

SMART ACHIEVERS

CHEMISTRY - XII

Haloalkanes and Haloarenes PYQs

Date: 23/10/2021

- Q1. Draw the structure of 2-bromopentane
- Q2. Write the IUPAC name of $CH_3 CH CH_2 CH = CH_2$.
- Q3. Write the IUPAC name of

$$CH_3$$
 $CH_3CH = CH - C - CH_3$
 Br
 OCH_3 .

CM - CH $_3$
 $CH - CH_3$
 CH

- Q4. Write the IUPAC name of (CH₃)₂CHCH(CI)CH₃.
- Q5. Write the IUPAC name of the following compound:

- Q6. Write the structure of the following compound: 1-bromo-4-sec-butyl-2-methylbenzene.
- Q7. Write the structure of the following compound: 2-(2-chlorophenyl)-1-iodooctane.
- Q8. Give IUPAC name of the following organic compound:

- Q9. Write the structure of the following compound: 2-(2-Bromophenl)butane.
- Q10. Write the structure of the following compound: 1,4-dibromobut-2-ene.
- Q11. Write the IUPAC name of the following compound: CH, = CHCH, Br.
- Q12. Write the IUPAC name of the following compound: $CH_2 = C CH_2Br$.
- Q13. Write the IUPAC name of the following compound: (CH₃)₃CCH₂Br.
- Q14. Write the IUPAC name of the following:

$$CH_3 - C = C - CH_2OH$$
 $CH_3 - Br$

Q15. Write the IUPAC name of the following compound:

Q16. State the IUPAC name of the following compound: H_3C H H H H H H

Q17. Write the IUPAC name of the following compound: $CH_3CH - CH - CH_3$. $CH_3CH - CH_3$. $CH_3CH - CH_3$.

Q18. Write the structure of the compound 1-chloro-4-ethylcylohexane.

Q19. Write the IUPAC name of the following compound:

Q20. Write the structure of the compound: 4-tert-butyl-3-iodoheptane.

Q21. A hydrocarbon C₅H₁₂ gives only one monochlorination product. Identify the hydrocarbon.

Q22. Write the structure of the major product in the following reaction:

$$CH_3 - CH = C - CH_3 + HBr \longrightarrow CH_3$$

Q23. Write the major products in the following:

Q24. How do you convert: Propene to 1-iodopropane?

Q25. Write the IUPAC name of $CICH_2C = CCH_2Br$.

Q26. Complete the following chemical equation:

$$CH_3CH_2CH = CH_2 + HBr \xrightarrow{Peroxide}$$

Q27. What happens when bromine attacks

Q28. Draw the structure of major monohalogen product in the following reaction:

Q29. Draw the structure of major monohalogen product in the following reaction:

Q30. Draw the structure of major monohalogen product formed in the following reaction:

Q31. Which would undergo S_N1 reaction faster in the following pair:

$$CH_3$$
 CH_3 CH_3

Q32. Which would undergo S_N2 reaction fater in the following pair and why?

$$\begin{array}{c|cccc} & CH_3 \\ CH_3 - CH_2 - Br & and & CH_3 - C - CH_3 \\ & & Br \end{array}$$

- Q33. Write the structure of an isomer of compound C_4H_9Br which is most reactive towards S_N1 reaction.
- Q34. Out of CH $_3$ CH $_2$ CI and CH $_3$ CH $_2$ CH $_3$ CH
- Q35. Out of ethyl bromide and ethyl chloride which has higher boiling point and why?
- Q36. Answer the following: Haloalkanes easily dissolve in organic solvents, why?
- Q37. Explain the following: Alkyl halides, though polar, are immiscible with water.
- Q38. Why does p-dichlorobenzene have a higher m.p. than its o- and m-isomers?
- Q39. Why are alkyl halides insoluble in water?
- Q40. Give reason: *n*-Butyl bromide has higher boiling point than *t*-butyl bromide.
- Q41. A solution of KOH hydrolyses CH₃CHCICH₂CH₃ and CH₃CH₂CH₂CH₂CI. Which one of these is more easily hydrolysed?
- Q42. Which will react faster in S_N1 displacement reaction:
 - 1-Bromobutane or 2-bromobutane and why?
- Q43. Which will react faster in S_N2 displacement, 1-bromopentane or 2-bromopentane and why?
- Q44. Give a chemical test of distinguish between C₂H₅Br and C₆H₅Br.
- Q45. Predict the order of reactivity of the following compounds in S_N 1 reaction. $C_6H_5CH_2Br$, $C_6H_5C(CH_3)(C_6H_5)Br$, $C_6H_5CH(C_6H_5)Br$, $C_6H_5CH(CH_3)Br$.
- Q46. Predict the order of rectivity of four isomeric bromobutanes in S_N1 reaction.
- Q47. Account for the following: Grignard's reagents should be prepared under anhydrous conditions.
- Q48. Which compound in the following pair undergoes faster S_N1 reaction?

