110 011001 0
	a) 20 kJ	b) 11.5 kJ	c) 115 kJ	d) 0.115 kJ
460.		is placed in a solution of fer		,
	a) Copper will precipitate	-		
4	b) Iron will precipitate ou	it		
	c) Both copper and iron v	vill be dissolved		
	d) No reaction will take p	lace		
461.	The process of zinc-platin	g on iron sheet is known as	S	
	a) Annealing	b) Roasting	c) Galvanisation	d) Smelting
462.	_	n hydrogen electrodes at tw	vo different pressures p_1 a	$\operatorname{nd} p_2$
	$Pt (H_2) H^+ (aq) Pt (H_2)$)		
	p_1 1 M p_2			
	emf is given by	DT	DT	ייי
	a) $\frac{RT}{F} \log_e \frac{p_1}{p_2}$	b) $\frac{RT}{2F} \log_e \frac{p_1}{p_2}$	c) $\frac{RT}{F} \log_e \frac{p_2}{p_1}$	d) $\frac{RT}{2F} \log_e \frac{p_2}{p_1}$
	r p_2	$2r$ p_2	r p_1	$z_r p_1$

	of a solution of $AgNO_3$, 965 sited at the cathode will be		rough the electroplating bath.			
a) 108 g	b) 10.8 g	c) 1.08 g	d) 18.10 g			
464. What is the time (in sec)	2 0	, ,	, ,			
passing a current of 241		ir the shver present in 125.	in Doi 1 in rightog solution by			
a) 10	b) 50	c) 1000	d) 100			
465. For the redox reaction,	b) 30	c) 1000	u) 100			
$Zn(s) + Cu^{2+}(0.1 \text{ M})$						
$Zn^{2+} (1 M) + Cu (s)$	7					
` , , , , , , , , , , , , , , , , , , ,	is 1 10 V E° for the sol	الابينال الم				
	$E_{\rm cll}$ is 1.10 V. $E_{\rm cell}^{\circ}$ for the cel	n win be	, () y			
$\left(2.303 \; \frac{RT}{F} = 0.0591\right)$						
a) 2.14 V	b) 1.80 V	c) 1.07 V	d) 0.82 V			
466. The limiting molar cond	uctivities Λ° for NaCl, KBr	and KCl are 126, 152 and 1	50 S cm ² mol ⁻¹ respectively.			
The Λ° for NaBr is						
a) $128 \text{S cm}^2 \text{mol}^{-1}$	b) $248 \text{S cm}^2 \text{mol}^{-1}$	c) $328 \text{S} \text{cm}^2 \text{mol}^{-1}$	d) $348 \mathrm{S} \mathrm{cm}^2 \mathrm{mol}^{-1}$			
467. The emf of the cell,						
$Ag \mid Ag^{+} (0.1 \text{ M}) \mid \mid Ag^{+} (0.1 \text{ M})$	(1 M) Ag at 298 K is	4	^			
a) 0.0059 V	b) 0.059 V	c) 5.9 V	d) 0.59 V			
468. A solution of sodium sul	phate in water is electroly	sed using inert electrodes.	The products at the cathode			
and anode are respectiv	ely					
a) H_2 , O_2	b) O_2 , H_2	c) O ₂ , Na	d) O ₂ , SO ₂			
469. The standard electrode						
$\operatorname{Sn}(s) + 2\operatorname{Fe}^{3+}(aq) \to 2$	$Fe^{2+}(aq) + Sn^{2+}(aq)$ is:					
(Given $E_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{\circ} = 0.77$	7 V and $E_{\rm Sn^{2+}/Sn}^{\circ} = -0.14$ V	V)				
a) 0.63 V	b) 1.40 V	c) 0.91 V	d) 1.68 V			
470. Hydrogen-oxygen fuel c	ells are used in spacecraft	to supply :	,			
	a) Power for heat and light					
b) Power for pressure						
c) Oxygen						
d) None of the above						
471. The resistance of 0.01 N	solution of an electrolyte	was found to be 210 ohm a	at 298 K. Its conductance is :			
a) 4.76×10^{-3} mho _	b) 4.76 mho	c) 210 mho	d) None of these			
472. The amount of silver dep	posited on passing 2 F of e	lectricity through aqueous	solution of $AgNO_3$ is			
a) 54 g	b) 108 g	c) 216 g	d) 324 g			
473. Cell constant of a conduction	ctivity cell is usually derive	ed by using a solution of :				
a) KCl	b) NaCl	c) NH ₄ Cl	d) LiCl			
474. Four successive member	ers of the first series of th	ne transition metals are li	sted below. For which one of			
them the standard poter	ntial $(E_{M^{2+}/M}^{\circ})$ value has a j	positive sign?				
a) Co $(Z = 27)$	b) Ni $(Z = 28)$	c) Cu (Z = 29)	d) Fe $(Z = 26)$			
475. When same quantity of	, ,	, , ,	, , ,			
		e mass of silver (in grams)				
hydrogen = 1.008, silver		(6 -)	(1			
a) 54	b) 0.54	c) 5.4	d) 10.8			
476. The term infinite dilutio		,	,			
a) $\alpha \rightarrow 1$, for weak elec						
b) An electrolyte is 100%						
c) All interionic effects of						
d) All of the above	• •					
477. In the problem 15, the li	miting mobility of K ⁺ ion	is:				

a) 6.1×10^{-4} b) 6.67×10^{-4}	c) 7.1×10^{-4}	d) 7.67×10^{-4}
478. The standard reduction potential at 290 K for the fol	lowing half reactions are,	
(i) $Zn^{2+} + 2e \rightarrow Zn(s)$; $E^{\circ} = -0.762 V$		
(ii) $Cr^{3+} + 3e \rightarrow Cr(s)$; $E^{\circ} = -0.740 V$		
(iii)2H ⁺ + 2 $e \rightarrow H_2(g)$; $E^{\circ} = -0.000 V$		
(iv) $Fe^{3+} + e \rightarrow Fe^{2+}; \qquad E^{\circ} = +0.77 V$		
Which is the strongest reducing agent?		
a) Zn b) Cr	c) Fe ²⁺	d) H ₂
479. Daniel cell, anode and cathode are respectively		
a) $Zn \mid Zn^{2+}$ and $Cu^{2+} \mid Cu$ b) $Cu \mid Cu^{2+}$ and $Zn^{2+} \mid Zr$	α c) Fe Fe ²⁺ and Cu ²⁺ Cu	d) Cu Cu $^{2+}$ and Fe $^{2+}$ Fe
480. Iron sheets are galvanized to:		
a) Prevent action of O ₂ and H ⁺ on Fe		
b) Prevent oxidation of Fe		
c) Prevent rusting		
d) All of the above		
481. The conductance of all the ions present in a solution	containing 1 g equivalent i	n it is known as :
a) Conductivity	C 4	Y
b) Equivalent conductivity		•
c) Molecular conductivity		
d) None of the above		
482. For the reduction of silver ions with copper metal, t	the standard cell potential	is 0.46 V at 25°C. The value
of standard Gibbs energy ΔG° will be :		
a) -89.0 kJ b) -89.0 J	c) - 44.5 kJ	d) – 98.0 kJ
483. E^0 of an electrode is :		
a) Extensive property b) Constitutive property	c) Colligative property	d) Intensive property
484. The one which decreases with dilution is	> '	
a) Molar conductance	b) Conductance	
c) Specific Conductance	d) Equivalent conductance	e
485. Which of the following metal can replace zinc from Z	nSO ₄ solution?	
a) Cu b) Hg	c) Fe	d) Al
486. Several blocks of magnesium are fixed to the bottom	of Aship to	
a) Keep away the sharks	b) Make the ship lighter	
c) Prevent action of water and salt	d) Prevent puncturing by	under- seArocks
487. $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$; $E^\circ = 1.51 \text{ V}$		
$MnO_4 + 4H^+ + 2e^- \rightarrow Mn^{2++} 2H_2O; E^\circ = 1.23 V$		
$E_{\mathrm{MnO_4^- MnO_2}}^{\circ}$ is		
a) 1.70 V b) 0.91 V	c) 1.37 V	d) 0.548 V
488. In a salt bridge, KCl is used because:	,	
a) It is an electrolyte		
b) It is good conductor of electricity		
c) The transport number of K ⁺ and Cl ⁻ ions are near	rly same or both have same	e ionic mobility.
d) It is ionic compound.	-	•
489. AgNO $_3$ (aq) was added to an aqueous KCl solution gr	radually and the conductiv	ity of the solution was
measured. The plot of conductance (Λ) <i>versus</i> the versus the v		
• •	-	

Volume (Q)

a) (P)

b) (Q)

c) (R)

- d) (S)
- 490. For the electrochemical cell, $M \mid M^+ \mid \mid X^- \mid X$, $E^{\circ}(M^+ \mid M) = 0.44 \text{ V}$ and $E^{\circ}(X \mid X^-) = 0.33 \text{ V}$. From this data one can deduce that
 - a) $E_{\text{cell}} = 0.77 \text{ V}$
 - b) -0.77 V
 - c) $M^+ + X^- \rightarrow M + X$ is the spontaneous reaction
 - d) $M + X \rightarrow M^+ + X^-$ is the spontaneous reaction
- 491. The specific conductance (κ) of an electrolyte of 0.1 N concentration is related to equivalent conductance (Λ) by the following formula
 - a) $\Lambda = \kappa$
- b) $\Lambda = 10\kappa$
- c) $\Lambda = 100\kappa$
- d) $\Lambda = 10000\kappa$

492. Which is the correct representation for Nernst equation?

a)
$$E_{RP} = E_{RP}^{\circ} + \frac{0.059}{n} \log \frac{\text{[oxidant]}}{\text{[reductant]}}$$

b)
$$E_{OP} = E_{OP}^{\circ} - \frac{0.059}{n} \log \frac{[\text{oxidant}]}{[\text{reductant}]}$$

c)
$$E_{OP} = E_{OP}^{\circ} + \frac{0.059}{n} \log \frac{\text{[reductant]}}{\text{[oxidant]}}$$

- d) All of the above
- 493. The number of electrons required to deposit 1 g atom of Al(at. wt. = 27) from a solution of AlCl₃ are:
 - a) 1 λ

b) 2 N

c) 3 N

d) 4 N

494. The standard reduction potential of some electrodes are,

$$E^0(K^+/K) = -2.9 V$$

$$E^{0}(\text{Zn}^{2+}/\text{Zn}) = -0.76 \text{ V}, E^{0}(\text{H}^{+}/\text{H}_{2}) = -0.00 \text{V},$$

$$E^{0}(Cu^{2+}/Cu) = +0.34 \text{ V}$$

The Strongest oxidant is:

- a) Copper
- b) Zinc

- c) Hydrogen
- d) Cu²⁺

- 495. In the electrolytic cell, flow of electrons is from
 - a) Cathode to anode in solution

- b) Cathode to anode through external supply
- c) Cathode to anode through internal supply
- d) Anode to cathode through internal supply
- $496. \ The weight \ ratio \ of \ Mg \ and \ Al \ deposited \ during \ the \ passage \ of \ same \ current \ through \ their \ molten \ salts:$
 - a) 12:9
- b) 9:12
- c) 6:2

d) 2:3

 $497.2 \text{Fe}^{3+} + 3 \text{I}^{-} \approx 2 \text{Fe}^{2+} + \text{I}_{3}^{-}$

The standard reduction potentials in acidic conditions are 0.77 and 0.54 V respectively for Fe³⁺ / Fe²⁺ and I_3^- / I^- couples. The equilibrium constant for the reaction is

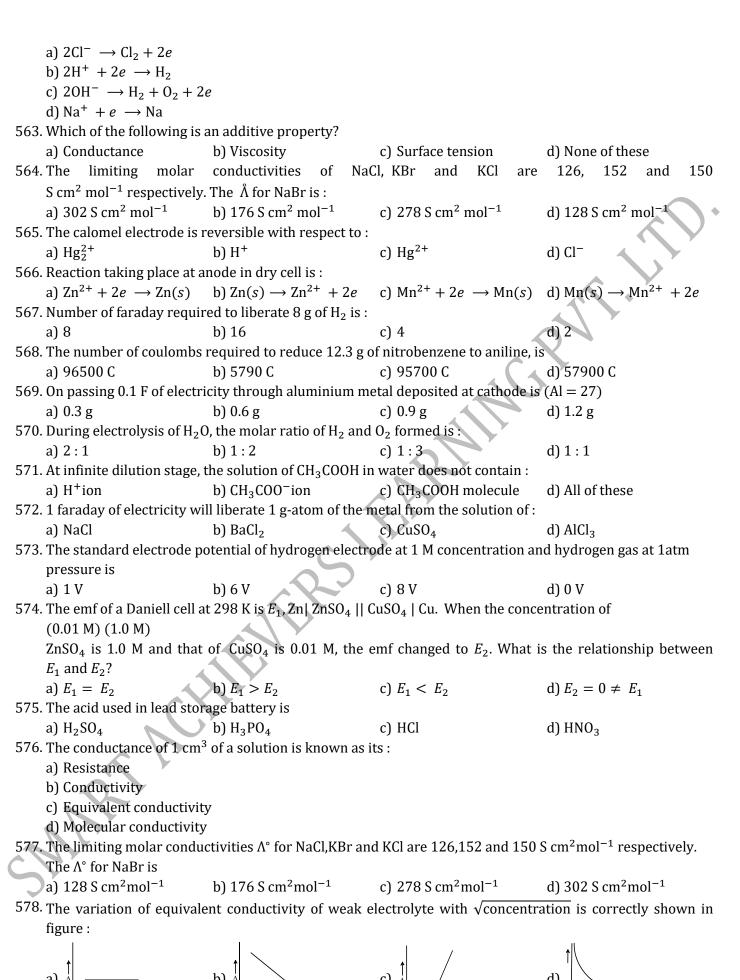
- a) 6.26×10^{-7}
- b) 5.33×10^{-4}
- c) 6.26×10^7
- d) 5.33×10^4

498. In a cell that utilizes the reaction

$$Zn(s) + 2H^{+}(aq) \rightarrow Zn^{2+}(aq) + H_{2}(g)$$

addition of H₂SO₄ to cathode compartment will

- a) Lower the *E* and shift equilibrium to the right
- b) Lower the *E* and shift equilibrium to the left
- c) Increase the *E* and shift equilibrium to the right
- d) Increase the *E* and shift equilibrium to the left


499. On passing electricity through dilute H ₂ SO ₄ solution anode are in the ratio:	n the amount of substance	liberated at the cathode and
a) 1:8 b) 8:1	c) 16:1	d) 1:16
500. The increase in equivalent conductivity of an strong	g electrolytic solution with	dilution is attributed to:
a) Increase in number of ions per unit volume	•	
b) Increase in molecular attraction		
c) Increase in degree of dissociation		
d) Increase in ionic mobility		
501. The cell, Zn Zn ²⁺ (1 M) Cu ²⁺ (1 M) Cu		
$(E_{\rm cell}^{\circ} = 1.10 \text{ V})$, was allowed to be completely discharge.	narged at 298 K. The relativ	ve concentration of
$\operatorname{Zn^{2+}}$ to $\operatorname{Cu^{2+}}\left(\frac{[\operatorname{Zn^{2+}}]}{[\operatorname{Cu^{2+}}]}\right)$ is		
a) Antilog (24.08) b) Antilog (37.3)	c) $10^{37.3}$	d) 9.65×10^4
502. The algebraic sum of potentials of two electrodes of	f a galvanic cell is called :	
a) Potential difference b) Ionic difference	c) e.m.f.	d) Electrode difference
503. The standard oxidation potentials, E° for the half re-	eactions are ;	
$Zn \rightarrow Zn^{2+} + 2e; E^{\circ} = +0.76 \text{ V}$		
$Ag \rightarrow Ag^+ + e; \qquad E^\circ = -0.77 \text{ V}$		
The standard e. m. f. of the cell,		
$Ag^+ + Zn \rightarrow Zn^{2+} + Ag is:$		
a) $+ 1.53 \text{ V}$ b) $- 1.53 \text{ V}$	c) -0.01 V	d) + 0.01 V
504. Rust is a mixture of:		
a) FeO and Fe(OH) ₂ b) FeO and Fe(OH) ₃	c) Fe_2O_3 and $Fe(OH)_3$	d) Fe_3O_4 and $Fe(OH)_3$
505. A metal having negative reduction potential when ç	lipped in the solution of its	own ions, has a tendency:
a) To pass into the solution		
b) To be deposited from the solution)	
c) To become electrically positive	Y	
d) To remain neutral		
506. The resistance of $0.5 N$ solution of an electrolyte	-	
equivalent conductivity of the same solution isi	f the electrodes in the cell a	are 2.2 cm apart and have ar
area of 3.8 cm ² .		
a) 25.73 b) 30.75	c) 35.75	d) 15.75
507. The SI unit for ionic mobility is:		2 4 4
a) $m^2 \text{volt}^{-1} \text{sec}^{-1}$ b) $cm^2 \text{volt}^{-1} \text{sec}^{-1}$	c) cm volt ⁻¹ sec ⁻¹	d) $cm^{-2}volt^{-1}sec^{-1}$
508. Which modifications are necessary to determine re	esistance of solution by usu	ial method of measurements
on Wheatstone bridge principle?		
a) A.C. should be used		
b) A conductivity cell is used		
c) Galvanometer is replaced by magic eye or head p	phone arrangement	
d) All of above		
509. The number of electrons passing per second through		
a) 6×10^{19} b) 8×10^{19}	c) 1×10^{19}	d) 1.6×10^{19}
510. Electrolytic reduction of alumina to aluminium by F	Hall-Heroult process is carr	ied out :
a) In the presence of NaCl		
b) In the presence of fluoride	1.1.1	_
c) In the presence of cryolite, which forms a melt w		
d) In the presence of cryolite, which forms a melt w		
511. Electrolytes, when dissolved in water, dissociate in	to their constituent ions. Th	ne degree of dissociation of a
weak electrolyte increases with		
a) The presence of a substance yielding common io	n	
b) Decreasing temperature		

	c) Decreasing concentration of the electrolyte		
	d) Increasing concentration of the electrolyte		
512.	The electrolytic bath used in gold plating of copper an		
	a) Molten gold b) CuSO ₄	c) AuCl ₃	d) AuCl ₃ + NaCN
513.	Pure water does not conduct electricity because it is		
	a) Basic	b) Almost not ionised	
	c) Decomposed easily	d) Acidic	
514.	Galvanic cell is Adevice in which		
	a) Chemical energy is converted into electrical energy	y.	
	b) Electrical energy is converted into chemical energ	y.	X
	c) Chemical energy is seen in the form of heat.		
	d) Thermal energy from an outside source is used to	drive the cell reaction.	
515.	Astandard hydrogen electrode has zero electrode pot	tential because	
	a) Hydrogen is easier to oxidise	b) This electrode potentia	l is assumed to be zero
	c) Hydrogen atom has only one electron	d) Hydrogen is the lightes	t element
516.	The molar conductivity at infinite dilution of Agl	NO_3 , NaCl and NaNO ₃ are	e 116.5, 110.3 and 105.2
	$\mbox{mho}\mbox{ cm}^{2}\mbox{mol}^{-1}$ respectively. The molar conductivity	of AgCl is :	Y
	a) 121.6 b) 111.4	c) 130.6	d) 150.2
517.	Which is correct about fuel cells?		
	a) Cells continuously run as long as fuels are supplied	d	
	b) These are more efficient and free from pollution		
	c) These are used to provide power and drinking wat	ter to astronauts in space p	orogramme
	d) All of the above		
518.	The value of electronic charge is equal to:		
	a) Faraday		
	Av. number	> ′	
	b) Faraday × Av. number		
	c) Av. number		
	Faraday		
	d) None of these		
519.	The formula $\alpha = \frac{\Lambda_v}{\Lambda_{\infty}}$ is valid for :		
	a) Weak electrolytes b) Strong electrolytes	c) Salts	d) None of these
520.	A hypothetical electrochemical cell is shown below;	o, care	
o _ 0.	$ \overset{\mathbf{e}}{A} A^{+}(xM) B^{+}(yM) \overset{\mathbf{e}}{B} $		
	The e.m.f. measured is $+$ 0.20 V. The cell reaction is :		
	a) The cell reaction cannot be predicted		
	b) $A + B^+ \longrightarrow A^+ + B$		
	c) $A^+ + B \longrightarrow A + B^+$		
	d) $A^+ + e^- \rightarrow A$; $B^+ + e^- \rightarrow B$		
521.	The laws of electrolysis ware proposed by		
	a) Kohlraush b) Faraday	c) Nernst	d) Berthelot
522.	When <i>X</i> amperes of current is passed through molter	n AlCl ₃ for 96.5 s. 0.09 g of	aluminium is deposited.
	What is the value of <i>X</i> ?		
	a) 10 A b) 20 A	c) 30 A	d) 40 A
523.	It is impossible to measure the actual voltage of any h	=	
	a) Both half cell reactions takes place simultaneously	•	
	b) Of resistance of wire		
	c) A reaction does not take place on its own		
	d) None of the above		
524.	The art of electroplating was given by:		

52	a) Faraday 5. If 1 faraday of charge is p	b) Edison passed through a solution o	c) Graham of CuSO ₄ , the amount of cop	d) Brugan oper deposited will be equal
	to its:			
	a) Gram equivalent weigl	ht		
	b) Gram molecular weigh			
	c) Atomic weight			
	d) Electrochemical equiv	alent		
52	6. The oxidation potential v		.03, +0.108 V,-0.07 V and -	-0.1 V respectively. The
		ction takes place between		
	a) Aand B	b) Band D	c) Dand A	d) Band C
52	7. The conductivity of $N/10$	KCl solution at 20°C is 0.0	$0212 \text{ ohm}^{-1} \text{ cm}^{-1}$ and the	resistance of cell containing
		5 ohm. The cell constant is:		
	a) 2.173 cm^{-1}	b) 1.166 cm ⁻¹	c) 4.616 cm ⁻¹	d) 3.324 cm ⁻¹
52	8. What is the value of $E_{\rm cell}$?	?		
	$Cr Cr^{3+} (0.1 \text{ M}) Fe^{2+} (0.1 \text{ M})$	(0.01 M) Fe		
	Given, $E^{\circ}_{\text{Cr}^{3+}/\text{Cr}} = -0.74$			
	and $E^{\circ}_{Fe^{2+}/Fe} = -0.44 V$			
	a) +0.2941 V	b) +0.5212 V	c) +0.1308 V	d) -0.2606 V
52	9. The E^0 for $OCI = ICI = and i$	CI= / ¹ Cl. are 0.04 V and	1 26 V. E ^o for OCI - 1 ¹ Cl. ia	
32	9. The E° for OCl^{-}/Cl^{-} and	$c_1 / \frac{1}{2} c_{12}$ are 0.94 v and $-$	1.36 V; E 10F OCT $f = Cl_2$ IS	
	a) – 0.42 V	b) – 2.20 V	c) 0.52 V	d) 1.04 V
53	0. The cell reaction for the g	=		
	$\Pr_{P_1}(H_2) H^+(1M) H^+(1M) $	$H) Pt(H_2) P_2$		
	a) $P_1 > P_2$	b) $P_1 < P_2$	c) $P_1 = P_2$	d) $P_1 = 1$ atm
53	1. When an acid cell is charg	ged, then		
	a) Voltage of cell increase	es	b) Resistance of cell incre	ases
	c) Electrolyte of cell dilut	ces	d) None of the above	
53	2. An electrolytic cell contai	ins a solution of Ag_2SO_4 and	d platinum electrodes. A cu	rrent is passed until 1.6 g of
	O ₂ has been liberated at a	anode. The amount of Ag de	posited at cathode would b	oe:
	a) 1.6 g	b) 0.8 g	c) 21.6 g	d) 107.88 g
53	3. For Acell given below,			
	Ag Ag ⁺ Cu ²⁺ Cu			
	- +	X Y '		
	$Ag^{+} + e^{-} \longrightarrow Ag, E^{\circ}$	$\equiv x$		
	$Cu^{2+} + 2e^{-} \rightarrow Cu$	$E^{\circ} = y$		
	$Cu^{2+} + 2e^{-} \rightarrow Cu$, E_{cell}° is			
	a) $x + 2y$	b) $2x + y$	c) <i>y</i> – <i>x</i>	d) $y - 2x$
53	4. EMF of a cell in terms of i	reduction potential of its lef	ft and right electrodes is	
	a) $E = E_{\text{left}} - E_{\text{right}}$	b) $E = E_{\text{right}} - E_{\text{left}}$	c) $E = E_{\text{left}} + E_{\text{right}}$	d) None of these
53				lution are 315 and 35
4				at infinite dilution is
C	mho cm 2 eq. $^{-1}$:			
	a) 350	b) 280	c) 30	d) 315
53	6. An alloy of Pb-Ag weighir		lilute HNO3 and the volume	
		the solution and the emf of		
	$Pt(s), H_2(g) H^+(1 M)$		1	
	=	80 V, what is the percentage	of Ag in the allov?	
	[At 25°C, RT $/F = 0.06$]	, 1	5 ,	
	a) 25	b) 2.50	c) 10	d) 50
53	7. A lamp draws a current o	,	,	,
			J	

a) 0.6 C	b) 60 C	c) 600 C	d) 0.006 C
538. During electrolysis of	water the volume of O_2 libe	erated is 2.24dm^3 . The vo	olume of hydrogen liberated,
under same conditions	s will be		
a) 2.24 dm³	b) 1.12 dm ³	c) 4.48 dm ³	d) 0.56 dm ³
539. The amount of electric	ity required to liberate 1 g	equiv of Cu is	
a) 96500 F	b) 1 F	c) 1 C	d) 96500 A
540. Which of the following	is correct?		
 a) Zinc acts as cathode 	in Daniell cell		
b) In a Li – Zn couple,			
c) Copper will displace			
d) Zinc displaces tin fr			
		ctions when a faraday o	f electricity is passed through an
electrolyte in solution			200
a) 6×10^{23}	b) 8×10^{19}	c) 69500	d) 6×10^{-23}
542. During electrolysis of f		reaction of the electrode	es are:
Anode Cath			^ X
a) $Na^+ + e \rightarrow Na$	$Cl^- \rightarrow \frac{1}{2}Cl + e$	4	
b) Na \rightarrow Na ⁺ + e			
c) $Cl^- \rightarrow \frac{1}{2}Cl_2 + e$ d) $\frac{1}{2}Cl_2 + e \rightarrow Cl^-$	$Na^+ + e \rightarrow Na$		y
$d) \frac{1}{2} Cl_2 + e \rightarrow Cl^-$	$Na \rightarrow Na^+ + e$		
543. Which one is correct a	bout conductivity water?		
a) The water whose ov	vn conductance is very sm	all	
b) The water obtained	after 7-8 times distillation		
	d the conductivity water for	or the first time	
d) All of the above	<u>_</u>	Y	
544. Blocks of magnesium r		the steel hulls of ocean g	going ships in order to:
a) Provide cathodic pr			
b) Protect oxidation of			
c) Both (a) and (b) are	correct		
d) Neither (a) nor (b)			
545. Given the limiting mol	-		
$\Lambda_{\rm m}^0$ (HCl) = 425.9 Ω^{-1}			
$\Lambda_{\rm m}^{0} ({\rm NaCl}) = 126.4 \Omega^{-1}$			
$\Lambda_{\rm m}^0 ({\rm CH_3COONa}) = 91$			-1x - m x .
	y, at infinite dilution, of ac		
a) 481.5	b) 390.5	c) 299.5	d) 516.9
M concentration of Cu		iectrode is 0.34 v, what i	s the electrode potential at 0.01
(T = 298 K)	- ' {		
	b) 0 201 V	a) 0 222 W	d) 0.176 V
,	b) 0.281 V	c) 0.222 V	d) 0.176 V
547. If the ΔG° of Acell reac			
$AgCl + e^{-} \rightarrow Ag^{+} +$ The standard and set of the			
The standard emf of th		a) 0 220 W	d) 0.110 V
a) 0.220 V	b) -0.220 V	c) 0.229 V	d) -0.110 V
		(uq) + cu(s), the change	ge in free energy (ΔG) at a given
temperature is a funct		a) In (-)	J) I., .
a) In c_1	b) In (c_2/c_1)	c) In $(c_1 + c_2)$	d) In c_2
549. Consider the following			
$2Fe(s) + O_2(a) + 4H$	$(ua) \rightarrow$		

