Circles Single Correct Answer Type

1. Let $C_1 : x^2 + y^2 = 1$; $C_2 : (x - 10)^2 + y^2 = 1$ and $C_3 : x^2 + y^2 - 10x - 42y + 457 = 0$ be three circles. A circle *C* has been drawn to touch circles C_1 and C_2 externally and C_3 internally. Now circles C_1 , C_2 and C_3 start rolling on the circumference of circle *C* in anticlockwise direction with constant speed. The centroid of the triangle formed by joining the centres of rolling circles C_1 , C_2 and C_3 lies on

(A)
$$x^2 + y^2 - 12x - 22y + 144 = 0$$

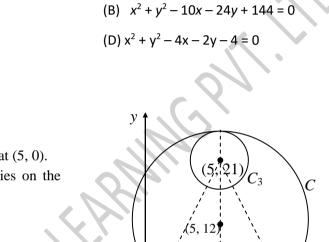
(C)
$$x^2 + y^2 - 8x - 20y + 64 = 0$$

В

Sol.

The equation of circle *C* is

 $(x-5)^{2} + (y-12)^{2} = 12^{2}$ This circle also touches *x*-axis at (5, 0). From the geometry, centroid lies on the circle $(x-5)^{2} + (y-12)^{2} = 5^{2}$.



0

 C_1

 $G \downarrow_{(5,7)}$

(10, 0)

 C_2

(5, 0)

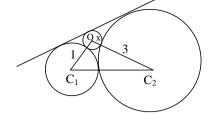
2. The circles $x^2 + y^2 - 6x + 6y + 17 = 0$ and $x^2 + y^2 - 6x - 2y + 1 = 0$, a common exterior tangent is drawn thus forming a curvilinear triangle. The radius of the circle inscribed in this triangle is

(A)
$$\frac{3}{2}(2+\sqrt{3})$$
 (B) $\frac{1}{2}(2-\sqrt{3})$ (C) $\frac{1}{2}(2+\sqrt{3})$ (D) $\frac{3}{2}(2-\sqrt{3})$

Key. D

Sol. The given circles are touching each other externally.

$$x = \frac{3}{(1+\sqrt{3})^2} = \frac{3}{2} \left(2 - \sqrt{3}\right)$$



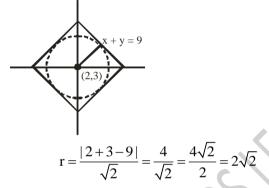
3. Equation of circle touching the line |x - 2| + |y - 3| = 4 will be

(A)
$$(x - 2)^2 + (y - 3)^2 = 12$$

(B) $(x - 2)^2 + (y - 3)^2 = 4$
(C) $(x - 2)^2 + (y - 3)^2 = 10$
(D) $(x - 2)^2 + (y - 3)^2 = 8$
D

Key.

Sol. PERPENDICULAR distance from centre to tangent = radius

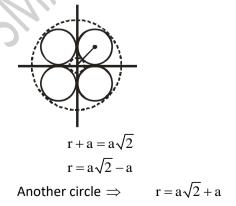


Equation of circle is $(x - 2)^2 + (y - 3)^2 = 8$

- 4. The equation of four circles are $(x \pm a)^2 + (y \pm a)^2 = a^2$. The radius of a circle touching all the four circles is
 - (A) $(\sqrt{2}-1)a$ or $(\sqrt{2}+1)a$ (B) $\sqrt{2}a$ or $2\sqrt{2}a$ (C) $(2-\sqrt{2})a$ or $(2+\sqrt{2})a$ (D) None of these

Key.

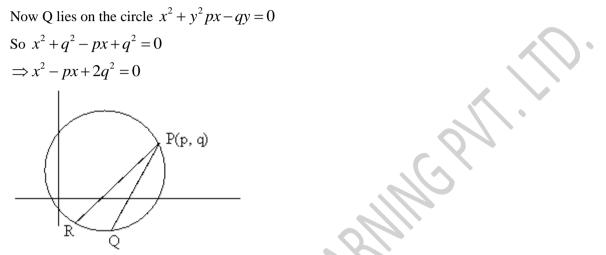
Sol. Radius of smallest circle is



A. $p^2 = q^2$ B. $p^2 = 8q^2$ C. $p^2 < 8q^2$ D. $p^2 > 8q^2$

Key. D

Sol. Let PQ be a chord of the given circle passing through P(p, q) ad the coordinates of Q be (x, y). Since PQ is bisected by the x-axis, the mid-point of PQ lies on the x-axis which gives y = -q



Which gives two values of x and hence the coordinates of two points Q and R (say), so that the chords PQ and PR are bisected by x-axis. If the chords PQ and PR are distinct, the roots of (i) are real distinct.

$$\Rightarrow$$
 the discriminant $\,p^2 - 8q^2 > 0 \, \Rightarrow p^2 > 8q^2$

6. C_1 and C_2 are circles of unit radius with centres at (0, 0) and (1, 0) respectively. C_3 is a circle of unit radius, passes through the centres of the circles C_1 and C_2 and have its centre above x-axis. Equation of the common tangent to C_1 and C_3 which does not pass through C_2 is

A.
$$x - \sqrt{3}y + 2 = 0$$
 B. $\sqrt{3}x - y + 2 = 0$ C. $\sqrt{3}x - y - 2 = 0$ D. $x + \sqrt{3}y + 2 = 0$

Key.

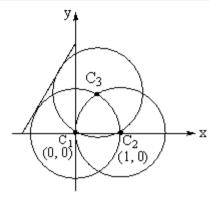
Sol. Equation of any circle through (0, 0) and (1, 0)

$$(x-0)(x-1) + (y-0)(y-0) + \lambda \begin{vmatrix} x & y & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 0$$

$$\Rightarrow x^2 + y^2 - x + \lambda y = 0$$

If it represents C_3 , its radius =1

$$\Rightarrow 1 = (1/4) + (\lambda^2/4) \Rightarrow \lambda = \pm \sqrt{3}$$



As the centre of C_3 , lies above the x-axis, we take $\lambda = -\sqrt{3}$ and thus an equation of C_3 is $x^2 + y^2 - x - \sqrt{3}y = 0$. Since C_1 and C_2 interest and are of unit radius, their common tangents are parallel to the joining their centres (0, 0) and $(1/2, \sqrt{3}/2)$.

So, let the equation of a common tangents be $\sqrt{3}x - y + 2 = 0$

It will touch C_1 , if $|\frac{k}{\sqrt{3+1}}|=1 \Rightarrow k=\pm 2$

From the figure, we observe that the required tangent makes positive intercept on the y-axis and negative on the x-axis and hence its equation to $\sqrt{3}x - y + 2 = 0$

7. The equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of distinct non parallel lines. If constant c is changed as new constant k then new equation represents

A. Pair of lines B. Parabola C. Ellipse D. Hyperbola

Key. D

Sol. Since c is changed as k, $\Delta \neq 0$ and $h^2 > ab$

- ... new equation represents hyperbola
- 8. A circle of radius '5' touches the coordinate axes in the first quadrant. If the circle makes one complete roll on x-axis along the positive direction, then its equation in new position is

1)
$$x^{2} + y^{2} - 10(2\pi + 1)x - 10y + 100\pi^{2} + 100\pi + 25 = 0$$

2) $x^{2} + y^{2} + 10(2\pi + 1)x - 10y + 100\pi^{2} + 100\pi + 25 = 0$
3) $x^{2} + y^{2} - 10(2\pi + 1)x + 10y + 100\pi^{2} + 100\pi + 25 = 0$
4) $x^{2} + y^{2} + 10(2\pi + 1)x + 10y + 100\pi^{2} + 100\pi + 25 = 0$

Sol.
$$c = (5,5)$$
 and $(5+10\pi,5)$
 $(x-5-10\pi)^2 + (y-5)^2 = 5^2$

9. From origin, chords are drawn to the circle $x^2 + y^2 - 2y = 0$. The locus of the middle points of these chords is 1) $x^2 + y^2 - y = 0$ 2) $x^2 + y^2 - x = 0$ 3) $x^2 + y^2 - 2x = 0$ 4) $x^2 + y^2 - x - y = 0$ Key. 1 Sol. $T = S_1$ i.e., $xx_1 + yy_1 - (y + y_1) = x_1^2 + y_1^2 - 2y_1$ Passes through (0,0) $\therefore x^2 + y^2 - y = 0$

10. Circles are drawn through the point (2,0) to cut intercept of length '5' units on the x-axis. If their centres lie in the first quadrant then their equation is

2)

1)
$$x^{2} + y^{2} - 9x + 2ky + 14 = 0, k > 0$$

 $3x^{2} + 3y^{2} + 27x - 2ky + 42 = 0, k > 0$
3) $x^{2} + y^{2} - 9x - 2ky + 14 = 0, k > 0$

4)
$$x^2 + y^2 - 2ky - 9y + 14 = 0, k > 0$$

Key. 3

- Sol. $c = \left(\frac{9}{2}, k\right)$ $\left(x - \frac{9}{2}\right)^2 + \left(y - k\right)^2 = \frac{25}{4} + k^2$ $(or)x^2 + y^2 - 9x - 2ky + 14 = 0$
- 11. A line meets the coordinate axes in A and B. If a circle is circumscribed about the ΔAOB . If m, n are the distances of the tangent to the circle at the origin from the points A and B respectively, The diameter of the circle is

1)
$$m(m+n)$$
 2) $m+n$

3)
$$n(m+n)$$
 4) $2(m+n)$

Sol.
$$m = A(a, o)on(1) = \frac{a^2}{\sqrt{a^2 + b^2}}$$

$$n = (o,b) on (1) = \frac{b^2}{\sqrt{a^2 + b^2}}$$
$$d = \sqrt{a^2 + b^2} = m + n$$

- 2

12. The equation of the circle passing through the point (2, -1) and having two diameters along the pair of lines $2x^2 + 6y^2 - x + y - 7xy - 1 = 0$ is

2) $x^2 + y^2 + 10x - 6y + 19 = 0$

4) $x^2 + y^2 - 10x + 6y + 19 = 0$

- 1) $x^2 + y^2 + 10x + 6y 19 = 0$
- 3) $x^2 + y^2 + 10x + 6y + 19 = 0$

Sol. $2x^{2} + 6y^{2} - x + y - 7xy - 1 = 0$ $x - -2y - 1 = 0 \text{ and } \rightarrow (1)$ $2x - 3y + 1 = 0 \rightarrow (2)$ *Cetre* (-5, -3) $\therefore x^{2} + y^{2} + 10x + 6y - 19 = 0$