- Q49. Why (±)-butan-2-ol is optically inactive?
- Q50. What happens when ethyl chloride is treated with aqueous KOH?
- Q51. What happens when CH₃ Br is treated with KCN?
- Q52. Identify the chiral molecule in the following pair.

Q53. Which would undergo S_N2 reaction fater in the following pair and why?

$$CH_3 - CH_2 - Br$$
 and $CH_3 - CH_2 - I$

- Q54. Which halogen compound in each of the following pairs will react faster in S_N2 reaction:
 - (a) CH₃Br or CH₃I
- (b) (CH₃)₃CCI or CH₃CI.
- Q55. State one use each of DDT and iodoform.
- Q56. Write the balanced equation for the following:
 - (a) When chloroform is oxidised by air.
 - (b) Chloroform reacts with chlorine.
- Q57. Explain why in the pair, $(CH_3)_3CCI$ and CH_3CI will react faster in S_N2 reaction with OH?
- Q58. How may methyl bromide be preferentially converted to methyl isocyanide?
- Q59. Why is the following occur: Chloroform is stored in closed dark coloured bottles completely filled so that air is kept out.
- Q60. Explain the following reactions with an example: Friedel-Crafts reaction.
- Q61. Write the IUPAC names of the following compounds:
 - (a) $CH_2 = CHCH_2Br$

(b) (CCI₃)₃CCI

TK. IX

Q62. Complete the following reaction equations:

(a)
$$CH_3$$
 + HI \longrightarrow (b) $CH_3CH_2CH = CH_2 + HBr $\longrightarrow$$

Q63. Complete the following reaction equations:

(a)
$$\bigcirc$$
 OH + SOCI₂ \longrightarrow (b) \bigcirc CH₃OH + HCI \longrightarrow

Q64. Write the mechanism of the following reaction:

Q65. Draw the structure of major monohalo product in each of the following reactions:

(a)
$$\bigcirc$$
 OH $\xrightarrow{SOCI_2}$ (b) \bigcirc CH₂ - CH = CH₂ + HBr $\xrightarrow{Peroxide}$ Br

Q66. Explain why

- (a) the dipole moment of chlorobenzene is lower than that of cyclohexyl chloride?
- (b) alkyl halides, though polar, are immiscible with water?
- Q67. Complete the following reaction equations:

(a)
$$C_6H_5N_2CI + KI \longrightarrow (b) \stackrel{H}{+}C = C \stackrel{H}{\leftarrow} + Br_2 \stackrel{CCI_4}{\longrightarrow}$$

- Q68. (a) Why is buan-1-ol optically inactive but butan-2-ol is optically active?
 - (b) Although chlorine is an electron withdrawing group, yet it is ortho-, para-directing in electrophilic aromatic substitution reactions. Why?
- Q69. Write the structure of the major product in each of the following reactions:

(a)
$$CH_3 - CH_2 - CH_2 - CH_3 + KOH \xrightarrow{Ethanol}$$

Br

Q70. Give reasons:

- (a) Racemic mixture is iptically inactive.
- MG Pyt. Itd. (b) The presence of nitro group (- NO₂) at o/p positions increases the reactivity of haloarenes towards nucleophilic substitution reactions
- Q71. Write the major product(s) in the following:

Write the major product(s) in the following:

(a)
$$2CH_3 - CH - CH_3 \xrightarrow{Na} (b) CH_3 - CH_2 - Br \xrightarrow{AgCN}$$

CI

Give reasons:

Q72. Give reasons:

- (a) C CI bond length in chlorobenzene is shorter than C CI bond length in CH₃ CI.
- (b) S_N1 reactions are accompanied by racemization in optically active alkyl halides.
- Q73. Give reasons for the following:
 - (a) Ethyl iodide undergoes S_N2 reaction faster than ethyl bromide.
 - (b) C X bond length in halobenzene is smaller than C X bond length in $CH_3 X$.
- Q74. Account for the following:
 - (a) The C-CI bond length in chlorobenzene is shorter than that in CH_3-CI .
 - (b) Chloroform is stored in closed dark brown bottles.
- Q75. Chlorobenzene is extremely less reactive towards a nucleophilic substitution reaction Give two reasons for the same.
- Q76. What are ambident nucleophiles? Explain with an example.

Q77. Write chemical equations when

- (a) methyl chloride is treated with AgNO₂.
- (b) bromobenzene is treated with CH₃CI in the presence of anhydrous AICI₃.

Q78. Halokanes undergo nucleophilic substitution whereas haloarenes undergo electrophilic substitution. Explain.

Q79. Write the mechanism of the following reaction:

$$n$$
-BuBr + KCN $\xrightarrow{\text{EtOH, H}_2O}$ n -BuCN

Q80. Answer the following:

- (a) What is known as a racemic mixture? Give an example.
- (b) Of the two bromoderivatives, $C_6H_5CH(CH_3)Br$ and $C_6H_5CH(C_6H_5)Br$, which one is more reactive in S_N1 substitution reaction and why?
- Q81. (a) Why is sulphuric acid not used during the reaction of alcohols with KI in the conversion of a alcohol to the alkyl iodide?
 - (b) Why are haloarenes less reactive than haloalkanes towards nucleophilic substitution reactions?

