CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

CHEMISTRY

Single Correct Answer Type

1	Down Hohamarrala ia waad	to determine				
1.	Born Haber cycle is used) I	D Evil Cil		
2	a) Lattice energy	b) Electron affinity	c) Ionization energy	d) Either of them		
2.		tions of four elements L, P ,	Q and R are given below,			
	$L = 1s^2, 2s^2 2p^4$ $Q = 1s^2$					
	$P = 1s^2, 2s^2 2p^6, 3s^1 R$	-				
		_	med between these elemen			
	, -	b) <i>LP</i> , <i>RL</i> , <i>PQ</i> , <i>RQ</i>	c) P_2L , RL , PQ , RQ_2	d) LP , R_2L , P_2Q , RQ		
3.		electropositive nature is:				
	a) Cu	b) Cs	c) Cr	d) Ba		
4.	Octet rule is not valid for	the molecule:				
	a) CO ₂	b) H ₂ O	c) 0_2	d) CO		
5.	The correct order of reac	ctivity of halogens is				
	a) $F > Br > Cl > I$	b) $F > Cl > Br > I$	c) $I > Br > Cl > F$	d) $Cl > I > Br > F$		
6.	NH ₃ has higher boiling p	oint than expected, becaus	e:			
	a) With water it forms N	H ₄ OH				
	b) It has strong intermol	ecular hydrogen bonds				
	c) It has strong intermol	ecular covalent bonds				
	d) Its density decreases i	n freezing				
7.	The screening effect of d	-electrons is:				
	a) Equal to the <i>p</i> -electron	ns				
	b) Much more than p-ele	crons				
	c) Same as <i>f</i> -electrons					
	d) Less than <i>p</i> -electrons					
8.	Which has the largest first	st ionisation energy?				
	a) Li	b) Na	c) K	d) Rb		
9.	In which of the following	molecules are all the bond	ls not equal?			
	a) AlF ₃	b) NF ₃	c) ClF ₃	d) BF ₃		
10.	The bond between two ic	dentical non-metal atoms h	nas a pair of electrons:			
	a) Unequally shared between the two					
	b) Equally shared between	en the two				
	c) Transferred fully from	n one atom to another				
	d) None of the above					
11.	The number of unpaired	electrons in a paramagnet	ic diatomic molecule of an e	element with atomic number		
	16 is:					
	a) 4	b) 1	c) 2	d) 3		
12.	-	ond pair and lone pair elect	trons are respectively:	,		
	a) 2, 2	b) 3, 1	c) 1,3	d) 4,8		
13.		l period forms most acidic	•	, ,		
	a) Carbon	b) Nitrogen	c) Boron	d) Fluorine		
14.	•	, .	_	does not belong to the same		
	family?			<i>G</i> 3		
	a) [Xe] $4f^{14}5d^{10}6s^2$	b) [Kr] 4d ¹⁰ 5s ²	c) [Ne] $3s^23p^5$	d) [Ar] 3d ¹⁰ 4s ²		
	, ,	,	, L 3 'F	,		

15.	For the four successive transition elements (there in which of the following order?	(Cr, Mn, Fe and Co), the stabilit	y of +2 oxidation state will		
	(At. no. $Cr = 24$, $Mn = 25$, $Fe = 26$, $Co = 27$)				
	a) $Cr > Mn > Co > Fe$ b) $Mn > Fe > Cr >$	> Co c) Fe $>$ Mn $>$ Co $>$ Cr	d) Co > Mn > Fe > Cr		
16.	Which is correct in the following?	•	,		
	a) Radius of Cl atom is 0.99 Å, while that of Cl	⁺ ion is 1.54 Å			
	b) Radius of Cl atom is 0.99 Å, while that of Na				
	c) The radius of Cl atom is 0.95 Å, while that of				
	d) Radius of Na atom is 0.95 Å, while that of N				
17.		na 1011 IS 1.54 A			
17.		a) NO ⁺	4) CC		
10	, -	c) NO ₂ ⁺	d) CS ₂		
18.	Which of the following has largest ionic radiu a) Na ⁺ b) K ⁺		d) Cat		
10	,	c) Li ⁺	d) Cs ⁺		
19.	In the cyanide ion, the formal negative charge	e is on:			
	a) C				
	b) N				
	c) Both C and N				
20	d) Resonate between C and N	1 1			
20.	The size of ionic species is correctly given in t	ine order:			
	a) $Cl^{7+} > Si^{4+} > Mg^{2+} > Na^{+}$				
	b) $Na^+ > Mg^{2+} > Si^{4+} > Cl^{7+}$				
	c) $Na^+ > Mg^{2+} > Cl^{7+} > Si^{4+}$				
	d) $Cl^{7+} > Na^+ > Mg^{2+} > Si^{4+}$				
21.	Which statement is wrong?				
	a) 2nd ionisation energy shows jump in alkali metals				
	b) 2nd electron affinity for halogens is zero				
	c) Maximum electron affinity exists for F				
	d) Maximum ionization energy exists for He				
22.	Which of the following atoms has minimum co				
	a) Si b) N	c) C	d) B		
23.	The second electron affinity is zero for				
	a) Alkali metals b) Halogens	c) Noble gases	d) Transition metal		
24.	For alkali metals, which one of the following t				
	a) Hydration energy : Li $>$ Na $>$ K $>$ Rb	b) Ionisation energy : l			
	c) Density: Li < Na < K < Rb	d) Atomic size : Li < N			
25.			676 and		
	-911 kJ mol ^{-1} respectively. The most stable of	oxide is			
	a) Na ₂ O b) MgO	c) Al_2O_3	d) SiO ₂		
26.	If Aufbau rule is not followed, K-19 will be placed	aced in			
	a) s-block b) p-block	c) <i>d</i> -block	d) f-block		
27.	The electronegativity order of O, F, Cl and Br i	S:			
	a) $F > 0 > Cl > Br$ b) $F > Cl < Br > 0$	c) Br $>$ Cl $>$ F $>$ 0	d) F < Cl < Br < 0		
28.	Which has the minimum bond energy?				
	a) H – Br b) H – I	c) I — I	d) H – H		
29.	The bond angle in H_2S (for $H - S - H$) is:				
	a) Same as that of $Cl - Be - Cl$ in $BeCl_2$				
	b) Greater than $H-N-H$ bond angle in NH_3				
	c) Greater than ${\rm H}-{\rm Se}-{\rm H}$ and less than ${\rm H}-{\rm H}$	0 - H			
	d) Same as Cl - Sn - Cl in SnCl ₂				
30.	In which of the following arrangements, the s	equence is not strictly accordir	ng to the property written		

be

	against it?				
	a) $CO_2 < SiO_2 < SnO_2 < PbO_2$: increasing oxidising power				
	b) HF < HCl < HBr < HI : increasing acid strength				
	c) $NH_3 > PH_3 < AsH_3 < SbH_3$: increasing basic strength				
	d) $B < C < 0 < N$: increasing first ionisation enthal	ру			
31.	The tenth elements in the Periodic Table resembles	with the			
	a) First period b) Second period	c) Fourth period	d) Ninth period		
32.	Which is not the correct order for the stated propert	y?			
	a) Ba > Sr > Mg; atomic radius	b) $F > 0 > N$; first ionisa	tion enthalpy		
	c) Cl > F > I; electron affinity	d) 0 > Se > Te; electrone	gativity		
33.	The unequal sharing of bonded pair of electrons between	ween two atoms in a molec	ule gives rise to:		
	a) Ionic bond				
	b) Polar covalent bond				
	c) Non-polar covalent bond				
	d) None of the above				
34.	Which of the following oxides is most acidic in natur	e?			
	a) BeO b) MgO	c) CaO	d) BaO		
35.	In the formation of NaCl by combination of Na and C	l:			
	a) Sodium and chlorine both lose electrons				
	b) Sodium and chlorine both gain electrons				
	c) Sodium loses but chlorine gains electrons				
	d) Sodium gains but chlorine loses electrons				
36.	The molecule having three folds of axis of symmetry	is:			
	a) NH ₃ b) PCl ₅	c) SO ₂	d) CO ₂		
37.	The covalent compound HCl has the polar character	because:			
	a) The electronegativity of hydrogen is greater than				
	b) The electronegativity of hydrogen is equal to than				
	c) The electronegativity of chlorine is greater than the	nat of hydrogen			
	d) Hydrogen and chlorine are gases				
38.	If the bond has zero percent ionic character, the bon				
	a) Pure covalent b) Partial covalent	c) Partial ionic	d) Coordinate covalent		
39.	In piperidine H,N atom has hybridization:				
	a) sp b) sp^2	c) sp^3	d) dsp^2		
40.	Mendeleef's Periodic Table is upset by the fact that				
	a) Many elements has several isotopes	b) Noble gases do not form	•		
	Some groups stand divided into two sub groups <i>A</i>		ents are not always whole		
	$^{\circ}$ and $^{\prime}$	numbers			
41.					
	a) The first ionization potential of Al is less than the	=	=		
	b) The second ionization potential of Mg is greater th	=			
	c) The first ionization potential of Na is less than the	-	=		
	d) The third ionization potential of Mg is greater tha	n the third ionization poter	itial of Al		
42.	Which one of the following is an amphoteric oxide?	\ aa	N. T. O		
	a) ZnO b) Na ₂ O	c) SO ₂	d) B_2O_3		
43.	The shape of ClO_4^- ion is:) m . 1 . 1 . 1	1) m () 11 - 12 - 13 - 13 - 13 - 13 - 13 - 13 -		
	a) Square planar b) Square pyramidal	c) Tetrahedral	d) Trigonal bipyramidal		
44.					
	a) Dinitrogen is paramagnetic				
	b) Dihydrogen is paramagnetic				

	c) Dioxygen is paramagno	etic					
	d) Dioxygen is diamagnet	ic					
45.	In which one of the follow	ving pairs the radius of the	second species is greater th	nan that of the first?			
	a) Na, Mg	b) 0^{2-} , N^{3-}	c) Li ⁺ , Be ²⁺	d) Ba ²⁺ , Sr ²⁺			
46.	Atomic radii of fluorine a	nd neon in angstrom unit a	re respectively given by:				
	a) 0.72, 1.60	b) 1.60, 1.60	c) 0.72, 0.72	d) 1.60, 0.72			
47.	According to IUPAC nome	enclature, a newly discover	ed element has been name	d as Uun. The atomic			
	number of the element is						
	a) 111	b) 112	c) 109	d) 110			
48.	The correct order of incre	easing electron affinity of h	alogens is				
	a) $F < Cl < Br < I$	b) $I < Br < F < Cl$	c) $I > Br > Cl > F$	d) Br $> I > F > Cl$			
49.	Al element X has 3 electro	ons in p -orbitals and also be	elongs to III period. Its mol	ecular formula should be:			
	a) <i>X</i>	b) <i>X</i> ₂	c) X_4	d) <i>X</i> ₅			
50.	Which of the following se	quence regarding ionisatio	n potential of coinage meta	l is correct:			
	a) $Cu > Ag > Au$	b) Cu < Ag < Au	c) Cu > Ag < Au	d) Ag > Cu < Au			
51.	The bond length is maxim	num in:					
	a) H ₂ S	b) HF	c) H ₂ O	d) Ice			
52.	Which of the following is	the most electropositive ele	ement?				
	a) P	b) S	c) Mg	d) Al			
53.	Which group of atoms ha	ve nearly same atomic radi	us?				
	a) Na, K, Rb, Cs	b) Li, Be, B, C	c) Fe, Co, Ni, Cu	d) F, Cl, Br, I			
54.	Which of the following sta	atements is wrong?					
	a) Metals are more than r	a) Metals are more than non-metals.					
	b) There are only few me	talloids.					
	c) Hydrogen can be place	d with alkali metals as well	as with halogen in Periodi	c Table.			
	d) Non-metals are more t	han metals.					
55.	Which one of the following	g has the lowest ionisation	energy?				
	a) $1s^22s^22p^6$	b) $1s^22s^22p^63s^1$	c) $1s^2 2s^2 2p^5$	d) $1s^2 2s^2 2p^3$			
56.	The set representing the	correct order of first ionisa	tion potential is:				
	a) K > Na > Li	b) Be $>$ Mg $>$ Ca	c) $B > C > N$	d) Ge > Si > C			
57.	Which one of the following	g belongs to representative	e group of elements in the I	Periodic Table?			
	a) Aluminium	b) Chromium	c) Argon	d) Lanthanum			
58.	The shape of NO ₃ is plana	ar. It is formed by the overl	apping of oxygen orbitals w	vith orbitals of nitrogen			
	a) sp^3 -hybridized	b) <i>sp</i> ² -hybridized	c) Three <i>p</i> -orbitals	d) None of these			
59.	If a molecule MX_3 has zer	o dipole moment the sigma	a bonding orbitals used by I	M(at. no. < 21) is:			
	a) Pure p	b) <i>sp</i> -hybrid	c) sp^2 -hybrid	d) sp^3 -hybrid			
60.	1, 3-butadiene has:						
	a) 6σ and 2π -bonds	b) 2σ and 2π -bonds	c) 9σ and 2π -bonds	d) 6σ and 2π -bonds			
61.	Which of the following tra	ansitions involves maximur	n amount of energy?				
	a) $M^-(g) \rightarrow M(g)$	b) $M(g) \rightarrow M^+(g)$	c) $M^+(g) \to M^{2+}(g)$	d) $M^{2+}(g) \to M^{3+}(g)$			
62.	Which of the following m	olecular species has unpair	ed electron(s)?				
	a) N ₂	b) F ₂	c) 0 ₂	d) 0_2^{2-}			
63.	The element having lowe	st ionisation energy among	the following is:				
	a) $1s^2$, $2s^22p^3$	b) $1s^2$, $2s^22p^6$, $3s^1$	c) $1s^2$, $2s^22p^6$	d) $1s^2$, $2s^22p^5$			
64.	Which of the following ha	s largest ionic radius?		-			
	a) Li ⁺	b) K ⁺	c) Na ⁺	d) Cs ⁺			
65.	Which will not conduct el	•					
	a) Aqueous KOH solution	-					
	b) Fused NaCl						
	c) Graphite						

	d) KCl in solid state			
66.	The bond order is maxim	um in:		
	a) H ₂	b) H ₂ ⁺	c) He ₂	d) He ₂ ⁺
67.	The isoelectronic species	among the following are:		
	$I - CH_3^+; II - NH_2^+; III - N$	IH_{4}^{+} ; $\mathrm{IV}-\mathrm{NH}_{3}$		
	a) I, II, III	b) II, III, IV	c) I, II, IV	d) II, I
68.	The screening effect of <i>d</i> -	electros is		
	a) Equal to that of <i>p</i> -elect	trons	b) More than that of <i>p</i> -ele	ectrons
	c) Same as <i>f</i> -electrons		d) Less than <i>p</i> -electrons	
69.	OF ₂ is:			
	a) Linear molecule and sa	p-hybridized		
	b) Tetrahedral molecule	and sp^3 -hybridized		
	c) Bent molecule and sp^3	-hybridized		
	d) None of the above			
70.	Be and Al exhibit diagona	al relationship. Which of the	e following statement about	t them is/are not true?
	I. Both react with HCl to	o liberate H ₂		
	II. They are made passiv	ve by HNO ₃		
	III. Their carbides given	acetylene on treatment wit	h water	
	IV. Their oxides are amp	ohoteric		
	a) (iii) and (iv)	b) (i) and (iii)	c) (i) only	d) (iii) only
71.	Which is not linear?			
	a) CO ₂	b) HCN	c) C_2H_2	d) H ₂ O
72.	In which of the following	bond angle is maximum?		
	a) NH ₃	b) NH ₄ ⁺	c) PCl ₅	d) SCl ₂
73.	The molecule which has j	pyramidal shape is:		
	a) PCl ₃	b) SO ₃	c) CO ₃ ²⁻	d) NO_3^-
74.	The complex ion which h	as no $^{\prime}d^{\prime}$ electrons in the ce	ntral metal atom is:	
	a) $[MnO_4]^-$	b) $[Co(NH_3)_6]^{3+}$	c) $[Fe(CN)_6]^{3-}$	d) $[Cr(H_2O)_6]^{3+}$
75.	For the formation of cova	lent bond, the difference in	the value of electronegativ	rities should be:
	a) Equal to or less than 1	.7		
	b) More than 1.7			
	c) 1.7 or more			
	d) None of the above			
76.	Strongest bond is in:			
	a) NaCl	b) CsCl	c) Both (a) and (b)	d) None of these
77.	The formation of the oxid	le ion $0^{2-}(g)$ requires first	an exothermic and then an	endothermic step as shown
	below,			
	$O(g) + e \rightarrow O^{-}(g); \Delta H = 0$			
	$0^{-}(g) + e \rightarrow 0^{2-}(g); \Delta h$	H = 844 kJ/mol		
	These is because:			
		ely larger size than oxygen	atom	
	b) Oxygen has high electr	•		
	=	st the addition of another e	electron	
	d) Oxygen is more electro	•		
78.	-	ng has the largest dipole m		
- ^	a) NH ₃	b) H ₂ O	c) HI	d) SO ₃
79.	The correct order of radi		> = 2± = 2± = 4±	D. V V
0.0	a) $N < Be < B$	•	c) $Fe^{3+} < Fe^{2+} < Fe^{4+}$	d) Na $< Li < K$
80.	Diagonal relationship is f		2010	D. D. G.
	a) Li-Na	b) Be-Mg	c) Si-C	d) B-Si

81.	Bond order of 1.5 is shown by:				
	a) 0_2^{2-} b) 0_2	c) 0 ⁺ ₂	d) 0 ₂		
82.	Which one of the following is an amphoteric oxide?)			
	a) ZnO b) Na ₂ O	c) SO_2	d) B_2O_3		
83.	Among, Al ₂ O ₃ , SiO ₂ , P ₂ O ₃ and SO ₂ the correct order	· -	7 2 3		
	a) $SO_2 < P_2O_3 < SiO_2 < Al_2O_3$	b) $SiO_2 < SO_2 < Al_2O_3 <$	< P ₂ O ₂		
	c) $Al_2O_3 < SiO_2 < SO_2 < P_2O_3$	d) $Al_2O_3 < SiO_2 < P_2O_3$	- 0		
84.	Point out the wrong statement. On moving horizon	,	=		
	Table	, , , , , , , , , , , , , , , , , , ,	P		
	a) Metallic character decreases				
	b) Electronegativity increases				
	c) Gram atomic volume first decreases and then in	creases			
	d) Size of the atoms increases for normal elements				
85.					
	a) $BF_3 < NF_3 < PF_3 < ClF_3$				
	b) $ClF_3 < PF_3 < NF_3 < BF_3$				
	c) $BF_3 \approx NF_3 < PF_3 < ClF_3$				
	d) $BF_3 < NF_3 < PF_3 > ClF_3$				
86.	The incorrect statement among the following is				
	a) The first ionisation potential of Al is less than th	e first ionisation potential c	of Mg		
	b) The second ionisation potential of Mg is greater	-	=		
	c) The first ionisation potential of Na is less than th				
	d) The third ionisation potential of Mg is greater th	-			
87.	Concept of bond order in the molecular orbital the		er of electrons in the bonding		
	and antibonding orbitals. The bond order:		<u> </u>		
	a) Can have a –ve value				
	b) Has always an integral value				
	c) Is a non-zero quantity				
	d) Can assume any +ve value, including zero				
88.	Which hybridization results non-polar orbitals?				
	a) sp b) sp^2	c) sp^3	d) dsp^2		
89.	The total number of valency electrons for PO_4^{3-} ion				
	a) 32 b) 16	c) 28	d) 30		
90.	Intramolecular hydrogen bonding is found in:				
	a) Salicyldehyde b) Water	c) Acetaldehyde	d) Phenol		
91.	Amphoteric oxide combinations are in				
	a) ZnO, K ₂ O, SO ₃ b) ZnO, P ₂ O ₅ , Cl ₂ O ₇	c) SnO ₂ , Al ₂ O ₃ , ZnO	d) PbO_2 , SnO_2 , SO_3		
92.	Chlorine atom tends to acquire the structure of:				
	a) He b) Ne	c) Ar	d) Kr		
93.	Which of the following ion is the smallest ion?				
	a) 0 ₂ b) 0 ₂ ⁺	c) 0 ₂	d) O ₂ ²⁻		
94.	Variable valency is characteristic of:				
	a) Noble gas				
	b) Alkali metals				
	c) Transition metals				
	d) Non-metallic elements				
95.	Which force is strongest?				
	a) Dipole-dipole forces				
	b) Ion-ion forces				
	c) Ion-dipole forces				

	d) Ion-induced dipole for	ces			
96.	6. Identify the transition element.				
a) $1s^2$, $2s^22p^6$, $3s^23p^6$, $4s^2$ b) 1s		b) $1s^2$, $2s^22p^6$, $3s^23p^63d$	2 , $4s^{2}$		
	c) $1s^2$, $2s^22p^6$, $3s^23p^63d$		d) $1s^2$, $2s^22p^6$, $3s^23p^63d$	·	
97		nits which occupy lattice p	, , , ,	, 25 26	
,,.	a) Atoms	b) Ions	c) Molecules	d) Electrons	
20	Which is not true in case	•	c) Molecules	u) Licetions	
90.		or rome bond?			
	a) It is linear bond				
	b) It is 100% ionic		11.00		
		wo atoms with large electro	onegativity difference		
	d) None of the above				
<i>9</i> 9.	-	e, the two carbon atoms	marked by asterisk (*) po	ssess the following type of	
	hybridized orbitals:				
		3	= [*] − CH ₃		
	a) sp^3 -orbital	b) <i>sp</i> ² -orbital	c) <i>sp</i> -orbital	d) s-orbital	
100.	The element which exists	in both hard and soft form	is:		
	a) Fe	b) Si	c) C	d) Al	
101.	. Resonance is not shown l	y:			
	a) C ₆ H ₆	b) CO ₂	c) CO_3^{2-}	d) SiO ₂	
102.	The hybridization of P in	, <u>-</u>		2	
	a) I in ICl ₄	b) S in SO ₃	c) N in NO ₃	d) S in SO ₄ ²⁻	
103	Dipole moment is highest	•	0) 11 111 1103	u, o m 004	
100.	a) CHCl ₃	b) CH ₄	c) CHF ₃	d) CCl ₄	
104	, ,		Ffollowing ions? N ³⁻ , O ²⁻ , F	, .	
104.	a) $N^{3-} > 0^{2-} > F^{-} > Mg$		b) $N^{3-} > 0^{2-} > F^- > Na^{-1}$		
	c) $N^{3-} > 0^{2-} > Mg^{2+} >$		d) $Na^+ > F^- > 0^{2-} > Mg$		
105	,		_		
105.	· ·	•	s would you expect maxim	um distance between the	
	centres of cotions and an) C I	15 1 11	
	a) LiF	b) CsF	c) CsI	d) LiI	
106.	Which of the following ha				
	a) BeF ₂	b) H ₂ O	c) NH ₃	d) CH ₄	
107.		of C_2 , C_3 , C_5 and C_6 of the	hydrocarbon,		
	CH_3 CH	3			
	$ \begin{array}{c cccc} CH_3 & CH \\ CH_3 & CH \\ CH_5 & CH \\ CH & CH \end{array} $	$-C \equiv CH$			
	CH ₂	2 1			
	Is in the following sequer	ICO:			
			c) sp^3 , sp^2 , sp^2 and sp	d) on sn^2 sn^2 and sn^3	
100					
100.			rder of increasing atomic ra		
100			c) $P < Cl < Ca < Mg$	α) $Ca < Mg < P < Cl$	
109.	Alkali metals in each peri	od nave:			
	a) Largest size				
	b) Lowest <i>IE</i>				
	c) Highest <i>IE</i>				
	d) Highest electronegativ	=			
110.			of O_2 because H_2O molecu	les has:	
	a) Fewer electrons than ()2			
	b) Two covalent bonds				
	c) V-shape				
	d) Dipole moment				

111. For diatomic species are listed below. Identify the	correct order in which the	e bond order is increasing in
them:		
a) $NO < O_2^- < C_2^{2-} < He_2^+$		
b) $O_2^- < NO < C_2^{2-} < He_2^+$		
c) $C_2^{2-} < He_2^+ < O_2^- < NO$		
d) $He_2^+ < O_2^- < NO < C_2^{2-}$		
112. Which of the following is least ionic?		
a) CaF ₂ b) CaBr ₂	c) CaI ₂	d) CaCl ₂
113. The bond order of individual carbon-carbon bonds	in benzene is:	-
a) One		
b) Two		
c) Between 1 and 2		
d) One and two alternately		
114. The total number of valency electrons in PH ₄ ⁺ ion is	:	
a) 8 b) 9	c) 6	d) 14
115. Pauling's equation for determining the electronegat	,	u) I I
X_A, X_B = electron egativity values of elements A and	=	
Δ_A , A_B —electronlegativity values of elements A and Δ =represents polarity of $A-B$ bond	Б	
• •	-) V V 0.20042	1) V V /A
a) $X_A - X_B = 0.208\sqrt{\Delta}$ b) $X_A + X_B = 0.208\sqrt{\Delta}$		$a) X_A - X_B = \sqrt{\Delta}$
116. The set representing the correct order of ionic radio	us is:	
a) $Na^+ > Li^+ > Mg^{2+} > Be^{2+}$		
b) $Li^+ > Na^+ > Mg^{2+} > Be^{2+}$		
c) $Mg^{2+} > Be^{2+} > Li^{+} > Na^{+}$		
d) $Li^+ > Be^{2+} > Na^+ > Mg^{2+}$		
117. The pair having similar geometry is :		
a) BF ₃ , NH ₃ b) BF ₃ , AlF ₃	c) BeF_2 , H_2O	d) BCl ₃ , PCl ₃
118. The attraction that non-polar molecules have for ea	ich other is primarily cause	d by:
a) Hydrogen bonding		
b) Difference in electronegativities		
c) High ionisation energy		
d) Van der Waals' forces		
119. The structure of ICl_2^- is:		
a) Trigonal		
b) Octahedral		
c) Square planar		
d) Distorted trigonal bipyramid		
120. The correct order of increasing oxidising power is		
a) $F_2 < Cl_2 < I_2 > Br_2$ b) $F_2 < Br_2 < Cl_2 < I_2$		
121. Which of the following oxides is not expected to rea	c) $Cl_2 < Br_2 < F_2 < I_2$	d) $I_2 < Br_2 < Cl_2 < F_2$
	, , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,
31 BeU D1 B ₂ U ₂	act with sodium hydroxide?	
a) BeO b) B_2O_3 122. In which molecule, the central atom does not use sr	nct with sodium hydroxide? c) CaO	d) SiO ₂
122. In which molecule, the central atom does not use sp	nct with sodium hydroxide? c) CaO o ³ -hybrid orbitals in its bor	d) SiO ₂ ading?
122. In which molecule, the central atom does not use sp a) NH_2^- b) BeF_3^-	nct with sodium hydroxide? c) CaO	d) SiO ₂
 122. In which molecule, the central atom does not use sp a) NH₂ b) BeF₃ 123. Which element has the lowest electronegativity? 	nct with sodium hydroxide? c) CaO o ³ -hybrid orbitals in its bor c) SO ₂ Cl ₂	d) SiO_2 adding? d) SO_4^{2-}
 122. In which molecule, the central atom does not use sp a) NH₂ b) BeF₃ 123. Which element has the lowest electronegativity? a) Li b) F 	nct with sodium hydroxide? c) CaO o ³ -hybrid orbitals in its bor c) SO ₂ Cl ₂ c) Cl	d) SiO ₂ ading? d) SO ₄ ²⁻ d) Fe
 122. In which molecule, the central atom does not use span a) NH₂ b) BeF₃ 123. Which element has the lowest electronegativity? a) Li b) F 124. Amongst the following elements the configuration has the configuration because of the configuration in the configuration	nct with sodium hydroxide? c) CaO o ³ -hybrid orbitals in its bor c) SO ₂ Cl ₂ c) Cl naving the highest ionization	d) SiO ₂ nding? d) SO ₄ ²⁻ d) Fe on energy is:
122. In which molecule, the central atom does not use sp a) NH_2^- b) BeF_3^- 123. Which element has the lowest electronegativity? a) Li b) F 124. Amongst the following elements the configuration has a) $[Ne]3s^23 p^1$ b) $[Ne]3s^23 p^3$	nct with sodium hydroxide? c) CaO o ³ -hybrid orbitals in its bor c) SO ₂ Cl ₂ c) Cl	d) SiO ₂ ading? d) SO ₄ ²⁻ d) Fe
122. In which molecule, the central atom does not use sp a) NH_2^- b) BeF_3^- 123. Which element has the lowest electronegativity? a) Li b) F 124. Amongst the following elements the configuration ha) $[Ne]3s^23 p^1$ b) $[Ne]3s^23 p^3$ 125. Which species does not exist?	act with sodium hydroxide? c) CaO p ³ -hybrid orbitals in its bor c) SO ₂ Cl ₂ c) Cl naving the highest ionization c) [Ne]3s ² 3 p ²	d) SiO_2 ading? d) SO_4^{2-} d) Fe on energy is: d) $[Ar]3d^{10}4s^24p^3$
122. In which molecule, the central atom does not use sp a) NH_2^- b) BeF_3^- 123. Which element has the lowest electronegativity? a) Li b) F 124. Amongst the following elements the configuration has a) $[Ne]3s^23 p^1$ b) $[Ne]3s^23 p^3$ 125. Which species does not exist? a) $(SnCl_6)^{2-}$ b) $(GeCl_6)^{2-}$	ct with sodium hydroxide? c) CaO p^3 -hybrid orbitals in its bor c) SO_2Cl_2 c) Cl having the highest ionization c) $[Ne]3s^23 p^2$ c) $(CCl_6)^{2-}$	d) SiO ₂ nding? d) SO ₄ ²⁻ d) Fe on energy is:
122. In which molecule, the central atom does not use sp a) NH_2^- b) BeF_3^- 123. Which element has the lowest electronegativity? a) Li b) F 124. Amongst the following elements the configuration ha) $[Ne]3s^23 p^1$ b) $[Ne]3s^23 p^3$ 125. Which species does not exist?	ct with sodium hydroxide? c) CaO p^3 -hybrid orbitals in its bor c) SO_2Cl_2 c) Cl having the highest ionization c) [Ne]3 s^2 3 p^2 c) (CCl ₆) ²⁻	d) SiO_2 ading? d) SO_4^{2-} d) Fe on energy is: d) $[Ar]3d^{10}4s^24p^3$