13. If from any point on the circle $x^2 + y^2 = a^2$, tangents are drawn to the circle $x^2 + y^2 = b^2(a > b)$ then the angle between tangents is 1) $\sin^{-1}\left(\frac{b}{a}\right)$ 2) $2\sin^{-1}\left(\frac{a}{b}\right)$ 3) $2\sin^{-1}\left(\frac{b}{a}\right)$ 4) $\sin^{-1}\left(\frac{a}{b}\right)$

Key. 3

Sol. $\sin \theta = \frac{b}{a} \Rightarrow \theta = \sin^{-1} \frac{b}{a}$

Angle between the $2\theta = 2\sin^{-1}\frac{b}{a}$

- 14. An equilateral triangle has two vertices (-2,0) and (2,0) and its third vertex lies below the x-axis. The equation of the circumcircle of the triangle is
 - 1) $\sqrt{3}(x^2 + y^2) 4y + 4\sqrt{3} = 0$ 2) $\sqrt{3}(x^2 + y^2) - 4y - 4\sqrt{3} = 0$ 3) $\sqrt{3}(x^2 + y^2) + 4y + 4\sqrt{3} = 0$ 4) $\sqrt{3}(x^2 + y^2) + 4y - 4\sqrt{3} = 0$

Sol. Vertex
$$A\left(0, -\sqrt{12}\right)$$

Centroid $G\left(0, \frac{-2}{\sqrt{3}}\right)$
Circum radius $= \sqrt{4 + \frac{4}{3}} = \frac{4}{\sqrt{3}}$
 $\therefore \sqrt{3}\left(x^2 + y^2\right) + 4y - 4\sqrt{3} = 0$

- 15. The coordinates of two points on the circle $x^2 + y^2 12x 16y + 75 = 0$, one nearest to the origin and the other farthest from it, are
 - 1) (3,4),(9,12)

Key. 1

- c = (6,8), radius = 5 = AC $oc = \sqrt{36+64} = 10$ OA = 5 Q OA: AC = 5:5 = 1:1 A is midpoint 07 OCSol. *i.e.*, (3:4) *Coordinate B be* (*h*,*k*) 'c' is the midpoint 07 AB ∴ *h* = 9, *k* = 12 ∴ B(9,12)
- 16. Two distinct chords drawn from the point (p,q) on the circle $x^2 + y^2 = px + qy$, where $pq \neq 0$, are bisected by the x-axis. Then

1)
$$|p| = |q|$$
 2) $p^2 = 8q^2$

 3) $p^2 < 8q^2$
 4) $p^2 > 8q^2$

Key. 4

Sol. $y = -q \text{ and } x^2 + y^2 - px + qy = 0$ Disc > 0 2) (3,2),(9,12)

17. The centre of a circle of radius $4\sqrt{5}$ lies on the line y = x and satisfies the inequality 3x + 6y > 10. If the line x + 2y = 3 is a tangent to the circle, then the equation of the circle is

1)
$$\left(x - \frac{23}{3}\right)^2 + \left(y - \frac{23}{3}\right)^2 = 80$$

2) $\left(x + \frac{17}{3}\right)^2 + \left(y + \frac{17}{3}\right)^2 = 80$
3) $\left(x + \frac{23}{3}\right)^2 + \left(y - \frac{23}{3}\right)^2 = 80$
4) $\left(x - \frac{17}{3}\right)^2 + \left(y - \frac{17}{3}\right)^2 = 80$

Key. 1

Sol. c = (a, a)

radius =4√5 =lengthofthe ⊥ from (a, a) to the line
i.e.,
$$\frac{|a+2(a)-3|}{\sqrt{4+1}} = \pm 4\sqrt{5} \Rightarrow a = \frac{23}{3}, \frac{-17}{3}$$

∴ Centre $\left(\frac{23}{3}, \frac{23}{5}\right)$ or $\left(\frac{-17}{3}, \frac{-17}{3}\right)$
 $3x+6y > 10$
 $C = \left(\frac{23}{3}, \frac{23}{3}\right)^2 + \left(y - \frac{23}{3}\right)^2 = 80$

- 18. The equation to the circle which is such that the lengths of the tangents to it from the points (1,0), (2,0) and (3,2) are $1,\sqrt{7},\sqrt{2}$ respectively is
 - 1) $2x^2 + 2y^2 + 6x + 17y + 6 = 0$ 2) $2x^2 + 2y^2 + 6x 17y 6 = 0$ 3) $x^2 + y^2 + 6x + 15y + 5 = 0$ 4) $x^2 + y^2 + 6x 15y 5 = 0$

Key. 2

Sol. Let S=0 be the required circle Apply $\sqrt{S_{11}}$

19. If the equations of four circles are $(x \pm 4)^2 + (y \pm 4)^2 = 4^2$ then the radius of the smallest circle touching all the four circles is

1)
$$4(\sqrt{2}+1)$$
 2) $4(\sqrt{2}-1)$ 3) $2(\sqrt{2}-1)$ 4) $\sqrt{2}-1$

Sol. $r = \sqrt{4^2 + 4^2} - 4$ *i.e.*, $4\sqrt{2} - 4$.

20. Let L_1 be a straight line passing through the origin and L_2 be the straight line x+y=1. If the intercepts made by the circles $x^2+y^2-x+3y=0$ on L_1 and L_2 are equal then which of the following equations can represent L_1 ?

1)
$$x + y = 0$$

2) $x - y = 0$
3) $7x - y = 0$
4) $x - 7y = 0$

Key. 2

Sol. $c\left(\frac{1}{2}, \frac{-3}{2}\right)$ $\frac{\left|\frac{1}{2} - \frac{3}{2}\right|}{\sqrt{1+1}} = \frac{\left|\frac{m}{2} - \frac{3}{2}\right|}{\sqrt{1+m^2}} \Rightarrow m = 1, \frac{-1}{7}$ 4) x - 7y = 0

two chords are y = x and 7x + y = 0

21. Let $A_0A_1A_2A_3A_4A_5$ be a regular hexogon inscribed in a circle of unit radius. Then the product of the lengths of the line segments A_0A_1 , A_0A_2 and A_0A_4 is

1)
$$\frac{3}{4}$$

3
 $A_0 A_1 = 1$
2) $3\sqrt{3}$
3) 3
3) 3
4) $\frac{3\sqrt{3}}{2}$

 $A_0 A_1 = \sqrt{3}$ Similarly, $A_0 A_4 = \sqrt{3}$ $\therefore (A_0 A_1) (A_0 A_2) (A_0 A_4) = 3$

22. The ΔPQR is inscribed in the circle $x^2 + y^2 = 25$. If Q and R have coordinates (3,4) and (-4,3) respectively, then |QPR| is equal to

1)
$$\frac{\pi}{2}$$
 2) $\frac{\pi}{3}$ 3) $\frac{\pi}{4}$ 4) $\frac{\pi}{6}$

Key. 3

Key.

Sol.

Sol.
$$m_1 = slope \ of \ OP = \frac{4}{3} \ and \ m_2 \ slope \ of \ OQ = \frac{-3}{4}$$

 $\Rightarrow m_1 \ m_2 = -1$
 $\angle QOP = \Pi/2$
Thus $\angle OPR = \Pi/4$

Circles

3)
$$(x-p)^2 = 4qy$$

4) $(y-q)^2 = 4px$

Key. 3

Sol.
$$(x-p)(x-\alpha) + (y-g)(y-\beta) = 0$$
 (or)
 $x^{2} + y^{2} - (p+\alpha)x - (g+\beta)y + p\alpha + g\beta = 0 \rightarrow (1)$
Put $y = 0$, we get $x^{2} - (p+\alpha)x + p\alpha + g\beta = 0 \rightarrow (2)$
 $\therefore \Rightarrow Locus of B(\alpha, \beta) is (p-x)^{2} = 4gy$
 $(x-p)^{2} = 4gy$

24. The locus of the mid point of the chord of the circle $x^2 + y^2 - 2x - 2y - 2 = 0$ which makes an angle of 120° at the centre is

2) *x**

+x+y+1=0+x-y-1=0

$$1) \quad x^2 + y^2 - 2x - 2y + 1 = 0$$

3)
$$x^2 + y^2 - 2x - 2y - 1 = 0$$

Key. 1

Sol. Centre (1,1) and radius = 2 = OB
In VOBP = 30°

$$\therefore \sin 30^{\circ} \frac{op}{2}$$
 or $op = 1$
 $\sin ce \ op = 1$
 $\Rightarrow x^{2} + y^{2} - 2x - 2y + 1 = 0$

25. The chord of contact of tangents from a point 'P' to a circle passes through Q. If l_1 and l_2 are the lengths of the tangents from P and Q to the circle, then PQ is equal to

1)
$$\frac{l_1 + l_2}{2}$$

2) $\frac{l_1 - l_2}{2}$
3) $\sqrt{l_1^2 + l_2^2}$
4) $\sqrt{l_1^2 - l_2^2}$

Sol.
$$P = (x_1, y_1)$$
 and $Q = (x_2, y_2)$
 $p = (x_1, y_1)$ to the given circle is $xx_1 + yy_1 = a^2$
Since it passes through $Q(x_2, y_2)$
 $\therefore xx_1 + yy_1 = a^2 \rightarrow (1)$
Now, $l_1 = \sqrt{x_1^2 + y_1^2 - a^2}$, $l_2 = \sqrt{x_2^2 + y_2^2 - a^2}$

and
$$PQ = \sqrt{l_1^2 + l_2^2}$$

- 26. If a chord of a the circle $x^2 + y^2 = 32$ makes equal intercepts of length l on the Co-ordinate axes, then
 - 1) |l| < 8 2) |l| < 16
 - 3) |l| > 8 4) |l| > 16

Key. 1

Sol. Centre (0,0),

$$radius \left| \frac{l}{\sqrt{2}} \right| < \sqrt{32} \Longrightarrow \left| l \right| < 8$$

- 27. If the chord of contact of tangents from 3 points A,B,C to the circle $x^2 + y^2 = a^2$ are concurrent, then A,B,C will
 - 1) be concyclic
 - 3) Form the vertices of triangle

2) Be collinear

4) None of these

- Key. 2
- Sol. $xx_1 + yy_1 = a^2, xx_2 + yy_2 = a^2$ and $xx_3 + yy_3 = a^2$

These lines will be conurrent

$$\begin{vmatrix} x_1 & y_1 & -a^2 \\ x_2 & y_2 & -a^2 \\ x_3 & y_3 & -a^2 \end{vmatrix} = 0 \begin{vmatrix} x_1 & y_1 & -1 \\ x_2 & y_2 & -1 \\ x_3 & y_3 & -1 \end{vmatrix} = 0$$

Which is the condition to the collinearity of A, B, C.

