Time allowed : 2 hours
Maximum marks : 40

General Instructions :

1. This question paper contains two parts A and B. Each part is compulsory. Part-A carries 8 marks and Part-B carries 32 marks.
2. Part-A has Objective Type Questions and Part-B has Descriptive Type Questions.
3. Both Part-A and Part-B have internal choices.

Part - A :

1. It consists of two Sections-I and II.
2. Section-I comprises of 4 MCQs.
3. Section-II contains I case study-based questions.

Part - B :

1. It consists of four Sections-III, IV, V and VI.
2. Section-III comprises of 5 questions of 1 mark each.
3. Section-IV comprises of 4 questions of 2 marks each.
4. Section- V comprises of 3 questions of 3 marks each.
5. Section-VI comprises of 2 questions of 5 marks each.
6. Internal choice is provided in 1 question of Section-III, 1 question of Section-IV, 1 question of Section-V and 2 questions of section-VI. You have to attempt only one of the alternatives in all such questions.

PART - A

Section - I

1. The discriminant of the quadratic equation $5 x^{2}+5 x+6=0$ is $-a$. Find the value of a.
(a) -95
(b) 90
(c) 95
(d) -90
2. Find the common difference of the A.P. $\frac{1}{3 b}, \frac{1-6 b}{3 b}, \frac{1-12 b}{3 b}, \ldots \ldots .$.
(a) 2
(b) -2
(c) -3
(d) 3
3. Find the total surface area of the given solid figure.

(a) $2 \pi r^{2}+2 \pi r h+\pi r l$
(b) $\pi r^{2}+\pi r h+\pi r l$
(c) $\pi r^{2}+2 \pi r h+2 \pi r l$
(d) $\pi r^{2}+2 \pi r h+\pi r l$
4. Consider the following frequency distribution:

Class interval	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$
Frequency	15	19	12	24	18

Find the modal class.
(a) $15-20$
(b) 30-35
(c) 25-30
(d) 20-25

Section - II

Case study-based question is compulsory. Attempt any 4 sub parts. Each sub-part carries 1 mark.
5. Street Vintage : Two lamp posts of equal heights are standing on either side of the road. From a point between them on the road the angle of elevation of the top of poles are 60° and 30° respectively. Height of the lamp post is $10 \mathrm{~m}($ Take $\sqrt{3}=1.732)$

(i) Find the value of AP.
(a) 10 m
(b) $10 \sqrt{3} \mathrm{~m}$
(c) $\frac{10}{\sqrt{3}} \mathrm{~m}$
(d) None of these
(ii) Find the value of CP .
(a) 10 m
(b) $10 \sqrt{3} \mathrm{~m}$
(c) $\frac{10}{\sqrt{3}} \mathrm{~m}$
(d) None of these
(iii) The width of the road is
(a) 27.32 m
(b) 29.32 m
(c) 25.32 m
(d) None of these
(iv) If the angle of elevation made by pole $A B$ is 45°, then the value of $A P=$
(a) 10 m
(b) $10 \sqrt{3} \mathrm{~m}$
(c) $\frac{10}{\sqrt{3}} \mathrm{~m}$
(d) None of these
(v) Angle formed by the line of sight with the horizontal when the point being viewed is above the horizontal level is known as
(a) angle of depression
(b) angle of elevation
(c) right Angle
(d) reflex angle

PART - B

Section - III

6. To divide a line segment $P Q$ in the ratio $3: 2$, we draw a ray $P X$ such that $\angle Q P X$ is an acute angle, then we draw a ray $Q Y \| P X$ such that X and Y are in opposite directions with respect to $P Q$ and mark the points $P_{1}, P_{2}, P_{3} \ldots$ and $Q_{1}, Q_{2}, Q_{3}, \ldots$ with $P P_{1}=P_{1} P_{2}=P_{2} P_{3}=\ldots=Q Q_{1}=Q_{1} Q_{2}=Q_{2} Q_{3}=$ \ldots on the ray $P X$ and $Q Y$ respectively. Then $P_{3} Q_{2}$ is joined to intersect $P Q$ at M. Find the value of $Q_{2} M: P_{3} M$.
7. Check whether the following statement is true or false. "While computing mean of grouped data, we assume that the frequencies are centred at the class marks of the classes."
8. Check, whether $y(3 y+12)=2\left(y^{2}+y+6\right)$ is quadratic equation or not.

