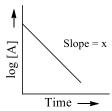

CHEMICAL KINETICS

CHEMISTRY

Single Correct Answer Type

1.	-	_	$E_2(E_1 > E_2)$. If the tempera		
			ctions changes from k_1 to k_2		
	-		following expression is corr	rect?	
	a) $\frac{k_1'}{k_1'} = \frac{k_2'}{k_2'}$	b) $\frac{k_1'}{k_1'} > \frac{k_2'}{k_2'}$	c) $\frac{k_1'}{k_1'} < \frac{k_2'}{k_2'}$	d) $\frac{k_1'}{k_1'} = \frac{k_2'}{k_2'} = 1$	
2.	Effective collisions are th	ose in which molecules m	ust:		
	a) Have energy equal to	or greater than the thresho	old energy		
	b) Have proper orientati	on			
	c) Acquire the energy of	activation	<i>A</i>		
	d) All of the above				
3.	Consider the following s	tatements,			
	The rate law for the acid	catalysed hydrolysis of an	ester being given as		
	$Rate = k[H^+][ester] =$	k'[ester].			
	If the acid concentration	is doubled at constant este	er concentration		
	1. The second order rate	constant, k is doubled.			
	2. The pseudo first order	rate constant, k is double.			
	3. The rate of the reactio	n is doubled.			
	Which of the above state	ments are correct?	X)		
	a) 1 and 2	b) 2 and 3	c) 1 and 3	d) 1,2 and 3	
4.	Half-life of two samples	s 0.1 and 0.8 s. Their respe	ective concentration is 400 a	and 50 respectively.	
	The order of reaction is				
	a) 0	b) 2	c) 1	d) 4	
5.	The units of rate of react	ion are			
	a) $L \text{ mol}^{-1} \text{ s}^{-1}$	b) $\text{mol } L^{-1} \text{ s}^{-1}$	c) $mol s^{-1}$	d) None of these	
6.	Units of rate constant of	first and zero order reactio	ons in terms of molarity $\it M$ $\it u$	ınit are respectively	
	a) s^{-1} , M s^{-1}	b) s^{-1} , M	c) $M s^{-1}, s^{-1}$	d) M, s^{-1}	
7.	The half time of a second	order reaction is:			
	a) Inversely proportional to the square of the initial concentration of the reactants				
	b) Inversely proportional to the initial concentration of the reactants				
	c) Proportional to the in	itial concentration of react	ants		
	d) Independent of the in	itial concentration of reacta	ants		
8.	$\frac{1}{[A]^2}$ vs times are a straigh	t line. Order of reaction is			
	a) First	b) Second	c) Zero	d) Third	
9.	For an endothermic reac	tion where, ΔH represents	the enthalpy of the reaction	n in kJ/mol, the minimum	
	value for the energy of a	ctivation will be			
~	a) Less than ΔH	b) Zero	the enthalpy of the reaction c) More than ΔH	d) Equal to ΔH	
	The unit of rate constant				
	a) $L s^{-1}$	b) $L \text{ mol}^{-1} \text{ s}^{-1}$	c) $mol L^{-1} s^{-1}$	d) $mol s^{-1}$	
11.	What is the formula to fi	nd value of $t_{1/2}$ for a zero o	order reaction?		
		b) $\frac{2k}{[R]_0}$	c) $\frac{[R]_0}{2k}$	d) $\frac{0.693}{k}$	
	a) $\frac{k}{[R]_0}$	$\overline{[R]_0}$	$\frac{c_j}{2k}$	u) <u>k</u>	
12	For the reaction $A + B$ -	$\rightarrow C + D$ The variation of t	the concentration of the pro	ducts is given by the curve	

a) X


b) Y

c) Z

d) W

- 13. Acid hydrolysis of sucrose is a
 - a) Pseudo first order reaction
 - c) Second order reaction

- b) Zero order reaction
- d) Unimolecular reaction
- 14. For a first order reaction the graph $\log [A] vs t$ is given below

x is equal to

a)
$$\frac{0.693}{k}$$

d) $\log [A]_0$

15. The rate constant of a first order reaction is $4 \times 10^{-3} \text{sec}^{-1}$. At a reactant concentration of 0.02 M, the rate of reaction would be:

a) $8 \times 10^{-5} \, M \, \text{sec}^{-1}$ b) $4 \times 10^{-3} \, M \, \text{sec}^{-1}$ c) $2 \times 10^{-1} \, M \, \text{sec}^{-1}$ d) $4 \times 10^{-1} \, M \, \text{sec}^{-1}$ 16. The rate constant for the reaction, $2N_2O_5 \rightarrow 4NO_2 + O_2$ is $3.0 \times 10^{-5} \, s^{-1}$. If the rate is $2.4 \times 10^{-1} \, M \, \text{sec}^{-1}$ $10^{-5} mol L^{-1} s^{-1}$ then the concentration of $N_2 O_5$ (in $mol L^{-1}$) is

a) 0.04

d) 1.4

- 17. Activation energy of a reaction is:
 - a) The energy released during the reaction
 - b) The energy evolved when activated complex is formed
 - c) Minimum amount of energy needed to overcome the potential barrier of reaction
 - d) The energy needed to form one mole of the product
- 18. The activation energy for a reaction is 9.0 Kcal/mol. The increase in the rate constant when its temperature is increased from 298 K to 308 K is:

b) 100%

c) 50%

d) 63%

19. The rate of first order reaction, $A \rightarrow \text{Products}$, is $7.5 \times 10^{-4} \text{mol litre}^{-1} \text{sec}^{-1}$. If the concentration of A is 0.5 mol litre⁻¹ the rate constant is:

a) $3.75 \times 10^{-4} \text{sec}^{-1}$

b) $2.5 \times 10^{-5} \text{sec}^{-1}$

c) $1.5 \times 10^{-3} \text{sec}^{-1}$

d) $8.0 \times 10^{-4} \text{sec}^{-1}$

20. $2N_2O_5 \rightleftharpoons 4NO_2 + O_2$

For the above reaction which of the following is not correct above rates of reaction?

a)
$$\frac{-d[N_2O_5]}{dt} = 2\frac{d[O_2]}{dt}$$

b) $\frac{-2d[N_2O_5]}{dt} = \frac{d[NO_2]}{dt}$ d) $\frac{-2d[N_2O_5]}{dt} = 4\frac{d[NO_2]}{dt} = \frac{d[O_2]}{dt}$

21. A substance undergoes first order decomposition. The decomposition follows to parallel first order reactions as:

 $K_1 = 1.26 \times 10^{-4} \text{ sec}^{-1}$ \Rightarrow B $K_2 = 3.8 \times 10^{-5} \text{ sec}^{-1}$

The percentage distribution of *B* and *C* are:

	c) 90% <i>B</i> and 10% <i>C</i>					
	d) 60% B and 40% C					
22.	In Arrhenius plot intercept i	s equal to				
) ln <i>A</i>	c) ln <i>k</i>	d) $\log_{10} a$		
23.	Half-life period of a first ord		•	- ·		
	-	$5.0 \times 10^{-3} \text{s}^{-1}$	c) $0.5 \times 10^{-2} \text{s}^{-1}$	d) $0.5 \times 10^{-3} \text{s}^{-1}$		
24.	On addition of AgNO ₃ to Nat	Cl, white ppt. occurs:				
	a) Instantaneously			\sim		
	b) With a measurable speed					
	c) Slowly					
	d) None of these					
25.	Which is correct about zero	order reaction?				
	a) Rate of reaction depends	on decay constant.				
	b) Rate of reaction is indepe	endent of concentration.		V		
	c) Unit of rate constant is co	onc^{-1}	CA			
	d) Unit of rate constant is co	mc^{-1} $time^{-1}$				
26.	The half-life period of a first	order reaction is 1 min	40 s. Calculate its rate cons	tant.		
	a) $6.93 \times 10^{-3} min^{-1}$ b) $6.93 \times 10^{-3} s^{-1}$	c) $6.93 \times 10^{-3} s$	d) $6.93 \times 10^3 s$		
27.	The reaction $2A + B + C \rightarrow$	D + E is found to be first	order in A, second in B and	l zero order in C. What is		
	the effect on the rate of incre	easing concentration of A	A, B and C two times?			
	a) 72 times b) 8 times	c) 24 times	d) 36 times		
28.	In a reaction, the threshold	energy is equal to:				
	a) Activation energy + normal energy of reactants					
	b) Activation energy - norm	al energy of reactants				
	c) Activation energy					
	d) Normal energy of reactan	nts				
29.	Which one is not correct?					
	a) Rate of zero order reaction	on depends upon initial c	oncentration of reactant			
	b) Rate of zero order reaction			actant		
	c) $t_{1/2}$ of first order reaction	n is independent of initia	concentration of reaction			
	d) $t_{1/2}$ of zero order reaction	n is dependent of initial o	concentration of reaction			
30.	A reaction proceeds by first	order, 75% of this reacti	on was completed in 32 mi	n. the time required for		
	50% completion is					
	a) 8 min b) 16 min	c) 20 min	d) 24 min		
31.	The rate of the reaction					
	$CCl_3CHO + NO \rightarrow CHCl_3 + NO + CO$ is equal to rate $k[CCl_3CHO][NO]$. If concentration is expressed in					
	mol/L. The unit of k is					
	a) $L \text{ mol}^{-1} \text{ s}^{-1}$ b) mol $L^{-1} s^{-1}$	c) $L^2 \text{ mol}^{-2} \text{ s}^{-1}$	d) s^{-1}		
32.	Observe the following reacti	ion,				
	$2A + B \rightarrow C$					
~	The rate of formation of C is	$2.2 \times 10^{-3} mol L^{-1} min.$				
		_				
	What is the value of $-\frac{d[A]}{dt}$ (7)					
	,) 1.1×10^{-3}	c) 4.4×10^{-3}	d) 5.5×10^{-3}		
33.		a third order chemical re				
	a) $\text{mol}^{-1} \text{ L s}^{-1}$		b) $\text{mol}^{-1} \text{ s}^{-2}$			
	c) mol L		d) $s^{-1} \text{ mol}^{-2} L^2$			
34.	$CH_3COOC_2H_5 + H_2O \xrightarrow{H+}$	$CH_3COOH + C_2H_5OH$ is	an example of order.			
	- -			Page 3		
				rage 3		

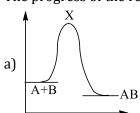
a) 80% B and 20% C

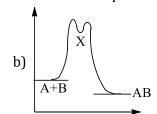
b) 76.83% *B* and 23.17% *C*

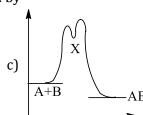
35.	a) Zero b) Second Collision theory is applicable to	c) Third	d) Pseudo first order
00.	a) First order reactions	b) Zero order reactions	
	c) Bimolecular reactions	d) Intra-molecular react	ions
36	The efficiency of an enzyme in catalyzing a reaction	•	10113
50.	a) To form a strong enzyme substrate complex	b) To decrease the bond	energy of all substrate
	a) To form a strong enzyme substrate complex	molecules	energy of an substrate
	c) To change the shape of the substrate molecule		on energy of the reaction
37.		aj 10 lower the activation	on energy of the reaction
57.	$2A + B \longrightarrow 3C + D$		
	Which of the following does not express the reaction	n rate?	, , ,
			d[B]
	a) $\frac{d[D]}{dt}$ b) $-\frac{d[A]}{2dt}$	c) $-\frac{d[C]}{3dt}$	d) $-\frac{d[B]}{dt}$
38.	If E_f and E_r are the activation energies of the forward	out	nd the reaction is known to
	be exothermic then		
	a) $E_f < E_r$		0 7
	b) $E_f > E_r$		
	·	4	
	c) $E_f = E_r$	CC A	
	d) No relation can be given between E_f and E_r as data		
39.	Milk turns sour at 40°C three times as faster as at 0		_
	a) 4.693 kcal b) 2.6 kcal	c) 6.6 kcal	d) None of these
40.	Which plots will give the value of activation energy		1
	a) <i>K vs.T</i> b) 1/ <i>K vs.T</i>	c) ln <i>K vs.T</i>	d) $\ln K vs. \frac{1}{T}$
41.	In a second order reaction when the concentration	of both reactant are equal	1
41.	500 s. How long will it take for the reaction to go to	-	the reaction is completed in
	a) 1000 s b) 300 s	c) 3000 s	d) 2000 s
4.2	The rate constant (K) for the reaction $2A + B \rightarrow$		-
ΤΔ.	after 15 sec, 2.60×10^{-5} litre mol ⁻¹ sec ⁻¹ after 30		
	order of reaction is:	sec and 2.55 × 10 inter	noi sec alter 50 sec. The
	a) 2 b) 3	c) Zero	d) 1
43.	The differential rate expression for the reaction H_2	-	u) I
43.	$-d[H_a] -d[I_b] -d[H]$	$+$ 1 ₂ \longrightarrow 2111 15.	
	a) $\frac{u[1/2]}{dt} = \frac{u[1/2]}{dt} = \frac{u[1/2]}{dt}$		
	a) $\frac{-d[H_2]}{dt} = \frac{-d[I_2]}{dt} = \frac{-d[HI]}{dt}$ b) $\frac{d[H_2]}{dt} = \frac{d[I_2]}{dt} = \frac{d[HI]}{dt}$		
	b) $\frac{ds}{dt} = \frac{ds}{dt} = \frac{dt}{dt}$		
	c) $\frac{1}{2} \frac{d[H_2]}{dt} = \frac{1}{2} \frac{d[I_2]}{dt} = \frac{d[HI]}{dt}$		
	$\frac{c}{2}\frac{dt}{dt} = \frac{1}{2}\frac{dt}{dt} = \frac{1}{dt}$		
	d) $-2\frac{d[H_2]}{dt} = -2\frac{d[I_2]}{dt} = \frac{d[HI]}{dt}$		
44.	For the elementary step,		
~~	$(CH_3)_3 \cdot CBr(aq) \rightarrow (CH_3)_3C^+(aq) + Br^-(aq)$ the	molecularity is:	
5	a) Zero b) 1	c) 2	d) Cannot ascertained
45.	A graph plotted between $\log t_{50\%}vs.\log a$ concent	ration is a straight line. W	hat conclusion can you draw
	from the given graph?		
	↑		
	[↑] %51 ∄0		
	-	0.693	d) None of the above
	a) $n = 1, t_{1/2} = \frac{1}{K \cdot a}$ b) $n = 2, t_{1/2} = 1/a$	c) $n = 1, t_{1/2} = \frac{1}{K}$,
46.	If a is the initial concentration then time require	d to decompose half of th	e substance for nth order is