- 28. If the line passing through P=(8,3) meets the circle $S \equiv x^2 + y^2 8x 10y + 26 = 0$ at A,B then PA.PB=
 - 1) 5
 2) 14
 3) 4
 4) 24
- Key. 1

Sol. $PA.PB = |S_{11}|$

(a, b) is the mid point of the chord \overline{AB} of the circle $x^2 + y^2 = r^2$. The tangent at A, B meet at 29. C. then area of $\triangle ABC =$

 $\frac{\left(r^2 - a^2 - b^2\right)^{\frac{5}{2}}}{\sqrt{a^2 + b^2}}$

1)
$$\frac{\left(a^{2}+b^{2}+r^{2}\right)^{\frac{3}{2}}}{\sqrt{a^{2}+b^{2}}}$$
2)
$$\frac{\left(r^{2}-a^{2}-b^{2}\right)^{\frac{3}{2}}}{\sqrt{a^{2}+b^{2}}}$$
3)
$$\frac{\left(a^{2}-b^{2}-r^{2}\right)^{\frac{3}{2}}}{\sqrt{a^{2}+b^{2}}}$$
4)
$$\frac{\left(a^{2}-b^{2}+r^{2}\right)^{\frac{3}{2}}}{\sqrt{a^{2}+b^{2}}}$$

Key. 2

Sol. Equation of the chord AB having (a,b)
as M.P.
$$S_1 = S_{11} \Longrightarrow ax + by - (a^2 + b^2) = 0$$

chord length $= 2\sqrt{r^2 - a^2 - b^2}$
 $c = \left(\frac{-ar^2}{a^2 + b^2}, \frac{br^2}{a^2 + b^2}\right)$
 $h = \frac{r^2 - a^2 - b^2}{\sqrt{a^2 + b^2}}$
Area = ½ x b x h

midpoint of 30. The length and the the chord 4x - 3y + 5 = 0circle w.r.t $x^2 + y^2 - 2x + 4y - 20 = 0$ is 2) 18, $\left(\frac{7}{5}, \frac{1}{5}\right)$ 1) 8, 4) 28, $\left(-\frac{7}{5}, -\frac{8}{5}\right)$ 3) 10, Key. 1 Sol. $M.P = \left(\frac{-7}{5}, \frac{-1}{5}\right)$

A variable circle passes through the fixed point (2, 0) and touches the y-axis then the locus of 31. its centre is

1) a parabola	2) a circle
3) an ellipse	4) a hyperbola

Sol.

Circle $(x-x_1)^2 + (y-y_1)^2 = x_1^2$ $y^2 = 4(x-1)$ Parabola

2) $\frac{21}{4}$

32. If the lengths of the tangents from the point (1, 2) to the circles $x^2 + y^2 + x + y - 4 = 0$ and $3x^2 + 3y^2 - x - y - \lambda = 0$ are in the ratio 4 : 3 then $\lambda =$

3) $\frac{17}{4}$

Key. 2

Sol. $\frac{\sqrt{s_{11}}}{\sqrt{s_{11}^1}} = \frac{4}{3}$

1) $\frac{23}{4}$

33. If a tangent drawn from the point (4, 0) to the circle $x^2 + y^2 = 8$ touches it at a point A in the first quadrant, then the coordinates of another point B on the circle such that AB = 4 are

1) (2,-2) or (-2,2)2) (1,-2) or (-2,1)3) (-1,1) or (1,-1)4) (3,-2) or (-3,2)

Key. 1

Sol. equation of tangent through (4,0)

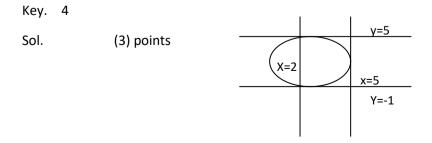
(-2,2) (2,-2)

Point of contact = (2,2)

$$AB = 4 \implies B = (2+4\cos\theta, 2+4\sin\theta)$$

 $\theta = \pi, \quad \theta = \frac{3\pi}{2}$

34. The number of points common to the circle $x^2 + y^2 - 4x - 4y = 1$ and to the sides of the rectangle formed by x = 2, x = 5, y = -1, and y = 5 is



- 35. A rectangle ABCD is inscribed in a circle with a diameter lying along the line 3y = x + 10. If A = (-6, 7), B = (4, 7) then the area of rectangle is
- 1) 80 2) 40 3) 160 4) 20 Key. 1 Sol. Area = πr^2 $r = \frac{\sqrt{17}}{4}$
- 36. Let ABCD be a quadrilateral with area 18, with side AB parallel to CD and AB = 2CD. Let AD be perpendicular to AB and CD. If a circle is drawn inside the quadrilateral ABCD touching all the sides, then its radius is
 - 1) 3 2) 2

Key. 2

- Sol. A(0,0); B(2a,o); C(a, 2r); D(0, 2r) Equation of ABCD = ½ (2a+a) x 2r = 18 r=2
- 37. If OA and OB are two equal chords of the circle $x^2 + y^2 2x + 4y = 0$ perpendicular to each other and passing through the origin O, the slopes of OA and OB are the roots of the equation
 - 1) $3m^2 + 8m 3 = 0$ 2) $3m^2 8m 3 = 0$

3)
$$8m^2 - 3m - 8 = 0$$
 4) $8m^2 + 3m - 8 = 0$

Key. 2

- Sol. equation of chords y-mx = 0 my + x = 0
- 38. The circles $x^2 + y^2 6x + 6y + 17 = 0$ and $x^2 + y^2 6x 2y + 1 = 0$, a common exterior tangent is drawn thus forming a curvilinear triangle. The radius of the circle inscribed in this triangle is

(A)
$$\frac{3}{2}(2+\sqrt{3})$$
 (B) $\frac{1}{2}(2-\sqrt{3})$ (C) $\frac{1}{2}(2+\sqrt{3})$ (D) $\frac{3}{2}(2-\sqrt{3})$

Key. D

4) 1

Sol. The given circles are touching each other externally.

$$x = \frac{3}{(1+\sqrt{3})^2} = \frac{3}{2} \left(2 - \sqrt{3}\right)$$

39. 40.

41. ABCD is a square of side 1 unit. A circle passes through vertices A,B of the square and the remaining two vertices of the square lie out side the circle. The length of the tangent drawn to the circle from vertex D is 2 units. The radius of the circle is

D) $\sqrt{8}$

D) Ellipse

A)
$$\sqrt{5}$$
 B) $\frac{1}{2}\sqrt{10}$ C) $\frac{1}{3}\sqrt{12}$

Key. B

Sol. Let
$$A = (0,1), B = (0,0), C = (1,0), D = (1,1)$$

Family of circles passing through A, B is $x^2 + y^2 - y + \lambda x = 0$ $\sqrt{1+\lambda} = 2 \implies \lambda = 3$

42. The equation of circum-circle of a $\triangle ABC$ is $x^2 + y^2 + 3x + y - 6 = 0$.

B) Circle

If A = (1, -2), B = (-3, 2) and the vertex C varies then the locus of ortho-centre of $\triangle ABC$ is a

C) Parabola

A) Straight line

Key. B
Sol. Equation of circum-circle is
$$\left(x + \frac{3}{2}\right)^2 + \left(y + \frac{1}{2}\right)^2 = \frac{17}{2}$$

 $C = \left(\frac{-3}{2} + \sqrt{\frac{17}{2}}\cos\theta, \frac{-1}{2} + \sqrt{\frac{17}{2}}\sin\theta\right)$
Circum centre of $\triangle ABC$ is $\left(\frac{-3}{2}, \frac{-1}{2}\right)$ Centroid can be obtained.
In a triangle centroid, circum centre and ortho centre are collinear.

^{43.} The line y = mx intersects the circle $x^2 + y^2 - 2x - 2y = 0$ and $x^2 + y^2 + 6x - 8y = 0$ at point A and B (points being other than origin). The range of 'm' such that origin divides AB internally is

A)
$$-1 < m < \frac{3}{4}$$
 B) $m > \frac{4}{3}$ or $m < -2$ C) $-2 < m < \frac{4}{3}$ D) $m > -1$

Key. A

- Sol. The tangents at the origin to C_1 and C_2 are x+y=0. 3x-4y=0 respectively. Slope of the tangents are $-1, \frac{3}{4}$ respectively thus if $-1 < m < \frac{3}{4}$, then origin divides *AB* internally.
- 44. The equation of the smallest circle passing through the intersection of

$$x^{2} + y^{2} - 2x - 4y - 4 = 0 \text{ and the line } x + y - 4 = 0 \text{ is}$$
(A) $x^{2} + y^{2} - 3x - 5y - 8 = 0$
(B) $x^{2} + y^{2} - x - 3y = 0$
(C) $x^{2} + y^{2} - 3x - 5y = 0$
(D) $x^{2} + y^{2} - x - 3y - 8 = 0$
C

Sol. Conceptual

45. Three distinct points A, B and C are given in the two-dimensional coordinate plane such that the ratio of the distance of any one of them from (2,-1) to its distance from (-1, 5) is 1 : 2. Then the centre of the circle passing through A, B and C is

a) (1,1) c) (3,-3) b) (5, - 7) d)(4,-8)

Key:

С

Hint The circle ABC is the circle described on the join of (1,1) and (5, -7) as diameter.

Point A lies on y = x and point B on y = mx so that length AB = 4 units. Then value of 'm' for 46. which locus of mid point of AB represents a circle is a) m = 0 b) m = -1 c) m = 2 d) m = -2 Key: В Hint Let co-ordinates of $A(x_1, x_1)$ and $B(x_2, mx_2)$. Clearly $(x_1 - x_2)^2 + (x_1 - mx_2)^2 = 16$ Let mid point of P(h, k) $\boldsymbol{x}_1 + \boldsymbol{x}_2 = 2h$ and $\boldsymbol{x}_1 + m\boldsymbol{x}_2 = 2k$ \Rightarrow $(x_1 - x_2)^2 + 4x_1x_2 = 4h^2$ and \Rightarrow

$$(x_1 - mx_2)^2 + 4mx_1x_2 = 4k^2$$
$$(x_1 - x_2)^2 + (x_1 - mx_2)^2 = 4h^2 + 4k^2 = 16$$
when m = -1

47. Equation of circle inscribed in |x - a| + |y - b| = 1 is (A) $(x + a)^2 + (y + b)^2 = 2$ (B) $(x - a)^2 + (y - b)^2 = \frac{1}{2}$ (C) $(x - a)^2 + (y - b)^2 = \frac{1}{\sqrt{2}}$ (D) $(x - a)^2 + (y - b)^2 = 1$ KEY : B HINT: Radius of the required circle is $\frac{1}{\sqrt{2}}$ and centre is (a, b) Hence equation is $(x - a)^2 + (y - b)^2 = \frac{1}{2}$

48. Let L = 0 be a common normal to the circle $x^2 + y^2 - 2\alpha x - 36 = 0$ and the curve $S: (1+x)^y + e^{xy} = y$ drawn at a point x = 0 on S, then the radius of the circle is A) 10 B) 5 C) 8 D) 12

Key:

А

Hint: at
$$x = 0 y = 2 y'(0) = 4$$

Equation of Normal is x + 4y = 8 (α , 0) lies on normal $\Rightarrow \alpha = 8$

49. $x^2 + y^2 + 6x + 8y = 0$ and $x^2 + y^2 - 4x - 6y - 12 = 0$ are the equation of the two circles. Equation of one of their common tangent is

(A)
$$7x - 5y - 1 - 5\sqrt{74} = 0$$
 (B) $7x - 5y - 1 + 5\sqrt{74} = 0$
(C) $7x - 5y + 1 - 5\sqrt{74} = 0$ (D) $5x - 7y + 1 - 5\sqrt{74} = 0$

Key: C

Hint: Both the circles have radius = 5 and they intersect each other, therefore their common tangent is parallel to the line joining their centres.