$2Fe^{2+}(aq) + 2H_2O(l), E^{\circ} = 1.67 V$		
$At[Fe^{2+}] = 10^{-3} \text{ M}, P(O_2) = 0.1 \text{ atm and } p$	H = 3, the cell potential at 25	°C is
a) 1.47 V b) 1.77 V	c) 1.87 V	d) 1.57 V
550. Aluminium oxide may be electrolysed at 100	0°C to furnish aluminium me	tal (atomic mass = 27 u; 1 F =
96500 C). The cathode reaction is		`
$Al^{3+} + 3e^- \rightarrow Al^0$		
To prepare 5.12 kg of aluminium metal by the	is method would require	
a) 5.49×10^{1} C of electricity	b) 5.49 $\times 10^4$ C of ϵ	electricity
c) 1.83×10^7 C of electricity	d) 5.49 \times 10 ⁷ C of ϵ	
551. The standard potentials at 25°C for the follow		
$Zn^{2+} + 2e \rightarrow Zn$; $E^{\circ} = -0.762 \text{ V}$		
$Mg^{2+} + 2e \rightarrow Mg; E^{\circ} = -2.37 \text{ V}$		
When zinc dust is added to the solution of Ma	gCl ₂ :	
a) ZnCl ₂ is formed	- -	
b) Zinc dissolves in the solution		
c) No reaction takes place		
d) Mg is precipitated		C_{A}^{γ}
552. The cell reaction for the given cell is spontane	eous if :	
$\Pr_{P_1} Cl^-(1M) Cl^-(1M) \Pr_{P_2}$		
a) $P_1 > P_2$ b) $P_1 < P_2$	c) $P_1 = P_2$	d) $P_1 = 1$ atm
553. Passage of three faraday of charge through	aqueous solution of AgNO;	$_3$, CuSO $_4$, Al(NO $_3$) $_3$ and NaCl will
deposit metals at the cathode in the molar ra	tio of:	
a) 1:2:3:1 b) 6:3:2:6	c) 6:3:0:0	d) 3:2:1:0
554. In the problem 15, ionic conductance of K ⁺		
a) 64.35 b) 60.20	c) 262.26	d) 26.22
555. In the electrochemical reaction,		
$2Fe^{3+} + Zn \rightarrow Zn^{2+} + 2Fe^{2+}$		
increasing the concentration of Fe ²⁺	,	
a) Increases cell emf	b) Increases the cur	
c) Decreases the cell emf	d) Alter the pH of th	e solution
556. How many electrons are there in one coulom		4.5
a) 6.02×10^{21} b) 6.24×10^{18}	c) 6.24×10^{15}	d) 6.02×10^{16}
557. The element which can displace three other h		
a) F b) Cl	c) Br	d) I
558. The units of equivalent conductivity is	2.	
a) S cm ²	b) ohm cm ² (g – equ	
c) ohm cm	d) $ohm^{-1} cm^{2} (g - e^{-1})$	equivalent) ⁻¹
559. Calculate the equilibrium constant for the rea		
$Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)$;)	
at 25 °C , $E_{\rm cell}^{\circ}=0.47~{ m V}$, R $=8.314~{ m JK}^{-1}$		
F = 96500 C is		
a) 1.8×10^{15} b) 8.5×10^{15}	c) 1.8×10^{10}	d) 85×10^{15}
560. The ratio of weights of hydrogen and magne	sium deposited by the same a	amount of electricity from H ₂ SO ₄
and MgSO ₄ in aqueous solution are :		
a) 1:8 b) 1:12	c) 1:16	d) None of these
561. The Λ^{∞} of NH ₄ Cl, NaOH and NaCl are 129.8	$^{-}$, 217.4 and 108.9 ohm ⁻¹ cn	n ² eq. ⁻¹ respectively. The λ_{∞} of
NH_4OH is ohm ⁻¹ cm ² eq. ⁻¹ .	2040	D 0.66
a) 238.3 b) 218	c) 240	d) 260
562. The reaction at cathode during the electrolys	is of aqueous solution of NaC	J in Neison cell is :

579. The electrode potential measures the:

the electrodeposition of Ag, the silver ions	s are:	
Reduced at anode b) Reduced at catl	hode c) Oxidised at anode	d) Oxidised at cathode
andard E° of the half cell Fe Fe ²⁺ is + 0.44	\cdot V and standard E° of half cell Cu	Cu^{2+} is -0.32 V then:
	Fe c) Cu reduces Fe ²⁺ ion	d) Cu ²⁺ reduces Fe
hich of the following is displaced by Fe?	y	
Ag b) Zn	c) Na	d) All of these
, -		
-		
-	s becomes equal	
One of the electrodes is eaten away		
The cell reaction gets reversed		
		at 298 K, using a conductivity
	ivity of solution is :	
$3.14 \times 10^{-3} \text{ mho cm}^{-1}$		
$3.14 \times 10^{-3} \mathrm{mho^{-1}} \mathrm{cm}$		
3.14 mho cm ⁻¹		
3.14 mho ⁻¹ cm ⁻¹		
	inite dilution is 390.7 and for 0.1	<i>M</i> acetic acid solution is 5.2
· -		
13.3% b) 0.0133%	· ·	d) 133%
	-	-9 === ,0
		d) An electrolytic cell
	e, ii comcomitation cen	2.2001 01, 010 0011
AuCl ₃ b) HAuCl ₄	c) $K[Au(CN)_2]$	d) None of these
ow many coulomb of electricity are consi	, , , , , ,	•
	amed when 100 ma current is r	Jasseu un ough a sommon o
) i) /) h)) h) h)	the electrodeposition of Ag, the silver ions. Reduced at anode b) Reduced at cat andard E° of the half cell Fe Fe ²⁺ is + 0.44. Cu oxidises Fe ²⁺ ion b) Cu ²⁺ oxidises thich of the following is displaced by Fe? Ag b) Zn he electrochemical cell stops working after Electrode potential of both the electrodes. Electrode potential of both the electrodes. One of the electrodes is eaten away. The cell reaction gets reversed he resistance of 0.01 N solution of an electrode local constant 0.66 cm ⁻¹ . The conduct 3.14×10^{-3} mho cm ⁻¹ 3.14×10^{-3} mho cm ⁻¹ 3.14×10^{-3} mho cm ⁻¹ he molar conductivity of acetic acid at infinite ho cm ² mol ⁻¹ . The degree of dissociation of the lead storage battery is charged, it acids at lead storage is acids at lead storage in the solution of the silver in	the electrodeposition of Ag, the silver ions are: Reduced at anode b) Reduced at cathode c) Oxidised at anode andard E° of the half cell Fe Fe ²⁺ is + 0.44 V and standard E° of half cell Cu Cu oxidises Fe ²⁺ ion b) Cu ²⁺ oxidises Fe c) Cu reduces Fe ²⁺ ion hich of the following is displaced by Fe? Ag b) Zn c) Na electrochemical cell stops working after sometimes because Electrode potential of both the electrodes becomes zero Electrode potential of both the electrodes becomes equal One of the electrodes is eaten away The cell reaction gets reversed re resistance of 0.01 N solution of an electrolyte was found to be 210 ohm at all of cell constant 0.66 cm ⁻¹ . The conductivity of solution is: 3.14 × 10 ⁻³ mho cm ⁻¹ 3.14 × 10 ⁻³ mho cm ⁻¹ 3.14 mho cm ⁻¹ 3.14 mho cm ⁻¹ 3.14 mho cm ⁻¹ 3.15 me molar conductivity of acetic acid at infinite dilution is 390.7 and for 0.1 ho cm ² mol ⁻¹ . The degree of dissociation of 0.1 M CH ₃ COOH solution is: 13.3% b) 0.0133% c) 1.33% then a lead storage battery is charged, it acts as A primary cell b) A galvanic cell c) A concentration cell

a) Tendency of the electrode to gain or lose electrons

c) Difference in the ionisation potential of electrode and metal ion

b) Tendency of the cell reaction to occur

	a) 108	b) 18000	c) 180	d) 3000
593	. How many kJ of energy is	evolved, when a current o	f 2.00 A passes for 200	s under the potential of 230 V?
	a) 56 kJ	b) 86 kJ	c) 36 kJ	d) 92 kJ
594	. What will be the emf for t			
	a) $\frac{RT}{2F}\log\frac{p_1}{p_2}$	b) $\frac{RT}{F} \log \frac{p_1}{p_2}$	c) $\frac{RT}{F}\log\frac{p_2}{n_1}$	d) None of these
595	The time required to coat cm ⁻³ with the passage of	t a metal surface of 80 cm ² 3A current through a silve	with 5×10^{-3} cm this r nitrate solution is:	ck layer of silver (density 1.05 g
	a) 115 sec	b) 125 sec	c) 135 sec	d) 145 sec
596			ı platinum electrodes, t	he gas evolved at the anode and
	cathode are respectively:		20111	d) H ₂ and O ₂
507	a) SO_2 and O_2	b) SO ₃ and H ₂	-	
597	-		-	current of 0.5 ampere is passed
	a) 1.1180 g	r nitrate solution of 200 se b) 0.11180 g		d) 0.5590 g
500	. Galvanised iron sheets ha	,	c) 5.590 g	u) 0.5590 g
370	a) Cu	b) Sn	c) Zn	d) Carbon
599	. Ionisation depends upon	U) SII	C) ZII	u) Cai boii
377	a) Pressure	b) Volume	c) Dilution	d) None of these
600	-	-		4.4 and -8.2 for $H_2O(l)$, $CO_2(g)$
000		vely. The value of E°_{cell} for		
	a) 2.0968 V	b) 1.0968 V	c) 0.0968 V	d) 1.968 V
601	. In the electrolysis of wate	•		u, 1.500 .
		b) 1 g atom of oxygen		d) 22.4 L of oxygen
602	. Given $l/a = 0.5 \text{cm}^{-1}$, $R = 0.1 \text{cm}^{-1}$, , , ,
	a) $10\Omega^{-1} \text{ cm}^2 \text{ g equiv}^{-1}$		b) $20\Omega^{-1}$ cm ² g equiv	
	c) $300\Omega^{-1} \text{ cm}^2 \text{ g equiv}^{-1}$		d) $100\Omega^{-1}$ cm ² g equi	
603	. If 3 F of electricity is pass			
	cations deposited at the c			5.
	a) 1:1:1	b) 1:2:3	c) 3:2:1	d) 6:3:2
604	. If $Mg^{2+} + 2e \rightarrow Mg(s)$;	E = -2.37 V,		
	$Cu^{2+} + 2e \rightarrow Cu(s);$	E = +0.34 V?		
	The e.m.f. of the cell Mg	$Mg^{2+} Cu^{2+} Cu$ is :		
	a) 2.71 V	b) 2.30 V	c) 2.80 V	d) 1.46 V
605	. The standard reduction p			
	Zn^{2+} Zn , Cu^{2+} Cu and A	Ag ⁺ Ag are respectively –	0.76, 0.34 and 0.8 V. Th	ne following cells were
	constructed			
	I Zn Zn ²⁺ Cu ²⁺ Cu			
	II Zn Zn ²⁺ Ag ⁺ Ag			
	III Cu Cu ²⁺ Ag ⁺ Ag			
1	What is the correct order	of E_{cell}° of these cells?		
	a) II > III > I	b) $II > I > III$	c) $I > II > III$	d) $III > I > II$
606	. What is the effect of dilut	ion on the equivalent cond	uctance of strong electr	olyte?
	a) Decreases on dilution		b) Remains unchange	ed
	c) Increases on dilution		d) None of these	
607	_		A^{∞} is not pos	ssible by extrapolation of
	Λ vs \sqrt{c} curves to zero co			
	a) KCl	b) NH ₄ OH	c) NaCl	d) K ₂ SO ₄
608	. The standard reduction p		ictions are as	
	$Zn \rightleftharpoons Zn^{2+} + 2e^-, E^\circ = \bigoplus$	0.76 V		

	$Fe \rightleftharpoons Fe^{2+} + 2e$, $E^* = \pm 0.41 \text{ V}$		
	The E°_{cell} for the cell formed by these two electrodes	s is	
	a) -0.35 V b) -1.17 V	c) +0.35 V	d) +1.17 V
609	. In the electrochemical cell, $H_2(g)1$ atm $ H^+(1 M) C$	$u^{2+}(1 M) Cu(s)$	
	Which one of the following statements is true?		
	a) H ₂ is anode, Cu is cathode	b) Cu is anode, H ₂ is catho	ode
	c) Oxidation occurs at Cu electrode	d) Reduction occurs at H ₂	
610	. Which of the following does not conduct electricity?	aj noudouon occurs ac m	0.0002.000
010	a) Fused NaCl b) Solid NaCl	c) Brine solution	d) Copper
611	. The ionic mobility of alkali metal ions in aqueous sol	=	u) dopper
011	a) K ⁺ b) Rb ⁺	c) Li ⁺	d) Na ⁺
612	. The e.m.f. of the cell involving following changes,	с) ы	u) Na
012		The standard om f of the	goll in
	$Zn(s) + Ni^{2+}(1M) \rightarrow Zn^{2+}(1M) + Ni(s)$ is 0.5105 V		
(12	a) 0.540 V b) 0.4810 V	c) 0.5696 V	d) 0.5105 V
613	. The factor temperature coefficient of e.m.f. is:) (20,121)	
	a) $(\partial E/\partial T)_P$ b) $(\partial E/\partial T)_T$	c) $(\partial E/\partial V)_T$	d) None of these
614	On passing 1 F of electricity through the electrolytic		and Cr ³⁺ ions solution, the
	deposited Ag (at. wt. $= 108$), Ni (at. wt. $= 59$) and Cr	(at. wt. = 52) is	7
	Ag Ni Cr		
	a) 108 g 29.5 g 17.3 g	b) 108 g 59.5 g 52.0	g
	c) 108 g 108 g 108 g	d) 108 g 117.5 g 166	g
615	. Which of the following expression is correct?		
	a) $\Delta G^{\circ} = -nFE_{\text{cell}}^{\circ}$	b) $\Delta G^{\circ} = + nFE_{\text{cell}}^{\circ}$	
	c) $\Delta G^{\circ} = -2.303 RT \ nFE_{\text{cell}}^{\circ}$	d) $\Delta G^{\circ} = -nF \log K_c$	
616	. For which cell e.m.f. is independent of the concentrat		
	a) Fe FeO(s) KOH(aq) Nb) Pt(H ₂) HCl Pt(Cl ₂)	-	Cd) Hg, HgCl ₂ KCl AgNO ₃ .
617	. In the problem 13, the dissociation constant of acid is		<i>y 6, 6, 2.</i> 11 6 3.
	a) 2.067×10^{-4} b) 1.02×10^{-4}	c) 1.02×10^{-3}	d) 1.02×10^{-5}
618	. Which are used as secondary reference electrodes?		., 1.02 10
010	a) Calomel electrode		
	b) Ag/AgCl electrode		
	c) Hg/Hg ₂ Cl ₂ – KCl electrode		
	d) All of the above		
610	. The amount of electricity required to produce one m	ale of conner from conner	culphate colution will be
01)	a) 1 F b) 2.33 F	c) 2 F	d) 1.33 F
620		,	u) 1.33 F
020	The weight ratio of Al and Ag deposited using the sar		4) 2 . O
(21	a) 9:108 b) 2:12	c) 108:9	d) 3:8
021	. When same electric current is passed through the so	<u>-</u>	tes in series the amounts of
	the element deposited on the electrode are in the rat		D.E.
cala	a) At.no. b) At. wt.	c) Sp. gravity	d) Eq. wt.
622	The metal used to recover copper from Asolution of		
	a) Fe b) He	c) Na	d) Ag
623	If the half-cell reaction $A + e \rightarrow A^-$ has a large nega		
	a) A is readily reduced b) A is readily oxidized	c) A ⁻ is readily reduced	_
624	. Same amount of electric current is passed through so		
	obtained in the first case, the amount of hydrogen lib		
	a) 224 cm ³ b) 1.008 g	c) 112 cm ³	d) 22400 cm ³
625	. The standard emf of Agalvanic cell involving cell read	ction with $n = 2$ is found to	to be 0.295 V at 25 °C. The
625	. The standard emf of Agalvanic cell involving cell reac equilibrium constant of the reaction would be	ection with $n = 2$ is found to	to be 0.295 V at 25 °C. The

020.	a) 2.0×10^{11}	b) 4.0×10^{12}	c) 1.0×10^2	d) 1.0×10^{10}
		-	water according to electroc	
627	a) $K > Mg > Zn > Cu$, ,	_	
047.		-	cance of the CH_3COOH fi	tom the moial conductar
	Electrolytes listed be	elow at infinite dilution in HCl NaOAc KNO3	H ₂ U at 25°C:	
	ode Naci	TIGI NAOAC KNO3		
	S Cm ² 149.9 126.5	426.2 91.0 145.0		
	a) 51.2	b) 552.7	c) 390.7	d) 217.5
620	•	•	-0.44 V and +0.32 V respe	,
020.	a) Cu ²⁺ oxidises Fe		c) Cu reduces Fe ²⁺	
629	•	-	rough two cells containing	-
029.			nt of Na liberated in the ot	
	a) 4.6 g	b) 2.3 g	c) 6.4 g	d) 3.2 g
	, ,	, ,	electricity passing through	
030.	=	=	mb of electricity from silve	
	a) 3	b) 4	c) 2	d) 1
631	=	,	solution of cupric sulphate	
		ne electrode. The colourle b) Copper hydroxid		Y
			C. X	
	PIP			
	RIA			
•	ARIA			
~	ARTA			

ELECTROCHEMISTRY

CHEMISTRY

						: ANSV	V	ER K	ŒY	:					
1)	С	2)	b	3)	a	4)	d	169)	С	170)	b	171)	b	172)	b
5)	a	6)	d	7)	d	8)	a	173)	a	174)	b	175)	d	176)	c
9)	a	10)	С	11)	a	12)	a	177)	b	178)	b	179)	c	180)	a
13)	a	14)	d	15)	b	16)	c	181)	С	182)	a	183)	d	184)	b
17)	a	18)	c	19)	a	20)	a	185)	d	186)	b	187)		188)	b
21)	a	22)	b	23)	b	24)	a	189)	b	190)	c	191)	a	192)	d
25)	a	26)	b	27)	d	28)	d	193)	a	194)	a	195)	d	196)	a
29)	d	30)	c	31)	b	32)	d	197)	a	198)	d	199)	a	200)	a
33)	b	34)	d	35)	d	36)	a	201)	c	202)	b	203)	b	204)	c
37)	c	38)	a	39)	b	40)	a	205)	c	206)	d	207)	a	208)	a
41)	d	42)	c	43)	d	44)	c	209)	c	210)	đ	211)	a	212)	a
45)	a	46)	b	47)	c	48)	a	213)	d	214)	d	215)	b	216)	b
49)	b	50)	d	51)	a	52)	a	217)	d	218)	b	219)	d	220)	a
53)	a	54)	d	55)	a	56)	a	221)	C	222)	c	223)	a	224)	c
57)	d	58)	d	59)	a	60)	c	225)	b	226)	a	227)	c	228)	a
61)	c	62)	b	63)	d	64)	b	229)	a	230)	a	231)	d	232)	a
65)	d	66)	d	67)	a	68)	a	233)	d	234)	a	235)	b	236)	a
69)	a	70)	d	71)	a	72)	c	237)	c	238)	b	239)	a	240)	a
73)	c	74)	d	75)	a	76)	d	241)	d	242)	c	243)	c	244)	a
77)	c	78)	d	79)	b	80)	b	245)	a	246)	d	247)	a	248)	c
81)	a	82)	a	83)	d	84)	c	249)	b	250)	b	251)	a	252)	c
85)	a	86)	b	87)	c	88)	b	253)	b	254)	d	255)	d	256)	c
89)	b	90)	a	91)	a	92)	b	257)	a	258)	d	259)	c	260)	d
93)	c	94)	b	95)	a	96)	c	261)	b	262)	c	263)	a	264)	c
97)	c	98)	c	99)	c	100)	c	265)	c	266)	a	267)	c	268)	a
101)	d	102)	b	103)	a	104)	a	269)	d	270)	c	271)	b	272)	a
105)	d	106)	c	107)	c	108)	b	273)	a	274)	c	275)	b	276)	a
109)	d	110)	a	111)	b	112)	C	277)	c	278)	b	279)	a	280)	b
113)	a	114)	ď	115)	b	116)	b	281)	c	282)	b	283)	d	284)	c
117)	c	118)	b	119)	b	120)	d	285)	d	286)	d	287)	b	288)	a
121)	b	122)	c	123)	a	124)	C	289)	a	290)	c	291)	a	292)	a
125)	b	126)	d	127)	b	128)	a	293)	d	294)	c	295)	c	296)	c
129)	b	130)	c	131)	a	132)	d	297)	a	298)	b	299)	d	300)	a
133)	d	134)	d	135)	c	136)	b	301)	b	302)	c	303)	c	304)	d
137)	c	138)	a	139)	a	140)	d	305)	b	306)	c	307)	b	308)	d
141)	c	142)	b	143)	b	144)	b	309)	d	310)	b	311)	a	312)	b
145)	d	146)	c	147)	a	148)	a	313)	c	314)	d	315)	c	316)	d
149)	d	150)	d	151)	a	152)	b	317)	a	318)	a	319)	a	320)	a
153)	b	154)	c	155)	b	156)		321)	c	322)	d	323)	c	324)	a
157)	c	158)	d	159)	b	160)		325)	a	326)	d	327)	c	328)	a
161)	a	162)	b	163)	a	164)		329)	b	330)	a	331)	d	332)	a
165)	b	166)	b	167)	b	168)	d	333)	a	334)	a	335)	a	336)	a

337)	a	338)	d	339) d	340)) d	541)	a	542)	c	543)	d	544)	C
341)	c	342)	b	343) a	344)) b	545)	b	546)	b	547)	a	548)	b
345)	c	346)	a	347) a	348)) a	549)	d	550)	d	551)	C	552)	b
349)	c	350)	a	351) d	352)) b	553)	C	554)	a	555)	C	556)	b
353)	a	354)	a	355) b	356)) a	557)	a	558)	d	559)	b	560)	d
357)	c	358)	a	359) b	360)) d	561)	a	562)	b	563)	a	564)	d
361)	b	362)	a	363) c	364)) b	565)	d	566)	b	567)	a	568)	d
365)	d	366)	b	367) b	368)) a	569)	C	570)	a	571)	C	572)	a
369)	a	370)	c	371) a	372)) c	573)	d	574)	b	575)	a	576)	b
373)	b	374)	b	375) d	376)) a	577)	a	578)	d	579)	a	580)	a
377)	d	378)	b	379) d	380)) d	581)	C	582)	b	583)	a	584)	b
381)	c	382)	b	383) d	384)) a	585)	b	586)	a	587)	b	588)	a
385)	a	386)	b	387) b	388)) d	589)	d	590)	d	591)	С	592)	C
389)	d	390)	a	391) b	392)) c	593)	d	594)	a	595)	b	596)	c
393)	c	394)	a	395) a	396)) a	597)	b	598)	c	599)	C	600)	b
397)	c	398)	d	399) a	400)) c	601)	C	602)	a	603)	d	604)	a
401)	c	402)	C	403) a	404)) a	605)	b	606)	C	607)	b	608)	C
405)	d	406)	b	407) b	408)) c	609)	a	610)	b	611)	b	612)	d
409)	c	410)	C	411) d	412)) a	613)	a	614)	a	615)	a	616)	a
413)	d	414)	a	415) d	416)) c	617)	b	618)	ď	619)	C	620)	a
417)	a	418)	d	419) a	420)) d	621)	d	622)	a	623)	d	624)	C
421)	a	422)	c	423) c	424)) d	625)	d	626)	a	627)	C	628)	a
425)	d	426)	c	427) a	428)) a	629)	a	630)	a	631)	d		
429)	b	430)	c	431) c	432)) a	G.							
433)	b	434)	b	435) c	436)) (C								
437)	c	438)	c	439) b	440]) a								
441)	d	442)	b	443) a	444]	b								
445)	a	446)	b	447) b	448]) d								
449)	d	450)	C	451) c										
453)	c	454)	b	455) b	_									
457)	a	458)	c	459) b	-									
461)	c	462)	b	463) b	-									
465)	c	466)	a	467) b	-									
469)	c	470)	a		472)									
473)	a	474)	c	475) c	476)									
477)	b	478)	a	,	-									
481)	b	482)	a	483) d	-									
485)	d	486)	c	487) a	-									
489)	d	490)	c	491) d	-									
493)	c	494)	d	495) c	496)									
497)	C	498)	C	499) a	-									
501)	b	502)	C	503) a	-									
505)	a	506)	a	507) a	-									
509)	a	510)	c	511) c	512)									
513)	b	514)	a	515) b	-									
517)	d	518)	a	519) a	-									
521)	b	522)	a	523) a	-									
525)	a	526)	a	527) b	-									
529)	c	530)	a	531) a	_									
533)	c	534)	b	535) a	-									
537)	b	538)	С	539) b	540)) d								

ELECTROCHEMISTRY

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (c)

$$Al \rightarrow Al^{3+} + 3e^{-}$$

The charge required = 3×96500 C

2 **(b)**

Eq. of
$$H_2 = Eq.$$
 of Cu

$$\therefore \frac{0.504}{1} = \frac{W}{63.5/2}$$

$$\therefore W_{Cu} = 16 \,\mathrm{g}$$

3 **(a**)

$$E^{\circ} = \frac{0.059}{n} \log K_{eq}$$
 and $\Delta G^{\circ} = -nE^{\circ}F$

 $\Delta G^{\circ} = + \text{ve, } E^{\circ} \text{ will be } - \text{ve and } K_{eq} < 1; \text{ one } 16$

should not write $\Delta G^{\circ} > 0$.

4 (d)

$$E_{\text{cell}}^{\circ} = 0.87 + 0.40 = 1.27 \text{ V}$$

Cell reaction : Fe + $Ni_2O_3 \rightarrow FeO + 2NiO$

5 (a)

The given values $\operatorname{are} E_{RP}^{\circ}$. More is E_{RP}° more is the tendency to gain electron or to show reduction or to show strong oxidant nature.

6 **(d**)

$$E_{\text{cell}}^{\circ} = E_{OP_{Sn}}^{\circ} + E_{RP_{Fe}}^{\circ} = 0.14 + (-0.44)$$

= -0.30 V

8 **(a)**

Smallest ion possesses maximum mobility.

9 **(a**

$$\Lambda_{\rm M}^0 = \Lambda_a^0 + \Lambda_c^0$$

10 (c

Molten NaCl possesses Na⁺ and Cl⁻ ions.

11 **(a)**

Given, that

∴ Zn is anode and Cu is cathode.

Given,

$$Zn^{2+}/Zn = -0.76 V$$

$$Cu^{2+} / Cu = + 0.34 V$$

$$E_{\text{cell}} = E_{\text{cathode}} - E_{\text{anode}}$$

= 0.34 - (- 0.76)
= 0.34 + 0.76
= 1.10 V

12 **(a)**

Net redox change is zero.

13 **(a)**

Cathode
$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$

Anode:
$$H_2O \rightarrow 2H^+ + \frac{1}{2}O_2 + 2e^-$$

14 **(d**)

More is E_{OP}° , more is reducing power of metal.

15 **(b**)

The charge required to liberate one gram equivalent of an element is always equal to 1 faraday (i.e., = 96500 C).

16 **(c)**

pH < 7; Aqueous solution of CuSO₄ is acidic in nature. Furthermore some drops of H₂SO₄ is also added during electrolysis.

17 (a)

Anode is positive electrode and cathode is -ve electrode in electrolytic cell whereas, anode is -ve electrode and cathode is +ve electrode in electrochemical cells.

18 **(c)**

$$\triangle G = \triangle H - T \triangle S$$

For a spontaneous cell reaction, \triangle H should be negative and \triangle S should be positive. Hence, \triangle G should be negative.

19 **(a**)

Cell reaction is $Mg + Sn^{2+} \rightarrow Mg^{2+} + Sn$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0591}{2} \log \frac{[\text{Mg}^{2+}]}{[\text{Sn}^{2+}]}$$

=
$$(2.34 - 0.14) - \frac{0.0591}{2} \log \frac{10^{-2}}{10^{-1}} = 2.23 \text{ V}$$

20 **(a)**

pH of solution increases due to formation of LiOH or due to increase in [OH⁻] because H⁺ ions are discharged at cathode in preference to Li⁺.

21 (a

In the process of electro decomposition for purification of metal, impure metal acts as anode.

22 **(b)**

Specific conductivity (κ)

$$=\frac{1}{R} \times \text{cell constant}$$

Cell constant =
$$\kappa \times R$$

= $0.0129 \times 100 = 1.29$

23 **(b)**

According to Nernst equation.

$$E_{\text{cell}} = E_{\text{Cell}}^{\circ} + \frac{0.0591}{2} \log \frac{[\text{Cu}^{2+}]}{[\text{Zn}^{2+}]}$$

$$E_{\text{cell}} = E_{\text{Cell}}^{\circ} - \frac{0.0591}{2} \log \frac{[\text{Zn}^{2+}]}{[\text{Cu}^{2+}]}$$

$$0r y = c + (-m)x$$

Thus, the slope is negative.