Q82. Which compound in the following couple will react faster in S_N2 displacement why?

- (a) 1-Bromopentane or 2-bromopentane
- (b) 1-Bromo-2-methylbutane or 2-bromo-2-methylbutane.

Q83. How would you account for the following:

(a) Griganrd reagents are prepared strictl under anhydrous conditions?

Q84. Give reasons for the following observations:

- (a) Haloarenes are less reactive than haloalkanes towards nucleophilic substitution reactions.
- (b) The treatment of alkyl chloride with aqueous KOH leads to the formation of alcohol but in the presence of alcoholic KOH, alkene is the major product.

Q85. Suggest a possible reason for the following observations:

- (a) The order of reactivity of haloalkanes is RI > RCI > RBr.
- (b) Neopentyl chloride (CH₃)₃CCH₂CI does not follow S_N2 mechanism.

Q86. Which one in the following pars undergoes S_N1 substitution reaction faster and why?

- Q87. (a) Why is it that haloalkanes are more reactive than haloarenes towards nucleophiles.
 - (b) Which one of the following reacts faster in an S_N1 reaction and why?

Q88. Give one example of each of the following reactions:

- (a) Wurtz reaction.
- (b) Wurtz-Fitting reaction.

Q89. What is Saytzeff rule? Illustrate with suitable example.

Q90. Discuss the mechanism of S_N1 reaction of haloalkanes.

Q91. (a) Why are haloalkanes more reactive towards nucleophilic substitution reactions than haloarenens?

(b) Which one of the following two substances undergoes S_N1 reaction faster and why?

Q92. How do you convert?

- (a) Chlorobenzene to biphenyl
- (b) 2-bromobutane to but-2-ene.

Q93. Write chemical equations when

- (a) ethyl chloride is treated with aqueous KOH.
- (b) chlorobenzene is treated with CH₃COCI in presence of anhydrous AlCI₃.

Q94. How are the following conversions carried out?

- (a) Benzyl chloride to benzyl alcoho.
- (b) Methyl magnesium bromide to methylpropan-2-ol.

Q95. (a) Which alkyl halide from the following pairs would you expect to react more rapidly by an S_N2 mechanism and why?

$$CH_3 - CH_2 - CH - CH_3$$
 and $CH_3 - CH_2 - CH_2 - CH_2 - Br$

(b) Racemisation occurs in S_N1 reactions. Why?

Q96. Give the IUPAC mames of the following compounds:

(c)
$$CH_2 = CH - CH_2 - CH_2$$

Q97. Compute the following reaction equations:

(a)
$$CH_3 + HI \longrightarrow$$

(c)
$$CH_3CH_2CH = CH_2 + HBr \longrightarrow$$

Q98. Answer the following questions:

- (a) What is meant by chirality of a compound? Give an example.
- (b) Which one of the following compounds is more easily hedrolysed by KOH and why?

(c) Which one undergoes S_N2 substitution reaction faster and why?

$$\sim$$
I or \sim CI

Q99. Differentiate between S_N1 and S_N2 mechanisms and give examples.

Q100(a) Write a chemical test to distinguish between:

- (i) Chlorobenzene and benzyl chloride. (ii) Chloroform and carbon tetrachloride.
- (b) Why is methyl chloride hydrolysed more easily than chlorobenzene?

Q101Complete the equation for the following reactions:

(a)
$$H + HBr \rightarrow (b) CH_3 + HI \rightarrow (c) OH + SOCI_2 \rightarrow$$

Q102Rearrange the compounds of each of the following sets in order of reactivity towards S_N^2 displacement:

- (a) 2-Bromo-2-methylbutane, 1-Bromopentane, 2-Bromopentane.
- (b) 1-Bromo-3-methylbutane, 2-Bromo-2-methylbutane, 3-Bromo-2-methylbutane.
- (c) 1-Bromobutane, 2-Bromo-2,2-dimethylpropane, 1-Bromo-2-methylbutane.

SMART ACHIEVE

CHEMISTRY - XII

Haloalkanes and Haloarenes PYQs-Solution

JEVERS LEAR LINE PAR. LINE.

Date: 23/10/2021

S1.
$$H_3C - CH - CH_2 - CH_2 - CH_3$$
.

- 4-Chloropent-1-ene.
- 4-Bromo-4-methylpent-2-ene.
- S4. 2-Chloro-3-methyl butane.
- S5. 3-Chloro-2,2-dimethyl butane.