Equation of the line joining their centre is 7x - 5y + 1 = 0.

∴ Equation of the common tangent is 7x – 5y = c

$$\therefore \left| \frac{c+1}{\sqrt{74}} \right| = 5 \implies c = \pm 5\sqrt{74} - 1$$

: Equation is $7x - 5y + 1 \pm 5\sqrt{74} = 0$.

Let each of the circles $S_1 \equiv x^2 + y^2 + 4y - 1 = 0$ $S_2 \equiv x^2 + y^2 + 6x + y + 8 = 0$ $S_3 \equiv x^2 + y^2 - 4x - 4y - 37 = 0$

d) 2

(3/2)

D

Touches the other two. Let P_1 , P_2 , P_3 be the point of contact of S_1 and S_2 , S_2 and S_3 , S_3 and S_1 respectively. Let T be the point of concurrence of the tangents at P_1 , P_2 , P_3 to the circles. C_1 , C_2 , C_3 are the centres of S_1 , S_2 , S_3 respectively.

50. P and Q are any two points on the circle $x^2 + y^2 = 4$ such that PQ is a diameter. If α and β are the lengths of perpendicular from P and Q on x + y = 1 then the maximum value of $\alpha \beta$ is

a)
$$\frac{1}{2}$$
 b) $\frac{7}{2}$ c) 1

Key:

Hint:

В

$$P(2\cos\theta, 2\sin\theta), Q(-2\cos\theta, -2\sin\theta)$$
$$\alpha\beta = \frac{|2\cos\theta + 2\sin\theta - 1| |-2\cos\theta - 2\sin\theta - 1|}{2}$$
$$= \frac{|4(\cos\theta + \sin\theta)^2 - 1|}{2} \le \frac{7}{2}$$

51. The equation of chord of the circle $x^2 + y^2 - 6x - 4y - 12 = 0$ which passes through the origin such that origin divides it in the ratio 3 : 2 is

(A)
$$y + x = 0$$
, $7y + 17x = 0$ (B) $y + 3x = 0$, $7y + 3x = 0$ (C) $4x + y = 0$, $9y + 8x = 0$ (D) $y + 3x = 7$, $y + 3x = 0$

Key:

А

Hint:

Let AO = 2x, BO = 3x Now, AO. BO = OE. OF $X = \sqrt{2}$ Now, D is mid point of chord AB $AD = DB = \frac{5}{\sqrt{2}}$ Equation of AB is y = mx |3m - 2| = 5

$$\Rightarrow \frac{|3m-2|}{\sqrt{1+m^2}} = \frac{5}{\sqrt{2}} \Rightarrow m = -1, -17/7$$

Equation of AB is y = -x and $y = -\frac{17}{7}x$

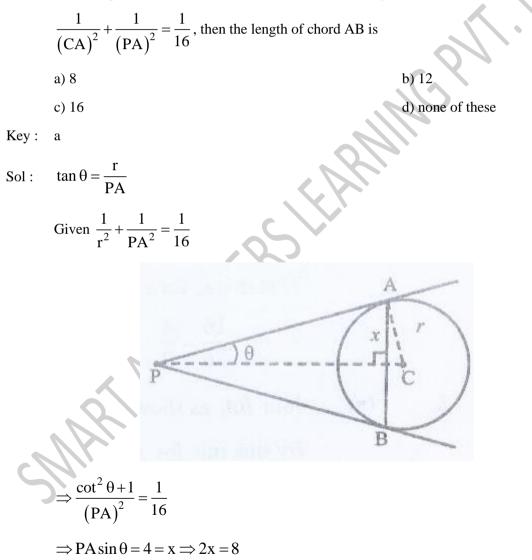
52. If two circles $(x-1)^2 + (y-3)^2 = r^2$ and $x^2 + y^2 - 8x + 2y + 8 = 0$ intersect in two distinct points, then (A) 2 < r < 8 (B) r < 2(C) r = 2 (D) r > 2

Key: A

Sol : Centres and radii of the given circles are C_1 (1,3), $r_1 = r$ and $C_2 = (4, -1)$, $r_2 = 3$ respectively since circles intersect in two distinct points, then

$$\begin{split} & \left| r_{1} - r_{2} \right| < C_{1}C_{2} < r_{1} + r_{2} \\ \Rightarrow & \left| r - 3 \right| < 5 < r + 3 \quad \dots(i) \\ & \text{from last two relations, } r > 2 \\ & \text{from firs two relations} \\ & \left| r - 3 \right| < 5 \\ \Rightarrow -5 < r - 3 < 5 \\ \Rightarrow -2 < r < 8 \quad \dots(ii) \\ & \text{from eqs. (i) and (ii), we get } 2 < r < 8 \end{split}$$

53. (L-1)From a point P outside a circle with centre at C, tangents PA and PB are drawn such that



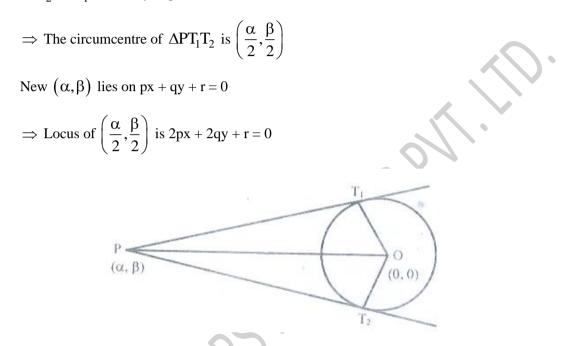
54. (L-II)Tangents PT_1 and PT_2 are drawn from a point P to the circle $x^2 + y^2 = a^2$. If the point P lies on the line px + qy + r = 0, then the locus of the centre of circumcircle of the triangle PT_1T_2 is

a)
$$px + qy = r$$

b) $(x-p)^2 + (y-q)^2 = r^2$
c) $px + qy = \frac{r}{2}$
d) $2px + 2py + r = 0$

Key: d

Sol: P, T_2, O, T_1 are concylic points with PO as diameter



55. (L-1)The circle $x^2 + y^2 = 1$ cuts the x-axis at P and Q. Another circle with centre at Q and variable radius intersects to first circle at R above the X-axis and the line segment PQ at S. The maximum area of the triangle QSR is

Key: c

Sol: Q is (-1, 0)

The circle with centre at Q and variable radius r has the equation

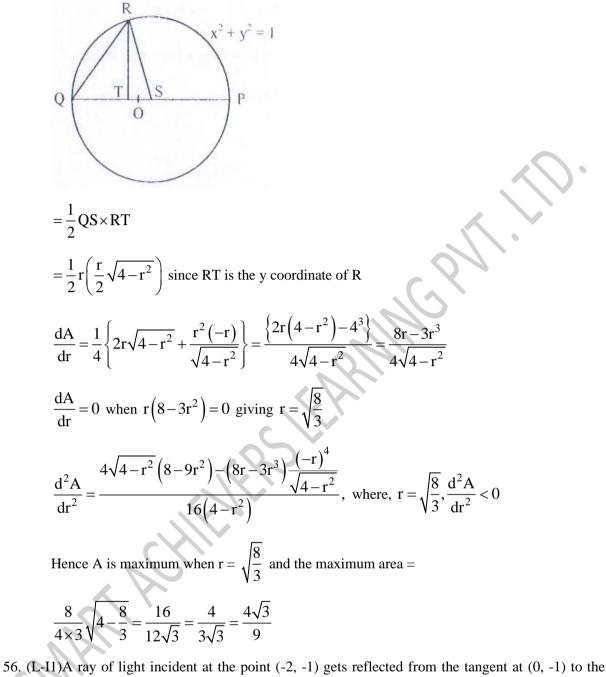
$$(x+1)^2 + y^2 = r^2$$

This circle meets the line segment QP at S where QS = r

It meets the circle $x^2 + y^2 = 1$ at $R\left(\frac{r^2 - 2}{2}, \frac{r}{2}\sqrt{4 - r^2}\right)$ found by solving the equations of

the two circles simultaneously.

A = area of the triangle QSR



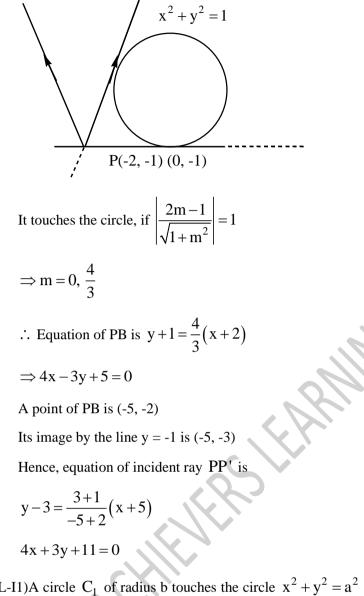
So. (1-11)A ray of light incident at the point (-2, -1) gets reflected from the tangent at (0, -1) to the circle $x^2 + y^2 = 1$. The reflected ray touches the circle. The equation of the line along which the incident ray moved is

a)
$$4x - 3y + 11 = 0$$

b) $4x + 3y + 11 = 0$
c) $3x + 4y + 11 = 0$
d) $4x + 3y + 7 = 0$

Key: b

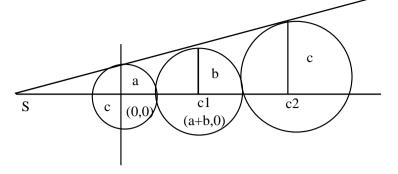
Sol: Any line through (-2, -1) is y + 1 = m(x + 2)



- 57. (L-I1)A circle C_1 of radius b touches the circle $x^2 + y^2 = a^2$ externally and has its centre on the positive x-axis; another circle C_2 of radius c touches the circle C_1 externally and has its centre on the positive x-axis. Given a < b < c, then the three circles have a common tangent if a, b, c are in
 - a) A.P.b) G.P.c) H.P.d) none of these

Key: b

Sol : Similitude point wrt 0^4 s C and C₁ = Similitude point wrt $-c_1c_2$ the weget a, b, c and 14 G.