OR

If the roots of the quadratic equation $9 x^{2}+p x+1=0$ are equal, then find the value of p.
9. Write the median class of the following distribution:

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	4	4	8	10	12	8	4

10. In the given figure, $A B$ is a 6 m high pole and $C D$ is a ladder inclined at an angle of 30° to the horizontal and reaches up to a point D of pole. If $A D=2.5 \mathrm{~m}$, find the length of the ladder.

Section - IV

11. If $a d \neq b c$, then prove that the equation $\left(a^{2}+b^{2}\right) x^{2}+2(a c+b d) x+\left(c^{2}+d^{2}\right)=0$ has no real roots.
12. A kite is flying at a height of $45 \sqrt{2} \mathrm{~m}$ above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 45°. Find the length of the string assuming that there is no slack in the string.
13. A wooden article was made by scooping out a hemisphere from each end of a solid cylinder, as shown in figure. If the height of the cylinder is 10 cm and its base is of radius 3.5 cm . Find the total surface area of the article.

OR
The dimensions of a metallic cuboid are $25 \mathrm{~cm} \times 60 \mathrm{~cm} \times 144 \mathrm{~cm}$. It is melted and recast into a cube. Find the surface area of the cube.
14. Find the mean of the data, using an empirical formula, when it is given that mode $=50.5$ and median $=45.5$.
Section - V
15. Water is flowing at the rate of 15 km per hour through a pipe of diameter 14 cm into a rectangular tank which is 50 m long and 44 m wide. Find the time in which the level of water in the tank will rise by 21 cm .
16. Find the median of the following frequency distribution:

Weekly wages (in ₹)	$59.5-69.5$	$69.5-79.5$	$79.5-89.5$	$89.5-99.5$	$99.5-109.5$	$109.5-119.5$
Number of workers	5	15	20	30	20	8

17. Draw a line segment $A B$ of length 18 cm . Taking A as centre, draw a circle of radius 7 cm and taking B as centre, draw another circle of radius 5 cm . Construct tangents to each circle from the centre of the other circle.

OR

Draw two concentric circles of radii 7 cm and 9 cm . Taking a point on outer circle construct the pair of tangents to the other.

Section - VI

18. The sum of four consecutive numbers in A.P. is 32 and the ratio of the product of the first and last terms to the product of two middle terms is $7: 15$. Find the numbers.

OR

Find the common difference of an A.P. whose first term is 5 and the sum of its first four terms is half the sum of the next four terms.
19. Draw a circle of radius 2 cm . Take two points P and Q on one of its extended diameter each at a distance of 4.5 cm from the centre. Draw tangents to the circle from the two points P and Q.

OR
In the given figure, $A B$ is a chord of a circle, with centre O, such that $A B=16 \mathrm{~cm}$ and radius of circle is 10 cm . Tangents at A and B intersect each other at P. Find the length of $P A$.

ANSWERS

1. (c) : We have, $5 x^{2}+5 x+6=0$
$\therefore \quad a=5, b=5$ and $c=6$
\therefore Discriminant, $D=b^{2}-4 a c=5^{2}-4(5)(6)$

$$
=25-120=-95=-a
$$

Hence, $a=95$
2. (b) : The common difference of the A.P.
$\frac{1}{3 b}, \frac{1-6 b}{3 b}, \frac{1-12 b}{3 b}, \ldots \ldots \ldots$, is given by
$\frac{1-6 b}{3 b}-\frac{1}{3 b}=\frac{1-6 b-1}{3 b}=\frac{-6 b}{3 b}=-2$
3. (d): Total surface area for the cylindrical part

$$
=\pi r^{2}+2 \pi r h
$$

Curved surface area for the conical part $=\pi r l$
\therefore Total surface area for the given solid
$=\pi r^{2}+2 \pi r h+\pi r l$
4. (c) : The maximum frequency is 24 , which is corresponding to the interval 25-30. So, the modal class is 25-30.
5. (i) (c): In $\triangle P A B$, we have

$$
\tan 60^{\circ}=\frac{A B}{A P}
$$

$\Rightarrow \sqrt{3}=\frac{10}{A P} \quad[\because A B=$ height of lamp past $=10 \mathrm{~m}]$
$\Rightarrow A P=\frac{10}{\sqrt{3}} \mathrm{~m}$
(ii) (b) : In $\triangle P C D$, we have

$$
\tan 30^{\circ}=\frac{C D}{P C} \Rightarrow \frac{1}{\sqrt{3}}=\frac{10}{P C} \Rightarrow P C=10 \sqrt{3} \mathrm{~m}
$$