12%. Among NH_3 , $BeCl_2$, CO_2 and H_2O , the non-linear mol		
a) BeCl ₂ and H ₂ O b) BeCl ₂ and CO ₂	c) NH ₃ and H ₂ O	d) NH ₃ and CO ₂
128. When the hybridization state of carbon atom chang	es from sp^3 to sp^2 and fina	ally to sp, the angle between
the hybridized orbitals:		
a) Decreases gradually		
b) Decreases considerably		
c) Is not affected		
d) Increases progressively		
129. Which is distilled first?		
a) Liquid H ₂ b) Liquid CO ₂	c) Liquid O ₂	d) Liquid N ₂
130. The equilateral triangle shape has:	c) Elquid 02	a) Elquid IV2
a) sp -hybridization b) sp^2 -hybridization	c) sn^3 -hybridization	d) sp^3d -hybridization
		$u_j s p u$ -nybridization
131. Which atomic orbital is always involved in sigma bo		D. f.
a) s b) p	c) d	d) <i>f</i>
132. Two ice cubes are pressed over each other and u	nite to form one cube. Wh	ich force is responsible for
holding them together?		
a) van der Waals' forces		
b) Covalent attraction		
c) Hydrogen bond formation		
d) Dipole-dipole attraction		
133. The decreasing values of bond angles from $NH_3(10$	6°) to SbH ₃ (101°) down gr	oup-15 of the periodic table
is due to:		
a) Increasing $bp - bp$ repulsion		
b) Increasing p -orbital character in sp^3		
c) Decreasing $lp - bp$ repulsion		
d) Decreasing electronegativity		
134. The bond that determines the secondary structure of	of a protein is:	
a) Coordinate bond b) Covalent bond	c) Hydrogen bond	d) Ionic bond
135. Which is not an exception to octet rule?		, , , , , , , , , , , , , , , , , , , ,
a) BF ₃ b) SnCl ₄	c) BeI ₂	d) ClO ₂
136. Higher is the bond order, greater is:	c) Ber ₂	
a) Bond dissociation energy		
b) Covalent character		
c) Bond length		
d) Paramagnetism		
137. Highest electron affinity among the following is		
	a) Culmhuu	d) Vonon
a) Fluorine b) Chlorine	c) Sulphur	d) Xenon
138. According to molecular orbital theory for O_2^+ :		
a) Bond order is less than O_2 and O_2^+ is paramagnetic		
b) Bond order is more than O_2 and O_2^+ is paramagne		
c) Bond order is less than O_2 and O_2^+ is diamagnetic		
d) Bond order is more than O_2 and O_2^+ is diamagnet	ic	
139. Which of the following has fractional bond order?		
a) 0_2^{2+} b) 0_2^{2-}	c) F_2^{2-}	d) H ₂
140. Which of the following is not isostructural with SiCl	4?	
a) PO ₄ ³⁻ b) NH ₄ ⁺	c) SCl ₄	d) SO ₄ ²⁻
141. The correct order of decreasing second ionisation en	nthalpy of Ti (22), V (23), C	r (24) and Mn (25) is:
a) $V > Mn > Cr > Ti$ b) $Mn > Cr > Ti > V$	c) $Ti > V > Cr > Mn$	d) $Cr > Mn > V > Ti$
142. The electrons used in bonding atoms:		
a) Relong to outermost shell		

	b) Belong to penultimate shell				
	c) Belong to outermost shell and sometimes penultimate shell				
	d) Belong to penultimate shell and sometimes to outermost shell				
143	. The discovery of which of	the following group of eler	nents gave death blow to th	ne Newland's law of	
	octaves?				
	a) Inert gases	b) Alkaline earths	c) Rare earths	d) Actinides	
144			•	ne exceptions. One which is	
	not an exception is		r	P	
	a) N and O	b) Na and Mg	c) Mg and Al	d) Be and B	
145	•	= =		ng basic nature of the given	
115	oxides?	6 orders presents the corre	set sequence of the mereusi	ing basic nature of the given	
	a) $Al_2O_3 < MgO < Na_2O$	< K 0	b) $Mg0 < K_20 < Al_2O_3 <$	Na O	
	c) $Na_2O < K_2O < MgO <$	-	d) $K_2O < Na_2O < Al_2O_3 < Al_2O_$	_	
116				< MyO	
140	. The basis of keeping the e	iements in the groups of Ti			
	a) Ionisation potential		b) Electronegativity	Mara and	
4.47	c) Electron affinity	646 14 5 00 5 33	d) Number of valence elec		
14/	. I st and II nd IE of Mg are 7.				
		Mg ²⁺ ions present in 12 m	g of magnesium vapours is	[Given, $1eV = 96.5 \text{ kJ}$	
	mol^{-1}				
	a) 1.5	b) 2.0	c) 1.1	d) 0.5	
148	K^+ , Cl^- , Ca^{2+} , S^{2-} ions are		sing order of their size is:		
	a) $S^{2-} > Cl^{-} > K^{+} > Ca^{2+}$				
	b) $Ca^{2+} > K^+ > Cl^- > S^{2-}$				
	c) $K^+ > Cl^- > Ca^{2+} > S^{2-}$	-			
	d) $Cl^- > S^{2-} > Ca^{2+} > K^+$	-			
149	. The first four ionisation en	nergy values of an element	are 191, 578, 872 and 596	2 kcal. The number of	
	valence electrons in the el	ement is			
	a) 1	b) 2	c) 3	d) 4	
150	. Which are true statements	s among the following?			
	(1) PH ₅ and BiCl ₅ does no	t exist			
	(2) $p \pi - d\pi$ bonds are pr				
	(3) Electrons travel with s				
	(4) SeF ₄ and CH ₄ has sam	=			
	(5) I ₃ ⁺ has bent geometry	1			
	a) 1,3	b) 1, 2, 5	c) 1, 3, 5	d) 1, 2, 4	
151	. Correct increasing order o				
	a) Na $< Mg > Al < Si$	-	c) Na $> Mg > Al > Si$	d) Na $< Mg < Al > Si$	
152	. Which pair represents iso	-		w)	
102	a) CH_3^- and CH_3^+	b) NH ₄ and NH ₃	c) SO_4^{2-} and BF_4^-	d) NH ₂ and BeF ₂	
153	. The first ionisation potent		•	aj miz ana ber z	
133	-	b) 8.29 eV, 9.32 eV	c) 9.32 eV, 9.32 eV	d) 9.32 eV, 8.29 eV	
15/	. The correct order according		C) 9.32 eV, 9.32 eV	u) 9.32 ev, 6.29 ev	
134	a) $0 > 0^- > 0^{2-}$	b) $0^- > 0^{2-} > 0$	c) $0^{2-} > 0^{-} > 0$	d) $0 > 0^{2-} > 0^{-}$	
155	•	,	0,0- >0 >0	a) 0 > 0 - > 0	
155	. The correct order of electr) 0 - 0 - D - N		
	a) B $< C < O > N$	b) $B > C > N > 0$	c) $0 > C > B > N$	d) $0 < C < B < N$	
156	. Which of the following is a		1337	11	
	a) Fluorine is more electro	onegative than chlorine	b) Nitrogen has greater IE	=	
	c) Lithium is amphoteric		d) Chlorine is an oxidising	gagent	
157	. Solid NaCl is a bad conduc				
	a) In solid NaCl there are	no ions			

	b) Solid NaCl is covalent			
	c) In solid NaCl there is n	o velocity of ions		
	d) In solid NaCl there are	no electrons		
158	. Which of the following co	nfiguration is associated w	ith biggest jump between 2	nd and 3rd IE?
		b) $1s^2$, $2s^22p^6$, $3s^1$		
159	-	, Cl ⁻ and Ca ²⁺ . The radii of	-	-
	a) $Ca^{2+} > K^+ > Cl^- > S^2$		b) $Cl^- > S^{2-} > K^+ > Ca^{2+}$	
	c) $Ca^{2+} > Cl^{-} > K > S^{2-}$		d) $S^{2-} > Cl^{-} > K^{+} > Ca^{2-}$	
160	,	ation energy for comparing	•	
100	a) $C < N > 0$	b) $C > N < 0$	c) $C > N > 0$	d) C < N < 0
161	. A π -bond is formed by side	,	c, d > 11 > 0	aj a vii vo
101	a) s-s orbitals	b) p - p orbitals	c) s-p orbitals	d) s-p-s orbitas
162	. Which oxide of nitrogen is	,	c) s-p orbitals	uj s-p-s oi bitas
102	a) NO ₂	b) N ₂ 0	c) NO	4) N O
162		, -	•	d) N_2O_2
103		pairs of molecules/ions, the		
1 (1	a) NO ₂ and NH ₃	b) BF ₃ and NO ₂	c) NH ₂ and H ₂ O	d) BF ₃ and NH ₂
104	. Which of the following ha	-	-> NI -+	1) 17+
1.65	a) Cs ⁺	b) Li ⁺	c) Na ⁺	d) K ⁺
165		one of the following anion:		D DO-
	a) BF ₆ ³⁻	b) BH ₄	c) $B(OH)_4^-$	d) BO ₂
166	. Most covalent halide of al			
	a) AlCl ₃	b) AlI ₃	c) AlBr ₃	d) AlF ₃
167	. The shape of ClO_3^- accord			
	a) Planar triangle	b) Pyramidal	c) retraineurar	d) Square planar
168		easing bond angles in the fo		
	a) $NO_2^- < NO_2 < NO_2^+$	b) $NO_2^+ < NO_2 < NO_2^-$	c) $NO_2^+ < NO_2^- < NO_2$	d) $NO_2^- < NO_2^+ < NO_2$
169	. Which of the following pa	irs has both members from	the same group of the Peri	iodic Table?
	a) Mg – Ba	b) Mg – Cu	c) Mg – K	d) Mg – Na
170	. Silicon has 4 electrons in	the outermost orbit. In form	ning the bond:	
	a) It gains electrons	b) It losses electrons	c) It shares electrons	d) None of these
171	. sp^2 -hybridization is show	vn by:		
	a) BeCl ₂	b) BF ₃	c) NH ₃	d) XeF ₂
172	. A p -block element in which	ch last electron enters into	s-orbitals of valence shell in	nstead of p -orbital is:
	a) As	b) Ga	c) No such element exist	d) He
173	. Which of the following ar	e not correct?		
	a) Lone pair of electrons	present on central atom car	n give rise to dipole momen	it
	b) Dipole moment is vector	or quantity		
	c) CO ₂ molecule has dipo	le moment		
		gativities of combining ato	ms can lead to dipole mome	ent
174	. The order of first ionisation	on energies of the element l	Li, Be, B, Na is	
	a) Li $> Be > B > Na$	b) Be $> B > Li > Na$		d) Be $> Li > B > Na$
175	•	n inner transition elements		
	a) <i>s</i>	b) p	c) <i>d</i>	d) <i>f</i>
176	. Which is expected to cond		·,	- , ,
	a) Diamond	b) Molten sulphur	c) Molten KCl	d) Crystalline NaCl
177	,	egativities are 1.2 and 3.0, f	•	y = y =
	a) Ionic bond	b) Covalent bond	c) Coordinate bond	d) Metallic bond
178		r of ionic sizes?) At. no. : Ce	•	•
0	a) Ce > Sn > Yb > Lu	b) Sn > Yb > Ce > Lu		d) Lu > Yb > Sn > Ce
179	•	lphur exhibits variable vale		,
_	, , , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , , ,	

	a) Sulphur is less electron				
	b) Sulphur is bigger atom than oxygen				
	c) Ionisation potential of sulphur is more than oxygen				
100	d) Of the presence of <i>d</i> -or	-			
180	=	ng down in the fluorine gro	-		
	a) Stability of hydrides w		b) Ionic radii will increase	es .	
101	c) Electronegativity will i		d) IE will increases		
181		nitrogen is larger than that	or oxygen because or		
	a) Of greater attraction of				
	b) Of the size of nitrogen	-			
	c) The half-filled <i>p</i> -orbita	=			
102	d) Of greater penetration				
182	Which has the highest ion	-	a) C	4) E	
102	a) Na	b) Mg	c) C	d) F	
183	a) $Sc^{3+} > Cr^{3+} > Fe^{3+} >$	-	ect order of the property inc		
	a) $SC^{4} > CT^{4} > Fe^{4} > CO^{2+} < CO^{$		b) $Sc < Ti < Cr < Mn - c$	_	
104	,		d) $FeO < CaO < MnO < CaO$	Luo – basic nature	
184		ion of most electronegative		1) 4 2 0 2 0 6 0 2 0 5	
105	•		c) $1s^2, 2s^2, 2p^6, 3s^1, 3p^1$	a) $1s^2$, $2s^2$, $2p^3$, $3s^2$, $3p^3$	
185		dic Table does not contain o		15 111 4	
100	a) IB	b) IA	c) IIA	d) IIIA	
186	The species showing $p\pi$ -) ao?-	D MO-	
40=	a) NO ₃	b) PO ₄ ³⁻	c) CO ₃ ²⁻	d) NO ₂	
187		nd degenerated orbital sho		D 411 - 6.1	
	a) s-block elements	b) <i>p</i> -block elements	c) <i>d</i> -block elements	d) All of these	
188	Which of the following is		\ -	13.70	
	a) Sb	b) Mg	c) Zn	d) Bi	
189		ybrid orbitals in its bondin		15	
	a) BeF ₃	b) OH ₃ ⁺	c) NH ₄	d) NF ₃	
190	•	ve highest electron affinity			
	a) N	b) 0	c) F	d) Cl	
191		•	ncter among Cu, Fe and Mg i		
	a) Cu ≈ Fe < Mg	b) Fe < Cu < Mg	c) Fe < Mg < Cu	d) Cu < Fe < Mg	
192		en row in the Periodic Table			
	a) Increases from left to r	=	b) Decreases from left to 1	right	
100	c) First increases, then de	ecreases	d) Remains the same		
193	The lightest metal is	13.37	.	D. G	
101	a) Li	b) Na	c) Mg	d) Ca	
194	Which is the property of r	ion-metal?	13.75		
	a) Electronegative		b) Basic nature of oxide	,	
105	c) Reducing property	c cc .	d) Low ionisation potentia	al	
195	In a given shell the order		> 6 > 1 > >	D 1 - C	
100		=	c) $f > d > p > s$	=	
196			er and has central atom with		
405	a) H ₂ CO ₃	b) SiF ₄	c) BF ₃	d) HClO ₂	
197		e ion $O^{2-}(g)$ requires first	an exothermic and then an	endothermic step as shown	
	below;	4.40.17 4-1			
	$O(g) + e^{-} = O^{-}(g); \Delta H^{\circ}$	-			
	$0(g)^{-} + e^{-} = 0^{2-}(g); \Delta H$	$=844 \text{ kJmol}^{-1}$			
	This is because				

	a) Oxygen is more electro	negative			
	b) Oxygen has high electron affinity				
	c) O ⁻ ion will tend to resist the addition of another electron				
	d) O ⁻ has comparatively la	arger size than oxygen ator	n		
198	Which of the following sta	itements is correct?			
	a) X^- ion is larger in size	than X-atom	b) X^+ ion is larger in size	than X-atom	
	c) X^+ ion is larger in size	than X^- ion	d) X^+ and X^- ions are equ	ıal in size	
199	Number of elements prese	ents in the fifth period of p	eriodic table is		
	a) 32	b) 10	c) 18	d) 8	
200	The compound possessing	g most strongly ionic natur	e is:		
	a) SrCl ₂	b) BaCl ₂	c) CaCl ₂	d) CsCl	
201	What is the name of eleme	ent with atomic number 10	05?		
	a) Kurchatovium	b) Dubnium	c) Nobelium	d) Holmium	
202	. Among the following whic	ch is the strongest oxidising	g agent?		
	a) Cl ₂	b) F ₂	c) Br ₂	d) I ₂	
203	The outermost electronic	configuration of the most e	electronegative element is	, <u>-</u>	
	a) ns^2np^3	b) ns^2np^4	c) ns^2np^5	d) ns^2np^6	
204	The incorrect statements		, .		
			an combining atomic orbita	ls.	
	,		isity between the two nucle		
	<u> </u>		ributes to attraction betwe		
		=	atomic orbitals have same		
205	. Which of the following ha	=	, 44011110 01 010010 1101 0 001110		
	a) Al	b) Al ⁺	c) Al ²⁺	d) Al ³⁺	
206	Carbon atoms in $C_2(CN)_4$		o) III	.,	
		b) sp^2 -hybridized	c) sp -and sp^2 - hybridized	d) $\frac{sp, sp^2}{\text{hybridized}}$	
207	The common feature amo	ng the species CN^- , CO and	l NO ⁺ are:	•	
	a) Bond order three and is	soelectronic			
	b) Bond order three and v				
	c) Bond order two and π -	acceptors			
	d) Isoelectronic and weak	filed ligands			
208	Which one of the elements	s has the maximum electro	n affinity?		
	a) F	b) Cl	c) Br	d) I	
209	The internuclear distance	in H ₂ and Cl ₂ molecules ar	e 74 and 198 pm respective	ely. The bond length of H	
	Cl may be:				
	a) 272 pm	b) 70 pm	c) 136 pm	d) 248 pm	
210	PCl ₅ exists but NCl ₅ does	not because:			
	a) Nitrogen has no vacant	2 <i>d</i> -orbitals			
	b) NCl ₅ is unstable				
	c) Nitrogen atom is much	smaller than p			
	d) Nitrogen is highly highly	ly inert			
211	Which one of the followin	g process requiring absorp	tion of energy?		
	a) $Cl \rightarrow Cl^-$	b) $H \rightarrow H^-$	c) $0 \to 0^{2-}$	d) $F \rightarrow F^-$	
212	The hybridization of carbo	on in diamond, graphite an	d acetylene is:		
	a) sp^3 , sp^2 , sp	b) sp^3 , sp , sp^2	c) sp^2 , sp^3 , sp	d) $sp, sp^3 sp^2$	
213	,	, , , , ,	ations involves the greatest		
	a) $K^+ \to K^{2+} + e^-$, ,	c) $C^{2+} \rightarrow C^{3+} + e^{-}$	d) $Ca^+ \to Ca^{2+} + e^-$	
214	The pairs of bases in DNA	•	-	-	
	a) Hydrogen bonds	b) Ionic bonds	c) Phosphate groups	d) Deoxyribose groups	

215. The energy of $\sigma 2s$ -orbital is greater than $\sigma^* 1s$ orbital because:					
a) $\sigma 2s$ orbital is bigger than $\sigma 1s$ orbital					
b) $\sigma 2s$ orbital is a bonding orbital whereas, $\sigma^* 1s$ an	=				
c) $\sigma 2s$ orbital has a greater value of n than $\sigma^* 1s$ orbital	ital				
d) None of the above					
216. Who developed the long form of Periodic Table?					
a) Niels Bohr b) Moseley	c) Mendeleef	d) Lothar Meyer			
217. At ordinary temperature and pressure, among hal	ogens, the chlorine is a ga	as, bromine is a liquid and			
iodine is a solid. This is because:					
a) The specific heat is in the order $Cl_2 > Br_2 > I_2$					
b) Intermolecular forces among molecules of chloring	ie are the weakest and thos	se in iodine are the			
strongest					
c) The order of density is $I_2 > Br_2 > Cl_2$					
d) The order of stability is $Cl_2 > Br_2 > I_2$					
218. The radii F , F^- , O and O^{2-} are in the order of					
a) $F^- > 0^{2-} > F > 0$ b) $F > F^- > 0 > 0^{2-}$	c) $0^{2-} > F^- > 0 > F$	d) $F > 0 > F^- > 0^{2-}$			
219. Which of the following is the smallest in size?		-			
a) Na ⁺ b) F ⁻	c) 0^{2-}	d) N ³⁻			
220. Which of the following pairs show reverse properties	s on moving along a period	from left to right and from			
top to down in a group?					
a) Nuclear charge and electron affinity	b) Ionisation energy and	electron affinity			
c) Atomic radius and electron affinity	c) Atomic radius and electron affinity d) None of the above				
221. Which of the following relation is correct?					
a) I^{st} IE of $C > I^{st}$ IE of B	b) I^{st} IE of $C < I^{st}$ IE of B				
c) II^{nd} IE of $C > II^{nd}$ IE of B	d) Both (b) and (c)				
222. KF combines with HF to form KHF ₂ . The compound	contains the species:				
a) K^+ , F^- and H^+ b) K^+ , F^- and HF	c) K ⁺ and [HF ₂] ⁻	d) $[KHF]^+$ and F^-			
223. The bond angle between $H-O-H$ in ice is closest t	0:				
a) 115° b) 109°28′	c) 110°	d) 90°			
224. Which has higher bond energy and stronger bond?					
a) F ₂ b) Cl ₂	c) Br ₂	d) I ₂			
225. The example of the <i>p-p</i> -orbital overlapping is the for	mation of:				
a) H ₂ molecule					
b) Cl ₂ molecule					
c) Hydrogen chloride					
d) Hydrogen bromide molecule					
226. In compound X , all the bond angles are exactly 109° .	28', <i>X</i> is:				
a) Chloromethane b) Iodoform	c) Carbon tetrachloride	d) Chloroform			
227. Which of the following species has four lone pairs of	electrons in its outer shell	?			
a) I b) 0 ⁻	c) Cl ⁻	d) He			
228. The type of bond formed between H ⁺ and NH ₃ in NH	H ₄ ion is:				
a) Ionic b) Covalent	c) Dative	d) Hydrogen			
229. Which transition involves maximum amount of ener	gy?				
a) $M^-(g) \rightarrow M(g) + e$					
b) $M^{-}(g) \to M^{+}(g) + 2e$					
c) $M^+(g) \to M^{2+}(g) + e$					
d) $M^{2+}(g) \to M^{3+}(g) + e$					
230. The order of stability of metal oxides is					
a) $Al_2O_3 < MgO < Fe_2O_3 < Cr_2O_3$	b) $Cr_2O_3 < MgO < Al_2O_3$	$< Fe_2O_3$			
c) $Fe_2O_3 < Cr_2O_3 < Al_2O_3 < MgO$	d) $Fe_2O_3 < Al_2O_3 < Cr_2O_3$	$_3 < MgO$			

231. The first ionisation potential of Na, Mg, Al and Si are	e in the order		
a) Na $< Mg > Al < Si$ b) Na $> Mg > Al < Si$		d) Na $> Mg > Al < Si$	
232. The electronic configuration of 4 elements <i>K</i> , <i>L</i> , <i>M</i> a	nd N are,	-	
$K = 1s^2, 2s^2 2p^1$ $L = 1s^2, 2s^2 2p^6$			
$M = 1s^2, 2s^22p^4$ $N = 1s^2, 2s^22p^3$			
The element that would form a diatomic molecule v	vith double bond is:		
a) <i>K</i> b) <i>L</i>	c) <i>M</i>	d) <i>N</i>	
233. In the formation of N_2^+ from N_2 , the electron is lost	•	,	
a) a σ-orbital b) a π-orbital	c) a σ*-orbital	d) a π^* -orbital	
234. Which of the following two are isostructural?	,	,	
a) XeF ₂ , IF ₂ b) NH ₃ , BF ₃	c) CO_3^{2-} , SO_3^{2-}	d) PCl ₅ , ICl ₅	
235. Which has sp^2 -hybridization?	0) 003 1003	a, 1	
a) CO_2 b) SO_2	c) N ₂ O	d) CO	
236. Which of the following metal oxides is most basic?	0) 11/20	a) do	
a) ZnO b) Al ₂ O ₃	c) As_2O_3	d) K ₂ O	
237. Which of the following phenomenon will occur who	, _ ,		
a) Bonding will not occur	in two atoms of same spin w	viii react.	
b) Orbital overlap will not occur			
c) Both (a) and (b)			
d) None of the above			
238. The bonds present in N_2O_5 are:			
a) Ionic			
b) Covalent and coordinate			
c) Covalent			
d) Ionic and covalent			
220 How many σ and σ hands are there in the molecule	of totraguan oothylan o?		
239. How many σ -and π -bonds are there in the molecule	C—\1		
•	C—\1		
239. How many σ-and π -bonds are there in the molecule $N \equiv C$ $N \equiv C$	C—N		
$N \equiv C > C$ $N \equiv C$	C—N	d) Five σ- and eight $π$	
N=C N=C N=C N=C N=C N Since σ - and nine π	C = N $C = N$	d) Five σ- and eight $π$	
$N \equiv C > C$ $N \equiv C$	C = N $C = N$	d) Five σ - and eight π	
N=C N=C a) Nine σ - and nine π b) Five σ - and nine π 240. The maximum valency of an element with atomic n a) 2 b) 3	C = N $C = N$ $C =$	_	
N=C N=C N=C N=C 1 N N N N N N N N N N N N N N N N N N	C = N $C = N$ $C =$	d) 5	
N=C N=C a) Nine σ - and nine π b) Five σ - and nine π 240. The maximum valency of an element with atomic n a) 2 b) 3 241. Which of the following compounds has the lowest respectively.	C = N $C = N$ $C =$	_	
N=C N=C a) Nine σ - and nine π b) Five σ - and nine π 240. The maximum valency of an element with atomic n a) 2 b) 3 241. Which of the following compounds has the lowest r a) CaF_2 b) $CaCl_2$	C = N $C = N$ $C =$	d) 5 d) CaI ₂	
a) Nine σ - and nine π b) Five σ - and nine π 240. The maximum valency of an element with atomic na) 2 b) 3 241. Which of the following compounds has the lowest ra) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by heating a) KNO ₃ b) Pb(NO ₃) ₂	C=N $C=N$ $C=$	d) 5	
a) Nine σ - and nine π b) Five σ - and nine π 240. The maximum valency of an element with atomic na) 2 b) 3 241. Which of the following compounds has the lowest ra) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by heating a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order of increasing	C=N $C=N$ $C=$	d) 5 d) CaI ₂ d) AgNO ₃	
a) Nine σ - and nine π b) Five σ - and nine π 240. The maximum valency of an element with atomic na) 2 b) 3 241. Which of the following compounds has the lowest ra) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by heating a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order of increasing a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺	C=N C=N c) Nine σ - and seven π umber 7 is c) 4 nelting point? c) CaBr ₂ c) Cu(NO ₃) ₂ g size? b) Be ²⁺ > M g ²⁺ > Na ⁺	d) 5 d) CaI_2 d) $AgNO_3$ $> S^{2-} > Cl^- > Br^-$	
a) Nine σ - and nine π b) Five σ - and nine π 240. The maximum valency of an element with atomic na) 2 b) 3 241. Which of the following compounds has the lowest ra) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by heating a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order of increasing a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺	C=N C=N c) Nine σ - and seven π umber 7 is c) 4 nelting point? c) CaBr ₂ c) Cu(NO ₃) ₂ g size?	d) 5 d) CaI_2 d) $AgNO_3$ $> S^{2-} > Cl^- > Br^-$	
a) Nine σ - and nine π b) Five σ - and nine π 240. The maximum valency of an element with atomic na) 2 b) 3 241. Which of the following compounds has the lowest ra) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by heating a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order of increasing a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ 244. The correct order of bond angles is:	C=N C=N c) Nine σ - and seven π umber 7 is c) 4 nelting point? c) CaBr ₂ c) Cu(NO ₃) ₂ g size? b) Be ²⁺ > M g ²⁺ > Na ⁺	d) 5 d) CaI_2 d) $AgNO_3$ $> S^{2-} > Cl^- > Br^-$	
a) Nine σ - and nine π b) Five σ - and nine π 240. The maximum valency of an element with atomic na) 2 b) 3 241. Which of the following compounds has the lowest ra) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by heating a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order of increasing a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ 244. The correct order of bond angles is: a) PF ₃ < PCl ₃ < PBr ₃ < PI ₃	C=N C=N c) Nine σ - and seven π umber 7 is c) 4 nelting point? c) CaBr ₂ c) Cu(NO ₃) ₂ g size? b) Be ²⁺ > M g ²⁺ > Na ⁺	d) 5 d) CaI_2 d) $AgNO_3$ $> S^{2-} > Cl^- > Br^-$	
a) Nine σ - and nine π b) Five σ - and nine π 240. The maximum valency of an element with atomic na) 2 b) 3 241. Which of the following compounds has the lowest ra) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by heating a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order of increasing a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ 244. The correct order of bond angles is: a) PF ₃ < PCl ₃ < PBr ₃ < PI ₃ b) PF ₃ < PBr ₃ < PCl ₃ < PI ₃	C=N C=N c) Nine σ - and seven π umber 7 is c) 4 nelting point? c) CaBr ₂ c) Cu(NO ₃) ₂ g size? b) Be ²⁺ > M g ²⁺ > Na ⁺	d) 5 d) CaI_2 d) $AgNO_3$ $> S^{2-} > Cl^- > Br^-$	
a) Nine σ - and nine π b) Five σ - and nine π 240. The maximum valency of an element with atomic na) 2 b) 3 241. Which of the following compounds has the lowest ra) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by heating a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order of increasina) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ 244. The correct order of bond angles is: a) PF ₃ < PCl ₃ < PBr ₃ < PCl ₃ < PI ₃ b) PF ₃ < PBr ₃ < PCl ₃ < PF ₃	C=N C=N c) Nine σ - and seven π umber 7 is c) 4 nelting point? c) CaBr ₂ c) Cu(NO ₃) ₂ g size? b) Be ²⁺ > M g ²⁺ > Na ⁺	d) 5 d) CaI_2 d) $AgNO_3$ $> S^{2-} > Cl^- > Br^-$	
a) Nine σ - and nine π b) Five σ - and nine π 240. The maximum valency of an element with atomic na) 2 b) 3 241. Which of the following compounds has the lowest ra) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by heating a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order of increasina) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ 244. The correct order of bond angles is: a) PF ₃ < PCl ₃ < PBr ₃ < PI ₃ b) PF ₃ < PBr ₃ < PCl ₃ < PF ₃ c) PI ₃ < PBr ₃ < PCl ₃ < PF ₃ d) PF ₃ > PCl ₃ < PBr ₃ < PI ₃	C=N c) Nine σ - and seven π umber 7 is c) 4 nelting point? c) CaBr ₂ c) Cu(NO ₃) ₂ g size? b) Be ²⁺ > Mg ²⁺ > Na ⁺ d) Na ⁺ > Mg ²⁺ > Be ²⁺ >	d) 5 d) CaI_2 d) $AgNO_3$ $> S^{2-} > Cl^- > Br^-$	
a) Nine σ- and nine π b) Five σ- and nine π 240. The maximum valency of an element with atomic n a) 2 b) 3 241. Which of the following compounds has the lowest r a) CaF₂ b) CaCl₂ 242. Nitrogen dioxide cannot be prepared by heating a) KNO₃ b) Pb(NO₃)₂ 243. Which of the following is correct order of increasin a) Br⁻ > S²⁻ > Cl⁻ > Na⁺ > Mg²⁺ > Be²⁺ c) S²⁻ > Cl⁻ > Br⁻ > Na⁺ > Mg²⁺ > Be²⁺ 244. The correct order of bond angles is: a) PF₃ < PCl₃ < PBr₃ < PI₃ b) PF₃ < PBr₃ < PCl₃ < PF₃ d) PF₃ < PBr₃ < PCl₃ < PF₃ d) PF₃ < PBr₃ < PCl₃ < PF₃ d) PF₃ > PCl₃ < PBr₃ < PI₃ 245. Among the following metals interatomic forces are	C=N c) Nine σ - and seven π umber 7 is c) 4 nelting point? c) CaBr ₂ c) Cu(NO ₃) ₂ g size? b) Be ²⁺ > Mg ²⁺ > Na ⁺ d) Na ⁺ > Mg ²⁺ > Be ²⁺ >	d) 5 d) CaI ₂ d) AgNO ₃ $> S^{2-} > Cl^{-} > Br^{-}$ $> Br^{-} > Cl^{-} > S^{2-}$	
a) Nine σ - and nine π b) Five σ - and nine π 240. The maximum valency of an element with atomic na) 2 b) 3 241. Which of the following compounds has the lowest ra) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by heating a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order of increasina) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ 244. The correct order of bond angles is: a) PF ₃ < PCl ₃ < PBr ₃ < PI ₃ b) PF ₃ < PBr ₃ < PCl ₃ < PF ₃ c) PI ₃ < PBr ₃ < PCl ₃ < PF ₃ d) PF ₃ > PCl ₃ < PBr ₃ < PI ₃ 245. Among the following metals interatomic forces are a) Cu b) Ag	C=N c) Nine σ - and seven π umber 7 is c) 4 nelting point? c) CaBr ₂ c) Cu(NO ₃) ₂ g size? b) Be ²⁺ > M g ²⁺ > Na ⁺ d) Na ⁺ > M g ²⁺ > Be ²⁺ >	d) 5 d) CaI_2 d) $AgNO_3$ $> S^{2-} > Cl^- > Br^-$	
a) Nine σ - and nine π b) Five σ - and nine π 240. The maximum valency of an element with atomic na) 2 b) 3 241. Which of the following compounds has the lowest ra) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by heating a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order of increasinal a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ 244. The correct order of bond angles is: a) PF ₃ < PCl ₃ < PBr ₃ < PI ₃ b) PF ₃ < PBr ₃ < PCl ₃ < PI ₃ c) PI ₃ < PBr ₃ < PCl ₃ < PF ₃ d) PF ₃ > PCl ₃ < PBr ₃ < PI ₃ 245. Among the following metals interatomic forces are a) Cu b) Ag 246. The element with atomic number 117 if discovered	C=N c) Nine σ - and seven π umber 7 is c) 4 nelting point? c) CaBr ₂ c) Cu(NO ₃) ₂ g size? b) Be ²⁺ > Mg ²⁺ > Na ⁺ d) Na ⁺ > Mg ²⁺ > Be ²⁺ >	d) 5 d) CaI ₂ d) AgNO ₃ > S ²⁻ > Cl ⁻ > Br ⁻ > Br ⁻ > Cl ⁻ > S ²⁻	
N=C a) Nine σ- and nine π b) Five σ- and nine π 240. The maximum valency of an element with atomic n a) 2 b) 3 241. Which of the following compounds has the lowest r a) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by heating a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order of increasin a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ 244. The correct order of bond angles is: a) PF ₃ < PCl ₃ < PBr ₃ < PI ₃ b) PF ₃ < PBr ₃ < PCl ₃ < PI ₃ c) PI ₃ < PBr ₃ < PCl ₃ < PF ₃ d) PF ₃ > PCl ₃ < PBr ₃ < PI ₃ 245. Among the following metals interatomic forces are a) Cu b) Ag 246. The element with atomic number 117 if discovered a) Noble gas family b) Alkali family	C=N C=N c) Nine σ - and seven π umber 7 is c) 4 nelting point? c) CaBr ₂ c) Cu(NO ₃) ₂ g size? b) Be ²⁺ > M g ²⁺ > Na ⁺ d) Na ⁺ > Mg ²⁺ > Be ²⁺ > probably weakest in: c) Zn would be placed in c) Alkaline earth family	d) 5 d) CaI ₂ d) AgNO ₃ $> S^{2-} > Cl^{-} > Br^{-}$ $> Br^{-} > Cl^{-} > S^{2-}$	
a) Nine σ - and nine π b) Five σ - and nine π 240. The maximum valency of an element with atomic na) 2 b) 3 241. Which of the following compounds has the lowest ra) CaF ₂ b) CaCl ₂ 242. Nitrogen dioxide cannot be prepared by heating a) KNO ₃ b) Pb(NO ₃) ₂ 243. Which of the following is correct order of increasinal a) Br ⁻ > S ²⁻ > Cl ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ c) S ²⁻ > Cl ⁻ > Br ⁻ > Na ⁺ > Mg ²⁺ > Be ²⁺ 244. The correct order of bond angles is: a) PF ₃ < PCl ₃ < PBr ₃ < PI ₃ b) PF ₃ < PBr ₃ < PCl ₃ < PI ₃ c) PI ₃ < PBr ₃ < PCl ₃ < PF ₃ d) PF ₃ > PCl ₃ < PBr ₃ < PI ₃ 245. Among the following metals interatomic forces are a) Cu b) Ag 246. The element with atomic number 117 if discovered	C=N C=N c) Nine σ - and seven π umber 7 is c) 4 nelting point? c) CaBr ₂ c) Cu(NO ₃) ₂ g size? b) Be ²⁺ > M g ²⁺ > Na ⁺ d) Na ⁺ > Mg ²⁺ > Be ²⁺ > probably weakest in: c) Zn would be placed in c) Alkaline earth family	d) 5 d) CaI ₂ d) AgNO ₃ > S ²⁻ > Cl ⁻ > Br ⁻ > Br ⁻ > Cl ⁻ > S ²⁻	

	a) Condensation reaction		
	b) Hydrogen bonding		
	c) Presence of carboxyl group		
	d) Presence of hydrogen atom at α -car	bon	
249	. In which of the following arrangement		property indicated against it?
	a) Increasing size : $Al^{3+} < Mg^{2+} < Na^{3+}$	+ < F ⁻	
	b) Increasing $IE_1 : B < C < N < 0$		
	c) Increasing $EA_1 : I < Br < F < Cl$		
	d) Increasing metallic radius: Li < Na	< K < Rb	
250	. The forces present in the crystals of na	phthalene are:	
	a) Van der Waals' forces b) Electrost	atic forces c) Hydrogen bonding	d) None of these
251	. Which has zero dipole moment?		
	a) ClF b) PCl ₃	c) SiF ₄	d) CFCl ₃
252	. Which group of the Periodic Table con	tains coinage metal?	
	a) IIA b) IB	c) IA	d) None of these
253	. The bond angle and hybridization in et	her (CH ₃ OCH ₃) is:	
	a) $106^{\circ} 51', sp^3$ b) $104^{\circ} 31',$	sp^{3} c) 110°, sp^{3}	d) None of these
254	. Ionisation potential values of $^\prime d^\prime$ bloc	k elements as compared to ionisation	potential values of $'f'$ block
	elements are:		
	a) Higher b) Lower	c) Equal	d) Either of these
255	. How many bonded electron pairs are p	resent in IF ₇ molecule?	
	a) 6 b) 7	c) 5	d) 8
256	. Formation of π -bond:		
	a) Increases bond length		
	b) Decreases bond length		
	c) Distorts the geometry of molecule		
	d) Makes homoatomic molecules more	reactive	
257	. An element with atomic number 20 wi	ll be placed in which period of the Peri	odic Table?
	a) 1 b) 2	c) 3	d) 4
258	. Which bond angle results in the minim	um dipole moment for the triatomic m	olecule XY_2 shown below?
	a) 90° b) 120°	c) 150°	d) 180°
259	. $\mathrm{NH_3}$ has a net dipole moment, but bord	on trifluoride (B F_3) has zero dipole mo	ment, because:
	a) B is less electronegative than N		
	b) F is more electronegative than H		
	c) BF ₃ is pyramidal while NH ₃ is plana	r	
	d) NH ₃ is pyramidal while BF ₃ is trigor	nal planar	
260	. The geometry of PF ₅ molecule is:		
	a) Planar b) Square p	lanar c) Trigonal bipyramida	l d) Tetrahedral
261	. The correct order of ionisation energy	for comparing carbon, nitrogen and ox	tygen atom is
	a) $C > N > 0$ b) $C > N <$	0 c) $C < N > 0$	d) C < N < O
262	. In which of the following arrangement	s the order is not according to the prop	perty indicated against it?
	a) Li $< Na < K < Rb$ increasing metal		
	b) I $< Br < F < Cl$ increasing electron	gain enthaly (with negative sign)	
	c) B $< C < N < O$ increasing first ioni		
	d) $Al^{3+} < Mg^{2+} < Na^{+} < F^{-}$ increasing	g ionic size	
263	. Pauling received Nobel Prize for his we		
	a) Photosynthesis b) Atomic s	ý	d) Thermodynamics
264	. For electron affinity of halogens, which		
	a) $F > Cl$ b) $F < I$	c) Br $> F$	d) Br $< Cl$
265	The correct electronegativity order is:		

a) C, N, Si, P	b) N, Si, C, P	c) Si, P, C, N	d) P, Si, N, C
-	g properties show gradual de	crease with increase in ato	omic number across a period
in the Periodic Table?			
a) Electron affinity	b) Ionisation potential	c) Electronegativity	d) Size of atom
267. Difference between S	and S^{2-} as S^{2-} has		
a) Larger radii and lar	ger size	b) Smaller radii and lar	ger size
c) Larger radii and sm	aller size	d) Smaller radii and sm	aller size
268. Two lone pairs of elec	trons and two bond pairs are	present in:	
a) NH ₃	b) BF ₃	c) CO_3^{2-}	d) NH ₂
269. The lattice energy ord	er for lithium halide is:		
a) LiF > LiCl > LiBr >	> LiI		
b) LiCl > LiF > LiBr >	> LiI		
c) LiBr > LiCl > LiF >	> LiI		
d) LiI > LiBr > LiCl >	LiF		
270. The number of σ and τ	au-bonds in pent-4-en-1-yne a	re respectively:	
a) 3, 10	b) 9, 4	c) 4,9	d) 10, 3
	g order off polarising power is	S:	
a) $Ca^{2+} < Mg^{2+} < Be^{2}$			
b) $Mg^{2+} < Be^{2+} < K^+$			
c) $Be^{2+} < K^+ < Ca^{2+}$			
d) $K^+ < Ca^{2+} < Mg^{2+}$	_		
272. Increase in atomic size			
a) Increase in number	= = =		
	of protons and neutrons		
c) Increase in number	=		
	of protons, neutrons and ele	ctrons	
_	ion energies are plotted again		iks are occupied by
a) Alkali metals	b) Halogens	c) Transition metals	
274. Which of the following	_	c) Transition metals	u) Kai e gases
a) B	b) Be	c) Mg	d) Al
275. Structure of ICl ₂ is:	ој ве	c) Mg	u) Ai
_			
a) Trigonal			
b) Octahedral			
c) Square planar	rmomidal		
d) Distorted trigonal p		twinle hand?	
-	s not contain double bond or	=	4) HCM
a) C_2H_4	b) H ₂ O	c) N ₂	d) HCN
	ncreasing oxidising power is		
a) $F_2 < Cl_2 < Br_2 < I$	_	b) $I_2 < F_2 < Cl_2 < Br_2$	
c) $Br_2 < I_2 < F_2 < Cl_2$	=	d) $I_2 < Br_2 < Cl_2 < F_2$	
278. Which is soluble in wa)	N A 7
a) AgF	b) AgCl	c) AgBr	d) AgI
	e absorbed to eject out the ele		
a) $1s^2 2s^2 2p^1$	b) $1s^2 2s^2 2p^3$	c) $1s^2 2s^2 2p^2$	d) $1s^2 2s^2 2p^4$
280. Most acidic oxide is			
a) Na ₂ 0	b) ZnO	c) MgO	d) P_2O_5
	the absorption of energy is:	-	
a) $F \rightarrow F^-$	b) $H \rightarrow H^-$	c) $Cl \rightarrow Cl^-$	d) $0 \to 0^{2-}$
=	has non-zero dipole moment	-	
a) C ₆ H ₆	b) CO	c) SO ₂	d) NH ₃