	inversely proportional to:		. 1	
17	a) a^n The hydrolysis of ethyl ac	b) a^{n-1}	c) a^{1-n}	d) a^{n-2}
17.				
	$CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} COOC_2H_5 + H_2O \xrightarrow{H^+} COOC_2H_5 + H_2OOC_2H_5 + H_2OOC$			n = 1
	a) First order	b) Second order	c) Third order	d) Zero order
48.		n between the substances A		(D.) (.)
		ubling the concentration of	A and halving the concent	ration of B, the ratio of the
		te of the reaction will be as		
	a) $\frac{1}{2^{m+n}}$	b) $(m + n)$	c) $(n-m)$	d) $2^{(n-m)}$
49.	For the reaction			
	$H_2(g) + Br_2(g) \rightarrow 2HBr(g)$	g)		
	The experimental data su	ggest		
	rate = $k[H_2][Br_2]^{1/2}$			
	the molecularity and orde	er of the reaction are respec	ctively	
	a) $1, \frac{1}{2}$	b) 1, 1	c) $\frac{3}{2}, \frac{3}{2}$	d) 2 3
	4		<i>L L</i>	$\frac{u_{1}z_{1}}{2}$
50.		ases with temperature due		r
	a) Decrease in activation	=-	b) Increase in activation e	==
	c) Increase in collision fre		d) Increase in concentrati	
51.			ectant is decreased from 1.0	0 <i>M</i> to 0.25 <i>M</i> in 20 minute
	The rate constant of the re) 0 0004 + -1	1) 0 0 0 0 0 41
- 2	a) $10 \mathrm{min}^{-1}$	b) 6.931 min ⁻¹	c) 0.6931 min ⁻¹	d) 0.06931min^{-1}
52.		with respect to H ₂ and ICI	botn	
	$H_2(g) + 2ICl(g) \rightarrow 2HCl(g)$		ith the given feet?	
	_	echanism is in consistent w	ith the given fact?	
	Mechanism $A: H_2(g) + 2I0$			
		$\operatorname{ICl}(g) \xrightarrow{\operatorname{slow}} \operatorname{HCl}(g) + \operatorname{HI}(g)$		
		$+ ICl(g) \rightarrow HCl(g) + I_2$		
	a) A and B both		c) A only	d) B only
53.				d K_B at temperature T and
		and E_B respectively. If $K_A > 0$	$> K_B$ and $E_A < E_B$ and ass	ruming that A for both the
	reactions is same, then:	W III become the W		
		K_A will be greater than K_B		
		K_A and K_B will differ more a		
	d) All of the above	K_A and K_B will be close to ea	ch other in magnitude	
54.	The half life for a reaction	of temperature		
JT.	a) Independent	or temperature.		
	b) Increased with increase	е		
4	c) Decreased with increase	Se		
	d) Dependent			
55.	The following mechanism	has been proposed for the	reaction of NO with Br_2 to	form NOBr
	$NO(g) + Br_2(g) \rightleftharpoons NOBr_2$		2.2 32 2.2 2.2 0	- -
	$NOBr_2(g) + NO(g) \rightarrow 2NO(g)$			
	-	ate determining step, the or	der of the reaction with re	spect to NO(g) is
	a) 1	b) 0	c) 3	d) 2
56.	•	constant and that of rate o	,	-
	a) Zero order	b) First order	c) Second order	d) Third order
57.	According to collision the	ory of reaction rates:		

	a) Livery comploir between reactants leads to enemi	carreaction	
	b) Rate of reaction is proportional to velocity of mol	lecules	
	c) All reactions which occur in gaseous phase are ze	ero order reactions	
	d) Rate of reaction is directly proportional to collision	on frequency	
58.	Half-life of a reaction is found to be inversely propo	rtional to the cube of initia	al concentration. The order
	of reaction is		
	a) 4 b) 3	c) 5	d) 2
59.	A reaction involving two different reactants can nev	rer be	
	a) Bimolecular reaction	b) Second order reactio	n
	c) First order reaction	d) Unimolecular reactio	on .
60.	For the non-equilibrium process, $A + B \rightarrow Produc$	ts, the rate is first order	with respect to A and second
	order respect to <i>B</i> . If 1.0 mole each of <i>A</i> and <i>B</i> are	introduced into a 1 litre	vessel and the initial rate was
	1.0×10^{-2} mol/litre-sec. The rate (in mol litre ⁻¹ sec	c^{-1}) when half of the rea	ctants have been used:
	a) 1.2×10^{-3} b) 1.2×10^{-2}	c) 2.5×10^{-4}	d) None of these
61.	The activation energy of a reaction is zero. The rate	•	
	a) Decreases with decrease of temp	b) Increases with increa	
	c) Decreases with increase of temp	d) Is nearly independen	-
62.	The burning of coal represented by the equation		
	increased by:	7 - (-) 2 (8)	
	a) Decrease in the concentration of oxygen		
	b) Powdering the lumps of coal		
	c) Decreasing the temperature		
	d) Providing inert atmosphere for burning		
63.	At room temperature, the reaction between NO and	0, to give NO, is fast, wh	nile that between CO and O_2 is
	slow. It is due to:	2	
	a) CO is smaller in size than that of NO	>	
	b) CO is poisonous	Y	
	The activation energy for the reaction,		
	c) $2NO + O_2 \rightarrow 2NO_2$ is less than		
	$2CO + O_2 \longrightarrow 2CO_2$		
	d) None of the above		
64.	The rate of first order reaction is $1.5 \times 10^{-2} mol \ L^{-1}$	-1	6.1
		min at 0.5 M concentrati	on of the reactant. The half-
	life of reaction is) 0.50	1) 7 50
	a) 0.383 min b) 23.1 min	c) 8.73 min	d) 7.53 min
65.	The rate constant of a first order reaction at 27°C is	-	ture coefficient of this
	reaction is 2. What is the rate constant (in min ⁻¹) at		12 4 2 - 2
	a) 10^{-3} b) 5×10^{-4}	c) 2×10^{-3}	d) 10^{-2}
66.	The minimum energy required for the reacting mole	-	ı is
	a) Potential energy	b) Kinetic energy	
	c) Thermal energy	d) Activation energy	
67.			
	a) The reaction is unimolecular	b) The reaction is bimol	ecular
~	c) $t_{1/2} \propto a^0$	d) None of the above	
68.	The rate of a chemical reaction doubles for every 10	°C rise of temperature. If	the temperature is raised by
	50°C, the rate of the reaction increases by about		
	a) 10 times b) 24 times	c) 32 times	d) 64 times
69.	Which of the following statement is incorrect about	the molecularity of a reac	etion?
	a) Molecularity of a reaction is the number of molec	cules of the reactants pres	ents in the balanced equation
	b) Molecularity of a reaction is the number of molecularity	cules in the slowest step	
	c) Molecularity is always a whole number		


- d) There is no difference between order and molecularity of a reaction
- 70. For a reaction $A + B \rightarrow$ Products, the rate of the reaction was doubled when the concentration of A was doubled. When the concentration of A and B were doubled, the rate was again doubled, the order of the reaction with respect to A and B are:
 - a) 1, 1


b) 2, 0


c) 1, 0

- d) 0, 1
- 71. An exothermic chemical reaction occurs in two steps as follows
 - (I) $A + B \rightarrow X$ (fast)
 - (II) $X \rightarrow AB$ (slow)

The progress of the reaction can be best represented by

- d) All are correc
- 72. According to the Arrhenius equation a straight line is to be obtained by plotting the logarithm of the rate constant of a chemical reaction (log k) against
 - a) T

b) $\log T$

- 73. The rate constant is numerically the same for three reactions of first, second and third order respectively. Which one is true for rate of three reaction?
 - a) $r_1 = r_2 = r_3$
- b) $r_1 > r_2 > r_3$
- c) $r_1 < r_2 < r_3$
- d) All of these
- 74. Mathematical expression for $t_{1/4}$ i.e., when (1/4)th reaction is over following first order kinetics can be
- a) $t_{1/2} = \frac{2.303}{k} \log 4$ b) $t_{1/2} = \frac{2.303}{k} \log 2$ c) $t_{1/2} = \frac{2.303}{k} \log \frac{4}{3}$ d) $t_{1/2} = \frac{2.303}{k} \log \frac{3}{4}$

75. The rate of reaction:

 $2NO + Cl_2 \rightarrow 2NOCl$ is given by the rate, equation rate $= k[NO]^2[Cl_2]$. The value of the rate constant can be increased by:

- a) Increasing the temperature
- b) Increasing the concentration of NO
- c) Increasing the concentration of the Cl₂
- d) Doing all of these
- 76. A reaction was observed for 15 days and the percentage of the reactant remaining after the days indicated was recorded in the following table.

Time	% Reactant		
(days)	remaining		
0	100		
2	50		
4	39		
6	25		
8	21		
10	18		
12	15		
14	12.5		
15	10		
1			

Which one of following best describes the order and the half-life of the reaction?

Reaction order Half-life (days)

- a) First
- 2 2

- b) First
- 6

c) Second 77. In the reaction 6

	$BrO_3^-(aq) + 5Br^-(aq) + 6H^+ \rightarrow 3Br_2(l) + 3H_2O(l)$					
	The rate of appearance of bromine (Br_2) is related to					
	a) $\frac{d(Br_2)}{dt} = \frac{3}{5} \frac{d(Br^-)}{dt}$ b) $\frac{d(Br_2)}{dt} = -\frac{3}{5} \frac{d(Br^-)}{dt}$	c) $\frac{d(Br_2)}{dr_2} = -\frac{5d(Br_1)}{2}$	d) $\frac{d(Br_2)}{d(Br_2)} = \frac{5d(Br_1)}{3}$			
70	Which one of the following is a second order reaction		at 3 at			
70.		b) $NH_4NO_3 \rightarrow N_2 + 3H_2O$				
	a) $H_2 + Br_2 \rightarrow 2HBr$ Sunlight					
	c) $H_2 + Cl_2 \xrightarrow{\text{Sunlight}} 2HCl$	d) $CH_3COOCH_3 + NaOH -$	\rightarrow CH ₃ COONa + H ₂ O			
79.	The temperature coefficient of most of the reactions	lies between				
	a) 1 and 3 b) 2 and 3	c) 1 and 4	d) 2 and 4			
80.	In respect of the equation $k = Ae^{-E_a/RT}$ in chemical	kinetics, which one of the s	statement is correct?			
	a) <i>R</i> is Rydberg constant	b) <i>K</i> is equilibrium consta	ant			
	c) E_a is energy of activation	d) A is adsorption factor				
81.	The rate of chemical reaction (except zero order):		*			
	a) Decreases from moment to moment		4			
	b) Remains constant throughout	4	04			
	c) Is independent of the order of reaction					
	d) None of the above	4 4				
82.	For a zero order reaction		<i>)</i> *			
	a) $t_{1/2} \propto R_0$ b) $t_{1/2} \propto 1/R_0$	c) $t_{1/2} \propto R_0^2$	d) $t_{1/2} \propto 1/R_0^2$			
83.	Effect of temperature on reaction rate is given by					
	a) Claisen-Clapeyron equation	b) Arrhenius equation				
	c) Gibbs Helmholtz equation	d) Kirchoff's equation				
84.	The Arrhenius equation expressing the effect of tem	perature on the rate consta	nnt of reaction is:			
	a) $K = \frac{E_a}{PT}$ b) $K = Ae^{-E_a/RT}$	c) $K = \log_e \frac{E_a}{PT}$	d) $K = e^{-Ea/RT}$			
~ =	KI	N I	-			
85.	Find the two third life $(t_{1/2})$ of a first order reaction					
	a) $201 \times 10^{13} s$ b) $2.01 \times 10^{13} s$	c) $201 \times 10^{20} s$	d) $0.201 \times 10^{10} s$			
86.	$A + B \rightarrow Product$					
	If concentration of A is doubled, rate increases 4 tim		d B are doubled, rate			
	increases 8 times. The differential rate equation of the		10			
	a) $\frac{dC}{dt} = kC_A \times C_B$ b) $\frac{dC}{dt} = kC_A^2 \times C_B^3$	c) $\frac{dC}{dC} = kC_A^2 \times C_B$	d) $\frac{dC}{dC} = kC_A^2 \times C_B^2$			
07						
07.	For the reaction $A \rightarrow B$, the rate expression is $r = k$ of reaction is quadrupled. The value of n is	[A] . When the concentrat	non of A is doubled, the rate			
		c) 3	d) 2			
88.		•	•			
00.	concentration of the reaction to 1/16 M value?	. How much time will it to	ike to reduce the			
		c) $4.6 \times 10^2 s$	d) $4.6 \times 10^{-4} s$			
90	In the reaction,	C) 4.0 × 10 S	u) 4.0 × 10 S			
09.		rate constant le is				
	$2N_2O_5 \rightarrow 4NO_2 + O_2$ initial pressure is 500 atm and $3.38 \times 10^{-5} s^{-1}$ after 10 min the final pressure of N_2					
_	a) 490 atm b) 250 atm		d) 420 atm			
	For a chemical reaction, can never to a fraction	c) 480 atm	uj 420 atili			
90.		a) Poto constant	d) Mologylarity			
01	a) Order b) Half life The time taken for the completion of 3/4 of a first or	c) Rate constant	d) Molecularity			
91.	(2 202 /1-) 1 4		(2 202 /0 75) log k			
	a) $(2.303/k) \log 3/4$ b) $(2.303/k) \log 4$	c) $(2.303/k) \log 1/4$	d) $(2.303/0.75) \log k$			
92.	$2N_2O_5(g) \to 4NO_2(g) + O_2(g)$					
	What is the ratio of the rate of decomposition of N_2 C	O_5 to rate of formation of O_2	?			
	a) 1:2 b) 2:1	c) 1:4	d) 4:1			
93.	A first order reaction is 75% complete after 32 min.	when was 50% of the react	tion completed?			

	a) 16 min	b) 8 mi		c) 4 min	d) 32 min
94.	For a reaction, $A + 2B \rightarrow$	C, rate is	given by $+\frac{d[C]}{dt} =$	k[A][B],hence, the ord	er of the reaction is
	a) 3	b) 2	at .	c) 1	d) 0
95.	The accompanying figure	depicts t	he change in cond	centration of species X a	and <i>Y</i> for the reaction $X \rightarrow Y$,
	as a function of time. The	point of	intersection of the	e two curves represents	:
	0.4				
) - 0.2-				
	5 - 0.2-				\sim
	Y				
			_		
	Time -	→			
	a) $t_{1/2}$				
	b) $t_{3/4}$				04
	c) $t_{2/3}$. X
	d) Data is insufficient to p				
96.				K is 10 times less than t	he rate constant at 400 K. What
	is the activation energy (a) 460 C B	4) 220 2 p
07	a) 1842.4 <i>R</i> A zero order reaction is o	b) 921.	2 K	c) 460.6 R	d) 230.3 <i>R</i>
97.	a) In which reactants do				
	b) In which one of the rea				
	c) Whose rate does not cl		=	G. K.	
	d) Whose rate increases v	_			
98.	In a first order reaction th	ne $a/(a -$	- x) was found to	be 8 after 10 minute. Th	ne rate constant is:
	a) $(2.303 \times 3 \log 2)/10$	b) (2.30	$3 \times 2 \log 3)/10$	c) $10 \times 2.303 \times 2 \log$	3 d) $10 \times 2.303 \times 3 \log 2$
99.	If the rate of reaction A→	<i>B</i> doubl	es on increasing t	he concentration of A b	y 4 times, the order of the
	reaction is			4	_
	a) 2	b) 1	1	c) $\frac{1}{2}$	d) 4
100	. The rate of chemical reac	rtion		2	
100	a) Increase as the reactio		ds	b) Decrease the react	ion proceeds
	c) May increase or decrea	/ -		-	as the reaction proceeds
101	. For zero order reaction, t		=	-	- -
	a) $kt = \frac{[A]}{[A]_0}$	b) kt -	[A] = [A]	c) $[\Lambda] = -kt + [\Lambda]$	d) $[A] = kt - [A]_0$
	$a) kt - \frac{1}{[A]_0}$	υ) κι —	$[A] - [A]_0$	$C_{j}[A_{j} - \kappa \iota + [A]_{0}]$	$u_j[A] = \kappa \iota - [A]_0$
102	. The half-life period of a fi				
	a) $0.01s^{-1}$	b) 0.1s		c) $1s^{-1}$	d) $10s^{-1}$
103	A reaction has a rate cons	stant of 0	.5 mol ^{–1} dm³ min	. If initial concentration	of the reactant is 0.2 mol dm^{-3} ,
~	half-life of the reaction				
	a) 1.4 min	b) 10 m	in	c) 15 min	d) 20 min
104	The bromination of aceto			•	his equation.
	$CH_3COCH_3(aq) + Br_2(aq)$				
	These kinetic data were o		=	concentrations.	
	Initial concent				
	$[CH_3COCH_3]$ $[Br_2]$	[H ⁺]	Initial rate,		
			disappearan		