24 **(a)**

In MnO_4^- the oxidation number of Mn is + 7.

$$\stackrel{+7}{\cdot} Mn + 5e^{-} \longrightarrow Mn$$

In the reaction, 5 electrons are involved hence 5 Faraday will be needed for the reduction of 1 mole of MnO_4^- .

Therefore, for 0.5 mole of MnO_4^- , number of Faradays required = 2.5 F

25 **(a)**

Anode is electrode at which oxidation occurs.

26 **(b)** MnO₂ in Lechlanche cell.

27 **(d)**

As Cr has maximum oxidation potential value, therefore its oxidation should be easiest

28 (d)

More is reduction potential, more is the power to get itself reduced or greater is oxidising power.

29 **(d)**

$$F = N \times e$$

30 **(c)**

NaCl gives Na⁺ and Cl⁻ ions;

At anode : $Cl^- \rightarrow (1/2)Cl_2 + e$

At cathode : $H^+ \rightarrow (1/2)H_2 + e$

31 **(b)**

Electrons flow from Zn to Cu in outside circuit and current from Cu to Zn.

32 **(d)**

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$
Ni / Ni²⁺ [1.0 M] || Au³⁺ [1.0 M] | Au
 $E_{\text{cell}} (\text{Au}^{3+} / \text{Au}) = 0.150 \text{ V}$
 $E_{\text{cell}} (\text{Ni}^{2+} / \text{Ni}) = -0.25 \text{ V}$
 $E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$
 $= 0.150 - (-0.25)$
 $= 0.15 + 0.25$
 $= +0.4 \text{ V}$

33 **(b)**

50 % H₂SO₄aqueous solution can be electrolysed

by using Pt electrodes as

$$2H_2 SO_4 \rightarrow 2HSO_4^- + 2H^+$$

$$2HSO_4^- \rightarrow H_2S_2O_8 + 2e^-$$
 (at anode)

34 **(d)**

It is fact.

35 **(d)**

For the given cell,

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0591}{2} \log \frac{[Zn^{2+}]}{[Cu^{2+}]}$$

1.
$$E_1 = E_{\text{cell}}^{\circ} - \frac{0.0591}{2} \log \frac{1}{0.1}$$

$$= E_{\text{cell}}^{\circ} - \frac{0.0591}{2}$$

2.
$$E_2 = E_{\text{cell}}^{\circ} - \frac{0.0591}{2} \log \frac{1}{1}$$

$$= E_{\text{cell}}^{\circ} - \frac{0.0591}{2} \times 0$$

$$= E_{\text{cell}}^{\circ}$$

3.
$$E_2 = E_{\text{cell}}^{\circ} - \frac{0.0591}{2} \log \frac{0.1}{1}$$

$$= E_{\text{cell}}^{\circ} + \frac{0.0591}{2}$$

$$E_3 > E_2 > E_1$$

36 (a)

Transport number of an ion

current carried by that ion total current carried by both the ions

37 **(c**

Reduction is always carried out at cathode.

38 **(a)**

Reactions

(i)
$$Fe(s) \rightarrow Fe^{2+} + 2e^{-}$$
. $E^{\circ} = +0.44 \text{ V}$

and
$$\Delta G_1^{\circ} = -nE^{\circ}F = -2 \times 0.44 \times F$$

(ii)
$$2H^+ + 2e^- + \frac{1}{2}O_2 \longrightarrow H_2O(l)$$
; $E^{\circ} = +1.23 V$

and
$$\Delta G_2^{\circ} = -2 \times (+1.23) \times F$$

Net reaction,

Fe
$$(s) + 2H^+ + \frac{1}{2}O_2 \rightarrow Fe^{2+} + H_2O(l)$$

$$\Delta G_3^{\circ} = \Delta G_1^{\circ} + \Delta G_2^{\circ}$$

$$= -2 \times (+0.44) \text{ F} + (-2 \times 1.23 \times \text{F})$$

$$= -0.88 \text{ F} \times -2.46 \text{ F} = -3.34 \text{ F}$$

$$= -3.34 \times 96500 \, \text{I}$$

$$= -322.31 \text{ kJ} = -322 \text{ kJ}$$

39 **(b)**

2 faraday will deposit 2 eq. or 1 mole of Cu.

40 (a)

 Cl_2 is placed above F_2 in electrochemical series, halogen placed below replaces the other from its solution.

41 **(d)**

$$E_{cell}^{\circ} = \frac{2.303RT}{nF} \log K_{eq}$$
 $0.295 = \frac{0.0591}{2} \log K_{eq}$
 $\therefore \log K_{eq} = 10$
 $\therefore K_{eq} = 10^{10}$

42 **(c)**

$$k = \frac{1}{R} \times \frac{1}{a} = \frac{1}{32} \times \frac{1.8}{5.4} = 0.0104$$

And $\lambda = k \times V = 0.0104 \times 10,000 = 104$

43 (d)

$$E^{\circ} = \frac{0.059}{n} \log K;$$

44 (c)

$$E^{\circ} = \frac{0.059}{n} \log K_c$$

$$\therefore 0.295 = \frac{0.059}{2} \log K_c$$

$$\therefore K_c = 10^{10}$$

45 (a)

High value for E_{red}° . Shows more electronegativity *i. e.*, Zn is more electropositive than Fe.

$$(E_{\rm Zn^{2+}/Zn}^{\circ} < E_{\rm Fe^{2+}/Fe}^{\circ})$$

46 **(b)**

Eq. of Cu = Eq. of Ag

$$\therefore \frac{W}{63.5/2} = \frac{1.08}{108}$$

$$\therefore W_{Cu} = 0.3175 \text{ g}$$

47 (c)

The cell reaction is

$$H_2(g) + I_2(s) \rightleftharpoons 2H^+(aq) + 2I^-(aq)$$

$$0.7714 = 0.535 - \frac{0.0591}{2} log \frac{[H^+]^2 [I^-]^2}{p_{H_2}}$$

48 **(a**

$$E_{\text{Cr}^{3+}/\text{Cr}^{2+}}^{\circ} = -0.41 \text{ V}$$
 $E_{\text{Mn}^{3+}/\text{Mn}^{2+}}^{\circ} = +1.57 \text{ V}$
 $E_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{\circ} = +0.77 \text{ V}$
 $E_{\text{Co}^{3+}/\text{Co}^{2+}}^{\circ} = +1.97 \text{ V}$

More negative value of $E_{\rm red}^{\circ}$ indicates better

reducing agent thus easily oxidized. Thus, oxidation of Cr²⁺ to Cr³⁺ is the easiest.

49 **(b**)

In other cells, two liquid are not present.

50 **(d)**

$$AgNO_3 \xrightarrow{\Delta} Ag_2O \xrightarrow{\Delta} Ag + O_2$$

51 **(**a

$$Cu^{2+} + 2e^{-} \rightarrow Cu$$
, $E^{\circ} = 0.34$
 $Zn^{2+} + 2e^{-} \rightarrow Zn$, $E^{\circ} = 0.76$
In the cell,

In the cell,

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$
$$= 0.76 - (-0.34)$$
$$= 1.10 \text{ V}$$

52 **(a)**

Here Fe acts as anode while Sn act as cathode. We know that,

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$

= (-0.14) - (-0.44)
= -0.14 + 0.44
= 0.30 V

54 **(d)**

$$Ag^+ + e^- \rightarrow Ag$$

 \therefore 96500 C are required to deposite Ag = 108 g

∴ 965 C are required to deposite Ag

$$= \frac{108}{96500} \times 965 = 1.08 \,\mathrm{g}$$

55 (a

$$\Lambda_{\rm m} = \Lambda_{eq}.\times$$
 valency factor;

For NaCl, valency factor = 1;

Molecular conductivity $\Lambda_{\rm m}$ is defined as the conductance of all the ions present in a solution containing 1g molecule in it; Λ_{eq} . is defined as the conductance of all the ions present in a solution containing 1g equivalent in it.

56 (a)

In electrochemical series, iron is placed below sodium, so it cannot displace sodium from its salt solution. Hence, no reaction takes place.

Fe +
$$Na_3PO_4 \rightarrow No reaction$$

57 (d)

During electrolysis of NaCl(aq), H^+ ions are discharged at cathode and the pH of solution increases due to decrease in $[H^+]$.

58 **(d)**

Cu
$$(s)$$
 | Cu²⁺ (aq) || Hg²⁺ (aq) | Hg (l) In the above cell, oxidation of copper and

reduction of mercury takes place. Its cell reaction | 67 is written as

$$\mathrm{Cu}\left(s\right) \,+\, \mathrm{Hg}^{2+}\left(aq\right) \,\to\, \mathrm{Cu}^{2+}\left(aq\right) \,+\, \mathrm{Hg}\left(l\right)$$

59 (a)

$$W = \frac{E.i.t}{96500} = \frac{1 \times 0.4 \times 30 \times 60}{96500}$$

= 7.46 × 10⁻³ g and volume = $\frac{7.46 \times 10^3 \times 22.4}{2}$
= 0.0836 litre

60 **(c)**

$$E_{\text{cell}}^{\circ} = \frac{2.303RT}{nF} \log K_{eq}$$

$$E_{\text{cell}}^{\circ} = \frac{0.0591}{n} \log K_{eq} \quad [\text{At 298 K}]$$

$$0.591 = \frac{0.0591}{1} \log K_{eq}$$

$$\therefore \log K_{eq} = 10$$

$$\therefore K_{eq} = 1 \times 10^{10}$$

61 **(c)**

The Gibb's free energy change $\triangle G$ and emf (E°) of a reversible electrochemical cell are related by the following expression.

$$\triangle G = -nFE_{\text{cell}}^{\circ}$$

or $= -nFE$

62 **(b)**

$$E = E_{\rm RP}^{\circ} + \frac{0.0591}{n} \log[M^+]$$

Given,

$$E_{RP}^{\circ} = -2.36 \text{ V, } [M^{+}] = 0.1 \text{ M}$$

$$n = 1 \text{ (for } M^{+} \to M \text{)}$$

$$E = E_{RP}^{\circ} + \frac{0.0591}{n} \log[M^{+}]$$

$$= -2.36 + \frac{0.0591}{1} \log 0.1$$

$$= -2.36 + 0.0591 \times (-1)$$

$$= -2.36 - 0.0591$$

$$= -2.419 \text{ V}$$

63 **(d)**

1 faraday deposits 1 g equivalent of any substance.

64 **(b)**

$$\frac{1}{a} = k \times R = 0.002765 \times 400$$
$$= 1.106 \text{ cm}^{-1}.$$

$$E_{\text{Cell}} = E_{\text{cell}}^{\circ} + \frac{0.059}{2} \log \frac{[\text{Fe}^{2+}]}{[\text{Zn}^{2+}]}$$

$$0.2905 = E_{\text{cell}}^{\circ} + \frac{0.059}{2} \log \frac{0.01}{0.10}$$

$$\therefore E_{\text{cell}}^{\circ} = 0.32$$
No, $E_{\text{cell}}^{\circ} = \frac{0.059}{2} \log_{10} K$

$$\therefore 0.32 = \frac{0.059}{2} \log_{10} K$$

$$K = 10^{0.32/0.0295}$$

(a)
Ni⁻ + 2e⁻
$$\rightarrow$$
 Ni (at cathode)
Equivalent weight of Ni = $\frac{\text{mol.wt.}}{\text{gain electron}}$
= $\frac{58.7}{2}$
= 29.35
 $i = 12\text{A}, t = 1\text{h} = 60 \times 60\text{s.},$
 $Z = \frac{\text{eq. wt.}}{96500}$

Weight of deposit Ni =
$$\frac{Zit \times efficiency}{100}$$

= $\frac{29.35 \times 12 \times 60 \times 60 \times 60}{96500 \times 100}$
= 7.883 g

68 **(a)**

$$\frac{W}{E} = \frac{i \times t}{96500}$$

$$\therefore \frac{W}{E} = 10^{-2} \text{(Ag is monovalent)}$$

$$\therefore Q = i \times t = 96500 \times 10^{-2} = 965 \text{ C}$$

69

The tendency to gain electron is in the order z >

Thus,
$$y + e^- \rightarrow y^-$$

 $y \rightarrow y^- + e^-$

70 **(d)**

NaCl, KNO₃, HCl are strong electrolytes but the size of H⁺ is smallest. Smaller the size of the ions, greater is the conductance and hence greater is the conductivity

$$(\kappa = C \times \text{cell constant}).$$

71 (a)

Given,
$$i = 2.5A$$

 $t = 6 \min 26 s = 6 \times 60 + 26 = 386s$
Number of coulomb passed $= i \times t$

$$Cu^{2+} + 2e^- \rightarrow Cu$$

 \therefore 2 × 96500 C charge deposits Cu = 63.5 g

∴ 965 C charge deposits

$$Cu = \frac{63.5}{2 \times 96500} \times 965$$
$$= 0.3175 g$$

72 **(c)**

Metal placed above in electrochemical series replaces the other from its salt solutions.

73 **(c)**

$$E_{\text{cell}} = E_{OP_{\text{Zn}}}^{\circ} + E_{RP_{\text{Cu}}}^{\circ} + \frac{0.059}{2} \log \frac{[\text{Cu}^{2+}]}{[\text{Zn}^{2+}]}$$

$$\therefore 1.1 = 0.78 + E_{RP_{\text{Cu}}}^{\circ} + \frac{0.059}{2} 1$$

$$\therefore E_{RP_{Cu^{2+}/Cu}}^{\circ} = 0.32$$

$$\therefore E_{RP_{Cu^{2+}/Cu}}^{\circ} = -0.32V$$

74 **(d)**

More the reduction potential, more is the power to get itself reduced or lesser is reducing power or greater is oxidizing power

75 **(a**)

Quantity of current is charge, i.e., coulomb or ampere sec.

76 **(d)**

Cobalt is anode, *ie*, oxidation takes place on cobalt electrode *ie*, cell reaction is

$$Co + 2Ag^+ \rightarrow Co^{2+} + 2Ag$$

$$E_{\rm cell} = E_{\rm cell}^{\circ} - \frac{RT}{nF} \ln \frac{[{\rm Co^{2+}}]}{[{\rm Ag^{+}}]^2}$$

Thus, less is the factor $\frac{\left[\text{Co}^{2+}\right]}{\left[\text{Ag}^{+}\right]}$, greater is the E_{cell}°

77 **(c)**

Electrolysis of water takes place as follows

$$H_2O \rightleftharpoons H^+ + OH^-$$
Cathode anode

At anod

$$\begin{array}{ccc} \text{OH}^{-} & \xrightarrow{\text{oxidation}} & \text{OH} + e^{-} \\ & & 4\text{OH} & \rightarrow & 2\text{H}_{2}\text{O} + \text{O}_{2} \end{array}$$

At cathode

$$2H^+ + 2e^- \xrightarrow{Reduction} H_2$$

Given, time, t = 1930s

Number of moles of hydrogen collected

$$= \frac{1120 \times 10^{-3}}{22.4} \text{ moles}$$

= 0.05 moles

 \because 1 mole of hydrogen is deposited by = 2 moles of electrons

 $\because 0.05$ moles of hydrogen will be deposited by

$$= 2 \times 0.05$$

= 0.10 mole of electrons

Charge,
$$Q = nF$$

= 0.1×96500

Charge,
$$Q = it$$

$$0.1 \times 96500 = i \times 1930$$

$$i = \frac{0.1 \times 96500}{1930}$$

$$= 5.0 A$$

78 **(d)**

4.
$$\Delta G^{\circ} = -nFE_{\text{cell}}^{\circ}$$

$$5. E_{cell}^{\circ} = \frac{2.303 \, RT}{nF} \log K_c$$

$$6. k = Ae^{-E_a/RT}$$

79 **(b)**

$$Cr_2O_7^{2-} + 6e^- \rightarrow 2Cr^{3+}$$

Reduction of 1 mol of $Cr_2O_7^{2-}$ to Cr^{3+} required 6 moles of electrons. Hence, charge required = $2 \times 96500 \text{ C}$

80 **(b)**

Cell constant = $\frac{1}{a} = \frac{\text{length}}{\text{area}}$ \therefore unit is cm⁻¹.

81 (a)

$$\lambda = k \times V = \frac{1}{R} \times \frac{1}{a} \times V$$

$$= \frac{1}{210} \times 0.66 \times 100000$$

$$= 314.28 \text{ mho cm}^2 \text{ eq.}^{-1}$$

82 **(a)**

For a reaction to be feasible, the value of $E_{\rm cell}^{\circ}$ must be positive.

$$Cu + 2HCI \rightarrow CuCl_2 + H_2(g)$$

$$E_{\text{cell}}^{\circ} = E_{\text{H}^{+}/\text{H}_{2}}^{\circ} - E_{\text{Cu}^{2+}/\text{Cu}}^{\circ}$$

= 0.00 - (+0.34) = -0.34 V

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2(g)$$

$$E_{\text{cell}}^{\circ} = E_{\text{H}^{+}/\text{H}_{2}}^{\circ} - E_{\text{Zn}^{2+}/\text{Zn}}^{\circ}$$

= 0.00 - (-0.76) = +0.76 V

$$Ag + 2HCl \rightarrow AgCl + \frac{1}{2}H_2(g)$$

$$E_{\text{cell}}^{\circ} = E_{\text{H}^{+}/\text{H}_{2}}^{\circ} - E_{\text{Ag}^{2+}/\text{Ag}}^{\circ}$$

= 0.00 - (0.80) = - 0.80 V

Hence, only reaction (ii) is feasible.

83 (d)

$$Zn + MgCl_2 \rightarrow no reaction$$

This type of reaction does not occur because

$$Mg^{2+}E^{\circ} = -2.37 \text{ V. while } Zn^{2+}E^{\circ} = -0.76 \text{ V}$$

84 **(c)**

The ratio of amount deposited during the same charge takes place in the ratio of their equivalent weights and is independent of solution concentration.

85 **(a)**

Electrical energy is provided during charging of battery.

86 **(b)**

$$\Delta G^{\circ} = -nFE^{\circ}$$

$$-21.2 = -1 \times 96500 \times E$$

$$E = \frac{21.2}{96500} = 0.220 \text{ V}$$

87 **(c)**

According to Kohlrausch's law

$$\Lambda_{\text{ClCH}_2\text{COOH}}^{\infty} = \Lambda_{\text{ClCH}_2\text{COO}^-}^{\infty} + \Lambda_{\text{H}^+}^{\infty}$$

Given from Kohlrausch law,

$$\Lambda_{ClCH_2COONa}^{\infty} = 224\Omega^{-1} \ cm^2 \ g \ eq^{-1}$$

$$\Lambda_{\text{ClCH}_2\text{COONa}}^{\infty} = \Lambda_{\text{ClCH}_2\text{COO}^-}^{\infty} + \Lambda_{\text{Na}^+}^{\infty} \dots (i)$$

$$\Lambda_{\rm HCl}^{\infty} = 203\Omega^{-1} \, {\rm cm}^2 \, {\rm g \, eq}^{-1}$$

$$\Lambda_{\text{HCl}}^{\infty} = \Lambda_{\text{H}}^{\infty} + \Lambda_{\text{Cl}}^{\infty} \qquad \dots \text{(ii)}$$

$$\Lambda_{\rm NaCl}^{\infty} = 38.5 \ \Omega^{-1} \ {\rm cm^2 \ g \ eq^{-1}}$$

$$\Lambda_{\text{NaCl}}^{\infty} = \Lambda_{\text{Na}^{+}}^{\infty} + \Lambda_{\text{Cl}}$$
(iii)

Adding Eqs. (i) and (ii) and subtracting Eq. (iii)

 $\Lambda_{\text{ClCH}_2\text{COO}^-}^{\infty} + \Lambda_{\text{H}^+}^{\infty}$

$$= \Lambda_{ClCH_2COONa}^{\infty} + \Lambda_{HCl}^{\infty} - \Lambda_{NaCl}^{\infty}$$

$$= 224 + 203 - 38.5$$

$$=427 - 38.5$$

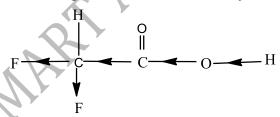
$$= 388.5\Omega^{-1} \text{ cm}^2 \text{ g eq}^{-1}$$

88 **(b)**

Cu is above Ag in electrochemical series and thus, $Cu + 2Ag^+ \rightarrow Cu^{2+} + 2Ag$ reaction occurs.

89 **(b)**

The electrode potential of glass electrode depends only on $[H^+]$.


90 (a)

$$\Lambda_v = \frac{K \times 1000}{c} = \frac{4.23 \times 10^{-4}}{0.04} \times 1000$$

Also,
$$\alpha = \frac{\Lambda_v}{\Lambda^{\infty}}$$

91 (a)

Fluoro group causes negative inductive effect increasing ionization, thus 0.1 M difluoroacetic acid has highest electrical conductivity.

(b)

Zn is above iron in electrochemical series.

93

In case of attacked electrodes, metal dissolves at anode and deposits at cathode.

[Ag
$$\rightarrow$$
 Ag⁺ + e (anode); Ag⁺ + e \rightarrow Ag(cathode)]

$$\rightarrow$$
 Ag(cathode)]

Thus, concentration of salt does not change.

94 **(b)**

Equivalent conductivity (Λ_{eq}) = $\frac{\kappa \times 1000}{C}$

Conductivity (
$$\kappa$$
) = $\frac{\text{cell costant}}{\text{resistance}}$
= $\frac{1.15}{250}$ S cm⁻¹

$$\therefore \Lambda_{eq} = \frac{1.15 \times 1000}{250 \times 1}$$

$$\Lambda_{eq} = 4.6 \Omega^{-1} \text{ cm}^2 \text{ equiv}^{-1}$$

$$\Lambda_{eq} = 4.6 \, \Omega^{-1} \, cm^2 \, equiv^{-1}$$

95 (a)

Given,
$$E_{\text{Zn}/\text{Zn}^{2+}}^{\circ} = 0.76 \text{ V}$$

$$E_{\text{Cu}/\text{Cu}^{2+}}^{\circ} = 0.34 \text{ V}$$

∴ Zn is anode (∵ It has higher oxidation potential)

$$\therefore \quad E_{\text{Zn}^{2+}/\text{Zn}}^{\circ} = -0.761$$

:
$$E_{\text{Zn}^{2+}/\text{Zn}}^{\circ} = -0.76 V$$

and $E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = -0.34 V$

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$

= - 0.34 V - (- 0.76 V)

$$= 0.34 \text{ V} + 0.76 \text{ V}$$

$$= 0.42 \text{ V}$$

96 **(c)**

Ionic mobility = $\frac{\text{speed of ions}}{\text{pot.gradient}}$

97

$$E = E^{\circ} - \frac{0.059}{2} \log[H^{+}]^{2}$$

$$= 1.30 - \frac{0.059}{2} \log(10^{-2})^{2}$$

$$= 1.30 + \frac{0.236}{2} = 1.418 \text{ V}$$

98 (c)

$$E^{\circ} = \frac{0.059}{2} \log K_c$$

$$0.46 = \frac{0.059}{2} \log K_c$$

$$\log K_c = 15.59$$

$$\therefore K_c = 3.9 \times 10^{15}$$

99 **(c)**

Cl in OCl^- has oxidation number as +1. Thus, $Cl^+ + 2e \rightarrow Cl^-(i.e., reduction of OCl^-)$

100 (c)

The oxidizing power of MnO₄ /Mn²⁺ couple decreases by 0.38 V.

101 (d)

$$E_{\text{cell}}^{\circ} = \frac{0.059}{n} \log K_c$$

$$0.295 = \frac{0.059}{2} \log K_c; \quad \because K_c = 10^{10}$$

102 **(b)**

Fe being above Cu in electrochemical series and

thus, liberates Cu from CuSO₄.

103 (a)

$$2Al + dil . H_2SO_4 \rightarrow Al_2SO_4 + H_2 \uparrow$$

104 (a)

As 'A' has more E_{red}° value than B, A will act as cathode in the galvanic cell.

Hence

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$

= (2.23) - (-1.43)
= 2.23 + 1.43 = 3.66 V

105 (d)

H₂SO₄ will furnish maximum H⁺.

106 **(c)**

Hg is placed below H in electrochemical series.

107 (c)

Eq. of
$$H_2$$
 = Eq. of $Al = \frac{4.5}{27/3} = 0.5$
 \therefore 1 eq. H_2 = 11.2 L
 \therefore 0.5 eq. H_2 = 5.6 L

108 **(b)**

No. of moles of
$$H_2 = \frac{11.2}{22400}$$

No .of equivalence of hydrogen

$$=\frac{1.12\times2}{22400}=10^{-4}$$

No. of Faradays required = 10^{-4}

∴ Current to be passed in one second

$$= 96500 \times 10^{-4}$$

= 9.65 A

109 (d)

Nature of ion also includes size, charge on ion.

110 (a)

During rusting, oxidation of iron takes place, *i.e.*, it acts as anode. Hence, coating/connecting iron with metal of lower reduction potential (in comparison to iron) is the best way to prevent its rusting. In this process, the metal with low reduction potential undergoes oxidation (*i.e.* acts as anode) while iron acts as cathode. (Cathodic protection)

Use of saline water accelerates the process of rusting thereby increasing the electric conduction of electrolyte solution formed on the metal surface.

111 **(b)**

$$E_{RP} = E_{RP}^{\circ} + \frac{0.059}{1} \log[H^{+}]$$

= 0 + 0.059× (-3) = -0.177 V.

113 (a)

$$E_{op}^{\circ}$$
 of K > E_{Op}° of Al.

114 **(d**)

In concentration cell net redox change is zero and

the decrease in free energy during transfer of matter is responsible for electrical work.

115 **(b)**

$$\mathrm{Mn^{7+}} + 5e \longrightarrow \mathrm{Mn^{2+}}$$
;

Thus, 5 mole electron = 5 faraday.

116 **(b)**

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} + \frac{0.0592}{n} \log \frac{[\text{Cu}^{2+}]}{[\text{T1}^{+}]^{2}}$$

∴ According to above equation E_{cell} can be increased by increasing [Cu²⁺].

117 (c)

Only Zn and Fe are above H;

Also Fe³⁺ can be reduced to Fe²⁺ by H.

118 **(b)**

The cathode and anode reactions respectively are

$$Cu^{2+} + 2e^- \rightarrow Cu$$

$$2Cl^- \rightarrow Cl_2 + 2e$$

The two moles of electrons have been transferred from anode to cathode to produce Cu and Cl_2 in a mole ratio of 1:1. Thus, 2F electricity is required

119 (b)

On dilution, ionic mobility increases but number of ions present in 1 mL decreases; Thus, only conductivity decreases and rest all increases.

120 (d)

$$E_{\text{cell}} = E_{\text{OP}_{\text{anode}}} + E_{\text{RP}_{\text{cathode}}}$$

= $E_{\text{OP}_{\text{anode}}} - E_{\text{OP}_{\text{cathode}}}$

121 **(b)**

Electrode potential of cell must be positive for spontaneous reaction.

$$\operatorname{Zn^{2+}} \longrightarrow \operatorname{Zn} ; E^{\circ} = -0.76 V$$

$$Cu^{2+} \rightarrow Cu$$
; $E^{\circ} = -0.34 V$

Redox reaction is

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$
 (oxidation)
 $Cu^{2+} + 2e^{-} \rightarrow Cu$ (reduction)
 $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$
 $E_{cell} = E_{cathode}^{\circ} - E_{anode}^{\circ}$
 $= -0.34 - (-0.76)$
 $= +0.42 \text{ V}$

 E_{cell} is positive , so above reaction is feasible.

122 (c)

Among given elements, *D* has the minimum reduction potential (- 2.37 V) hence, it can displace all other from their salts.

123 (a)

$$Cr/Cr^{3+}$$
 (0.1 M) || Fe^{2+} (0.01 M) | Fe
Oxidation half-cell; $Cr \rightarrow Cr^{3+} + 3e^{-} \times 2$

Reduction half-cell; $Fe^{2+} + 2e^{-} \rightarrow Fe \times 3$ Net cell reaction;

$$2Cr + 2Fe^{2+} \rightarrow 2Cr^{3+} + 3Fe \quad (n = 6)$$

$$E_{\text{cell}}^{\circ} = E_{\text{oxidation}}^{\circ} - E_{\text{reduction}}^{\circ}$$

$$= 0.72 - 0.42$$

$$= 0.30 \text{ V}$$

$$\begin{split} E_{\text{cell}}^{\circ} &= E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log \frac{[\text{Cr}^{3+}]^2}{[\text{Fe}^{2+}]^3} \\ &= 0.30 - \frac{0.0591}{6} \log \frac{(0.1)^2}{(0.01)^3} \\ &= 0.30 - \frac{0.0591}{6} \log \frac{10^{-2}}{10^{-6}} \\ &= 0.30 - \frac{0.0591}{6} \log 10^4 \\ E_{\text{cell}} &= 0.2606 \, V \end{split}$$

124 **(c)**

A thin film of Cr₂O₃ is formed on Cr Surface.