S7.
$$IH_2C - CH - (CH_2)_4 - CH_2$$

S8.
$${}^{1}_{CH_{3}CH} = {}^{3}_{CH_{3}} - {}^{4}_{CH_{3}} - {}^{5}_{CH_{3}}$$

 ${}^{1}_{CH_{3}} = {}^{3}_{CH_{3}} - {}^{4}_{CH_{3}} - {}^{5}_{CH_{3}}$
 ${}^{2}_{CH_{3}} = {}^{3}_{CH_{3}} - {}^{4}_{CH_{3}} - {}^{5}_{CH_{3}}$

4-Bromo-3-methylpent-2-ene

S10.
$$H_2C - CH = CH - CH$$

Br

Br

S12.
$$CH_2 = C - CH_2Br$$
 CH_3

3-Bromo-2-methylpropene

S13. $H_3C - C - C + CH_2 - Br$ CH_3 CH_3

1-Bromo-2,2-dimethylpropane

S14. ${}^{4}_{CH_3} - {}^{3}_{||} = {}^{2}_{||} - {}^{1}_{CH_2OH}$.

2-Bromo-3-methylbut-2-en-1-ol

- **\$15.** 2-Bromo-4-chloropentane.
- S16. 1-Bromobut-2-ene.

S17.
$${}^{4}_{CH_3}$$
 $-{}^{3}_{CH}$ $-{}^{2}_{CH}$ $-{}^{1}_{CH_3}$.

2-Bromo-3-Chlorobutane

$$\begin{array}{c} {\rm CH_3} \\ {\rm H_3C - C - CH_2CI} \\ {\rm CH_3} \end{array}$$

1-Chloro-2,2-dimethylpropane

S22.

$$CH_3 - CH_2 - CH_3 - CH_3$$
 (Markownikny's addition)

2-Bromo-2-methylbutane

S24.
$$CH_3CH = CH_2 + HBr \xrightarrow{Peroxide} CH_3CH_2CH_2CH_2Br \xrightarrow{Peroxide} CH_3 - CH_2 - CH_2I$$
Propene $CH_3CH = CH_2 + HBr \xrightarrow{Peroxide} CH_3CH_2CH_2CH_2Br \xrightarrow{Peroxide} CH_3 - CH_2 - CH_2I$

S25.
$$CICH_2 - C \equiv C - CH_2 - Br.$$
1-Bromo-4-chlorobut-2-yne

S27.
$$CH_2 - CH - CH_2 - C \equiv CH$$

$$\begin{vmatrix}
& & & \\
& & & \\
& & & \\
Br & & Br
\end{vmatrix}$$

$$+ Br_2 \xrightarrow{\text{Heat}} + HBr$$

+ HI
$$\longrightarrow$$
 I

$$CH_3$$
 CH_3 CH_3

S32. $CH_3 - CH_2 - Br$ would undergo $S_N 2$ reaction faster due to formating of less steric hindrance.

S33.

$$CH_3 - C - Br$$

$$CH_3 - C - Br$$

$$CH_3$$

Tertiary butyl bromide or 2-Bromo-2-methylpropane

S34. The S_N1 reaction proceeds through carbocation formation thus, the compound which forms more stable carbocation will be more reactive.

$$CH_{3}-CH_{2}-CH-CI \xrightarrow{-CI^{-}} CH_{3}-CH_{2}-\overset{+}{C}H$$

$$CH_{3} CH_{3}$$

As, 2° carbocation is mre stable than 1° carbocation thus, 2-chlorobutane is more reactive towards $S_N 1$ reaction.

- **S35.** The boiling point of ethyl bromide is higher due to the greater magnitude of the van der Waals forces which depend upon molecular size and mass.
- **S36.** Haloalkanes dissolve in organic solvents because the intermolecular attractions between haloalkanes and organic solvent molecules have the same strength as in the separate haloalkanes and solvent molecules.
- **S37.** Alkyl halides are polar but are insoluble in water because energy required to break the intermolecular H-bond among water molecules is much higher than energy released by water halide interaction.
- **S38.** *p*-Dichlorobenzene has higher melting point than those of *o* and *m*-isomers because it is more symmetrical and packing is better in solid from. Hence, it has stronger intermolecular force of attraction than *o* and *m*-isomers.

$$\begin{array}{c|c}
CI & CI & CI \\
\hline
CI & CI & \hline
CI &$$

- **S39.** Alkyl halides are polar but are insoluble in water because energy required to break the intermolecular H-bond among water molecules is much higher than energy released by water halide interaction.
- **S40.** *n*-Butyl bromide, being a straight chain molecule have strong intermolecular forces whereas *t*-butyl bromide being a branched chain molecule have weaker intermolecular forces due to smaller surface area.

Hence, boiling point of n-butyl bromide is higher than that of t-butyl bromide.

- **S41.** CH₃CH₂CHCH₃ hydrolyses easily with KOH because it is secondary halide.
- **S42.** 2-bromobutane will react faster in S_N1 displacement reaction because it will form more stable secondary carbocation intermediate.
- **S43.** 1-bromopentane is a primary alkyl halide, hence reacts faster in $S_N 2$ displacement than secondary hailde 2-bromopentane.