283.	283. H-bonding is not present in:				
	a) Glycerine	b) Water	c) H ₂ S	d) HF	
284.	Which formulae does not	correctly represent the bo	nding capacity of the atom i	nvolved?	
	Γ \rceil^+				
	a) H—P→H	b) F F	c) $O \leftarrow N \bigcirc O \rightarrow H$	d) $H-C=C \bigcirc H$	
	L				
285.			rison to other liquids is due	to:	
	a) High dielectric constan	t			
	b) Polarity				
	c) H-bonding				
	d) None of the above				
286.	Which one of the following	g combinations represents			
	a) 2, 8, 2	b) 2, 8, 4	c) 2, 8, 7	d) 2, 8, 8	
287.	Which bond has the highe	st bond energy?			
	a) Coordinate bond	b) Sigma bond	c) Multiple bond	d) Polar covalent bond	
288.	The increasing order of fin	rst ionisation enthalpies of	the elements B, P, S and F (lowest first) is	
	a) $F < S < P < B$	b) $P < S < B < F$	c) $B < P < S < F$	d) $B < S < P < F$	
289.	Which of the following pa	irs are isostructural?			
	a) SO_3^{2-} , NO_3^{-}	b) BF ₃ , NF ₃	c) BrO_3^- , XeO_3	d) SF ₄ , XeF ₄	
290.	The electronic configurati	on of transition elements i	s exhibited by		
	a) $(n-1)d^{1-10}$, ns^2		c) ns ¹	d) ns^2 , np^5	
291.		O_2 , O_2^- and O_2^{2-} follows the	order:		
			c) $0_2 > 0_2^- > 0_2^{2-} > 0_2^+$	d) $0_{2}^{-} > 0_{2}^{2-} > 0_{2}^{+} > 0_{2}^{-}$	
292	= =		t of nitrogen. Which of the f		
,,	reason for this observatio		t of met obom without of the f	onowing is the correct	
		 r charge of oxygen than nit	rogen		
	b) Lesser atomic size of ox		rogen		
			trons in the same <i>p-</i> orbital	counter halances the	
		clear charge on moving fro	-	counter balances the	
		ar charge of oxygen than ni			
202	A $C \equiv C$ bond is:	ar charge of oxygen than in	uogen		
293.		.d			
	a) Weaker than $C = C$ bon				
	b) Weaker than C – C bon				
	c) Longer than C — C bond				
204	d) Shorter than $C = C$ bon				
294.	Which is likely to have the	= = = = =) NIII	l) CIICI	
205	a) He	b) CsF	c) NH ₃	d) CHCl ₃	
295.		=	have the geometry that is e	xplained by the same	
	=	NO_2^- , NO_3^- , NH_2^- , NH_4^+ , SCN^-		N 0011-	
	a) NO ₂ and NH ₂	b) NO_2^- and NO_3^-	c) NH_4^+ and NO_3^-	d) SCN ⁻ and NH ₂	
296.	Valency means:				
	a) Combining capacity of a				
	b) Atomicity of an elemen				
	c) Oxidation number of ar	ı element			
	d) None of the above				
297.	=	_	ond of HC \equiv C $-$ CH $=$ CH ₂ i		
	a) $sp^3 - sp^3$	b) $sp^2 - sp^3$	c) $sp - sp^2$	d) $sp^3 - sp$	
298.	The IP ₁ is maximum for:				
	a) K	b) Na	c) Be	d) He	

299.	Which of the following ha	s highest bond angle?				
	a) H ₂ O	b) H ₂ S	c) NH ₃	d) PH ₃		
300.	The halogen that most ea	sily reduced is				
	a) F ₂	b) Cl ₂	c) Br ₂	d) I ₂		
301.	The enhanced force of co	hesion in metals is due to:				
	a) The covalent linkages	between atoms				
	b) The electrovalent links					
	c) The lack of exchange o	=				
	d) The exchange energy of	_				
302.	, ,	r and non-polar covalent b	onds?			
	a) NH ₄ Cl	b) HCN	c) H ₂ O ₂	d) CH ₄		
303.	Electron deficient species	•	, , ,	7 1		
	a) Lewis acids	b) Hydrophilic	c) Nucleophiles	d) Lewis bases		
304.	Metallic bonds do not pla	, ,	,	.,		
	a) Brass	b) Copper	c) Germanium	d) Zinc		
305.		unds, e. g., AgCl, CaF ₂ , BaSC		,		
	a) Ionic compounds do no		, 4 a. 6 6			
	b) Water has a high diele					
	c) Water is not a good ior					
	,	exceptionally high attractiv	re forces in their lattice			
306	•	y values for elements are u				
500.	a) Polarity of bonds in mo		serur in predicting.			
	b) Position of elements in					
	c) Coordination number	cicci omotive series				
	d) Dipole moment of vari	ous molecules				
307		nents, the most electronega	tive is:			
307.	a) Oxygen	b) Chlorine	c) Nitrogen	d) Fluorine		
308	· · · ·	easing first ionization poter	-	d) I luorine		
500.	a) $C > B > Be > Li$	b) $C > Be > B > Li$) D . G . D . H	d) Be > Li > B > C		
300	•	•		и) вс и в и в в и		
307.	Ionization potential of Na would be numerically the same as: a) Electron affinity of Na ⁺					
	b) Electronegativity of Na					
	c) Electron affinity of He	L				
	d) Ionization potential of	Мα				
210	<u> </u>	-	_ 1 7 ± 1 and 7 ± 2 reene	ctively. If 'R' is a noble gas		
510.	. The atomic number of elements A , B , C and D are $Z-1$, $Z+1$, and $Z+2$, respectively. If ' B ' is a noble gas, choose the correct answer from the following statements.					
	V. 'A' has higher electron affinity					
	VI. 'C' exists in $+2$ oxidat	•				
	VII. 'D' is an alkaline earth					
	a) I and II	b) II and III	c) I and III	d) I, II and III		
211		of sulphur atom present in		_		
311.	a) sp, sp^2	b) sp^2 , sp^2	c) sp^2 , sp^3	d) <i>sp</i> , <i>sp</i> ³		
212		, , ,	c) sp , sp	u) sp, sp		
312.	Dipole moment is exhibit	eu by:				
	a) 1, 4-dichlorobenzene					
	b) 1, 2-dichlorobenzene	iono				
	c) Trans-1, 2-dichloroeth					
212	d) <i>Trans</i> -1, 2-dicloro-2-b		an avathormic and than	andatharmia atan aa ah		
313.		le ion $0^{2-}(g)$ requires first and $a = 1.42$ kg mal ⁻¹	an exomer mic and men an	endomerniic step as snowi		
	below $O(g) + e^- = O^-(g)$					
	$O(g) + e = O'(g), \Delta H$	$r^0 = 844 \text{ kJ mol}^{-1} \text{ This is be}$	ecause			

	a) 0 ⁻ ion will tend to resist	st the addition of another ϵ	electron			
	b) Oxygen has high electro affinity					
	c) Oxygen is more electronegative					
	d) 0 ⁻ ion has comparatively larger size than oxygen atom					
314	4. Which pair of the atomic numbers represents <i>s</i> -block elements?					
011	a) 3, 12	b) 6, 12	c) 7, 15	d) 9, 17		
215		es not reflect the periodicit		u) 5, 17		
313	a) Bonding behaviour	b) Electronegativity	c) Ionisation potential	d) Neutron/proton ratio		
216	<u> </u>	als usually used as catalyst	<u> </u>	d) Neutron/proton ratio		
310	a) <i>f -</i> block	b) d -block	=	d) a block		
217	, ,	•	c) p-block	d) s-block		
31/			equences, which of these i	epresents the correct order		
	of their increasing bond o					
	a) NO $< C_2^{2-} < O_2^{-} < He_2^{+}$					
	b) $C_2^{2-} < He_2^+ < NO < O_2^-$					
	c) $He_2^+ < O_2^- < NO < C_2^{2-}$					
	d) $O_2^- < NO < C_2^{2-} < He_2^+$					
318	. The increase in bond orde	er results in:				
	_	h and increase in bond ene	rgy			
	b) Decrease in bond lengt	h and bond energy				
	c) Increase in bond length	n and bond energy				
	d) None of the above					
319	. In which molecule all ator	ns are coplanar?				
	a) CH ₄	b) BF ₃	c) PF ₃	d) NH ₃		
320	Length of hydrogen bond	ranges from 2.5 Å to:				
	a) 3.0 Å	b) 2.75 Å	c) 2.6 Å	d) 3.2 Å		
321	. XeF ₆ is:			•		
	a) Octahedral					
	b) Pentagonal pyramidal					
	c) Planar					
	d) Tetrahedral					
322	. HCl molecule in the vapou	ir state is an example of:				
J	a) Non-polar bond	b) Ionic bond	c) Polar covalent bond	d) Pure covalent bond		
323	. Which of the following sp	•	ej i olar covarent bona	a) i are covarent bona		
323	a) NO_2^+	b) 0 ₃	c) NO ₂	d) SO ₂		
224	· -	tion of isoelectronic specie	· -	u) 302		
327	-	b) Ca ²⁺ , Cs ⁺ , Br	c) Na ⁺ , Ca ²⁺ , Mg ²⁺	d) N ³⁻ , F ⁻ , Na ⁺		
225		molecules/ions are all the l		ujiv ,i ,iva		
323	_		-	۲) DE-		
226	a) SF ₄	b) SiF ₄	c) XeF ₄	d) BF ₄		
326	Solid CH ₄ is:	h) I!!! J	a) Carralant askid	J) Nat and at		
225	a) Molecular solid	b) Ionic solid	c) Covalent solid	d) Not exist		
32/	. Which has the highest bor) D	D C: 1 1 1		
	a) Hydrogen bond	b) Triple bond	c) Double bond	d) Single bond		
328	=	•	logens X,Y and Z are respe-	ctively –349, –333 and		
	-325. Then X , Y and Z res	_				
			c) Cl ₂ , Br ₂ and F ₂			
329		which of the following lists	ranks the nitrogen species	in terms of increasing bond		
	order?					
		b) $N_2^- < N_2 < N_2^{2-}$	c) $N_2^{2-} < N_2^- < N_2$	d) $N_2 < N_2^{2-} < N_2^{-}$		
330	. Be resembles much with					
	a) Li	b) Al	c) Zn	d) Ra		

331	. The pair of species with t	he same bond order is:		
	a) NO, CO	b) N ₂ , O ₂	c) O_2^{2-} , B_2	d) 0_2^+ , $N0^+$
332	. Which molecule is planar	?		
	a) NH ₃	b) CH ₄	c) C_2H_4	d) SiCl ₄
333	. Which is present in perox	rides?		
	a) 0 ₂	b) 0 ²⁻	c) 0_2^{2-}	d) 0 ₂
334	. The number of valency el	ectrons in carbon atom is:		
	a) Zero	b) 2	c) 6	d) 4
335	. Which does not form two	or more chlorides?		
	a) NA	b) Hg	c) Cu	d) Fe
336	. CCl_4 is insoluble in water	because:		
	a) CCl ₄ is non-polar and v	vater is polar		
	b) Water is non-polar and	l CCl ₄ is polar		
	c) Water and CCl ₄ both an	e polar		
	d) None of the above			
337	. In the transition of Cu to 0	Cu ²⁺ , there is a decrease in	:	
	a) Atomic number			
	b) Atomic mass			
	c) Equivalent weight			
	d) Number of valency elec	ctrons		
338	. In coordinate bond, the ac	cceptor atoms must essenti	ally contain in its valency s	hell an orbitals:
	a) With paired electron	b) With single electron	c) With no electron	d) With three electrons
339	. Which one of the followin	g statement is false?		
	a) The electron affinity of	chlorine is less than that o	f fluorine.	
	b) The electronegativity of	of fluorine is more than that	t of chlorine.	
	c) The electron affinity of	bromine is less than that o	of chlorine.	
	d) The electronegativity of	of chlorine is more than tha	t of bromine.	
340	. Which of the following ha	lides is most acidic?		
	a) CCl ₄	b) PCl ₃	c) BiCl ₃	d) SbCl ₃
341	. Hybridization state of I in	ICl ₂ is:		
	a) dsp^2	b) <i>sp</i>	c) sp^2	d) sp^3
342	. Identify the correct order	in which the covalent radi	us of the following element	s increases
	(I)Ti	(II) Ca (II	I) Sc	
	a) (I), (II), (III)	b) (III), (II), (I)	c) (II), (I), (III)	d) (I), (III), (II)
343			whereas, CO ₂ has not. Poi	nt out the structures which
	best illustrate these facts:			
	a) $O = C = O, H - O - O$	- H		
	b) $O = C = O$, $H = O = H$			
	b) , n—0—n			
	0 0			
	$^{0}0=0=0, /$	П		
		11		
	d) O H			
	Ё = О О−Н			
344	. Which is chemically most	active non-metal?		
	a) S	b) 0 ₂	c) F ₂	d) N ₂
345	. Electron affinity is the			
	a) Energy released when	an electron is added to an i	solated atom in the gaseou	s state
	b) Energy absorbed when	an electron is added to an	isolated atom in the gaseon	us state

		e out an electron from an is	olated gaseous atom	
216	d) Power of an atom to at	tract an electron to itsen		
346.	Which is paramagnetic?	13.61.0) Cl O	D GIO
o 4 =	a) Cl_2O_6	b) Cl ₂ O ₇	c) Cl ₂ 0	d) ClO ₂
347.	The bond length of LiF wi	ll be		
	a) Equal to that of KF		b) More than that of KF	
	c) Equal to that of NaF		d) Less than that of NaF	
348.	The bond order of CO mol	lecule on the basis of molec	ular orbital theory is:	
	a) Zero	b) 2	c) 3	d) 1
349.	Compounds formed by sp	d^3d^2 -hybridization will have	e configuration:	
	a) Square planar			
	b) Octahedral			
	c) Trigonal bipyramidal			
	d) Pentagonal bipyramida	al		
350.	Ionic radii are:			
	1			
	a) $\propto \frac{1}{\text{effective nuclear cha}}$	rge		
	1			
	b) $\propto \frac{1}{\text{(effective nuclear ch)}}$	arge) ²		
	c) ∝ effective nuclear cha			
	d) ∝ (effective nuclear ch	arge) ²		
351.	- ·	olecular forces in hydrogen	fluoride is due to:	
	a) Dipole-induced dipole			
	b) Dipole-dipole interaction			
	c) Hydrogen bond interac			
	d) Dispersion interaction			
352		ecies does not exist under r	normal conditions?	
	a) Be ²⁺	b) Be ₂	c) B ₂	d) Li ₂
353	An element with atomic n	, =		u, 2.,
000.	a) Halogen	amber 21 is a	b) Representative elemen	t
	c) Transition element		d) Alkali metal	
35 <i>1</i> .	•	o hybridizad orbitals, balor		h having one electron leads
JJT.	to:	o flybridized of bitais, befor	ignig to two atoms and cac	ii naving one electron leads
	a) Sigma-bond			
	b) Double-bond			
	•	and		
	c) Coordinate covalent bo	ли		
255	d) Pi-bond	a avidaa ia ammhatavia in al	hawa ataw?	
355.		g oxides is amphoteric in cl		I) C - O
256	a) SnO_2	b) SiO ₂	c) CO ₂	d) CaO
356.		h the first ionisation potent		D.D. W. I
	a) Na, K, Be	b) K, Na, Be	c) K, Be, Na	d) Be, Na, k
357.		ron gain enthalpy with neg	ative sign of F, Cl, Br and I, I	having atomic number 9,
	17, 35 and 53 respectively			
	a) $Cl > F > Br > I$	•	c) $I > Br > Cl > F$	d) $I > Br > F > Cl$
358.	-	ridization orbitals increases	-	
	a) Increases	b) Decreases	c) Does not change	d) Becomes zero
359.	Dipole-dipole attractive for	orces are strongest between	n the molecules of:	
	a) He	b) CH ₄	c) CO ₂	d) H ₂ O
360.		Ig ²⁺ , the largest particle is		
	a) Mg^{2+}	b) Mg	c) Na	d) Na ⁺
361.	If the IP of Na is 5.48 eV, t	he ionisation potential of K	will be	

362	a) Same as that of Na The electronic configuration	,	c) 5.68 eV	d) 10.88 eV
302	362. The electronic configuration of the atom having maximum difference in first and second ionisation energies is			
	a) $1s^2$, $2s^2$, $2p^6$, $3s^1$		b) $1s^2$, $2s^2$, $2p^6$, $3s^2$	
	c) $1s^2, 2s^2, 2p^1$		d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^1$	
262		and MaCl the same	, , , , , , ,	l the least ionic character
303		and MgCi ₂ , the compou	mus with the gratest and	d the least ionic character
	respectively are:	h) DhCl J D-Cl	a) DlaC: and MaCl	d) M-Cl and D-Cl
264		b) RbCl and BeCl ₂	,	d) MgCl ₂ and BeCl ₂
304	•	e one having zero dipole m	•	4) CO
265	a) NH ₃	b) H ₂ O	c) BCl ₃	d) SO ₂
365		g electrons by the halogen a		
266	= = = = = = = = = = = = = = = = = = =	b) Electrons affinity	c) Electronegtivity	d) Electronic attraction
366		hose electronic configurat	-	D. A II.
o . =	a) Neutral	b) Amphoteric	c) Basic	d) Acidic
367		ng elements has lowest valu		N 6
	a) Mg	b) Ca	c) Ba	d) Sr
368		h on combination are most		
	a) Na and Ca	b) K and O ₂	c) O ₂ and Cl ₂	d) Al and I ₂
369	A molecule which cannot	-		
	a) SF ₄	b) OF ₂	c) OF ₄	$d) O_2 F_2$
370		²⁺ and A1 ³⁺ are isoelectro		
		F ⁻ and then increase from	ı Na ⁺ to Al ³⁺	
	b) A significant increase fi			
	c) A significant decrease f	rom O ^{2–} to Al ³⁺		
	d) An increase from 0^{2} –to	$^{ m F}^-$ and then decrease from	n Na ⁺ to Al ³⁺	
371	. A sudden large jump betw	veen the values of second a	nd third ionisation energie	s of an element would be
	associated with the electronic	onic configuration		
	a) $1s^2$, $2s^2$, $2p^6$, $3s^2$		b) $1s^2$, $2s^2$, $2p^6$, $3s^1$	
	c) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^1$		d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^2$	
372	Among O, C, F, Cl, Br the co	orrect order of increasing a	tomic radii is:	
	a) $F < 0 < C < Cl < Br$	b) $F < C < 0 < Br < Cl$	c) $F < Cl < Br < 0 < C$	d) $C < 0 < F < Cl < Br$
373	The correct order of radii	is:		
	a) N < Be < B	b) $F^- < 0^{2-} < N^{3-}$	c) Na < Li < K	d) $Fe^{3+} < Fe^{2+} < Fe^{4+}$
374	The ionic radius of 'Cr' is r	ninimum in which of the fo	llowing compounds?	•
	a) CrO ₂	b) K ₂ CrO ₄	c) CrF ₃	d) CrCl ₃
375	Which molecule has trigor	nal planar geometry?		
	a) IF ₃	b) PCl ₃	c) NH ₃	d) BF ₃
376		r electronic configuration o	2 0	3
	a) ns^2np^6	b) $(n-1)d^{10}ns^1$	c) $(n-1)d^{10}ns^2$	d) $(n-1)d^9ns^2$
377	, .	ng elements have lowest va	, ,	
	a) Pb	b) Sn	c) Si	d) C
378	•	tivity of atom A and B are 1	,	•
0.0	character of $A - B$ bond is			ne percentage or reme
	a) 58.3%	b) 48%	c) 79.6%	d) 73.6%
379	•	ement is most electropositive		u) / 5.5 / 0
077	a) Al	b) Mg	c) P	d) S
380	Super octet molecule is:	~, ····································	~ <i>)</i> ·	u, 0
500	a) F ₃ Cl	b) PCl ₃	c) NH ₃	d) None of these
3Ω1		ements will have the lowest	· ·	a, none of these
201	-			d) Rb
	a) Li	b) Mg	c) Ca	u) ND

382. An element X which occurs in the first short period	has an outer electronic stru	icture s^2p^1 . What are the
formula and acid-base character of its oxides?		
a) XO_3 , basic b) X_2O_3 , basic	c) X_2O_3 , amphoteric	d) XO_2 , acidic
383. The diamagnetic molecules are:		
a) B_2, C_2, N_2 b) O_2, N_2, F_2	c) C_2 , N_2 , F_2	d) B_2 , O_2 , N_2
384. Which of the following electronic configuration rep	resents noble gas?	
a) ns^2np^6 b) ns^2np^5	c) ns^2np^4	d) ns^2np^3
385. The number of naturally occurring p - block element	ts that are diamagnetic is	
a) 18 b) 6	c) 5	d) 7
386. Which of the following element shows maximum va	lency?	
a) Carbon b) Barium	c) Nitrogen	d) Sulphur
387. The pair likely to form the strongest hydrogen bond	ling:	
a) H_2O_2 and H_2O		
b) HCOOH and CH ₃ COOH		
c) CH ₃ COOH and CH ₃ COOCH ₃		
d) SiH ₄ and SiCl ₄		
388. Highest covalent character is found in which of the	=	
a) CaF ₂ b) CaCl ₂	c) CaI ₂	d) CaBr ₂
389. How many bridging oxygen atoms are present in P_4		
a) 6 b) 4	c) 2	d) 5
390. Which element has the highest electronegativity?		
a) C b) 0	c) Mg	d) S
391. Metallic nature and basic nature of the oxides as	= =	
a) Increases	b) Decreases	
c) Remains constant	d) First increases then de	ecreases
392. In which block does 106th element belong?		
a) s-block b) p-block	c) <i>d</i> -block	d) <i>f</i> -block
393. Which of the following is more ionic?	\ a	N a al
a) NaCl b) KCl	c) MgCl ₂	d) CaCl ₂
394. Which one of the following orders is not in according	ig with the property stated	against it?
a) $F_2 > Cl_2 > Br_2 > I_2$: Electronegativity		
b) $F_2 > Cl_2 > Br_2 > I_2$: Bond dissociation energy		
c) $F_2 > Cl_2 > Br_2 > I_2 : Oxidising power$		
d) HI > HBr > HCl > HF : Acidic property in water		
395. Which one is electron deficient compound? a) NH ₃ b) ICl	a) DCl	4) DCI
a) NH ₃ b) ICl 396. Which of the following is largest ion?	c) BCl ₃	d) PCl ₃
a) Na ⁺ b) Mg ²⁺	c) 0^{2-}	d) F ⁻
397. Which of the following has the minimum bond length	•	u) r
a) O_2 b) O_2^+	c) 0 ₂	d) 0 ₂ ²⁻
398. Ionisation energy in group 1-A varies in the decreas		$\mathfrak{a}_{\mathfrak{I}}\mathfrak{o}_{\mathfrak{I}}$
a) Li $> Na > K > Cs$ b) Na $> Li > K > Cs$	=	d) $K > Cs > Na > Li$
399. Paramagnetism is exhibited by molecules:	C) LI / CS / R / Nu	u) K > C3 > Nu > Li
a) Not attracted into a magnetic field		
b) Containing only paired electrons		
c) Carrying a positive charge		
d) Containing unpaired electrons		
400. The value of bond order in nitrogen and oxygen mo	lecule is:	
a) 3,2 b) 4,2	c) 2,3	d) 1, 2
401 In third row of Periodic Table the atomic radii from	, ,	~ <i>j</i> -) =

a) Continuously decreases	S	b) Continuously increases	
c) Remains constant		d) Increases but not contin	nuously
402. Which has a giant covalen	t structure?		
a) PbO ₂	b) SiO ₂	c) NaCl	d) AlCl ₃
403. Which has an odd electron	n and shows paramagnetic	character?	
a) NO	b) SO ₂	c) CO ₂	d) H ₂ O
404. The correct order of incre	easing bond length of $C - H$	C - O, C - C and $C = C$ is:	
a) $C - H < C - 0 < C - C$	< C = C		
b) $C - H < C = C < C - O$	< C - C		
c) $C - C < C = C < C - 0$			
d) $C - 0 < C - H < C - C$			
405. NF ₃ is:			
a) Non-polar compound			
b) Electrovalent compour	ıd		
c) Having low value of dip			
d) Having more dipole mo			
406. Atomic radii of F and Ne, i	_		
a) 0.72, 0.71	b) 0.72, 1.6	c) 1.6, 1.58	d) 0.71, 0.72
407. When an electron is remo		•	u) 01/ 1/ 01/ 2
a) Increase	b) Decrease	c) Remains the same	d) None of these
408. In which of the following	•	-	a) None of these
a) NO_3^-	b) SO_3^{2-}	c) BO ₃ ³	d) CO ₃ ²⁻
, ,	, ,	, ,	u) CO ₃
409. In BrF ₃ molecule, the lone		Sition to minimize:	
a) Lone pair-bond pair re	= = = = = = = = = = = = = = = = = = =		
b) Bond pair-found pair re	=	aniu unuulainu	
	oulsion and lone pair-bond	pair repulsion	
d) Lone pair-lone pair rep			
410. The number of lone pairs	~) ((0)	l) pal
a) BCl ₃	b) NCl ₃	c) CCl ₄	d) PCl ₅
411. As a result of resonance:			
a) Bond length decreases			
b) Energy of the molecule			
c) Stability of the molecul	e increases		
d) All are correct			
412. The number of ions formed			
a) 4	b) 5	c) 6	d) 2
413. Polar covalent compound			
a) Polar solvents	b) Non-polar solvents	c) Concentrated acids	d) All solvents
414. The elements with atomic	numbers 9, 17, 35, 53, 85 a	are all	
a) Halogens	b) Noble gases	c) Heavy metals	d) Light metals
415. Which among the following			
a) F ⁻	b) B ³⁺	c) 0^{2-}	d) Li ⁺
416. Strongest bond is formed	by the head on overlapping	g of:	
a) $2s$ - and $2p$ -orbitals	b) 2 p- and 2 p-orbitals	c) 2s- and 2s-orbitals	d) All of these
417. $A \rightarrow A^+ + e$, E_1 and $A^+ \rightarrow$	$A^{2+} + e$, E_2 . The energy real	quired to pull out the two e	lectrons are E_1 and E_2
respectively. The correct i	relationship between two e	nergy would be	
a) $E_1 < E_2$	b) $E_1 > E_2$	c) $E_1 = E_2$	d) $E_1 \neq E_2$
418. The element having higher	st electron affinity is		
a) Bromine	b) Iodine	c) Fluorine	d) Chlorine
419. Fluorine has low electron	affinity than chlorine becar	use of	

	a) Bigger radius of fluoring	e, less density	b) Smaller radius of fluori	ne, high density
	c) Smaller radius of chlor	ine, high density	d) Smaller radius of chlorine, less density	
420.	20. The angle between two covalent bonds is maximum in:			
	a) CH ₄	b) H ₂ 0	c) CO ₂	d) SO ₃
421.	Which species has lone pa	nir on central atom?		
	a) CCl ₄	b) CH ₄	c) NH ₄ ⁺	d) H ₂ O
422.	The decreasing order of the	ne second ionization energy	of K, Ca and Ba is:	
	a) K > Ca > Ba	b) Ca > Ba > K	c) Ba > K > Ca	d) K > Ba > Ca
423.	Which contains both cova	lent and ionic bonds?		
	a) CCl ₄	b) KCN	c) CaCl ₂	d) H ₂ O
424.	The covalency of nitrogen	in HNO ₃ is:	- <u>-</u>	. <u>-</u>
	a) Zero	b) 3	c) 4	d) 5
425.	_	gy level providing the most	efficient overlapping are:	,
	a) $sp^3 - sp^3$	b) $sp - sp$	c) $sp^2 - sp^2$	d) All of these
426.	Which of the following ha		·) ·	.,
	a) H	b) Na	c) Fe	d) 0
427	•	nfiguration of the transition		
127.	a) $(n-1)d^{10}$, $(n+1)s^2$	ingulation of the transition	b) $(n-1)d^{1-10}$, $(n+1)s^{1}$	L-2
	c) $(n-1)d^{1-10}$, np^6 , ns^2		d) $(n-1)d^{1-10}$, ns^{1-2}	
428	The order of first electron	affinity of O S and Sa is:	u) (n 1)u ,ns	
720.	a) $0 > S > Se$	-	c) Se $> 0 > S$	d) Se > S > 0
120	•	ides doesn't react with both		u) 3e / 3 / 0
427.	=	b) SnO ₂	c) Al ₂ O ₃	d) BeO
120	a) ZnO Which of the following is:	, <u>-</u>	, = 0	u) beo
430.		isoelectronic with carbon at	c) 0 ²⁻	+ M CF
121	a) Na ⁺	b) Al ³⁺	•	d) N ⁺
431.		conic species N^{3-} , O^{2-} and F		1) 1 71 1 27 1 40
422	a) 1.36, 1.40, 1.71		c) 1.71, 1.40, 1.36	d) 1.71, 1.36, 1.40
432.		ld result in the maximum	dipole moment for the tria	tomic molecule XY_2 shown
	below?	1.20 4000		1) 0 4000
400	a) $\theta = 90^{\circ}$	b) $\theta = 120^{\circ}$	c) $\theta = 150^{\circ}$	d) $\theta = 180^{\circ}$
433.		ies of C, H, O, N and S are 2.5	5, 2.1, 3.5, 3.0 and 2.5 respe	ctively. Which of the
	following bonds is most p			
	a) C – H	b) N — H	c) S – H	d) 0 – H
434.	_	quence correctly represents	-	
	a) $\text{Li}_2 0 > \text{Be} 0 > \text{CO}_2 > \text{N}$	- 0 - 0	b) $CO_2 > N_2O_3 > B_2O_3 >$	
	c) $N_2O_3 > CO_2 > B_2O_3 >$	=	d) $CO_2 > BeO > Li_2O > B$	
435.	=	ompounds, the bonds have		
	a) H ₂ 0	b) HF	c) IBr	d) N_2O_4
436.	Which ion has a higher po			
	a) Mg^{2+}	b) Al ³⁺	c) Ca ²⁺	d) Na ⁺
437.	The first ionisation poten	tial is maximum for		
	a) B	b) N	c) 0	d) Be
438.	The highest first ionisatio	n potential is of		
	a) Carbon	b) Boron	c) Oxygen	d) Nitrogen
439.	The ionic radii (Å) of C ⁴⁻ a	and 0^{2-} respectively are 2.6	60 and 1.40. The ionic radiu	us of the isoelectronic ion
	N ³⁻ would be			
	a) 2.6	b) 1.71	c) 1.4	d) 0.95
440.	In a multi-electron atom,	the energy of a 2 p -orbital is	S:	
	a) Less than that of 2s-or	== =		
	b) More than that of 2s-or	·bital		

