

SMART ACHIEVERS

Nurturing Success...

MATH - X

Polynomilas Elementry

Date: 28/9/2021

Q1. If each one of the following graphs is the graph of a polynomial, then identify which one corresponds to a linear polynomial and which one corresponds to a quadratic polynomial?

Q2. In the figure, the graph of a polynomial p(x) is given. Find the zeros of the polynomial.

- **Q3.** If α and β are the zeros of the quadratic polynomial $p(y) = 5y^2 7x + 1$, find value of $\frac{1}{\alpha} + \frac{1}{\beta}$.
- **Q4.** The sum and product of the zeros of a quadratic polynomial are $-\frac{1}{2}$ and 3 respectively. What is the quadratic polynomial.
- **Q5.** Write the family of quadratic polynomials having $-\frac{1}{4}$ and 1 as its zeros.
- **Q6.** If α , β are the zeros of the polynomial $f(x) = x^2 + x + 1$, then $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{1}{\alpha}$
 - (a) 1

(b) -1

(c) 0

- (d) None of these
- **Q7.** For what value of k, -2 is a zero of the polynomial $3x^2 + 4x + 2k$
- **Q8.** For what value of k, -3 is a zero of the polynomial $x^2 + 11x + k$?
- **Q9.** For what value of k, 3 is a zero of the polynomial $2x^2 + x + k$?
- **Q10.** If α and β are the zeros of a polynomial $2y^2 + 7y + 5$, write the value of $\alpha + \beta + \alpha\beta$.
- **Q11.** If α and β are the zeros of a polynomial such that $\alpha + \beta = -6$ and $\alpha\beta = -4$, then write the polynomial.
- **Q12.** If (x + a) is a factor of $2x^2 + 2ax + 5x + 10$, find a.
- **Q13.** For what value of k, -4 is a zero of the polynomial $x^2 x (2k + 2)$?
- **Q14.** Write the zeros of the polynomial $x^2 x 6$.
- **Q15.** If two zeros of the polynoial $f(x) = x^3 4x^2 3x + 12$ are $\sqrt{3}$ and $-\sqrt{3}$, then find its third zero.

Q16.	216. If 1 is a zero of the polynomial $p(x) = ax^2 - 3(a - 1)x - 1$, then find the value of a.								
Q17. If $x = 1$ is a zero of the polynomial $f(x) = x^3 - 2x^2 + 4x + k$, write the value of k .									
Q18. If the sum of the zeros of the quadratic polynomial $f(x) = kx^2 - 3x + 5$ is 1, write the value of k .									
Q19. If the product of zeros of the quadratic polynomial $f(x) = x^2 - 4x + k$ is 3, find the value of k .									
Q20. If one zero of the polynomial $f(x) = (k^2 + 4) x^2 + 13x + 4k$ is reciprocal of the other, then $k = 1$									
	(a)	2	(b)		(c)		. ,	-1	
Q21.	Q21. If α , β are the zeros of the polynomial $p(x) = 4x^2 + 3x + 7$, then $\frac{1}{\alpha} + \frac{1}{\beta}$ is equal to								
	(a)	3	(b)	3	(c)	/	(d)	1	
Q22. If the sum of the zeros of the polynomial $f(x) = 2x^3 - 3kx^2 + 4x - 5$ is 6, then the value of k is									
	(a)	2	(b)	4	(c)	-2	(d)	-4	
223. If the product of zeros of the polynomial $f(x) = ax^3 - 6x^2 + 11x - 6$ is 4, then $a = ax - 6$									
	(a)	$\frac{3}{2}$	(b)	$-\frac{3}{2}$	(c)	$\frac{2}{3}$	(d)	$=\frac{2}{3}$	
Q24. If α , β , γ are the zeros of the polynomial $f(x) = ax^3 - bx^2 + cx + d$, then $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} =$									
	(a)	$-\frac{b}{d}$	(b)	$\frac{c}{d}$	(c)	$-\frac{c}{d}$	(d)	$-\frac{c}{a}$	
Q25. If one root of the polynomial $f(x) = 5x^2 + 13x + k$ is reciprocal of the other, then the value of k is									
		0	(b)			$\frac{1}{6}$	(d)		
Q26. If the product of two zeros of the polynomial $f(x) = 2x^3 + 6x^2 - 4x + 9$ is 3, then its third zero is									
	(a)	$\frac{3}{2}$	(b)	$-\frac{3}{2}$	(c)	$\frac{9}{2}$	(d)	$-\frac{9}{2}$	
Q27. It two zeros of $x^3 + x^2 - 5x - 5$ are $\sqrt{5}$ and $-\sqrt{5}$, then its third zero is									
	(a)	1	(b)	-1	(c)	2	(d)	-2	
Q28. It two zeroes of the polynomial $x^3 + x^2 - 9x - 9$ are 3 and - 3, then its third zero is									
	(a)	-1	(b)	1	(c)	-9	(d)	9	
Q29. A quadratic polynomial, the sum of whose zeroes is 0 and one zero is 3, is									
	(a)	$x^2 - 9$	(b)	$x^2 + 9$	(c)	$x^2 + 3$	(d)	$x^2 - 3$	
Q30. What should be subtracted to the polynomal x^2 – $16x$ + 30, so that 15 is the zero of the resulting polynomial?									
	(a)	30	(b)	14	(c)	15	(d)	16	
Q31. What should be added to the polynomal x^2 – $5x$ + 4, so that 3 is the zero of the resulting polynomial?									
	(a)	1	(b)	2	(c)	4	(d)	5	
Q32. The product of the zeros of $x^3 + 4x^2 + x - 6$ is									
	(a)	-4	(b)	4	(c)	6	(d)	-6	
Q33. If $x + 2$ is a factor of $x^2 + ax + 2b$ and $a + b = 4$, then									
	(a)	a = 1, b = 3	(b)	a = 3, b = 1	(c)	a = -1, b = 5	(d)	a = 5, b = -1	