- **S44.** C₂H₅Br reacts with AgNO₃ to give yellow precipitate of AgBr while C₆H₅Br.
- **S45.** $C_6H_5C(CH_3)(C_6H_5)Br > C_6H_5CH(C_6H_5)Br > C_6H_5CH(CH_3)Br > C_6H_5CH_2Br$.
- **S46.** $(CH_3)_3CBr > CH_3CH_2CH CH_3 > (CH_3)_2CHCH_2Br > CH_3CH_2CH_2CH_2Br$.
- **S47.** Grignard's reagents react with water to form alkanes.

$$R - Mg - X + H_2O \longrightarrow R - H + Mg < X$$

So, they must be prepared under anhydrous conditions.

- **S48.** Tertiary halide CI reacts faster than the secondary halide because ofthe greater stability of *tert*-carbocation.
- **S49.** The (±)-butan-2-ol is optically inactive because it iexist in two enantiometric forms which are non-superimposable mirror images of each other. Both the isomers are present in equal amounts therefore, it does not rotate the plane of polarized light and is optically inactive.

$$\begin{array}{c|c} \mathsf{CH_3} & \mathsf{CH_3} \\ \mathsf{HO} & \mathsf{C}^* \\ \mathsf{HO} & \mathsf{CH_2CH_3} \\ \mathsf{H} & \mathsf{CH_3CH_2} \\ \mathsf{HO} & \mathsf{H} \\ \mathsf{50\%-(+) \ Butan-2-ol} \\ \end{array}$$

\$50. When ethyl chloride is treated with awueous KOH, ethanol is formed,

$$CH_3CH_2CI + KOH(aq) \longrightarrow CH_3CH_2OH + KCI$$

S51. CH₃CN is formed by nucleophilic substitution reaction.

$$CH_3Br + KCN \longrightarrow CH_3CN + KBr$$

- ss2. is a chiral molecule.
- **S53.** Since I $^-$ is a better leaving group than Br $^-$, thus, CH $_3$ CH $_2$ I undergoes S $_N$ 2 reaction faster than CH $_3$ CH $_2$ Br.
- **S54.** (a) CH_3I will give faster S_N2 reaction.
 - (b) CH₃CI will give faster S_N2 reaction.
- \$55. DDT is used as an insecticide and iodoform is used as a mild antiseptic.
- **S56.** (a) $2CHCl_3 + O_2 \xrightarrow{Light} 2COCl_2 + 2HCl$ Chloroform Carbonyl chloride

- **S57.** CH₃Cl will react faster in S_N2 reaction with OH⁻.
- \$58. KCN is predominantly ionic and provides cyanide ions in solution

$$CH_3Br + KCN \longrightarrow CH_3C \equiv N + KBr$$

Methyl cyanide
bromide

AgCN is mainly covalent in nature and nitrogen is free to donate electron pair forming isocyanide as main product.

$$CH_3Br + AgCn \longrightarrow CH_3N \equiv C + AgBr$$
Methyl isocyanide
bromide

\$59. Chloroform when exposed to air and sunlight changes to phosgene which is a poisonous gas.

$$CHCl_3 + \frac{1}{2}O_2 \longrightarrow COCl_2 + HCl$$

It is kept in dark coloured bottles to prevent the oxidation.

S60. Haloarenes can undergo both freidal craft alkylation (with alkyl halide) or freidal craft acylation (with acid halide) in presence of Lewis acid catalyst to give a mixture of *o*- and *p*-haloalkyl benzene or *o*- and *p*-haloacylbenzene.

$$\begin{array}{c|c} CI \\ & C \\ \hline \end{array} + CH_3 - C - CI \xrightarrow{Anhyd, AlCI_3} \begin{array}{c} CI \\ \hline \\ 2\text{-Chloroacetophenone} \\ \hline \\ \text{(Minor)} \end{array} + \begin{array}{c} CI \\ \hline \\ \text{CH}_3 \\ \hline \\ \text{4-Chloroacetophenone} \\ \hline \\ \text{(Major)} \end{array}$$

- **S61.** (a) $CH_2 = CHCH_2Br$. 3-Bromoprop-1-ene
- (b) 2-(Trichloromethyl)-1,1,12,3,3,3-heptachloropropae

S62. (a)
$$CH_3 + HI \longrightarrow I$$

(b)
$$CH_3CH_2CH = CH_2 + HBr \longrightarrow CH_3CH_2 - CH - CH_3$$

Br

S63. (a)
$$OH + SOCI_2 \longrightarrow CI + SOCI_2 + SOCI_2 \rightarrow Chlorocylohexane$$

(b)
$$HO$$
 CH_2OH $+ HCI$ $Heat$ HO CH_2CI

S64. (a)
$$CH_3CH_2\overset{\bullet}{OH} + \overset{\bullet}{H}^+ \longrightarrow CH_3CH_2 - \overset{\bullet}{O}H_2$$

(b)
$$Br + CH_3CH_2 - OH_2CH_2 - Br + H_2O$$

S65. (a)
$$OH + SOCI_2 \longrightarrow CI + HCI + SOCI_2$$

(b)
$$CH_2 - CH_2 - CH_2 + HBr \xrightarrow{Peroxide} CH_2 - CH_2 - CH_2 - Br$$

- **S66.** (a) There are two reasons:
 - In case of chlorobenzene, carbon to which chlorine is attached is sp^2 hybridised and is (i) more electronegative than the corresponding carbon in cyclohexyl chloride which is sp^3 hybridised. So the net dipole moment is lower in chlorobenzene.
 - In chlorobenzene C CI bond has some double bond character so its bond length is smaller.