125 **(b)**

The unit of electrochemical equivalent (Z) is g/C.

$$w = Z.i.t$$

$$\therefore Z = \frac{w}{i.t} g/C$$

126 (d)

The elements which are below H_2 in electrochemical series, cannot displace H_2 . \because Out of Li⁺, Sr²⁺, Al³⁺ and Ag⁺, Ag⁺ is below H_2 in electrochemical series, so Ag⁺ cannot displace H_2 .

127 **(b)**

As the reduction potential of Zn is less than that of Ag, hence Zn will act as anode when Acell is made using them.

Hence, the correct reaction will be

$$Zn(s) \rightarrow Zn^{2+} (aq) + 2e^{-}$$

(oxidation)

$$\frac{2\operatorname{Ag}^{+}(aq) + 2e^{-} \to 2\operatorname{Ag}(s)}{\operatorname{Zn}(s) + 2\operatorname{Ag}^{+}(aq) \to \operatorname{Zn}^{2+}(aq) + 2\operatorname{Ag}(s)}$$

128 **(a**)

$$W \propto i \times t$$
 and $W = Z \times i \times t$.

129 **(b)**

Cell constant =
$$\frac{k}{C}$$
 = 0.0212 × 55
= 1.166 cm⁻¹

130 (c)

Reducing power, *ie*, the tendency to lose electrons increases as the reduction potential decreases

131 (a)

- 7. Reducing character $\propto \frac{1}{\text{reduction potentials}}$
- 8. Oxidizing power of halogen decreases from F_2 to I_2 because their reduction

potentials decreases from fluorine to iodine.

9. The reducing power of hydrogen halides increases from hydrogen chloride to hydrogen iodide since, the stability of the *H* – *X* bond decreases in the same order. Hence, all statements are correct.

132 **(d)**

If
$$E^{\circ} = 0$$
, then $\Delta G^{\circ} = -nE^{\circ} F = 0$.

133 **(d)**

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$

 $\therefore 2.46 = (+0.80) - E_{\text{Al}^{3+}/\text{Al}}^{\circ}$
 $\text{Or } E_{\text{Al}^{3+}/\text{Al}}^{\circ} = 0.80 - 2.46 = -1.66 \text{ V}$

134 (d)

$$E^{\circ}$$
 for reaction in (d) = $E_{OP_{\rm Br}}^{\circ} + E_{RP_1}^{\circ} = -1.09 + (-0.54)$

Since, E° is negative and thus, reaction is non-spontaneous.

136 **(b)**

$$\Delta G^{\circ} = -nFE^{\circ}$$

$$\Delta G^{\circ} = -2.303 RT \log K_{c}$$

$$\therefore nFE^{\circ} = 2.303 RT \log K_{c}$$

$$\log K_{c} = \frac{nFE^{\circ}}{2.303 RT}$$

$$= \frac{2 \times 96500 \times 0.295}{2.303 \times 8.314 \times 298}$$

$$\log K_{c} = 9.97$$

$$\therefore K_{c} = 1 \times 10^{10}$$

137 **(c)**

The molar conductivity of potassium hexacyanoferrate (II) $i.e., K_4[Fe(CN)_6]$ is highest because it gives maximum number of ions on ionization. $K_4[Fe(CN)_6] \rightarrow 4K^+ + [Fe(CN)_6]^{4-}$

139 (a)

The metals having higher negative value of standard reduction potential are placed above hydrogen in electrochemical series. The metals places above hydrogen has a great tendency to donate electrons or oxidising power. The metals having great oxidizing power are strongest reducing agent. Zn has higher negative value of standard reduction potential. Therefore, it is the strongest reducing agent.

140 (d)

$$w = 60 g$$
$$i = 5A$$

Equivalent weight of Ca = $\frac{\text{atomic weight}}{\text{valency}}$

$$=\frac{40}{2}=20$$

According to first law of Faraday electrolysis

$$w = Zit = \frac{\text{equivalent weight}}{96500} \times i \times t$$

$$t = \frac{96500 \times 60}{20 \times 5} s$$

= $\frac{96500 \times 60}{20 \times 5 \times 60 \times 60} h$
= 16.08 h

142 **(b)**

In Galvanic cell (Daniel cell) the electrical energy is produced from chemical reactions.

At anode $Zn \rightarrow Zn^{2+} + 2e^-$ (oxidation)

At cathode $Cu^{2+} + 2e^{-} \rightarrow Cu$ (reduction)

Cell reaction $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$

Or $Zn(s) + CuSO_4(aq) \rightarrow Cu(s) + ZnSO_4(aq)$

143 **(b)**

$$\Lambda_{AcOH}^{\infty} = \Lambda_{AcONa}^{\infty} + \Lambda_{HCl}^{\infty} - \Lambda_{NaCl}^{\infty}$$
= 91.0 + 426.2 - 126.5
= 390.7

144 **(b)**

The metal with more E_{OP}° is oxidised.

145 (d)

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.05915}{n} \log Q$$

For standard hydrogen electrode,

$$E_{\mathrm{cell}}^{\circ}=0.00V$$

$$\therefore E_{\text{cell}} = -\frac{0.05915}{n} \log Q$$

Given, pH = 1.0

$$\therefore$$
 [H⁺] = 1 × 10⁻¹

$$E_{\text{cell}} = -\frac{0.05915}{n} \log \frac{1}{[\text{H}^+]}$$

[: The reaction occurring is $2H^+ + 2e^- \rightarrow H_2$]

$$= + \frac{0.05915}{1} \log(H^{+})$$

$$= 0.05915 \log(10^{-1})$$

$$= -0.05915 V$$

146 (c)

$$\Lambda_{eq}^{\circ} = \kappa \times \frac{1000}{\text{normality}}$$

= -59.15 mV

$$= \frac{0.005 \times 1000}{0.01} = 500 \text{ ohm}^{-1} \text{ cm}^2 \text{ equiv}^{-1}$$

147 (a)

 E_{OP}° of Mg $> E_{OP}^{\circ}$ of Al.

148 (a)

For the given cell, reaction is

$$Zn + Fe^{2+} \rightarrow Zn^{2+} + Fe$$

$$E = E^{\circ} - \frac{0.0591}{n} \log \frac{C_1}{C_2}$$

or,
$$E^{\circ} = E + \frac{0.0591}{n} \log \frac{C_1}{C_2}$$

$$= 0.2905 + \frac{0.0591}{2} \log \frac{10^{-2}}{10^{-3}} = 0.32 \text{ V}$$

$$E^{\circ} = \frac{0.0591}{2} \log K_{\rm c}$$

$$\therefore \log K_c = \frac{0.32 \times 2}{0.0591} = \frac{0.32}{0.0295}$$

$$K_c = 10^{\frac{0.32}{0.295}}$$

149 **(d**)

When Alead storage battery is discharged, the following cell reactions take place.

At anode

$$Pb + H_2SO_4 \rightarrow PbSO_4 + 2H^+ + 2e^-$$

At cathode

$$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$$

150 (d)

$$2H^+ + 2e^- \rightarrow H_2$$

According to Nernst equation,

$$E = E^{\circ} + \frac{0.0591}{n} \log \frac{1}{[H^{+}]^{2}}$$

$$E = 0 - \frac{0.0591}{2} \log[H^+]^2$$

= - 0.0591 pH

151 (a)

$$E_{\text{Fe}^{2+}/\text{Fe}}^{\circ} = -0.441 \,\text{V}$$

$$E_{\rm Fe^{3+}/Fe}^{\circ} = -0.771 \,\rm V$$

$$E_{\rm cell}^{\circ}=E_{OP_{\rm Fe/Fe^{2+}}}^{\circ}+E_{RP_{\rm Fe^{3+/Fe^{2+}}}}^{\circ}$$
 (See redox

change)

$$= +0.441 + 0.771 = 1.212 \text{ V}$$

152 **(b)**

$$E_{OP_{Zn}}^{\circ} > E_{OP_{Cu}}^{\circ} \text{ or } E_{RP_{Zn}}^{\circ} < E_{RP_{Cu}}^{\circ}$$

153 **(b**)

H₂SO₄ is strong electrolyte.

154 (c)

$$\Lambda_{v} = \frac{\Lambda^{0}}{100}$$

$$\therefore \alpha = \frac{\Lambda_{v}}{\Lambda^{0}} = \frac{\Lambda^{0}}{100\Lambda^{0}} = 0.01$$

$$\frac{1}{2}$$
H₂| H⁺ || Ag⁺ | Ag

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$

$$= E_{\rm Ag^+/Ag}^{\circ} - E_{\rm H^+/\frac{1}{2}H_2}^{\circ}$$

$$= (0.80) - (0.0) = 0.80 \text{ V}$$

156 **(a)**

Ions move towards opposite electrodes due to coulombic forces of attraction.

157 **(c)**

More is E_{RP}° , more is the tendency to get reduced. E_{RP}° for Ag is maximum.

158 (d)

 E_{OP}° for Li/Li⁺ is maximum in these.

159 **(b)**

250mL of 1 M AgNO₃ contain =
$$\frac{250}{1000}$$

$$= 0.25 \text{ mole AgNO}_3$$

 \because Electricity required to liberate 1 g equivalent of metal

$$= 96500 ($$

 \therefore Electricity required to liberate 0.25 g equivalent of metal

$$= \frac{96500 \times 0.25}{1}$$
$$= 24125 \text{ C}$$

160 **(b)**

1 faraday = 1 eq. of
$$Cu = 1/2$$
 mole $Cu = N/2$ atoms of Cu .

161 **(a)**

The metals, present below hydrogen in the electrochemical series, cannot liberate hydrogen from the dilute acids.

Among the given metal only Ag is present below hydrogen in electrochemical series, so it does not evolve hydrogen withdil HCl.

Ag + dil. $HCl \rightarrow No reaction$

162 **(b**)

Any cell (like fuel cell), works when potential difference is developed.

163 (a)

$$\mathbf{v}_c = \frac{u_c}{u_a + u_c}$$
, $t_a = \frac{u_a}{u_a + u_c}$

Where, u_a and u_c are speed of ion and t_c and t_a are transport number of cation and anions respectively of an electrolyte.

Thus,
$$t_c + t_a = 1$$

164 **(b)**

We know that 1 Faraday charge liberates one gram- equivalent of a metal, hence 0.5 F charge

will liberate

$$= 0.5 \times 23$$

= 11.50 g of sodium (E = 23)

165 **(b)**

Current
$$(i) = 1.5 A$$

Time (t) 10 min =
$$10 \times 60 = 600$$
 s

Quantity of electricity passed
$$Q = i \times t$$

= $(1.5 A) \times (600 s)$

$$= 900 C$$

Copper is deposited as

$$Cu^{2+} + 2e^- \rightarrow Cu(s)$$

2 moles of electrons or $2 \times 96500 C$ of current deposit copper = 63.56 g

900 C of current will deposit copper

$$= \frac{63.56}{2 \times 96500} \times 900$$

$$= 0.296 \, \mathrm{g}$$

166 **(b)**

Ionic mobility depends upon the charge to size ratio of ion. The ionic size in case of hydrated cation is

$$K^+(aq) < Na^+(aq) < Li^+(aq)$$

167 **(b)**

Eq. of
$$A = \text{Eq. of } B = \text{Eq. of } C$$

or
$$\frac{\frac{2.1}{7/n_1} = \frac{2.7}{27/n_2} = \frac{7.2}{48/n_3}}{0.3 \ n_1 = 0.1 n_2 = 0.15 \ n_3}$$

$$n_1 = \frac{n_2}{3} = \frac{n_3}{2}$$

If
$$n_1 = 1$$
 then $n_2 = 3$, $n_3 = 2$

168 (d)

The electrode, which shows colour change during redox process is called indicator electrode.

169 (c)

Molar conductivity or molar conductance

$$(\Lambda_m) = \kappa \times V$$

$$\Lambda_m = \kappa \times \frac{1000}{C_m}$$

Where, C_m is molar concentration (mol L⁻¹)

- \therefore Molar conductance $(\Lambda_m) \propto (\frac{1}{c})$
- 170 **(b**

Rusting of iron is catalyzed by moist air.

171 **(b)**

$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$

For 0.01 mole H₂, 0.02 mole of electrons are consumed charge required

$$= 0.02 \times 96500 C = i \times t$$

Time required =	$\frac{0.02 \times 96500}{10 \times 10^{-3}} =$	= 19.3	×	$10^{4}s$
-----------------	---	--------	---	-----------

172 **(b)**

Metal having higher E_{OP}° replaces the other from its solution.

173 (a)

Eq. of Ag = Eq. of H₂;

$$\frac{W}{108} = \frac{5600 \times 2}{22400 \times 1}$$

$$\therefore W_{Ag} = 54 \text{ g}$$

174 **(b)**

$$Ag^+ + e^- \rightarrow Ag$$

 $9650 C = 0.1 F = 0.1$ equivalent Ag
 $= 0.1 \text{ mol } Ag$
 $= 10.8 \text{ g } Ag$

175 **(d)**

More or +ve is E_{On}° for an electrode more is its reducing power and *vice* – *versa*.

177 **(b)**

BeCl₂ is predominantly more covalent among halides of alkaline earth metals.

178 **(b)**

In CuSO₄, change is $Cu^{2+} + 2e \rightarrow Cu$; In CuCN, change is $Cu^+ + e \rightarrow Cu$; Thus, $W \propto E_{Cu}$, which is more in CuCN.

179 (c)

$$mn^{2+} + 2e^{-} \rightarrow mn$$
 -1.18 V -2.36
 $mn^{3+} + e^{-} \rightarrow mn^{2+}$ 1.51 V 1.51 V
 $mn^{3+} + 3e^{-} \rightarrow mn$ -0.28 -0.85

 $2H^- \rightarrow H_2 + 2e$; Hydrogen in CaH₂ is – ve.

181 **(c)**

1 mole of monovalent metal ion means charge of 190 (c) N electrons

i.e., 96500 C or 1 faraday.

182 (a)

For strong electrolytes $\Lambda vs \sqrt{c}$ plots are straight line.

183 **(d)**

The metal should be capable of adsorbing H (e.g., Pt).

184 **(b)**

Laws of electrolysis were proposed by Michael Faraday in 1833.

10. Faraday's first law "The mass of any substance deposited or liberated at any electrode is directly proportional to the quantity of electricity passed".

i.e.,
$$w \propto Q$$

where, w = mass of ions liberated in gram

Q = quantity of electricity passed incoulombs.

11. Faraday's second law "When the same quantity of electricity is passed through different electrolytes, the masses of different ions liberated at the electrodes are directly proportional to their chemical equivalents."

i.e.,
$$\frac{w_1}{w_2} = \frac{E_1}{E_2} \text{ or } \frac{Z_1 i t}{Z_2 i t} = \frac{E_1}{E_2}$$

185 (d)

Strong electropositive metals (I group, II group and Al) cannot be obtained at cathode by electrolysing their aqueous salt solutions.

186 **(b)**

Weight of Cu
Weight of H₂ =
$$\frac{\text{Eq. wt. of Cu}}{\text{Eq. wt. of H}_2}$$

 $\frac{\text{Weight of Cu}}{0.504} = \frac{63.6/2}{1}$
∴ Weight of Cu = 15.9 g

187 **(b)**

In presence of Hg electrode preferential discharge of Na⁺ (in comparison to H⁺) occurs.

188 **(b)**

Specific conductivity of a solution decreases with dilution.

189 **(b)**

Passage of current in electrolytic solution is due to migration of ions towards opposite electrodes.

$$E_{\rm cell} = E_{OP_L} + E_{RP_R} = -E_{RP_L} + E_{RP_R}. \label{eq:ecell}$$
 191 (a)

 $E^{\circ} = E$, when $[Zn^{2+}] = 1M$; Also process is $\text{Zn}^{2+}(aq) + 2e \rightarrow \text{Zn}(s)$.

192 (d)

AgI (s) +
$$e^{-} \rightleftharpoons Ag (s) + I^{-}$$
; $E^{\circ} = 0.152 \text{ V}$
 $Ag (s) \rightarrow Ag^{+} + e^{-}$ $E^{\circ} = -0.8 \text{ V}$
AgI (s) $\rightarrow Ag^{+} + I^{-}$ $E^{\circ} = -0.952$
 $E_{\text{cell}}^{\circ} = \frac{0.059}{n} \log K_{sp}$
 $-0.952 = \frac{0.059}{1} \log K_{sp}$

$$\log K_{sp} = \frac{-0.952}{0.059} = -16.135$$

193 (a)

$$\Lambda_{\text{CH}_2\text{COOH}}^{\infty} = \Lambda_{\text{CH}_2\text{COONa}}^{\infty} + \Lambda_{\text{HCl}}^{\infty} - \Lambda_{\text{NaCl}}^{\infty}$$

194 (a)

At cathode : $Cu^{2+} + 2e \rightarrow Cu$; $Cu \rightarrow Cu^{2+} + 2e$ At anode:

195 (d) Wt. of Cu deposited eq. wt. of Cu $\frac{1}{\text{Wt. of H}_2 \text{ produced}} = \frac{1}{\text{eq. wt. of H}}$

$$\frac{0.16}{\text{wt. of H}_2} = \frac{64/2}{1} = \frac{32}{1}$$

Wt. of
$$H_2 = \frac{0.16}{32} = 5 \times 10^{-3} \text{ g}$$

Volume of H₂ liberated at STP

$$= \frac{22400}{2} \times 5 \times 10^{-3} cc$$

= 56 cc

196 (a)

Faraday's laws are independent of external

197 **(a)**

 E_{OP}° for Li is more,

$$Li \rightarrow Li^+ + e$$

Thus, Li is strong oxidant.

198 (d)

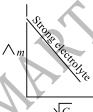
All are electrolytic cells.

199 (a)

96500 C or 1F will liberate 1 eq. of O_2 or 1/4 mole O_2 or 5.6 litre O_2 at NTP.

200 (a)

96500C or 1 Faraday charge is required for the deposition of 1 g-equivalent of a substance.


201 **(c)**

Equivalent conductance = 1000 × conductance × cell constant

So, units are, Ω^{-1} cm²equiv⁻¹ or S cm²equiv⁻¹.

202 **(b)**

For strong electrolytes the plot of molar conductance (Λ_m) vs. \sqrt{C} is linear.

Variation of molar conductance

 $(\Lambda_{\rm m})$ with \sqrt{C} for strong electrolyte.

203 **(b)**

$$\Lambda_{\text{eq}}^{\infty}(\text{NH}_4 \text{ OH}) = \Lambda_{\text{eq}}^{\infty}(\text{NH}_4\text{Cl}) + \Lambda_{\text{eq}}^{\infty}(\text{NaOH}) - \Lambda_{\text{eq}}^{\infty}(\text{NaCl})$$

$$= (149.74 + 248.1 - 126.4)$$

$$= 271.44 \,\Omega^{-1} \,\text{cm}^2\text{eg}^{-1}$$

204 (c)

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$

$$E_{Ag^{+}/Ag}^{\circ} - E_{Cu^{+}/Cu}^{\circ}$$

= - 0.80 - 0.34
= + 0.46

205 (c)

$$\begin{split} E_{\text{cell}} &= E_{\text{OP}_{\text{Ni/Ni}_2^{2^+}}} + E_{\text{RP}_{\text{Au}^{3^+/\text{Au}}}} \\ &= E_{\text{OP}_{\text{Ni}}}^{\circ} - \frac{0.059}{2} \log[\text{Ni}^{2^+}] + E_{\text{RP}_{\text{Au}}}^{\circ} + \frac{0.059}{3} \log[\text{Au}^{3^+}] \\ &= 0.25 - \frac{0.059}{2} \log(1.0) + 1.50 + \frac{0.059}{3} \log 1.0 = 1.75 \text{ V} \end{split}$$

206 (d)

The metal placed below in electrochemical series does not react with that metal salt solution which metal is placed above in series.

208 (a)

Cell representation is done as follows Anode | Anodic electrolyte | cathodic electrolyte | cathode

- (i) Oxidation is loss of electron and it takes place at anode. Reduction is gain of electron and it takes place at cathode.
- : For cell reaction,

$$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$$

Zn is anode and Cu is cathode.

: Cell representation is

209 (c)

2 × 96500 C electricity is used to liberate

$$= 22400 \text{ mL } O_2 \text{ at STP}$$

∴ 9.65 × 1000 C electricity will liberate

$$=\frac{22400\times 9.65\times 1000}{2\times 96500}$$

= 1120 mL

210 (d)

Oxidation half-cell

$$ClO_3^- \to ClO_2^- + 2e^-; E^{\circ}_{cell} = -0.36 \text{ V}$$

Reduction half-cell

$$ClO_3^- + 2e^- \rightarrow ClO_2^-$$
; $E^{\circ}_{cell} = 0.33 \text{ V}$

$$E^{\circ}_{\text{cell}} = 0.33 - 0.36 = -0.03 = \frac{RT}{2F} \ln K$$

or
$$-0.03 = \frac{0.059}{2} \log K$$
 or $K = 0.1$

$$2ClO_3^- \rightleftharpoons ClO_4^- + ClO_2^-$$

$$0.1 - 2x \quad x \quad x$$

$$\frac{x^2}{(0.1 - 2x)^2} = 0.1$$

or
$$x = 1.9 \times 10^{-2}$$

211 (a)

Cu is placed above Ag in electrochemical series, hence it can replace Ag from its salts solution. Therefore, the reaction occur as follows

Fe²⁺ → Fe³⁺ + e;
$$\Delta$$
G₃ = -0.88 + 0.108 = 0.772 or 0.772 = 1 × E° × F
∴ Fe³⁺ + e → Fe²⁺: E° = +0.772 V

Above procedure should be used only when two half reactions on algebraic sum give a third half reaction.

215 **(b)**

Chromium is more electropositive metal than iron. In stainless steel, chromium forms an oxide layer and thus it protects steel from corrosion.

$$Cu^{2+} + 2KI \rightarrow CuI_2 + 2K^+;$$

 $2CuI_2 \rightarrow Cu_2I_2 + I_2$

217 **(d)**

Salt bridge is used to remove or eliminate liquid junction potential arised due to different relative speed of ions of electrolytes at the junction of two 221 (c) electrolytes in an electrochemical cell. Thus, a salt bridge such as KCl is placed in between two 222 (c) electrolytes. A salt used for this purpose should have almost same speeds of its cation and anion.

218 **(b)**

$$w_{\text{Ag}} = \frac{E_{\text{Ag}} \times Q}{96500} = \frac{108 \times 9.65}{96500} = 1.08 \times 10^{-2} \text{ g}$$

= 10.8 mg

The two S atoms which are linked to each other have 0 oxidation number. The oxidation number of other two S-atoms can be calculated as

$$2x + 2 \times 0 + 6 \times -2 = -2$$

$$2x = 12 - 2 = 10$$

$$Cu + AgNO_3 \xrightarrow{Oxidation} CuNO_3 + Ag$$

212 (a)

 E° does not depend on stoichiometry of change.

213 (d)

HCl is strong electrolyte and H⁺ has highest conducting power due to Grothus conductance.

x = +5

220 (a)

Higher the negative value of E° , more is the reducing power.

The order of E° values (negative value) is

$$-2.37 > -0.76 > -0.44$$
 (Mg) (Zn) (Fe)

∴ Mg can reduce both Zn²⁺ andFe²⁺. Zn can reduce Fe²⁺, but not Mg²⁺. Fe cannot reduce Mg and Zn but can oxidize them.

It is definition of Kohlrausch's law.

$$Sn^{2+} \to Sn^{4+} + 2e^{-}$$

$$E_{cell} = E^{\circ} - \frac{0.059}{n} \log \frac{[Sn^{4+}]}{[Sn^{2+}]}$$

$$= E^{\circ} - \frac{0.059}{2} \log \left[\frac{0.01}{0.1} \right]$$

$$= E^{\circ} + \frac{0.059}{2}$$

224 (c)

$$\mathring{\Lambda}_{CH_{2}COOH} = \mathring{\Lambda}_{HCl} + \mathring{\Lambda}_{CH_{2}COONa} - \mathring{\Lambda}_{NaCl}$$

225 **(b)**

Reduction always occurs at cathode during electrolysis.

226 (a)

$$E_{\text{cell}}^{\circ} = \frac{0.0591}{2} \log K_c$$

$$0.59 = \frac{0.0591}{2} \log K_c$$

$$\frac{0.59 \times 2}{0.059} = \log K_c$$

$$\therefore \log K_c = 20$$

$$K_c = \text{antilog } 20 = 10^{20}$$

227 **(c)**

Given, current = 241.25 C

We know that 1 C electricity will deposit 1.118 \times 10^{-3} g of silver.

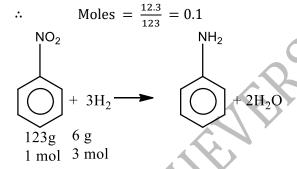
∴ 241.25 C electricity will deposit
=
$$(1.118 \times 10^{-3}) \times 241.25$$

= 0.27 g of silver.

228 (a)

$$CaF_2 = k_{solution} - k_{water}$$

229 (a)


More negative is the standard reduction potential, greater is the tendency to lose electrons and hence, greater is the reactivity

230 (a)

Follow Debye Hückel theory strong electrolytes.

231 (d)

Given, mass of nitrobenzene = 12.3 gMolecular mass of nitrobenzene = 123 g

∴ H₂ required for reduction of 0.1 mole nitrobenzene

$$= 0.1 \times 3 = 0.3 \text{ mol of hydrogen}$$

: Amount of charge required to liberate 0.3 mol of hydrogen

=
$$2 \times 96500 \times 0.3 (: H_2 \rightarrow 2H^+)$$

= 57900 C

232 **(a)**

Cell constant = $\frac{\iota}{a}$

Where, l = distance between the electrode a = area of the electrode

233 (d)

More is solute-solute interaction, lesser is conductance. More is solute-solvent interaction, 245 (a) more is conductance. An increase in temperature also increases conductance due to increase in ionic mobility.

234 (a)

$$E_{\mathrm{Zn/Zn^{2+}}}^{\circ} > E_{\mathrm{H/H^{+}}}^{\circ}$$

235 **(b)**

H₂SO₄ is strong electrolyte and thus, ionises completely.

236 (a)

Standard electrode potential of hydrogen electrode is zero.

237 (c)

HCl is an electrolyte.

Use of electrolysis is not done in the production of water.

239 (a)

No doubt Be is above Mg in periodic table but it is below Mg in electrochemical series.

240 (a)

The ionic hydrides conduct electricity in molten state and liberate H2 anode.

$$CaH_2 + 2H_2O \rightarrow Ca(OH)_2 + 2H_2 \uparrow$$

241 **(d)**

Specific conductance is defined as the conductance of one centimeter cube (cc) of the solution of an electrolyte. Upon dilution, the concentration of ions per cc decreases, so the specific conductance falls. Thus, specific conductance ∝ concentration of electrolytes, hence specific conductance is least for the solution for 0.002 N concentration.

242 (c)

According to Faraday law, number of ions produced ∝ quantity of electricity passed

243 (c)

$$W = \frac{E \times i \times t}{96500}$$

$$\therefore 1.8 = \frac{E \times 3 \times 50 \times 60}{96500}$$

$$\therefore E = 19.3$$

244 (a)

At anode

$$2H_2O(l) \rightarrow O_2(g) + 4H^+(aq) + 4e^-$$

At cathode

$$2Cu^{2+}(aq) + 4e^- \rightarrow 2Cu(s)$$

Net electrolysis reaction is

$$2Cu^{2+}(aq) + 2H_2O(l) \rightarrow 2Cu(s) + 4H^+(aq) + O_2(g)$$

So, H_2O is obtained.

During the electrolysis of fused NaCl, chloride ions are oxidized at anode and this process is called oxidation

246 (d)

Since, reduction occurs at Ag electrode hence, increase in the concentration of Ag⁺ or decrease in concentration of Cu^{2+} will increase the voltage.

247 (a)

Magnesium is more electropositive than zinc, hence it can reduce Zn²⁺ (magnesium is placed above zinc in electrochemical series).

$$Mg + ZnO \rightarrow MgO + Zn$$

248 (c)

It is better to write unit as kg coulomb⁻¹ in place of g coulomb $^{-1}$.

