Time allowed : 2 hours
Maximum marks : 40

General Instructions :

1. This question paper contains two parts A and B. Each part is compulsory. Part-A carries 8 marks and Part-B carries 32 marks.
2. Part-A has Objective Type Questions and Part-B has Descriptive Type Questions.
3. Both Part-A and Part-B have internal choices.

Part - A :

1. It consists of two Sections-I and II.
2. Section-I comprises of 4 MCQs.
3. Section-II contains 1 case study-based questions.

Part - B :

1. It consists of four Sections-III, IV, V and VI.
2. Section-III comprises of 5 questions of 1 mark each.
3. Section-IV comprises of 4 questions of 2 marks each.
4. Section- V comprises of 3 questions of 3 marks each.
5. Section-VI comprises of 2 questions of 5 marks each.
6. Internal choice is provided in 1 question of Section-III, 1 question of Section-IV, 1 question of Section-V and 2 questions of section-VI. You have to attempt only one of the alternatives in all such questions.

PART - A

Section - I

1. Find the roots of the quadratic equation $2 x^{2}-2 \sqrt{6} x+3=0$.
(a) $\frac{\sqrt{6}}{2}, \frac{-\sqrt{6}}{2}$
(b) $\frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2}$
(c) $\frac{\sqrt{6}}{3}, \frac{-\sqrt{6}}{3}$
(d) $\frac{\sqrt{6}}{3}, \frac{\sqrt{6}}{3}$
2. For the A.P. 2, $7,12,17, \ldots$., find the value of $a_{30}-a_{20}$.
(a) 45
(b) 60
(c) 50
(d) 55
3. Find the next term of the A.P. $\sqrt{12}, \sqrt{27}, \sqrt{48}, \ldots \ldots .$.
(a) $\sqrt{70}$
(b) $\sqrt{85}$
(c) $\sqrt{80}$
(d) $\sqrt{75}$
4. The angle of elevation of the top of a tower from a point on the ground, which is 40 m away from the foot of the tower is 45°. The height of the tower (in metres) is
(a) 20
(b) 40
(c) $40 \sqrt{3}$
(d) $20 \sqrt{3}$

Section - II

Case study-based question is compulsory. Attempt any 4 sub parts. Each sub-part carries 1 mark.

5. Recasting of Metal

Suraj took 4 small spherical balls of silver of surface area $887.04 \mathrm{sq} . \mathrm{cm}$ each from a blacksmith. He wanted them to be made into cylindrical coins of radius one-fourth of that of the silver ball and height 4 cm .

(i) What is the diameter of each spherical ball?
(a) 16.8 cm
(b) 8.4 cm
(c) 33.6 cm
(d) None of these
(ii) The volume of each spherical ball is
(a) $2483.712 \mathrm{cu} . \mathrm{cm}$
(b) $19869.69 \mathrm{cu} . \mathrm{cm}$
(c) $3104.64 \mathrm{cu} . \mathrm{cm}$
(d) $1241.856 \mathrm{cu} . \mathrm{cm}$
(iii) The curved surface area of each coin made is
(a) $105.6 \mathrm{sq} . \mathrm{cm}$
(b) $26.4 \mathrm{sq} . \mathrm{cm}$
(c) $422.4 \mathrm{sq} . \mathrm{cm}$
(d) $52.8 \mathrm{sq} . \mathrm{cm}$
(iv) Volume of each coin is
(a) $221.76 \mathrm{cu} . \mathrm{cm}$
(b) $55.44 \mathrm{cu} . \mathrm{cm}$
(c) $110.88 \mathrm{cu} . \mathrm{cm}$
(d) $27.72 \mathrm{cu} . \mathrm{cm}$
(v) Number of coins made out of the 5 spherical balls of silver is
(a) 56
(b) 224
(c) 112
(d) 336

PART - B

Section - III

6. In the given figure, $A X \| B Y$ and P is a point on the line segment $A B$. Find the ratio in which P divides $A B$ internally.

OR
To find a point P on a line segment $A B$ of length 14 cm such that $A P: P B=5: 7$, we draw a ray $A X$ such that $\angle B A X$ is acute. Then we mark points $A_{1}, A_{2}, A_{3}, \ldots$ on $A X$ at equal intervals. Find the minimum number of marked points.
7. If x_{i}^{\prime} s are the mid points of the class intervals of grouped data, f_{i}^{\prime} s are the corresponding frequencies and \bar{x} is the mean, then find the value of $\sum\left(f_{i} x_{i}-\bar{x}\right)$.
8. The angle of elevation of a ladder leaning against a wall is 60° and the foot of the ladder is 11.5 metres away from the wall. Find the length of the ladder.
9. Consider the following frequency distribution,

Class-interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	3	10	15	45	48	12

Find the modal class.
10. If $d_{i}=x_{i}-15, \sum f_{i} d_{i}=30$ and $\sum f_{i}=150$, then find the mean.