Hence dipole moment is smaller than cyclohexyl chloride which has a longer C — Cl single bond.

(b) Alkyl halides are polar but are insoluble in water because energy required to break the intermolecular H-bond among water molecules is much higher than energy released by water halide interaction.

S67. (a)
$$C_6H_5N_2CI + KI \longrightarrow C_6H_5I + N_2 + KCI$$

S67. (a)
$$C_6H_5N_2CI + KI \longrightarrow C_6H_5I + N_2 + KCI$$

(b) $H \longrightarrow C = C \hookrightarrow H + Br_2 \xrightarrow{CCI_4} CH_2 - CH_2$
Br Br

S68. (a) Buan-1-ol is achrial, *i.e.*, does not have chiral 'C' atom which is attached to four different groups, therefore, it is optically inactive.

Butan-2-ol is chiral, i.e., has chiral 'C' atom, attached to four different groups.

$$H \xrightarrow{*} OH \qquad HO \xrightarrow{*} H$$

$$CH_2CH_3 \qquad CH_2CH_3$$

$$d(+) \qquad Butan-2-ol$$

$$CH_2CH_3 \qquad I(-) \qquad Butan-2-ol$$

Although CI is electron withdrawing (I effect) but still o- and p-directing as due to +R effect, electrons density is maximum at o- and p-positions.

S69. (a)
$$CH_3 - CH_2 - CH = CH - Ch_3$$
 (Saytzeff rule)

- **S70.** (a) Racemic mixture contains equal amount of *d* and *l* forms, hence rotation due to one enantiomer is cancelled by another.
 - (b) The presence of nitro group at *o* and *p*-positions withdraws electrons from the benzene ring and thus, facilitates the attack of the nucleophile on haloarenes. The carbanion thus formed is further stabilised by reasonance.

S71. (a)
$$CH_3 - CH - CH - CH_3$$
 (b) CH_3CH_2NC . $CH_3 - CH_3$

S72. (a) In halobenzene C - X bond has partial double bond character due to resonance while $CH_3 - X$ bond is single bond.

Thus, bond length of C - X bond in halobenzene is smaller than that in $CH_3 - X$.

- (b) In S_N1 reaction carbocation intermediate is formed which is a planar molecule so, an incoming nucleophile can attack from either side and a equilmolar mixture of two components are formed and resulting mixture is optically inactive.
- **S73.** (a) Since I^- is a better leaving group than Br^- , thus, CH_3CH_2I undergoes S_N^2 reaction faster than CH_3CH_2Br .
 - (b) In halobenzene C X bond has partial double bond character due to resonance while $CH_3 X$ bond is single bond.

Thus, bond length of C - X bond in halobenzene is smaller than that in $CH_3 - X$.

S74. (a) In halobenzene C — X bond has partial double bond character due to resonance while $CH_3 - X$ bond is single bond.

Thus, bond length of C - X bond in halobenzene is smaller than that in $CH_3 - X$

(b) Chloroform when exposed to air and sunlight changes to phosgene which is a poisonous gas.

It is kept in dark coloured bottles to prevent the oxidation.

- **S75.** Haloarenes are much less reactive than haloalkanes towards nucleophilic substitution reactions due to the following reasons.
 - (a) Resonance effect: In haloarenes the electron pairs on halogen atom are in conjugation with π -electrons of the ring and the following resonating structures are possible.

- C CI bond acquires a partial double bond character due to resonance. As a result, the bond cleavage in haloarene is difficult than haloalkane and therefore, are less reactive towards nucleophilic substitution reaction.
- (b) Difference in hybridisation of carbon atom in C X bond.
- **\$76.** A nucleophile which can attack from more than one centres, is known as ambident nucleophile.
 - e.g., ¯C ≡ N: Cyanide ion.

S77. (a)
$$CH_3CI + AgNO_2 \longrightarrow CH_3NO_2 + AgCI$$

(b)
$$\begin{array}{c} Br \\ + CH_3CI \xrightarrow{Anhyd, AlCl_3} \end{array} \begin{array}{c} Br \\ CH_3 \end{array} + \begin{array}{c} CH_3 \\ CH \end{array}$$

S78. In haloarenes – ve charge gets localised on arenes using resonance, therefore they undergo electrophilic substitution.

Haloalkanes have electrophilic carbon centre due to polarity of $C \rightarrow X$ bond.

\$79. Normal butyl bromide will give S_N2 reaction:

$$K^{+}CN^{-} + CH_{3}CH_{2}CH_{2}CH_{2}Br \longrightarrow CH_{3}CH_{2}CH_{2}CH_{2}CN + KBr$$
 n -Butyl cyanide

S80. (a) An equimolar mixture of a pair of enantiomers is called racemic mixture. A racemic mixture is optically inactive due to external compensation.