	c) Equal to that of 2s-orb			
	d) Double that of 2s-orbit			
441	. The bond angle in PH_3 is:			
	a) Much lesser than NH ₃			
	b) Equal to that in NH ₃			
	c) Much greater than in N	~		
	d) Slightly more than in N	-		
442		ICl_3 is 1.05 debye while tha		
	a) Linear	b) Symmetrical	c) Planar	d) Regular tetrahedral
443	. The high boiling point of			
	a) Weak dissociation of v			
	b) Hydrogen bonding am	ong water molecules		
	c) Its high specific heat			
	d) Its high dielectric cons			
444	. The number of unpaired	electrons in O_2 molecule is:		
	a) Zero	b) 1	c) 2	d) 3
445	. Variable valency in gener	al, is exhibited by		
	a) Transition elements	b) Gaseous elements	c) Non-metals	d) s-block elements
446	. Which statement is true?			
	a) Absolutely pure water	does not contain any ion.		
	b) Some covalent compou	unds may also give ions in a	queous solution.	
	c) In aqueous solution or	aly electrovalent compound	s give ions.	
	d) Very sparingly soluble	substances do not dissocia	te in aqueous solution	
447	. The bond strength increa	ses:		
	a) With increasing bond	order		
	b) With increasing extent	of overlapping of orbitals		
	c) With decreasing differ	ence between energies of o	verlapping orbitals	
	d) All of the above			
448	. If the ionic radii of K ⁺ ar	nd F [–] are about 1.34 Å eac	h, then the expected value	s of atomic radii of K and F
	should be respectively:		•	
	• . •	b) 2.31 and 0.64 Å	c) 0.64 and 2.31 Å	d) 2.31 and 1.34 Å
449	. Which species is paramag	=	,	,
	a) 0 ₂	b) CH ₃	c) CO	d) NO ⁺
450	. Chemical bond formation		3, 33	-,
100	a) Energy is absorbed	r turico praco mileri		
		ercome forces of repulsion		
	•	ercome forces of attraction		
		e equal to forces of repulsion		
451	_	nent, while BeF ₂ has zero d		
131	a) H_2O molecule as linear	_	ipote moment, because.	
	b) BeF ₂ molecule is linear	-		
	c) Fluorine is more electr			
	d) Be is more electronega			
452	. Which has the smallest si			
432	a) Na ⁺	b) Mg ²⁺	c) Al ³⁺	d) P ⁵⁺
452		, ,	C) AI	u) r
433	Observe the following sta VIII. The physical and	nement chemical properties of elen	ante are periodic function	s of their electronic
	configuration.	chemical properties of elem	ients are periodic functions	א טו נווכוו כוכננוטווונ
	•	luorine is less than the elec	tronogativity of chloring	
		re decreases from ton to ho	= -	
	- A PRICE CONTRACTOR DESIGN	- 050 64565 1000 100 10 00		

	a) I, II and III are correct		b) Only I is correct	
	c) Only I and II is correct		d) Only II and III are correct	
454.		is liquid at ordinary temp	perature is	
	a) Hg	b) Br ₂	c) NH ₃	d) None of these
455.	Which has triangular plan	ar shape?		
	a) CH ₃ ⁺	b) ClO ₂	c) H_30^+	d) ClO ₃
456.	With respect to chlorine, l	· -	, 3	, ,
	a) Electropositive	b) Electronegative	c) Neutral	d) None of these
457.	•	s, the covalent character de	•	
	a) $MI > MBr > MCl > MF$			
	b) MCl > MI > MBr > MF			
	c) $MF > MCl > MBr > MI$			
	d) $MF > MCl > MI > MBr$			
458.	•	correct order of ionic radius	s is	
	a) $Li^+ > Be^{2+} > Na^+ > M$		b) $Na^+ > Li^+ > Mg^{2+} > F$	$\mathrm{Be^{2+}}$
	c) $Li^{2+} > Na^+ > Mg^{2+} >$	_	d) $Mg^{2+} > Be^{2+} > Li^{+} >$	
459.	Which element has maxim		w) 1 18	
10).	a) Na	b) Mg	c) Al	d) S
460	Ionisation potential is low	, ,	c) III	a) 5
100.	a) Alkali metals	CSC 101	b) Inert gas	
	c) Halogens		d) Alkaline earth metals	
461	, ,	s combine with each othe	•	ost orbit acquires a stable
101.	-			than with 8, what would be
	the formula of the stable f	=	d with o electrons rather	than with o, what would be
	a) F ³⁺	b) F ⁺	c) F ⁻	d) F ²⁻
462	•	ion of the least reactive ele		a) i
102.	a) ns^2p^3	b) ns^2p^4	c) ns^2p^5	d) ns^2p^6
463	, .	cical group of the Periodic T		aj ne p
100.	a) Same atomic number	roar group or the refroate r	b) Same atomic size	
	c) Same number of atoms		d) Same number of electron	ons in outermost shell
464	Ionisation potential for a		aj same namser er ereer	
101.	a) Maximum in a period	nobic gas is	b) Minimum in a period	
	c) Either minimum or ma	ximum	d) Constant	
465		ssess maximum hydration	•	
105.	a) MgSO ₄	b) RaSO ₄	c) SrSO ₄	d) BaSO ₄
466		= = = = = = = = = = = = = = = = = = =		ies NH_3 , $[PtCl_4]^{2-}$, PCl_5 and
100.	BCl ₃ is:	ranzation of the central a	tom in the following spec	1013, [1 0014] , 1 015 und
	5	b) sp^3 , dsp^2 , dsp^3 , sp^2	c) $dsn^2 sn^2 sn^3 dsn^3$	d) $dsn^2 sn^3 sn^2 dsn^3$
467		arding the periodic trends (
107.		of these statements gives	-	c arkan metais and the
		es in the alkali metals but in		th increase in atomic
	number down the grou		ici cases ili tile lialogelis wi	th merease in atomic
	_	s and the halogens the che	mical reactivity decreases y	with increase in atomic
	number down the grou	=	inical reactivity accreases	with merease in atomic
		P reases with increase in atoi	mic number down the grou	in in hoth the alkali metals
	and halogens.	i cases with mercase in atol	and number down the grou	ip in both the alkali illetais
	•	ctivity increases hut in the	halogens it decreases with	increase in atomic number
	. ,			

The correct answer is

down the group.

468. The correct order of ionisation energy of C, N, O, F is

a) $F < 0 < N < C$	b) $F < N < C < 0$	c) $C < N < 0 < F$	d) $C < 0 < N < F$
469. Which has minimum ioni	c radius?		
a) N ³⁻	b) K ⁺	c) Na ⁺	d) F ⁻
470. In the isoelectronic specie	es the ionic radii (Å) of N³-	$^{-}$, 0^{2-} and F^{-} are respective	ely given by
a) 1.71, 1.40, 1.36	b) 1.71, 1.36, 1.40	c) 1.36, 1.40, 1.71	d) 1.36, 1.71, 1.40
471. The ionisation potential of	order for which set is correc	ct?	
a) Cs < Li < K	b) Cs < Li > B	c) Li > K > Cs	d) B > Li < K
472. The correct sequence whi	ich shows decreasing order	of the ionic radii of the ele	ments is
a) $Al^{3+} > Mg^{2+} > Na^{+} >$	$F^- > 0^{2-}$	b) $Na^+ > Mg^{2+} > Al^{3+} >$	$0^{2-} > F^-$
c) $Na^+ > F^- > Mg^{2+} > C$	$0^{2-} > Al^{3+}$	d) $0^2 > F^- > Na^+ > Mg^2$	$^+ > Al^{3+}$
473. Among H X , the maximum	dipole moment is of:		
a) HF	b) HCl	c) HBr	d) HI
474. Compound formed by sp^3	3d -hybridization will have s	structure:	
a) Trigonal bipyramidal			
b) T-shaped			
c) Linear			
d) Either of these depend	ing on number of lone pair	of electrons of central aton	n
475. The energy change accom	panying the process given	below is,	
$\operatorname{Na}^+(g) + \operatorname{Cl}^-(g) \to \operatorname{NaCl}$	(s)		
a) Hydration energy	b) Ionization energy	c) Electron affinity	d) Lattice energy
476. Ice has an open structure	compared to water due to	which it floats on water and	d occupies a greater volum
of space. The open struct	ure of ice is due to:		
a) Solid state of ice	b) Its low density	c) Crystalline nature	d) Hydrogen bonding
477. The electrons in an incom	iplete outershell are knowr	as:	
a) Kernel electrons	b) Valency electrons	c) Shell electrons	d) None of the above
478. Which of the following is	not a correct statement?		
a) Every AB ₅ molecule do	es in fact have square pyra	mid structure	
b) Multiple bonds are alw	ays shorter than correspor	nding single bonds	
-	molecules can act as Lewis	acids	
d) The canonical structur	es have no real existence		
479. Van der Waals' forces are	applied to:		
a) Inert gases only			
b) Rare gases only			
c) Mixture of gases			
d) Elementary gases only			
480. The correct order of dipo			
a) $CH_4 < NF_3 < NH_3 < H$	=		
b) $NF_3 < CH_4 < NH_3 < H_3$	=		
c) $NH_3 < NF_3 < CH_4 < H_3$	=		
d) $H_2O < NH_3 < NF_3 < O$	•		
481. Which of the following sp	=	=	
a) NH ₂	b) PCl ₃	c) H ₂ O	d) BF ₃
482. In H_2^- ion, the bond order			
a) Zero	b) 1/2	c) $-1/2$	d) 1
483. Which statement is corre			
a) Pi-bond always exists v	=		
b) Pi-bond can exist indep	: <u>=</u>		
c) Sigma-bond is weaker	-		
d) Pi-bond is less reactive	=		
484. Which is highest melting	point halide?		

485.	a) NaCl The following compounds	b) NaBr have been arranged in ord	c) NaF ler of their increasing thern	d) NaI nal stabilities. Identify the
	correct order:			,
	K_2CO_3 (I) $MgCO_3$ (II)			
	CaCO ₃ (III) BeCO ₃ (IV)			
		b) $IV < II < III < I$	c) $IV < II < I < III$	d) $II < IV < III < I$
486.	Elements of which group f	=	•	•
	a) Halogens	b) Alkali metals	c) Oxygen family	d) Nitrogen group
487.	The bond order of C_2^+ is:			
	a) 1	b) 2	c) 3/2	d) 1/2
488.	Which is not a scale of mea	asuring electronegativity?		
	a) Stevenson's scale		b) Mulliken's scale	
	c) Allred-Rochow's scale		d) Pauling scale	
489.	In the series ethane, ethyle	ene and acetylene, the C –	H bond energy is :	
	a) The same in all the thre	e compounds		
	b) Greatest in ethane			
	c) Greatest in ethylene			
	d) Greatest in acetylene			
490.	Which ion is not isoelectro	onic with 0^{2-} ?		
	a) N ³⁻	b) Na ⁺	c) F ⁻	d) Ti ⁺
491.	The ionic radii of N^{3-} , O^{2-}	and F ⁻ are respectively gi	ven by:	
	a) 1.36, 1.40, 1.71	b) 1.36, 1.71, 1.40	c) 1.71, 1.40, 1.36	d) 1.71, 1.36, 1.40
492.	During change of O_2 to O_2^-	ion, the electron adds on v	which one of the following o	orbitals?
	a) π^* orbital	b) π orbital	c) σ^* orbital	d) σ orbital
493.	Which of the following has	_		
	a) Al	b) Al ⁺	c) Al ²⁺	d) Al ³⁺
494.	The correct order of incre	_		
			c) $Cl_2O < ClO_2^- < ClO_2$	
495.			shows one of the following	trend
	-	oup and increases across th	=	
	_ _	up and decreases across th	-	
	= = = = = = = = = = = = = = = = = = = =	riod and also down the gro	-	
	•	eriod and also down the gro	oup	
496.	When sodium and chloring			
	a) Released and ionic bone			
	b) Released and covalent l			
	c) Absorbed and covalent			
407	d) Absorbed and ionic bor			
497.	In third row of Periodic Ta		h) Electron e activity de ave	
	a) Electronegativity increac) Ionisation energy decre		b) Electronegativity decred) Atomic volume increase	
100	The molecule having smal		u) Atomic volume increase	5 5
470.	a) AsCl ₃	b) SbCl ₃	c) PCl ₃	d) NCl ₃
1.00	Which of the following sta	, ,	, ,	u) NGI3
477.	a) It involves <i>sp</i> -orbitals of	= =	monoxide is correct:	
	b) It contains a lone pair o			
	c) It contains a lone pair of			
	_	is attached to the metal at	oms	
500	The hydration of ionic con		O0	
200.	a) Evolution of heat			
	<u> </u>			

- b) Weakening of attractive forces
- c) Dissociation into ions
- d) All of the above
- 501. Ionic radii are
 - a) Inversely proportional to effective nuclear charge
 - b) Inversely proportional to square of effective nuclear charge
 - c) Directly proportional to effective nuclear charge
 - d) Directly proportional to square of effective nuclear charge
- 502. Which of the following is the atomic number of a metal?
 - a) 32

b) 34

c) 36

- d) 38
- 503. The electronic configurations of four elements are given below. Arrange these elements in the correct order of the magnitude (without sign) of their electron affinity.
 - XI. $2s^22p^5$
 - XII. $3s^23p^5$
 - XIII. $2s^22p^4$
 - XIV. $3s^23p^4$

Select the correct answer using the codes given below

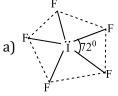
- a) (i) < (ii) < (iv) < (iii)
- b) (ii)<(i)<(iv)<(iii)
- c) (i)<(iii)<(iv)<(ii)
- d) (iii) < (iv) < (i) < (ii)

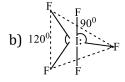
- 504. Which statement is correct?
 - a) X^+ ion is larger than X^- ion
 - b) X^- ion is larger in size than X atom
 - c) X^+ and X^- have the same size
 - d) X^+ ion is larger in size than X atom
- 505. The correct order of size of iodine species is
 - a) $I > I^- > I^+$
- b) $I^- > I > I^+$
- c) $I^+ > I > I^-$
- d) $I^- > I^+ >$

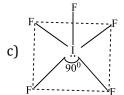
- 506. Which of the following statement is wrong?
 - a) The stability of hydrides increase from NH₃ to BiH₃ in group 15 of the periodic table.
 - b) Nitrogen cannot form $d\pi p\pi$ bond.
 - c) Single N—N bond is weaker than the single P—P bond
 - d) N₂O₄ has two resonance structure
- 507. Methanol and ethanol are miscible in water due to:
 - a) Covalent character
 - b) Hydrogen bonding character
 - c) Oxygen bonding character
 - d) None of the above
- 508. Bond order of N₂ anion is:
 - a) 3.0

b) 2.0

c) 2.5


- d) 1.5
- 509. Among the following, the number of elements showing only one non-zero oxidation state is
 - O, Cl, F, N, P, Sn, Tl, Na, Ti
 - a) 1


b) 2


c) 3

d) 4

510. The structure of IF₅ can be best demonstrated as:

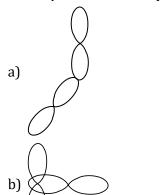
- d) None of these
- 511. The correct decreasing order of first ionisation enthalpies of five elements of the second period is
 - a) Be > B > C > N > F
- b) N > F > C > B > Be
- c) F > N > C > Be > B
- d) N > F > B > C > Be
- 512. The correct order of second ionisation potential of carbon, nitrogen, oxygen and fluorine is:
 - a) C > N > 0 > F
- b) 0 > N > F > C
- c) 0 > F > N > C
- d) F > 0 > N > C

513. Of the following elem	nents, which one has the h	ighest electronegativity?	
a) F	b) Cl	c) Br	d) I
514. A molecule in which	sp^2 -hybrid orbitals are us	ed by the central atom in forn	ning covalent bond is:
a) He ₂	b) SO ₂	c) PCl ₅	d) N ₂
515. The hydrogen bonding	ng is strongest in:		
a) O − H ··· S	b) S − H ··· O	c) F — H ··· F	d) F − H · · · O
516. In which of the follow	ving process energy is libe	erated?	
a) $Cl \rightarrow Cl^+ + e$	b) $HCl \rightarrow H^+ + Cl^-$	c) $Cl + e \rightarrow Cl^-$	d) $0^- + e \rightarrow 0^{2-}$
517. A covalent bond is fo	rmed between the atoms l	by the overlapping of orbitals	containing:
a) Single electron			
b) Paired electron			
c) Single electron wi	th parallel spin		
d) Single electron wi			
518. Which main group el	ements have a different ni	umber of outermost electrons	than their group number?
a) Alkali metals	b) Noble gases	c) Halogens	d) None of these
519. Which one of the foll	owing has the highest elec	tronegativity?	
a) Br	b) Cl	c) P	d) Si
520. If the ionization pote	ential for hydrogen atom	is 13.6 eV, then the ionization	n potential for He ⁺ ion should
be:			
a) 72.2 eV	b) 54.4 eV	c) 6.8 eV	d) 13.6 eV
521. Which property is co	mmonly exhibited by a co	valent compound?	
a) High solubility in v	water		
b) Low m.p.			
c) High electrical cor	ıductivity		
d) High b. p.			
522. The energy of antibo	nding molecular orbitals is	s:	
a) Greater than the b	onding M. O.		
b) Smaller than the b	onding M. O.		
c) Equal to that of bo	nding M. O.		
d) None of the above			
523. Which is not characte	eristic of π -bond?		
a) π -bond is formed	when a sigma bond alread	y formed	
b) π -bond is formed	•		
c) π -bond may be for	rmed by the overlapping o	f <i>p</i> -orbitals	
d) π -bond results fro	m lateral overlap of atomi	c orbitals	
524. An atom with atomic	number 20 is most likely	to combine chemically with the	he atom whose atomic number
is:			
a) 11	b) 16	c) 18	d) 10
525. How does the ionisat			
a) Increases down th	- -	b) Decreases down the	
c) Remains unchange		d) Variation is not regu	
	= =	al ($i.e.$, having the same shape	e and hybridization)?
a) $[NF_3 \text{ and } BF_3]$	b) $[BF_4^-$ and $NH_4^+]$	c) [BCl ₃ and BrCl ₃]	d) $[NH_3 \text{ and } NO_3^-]$
527. Which shows the hig	hest lattice energy?		
a) RbF	b) CsF	c) NaF	d) KF
528. The hybridization of	phosphorus in POCl ₃ is sa	me as in:	
a) P in PCl ₃	b) S in SF ₆	c) Cl and ClF ₃	d) B in BCl ₃
529. Which does not have	pyramidal geometry?		
a) SO_3^{2-}	b) NO ₃	c) NH ₃	d) $C(C_6H_5)_3^-$
530. Dative bond is presen	nt in:		

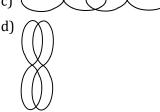
	a) SO ₃	b) NH ₃	c) BaCl ₂	d) BF ₃
531	. Amongst H_2O , H_2S , H_2Se	and H_2 Te, the one with hig	hest boiling point is:	
	a) H ₂ O because of hydro	gen bonding		
	b) H ₂ Te because of higher	er molecular weight		
	c) H ₂ S because of hydrog	gen bonding		
	d) H ₂ Se because of lower	r molecular weight		
532	. Which of the following h	alides is least stable and ha	s doubtful existence?	
	a) CI ₄	b) GeI ₄	c) SnI ₄	d) PbI ₄
533	. Which property of halog	ens increases from F to I?		
	a) Electronegativity			
	b) First ionisation energy	y		
	c) Bond length in the mo	lecule		
	d) None of the above			
534	. Which has highest meltir	ng point?		
	a) LiCl	b) BeCl ₂	c) BCl ₃	d) CCl ₄
535	. Which of the following p	henomenon will occur who	en two atoms of an elemen	t with same spin of electror
	in orbitals approach each	n other?		
	a) Orbitals will overlap			
	b) Orbitals will not overl	ар		
	c) Bonding will take place	ce		
	d) A diatomic molecule v	vill be formed		
536	. The least stable ion amo	ng the following is		
	a) Li ⁻	b) Be ⁻	c) B ⁻	d) C ⁻
537	. The electron affinity valu	ies for the halogens show tl	he following trend	
	a) $F < Cl > Br > I$	b) $F < Cl < Br < I$	c) $F > Cl > Br > I$	d) $F < Cl > Br < I$
538	. CO_2 has the same geome	try as:		
	(A)HgCl ₂ , (B) NO ₂ , (C) Sn	Cl_4 , $(D)\operatorname{C}_2H_2$		
	a) A and C	b) B and D	c) A and D	d) C and D
539	. In which of the following	molecule, the central atom	n does not have sp^3 -hybridi	zation?
	a) CH ₄	b) SF ₄	c) BF ₄	d) NH ₄ ⁺
540	. The elements present in	the core of earth are collect	tively known as	
	a) Lithophiles	b) Nucleophiles	c) Chalcophiles	d) Siderophiles
541	. In the Modern Periodic T	able, elements are arrange	d	
	a) Alphabetically		b) With increasing volum	e
	c) With increasing mass		d) With increasing atomic	number
542	. Which of the ions has the	e largest ionic radius?		
	a) Be ²⁺	b) Mg ²⁺	c) Ca ²⁺	d) Sr ²⁺
543	. The elements having the	electronic configuration [K	$[4d^{10}f^{14},5s^2p^6d^2,6s^2]$ be	elongs to
	a) s-block	b) <i>p</i> -block	c) <i>d</i> -block	d) <i>f</i> -block
544	. Some of the properties	of the two species, NO ₃ a		elow. Which one of them is
	correct?			
	a) Dissimilar in hybridiz	ation for the central atom v	vith different structure	
	b) Isostructural with san	ne hybridization for the cen	itral atom	
	c) Isostructural with diff	erent hybridization for the	central atom	
	d) Similar is hybridization	on for the central atom with	different structure	
545	. Which compound shows			
	a) HCl	b) C ₂ H ₆	c) RCH ₂ CHO	d) RCH ₂ NHCH ₃
546		order for which set is corre		-
	a) Li > K > Cs	b) B > Li > K	c) Cs > Li > B	d) Cs < Li < K
547	. Which shows non-direct	ional bonding?		

	a) BCl ₃	b) CsCl	c) NCl ₃	d) BeCl ₃
548	. Maximum number of cova	alent bonds between two lik	ke atoms can be:	
	a) Three	b) Two	c) Four	d) One
549	. o-hydroxy benzaldehyde,	, although contains enolic	group but does not give	e test of group with FeCl ₃
	because:			
	a) It is steam volatile			
	b) Of intermolecular H-bo	onding		
	c) Of intermolecular H-bo	onding		
	d) All of the above			
550	. Bond energy of covalent C			
	a) Greater than bond ener			
	b) Equal to bond energy o			
	c) Less than bond energy	of hydrogen bond		
	d) None of the above			
551	. Which is expected to shov			
	a) ClO ₂	b) SO ₂	c) CO ₂	d) SiO ₂
552	•	bers from the same period		
	a) Cl, Br	b) Ca, Cl	c) Na, Ca	d) Na, Cl
553	=	arrangements, the sequence	e is not strictly according to	o the property written
	against it?			
	a) $HF < HCl < HBr < HI$:	= =		
		SbH_3 : increasing basic stre	-	
	=	sing first ionization enthalp	· -	
		PbO ₂ : increasing oxidizing		
554	. The half of the difference	between the number of ele	ectrons in bonding molecul	ar orbitals and antibonding
	molecular orbitals is know	vn as:		
	a) Bond order	vn as: b) Proton order	c) Molecular order	d) Electron order
555	a) Bond order . Which can be described as	vn as: b) Proton order s a molecule with residual b	onding capacity?	d) Electron order
	a) Bond order . Which can be described as a) N ₂	vn as: b) Proton order s a molecule with residual b b) CH4	c) NACl	
	a) Bond orderWhich can be described asa) N₂The intermolecular attrac	vn as: b) Proton order s a molecule with residual t b) CH ₄ tive forces vary in the orde	c) NACl	d) Electron order
	 a) Bond order Which can be described as a) N₂ The intermolecular attraction a) water < alcohol < ether 	vn as: b) Proton order s a molecule with residual b b) CH ₄ tive forces vary in the orde	c) NACl	d) Electron order
	 a) Bond order Which can be described as a) N₂ The intermolecular attraction a) water < alcohol < ether b) water > alcohol > ether 	vn as: b) Proton order s a molecule with residual t b) CH ₄ tive forces vary in the orde er	c) NACl	d) Electron order
	 a) Bond order . Which can be described as a) N₂ . The intermolecular attraction a) water < alcohol < ether b) water > alcohol > ether c) alcohol > water < ether 	vn as: b) Proton order s a molecule with residual t b) CH ₄ tive forces vary in the orde er er	c) NACl	d) Electron order
556	a) Bond order . Which can be described as a) N ₂ . The intermolecular attrac a) water < alcohol < ethe b) water > alcohol > ethe c) alcohol > water < ethe d) ether > water > alcohol	wn as: b) Proton order s a molecule with residual b b) CH ₄ tive forces vary in the orde er er er ol	c) NACl	d) Electron order
556	a) Bond order . Which can be described as a) N ₂ . The intermolecular attrac a) water < alcohol < ethe b) water > alcohol > ethe c) alcohol > water < ethe d) ether > water > alcohol . Which have zero dipole m	wn as: b) Proton order s a molecule with residual b b) CH ₄ tive forces vary in the orde er er er ol	c) NACl	d) Electron order
556	a) Bond order . Which can be described as a) N ₂ . The intermolecular attract a) water < alcohol < ether b) water > alcohol > ether c) alcohol > water < ether d) ether > water < alcohol > water < alcohol = water > alcohol = wat	wn as: b) Proton order s a molecule with residual h b) CH ₄ tive forces vary in the orde er er er ol noment?	c) NACl	d) Electron order
556	a) Bond order . Which can be described as a) N ₂ . The intermolecular attract a) water < alcohol < ether b) water > alcohol > ether c) alcohol > water < ether d) ether > water < alcohol. Which have zero dipole mas a) 1,1-dichloroethene	wn as: b) Proton order s a molecule with residual t b) CH ₄ tive forces vary in the orde er er ol coment?	c) NACl	d) Electron order
556	a) Bond order . Which can be described as a) N ₂ . The intermolecular attract a) water < alcohol < ether b) water > alcohol > ether c) alcohol > water < ether d) ether > water < alcohol. Which have zero dipole mater a) 1,1-dichloroethene b) Cis-1,2-dichloroethene c) Trans-1,2-dichlorothe	wn as: b) Proton order s a molecule with residual t b) CH ₄ tive forces vary in the orde er er ol coment?	c) NACl	d) Electron order
556 557	a) Bond order . Which can be described as a) N ₂ . The intermolecular attract a) water < alcohol < ether b) water > alcohol > ether c) alcohol > water < ether d) ether > water < alcohol. Which have zero dipole ma) 1,1-dichloroethene b) Cis-1,2-dichloroethene c) Trans-1,2-dichlorothered) None of the above	wn as: b) Proton order s a molecule with residual to b) CH ₄ tive forces vary in the orde er er ol doment?	c) NACl	d) Electron order
556 557	a) Bond order . Which can be described as a) N ₂ . The intermolecular attract a) water < alcohol < ether b) water > alcohol > ether c) alcohol > water < ether d) ether > water < alcohol. Which have zero dipole mas 1,1-dichloroethene b) Cis-1,2-dichloroethene c) Trans-1,2-dichlorother d) None of the above	wn as: b) Proton order s a molecule with residual h b) CH ₄ tive forces vary in the orde er er ol noment? e et dissolved in water:	c) NACl	d) Electron order
556 557	a) Bond order . Which can be described as a) N ₂ . The intermolecular attract a) water < alcohol < ether b) water > alcohol > ether c) alcohol > water < ether d) ether > water < alcohol . Which have zero dipole ma) 1,1-dichloroethene b) Cis-1,2-dichloroethene c) Trans-1,2-dichlorother d) None of the above . When ionic compounds go a) They involve heat change	wn as: b) Proton order s a molecule with residual to b) CH ₄ tive forces vary in the orde er er ol noment? e ene et dissolved in water: ages	c) NACl	d) Electron order
556 557	a) Bond order . Which can be described as a) N ₂ . The intermolecular attract a) water < alcohol < ether b) water > alcohol > ether c) alcohol > water < ether d) ether > water < alcohol. Which have zero dipole maa) 1,1-dichloroethene b) Cis-1,2-dichloroethene c) Trans-1,2-dichlorother d) None of the above when ionic compounds geal They involve heat chant b) Inter-ionic attraction is	wn as: b) Proton order s a molecule with residual to b) CH ₄ tive forces vary in the orde er er er ol noment? e et dissolved in water: ages s reduced	oonding capacity? c) NACl r:	d) Electron order
556 557	a) Bond order . Which can be described as a) N ₂ . The intermolecular attract a) water < alcohol < ether b) water > alcohol > ether c) alcohol > water < ether d) ether > water < alcohol = water > alcohol = wat	wn as: b) Proton order s a molecule with residual to b) CH ₄ tive forces vary in the orde er er ol noment? e ene et dissolved in water: ages	oonding capacity? c) NACl r:	d) Electron order
556 557 558	a) Bond order . Which can be described as a) N ₂ . The intermolecular attract a) water < alcohol < ether b) water > alcohol > ether c) alcohol > water < ether d) ether > water < alcohol. Which have zero dipole ma) 1,1-dichloroethene b) Cis-1,2-dichloroethene c) Trans-1,2-dichlorother d) None of the above. When ionic compounds go a) They involve heat chan b) Inter-ionic attraction is c) Ions show dipole-ion as d) All are correct	wn as: b) Proton order s a molecule with residual to b) CH ₄ tive forces vary in the orde er er er ol noment? e et dissolved in water: ages s reduced ttraction with water molecular	oonding capacity? c) NACl r:	d) Electron order
556 557 558	a) Bond order . Which can be described as a) N ₂ . The intermolecular attract a) water < alcohol < ether b) water > alcohol > ether c) alcohol > water < ether d) ether > water < alcohol = water > alcohol = wat	wn as: b) Proton order s a molecule with residual h b) CH ₄ tive forces vary in the orde er er ol noment? e the dissolved in water: nges s reduced ttraction with water molecularity molecularity.	oonding capacity? c) NACl r: ules is capable of forming:	d) Electron order d) BeCl ₂
556 557 558	a) Bond order . Which can be described as a) N ₂ . The intermolecular attract a) water < alcohol < ether b) water > alcohol > ether c) alcohol > water < ether d) ether > water < alcohol at a display a disp	wn as: b) Proton order s a molecule with residual h b) CH ₄ tive forces vary in the orde er er ol noment? e the dissolved in water: eges s reduced ttraction with water molecular erature than H ₂ S because it b) Covalent bonds	oonding capacity? c) NACl r: ules is capable of forming: c) Hydrogen bonds	d) Electron order
556 557 558	a) Bond order . Which can be described as a) N ₂ . The intermolecular attract a) water < alcohol < ether b) water > alcohol > ether c) alcohol > water < ether d) ether > water < alcohol > water < alcohol . Which have zero dipole mater a) 1,1-dichloroethene b) Cis-1,2-dichloroethene c) Trans-1,2-dichlorother d) None of the above . When ionic compounds go a) They involve heat chant b) Inter-ionic attraction is c) Ions show dipole-ion and d) All are correct . H ₂ O boils at higher temper a) Ionic bonds . Which one of the following	wn as: b) Proton order s a molecule with residual h b) CH ₄ tive forces vary in the orde er er ol noment? e et dissolved in water: eges s reduced ttraction with water molecular erature than H ₂ S because it b) Covalent bonds g elements has the highest	oonding capacity? c) NACl r: ules is capable of forming: c) Hydrogen bonds ionisation energy?	d) Electron order d) BeCl ₂
556 557 558 559 560	a) Bond order . Which can be described as a) N ₂ . The intermolecular attract a) water < alcohol < ether b) water > alcohol > ether c) alcohol > water < ether d) ether > water > alcohol. Which have zero dipole ma) 1,1-dichloroethene b) Cis-1,2-dichloroethene c) Trans-1,2-dichlorother d) None of the above When ionic compounds go a) They involve heat chan b) Inter-ionic attraction is c) Ions show dipole-ion and d) All are correct H ₂ O boils at higher temper a) Ionic bonds . Which one of the followin a) [Ne]3s ² 3p ¹	wn as: b) Proton order s a molecule with residual h b) CH ₄ tive forces vary in the orde er er ol noment? e ne et dissolved in water: eges s reduced ttraction with water molecular erature than H ₂ S because it b) Covalent bonds g elements has the highest b) [Ne]3s ² 3p ³	oonding capacity? c) NACl r: is capable of forming: c) Hydrogen bonds ionisation energy? c) [Ne]3s ² 3p ²	d) Electron order d) $BeCl_2$ d) Metallic bonds d) [Ar] $3d^{10}$, $4s^24p^2$
556 557 558 559 560	a) Bond order . Which can be described as a) N ₂ . The intermolecular attract a) water < alcohol < ether b) water > alcohol > ether c) alcohol > water < ether d) ether > water > alcohol. Which have zero dipole ma) 1,1-dichloroethene b) Cis-1,2-dichloroethene c) Trans-1,2-dichlorother d) None of the above When ionic compounds go a) They involve heat chan b) Inter-ionic attraction is c) Ions show dipole-ion and d) All are correct H ₂ O boils at higher temper a) Ionic bonds . Which one of the followin a) [Ne]3s ² 3p ¹	wn as: b) Proton order s a molecule with residual h b) CH ₄ tive forces vary in the orde er er ol noment? e et dissolved in water: eges s reduced ttraction with water molecular erature than H ₂ S because it b) Covalent bonds g elements has the highest	oonding capacity? c) NACl r: is capable of forming: c) Hydrogen bonds ionisation energy? c) [Ne]3s ² 3p ²	d) Electron order d) $BeCl_2$ d) Metallic bonds d) [Ar] $3d^{10}$, $4s^24p^2$