Section - IV

11. If a cube of side 6 cm is cut into a number of cubes each of side 2 cm , then find the number of cubes so formed.
12. Solve the following quadratic equation for x :
$4 x^{2}+4 b x-\left(a^{2}-b^{2}\right)=0$

OR

Find the value of k for which the roots of the quadratic equation $(k-4) x^{2}+2(k-4) x+2=0$ are equal.
13. The tops of two towers of height x and y, standing on level ground, subtend angles of 30° and 60° respectively at the centre of the line joining their feet, then find $x: y$.
14. In a certain distribution, mean and median are 15.5 and 20 respectively. Find the mode of the distribution, using an empirical relation.

Section - V

15. Draw a circle of radius 9 cm . Draw two tangents to the circle inclined at an angle of 45° to each other.
16. An aeroplane flying at a height of 9000 m from the ground passes vertically above another aeroplane at an instant, when the angles of elevation of the two planes from the same point on the ground are 60° and 30° respectively. Find the vertical distance between the aeroplanes at that instant.

OR

From a window (h metres high above the ground) of a house in a street, the angles of elevation and depression of the top and the foot of another house on the opposite side of the street are θ and ϕ respectively. Show that the height of the opposite house is $h(1+\tan \theta \cot \phi)$.
17. Find ' p ' if the mean of the given data is 15.45 .

Class interval	Frequency
$0-6$	6
$6-12$	p
$12-18$	10
$18-24$	9
$24-30$	7
Section - VI	

18. The $17^{\text {th }}$ term of an A.P. is 17 more than twice its $8^{\text {th }}$ term. If the $11^{\text {th }}$ term of the A.P. is 43 , then find its $5^{\text {th }}$ term.

OR
If the sum of first 4 terms of an A.P. is 40 and that of first 14 terms is 280 , find the sum of its first 20 terms.
19. In the given figure, O is the centre of a circle of radius $5 \mathrm{~cm} . T$ is a point such that $O T=13 \mathrm{~cm}$ and $O T$ intersects circle at E. If $A B$ is a tangent to the circle at E, find the length of $A B$, where $T P$ and $T Q$ are two tangents to the circle.

OR
In the given figure, $X Z$ touches the circle with centre O at Y. Diameter BA when produced meets $X Z$ at X. If $\angle B X Y=b$ and $\angle A Y X=a$, then prove that $b+2 a=90^{\circ}$.

ANSWERS

1. (b) : Given quadratic equation is $2 x^{2}-2 \sqrt{6} x+3=0$
Discriminant, $D=b^{2}-4 a c$

$$
=(-2 \sqrt{6})^{2}-4(2)(3)=24-24=0
$$

Thus, real and equal roots will exist, which are given by the following

$$
x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(-2 \sqrt{6})}{2 \times 2}=\frac{\sqrt{6}}{2}
$$

2. (c) : Given, A.P. is $2,7,12,17, \ldots .$.

Here, $a=2$ and $d=7-2=5$
Since $n^{\text {th }}$ term of an A.P. is $a_{n}=a+(n-1) d$
$\therefore \quad a_{30}=a+29 d=2+29(5)=147$
and $a_{20}=a+19 d=2+19(5)=97$
Now, $a_{30}-a_{20}=147-97=50$
3. (d) : Given, $a_{1}=\sqrt{12}=\sqrt{4 \times 3}=2 \sqrt{3}$,
$a_{2}=\sqrt{27}=\sqrt{9 \times 3}=3 \sqrt{3}, a_{3}=\sqrt{48}=\sqrt{16 \times 3}=4 \sqrt{3}$.
On observing the pattern, we can say that
$a_{4}=5 \sqrt{3}=\sqrt{25 \times 3}=\sqrt{75}$
So, next term will be $\sqrt{75}$.
4. (b) : Let $A B$ be the tower and P be the point on the ground.
In $\triangle A B P, \frac{A B}{B P}=\tan 45^{\circ}$
$\Rightarrow \frac{A B}{40}=1 \Rightarrow A B=40 \mathrm{~m}$