- **Q34.** The polynomial which when divided by $-x^2 + x 1$ gives a quotient x 2 and remainder 3, is
 - (a) $x^3 3x^2 + 3x 5$
- (b) $-x^3 3x^2 3x 5$
- (c) $-x^3 + 3x^2 3x + 5$
- (d) $x^3 3x^2 3x + 5$
- **Q35.** If $\sqrt{5}$ and $-\sqrt{5}$ are two zeros of the polynomial $x^3 + 3x^2 5x 15$, then its third zero is
 - (a) 3

(b) -3

(c) 5

- (d) -5
- **Q36.** Draw the graph of the polynomial f(x) = 2x 5. Also find the corrdinates of the point where it cross *X*-axis.
- **Q37.** Draw the graph of the polynomial $f(x) = x^2 2x 8$.
- **Q38.** Draw the graph of the quadratic polynomial $f(x) = 3 2x x^2$.
- **Q39.** Lraw the graph of the polynomial $f(x) = x^3$.
- **Q40.** If α and β are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$, then evaluate $\alpha^2 + \beta^2$.
- **Q41.** Find the zeros of the quadratic polynomial $f(x) = 6x^2 3$, and verify the relationship between the zeros and its coefficients.
- **Q42.** Find the zeros of the quadratic polynomial $x^2 + 7x + 12$, and verify the relation between the zeros and its coefficients.
- **Q43.** If α and β are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$, then evaluate $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$.
- **Q44.** Find the zeros of the quadratic polynomials and verify the relationship between the zeros and their coefficients: $q(x) = \sqrt{3}x^2 + 10x + 7\sqrt{3}$.
- **Q45.** Find the zeros of the quadratic polynomials and verify the relationship between the zeros and their coefficients: $f(x) = x^2 (\sqrt{3} + 1)x + \sqrt{3}$.
- **Q46.** Find the zeros of the quadratic polynomials and verify the relationship between the zeros and their coefficients: $g(x) = a(x^2 + 1) x(a^2 + 1)$.
- **Q47.** If α and β are the zeros of the quadratic polynomial $p(x) = 4x^2 5x 1$, find the value of $\alpha^2 \beta + \alpha \beta^2$.
- **Q48.** If α and β are the zeros of the quadratic polynomial $f(x) = ax^2 x 4$, find the value of $\frac{1}{\beta} + \frac{1}{\alpha} \alpha\beta$.
- **Q49.** If one zero of the quadratic polynomial $f(x) = 4x^2 8kx 9$ is negative of the other, find the value of k.
- **Q50.** If α and β are the zeros of the quadratic polynomial $f(x) = 6x^2 + x 2$, find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$.
- **Q51.** If the sum of the zeros of the quadratic polynomial $f(t) = kt^2 + 2t + 3k$ is equal to their product, find the value of k.
- **Q52.** Find the condition which must be satisfied by the coefficient of the polynomial $f(x) = x^3 px^2 + qx r$ when the sum of its two zeros is zero.
- **Q53.** If the zeros of the polynomial $f(x) = x^3 12x^2 + 39x + k$ are in A.P., find the value of k.
- **Q54.** Find the zeros of the polynomial $f(x) = x^3 5x^2 16x + 80$, if its two zeros are equal in magnitude but opposite in sign.
- **Q55.** Divide the polynomial $f(x) = 14x^3 5x^2 + 9x 1$ by the polynomial f(x) = 2x 1. Also, find the quotient and remainder.
- **Q56.** Divide the polynomial $u(x) = 9x^4 4x^2 + 4$ by the polynomial $v(x) = 3x^2 + x 1$. Also, find the quotient and remainder.