302.	. In anene su ucture, une	e carbon atoms are joined	by:	
	a) Three σ -and three π -	bonds		
	b) Two σ -and one π -bor	ıd		
	c) Two σ -and two π -box	nds		
	d) Three π -bonds only			
563.	. Among the following sta	atement, the correct stater	nent about PH3 and NH3 i	s:
	NH ₂ is a better electr			spherical s-orbital and is less
	a) directional		· ·	P
	PH ₂ is a hetter electro	on donor because the lone	pair of electron occupies	sn^3 -orbital and is more
	b) directional		pun or oroun on occupios	
		on donor because the lone	nair of electron occunies	sn ³ -orbital and more
	c) directional	on donor because the fone	pair of electron occupies	sp orbital and more
		on donor because the lone	nair of electron occunies	spherical s-orbital and is less
	d) directional	on donor because the fone	pair of electron occupies	splicifical 3-01 bital and is icss
561		naire chow rovorco propor	tios on moving along a no	riod from left to right and from
304.	= =	= =	ties on moving along a per	riod from left to right and from
	top to down in a group?		h) Ioniaatian vadius a	ad alastuan affinitus
	a) Nuclear charge and e	-	b) Ionisation radius an	nd electron animity
	c) Atomic radius and ele	-	d) None of the above	
565.	. Covalent radius of Li is .	123 pm. The crystal radius	s of Li Will be:	122
	a) > 123 pm	b) < 123 pm	c) +123 pm	d) = $\frac{123}{2}$ pm
566	. Bond length decreases v	azith.		2 -
J00.	a) Decrease in size of th			
		er of bonds between the a	toma	
			tonis	
	c) Decrease in bond ord			
-	=	ber of bonds between the a		
56/.		statements is most correct	<i>:</i>	
	-	e of an atom depends on:		
	a) The atomic number of			
	b) The charge on the ior	1		
	c) The shielding effect			
	=	ar charge and the shieldin	g effect	
568.	. Which of the following o			
	a) Na ₂ 0	b) SiO ₂	c) SO ₂	d) All are equally basic
569.		ing ions has the highest va		
	a) Li ⁺	b) B ³⁺	c) 0^{2-}	d) F ⁻
570.	. Which has the lowest bo	ond angle?		
	a) NH ₃	b) BeF ₂	c) H ₃ 0 ⁺	d) CH ₄
571.	. Pauling's electronegativ	rity values for elements are		
	a) Polarity of bonds in n	nolecules	b) Position of element	s in electromotive series
	c) Coordination number	r	d) Dipole moment of v	various molecules
572.	. The correct order of dec	creasing polarisability of ic	on is:	
	a) Cl ⁻ , Br ⁻ , I ⁻ , F ⁻	b) F ⁻ , I ⁻ , Br ⁻ , Cl ⁻	c) I ⁻ , Br ⁻ , Cl ⁻ , F ⁻	d) F^- , Cl^- , Br^- , I^-
573.	. Strongest oxidising ager	nt among halogen is		
	a) I ₂	b) Br ₂	c) Cl ₂	d) F ₂
574.	. Which contains a coordi	inate and covalent bond?		
	a) BaCl ₂			
	b) NH ₄ Cl			
	c) HCl			
	d) H ₂ O			
575.		acts sometimes as a metal	and sometimes as a non-n	netal?
	O			


	a) Hg	b) Cl	c) K	d) At
576.	The lowest ionization ene	rgy would be associated w	ith the electronic structure:	
	a) $1s^2$, $2s^2$ $2p^6$, $3s^1$	b) $1s^2$, $2s^22p^5$	c) $1s^2$, $2s^22p^6$	d) $1s^2$, $2s^22p^6$, $3s^2$
577.	IP is influenced by:			
	a) Size of atom			
	b) Charge on nucleus			
	c) Electrons present in ini	ner shells		
	d) All of the above			
578.	The bond between chloring	ne and bromine in BrCl ₃ is:		
	a) Ionic			
	b) Non-polar			
	c) Polar with negative end	d on Br ⁻		
	d) Polar with negative end	d on Cl ⁻		
579.	The hydration energy of M	Ig ²⁺ is larger than that of:		
	a) Al ³⁺	b) Na ⁺	c) Be ²⁺	d) None of these
580.	. Which of the following cha	aracteristics regarding halo	ogens is not correct?	
	a) Ionization energy decre	eases with increase in aton	nic number.	
	b) Electronegativity decre	eases with increase in atom	ic number.	
	c) Electron affinity decrea	ses with increase in atomi	c number.	
	d) Enthalpy of fusion incre	eases with increase in aton	nic number.	
581.	IP ₂ for an element is invar	riably higher than IP ₁ becau	ise:	
	a) The size of cation is sm	aller than its atom		
	b) It is difficult to remove	'e' from cation		
	c) Effective nuclear charg	e is more for cation		
	d) All of the above			
582.	Which of the following is o	correct?		
	a) Decreases in bond leng	th means increase in bond	strength	
	b) Covalent radius of carb	on is less than that of nitro	gen	
	c) Single bonds are strong	ger than double bonds		
	d) Fe (III) chloride cannot	exist in the dimeric form I	Fe ₂ Cl ₆	
583.	Molecular orbitals theory	was proposed by:		
	a) Werner	b) Kossel	c) Moseley	d) Mullikan
584.	Proton plays an important	t role in bonding .		
	a) Electrovalent	b) Hydrogen	c) Covalent	d) Coordinate
585.	Which cannot exist on the	basis of M.O. theory?		
	a) C ₂	b) He ₂ ⁺	c) H ₂ ⁺	d) He ₂
586.	Which of the following sta	tement is correct?		
	a) Polarization of an anion	n is maximum by high char	ged cation	
	b) Small sized cation mini	-		
	c) A small anion brings ab	out a large degree of polar	rization	
	d) A small anion undergoe	es a high degree of polariza	tion	
587.	. The double bonds betwee	n the two carbon atoms in	ethylene consists of:	
	a) Two sigma-bonds at rig	-		
	b) One sigma-bond and or	ne pi-bond		
	c) Two pi-bonds at right a	ingles to each other		
	d) Two pi-bonds at an ang			
588.	Which compound among	=	ralent character?	
	a) AlCl ₃	b) AlI ₃	c) MgI ₂	d) NaI
589.	Iron is tougher than sodiu	m because:		
	a) Iron atom is smaller			

	b) Iron atoms are more clo			
	c) Metallic bonds are stro	nger in iron		
	d) None of the above			
590.	In HCHO carbon atom has	hybridisation:		
	a) sp	b) sp^2	c) sp^3	d) None of these
591.	Amongst the elements wi	th following electronic cor	figurations, which one of	them may have the highest
	ionization energy?			
	a) Ne $[3s^23 p^1]$	b) Ne[$3s^23 p^3$]	c) Ne[$3s^23 p^2$]	d) Ar[$3d^{10}4s^24p^3$]
592.	In which pair, the first ato	m or ion is not larger than	the second?	
	a) N, F	b) Cl ⁻ , Cl	c) 0, S	d) Fe ²⁺ , Fe ³⁺
593.	The correct order of ionic	radii is:		
	a) $Fe > Fe^{2+} > Fe^{3+}$	b) $0^{2-} > 0^- > 0^+$	c) $I^- > I > I^+$	d) All of these
594.	Greater the dipole momen	nt:		•
	a) Grater is the ionic natur			
	b) Lesser the polarity			
	c) Smaller the ionic nature	e		
	d) None of these			
595.	-	tronic configuration as [Ar]	$3d^{10}4s^24p^3$ represents a	
	a) Metal	b) Non-metal	c) Metalloid	d) Transition element
596.	Bonded electron pairs pre	esent in octahedral SF ₆ mol		
	a) 3	b) 4	c) 6	d) 5
597.	First ionisation energy is h	nighest for		
	a) Noble gases		b) Platinum metals	
	c) Transition elements		d) Inner-transition elemen	nts
598.		Law of elements, the variat	=	
	a) Atomic masses	,	b) Nuclear masses	
	c) Atomic masses		d) Nuclear neutron-proton	n number ratios
599.	•	erlapping of one s-orbital a	_	
	a) 180°	b) 120°	c) 109°28′	d) 120°60′
600.	The ionisation energy will	be maximum for the proce	ess:	
	a) Ba \rightarrow Ba ²⁺	b) Be \rightarrow Be ²⁺	c) $Cs \rightarrow Cs^+$	d) $Li \rightarrow Li^+$
601.	•	gen is more than oxygen be		,
	a) Nucleus has more attra			
	b) Half-filled <i>p</i> -orbitals are			
	c) Nitrogen atom is small			
	d) More penetration effect	t		
602.	•	nental form of Cs at room t	emperature to be:	
	a) A network solid	b) A metallic solid	c) Non-polar liquid	d) An ionic liquid
603.	The carbon atom in graph			
	a) sp^2 -hybridized	b) sp^3 - hybridized	c) <i>sp</i> -hybridized	d) None of these
604.	Which involves a bond for			•
	a) Stretching rubber			
	b) Dissolution of sugar in	water		
	c) Rusting of iron			
	d) Emission of γ -rays by ra	adioactive iron		
605.	Which element has highes			
	a) F	b) He	c) Ne	d) Na
606.		argest size in lanthanide sei	•	•
	a) Ti	b) Zr	c) Hf	d) La
607.	PF ₃ molecule is:	-	•	-


	a) Square planar	, , , , , , , , , , , , , , , , , , , ,	•	d) Trigonal pyramidal
608.	When an element of very	low ionisation potential is	allowed to react with an el	ement of very high electron
	affinity, we get:			
	a) A weak ionic bond	b) A strong ionic bond	c) A polar covalent bond	d) No bond
609.	Which of the following is	an amphoteric oxide?		
	a) SO ₃	b) MgO	c) Al_2O_3	d) P_4O_{10}
610.	In which element shieldir	ng effect is not possible?		
	a) H	b) Be	c) B	d) N
611.	One mole of magnesium i	n the vapour state absorbe	d 1200 kJmol^{-1} of energy. I	If the first and second
	ionisation energies of Mg	are 750 and 1450 $kJmol^{-1}$	respectively, the final com	position of the mixture is
	a) $31\%Mg^+ + 69\%Mg^{2+}$		b) $69\%Mg^+ + 31\%Mg^{2+}$	
	c) $86\% Mg^+ + 14\% Mg^{2+}$		d) $14\%Mg^+ + 86\%Mg^{2+}$	
612.	The $Cl - C - Cl$ angle in 1	, 1, 2, 2-tetrachloroethene a	and tetrachloromethane res	spectively will be about:
	a) 109.5° and 900°	b) 120° and 109.5°	c) 90° and 109.5°	d) 109.5° and 120°
613.	In which of the following	pairs bond angle is 109°28	' ?	
	a) [NH ₄ ⁺], [BF ₄ ⁻]	b) [NH ₄ ⁺], [BF ₃]	c) $[NH_3], [BF_4^-]$	d) [NH ₃], [BF ₃]
614.	Polarization of electrons	in acrolein may be written a	as:	
	δ ⁺	_{1.3} δ ⁻ δ ⁺	δ^{-} δ^{+}	ρ δ ⁺ δ -
	a_1 $CH_2 = CH - CH = O$	b) $CH_2 = CH - CH = O^{\delta^+}$	$^{\text{CJ}} \text{ CH}_2 = \text{CH} - \text{CH} = \text{O}$	a) $CH_2 = CH - CH = O$
615.	Molecular shape of SF ₄ , C	F ₄ and XeF ₄ are:		
		l 1 lone pair of electrons re	spectively	
	=	l 1 lone pair of electrons res		
	c) Different with 0, 1 and	2 lone pairs of electrons re	spectively	
	d) Different with 1,0 and	2 lone pairs of electrons re	spectively	
616.	Which one is the weakest	_		
	a) Hydrogen	b) Ionic	c) Covalent	d) Metallic
617.	Which has the lowest anio	on to cation size ration?		,
	a) LiF	b) NaF	c) CsI	d) CsF
618.	Which set has strongest t	endency to form anions?		
	a) Ga, In, Te	b) Na, Mg, Al	c) N, O, F	d) V, Cr, Mn
619.	Which one is most polar?			
	a) CCl ₄	b) CHCl ₃	c) CH ₃ Cl	d) CH ₃ OH
620.	Acetate ion contains:			
	a) One C, O single bond ar	nd one C, O double bond		
	b) Two C, O single bonds			
	c) Two C, O double bonds	}		
	d) None of the above			
621.	The nodal plane in the π -	bond of ethane is located in	1:	
	a) The molecular plane			
	b) A plane parallel to the	molecular plane		
		to the molecular plane whi	ch bisects the carbon-carbo	on σ-bond at right angle
		to the molecular plane whi		
622.		pelectronic ions has lowest		
	a) Cl ⁻	b) Ca ²⁺	c) K ⁺	d) S ²⁻
623.	The electronegativity diff	erence between N and F is	greater than that between I	•
	- -	larger than that of $NF_3(0.2)$	=	
		the atomic dipole and bond		ctions.
	In NH ₂ the atomic dino			ereas in NF ₃ these are in the
	b) same direction.	•	•	3
	c) In NH ₃ as well as in NF	G_3 the atomic dipole and both	nd dipole are in the same d	irection.

	d) $\frac{\text{In NH}_3}{\text{opposite directions.}}$	pole and bond dipole are	in the same direction wh	nereas in NF ₃ these are in
624.	. In the electronic structure	e of acetic acid there are:		
	a) 16 shared and 8 unsha			
	b) 8 shared and 16 unsha	<u>-</u>		
	c) 12 shared and 12 unsh	<u>-</u>		
	d) 18 shared and 6 unsha	<u>-</u>		
625.		ween molecules depend up	on:	
		b) Charge on nucleus		d) All of these
626.	•	and $348 \text{ kcal mol}^{-1}$. The en		•
	$Mg \to Mg^{2+} + 2e^{-}$ is:		33 I	,
	a) +170 kcal	b) +526 kcal	c) -170 kcal	d) -526 kcal
627.		nd NaI, the NaF has highest	•	,
	a) It has maximum ionic o	-	01	
	b) It has minimum ionic c			
	c) It has associated molec			
	d) It has least molecular v			
628.	. Which does not show hyd	-		
	a) C ₂ H ₅ OH	b) Liquid NH ₃	c) H ₂ O	d) Liquid HBr
629.		group I and VII elements in		, ,
	a) Atomic radius increase		b) Oxidising power increa	
	c) Reactivity with water i		d) Maximum valency incr	
630.			_	onverting liquid CH ₃ OH to a
	gas?			0 1 3
	a) London dispersion for	ce		
	b) Hydrogen bonding			
	c) Dipole-dipole interaction	on		
	d) Covalent bond			
631.	. Which among the following	ng elements has lowest valı	ue of ionisation energy?	
	a) Pb	b) Sn	c) Si	d) C
632.	. Which of the atomic numl	ber pairs represents eleme	nts of s-block?	
	a) 7, 15	b) 5, 12	c) 9, 17	d) 3, 12
633.	. The correct order of decre	easing first ionisation energ	gy is	
	a) $C > B > Be > Li$	b) $C > Be > B > Li$	c) B > C > Be > Li	d) Be $>$ Li $>$ B $>$ C
634.	. The total number of bond	s in acetylene molecules is:		
	a) One	b) Two	c) Three	d) Five
635.	The elements X, Y, Z and T	T have the indicated electro	onic configuration. Starting	with the innermost shell,
	which is the most metallic	element?		
	a) $X = 2, 8, 4$	b) $Y = 2, 8, 8$	c) $Z = 2, 8, 8, 1$	d) $T = 2, 8, 8, 7$
636	. Maximum covalence of an	atom of an element is equa	al to:	
	a) Number of unpaired el	ectrons in the s -and p -orbi	tals of valency shell	
	b) Number of unpaired el	ectrons in the p -orbitals of	valency shell	
	c) Total number of electro	ons in the <i>s</i> -and <i>p</i> -orbitals (of valency shell	
	d) Total number of electro	ons in the p -orbitals of vale	ncy shell	
637.	. How many unpaired elect	rons are present in N_2^+ ?		
	a) 1	b) 2	c) 3	d) 4
638.	. Which of the following ha	s shortest carbon-carbon b	ond length?	
	a) C ₆ H ₆	b) C ₂ H ₆	c) C ₂ H ₄	d) C_2H_2
639.	. Which of the following is	largest?		
	a) Cl ⁻	b) S ²⁻	c) Na ⁺	d) F ⁻

640. Which *p*-orbitals overlapping would give the strongest bond?

641. H - 0 - H bond angle in H₂O is 104.5° and not 109°28′ because of:

- a) High electronegativity of oxygen
- b) Bond pair-bond pair repulsion
- c) Lone pair-lone pair repulsion
- d) Lone pair -bond pair repulsion

642. Which of the following statements is wrong?

- a) The stability of hydrides increases from NH₃ to BiH₃ in group 15 of the Periodic Table.
- b) Nitrogen cannot from $d\pi p\pi$ bond.
- c) Single N N bond is weaker than the single P P bond.
- d) N₂O₄ has two resonance structure.

643. The ratio of σ and π -bonds in benzene is:

a) 2

b) 6

c) 4

d)8

644. In which one of the following species, the central atom has the type of hybridization which is not the same as that present in other three?

a) SF₄

b) I₃

- c) SbCl₅²⁻
- d) PCl₅

645. Which is correct order for electron gain enthalpy?

- a) S < 0 < Cl < F
- b) 0 < S < F < Cl
- c) Cl < F < S < 0
- d) F < Cl < 0 < S

646. The first ionisation energy of lithium will be

- a) Greater than Be
- b) Less than Be
- c) Equal to that of Na
- d) Equal to that of F

647. When two atomic orbitals combine, they form:

- a) One molecular orbitals
- b) Two molecular orbitals
- c) Two bonding molecular orbitals
- d) Two antibonding molecular orbitals

648. The set representing the correct order of first ionisation energy is

- a) K > Na > Li
- b) Be > Mg > Ca
- c) B > C > N
- d) Ge > Si > C

649. The electronic configuration of the element with maximum electron affinity is

- a) $1s^2$, $2s^2$, $2p^3$
- b) $1s^2$, $2s^2$, $2p^5$
- c) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^5$ d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^3$

650. Which of the following has regular tetrahedral shape?

- a) $[Ni(CN)_4]^{2-}$
- b) SF₄

- c) $[BF_4]^-$
- d) XeF₄

651. The smallest among the following ions is

a) Na ⁺	b) Mg ²⁺	c) Ba ²⁺	d) Al ³⁺
652. Coordinate	compounds are formed by:		
a) Transfer	of electrons		
b) Sharing o	of electrons		
c) Donation	of electron pair		
d) None of t	he above		
653. The stateme	ent that is true for the long form of	the Periodic Table is	
a) It reflects	s the sequence of filling the electro	ns in the order of sub-en	ergy levels s, p, d and f
b) It helps t	o predit the stable valency states of	f the elements	
c) If reflects	s trends in physical and chemical pr	roperties of the elements	S
d) All of the	above		
654. Which of th	e following elements never show p	ositive oxidation numbe	r?
a) 0	b) Fe	c) Ga	d) F
655. The energy	released when a neutral gaseous at	tom takes up an electron	is called:
a) Ionizatio	n energy b) Solvation energy	c) Electronegativ	rity d) Electron affinity
656. The structu	re of XeF ₄ is:		
a) Planar	b) Tetrahedral	c) Square planar	d) Pyramidal
657. Which one	of the following is expected to have	largest size?	
a) F ⁻	b) 0 ²⁻	c) N ³⁻	d) Al ³⁺
658. Debye an ui	nit of dipole moment is of the order	of:	
a) 10^{-10} es	u cm b) 10 ⁻¹⁸ esu cm	c) 10^{-6} esu cm	d) 10 ⁻¹² esu cm
659. Among LiCl	, BeCl ₂ , BCl ₃ and CCl ₄ , the covalent	bond character follows t	the order:
a) LiCl > Be	$eCl_2 > BCl_3 > CCl_4$		
b) LiCl < Be	$eCl_2 < BCl_3 < CCl_4$		
c) LiCl > Be	$eCl_2 > CCl_4 > BCl_3$		
d) LiCl < Be	$eCl_2 < BCl_3 > CCl_4$		
660. Which one	of the following elements has lower	value of ionisation ener	·gy?
a) Mg	b) Rb	c) Li	d) Ca
661. Identify the	least stable ion amongst the follow	ring:	
a) Li [–]	b) Be ⁻	c) B ⁻	d) C ⁻
662. For the typ	e of interactions: (I) Covalent bor	nd, (II) van der Waals' f	forces, (III) Hydrogen bonding, (IV
Dipole-dipo	le interaction, which represents th	e correct order of increa	sing stability?
a) $(I) < (III)$)<(II)<(IV)		
b) $(II) < (II)$	I) < (IV) < (I)		
c) $(II) < (IV)$	(I) < (III) < (I)		
d) (IV) < (I	I) < (III) < (I)		
663. According t	o Fajan's rule polarization is more	when:	
· ·	ion and large anion		
b) Small cat	ion and small anion		
c) Large cat	tion and large anion		
	tion and small anion		
	rrect about ionisation potential?		
	pendent of atomic radii		
-	ses with increase in atomic radii		
•	is constant with increase in atomic	radii	
-	ses with increase in atomic radii		
	rge jump between the value of first		nergies of elements would be
	with which of the following electron	_	
a) $1s^2$, $2s^2$	-	$3p^1$ c) $1s^2, 2s^2, 2p^6, 3$	$3s^13p^2$ d) $1s^2$, $2s^22p^6$, $3s^2$
666. The pair of	amphoteric hydroxides is		

a) LiOH, $Al(OH)_3$	b) Be(OH) ₂ , Mg(OH) ₂	c) $B(OH)_2$, $Be(OH)_2$	d) $Be(OH)_2$, $Zn(OH)_2$
667. Which one has more to	endency to form covalent co	npounds?	
a) Ba	b) Be	c) Mg	d) Ca
668. The electron affinity for	or inert gases is likely to be:		
a) High	b) Small	c) Zero	d) Positive
669. Increasing order (low	er first) of size of the various	hybridised orbitals is:	
a) sp, sp^2, sp^3	b) sp^{3} , sp^{2} , sp	c) sp^2 , sp^3 , sp	d) sp^2 , sp , sp^3
670. Shape of molecules is	decided by:		
a) Sigma bond			
b) π -bond			
c) Both sigma and π -b	onds		
d) Neither sigma nor τ	τ-bonds		
671. Which statement is wi	cong?		
a) Hybridization is the	e mixing of atomic orbitals pr	ior to their combining into	molecular orbitals
b) sp^2 -hybrid orbitals	are formed from two <i>p</i> -aton	nic orbitals and one s-atom	ic orbitals
c) dsp^2 - hybrid orbita	ls are all at 90° to one anoth	er	
d) d^2sp^3 -hybrid orbita	als are directed towards the	corners of a regular tetrahe	edron
672. Which one of the follo	wing has maximum ionisatio	n potential?	
a) K	b) Be	c) Na	d) Mg
673. In OF ₂ , number of bon	d pairs and lone pairs of elec	ctrons are respectively:	
a) 2,6	b) 2,8	c) 2, 10	d) 2, 9
674. Which is the correct of	rder of electronegativity?		
a) $F > N < 0 > C$	b) $F > N > 0 > C$	c) $F > N > 0 < C$	d) $F < N < O = C$
675. Which of the following	g has maximum bond energy	?	
a) Cl ₂	b) F ₂	c) Br ₂	d) I ₂
676. In which molecule sul	phur atom is not sp^3 -hybridi	zed?	
a) SO_4^{2-}	b) SF ₄	c) SF ₂	d) None of these
677. Hydrogen fluoride is a	liquid unlike other hydroge	n halides because:	
 a) HF molecules assoc 	iate due to hydrogen bondin	g	
b) F ₂ is highly reactive			
•	cid of all hydrogen halides		
•	e smallest of all halogens		
678. The $0 - H$ bond distant	nce in water molecule is:		
a) 1.0 Å	b) 1.33 Å	c) 0.96 Å	d) 1.45 Å
679. Van der Waals' forces	are maximum in:		
a) HBr	b) LiBr	c) LiCl	d) AgBr
_	of the ionic radii of the given	-	
=	b) Ca^{2+} , K^{+} , Cl^{-} , S^{2-}		d) Cl ⁻ , Ca ²⁺ , K ⁺ , S ²⁻
681. Which of the following	g exhibits diamagnetic behav	ior:	
a) NO	b) 0_2^{2-}	c) 0_2^+	d) 0 ₂
	ration of sodium and chlorin	e justifies:	
a) Their physical state			
b) Their reactivity			
	ectrovalent compound NaCl		
d) None of the above			
_	der of solubility of Na ₂ S, CuS	——————————————————————————————————————	
a) $Cus > ZnS > Na_2S$		c) $Na_2S > CuS > ZnS$	d) $Na_2S > ZnS > CuS$
684. The correct order of ra			
a) $N < Be < B$	•	c) Na $< Li < K$	d) $Fe^{3+} < Fe^{2+} < Fe^{4+}$
685. The compound showing	ng maximum covalent charac	ter is:	

a) BI ₃	b) BCl ₃	c) BF ₃	d) BBr ₃
686. The nature of bondin	g in CCl ₄ and CaH ₂ :		
a) Electrovalent in bo	oth CCl ₄ and CaH ₂		
b) Covalent in CCl ₄ ar	nd electrovalent in CaH ₂		
c) Electrovalent in Co	Cl ₄ and covalent in CaH ₂		
d) None of the above			
687. In which of the follow	ving pairs the two species ar	re not isostructural?	
a) PCl ₄ and SiCl ₄	b) PF ₅ and BrF ₅	c) AlF $_6^{3-}$ and SF $_6$	d) CO_3^{2-} and NO_3^{-}
688. The pair of species ha	aving identical shape of both	ı species:	
a) BF ₃ , PCl ₃	b) PF ₅ , IF ₅	c) CF ₄ , SF ₄	d) XeF ₂ , CO ₂
689. Which of the following	ig halogen acids is least basi	c?	
a) HF	b) HCl	c) HBr	d) HI
690. Beryllium shows diag	gonal relationship with		
a) Mg	b) Na	c) B	d) Al
691. The compound with	the maximum dipole mome	nt among the following is:	
a) p-dichlorobenzene	e b) <i>m</i> -dichlorobenzene	e c) <i>o</i> -dichlorobenzene	d) Carbon tetrachloride
692. Which of the following	g molecules is covalent and	shows expanded octet in it	s formation?
a) HF	b) NF ₃	c) BF ₃	d) ClF ₃
693. Correct order of first	ionisation potential among	the following elements Be,	B, C, N, O is
a) $B < Be < C < 0 <$	$(N \ b) \ B < Be < C < N < C$	0 c) Be $< B < C < N <$	0 d) Be $< B < C < 0 < N$
694. For making good qua	lity mirrors, plates of float g	glass are used. These are ob	tained by floating molten glass
over a liquid metal w	hich does not solidify before	e glass. The metal used can	be
a) Mercury	b) Tin	c) Sodium	d) Magnesium
695. Which of the following	ng pairs has both members o	of the same period of the Pe	riodic Table?
a) Na – Cl	b) Na – Ca	c) Ca – Cl	d) Cl — Br
696. The increasing order	of the first ionization entha	lpies of the elements B, P, S	and F (lower first) is:
		c) $B < P < S < F$	
697. Which of the following	ig element has higher ionisa	tion energy?	
a) Boron	b) Carbon	c) Oxygen	d) Nitrogen
698. The correct order of	acidic strength		
a) $Cl_2O_7 > SO_2 > P_4O_3$	O_{10}	b) $K_2 0 > CaO > MgO$	
c) $CO_2 > N_2O_5 > SO_5$	3	d) $Na_2 0 > Mg0 > Al_2$	03
699. Which of the following	g element is metalloid?		
a) Bi	b) Sn	c) Ge	d) C
700. The number of lone p	oairs of electron on Xe in Xe	OF ₄ is:	
a) 1	b) 2	c) 3	d) 4
701. Which of the following	g metals exhibits more than	one oxidation state?	
a) Na	b) Mg	c) Al	d) Fe
702. Among the following	which has the highest catio	n to anion size ratio?	
a) CsI	b) CsF	c) LiF	d) NaF
703. The correct order of i	onic radius is		
a) $Ti^{4+} < Mn^{7+}$	b) $^{35}Cl^- > ^{37}Cl^-$	c) $K^{+} > C l^{-}$	d) $P^{3+} > P^{5+}$
704. An electrovalent com	pound does not exhibit spa	ce isomerism due to:	
a) Presence of ions			
b) High melting point	į.		
c) Strong electrostati	c forces between constituer	nt ions	
d) Non-directional na	ture of electrovalent bond		
705. The element with the	lowest ionisation potential	is	
a) Na	b) K	c) Rb	d) Cs
706 Which has the largest	t distance between the carb	on hydrogen atom?	

	a) Ethane	b) Ethene	c) Ethyne	d) Benzene									
	-	or ions will have same confi	_										
	a) Li ⁺ and He ⁻	b) Cl ⁻ and Ar	c) Na and K	d) F ⁺ and Ne									
708.	Atoms or group of atoms	which are electrically charg											
	a) Anions	b) Cations	c) Ions	d) Atoms									
709.	The element with atomic	number 36 belongs toblo	ck in the Periodic Table.										
	a) <i>p</i>	b) <i>s</i>	c) <i>f</i>	d) <i>d</i>									
710.	Which bond is more polar	?											
	a) Cl – Cl	b) N – F	c) C – F	d) O – F									
711.	If the electronegativity dif	fference between two atom	s A and B is 2.0, then the p	ercentage of covalent									
	character in the molecule is												
	a) 54%	b) 46%	c) 23%	d) 72%									
712.	In the following, the eleme	ent with the highest ionisat	ion energy is										
	a) $[Ne]3s^23p^1$	b) [Ne] $3s^23p^3$	c) $[Ne]3s^23p^2$	d) [Ne] $3s^23p^4$									
	Ionization potential is low			, , ,									
	a) Halogens	b) Inert gases	c) Alkaline earth metals	d) Alkali metals									
	Electron affinity is positiv	, ,	.,										
	a) 0 changes into 0 ⁻	-, -	b) O ⁻ changes into O ²⁻										
	c) 0 changes into 0 ⁺		d) Electron affinity is alwa	avs negative									
	, ,	valent character between n	_	-									
	a) Between identical atom			inou.									
	b) Between chemically sir												
		ely different electro-negativ	ities										
	d) Between atoms of the s	=	ities										
	A sp^3 -hybrid orbital conta												
	a) 1/4 <i>s</i> -character	b) 1/2 s-character	c) 2/2 c character	d) 3/4 s-character									
	• •	located at the positions of:		u) 3/4 5-character									
	=	-											
	a) Maximum potential end												
	b) Minimum potential ene	ergy											
	c) Zero potential energy												
	d) Infinite potential energ												
	Water has high heat of va	•		D.M. Col. I									
	a) Covalent bonding	b) H-bonding	c) Ionic bonding	d) None of the above									
		P_5 of an element are 7.1, 1	14.3, 34.5, 46.8, 162.2, eV r	espectively. The element is									
	likely to be:	12.0	\	n a									
	a) Na	b) Si	c) F	d) Ca									
	Stability of hydrides gener	rally increases with:											
	a) Increase in bond angle												
	b) Decrease in bond angle												
	c) Decrease in resonance												
	d) None of these	•											
	The radii of F, F ⁻ , O and O			_									
	a) $0^{2-} > F^- > F > 0$	=	c) $0^{2-} > 0 > F^- > F$	d) $0^{2-} > F^{-} > 0 > F$									
	Which one is the stronges	t bond?											
	a) Cl – F	b) F – F	c) Br – F	d) Br – Cl									
723.	The low solubility of BaSC	0_4 in water is due to:											
	a) Low dissociation energ	y											
	b) Ionic bonds												
	c) High value of lattice en	ergy											
	d) None of the above												

724.	The metal having highest	melting point is?		
	a) Cr	b) Ag	c) Diamond	d) W
725.	Which one species has the	e longest bond length?		
	a) NO ⁺	b) 0 ₂	c) 0 ₂ ⁺	d) N ₂ ⁺
726.	Arrange the following con	npound in order of increasi	ng dipole moment:	
	Toluene (I) $m-c$	lichlorobenzene (II)		
	o – dichlorobenzene (III)	p – dichlorobenzene (IV)		
	a) $I < IV < II < III$	b) $IV < I < II < III$	c) $IV < I < III < II$	d) $IV < II < I < III$
727.	The correct order regardi	ng the electronegativity of	hybrid orbitals of carbon is	:
	a) $sp < sp^2 > sp^3$	b) $sp < sp^2 < sp^3$	c) $sp > sp^2 < sp^3$	d) $sp > sp^2 > sp^3$
728.	Molecular size of ICl and E	Br ₂ is nearly same, but boili	ng point of ICl is about 40°	C higher than Br ₂ . This
	might be due to:			
	a) I – Cl bond is stronger	than Br – Br bond		
	b) Ionisation energy of 1	< ionisation energy of Br		
	c) ICl is polar where as Br	₂ is non-polar		
	d) The size of $I > $ size of B	r		
729.	The pair of elements havin	ng approximately equal ion	isation potential is	
	a) Al, Ga	b) Al, Si	c) Al, Mg	d) Al, B
730.	Elements having six electr	rons in its outermost orbit	generally form:	
	a) Complex ion	b) Negative ion	c) Positive ion	d) Zwitter ion
731.	In which of the following	molecules/ions BF_3 , NO_2^- , N	$\rm IH_2^-$, and $\rm H_2O$ the central at	om is sp^2 hybridized?
	a) BF ₃ and NO ₂	b) NO_2^- and NH_2^-	c) NH_2^- and H_2O	d) NO_2^- and H_2O
732.	. Na ⁺ , Mg ²⁺ , Al ³⁺ , Si ⁴⁺ are i	soelectronics. Their ionic s	ize follows the order:	
	a) $Na^+ < Mg^{2+} < Al^{3+} <$	Si ⁴⁺		
	b) $Na^+ > Mg^{2+} < Al^{3+} <$	Si ⁴⁺		
	c) $Na^+ < Mg^{2+} > Al^{3+} >$	Si ⁴⁺		
	d) $Na^+ > Mg^{2+} > Al^{3+} >$	Si ⁴⁺		
733.	Which of the following is a	false?		
	a) Methane molecule is te	trahedral in shape		
	b) Nickel tetrachloride is	square planar in shape		
	c) P ₂ O ₅ is like two pyrami	ds joined at their apices		
	d) Acetylene is non-linear			
734.	In a double bond connecti	ing two atoms there is a sha	aring of:	
	a) 2 electrons	b) 4 electrons	c) 1 electron	d) All electrons
735.	. As we go from left to right	t in period two of the Perio	dic Table, gram atomic volu	ime of the elements
	a) Will change indefinitely	y	b) Decreases	
	c) Increases at a constant	rate	d) First increases then dec	creases
736.	Which of the following bo	nd requires the largest amo	ount of energy to dissociate	the bond concerned?
	a) H – H bond in H ₂	b) C – H bond in CH ₄	c) $N \equiv N \text{ bond in } N_2$	d) $0 = 0$ bond in 0_2
737.	Which does not show iner	t pair effect?		
	a) Al	b) Sn	c) Pb	d) Thallium
738.	Resonance is due to:			
	a) Delocalization of σ -elec	ctrons		
	b) Delocalization of π -elec	ctrons		
	c) Migration of H atoms			
	d) Migration of protons			
739.	The ICl molecule is:			
	a) Purely covalent			
	b) Purely electrovalent			
	c) Polar with negative end	d on chlorine		