5. (i) (a) : Let r be the radius of a small spherical ball.
Surface area of a spherical ball $=887.04 \mathrm{~cm}^{2}$
$\Rightarrow 4 \pi r^{2}=887.04$
$\Rightarrow r^{2}=887.04 \times \frac{7}{22} \times \frac{1}{4}=70.56$
$\Rightarrow \quad r=8.4 \mathrm{~cm}$
$\therefore \quad$ Diameter of each spherical ball $=16.8 \mathrm{~cm}$
(ii) (a) : Volume of each sphericall ball $=\frac{4}{3} \pi r^{3}$ $=\frac{4}{3} \times \frac{22}{7} \times 8.4 \times 8.4 \times 8.4=2483.712 \mathrm{~cm}^{3}$
(iii) (d): Radius of a cylindrical coin $=\frac{1}{4} \times 8.4=2.1 \mathrm{~cm}$ and height of a cylindrical coin $=4 \mathrm{~cm}$
Now, curved surface area of a coin $=2 \pi r h$
$=2 \times \frac{22}{7} \times 2.1 \times 4=52.8 \mathrm{~cm}^{2}$
(iv) (b) : Volume of coin $=\pi r^{2} h$
$=\frac{22}{7} \times 2.1 \times 2.1 \times 4=55.44 \mathrm{~cm}^{3}$
(v) (b) : Required number of coins
$=\frac{5 \times \text { Volume of sphere ball }}{\text { Volume of coin }}=\frac{5 \times 2483.712}{55.44}=224$
6. From figure, it is clear that there are five points at equal distance on $A X$ and four points at equal distance on $B Y$. Here, P divides $A B$ on joining $A_{5} B_{4}$. So, P divides $A B$ in the ratio 5:4 internally. OR
Here, $m=5, n=7, m+n=12$
So, minimum number of points marked is 12 .
7. We know, $\bar{x}=\frac{\Sigma f_{i} x_{i}}{N}$, where N is total frequency.

Consider, $\Sigma\left(f_{i} x_{i}-\bar{x}\right)=\Sigma f_{i} x_{i}-\Sigma \bar{x}$

$$
\begin{aligned}
& =N \bar{x}-N \bar{x} \quad[\because \Sigma \bar{x}=N \bar{x}] \\
& =0
\end{aligned}
$$

8. Let $O X$ be the horizontal ground and $O B=x$ m be the ladder leaning against the wall $A B$.
Then, $\angle A O B=60^{\circ}, O A=11.5 \mathrm{~m}$ and $\angle O A B=90^{\circ}$.
In $\triangle O A B, \frac{O B}{O A}=\sec 60^{\circ}$
$\Rightarrow \quad \frac{x}{11.5}=2$

$\Rightarrow x=2 \times 11.5=23$
Hence, the length of the ladder is 23 m .
9. The class $40-50$ has maximum frequency. So, the modal class is 40-50.
10. Here, $d_{i}=x_{i}-15 \Rightarrow a=15 \quad\left[\because d_{i}=x_{i}-a\right]$

Also, $\sum f_{i} d_{i}=30$ and $\sum f_{i}=150$
$\therefore \quad$ Mean, $\bar{x}=a+\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}=15+\frac{30}{150}=15.2$
11. Number of cubes so formed
$=\frac{\text { Volume of larger cube }}{\text { Volume of one small cube }}=\frac{10 \times 10 \times 10}{2 \times 2 \times 2}=125$
12. We have, $4 x^{2}+4 b x-\left(a^{2}-b^{2}\right)=0$
$\Rightarrow 4 x^{2}+4 b x-a^{2}+b^{2}=0$
$\Rightarrow(2 x)^{2}+2(2 x)(b)+b^{2}-a^{2}=0$
$\Rightarrow \quad(2 x+b)^{2}-a^{2}=0$
$\Rightarrow \quad(2 x+b+a)(2 x+b-a)=0$
$\Rightarrow 2 x+b+a=0$ or $2 x+b-a=0$
$\Rightarrow \quad x=-\frac{(a+b)}{2}$ or $x=\frac{a-b}{2}$