- **Q57.** What must be subtracted from $8x^4 + 14x^3 2x^2 + 7x 8$ so that the resulting polynomial is exactly divisible by $4x^2 + 3x 2$.
- **Q58.** By applying division algorithm prove that the polynomial $g(x) = x^2 + 3x + 1$ is a factor of the polynomial $f(x) = 3x^4 + 5x^3 7x^2 + 2x + 2$.
- **Q59.** Divide the polynomial $f(x) = 30x^3 + 11x^3 82x^2 12x + 48$ by $3x^2 + 2x 4$. Also, find the quotient and remainder.
- **Q60.** What must be added to $f(x) = 4x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is divisible by $g(x) = x^2 + 2x 3$.
- **Q61.** Obtain all zeros of $f(x) = x^3 + 13x^2 + 32x + 20$, if one of its zeros is -2.
- **Q62.** If $f(x) = x^3 + x^2 ax + b$ is divisible by $x^2 x$, write the values of a and b.
- **Q63.** Find the zeros of the quadratic polynomal $f(x) = abx^2 + (b^2 ac)x bc$, and verify the relationship between the zeros and its coefficients.
- **Q64.** Find the zeros of the polynomial $f(x) = 4\sqrt{3}x^2 + 5x 2\sqrt{5}$, and verify the relationship between the zeros and its coefficients.
- **Q65.** If α and β are the zeros of the quadratic polynomial $f(x) = x^2 px + 4$, then find the value of
 - (i) $\alpha^2 + \beta^2$

- (ii) $\frac{1}{\alpha} + \frac{1}{\beta}$
- **Q66.** If α and β are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$, then evaluate $\alpha^3 + \beta^3$.
- **Q67.** If α and β are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$, then evaluate $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$.
- **Q68.** If α and β are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$, then evaluate $\frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2}$.
- **Q69.** If α and β are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$, then evaluate $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$.
- **Q70.** If α and β are the zeros of the polynomial $f(x) = x^2 5x + k$ such that $\alpha \beta = 1$, find the value of k.
- **Q71.** If α and β are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$, then evaluate $\alpha^4 + \beta^4$.
- **Q72.** If α and β are the zeros of the quadratic polynomial $f(x) = kx^2 + 4x + 4$ such that $\alpha^2 + \beta^2 = 24$, find the values of k.
- **Q73.** If α and β are the zeros of the polynomial $f(x) = 2x^2 + 5x + k$ satisfying the relation $\alpha^2 + \beta^2 + \alpha\beta = \frac{21}{4}$, then find the value of k for this to be possible.
- **Q74.** If sum of the squares of zeros of the quadratic polynomial $f(x) = x^2 8x + k$ is 40, find the value of k.
- **Q75.** If α and β are the zeros of the quadratic polynomial $f(x) = 2x^2 5x + 7$, find a polynomial whose zeros are $2\alpha + 3\beta$ and $3\alpha + 2\beta$.
- **Q76.** If α and β are the zeros of the quadratic polynomial $f(x) = x^2 x 2$, find a polynomial whose zeros are $2\alpha + 1$ and $2\beta + 1$.
- **Q77.** If α and β are the zeros of the quadratic polynomial $f(x) = 3x^2 4x + 1$, find a quarratic polynomial whose zeros are $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$.
- Q78. Find a quadratic polynomial whos zeros are reciprocals of the zeros of the polynomial