of Br_2 , $M \mathrm{\ s}^{-1}$

	a) 693 s	b) 1386 s	c) 6930 s	d) 2029 s
117	7. By increase in temperatu	re by 10 K, the rate of reac	tion becomes double. How	many times the rate of
	reaction will be if the tem	perature is increased from	n 303K to 353 K?	
	a) 4	b) 8	c) 16	d) 32
118	3. Temperature coefficient			n 30°C to 100°C, rate of the
	reaction increases by			,
	-	b) 100 times	c) 500 times	d) 250 times
119	=	=	=	stant when its temperature
	is raised from 295 to 300	-		
	a) 10%	• • •	c) 100%	d) 28%
120	For a reaction $\frac{1}{2}A \rightarrow 2B$, 1	•		,
	2	ate of disappearance of 11	is related to the rate of ap	pearance of B by the
	expression	ומוג 1 [ג]ג	ומוג [ג]ג	41 41 11 11
	a) $-\frac{a[A]}{b} = \frac{1}{2} \frac{a[B]}{b}$	b) $-\frac{a[A]}{h} = \frac{1}{4} \frac{a[B]}{h}$	c) $-\frac{d[A]}{dt} = \frac{d[B]}{dt}$	d) $-\frac{a[A]}{b} = 4\frac{a[B]}{b}$
121	= = =	1 000		at at from 0.1 M to 0.025 M in 40
14.		tion when the concentration		1011 0.1 W to 0.023 W III 40
			c) 1.73×10^{-4} M/min	d) 1.72 × 10 ⁻⁵ M/min
121	2. In a 1st order reaction, re			u) 1.73 × 10 M/IIIII
144	a) 1/C increases linearly		b) Log C decreases linear	dry razith t
	c) C decreases with 1/t	vvitii t	d) Log C decreases with 2	
123	-	oro order reaction is 0.2 m		itration of the reactant after
12.		Then its initial concentrat		itration of the reactant after
			c) 0.25 mol dm ⁻³	d) 4.00 mol dm ⁻³
12/				1. The rate of disappearance
14-	of X will be	$X + I \rightarrow Z$, the rate of app	earance of Z is 0.05 mor L	. The rate of disappearance
	a) 0.05 mol 1^{-1} h ⁻¹	b) 0.05 mol I^{-1} min ⁻¹	c) $0.1 \text{ mol } L^{-1} \text{ min}^{-1}$	d) 0.25 mol I ⁻¹ min ⁻¹
12	5. For a reaction, $x(g) \rightarrow y(g)$			
14.		duce to 10% of original con		d of time would the
	a) 20 min	b) 33 min	c) 15 min	d) 25 min
126				uj 23 ililii
120	5. When is the activation en $N_2O_5 \rightleftharpoons 2NO_2 + \frac{1}{2}O_2$	ici gy for the decomposition	10111205 40,	
	$N_2O_5 \rightleftharpoons 2NO_2 + \frac{1}{2}O_2$			
	If the values of rate const	$ant = 3.45 \times 10^{-5} \text{ at } 27^{\circ}\text{C}$	and rate constant = 6.9×1	10 ^{−3} at 67°C?
	a) 112.5 kJ	b) 200 kJ	c) 149.5 kJ	d) 11.25 kJ
127	7. Rate equation for a secon	d order reaction is:		
	$\frac{2.303}{100}$ a	$\frac{1}{\log x}$ a	c) $K = \frac{1}{t} \cdot \frac{x}{a(a-x)}$	$\frac{1}{a}$ α
	a) $K = \frac{1}{t} \log \frac{1}{(a-x)}$	$\int K = \frac{1}{t} \log \frac{1}{a(a-x)}$	c) $K = \frac{1}{t} \cdot \frac{1}{a(a-x)}$	$dJ K = \frac{1}{t^2} \cdot \frac{1}{(a-x)}$
128	3. Which of the following st	atements are correct?		
	1. Order of a reaction can	be known from experimen	ntal result and not from the	e stoichiometry of reaction
	2. Overall molecularity of	a reaction may be determined	ined in a manner similar to	overall order of reaction
	3. Overall order of reaction	•		
	$A^m + B^n \to AB_x$ is $(m +$	- n)		
	4. Molecularity of a reaction $\frac{1}{2}$	ion refers to		
	(i) Molecularity of each o	f the elementary steps (slo	w steps) in a multistep rea	ction
	• •	articular step in a single st	•	
		by using the codes given b		
	a) 1, 3 and 4	b) 1, 2 and 3	c) 2, 3 and 4	d) 1, 2 and 4
129	9. For the order reaction wi			
	a) $\frac{1n^2}{k}$	b) $\frac{1}{ka}$	c) $\frac{3}{2k a^2}$	d) None of these
124	N		210.00	
131). For the reaction $2A + B$	$\rightarrow \iota_1 + \nu_2$ the order of read	LION IS	

a) One with respect[B]		b) Two with respect to [A]
c) Three		d) Cannot be predicted	
131. Which expression is wron	ng for fist order reaction?		
a) $k = \frac{2.303}{t} \log \left(\frac{A_0}{A_t} \right)$		b) $k = \frac{t}{2.303} \log \left(\frac{A_0}{A_t} \right)$	
$c) -k = \frac{t}{2.303} \log \left(\frac{A_t}{A_0} \right)$		d) Rate=k[A]	
132. For a first order reaction,	the half-life period is		
	are of the initial concentrati	ion.	
	wer of initial concentration.		
	are root of initial concentra		
d) Independent on initial			
133. Give relation between ha	If reaction time $(t_{1/2})$ and in	nitial concentration of react	ant for $(n-1)$ order
reaction.			
a) $t_{1/2} \propto [R]_0$	b) $t_{1/2} \propto [R]_0^{2-n}$	c) $t_{1/2} \propto [R]_0^{n+1}$	d) $t_{1/2} \propto [R]_0^{n-2}$
134. For a first order reaction			
	ate the rate of reaction at re		
a) $3.47 \times 10^{-4} M \text{ min}^{-1}$	to the face of feather at fe		
b) $3.47 \times 10^{-5} M \text{ min}^{-1}$			
c) $1.735 \times 10^{-6} M \text{ min}^{-1}$			
d) $1.735 \times 10^{-4} M \text{ min}^{-1}$			
135. Rate of reaction			
a) Decreases with increas	se in temperature		
b) Increases with increas	-	G KY	
_	ase with increase in temper	cature	
d) Does not depends on t			
136. For the first order react		k which expression give	es the rate half-life period?
(Initial conc. = a)		- ··, ···	······································
•	1, 1	, 1	0.693
a) $\frac{3}{2}ka^2$	b) $\frac{1}{ka}$	c) $\frac{1}{k}$	$\frac{a}{k}$
137. The rate constant (k') of	one of the reaction is found	l to be double that of the ra	te constant (k'') of another
reaction. Then the relation	onship between the corresp	onding activation energies	of the two reaction
$(E'_a \text{ and } E'_a)$ can be repr	esented as		
a) $E'_a > E'_a{}'$	b) $E'_a = 4E''$	c) $E'_1 = E'_{a}$	d) $E'_a < E'_a$
138. For a given reaction of fi			-
$0.4 M \text{litre}^{-1}$. The time re	quired for the concentratio	on to drop from 0.1 <i>M</i> litre	¹ to $0.025 M$ litre ⁻¹ will be:
a) 60 minute	b) 15 minute	c) 7.5 minute	d) 30 minute
139. The rate constant for a se	econd order reaction is $8 \times$	$10^{-5}M^{-1}$ min ⁻¹ . How long	will it take a $1M$ solution to
be reduced to 0.5 <i>M</i> ?			
a) 8.665×10^3 minute	b) 8×10^{-5} minute	c) 1.25×10^4 minute	d) 4×10^{-5} minute
140. The slope in Arrhenius pl	=		
a) $-\frac{E_a}{2.303 R}$	$\frac{E_a}{E_a}$	c) $-\frac{R}{2.303 E_a}$	d) None of the above
2.303 R	R	$2.303 E_a$	
141. The rate constants k_1 an		tions are $10^{16}e^{-2000/T}$ and	$10^{15}e^{-1000/T}$, respectively.
The temperature at which	$n k_1 = k_2 is:$	1000	
a) $\frac{2000}{2303}$ K	b) 2000 K	c) $\frac{1000}{2303}$ K	d) 1000 K
2.303		2.505	
142. If the volume of the vesse			g is aiminished to 1/3 rd of
	e of the reaction will be inc		d) 26 times
a) 3 times	b) 9 times	c) 27 times	d) 36 times
143. The time for half-life peri	ou of a creation reaction A	\rightarrow products is 1 n. when the	miliai concentration of the

reactant 'A', is 2.0 $mol L^{-1}$, how much time does it take for its concentration to come from 0.50 to $0.25 \ mol \ L^{-1}$, if it is a zero order reaction? b) 0.5 h c) 0.25 h 144. For a reaction $A + B \rightarrow C + D$, if the concentration of A is doubled without altering the concentration of B, the rate gets doubled. If the concentration of B is increased by nine times without altering the concentration of A, the rate gets tripled. The order of the reaction is a) 2 d) 4/3145. What fraction of a reactant showing first order remains after 40 minute if $t_{1/2}$ is 20 minute? a) 1/4 b) 1/2 c) 1/8 146. At 500 k, the half-life period of a gaseous reaction at an initial pressure of 80 kPa is 350 s. when the pressure is 40 kPa, the half-life period is 175 s. The order of the reaction is b) One c) Two d) Three 147. Which of the following statements are incorrect? a) Rate of the reaction involving conversion of ortho hydrogen to para hydrogen = b) Rate of the reaction involving the thermal decomposition of acetaldehyde = $k[CH_3CHO]^{1/2}$ c) In the formation of phosgene from CO and Cl_2 , the rate of the reaction $= k[CO][Cl_2]^{1/2}$ d) In the decomposition of H_2O_2 , the rate of reaction = $k[H_2O_2]$ 148. At 373 K, a gaseous reaction $A \rightarrow 2B + C$ is found to be of first order. Starting with pure A, the total pressure at the end of 10 min was 176 mm and after a long time when A was completely dissociated, it was 270 mm. The pressure of *A* at the end of 10 min was a) 94 mm b) 47 mm c) 43 mm d) 90 mm 149. For a reversible reaction, $A \rightleftharpoons B$, which one of the following statements is wrong from the given energy profile diagram? Reaction coordinate a) Activation energy of forward reaction is greater than backward reaction b) The forward reaction is endothermic c) The threshold energy is less than that of activation energy d) The energy of activation of forward reaction is equal to the sum of heat of reaction and the energy of activation of backward reaction 150. Which one of the following is wrongly matched? a) Saponification of $CH_3COOC_2H_5$ -second order reaction b) Hydrolysis of CH_3COOCH_3 -pseudo unimolecular c) Decomposition of H_2O_2 -first order reaction d) Combination of H_2 and Br_2 to give HBr -first order reaction 151. For the reaction, $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ If the concentration of NO_2 increase by $5.2 \times 10^{-3} M$ in 100 s then the rate of the reactions a) $1.3 \times 10^{-5} Ms^{-1}$ b) $0.5 \times 10^{-4} Ms^{-1}$ c) $7.6 \times 10^{-4} Ms^{-1}$ d) $2 \times 10^{-3} Ms^{-1}$

152. The rate of the reaction $A \to \text{product}$, at the initial concentration of $3.24 \times 10^{-2} M$ is nine times its rate at

another initial concentration of $1.2 \times 10^{-3} M$. The order of the reaction is

a) $\frac{1}{2}$

d) $\frac{2}{3}$

compl	etion?				
a) 80 i	min	b) 160 min	c) 100 min	d) 200 min	
154. Consid	ler the reaction 2A	$A + B \rightarrow product$	•	•	
			the half-life did not chang	e. When the concentration of A	
			times. The unit of rate co		
	$ol^{-1}s^{-1}$	b) No unit	c) $mol L^{-1}s^{-1}$	d) s^{-1}	
=			der chemical reaction is	_	
-) 1-	1 x		2.303	a	
a) $\kappa =$	$\frac{1}{t} \cdot \frac{x}{a(a-x)}$		b) $k = \frac{2.303}{t} \log_1$	$a^{0}\overline{(a-x)}$	
c) k =			d) $k = \frac{1}{2t} \left[\frac{1}{(a-t)^2} \right]$	11	
С) к —	$\frac{\overline{t}}{t}$		$\frac{dJ}{dt} = \frac{1}{2t} \left[\frac{1}{(a-x)^2} \right]$	$\frac{\overline{(x)^2}}{a^2} = \frac{\overline{a^2}}{a^2}$	
156. In gas	seous reactions i	mportant for the u	inderstanding of the up	per atmosphere H ₂ O and O	react
bimole	ecularly to form tw	vo OH radicals. ΔH for	or this reaction is 72kJ at !	$500~K$ and E_a is 77 kJ mol $^{-1}$, the	en E_a
for the	bimolecular reco	mbination of two OH	I radicals to form H_2O and		
a) 3 kJ	mol^{-1}	b) 4 kJ mol ⁻¹	c) 5 kJ mol^{-1}	d) 7 kJ mol ⁻¹	
157. Activa	tion energy of a re	eaction			
a) Is in	ndependent of tem	iperature			
b) Inc	eases with tempe	rature			
c) Get	s doubled for ever	y 10 degree rise in to	emperature	>	
d) Dec	reases with tempe	erature		Y	
158. For a	I order reaction	$A \longrightarrow B$ the reaction	rate at reactant concen	tration $0.01M$ is found to be	2.0 ×
$10^{-5} I$	Ms^{-1} . The half-life	period of the reaction	on is:		
a) 30s		b) 300s	c) 220s	d) 347s	
159. For a z	ero order reaction	n, the plot of concent	ration of reactant vs time	is (intercept refers to concentra	ation
axis)					
a) Lin	er with positive sl	ope and zero interce	pt		
b) Lin	ear with negative	slope and zero interc	cept		
c) Lin	ear with negative	slope and non-zero i	ntercept		
d) Lin	ear with positive s	lope and non-zero ir	ntercept		
				a factor 4, if the concentration	on of
reacta	nt <i>B</i> is doubled. T	he order of this react	tion with respect to <i>B</i> is:		
a) -1	4	b) -2	c) 2	d) 1	
	-		was found to be 3.2×10^{-3}		
a) 6.4	$\times 10^{-3}$	b) 1.28×10^{-2}	c) 9.6×10^{-3}	d) 3.2×10^{-4}	
162. The te	$\operatorname{rm} \frac{-dc}{dt}$ in a rate ed	uation refers to			
		entration of the react	cant with time		
-	concentration of		carre with time		
-		tration of the reacta	nt		
	velocity constant				
	w -		reactant decreases from 8	$00 mol/dm^6$ to $50 mol/dm^6$ in	2 ×
		of reaction in s^{-1} is	reactaint acereases ir oili e	oo morjam to so morjam iii	- ^
a) 2 ×		b) 3.45×10^{-5}	c) 1.386×10^{-4}	d) 2×10^{-4}	
, ,	ler the chemical re	,	c) 1.500 × 10	u) 2 × 10	
	$+3H_2(g) \rightarrow 2NH$	•			
=	<u> </u>	S 1-1	terms of time derivative	of concentration of $N_2(g)$, $H_2(g)$) and
			ongst the rate expressions		,
a) Rat	$e = -d[N_2]/dt =$	$-\frac{1}{3}d[H_2]/dt = \frac{1}{2}d[$	$NH_2]/dt$		
		_			
oj kat	$e = -a_{[N_2]}/at =$	$-3d[H_2]/dt = 2d[N$	ıπ ₃]/ <i>αι</i>		