OR

For roots of equation
$(k-4) x^{2}+2(k-4) x+2=0$ to be equal, Discriminant, D $=0$
$\therefore \quad[2(k-4)]^{2}-4(k-4)(2)=0$
$\Rightarrow 4(k-4)^{2}-8(k-4)=0$
$\Rightarrow 4(k-4)[(k-4)-2]=0$
$\Rightarrow 4(k-4)(k-6)=0 \Rightarrow k=6 \quad[\because k \neq 4]$
13. $\because E$ is the midpoint of $B D$.
$\therefore \quad B E=E D$
Now, in $\triangle A B E$
$\tan 30^{\circ}=\frac{A B}{B E}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{x}{B E}$
$\Rightarrow x=\frac{B E}{\sqrt{3}}$
And in $\triangle E D C, \tan 60^{\circ}=\frac{C D}{E D}$
$\Rightarrow \sqrt{3}=\frac{y}{E D} \Rightarrow y=\sqrt{3} B E \quad(\because B E=E D)$
$\therefore \frac{x}{y}=\frac{B E}{\sqrt{3}} \times \frac{1}{\sqrt{3} B E}=\frac{1}{3}$
Thus, $x: y=1: 3$.
14. We know that, empirical relation between mean, median and mode is
Mode $=3$ Median -2 Mean
We have,
Mean $=15.5$, Median $=20$
$\therefore \quad$ Mode $=3(20)-2(15.5)$
(Using (i))
\Rightarrow Mode $=60-31=29$
15. Steps of construction :

Step 1 : Draw a circle with centre O and radius 9 cm .
Step 2 : Draw any diameter $A O B$.
Step 3 : Take a point P on the circle such that $\angle A O P=45^{\circ}$.
Step 4 : Draw $P Q \perp O P$ and $B E \perp O B$. Let $P Q$ and $B E$ intersect at R.
Hence, $R B$ and $R P$ are the required tangents.

16. Let A and B be the positions of two aeroplanes when A is vertically above B and $A C=9000 \mathrm{~m}$.
Let D be the point of observation on the ground such that $\angle A D C=60^{\circ}$ and $\angle B D C=30^{\circ}$.
In $\triangle A C D, \tan 60^{\circ}=\frac{A C}{C D}$
$\Rightarrow \quad \sqrt{3}=\frac{9000}{C D}$
$\Rightarrow C D=\frac{9000}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=3000 \sqrt{3} \mathrm{~m} \ldots$ (i)
In $\triangle B C D, \tan 30^{\circ}=\frac{B C}{C D}$
$\Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{B C}{3000 \sqrt{3}}$
$\Rightarrow B C=3000 \mathrm{~m}$
\therefore Vertical distance between A and $B, A B=A C-B C$
$=9000-3000=6000 \mathrm{~m}$
OR
Let W be the window and $A B$ be the height of house on the opposite side. Also, let $W P=y$ meters be the width of the street and $A P=x$ metres.
Clearly, height of the window $=h$ metres $=B P$ In $\triangle B P W$, right angled at P, we have

$$
\begin{aligned}
& \tan \phi=\frac{B P}{W P} \\
\Rightarrow & \tan \phi=\frac{h}{y} \\
\Rightarrow & y=\frac{h}{\tan \phi}=h \cot \phi
\end{aligned}
$$

Similarly, in $\triangle A P W$, we have

$$
\begin{aligned}
& \tan \theta=\frac{A P}{W P} \Rightarrow \tan \theta=\frac{x}{y} \Rightarrow x=y \tan \theta \\
\Rightarrow & x=h \cot \phi \tan \theta
\end{aligned} \quad[\because y=h \cot \phi]
$$

Now, height of the opposite house $=A P+B P$
$=x+h=h \cot \phi \tan \theta+h=h(\cot \phi \tan \theta+1)$
$=h(1+\tan \theta \cot \phi)$.
17. The frequency distribution table from the given data can be drawn as :

Class interval	x_{i}	f_{i}	$f_{i} \boldsymbol{x}_{i}$
$0-6$	3	6	18
$6-12$	9	p	$9 p$
$12-18$	15	10	150
$18-24$	21	9	189
$24-30$	27	7	189
Total		$\sum f_{i}=32+p$	$\sum f_{i} x_{i}=546+9 p$

Mean, $\bar{x}=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}} \Rightarrow 15.45=\frac{546+9 p}{32+p}$
$\Rightarrow 494.4+15.45 p=546+9 p$
$\Rightarrow 6.45 p=51.6 \Rightarrow p=8$
18. Let a be the first term and d be the common difference of the given A.P.
According to question, $a_{17}=2 a_{8}+17$
$\Rightarrow a+16 d=2[a+7 d]+17$
$\Rightarrow a+16 d=2 a+14 d+17 \Rightarrow a=2 d-17$
Also, $a_{11}=43$
$\Rightarrow a+10 d=43$
$\Rightarrow(2 d-17)+10 d=43 \quad[$ Using (i)]
$\Rightarrow 12 d=60 \Rightarrow d=5$
$\therefore \quad a=2 d-17=2(5)-17=10-17=-7$
So, $a_{5}=a+4 d=-7+4 \times 5=13$