- (b) Of the two bromoderivatives, $C_6H_5CH(CH_3)Br$ and $C_6H_5CH(C_6H_5)Br$, The $C_6H_5CH(C_6H_5)Br$ is more reactive than $C_6H_5CH(CH_3)Br$ for S_N1 reaction because its carbocation is reasonance stabilised by two phenyl groups.
- **S81.** (a) H_2SO_4 is an oxidant. KI reacts with H_2SO_4 and give HI and H_2SO_4 oxidises HI to I_2 .

Thus, HI will not be available for reaction with alcohol o form alkyl iodide.

This is why sulphuric acid is not used during the reaction of alcohols with KI.

- (b) Haloarenes are much less reactive than haloalkanes towards nucleophilic substitution reactions due to the following reasons.
 - (i) **Resonance effect:** In haloarenes the electron pairs on halogen atom are in conjugation with π -electrons of the ring and the following resonating structures are possible.

C — CI bond acquires a partial double bond character due to resonance. As a result, the bond cleavage in haloarene is difficult than haloalkane and therefore, are less reactive towards nucleophilic substitution reaction.

(ii) Difference in hybridisation of carbon atom in C - X bond.

- **\$82.** (a) 1-Bromopentane, as it is a primary alkyl halide.
 - (b) 1-Bromo-2-methylbutane, as it is a primary alkyl halide.
- **S83.** (a) Grignard's reagents react with water to form alkanes.

$$R - Mg - X + H_2O \longrightarrow R - H + Mg < X$$

So, they must be prepared under anhydrous conditions.

- **S84.** (a) Haloarenes are much less reactive than haloalkanes towards nucleophilic substitution reactions due to the following reasons.
 - (i) **Resonance effect:** In haloarenes the electron pairs on halogen atom are in conjugation with π -electrons of the ring and the following resonating structures are possible.

C — CI bond acquires a partial double bond character due to resonance. As a result, the bond cleavage in haloarene is difficult than haloalkane and therefore, are less reactive towards nucleophilic substitution reaction.

- (ii) Difference in hybridisation of carbon atom in C X bond.
- (b) In aqueous solution, KOH is almost completely involved to give OH⁻ ion which being a getter nucleophile gives a substitution reaction on alkyl halides to form alcohol. But an alcoholic solution of KOH containing alkoxide (RO–) ions which being a much stronger base than OH⁻ ion preferentially snatches a H⁺ ion from an alkyl chloride to form alkenes.
- **S85.** (a) Among the various halides with same alkyl group the order of reactivity is RI > RBr > RCI. Due to increasing bond strength of C I, C Br and C CI the reactivity decreases.
 - (b) Neopentyl chloride being a primary halide reacts slowly through S_N1 and the carbon carrying halogen is sterically more hindered. Hence, it does not follow S_N2 mechanism.

(b) reacts faster than CI because of greater stability of secondary carbocation than primary.

- **S87.** (a) Haloarenes are much less reactive than haloalkanes towards nucleophilic substitution reactions due to the following reasons.
 - (i) **Resonance effect:** In haloarenes the electron pairs on halogen atom are in conjugation with π -electrons of the ring and the following resonating structures are possible.

C — CI bond acquires a partial double bond character due to resonance. As a result, the bond cleavage in haloarene is difficult than haloalkane and therefore, are less reactive towards nucleophilic substitution reaction.

- (ii) Difference in hybridisation of carbon atom in C X bond.
- (b) ertiary halide CI reacts faster than the secondary halide because ofthe greater stability of *tert*-carbocation.
- **S88.** (a) Wurtz reaction: It converts alkyl halide into higher alkane in presence of sodium metal and dry ether.

$${
m CH_3CI}$$
 + 2Na + ${
m CH_3CI}$ $\xrightarrow{
m Ether}$ 2NaCl + ${
m C_2H_6}$ Chloromethane

(b) Wurtz-Fitting reaction: It converts aryl halide into alkyl arenes in presence of sodium metal and ether.

$$\begin{array}{c|c} CI & CH_3 \\ \hline & + 2Na + CH_3CI \xrightarrow{Ether} & + 2NaCI \\ \hline \\ Chloromethane & Toluene \\ \hline \\ (Methyl benzene) \end{array}$$

S89. Saytzeff rule: In elimination reaction alkene having the lasser number of hydrogen on the double bonded carbon atom is formed. This generalisation is known as Saytzeff rule for example.

$$CH_{3}-CH_{2}-CHBr-CH_{3} \xrightarrow{alc. KOH} CH_{3}-CH_{2}-CH=CH-CH_{3}$$

$$CH_{3}-CH_{2}-CH=CH-CH_{3}$$

$$CH_{3}-CH_{2}-CH=CH_{2}-CH=CH_{2}$$

$$CH_{3}-CH_{2}-CH=CH_{2}$$

$$CH_{3}-CH_{2}-CH=CH_{2}$$

$$CH_{3}-CH_{2}-CH=CH_{2}$$

$$CH_{3}-CH=CH_{3}$$

$$CH_{3}-CH=$$

S90. In S_N1 mechanism of substitution reaction, the rate of reaction depends upon the concentration of only one reactant. It is two steps reactant.