- 58. The locus of the centre of a circle which touches the circle $x^2 + y^2 6x 6y + 14 = 0$ externally and also the y-axis is given by
 - a) $x^{2}-6y-7y+14=0$ b) $x^{2}-10x-6y+14=0$ c) $y^{2}-6x-10y+14=0$ d) $y^{2}-10x-6y+14=0$

Key; d

Sol: Let (x_1, y_1) be the centre. Since it touches y – axis its radius is $|x_1|$ Also it touches the given circle externally

$$\therefore \sqrt{(x_1 - 3)^2 + (y_1 - 3)^2} = |x_1| + 2 \text{ Squaring we get}$$

$$\chi_1^2 + y_1^2 - 6x_1 - 6y_1 + 18 = \chi_1^2 + 4x_1 + 4$$

$$\Rightarrow y_1^2 - 10x_1 - 6y + 14 = 0$$

b) 5

59. There is a system of circles, in which two pairs of circles have neither same nor parallel radical axis. If the number of radical axis of system is same as the number of radical centres, then number of circles in the system is

Key: b

Sol: Given $n_{c_2} = n_{c_3} \Longrightarrow n = 3 + 2 = 5$

60. A line cuts the x-axis at A(4, 0) and the y-axis at B(0, 8). A variable line PQ is drawn perpendicular to AB cutting the x-axis in P and the y-axis in Q. If AQ and BP intersect at R, find the locus of R.

a)
$$x^{2} + y^{2} - 2x - 4y = 0$$

b) $x^{2} + y^{2} + 2x + 4y = 0$
c) $x^{2} + y^{2} - 2x + 4y = 0$
d) $x^{2} + y^{2} - 4x - 8y = 0$

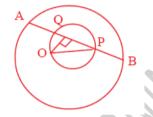
Key: d

Sol: Locus of R is a circle on AB as diameter ie $x^2 + y^2 - 4x - 8y = 0$

61. Let P, P≠0 be any point inside a circle with centre at O. Draw a circle with diameter OP. The point Q (≠ p) is any point on this circle. Extend PQ to meet the larger circle at A and B then which of the following statements is true
I) Q, P are points of trisection of AB
II) Q is mid point of AB
III) OA, OQ, OP, OB are in H.P
a) only I
b) only II
c) only II and II
d) all the three

Key: b

Sol: Angle in the semicircle is 90° . Q is the midpoint of AB



62. From a point P outside a circle with centre at C, tangents PA and PB are drawn such that

 $\frac{1}{(CA)^2} + \frac{1}{(PA)^2} = \frac{1}{16}, \text{ then the length of chord AB is}$ (A) 8
(B) 12
(C) 16
(D) none of these
Key : A

-

Hint : $\tan \theta = \frac{r}{R}$

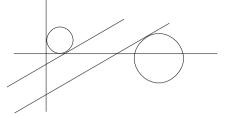
Given
$$\frac{1}{r^2} + \frac{1}{PA^2} = \frac{1}{16}$$

 $\Rightarrow \frac{\cot^2 \theta + 1}{(PA)^2} = \frac{1}{16}$
 $\Rightarrow (PA)\sin \theta = 4 = x \Rightarrow 2x = 8$

63. If a variable line y = 2x + p lies between the circles $x^2 + y^2 - 2x - 2y + 1 = 0$ and $x^2 + y^2 - 16x - 2y + 61 = 0$ without intersecting or touching either circles, then number of integral values of p is a) 9 b) 8 c) 7 d) 6

Key: c

Circles



sol:

 $\sin a - \sqrt{5} - 1 < P < 2\sqrt{5} - 15$ Integral value of P = 7

64. The locus of the centre of the circle which touches the y-axis and also touches the circle $(x+1)^2 + y^2 = 1$ externally is

A)
$$\{(x, y) | x^2 = 4y \} \cup \{(x, y) | y \le 0\}$$

C) $\{(x, y) | x^2 + 4y = 0 \} \cup \{(x, y) | y \ge 0\}$

B)
$$\{(x, y) | y^2 = 4x\} \cup \{(x, y) | x \le 0\}$$

D) $\{(x, y) | y^2 + 4x = 0\} \cup \{(x, y) | x \ge 0\}$

Key. D

Sol. Let $P(x_1, y_1)$ be the centre of the touching $(x + 1)^2 + y^2 = 1$ externally and touching y-axis

1-
$$x_1 = (x_1 + 1)^2 + y_1^2 \neq y_1^2 + 4x_1 = 0$$

Also every circle with centre on positive x-axis and touching y-axis at origin satisfy the condition.

65. Three circles with centres at A, B, C intersect orthogonally. The point of intersection of the common chords is

A) Orthocentre of $\Delta\!ABC$

C) Incentre of $\triangle ABC$

B) Circumcentre of $\triangle ABC$ D) Centroid of $\triangle ABC$

Key. A

Sol. Common chord of two intersecting circles is $\wedge r$ to line of centres

B) 2/3

66. The length of the common chord of the circles which are touching both the coordinate axes and passing through (2, 3) is

C) 2

A) 3/2

D) $\sqrt{2}$

Key. D

Sol. y=x is the line joining the centres of the two circles.

67. A ray of light incident at the point (3, 1) gets reflected from the tangent at (0, 1) to the circle $x^2 + y^2 = 1$. The reflected ray touches the circle. The equation of the line containing the reflected ray is

A) $3x + 4y - 13 = 0$	B) $4x - 3y - 13 = 0$
c) $3x - 4y + 13 = 0$	D) $4x - 3y - 10 = 0$

Key. A

Sol. Angle of incidence is equal to angle of reflection.

- 68. AB is a chord of the circle $x^2 + y^2 = 25$. The tangents to the circle at A and B intersect at C. If (2,3) is the mid point of AB, then the area of quadrilateral OACB is
- A) $\frac{50}{\sqrt{3}}$ B) $50\sqrt{\frac{3}{13}}$ C) $50\sqrt{3}$ D) $\frac{50}{\sqrt{13}}$ Key. B Sol. From omB, $\cos(90 - q) = \frac{\sqrt{13}}{5}$ P $\sin q = \sqrt{\frac{13}{5}}$ P $\cot q = \frac{2\sqrt{3}}{\sqrt{13}}$ Area of quad $OACB = 2' \frac{1}{2}' OB' BC$ $= 5' 5 \cot q = 25' \frac{2\sqrt{3}}{\sqrt{13}} = 50\sqrt{\frac{3}{13}}$
- 69. P(3,2) is a point on the circle $x^2 + y^2 = 13$. Two points A, B are on the circle such that $PA = PB = \sqrt{5}$. The equation of chord AB is A) 4x - 6y + 21 = 0 B) 6x + 4y - 21 = 0 C) 4x + 6y - 21 = 0 D) 6x + 4y + 21 = 0

Key. B

Sol. AB is common chord of $x^2 + y^2 = 13$ and circle having centre at p and radius $\sqrt{5}$.

 $\begin{array}{ll} \text{70.} & \text{The point}\left(\left[P+1\right],\left[P\right]\right)\text{, (where [.] denotes the greatest integer function) lying inside the region bounded by the circle $x^2+y^2-2x-15=0$ and $x^2+y^2-2x-7=0$, then a) $P \in \left[-1,0\right) \cup \left[0,1\right) \cup \left[1,2\right)$ b) $P \in \left[-1,2\right) - \left\{0,1\right\}$ c) $P \in \left(-1,2\right)$ d) $P \notin \mathbb{R}$ \end{array}$

Key. D

Sol.
$$x^{2} + y^{2} - 2x - 15 = 0 \implies [P]^{2} < 8$$

 $x^{2} + y^{2} - 2x - 7 = 0 \implies 4 < [P]^{2}$

71. The locus of centre of a circle which touches externally the circle $x^2 + y^2 - 6x - 6y + 14 = 0$ and also touches the y – axis, is given by the equation a) $x^2 - 6x - 10y + 14 = 0$ b) $x^2 - 10x - 6y + 14 = 0$ c) $y^2 - 6x - 10y + 14 = 0$ d) $y^2 - 10x - 6y + 14 = 0$ Key. D

Sol. Conceptual

- The points A, B are the feet of O(0, 0) on x 2y + 1 = 0, 2x y 1 = 0 respectively then 72. the circum radius of the ΔOAB $c)\sqrt{2}$ d) $1/\sqrt{2}$ a) 2 b) 1 Key. D Sol. Point of meet = (1,1)P $\therefore |OAP = 90^\circ = |OBP|$: diameter = OP A circle cuts x – axis at A(a,0), B(b,0) and y – axis at C(0,c), D(0,2) then the 73. orthocentre of the $\triangle ABC =$
 - a) (2,0)
 - c) (0,2)

Key. D

Sol. O.C.(ABC) = Image of D, w.r.t AB

b)
$$(-2,0)$$

d) $(0,-2)$

74. The locus of the image of the point (2, 3) with respect to the line $(x-2y+3)+\lambda(2x-3y+4)=0 \ (\lambda \in \mathbb{R})$ a) $x^2 + y^2 - 2x - 4y + 4 = 0$ b) $x^2 + y^2 + 2x - 4y + 4 = 0$ c) $x^2 + y^2 - 3x - 4y - 4 = 0$ d) $x^2 + y^2 - 2x - 4y + 3 = 0$ Key. D

Sol. (1,2) lie on both the lines and locus is $(h-1)^2 + (k-2)^2 = (2-1)^2 + (3-2)^2$

ABCD is a rectangle . A circle passing through C touches AB,AD at M,N respectively . If the area 75. of rectangle ABCD is K^2 units (k > 0) then \perp^r distance from C to MN is

c)
$$\frac{K}{2}$$

d) 4*K*

Key. В

Taking AB,AD along axes and centre of the circle as E(h,h) we get M (h,0) N(0,h) and Sol. equation of MN as x + y = h. If $C = (\alpha, \beta)$ then given $\alpha\beta = k^2$ and also

$$(\alpha - h)^2 + (\beta - h)^2 = h^2$$
, \perp^r distance C to MN is $\frac{|\alpha + \beta - h|}{\sqrt{2}} = k$
 $\therefore (\alpha + \beta - h)^2 = \alpha^2 + \beta^2 - 2h(\alpha + \beta) + 2\alpha\beta = 2k^2$

b) *K*

- The number of integer values of λ for which the variable line $3x + 4y = \lambda$ lies completely 76. outside of circles $x^{2} + y^{2} - 2x - 2y + 1 = 0$ and $x^{2} + y^{2} - 18x - 2y + 78 = 0$ without meeting either circle, is
- a) 8 b) 10 d) 6 c) 12 Key. A