(iii) (d) : Clearly, width of the road $=A C$
$=A P+P C=\left(\frac{10}{\sqrt{3}}+10 \sqrt{3}\right) \mathrm{m}=10\left(\frac{4}{\sqrt{3}}\right) \mathrm{m}=\frac{40}{\sqrt{3}} \mathrm{~m} \approx 23 \mathrm{~m}$
(iv) (a) : In $\triangle P A B$, if $\angle A P B=45^{\circ}$, then
$\tan 45^{\circ}=\frac{A B}{A P} \Rightarrow 1=\frac{10}{A P} \Rightarrow A P=10 \mathrm{~m}$
(v) (b)
6. M divides $P Q$ in the ratio $3: 2$
i.e., $\frac{P M}{M Q}=\frac{3}{2}$

Now, $\triangle P M P_{3} \sim \triangle Q M Q_{2}$
$\therefore \quad \frac{Q_{2} M}{P_{3} M}=\frac{M Q}{P M}$
$=\frac{2}{3} \quad[U \operatorname{sing}(\mathrm{i})]$
So, $Q_{2} M: P_{3} M=2: 3$
7. Given statement is true.
8. We have, $y(3 y+12)=2\left(y^{2}+y+6\right)$
$\Rightarrow 3 y^{2}+12 y=2 y^{2}+2 y+12$
$\Rightarrow 3 y^{2}-2 y^{2}+12 y-2 y-12=0$
$\Rightarrow y^{2}+10 y-12=0$, which is a quadratic equation.

OR

Here, $a=9, b=p, c=1$
For equal roots, $D=b^{2}-4 a c=0 \Rightarrow b^{2}=4 a c$
$\Rightarrow p^{2}=4(9)(1)=36 \Rightarrow p= \pm 6$
9.

Class	Frequency	Cumulative frequency
$0-10$	4	4
$10-20$	4	8
$20-30$	8	16
$30-40$	10	26
$40-50$	12	38
$50-60$	8	46
$60-70$	4	50
Total	50	

Here, $\Sigma f_{i}=N=50 \Rightarrow \frac{N}{2}=\frac{50}{2}=25$
\because Median class is that class whose cumulative frequency is just greater than or nearest to $\frac{N}{2}$.
$\therefore \quad$ The median class is $30-40$.
10. $A B=6 \mathrm{~m}, A D=2.54 \mathrm{~m}$ (given)
$\therefore \quad B D=A B-A D=6-2.5=3.5 \mathrm{~m}$
Hence, in $\triangle B D C, \frac{B D}{C D}=\sin 30^{\circ}$
$\Rightarrow \frac{3.5}{C D}=\frac{1}{2} \Rightarrow C D=7 \mathrm{~m}$
11. We have, $\left(a^{2}+b^{2}\right) x^{2}+2(a c+b d) x+\left(c^{2}+d^{2}\right)=0$

Discriminant, $D=4(a c+b d)^{2}-4\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)$
$=4\left(a^{2} c^{2}+b^{2} d^{2}+2 a c b d\right)-4\left(a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}\right)$
$=4\left(a^{2} c^{2}+b^{2} d^{2}+2 a b c d-a^{2} c^{2}-a^{2} d^{2}-b^{2} c^{2}-b^{2} d^{2}\right)$
$=4\left(2 a b c d-a^{2} d^{2}-b^{2} c^{2}\right)=-4(a d-b c)^{2}<0$
$[\because a d \neq b c]$
Thus, given equation has no real roots.
12. Let C be the position of kite. Now, in $\triangle A B C$,

$$
\begin{aligned}
& \sin 45^{\circ}=\frac{B C}{A C} \Rightarrow \frac{1}{\sqrt{2}}=\frac{45 \sqrt{2}}{A C} \\
& \Rightarrow A C=45 \sqrt{2} \times \sqrt{2}=90 \mathrm{~m}
\end{aligned}
$$

Thus, the length of the string is 90 m .
mtG CBSE Board Term-II Mathematics Class-10
13. Radius of the cylinder $(r)=3.5 \mathrm{~cm}$