153. The half-life period for zero order reaction $A \rightarrow \text{product}$, is 100 min. How long will it take in 80%

	_			
	c) Rate = $d[N_2]/dt = \frac{1}{3}d$	$[H_2]/dt = \frac{1}{2}d[NH_3]/c$	lt	
	d) Rate = $-d[N_2]/dt = -$	$d[H_2]/dt = d[NH_3]/d$	lt	
165	Rate of reaction can be exp	pressed by following r	rate expression, rate= k	$[A]^2[B]$, if concentration of A is
	increased by 3 times and c	oncentration of B is in	ncreased by 2 times, ho	w many times rate of reaction
	increases?			
	a) 9 times	b) 27 times	c) 18 times	d) 8 times
166	As the reaction progresses	, the rate of reaction		

a) Increases

b) Decreases

c) Remains constant

d) First increases, then decreases

167. The data for the reaction, $A+B\rightarrow C$

Ex	$[A]_0$	$[B]_0$	Initial rate
1	0.012	0.035	0.10
2	0.024	0.070	0.80
3	0.024	0.035	0.10
4	0.012	0.070	0.80

The rate law corresponds to the above data is

a)
$$rate = k[B]^3$$

b)
$$rate = k[B]^4$$

c)
$$rate = k[A][B]^{3}$$

d)
$$rate = k [A]^2 [B]^2$$

168. In a reaction, when the concentration of reactant is increased two times, the increase in rate of reaction was four times. Order of reaction is

a) Zero

b) 1

c) 2

d) 3

169. For the reaction

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

The rate of change of concentration for hydrogen is 0.3×10^{-5}

The rates of change of concentration of ammonia is

a)
$$-0.2 \times 10^{-4}$$

b)
$$0.2 \times 10^{-4}$$

c)
$$0.1 \times 10^{-4}$$

d)
$$0.3 \times 10^{-4}$$

170. Which of the following statement is in accordance with collision theory?

Rate is directly proportional to collision frequency

Rate depend upon orientation of atoms

Temperature determines the rate

a) Only III

b) Only I and II

c) Only II and III

d) All of these

 $171. N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + 22 \text{ kcal.}$

The activation energy for the forward reaction is 50 kcal. What is the activation energy for the backward reaction?

a) -72 kcal

b) -28 kcal

c) +28 kcal

d) +72 kcal

172. According to collision theory:

- a) Collisions are sufficiently violent
- b) All collision are responsible for reaction
- c) All collisions are effective
- d) Only highly energetic molecules have enough energy to react

173. The rate constant of a first order reaction whose half-life is 480 s is

a)
$$1.44 \, s^{-1}$$

b)
$$1.44 \times 10^{-3} \text{ s}^{-1}$$

c)
$$2.88 \times 10^{-3} \text{ s}^{-1}$$

d)
$$0.72 \times 10^{-3} \text{ s}^{-1}$$

174. $2A \rightarrow B + C$; It would be a zero order reaction when:

- a) The rate of reaction is proportional to square of conc. of A
- b) The rate of reaction remains same at any conc. of A
- c) The rate remains unchanged at any conc. of B and C
- d) The rate of reaction doubles if conc. of *B* is increased to double

175. For a reaction $A + 2B \rightarrow C$, rate is given by

$$r = K[A][B]^2$$

The order of reaction is:

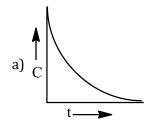
a) 3

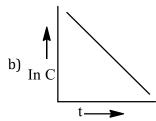
b) 6

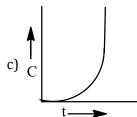
c) 5

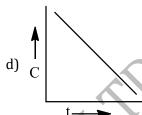
d) 7

176. Rate constant for a reaction is λ . Average life is represent by


a) $\frac{1}{\lambda}$


b) $\frac{1n^2}{\lambda}$


c) $\frac{\lambda}{\sqrt{2}}$


d) $\frac{0.693}{\lambda}$

177. The plot between concentration versus time for a zero order reaction is represented by

178. For the decomposition of $N_2O_5(g)$, it is given that:

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g);$$

Activation energy E_a

$$N_2O_5(g) \rightarrow 2NO_2(g) + (1/2)O_2(g);$$

Activation energy E'_a

then;

- a) $E_a = E'_a$
- b) $E_a > E'_a$
- c) $E_a < E'_a$
- d) $E_a = 2E'_a$

179. During the kinetic study of the reaction $2A + B \rightarrow C + D$ following results were obtained.

	,	,		
Run	[<i>A</i>] in <i>M</i>	[B]	in	Initial rate of
		Μ		formation of
				D in Ms^{-1}
I	0.1	0.1		6.0×10^{-3}
II	0.3	0.2		7.2×10^{-2}
III	0.3	0.4		2.88×10^{-1}
IV	0.4	0.1		2.40×10^{-2}

On the basis of above data which one is correct:

a)
$$r = k[A]^2[B]$$

b)
$$r = k[A][B]$$

c)
$$r = k[A^2][B]^2$$

d)
$$r = k[A][B]^2$$

180. If the reaction rate at a given temperature becomes slower then

- a) The free energy of activation is higher
- b) The free energy of activation is lower
- c) The entropy changes 🗸
- d) The initial concentration of the reactants remains constant

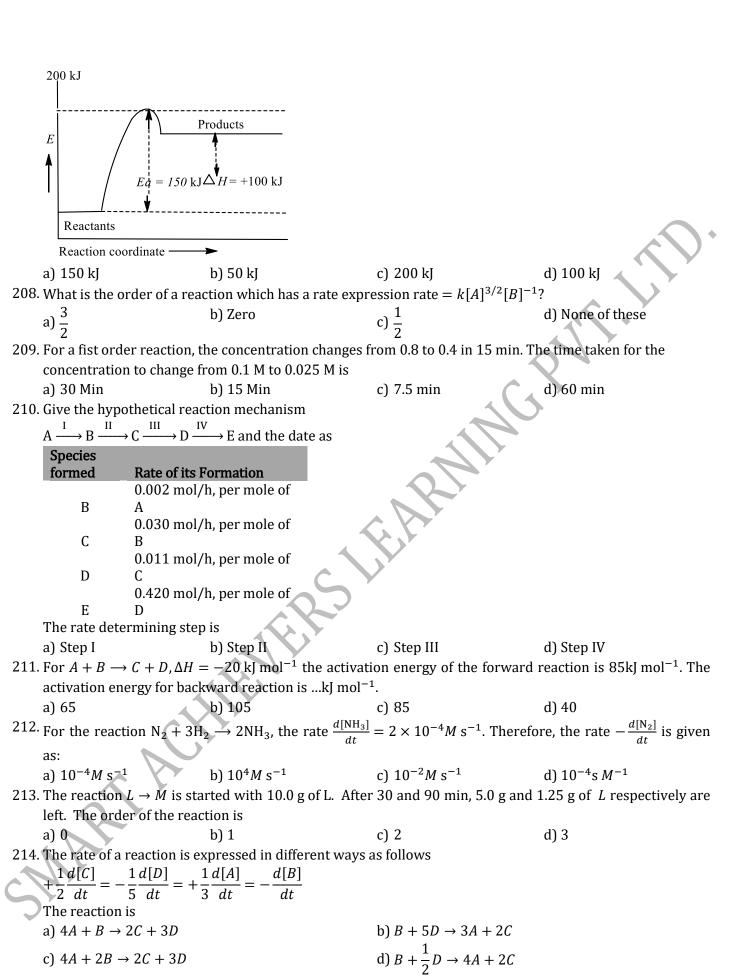
181. The number of molecules of the reactants taking part in a single step of the reaction tells about:

- a) Molecularity of the reaction
- b) Mechanism of the reaction
- c) Order of reaction
- d) All of the above
- 182. For the reaction system,

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

Volume is suddenly reduced to half its value by increasing the pressure on it. If the reaction is of first order with respect to O_2 and second order with respect to NO; the rate of reaction will

- a) Diminish to one –fourth of its initial value
- b) Diminish to one -eighth of its initial value
- c) Increase to eight time of its initial value
- d) Increase to four time of its initial value


183. The reaction,

 $CH_3COOC_2H_5 + NaOH \rightarrow CH_3COONa + C_2H_5OH$ is:

- a) Biomolecular reaction
- b) II order reaction
- c) Both (a) and (b)
- d) None of these

104	de dn d	D	
			resent concentration, mole and
dc 1 dn	eous phase reactant $A(g)$ —		d) All of the above
a) $\frac{-dt}{dt} = \frac{-V}{V} \frac{dt}{dt}$ $= -\frac{1}{V} \frac{dP}{dt}$	b) $\frac{dc}{dt} = \frac{dn}{dt} = -\frac{dP}{dt}$	c) $\frac{dc}{dt} = \frac{RT}{V} \frac{dn}{dt} = -\frac{d}{dt}$	$\frac{p}{t}$
185. The rate constant of a r	reaction is found to be 3×1	$10^{-3} mol L^{-1}$ min . The or	der of reaction is
a) Zero	b) 1	c) 2	d) 1.5
186. A reactant (A) forms to	=		
$A \stackrel{\kappa_2}{\to} B$, Activation energy	gy E_{a_1}		
$A \stackrel{\kappa_2}{\rightarrow} C$, Activation energ	gy E_{a_2}		
If $E_{\alpha} = 2 E_{\alpha}$, than k_1	and k_2 are related as		
a) $k_1 = 2k_2 e_{E_{q_0}}/RT$	$b) k_1 = k_2 e_{E_{a_1}} / RT$	c) $k_2 = k_1 e_{E_{q_2}} / RT$	$d) k_1 = Ak_2 e_{E_{a_1}}/RT$
187. For the reaction $2A + B$			u ₁
a) k[2A][B]	b) k[A] ³ [B]	c) k[A][B] ³	d) k[A] ² [B]
188. For producing the effect	ctive collisions the colliding	molecules must have:	
a) A certain minimum	amount of energy		
b) Energy lesser than t			
c) Improper orientatio			
	and energy equal or greater		
189. The chemical reaction	$20_3 \rightarrow 30_2$ proceeds as follows:	ows	
$0_3 \rightleftharpoons 0_2 + 0 \text{ (fast)}$		C. J.	
$0 + 0_3 \rightarrow 20_2$ (slow) The rate law expressio	n should ha		
	b) $r = k[0_3]^2 [0_2]^{-1}$	c) $r = k[0_3][0_2]$	d) Unpredictable
190. Two substances A and	B are present such that [A = 4[B] and half-life (of <i>A</i> is 5 minute and of <i>B</i> is 15
			how much time later will the
	of them would be same?	,	
a) 15 minute	b) 10 minute	c) 5 minute	d) 12 minute
_		=	$ate=k[A]^x[B]^y[C]^z$. When the
concentration of A, B a	nd C are doubled separately	, the rate is also found to	increase two, zero and four
	overall order of the reaction		
a) 1	b) 2	c) 3	d) 4
192. The rate constant of n t		1 > 11-n 1 n-1	-1 D.M. C.I
-	b) mol^{n-1} litre ^{$n-1$} sec-	=	=
193. The reaction; N_2O_5 in 2	the value of rate of reaction		
a) 5.15×10^{-5} mole L ⁻		$1 \text{ when } [N_2O_5] = 1.23 \text{ m}$	Jie L :
b) 6.35×10^{-3} mole L ⁻			
c) 7.75×10^{-4} mole L ⁻¹	·1 _S -1		
c) 7.75×10^{-4} mole L ⁻ d) 3.85×10^{-4} mole L ⁻	·1 _S -1		
194. $t_{1/4}$ can be taken as the	e time taken for the concent	ration of reactant to dro	to $\frac{3}{4}$ of its initial value. If the
	order reaction is k the $t_{1/4}$		4
a) 0.75 /k	b) 0.69 /k	c) 0.29 /k	d) 0.10 /k
195. In a chemical reaction	• •	,	, ,
	-		on of the other. The order of
reaction is	7 r - r -		
a) 0	b) 1	c) 2	d) 4

196. Which of the following is not the example of pseudo		
a) $CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} CH_3COOH + C_2H_5OH$	b) $C_{12}H_{22}O_{11} + H_2O \xrightarrow{H^+} C_0$	$_{6}H_{12}O_{6} + C_{6}H_{12}O_{6}$ Glucose fructose
c) $CH_3COCl + H_2O \rightarrow CH_3COOH + HCl$	d) $CH_3COOC_2H_5 + H_2O^{O}$	$\stackrel{H^-}{\rightarrow} CH_3COOH + C_2H_5OH$
197. The differential rate law for the reaction,	0 2 0 2	J _ J
$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$		
a) $-\frac{d[NH_3]}{dt} = -\frac{d[O_2]}{dt} = -\frac{d[NO]}{dt} = -\frac{d[H_2O]}{dt}$	b) $\frac{d[NH_3]}{dt} = \frac{d[O_2]}{dt} = -\frac{1}{4}$	$\frac{d[NO]}{dt} = -\frac{1}{6} \frac{d[H_2O]}{dt}$
c) $\frac{1}{4} \frac{d[NH_3]}{dt} = \frac{1}{5} \frac{d[O_2]}{dt} = \frac{1}{4} \frac{d[NO]}{dt} = \frac{1}{6} \frac{d[H_2O]}{dt}$	d) $-\frac{1}{4}\frac{d[NH_3]}{dt} = -\frac{1}{5}\frac{d[O_2]}{dt}$	$\frac{1}{4} = \frac{1}{4} \frac{d[NO]}{dt} = \frac{1}{6} \frac{d[H_2O]}{dt}$
198. 1 g of $_{79}$ Au ¹⁹⁸ $(t_{1/2} = 65 \text{ h})$ give stable mercury by §	3- emission. What amount	of mercury will left after
260 h?		A Y
a) 0.9375 g b) 0.3758 g	c) 0.7586 g	d) 0.9000 g
199. The rate law for the chemical reaction		
$2NO_2CL \rightarrow 2NO_2 + CL_2$ is rate =k[NO_2Cl]. The rate de	etermining step is	
a) $2NO_2Cl \rightarrow 2NO_2 + 2Cl$	b) $NO_2 + Cl_2 \rightarrow NO_2Cl +$	
c) $NO_2Cl + Cl \rightarrow NO_2 + Cl_2$	d) $NO_2Cl \rightarrow NO_2 + Cl$	
200. The rate law for the reaction		,
$RCl + NaOH \rightarrow ROH + NaCl$ is given by Rate = $k[RCl]$]. The rate of this reaction	
a) Is doubled by doubling the concentration of NaOF	i N	
b) Is halved by reducing the concentration of RCl by	one half	
c) Is increased by increasing the temperature of the	reaction	
d) In unaffected by change in temperature		
201. The rate constant of a reaction increases by 5% whe	n its temperature is raised	from 27°C to 28°C. The
activation energy of the reaction is)	
a) 36.6 kJ/mol b) 16.6 kJ/mol	c) 46.6 kJ/mol	d) 26.6 kJ/mol
202 of a reaction cannot be determined experimental experimenta	nentally.	
a) Order b) Rate	c) Rate of constant	d) Molecularity
203. A first order reaction is carried out with an initia	l concentration of 10 mol	e per litre and 80% of the
reactant changes into the product. Now if the same r mol per litre the percentage of the reactant changing		an initial concentration of 5
a) 40 b) 80	c) 160	d) Cannot be calculated
204. For a reaction of the type $A + B \rightarrow x$ products, it is o		
the reaction rate (k_1) to be four times as great but define The rate equation is	oubling the amount of B do	bes not affect the rate (k_2) .
a) $k = k_1 + k_2$ b) $k = k_1 k_2$	$c) k = \frac{k_1}{k_2}$	d) $k^{1/2} = k_1 \times k_2$
205. Which increases on increase of temperature?		
a) Energy of activation (E_a)	b) Collision frequency (Z))
c) Rate constant (k)	d) Both (a) and (c)	
206. In the first order reaction, the concentration of the re	eactants is reduced to 25%	in one hour. The half-life
period of the reaction is		
a) 2h b) 4h	c) 1/2h	d) 1/4h
207. In the given graph the activation energy, E_a for the r	everse reaction will be	