Mechanism:

$$C_2H_5$$
 CH_3
 CH_3
 CH_5
 CH_6
 CH_7
 CH_7

- Haloarenes are much less reactive than haloalkanes towards nucleophilic substitution reactions due to the following reasons.
 - Resonance effect: In haloarenes the electron pairs on halogen atom are in conjugation (i) with π -electrons of the ring and the following resonating structures are possible.

C — CI bond acquires a partial double bond character due to resonance. As a result, the bond cleavage in haloarene is difficult than haloalkane and therefore, are less reactive towards nucleophilic substitution reaction.

- Difference in hybridisation of carbon atom in C X bond.
- (b) Due to greater stability of 2° carbocation over 1° carbocation, will react faster than $\nearrow \bigcirc$ CI in S_N1 reaction.

(a)
$$2 + 2Na \xrightarrow{Ether} Diphenyl$$
 + $2KC$

$$-$$
 CH $-$ CH $_2$ $-$ CH $_3$ $-$ Ethanolic KOF $_4$

$$CH_3 - CH = CH - CH_3$$

When ethyl chloride is treated with awueous KOH, ethanol is formed,

$$CH_3CH_2CI + KOH(aq) \longrightarrow CH_3CH_2OH + KCI$$

Haloarenes can undergo both freidal craft alkylation (with alkyl halide) or freidal craft acylation (with acid halide) in presence of Lewis acid catalyst to give a mixture of o- and p-haloalkyl benzene or o- and p-haloacylbenzene.

(Major)

S94. (a)
$$CH_2CI$$
 CH_2OH + aq . KOH \longrightarrow $Benzyl chloride$ $Benzyl alcohol$

(b)
$$CH_3MgBr + CH_3 - C - CH_3 \longrightarrow CH_3 - C - CH$$

- 1-Bromobutane is 1° alkyl halide while 2-bromobutane is 2° alkyl halide. Due to steric **S95.** (a) hindrance in 2° alkyl halides, 1° alkyl halide will react faster than 2° alkyl halide in $S_{\scriptscriptstyle N}2$ reaction.
 - Carbocations are formed in $S_N 1$ reaction which are planar species, thus, racemisation occurs.
- 2-Bromobutane. **S96.** (a) 1,3-Dibromobenzene. 3-Chloropropene. (b)

S97. (a)
$$CH_3 + HI \longrightarrow I$$

(b)
$$H + HBr \xrightarrow{\text{Markovnikov's}} CH - CH_3$$

(c)
$$CH_3CH_2CH = CH_2 + HBr \longrightarrow CH_3CH_2 - CH - CH_3$$

| Br

S98. (a) Chiral object: An object which has no plane of symmetry (cannot be divided into two identical halves) is called chiral (Greek; Chiral-Handd) or dissymmetric or asymmetric. A Chiral object is not superimposable on its mirror image.

e.g., left and right hand of a person are mirror images of each other and are not superimposable.

- (b) $CH_3CH_2CHCH_3$ hydrolyses easily with KOH because it is secondary halide.

S99.		S _N 1 mechanisms	S _N 2 mechanisms
	1.	It is two step process, carbocation intermediate is formed.	lit is single step process. No intermediate is formed.
	2.	It obeys 1 st order kinetics. Rate = <i>k</i> [Reactant]	 It obeys 2nd order kinetics. Rate = k [Reactant] [Nuclephile]
	3.	Order of reactivity: 3° > 2° > 1°.	3. Order of reactivity : 1° > 2° > 3°.
	4.	Optically inactive product is formed (racemic mixture).	4. Inversion of configuration takes place.
	5.	e.g., $(CH_3)_3CBr + OH^-$ 2-Bromo-2-methylpropane \downarrow $(CH_3)_3COH + Br^-$ 2-Methylpropane-2-ol	5. e.g., Θ H C C C A

- **S100**(a) (i) Benzyl chloride gives white precipiate with AgNO₃ solution while chlorobenzene does not.
 - (ii) $CHCl_3$ with aniline in presence of alc. KOH gives foul smelling isocyanides whereas CCl_4 does not.
 - (b) CH_3CI is hydrolysed easily than C_6H_5CI as chlorobenzene has partial double bond character between C CI bond which is difficult to break.

S101 (a)
$$H$$
 + HBr A Markovnikov's addition H - CH - CH₃ Br

(b)
$$CH_3 + HI \longrightarrow I$$

(c)
$$OH + SOCI_2 \longrightarrow CI + SO_2 + HCI$$

Chlorocylohexane

- **\$102**(a) 1-Bromopentane > 2-Bromopentane > 2-Bromo-2-methylbutane.
 - (b) 1-Bromo-3-methylbutane > 3-Bromo-2-methylbutane > 2-Bromo-2-methylbutane.
 - (c) 1-Bromobutane > 1-Bromo-2-methylbutane > 1-Bromo-2,2-dimethylpropane.