Height of the cylinder $(h)=10 \mathrm{~cm}$
\therefore Curved surface area of cylinder $=2 \pi r h$
$=2 \times \frac{22}{7} \times \frac{35}{10} \times 10 \mathrm{~cm}^{2}=220 \mathrm{~cm}^{2}$
Curved surface area of a hemisphere $=2 \pi r^{2}$
\therefore Curved surface area of both hemispheres
$=2 \times 2 \pi r^{2}=4 \pi r^{2}=4 \times \frac{22}{7} \times \frac{35}{10} \times \frac{35}{10} \mathrm{~cm}^{2}=154 \mathrm{~cm}^{2}$
Total surface area of the wooden article

$$
=(220+154) \mathrm{cm}^{2}=374 \mathrm{~cm}^{2} .
$$

OR
Volume of given cuboid $=25 \times 60 \times 144$

$$
=216000 \mathrm{~cm}^{3}
$$

Now, cuboid is melted and recast into a cube.
Let side of the cube $=a \mathrm{~m}$
Also, volume of the cube $=$ volume of the cuboid
$\Rightarrow a^{3}=216000 \Rightarrow a=60$
Surface area of cube $=6 a^{2}=6 \times(60)^{2}$

$$
=21600 \mathrm{~cm}^{2}
$$

14. We have, Mode $=50.5$ and Median $=45.5$

Now, we know that,
3 Median $=$ Mode +2 Mean
$\Rightarrow 3 \times 45.5=50.5+2$ Mean
$\Rightarrow \quad$ Mean $=\frac{136.5-50.5}{2}=\frac{86}{2}=43$
15. Length of the tank, $l=50 \mathrm{~m}$ and its width, $b=$ 44 m
Depth required, $h=\frac{21}{100} \mathrm{~m}$
Volume of water in the tank $=l \times b \times h$
$=\left(50 \times 44 \times \frac{21}{100}\right) \mathrm{m}^{3}=462 \mathrm{~m}^{3}$
Radius of the pipe, $r=\frac{7}{100} \mathrm{~m}$
Speed of water flowing through the pipe
$=(15 \times 1000) \mathrm{m} /$ hour $=15000 \mathrm{~m} /$ hour
Volume of water flown in 1 hour $=\pi R^{2} H$
$=\left(\frac{22}{7} \times\left(\frac{7}{100}\right)^{2} \times 15000\right) \mathrm{m}^{3}=231 \mathrm{~m}^{3}$
$\because \quad$ Time taken by $231 \mathrm{~m}^{3}$ of water falls in the tank $=1$ hour
\therefore Time taken by $462 \mathrm{~m}^{3}$ of water falls in the tank
$=\left(\frac{1}{231} \times 462\right) \mathrm{hrs}=2 \mathrm{hrs}$
Hence, the required time is 2 hours.
16. The cumulative frequency distribution table for the given data is as follows:

Weekly wages (in ₹)	Number of workers $\left(f_{i}\right)$	Cumulative frequency $(c . f)$.
$59.5-69.5$	5	5
$69.5-79.5$	15	20
$79.5-89.5$	20	40
$89.5-99.5$	30	70
$99.5-109.5$	20	90
$109.5-119.5$	8	98

We have, $n=98$
$\therefore \quad n / 2=49$
The cumulative frequency just greater than $n / 2$ is 70 and the corresponding class is $89.5-99.5$. So, 89.5-99.5 is the median class.
$\therefore \quad l=89.5, h=10, f=30$ and c.f. $=40$
\therefore Median $\quad=l+\left(\frac{\frac{n}{2}-c . f .}{f}\right) \times h$

$$
=89.5+\left(\frac{49-40}{30}\right) \times 10=92.5
$$

17. Steps of construction :

Step I: Draw line segment $A B=18 \mathrm{~cm}$.
Step II : Draw a circle with centre A and radius 7 cm and another circle with center B and radius 5 cm .
Step III : Now, bisect $A B$. Let O be the mid-point of $A B$. Taking O as center and $A O$ as radius, draw a circle which intersects the two circles at N, Q, M and P.
Step IV : Join $A N, A Q, B M$ and $B P$. These are the required tangents.

OR

Steps of construction :

Step I : Draw two concentric circles with centre O and radii 7 cm and 9 cm .

Step II : Taking any point P on outer circle. Join OP.
Step III : Bisect $O P$, let M^{\prime} be the mid-point of $O P$. Taking M^{\prime} as centre and $O M^{\prime}$ as radius draw a circle dotted which cuts the inner circle at M and P^{\prime}.
Step IV : Join $P M$ and $P P^{\prime}$. Thus, $P M$ and $P P^{\prime}$ are the required tangents.