?
1
.5
2
ns

	XIX. 5th ionisation ene	$ergy = 3200 \text{ kJ mol}^{-1}$		
	Find out the number of va	alence electron for the atom	'X'	
	a) 4	b) 3	c) 5	d) 2
761.	Organic compounds solub	ole in water contain:		
	a) C, H, Cl	b) C, H	c) C, H, O	d) C, S
762.	Which of the following is	most stable?		
	a) Pb ²⁺	b) Ge ²⁺	c) Si ²⁺	d) Sn ²⁺
763.		ts represents the collection		
	a) Na^+ , Mg^{2+} , Al^{3+} , Cl^-	b) Na ⁺ , Ca ²⁺ , Sc ³⁺ , F ⁻	c) K^+ , Cl^- , Mg^{2+} , Sc^{3+}	d) K ⁺ , Ca ²⁺ , Sc ³⁺ , Cl ⁻
764.	Which one of the followin	g sets of ions represents a	collection of isoelectronic s	pecies?
	a) K^+ , Cl^- , Ca^{2+} , Sc^{3+}	b) Ba ²⁺ , Sr ²⁺ , K ⁺ , Ca ²⁺	c) N^{3-} , O^{2-} , F^- , S^{2-}	d) Li ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺
765.		g arrangements represents	the correct order of electron	on gain enthalpy (with
	negative sign) of the given	-		
	=	b) $0 < S < F < Cl$	=	=
766.	_	olecules does not possess a	=	
	a) H ₂ S	b) SO ₂	c) SO ₃	d) CS ₂
767.	Which one of the followin	g has the highest electrone	gativity?	
	a) Si	b) P	c) Cl	d) Br
768.	The electronic configurati	ion, $1s^2$, $2s^22p^6$, $3s^2$ $3p^63d$	⁹ represents a	
	a) Metal atom	b) Non-metal atom	c) Non-metallic anion	d) Metallic cation
769.	The bond order in 0_2^+ is e	qual to bond order in:		
	a) N ₂ ⁺	b) CN ⁻	c) CO	d) NO ⁺
770.	. The molecule having perr	nanent dipole moment is:		
	a) SF ₄	b) XeF ₄	c) SiF ₄	d) BF ₃

CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

CHEMISTRY

						: ANS	W	ER K	ΕY	:					
1)	d	2)	С	3)	b	4)	b	173)	С	174)	b	175)	d	176)	С
5)	b	6)	b	7)	d	8)	a	177)	a	178)	С	179)	d	-	b
9)	c	10)	b	11)	c	12)	d	181)	c	182)	d	183)	a	184)	a
13)	d	14)	c	15)	b	16)	b	185)	d	186)	b	187)	c	188)	a
17)	d	18)	d	19)	d	20)	a	189)	a	190)	d	191)	d	192)	a
21)	c	22)	b	23)	b	24)	c	193)	a	194)	a	195)	a	196)	a
25)	b	26)	c	27)	a	28)	c	197)	c	198)	a	199)	c	200)	d
29)	c	30)	c	31)	b	32)	b	201)	b	202)	b	203)	c	204)	b
33)	b	34)	a	35)	C	36)	a	205)	a	206)	c	207)	a	208)	b
37)	c	38)	a	39)	c	40)	a	209)	c	210)	a	211)	C	212)	a
41)	b	42)	a	43)	c	44)	c	213)	a	214)	a	215)	c	216)	a
45)	b	46)	a	47)	d	48)	b	217)	b	218)	c	219)	a	220)	c
49)	c	50)	c	51)	a	52)	c	221)	a	222)	C	223)	b	224)	b
53)	c	54)	d	55)	b	56)	b	225)	b	226)	C	•	C	•	C
57)	a	58)	b	59)	c	60)	C	229)	d	230)	c	,	a	-	c
61)	d	62)	c	63)	b	64)	d	233)	b	234)	a	,	b	•	d
65)	d	66)	a	67)	d	68)	d	237)	C	238)	b	•	a	•	d
69)	C	70)	d	71)	d	72)	b	241)	d	242)	a	,	a	•	d
73)	a	74)	a	75)	a	76)	b	245)	d	246)	d	•	b	-	b
77)	C	78)	b	79)	b	80)	d	249)	b	250)	a	251)	C	-	b
81)	d	82)	a	83)	d	84)	d	253)	С	254)	a	255)	b	•	b
85)	b	86)	b	87)	d	88)	C	257)	d	258)	d	259)	d	•	C
89)	a	90)	a	91)	C	92)	C	261)	С	262)	C	•	С	•	d
93)	b	94)	С	95)	b	96)	b	265)	С	266)	d	267)	a	-	d
97)	a	98)	a	99)	С	100)	C	269)	a	270)	d	271)	d	,	a
101)	d	102)	d	103)	C	104)	b	273)	d	274)	a	275)	d	-	b
105)	C	106)	b	107)	b	108)	b	277)	d	278)	a	,	b	•	d
109)	b	110)	d	111)	d	112)	С	281)	d	282)	a	283)	С	•	d
113)	c	114)	a	115)	a	116)		285)	С	286)	a	•	C	-	d
117)	b	118)	d	119)	d	120)		289)	C	290)	a	•	b	-	C
121)	c	122)	b	123)	a	124)		293)	d	294)	b	•	b	-	a
125)	c	126)	d L	127)	c	128)		297)	C	298)	d	•	C	-	a
129)	a a	130)	b	131)	a h	132)		301)	d	302)	c	-	a a	-	a h
133)	d h	134)	C b	135)	b	136)		305)	d	306)	a	307)	d h	-	b h
137) 141)	b d	138) 142)	b	139) 143)	d	140) 144)		309) 313)	a	310) 314)	c	311) 315)	b d	•	b b
141)		146)	C	143)	a	144)		317)	a	314)	a	-		-	
145) 149)	a c	140) 150)	d b	147) 151)	C	140) 152)		317) 321)	c b	322)	a c		b a	-	b d
153)	d	150) 154)	c	151) 155)	a a	152) 156)		321) 325)	a	326)	a	-	a b	-	u b
155) 157)	u C	154) 158)	c	159)	a d	160)		323) 329)	a C	330)	a b		C		c
161)	b	162)	b	163)	u b	164)		333)	c	334)	d		a		a
165)	a	166)	b	167)	b	164)		337)	d	338)	c		a	-	a b
169)	a	170)	C	171)	b	100) 172)		341)	d	342)	d	_	a C		c
1075	u	170)		1/1)		1,4)	u	JIIJ	u	J-14 J	u	Jaj		J II J	_

345)	a	346)	d	347)	d	348)	c	549)	c	550)	a	551)	a	552)	d
349)	b	350)	a	351)	c	352)	b	553)	b	554)	a	555)	d	556)	b
353)	c	354)	a	355)	a	356)	b	557)	c	558)	d	559)	c	560)	b
357)	a	358)	a	359)	d	360)	c	561)	d	562)	c	563)	c	564)	C
361)	b	362)	a	363)	b	364)	c	565)	a	566)	b	567)	d	568)	a
365)	c	366)	c	367)	c	368)	b	569)	C	570)	a	571)	a	572)	C
369)	C	370)	c	371)	a	372)	a	573)	d	574)	b	575)	d	576)	a
373)	b	374)	b	375)	d	376)	b	577)	d	578)	d	579)	b	580)	c
377)	b	378)	d	379)	b	380)	a	581)	d	582)	a	583)	d	584)	d
381)	d	382)	c	383)	C	384)	a	585)	d	586)	a	587)	b	588)	b
385)	c	386)	d	387)	b	388)	C	589)	C	590)	b	591)	b	592)	C
389)	a	390)	b	391)	b	392)	C	593)	d	594)	a	595)	c	596)	C
393)	b	394)	b	395)	C	396)	C	597)	a	598)	c	599)	a	600)	b
397)	b	398)	a	399)	d	400)	a	601)	b	602)	b	603)	a	604)	c
401)	a	402)	b	403)	a	404)	b	605)	a	606)	d	607)	d	608)	b
405)	c	406)	b	407)	a	408)	b	609)	C	610)	a	611)	b	612)	b
409)	c	410)	b	411)	d	412)	b	613)	a	614)	d	615)	d	616)	a
413)	a	414)	a	415)	C	416)	b	617)	d	618)	c	619)	d	620)	a
417)	a	418)	d	419)	b	420)	C	621)	a	622)	d	623)	d	624)	a
421)	d	422)	a	423)	b	424)	C	625)	d	626)	b	627)	a	628)	d
425)	b	426)	b	427)	d	428)	b	629)	a	630)	b	631)	b	632)	d
429)	d	430)	d	431)	C	432)	a	633)	b	634)	d	635)	c	636)	C
433)	d	434)	C	435)	b	436)	b	637)	a	638)	d	639)	b	640)	C
437)	b	438)	d	439)	b	440)	b	641)	C	642)	a	643)	c	644)	C
441)	a	442)	d	443)	b	444)	C	645)	b	646)	b	647)	b	648)	b
445)	a	446)	b	447)	d	448)	b	649)	c	650)	c	651)	d	652)	C
449)	a	450)	b	451)	b	452)	d	653)	C	654)	d	655)	d	656)	C
453)	b	454)	b	455)	a	456)	a	657)	C	658)	b	659)	b	660)	b
457)	a	458)	b	459)	d	460)	a	661)	b	662)	b	663)	a	664)	d
461)	b	462)	d	463)	d	464)	a	665)	a	666)	d	667)	b	668)	c
465)	a	466)	b	467)	d	468)		669)	a	670)	a	671)	d	672)	b
469)	C	470)	a	471)	C	472)		673)	b	674)	a	675)	a	676)	b
473)	a	474)	d	475)	d	476)		677)	a	678)	c	679)	d	680)	b
477)	b	478)	a	479)	C	480)		681)	b	682)	c	683)	d	684)	b
481)	b	482)	b	483)	a	484)		685)	C	686)	b	687)	b	688)	d
485)	b	486)	a	487)	C	488)		689)	d	690)	d	691)	C	692)	d
489)	d	490)	d	491)	C	492)		693)	a	694)	d	695)	a	696)	d
493)	a	494)	d	495)	b	496)		697)	d	698)	a	699)	C	700)	a
497)	a	498)	a	499)	a	500)		701)	d	702)	b	703)	d	704)	d
501)	a	502)	d	503)	d	504)		705)	d	706)	a	707)	b	708)	C
505)	b	506)	a	507)	b	508)		709)	a	710)	C	711)	b	712)	b
509)	b	510)	C	511)	С	512)		713)	d	714)	b	715)	a	716)	a
513)	a	514)	b	515)	C	516)		717)	b	718)	b	719)	b	720)	a
517)	d	518)	b	519)	b	520)		721)	d	722)	C	723)	c	724)	d
521)	b	522)	a	523)	b	524)		725)	b	726)	b	727)	d	728)	c
525)	b	526)	b	527)	С	528)		729)	a	730)	b	731)	a	732)	d
529)	b	530)	a	531)	a	532)		733)	d	734)	b	735)	b	736)	С
533)	С	534)	a	535)	b	536)		737)	a	738)	b	739)	c	740)	C
537)	a	538)	c	539)	b	540)		741)	d	742)	b	743)	d	744)	b
541)	d	542)	d	543)	C	544)		745)	С	746)	c	747)	a	748)	a
545)	d	546)	b	547)	b	548)	a	749)	a	750)	b	751)	b	752)	a

753)	b	754)	a	755)	a	756)	d 765)	b	766)	d	767)	c	768)	d
757)	a	758)	c	759)	d	760)	a 769)	a	770)	a				
761)	c	762)	a	763)	d	764)	a							

CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (d)

Born-Haber cycle inter-relates the various energy terms involved in ionic bonding.

2 **(c)**

Follow bonding rules.

3 **(b**)

Alkali metals are most electropositive elements.

4 **(b**

In H₂O, H-atom contains only two electrons.

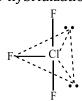
5 **(b**)

Fluorine is more reactive than chlorine, bromine and iodine

6 **(b)**

Due to H-bonding in NH₃.

7 (d)


The order of screening effect for a given shell electrons is s > p > d > f.

8 (a

The ionisation energy of elements decreases down the group.

9 (c

Cl in ClF_3 has sp^3d -hybridization

and possesses two axial Cl— F bonds and one equatorial bond Two lone pairs are at equatorial position give rise to bent 'T' shape to ClF₃.

10 **(b)**

In like atoms, electronegativity difference is zero.

11 **(c)**

 S_2 molecule is paramagnetic like O_2 having 2 unpaired electrons.

13 **(d)**

Along the period acidic strength of oxide increases

14 **(c)**

In order to belong with the same family, the outer configuration must be the same

15 **(b)**

 $\mathrm{Mn^{2+}}$ is most stable as it has half filled d-orbitals.

16 **(b)**

The atomic radius decreases along the period. Also cations are always smaller than their parent atom and anions are always larger than their parent atom .

17 **(d)**

S = C = S.

18 **(d)**

Cation radius increases down the group.

19 (d)

Cyanide ion is,

$$-\bar{C} \equiv N \rightarrow -\bar{N} \equiv C$$

20 **(a)**

All are isoelectronic species; more is nuclear charge smaller is ionic size.

21 **(c)**

Electron affinity order for halogens is Cl > F > Br > I.

22 **(b)**

N atom has smallest radius.

23 **(**b

Halogens (ns^2np^5) after getting one electron occupy ns^2np^6 configuration, thus have EA_2 zero

24 **(c)**

In general, density increases on moving downward in a group but density of potassium (K) is lesser than that of the sodium (Na). This is because of the abnormal increase in atomic size on moving from Na (86 pm) to K (227 pm). Thus, the correct order of density is Li < K < Na < Rb

25 **(b)**

The oxide having maximum heat of formation per oxygen atom (thus energy needed to break one M-0 bond will be highest) will be most stable. MgO is most stable oxide among Na $_2$ O, SiO $_2$, Al $_2$ O $_3$ and MgO.

26 **(c)**

If Aufbau rule is not followed then 19^{th} electron in K enters in 3d sub-shell, not in 4s

27 **(a)**

The most electronegative element is F and next to F is O.

28 **(c)**

Larger is the size of atom, lesser is the tendency for overlapping, lesser is bond energy.

29 **(c)**

Bond angles in $BeCl_2$, NH_3 , H_2O and $SnCl_2$ are 180° , 107° , 104.5° and 119° respectively. Also H_2S , H_2O , H_2Se has sp^3 -hybridization and bond angles of hydrides decreases down the group.

30 **(c)**

The correct increasing basic strength:

$$SbH_3 < AsH_3 < PH_3 < NH_3$$

NH₃is the most basic because of its small size, the electron density of electron pair is concentrated over small region. As the size increases, the electron density gets diffused over a large surface area and hence the ability to donate the electron pair (basicity) decreases.

31 **(b)**

Each period consists of a series of elements whose atoms have the same principal quantum number (n) of the outermost shell, ie, in second period, n=2, this shell has four orbitals (one 2s and three 2p) which can have eight electrons, hence second period contain 8 elements from atomic number 3 to 10

32 **(b)**

Om moving along a period, ionisation enthalpy increases. Thus, the order of ionisation enthalpy should be as follow:

But N has half-filled structure, therefore, it is more stable than O, That's why its ionisation erthalpy is highper than O. Thus, the correct order of IE is

33 **(b)**

This give rise to polarity in bonds.

34 **(a)**

BeO is most acidic in nature amongst the given choices because acidity of oxides increases with decreases in electropositive character of central atom.

35 **(c)**

NaCl exist as Na⁺Cl⁻.

36 **(a)**

NH₃ has pyramidal shape and thus, possesses three folds axis of symmetry.

37 **(c)**

Larger is the difference in electronegativities of two atom, more is polar character in bond.

38 **(a**)

Non-polar or pure covalent bond has zero per cent ionic character due to the absence of partial charges on either end.

39 **(c)**

N in it has three σ -bonds and one lone pair of electron.

40 **(a)**

Mendeleef failed to assign positions to isotopes on the basis of atomic mass according to his periodic law

41 **(b)**

The removal of second electron from Mg takes place from 3*s*-orbital whereas, the removal of second electron from Na takes place from 2*p*-orbital. More closer are shells to the nucleus, difficult is removal of electron.

42 **(a)**

ZnO can react with acid and base both

$$ZnO + 2HCl$$
 $ZnCl_2 + H_2O$
 $ZnO + 2NaOH$ $Na_2ZnO_2 + H_2O$

43 **(c)**

 ClO_4^- has sp^3 -hybridization on Cl atom.

44 **(c)**

O₂ has two unpaired electrons.

45 **(b)**

 0^{-2} and N^{3-} both are isoelectronic but differ in the charge possessed by them. As the negative charge increase, the electrons are held less and less tightly by the nucleus, therefore ionic radii increases. Hence, ionic radii of N^{3-} is greater than 0^{2-} .

In a period from left to right atomic radii decreases but in a group on moving downwards it increases.

46 **(a)**

Ne has van der Waals radius larger than covalent radius of fluorine.

48 **(b)**

The value of electron affinity decreases with increase in size of atom, because the nuclear attraction decreases as the atomic number increases. Fluorine due to its very small size has lower electron affinity than chlorine. Hence, the increasing order of electron affinity of halogen is

49 **(c)**

The element is P which exists as P₄.

50 **(c)**

Atomic size of Ag and Au are closer to each other but nuclear charge is more on Au

51 **(a)**

S atom is larger in size than O and F.

52 **(c)**

Electropositive character decreases across the period as metallic character decreases

53 **(c)**

Due to shielding effect of (n-1)d-subshell.

54 **(d)**

Non-metals are more than metals is the wrong statement.

55 **(b)**

 $1s^2$, $2s^2$, $2p^6$, $3s^1$. It is an alkali metal; hence has least ionisation potential.

56 **(b)**

The ionisation potential decreases down the group.

58 **(b)**

N is sp^2 -hybridized on NO $_3^-$.

59 **(c)**

e. g. , BF $_3$, a non-polar molecule having sp^2 -hybridization.

60 **(c)**

Butadiene is $CH_2 = CH - CH = CH_2$.

61 **(d**)

 $M^{2+} \rightarrow M^{3+}$, after the removal of $2e^-$, the nuclear charge per electron increases due to which high energy is required to remove $3e^-$

62 **(c)**

 O_2^- has one unpaired electron in its antibonding molecular orbital.

63 **(b)**

Removal of electron is easier in the order of shell 4 > 3 > 2 > 1

64 **(d)**

Ionic radii increases in a group

65 (d)

Ionic compounds conduct current only in fused state.

66 **(a**)

The bond orders for H_2 , H_2^+ , He_2 and He_2^+ are 1.0, 0.5, 0.0 and 0.5 respectively.

67 **(d**)

CH₃⁺ and NH₂⁺ both have 8 electrons.

69 **(c)**

O atom possesses sp^3 -hybridization with two lone pair of electron.

70 **(d)**

 $Be_2C + 2H_2O \rightarrow CH_4 + 2BeO$

$$Al_4C_3 + 6H_2O \rightarrow 3CH_4 + 2Al_2O_3$$

71 **(d**)

H₂O is V shaped.

72 **(b)**

NH₄⁺ has angle of 109°28′.

73 **(a)**

Due to sp^3 -hybridization on P with one lone pair.

74 **(a)**

In MnO $_4^-$, the oxidation no. of Mn is +7, *i. e.*, all the 4s and 3d electrons are lost.

75 **(a)**

If difference in electronegativity in between two atoms is 1.7, the molecule possesses 50% covalent +50% ionic nature.

76 **(b)**

CsCl is most ionic because of most electropositive nature of Cs.

77 **(c)**

Anion (0^-) repels the test electron because of same charge.

78 **(b)**

It is a fact.

79 **(b)**

Ionic radii decreases significantly from left to right in a period among representative elements

80 (d

B and Si shows the diagonal relationship.

81 (d)

$$O_{2}^{-}: \sigma 1s^{2}, \sigma^{*}1s^{2}, \sigma 2s^{2}, \sigma^{*}2s^{2}, \sigma 2p^{2}\begin{bmatrix} \pi 2p_{y}^{2} \\ \pi 2p_{z}^{2} \end{bmatrix} \pi^{*}2p_{y}^{2}$$

$$\therefore B. O. = \frac{10-7}{2} = 1.5$$

82 (a)

ZnO can react with acid and base both ZnO+2HCl \rightarrow ZnCl₂ + H₂O ZnO+2NaOH \rightarrow Na₂ZnO₂ + H₂O

83 **(d)**

While moving along a group from top to bottom, acidic nature of oxides decreases and along a period left to right acidic nature increases.

Thus, $Al_2O_3 < SiO_2 < P_2O_3 < SO_2$

85 **(b**)

Bond angles of CIF₃, PF₃, NF₃ and BF₃ are $(180^{\circ}, 90^{\circ})$, (101°) , (106°) and (120°) respectively.

86 **(b)**

IE (II) of Na is higher than that of Mg because in case of Na, the second e^- has to be removed from the noble gas core while in case of Mg removal of second e^- gives a noble gas core Mg has high first ionisation potential than Na

Mg has high first ionisation potential than Na because of its stable ns^2 configuration

87 **(d)**

Follow concept of bond order in M.O. theory.

88 **(c**

 sp^3 -hybridization leads to tetrahedral geometry.

89 **(a)**

5 of P + 24 of 0 + 3 of -ve charge = 32.

91 **(c)**

SnO₂, Al₂O₃ and ZnO are amphoteric oxide.

92 **(c)**

The inert gas just after chlorine is argon.

93 **(b)**

Cation has small size than parent atom and anion has larger size than parent atom

94 **(c)**

Due to the presence of *d*-subshell electrons.

95 **(b)**

Coulombic forces are strongest among all.

96 **(b)**

Transition elements are those elements which have partially filled d-subshells in their elementary form. Therefore, the general electronic configuration of d-block element is $(n-1)d^{1-10}ns^{1-2}$.

97 (a)

In ionic solids, ions exist at lattice points. In covalent solids atoms lie at lattice points.

98 **(a)**

Ionic bond are non-directional.

99 (c

Both carbon atoms have 2 σ - and 2 π -bonds

100 (c)

Diamond is hard, graphite is soft.

101 (d)

SiO₂ structure is definite.

102 (d)

P in PO_4^{3-} has sp^3 -hybridization like S in SO_4^{2-} .

103 **(c)**

C - F bond is more polar than C - Cl.

104 **(b)**

Ionic radii $\propto \frac{1}{z_{eff}} \propto charge$ of anion

$$\propto \frac{1}{\text{charge on cation}}$$

Thus, the order of ionic radii is

$$N^{3-} > 0^{2-} > F^- > Na^+ > Mg^{2+}$$

105 (c)

Ionic radii is the distance between the nucleus of an ion and a point upto which the nucleus has its influence on its electron cloud.

The size of ions increases on moving from top to bottom in a group. Hence, the maximum distance between the centres of cations and anions is in CsI because Cs is the largest cation and I is the largest anion.

106 **(b)**

Bond angles of BeF_2 , H_2O , NH_3 and CH_4 are 180° , $104^\circ31'$, $106^\circ50'$, $109^\circ28'$ respectively.

107 **(b)**

Count σ and π bonds.

108 **(b)**

The atomic radii decreases along the period and increases down the gp.

109 **(b)**

Ionisation energy increases along the period.

110 **(d)**

Due to dipole moment intramolecular forces of attraction becomes stronger and thus, liquefaction becomes easier.

111 (d)

$$He_2^+(B. 0. = 0.5) < O_2^-(B. 0. = 1.5)$$

< $NO(B. 0. = 2.5) < C_2^{2-}(B. 0. = 3.0)$

112 **(c)**

Larger is anion, more is covalent character.

113 (c)

Due to resonance structure of C₆H₆.

114 (a)

$$5 (on P) + 4(on H) - 1 = 8.$$

115 (a)

Pauling scale is based upon the excess bond energies. Pauling equation for determining the electronegativity of an element is

$$X_A - X_B = 0.208\sqrt{\Delta}$$

where, X_A , X_B =electronegativity values of elemnt A and B

 Δ =polarity of A-B bond.

116 (a)

Be²⁺ is smallest and Na⁺ has largest radius.

117 **(b)**

Both have sp^2 -hybridization geometry.

118 **(d)**

Non-polar species exert van der Waals' forces among themselves.

119 (d)

 ICl_2^- has sp^3d -hybridization and has two bond pairs and three lone pairs of electrons.

120 (d)

Halogens are strong oxidising agents. The oxidising power halogen decreases from fluorine to iodine, because their reduction potential decreases from fluorine to iodine. The increasing order of their oxidising power is as

Element $I_2 < Br_2 < Cl_2 < F_2$

Reduction

potential +0.54 +1.06 +1.36 +2.87

121 **(c)**

CaO is basic oxide.

122 **(b)**

Be in BeF $_3^-$ is sp^2 -hybridized.

123 (a)

 $_3$ Li $-1s^22s^1$ donates one electron easily

124 **(b)**

Ionization energy increases along the period and decreases down the group. Also (b) has [Ne] $3s^2$, $3p^3$, *i. e.*, half filled configuration, being more stable and thus, have high ionization energy

125 **(c)**

Carbon cannot accept $6Cl^-$, since it has no vacant d-orbitals.

126 **(d)**

 BCl_3 has sp^2 -hybridization. Rest all have sp^3 -hybridization having one lone pair of electron and thus, pyramidal in nature.

127 (c)

Both NH_3 and H_2O have sp^3 -hybridization. CO_2 and $BeCl_2$ are linear (sp-hybridization)

128 **(d)**

The bond angles in sp^3 , sp^2 and sp-hybridization are 109°, 120° and 180° respectively.

129 (a)

B. p. of H_2 is minimum.

130 **(b)**

e.g., BF_3 .

131 **(a)**

s-orbitals never go for lateral overlapping because of non-directional nature.

132 (c)

 H_2O possesses the tendency for H –bonding.

133 (d)

It is a reason for given fact.

134 **(c)**

It is a fact.

135 **(b)**

Rest all either has incomplete (BF_3, BeF_2) octer or expanded octet (ClO_2) .

136 (a)

Bond energy increases with increase in bond order.

137 **(b)**

Electron affinity is defined as, "The energy released when an extra electron is added to a neutral gaseous atom."

Electron affinity of F=332.6 kJ/mol

Electron affinity of Cl=348.5 kJ/mol

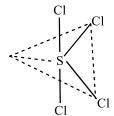
Electron affinity of S=200.7 kJ/mol

Electron affinity of 0=140.9 kJ/mol

Highest electron affinity among fluorine, chlorine, sulphur and oxygen, is of chlorine.

The low value of electron affinity of fluorine than chlorine is probably due to small size of fluorine atom *i.e.*, electron density is high which hinders the addition of an extra electron.

138 **(b)**


Bond order for $O_2 = 2$ and for $O_2^+ = 2.5$ Both are paramagnetic (O_2 has 2 unpaired electron, O_2^+ has one unpaired electron).

139 **(d)**

Bond order for $H_2^- = +1/2$.

140 **(c)**

S in SCl_4 is sp^3d -hybridized and possesses seesaw structure whereas $SiCl_4$ is tetrahedral.

141 (d)

$$_{22}\text{Ti}: 3s^2, 4s^2 \xrightarrow{IE_1} 3d^2, 4s^1$$
 $_{23}\text{V}: 3d^3, 4s^2 \xrightarrow{IE_1} 3d^3, 4s^1$
 $_{24}\text{Cr}: 3d^5, 4s^1 \xrightarrow{IE_1} 3d^5 \xrightarrow{IE_2 \text{ from half filled}} \text{maximum}$
 $_{25}\text{Mn}: 3d^5, 4s^2 \xrightarrow{IE_1} 3d^5, 4s^1$

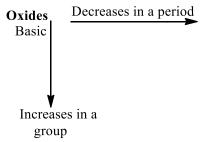
142 **(c)**

In transition elements, penultimate shell electrons also participate in bonding.

143 **(a)**

With the discovery of inert gases (group zero in Mendeleef's Periodic Table), the law of octaves lost its original significance since, it was now the ninth element which had properties similar to the first one.

144 **(b)**


Na belongs to IA group and Mg belongs to IIA group. On moving from left to right in a period,

first ionisation energy increases, thus, IE of Mg is greater than the IE of Na.

IE order

Mg > Na

145 (a)

basic nature of oxides $Al_2O_3 < MgO < Na_2O < K_2O$

147 **(c)**

Total energy required for the conversion of one Mg atom into $Mg^{2+}is = IE_1 + IE_2$

$$= 7.646 + 15.035 \text{ eV}$$

$$= 22.681 \text{ eV}$$

$$= 2188.6 \text{ kJ mol}^{-1}$$

Moles of Mg =
$$\frac{12 \times 10^{-3}}{24}$$

$$= 0.5 \times 10^{-3}$$

 \div The energy required to convert 0.5×10^{-3} mol Mg into

$$Mg^{2+} = 0.5 \times 10^{-3} \times 2188.6$$

= 1.09 \approx 1.1

148 (a)

The size of isoelectronics decreases with increase in atomic number.

149 (c)

Since, the IVth IE is very high, *ie*, electron is to be removed from stable configuration, thus it has 3 valence electrons

150 **(b)**

These are facts.

151 (a)

The ionisation energy increases when we move from left to right in a period. But this increase is not regular. The members of second group have greater ionisation potential as compared to third group due to stable configuration.

Ionisation potential has following order

152 **(c)**

Both SO_4^{2-} and BF_4^- have sp^3 -hybridization and are tetrahedral.

153 **(d)**

First IP of Be > B because of stable ns^2 configuration

154 **(c)**

The correct order according to size is as $0^{2-} > 0^- > 0$

155 (a)

Electron affinity generally increases in a period from left to right because size decreases and nuclear charge increases. But the electron affinity of nitrogen is very low due to extra stability of half-filled 2*p*-orbital. Hence, the order of electron affinity is

$$B < C < O > N$$

156 (c)

Lithium is basic in nature and hence, it is not amphoteric.

157 (c)

Ions are held in NaCl by coulombic forces and thus, possess no velocity.

158 (c)

The jump in ionisation energy occurs when valence shell changes during removal of electron.

159 (d)

The correct order of ionic radii of these ions is $S^{2-} > Cl^- > K^+ > Ca^{2+}$.

160 **(a)**

Nitrogen has more ionisation potential than carbon and oxygen because its outermost orbit is half-filled. So the order is C < N > O

161 **(b)**

Only p-orbitals give rise to σ -bond (head on overlapping) and π -bond (lateral overlapping).

162 **(b)**

Each has 22 electrons.

163 **(b)**

 $BF_3 : sp^2 NO_2^-: sp^2 NH_3: sp^3 NH_2^-: sp^3 H_2O: sp^3$

164 **(a)**

Atomic and ionic radii increase from top to bottom in a group due to the inclusion of another shell at every step. Hence, Cs⁺ ion will be the largest among given IA group ions (Na⁺, Li⁺ and K⁺)

165 (a)

Due to non-availability of d-orbitals, boron cannot expand its octet. Therefore, the maximum covalence of boron cannot exceed 4.

166 **(b)**

Larger anion is easily deformed (Follow Fajans' rule).

167 **(b)**

 ClO_3^- has sp^3 -hybridization with one lone pair of electron.

170 (c)

Silicon has the tendency to show covalent bonding because of higher IP values.

171 **(b)**

 $BeCl_2$ -sp; BF_3 - sp^2 ; NH_3 - sp^3 ; XeF_2 - sp^3d

172 **(d)**

He has $1s^2$ configuration.

173 **(c)**

CO₂ is linear molecule.

174 **(b)**

Ionisation energies increase in a period on moving left to right while it decreases in a group on moving downward. The IE of Be is greater than 186 (b) B due to completely filled s-orbital. Hence, the order of IE is as

Be
$$> B > Li > Na$$
.

175 (d)

In inner transition elements, the differentiating electrons enter into (6n-2)f orbital. Therefore, these elements are also known as f-block elements.

176 (c)

Ionic compounds conduct current in molten state.

177 **(a)**

Difference of electronegativity > 1.7 produces ionic compound.

178 (c)

Ionic radii $\propto \frac{1}{Z_{off}}$

179 (d)

In sulphur, the excitation of *np*-electrons to *nd*subshell gives rise to increase in number of unpaired electrons.

180 **(b)**

As the number of shells increases, ionic radii increases

182 (d)

Ionisation potential increases along the period.

 $Sc^{3+} > Cr^{3+} > Fe^{3+} > Mn^{3+}$, the correct order is $Cr^{3+} > Mn^{3+} > Fe^{3+} > Sc^{3+}$

184 (a)

1.
$$1s^2, 2s^2, 2p^5 = 2, 7$$

(: It has capacity to accept electron therefore, it is electronegative.)

(b) $1s^2$, $2s^2$, $2p^4$, $3s^1 = 2$, 6, 1

(configuration not correct $(2p^4)$)

(c) $1s^2$, $2s^2$, $2p^6$, $3s^1$, $3p^5 = 2, 8, 6$

(configuration not correct $3s^1$)

(d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^5 = 2.8.7$

(: It has capacity to accept electron therefore, it is electronegative)

Smaller the size, greater will be electronegativity. Since, element in choice (a) is smaller in size, it will be more electronegative than (d). In choice (a) the atomic number of element is 9, which is of fluorine and it is the most electronegative element of the Periodic Table.

185 (d)

IIIA group contains both metals and non-metals

Only P has d-orbitals.

187 **(c)**

The general electronic configuration of d-block element is $(n-1)d^{1-10}$, ns^{1-2} . They show variable oxidation state because d-electrons also take part in bond formation. They have degenerated orbitals. s and p-block elements in general do not show variable oxidation states.

189 (a)

Be F_3^- involves sp^2 -hybridization.

190 (d)

The electron affinities of some of the elements of second period (ie, N, O, F, etc) are however, lower than the corresponding element (ie, P, S, Cl, etc) of the third period. This is due to the reason that the elements of second period have the smallest atomic size amongst the elements in their respective groups. As a result, there are considerable electron-electron repulsion within the atom itself and hence, the additional electron is not accepted with the same ease as is the case with the remaining elements in the same group

191 **(d)**

 E_{op}° order is Mg > Fe > Cu; more is E_{op}° , more is electropositive character.

194 (a)

Non-metals are characteristically electronegative.

195 (a)

The relative extent to which the various orbitals penetrate the electron clouds of other orbitals is s > p > d > f. Electron will experience the greatest effective nuclear charge when in sorbital, then a p-orbital and so on. Ionisation energy increases with an increase in penetration power and thus, the order of screening effect is s > p > d > f.

196 (a)

Carbon in H_2CO_3 has sp^2 -hybridization and also

polar. BF_3 has sp^2 but non-polar. SiF_4 has sp^3 -hybridization. $HClO_2$ has sp^3 -hybridization.