27

Circles

Sol. The line given does not meet the circles if
$$(C_1 = (1, 1), C_2 = (9, 1)$$

$$\frac{|3+4-\lambda|}{5} > 1 \text{ and } \frac{|27+4-\lambda|}{5} > 2$$

$$\Rightarrow |7-\lambda| > 5 & |31-\lambda| > 10$$
But $7-\lambda < 0 \text{ and } 31-\lambda > 0$.
Hence $\lambda > 12 & \lambda < 21$
77. The curves $C_1 : y = x^2 - 3 : C_2 : y = kx^2, k < 1$ intersection $A = (a, y_1)(a > 0)$ meets
 C_1 again at $B(1, y_2)$. $(y_1 \neq y_2)$. Then value of $a = __?$
a) 4 b) 3 c) 2 d) 1
Key. B
Sol. solving
 $C_1 & C_2 \Rightarrow A\left(\sqrt{\frac{3}{1-k}}, \frac{3k}{1-k}\right) = (a, ka^2) = (a, a^2 - 3)$.
tan gent 1 to C_2 at A is $y_1a^2 - 3 = 2kx - \cdots - (1)$
 $\Rightarrow B = (1, -2) (A \neq 1)$.
from expression $(1) - 2 + a^2 - 3 = 2a\left(1 - \frac{3}{4a^2}\right)$,
 $\Rightarrow a = 3, a = -2, a = 1$
 $\therefore a = 3$
78 Let $A(1, 2), B(3, 4)$ be two points and $C(x, y)$ be a point such that area of ΔABC is 3 sq.units
and $(x - 1)(x - 3) + (y - 2)(y - 4) = 0$. Then maximum number of positions of C, in the xy
plane is
a) 2 b) 4 c) 8 d) no such C exist
Key. D
Sol. (x,y) lies on the circle, with AB as a diameter. Area
 $(AABC) = 3$
 $\Rightarrow altitude = \frac{3}{\sqrt{2}} \Rightarrow no such "C" exists$
79. The equation of the smallest circle passing through the intersection of
 $x^2 + y^2 - 2x - 4y - 4 = 0$ and the line $x + y - 4 = 0$ is
 $(A) x^2 + y^2 - 3x - 5y - 8 = 0$ (B) $x^2 + y^2 - x - 3y = 0$
 $(C) x^2 + y^2 - 3x - 5y - 8 = 0$ (B) $x^2 + y^2 - x - 3y - 8 = 0$
Key. C
Sol. Family of circles passing through circle $S = 0$ and line $L = 0$ will be $S + \lambda L = 0$
 $x^2 + y^2 - 2x - 4y - 4 + \lambda(x + y - 4) = 0$ (1)

For smallest circle line x + y - 4 = 0 will become the diameter for (1)

80. Equation of a straight line meeting the circle $x^2 + y^2 = 100$ in two points, each point is at a distance of 4 units from the point (8, 6) on the circle, is

(A)
$$4x + 3y - 50 = 0$$
 (B) $4x + 3y - 100 = 0$ (C) $4x + 3y - 46 = 0$ (D)

$$4x + 3y - 16 = 0$$

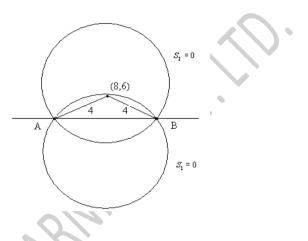
Key.

С

Sol.

$$S_1 = x^2 + y^2 = 100$$

equation of circle centred at (8,6) & radius 4 units is $(x-8)^2 + (y-6)^2 = 16$ required line AB is the common chord of $S_1 = 0$ & $S_2 = 0$, is $S_1 - S_2 = 0$ 4x + 3y - 46 = 0



81.

The locus of the middle points of the chords of the circle of radius r which subtend an angle $\pi/4$ at any point on the circumference of the circle is a concentric circle with radius equal to

A. r/2 B. 2r/3 C. $r/\sqrt{2}$ D. $r/\sqrt{3}$

Key. C

Sol. Equation of the circle be $x^2 + y^2 = r^2$. The chord which substends an angle $\pi/4$ at the circumference will subtend a right angle at the centre. Chord joining (r, 0) and (0, r) substends a right angle at the centre so(h, k) is $x^2 + y^2 = r^2/2$.

82. Two distinct chords drawn from the point (p,q) on the circle $x^2 + y^2 = px + qy$ where

 $pq \neq 0$, are bisected by the x-axis then

1)
$$|p| = |q|$$
 2) $p^2 = 8q^2$ 3) $p^2 < 8q^2$ 4) $p^2 > 8q^2$

Key. 4

Sol. Let A(p,q). Let P(k,o) bisects the chord ABThen B(2k-p,-q) lies on the circle $\Rightarrow (2k-p)^2 + q^2 = p(2k-p) + q(-q)$ $\Rightarrow 4k^2 + p^2 - 4kp + q^2 = 2kp - p^2 - q^2$ $\Rightarrow 2k^2 - 3kp + (p^2 + q^2) = 0$ $b^2 - 4ac > 0 \Rightarrow 9p^2 - 8(p^2 + q^2) > 0$

$$\Rightarrow p^{2} > 8q^{2}$$
83. The sum of the radii of inscribed and circumscribed circle of 'n' sided regular polygon of side 'a' is
1) $\frac{4}{a} \cot\left(\frac{\pi}{2n}\right)$
2) $a \cot\left(\frac{\pi}{2n}\right)$
3) $\frac{a}{2} \cot\left(\frac{\pi}{2n}\right)$
4) $2a \cot\left(\frac{\pi}{2n}\right)$
Key.
3
Sol. Circumradius, $R = \frac{a}{2} \cdot \csc \frac{\pi}{n}$
In radius, $r = \frac{a}{2} \cdot \cot \frac{\pi}{n}$
Now, $R + r = \frac{a}{2} \cot\left(\frac{\pi}{2n}\right)$
84. B and C are points on the circle $x^{2} + y^{2} = a^{2}$. A point A(b,c) lies on the circle such that
AB=AC=d. Then the equation of $\frac{bac}{BC}$ is
1) $bx + ay = a^{2} - d^{2}$
2) $bx + ay = d^{2} - a^{2}$
3) $bx + cy = 2a^{2} - d^{2}$
4) $2(bx + cy) = 2a^{2} - d^{2}$
Key.
4
Sol. Equation of the circle with centre at $A(b,c)$ and radius d is $(x-b)^{2} + (y-c)^{2} = d^{2}$
 $\Rightarrow x^{2} + y^{2} - 2bx - 2cy + b^{2} + c^{2} - d^{2} = 0$
But, $b^{2} + c^{2} = a^{2} \rightarrow 2bx + 2cy = 2a^{2} - d^{2}$
85. The locus of poles of the line $lx + my + n = 0$ w.r.t the circle passing through
 $(-a, 0), (a, 0)$ is
1) $bx^{2} - mxy + nx + a^{2}l = 0$
A) $ly^{2} - mxy + ny + a^{2}l = 0$
Sol. Equation of the circle passing through $A(-a, 0)$ $B(a, 0)$ is $x^{2} + y^{2} - a^{2} + 2\lambda(y) = 0$
Equation of the circle passing through $A(-a, 0)$ $B(a, 0)$ is $x^{2} + y^{2} - a^{2} + 2\lambda(y) = 0$
 $\Rightarrow x^{2} + y^{2} + 2\lambda y - a^{2} = 0$
Polar of $P(x_{1}, y_{1})$ is $x_{1} + yy_{1} + \lambda(y + y_{1}) - a^{2} = 0$
Compare (1) & (2), eliminate λ , we get $b^{2} - mxy + nx + a^{2}l = 0$

86. If two circles which pass through the points (0, a) and (0, -a) cut each other orthogonally and touch the straight line y = mx + c, then

A)
$$c^{2} = a^{2} (1+m^{2})$$

B) $c^{2} = a^{2} |1-m^{2}|$
C) $c^{2} = a^{2} (2+m^{2})$
D) $c^{2} = 2a^{2} (1+m^{2})$

Key. C

Sol. Equation of a family of circles through (0, a) and (0, -a) is $x^2 + y^2 + 2\lambda ax - a^2 = 0$. If two members are for $\lambda = \lambda_1$ and $\lambda = \lambda_2$ then since they intersect orthogonally $2\lambda_1\lambda_2a^2 = -2a^2 \Longrightarrow \lambda_1\lambda_2 = -1$

Since the two circles touch the line y = mx + c

$$\left[\frac{-\lambda am + c}{\sqrt{1 + m^2}}\right]^2 = \lambda^2 a^2 + a^2$$
$$\Rightarrow a^2 \lambda^2 + 2mca\lambda - c^2 + a^2 \left(1 + m^2\right) = 0$$
$$\Rightarrow a^2 \left(1 + m\right)^2 - c^2 = -a^2 \Rightarrow c^2 = \left(2 + m^2\right)a^2$$

87. Equation of a circle through the origin and belonging to the co-axial system, of which the limiting points are (1,2), (4,3) is

A)
$$x^{2} + y^{2} - 2x + 4y = 0$$

B) $x^{2} + y^{2} - 8x - 6y = 0$
D) $x^{2} + y^{2} - 6x - 10y = 0$

 $\lambda = -(1/5)$

Key. C

Sol. Since the limiting points of a system of coaxial circles are the point circles (radius being zero), two members of the system are

$$(x-1)^{2} + (y-2)^{2} = 0 \Longrightarrow x^{2} + y^{2} - 2x - 4y + 5 = 0 \text{ and}$$
$$(x-4)^{2} + (y-3)^{2} = 0 \Longrightarrow x^{2} + y^{2} - 8x - 6y + 25 = 0$$

The co-axial system of circles with these as members is

$$x^{2} + y^{2} - 2x - 4y + 5 + \lambda \left(x^{2} + y^{2} - 8x - 6y + 25\right) = 0$$

It passes through the origin if $5+25\lambda=0$

which gives the equation of the required circle as

$$5(x^{2} + y^{2} - 2x - 4y + 5) - (x^{2} + y^{2} - 8x - 6y + 25) = 0$$

$$\Rightarrow 4x^{2} + 4y^{2} - 2x - 14y = 0$$

$$\Rightarrow 2x^{2} + 2y^{2} - x - 7y = 0.$$

88. Circle are drawn to cut two circles $x^2 + y^2 + 6x + 5 = 0$ and $x^2 + y^2 - 6y + 5 = 0$ orthogonally. All such circles will pass through the fixed points.