$$f(x) = ax^2 + bx + c, \quad a \neq 0, c \neq 0.$$

- **Q79.** If α and β are the zeros of the quadratic polynomial $f(t) = t^2 4t + 3$, find the value of $\alpha^3 \beta^3 + \alpha^3 \beta^4$.
- **Q80.** If α and β are the zeros of the quadratic polynomial $f(x) = x^2 + x 2$, find value of $\frac{1}{\alpha} \frac{1}{\beta}$.
- **Q81.** If α and β are the zeros of the quadratic polynomial $f(x) = x^2 5x + 4$, find value of $\frac{1}{\alpha} + \frac{1}{\beta} 2\alpha\beta$.
- Q82. If α and β are the zeros of the quadratic polynomial $p(s) = 3s^2 6s + 4$, find value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta$.
- **Q83.** If α and β are the zeros of the quadratic polynomial $f(x) = x^2 p(x+1) c$, show that $(\alpha + 1)(\beta + 1) = 1 c$.
- **Q84.** If the squared difference of the zeros of the quadratic polymomial $f(x) = x^2 + px + 45$ is equal to 144, find the value of p.
- **Q85.** If α and β are the zeros of the quadratic polynomial such that $\alpha + \beta = 24$ and $\alpha \beta = 8$, find a quadratic polynomial having α and β as its zeros.
- **Q86.** If α and β are the zeros of the quadratic polynomial $f(x) = x^2 1$, find a quadratic polynomial whose zeros are $\frac{2\alpha}{\beta}$ and $\frac{2\beta}{\alpha}$.
- **Q87.** Divide the polynomial $f(x) = 3x^2 x^3 3x + 5$ by the polynomial $g(x) = x 1 x^2$ and verify the division algorithm.
- **Q88.** If the polynomial $6x^4 + 8x^3 + 17x^2 + 21x + 7$ is divided by another polynomial $3x^2 + 4x + 1$, the remainder comes out to be ax + b, find a and b.
- **Q89.** What must be subtracted from the polynomial $f(x) = x^4 + 2x^3 13x^2 12x + 21$ so that the resulting polynomial is exactly divisible by $x^2 4x + 3$?
- **Q90.** What must be added to the polynomial $f(x) = x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is exactly divisible by $x^2 + 2x 3$?
- **Q91.** Obtain all zeros of the polynomial $f(x) = x^4 3x^3 x^2 + 9x 6$, if two of its zeros is $-\sqrt{3}$ and $\sqrt{3}$.
- **Q92.** Obtain all zeros of the polynomial $f(x) = 2x^4 + x^3 14x^2 19x 6$, if two of its zeros is -2 and -1.
- **Q93.** Find the values of a and b so that $x^4 + x^3 + 8x^2 + ax + b$ is divisible by $x^2 + 1$.
- **Q94.** If α and β are the zeros of the quadratic polynomial $f(x) = x^2 3x 2$, find a quadratic polynomial whose zeros are $\frac{1}{2\alpha + \beta}$ and $\frac{1}{2\beta + \alpha}$.
- **Q95.** Find the condition that the zeros of the polynomial $f(x) = x^3 px^2 + qx r$ may be in arithmetic progression.
- **Q96.** If α and β are the zeros of the quadratic polynomial $f(x) = x^2 2x + 3$, find a quadratic polynomial whose roots are
 - (i) $\alpha + 2, \beta + 2$

- (ii) $\frac{\alpha-1}{\alpha+1}$, $\frac{\beta-1}{\beta+1}$ and $\frac{1}{2\beta+\alpha}$.
- **Q97.** Find the zeros of the polynomial $f(x) = x^3 5x^2 2x + 24$, if it is given that the product of its two zeros is 12.
- **Q98.** Find the zeros of the polynomial $f(x) = x^3 12x^2 + 39x 28$, if it is given that the zeros are in A.P.
- **Q99.** Find all the zeros of the polynomial $2x^3 + x^2 6x 3$, if two of its zeros are $-\sqrt{3}$ and $\sqrt{3}$.