OR

Let a and d be the first term and the common difference of the given A.P. respectively.
The sum of first four terms, $S_{4}=40$

$$
\begin{equation*}
\Rightarrow \frac{4}{2}\{2 a+(4-1) d\}=40 \tag{i}
\end{equation*}
$$

$\Rightarrow 2 a+3 d=20$
The sum of first 14 terms, $S_{14}=280$
$\Rightarrow \frac{14}{2}\{2 a+(14-1) d\}=280$
$\Rightarrow 2 a+13 d=40$
Subtracting (i) from (ii), we get $10 d=20 \Rightarrow d=2$
Substituting $d=2$ in (i), we get
$2 a+3 \times 2=20 \Rightarrow 2 a=20-6=14 \Rightarrow a=\frac{14}{2}=7$
\therefore Sum of first 20 terms, $S_{20}=\frac{20}{2}\{2 a+(20-1) d\}$
$=10\{2 \times 7+19 \times 2\}=10[14+38]$
$=10 \times 52=520$
19. We know, tangent to a circle is perpendicular to its radius at the point of contact.
So, $O P \perp P T$ and $O Q \perp Q T$
In $\triangle O P T,(O P)^{2}+(P T)^{2}=O T^{2} \Rightarrow P T^{2}=(O T)^{2}$ $-(O P)^{2}$
$\Rightarrow(P T)^{2}=169-25=144 \Rightarrow P T=12 \mathrm{~cm}$
$\Rightarrow P T=Q T=12 \mathrm{~cm}$
$(\because$ Tangents drawn from an external point are equal)

Let $P A=x \mathrm{~cm} \Rightarrow A T=(12-x) \mathrm{cm}$
Hence, in right angled $\triangle A E T$
$(A E)^{2}+(E T)^{2}=(A T)^{2} \quad(\because O E \perp A B)$
$\Rightarrow(x)^{2}+(8)^{2}=(12-x)^{2}$
$(\because P A=A E$ and $E T=O T-O E)$
$\Rightarrow x^{2}+64=144+x^{2}-24 x$
$\Rightarrow x=\frac{80}{24}=3.33$
In $\triangle A E T$ and $\triangle B E T$
$\angle E T A=\angle E T B$
$E T=E T$
(Common)
$\angle A E T=\angle B E T \quad\left(90^{\circ}\right.$ each, as $\left.O E \perp A B\right)$
$\Rightarrow \quad \triangle A E T \cong \triangle B E T$
(By ASA congruence)
$\Rightarrow A E=B E$
(By CPCT)
Now, $A B=A E+E B$
$\Rightarrow A B=A E+A E$
$\Rightarrow A B=2 A E=2 \times 3.33=6.66 \mathrm{~cm}$
OR
Join $O Y$.
In $\triangle O X Y$,
$\angle O X Y+\angle X Y O+\angle X O Y=180^{\circ}$
[By angle sum property]

$\Rightarrow b+90^{\circ}+\angle X O Y=180^{\circ}$
$\Rightarrow \angle X O Y=180^{\circ}-90^{\circ}-b=90^{\circ}-b$
In $\triangle O A Y$
$O A=O Y$
[Radii of same circle]
$\Rightarrow \angle O Y A=\angle O A Y \ldots$ (ii) $[\because$ Angles opposite to equal sides are equal]
Now, $\angle A O Y+\angle O A Y+\angle O Y A=180^{\circ}$
[By angle sum property]
$\Rightarrow 90^{\circ}-b+\angle O A Y+\angle O A Y=180^{\circ}$ [Using (i) and
(ii)]
$\Rightarrow 2 \angle O A Y=90^{\circ}+b$
$\Rightarrow \angle O A Y=\frac{90^{\circ}+b}{2}=\angle O Y A$
Since tangent to a circle is perpendicular to the radius through the point of contact.
$\therefore \quad \angle O Y X=90^{\circ}$
Now, $\angle O Y A=\angle O Y X-\angle A Y X$
$\Rightarrow \angle O Y A=90^{\circ}-a$
From (iii) and (iv), we get, $\frac{90^{\circ}+b}{2}=90^{\circ}-a$
$\Rightarrow 90^{\circ}+b=180^{\circ}-2 a$
$\Rightarrow b+2 a=90^{\circ}$