A)
$$(1,-1)$$
 only B) $(2,-2)$ and $(0,0)$ C) $(-1,1)$ and $(-2,2)$ D) $(1,-1)$ and $(2,-2)$

Circles

Key. C

Sol. The radical axis of the given circles is x + y = 0. Let P $(\lambda, -\lambda)$ be any point on the above radical axis.

The length of the tangent drawn from P to any of the given circles is $l = \sqrt{\lambda^2 + \lambda^2 + 6\lambda + 5}$ A circle having centre at P and radius equal to l will be orthogonal to both the given circles. Equation of such a circle, is $(x - \lambda)^2 + (y + \lambda)^2 = l^2 = \lambda^2 + \lambda^2 + 6\lambda + 5$

i.e.
$$x^{2} + y^{2} + 2\lambda^{2} - 2\lambda x + 2\lambda y = 2\lambda^{2} + 6\lambda + 5$$

i.e.
$$(x^2 + y^2 - 5) - 2\lambda(x - y + 3) = 0$$

which represents a family of circles passing through the intersection points of $x^2 + y^2 - 5 = 0...(i)$ and x - y + 3 = 0...(ii)

Eliminating y we get

x = -1, -2 and the corresponding y=1, 2

Hence, the required points are (-1,1) and (-2,2).

89. If one circle of a co-axal system is $x^2 + y^2 + 2gx + 2fy + c = 0$ and one limiting point is (a,b) then equation of the radical axis will be

A)
$$(g+a)x+(f+b)y+c-a^2-b^2=0$$

B) $2(g+a)x+2(f+b)y+c-a^2-b^2=0$
C) $2gx+2fy+c-a^2-b^2=0$
D) None of these
B
Given circle $S_1 \equiv x^2 + y^2 + 2gx + 2fy + c = 0...(i)$
 \therefore Equation of the second circle is $(x-a)^2 + (y-b)^2 = 0$

$$S_2 \equiv x^2 + y^2 - 2ax - 2by + a^2 + b^2 = 0...(ii)$$

From (i) and (ii), equation radical axis is $S_1 - S_2 = 0$

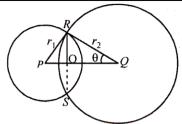
$$\Rightarrow 2(g+a)x+2(f+b)y+c-a^2-b^2=0$$

90. The circles having radii r_1 and r_2 intersect orthogonally. The length of their common chord is

A)
$$\frac{2r_1r_2}{\sqrt{r_1^2 + r_2^2}}$$
 B) $\frac{2r_1^2 + r_2^2}{\sqrt{r_1^2 + r_2^2}}$ C) $\frac{r_1r_2}{\sqrt{r_1^2 + r_2^2}}$ D) $\frac{2r_2^2 + r_1^2}{\sqrt{r_1^2 + r_2^2}}$

Key. A

Key. Sol.



Sol.

Let the centres of the circles be P and Q which intersect orthogonally at the point R, then $\angle PRQ = 90^{\circ}$

Let
$$\angle PQR = \theta$$
 then $\angle QPR = 90^{\circ} - \theta$
 $\therefore RO = r_{2} \sin(90^{\circ} - \theta) = r_{1} \sin \theta$
 $\Rightarrow \sin \theta = \frac{RO}{r_{1}} \text{ and } \cos \theta = \frac{RO}{r_{2}}$
 $\Rightarrow RO^{2} \left(\frac{1}{r_{1}^{2}} + \frac{1}{r_{2}^{2}}\right) = 1 \Rightarrow RO = \frac{r_{1}r_{2}}{\sqrt{r_{1}^{2} + r_{2}^{2}}}$
 \therefore Length of common chord $RS = 2RO = \frac{2r_{1}r_{2}}{\sqrt{r_{1}^{2} + r_{2}^{2}}}$
91. Radical centre of the three circles $x^{2} + y^{2} = 9$, $x^{2} + y^{2} - 2x - 2y = 5$, $x^{2} + y^{2} + 4x + 6y = 19$
lies on the line $y = mx$ if m is equal to
A) -1 B) $-2/3$ C) $-3/4$ D) 1
Key. D
Sol. The radical centre is the point of intersection of $2x + 2y = 4$ and $4x + 6y = 10$ i.e. (1,1)
which lies on $y = mx$ if $m = 1$.
92. If $\frac{x}{a} + \frac{y}{b} = 1$ touches the circle $x^{2} + y^{2} = r^{2}$ then $\left(\frac{1}{a}, \frac{1}{b}\right)$ lie on
(A) straight line (B) circle
(C) parabola (D) ellipse
Key. B
Sol. Let $\alpha = \frac{1}{a}, \beta = \frac{1}{b}$
 $x\alpha + y\beta - 1 = 0$ touches $x^{2} + y^{2} = r^{2}$
 $\Rightarrow \qquad \left|\frac{-1}{\sqrt{\alpha^{2} + \beta^{2}}}\right| = r$
 $\Rightarrow \qquad \alpha^{2} + \beta^{2} = \frac{1}{r^{2}}$

 \Rightarrow α, β lies on $x^2 + y^2 = \frac{1}{r^2}$

Circles

93.	The value of 'c' for which the sets {(x, y) : $x^2 + y^2 + 2x - 1 \le 0$ } \cap {(x, y) : $x - y + c \ge 0$ } cont only one point.		
	(A) – 1 only	(B) 3 only	
	(C) both – 1 and 3	(D) 2	
Key.	A		
Sol.			
	$\frac{ -1+c }{\sqrt{2}} = \sqrt{2}$ c = 3, -1 L(-1, 0) > 0 when c = 3	$ \begin{array}{c} $	
	< 0 when c = -1		
	\Rightarrow c = -1		

94. A circle of radius 'r' is inscribed in a square. The mid points of sides of square are joined to form a new square. The mid point of sides of resulting square are again joined so that a new square was obtained and so on. Then radius of circle inscribed in *n*th square is

(a)
$$\left(2^{\frac{1-n}{2}}\right)r$$
 (b) $\left(2^{\frac{3-3n}{2}}\right)r$ (d) $\left(2^{\frac{3-3n}{2}}\right)r$ (d) $\left(2^{\frac{3-3n}{2}}\right)r$

Key.

SOL. CLEARLY RADIUS OF 2ND CIRCLE
$$=\frac{\sqrt{r^2 + r^2}}{2} = \frac{r}{\sqrt{2}}$$

AND THIRD CIRCLE =

$$\Rightarrow$$
 radius of *n*th circle $=\frac{r}{2^{\left(\frac{n-1}{2}\right)}}$

95. A variable circle touches the line y = x and passes through (0, 0). The common chord of the above circle and the circle $x^2 + y^2 + 6x + 8y - 7 = 0$ will pass through

(a) (0, 0)
(b)
$$\left(-\frac{1}{2}, \frac{1}{2}\right)$$

(c) $\left(\frac{1}{2}, -\frac{1}{2}\right)$
(d) $\left(\frac{1}{2}, \frac{1}{2}\right)$
(e) D

Key.

SOL. EQUATION OF FAMILY OF CIRCLE TOUCHING $X = Y \text{ AT } (0, 0) \text{ IS } X^2 + Y^2 + \lambda(X - Y) = 0$ REQUIRED COMMON CHORD = $6X + 8Y - 7 - \lambda(X - Y) = 0$ always passes through $\left(\frac{1}{2}, \frac{1}{2}\right)$

<u>Mathematics</u>

mau	iematics	Circles		
96.	A circle passes through the points $(2, 2)$ <i>x</i> -cordinate of the point of contact is	and $(9, 9)$ and touches the <i>x</i> -axis. The		
	(A) –2 or 2	(B) –4 or 4		
	(C) –6 or 6	(D) –9 or 9		
Key.	С			
Sol.	Any circle through (2, 2) and (9, 9) is			
	$(x-2)(x-9)+(y-2)(y-9)+\lambda(y-x)=$	=0 (1)		
	For the point of intersection with x-axis, we put y = 0 in (1), to get			
	$(x-2)(x-9)+18-\lambda x=0$			
	$D = 0 \Longrightarrow (11 + \lambda)^2 - 4 \times 36 \implies \lambda = -23, 1$			
97.	From a fixed point on the circle $x^2 + y^2 = a^2$, tw	vo tangents are drawn to the circle $x^2 + y^2 = b^2$		
		ble circle passing through origin, then the locus		
	(A) a circle	(B) a parabola		
	(C) an ellipse	(D) a hyperbola		
Key.	В			
Sol.	The centre of the variable circle is always equentiate the origin, its locus is a parabola.	uidistant from the given chord of contact and		
98.	If $9 + f''(x) + f'(x) = x^2 + f^2(x)$ be the differential equation of a curve and let P be the point of minima then the number of tangents which can be drawn from P to the circle $x^2 + y^2 = 9$ is			
	(A) 2	(B) 1		
	(C) 0	(D) either 1 or 2		
Key.	A			
Sol.	At the point of minima $f'(x) = 0$, $f''(x) > 0$			
	$\Rightarrow f''(x) = -9 + x^2 + f^2(x) > 0 \Rightarrow x^2 + y^2 - 9 > 0 \Rightarrow$	point P(x, f(x)) lies outside $x^2 + y^2 = 9$		
	⇒ two tangen			
99.	A point P lies inside the circles $x^2 + y^2 - 4 = 0$ a	and $x^2 + y^2 - 8x + 7 = 0$. The point P starts		
	moving under the conditions that its path encloses greatest possible area and it is at a fixed distance from any arbitrarily chosen fixed point in its region. The locus of P is			
	A) $4x^2 + 4y^2 - 12x + 1 = 0$	B) $4x^2 + 4y^2 + 12x - 1 = 0$		
	C) $x^2 + y^2 - 3x - 2 = 0$	D) $x^2 + y^2 - 3x + 2 = 0$		
Kev.				