249 **(b)**

Cell reaction will be

$$Br_2 + Sn^{2+} \rightarrow 2Br^- + Sn^{4+}, \quad E^{\circ} = 0.95 \text{ V}$$
 $E_{\text{cell}}^{\circ} = \frac{0.059}{2} \log K_{\text{eq}}$
 $0.95 = \frac{0.059}{2} \log K_{\text{eq}}$
 $\frac{0.95 \times 2}{0.059} = \log K_{\text{eq}}$
 $K_{\text{eq}} \approx 10^{32}$

250 **(b)**

It is either ohm $^{-1}$ m $^{-1}$ or Siemens m $^{-1}$, *i. e.*, S m $^{-1}$.

Ionic mobility

ionic mobility
$$\mu_{Ag^{+}} = \frac{\text{ionic conductance}}{96500}$$

$$= \frac{5 \times 10^{-4}}{96500}$$

$$= 5.2 \times 10^{-9} \text{cm/s}$$

252 **(c)**

Given,

Fe³⁺ + 3e⁻
$$\rightarrow$$
 Fe; $E_1^{\circ} = -0.036 \text{ V}$ (i)
Fe²⁺ + 2e⁻ \rightarrow Fe; $E_2^{\circ} = -0.439 \text{ V}$ (ii)

We need to calculate

$$Fe^{3+} + e^{-} \rightarrow Fe^{2+} E_{3}^{\circ} = ?$$
(iii)

We can obtain the (III) by subtracting II from I but E_3° , we can not obtain that way because electrode potential is intensive property. That's when we determine E_3° calculating

$$\Delta G_3 = \Delta G_1 - \Delta G_2$$

($\triangle G$ is an extenwise property)

$$\Delta G_3 = 3 \times 0.036 \, F - 2 \times 0.439 \, F$$

 $\Delta G_3 = 0.108 \, F - 0.878 \, F$

 $-1 \times F \times E_3^{\circ} = -0.770 \, F$

 $E_3^{\circ} = 0.770 \, F$

253 **(b)**

$$E_{\rm Cell}^{\circ} = E_{OP_{\rm Sn}}^{\circ} + E_{RP_{\rm Pb}}^{\circ}$$
 or $E_{Rp_{\rm Sn}}^{\circ} < E_{RP_{\rm Pb}}^{\circ}$, then Sn will oxidise to reduce Pb²⁺.

254 (d)

The substances which have lower reduction potentials are stronger reducing agents. Hence, the order of strength of reducing agent is increases in the following order

$$Cl^- < Fe^{2+} < H_2 < Zn$$

strength of reducing agent increases

255 (d)

$$\mathring{\Lambda}_{m} (CH_{3}COOH)$$

$$= \mathring{\Lambda}_{m} (CH_{3}COONa) + \mathring{\Lambda}_{m} (HCI)$$

$$- \mathring{\Lambda}_{m} (NaCI)$$

$$= 91.0 + 425.9 - 126.4$$

$$= 516.9 - 126.4$$

$$= 390.5 \text{ S cm}^{2} \text{ mol}^{-1}$$

 $AgNO_3 + KCl \rightarrow AgCl \downarrow + KNO_3.$

257 (a)

$$\Lambda_{\rm m}^{\infty}$$
 for BaCl₂ = $\Lambda_{\rm m}^{\infty}$ Ba²⁺ + $2\Lambda_{\rm m}^{\infty}$ Cl⁻
 $\therefore \Lambda_{\rm eq}^{\infty}$ for BaCl₂ = $1/2\Lambda_{\rm m}^{\infty}$ Ba²⁺ + $\Lambda_{\rm m}^{\infty}$ Cl⁻
= $127/2 + 76$
= $139.5 \Omega^{-1}$ cm²

258 **(d)**

$$-\Delta G = nEF$$

$$-966 \times 10^3 = 4 \times E \times 96500$$

$$\therefore E = -2.5 \text{ V}$$

Thus, an e.m.f. of + 2.5 is needed to carryout the electrolytic reduction of Al_2O_3 .

259 (c)

In Galvanic cell the electrical energy is produced from chemical reaction. i. e., chemical energy is transformed into electrical energy.

260 (d)

Faraday's laws are independent of all other external factors and $W \propto Q$.

261 **(b)**

$$\Lambda = k \times \frac{1000}{M}$$

$$= C \times \frac{1}{a} \times \frac{1000}{M}$$

$$\therefore \quad C = \frac{\Lambda \times a \times M}{l \times 1000}$$
i.e., $C \propto \text{conc.}$

$$\propto a$$

$$1$$

∴ unit of constant (
$$\Lambda$$
) = $\frac{C \times l \times 1000}{a \times M}$
= $\frac{S \times m}{m^2 \times \text{mole m}^{-3}}$
= $s \text{ m}^2 \text{ mol}^{-1}$

Cu can displace Ag from AgNO₃ but it cannot liberate H₂ from

HCl because $E_{OP_{Cu}}^{\circ} > E_{OP_{Ag}}^{\circ}$ and $E_{OP_{Cu}}^{\circ} = -ve$.

263 (a)

Cell I: Fe
$$\to$$
 Fe²⁺ + 2e
 $\frac{2\text{Fe}^{3+} + 2e \to 2\text{Fe}^{2+}}{\text{Fe} + 2\text{Fe}^{3+} \to \text{n} = 2};$ $\Delta G^{\circ} =$

 $-nE^{\circ}F$

Cell II : Fe
$$\to$$
 Fe³⁺ + 3e
 $\frac{3Fe^{3+} + 3e \to 3Fe^{2+}}{Fe + 2Fe^{3+} \to Fe^{2+}; n=3;}$ $\Delta G^{\circ} =$

 $-nE^{\circ}F$

Cell III:
$$2Fe^{3+}$$
 → $6e + 2Fe$
 $\frac{3Fe \rightarrow 3Fe^{2+} + 6e}{Fe + 2Fe^{3+} \rightarrow 3Fe^{2+}; n=3;}$ $ΔG^{\circ} =$

 $-nE^{\circ}F$

n and E° are different for each cell.

264 (c)

CuSO₄will react with elements placed above it in electrochemical series and it would not react with elements places below it in electrochemical series.

- ∴ CuSO₄ reacts with Zn and Fe placed above it. CuSO₄ + Fe → FeSO₄ + Cu CuSO₄ + Zn → ZnSO₄ + Cu
- ∴ $CuSO_4$ does not react with Ag, placed below it. $CuSO_4 + Ag \rightarrow$ no reaction.
- 265 **(c)**

Rust is Fe_2O_3 and $Fe(OH)_3$.

267 **(c)**

$$W = \frac{E \times i \times t}{96500}$$
$$P = \frac{E \times c \times t}{96500}$$

268 (a)

The required reaction $(Cu^{2+} + Cu \rightarrow 2Cu^{+})$ can be obtained by using the following reactions

$$Cu^{2+} + e^{-} \rightarrow Cu^{+}, E^{\circ}_{Cu^{2+}/Cu^{+}} = 0.15 \text{ V} \quad ...(i)$$

$$Cu^{2+} + 2e^{-} \rightarrow Cu, E^{\circ}_{Cu^{2+}/Cu} = 0.34 \text{ V} \quad ...(ii)$$

Multiplying Eq. (i) by 2, we get

$$2Cu^{2+} + 2e^{-} \rightarrow 2Cu^{+}$$

$$\Delta G_1 = -nFE = -2 \times F \times 0.15 \qquad \dots (iii)$$

$$Cu^{2+} + 2e^- \rightarrow Cu$$

$$\Delta G_2 = -nFE = -2 \times F \times 0.34 \quad ...(iv)$$

Subtract the Eq. (iv) from Eq. (iii)

$$Cu^{2+} + Cu \rightarrow 2Cu^{+}$$

$$\Delta G_3 = -nFE = -1 \times F \times E^{\circ}$$

Also
$$\Delta G_3 = \Delta G_1 - \Delta G_2$$

$$\therefore -1 FE^{\circ} = (-2F \times 0.15) - (-2F \times 0.34)$$

$$E^{\circ} = -0.38$$

This is the value for the reaction

$$Cu^{2+} + Cu \rightarrow 2Cu^{+}$$

But the given reaction is just reverse of it

$$E_{cell}$$
 for given reaction = $+ 0.38 \text{ V}$

269 (d)

According to Kohlrausch's law

Thus, on adding (ii) and (iii), if $\Lambda_{Na^+}^{\circ}$ and $\Lambda_{Cl^-}^{\circ}$ are subtracted we can obtained the value of Λ_{HOAc}° . Thus, additional value required is Λ_{NaCl}° .

270 (c)

$$\Lambda_{\text{CH}_3\text{COOH}}^0 = \Lambda_{\text{CH}_3\text{COONa}}^0 + \Lambda_{\text{HCl}}^0 - \Lambda_{\text{NaCl}}^0$$

271 **(b**)

$$\Lambda_m = \Lambda_{eq}.\times$$
 valency factor
= 314.28 × 2 = 628.56 mho cm² mol⁻¹

272 (a)

$$t_{\text{K}^+} + t_{\text{Cl}^-} = 1$$

 $\therefore t_{\text{K}^+} = 1 - 0.505 = 0.495$

273 (a)

In voltaic cells net redox change brings in passage of current. In concentration cells transfer of matter brings in passage of current.

274 (c)

H⁺ gets discharged at cathode and thus, [OH⁻] increases in solution.

275 **(b)**

Fe³⁺ and Fe (CN)₆³⁻ are oxidants. Higher is E_{RP}° stronger is oxidant.

Fe³⁺ +
$$e \rightarrow$$
 Fe²⁺; $E_{RP}^{\circ} = 0.77 \text{ V}$
[Fe(CN)₆]³⁻ + $e \rightarrow$ [Fe(CN)₆]⁴⁻; $E_{RP}^{\circ} = 0.35 \text{ V}$

276 (a)

$$\kappa = \frac{1}{R} \times \text{cell constant}$$

 \therefore Cell constant= $\kappa \times R = 0.012 \times 55 = 0.66 \text{ cm}^{-1}$

277 **(c)**

$$W = \frac{E \times i \times t}{96500}$$

$$\therefore 20 = \frac{36.5 \times i \times 360 \times 60}{96500}$$

278 **(b)**

 E_{cell}° for the reaction $M^+ + X^- \rightarrow M + X$ is given as follows

$$= E_{\text{cathode}}^{\circ} + E_{\text{anode}}^{\circ}$$
$$= 0.44 \text{ V} + 0.33 \text{ V}$$
$$= + 0.11 \text{ V}$$

= 2.45 ampere

Since, E_{cell}° is positive for the above reaction . Hence, this reaction is spontaneous.

279 (a)

At anode;
$$\frac{1}{2} H_2 + OH^- \rightarrow H_2O + e^-$$

At cathode; $H^+ + e^- \rightleftharpoons \frac{1}{2} H_2$
Redox change; $H^+ + OH^- \rightleftharpoons H_2O$
 $K = \frac{[H_2O]}{[H^+][OH^-]}$

$$K = \frac{[H_2O]}{[H^+][OH^-]}$$
$$E^{\circ} = \frac{RT}{F} \ln K_w$$

280 **(b)**

 $E_{M^{2+}/M}^{\circ}$ values follow the order with negative sign Mn < Cr < Fe < Co E_{RP}° -1.18 -0.74 -0.44 -0.27 V

281 **(c)**

The number of ions present in solution as well as ionic mobility increase on dilution in case of weak electrolytes and thus, equivalent conductivity increases. Also in case of strong electrolytes only 286 (d) ionic mobility increases with dilution and thus, equivalent conductivity increases. For weak electrolytes, dilution causes increase in number of ions as well as increase in ionic mobility.

282 **(b)**

Specific conductance = conductance \times cell constant

1.3 Sm⁻¹ =
$$\frac{1}{50}$$
 S × cell constant
∴ Cell constant
= 1.3 × 50 m⁻¹ = 65 m⁻¹ = (65/100)cm⁻¹

 $Molar\ conductivity = \frac{1000 \times conductance \times cell\ constant}{1000 \times conductance}$ $=\frac{1000}{0.4}\times\frac{1}{260}\times\frac{65}{100}=6.25\,\mathrm{Scm^2\,mol^{-1}}$

 $= 6.25 \times 10^{-4} \,\mathrm{Sm^2 \,mol^{-1}}$

283 (d)

There will be no passage of current and ions will

show simply diffusion.

284 (c)

From given data (from $\Delta G^{\circ} = -nE^{\circ}F$)

12.
$$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$$

$$\Delta G_1^{\circ} = -2 \times (-0.34) \times F$$

13.
$$Cu^{2+}(aq) + e^{-} \rightarrow Cu^{2+}(aq)$$

$$\Delta G_2^{\circ} = -1 \times (0.15) F$$

On addition,

$$\operatorname{Cu}(s) \to \operatorname{Cu}^{2+}(aq) + e^{-}.\Delta G_1^{\circ} = -1 \times E^{\circ} \times F$$

$$\Delta G_3^{\circ} = \Delta G_1^{\circ} + \Delta G_2^{\circ}$$

$$= (-2 \times -0.34 \times F) + (-1 \times 0.15 \times F)$$

$$= +0.68 \text{ F} - 0.15 \text{ F} = 0.53 \text{ F}$$

$$0r E^{\circ} = -0.53 V$$

Reaction,

$$2Cu^+(aq) \rightleftharpoons Cu^{2+}(aq) + Cu(s), E^\circ = ?$$

So,
$$Cu^+(aq) + e^- \rightleftharpoons Cu(s)$$
, $E^\circ = +0.53 V$

$$Cu^{+}(aq) \rightleftharpoons Cu^{2+}(aq) + e^{-}; \quad E^{\circ} = -0.15 \text{ V}$$

$$2Cu^{+}(aq) \rightleftharpoons Cu^{2+}(aq) + Cu(s); E^{0} = +0.38V$$

The cell reaction is,

$$\frac{1}{2}$$
 H₂(g) + AgCl(s) \rightarrow H⁺(aq) + Cl⁻(aq) + Ag (s)
Obviously, here hydrogen is being oxidized and
AgCl is getting reduced. Hence, the correct cell
representation will be

Pt | $H_2(g)$, HCl solution || AgCl(s) | Ag

287 **(b)**

For all Zn | Zn^{2+} (A = 0.1 M) || Fe^{2+} (A = 0.01 M) | Fe.

The cell reaction,

$$\operatorname{Zn}(s) \to \operatorname{Zn}^{2+}(aq) + 2e^{-}$$

$$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$$

 $Zn(s) + Fe^{2+}(aq) \rightarrow Zn^{2+}(aq) + Fe(s)$ On applying Nernst equation,

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log_{10} \frac{[\text{Zn}^{2+}]}{[\text{Fe}^{2+}]}$$

$$0.2905 = E_{\text{cell}}^{\circ} - -\frac{0.0591}{2} \log_{10} \frac{0.1}{0.01}$$

$$0.2905 = E_{\text{cell}}^{\circ} - 0.0295 \times \log_{10} 10$$

$$0.2905 = E_{\text{cell}}^{\circ} - 0.0295 \times 1$$

$$\dot{E}_{cell}^{\circ} = 0.2905 + 0.0295 = 0.32 \text{ V}$$

At equilibrium $(E_{cell} = 0)$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log_{10} K_c$$

$$\therefore 0 = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log_{10} K_{c}$$

or
$$E_{\text{cell}}^{\circ} = \frac{0.0591}{2} \log_{10} K_c$$

$$0.32 = \frac{0.0591}{2} \log_{10} K_c$$

or
$$K_c = 10^{0.32/0.0295}$$

288 (a)

Cell constant =
$$\frac{\text{sp. conductance}}{\text{conductance}}$$

289 (a)

Cell constant =
$$\frac{1}{a} = \frac{0.8}{1.2} = 0.66 \text{ cm}^{-1}$$
.

290 **(c)**

Eq. of Ag = Eq. of Hg²⁺ = Eq. of Hg₂²⁺
or
$$\frac{0.216}{108} = \frac{W_{\text{Hg}^2}}{a/2} = \frac{W_{\text{Hg}_2}^2}{a/1}$$
; (and $a = 200.6$)

291 (a)

Among Cu, Al, Fe and Zn, Al occupies highest position in electrochemical series.

Al displaces Cu, Fe and Zn from their salts.

292 **(a)**

We know from Kohlrausch's law

$$\Lambda_{\text{CH}_3\text{COOH}}^{\circ} = \Lambda_{\text{CH}_3\text{COONa}}^{\circ} + \Lambda_{\text{HCI}}^{\circ} - \Lambda_{\text{NaCI}}^{\circ}$$

293 **(d**)

For the cell, Ni | Ni²⁺ | Au³⁺ | Au

Given,
$$E_{Ni^{2+}/Ni}^{\circ} = -0.25V$$

$$E_{\mathrm{Au}^{3+}/\mathrm{Au}}^{\circ} = +1.5 \, V$$

Here, Ni is anode and Au is cathode.

$$E_{\text{cell}} = E_C - E_A$$

$$= 1.5 - (-0.25)$$

$$= 1.5 + 0.25$$

$$= 1.75 \text{ V}$$

294 (c)

For the cell reaction, Fe acts as cathode and Sn as anode

Hence,

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$

= -0.44 - (-0.14) = -0.30 V

The negative emf suggests that the reaction goes spontaneously in reversed direction

295 (c)

$$\operatorname{Zn}(s) + 2\operatorname{H}^+(aq) \to \operatorname{Zn}^{2+}(aq) + \operatorname{H}_2(g)$$

Reaction quotient $Q = \frac{[\operatorname{Zn}^{2+}]}{[\operatorname{H}^+]^2}$

Corresponding cell is

$$\operatorname{Zn} | \operatorname{Zn}^{2+} (C_1) | | \operatorname{H}^+ (\operatorname{aq}) | \operatorname{Pt} (\operatorname{H}_2)$$
-anode + cathode

and
$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0591}{2} \log K$$

$$= E_{\text{cell}}^{\circ} - \frac{0.0591}{2} \log \frac{[\text{Zn}^{2+}]}{[\text{H}^{+}]^{2}}$$

$$= E_{\text{cell}}^{\circ} + \frac{0.0591}{2} \log \frac{[\text{H}^{+}]^{2}}{[\text{Zn}^{2+}]}$$

If H_2SO_4 is added to cathodic compartment, (towards reactant side), then Q decreases (due to increase in H^+).

Hence, equilibrium is displaced towards right and E_{cell} increases.

296 (c)

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} + \frac{0.059}{2} \log \frac{[\text{Ag}^{+}]^{2}}{[\text{Sn}^{2+}]}$$

297 (a)

$$\Delta G^{\circ} = -nFE^{\circ}$$

$$Fe^{2+} + 2e^{-} \rightarrow Fe$$

$$\Delta G^{\circ} = -2 \times F \times (-0.440 \text{ V})$$

$$= 0.880 \text{ F} \quad ...(i)$$

$$Fe^{3+} + 3e^{-} \rightarrow Fe$$

$$\Delta G^{\circ} = -3 \times F \times (-0.036 \text{ V})$$

= 0.108 F ...(ii) On subtracting Eqs. (i) from (ii)

$$Fe^{3+} + e^- \rightarrow Fe^{2+}$$

$$\Delta G^{\circ} = 0.108 \,\mathrm{F} - 0.880 \,\mathrm{F} = -0.772 \,\mathrm{F}$$

$$E^{\circ} = -\frac{\Delta G^{\circ}}{nF} = -\frac{-0.772 \, F}{1 \times F} = +0.772 \, V$$

298 **(b**

$$E_{\text{cell}}^{\circ} = E_{OP_{\text{Al}}} + E_{RP_{\text{H}}}^{\circ}$$

$$\therefore 1.66 = E_{OP_{\text{Al}}}^{\circ} + 0$$

300 **(a**`

$$\Lambda_{\mathrm{NH_4OH}}^{\infty} = \Lambda_{\mathrm{NH_4Cl}}^{\infty} + \lambda_{\mathrm{OH}^{-}}^{\infty} - \lambda_{\mathrm{Cl}^{-}}^{\infty}$$

302 **(c)**

Number of g-equivalent = number of faraday pass

$$4 g = 4 F$$

303 (c)

Eq. of Al deposited = 5

∴ wt. of Al =
$$5 \times \frac{27}{3} = 45 \text{ g}$$

304 (d)

At equilibrium $E_{\text{cell}} = 0$.

305 **(b)**

For,
$$Sn(s) + 2Fe^{3+}(aq) \rightarrow 2Fe^{2+}(aq) + Sn^{2+}(aq)$$

$$E_{\text{cell}}^{\circ} = E_{\text{Sn/Sn}^{2+}}^{\circ} + E_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{\circ}$$

$$= (0.14) + (0.77) = 0.91 \text{ V}$$

306 (c)

This is Kohlrausch law for a_2b type of electrolytes.

307 **(b)**

$$E_{OP}^{\circ} = -E_{RP}^{\circ}$$
 for any element.

Rusting of iron is catalysed by [H⁺]

309 (d)

Resistivity =
$$\frac{1}{k}$$

Or
$$k = \frac{1}{15.8}$$
 ohm⁻¹ cm⁻¹

Also,
$$\Lambda_{v} = \frac{k \times 1000}{M} = \frac{1 \times 49 \times 100}{10.5 \times 100}$$

Also,
$$\Lambda_v = \frac{k \times 1000}{M} = \frac{1 \times 49 \times 1000}{18.5 \times 15}$$

Now, $\alpha = \frac{\Lambda_v}{\Lambda_M} = \frac{1 \times 49 \times 1000}{18.5 \times 15 \times 348} = 0.50$

$$Or = 50.7\%$$

310 **(b)**

$$E_{\text{cell}} = E_{\text{anode(op)}}^{\circ} - E_{\text{eathode(op)}}^{\circ}$$
$$= 0.76 - 0.41$$
$$= +0.35 \text{ V}$$

312 **(b)**

Standard oxidation potentials of Zn, Cu, Ag and Ni electrode are +0.76, -0.34, -0.80 and +0.25 V respectively. (Given)

$$\mathrm{Zn^{2+}} + \mathrm{2e^{-}} \rightarrow \mathrm{Zn}$$
; $E_{cell} = -0.76 \,\mathrm{V}$

$$Cu^{2+} + 2e^{-} \rightarrow Cu$$
; $E_{cell} = +0.34 \text{ V}$

$$Ag^+ + e^- \rightarrow Ag$$
; $E_{cell} = + 0.80 \text{ V}$

$$Ni^{2+} + 2e^{-} \rightarrow Ni$$
; $E_{cell} = -0.25 \text{ V}$

14.
$$\operatorname{Cu} + 2\operatorname{Ag}(\operatorname{aq}) \rightarrow \operatorname{Cu}^{2+}(\operatorname{aq}) + 2\operatorname{Ag}$$

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$

 $E_{\text{cell}} = 0.80 - 0.34 = 0.46 \text{ V}$

$$E_{\text{cell}} = 0.80 - 0.34 = 0.46 \text{ V}$$

15.
$$\operatorname{Zn} + 2 \operatorname{Ag}^{+}(\operatorname{aq}) \rightarrow \operatorname{Zn}^{2+}(\operatorname{aq}) + 2 \operatorname{Ag}$$

$$E_{\text{cell}} = 0.80 - (-0.76) = 1.56 V$$

(maximum voltage)

16.
$$H_2 + Ni^{2+}(aq) \rightarrow 2H^+(aq) + Ni$$

$$E_{\rm cell} = -0.25 V$$

17.
$$Zn + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu$$

$$E_{\text{cell}} = 0.34 - (-0.76) = 1.00 V$$

18.
$$\operatorname{Zn} + 2 \operatorname{H}^{+}(\operatorname{aq}) \rightarrow \operatorname{Zn}^{2+}(\operatorname{aq}) + \operatorname{H}_{2}$$

$$E_{\text{cell}} = 0 - (0.76 V) = 0.76 V$$

313 (c)

Cu voltameter or Cu or Ag coulometer are used to detect the amount deposited on an electrode during passage of known charge through solution.

314 (d)

$$E_{RP_{\text{Cr}_2}\text{O}_7^{2^-}/\text{Cr}^{3^+}}^{\circ} = 1.33 \text{ V} \text{ and } E_{RP_{\text{Fe}^{3^+}/\text{Fe}^{2^+}}}^{\circ} = 0.77 \text{ V}$$

 $\therefore E_{OP_{\text{Fe}^2+/\text{Fe}^{3+}}}^{\circ}$ is more thus it will oxidise or electron will flow from Fe electrode to Cr electrode. Also Fe electrode will be negative. Also.

$$E_{\text{cell}}^{\circ} = E_{OP_{\text{Fe}}}^{\circ} + E_{RP_{\text{Cr}}}^{\circ} = -0.77 + 1.33$$

H₂ gas is evolved, when Zn reacts with NH₄Cl in dry cell battery.

$$Zn + 2NH_4Cl \rightarrow Zn (NH_3)_2Cl_2 + H_2 \uparrow$$
Colourles

316 (d)

Reducing character is based upon higher negative value of reduction electrode potential.

Thus, order of reducing character is

317 (a)

More is E_{OP}° , more is the tendency to get itself oxidised and more is reducing power. Given values are of E_{OP}° .

318 (a)

Oxidizing tensdncy $\propto \frac{1}{\text{electrode potential}}$

 $TX \rightarrow \text{No reaction}$

$$TY \rightarrow X.Z$$

$$TZ \rightarrow X$$

⇒ Order of electrode potential is

⇒ Order of oxidation of the anion is

$$Y^- > Z^- > X^-$$

319 (a)

In the internal circuit of Agalvanic cell ions flow while in the external circuit, there is Aflow of electrons from zinc rod to copper rod.

321 (c)

$$\begin{array}{l} {\rm Sn}\,(aq)\,+\,2{\rm Fe^{3+}}(aq)\,\rightarrow\,2{\rm Fe^{2+}}(aq)\,+\,{\rm Sn^{2+}}(aq)\\ E_{\rm cell}^{\circ}\,=\,E_{\rm oxi}^{\circ}\,+\,E_{\rm red}^{\circ}\\ &=\,E_{\rm Sn\,/Sn^{2+}}^{\circ}\,+\,E_{\rm Fe^{3/}\,Fe^{2+}}^{\circ}\\ {\rm Given}\,,\,E_{\rm Sn\,/Sn^{2+}}^{\circ}\,=\,-\,0.14\,V\\ &\therefore\quad E_{\rm Sn\,/Sn^{2+}}^{\circ}\,=\,+\,0.14\,V\\ &E_{\rm Fe^{3+}/\,Fe^{2+}}^{\circ}\,=\,0.77\,V\\ &E_{\rm cell}^{\circ}\,=\,0.14\,+\,0.77\,=\,0.91\,V \end{array}$$

322 (d)

$$Zn^{2+} + 2e^{-} \rightarrow Zn; E^{\circ} = -0.76 V$$

 $Fe^{2+} + 2e^{-} \rightarrow Fe; E^{\circ} = -0.44 V$

Cell reaction is

Fe²⁺ + Zn
$$\rightarrow$$
 Zn²⁺ + Fe
 $E_{\text{cell}}^{\circ} = E_{\text{cathode}} - E_{\text{anode}}$
= -0.44 - (0.76)
= -0.44 + 0.76
=0.32 V

323 **(c)**

Reduction hydrogen half-cell is

$$H^+ \mid (xM) \mid Pt (H_2)$$

+
Pressure pH_2

Half - cell reaction is

$$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$$

Reaction quotient

$$= Q = P_{H_2} / [H^+]^2, n = 2$$

 $E_{\text{red}} = E_{\text{red}}^{\circ} - \frac{0.0591}{n} \log Q = 0 - \frac{0.0591}{2} \log Q$

	P_{H_2}	[H ⁺]	Q	$E_{\rm red}$
(a)	1atm	2.0 M	0.25	+ve
(b)	1atm	1.0 M	1.0	0
(c)	2atm	1.0 M	2.0	-ve
(d)	2atm	2.0 M	0.50	+ve

 $E_{\rm red}^{\circ} = 0.00$ V for standard hydrogen electrode If Q > 1, then $E_{red} = \text{-ve}$.

Thus, correct answer is (c).

324 (a)

During the electrolysis of an aqueous solution of MgSO₄ between inert electrodes, the products available on the cathode and the anode are $H_2(g)$ and $O_2(g)$ respectively.

326 (d)

Follow Kohlrausch's law.

328 (a)

Because in it covalent bonding is present

329 **(b)**

Cations carrying positive charge move towards cathode where they get discharged.

330 (a)

The PH of 0.1 M HCl and 0.1 M acetic acid is not the same, because HCl is a strong acid, so its pH is more and CH₃COOH is a weak acid, so its pH is less

331 **(d)**

Electrochemical cell are based upon the reaction between various electrolytes. The reaction given in option (d) does not involve electrolytes, so it cannot be Abase for electrochemical cell.