215. The rate of elementary reaction, $A \rightarrow B$, increases by 100 times when the concentration of A is increased ten folds. The order of the reaction with respect to A is:

a) 1

b) 2

c) 10

d) 100

216. The differential rate law for the reaction $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$ is

	$d[NH_3]$ $d[O_2]$ $d[NO]$ $d[H_2O]$	$d[NH_3] d[O_2]$	$1 d[NO]$ $1 d[H_2O]$
	a) $-\frac{d[NH_3]}{dt} = -\frac{d[O_2]}{dt} = -\frac{d[NO]}{dt} = -\frac{d[H_2O]}{dt}$ c) $\frac{1}{4}\frac{d[NH_3]}{dt} = \frac{1}{5}\frac{d[O_2]}{dt} = \frac{1}{4}\frac{d[NO]}{dt} = \frac{1}{6}\frac{d[H_2O]}{dt}$	$\frac{dt}{dt} = \frac{dt}{dt} = -$	$\frac{1}{4}\frac{dt}{dt} = -\frac{1}{6}\frac{dt}{dt}$
	c) $\frac{1}{2} \frac{d[NH_3]}{d[NH_3]} = \frac{1}{2} \frac{d[O_2]}{d[NO]} = \frac{1}{2} \frac{d[H_2O]}{d[NO]}$	d) $-\frac{1}{2}\frac{d[NH_3]}{d[NH_3]} = -\frac{1}{2}\frac{d[O]}{d[O]}$	$\frac{D_2}{d} = \frac{1}{2} \frac{d[NO]}{d[NO]} = \frac{1}{2} \frac{d[H_2O]}{d[H_2O]}$
217.	For the reaction $A \rightarrow B$, when concentration of A is	s made 1.5 times, the rat	te of reaction becomes 1.837
	times. The order of reaction is		
	a) 1 b) 1.5	c) 2	d) 2.5
218.	For the reaction, $Cl_2 + 2l^- \rightarrow I_2 + 2Cl^-$, the initial cor		
	concentration after 20 min was 0.20 mol L^{-1} . Then the		
	a) 1×10^{-4} b) 5×10^{-4}	c) 1×10^{-3}	d) 5×10^{-3}
219.	The energies of activation for forward and reverse re	eactions for $A_2 + B_2 \rightleftharpoons 2A$	^{1}B are 180 kJ mol ⁻¹ and 200
	kJ mol ⁻¹ respectively. The presence of a catalyst low	ers the activation energy	of both (forward and
	reverse) reactions by 100 kJ mol ⁻¹ . The enthalpy cha	ange of the reaction (A_2 +	$-B_2 \rightarrow 2AB$) in the presence
	of catalyst will be (in kJ mol ⁻¹)		
	a) 300 b) 120	c) 280	d) 20
220.	Which statement is correct?		
	a) Reactions with low activation energy are usually e	exothermic	_
	b) The rate law sometimes enable to deduce the mec	hanism of a reaction	>
	c) The rate law for reaction is an algebraic expressio	n relating the forward re	action rate to product
	concentration		•
	d) Increase in the total pressure of a gas phase reacti	on increase the fraction o	of collisions effective in
	producing reactions		
221.	The temperature coefficient of a reaction is:		
	a) The rate constant at a fixed temperature	A. V.Y.	
	b) The ratio of rate constant at two temperature	X) Y	
	c) The ratio of rate constant differing by 10° preferal	oly 25° and 35°C	
	d) None of the above	25	
222	The term $(-dc/dt)$ in rate equation refers to:		
	a) The concentration of a reactant		
	b) The decrease in concentration of the reactant with	n time	
	c) The velocity constant of reaction	i time	
	d) None of the above		
223	For a first order reaction, the initial concentration of	a reactant is 0.05 M. Afte	r 45 min it is decreased by
223.	0.015 M. calculation half reaction time $(t_{1/2})$	a reactant is 0.05 in thic	1 13 mm it is decreased by
		a) 70 72 min	d) 77 20 min
224		c) 78.72 min	d) 77.20 min
ZZ4.	The order of a gaseous phase reaction for which ra	ate becomes hair if volur	ne of container naving same
	amount of reactant is doubled is:		12.4.70
205	a) 1 b) 1/2	c) 2	d) 1/3
225.	For the reaction, $N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$		
	Given, $-\frac{d[N_2O_5]}{dt} = K_1[N_2O_5]$		
1	dINO ₀ 1		
	$\frac{d[\text{NO}_2]}{dt} = K_2[\text{N}_2\text{O}_5]$ $\frac{d[\text{O}_2]}{dt}$		
	$d[0_2]$		
	and $\frac{d[O_2]}{dt} = K_3[N_2O_5]$		
	The relation in between K_1 , K_2 and K_3 is:		
	a) $2K_1 = K_2 = 4K_3$ b) $K_1 = K_2 = K_3$	c) $2K_1 = 4K_2 = K_3$	d) None of these
226.	Temperature dependent equation can be written as	- 1 4 3	•
	a) In $k = \operatorname{In} A - e^{E_a/RT}$	b) In $k = \text{In } A + e^{E_a/RT}$	

d) None of these

227. A first order reaction is 50% complete in 30 min at 27° C and in 10 min at 47° C. The energy of activation of

c) In $k = \text{In } A - e^{RT/E_a}$

	the reaction is			
	a) 52.8 kJ	b) 23.6 kJ	c) 29.5 kJ	d) 43.8 kJ
228.		tion of the reactants leads to	•	
	a) Activation energy		b) Heat of reaction	
	c) Collision frequency	1 . 14 m c	d) Threshold energy	
229.		between $\ln k$ and $1/T$ for a	a first order reaction, a str	aight line is obtained. The
	slope of the line is equal t		2 202	
	a) $-\frac{E_a}{2.303}$	b) $-\frac{E_a}{2.303R}$	c) $-\frac{2.303}{7.00}$	$d) - \frac{E_a}{R}$
			u	, R
		tions, following data are giv	en	
	$A \rightarrow B; k_1 = 10^{10} e^{-20,000}$			
	$C \to D; k_2 = 10^{12} e^{-24,606}$			A
	-	$1 k_1$ becomes equal to k_2 is) 000 W	D 4500 W
	a) 400 K	b) 1000 K	c) 800 K	d) 1500 K
231.		ole ghee at 25°C reduces pr	$\frac{1}{2}$ described of $\frac{1}{2}$ from 2 atm to	1.2 atm in 50 minute. The
	rate of reaction in terms of	of molarity per second is:	2.4.00 40=7	1) 1 00 10=8
000	a) 1.09 × 10 °	b) 1.09×10^{-5} roducts, if <i>B</i> is taken in exce	c) 1.09 × 10 '	a) 1.09 × 10 °
232.	In the reaction $A + B \rightarrow p$	roducts, if B is taken in exce	ess, then it is an example of	
	a) Second order reaction		b) Zero order reaction	
	c) Pseudounimolecular re		d) First order reaction	
	The rate of a chemical rea			12 A11 C.1
	a) Time	b) Pressure	c) Concentration	d) All of these
234.	The rate constant for the		40 . 10=5	at anti-sea CN O Community
		0×10^{-5} s ⁻¹ . If the rate is 2	3.40×10^{-3} then the concer	ntration of N_2O_5 (in mol/L)
	is	13.4.2	c) 0.04	1) 0 0
	a) 1.4			d) 0.8
235.	_	r the decomposition of amm	ionium nitrite in aqueous s	olution.
	-	(min)		
		.0		
		.5		
		20		
		25		
		nity		
	The order of reaction is	13.0	.) T	1) 171
226	a) Zero	b) One	c) Two	d) Three
236.	For a reaction $A \rightarrow \text{Prod}$	uct, rate law is $-\frac{d[A]}{dt} = K[A]$	$]_0$. The concentration of A	left after time t when $t = \frac{1}{K}$
	is:			
	a) $\frac{[A]_0}{}$	b) $[A]_0 \times e$	c) $\frac{[A]_0}{a^2}$	d) $\frac{1}{[A]_0}$
	e		e	2 30
237.	For a first order reaction	$A \rightarrow P$, the temperature (T)	dependent rate constant (<i>k</i>) was found to follow the
	equation.			
	$\log k = -(2000)/T + 6.0$			
		or A and the activation energ		
	a) $1.0 \times 10^6 \text{s}^{-1}$ and 9.2 kJ		b) 6.0 s ⁻¹ and 16.6 kJ mol ⁻	
	c) $1.0 \times 10^6 \text{s}^{-1}$ and 16.6 l		d) $1.0 \times 10^6 \text{s}^{-1}$ and 38.3 k	J mol ⁻¹
238.		$=Ae^{-E_a/RT}$, the quantity $-B$	E_a/RT is referred as:	
	a) Boltzmann factor	b) Frequency factor	c) Activation factor	d) None of these
	Among the following read	ction, the fastest one is:		
	a) Burning of coal			
	h) Rusting of iron in mois	t air		

	c) Conversion of monocli	nic sulphur to rhombic sulp	ohur	
			trate and sodium chloride	
240	The following homogeneous	ous gaseous reactions were	e experimentally found to b	e second order overall.
	$1.2NO \rightarrow N_2 + O_2 \ 2.3O_2 + O_3 \ 2.3O_3 + O_4 \ 2.3O_3 + O_5 \ 2.3O_5 + O_5 \$	→ 20 ₃		
	$3.N_2O_3 \rightarrow NO + NO_2 \qquad 4$	$. H_2 + I_2 \rightarrow 2HI$		
	Which of these are most l	ikely to be elementary reac	ction that occur in one step	?
	a) 3 only	b) 1 and 3	c) 1 and 4	d) 3 and 4
241	Consider a reaction; $aG +$	$bH \rightarrow Products$		
	When concentration of bo	oth the reactants G and H is	doubled, the rate increase	s by eight times. However,
	when concentration of G	is doubled keeping the con	centration of H fixed, the ra	ite is doubled. The overall of
	the reaction,			
	a) 0	b) 1	c) 2	d) 3
242	The rate constant for a ze		_	
	a) $k = \ln \frac{c_0 - c_t}{2t}$	b) $k = \frac{c_0 - c_t}{c_0 - c_t}$	c) $k = \frac{c_0}{c_t}$	d) $k = \frac{c_0}{c_0}$
0.40	20	· ·	- 1	2t
243			omplete and half of the reac	-
	a) 2	b) 4	c) 8	d) 10
244			$A \rightarrow B$ is E_a in forward di	rection. The activation
	energy for the reverse rea	action		
	a) Is negative of E_a	d n	b) Is always less than E_a	
0.45	c) Can be less than or mo		d) Is always double of E_a	
245			e reactant in a first order re	action be halved if the rate
	constant is 1.155×10^{-3} s			D 40
0.46	a) 600	b) 100	c) 60	d) 10
246	*F *3		a given instant can be giver	
	a) $+\frac{d[A]}{dt} = +\frac{1}{2}\frac{d[B]}{dt} = +$	$\frac{a[C]}{C}$	b) $\frac{d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt} = -\frac{d}{dt}$	[C]
		dt	dt 2 dt	dt d[C]
	c) $-\frac{d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt} = +$	$\frac{a[c]}{dt}$	d) $+\frac{d[A]}{dt} = +\frac{1}{2}\frac{d[B]}{dt} = +$	$-\frac{u[c]}{dt}$
247	ut 2 ut	eory is not related to chem		ui
217	a) Collision theory	cory is not related to enem	icai miletico.	
	b) Activated complex the	orv		
	c) Absolute reaction rate			
	d) VSPER theory	ancory v		
248	,	$A \rightarrow B$ it is found that the ra	ate of reaction doubles whe	on the concentration is
210	increased by 4 times. The		tte of reaction doubles wife	in the concentration is
	a) One	b) Two	c) Half	d) None of these
249		•	econd order with respect t	•
217	respect to C then what is	•	ceona oraer with respect t	o B unu zero oruer with
	a) First	b) Second	c) Third	d) Zero
250		•	iven reaction, then the reac	•
250	a) Zero order	b) First order	c) Second order	d) Third order
251	The given reaction	b) i list order	ej becond order	a) Tima oraci
231	$2\text{FeCl}_3 + \text{SnCl}_2 \rightarrow 2\text{FeCl}_2$	+ SnCl. is an example of		
	a) Third order reaction	1 bildi4 is all example of	b) Second order reaction	
	c) First order reaction		d) None of these	
252	=	hv	=	
		$H_1, H_2 + Cl_2 \xrightarrow{hv} 2HCl$ over wa		D.O.
	a) 0	b) 1	c) 2	d) 3
253	=	ar into glucose and fructos		
	a) I order	b) II order	c) III order	d) Zero order

254. For the reaction, $N_2 + 3H_2 \rightarrow 2NH_3$, if $\frac{d[NH_3]}{dt} = 2 \times$	10^{-4} mol L ⁻¹ s ⁻¹ , the value	of $\frac{-d[H_2]}{dt}$ would be:
a) $1 \times 10^{-4} \text{ mol } L^{-1} s^{-1}$ b) $3 \times 10^{-4} \text{ mol } L^{-1} s^{-1}$		
255. For the reaction ${N_2O_5 \choose (g)} \longrightarrow {2NO_2 + \frac{1}{2}O_2 \choose (g)}$, the rate of disapp	earance of N_2O_5 is 6.25×1	10^{-3} mol L ⁻¹ s ⁻¹ . The rate of
formation of NO_2 and O_2 will be respectively.		
a) 6.25×10^{-3} mol L ⁻¹ s ⁻¹ and 6.25×10^{-3} mol L ⁻¹ s ⁻¹		
b) 1.25×10^{-2} mol L ⁻¹ s ⁻¹ and 3.125×10^{-3} mol L ⁻¹ s		
c) 6.25×10^{-3} mol L ⁻¹ s ⁻¹ and 3.125×10^{-3} mol L ⁻¹ s		
d) 1.25×10^{-2} mol L ⁻¹ s ⁻¹ and 6.25×10^{-3} mol L ⁻¹ s ⁻¹	-1	A\)'
256. If the concentration units are reduced by n times, th	en the value of rate constar	nt of first order will:
a) Increase by n times		
b) Decrease by factor of <i>n</i>		A
c) Not change		4
d) None of these		
257. Unit of frequency factor (<i>A</i>) is		
a) mol/L	b) mol/L× s	X
c) Depends upon order of reaction	d) It does not have any ur	iit
258. The ionic reactions are usually very fast because:		
a) It does not involve bond breaking		
b) The energy of activation between charged ions is	greater than that between	neutral molecules
c) Collision frequency is very low		
d) The reactions are highly exothermic		
259. In the first order reaction, 75% of the reactant gets of	disappeared in 1.386h. The	rate constant of the
reaction is		
a) $3.0 \times 10^{-3} s^{-1}$ b) $2.8 \times 10^{-4} s^{-1}$	c) $17.2 \times 10^{-3} s^{-1}$	d) $1.8 \times 10^{-3} s^{-1}$
260. Number of mole of a substance present in 1 litre vol	ume is known as:	
a) Activity b) Molar concentration	c) Active mass	d) None of these
261. The rate of a reaction is doubled when temperature	increases by 10°C. If tempe	rature is increased by
100°C, then rate of reaction will become		
a) 64 times b) 256 times	c) 512 times	d) 1024 times
262. For a hypothetical reaction		
$A + 2B \rightarrow 3C + D$		
d[C]/dt is equal to		
a) $\frac{3d[A]}{dt}$ b) $-\frac{3}{2}\frac{d[B]}{dt}$	c) $-\frac{d[B]}{dt}$	d) $-\frac{d[A]}{dt}$
	ui	ui
263. The half-life of two samples is 0.1 and 0.4 s. Their re	active concentration is 200	and 50 respectively. What
is the order of reaction?		
a) 0 b) 2	c) 1	d) 4
264. Consider following two reaction,		
$A \to product - \frac{d[A]}{dt} = k_1[A]^0$ $B \to product - \frac{d[B]}{dt} = k_2[B]^0$		
$\frac{dt}{dt}$		
$B \to product - \frac{a[B]}{h} = k_2[B]^0$		
dt	1) and time (a=1) as	
k_1 and k_2 are expressed in term of molarity (mol L^{-1}		d) M = -1 1 = -1
a) s^{-1} , $M s^{-1}L^{-1}$ b) $M s^{-1}$, $M s^{-1}$	c) s^{-1} , $M^{-1}s^{-1}$	d) Ms^{-1} , Ls^{-1}
265. The reaction, NO + $(1/2)O_2 \rightarrow NO_2$ exhibits:		
a) Small negative temperature coefficient		
b) Decrease in value of <i>K</i> with temperature		
c) Decrease in value of rate with temperature		

