

SMART ACHIEVERS

MATH - X | Constructions Elementry

Date: 29/9/2021

- **Q1.** Determine a point which divides a line segment of length 12 cm internaly in the ratio 2 : 3. Also, justify your construction.
- **Q2.** Divide a line segment of length 14 cm internally in the ratio 2:5. Also, justify your construction.
- **Q3.** Take a point O on the plane of the paper. With O as centre draw a circle of radius 3 cm. Take a point P on this circle and draw a tangent at P.
- **Q4.** Draw a circle of radius 4 cm with centre O. Draw a diameter POQ. Through P or Q draw tangent to the circle.
- **Q5.** Draw a circle of radius 4 cm. Take a point *P* on it. Without using the centre of the circle, draw a tangent to the circle at point *P*.
- **Q6.** Draw a circle of radius 3 cm. Take a point at a distance of 5.5 cm from the centre of the circle. From point *P*, draw two tangents to the circle.
- **Q7.** Construct a $\triangle ABC$ in which AB = 4 cm, BC = 5 cm and AC = 6 cm. Now, construct a triangle similar to $\triangle ABC$ such that each of its sides is two-third of the corresponding sides of $\triangle ABC$. Also, prove your assertion.
- **Q8.** Draw a triangle ABC with side BC = 7 cm, $\angle B = 45^{\circ}$, $\angle A = 105^{\circ}$. Then constrct a triangle whose sides are (4/3) times the corresponding sides of $\triangle ABC$.
- **Q9.** Construct a triangle similar to a given $\triangle ABC$ such that each of its sides is $(5/7)^{th}$ of the corresponding sides of $\triangle ABC$. It is given that AB = 5 cm, BC = 7 cm and $\angle ABC = 50^{\circ}$.
- **Q10.** Construct a triangle similar to a given $\triangle ABC$ such that each of its sides is $(2/3)^{rd}$ of the corresponding sides of $\triangle ABC$. It is given that BC = 6 cm, $\angle B = 50^{\circ}$ and $\angle C = 60^{\circ}$.
- **Q11.** Draw a $\triangle ABC$ in which BC = 6 cm, AB = 4 cm and AC = 5 cm. Draw a triangle similar to $\triangle ABC$ with its sides equal to $(3/4)^{th}$ of the corresponding sides of $\triangle ABC$.
- **Q12.** Construct a triangle with sides 5 cm, 6cm and 7 cm and then another triangle whose sides are 7.5 of the corresponding sides of the first triangle.
- **Q13.** Draw a right triangle ABC in which AC = AB = 4.5 cm and $\angle A = 90^{\circ}$. Draw a triangle similar to $\triangle ABC$ with its sides equal to $(5.4)^{th}$ of the corresponding sides of $\triangle ABC$.
- **Q14.** Construct a triangle similar to $\triangle ABC$ in which AB = 4.6 cm, BC = 5.1 cm, $\angle A = 60^{\circ}$ with scale factor 4:5.
- **Q15.** Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length. Also, verify the measurement by actual calculation.
- **Q16.** Draw a circle of radius 4 cm. Take a point *P* outside the circle. Without using the centre of the circle, draw two tangents to the circle from point *P*.
- Q17. Draw a circle of radius 6 cm. a tangent to this circle making an angle of 30° with a line passing through the centre.
- **Q18.** Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are (2/3)rd of the corresponding sides of it.
- Q19. Draw a right triangle in which the sides (other than hypotenuse) are of length 5 cm and 4 cm. Then construct another triangle whose sides are 5/3 times the corresponding sides of the given triangle.

- **Q20.** Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are 3/2 times the corresponding sides of the isosceles triangle.
- **Q21.** Draw a $\triangle ABC$ with side BC = 6 cm, AB = 5 cm and $\angle ABC = 60^{\circ}$. Then construct a triangle whose sides are $(3/4)^{\text{th}}$ of the corresponding sides of the $\triangle ABC$.
- **Q22.** Draw a right triangle in which sides (other than the hypotenuse) are of lenghts 8 cm and 6 cm. Then costruct another triangle whose sides are 3/4 times the corresponding sides of he first triangle.
- **Q23.** Construct a triangle with sides 5 cm, 5.5 cm and 6.5. Now construct another triangle, whose sides are 3/5 times the corresponding sides of the given triangle.
- **Q24.** Construct a triangle PQR with side QR = 7 cm, PQ = 6 cm and $\angle PQR = 60^{\circ}$. Then construct another triangle whose sides are 3/5 of the corresponding sides of ΔPQR .
- Q25. Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°.
- **Q26.** Draw a line segment *AB* of length 8 cm. Taking *A* as centre, draw a circle of radius 4 cm and taking *B* as centre, draw another circle of radius 3 cm. Construct tangents to each circle from the centre of the other circle.
- Q27. Draw a pair of tangents to a circle of radius 4.5 cm, which are inclined to each othe at an angle of 45°.
- **Q28.** Draw two tangents to a circle of radius 3.5 cm from a point P at a distance of 6.2 cm from its centre.
- **Q29.** Let ABC be a right triangle in which AB = 3 cm, BC = 4 cm and $\angle B = 90^3$. BD is the perpendicular from B on AC. The circle through B, C, D is drawn. Construct the tangents from A to this circle.
- **Q30.** Draw a right triangle *ABC* in which AB = 6 cm, BC = 8 cm and $\angle B = 90^{\circ}$. Draw *BD* perpendicular from *B* on *AC* and draw a circle passing through the point *B*, *C* and *D*. Construct tangents from *A* to tis circle.

SMART ACHIEVERS

MATH - X | Constructions Elementry-Solution

MARTA CHIEVERS LEARNING PWI. Lita.

Date: 29/9/2021

- **S1.** Draw.
- **S2.** Draw.
- S3. Draw.
- S4. Draw.
- S5. Draw.
- S6. Draw.
- **S7.** Draw.
- S8. Draw.
- S9. Draw.
- S10. Draw.
- **S11.** Draw.
- S12. Draw.
- S13. Draw.
- S14 Draw.
- **S15.** Draw.
- **S16.** Draw.
- **S17.** Draw.
- **S18.** Draw.
- **\$19.** Draw.
- **\$20.** Draw.
- S21. Draw.
- S22. Draw.
- **S23.** Draw.
- **S24.** Draw.
- **\$25.** Draw.
- **\$26.** Draw.

\$27. Draw.

S28. Draw.

S29. Draw.

S30. Draw.