333 (a)

The element having more E_{OP}° is oxidised and other is to be reduced.

334 (a)

$$Ag^+ + e^- \rightarrow Ag$$
, $E_{Ag} = \frac{\text{atomic mass}}{1} = 108$

Number of faraday =
$$\frac{w_{Ag}}{E_{Ag}} = \frac{108}{108} = 1$$

335 (a)

$$[H^+] = c. \alpha = 0.0133 \times 0.1$$

= 0.00133 M.

336 (a)

$$E_{1} = E^{\circ} - \frac{0.059}{1} \log[H^{+}]_{1}$$

$$E_{2} = E^{\circ} - \frac{0.059}{1} \log[H^{+}]_{2}$$
on adding (also $E_{H}^{\circ} = 0$)
$$E_{1} + E_{2} = -\frac{0.059}{1} [\log(H^{+})_{1} + \log(H^{+})_{2}]$$
Now for CH₃COOH = CH3COO⁻ + H⁺

$$[H^{+}] = \frac{K_{a}[CH_{3}COOH]}{[CH_{3}COO^{-}]}$$

$$\therefore [H^{+}]_{1} = K_{a} \cdot \frac{y}{x}$$

$$[H^{+}]_{2} = K_{a} \cdot \frac{x}{y}$$

$$\therefore E_{1} + E_{2} = -\frac{0.059}{1} \left[\log \frac{K_{a} \cdot y}{x} + \log \frac{K_{a} \cdot x}{y} \right]$$

$$= -0.059 [2 \log K_{a}]$$

$$\log K_{a} = \frac{E_{1} + E_{2}}{2 \times (-0.059)}$$

$$\log K_{a} = \frac{E_{1} + E_{2}}{0.118}$$
or
$$pK_{a} = \frac{E_{1} + E_{2}}{0.118}$$

$$pK_a = \frac{E_1 + E_2}{2}$$

337 (a)

$$W = \frac{E \times i \times t}{96500}$$

$$\therefore \frac{112 \times 2}{22400} = \frac{1 \times i \times 965}{96500}$$

$$\therefore i = 1 \text{ ampere}$$

338 (d)

$$pH = 3, [H^+] = 10^{-3}$$

$$E = E_{\rm red}^{\circ} + 0.059 \log (ion)$$

$$E = 0 + 0.059 \log (10^{-3})$$

$$E = +0.059(-3) = -0.177V$$

339 (d)

Given,
$$E_{\text{cell}}^{\circ} = 0.34 V$$

$$E_{\text{cell}}^{\circ} = E_{(\text{Cu}^{2+}/\text{Cu})}^{\circ} - E_{(\text{H}_2/\text{H}^+)}^{\circ}$$

$$0.34 = E^{\circ}_{(Cu^{2+}/Cu)} - 0.00$$

$$E_{(Cu^{2+}/Cu)}^{\circ} = +0.34$$

340 (d)

Reduction potential of hydrogen electrode,

$$E_{\rm H} = -\frac{2.303RT}{F} \log \frac{1}{[{\rm H}^+]}$$

$$= -0.059 \text{ pH} = -0.059 \times 3 = -0.177 \text{ V}$$

341 (c)

Ag or Cu voltameters or coulometers are used to measure the total charge passed through solution in terms of weight of Ag or Cu deposited there on voltameter or coulometer cathode.

342 **(b)**

Reaction for electrolysis of water is

$$2H_2O \rightleftharpoons 4H^+ + 2O^{2-}$$

$$20^{2-} \rightarrow 0_2 + 4e^-$$

$$4e^{-} + 4H^{+} \rightarrow 2H_{2}$$

$$\therefore n = 4$$

So, 4 F charge liberates = $1 \text{ mol} = 22.4 \text{ dm}^3$ oxygen

∴ 1 F charge will liberate = $\frac{22.4}{4}$ = 5.6 dm³ oxygen

343 (a)

$$Q = 2.5 \times 386 = 965 \text{ C}$$

 $2F(2 \times 96500 \text{ C})$ deposited, Cu = 63.5 g

Hence, 965 C will deposit, Cu = 0.3175 g

344 **(b)**

Given, product = 0.1 M and reactant = 1 M

$$E_{\text{cell}}^{\circ} = E_{\text{cell}}^{\circ} - \frac{0.0591}{2} \log \frac{[\text{products}]}{[\text{reactants}]}$$

$$1.50 = E_{\text{cell}}^{\circ} - 0.02955 \log \left[\frac{0.1}{1} \right]$$

$$E_{\rm cell}^{\circ} = 1.470 \, V$$

$$E_{\text{cell}}^{\circ} = E_{\text{H}^{+}/\text{H}_{2}}^{\circ} - E_{M/M^{2+}}^{\circ}$$

$$E^{\circ}_{M/M^{2+}} = -1.470$$

So,
$$E_{M^{2+}/M}^{\circ} = 1.470 V$$

345 **(c)**

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} + \frac{0.059}{2} \log \frac{[\text{Cu}^{2+}]}{[\text{Zn}^{2+}]};$$

Thus, on doubling concentration of both Cu^{2+} and Zn^{2+} , there will be no effect no E_{cell} .

346 (a)

$$\Lambda_{\text{H}_2\text{O}}^{\infty} = \lambda_{\text{H}^+}^{\infty} + \Lambda_{\text{OH}^-}^{\infty}$$

347 (a

$$\kappa = \Lambda_{eq} \cdot C$$

=
$$(91 \Omega^{-1} \text{ cm}^2 \text{ eq}^{-1}) \left(\frac{2.54}{159/2 \times 1000} \text{ eq} \cdot \text{cm}^{-3} \right)$$

$$= 2.9 \times 10^{-3} \Omega^{-1} \text{ cm}^{-1}$$

348 (a)

MnO₄ will oxidise Cl⁻ ion according to equation

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

$$2Cl^- \rightarrow Cl_2 + 2e$$

Thus,
$$E_{\text{cell}}^{\circ} = E_{OP_{\text{Cl}^-/\text{Cl}_2}}^{\circ} + E_{RP_{\text{MnO}_4^-/\text{Mn}^2}^+}^{\circ}$$

$$= -1.40 + 1.51 = 0.11 \,\text{V}$$
 or reaction

is feasible MnO₄ will oxidise Fe²⁺ to Fe³⁺

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

$$Fe^{2+} \rightarrow Fe^{3+} + e$$

$$E_{\text{cell}}^{\circ} = E_{OP_{\text{Fe}^{2+}/\text{Fe}^{3+}}}^{\circ} + E_{\text{MnO}_{4}^{-}/\text{Mn}^{2+}}$$

$$=-0.77+1.51$$

= 0.74 V or reaction is feasible

Thus, MnO_4^- will not oxidise Fe^{2+} to Fe^{3+} in aqueous HCl medium but it will also oxidise Cl^- to Cl_2 . Suitable oxidant should not oxidise Cl^- to Cl_2 and should only oxidise Fe^{2+} to Fe^{3+} in redox titrations.

349 **(c)**

This is representation of standard hydrogen electrode.

350 (a)

$$E_{\text{cell}} = E_C - E_A$$

Given,
$$E_{Ag^{+}/Ag}^{\circ} = 0.80 \text{ V}$$

∴ Hydrogen is anode and silver is cathode.

$$E_{\text{cell}} = E_C - E_A$$

= 0.80 - 0 (:: $E_{\text{H}^+/\text{H}}^{\circ} = 0$)
= 0.80 V

351 (d)

$$2H^{+} + 2e \rightarrow H_{2}; 20H^{-} \rightarrow H_{2}0 + \frac{1}{2}O_{2} + 2e$$

352 **(b**

$$Fe^{2+} + 2e^- \rightarrow Fe$$

$$E_{\rm Fe} = \frac{56}{2} = 28$$

 $w_{\text{Fe}} = \text{E}_{\text{Fe}} \times \text{number of faraday}$ = $28 \times 3 = 84 \text{ g}$

353 **(a)**
$$w = Zit$$

$$\therefore w = \frac{32.69 \times 5 \times 60 \times 40}{96500} = 4.065 \,\mathrm{g}$$

354 (a)

Velocities of both K^+ and NO_3^- are nearly the same in KNO_3 , so it is used to make salt-bridge

355 **(b)**It is secondary reference electrode.

356 **(a)**

$$E_{\text{cell}}^{\circ} = E_{\text{red (cathode)}}^{\circ} - E_{\text{oxi (anode)}}^{\circ}$$

= $E_{\text{Ag}^{+}/\text{Ag}}^{\circ} - E_{\text{Cu}^{+}/\text{Cu}^{2}^{+}}^{\circ}$
= $0.80 - (+0.34) = +0.46 \text{ V}$

357 (c)

Because conductance increases when the dissociation is more

358 (a)

At cathode $2H^+(aq) + 2e^- \rightarrow 2H$

$$2H + \frac{1}{2} O_2 \rightarrow H_2 O$$

$$2H^+ + \frac{1}{2}O_2 + 2e^- \rightarrow H_2O$$

359 **(b)**

Resistance of $\frac{N}{10}$ solution = 2.5 × 10³ Ω $\kappa = \frac{1}{\text{resistance}} \times \text{cell constant}$ $= \frac{1}{2.5 \times 10^{3}} \times 1.25$ $= \frac{1.25 \times 10^{-3}}{2.5} = 5 \times 10^{-4} \Omega^{-1} \text{ cm}^{-1}$

Equivalent conductance

$$= \frac{\kappa \times 100}{M}$$

$$= \frac{5 \times 10^{-4} \times 1000}{1/10}$$

$$= 5\Omega^{-1} \text{ cm}^2 \text{ equiv}^{-1}$$

360 **(d)**

In concentration cell, two electrolytic solutions of same electrolyte but having different concentrations (e.g., Pt $H_2 \left| \frac{HCl}{c_1} \right| \left| \frac{HCl}{c_2} \right|$ Pt H_2) are

used. Moreover electrolyte of one strength but electrodes of two different concentrations are used.

361 **(b)**

$$E_{\text{cell}}^{\circ} = E_{(RHS)}^{\circ} - E_{(LHS)}^{\circ} = 1.61 - 1.51 = 0.10 \text{ V}$$

$$\Delta G^{\circ} = -nFE^{\circ}$$

$$= -5 \times 96500 \times 0.10 \text{ J}$$

$$\Delta G^{\circ} = -48.25 \text{ kJ}$$

 $\Delta G = -48.25 \text{ K}$

362 **(a)** $W = \frac{E \times i \times t}{96500}$ or $0.635 = \frac{63.5 \times i \times t}{2 \times 96500}$

 $\therefore i \times t = 1930 \, \mathrm{C}$

363 (c)

Given fact is : X is above Z and Y in electrochemical series and thus, Z cannot displace X from its salt.

364 **(b)**

The charging of lead storage battery involves the reverse reactions shown in answer 5.

365 (d)

$$\therefore R \propto l \text{ and, } R \propto \frac{1}{a} \therefore R \propto \frac{1}{a} \text{ or } R = \rho.\frac{1}{a}$$

Where R is resistance, ρ is specific resistance and l, a are length and area of cross-section of wire.

Then
$$\kappa = \frac{1}{R} \times \frac{1}{a} = C \times \frac{1}{a}$$
;

Where *C* is conductance = $\frac{1}{R}$

Also, Equivalent conductivity = Conductivity \times $V_{\text{in mL}}$ where V is solution containing 1 equivalent in it or

Eq. conductivity = $\kappa \times \frac{1000}{N}$

366 **(b)**

1 g atom of Mg = 2g eq. Mg = 2 faraday.

367 **(b)**

$$NaCl \rightarrow Na^+ + Cl^-$$

molten

At cathode Na⁺ +
$$e^- \rightarrow$$
 Na
At anode 2Cl⁻ - 2 $e^- \rightarrow$ Cl₂

When one mole of NaCl is electrolysed, 1 mole Na and $\frac{1}{2}$ mole Cl₂ is obtained.

Thus, when 230 g $\left(\frac{230}{23} = 10 \text{mol}\right)$ Na is formed, the moles of

 Cl_2 obtained will be = $\frac{\text{moles of Na}}{2}$

$$= \frac{10}{2}$$
$$= 5.0 \text{ mol}$$

368 (a)

Cell reaction : $\frac{1}{2}$ H₂(g) + Ag⁺(x) \rightleftharpoons Ag(x) + $H^{+}(1 M)$

$$E = E^{\circ} = -\frac{0.0591}{n} \log \frac{[H^{+}]}{[Ag^{+}]}$$

$$0.503 = 0.80 - \frac{0.0591}{1} \log \frac{1}{x}$$

$$x = 9.43 \times 10^{-6} \text{ M}$$

Number of moles of Ag⁺ in 350 mL

$$=\frac{9.43\times10^{-6}\times350}{1000}=3.3\times10^{-6}$$

Mass of Ag = $3.3 \times 10^{-6} \times 108 = 3.56 \times 10^{-4}$ g

% of Ag in the ore =
$$\frac{3.56 \times 10^{-4}}{1.05} \times 100$$

= 0.0339%

369 (a)

$$\alpha = \frac{\Lambda_v}{\Lambda^{\infty}} = \frac{15.8}{350} = -0.04514$$

370 (c)

$$\begin{split} E_{\text{cell}} &= \frac{0.059}{1} \log \frac{[\text{H}^+]_{\text{RHE}}}{[\text{H}^+]_{\text{LHE}}} \\ &= 0.059 \log \frac{10^{-3}}{10^{-8}} = 0.059 \, \times 5 = 0.295 \end{split}$$

371 (a)

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.059}{n} \log \frac{[\text{Zn}^{2+}]}{[\text{Cu}^{2+}]}$$
$$= 1.10 - \frac{0.059}{2} \log \frac{0.1}{0.1}$$
$$= 1.10 \text{ V}$$

372 (c)

Ag is below Cu in electrochemical series. Metal placed above replaces other placed below in series.

373 **(b)**

Eq. of Ni = Eq. of Cr

$$\therefore \frac{0.3}{59/2} = \frac{W}{52/3}$$

$$\therefore W_{Cr} = 0.176 \text{ g}$$

374 **(b)**

$$NaCl + KNO_3 \rightarrow NaNO_3 + KCl$$

 $KCl - NaCl$
Molar conductivities 152 128

Difference = $24 \,\mathrm{S \,cm^2 \,mol^{-1}}$ Molar conductivities of $KNO_3 = 111$ Molar conductivities of $NaNO_3 = 111 - 24$ $= 87 \, \text{S cm}^2 \, \text{mol}^{-1}$

375 (d)

The degree of ionisation of an electrolyte increases with dilution and temperature as well as in presence of polar solvent.

376 **(a)**

$$E_{\text{cell}}^{\circ} = E_C - E_A$$

= -0.45 - (-2.37)
= -1.92 V

 $Mg(s) | Mg^{2+}(aq) x M | Fe^{2+}(aq) 0.01 M | Fe(s)$

The cell reaction is

Mg + Fe²⁺
$$\rightarrow$$
 Mg²⁺ + Fe
 $E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.059}{n} \log \frac{[\text{Mg}^{2+}]}{[\text{Fe}^{2+}]}$
1.92 = 1.92 $-\frac{0.059}{n} \log \frac{x}{0.01}$
 $0 = \frac{-0.059}{2} \log \frac{x}{0.01}$
 $\therefore x = 0.01 \text{ M}$

377 (d)

Follow theory of corrosion.

378 **(b)**

$$2\text{MnO}_2(s) + \text{Zn}^{2+} + 2e^- \rightarrow \text{ZnMn}_2 O_4(s)$$

 $2 \times 87 \text{ g MnO}_2 \text{ required } 2 \times 96500 \text{ F charge}$
 $8 \text{ g MnO}_2 = \frac{2 \times 96500 \times 8}{2 \times 87}$

$$= 8873.56 F$$

$$Q = it$$

8873.56 = 2 × 10⁻³ × t

$$t = \frac{8873.56 \times 10^3}{2}$$

= 4436781.5 s

$$= \frac{4436781.5}{24 \times 60 \times 60}$$

= 51.35 days

379 (d)

The cell reaction is $Cd(s) + 2AgCl(s) \rightarrow 2Ag(s) + Cd^{2+}(aq) + 2Cl^{-}$ $E_1 = 0.6915 \text{ V}$ at 0°C $E_2 = 0.6753 \text{ V}$ Now, $\frac{\partial E_{cell}}{\partial T} = \frac{E_2 - E_1}{T_2 - T_1}$

$$= \frac{0.6753 - 0.6915}{298 - 273}$$

$$= -6.48 \times 10^{-4}$$

$$\triangle S = nF \left[\frac{\partial E_{cell}}{\partial T} \right]$$

Now, we put the value

 $\triangle S = 2 \times 96500 (-6.48 \times 10^{-4}) = -125.064$

We know that,

$$\triangle G = -nFE_{cell}$$

= -2 × 96500 × 0.6753
= -1.303 × 10⁵

As,
$$\triangle G = \triangle H - T \triangle S$$

For calculating $\triangle H = \triangle G + T \triangle S$

$$= -1.303 \times 10^5 + 298 (-125.064 \text{ kJ})$$

$$\triangle H = -1.6726 \times 10^5 \text{ J}$$

= -167.26 kJ

381 (c)

$$E_{\text{red}} = 0.78 + \frac{0.0591}{1} \log(10^{-7})^2$$

= 0.78 - 0.059 \times 7 = 0.367 V

382 **(b)**

$$\frac{\text{wt. of Al deposited}}{\text{wt. of Cu deposited}} = \frac{\text{eq. wt. of Al}}{\text{eq. wt. of Cu}}$$

$$\frac{\frac{2.7}{\text{wt. of Cu}}}{\frac{2.5}{\text{63.5/2}}} = \frac{\frac{27/3}{63.5/2}}{\text{wt. of Cu}}$$

$$\frac{2.7}{\text{wt. of Cu}} = \frac{27/3}{63.5/2}$$

$$\text{wt. of Cu} = 9.525 \text{ g}$$

383 **(d)**

 $E = Q.V = 1C \times 1V = 1J$. It is unit of energy. Also $1J = 10^{7}$ erg.

384 (a)

$$E_{\text{Cu/Cu}^{2+}} = E_{\text{Cu/Cu}^{2+}}^{\circ} - \frac{0.059}{2} \log[\text{Cu}^{2+}]$$
if $\log[\text{Cu}^{2+}] = 0$, i. e., $[\text{Cu}^{2+}] = 1$, then $E_{\text{Cu/Cu}^{2+}} = E_{\text{Cu/Cu}^{2+}}^{\circ}$
or $OA = E_{\text{Cu/Cu}^{2+}}^{\circ} = -E_{\text{Cu/Cu}^{2+}}^{\circ} = -0.34$
Now, $E_{\text{Cu/Cu}^{2+}} = -0.34 - \frac{0.059}{2} \log 0.1$

$$= -0.34 + \frac{0.059}{2} \text{V}$$

$$E_{\text{cell}}^{\circ} = E_{OP_L}^{\circ} + E_{RP_R}^{\circ} = -\phi_L + \phi_R$$

Pb is above Ag and below Ni in electrochemical series.

387 **(b)**

Smaller is the size of ion, more is hydration, lesser is mobility, i.e., mobility of ion in aqueous solution decreases with decrease in size of hydrated ion.

388 (d)

$$H_2O \rightarrow H_2 + \frac{1}{2}O_2.$$

 $2H^+ + 2e^- \rightarrow H_2$

∴ 1 mole of H₂ is liberated from 2 moles of electrons.

2 moles electrons = 2 F charge

$$= 2 \times 96500$$
 C charge

Given, i = 4 A, t = 30 min

∴ 2 × 96500 C charge liberates

= 22400mL H₂ at NTP

$$\therefore 4 \times 30 \times 60 \text{ C charge liberates}$$

$$= \frac{22400}{2 \times 96500} \times 4 \times 30 \times 60 \text{ mL H}_2$$

 $= 0.836 \text{ L of H}_2$

389 **(d)**

$$R = 100\Omega$$

$$\kappa = \frac{1}{R} \left(\frac{l}{a} \right)$$

$$\frac{l}{a}$$
 (cell constant) = 1.29 × 100m⁻¹

Given,
$$R = 520\Omega$$
; $C = 0.2 \text{ M}$

 μ (molar conductivity) =?

$$\mu = \kappa \times V$$

(κ can be calculated as $\kappa = \frac{1}{R} \left(\frac{l}{a} \right)$ now cell constant is known)

Hence, $\mu = \frac{1}{520} \times 129 \times \frac{1000}{0.2} \times 10^{-6} \text{ m}^3$ = $12.4 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$

390 (a)

$$u^{0} = \frac{\lambda^{0}}{96500} = \frac{5 \times 10^{-3}}{96500} = 5.18 \times 10^{-8}$$

$$Q = 10^{-6} \times 1C$$
;

Also, 96500 C = 6.023×10^{23} electrons.

According to Faraday Ist law

$$w = Zit$$

Where, w = amount of substance

Z = Faraday constant or electrochemical

equivalent

i = current in ampere

t = time in second

If
$$i = 1$$
, $t = 1$, $w = Z$

393 (c)

96500 C current produces 12 g Mg

9.65 C current produces

$$= \frac{12 \times 9.65}{96500} = 1.2 \times 10^{-3} \text{g Mg}$$

$$= \frac{1.2 \times 10^{-3}}{24} = 5 \times 10^{-5} \,\text{mol Mg}$$

$$R \longrightarrow X + Mg \longrightarrow RMg X$$
 Grignard reagent 5×10^{-5} 5×10^{-5}

Mol mol

Hence, number of moles of RMgX produced =

 5×10^{-5} .

394 (a)

$$\Delta G = \Delta H - T\Delta S, \Delta G = -nEF$$
 and
$$\Delta G = \Delta H + T \left[\frac{\partial (\Delta G)}{\partial T} \right]_{P}$$

$$\therefore \qquad \Delta H = -nF \left[E - T \left(\frac{\partial E}{\partial T} \right)_P \right]$$

$$\therefore \qquad \Delta S = nF \left(\frac{\partial E}{\partial T} \right)_P$$

395 (a)

Equal equivalent of each are liberated.

Eq. of
$$X = \text{Eq. of } Y$$

$$\frac{W_1}{2M/2} = \frac{W_2}{M/1}$$

$$\therefore W_1 = W_2$$

396 (a)

$$\Delta G^{\circ} = -nFE^{\circ}$$

$$Fe^{2+} + 2e^{-} \rightarrow Fe$$
 ...(i)

$$\Delta G^{\circ} = -2 \times F \times (-0.440 \text{ V}) = 0.880 \text{ F}$$

$$Fe^{3+} + 3e^{-} \rightarrow Fe$$
 ...(ii)

$$\Delta G^{\circ} = -3 \times F \times (-0.036) = 0.108 \text{ F}$$

On subtracting Eqs. (i) from (ii), we get

$$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$$

$$\Delta G^{\circ} = 0.108 \text{ F} - 0.880 \text{ F} = -0.772 \text{ F}$$

$$E^{\circ}$$
 for the reaction $= -\frac{\Delta G^{\circ}}{nF} = -\frac{(-0.772 \text{ F})}{1 \times \text{F}}$
= $+0.772 \text{ V}$

397 **(c)**

$$E_{\text{cell}}^{\circ} = E_{OP_{ZN}}^{\circ} + E_{RP_{Cu}}^{\circ} E_{RP_{Cu}}^{\circ}$$

= 0.76 + 0.34 = +1.10 V.

398 (d)

$$\lambda_c^{\infty} = \mu_c^{\infty} \times \text{Faraday};$$

$$\lambda_a^{\infty} = \mu_a^{\infty} \times \text{Faraday}$$

$$\lambda_c^{\infty} = \mu_c^{\infty} \times \text{Faraday};$$
 $\lambda_a^{\infty} = \mu_a^{\infty} \times \text{Faraday};$
Also, $\lambda_{\text{electrolyte}}^{\infty} = \lambda_a^{\infty} \times \lambda_c^{\infty}.$

399 (a)

Metal undergoes oxidation during corrosion and thus, act as anode.

400 (c)

 MnO_4^- is itself a strong oxidant.

401 **(c)**

Eq. of Al = Eq. of Cu = Eq. of Na
or
$$\frac{1}{3}$$
 mole Al = $\frac{1}{2}$ mole Cu = 1 mole Na

or 2:3:6 or 1:1.5:3 mole ratio.

402 (c)

In Agalvanic cell, oxidation (i. e., removal ofe⁻) occurs at anode. These electrons flow through external circuit from anode to cathode. Therefore, the direction of current in external circuit is from cathode (-ve) to anode (+ve).

403 (a)

$$2Br^{-}(aq) + Cl_2 \rightarrow 2Cl^{-}(aq) + Br_2$$

Bromine is relased by chlorine as more reactive

halogen displaces less reactive halogen from their salt solutions.

404 (a)

 E_{RP}° for H is maximum in these.

405 (d)

Eq. of
$$Fe^{2+}$$
 = Eq. of Fe^{3+}

or
$$\frac{W_1}{W_2} = \frac{W_2}{W_2}$$

or
$$\frac{W_{\text{Fe}^{2+}}}{W_{\text{Fe}^{3+}}} = \frac{3}{2}$$

406 **(b)**

$$\mathring{\Lambda}_{m}(NH_{4}Cl) = \mathring{\Lambda}_{m}(NH_{4}^{+}) + \mathring{\Lambda}_{m}(Cl^{-})$$

$$\mathring{\Lambda}_m(\text{NaOH}) = \mathring{\Lambda}_m(\text{Na}^+) + \mathring{\Lambda}_m(\text{OH}^-)$$

....(ii)

$$\mathring{\Lambda}_m(\text{NaCl}) = \mathring{\Lambda}_m(\text{NH}^+) + \mathring{\Lambda}_m(\text{Cl}^-)$$

$$By(i) + (ii) + (iii)$$

By (i) + (ii) + (iii)

$$4\mathring{\Lambda}_m \text{ (NH}_4\text{OH)} = \mathring{\Lambda}_m \text{ (NH}_4^+) + \mathring{\Lambda}_m \text{ (OH}^-)$$

 $= \mathring{\Lambda}_m \text{ (NH}_4\text{Cl)} + \mathring{\Lambda}_m \text{ (NaOH)}$
 $- \mathring{\Lambda}_m \text{ (NaCl)}$

407 **(b)**

$$Cu^{2+} + 2e \rightarrow Cu; \quad \Delta G_1^{\circ} = -2 \times 0.337 \times F$$

 $Cu^{2+} + e \rightarrow Cu^{+}; \quad \Delta G_2^{\circ} = 1 \times 0.513 \times F$

$$Cu^+ + e \rightarrow Cu; \ \Delta G_3^\circ = \Delta G_1^\circ - \Delta G_2^\circ = -0.52 \ F$$

 $\therefore -1 \times E^\circ \times F = 0.52 \ F \implies E^\circ = 0.52 \ V$

408 (c)

Only oxidation occurs at anode. Also discharge potential of H₂O is less than discharge potential of SO_4^{2-} .

409 **(c)**

Calculate E_{cell}° for each. For (C) $E_{\text{cell}}^{\circ} = 3.6 \text{ V}$.

410 (c)

 6×10^{23} electron = 1 eq.

$$E_{\text{cell}}^{\circ} = E_{OP_{\text{I}}}^{\circ} + E_{RP_{\text{II}}}^{\circ}$$
; I is oxidised, II is reduced.

412 (a)

Charge = $2 \times \text{charge of electron} = 2 \times 1.602 \times 1.6$ 10^{-19} C.

414 (a)

The substances which have lower reduction potentials are stronger reducing agent. The reduction potential of zinc is lowest among these hence, it is the strongest reducing agent.

Mg
$$\rightarrow$$
 Mg²⁺ + 2e⁻ (at anode)
Cu²⁺ + 2e⁻ \rightarrow Cu (at cathode)
 $E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$
= + 0.34 - (- 2.37)

$$= + 2.71 \text{ V}$$

417 (a)

As ammonia is added the concentration of H+ decreases, thus oxidation potential increases by 421 (a) 0.65

418 (d)

In presence of attacked electrodes (Ni electrodes with Ni salt), the metal gets dissolved at anode and metal ions get discharged at cathode.