Q100 Find all the zeros of the polynomial $2x^4 + 7x^3 - 19x^2 - 14x + 30$, if two of its zeros are $\sqrt{2}$ and $-\sqrt{2}$.

Q101 Find all the zeros of the polynomial $x^4 + x^3 - 34x^2 - 4x + 120$, if two of its zeros are 2 and -2.

Q102Find all zeros of the polynomial $f(x) = 2x^4 - 2x^3 - 7x^2 + 3x + 6$, it its two zeros are $-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$.

Q103 Find all the zeros of the polynomial $x^3 - 3x^2 - 2x - 6$, if two of its zeros are $-\sqrt{2}$ and $\sqrt{2}$.

WWW.Smartachievers.in

Date: 30/9/2021

S1.
$$\frac{2}{5}$$
.

- 0.98. S2.
- 0.005. S3.
- **S4**.
- S5.
- 0.7. S6.
- result c When we toss a coin, the outcomes head and tail are equally likely. So, the result of an individual coin **S7**. toss is completely unpredictable.
- S8. 1.
- **S10.** $\frac{1}{26}$
- **S11.** $\frac{1}{3}$.
- **S12.** $\frac{1}{3}$.
- **S13.** (b) $\frac{5}{9}$.
- **S14.** $\frac{21}{26}$.
- **S15.** $\frac{2}{7}$
- **S16**. (b)
- **S18.** (d)
- **S19**. (c)
- **S20.** (b)

- **S21**. (b)
- **S22.** (b) 1.
- **S23.** (d) 1.6.
- **S24.** (b) -1.5.
- **S25.** (b)
- **S26.** (c)
- **S27.** (d)
- **S28.** (b)
- **S29.** (c)
- **s30.** (b)
- **S31.** (c)
- **S32.** (d)
- SMARTIA CHIEVERS LEARNING PAR. Lita. $\frac{17}{90}$. **S33.** (c)
- s34. _(d)
- **S35.** (a)
- **S36.** (c)
- **S37.** (c)
- **S38.** (b)
- **S39.** (c)
- **S40**. (c)
- **S41.** (a)
- **S42.** (c)

WWW.Smartachievers.in

- **S43.** (c) $\frac{3}{4}$.
- **S44.** (d) $\frac{1}{4}$.
- **S45.** (d) $\frac{12}{13}$.
- **S46.** (c) $\frac{1}{3}$.
- **S47.** $\frac{9}{25}$.
- **S48.** $\frac{2}{5}$.
- **S49.** $\frac{1}{5}$.
- **S50.** $\frac{1}{12}$.
- **S51.** $\frac{1}{6}$.
- **S52.** (i) $\frac{7}{24}$
- **S53.** $\frac{5}{12}$.
- **S54.** $\frac{3}{10}$.
- $\frac{2}{5}$ **S55.** (i)
- **S56.** (i)
- **S57.** (i)
- **S58.** $\frac{1}{6}$.
- **S59.** $\frac{3}{4}$.
- **S60.** $\frac{2}{3}$.
- **S61.** $\frac{5}{9}$.
- $\frac{1}{7}$ **S62.** (i)

- (ii)

(ii)

- (ii)
- SMARTACHIE
- (iii) $\frac{5}{6}$ (iii) $\frac{2}{3}$ $\frac{5}{12}$

(ii)

(iii)

S63. $\frac{16}{25}$.