d) All of the above 266. Consider the reaction,

	$Cl_2(aq) + H_2S(aq) \rightarrow S(aq)$	$(s) + 2H^+(aq) + 2Cl^-(aq)$	the rate equation for this r	eaction is , rate $=$
	$k[Cl_2][H_2S]$			
	Which of these mechanis	sms is/are consistent with t	this rate equation?	
	I. $Cl_2 + H_2S(aq) \rightarrow H$	$C^+Cl^- + Cl^+ + HS^-(slow)$		
	$Cl^+ + HS^- \rightarrow H^+Cl$	-+S(fast)		
	II. $H_2S \leftrightarrow H^+ + HS^-(f^+)$	^f ast equilibrium)		
	$Cl_2 + HS^- \rightarrow 2Cl^- +$	$\vdash H^+S(slow)$		
	a) (B) only	b) Both (A) and (B)	c) Neither (A) nor (B)	d) (A)Only
267	In a reaction $2A \rightarrow Prod$			tre^{-1} to 0.4 mol litre ⁻¹ in 10
		tion during this interval is:		KV
	a) $0.05 M \text{ min}^{-1}$		c) $0.5 M \text{min}^{-1}$	d) 5 $M \text{min}^{-1}$
268	-	e of a first order reaction ha	-	-
			c) 4.02×10^{13} s	A Y
269	_	e concentration of reactant	•	
20)	10^4 s. The rate constant		accreases from ooo mor, a	in to 30 mory am m 2 x
	a) 2×10^4	b) 3.45×10^{-5}	a) 1 206 × 10 ⁻⁴	d) 2×10^{-4}
270	•			ll it take to reduce the initial
270			o 's' . now much time wi	in it take to reduce the illitial
	concentration to its 1/8 ^t		2 200	D 400 -
251	a) 100s	b) 200s	c) 300s	d) 400s
271		pression is, rate = $K[A][B]^{T}$		
	a) 1	b) 2	c) 5/3	d) Zero
272	-	onia by Haber process, if 60	moles of ammonia is obtai	ned in one hour, then the
	rate of disappearance of	•	\wedge	
	a) 30 mol/min	b) 6 mol/min	c) 0.5 mol/min	d) 60 mol/min
273	. Half-life period of second	d order reaction is		
	a) Proportional to initial	concentration of reactants		
	b) Independent of initial	concentration of reactants		
	c) Inversely proportiona	al to initial concentration of	reactants	
	d) None of the above			
274	A reactant with initial	concentration 1.386 mol li	tre ⁻¹ showing first order	change takes 40 minute to
	become half. If it shows	zero order change taking 2	0 minute to becomes half u	under the similar conditions,
	the ratio. $\frac{K_1}{L}$ for first order	er and zero order kinetics w	vill be:	
				1) 2 0 1–1 1
275		b) 1.0 mol/litre		
275		oubling the rate of reaction	on increasing the temperat	ture of the reaction system
	by 10°C is			
	a) The value of threshold			
	b) Collision frequency in			
		olecules having energy equa	al to threshold energy incre	ases
	d) Activation energy dec			
276	= 1	s time t is straight line. This		
	a) Second order	b) First order	c) Zero order	d) Third order
277	The $t_{1/2}$ of the first orde	r reaction is		
~	a) Dependent of initial c	oncentration	b) Directly proportional	to initial concentration
		al to initial concentration	d) Independent of initial	concentration
278	. In a zero-order reaction	n for every 10° rise of te	=	abled. If the temperature is
		.00°C, the rate of the reaction	-	•
	a) 64 times	b) 128 times	c) 256 times	d) 512 times
279	•	00% completion of a zero or		,
_		~		$\sim 2k$
	a) ak	b) $\frac{a}{2k}$	c) $\frac{a}{k}$	d) $\frac{2k}{a}$

280.	The reaction, $2N_2O_5 \rightleftharpoons 2N_2O_5$			
	a) Bimolecular and secon		b) Unimolecular and first	
	c) Bimolecular and first of		d) Bimolecular and zero of	
281.	=	-	t order. If a sample of the c	ompound decompose 50%
		rill it take to undergo 90%	•	
	a) Nearly 400 min	b) Nearly 45 min	c) Nearly 480 min	d) Nearly 240 min
282.		=	of a reaction is incorrect?	
	a) Order of reaction is alv	_		
	b) Order can be determine	7 -		
	c) Order is not influenced	d by stoichiometric coeffici	ent of the reactants	
	d) Order of reaction is su	m of power to the concent	ration terms of reactants to	express the rate of reaction
283.	. The rate of chemical reac	tion depends on the natur	e of chemical reactions, beca	ause:
	a) The threshold energy	level differs from one react	tion to another	
	b) Some of the reactants	are solid at room temperat	ture	
	c) Some of the reactants	are coloured		
	d) All of the above			V
284.	If the rate of reaction bet	ween A and B is given by, i	rate = $K[A][B]^n$, then the re	eaction is:
	a) First order in A			•
	b) <i>n</i> th order in <i>B</i>			
	c) Overall order is $(1 + n)$	1)		
	d) All are correct			
285.	In a reaction, $A + B \rightarrow P$	roduct, rate is doubled wh	en the concentration of B is	doubled, and rate increases
	by a factor of 8 when the	ne concentrations of both	the reactants $(A \text{ and } B)$ and	e doubled, rate law for the
	reaction can be written a	S:	$G_{\lambda}X^{\gamma}$	
	a) Rate = $k[A][B]$	b) Rate = $k[A]^2[B]$	c) Rate = $k[A][B]^2$	d) Rate = $k[A]^2[B]^2$
286.	Combustion of carbon is			burn automatically because
	of:		7	
	a) High threshold energy	barrier		
	b) Kinetic stability of coa	l A		
	c) Higher energy of activ	ation needed for burning		
	d) All of the above			
287.	A drop of a solution (vol	ume = 0.05mL) contains	6×10^{-7} mol of H ⁺ . If the	rate of disappearance of H ⁺
			to disappear from the drop	• •
		b) 2.0×10^{-8} s	c) 6.0×10^{-6} s	d) 2.0×10^{-2} s
288.	The inversion of cane sug	gar into glucose and fructo	se according to the equation	1
		$_{12}^{6}$ 0 ₆ + C ₆ H ₁₂ O ₆ is an exan		
	a) First order reaction		b) Third order reaction	
	c) Second order reaction		d) Zero order reaction	
289.	In the reversible reaction		.,	
	$2NO_2 \stackrel{k_1}{\rightleftharpoons} N_2O_4$			
	102			
	The rate of disappearanc	e of NO ₂ is equal to		
	a) $\frac{2k_1}{k_2}[NO_2]^2$		b) 2k [NO 12 _ 2k [N O	1
	$\frac{1}{k_2}$ [NO ₂]		b) $2k_1[NO_2]^2 - 2k_2[N_2O_2]$	4 J
	c) $2k_2[NO_2]^2 - k_2[N_2O_4]$]	d) $(2k_1 - k_2)[NO_2]$	
290.	For the reaction, $N_2 + 3H$	$I_2 \rightleftharpoons 2NH_3$ the rate of chan	ge of concentration for hyd	rogen is $-0.3 \times 10^{-4} \text{ Ms}^{-1}$.
		centration of ammonia is		
	a) -0.2×10^{-4}	b) 0.2×10^{-4}	c) 0.1×10^{-4}	d) 0.3×10^{-4}

291. In the reaction; $A + 2B \longrightarrow 3C + D$ which of the following expressions does not describe changes in the

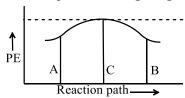
concentration of various species as a function of time?

Page | **25**

a)	d[C]		-3d[A]
aj.	dt	_	дŧ

b)
$$\frac{3d[D]}{dt} = \frac{d[C]}{dt}$$

b)
$$\frac{3d[D]}{dt} = \frac{d[C]}{dt}$$
 c) $\frac{3d[B]}{dt} = \frac{-2d[C]}{dt}$ d) $\frac{2d[B]}{dt} = \frac{d[A]}{dt}$


$$d) \frac{2d[B]}{dt} = \frac{d[A]}{dt}$$

- 292. The order of reaction, with respect to one of the reacting component Y, is zero. In implies that
 - a) The reaction is going on at a constant rate.
 - b) The rate of reaction does not very with temperature.
 - c) The reaction rate is independent of the concentration of Y.
 - d) The rate of formation of the activated complex is zero.
- 293. The rate of disappearance of SO_2 in the reaction; $2SO_2 + O_2 \rightarrow 2SO_3$ is 1.28×10^{-3} g/sec. Then the rate of formation of SO₃ is:
 - a) 0.64×10^{-3} g/sec
- b) 0.80×10^{-3} g/sec c) 1.28×10^{-1} g/sec d) 1.60×10^{-3} g/sec
- 294. For the first order reaction half-life is 14 s, the time required for the initial concentration to reduce to 1/8 of its value is
 - a) $(14)^3 s$
- b) 28 s

c) 42 s

- 295. Given that K is the rate constant for some order of any reaction at temp. T then the value of $\lim_{K \to \infty} \log K = 1$ (where *A* is the Arrhenius constsnt):
 - a) A/2.303
- b) A

- c) 2.303 A
- 296. The rate constant of a first order reaction is 3×10^{-6} per second and initial concentration is 0.10 M. Then the initial rate of reaction is
 - a) $3 \times 10^{-6} ms^{-1}$
- b) $3 \times 10^{-8} ms^{-1}$
- c) $3 \times 10^{-7} ms^{-1}$
- 297. With respect to the figure given below which of the following statements is correct?

- a) E_a for the forward reaction is C B
- b) E_a for the forward reaction is B A
- c) $E_{a_{(forward)}} < E_{a_{(backward)}}$
- d) E_a (for reverse reaction) = C A
- 298. For a first order reaction, $A \to \text{products}$, the rate of reaction at [A] = 0.2 M is $1.0 \times 10^{-2} \text{ mol L}^{-1} \text{min}^{-1}$. The half-life period for the reaction is
 - a) 476 s
- b) 496 s
- c) 832 s
- d) 242 s
- 299. From the following data, the activation energy for the reaction (cal/mol):

$$H_2 + I_2 \rightarrow 2H$$

$$T,K$$
 $1T,K^{-1}$

$$\log_{10} K$$

769
$$1.3 \times 10^{-3}$$
667 1.5×10^{-3}

667 1. a)
$$4 \times 10^4$$

b)
$$2 \times 10^4$$

c)
$$8 \times 10^4$$

- d) 3×10^4
- 300. An elementary reaction is given as $2P + Q \rightarrow \text{products}$. If concentration of Q is kept constant and concentration of *P* is doubled then rate of reaction is:
 - a) Doubled
- b) Halved
- c) Quadrupled
- d) Remains same
- 301. The hydrolysis of ethyl acetate was carried out separately with 0.05 M HCl and 0.05 M H₂SO₄. The rate \checkmark constants were found to be k_1 and k_2 respectively then
 - a) $k_1 < k_2$
- b) $k_1 > k_2$
- c) $k_1 = k_2$
- d) $k_2 = 2k_1$
- 302. Which one of the following statement for order of reaction is not correct?
 - a) Order can be determined experimentally
 - b) Order of reaction is equal to sum of the power of concentration terms in differential rate law
 - c) It is not affected with stoichiometric coefficients of the reactants
 - d) Order cannot be fractional
- 303. For a single step, reaction, $A + 2B \rightarrow Products$, the molecularity is

	a) 0 b) 1	c) 2	d) 3			
304.	Which of the following statement is correct for a rea	$action X + 2Y \rightarrow Product$				
	a) The rate of disappearance of $X =$ twice the rate of disappearance of Y					
	b) The rate of disappearance of $X = 1/2$ rate of app	earance of products				
	c) The rate of appearance of products $= 1/2$ the rate	e of disappearance of Y				
	d) The rate of appearance of products $= 1/2$ the rat	e of disappearance of <i>X</i>				
305.	For the reaction $A \rightarrow B$, the rate law is; rate = $K[A]$. Which of the following s	statements is incorrect?			
	a) The reaction follows first order kinetics					
	b) The $t_{1/2}$ of reaction depends upon initial concent	ration of reactant				
	c) K is constant for the reaction at a constant temperature K	erature	(Y			
	d) The rate law provides a simple way of predicting	the concentration of reac	ctants and products at any			
	times after the start of the reaction					
306.	For a first order reaction $k = 100 \text{ s}^{-1}$. The time for	-				
	a) 1 milli-second b) 4 milli-second	c) 7 mili-second	d) 10 milli-second			
307.	Pieces of wood burn faster than a log of wood of the					
	a) Surface area of log of wood is larger and needs m	ore time to burn				
	b) Pieces of wood have large surface area	4				
	c) All pieces of wood catch fire at the same time					
200	d) Block of wood has higher density than pieces of t	he same wood				
308.	Which statement is not correct?	and then experient a stive	ion			
	a) For endothermic reactions, heat of reaction is lesb) For exothermic reactions, heat of reaction is more					
	c) For exothermic reactions, near or reaction is more					
	d) For endothermic reactions energy of activation is					
309.	Which statement is true?	india di la	in than in backward reaction			
0071	a) Endothermic reactions have higher activation en	ergies than exothermic re	eactions			
	b) The specific rate constant for a reaction is indepe	<i>y</i> =				
	c) There is a single rate determining step in any rea		5 1			
	d) None of the above					
310.	If k_1 = rate contant at temperature T_1 and k_2 =rate	constant at temperature	T_2 for a first order reaction,			
	then which of the following relations is correct?					
	$(E_a:$ activation energy)					
	a) $\log \frac{k_1}{k_2} = \frac{2.303 E_a}{R} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$	k_2 E_a T_2	$-T_1$			
	a) $\log - = \frac{R}{R} \left(\frac{T_1 T_2}{T_1 T_2} \right)$	b) $\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{T_2}{T_2}\right)$	$\left(\frac{1}{1}T_{2}\right)$			
	c) $\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{T_1 T_2}{T_2 + T_1} \right)$, 1				
	c) $\log - = \frac{E_a}{2.0000} \left(\frac{T_1 T_2}{T_2 + T_2} \right)$	d) $\log \frac{k_1}{r} = \frac{E_a}{2.303 R} \left(\frac{T_2}{T_2} \right)$	$\left(\frac{1}{2}T_{2}\right)$			
		κ_2	-			
311.	What is the half-life of Na-24 if 2×10^{-4} g sample of					
	a) 4.97×10^5 s b) 4.97×10^4 s	c) 4.97×10^6 s	d) 4.97×10^2 s			
312.	The concentration of a reactant X decreases from 0:	1 M to 0.005 m in 40 min.	If the reaction follows first			
7	order kinetics, the rate of the reaction when the cor		will be			
	a) $1.73 \times 10^{-4} Mmin^{-1}$	b) $3.47 \times 10^{-4} Mmin^{-1}$				
	(c) $3.47 \times 10^{-5} M min^{-1}$	d) $7.5 \times 10^{-4} M \ min^{-1}$				
	For zero order reaction the integrated rate equation	ı is				
	a) $kt = \frac{[A]}{[A]_0}$ b) $kt = [A] - [A]_0$	c) $[A] = -kt + [A]_0$	d) $[A] = kt - [A]_0$			
	[1-10		,			
514.	The rate equation for the reaction $2A + B \rightarrow C$ is for Pate—k[A1[B]	una to de				
	Rate=k[A][B] The correct statement in relation to this reaction th	at the				