419 (a)

A cation having highest reduction potential will be reduced first and so on. However, Mg^{2+} in aqueous solution will not be reduced

$$\left(E_{\rm Mg^{2+}/Mg}^{\circ} < E_{\rm H_2O/\frac{1}{2}\,H_2+OH^-} \right)$$
. Instead water would be reduced in preference

420 (d)

Mercury cannot displace hydrogen from acid. The reason can be explained on the basis of electrochemical series. The metal, which is placed above hydrogen in this series, can displace

424 (d)

$$Fe^{3+} + 3e \longrightarrow Fe; \quad -\Delta G_{1}^{\circ} = -0.36 \times F \times 3$$

$$Fe^{2+} + 2e \longrightarrow Fe; \quad -\Delta G_{2}^{\circ} = -0.439 \times F \times 2$$

$$Fe^{3+} + e \longrightarrow Fe^{2+}; \quad -\Delta G^{\circ} = [3 \times (-0.36F) + 2 \times (0.439F)]$$

$$Fe^{3+} + e \rightarrow Fe^{2+}; -\Delta G^{\circ} = [3 \times (-0.36F) + 2 \times (0.439F)]$$

$$\therefore$$
 +1 × F × E° = [3 × (-0.36F) + 2 × (0.439 F)]

or
$$E^{\circ} = [3 \times (-0.36) + 2 \times 0.439]V$$

425 (d)

$$E = E^{\circ} - \frac{0.059}{n} \log \left[\frac{M}{M^{n+}} \right]$$
$$= E^{\circ} - \frac{0.059}{n} \log \left[\frac{\text{products}}{\text{reactants}} \right]$$

E = 0 at equilibrium

$$0 = E^{\circ} - \frac{0.059}{n} \log K_{eq}$$

Or
$$\log K_{eq} = \frac{nE^{\circ}}{0.050}$$

Or
$$\log K_{eq} = \frac{nE^{\circ}}{0.059}$$

Or $\log K_{eq} = \frac{1 \times 0.36}{0.059} = 6.09$
 $K_{eq} = 1.2 \times 10^{6}$

$$K_{eq} = 1.2 \times 10$$

426 (c)

Electrolytes on dissolution in water furnish ions 431 (c) and these ions carry charge towards opposite electrodes.

427 (a)

$$W_{\text{Na}} = \frac{E \times i \times t}{96500} = \frac{23 \times 5 \times 10 \times 69}{96500}$$
$$= 0.715 \text{ g}$$

429 **(b)**

$$2H_2O \rightleftharpoons 4H^+ + 20^{2-}$$

At cathode,
$$4H^+ + 4e^- \rightarrow 2H_2$$

At anode,
$$20^{2-} - 4e^{-} \rightarrow 0_{2}$$

∴ 4 Faraday of charge liberates = 1 mol

hydrogen from an acid. Mercury is placed below hydrogen in ECS, hence, it cannot displace hydrogen from an acid.

This is Kohlrausch law for AxBy.

422 **(c)**

$${\rm Sn^{4+}}+2e \longrightarrow {\rm Sn^{2+}}$$
; $E_{Rp}^{\circ}=0.15~{\rm V}$
 ${\rm Cr^{3+}}+3e \longrightarrow {\rm Cr}$; $E_{RP}^{\circ}=-0.74$ (Higher E_{OP})

Redox change $2Cr + 2Sn^{4+} \rightarrow 2Cr^{3+} + 3Sn^{2+}$

$$\therefore E_{\text{cell}} = E_{OP_{\text{Cr}}}^{\circ} + E_{RP_{\text{Sn}}}^{\circ} = 0.74 + 0.15 = +0.89 \text{ V}$$

423 (c)

$$E_{\text{cell}}^{\circ}$$
 for $\text{Zn}|\text{Zn}^{2+}||\text{Ni}^{2+}|\text{Ni}$ is positive

$$E_{\text{cell}}^{\circ}$$
 for $\text{Zn}|\text{Zn}^{2+}||\text{Ni}^{2+}|\text{Ni}$ is positive $E^{\circ} = E_{OP_{Zn}}^{\circ} + E_{RP_{\text{Ni}}}^{\circ} = 0.76 - 0.23 = 0.53 \text{ V}$

$= 22.4 \, dm^3 O_2$

$$= \frac{22.4}{4} \times 1$$
$$= 5.6 \, \text{dm}^3 \, \text{O}_2$$

$$\frac{2}{3}(Al^{3+})_2 + 4e^- \rightarrow \frac{2}{3}Al$$
or $\frac{2}{3}(0^{2-})_3 \rightarrow 4e^- + 0_2$

$$-\Delta G = nFE$$
 (E is potential required)

$$E = -\frac{960 \times 1000}{4 \times 96500} = -2.5 \text{ V}$$

Cl is placed below Br in electrochemical series; the non-metal placed below in series, replaces other from its solution.

432 (a)

In a galvanic cell, the electrons flow from anode to cathode through the external circuit. At anode (-ve pole) oxidation and at cathode (+ pole) reduction takes place

433 **(b)**

H⁺ is lightest ion and thus, possesses maximum

velocity among monovalent ions.

$$H_2O \rightarrow H_2 + 1/2O_2$$

 \therefore Mole ratio of $H_2O: O_2 :: 1: 1/2$

$$E_{OP}^{\circ} = + \text{Ve thus}, E_{RP}^{\circ} = -\text{ve}.$$

436 (c)

Eq. of Al formed
$$\frac{W}{E} = \frac{it}{96500}$$

Eq. of Al formed
$$\frac{W}{E} = \frac{it}{96500}$$

 $\therefore W_{Al} = \frac{4 \times 10^4 \times 6 \times 60 \times 60 \times 27}{96500} \left(E = \frac{27}{3}\right)$

$$W_{A1} = 8.05 \times 10^4 \text{ g}$$

437 (c)

H₂ undergoes oxidation and AgCl(Ag⁺) undergoes reduction

438 (c)

The ions which lies below H⁺ in electrochemical series, displace H⁺ from solution.

Cu²⁺ lies below H⁺ in electrochemical series.

Cu²⁺ ions displace H⁺ when H₂ gas is bubbled in solution containing these ions.

439 **(b)**

Anode at which oxidation occurs is represented at left hand side.

440 (a)

Ionic conductance is ionic mobility × Faraday.

441 (d)

$$1F = N \times e = E \text{ g} = 96500 \text{ C}$$

442 **(b)**

Standard electrode potential is measured by voltmeter.

443 (a)

 $Cl_2 + 2Kl \rightarrow 2KCl + I_2$; iodine will be liberated first to impart violet colour to CHCl₃ layer.

444 **(b)**

$$w_{\text{metal}} = \frac{E \times i \times t}{96500} = \frac{E \times 3 \times 50 \times 60}{96500}$$

$$\therefore E = \frac{96500 \times w}{3 \times 50 \times 60} = \frac{96500 \times 1.8}{3 \times 50 \times 60} = 19.3$$

Given, current
$$(i) = 0.25 \text{ mA} = 0.025 \text{ A}$$

Time
$$(t) = 60 \text{ s}$$

$$Q = i \times t = 60 \times 0.025 = 1.5 \text{ C}$$

No. of electrons =
$$\frac{1.5 \times 6.023 \times 10^{23}}{96500}$$

$$e^- = 9.36 \times 10^{18}$$

$$Ca \rightarrow Ca^{2+} + 2e^{-}$$

 $2e^{-}$ are required to deposite one Ca atom $9.36 \times 10^{18} e^{-}$ will be used to deposite

$$=\frac{9.36\times10^{18}}{2}=4.68\times10^{18}$$

If F is Faraday and N is Avogadro number, charge

electron =
$$\frac{F}{N}$$

447 **(b)**

Half-cell reaction is

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O^-$$

$$E_{\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}} - E_{\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}}^{\circ}$$

$$= -\frac{0.0591}{n} \log \frac{[\text{Cr}^{3+}]^2}{[\text{Cr}_2 \text{O}_7^{2-}][\text{H}^+]^{14}}$$

$$= \frac{0.0591}{6} \log[10^{-3}]^{14} = -0.414 \,\mathrm{V}$$

448 (d)

$$2Fe + \frac{3}{2}O_2 \rightarrow Fe_2O_3$$

$$Cu + CO_2 + H_2O \rightarrow CuCO_3. Cu_{Green} (OH)_2$$

$$Ag + H_2S \rightarrow Ag_2S$$
Black

450 **(c)**

$$\begin{array}{ll} \operatorname{Cu}_{\operatorname{aq}}^{2+} + e & \to \operatorname{Cu}_{\operatorname{aq}}^{+}; & \Delta G_{1}^{\circ} = -[1 \times 0.15 \times F] \\ & \frac{\operatorname{Cu}_{\operatorname{aq}}^{2+} + e & \to \operatorname{Cu};}{\operatorname{On adding}} & \Delta G_{2}^{\circ} = -[1 \times 0.50 \times F] \\ & \div \operatorname{Cu}_{\operatorname{aq}}^{2+} + 2e & \to \operatorname{Cu}; & \Delta G_{3}^{\circ} = -[2 \times E_{3}^{\circ} \times F] \\ & \div 2E_{3}^{\circ} = 0.65 \, \text{V} & \text{or} & E_{3}^{\circ} = 0.325 \, \text{V} \end{array}$$

451 (c)

When the solution of a weak electrolyte is diluted, the volume of the solution increases, hence equivalent conductivity (λ_c) increases. However, during this process, the number of current carrying particles per cm² decreases, hence specific conductivity (K_c) decreases.

452 **(b)**

$$\begin{split} E_{\text{cell}} &= E_{OP_{\text{H}}}^{\circ} + E_{RP_{\text{H}}}^{\circ} + \frac{0.059}{2} \log \frac{[\text{H}^{+}]_{\text{RHE}}^{2} P_{1}}{[\text{H}^{+}]_{\text{LHE}}^{2} P_{2}} \\ &= \frac{0.059}{2} \log \frac{(10^{-3})^{2}}{(10^{-2})^{2}} \left(E_{OP}^{\circ} = E_{RP}^{\circ} \right) \\ &= -0.059 \text{ V} \end{split}$$

Thus, cell reaction is non-spontaneous.

From Kohlrausch's law
$$\Lambda_m^{\infty} = v_+ \lambda_+^{\infty} + v_- \lambda_-^{\infty}$$
 For CaCl₂
$$\Lambda_m^{\infty}(CaCl_2) = \Lambda_{Ca^{2+}}^{\infty} + 2\Lambda_{Cl^-}^{\infty}$$
 = 118.88 × 10⁻⁴ + 2 × 77.33 × 10⁻⁴ = 118.88 × 10⁻⁴ + 154.66 × 10⁻⁴

$$= 273.54 \times 10^{-4} \text{ m}^2 \text{ mho mol}^{-1}$$

455 **(b)**

In case of very dilute solution of NaCl, electrolysis brings in the following changes:

Anode:
$$20H^- \rightarrow H_2O + \frac{1}{2}O_2 + 2e$$

Cathode:
$$2H^+ + 2e \rightarrow H_2$$

456 **(b)**

Mg lie above Cu in electrochemical series and 464 (b) hence, Cu electrode acts as cathode

$$E_{\text{cell}}^{\circ} = E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = E_{\text{Mg}^{2+}/\text{Mg}}^{\circ}$$

$$\therefore 2.70 \text{ V} = 0.34 - E_{\text{Mg}^{2+}/\text{Mg}}^{\circ}$$

$$\therefore E_{\rm Mg^{2+}/Mg}^{\circ} = -2.36 \,\rm V$$

457 (a)

This, is Hückel-Onsager equation.

458 (c)

Number of equivalents of silver formed = number of equivalents of copper formed In AgNO₃, Ag is in +1 oxidation state In $CuSO_4$, Cu is in +2 oxidation state

Equivalent weight of Ag =
$$\frac{108}{1}$$
 = 108

Equivalent weight of Ag = $\frac{108}{1}$ = 108 Equivalent weight of Cu = $\frac{63.6}{2}$ = 31.8

$$\frac{w_1}{w_2} = \frac{E_1}{E_2}$$

$$\therefore \frac{10.79}{w_{\text{Cu}}} = \frac{108}{31.8}$$
Or $w_{\text{Cu}} = \frac{10.79 \times 31.8}{100} = 3.2 \text{ g}$

459 (b)

Energy = charge \times potential $= 1 \times 100 \times 115$ = 11.5 kJ

460 (d)

Cu is below Fe in electrochemical series.

461 (c)

The process of zinc-plating on iron-sheet is known as galvanization.

462 **(b)**

LHS half cell

$$H_2(g) \rightarrow 2H^+ (1 M) + 2e^-$$

RHS half cell

$$\begin{array}{c}
2H^{+} (1 M) + 2e^{-} \rightarrow H_{2} (g) \\
 & P2 \\
\hline
H_{2}(g) \rightarrow H_{2} (g) \\
P1 & P2
\end{array}$$

$$E_{\text{cell}}^{\circ} = 0.00 \text{ V}, K = \frac{p_2}{p_1}, n = 2$$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{RT}{nF} \log_e K$$
$$= 0 - \frac{RT}{2F} \log_e \frac{P_2}{P_2}$$

$$E_{\text{cell}} = \frac{RT}{2F} \log_e \frac{p_1}{p_2}$$

$$Ag^+ + e^- \rightarrow Ag$$

96500 C charge liberates silver = 108 g

 \therefore 96500 C will liberate silver = 10.8 g

Given 125mL of 1 M AgNO₃ solution. It means that

: 1000mL of AgNO₃ solution contains

$$= 108 \,\mathrm{gAg}$$

∴ 125mL of AgNO₃ solution contains

$$= \frac{108 \times 125}{1000} \text{ gAg}$$
$$= 13.5 \text{ g Ag}$$

- : 108 g of Ag is deposited by 96500 C
- ∴ 13.5 g of Ag is deposited by

$$= \frac{96500}{108} \times 13.5$$
$$= 12062.5 \text{ C}$$

$$Q = tt$$

$$Or \ t = \frac{Q}{i} = \frac{12062.5}{241.25} = 50$$

$$E_{\text{cell}}^{\circ} = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log Q$$

$$Cu^{2+} + Zn \rightarrow Zn^{2+} + Cu$$

$$Q = \frac{[\mathrm{Zn}^{2+}]}{[\mathrm{Cu}^{2+}]} = \frac{1}{0.1} = 10$$

$$E_{\text{cell}} = 1.10 - \frac{0.0591}{2} \log 10$$

= 1.10 - 0.0295
= 1.0705 V

466 (a)

$$(126 \text{ Scm}^2 \text{ mol}^{-1})\Lambda_{\text{NaCl}}^{\infty} = \Lambda_{\text{Na}^+}^{\infty} + \Lambda_{\text{Cl}^-}^{\infty} \dots (i)$$

$$(152 \text{ Scm}^2 \text{ mol}^{-1})\Lambda_{\text{KBr}}^{\infty} = \Lambda_{\text{K}^+}^{\infty} + \Lambda_{\text{Br}^-}^{\infty} \dots (ii)$$

$$(150 \text{ Scm}^2 \text{ mol}^{-1})\Lambda_{\text{KCl}}^{\infty} = \Lambda_{\text{K}^+}^{\infty} + \Lambda_{\text{Cl}^-}^{\infty} \dots (iii)$$

By Eqs.
$$(i) + (ii) - (iii)$$

$$: \Lambda_{\text{NaBr}}^{\infty} = \Lambda_{\text{Na}^{+}}^{\infty} + \Lambda_{\text{Br}^{-}}^{\infty}$$

$$= 126 + 152 - 150$$

$$= 128 \, \text{Scm}^2 \, \text{mol}^{-1}$$

467 **(b)**

$$Ag / Ag^+ (0.1 M) || Ag^+ (1 M) / Ag$$
anode cathode

$$E_{cell} = \frac{2.303RT}{nF} \log \frac{C_1}{C_2}$$

Here, n = number of electrons in cell reaction = 1 $C_1 =$ concentration of cathodic electrolyte =

1 M

 C_2 = concentration of anodic electrolyte =

0.1 M

$$E_{cell} = \frac{0.059}{1} \log \frac{1}{0.1}$$

$$E_{cell} = 0.059 \text{ V}$$

468 (a)

At cathode
$$2H^+ + 2e^- \rightarrow H_2$$

At anode $20H^- \rightarrow H_20 + \frac{1}{2}O_2 + 2e^-$

469 (c)

$$E_{\text{cell}}^{\circ} = E_{OP_{SR}}^{\circ} + E_{RP_{RO}}^{\circ} = 0.14 + 0.77 = 0.91 \text{ V}$$

470 (a)

An important application of fuel cell used in space programmes to provide power for heat and light as well as drinking water to astronauts.

471 (a)

Conductance =
$$\frac{1}{R} = \frac{1}{210}$$

= 4.76 × 10⁻³ mho.

472 (c)

According to Faraday law's

$$m = Z \times Q = \frac{E \times Q}{96500}$$

 $m = \frac{108}{96500} \times 2 \times 96500 = 216 g$

473 (a)

Kohlraush gave the standard value of conductivity for different concentration of KCl solution. Thus, since,

$$\kappa = C \times \frac{l}{a};$$

By finding conductance of same concentration KCl solution, one finds l/a.

474 (c)

$$E_{Cu^{2+}/Cu}^{\circ} = +0.34 \text{ V} = E_{RP}^{\circ}$$
(Above H if arranged in decreasing E_{RP}°)

475 (c)

Given, weight of hydrogen liberated

$$= 5.04 \times 10^{-2} g$$

Eq. wt. of hydrogen = 1.008

Eq. wt. of silver = 108

Weight of silver deposited, w = ?

According to Faraday's second law of electrolysis, weight of silver deposited eq.wt.of silver

 $\frac{\text{weight of silver deposited}}{\text{weight of hydrogen liberated}} = \frac{\text{eq.wt.of silver}}{\text{eq.wt.of hydrogen}}$ $w \qquad 108$

$$\frac{w}{5.04 \times 10^{-2}} = \frac{108}{1.008}$$

$$w = \frac{108 \times 5.04 \times 10^{-2}}{1.008} = 5.4 \text{ g}$$

476 (d)

At infinite dilution an electrolyte is 100% ionised or $\alpha = 1$ for weak electrolytes. At this point all interionic effect disappears.

477 **(b)**

$$\lambda_{\text{K}^{+}}^{\infty} = \mu_{\text{K}^{+}}^{\infty} \times \text{F}$$
or $\mu_{\text{K}^{+}}^{\infty} = \frac{64.35}{96500}$
 $= 6.67 \times 10^{-4} \text{ cm}^{2} \text{sec}^{-1} \text{volt}^{-1}$

478 (a)

Zn has more +ve E_{OP}° and thus possesses more tendency to get oxidise and act as reducing agent.

479 **(a)**

In Danial cell, oxidation occurs at anode and reduction occurs at cathode. Thus, the element, which has higher negative value of reduction potential, is used as anode and that with lower negative value of reduction potential is used as cathode.

- : Reduction potential of Zn is more negative than Cu.
- \therefore Zn | Zn²⁺ is anode and Cu²⁺ | Cu is cathode.

480 **(d)**

To prevent rusting or oxidation of Fe by the action of O_2 in presence of H^+ , galvanization of iron object is made.

481 **(b)**

It is definition of equivalent conductivity.

482 (a)

$$\Delta G^{\circ} = -nE^{\circ}F \text{ (for Cu} + 2Ag^{+} \rightarrow Cu^{2+} + 2Ag) n$$

= 2
= -2 × 0.46 × 96500
= -88788 I = -89.0 kI

483 **(d)**

It does not depend upon mass.

484 (c)

The number of ions per cc decreases with dilution and therefore, specific conductance decreases with dilution.

485 (d)

Aluminium is more electropositive than Zn, hence Al replace it from its salt solution.

486 (c)

Blocks of magnesium metal provide cathodic protection and protect oxidation of steel.

487 (a)

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O \ E^\circ = 1.51 \text{ V}$$

$$\Delta G_1^\circ = -5(1.51)F = -7.55F$$

$$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O \quad E^{\circ} = 1.23 \text{ V}$$

$$\Delta G_2^{\circ} = -2(1.23) F = -2.46 V$$

On substrating

$$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O \Delta G_3^\circ$$

= -5.09 F

$$E_{\text{MnO}_{4}|\text{MnO}_{2}}^{\circ} = \frac{\Delta G_{3}^{\circ}}{-nF} = \frac{-5.09 \, F}{-3F} = 1.70 \, \text{V}$$

488 (c)

Salt bridge is used to remove or eliminate liquid junction potential arised due to different relative speed of ions of electrolytes at the junction of two electrolytes in an electrochemical cell. Thus, a salt bridge such as KCl is placed in between two electrolytes. A salt used for this purpose should 497 (c) have almost same speeds of its cation and anion.

489 (d)

As AgnO₃ is added to solution, KCl will be displaced according to following reaction $AgNO_3(aq) + KCl(aq) \rightarrow AgCl_{(s)} + KNO_3(aq)$ For every mole of KCl displaced from solution, one mole of KNO₃ comes in solution resulting in almost constant conductivity. As the end point is reached, added AgNO₃ remain in solution increasing ionic concentration, hence conductivity increases.

490 (c)

For the given cell, $M|M^+||X^-|X$, the cell reaction is derived as follows:

RHS : Reduction: $X + e^- \rightarrow X^-$

LHS : Oxidation: $M \rightarrow M^+ + e^-$

Add Eqs. (i) an (ii)

$$M + X \rightarrow M^+ + X^-$$

The cell potential = -0.11 V

Since, $E_{\text{cell}} = -\text{ve}$, the cell reaction derived above is non-spontaneous. In fact, the reverse reaction will occur spontaneously

491 **(d)**

Equivalent conductance (Λ) = specific conductance $(\kappa) \times \Phi$

where, $\phi = \text{volume in cm}^3 \text{ containing 1 g}$ equivalent of electrolyte

> g equivalent is dissolve in = 1. 1000 cm^3

1 g equivalent is dissolve in = $\frac{1000}{0.1}$ cm³

 $= 10000 \text{cm}^3$

So, $\Lambda = 10000 \,\mathrm{k}$

492 (d)

All are same.

493 (c)

1 g atom of Al = 3 eq. of Al = 3 faraday charge 3 mole electrons = 3N electron.

494 (d)

 E_{RP}° Cu²⁺/Cu is more;

Thus, Cu²⁺ gets reduced easily to oxidise others.

495 (c)

In electrolytic cell, flow of electron is possible from cathode to anode through internal supply.

496 (a)

Eq. of
$$Mg = Eq.$$
 of Al

or
$$\frac{W_{\text{Mg}}}{12} = \frac{W_{\text{Al}}}{9}$$

For the change ,
$$2Fe^{3+} + 3I^- \Rightarrow 2Fe^{2+} + I_3^-$$

$$E_{\text{cell}}^{\circ} = 0.77 - 0.54 = 0.23 \text{ V}$$

$$E^{\circ} = \frac{0.059}{2} \log K_0$$

$$0.23 = \frac{0.0591}{2} \log K_c$$

$$K_c = 6.26 \times 10^7$$

498 (c)

$$\operatorname{Zn}(s) + 2\operatorname{H}^+(aq) \rightleftharpoons \operatorname{Zn}^{2+}(aq) + \operatorname{H}_2(g)$$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.059}{2} \log \frac{[\text{Zn}^{2+}]}{[\text{H}^{+}]^{2}}$$

When H_2SO_4 is added then $[H^+]$ will increase therefore E_{cell} will also increase and equilibrium will shift towards right

499 (a)

$$2H + 2e \rightarrow H_2$$
;

$$20H^- \rightarrow H_2O + 1/2O_2 + 2e$$

: Wt. ratio of
$$H_2 : O_2 = 2 : 16$$
 or $1 : 8$

500 (d)

Ionic mobilities increase on dilution.

501 **(b)**

Cell is completely discharged, it means equilibrium gets established,

$$E_{\rm cell} = 0$$

$$Zn | Zn^{2+} (1 M) | Cu^{2+} (1 M) | Cu$$

Cell reaction :
$$Zn + Cu^{2+} \rightleftharpoons Zn^{2+} + Cu$$

$$K_{\rm eq} = \frac{[{\rm Zn}^{2+}]}{[{\rm Cu}^{2+}]}$$

We know

$$E_{\text{cel}l}^{\circ} = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log K_{\text{eq}}$$

$$E_{\text{coll}}^{\circ} = \frac{0.0591}{-----} \log K_{\text{eq}}$$

$$E_{\text{cell}}^{\circ} = \frac{0.0591}{n} \log K_{\text{eq}}$$
Or $1.10 = \frac{0.0591}{2} \log K_{\text{eq}}$

$$K_{eq} = \frac{[\text{Zn}^{2+}]}{[\text{Cu}^{2+}]} = \text{antilog } \frac{2.20}{0.0591}$$

= antilog 37.3

502 **(c)**

$$E_{\rm cell} = E_{\rm OP} + E_{\rm RP}$$

503 **(a**)

$$E_{\text{cell}}^{\circ} = E_{OP_{Zn}}^{\circ} + E_{RP_{Ag}}^{\circ} = 0.76 + 0.77 = +1.53 \text{ V}.$$

504 (c)

Rust is Fe_2O_3 . xH_2O or mixture of Fe_2O_3 + $Fe(OH)_3$.

505 (a)

Metal with - ve. E_{Rp}° or + ve E_{OP}° possesses the tendency to get itself oxidised.

506 (a)

$$\Lambda = k \times \frac{1000}{M} = \frac{1}{R} \times \frac{1}{a} \times \frac{1000}{M}$$
$$= \frac{1}{45} \times \frac{2.2}{3.8} \times \frac{1000}{0.5} = 25.73$$

507 (a)

Ionic mobility =
$$\frac{\text{speed of ions}}{\text{potential gradient}} = \frac{\text{m sec}^{-1}}{\text{volt m}^{-1}}$$

509 (a)

Charge =
$$10 \times 1 = 10 \text{ C}$$

Also, 96500 C = 6×10^{23} electrons.

510 **(c)**

Cryolite is used to lower the m. p. of alumina as well as to make it good conductor of current.

511 (c)

The degree of dissociation of all electrolyte increases with increase in dilution (or decrease in concentration).

512 **(d)**

Complex formation enhances the electrolytic deposition of Au.

513 **(b)**

Pure water is almost unionised so, it does not conduct electricity.

514 (a)

Galvanic cell is Aelectrochemical cell that converts the chemical energy of Aspontaneous reaction into electrical energy.

515 (b)

Standard hydrogen electrode (SHE) is reference electrode. It is used to determine the electrode potential of any half cell. The electrode potential of any standard hydrogen electrode is arbitrarily taken as zero.

516 (a)

$$\Lambda_{\text{AgCl}}^{\infty} = \lambda_{Ag}^{\infty} + \Lambda_{\text{Cl}}^{\infty} - \lambda_{\text{NaNO}_{2}}^{\infty} + \lambda_{\text{NaCl}}^{\infty} - \lambda_{\text{NaNO}_{2}}^{\infty}$$

517 (d)

These are characteristics of fuel cells.

518 (a)

$$Q = N. e \text{ or } e = \frac{Q}{N} = \frac{\text{faraday}}{\text{Ay, no.}}$$

519 (a

For strong electrolytes, $\alpha=1$ at normal dilution, but $\Lambda_{\nu}\neq\Lambda_{\infty}$.

520 **(b)**

$$E_{\text{cell}} = +\text{ve thus redox changes are}$$

$$A \rightarrow A^+ + e$$
 LHS shows oxidation.

$$B^+ + e \rightarrow B$$
 RHS shows reduction.

$$A + B^+ \longrightarrow A^+ + B$$

521 **(b)**

The laws of electrolysis were given by Faraday.

522 (a)

Current i = ?

Equivalent weight of Al
$$=\frac{27}{3}=9$$

$$w = Z.i.t$$
 or $i = \frac{w}{Z.t} = \frac{0.09 \times 96500}{9 \times 96.5}$

523 **(a)**

Half cell reaction occurs only when it is coupled with other electrode.

524 (a)

Faraday discovered electrolysis.

525 (a)

1 faraday charge = E g deposition.

526 (a)

- (i) The electrode with higher oxidation potential acts as anode and electrode with lower oxidation potential acts as cathode.
- (ii) Cell reaction is spontaneous when E_{cell} is positive. In case of A and B; oxidation potential of A = -0.03 oxidation potential of B = +0.108

Because oxidation potential of B is more than A so oxidation of A is not possible. The cell having A as anode and B as cathode is not possible.

Therefore, non-spontaneous cell reaction takes place between *A* and *B*.