For the point P to enclose greatest area, the arbitrarily chosen point should be $\left(rac{3}{2},0
ight)$ and P Sol.

should move in a circle of radius $\frac{1}{2}$. Locus of P is a circle of radius $\frac{1}{2}$.

$$\left(x - \frac{3}{2}\right)^{2} + (y - 0)^{2} = \frac{1}{4} \Longrightarrow x^{2} + y^{2} - 3x + 2 = 0.$$

100. A circle of unit radius touches positive co-ordinate axes at A & B respectively. A variable line passing through origin intersects the circle in two points D and E. If the area of ΔDEB is maximum, then the reciprocal of the square of the slope of the line is

a)
$$\frac{1}{3}$$
 b) 3 c) $\frac{1}{2}$ d) 2

Key. B

Sol. Let 'm' the slope of the line (m > 0)

$$\Delta = \frac{\sqrt{2}\sqrt{m}}{m^2 + 1} \Delta_{max} \Longrightarrow m^2 = \frac{1}{3}$$

- 101. ABCD is a rectangle . A circle passing through C touches AB,AD at M,N respectively . If the area of rectangle ABCD is K^2 units (k > 0) then \perp^r distance from C to MN is
 - c) $\frac{K}{2}$ a) 2*K* b) *K* d) 4*K*

Key. B

Taking AB, AD along axes and centre of the circle as E(h,h) we get M (h,0) N(0,h) and Sol. equation of MN as x + y = h. If $C = (\alpha, \beta)$ then given $\alpha\beta = k^2$ and also

$$(\alpha - h)^2 + (\beta - h)^2 = h^2$$
, \perp^r distance C to MN is $\frac{|\alpha + \beta - h|}{\sqrt{2}} = k$

$$\therefore (\alpha + \beta - h)^2 = \alpha^2 + \beta^2 - 2h(\alpha + \beta) + 2\alpha\beta = 2k^2$$

102. The number of integer values of λ for which the variable line $3x + 4y = \lambda$ lies completely outside of circles $x^2 + y^2 - 2x - 2y + 1 = 0$ and $x^2 + y^2 - 18x - 2y + 78 = 0$ without meeting either circle, is a) 8

Key. A

The line given does not meet the circles if $(C_1 = (1,1), C_2 = (9,1))$ Sol.

$$\frac{|3+4-\lambda|}{5} > 1 \text{ and } \frac{|27+4-\lambda|}{5} > 2$$
$$\Rightarrow |7-\lambda| > 5 \& |31-\lambda| > 10$$
But $7-\lambda < 0$ and $31-\lambda > 0$.

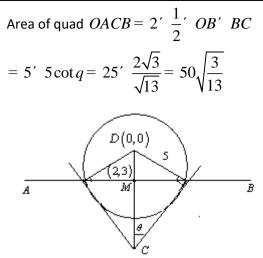
Hence $\lambda > 12 \& \lambda < 21$

103. All chords of the curve $x^2 + y^2 - 10x - 4y + 4 = 0$, which make a right angle at (8,-2) pass through

b) (-2,-5) c) (-5,-2) a) (2,5) d) (5,2) Key. D

Sol.(8,-2) lies on the circle $(x-5)^2 + (y-2)^2 = 25$ and a chord making a right angle at (8,-2) must be a diameter of the circle .So they all pass through the centre (5,2).

mau	iemutics			
104.	The locus of the centre of the circle which touches the y-axis and also touches the circle $(x+1)^2 + y^2 = 1$ externally is			
	A) $\{(x, y) x^2 = 4y\} \cup \{(x, y) y \le 0\}$	B) $\{(x, y) y^2 = 4x\} \cup$	$\{(x, y) \mid x \le 0\}$	
	C) $\{(x, y) \mid x^2 + 4y = 0\} \cup \{(x, y) \mid y \ge 0\}$	D) $\{(x, y) \mid y^2 + 4x = 0$	$\big\} \cup \big\{ (x, y) x \ge 0 \big\}$	
Key.	D			
Sol.	Let $P(x_1, y_1)$ be the centre of the touching $(x - x_1)$	$(+1)^2 + y^2 = 1$ externally a	and touching y-axis	
	\ 1- $x_1 = (x_1 + 1)^2 + y_1^2 \mathbf{P} y_1^2 + 4x_1 = 0$			
	Also every circle with centre on positive x-axis a condition.	and touching y-axis at origi	n satisfy the	
105.	. Three circles with centres at A, B, C intersect orthogonally. The point of intersection of the common chords is			
	A) Orthocentre of $\Delta\!ABC$	B) Circumcentre of $\Delta\!A$	BC	
	C) Incentre of $\Delta\!ABC$	D) Centroid of $\Delta\!ABC$		
Key.	A			
Sol.	Common chord of two intersecting circles is ^	to line of centres		
106.	The length of the common chord of the circles v and passing through (2, 3) is	vhich are touching both the	e coordinate axes	
	A) 3/2 B) 2/3	C) 2	D) $\sqrt{2}$	
Key.	D	X		
Sol.	y=x is the line joining the centres of the two circ	les.		
107.	A ray of light incident at the point (3, 1) gets ref	-		
	$x^2 + y^2 = 1$. The reflected ray touches the circle. The equation of the line containing the			
	reflected ray is	D 4r 2v 12 - 0		
	A) $3x + 4y - 13 = 0$	B) $4x - 3y - 13 = 0$		
IZ -	c) $3x - 4y + 13 = 0$	D) $4x - 3y - 10 = 0$		
Key. Sol.	A Angle of incidence is equal to angle of reflectior			
108.	AB is a chord of the circle $x^2 + y^2 = 25$. The tai		d Diptorcost at C If	
106.	(2,3) is the mid point of AB, then the area of q		u B milersect at C. II	
			~ 0	
ć	A) $\frac{50}{\sqrt{3}}$ B) $50\sqrt{\frac{3}{13}}$	C) 50√3	D) $\frac{50}{\sqrt{13}}$	
Key.	В			
Sol.	From <i>omB</i> , $\cos(90-q) = \frac{\sqrt{13}}{5}$			
	$\Phi \sin q = \sqrt{\frac{13}{5}}$			
	$P \cot q = \frac{2\sqrt{3}}{\sqrt{13}}$			



109. P(3,2) is a point on the circle $x^2 + y^2 = 13$. Two points A, B are on the circle such that $PA = PB = \sqrt{5}$. The equation of chord AB is A) 4x - 6y + 21 = 0B) 6x + 4y - 21 = 0C) 4x + 6y - 21 = 0D) 6x + 4y + 21 = 0

Key. B

Sol. AB is common chord of $x^2 + y^2 = 13$ and circle having centre at p and radius $\sqrt{5}$.

b) $\frac{1}{2} < a < 1$

110. The range of a for which eight distinct points can be found on the curve |x| + |y| = 1 such that from each point two mutually perpendicular tangents can be drawn to the circle $x^2 + y^2 = a^2$ is

$$\frac{1}{2} < a < \frac{1}{\sqrt{2}}$$

c)
$$\frac{1}{\sqrt{2}} < a < 1$$
 d)

Key. D

Sol. Director circle $x^2 + y^2 = 2a^2$ must cut square formed by |x| + |y| = 1 at 8 points Min radius = OE Max radius = OA $\therefore \frac{1}{\sqrt{2}} < \sqrt{2}a < 1$

111. The point (1,4) lies inside the circle $x^2 + y^2 - 6x - 10y + p = 0$ which does not touch or intersects the coordinate axes then

a) 0 < p < 29 b) 25 < p < 29 c) 9 < p < 25 d) 9 < p < 29

Key. B

Sol.

$$CP < r < 3$$

 $CP^2 < r < 9$

25 < P < 29

112. Equation of a straight line meeting the circle $x^2 + y^2 = 100$ in two points, each point at a distance of 4 from the point (8,6) on the circle, is a) 4x+3y-50=0 b) 4x+3y-100=0 c) 4x+3y-46=0 d) 4x+3y-16=0

Key.

С

Sol.

$$S_{1} = x^{2} + y^{2} = 100$$

equation of circle centred at (8,6) & radius 4 units is $(x-8)^2 + (y-6)^2 = 16$

required line AB is the common chord of $S_1 = 0$ & $S_2 = 0$, is $S_1 - S_2 = 0$

$$4x + 3y - 46 = 0$$

113. Minimum radius of circle which in orthogonal with both the circles $x^2 + y^2 - 12x + 35 = 0$ and $x^2 + y^2 + 4x + 3 = 0$ is

a) 4

b) 3 c)
$$\sqrt{15}$$
 d) 1

Key. C

Sol. equation of the radical axis of two given circles is -16x + 32 = 0

 \Rightarrow x = 2

and it intersect the line joining the centres is y = 0 at the point (2,0)

 \therefore required radius is $\sqrt{4-24+35} = \sqrt{4+8+3}$

 $=\sqrt{15}$

114. If f(x+y) = f(x) f(y) for all x and y, f(1) = 2 and $\alpha_n = f(n), n \in \mathbb{N}$, then the equation of the circle having (α_1, α_2) and (α_3, α_4) as the ends of its one diameter is A) (x-2)(x-8) + (y-4)(y-16) = 0B) (x-4)(x-8) + (y-2)(y-16) = 0D) (x-6)(x-8) + (y-5)(y-6) = 0C) (x-2)(x-16) + (y-4)(y-8) = 0Key. A Sol. f(x + y) = f(x) f(y), Q f(1) = 2Put $x = y = 1 \Longrightarrow f(2) = 2^2 \Longrightarrow f(n) = 2^n$ Hence required circle is (x-2)(x-8) + (y-4)(y-16) = 0115. ABCD is a square of side 1 unit. A circle passes through vertices A, B of the square and the remaining two vertices of the square lie out side the circle. The length of the tangent drawn to the circle from vertex D is 2 units. The radius of the circle is B) $\frac{1}{2}\sqrt{10}$ C) $\frac{1}{3}\sqrt{12}$ A) $\sqrt{5}$ D) $\sqrt{8}$ Key. B Let A = (0,1), B = (0,0), C = (1,0), D = (1,1). Sol. Family of circles passing through A, B is $x^2 + y^2 - y + \lambda x = 0$. $\sqrt{1+\lambda} = 2 \Longrightarrow \lambda = 3$ 116. The point A lies on the circle $(x+3)^2 + (y-4)^2 = r^2$. Two chords of lengths 13 and 15 are drawn to the circle through A such that the distance between the mid points of these chords is 7. Then r =A) <u>45</u> c) $\frac{32}{3}$ D) $\frac{65}{9}$ Key. D r is the circumradius of the triangle whose sides are a = 13, b = 15, c = 14. $r = \frac{abc}{4\Lambda}$ Sol. 117. The equation of circumcircle of a \triangle ABC is $x^2 + y^2 + 3x + y - 6 = 0$. If A = (1, -2), B = (-3, 2) and the vertex C varies then the locus of orthocenter of Δ ABC is a A) Straight line B) Circle C) Parabola D) Ellipse Key. B Equation of circumcircle is $\left(x+\frac{3}{2}\right)^2 + \left(y+\frac{1}{2}\right)^2 = \frac{17}{2}$ Sol. $C = \left(-\frac{3}{2} + \sqrt{\frac{17}{2}}\cos\theta, -\frac{1}{2} + \sqrt{\frac{17}{2}}\sin\theta\right)$

Circum centre of $\triangle ABC$ is $\left(-\frac{3}{2}, -\frac{1}{2}\right)$

Centroid can be obtained.

In a triangle centroid, circum centre and ortho centre are collinear.

MARINGHURBSUMBOU