197 **(c)**

 $0^{-}(g) + e^{-} \rightarrow 0^{2-}(g), \Delta H^{\circ} = 844 \text{ kJmol}^{-1}$

This process is unfavorable in the gas phase because the resulting increase in electron-electron repulsion overweighs the stability gained by achieving the noble gas configuration.

199 (c)

The fifth period from nubidium (37) to xenon (54). The last electron enters in 5s, 4d or 5p-orbitals. Therefore, the fifth period has (2+10+6)18 elements.

200 (d)

Cs is more electropositive.

201 **(b)**

The element with atomic no. 105 is Dubnium. In IUPAC nomenclature, it is known as Un-nil-pentin.

202 **(b)**

Oxidizing power: $F_2 > Cl_2 > Br_2 > I_2$.

203 **(c)**

Halogens are most electronegative. Their general configuration is ns^2np^5

204 **(b)**

They have high electron density.

205 (a)

Cations are always smaller than their parent atoms:

$$Al^{3+} < Al^{2+} < Al^{+} < Al$$
.

206 **(c)**

$$C_2 (CN)_4 \text{ is}$$
 $N \equiv C - C - C \equiv N$
 $N \equiv C - C - C \equiv N$

C = C is sp^2 -hybridization and $C \equiv N$ is sp-hybridized.

207 (a)

Each species has 14 electrons and bond order for each is three.

208 **(b)**

Fluorine although have highest electronegativity due to its very small size, effective inter electronic repulsions are observed which brings down its electron affinity

209 (c)

$$r_H = \frac{74}{2} = 37 \text{ pm}, r_{\text{Cl}} = \frac{198}{2} = 99 \text{ pm}.$$

B. L. of HCl = $r_{\text{H}} + r_{\text{Cl}}$

210 (a)

Thus, excitation of 2*s*-elctron in N is not possible.

211 (c)

Second electron affinity of oxygen is endothermic

and greater than first electron affinity, which is exothermic

212 **(a)**

Based on geometry of molecule.

213 **(a)**

 $K^+ \rightarrow K^{2+} + e^-$. Since, e^- is to be removed from stable configuration

214 (a)

Proteins show H-bonding.

215 **(c)**

A reason for the given fact.

217 **(b)**

The intermolecular forces increase with increase in mol. Wt.

218 **(c)**

Atomic radius decreases on going from left to right in a period. Thus, size of 0 > F. As 0^{2-} and F^- are isoelectronic, therefore size of $0^{2-} > F^-$

219 (a)

$$Na^+ < F^- < 0^{2-} < N^{3-}$$

All are isoelectronic. Effective nuclear charge is highest for Na⁺, so it has the smallest size

221 (a)

$$_{6}C \rightarrow 1s^{2}, 2s^{2}, 2p^{2}$$

 $_{5}B \rightarrow 1s^{2}, 2s^{2}, 2p^{1}$

In first case IE_1 of $C > IE_1$ of B. Since, carbon is smaller than B in size. But $IE_2(B) > IE_2(C)$ because electron are paired as well as present in inner s-orbital whereas for carbon it will be still in 2p-orbital and in unpaired state

222 (c)

$$KHF_2 \rightarrow K^+ + HF_2^-$$

223 **(b)**

 H_2O has sp^3 -hybridizatio.

224 **(b)**

Bond energy of Cl₂ is higher among all halogen molecules. B. E. of F₂, Cl₂, Br₂, I₂ are 37, 58, 46 and 36 kcal mol⁻¹ respectively.

225 **(b)**

 Cl_2 involves 3p-3p overlapping.

226 (c)

 ${\rm CCl_4}$ has sp^3 -hybridization giving regular tetrahedron geometry. In others the geometry is little distorted inspite of sp^3 -hybridization due to different atoms on the vertices of tetrahedron.

227 (c)

$$Cl^-$$
 has $1s^2$, $2s^22p^6$, $3s^23p^6$ configuration.

228 **(c)**

N atom in NH₃ provides electron pair to H⁺ to form coordinate or dative bond (H₃N \rightarrow H).

229 (d)

 $IP_3 > IP_2 > IP_1$.

230 (c)

The order of stability matel oxides is as: $Fe_2O_3 < Cr_2O_3 < Al_2O_3 < MgO$

231 (a)

First ionisation energy increases from left to right | 243 (a) across a period, but Mg has extra stability than Al, due to full-filled 3s-orbitals.

$$Na_{11} = 1s^2, 2s^2, 2p^6, 3s^1$$

$$Mg_{12} = 1s^2, 2s^2, 2p^6, 3s^2$$

$$Al_{13} = 1s^2, 2s^2, 2p^6, 3s^2, 3p^1$$

$$Si_{14} = 1s^2, 2s^2, 2p^6, 3s^2, 3p^2$$

The correct order of first ionisation potential is Na < Mg > Al < Si

 $1s^2$, $2s^22p^4$ leads a sharing of two electron pairs to form molecule, e.g., O_2 .

233 **(b)**

M.O. configuration of N₂ is: $\sigma 1s^2 \sigma^* 1s^2$, $\sigma 2s^2 \sigma^* 2s^2$, $\pi 2p_v^2$, $\pi 2p_z^2$, $\sigma 2p_x^2$ M.O. configuration of N_2^+ is:

 $\sigma 1s^2 \sigma^* 1s^2$, $\sigma 2s^2 \sigma^* 2s^2$, $\pi 2p_v^2$, $\pi 2p_z^2 \sigma 2p_x^1$

234 (a)

Both are linear.

235 **(b)**

 SO_2 has sp^2 -hybridization.

236 (d)

The basic character of metal oxides decreases from left to right in a period due to decrease in electropositive character which in turn decreases the polarity of bond as well as the internuclear distance between the oxygen and metal atom. Therefore, alkali metal oxides are most basic and halogen oxide (oxygen halides) are most acidic ∴ K₂O is most basic metal oxide.

237 **(c)**

Same spin electrons in two atoms do not take part in bonding.

239 (a)

Count σ - and π -bonds.

240 (d)

Valency is according to valence shell configuration which here is $1s^2$, $2s^2$, $2p^3$, ie, 5

241 (d)

 CaI_2 has maximum covalent character due to large 251 (c) size of anion and possesses lowest lattice energy. Thus melting point is lowest.

242 (a)

Nitrates of alkali metals on heating evolve oxygen

gas (e.g., KNO_3) while nitrates of p and d-block elements $[e.g., (NO_3)_2, Cu(NO_3)_2$ and $AgNO_3]$ gives out nitrogen dioxide on heating $2KNO_3 \rightarrow 2KNO_2 + O_2$

Nitrogen dioxide cannot be prepared from KNO_2 .

Be²⁺ Cl⁻ S²⁻ Na⁺ Mg²⁺ Br⁻ Ions Valence shell 1 3 3 2 Now, between Na^+ and Mg^{2+} , $Na^+ > Mg^{2+}$ (isoelectronic), between Cl^- and S^{2-} , $S^{2-} > Cl^-$ (isoelectronic) because for isoelectronic species size decreases as the atomic number increases.

Hence, the order of increasing size is

$$Be^{2+} > Mg^{2+} > Na^{+} > Cl^{-} > S^{2-} > Br^{-}$$

244 (d)

 $PCl_3 < PBr_3 < PI_3$, the bond angle order is explained in terms of increasing electronegativity of halogens, whereas, PF₃ > PCl₃, bond angle order is explained in terms of $p\pi - d\pi$ bonding in PF_3 .

245 (d)

Hg exists in liquid state.

246 **(d)**

$$117 = [Rn]5f^{14}, 6d^{10}, 7s^27p^5$$

Since, the last electron enters in *p*-orbital, it will be a *p*-block element and its group number =5+2=7 (VIIA)

So, the element would be the placed in halogen family.

247 **(b)**

The elements with atomic number 9, 17, 35, 53 and 85 are respectively F, Cl, Br, I and At. These are VII A group elements which are also known as halogens (which means originating from sea.) These also have 7 electrons in valence shell (i.e., ns^2np^5)

e.g.,

$$_{9}F = 1s^{2}, 2s^{2}, 2p^{5}$$

 $_{17}Cl = 1s^{2}, 2s^{2}2p^{6}, 3s^{2}3p^{5}$

249 **(b)**

 IE_1 of N > IE_1 of O due to half filled nature in N.

250 **(a)**

Solid molecules possess stronger van der Waals' forces.

SiF₄ has regular tetrahedral geometry.

252 **(b)**

IA-Alkali metals

IIA-Alkaline earth metals

IB-Coinage metals

253 **(c)**

The bond angle in CH_3OCH_3 is 110° inspite of sp^3 - 266 (d) hybridization of O and two lone pair due to stearic hindrance.

254 (a)

Removal of electron is easier in f-block elements due to more shielding.

255 **(b)**

Seven atoms of fluorine are covalently bonded with iodine.

256 **(b)**

As a result of more overlapping. Note that π bonds are formed after σ -has already formed.

257 (d)

 $1s^2$, $2s^22p^6$, $3s^23p^6$, $4s^2$. Principal quantum number is 4, so it belongs to 4th period

258 **(d)**

Resultant of two opposite vectors produces zero dipole moment.

259 **(d)**

The trigonal geometry of BF₃ with three vectors $(B \rightarrow F)$ acting at 120° leads to zero dipole moment. In NH₃ three vectors (N \leftarrow H) act at 107° along with one lone pair giving dipole moment in molecule.

260 **(c)**

PF₅ involves sp^3d -hybridization.

261 **(c)**

C < N > 0 is the correct order because N has stable configuration (exactly half-filled *p*-orbital $1s^2, 2s^2, 2p^3$).

262 **(c)**

(a) Metallic radii increase in a group from top to bottom.

Thus, Li < Na < K < Rb is true

(b) Electron gain of enthalpy of Cl > F and decreases along a group.

Thus, I < Br < F < Cl is true.

(c) Ionisation enthalpy increases along a period left to right but due to presence of half-filled orbital in N, ionisation enthalpy of N > 0.

Thus B < C < N < 0 is incorrect.

263 (c)

Pauling work on chemical bonding.

264 **(d)**

The order of electron affinity among the halogens

Cl > F > Br > I

265 (c)

Electronegativity of elements increases along the period and, decreases down the group.

Size of atom decreases with increase in atomic number across the period in Periodic Table.

267 (a)

Difference between S and S²-is larger radii and larger size os S^{2-} .

As the radii of the anion is always larger than the atomic radii of its parent atom. In an anion as electron or electrons are added to the neutral atom, the nuclear charge acts on more electrons, so that each electron is held less tightly and thereby, the electron cloud expands.

268 (d)

 NH_2^- has sp^3 -hybridization having two covalent bonds and two lone pair of N atom.

269 (a)

Smaller is size of anion, lesser is its polarization, more is ionic nature, more is lattice energy.

270 (d)

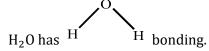
$$HC \equiv C - HC = CH - CH_3 10\sigma, 3\pi$$

271 (d)

The charge-size ratio increases and thus polarising power increases.

272 (a)

In a given group, atomic size increase due to addition of extra shell which outweighs the effect of increased nuclear charge. Number of shells increases with addition of extra electrons. Hence, increase in atomic size down the group is due to increase in number of electrons.


274 (a)

B is non-metal among Be, Mg, Al and B. Be Mg and Al are metals. Metallic character increases when we move down the group and decreases along period.

275 **(d)**

 ICl_2^- has sp^3d -hybridized state (i.e., trigonal bipyramidal shape but distorted due to the presence of lone pair of electron on I atom.)

276 **(b)**

277 (d)

Oxidizing power decreases in a group

278 (a)

Solubility order: AgF > AgCl > AgBr > AgI.

280 (d)

Phosphorus is a non-metallic element. It forms acidic oxide.

281 **(d)**

 EA_1 for elements is exothermic and EA_2 is endothermic. Also EA_2 for $O > EA_1$ for O.

282 **(a)**

C₆H₆ has regular hexagonal geometry.

283 **(c)**

H-bonding is noticed in molecules having H atom attached on N, O or F.

284 (d)

One carbon has three bonds and other five where as each should have four bonds.

285 **(c)**

h-bonding in $\rm H_2O$ increases forces of attracting among molecules and develops abnormal properties.

286 (a)

2, 8, 2 because it would donate electron more easily

287 **(c)**

Bond energy increases with multiplicity of bonds.

288 (d)

Examine the positions in Periodic Table.

PS

Phosphorus is having stable half-filled configuration.

Hence, order is B < S < P < F

289 **(c**`

Both BrO_3^- and XeO_3 have sp^3 -hybridisation and one lone pair of electron.

290 (a)

The electronic configuration of transition elements is exhibited by

$$(n-1)d^{1-10}$$
, ns^2

291 **(b)**

The bond order for O_2^{2-} , O_2^{-} , O_2^{-} , O_2^{+} are 1.0, 1.5, 2.0, 2.5 respectively. higher is bond order, more is bond energy.

292 (c)

The electronic configuration of nitrogen is ${}_{7}\text{N}=1s^2,2s^2,2p^3$

$$2p^3$$
 111

half-filled p-orbital

Due to presence of half-filled p-orbital, (more stable) a large amount of energy is required to remove an electron from nitrogen. Hence, first ionisation energy of nitrogen is greater than that of oxygen.

The electronic configuration of oxygen is ${}_{8}O=1s^{2},2s^{2}2p^{4}$

Greater repulsion

The other reason for the greater IP of nitrogen is that in oxygen, there is a greater interelectronic repulsion between the electrons present in the same *p*-orbital which counter-balance the increase in effective nuclear charge from nitrogen to oxygen.

293 **(d)**

Multiplicity in bonds decreases bond lengths.

294 **(b)**

It is an ionic compound. The most ionic compound is CsF.

295 **(b)**

 NO_2^- sp

 NO_3^- sp

 $NO_2^ sp^3$

 NO_4^+ sp^3

SCN- sp

296 **(a)**

It is the definition of valency.

297 (c)

 \equiv C – has 2σ - and 2π -(thus, sp-hybridization);

-CH = has 3 σ - and 1 π -(thus, sp^2 -hybridization). Remember hybridized orbitals do not form π -bonds

298 (d)

IP of inert gases is maximum.

299 (c)

Bond angles decrease down the group.

300 (a)

Fluorine being most electronegative atom, has a high tendency to gain electron. Thus, it readily forms anions

301 **(d)**

A characteristic of metallic bonding.

303 (a)

Electron deficient species can accept lone pair of electron and thus, act as Lewis acid.

304 (a)

Brass in an alloy.

305 **(d**)

Ionic compounds having lattice energy higher than hydration energy are insoluble in water.

306 **(a)**

Electronegativity difference in two atoms involved in bonding is a measure of polarity in

molecule.

307 (d)

Electronegativity increases along the period and decreases down the group.

308 **(b)**

Ionization potential increases along the period. Also Be has $1s^2$, $2s^2$, *i. e.*, removal of electrons from 2s while in Boron it occurs from 2p and therefore, Be has high I. P.

309 (a)

Na
$$\rightarrow$$
 Na⁺ + e; *IE* of Na = +ve
Na⁺ + e \rightarrow Na; *EA* of Na⁺ = -ve
Both are equal but opposite in nature.

310 (c)

Given,

Atomic number of element B = Z

(∵ Noble gas ∴ Belong to zero group)

Atomic number of element A = Z - 1

(*i.e.*, halogens)

Atomic number of element C = Z + 1

(*i.e.*, group IA)

Atomic number of element D = Z + 2

(i.e., group II A)

- ∵ Element B is a noble gas.
- ∴ Element *A* must be a halogen *i.e.*, have highest electron affinity and element C must be an alkali metal and exist in+1 oxidation state.

And element *D* must be an alkaline earth metal with +2 oxidation state.

311 **(b)**

Both possess sp^2 -hybridization but different geometry.

313 (a)

The addition of second electron in an atom or ion is always endothermic as the incoming electron experience the greater force of repulsion

314 (a)

$$3 = 1s^2, 2s^1$$

 $12 = 1s^2, 2s^2, 2p^6, 3s^2$

Since, last electron enters in *s*-orbitals, these are s-bloc elements

315 (d)

Rest all are periodic properties of elements.

316 **(b)**

In the Periodic Table metals usually used as catalysts belong to *d*-block *e.g.*, Ni, Pt etc.

317 (c)

Bond order
$$C_2^- > NO > O_2^- > He_2^+$$

3 5/2 3/2 1/2

318 (a)

It is a fact derived from bond order.

319 **(b)**

Due to sp^2 -hybridization.

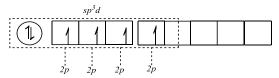
320 **(b)**

H-bond has its bond length in the range 2.5 Å to 2.75 Å.

321 **(b)**

It has sp^3d^3 -hybridization with one lone pair on Xe.

322 (c)


HCl exists as $H^{\delta+}$ – $Cl^{\delta-}$ due to difference in electronegativity of H and Cl.

324 (d)

Each has 10 electrons

325 **(a)**

In SF₄, S has sp^3d -hybridization. Thus, it contains two axial and two equatorial bonds to give seesaw structure.

326 (a)

Van der Waals' forces increases in CH₄ to give solid CH₄.

327 **(b)**

Multiplicity in bonding give rise to an increase in bond energy.

328 **(b)**

The electron affinity (in kJ/mol)

Fluorine=332.6

Chlorine=348.5

Bromine=324.7

Iodine=295.5

Chlorine has highest electron affinity value, so, according to question the correct order of electron affinity will be $Cl_2 > F_2 > Br_2$.

329 (c)

According to M.O. theory, bond order of N₂, N₂ and N_2^{2-} are 3, 2.5 and 2 respectively.

331 (c)

$$O_2^{2-}: \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2 \sigma^* 2s^2 \sigma 2p^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{bmatrix} \pi^* 2p_y^2$$

$$B. 0. = \frac{10-8}{2} = 1$$

$$B_2: \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2 \begin{bmatrix} \pi 2p_y^1 \\ \pi 2p_z^2 \end{bmatrix}$$

$$B. 0. = \frac{6-4}{2} = 1$$

B.
$$0. = \frac{6-4}{2} = 1$$

332 (c)

 C_2H_4 involves sp^3 -hybridization on carbon atoms. 346 **(d)**

$$[0-0]^{2-}$$

334 **(d)**

The electronic configuration of carbon is $1s^2, 2s^22p^2$.

335 **(a)**

Only Na shows+1 oxidation state. Rest all have +1, +2 (Hg), +1, +2(Cu) and +2, +3(Fe) oxidation states.

336 (a)

Like gets dissolved in like. It is theory.

Cu loses two electron to form Cu²⁺.

338 **(c)**

Only then it can accept lone pair in that shell.

339 (a)

The electron affinity of fluorine is lower than that of chlorine due to the very small size of fluorine in which negative charge is highly concentrated and repels the incoming electron thereby reducing the force of attraction of nucleus towards the adding electron and hence, decreasing the electron

Thus, chlorine has highest value of electron affinity.

340 **(b)**

In the Periodic Table, when one moves from left to right in a period, the acidity of oxides and halides of elements increases while it decreases when one moves from top to bottom in a group. Hence, PCl₃ is most acidic among given species.

341 (d)

It is the hybridization of ICl₂⁺.

342 (d)

$$_{20}$$
Ca = [Ar]4s²
 $_{21}$ Sc = [Ar]4s², 3d¹
 $_{22}$ Ti = [Ar]4s², 3d²

As d-orbital have diffused shape, hence their electron shields nuclear charge upto lesser extent. Hence, due to increase in effective nuclear charge $(Z_{\rm eff})$ atomic size decrease, in the following order Ca > Sc > Ti

343 (c)

$$\mu_{\text{H}_2\text{O}} \neq 0$$
, $\mu_{\text{CO}_2} = 0$

344 (c)

F₂ is most reactive due to

- (1) highest electronegativity.
- (2) low bond dissociation energy
- (3)high heat of hydration of F⁻ion

ClO₂ has 33 electron; one will be unpaired.

347 (d)

Down the group, size of atom increases. Therefore, bond length of LiF is less than that of NaF

348 (c)

Bond order =
$$\frac{1}{2}$$
 [bonding electrons – antibonding electrons]

349 **(b)**

 $sp^3 d^2$ -hybridization leads to octahedral geometry.

350 (a)

Ionic radii =
$$\frac{n^2 a_0}{Z_{eff}}$$

351 (c)

H atom attached of F is responsible for H-bonding.

352 **(b)**

Be₂ $(\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2)$ has bond order equal to zero.

353 (c)

The electronic configuration of element with atomic number 21 is

$$1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2, 3d^1$$

Since, this element contains partly filled d-orbital, so it is a *d*-block element. *d*-block elements are also known as transition elements.

354 (a)

Head on overlapping give rise to σ -bond formation.

355 (a)

A species is amphoteric if it is soluble in acid (behaves as a base) as well as in base (behaves as an acid.)

$$SnO_2 + 4HCl \rightarrow SnCl_4 + 2H_2O$$

basic acid

$$SnO_2 + 2NaOH \rightarrow Na_2SnO_3 + H_2O$$

acid base

356 **(b)**

The first ionisation potential generally increases in a period from left to right and decreases in a group from up to down. Thus, the correct order of first ionisation potential is

$$K < Na < Be$$
.

357 (a)

As we go down the group in Periodic Table, atomic size increases, force of attraction for the added electron decreases, hence electron gain enthalpy decreases.

$$X(g) + e^- \rightarrow X^-(g)$$

Actual order, Cl > F > Br > I

The fact that fluorine has a less electron gain enthalpy than chlorine seems to be due to the relatively greater effectiveness of 2p-electron in the small F-atom to repel the additional electron entering the atom than do 3p-electrons in the larger Cl-atom.

358 (a)

Bond angle for sp, sp^2 and sp^3 -orbitals are 180° , 120° and $109^\circ28'$ respectively.

359 (d)

Dipole forces exist only in polar molecule.

360 (c)

Reason being, as we move in period atomic radii decreases from left to right due to increase of effective nuclear charge.

∴ Na is larger in size than Mg and a neutral atom is larger than its positive ion.

362 (a)

Ionisation energy defined as the energy required to remove an electron from the outermost orbit of an isolated gaseous atom in its ground state.

$$Na(11) = 1s^2, 2s^2, 2p^6, 3s^1$$

$$Na \rightarrow Na^+ + e^-(First IE)$$

$$Na^+ \rightarrow Na^{2+} + e^-$$
 (Second IE)

First IE is lower and second IE is very higher, because removal of an electron from Na⁺is very difficult.

363 **(b)**

Follow Fajans' rule to predict covalent nature.

364 (c)

BCl₃ has equilateral triangular shape leading to vector sum of polar bonds to zero.

365 (c)

The property of attracting electrons by an at atom of a molecule is called electronegativity. However, electron affinity is the amount of energy liberated when an electron is added to an isolated gaseous atom.

366 (c)

$$Na(11): 1s^2, 2s^22p^6, 3s^1$$

It is an alkali metal. Alkali metal oxides are basic in nature.

367 (c)

Ionisation energy decreases down the group.

368 **(b)**

KO₂ is an ionic compound.

369 (c)

Oxygen cannot expand its octet due to absence of *d*-orbitals in its valence shell.

370 (c)

In case of isoelectronic species

Ionic radius
$$\propto \frac{1}{\text{nuclear charge}}$$

Thus, the order of ionic radii of given ions is $0^{2-} > F^- > Na^+ > Mg^{2+} > Al^{3+}$

371 (a)

 $1s^2$, $2s^2p^6$, $3s^2$ — In III transition e^- is to be removed from stable configuration

372 (a)

Atomic radius decreases along the period, increases down the group.

373 **(b)**

The size of isoelectronic decreases with increase in atomic number.

374 **(b)**

In K_2CrO_4 , the oxidation state of Cr is +6. Therefore, Cr has the minimum radius in K_2CrO_4

375 **(d)**

B in BF₃ has sp^2 -hybridization.

376 **(b)**

Coinage metals are transition metals but they cannot work as transition metal because they have completely filled d-orbital.

Group 1B elements are called coinage metals (Cu, Ag, Au).

Their general outer electronic configuration is $(n-1)d^{10}ns^1$.

377 **(b)**

The ionisation energy of Tin (Sn) is less than that of lead (Pb). It is due to the poor sheilding of d and f -electron in Pb, due to which it feels greater attraction from nucleus.

378 **(d)**

If the EN difference is 1.9, then bond is 50% ionic. The difference in electronegativity is 2.8, therefore, percentage ionic character due to EN difference of 2.8 is

$$\frac{2.8}{1.9} \times 50 = 73.6\%$$

379 **(b)**

In a period from left to right the electropositive nature of elements decreases because nuclear charge increases. Hence, magnesium (Mg) is the most electropositive element among these.

380 (a)

F₃Cl has 10 electrons on Cl atom. A superoctet molecule means for expanded octet on an atom.

381 (d)

IE decreases in a group and increases in a period. Thus, Rb has the lowest IE

382 (c)

The outer electronic configuration = s^2p^1 Thus, valency = 2 + 1 = 3Therefore, the formula of the oxide is X_2O_3

Since, it is an oxide of III group element, its nature is amphoteric

383 (c)

C₂, N₂ and F₂ has no unpaired electron in their molecular orbital configuration.

384 (a)

Noble gases have fully filled valence shell electronic configuration. Therefore, it represents ns^2np^6 .

385 **(c)**

Ne, Ar, Kr, Xe and Rn are diamagnetic in nature.

386 (d)

Sulphur belongs to VI group of Periodic Table hence, it has maximum valency.

387 **(b)**

Dimerization occurs in carboxylic acids which indicates strong H-bonding.

388 **(c)**

Larger anion is polarized more (Fajans' rule).

389 (a)

 P_4O_{10} is

390 **(b)**

Because of small atomic size and high nuclear charge, oxygen has the highest electronegativity among the given

392 (c)

The electronic configuration of the element having atomic number 106 is $[Rn]_{86}$, $7s^1$, $5f^{14}$, $6d^5$

Since, the last electron enters in d-orbit, it is a d-block element. Its IUPAC name is unnilhexium (Unh)

393 **(b)**

Larger cation favours ionic bonding (Fajan's rule).

394 **(b)**

Bond dissociation energy order:

$$Cl_2 > Br_2 > F_2 > I_2$$

242.6 192.8 158.8 151.1 in kJ mol⁻¹

395 (c)

 BCl_3 has six electrons in outer shell of boron atom.

396 **(c)**

Anions are larger in size than their parent atom.

397 **(b)**

Bond order for $O_2 = 2$; $O_2^+ = 2.5$; $O_2^- = 1.5$, $O_2^{2-} = 1$

Thus bond length is $0_2^+ < 0_2 < 0_2^- < 0_2^{2-}$

398 (a)

Atomic size increases as we move from top to down in a group, therefore, the amount of energy required for ejection of an electron from atom decreases *i.e.*, ionisation energy decreases. Hence, the correct order of IE_1 is

399 (d)

Unpaired electrons give rise to paramagnetis.

400 (a)

Bond order = $\frac{1}{2}$ [no. of bonding electron – no. of antibonding electron]

402 **(b)**

SiO₂ possesses giant molecular structure due to tetra valence and catenation nature of Si

403 **(a)**

NO has 15 electrons.

404 **(b)**

The bond length are:

$$C - H < C = C < C - 0 < C - C$$
 107 pm
 134 pm
 141 pm
 154 pm

405 (c)

Inspite of three polar bond, the lone pair of electron on N atom decreases the dipole moment of NF₃ than NH₃.

406 **(b)**

Atomic radii decrease in a period from left to right, hence, fluorine has a very less atomic radii (covalent atomic radii =0.72Å). But inert gases (like Ne) are monoatomic gases, hence, their convalent atomic radii cannot be found out. In fact, their calculated atomic radii is the van der Waals' radii, which is found almost double to covalent radii, hence, the van der Waals' radius of neon (Ne) is about 1.60Å.

407 (a)

: During ionisation, energy is supplied to atom in order to take out electron from it. Energy of atom increases when an electron is removed from atom.

408 **(b)**

Only sulphur has *d*-orbitals.

409 (c)

It is a fact of VSPER theory.

410 **(b)**

Both have one lone pair of electron.

411 (d)

These are characteristics of resonance.

412 **(b)**

$$K_4 Fe(CN)_6 \to 4K^+ + Fe(CN)_6^{4-}$$
.

413 (a)

Like gets dissolved in like.

414 (a)

These atomic numbers give the configuration ns^2np^5 which is of halogen group or VIIth group

415 **(c)**

In O^{2-} effective nuclear charge is minimum due to more number of electrons and thus the size of O^{2-} is maximum.

416 **(b)**

More directionally concentrated orbitals show more overlapping.

417 (a)

 $E_1 < E_2$, because second IE is greater than first IE

418 **(d)**

Halogens have highest electron affinity in the Periodic Table and it decreases down the group. Chlorine has highest electron affinity and fluorine has lower electron affinity than chlorine due to its small size and repulsion between electrons present in it and added electron. The order of electron affinity is

F < Cl > Br > I

419 **(b)**

Fluorine has low EA than chlorine because of smaller size of fluorine and compact 2*p*-orbital where interelectronic repulsion is more

420 **(c)**

Carbon in CO_2 has sp-hybridization.

421 **(d)**

O has two lone pair of electrons.

422 (a)

2nd IE_1 of alkali metals is abnormally higher.

423 **(b**)

 $K^+[C \equiv N]^-$; K^+ and CN^- ionic, C and N forms covalent bonds .

425 **(b)**

More is *s*-character, smaller is hybridized orbital, more becomes tendency for overlapping, more is bond energy, lesser is bond length.

426 **(b)**

Alkali metals are always univalent.

427 (d)

Generally, d-block elements are called transition elements as they contain inner partially filled d-subshell. Thus, their general electronic configuration is $(n-1)d^{1-10}$, n^{1-2} .

428 **(b)**

Electron affinity decreases down the group, but 'O' has small atomic size and 2p-orbital becomes very compact and already has 6 electrons, hence, there is a repulsive force among the already present and added electrons. Some of the energy evolved, due to addition of electron, is used to reduce the repulsion. Hence, the E.A. of O is less than S, so the order is S > O > Se.

429 (d)

BeO is basic oxide and reacts only with an acid to form the salt while

ZnO, SnO₂ and Al₂O₃ are amphoteric oxides which are react with acid and base both.

430 **(d)**

Both C and N⁺ have six electrons.

431 (c)

The size of isoelectronic species decreases with increasing nuclear charge. Hence, the order of ionic radii of N^3 , O^2 and F is as

$$N^3 > 0^2 > Fl$$
1.71 1.40 1.36

432 **(a)**

$$\mu = \sqrt{\mu_1^2 + \mu_2^2 + \mu_1 \mu_2 \cos \theta}$$
, if $\theta = 90^{\circ} \mu$ is maximum.

433 **(d)**

More is electronegativity difference, more is ionic character.

434 (c)

On passing from left to right in a period, acidic character of the normal oxides of the element goes on increasing with increases in electronegativity

435 **(b)**

Due to larger difference in electronegativity.

436 **(b)**

Small cation has more polarizing power.

437 **(b)**

Ionisation potential generally increases in a period from left to right but $1E_1$ of N_2 is greater than that of O_2 . It is due to the more stable (half-filled orbitals) configurations of N.

438 (d)

Ionisation potential is the amount of energy required to take out most loosely bonded electron

from isolated gaseous atom. Its value increases in a period. Element having stable configuration have exceptionally high ionisation potential N has highest ionisation potential among C, B, O and N (: N has $2p^3$ stable configuration).

439 **(b)**

 C^{4-} , N^{3-} and O^{2-} are isoelectronic species. The ionic radius of isoelectronic species decreases with increase the nuclear charge. Hence, the order 455 (a) of ionic radius is

 C^{4-} N3- 0^{2-} **Species** Ionic radii(Å) 2.60 1.71 1.40

440 **(b)**

Energy level order 2p > 2s.

441 (a)

Bond angles decreases on moving down the group for similar compounds, i. e., $NH_3 > PH_3 > AsH_3 >$ SbH_3 .

442 **(d)**

The resultant dipole in regular tetrahedron is zero.

443 **(b)**

Intermolecular H-bonding gives rise to an increase in b. p.

444 (c)

M.O. configuration of O_2 is $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p^2$, $\pi 2p_x^2, \pi 2p_v^2, \pi^* 2p_x^1, \pi^* 2p_v^1$

446 **(b)**

HCl and AlCl₃ are covalent but give ions in solution.

447 (d)

Characteristics of bond order concept.

448 **(b)**

Cations are always shorter than their parent atom, anion are always larger.

449 (a)

 O_2^- has one unpaired electron.

450 **(b)**

The bond formation process is exothermic and thus resultant acquires lower energy level.

451 **(b)**

 H_2O is sp^3 -hybridized; BeF_2 is sp-hybridized.

452 (d)

As the nuclear charge per electron is maximum in P⁵⁺. Therefore, its size is smallest

453 **(b)**

The physical and chemical properties of elements are periodic functions of their electronics configuration. This is the correct statement.

454 **(b)**

2. Br₂is the only non-metal which is liquid at room temperature.

3. Hg is metal which is liquid at room temperature.

4. NH₃is gas at room temperature.

 CH_3^+ possesses sp^2 -hybridization.

457 (a)

Larger anion is more polarized.

458 **(b)**

The ionic radius in general increase moving top to bottom and further decreases moving left to right. So, the correct order is:

 $Na^{+} > Li^{+} > Mg^{2+} > Be^{2+}$ 0.95Å 0.68 Å 0.65 Å

459 (d)

Electron affinity increases across the period

461 **(b)**

F has 7 electrons in its valence shell. Thus, to attain stability, it should have lost one electron.

464 (a)

Ionisation potential is the energy required by an atom to lose electron and their ionisation potential is high.

465 (a)

Mg²⁺ is a smaller cation in these. Smaller is cation more is hydration energy.

466 **(b)**

 NH_3 , $[PtCl_4]^{2-}$, PCl_5 and BCl_3 have sp^3 , dsp^2sp^3d and sp^2 hybridization respectively. Note that hybridization of P in PCl₅ is wrongly reported in problem.

467 (d)

In alkali metals reactivity increases down the group as electropositivity increases, but for halogens F2 is more reactive as moving down molecular stability increases.

468 (d)

Ionisation energy generally increases from left to right in a period but ionisation energy of nitrogen is greater than oxygen due to stable p^3 configuration. Hence, the order is as

$$C < 0 < N < F$$

469 (c)

Cations are smaller in size than their parent atoms.

470 (a)

The order of the ionic radii of the given species is $F^- < 0^{2-} < N^{3-}$

or 1.36 1.40 1.71

471 **(c)**

The ionisation potential decreases down the group (due to increases in size of atom) and increases in a period from left to right.

 \therefore Out of the given choices Li > K > Cs is correct.

472 (d)

O²⁻, F⁻, Na⁺, Mg²⁺ and Al³⁺ are isoelectronic species and higher the nuclear charge, smaller the size of isoelectronic species.