a) Unit of k must be s^{-1}

	b) $t_{1/2}$ is constant				
	c) Rate of formation of C is twice the rate of disappearance of A				
	d) Value of k is independent of the initial concentrat	ion of A and B			
315	The unit of rate constant of second order reaction				
		c) conc time ⁻¹	_		
316	The rate constant for the first order reaction is	$6 \mathrm{s}^{-1}$. How much time	will it take to reduce the		
	concentration of the reactant to $\frac{1}{16}$ th value?				
	a) 4.6×10^{-2} s b) 4.6×10^{4} s	c) 4.6×10^2 s	d) 4.6×10^{-4} s		
317	Rate constant of a chemical reaction can be kept con	istant by:	~\)'		
	a) Stirring the compounds		Y		
	b) Keeping the temperature constant				
	c) Both (a) and (b)		Y		
	d) None of the above		*		
318	The rate of a chemical reaction doubled for every 10	°C rise in temperature. If t	he temperature is increased		
	by 60°C the rate of reaction increase by	A			
	a) 20 times b) 32 times	c) 64 times	d) 128 times		
319	If a' is the initial concentration of the reactant, the h	nalf-life period of the reacti	on of <i>n</i> th order is		
	proportional to				
	a) a^{n-1} b) a^n	c) a^{1-n}	d) a^{n+1}		
320	Rate of reaction depends upon				
	a) temperature b) catalyst	c) concentration	d) All of these		
321	For a reaction, the rate of reaction was found to	increase about 1.8 times	when the temperature was		
	increased by 10°C. The increase in rate is due to:				
	a) Increase in number of active molecules	X),			
	b) Increase in activation energy of reactants	>			
	c) Decrease in activation energy of reactants				
222	d) Increase in the number of collisions between reach				
322	A hypothetical reaction $A_2 + B_2 \rightarrow 2AB$ follows the i	mechanism as given below,	1		
	$A_2 \rightleftharpoons A + A (fast)$				
	$A + B_2 \rightarrow AB + B \text{ (slow)}$ $A + B \rightarrow AB \text{ (fast)}$				
	The order of the overall reaction is				
	a) 2 b) 1	1	d) 0		
	a) 2	c) $1\frac{1}{2}$	uj v		
323	A chemical reaction proceeds following formula	-			
	$k = PZe^{-E_a/RT}$				
	Which of the following process will increase the rate	e of reaction?			
	a) Lowering of E_a	b) Lowering of P			
	c) Lowering of Z	d) Independent of all the	above factors		
324	In the respect of the equation $k = Ae^{-E_a/RT}$ in chemi	cal kinetics, which one of t	he following statements is		
1	correct?				
	a) <i>K</i> is equilibrium constant	b) A is adsorption factor			
~	c) E_a is energy of activation	d) R is Rydberg constant			
325	For the reaction $2NO_2 + F_2 \longrightarrow 2NO_2F$, following me	echanism has been provide	d,		
	$NO_2 + F_2 \xrightarrow{Slow} NO_2F + F$				
	$NO_2 + F \xrightarrow{Fast} NO_2 F$				
	2 2	witten eg.			
	Thus, rate expression of the above reaction can be w		d) $r = V[\Gamma]$		
226	a) $r = K[NO_2]^2[F_2]$ b) $r = K[NO_2][F_2]$	c) $r = K[NO_2]$	$d) r = K[F_2]$		
320	For the reaction:				

				ny time is given by, net rate
		$^{2+}[{ m H}_2{ m O}] - 3.0 imes 10^5[{ m Cu(NH)}]$	$(H_3)_3 H_2 O]^{2+} \cdot [NH_3]$	
	Then correct statement is	•		
	a) Rate constant for forward			
	b) Rate constant for back			
	c) Equilibrium constant for	or the reaction = 6.6×10^{-1}	-10	
	d) All of the above			
327.	For a reaction between ga	aseous compounds,		
	$2A + B \rightarrow C + D$			
	The reaction rate=k[A][B]. If the volume of the conta	ainer is made $\frac{1}{4}$ of the initial	, then what will be the rate
	of reaction as compared t		1	
	a) 16 times	b) 4 times	c) 1/8 times	d) 1/16 times
328.	The rate constant for a fir	st order reaction whose ha	ılf-life, is 480 s is	•
	a) $2.88 \times 10^{-3} s^{-1}$	b) $2.72 \times 10^{-3} s^{-1}$	c) $1.44 \times 10^{-3} s^{-1}$	d) $1.44s^{-1}$
329.	If <i>X</i> is the total number of	=	ecule register with others p	per unit time under
	particular conditions, the	n the collision frequency of	f the gas containing N mole	cules per unit volume is
	a) <i>X/N</i>	b) <i>NX</i>	c) 2 <i>NX</i>	d) <i>NX</i> /2
330.	For a reaction, the rate co	nstant is $2.34s^{-1}$. The half-	-life period for reaction is	
	a) 0.30 s	b) 0.60 s	c) 3.3 s	d) Data is insufficient
331.	If "a" and " $t_{1/2}$ " are initial	concentration of reactant a	and half-life of a zero order	reaction respectively,
	which of the following is			
	1		c) $t_{1/2} \propto \frac{1}{a^2}$	d) $t_{1/2} \propto a^2$
	a) $t_{1/2} \propto \frac{1}{a}$	b) $t_{1/2} \propto a$	c) $t_{1/2} \propto \overline{a^2}$	u) $\iota_{1/2} \propto u$
332.	The temperature depende	ence of rate constant (k) of	a chemical reaction is writ	ten in terms of Arrhenius
	equation, $k = Ae^{-E*RT}$. As	ctivation energy (E^*) of the	e reaction can be calculated	by plotting
	a) $\log k \ vs \frac{1}{T}$	b) $\log k \ vs \frac{1}{\log T}$	c) k vs T	d) $k vs \frac{1}{\log T}$
				$\log T$
333.		ction is given by $k = 2.1 \times$	$10^{10} \exp(-2700 RT)$.	
	It means that	110	2700	
	a) $\log k vs 1/T$ will be a c	urved line with slope = $-\frac{1}{2}$	2700	
			2.303 on $\log k$ axis = $\log 2.1 \times 10$	n10
		e collisions are 2.1×10^{10})
		increases with increase of		
334	The unit of the rate of a se		temperature	
334.	a) time $^{-1}$		c) L mol ⁻¹ time ⁻¹	d) L ² mol ⁻² time ⁻¹
335		expressed of by following r	,	u) L mor time
333.		_	_	ation of B is to be increased
	to have same rate of react		an by what times concentra	ation of b is to be increased
	a) 4 times	b) 2 times	c) ¼ times	d) 8 times
		the following reaction med		u) o times
330.	$O_3(g) \rightleftharpoons O_2(g) + O(g)$	the following reaction med	chamsin.	
	$0(g) + 0_3(g) \rightarrow 20_2(g)$			
	a) $0_3(g)$	b) 0(g)	c) $O_2(g)$	d) None of these
337		, (0)	, = ,=,	•
557.	For a certain reaction of	order 'n' the time for half	change $t_{1/2}$ is given by; $t_{1/2}$	$c_2 = \frac{2-\sqrt{2}}{K} \times c_0^{1/2}$, where K is
	rate constant c_0 is initial c_0	concentration. The value of	n is:	
	a) 1	b) 2	c) 0	d) 0.5
338.			action is measured for vario	ous initial concentrations A
	and B. the data provided a	are		

[A]

[B]

Initial

			reaction rate
1	0.20 M	0.30 M	5×10^{-5}
2	0.20 M	0.10 M	5×10^{-5}
3	0.40 M	0.05 M	1×10^{-5}

The overall order of the reaction is

a) One

b) Two

c) Two and half

d) Three

339. Which order of reaction obeys the relation $t_{1/2} = 1/Ka$?

a) First

b) Second

c) Third

d) Zero

340. How much faster would a reaction proceed at 25°C than at 0°C if the activation energy is 65 kJ?

a) 2 times

b) 16 times

c) 11 times

d) 6 times

341. The activation energy of a reaction at a given temperature is found to be 2.303RT J mol⁻¹. The ratio of rate constant to the Arrhenius factor is

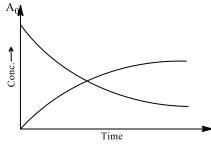
a) 0.01

b) 0.1

c) 0.02

d) 0.00

342. Consider an endothermic reaction $X \to Y$ with the activation energies E_b and E_f for the backward and forward reactions respectively. In general


a) There is no definite relation between E_b and E_f

b) $E_b = E_f$

c) $E_b > E_f$

d) $E_b < E_f$

343. For the reaction $A \rightarrow nB$, at the point of intersection of two curves show, the [B] is can be given by:

a) $\frac{nA_0}{2}$

b) $\frac{A_0}{n-1}$

c) $\frac{nA_0}{n+1}$

 $\mathrm{d})\left[\frac{n-1}{n+1}\right]A_0$

344. The elementary step of the reaction, $2Na + Cl_2 = 2NaCl$ is found to follow III order kinetics, its molecularity is:

a) 1

b) 2

c) 3

d) 4

345. Following mechanism has been proposed for a reaction,

$$2A + B \rightarrow D + E$$

$$A + B \longrightarrow C + D$$

...(Slow)

 $A + C \longrightarrow E$

...(fast)

The rate law expression for the reaction is:

a) $r = K[A]^2[B]$

b) r = K[A][B]

c) $r = K[A]^2$

d) r = K[A][C]

346. Two first order reaction have half-lives in the ratio 8 : 1. Calculate the ratio of time intervals t_1 : t_2 . The time t_1 and t_2 are the time period for (1/4)th and (3/4)th completion

a) 1: 0.602

b) 2:301

c) 0.256: 0.603

d) 0.2: 0.301

347. Order of a reaction can be

a) Fractional

b) Zero

c) Integer

d) All of these

348. The half-life period for a zero order reaction is equal to

a) $\frac{2k}{[A]_a}$

b) $\frac{[A]_0}{2k}$

c) $\frac{0.693}{k}$

d) $\frac{0.693}{k[A]_0}$

349. In a reaction $A + B \rightarrow C$, the rate expression is $R = k[A][B]^2$. If the concentration of both the reaction is doubled at constant volume then the rate of the reaction will be

a) Eight time

b) Double

c) Quadruple

d) Triple

350. For a gaseous reaction, the units of rate of reaction are

a) L atm s^{-1}

b) atm s^{-1}

c) atm $mol^{-1} s^{-1}$

d) $mol s^{-1}$

351. The rate constant is given by the equation $K = Ae^{-E_a/RT}$ which factor should register a decrease for the

	reaction to proceed more	rapidly?			
	a) <i>T</i>	b) <i>Z</i>	c) A	d) <i>E</i> _a	
352.	The activation energy for coefficient for such reactions	most of the reactions is ap	proximately 50 kJ mol^{-1} . T	he value of temperature	
	a) > 2	b) >3	c) <1	d) >4	
353.	The half-life period for a f	irst order reaction is 693 s	. The rate constant of this	reaction would be	
	a) 0.1s^{-1}	b) $0.01 \mathrm{s}^{-1}$	c) $0.001 \mathrm{s}^{-1}$	d) $0.0001 \mathrm{s}^{-1}$	
354.	For the reaction $N_2(g)$ +	$3H_2(g) \rightarrow 2NH_3(g)$ under	certain condition of tempo	erature and partial pressure	
				nversion of H ₂ under same	
	a) 1.5×10^{-3} kg hr ⁻¹	b) $1.76 \times 10^{-4} \text{kg hr}^{-1}$	c) $2 \times 10^{-3} \text{kg hr}^{-1}$	d) $3 \times 10^{-3} \text{kg hr}^{-1}$	
355.				of the reactant is $0.5 M$, then	
	half-life is:	,		A . Y	
		ln 2	$\log_{10} 2$	0.693	
	a) $\frac{\ln 2}{K}$	b) $\frac{\ln 2}{K\sqrt{0.5}}$	c) — K	d) $\frac{0.693}{0.5 K}$	
356.	A reaction $A \rightarrow B$ follows	a second order kinetics. Do	oubling the concentration of	of A will increase the rate of	
	formation of B by a factor				
	a) 1/4	b) 4	c) ½	d) 2	
357.	With increase in temperat	•	3) /2		
	a) increases		b) decreases		
	c) Remains same		d) May increase or decrea	ase	
358.		atement is not correct?	u) i iu		
000.	358. Which of the following statement is not correct? a) In zero order reaction the rate of the reaction remains constant throughout.				
		n would become a pseudo		one of the reactant is taken	
	in large excess.	ii would become a pseudo.	in st order redection when o	and of the reactant is taken	
	_	rate constant expends on	the units of the concentrat	ion term used	
		the plot of log (a-x) vs time		ion term usea.	
359				e constant of disappearance	
337.		$re^{-1}sec^{-1}$. How long would			
	a) $6 \times 10^{-8} \text{sec}$			d) 6×10^{-10} sec	
260	=	b) 6×10^{-7} sec \rightarrow products, the active mass		•	
300.	rate of reaction will be the	-	s of D is kept constant, and	that of A is doubled. The	
	a) Decrease 4 times	b) Decrease 2 times	c) Increase 4 times	d) Increase 2 times	
261			=	ers to initial concentration o	
301.	reactant)?	,			
	a) $t_{1/2} \propto C_0$		c) $t_{1/2} \propto C_0^{-1}$	d) $t_{1/2} \propto C_0^{-2}$	
362.	A first order reaction is 10	0% complete in 20 min. Th	e time taken for 19% comp	oletion is	
	a) 30 min	b) 40 Min	c) 50 min	d) 38 min	
363.	A graph plotted between	$\log k \ versus \frac{1}{T}$ for calculating	ing activation energy is sho	own by	
		1			
	a) so o	b) oo	c) o	d) of so	
	1/T →	1/T →	1/T →	1/T →	
364.	In the following reaction A	$A \rightarrow B + C$, rate constant is	$0.001 \mathrm{Ms^{-1}}$. Half-life and	completion time of the	
	given reaction are	, 1 4 5 5 5 1 6 1 6 1 6	The state of the s		
	a) 500 s, 1000 s	b) 500 s, 750 s	c) 250 s, 500 s	d) 300 s, 600 s	

365. A reaction was found to order with respect to the concentration of carbon monoxide. If the concentration of carbon monoxide is doubled, with everything else kept the same, the rate of reaction will

a) Remain unchanged

b) Triple

c) Increases by factor of four

- d) Double
- 366. The following data were obtained the first order decomposition of $2 A(g) \rightarrow B(g) + C(S)$ at a constant volume and at a particular temperature