18. Let thefour consecutivenumbersbe $(a-3 d),(a-d)$, $(a+d),(a+3 d)$.
Sum of four numbers $=32 \quad$ [Given]
$\Rightarrow(a-3 d)+(a-d)+(a+d)+(a+3 d)=32$
$\Rightarrow 4 a=32 \Rightarrow a=8$
Also, $\frac{(a-3 d)(a+3 d)}{(a-d)(a+d)}=\frac{7}{15}$
$\Rightarrow \quad \frac{a^{2}-9 d^{2}}{a^{2}-d^{2}}=\frac{7}{15}$
$\Rightarrow 15 a^{2}-135 d^{2}=7 a^{2}-7 d^{2}$
$\Rightarrow 8 a^{2}=128 d^{2} \Rightarrow d^{2}=\frac{8 a^{2}}{128}=\frac{8 \times 64}{128}=4$
$\therefore \quad d= \pm 2$
If $d=2$, then the numbers are $(8-6),(8-2),(8+2)$ and $(8+6)$ i.e., $2,6,10,14$.
If $d=-2$, then the numbers are $(8+6),(8+2)$, $(8-2),(8-6)$ i.e., $14,10,6,2$.
Hence, the numbers are $2,6,10,14$ or $14,10,6,2$. OR
Let the common difference of the given A. P. be d. First term (a)=5 (Given)
\because Sum of the first n terms, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\therefore \quad$ Sum of first four terms $\left(S_{4}\right)=\frac{4}{2}[2 \times 5+(4-1) d]$

$$
=2[10+3 d]=20+6 d
$$

And, sum of next four terms $=S_{8}-S_{4}$

$$
\begin{aligned}
& =\frac{8}{2}[2 \times 5+(8-1) d]-(20+6 d) \\
& =40+28 d-20-6 d=20+22 d
\end{aligned}
$$

According to the given condition,
$S_{4}=\frac{1}{2}\left[S_{8}-S_{4}\right] \Rightarrow 20+6 d=\frac{1}{2}[20+22 d]$
$\Rightarrow 20+6 d=10+11 d$
$\Rightarrow 11 d-6 d=20-10$
$\Rightarrow 5 d=10 \Rightarrow d=2$
19. Steps of Construction

Step 1 : Draw a circle of radius 2 cm with centre O and draw a diameter.
Step 2 : Extend its diameter on both sides such that $O P=O Q=4.5 \mathrm{~cm}$.
Step 3 : Bisect $P O$ such that M be its mid-point.
Step 4 : Taking M as centre and $M O$ as radius, draw a circle. Let it intersect the given circle at A and B.
Step 5 : Join $P A$ and $P B$.
Thus, $P A$ and $P B$ are the two required tangents from P.
Step 6 : Now bisect $O Q$ such that N is its mid-point.
Step 7: Taking N as centre and $N O$ as radius, draw a circle. Let it intersect the given circle at C and D.
Step 8 : Join $Q C$ and $Q D$.
Thus, $Q C$ and $Q D$ are the required tangents from Q.

Justification :

Join $O A$ to get $\angle O A P=90^{\circ} \quad$ [Angle in a semi-circle]
$\Rightarrow P A \perp O A \Rightarrow P A$ is a tangent.
Similarly, $P B \perp O B \Rightarrow P B$ is a tangent.
Now, join $O C$ to get $\angle Q C O=90^{\circ}$ [Angle in a semi-circle]
$\Rightarrow \quad Q C \perp O C \Rightarrow Q C$ is a tangent.
Similarly, $Q D \perp O D \Rightarrow Q D$ is a tangent.
OR
We have, $A B=16 \mathrm{~cm}$
$\therefore A L=B L=8 \mathrm{~cm}$
In $\triangle O L B$, we have
$O B^{2}=O L^{2}+L B^{2}$

$\Rightarrow 10^{2}=O L^{2}+8^{2} \Rightarrow O L^{2}=100-64=36$
$\Rightarrow O L=6 \mathrm{~cm}$
Let $P L=x \mathrm{~cm}$ and $P B=y \mathrm{~cm}$
Then, $O P=(x+6) \mathrm{cm}$
In $\triangle P L B, P B^{2}=P L^{2}+B L^{2} \Rightarrow y^{2}=x^{2}+64$
Now, $O B \perp P B$.
In $\triangle O B P, O P^{2}=O B^{2}+P B^{2}$
$\Rightarrow(x+6)^{2}=100+y^{2}$
$\Rightarrow x^{2}+36+12 x=100+x^{2}+64 \quad\left[\because y^{2}=x^{2}+64\right]$
$\Rightarrow 12 x=128 \Rightarrow x=\frac{32}{3}$
$\therefore \quad y^{2}=\left(\frac{32}{3}\right)^{2}+64=\frac{1600}{9} \Rightarrow y=\frac{40}{3}$
Hence, $P A=P B=\frac{40}{3} \mathrm{~cm}$