S64. (i)

 $\frac{13}{20}$ (ii)

(iii)

- **S65.** $\frac{1}{2}$.
- **S66.** (i)
- (ii)
- 10 (iii) 49

(iv)

- **S67.** $\frac{2}{7}$.
- **S68.** (i)
- (ii) $\frac{1}{3}$

- (iii) $\frac{2}{3}$ (iv) $\frac{1}{6}$ (v) $\frac{1}{3}$ (vi) $\frac{1}{2}$ (vii) $\frac{2}{3}$ (viii) $\frac{1}{2}$ (ix)

- **S69.** (i)
- (ii) $\frac{7}{17}$
- (iii) $\frac{5}{17}$

- **S70.** (i)

- (ii) $\frac{1}{6}$ (iii) $\frac{1}{12}$ (iv) $\frac{1}{12}$ (v) $\frac{1}{6}$ (vi) $\frac{1}{2}$

- **S71.** $\frac{5}{9}$.
- **\$72.** The jar contains 12 white marbles.
- **S73.** (i) $\frac{1}{2}$

- (ii)
- (iii)

- **\$74.** $\frac{25\pi 48}{25\pi}$.
- **S75.** (a) $\frac{1}{5}$.

- **S76.** Total number of marbles in the jar = 24.
- **S77.** (i)
- (ii)

- **S79.** (i) $\frac{3}{8}$

- **S83.** (i)
- (ii)

11 (iii)

- **S84.** (i)
- (ii)

(iii)

(iv)

S85. $\frac{4}{9}$.

- **S86.** 12.
- $\frac{5}{24}$ **S87.** (i)
- $\frac{1}{22}$ **S88.** (i)
- 11 **S89.** (i) 35
- 81 **S90.** (i) 81
- $\frac{4}{9}$ **S91.** (i)
- $\frac{5}{36}$ **S92.** (i)
- 11 **S93.** (i) 36
- $\frac{2}{3}$ **S94.** (i)
- $\frac{1}{4}$ **S95.** (i)
- 25 36 **S96.** (i)
- $\frac{13}{49}$ **S97.** (i)
- $\frac{3}{20}$ **S98.** (i)
- **S99.** (i) 0
- **S100**_(i)
- $\frac{25}{49}$ **S101.**(i)
- $\frac{1}{2}$ **S102.**(i)
- 5 9 **S103.**(i)
- 10 **S104**_(i) 23
- $\frac{1}{12}$ S105_(i)
- $\frac{5}{11}$ **S106**_(i)
- **S107**_(i)

- (ii)
- $\frac{1}{22}$ (iii)
- 16 (iii)

(iv)

- 35
- $\frac{13}{17}$ (iii)

(iii)

(iii)

 $\frac{1}{12}$

- $\frac{2}{9}$ (ii)
- $\frac{5}{36}$ (ii)

 $\frac{8}{89}$

(ii)

(ii)

(ii)

(ii)

(ii)

(ii)

(ii)

 $\frac{1}{6}$

 $\frac{1}{2}$

 $\frac{6}{11}$

(ii)

- $\frac{5}{18}$ (ii)
- (ii)
- (ii)
- 11 (ii) 36
- $\frac{3}{49}$ (ii)

- (iii)
- (ii)
- (ii)
- $\frac{1}{2}$ (ii)
- (iii)
- (iii)
- 17
- $\frac{7}{18}$ (iv)

(iv)

(iv)

- 18
- $\frac{13}{46}$ (iii)
- $\frac{1}{6}$ (iii)
 - $\frac{9}{44}$ (iii)

(iv)

(iv)

 $\frac{2}{5}$ (ii)

 $\frac{1}{13}$ (ii) $\frac{1}{2}$ (iii) $\frac{7}{13}$ (iv) $\frac{1}{26}$ (v) $\frac{3}{13}$ (vi) $\frac{3}{26}$ (vii) $\frac{1}{52}$ (viii) $\frac{1}{26}$. S108._(i)

 $\frac{1}{2}$ (ii) $\frac{5}{12}$ (iii) $\frac{1}{6}$ (iv) $\frac{1}{12}$ (v) $\frac{11}{36}$ **S109**_(i) (vi) $\frac{1}{6}$ (vii) $\frac{1}{3}$

SMARIA CHILINAR STRAFFACTION ST