527 **(b)**

Cell constant =
$$\frac{k}{C}$$
 = 0.0212 × 55
= 1.166 cm⁻¹

528 (a)

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.059}{n} \log \left[\frac{\text{product}}{\text{reactant}} \right]$$

Given, $E_{\text{Cr}^3+/\text{Cr}}^{\circ} = -0.74 \text{ V}$

$$E_{\rm Fe^{2+}/Fe}^{\circ} = -0.44 \, \rm V$$

 $Cr \mid Cr^{2+} (0.1 \text{ M}) \mid Fe^{2+} \mid (0.01 \text{ M}) \mid Fe$

 \therefore Cr³⁺ /Cr is anode and Fe²⁺ / Fe is cathode.

$$E_{\text{cell}}^{\circ} = E_C^{\circ} - E_A^{\circ}$$

= (-0.44) - (0.74)
= -0.44 + 0.74
= +0.30 V

Cell reaction is

$$2Cr + 3Fe^{2+} \rightarrow 2Cr^{3+} + 3Fe$$

number of electrons in cell reaction = 6

$$\begin{split} E_{cell}^{\circ} &= E_{cell}^{\circ} - \frac{0.059}{n} \log \left[\frac{\text{product}}{\text{reactant}} \right] \\ &= + 0.30 \,\text{V} - \frac{0.059}{6} \log \left[\frac{(\text{Cr}^{3+})^2}{(\text{Fe}^{2+})^3} \right] \\ &= 0.30 - \frac{0.059}{6} \log \left[\frac{(0.1)^2}{(0.01)^3} \right] \\ &= 0.30 - \frac{0.059}{6} \log 10^4 \\ &= 0.30 - \frac{0.059}{6} \times 0.60 \\ &= 0.30 - 5.9 \times 10^{-3} \\ &= 0.2941 \,\text{V} \end{split}$$

529 **(c)**

$$2e + \text{Cl}^{+} \rightarrow \text{Cl}^{-}; \Delta G_{1}^{\circ} \qquad \dots \text{(i)}$$

$$2\text{Cl}^{-} \rightarrow 2\text{Cl}_{2} + 2e; \Delta G_{2}^{\circ} \qquad \dots \text{(ii)}$$

$$2e + 2\text{Cl}^{+} \rightarrow \text{Cl}_{2}; \Delta G_{3}^{\circ}$$

$$\therefore \Delta G_{3}^{\circ} = 2 \times \Delta G_{1}^{\circ} + \Delta G_{2}^{\circ}$$

$$-2 \times E_{3}^{\circ} \times F = -2 \times 2 \times 0.94 F - 2 \times (-1.36)$$

$$\times F$$

$$\therefore E_3^{\circ} = 0.52 \text{ V}$$

530 (a)

$$\begin{split} E_{\text{cell}} &= E_{OP_{\text{H}}}^{\circ} + E_{RP_{\text{H}}}^{\circ} + \frac{0.059}{2} \log \frac{[\text{H}^{+}]^{2}.P_{1}}{[\text{H}^{+}]^{2}.P_{2}} \\ &= \frac{0.059}{+2} \log \frac{P_{1}}{P_{2}} \\ E_{\text{cell}} \text{ is +ve when } P_{1} > P_{2}. \end{split}$$

532 **(c)**

Eq. of
$$O_2$$
 = Eq. of Ag or $\frac{1.6}{8} = \frac{W}{108}$;
 $\therefore W_{Ag} = 21.6 \text{ g}$

533 **(c)**

At LHS (oxidation) 2 × (Ag
$$\rightarrow$$
 Ag⁺ + e^-),
 $E_{\text{oxi}}^{\circ} = -x$

At RHS (reduction)

$$\frac{\operatorname{Cu}^{2+} + 2e^{-} \to \operatorname{Cu}, \qquad E_{\text{red}}^{\circ} = +y}{2\operatorname{Ag} + \operatorname{Cu}^{2+} \to \operatorname{Cu} + 2\operatorname{Ag}^{+}, E_{\text{cell}}^{\circ} = (y-x)}$$

Note E° values remain constant when half – cell equation is multiplied / divided.

535 (a)

$$\Lambda_{eq}^{\infty} = \lambda_a^{\infty} + \lambda_c^{\infty} = 315 + 35 = 350.$$

536 (d)

$$Pt(s), H_2(g) | H^+(1 M) | Ag^+(aq) | Ag(s)$$

 $EMF \text{ of cell} = 0.62 \text{ V}, E_{cell}^{\circ} = 0.80 \text{ V}$

$$H_2 \rightarrow 2H^+ + 2e^-$$
 (at anode)
 $2Ag^+ + 2e^- \rightarrow 2Ag$ (at cathode)
 $H_2 + 2Ag^+ \rightarrow 2Ag + 2H^+$ (overall reaction)

$$E_{\text{cell}} = E^{\circ} - \frac{2.303RT}{2F} \log \frac{[\text{H}^{+}]^{2}}{[\text{Ag}^{+}]^{2} [\text{H}_{2}]}$$

$$E_{\text{cell}} = E^{\circ} - \frac{2.303RT}{2F} \log \frac{1}{[\text{Ag}^{+}]^{2}}$$

$$0.62 = 0.80 + \frac{2.303 \times 0.06}{2} \log \frac{1}{[\text{Ag}^{+}]^{2}}$$

$$0.62 = 0.80 + \frac{2 \times 2.303 \times 0.06}{2} \log [\text{Ag}^{+}]$$

$$-0.18 = 0.1382 \log [\text{Ag}^{+}]$$

$$[\text{Ag}^{+}] = 0.05 \text{ m}$$

: Mole of Ag⁺ in 100 mL =
$$0.05 \times \frac{100}{1000}$$

Wt. of Ag⁺ in 100 mL =
$$0.05 \times \frac{100}{1000} \times 108$$

% of Ag in 1.08 g alloy

$$\frac{0.05 \times 100 \times 108}{1000 \times 1.08} \times 100$$

= 50 %

537 **(b)**

$$Q = it$$

$$= 1 \times 60$$

$$= 60 C$$

538 **(c)**

During electrolysis, volumes of O₂ and H₂ liberated are in the ratio of 1:2 Hence, volume of H₂ liberated will be 4.48dm³.

539 **(b)**

When 1 F electricity is passed through the solution. 1 g-equivalent of Cu is liberated.

540 (d)

Zn is placed above Sn in electrochemical series.

541 (a)

1 faraday involves charge of 1 mole electrons.

542 (c)

Oxidation of Cl⁻ at anode and reduction of Na⁺ at cathode.

543 (d)

These are characteristic of conductivity water.

544 (c)

These are the facts about use of Mg in protecting iron against corrosion.

545 **(b)**

Sum of molar conductivity of reactants = sum of molar conductivity of products Therefore, for the reaction $CH_3COOH + NaOH \rightarrow CH_3COONa + HCl$ $\Lambda_m^0 \text{ CH}_3 \text{COOH} = \Lambda_m^0 \text{ CH}_3 \text{COONa} + \Lambda_m^0 \text{ HCl} \Lambda_m^0$ NaCl

=
$$91 + 425.9 - 126.4$$

= $390.5\Omega^{-1}$ cm² mol⁻¹

546 **(b)**

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} + \frac{0.059}{n} \log[M^{n+}]$$

$$E_{\text{cell}} = 0.34 + \frac{0.059}{2} \log 10^{-2}$$

$$= 0.34 + \frac{0.059}{2} \times -2$$

$$= + 0.281 \text{ V}$$

547 (a)

We know that, $\Delta G^{\circ} = -nF \cdot E^{\circ}$

Where, n = 1 (number of transferred electron in the cell reaction)

F = 96500 C (Faraday's constant)

 E° = ? (the standard electrode potential of cell)

 $\Delta G^{\circ} = -21.20 \text{ kJ (standard free energy)}$

$$\therefore$$
 -21.20 × 1000 J = -1 × 96500 × E°

Or
$$E^{\circ} = \frac{21200}{96500} = 0.220 \text{ V}$$

548 **(b)**

$$-\Delta G = nEF = nE^{\circ}F + RT \ln \frac{[Cu^{2+}]}{[Zn^{2+}]}$$

 $\therefore \Delta G$ is function of $\ln(c_2/c_1)$.

549 (d)

The half reactions are

Fe(s)
$$\rightarrow$$
 Fe²⁺(aq) + 2e⁻ × 2
0₂(g) + 4H⁺ + 4e⁻ \rightarrow 2H₂0

$$2Fe(s) + O_2(g) + 4H^+$$

$$\rightarrow 2 \operatorname{Fe}^{2+}(aq) + 2 \operatorname{H}_2 O(l)$$

$$E = E^{\circ} - \frac{0.059}{4} \log \frac{(10^{-3})^2}{(10^{-3})^4(0.1)} = 1.57 \text{ V}$$

550 (d)

$$Al^{3+} + 3e^- \rightarrow Al$$

$$w = ZQ$$

Where, w = amount of metal

$$w = 5.12 \, \text{kg}$$

$$= 5.12 \times 10^3 \,\mathrm{g}$$

Z = electrochemical equivalent

$$Z = \frac{\text{equivalent weight}}{96500} = \frac{\text{atomic mass}}{\text{electrons} \times 96500}$$

$$Z = \frac{27}{2 \times 96500}$$

$$Z = \frac{27}{3 \times 96500}$$

$$5.12 \times 10^3 = \frac{27}{3 \times 96500} \times Q$$

$$Q = \frac{5.12 \times 10^3 \times 3 \times 96500}{27} C$$

$$= 5.49 \times 10^7 C$$

551 (c)

$$E_{OP}^{\circ}$$
 of Mg $> E_{OP}^{\circ}$ of Zn

552 **(b)**

$$E_{\text{cell}} = E_{OP_{\text{Cl}}}^{\circ} + E_{RP_{\text{Cl}}}^{\circ} + \frac{0.059}{2} \log \frac{[\text{Cl}^{-}]_{\text{LHE}}^{2} P_{2}}{[\text{Cl}^{-}]_{\text{Bur}}^{2} P_{1}}$$

$$=\frac{0.059}{2}\log\frac{P_2}{P_1}$$

 E_{cell} is +ve when $P_2 > P_1$.

553 (c)

3 eq. of Ag and 3 eq. of Cu will be deposited. Na and Al will not deposit during electrolysis of their aqueous salt solution. Because both have higher E_{OP}° than E_{OP}° of H. These metals can be extracted by electrolysis of their fused salts.

554 (a)

$$t_{\mathrm{K}^{+}}^{\infty} = t_{\mathrm{KCl}}^{\infty} \times t_{\mathrm{K}^{+}}$$

$$130 \times 0.495 = 64.35$$

555 (c)

$$2Fe^{3+} + Zn \rightarrow Zn^{2+} + 2Fe^{2+}$$

 $2Fe^{3+} + 2e^{-} \rightarrow 2Fe^{2+}$

$$2Fe^{3+} + 2e^{-} \rightarrow 2Fe^{2+}$$

According to Nernst's equation,

$$E_{\text{cell}}^{\circ} = E_{\text{cell}}^{\circ} - \frac{RT}{nF} \ln \frac{[\text{Fe}^{2+}]^2}{[\text{Fe}^{3+}]^2}$$

 E_{cell} is depend on concentration of Fe²⁺. Therefore on increasing the concentration of $[Fe^{2+}]E_{cell}$ decreases.

556 **(b)**

 $96500 \text{ C} = 6 \times 10^{23} \text{ electrons.}$

557 (a)

Because fluorine is most powerful oxidizing agent than other halogens

558 (d)

Equivalent conductivity, $\Lambda_{eq} = \frac{\kappa \times 1000}{\text{normality}}$

$$= ohm^{-1} cm^{2} (g - equiv)^{-1}$$

559 (b)

$$E_{\text{cell}}^{\circ} = \frac{0.059}{2} \log K_c$$

$$\log K_c = \frac{E_{\text{cell}}^{\circ} \times 2}{0.059}$$

$$\log K_c = \frac{0.47 \times 2}{0.059}$$

$$\log K_c = \frac{0.47 \times 2}{0.059}$$

$$K_c = 8.5 \times 10^{15}$$

560 (d)

Mg will not deposit on cathode during electrolysis.

561 (a)

$$\Lambda_{\text{NH}_4\text{OH}}^{\infty} = \Lambda_{\text{NH}_4\text{Cl}}^{\infty} + \Lambda_{\text{NaOH}}^{\infty} - \lambda_{\text{NaCl}}^{\infty}$$

At cathode, cations are reduced. Also discharge potential of H⁺ is less than Na⁺.

563 (a)

Conductance of a solution = conductance of ions present in solution = $\sum C_i + C_{water}$.

564 (d)

$$\mathring{\Lambda}_{NaBr} = \mathring{\Lambda}_{NaCl} + \mathring{\Lambda}_{KBr} - \mathring{\Lambda}_{KCl}$$

565 (d)

 $\operatorname{Hg_2Cl_2}(s) + 2e \longrightarrow 2\operatorname{Hg}(l) + 2\operatorname{Cl}^{-2}(aq).$

566 **(b)**

Zn acts as anode and gets oxidised. At graphite cathode the reaction is ,

 $MnO_2 + NH_4^+ + e \rightarrow Mn(OH)O + NH_3$

567 (a)

Eq. of $H_2 = 8/1 = 8$

∴ 8 faraday are needed.

568 (d)

$$C_6H_5NO_2 + 6H^+ + 6e^- \rightarrow C_6H_5NH_2 + 2H_2O$$

1 mol = 123 g nitrobenzene requires 6 mol electrons

 $= 6 \times 96500$ C charge

∴12.3 g nitrobenzene will require = $\frac{6 \times 96500 \times 12.3}{132}$

 $= 6 \times 9650 = 57900 \text{ C}$

569 (c)

At cathode,

$$Al^{3+} + 3e^- \rightarrow Al$$

$$E_{\rm Al} = \frac{27}{3} = 9$$

 $w_{\rm Al} = E_{\rm Al} \times \text{no.of faradays}$

 $= 9 \times 0.1 = 0.9 \,\mathrm{g}$

570 (a)

 $2H^+ + 2e \rightarrow H_2$;

 $20H^- \rightarrow H_20 + 1/20_2 + 2e$

571 (c)

Weak electrolytes are 100% ionized at infinite

572 (a)

1 faraday deposits 1 equivalent which is also 1 g atom for Na.

574 **(b)**

 $E_1 = E_0 - \frac{0.0591}{2} \log \frac{0.01}{1} = E_0 + \frac{0.0591}{2} \times 2$

 $E_2 = E_0 - \frac{0.0591}{2} \log \frac{1}{0.01} = E_0 - \frac{0.0591}{2} \times 2$

 $\therefore E_1 > E_2$

575 **(a)**

Sulphuric acid (H_2SO_4) used in lead storage battery.

576 **(b)**

It is the definition of conductivity.

577 **(a)**

By Kohlrausch's law

 $\Lambda_{\text{NaBr}}^{\circ} = \Lambda_{\text{NaCl}}^{\circ} + \Lambda_{\text{KBr}}^{\circ} - \Lambda_{\text{KCl}}^{\circ}$

= 126 + 152 - 150

 $= 128 \,\mathrm{S} \,\mathrm{cm}^2 \mathrm{mol}^{-1}$

578 **(d)**

 $\Lambda vs \sqrt{c}$ curves are hyperbolic for weak electrolytes because on dilution their no. of ions as well as ionic mobility both increase.

579 (a)

A characteristic of electrode.

580 (a)

The process is called cathode protection where iron acts as cathode and thus, not oxidised.

581 **(c)**

1 faraday deposits E g of species.

582 **(b)**

 E_{OP}° of Li is high enough.

583 (a)

 $Fe \rightarrow Fe^{2+} + 2e^{-}$ (anode reaction)

 $0_2 + 2H_20 + 4e^- \rightarrow 40H^-$ (cathode reaction)

The overall reaction is

$$2\text{Fe} + 0_2 + 2\text{H}_2\text{O} \rightarrow 2\text{Fe}(\text{OH})_2$$

Fe(OH)₂ may be dehydrated to iron oxide FeO, or further oxidized to Fe(OH)₃ and then dehydrated to iron rust, Fe₂O₃.

584 **(b)**

$$Ag^+ + e \rightarrow Ag$$

585 **(b)**

 E_{OP}° of Fe $> E_{OP}^{\circ}$ of Cu;

Thus, Fe gets oxidised or Fe \rightarrow Fe²⁺ + 2e;

$$Cu^{2+} + 2e \rightarrow Cu$$

586 (a)

Because, barring Ag, other come after the Fe in electrochemical series

587 **(b)**

The electrochemical cell stops working after sometime because electrode potential of both the electrodes become equal.

588 (a)

$$k = \frac{1}{R} \times \frac{1}{a} = \frac{1}{210} \times 0.66$$

= 3.14 × 10⁻³ mho cm⁻¹

589 **(d)**

$$\alpha = \frac{\Lambda_v}{\Lambda^{\infty}} = \frac{5.2}{390.7} = 0.0133$$

Or 1.33 %.

591 (c)

For gold plating the electrolyte K $[Au(CN)_2]$ is used.

 $Q = i \times t = 100 \times 10^{-3} \times 30 \times 60 = 180 \text{ C}$

594 (a)

Anode reaction $H_2(p_1) \rightarrow 2H^+$

Cathode reaction $2H^+ \rightarrow H_2(p_2)$

$$E_{\rm cathode} = -\frac{RT}{2F} \, \ln \frac{p_2}{[{\rm H}^+]^2} \label{eq:ecathode}$$

$$E_{\text{anode}} = -\frac{RT}{2F} \ln \frac{[H^+]^2}{p_1}$$

$$E_{\text{cell}} = E_{\text{anode}} + E_{\text{cathode}}$$

$$= -\frac{RT}{2F} \ln \frac{[\mathsf{H}^+]^2}{p_1} - \frac{RT}{2F} \ln \frac{p_2}{[\mathsf{H}^+]^2}$$

$$= -\frac{RT}{2F} \ln \frac{p_2}{p_1} = \frac{RT}{2F} \ln \frac{p_1}{p_2}$$

595 **(b)**

Weight of Ag required = $80 \times 5 \times 10^{-3} \times$ 1.05(wt. = $v \times d$)

$$= 0.42 \text{ g}$$

$$W = \frac{E i t}{96500}$$
∴
$$0.42 = \frac{108 \times 3 \times t}{96500}$$

$$t = 125 \sec$$

596 (c)

$$2H^{+} + 2e \rightarrow H_{2}$$
 (cathode)
 $20H^{-} \rightarrow H_{2}0 + (1/2)0_{2} + 2e$ (Anode)

597 **(b)**

$$W = Z \times i \times t$$

$$W = 0.0011180 \times 0.5 \times 200 = 0.11180 \text{ g}$$

598 (c)

Zn is coated to protect iron from rusting.

599 (c)

Ionisation depends upon concentration, temperature, nature of solute and on nature of solvent. Ionisation increases on increasing dilution.

600 **(b)**

$$\begin{split} & C_5 H_{12} + 8 O_2 \longrightarrow 5 C O_2 + 6 H_2 O \\ & \Delta G^\circ = 5 \times G^\circ C O_2 + 6 \times G^\circ H_2 O - G^\circ_{C_5 H_{12}} - 8 \times G^\circ_{O_2} \\ & = 5 \times (-394.4) + 6 \times (-237.2) + 8.2 \\ & = -3387 \text{ kJ} \\ & \Delta G^\circ = n E^\circ F \end{split}$$

$$3387 \times 10^3 = 32 \times E^{\circ} \times 96500 [(C^{-2.4})_5 \rightarrow 5(C^{4+}) + 32e]$$

$$\therefore E^{\circ} = 1.0968 \,\mathrm{V}$$

$$n = 32$$

601 (c)

Hydrolysis of water can be represented by the following equations

$$2H_2O \Rightarrow O_2 + 4H^+ + 4e^-$$

: 4 Faraday of charge liberate $O_2 = 32 g$

$$\therefore$$
 1 Faraday of charge liberate $O_2 = \frac{32}{4}$ g

$$=8 g$$

602 (a)

Given,
$$\frac{l}{a} = 0.5 \text{ cm}^{-1}$$

$$R = 50\Omega$$

$$N = 1.0$$

$$N=1.0$$

Specific conductance $(\kappa)=\frac{1}{\rho}=\frac{l}{R.a}=\frac{0.5}{50}$

$$\Lambda = \kappa \times \frac{1000}{N}$$

$$= \frac{0.5}{50} \times \frac{1000}{0.1}$$

$$= 10 \Omega^{-1} \text{ cm}^2 \text{ g eq}^{-1}$$

603 (d)

The increasing order of deposition of cations at the cathode is ...

$$Cu^{2+} < Ag^+ < Au^{3+}$$

$$F \propto \sqrt{2}$$

$$Ag^+ + e^- \rightarrow Ag$$

$$E \propto Z$$

 $Ag^+ + e^- \rightarrow Ag$
 $Cu^{2+} + 2e^- \rightarrow Cu$

$$Au^{3+} + 3e^- \rightarrow Au$$

3 Faradays liberate 1 mole of Au, 3 moles of Ag and 3/2 moles of Cu. Thus, molar ratio of Ag:Cu: Au is 3:3/ 2:1 or 6:3:2.

604 **(a)**

$$E_{\text{cell}}^{\circ} = E_{OP_{Mg}}^{\circ} + E_{RP_{Cu}}^{\circ}$$

= 2.37 + 0.34 = 2.71 V.

605 **(b)**

Given,

$$\mathrm{Zn^{2+}} \rightarrow \mathrm{Zn}$$
, $E^{\circ} = -0.76 V$

$$Cu^{2+} \rightarrow Cu$$
, $E^{\circ} = 0.34 V$

$$Ag^+ \rightarrow Ag$$
, $E^{\circ} = 0.8 V$

Cell reaction of (I) is

$$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$$

$$E_{\text{cell}}^{\circ} = E_{\text{oxidation}} + E_{\text{reduction}}$$

= + 0.76 + 0.34
= + 1.10 V

Cell reaction of (II) is

$$Zn + Ag^+ \rightarrow Zn^{2+} + Ag$$

$$E_{\text{cell}}^{\circ} = 0.76 + 0.8$$

= + 1.56 V

Cell reaction of (III) is

$$Cu + Ag^+ \rightarrow Cu^{2+} + Ag$$

$$E_{\text{cell}}^{\circ} = -0.34 + 0.8$$

$$= +0.46$$

So, the correct order of E_{cell}° of these cell is II > I > III.

The equivalent conductance of strong electrolyte is increased by dilution, because its value is equal to the multiple of K_v and the volume of solution. By making dilution the volume of solution increases which also increase the value of equivalent conductivity.

607 **(b)**

 $\Lambda \ vs \sqrt{c}$ curves on extrapolating to zero concentration gives Λ^{∞} for strong electrolytes. NH₄OH is weak electrolyte its $\Lambda \ vs \sqrt{c}$ curves are shown in fig. (d) of problem 41.

608 **(c)**

In this reaction,

EMF =
$$E_{\text{cathod}} - E_{\text{anode}}$$

= $-0.41 - (-0.76)$
= $+ 0.35 \text{ V}$

609 (a)

H₂ is anode because oxidation takes place. Cu is cathode because reduction takes place

610 **(b)**

Solid NaCl does not conduct electricity due to absence of free ions.

611 **(b)**

The hydrated ion size is $\text{Li}_{aq}^+ > \text{Na}_{aq}^+ > \text{K}_{aq}^+ > \text{Rb}_{aq}^+$. Larger is ion, lesser is its mobility.

612 (d)

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} + \frac{0.059}{2} \log \frac{[\text{Ni}^{2+}]}{[\text{Zn}^{2+}]}$$

$$\therefore 0.5105 = E_{\text{cell}}^{\circ} + \frac{0.059}{2} \log \frac{1}{1} \text{ or } E_{\text{cell}}^{\circ} = 0.5105 \text{ V}$$

613 **(a)**

The variation of e.m.f. of cell with temperature at constant pressure $(\partial E/\partial T)_P$ is referred as temperature coefficient of cell.

614 (a)

Wt. of Ag deposited = eq. wt. of Ag = 108 gWt. of Ni deposited = eQ. wt. of Ni = 29.5 gWt. of Cr deposited = eq. wt. of Cr = 17.3 g

615 (a)

The correct relation of $E_{\rm cell}^{\circ}$ with free energy of cell reaction and equilibrium constant are as follows

$$\Delta G^{\circ} = nFE_{\text{cell}}^{\circ}$$

and $\Delta G^{\circ} = -2.303 RT \log K_{\text{eq}}$

616 (a)

Anode: $Fe(s) + 20H^- \rightarrow FeO(s) + H_2O(l) + 2e$ Cathode: $Ni_2O_3 + H_2O(l) + 2e \rightarrow 2NiO(s) + 20H^-$

$$\begin{split} E_{\rm cell} &= E_{OP_{\rm Fe}/{\rm FeO}}^{\circ} - \frac{0.059}{2} {\rm log_{10}} \frac{\rm [H_2O]}{\rm [OH^-]^2} \\ &+ E_{RP_{\rm Ni_2O_3/NiO}}^{\circ} \\ &+ \frac{0.059}{2} {\rm log_{10}} \frac{\rm [H_2O]}{\rm [OH^-]^2} \end{split}$$

 $E_{\rm cell} = E_{OP_{\rm Fe}/{\rm FeO}}^{\circ} + E_{RP_{\rm Ni_2O_3/NiO}}^{\circ}$

617 **(b)**

 $K_a = c\alpha^2$ for weak acid; $HA \rightleftharpoons H^+ + A^-$

618 (d)

C is also calomel electrode.

619 **(c)**

$$\text{CuSO}_4 \rightleftharpoons \text{Cu}^{2+} + \text{SO}_4^{2-}$$

At cathode $\text{Cu}^{2+}(aq) + 2e^- \rightarrow \text{Cu}(s)$
At anode $2\text{H}_2\text{O}(l) \rightarrow \text{O}_2(g) + 4\text{H}^+(aq) + 4e^-$
Thus, for the production of one mole of copper from copper sulphate 2F of electricity is required.

620 **(a)**

Eq. of Al = Eq. of Ag

$$\therefore \frac{W_{Al}}{9} = \frac{W_{Ag}}{108} \text{ or } \frac{W_{Al}}{W_{Ag}} = \frac{9}{108}$$

621 **(d)**

$$W \propto E$$
; if $Q =$ constant.

622 **(a**)

From Asolution of CuSO_4 , Cu can be recovered by Fe metal. Because Fe is more reactive than Cu, it replace Cu easily.

623 **(d)**

Large negative RP or more positive oxidation potential and thus, more is the tendency to get oxidized.

624 (c)

According to Faraday's second law of electrolysis, we have

$$\frac{\frac{w_1}{w_2} = \frac{E_1}{E_2}}{\frac{1.08}{x} = \frac{108}{1}}$$

 \therefore Weight of hydrogen $(x) = 0.01 \,\mathrm{g}$

Hence, the volume of hydrogen at

STP =
$$\frac{22400 \times 0.01}{2}$$
 = 112 cm³

625 (d)

By Nernst equation,

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{2.303 \, RT}{nF} \log_{10} K$$

At equilibrium $E_{cell} = 0$

Given that,

$$\therefore R = 8.315 \text{ JK}^{-1} \text{ mol}^{-1}$$

 $T = 25 \text{ °C} + 273 = 298K$

$$F = 96500 C \text{ and } n = 2$$

$$E_{\text{cell}}^{\circ} = \frac{2.303 \times 8.314 \times 298}{2 \times 96500} \log_{10} K$$

$$= \frac{0.0591}{2} \log_{10} K$$

$$\therefore \text{ Given that } E_{\text{cell}}^{\circ} = 0.295 \text{ V}$$

$$:$$
 Given that $E_{cell}^{\circ} = 0.295 \text{ V}$

$$\therefore \quad 0.295 = \frac{0.0591}{2} \log_{10} K$$

$$\log_{10}K = \frac{0.295 \times 2}{0.0591} = 10$$

$$\log_{10} K = \text{antilog } 10$$

$$K = 1 \times 10^{10}$$

626 (a)

Follow E_{OP}° values in electrochemical series.

627 **(c)**

$$\mathring{\Lambda}_{CH_3COOH} = \mathring{\Lambda}_{CH_3COONa} + \mathring{\Lambda}_{HCl} - \mathring{\Lambda}_{NaCl}$$

$$= 91.0 + 426.2 - 126.5$$

$$= 390.7 S cm^2 mol^{-1}$$

628 (a)

Fe is more electropositive than copper

Hence, Cu²⁺ can oxidize Fe

629 (a)

Eq. of Al = Eq. of Na;

$$\therefore \frac{1.8}{27/3} = \frac{W}{23}$$

$$W_{Na} = 4.6 \text{ g}$$

630 (a)

X coulomb deposits 1 mole Al or 3 eq. of Al and thus, it will deposit 3 mole or 3 eq. of Ag is monovalent,

$$\left[\because \frac{W}{E} \text{ (for Ag)} = \frac{W}{E} \text{ (for Al)} \right]$$

631 **(d)**

During electrolysis of CuSO₄, Cu²⁺ gets discharged at cathode and OH⁻ at anode. Thus, solution becomes acidic due to excess of H+ and SO_4^{2-} or H_2SO_4