473 (a)

Due to larger difference in electronegativity.

474 (d)

 sp^3d -hybridisation leads to trigonal bipyramidal geometry if no lone pair is present, e.g., PCl_5 ; in ClF_3 geometry is T shaped due to the presence of two lone pair of electron. In XeF_2 , geometry is linear due to the presence of three lone pair of electrons.

475 **(d)**

Formation of solid lattice from oppositely charged ionized gaseous atoms give rise to evolution of lattice energy.

476 (d)

Due to H-bonding, $V_{\text{ice}} > V_{\text{water}}$.

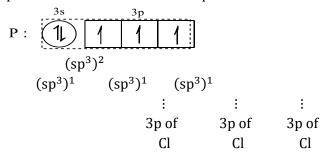
477 **(b)**

Outer shell electrons are referred as valence electrons.

478 (a)

IF₅ is square pyramid (sp^3d^2 -hybridisation in I); PCl₅ is trigonal bipyramid (sp^3d -hybridisation in P).

479 (c)


Operates in each gaseous molecule.

480 (a)

Dipole moment of $CH_4 = 0$.

481 **(b)**

 PCl_3 has sp^3 -hybrisation and possesses one lone pair on P-atom and three bond pairs of electrons

482 **(b)**

Bond order = $\frac{1}{2}$ [no. of bonding electrons – no. of antibonding electrons].

483 (a)

 π -bonding occurs only after σ -bond is formed.

484 (c)

NaF is more ionic; F is smaller anion among all and thus, least polarized.

485 **(b)**

The stability of carbonates increases with increasing electropositive character of metal.

487 **(c)**

Molecular orbital configuration of, $C^+ = \sigma 1 c^2 \sigma^* 1 c^2 \sigma^2 c^2 \sigma^* 2 c^2 \sigma^2 n^2 \pi$

 $C_2^+ = \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_x^2, \pi 2p_y^1$

488 (a)

Stevenson's scale is not a scale of measuring electronegativity.

489 **(d)**

An increase in *s*-character give rise to an increase in bond strength.

490 (d)

Ti⁺ has 21 electrons in it. Rest all have 10 electrons.

491 **(c)**

Size of isoelectronics decreases with increasing atomic number.

492 (a)

M.O. configuration of O_2 :

$$\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_x^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{bmatrix} \begin{bmatrix} \pi^* 2p_y^1 \\ \pi^* 2p_z^1 \end{bmatrix}$$

Molecular orbitals π^*2p gains electron when O_2^- is formed from O_2 .

493 **(a)**

During the formation of cation, the size decreases

494 **(d)**

Follow text.

495 **(b)**

Metallic character atomic size

$$\frac{1}{\text{nuclear charge}}$$
 (for a period only)

Metallic character decreases across a period from left to right because atomic size decreases. In a group from top to bottom, metallic nature increases due to increase in atomic size.

496 (a)

Bond formation is always exothermic. Compounds of sodium are ionic.

498 (a)

The bond angle of AX_3 type molecules with one lone pair decreases down the gp due to decreasing electronegativity of central atom

which causes lower repulsion between lone pairbond pair electrons.

500 (d)

These are characteristic of hydration.

501 (a)

Ionic radii $\propto \frac{1}{Z_{eff}}$

Z_{eff} =Effective nuclear charge

This Z_{eff} is calculated as follows

$$Z_{eff}$$
= Z -screening constant (σ)

The value of screening constant is based upon the number of electrons in valence shell as well as in penultimate shells.

503 (d)

Electron affinity is defined as "the energy released when an extra electron is added to neutral gaseous atom. The increasing order of electron affinity is

$$2s^22p^4 < 3s^23p^4 < 2s^22p^5 < 3s^23p^5$$

 $0 < S < F < Cl$

General electron affinity decreases with the increase in the size of atom, since nuclear attraction decrease down a group. The value of electron affinity increase as we move along a period since the size of atoms decrease in a period. Electron affinity of O and F are less than S and Cl respectively due to very small size.

504 **(b)**

Anions are always larger than parent atom; cations are always lesser than parent atom.

505 **(b)**

The size of an anion is larger than its corresponding neutral atom and the size of cation is smaller than its corresponding neutral atom. Hence, the order of the size of iodine species is as $I^- > I > I^+$.

506 (a)

The stability of hydrides decreases down the gp, i.e., from $\mathrm{NH_3}$ to $\mathrm{BiH_3}$ which can be observed from their bond dissociation enthalpy. The correct order is

507 **(b)**

$$R - O - H \cdots H - O - H$$

508 (c)

M.O. configuration of N_2^- :

$$\sigma 1s^2 \ \sigma^* 1s^2, \sigma 2s^2 \sigma^* 2s^2 \begin{bmatrix} \pi & 2p_y^2 \\ \pi & 2p_z^2 \end{bmatrix}, \sigma 2p_x^2 \ \pi^* 2p_y^1$$

B.
$$0 = \frac{1}{2}[10 - 5] = 2.5$$

509 **(b)**

F is the most electronegative element which cannot loose electron to other so it exhibits only—1 state. Na is alkali metal which can loose only one electron so exhibits only +1 state.

510 **(c)**

IF₅ has sp^3d^2 -hybridization with one lone pair on I atom.

511 (c)

In general ionisation energy increases as we move from left to right in a period. It is due to the increase in effective nuclear charge. IE_1 of Be and N is high due to stable configuration. Hence, the order is as follows F > N > C > Be > B

512 **(c)**

Notice configuration of N^+ , C^+ , O^+ and F^+ .

513 (a)

F has the highest electronegativity because of its smallest size

514 **(b)**

 SO_2 has sp^2 -hybridization due to geometry.

515 **(c)**

H -bonding order:

$$\cdots H - F > \cdots H - 0 > \cdots H - N$$

516 (c)

First electron affinity is energy releasing process.

517 (d)

The overlapping orbitals must possess half-filled nature with anti-spin electron.

518 **(b)**

Noble gases are in zero group however they possess eight electrons in their valence shell.

519 **(b)**

Electronegativity is the tendency to attract the shared pair of electron towards itself. It decreases down the group and increases in period.

Fluorine has highest electronegativity among all

Fluorine has highest electronegativity among all existing elements.

 \therefore Electronegativity of Cl is highest among given elements.

520 **(b)**

 E_1 for $He^+ = E_1$ for $H \times Z^2$ (where Z = at.no. of He).

521 **(b)**

Covalent compounds have lower m.p. and b.p. than ionic one.

522 (a)

Bonding molecular orbitals possess lower energy levels than antibonding orbitals.

523 **(b)**

Hybrid orbitals never form π -bond.

524 **(b)**

Element with atomic number 20 is metal (Ca); it will combine with non-metal.

525 **(b)**

Ionisation energy of Ist group elements decreases down the group because in groups from top to bottom atomic size increase. Due to increase in atomic size, the nuclear attraction of outer electron is reduced. They easily removed from valence orbital. So ionisation energy is reduced from top to bottom in a group.

526 **(b)**

Both BF_4^- and NH_4^+ have sp^3 -hybridisation and therefore possess tetrahedral geometry.

 $NF_3 : sp^3 \quad BCl_3 : sp^2$

 $BF_3: sp^2 \quad BrCl_3: sp^3d$

 $BF_4^-: sp^3 \quad NH_3: sp^3$

 $NH_4^+: sp^3 \quad NO_3^-: sp^2$

527 (c)

Smaller the size of cation, more is ionic character, more is attraction among ions.

528 (a)

In PCl₃ and POCl₃, P atom is sp^3 -hybridized.

529 **(b)**

 NO_3^- has sp^2 -hybridization and possesses coplanar or equilateral triangular geometry.

531 (a)

H₂O shows high b.p. (inspite of lowest mol.wt.) on account of strong H-bonding.

532 **(d)**

+4 ionic state is not possible for lead with iodide because I⁻ reduces Pb⁴⁺ to Pb²⁺.

533 **(c)**

Electronegativity and ionisation energy decreases from F to I.

534 (a)

 \mbox{BeCl}_2 has the highest melting point due to ionic bond

535 **(b)**

According to valence bond theory, overlapping orbitals must possess half-filled nature as well as antispin electron.

536 **(b)**

 $Be(1s^22s^2)$ because of the presence of fully filled 2s-subshell has least tendency to take up an electron. Hence, Be^- is least stable

538 **(c)**

Both HgCl₂ and C₂H₂ are linear like CO₂ because of *sp*-hybridization.

539 **(b)**

 SF_4 has sp^3d -hybridization. Rest all have sp^3 -hybridization.

540 (d)

The elements present in the earth's core are collectively called siderophiles. These are found in their native state. These elements generally have a low reactivity and exhibit an affinity to form metallic bonds. *e.g.*, Pt, Ru, Pd, Ir, Os etc.

542 **(d)**

The ionic radius increases down the group.

543 **(c)**

Since, the d-orbital of the element is incompletely filled, it is a d-block element

544 (a)

 $H_30^+: sp^3; N0_3^-: sp^2$

545 **(d)**

H is attached on N atom.

546 **(b)**

 IP_1 of $B > IP_1$ of Li ENC of boron is more than Li. Also IP_1 of Li $> IP_1$ of K because removal of electron in K occurs from 4s.

547 **(b)**

CsCl is ionic.

548 **(a)**

Two like atoms involved in bonding can form only two π -and one σ -bond within themselves because π -bonds are formed by p-orbitals and only when σ -has already formed. Remember only three p-orbitals exist.

549 (c)

Intramolecular H-bonding in salicyl aldehyde prevents its test with $FeCl_3(aq)$.

550 (a)

H-bonding is weakest bonding.

551 (a)

ClO₂ has 33 electrons, *i. e.*, one unpaired.

552 **(d**)

Sodium and chlorine are in same period

 $_{11}$ Na = 2, 8, 1

$$_{17}Cl = 2, 8, 7$$

Both have 3- shells, hence they both are placed in 3rd period of Periodic Table.

553 **(b)**

Basic character of hydrides decreases down the gp.

554 **(a)**

The definition of bond order.

555 **(d)**

In BeCl₂, Be atom has incomplete octet.

556 **(b)**

Due to H-bonding which is more in water than alcohol and not in ether.

558 (d)

If the lattice energy < hydration energy, then only ionic compounds are soluble.

559 (c)

H-bonding in molecule gives rise to increase in its b.p.

560 **(b)**

Since, e^- is to be removed from exactly half-filled p-orbital

561 **(d)**

At 25°C and 1 atm pressure bromine and mercury (Hg) are liquid. Chlorine (Cl) is gas and phosphorus (P) is solid. (m.p. of white phosphorus=44°C)

562 **(c)**

Allene is $CH_2 = C = CH_2$.

563 **(c)**

Basic character of hydrides is $NH_3 > PH_3$.

564 (c)

- (a) Nuclear charge and electron affinity both increase in period and decrease in group.
- (b) Ionisation energy and electron affinity both increase from left to right in a period and top to bottom in a group.
- (c) Atomic radius decreases from left to right in a period and increases from top to bottom in a group whereas electron affinity increases from left to right in a period and decreases from top to bottom in a group.

565 (a)

Covalent radius are always smaller than crystal radius as the former involves overlapping region.

566 **(b)**

Multiplicity in bonds decreases bond length.

567 **(d)**

These are factors on which effective nuclear charge depends.

568 (a)

In a period, from left to right basic character of oxides decreases, thus Na₂O is most basic

569 **(c)**

All the ions belong to same period thus for them cations will be smaller than anions. Now, O^{2-} and F^{-} are isoelectronic and $r_n \propto \frac{1}{Z}$

Thus, ionic radius of $0^{2-}(Z = 8) > F^{-}(Z = 9)$.

570 (a)

Due to the presence of lone pair on N atom.

571 **(a)**

Pauling's electronegativity values for elements are useful in predicting polarity of bonds in molecules.

572 **(c)**

Larger is anion, more is its polarization.

573 **(d)**

Fluorine has maximum reduction electrode potential $(E^{\circ}_{F/F^{-}}) = 2.87 \text{ V}$, hence, it is easily reduced into F⁻ and consequently F₂ is the best oxidising agent.

575 (d)

The metallic character is found in iodine as well as in a tatine (At). Note that metallic character increases down the group.

576 (a)

Ionization energy increases along the period and decreases down the group.

577 **(d)**

These are the factors on which IP depends.

578 **(d)**

Cl is more electronegative than Br.

579 **(b)**

Mg²⁺ is smaller than Na⁺ and thus, smaller is cation more is hydration energy.

580 (c)

Electron affinity order for halogens is Cl > F > Br > I.

581 (d)

The characteristic to be observed during removal of II electron.

582 (a)

It is a concept.

583 **(d)**

Mullikan proposed M.O. theory.

584 **(d)**

Proton (H⁺) can only accept a lone pair from donor atom.

585 (d)

Bond order for He_2 is zero.

586 **(a)**

According to Fajans' rule, polarization of anion is influenced by charge of cation, size of cation. More is the charge on cation, more is polarization of

anion.

587 **(b)**

 $CH_2 = CH_2$ has 1σ -and 1π -in between two sp^2 hybridized carbon.

588 **(b)**

Follow Fajans' rule.

589 (c)

Stronger is metallic bonding (Fe has d-subshell), more is hardness.

590 **(b)**

It has 3σ -and 1π -bond.

591 **(b)**

Half filled orbitals are more stable.

592 (c)

Atomic size decreases along the period and increases down the gp.

593 (d)

Anions are always larger in size than their parent atom. Cations are always smaller in size than their parent atom.

594 (a)

More is the dipole moment more is ionic nature. $\mu = \delta \times d$; higher is μ , more will be δ on the atom.

595 (c)

Electronic configuration reveals that the *p*-orbital of the element is not complete. Therefore, it is a pblock element. Moreover, the atomic number of the element is 33(As). Therefore, it is a metalloid.

596 (c)

 SF_6 has six S - F bonds.

598 (c)

All physical and chemical properties of elements are periodic function of atomic number-Modern Periodic Law.

599 (a)

s-orbitals always lead head on overlapping.

600 **(b)**

Smaller is atom, more is energy needed to remove electron, i.e., ionisation energy. Also removal of two electrons needs more energy.

601 **(b)**

A reason for the given fact.

602 **(b)**

Cs is metal and solid.

603 (a)

Due to planar equilateral geometry of graphite.

604 (c)

 $2\text{Fe} + 3[0] \rightarrow \text{Fe}_2\text{O}_3(\text{rust}).$

605 (a)

Electronegativity The tendency of an atom in a

compound to attract a pair of bonded electrons towards itself is known as electronegativity of the

Fluorine is most electronegative element because of smaller size and greater tendency to gain electron.

606 (d)

The trivalent ion having largest size is lanthanum. This is due to lanthanide contraction

607 (d)

P atom has sp^3 -hybridization with one position occupied by lone pair of electron.

608 **(b)**

Lower IE, more EA and high lattice energy are required conditions for ionic bonding.

609 (c)

 Al_2O_3 behaves as an amphoteric oxide.

$$Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$$

$$Al_2O_3 + 2NaOH \xrightarrow{\Delta} 2NaAlO_2 + H_2O$$

610 (a)

H atom has 1s¹ configuration. Shielding effect is property of penultimate shell electrons.

611 **(b)**

 $Mg \rightarrow Mg^+, E = 750kJ$

Remaining energy =1200-750=450kJ

Energy needed to convert 1 mole of Mg⁺ to

$$Mg^{2+} = 1450$$

Number of moles Mg²⁺produced

$$= \frac{1}{1450} \times 450$$

= 0.31

Number of moles of Mg^+ produced = 1 - 0.31

$$=0.69$$

612 **(b)**

 $CCl_2 = CCl_2$ has sp^3 -hybridization. CCl_4 has sp^3 hybridization.

613 (a)

Both NH_4^+ and BF_4^- have sp^3 -hybridization.

614 (d)

O is more electronegative than C.

615 (d)

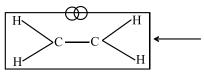
 SF_4 has sp^3d -hybridization with one lone pair; CF_4 has sp^3 -hybridization with no lone pair and XeF_4 has sp^3d^2 -hybridization with two lone pairs.

616 (a)

H-bonding is weakest bonding.

617 (d)

Cs⁺ is biggest ion among these. F⁻ is smallest.


618 (c)

All are non-metals.

621 **(a)**

A π -bond has a nodal plane passing through the two bonded nuclei, *i. e.*, molecular plane.

Nodal plane, i.e., molecular plane

622 **(d)**

S²⁻ has the largest size and hence, has the lowest ionisation energy

625 (d)

These are the factors on which van der Waals' forces depend.

626 **(b)**

Removal of two electrons (one by one) from an atom requires energy = $IP_1 + IP_2$.

627 (a)

631 **(b)**

 IP_1 of $Pb > IP_1$ of Sn(an exception).

632 (d)

In *s*-block elements, electron enter into the *ns*-orbitals.

For atomic number $3=1s^2$, $2s^1$ Atomic number $12=1s^2$, $2s^22p^6$, $3s^2$

633 **(b)**

Ionisation energy increases in a period from left to right. But IE_1 of Be is greater than B due to its stable configuration $(1s^2, 2s^2)$.

Hence, the order of decreasing

IE₁is C > Be > B > Li

634 **(d)**

 $CH \equiv CH$; 3 for triple bonds and two for C - H bond.

635 **(c)**

Z = 2, 8, 8, 1. Because it would donate e^- more easily

636 **(c)**

Maximum covalence in most of the atoms (except N, O, F) is given by the number of valency electrons. The paired *s* electrons are also get unpaired during excitation.

637 (a)

In N_2 , all electrons are paired. Thus, N_2^+ has one electron unpaired.

638 **(d**)

Bond length decreases with increase in *s*-character.

639 **(b)**

Anions are always larger than their parent atom.

Smaller is anion, lesser is its polarization.

628 **(d)**

619 (d)

H atom attached on N, O, F develops hydrogen bonding molecule.

Dipole moment of CH₃OH is maximum in these.

630 **(b)**

 CH_3OH shows H – bonding in liquid state.

Also atomic radius increases down the group, decreases along the period.

640 (c)

It is head on overlapping and thus, forms more stronger bond.

641 **(c)**

O atom possesses two lone pair of electrons.

642 **(a)**

Thermal stability of the hydrides decrease as we go down the group in Periodic Table for group 15 (N-family)

 $\label{eq:BiH3} {\rm BiH_3} < Sb{\rm H_3} < As{\rm H_3} < P{\rm H_3} < N{\rm H_3}$ Least stable $\qquad \qquad {\rm Most\ stable}$

247

322

D. . 1

Bond-energy

 $kImol^{-1}$

М-Н

643 (c)

Benzene has 12σ - and 3π -bonds.

644 (c)

SbCl₅²⁻ has sp^3d^2 and rest all has sp^3d -hybridisation.

255

645 **(b)**

Electron gain enthalpy of Cl is maximum.

647 **(b)**

One bonding molecular orbital and one antibonding.

648 **(b)**

Ionisation energy is the amount of energy required to take out most loosely bonded electron from an isolated gaseous atom. In a group when

391

we move from top to bottom, ionisation energy decreases due to increase in size. In a period while moving from left to right ionisation energy increase due to increase in size. In a period while moving from left to right ionisation energy increase due to increase in size.

 \therefore Be > Mg > Ca (:It is the order of increasing ionisation energy when we move from top to bottom in group II A).

649 **(c)**

Generally electron affinity increases in a period and decreases in a group but due to smaller size and high electron density on fluorine atom, it experience high interelectronic repulsions. Thus, F⁻ion is less stable in comparison to Cl⁻ion. Hence, electron affinity is highest for chlorine. Its electronic configuration is

 $_{17}Cl = 1s^2, 2s^22p^6, 3p^2, 3p^5$

650 (c)

Boron in [BF₄] has regular tetrahedral geometry because of sp^3 -hybridization on boron atom.

651 **(d)**

The size of an species decreases with increasing nuclear charge because the attraction for the electrons increases. Thus, Al³⁺ is smaller in size

652 **(c)**

Coordinate bonding involves sharing of an electron pair provided by a donor atom to acceptor atom.

653 **(c)**

It reflects trends in physical and chemical properties of the elements

654 **(d)**

Fluorine is the most electronegative element in the Periodic Table so it never shows positive oxidation state.

655 (d)

It is the definition of electron affinity.

656 **(c)**

 XeF_4 has sp^3d^2 -hybridized Xe atom having two lone pair of electrons and thus, octahedral 670 (a) geometry changes to square planar due to lone pair effect.

658 **(b)**

 $1 \text{ debye} = 10^{-18} \text{esu.}$

659 **(b)**

Smaller cation causes more polarization of anion.

Ionisation energy decreases down the group and increases along the period.

661 **(b)**

 $\text{Li}^-: 1s^2, 2s^2; \text{Be}^-: 1s^2, 2s^2, 2p^1; \text{ in Li, addition of}$ electron has taken place in 2s orbital; in Be⁻, addition of electron has taken place in 2p orbital loosing its 2s completely filled configuration. EA_1 for Be is more positive than EA_1 for Li. Thus, Be⁻ is least stable.

662 **(b)**

It is the order of stability.

663 (a)

Small cation causes more polarization in anion. Also larger anions are easily polarized by a cation. More is polarization of anion, more is covalent character.

664 (d)

We know that ionisation potential gradually decreases on moving down the group while atomic size increases as we move down the group. Hence, larger the atomic size, smaller is ionisation potential.

665 (a)

 $1s^2$, $2s^2$, $2p^6$, $3s^1$ configuration represents the Na, because the atomic number of Na is 11. The first ionisation energy is less than second ionisation energy because IE2 involves the removal of an electron from the stable configuration $(i.e., 1s^2, 2s^2, 2p^6)$

666 **(d)**

 $Be(OH)_2$ and $Zn(OH)_2$ are amphoteric in nature

667 **(b)**

Be has smallest size and thus, Be cation possesses more polarizing power.

668 (c)

No scope for addition in completely filled valence orbitals of inert gases.

669 (a)

As the s-character increases in hybrid orbitals, bond energy increases, size of the hybridized orbital decreases. s-characters in sp, sp^2 and sp^3 are 1/2,1/3,1/4 respectively.

Geometry is explained by taking an account of single bonds only. However, presence of double bond may distort bond angles, e.g., HCHO has sp^2 -hybridization but angle H – C – H is 116° and angle H - C - O is 122° due to double bond. In BF₃ (sp^2 -hybridization) each angle is of 120°.

 d^2sp^3 - leads to octahedral geometry.

672 **(b)**

The ionisation potential increases in a period on moving left to right while in a group it is decreases on moving from top to bottom. Hence, Be has maximum ionisation potential.

674 (a)

Element F O N C Electronegativity 4.0 3.5 3.1 2.5 \therefore Correct order of electronegativity F>O>N>C or F>N<O>C

675 **(a)**

Halogen F_2 Cl_2 Br_2 I_2 Bond dissociation 158.8 242.6 192.8 151.1

Energy (kJ mol^1)

The bond dissociation energy of F_2 is less than Cl_2 due to inter electronic repulsions present in small atom of fluorine.

The order of bond energy is $Cl_2 > F_2 > Br_2 > I_2$ and

Cl₂ has maximum bond energy.

676 **(b)**

 SF_4 has sp^3d -hybridized sulphur atom.

677 (a)

A reason for given fact.

678 **(c)**

It is experimental value.

679 **(d)**

AgBr has higher lattice energy.

680 **(b)**

The size of isoelectronic species increases with decrease in effective nuclear charge.

681 **(b)**

 O_2^{2-} has no unaired electron.

682 **(c)**

Na⁺ and Cl⁻ are formed.

683 **(d)**

The K_{sp} value of CuS is less ZnS and thus, ZnS is more soluble. Also sodium salts are highly soluble in water.

684 **(b)**

These are isoelectronic species and their radii decreases with increasing their atomic number due to increasing effective nuclear charge ($Z_{\rm eff}$) = $Z-\sigma$

where, $Z_{\rm eff}$ = effective nuclear charge, Z = atomic number and σ = screening constant. For F^- , O^{2-} and N^{3-} , the value of σ is constant due to equal number of electrons. So, order of $Z_{\rm eff}$ is $F^- < O^{2-} > N^{3-}$

hence, order of radii

$$= F^- < 0^{2-} < N^{3-} \left(radii \, \propto \frac{1}{Z_{eff}} \right).$$

685 **(c)**

Due to back bonding in BF₃.

686 **(b)**

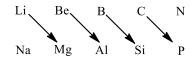
CCl₄ involves two non-metals C and Cl and thus, bonding is covalent. CaH₂ is an ionic compound as it involves alkaline earth metal.

687 **(b)**

PF₅ has sp^3d hybridization (trigonal bipyramid); BrF₅ has sp^3d^2 hybridization (square pyramidal)

688 (d)

 XeF_2 (sp^3d with 3 lone pairs) and $CO_2(sp)$ are linear.


689 (d)

HF is least acidic due to the small size of fluorine

690 **(d)**

The element of II period show similar properties as the elements of III period, which are diagonally placed to them. This is known as diagonal relationship. Hence, Li shows diagonal relationship with Mg and Be shows diagonal relationship with Al.

IInd period

IIIrd period

691 (c)

In *o*-dichlorobenzene, $\alpha = 60^{\circ}$

$$\therefore \cos \alpha = + ve,$$

$$\mu = \sqrt{\mu_1^2 + \mu_2^2 + 2\mu_1\mu_2\cos\alpha}$$

692 **(d**`

Cl possesses 10 electrons in ClF₃.

693 (a)

The ionisation potential increases from left to right in a period but the first ionisation potential of nitrogen is greater than oxygen due to half-filled stable configuration and ionisation potential of Be is greater than B due to completely filled *s*-orbital. Hence, the order of ionisation potential is as

Element: B < Be < C < 0 < N IP (eV): 8.3 9.3 11.2 13.6 14.5

694 **(d)**

Mercury

695 (a)

Na - Cl. Both belongs to III period

696 (d)

Ionisation enthalpy increases along the period and decreases down the group

697 **(d)**

Ionisation energy order is B < C < 0 < N.

698 (a)

Acidic nature of oxide non-metallic nature of element. Non-metallic nature decreases in the order Cl > S > P.

699 **(c)**

Boron (B), Si, Ge, As, Sb, Te and At are the metalloid elements. Bismuth (Bi) and tin (Sn) are metals while carbon (C) is non-metal.

700 (a)

Xe in XeOF₄ has sp^3d^2 -hybridization having one lone pair on Xe atom.

701 (d)

Fe is a transition element, thus exhibits variable oxidation states

702 **(b)**

Cs⁺ is largest cation and F⁻ is smallest anion.

703 (d)

Ionic radius $\propto \frac{1}{Z_{\rm eff}}$

Since, P^{5+} has higher $Z_{\rm eff}$ as compared to P^{3+} , it has smaller ionic radii

704 **(d)**

Isomerism is arised due to directional nature of covalent bonding.

705 **(d)**

Ionisation potential is the amount of energy requires to remove an electron from an isolated gaseous atom. Since, on moving down the group, the size of atom increases, thus outer electron gets farther and farther away from the nucleus and hence, the less amount of energy is required to remove it. Thus, ionisation potential decreases and hence, Cs has lowest ionisation potential.

706 **(a)**

A decrease in *s*-character increases bond length.

707 **(b)**

Both possess $1s^2$, $2s^22p^6$, $3s^23p^6$ configuration.

708 (c)

 Na^+ is cation; Cl^- , PO_4^{3-} are anion.

709 (a)

Electronic configuration of element with atomic number 36, will be

$$=1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^24p^6$$

As the last electron is present in *p*-subshell, hence the element will be placed in *p*-block.

710 (c)

Due to large electronegativity difference in C and

F atoms.

711 **(b)**

According to Hannay and Smith equation

∴ % ionic character

$$=16(x_A - x_B) + 3.5(x_A - x_B)^2$$

Where, x_A and x_B are the electronegative of the atoms A and B respectively.

: % ionic charecter = $16(2) + 3.5(2)^2$

712 **(b)**

[Ne] $3s^2 3p^3$

$$3s^2 3p^3$$

4 111

Elements having half-filled or fully-filled orbitals are more stable. Hence, much energy is required to remove an electron from the outermost orbit. So, [Ne] $3s^23p^3$ has highest ionisation energy.

713 **(d)**

Ionisation potential increases along the period.

714 **(b)**

Electron affinity is the energy change, when an electron is added. When O⁻ changes into O²⁻ the electron affinity is positive *i.e.*, change is endothermic. The reason is that O⁻ repels the incoming electron due to similar charge, hence, it needs energy to accept the electron. Hence, electron affinity is positive.

715 **(a)**

Like atoms results in covalent bonding leading to the formation of non-polar bond, e.g., H-H or H_2 .

716 (a)

One of *s*-orbital +3 of *p*-orbital = sp^3 .

717 **(b)**

Lower potential energy level imparts stability.

718 **(b)**

H-bonding in molecules gives rise to increase in b.p.

719 **(b)**

The jump in IP values exist in IP_5 and thus, removal of fifth electron occurs from inner shell. Thus, element contains four electrons in its valency shell.

720 **(a)**

The stability and bond angle order for hybrides in a group is

 $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$.

721 **(d)**

Size of anions is larger than their parent atoms. Also more is ENC lesser is size.

722 **(c)**

The difference of electronegativity is more.

723 **(c)**

Lattice energy of BaSO₄ is appreciable high and predominates over hydration energy.

725 **(b)**

Larger is bond order, lesser is bond length.

726 **(b)**

o-, m-, p-derivatives has $\alpha=60^\circ$, 120° and 180° and thus, resultant vector has zero dipole moment in p-derivative. Also dipole moment of m-dichlorobenzene is more than toluene.

727 **(d)**

As the *s* character increases in hybridised orbitals, its electronegativity increases.

sp sp^2 s character 50% 33.3%

728 **(c)**

Polarity in a molecule gives rise to an increase in forces of attractions among molecules and thus, more becomes boiling point.

 sp^3

25%

729 (a)

Ionisation energy increases with decrease in atomic size and decrease in shielding effect. Ten d-electrons in Ga shield the nuclear charge less effectively than the s and p electrons. Hence, the outer electron is held fairly strongly by the nucleus. Consequently, ionisation energy slightly increases inspite of the increase in atomic size from Al to Ga. Hence, Al (IE=577) and Ga(IE=578) have approximately equal ionisation potential (or ionisation energy).

730 **(b)**

Elements having six electrons in valency shell are electronegative elements, e.g., 0.

731 **(a**)

 $BF_3(sp^2)$, $NO_2^-(sp^2)$, $NH_2^-(sp^3)$ and $H_2O(sp^3)$.

732 **(d)**

Effective nuclear charge increases in this order.

733 (d)

C₂H₂ is a linear molecule with *sp*-hybridization.

734 **(b**)

Double bond involves the sharing of two electron pairs or four electrons .

736 **(c)**

Multiplicity of bonds gives higher bond energy.

737 (a)

Inert pair effect is not noticed for elements having their outermost shell (n) if n < 4.

738 **(b)**

A characteristic of resonance.

739 **(c)**

Cl is more electronegative than I.

740 **(c)**

Due to sp^3 -hybridization.

741 (d)

Bond energy for C - C, N - N, H - H and O - O are : H - H > C - C > N - N > O - O.

743 **(d)**

PCl₅ has trigonal bipyramid geometry.

744 **(b)**

Dry ice is CO_2 having C-O covalent bonds.

745 (c)

Polar solute are more soluble in polar solvents.

746 **(c)**

Generally in a period, IE increases but nitrogen due to the presence of half-filled p-subshell (stable configuration) has higher IE as compared to its consecutive elements. Thus, the IE of nitrogen is 14.5

747 **(a)**

Zinc oxide is an amphoteric oxide as it reacts with both acid and alkali.

 $ZnO + 2HCl \rightarrow ZnCl_2 + H_2O$

 $ZnO + 2NaOH \rightarrow Na_2ZnO_2 + H_2O$

sodium zincate

Rest all (Na₂O, CaO and BaO) are basic oxides.

748 (a)

Addition of electrons to an atom results an increase in its size.

749 (a)

Water is an universal solvent.

750 **(b)**

sp-hybridization leads to bond angle of 180°.

751 **(b)**

CsF is ionic compound.

752 **(a)**

Follow Fajan's rule.

753 **(b**)

37 is atomic number of Rb the electropositive element and 53 is atomic number of iodine (the electronegative element).

754 (a)

S atom in SF_6 is sp^3d^2 -hybridized state and shows octahedral shape.

755 (a)

Except NO⁻(16 electrons), rest all have 14 electrons.

756 (d)

F is more electronegative.

757 (a)

Molecular orbital configuration of, $0_2^{2-} = \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2,$ $\sigma 2p^2, \pi 2p_x^2, \pi 2p_y^2, \pi^* 2p_z^2, \pi^* 2p_y^2$

758 (c)

Cl atom has 17 electrons, Cl⁻ ion has 18 electrons.

759 (d)

 ClF_3 has sp^3d -hybridization with two lone pair of electron on Cl.

760 (a)

The ionisation energy values for valence electrons are comparable to remove electrons from inner shell very high amount of energy is needed. In the given values there is a biggest jump between IE₄ and IE₅. Hence, there are four valence electrons for the atom X.

761 **(c)**

Hydrogen bonding is responsible for their solubility.

762 (a)

The tendency to show lower ionic state increases down the group due to inert pair effect.

763 (d)

Each has 18 electrons.

764 (a)

Each possesses 18 electrons.

765 **(b)**

The correct order of electron gain enthalpy (electron affinity) is 0 < S < F < Cl

F **Element** 0 S Cl 2.07 3.45

Electron affinity 1.48

768 (d)

In eV 766 **(d)**

767 (c)

3.61

CS₂ is linear having zero dipole moment.

Electronegativity increases in a period from left to right and decreases in a group on moving downwards

Electronic configuration of Cu is $1s^2$, $2s^22p^6$, $3s^23p^6$, $4s^1$, $3d^{10}$ and electronic Cu^{2+} configuration of is $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^9$. Hence, given configuration represents metallic cation.

769 (a)

M.O. configuration of O_2^+ is: $\sigma 1s^2 \sigma^* 1s^2$, $\sigma 2s^2 \sigma^* 2s^2 \sigma 2p^2$, $\pi 2p_v^2 \pi 2p_v^2 \pi^* 2p_x^1$ Bond order of $O_2^+ = \frac{1}{2}[6-1] = \frac{5}{2}$ M.O. configuration of N_2^+ is: $\sigma 1s^2\sigma^*1s^2, \sigma 2s^2\sigma^*2s^2, \pi 2p_{\gamma}^2\pi 2p_{\gamma}^2\sigma 2p^1$

Bond order of $N_2^+ = \frac{1}{2}[5-0] = \frac{5}{2}$

770 (a)

 SF_4 has sp^3d^2 -hybridization and see-saw geometry.