	1	1
		Total
S		pressure in
N	Time	Pascal
1	At the end of 10 min	300
2	After completion	200

The rate constant in min is

- a) 0.0693
- b) 69.3

c) 6.93

- 367. According to Arrhenius equation, the rate constant (k) is related to temperature (T) as

a)
$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

c) $\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left[\frac{1}{T_1} + \frac{1}{T_2} \right]$

- b) $\ln \frac{k_2}{k_1} = -\frac{E_a}{R} \left[\frac{1}{T_1} \frac{1}{T_2} \right]$
- d) $\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left[\frac{1}{T_1} + \frac{1}{T_2} \right]$
- 368. Inversion of cane-sugar in dilute acid is a
 - a) Bimolecular reaction
 - c) Unimolecular reaction

- b) Pseudo-unimolecular reaction
- d) Trimolecular reaction

369. Consider the reaction

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

The equality relationship between $\frac{d[NH_3]}{dt}$ and $-\frac{d[H_2]}{dt}$

a)
$$+\frac{d[NH_3]}{dt} = -\frac{3}{2}\frac{d[H_2]}{dt}$$

b)
$$\frac{d[NH_3]}{dt} = -\frac{d[H_2]}{dt}$$

b)
$$\frac{d[\text{NH}_3]}{dt} = -\frac{d[\text{H}_2]}{dt}$$
c)
$$\frac{d[\text{NH}_3]}{dt} = -\frac{1}{3}\frac{d[\text{H}_2]}{dt}$$

d) +
$$\frac{d[NH_3]}{dt}$$
 = $-\frac{2}{3}\frac{d[H_2]}{dt}$

- 370. For a reaction $aA \rightarrow bB$ when [A] = 2.2 mM, the rate was found to be 2.4 mMs⁻¹. On reducing concentration of [A] to half, the rate changes to 0.6 mMs^{-1} . The order of reaction with respect to A is:

b) 2.0

c) 2.5

d) 3.0

- 371. The units of the rate constant of a second order reaction are
 - a) $mol^{-1}L^{-1}s^{-1}$
- b) $mol^{-1}Ls^{-1}$
- c) $mol^{-1}Ls$
- 372. A follows first order reaction, $A \rightarrow$ product Concentration of A, change from 0.1 M to 0.025 M in 40 min. find the rate of reaction of A when concentration of A is 0.01 M.
 - a) $3.47 \times 10^{-4} M \text{ min}$
 - b) $3.47 \times 10^{-5} M \min^{-1}$
 - c) $1.73 \times 10^{-4} M \text{ min}^{-1}$
 - d) $1.73 \times 10^{-5} M \text{ min}$
- 373. In the reaction $2A + B \rightarrow A_2B$, if the concentration of A is doubled and of B is halved, then the rate of the reaction will
 - a) Increase by two times

b) Decrease by two times

c) Increase by four times

- d) Remain the same
- 374. Energy of activation of an exothermic reaction is
 - a) Negative
- b) Positive
- c) Zero

- d) Can't be predict
- 375. For a reaction, the rate constant is $2.34s^{-1}$. The half-life period for the reaction is
 - a) 0.30 s
- b) 0.60 s
- c) 3.3 s

d) Data is insufficient

376. The rate of a reaction get doubles when the temperature changes from 7°C to 17°C. By what factor will it					
change for the temperature change from 17°C to 27		1) 4.56			
a) 1.81 b) 1.71	c) 1.91	d) 1.76			
377. Arrhenius equation is	-2 $A = -E_{-}/RT$	d) Nana of these			
a) $\Delta H = \Delta E + \Delta n_g RT$ b) $\Delta G = \Delta H - T \cdot \Delta S$		d) None of these			
378. Which rate expression suggests an over all order of	0.5 for the reaction involvi	ng substances X, Y, Z?			
a) Rate = $K[X][Y][Z]$ b) Rate = $K[X]^{0.5}[Y]^{0.5}[Z]^{0.5}$					
c) Rate = $K[X]$ [I] [Z]					
d) Rate = $K[X][Y]^0/[Z]^2$					
379. Rate of a reaction can be expressed by Arrhenius eq	mation as				
$k = Ae^{-E/RT}$	idation as				
In this equation, <i>E</i> represents					
a) The energy above which all the colliding molecul	es will react				
b) The energy below which colliding molecules will					
c) The total energy of the reacting molecules at a te	· · · · · · · · · · · · · · · · · · ·				
d) The fraction of molecules with energy greater that	an the activation energy of	the reaction			
380. The minimum energy required for a molecule to take	e part in a reaction is calle	d			
a) Threshold energy b) Nuclear energy	c) Potential energy	d) Kinetic energy			
381. The rate of reaction becomes 2 times for every 1	0°C rise in temperature. H	ow the rate of reaction will			
increase when temperature is increased from 30°C	to 80°C?				
a) 16 b) 32	c) 64	d) 128			
382. In a gaseous phase reaction:					
$A_2(g) \rightarrow B(g) + (1/2)C(g)$, the increase in pressur	e from 100 mm to 120 mm	n is noticed in 5 minute. The			
rate of disappearance of A_2 in mm min ⁻¹ is:					
a) 4 b) 8	c) 16	d) 2			
383. The unit of rate constant of second order reaction is		1) D 1			
a) Mol/Ls b) L / Mol s	c) L^2/mol^2	d) Per second			
384. The given reaction, $2\text{FeCl}_3 + \text{SnCl}_2 \longrightarrow \text{SnCl}_4 + 2\text{FeCl}_2$ is an example of:					
a) First order reaction					
b) Third order reaction					
c) Second order reaction					
d) None of these					
385. For the reaction $A + B \rightarrow C$, it is found that doubling	g the concentration of A inc	creases the rate by four			
times and doubling the concentration of B doubles t	=	_			
reaction?					
a) 4 b) 3/2	c) 3	d) 1			
386. The rate constant K_1 of a reaction is found to be d	ouble that of rate constant	K_2 of another reaction. The			
relationship between corresponding activation ene	rgies of the two reactions a	at same temperature (E_1 and			
(E_2) can be represented as:					
a) $E_1 > E_2$ b) $E_1 < E_2$	c) $E_1 = E_2$	d) None of these			
387. For the reaction, $H_2 + I_2 \rightarrow 2HI$, the differential rate					
a) $-\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt} = \frac{1}{2}\frac{d[HI]}{dt}$	b) $-\frac{d[H_2]}{dt} = -2\frac{d[I_2]}{dt} =$	$\frac{1}{d[HI]}$			
c) $-\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt} = \frac{d[HI]}{dt}$	d) $-\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt} = -\frac{d[I_2]}{dt}$	$-\frac{u[\Pi I]}{IL}$			
at at at 388. The time for half-life of a first order reaction is 1 h	***	***			
reaction?	What is the time taken	io. o/io/o completion of the			
a) 1 hour b) 2 hour	c) 3 hour	d) 4 hour			
389. DDT on exposure to water decomposes. Half-life is	•	•			

	decomposition to 99%?			
	a) 50 yr	b) 70 yr	c) 500 yr	d) 700 yr
390.	In Arrhenius equation, k	$=Ae^{-E_a/RT}$; A may be calle	d the rate constant at	
	a) Very low temperature		b) Zero activation energy	
	c) The boiling temperature	re of reaction mixture	d) All of the above	
391.	. The phenomenon of emis	sion of visible light as a res	ult of chemical change is k	nown as
	a) Chemiluminescence		b) Fluorescence	
	c) Phosphorescence		d) Photosensitization	
392.		very high E_a values are gen	=	
	a) Very fast	b) Very slow	= =	d) Spontaneous
393.	In the reaction $3A \rightarrow 2B$,	rate of reaction $+\frac{d(B)}{dt}$ is eq	ual to	
	a) $-\frac{1}{3}\frac{d[A]}{dt}$	b) $-\frac{2}{3}\frac{d[A]}{dt}$	2d[A]	d) $-\frac{3}{3}\frac{d[A]}{dt}$
	5 ui	Jui	ui	z ui
394.	•		e constant and independer	nt of the initial
	concentration of the react			
	a) First order	b) Zero order	c) Second order	d) None of these
395.				a substance become half in
	40 s and 20 s through firs	t order and zero order kine	etics respectively. Ratio $\left(\frac{K_1}{K_0}\right)$) of the rate constants for
		order (k_0) of the reaction is		
	a) $0.5 mol^{-1} dm^{-3}$	b) $1.0 \ mol^{-1} dm^{-3}$	c) $1.5 mol^{-1} dm^{-3}$	d) $2 mol^{-1} dm^{-3}$
396.	The order of a reaction w	ith rate equal to $kC_A^{3/2} C_B^{-1/2}$	^{/2} is	
	a) 1		ϵ) $-\frac{3}{2}$	d) 2
		2	2	
397.				\rightarrow <i>Y</i> , the rate constant k_2 =
			cal/mol , $Ea_2 = 1800$ cal/m	ol, then the temperature at
	which $k_1 = k_2$ is $(R = 2 \text{ c})$		400	200
	a) $\frac{200}{3.506}$ K	b) $\frac{300}{2303}$ K	c) $\frac{400}{6506}$ K	d) $\frac{200}{5.204}$ K
200	0.000	2.303 nfluence the rate of reactio	0.500	5.204
370.	a) Nature of the reactants		b) Concentration of the re	pactants
	c) Temperature of the reactants		d) Molecularity of the rea	
399			sured as a function of time	
	obtained			
	[R](molar) 1.00 0.75	5 0.40 0.10		
	t (min) 0.00 0.05			
	The order of the reaction			
	a) Zero	b) First	c) Second	d) Third
400.	. A graph plotted between	concentration of reactant	consumed at any time (x)	and time t is found to be a
	straight line passing thro	ugh the origin. Thus, reacti	on is of:	
4	a) First order	b) Zero order	c) Third order	d) Second order
401.	. Rate constant of a reactio	n depends upon		
	a) Speed of reaction		b) Concentration of the re	eactants
	c) Pressure of the surrou	_	d) Temperature	
402.			ergy as x kg mol ⁻¹ of A . If a	energy change of the
	reaction is y kJ, the activa	tion energy of the reverse	reactions is	
	a) -x	b) $y - x$	c) $x + y$	d) $x - y$
403.	-	atement in respect of zero		
		on is independent of reacta		
		on is independent of tempe		
	V. The rate constant of the	he reaction is independent	of temperature.	

	VI. The rate constant of reaction is independent of reactant cogeneration.				
	Choose the correct sta	•			
	a) I only	b) I and II only	-	d) I and IV only	
404.		nts is increased by $'X'$, the r	ate constant <i>K</i> becomes:		
	a) $e^{K/X}$	b) <i>K/X</i>	c) <i>K</i>	d) <i>X/K</i>	
405.	——————————————————————————————————————	r the rate of reaction of eler			
	$a) \frac{d[C]}{dt} = K[A]$	b) $\frac{d[C]}{dt} = K[B]$	c) $\frac{-d[A]}{dt} = K[A][B]$	$d)\frac{-d[A]}{dt} = K[A]$	
406.	The threshold energy of a	chemical reaction depends	upon:		
	a) Nature of reacting spec	ies			
	b) Temperature				
	c) Concentration of specie	es			
	d) Number of collisions pe	er unit time or collision fred	quency	, Y	
407.	A first order reaction has	a half-life period of 69.3 se	ec. At $0.10 \text{ mol litre}^{-1} \text{ react}$	tant concentration, rate will	
	be:				
	a) $10^{-4} M \text{ sec}^{-1}$	b) $10^{-3} M \text{ sec}^{-1}$	c) $10^{-1} M \text{ sec}^{-1}$	d) $6.93 \times 10^{-1} M \text{ sec}^{-1}$	
408.	The rate constant for the r	reaction			
	$2N_2O_5 \rightarrow 4NO_2 + O_2$ is 3.0	$0 \times 10^{-5} \mathrm{s}^{-1}$. If the rate is	$s 2.40 \times 10^{-5} \text{ mol L}^{-1} \text{ s}^{-1}$	then the concentration of	
	N_2O_5 is mol L^{-1} is				
	a) 0.4	b) 0.8	c) 1.2	d) 3.2	
409.		ction is faster than metal ca	atalysed reaction because i	ts activation energy is:	
	a) Greater	b) Lower	c) Same	d) None of these	
410.	Plots showing the variatio	on of the rate constant (k) v	with temperature (T) are g	iven below. The plot that	
	follows Arrhenius equatio			-	
				1	
			> ^ \		
	a) k	b) k	c) k	d) k	
	T	T—			
411.	For the fellowing homes	neous reaction, the unit of	wate constant is A D		
		b) s^{-1}		→ C d) s ⁻¹ mol L ⁻¹	
412	,		c) S	,	
412.				order kinetics and <i>K</i> is rate	
		reaction to go to completio		4) 2 <i>V</i> /	
412	a) a/K	b) 2/Ka	c) K/a	d) 2 <i>K</i> / <i>a</i>	
413.	what is the two third life (of a first order reaction hav	$lng = 5.48 \times 10^{-11} s^{-1}$	D 16 04 1011 .	
111	a) 2.01×10^{11} s	b) $2.01 \times 10^{13} s$		•	
414.		reaction at 290 K was foun	a to be 3.2×10^{-3} s ⁻¹ . Who	en the temperature is	
	raised to 310 K, it will be a) 0 6 10=3	D 4 20 40=2	
415	a) 6.4×10^{-3}	b) 3.2×10^{-4}	c) 9.6×10^{-3}	d) 1.28×10^{-2}	
	For fourth order reaction,		3	3	
	a) $\left(\frac{mol}{mol}\right)^{-3} s^{-1}$	b) $\left(\frac{mol}{L}\right)^{+3} s^{-1}$	c) $\left(\frac{mol}{s}\right)^{-3}$	d) $\left(\frac{mol}{L}\right)^{-3}$	
	(L /	(L /	(L /	(L)	
416.		which deals with the reaction			
	a) Thermochemistry	b) Photochemistry	c) Analytical chemistry		
417.				$02 \times 10^{-4} M \text{ sec}^{-1} \text{ and } 3.4 \times 10^{-4} M \text{ sec}^{-1}$	
		, then concentration of N_2		D 0 m 4 = 5 = -	
	a) 1.732 <i>M</i>	b) 3 <i>M</i>	c) $1.02 \times 10^{-4} M$	d) $3.5 \times 10^5 M$	
418.	In the following first order	r competing reactions:			
	$A + \text{Reagent} \longrightarrow \text{Product}$				

	$B + \text{Reagent} \longrightarrow \text{Product}$				
	Find the ratio of K_1/K_2 if only 50% of B will have been reacted when 94% of A has been reacted in same				
	time is:				
	a) 4.06	b) 0.246	c) 2.06	d) 0.06	
ŀ19.	•	period is independent of ini	•	,	
	a) Zero	b) First	c) Second	d) Third	
ŀ20.		•	•	2 kcal at 27°C. The rate of	
	reaction will be increased				
	a) 20 times	b) 14 times	c) 28 times	d) 2 times	
ŀ21.	•	-	ej 20 times	u, z umes	
	For a reversible reaction A:	$\frac{\mathbf{K}_{1}}{\mathbf{W}}\mathbf{B}$,			
	Ist order in both the direc	tions, the rate of reaction is	given by:	A Y	
				40	
	a) $K_1[A]$				
	b) $-K_2[B]$			0 4	
	c) $K_1[A] + K_2[B]$				
	d) $K_1[A] - K_2[B]$		4 4		
ŀ22.	A first order reaction is 20	0% complete in 10 min. Cal	culate the time for 75% co	mpletion of the reaction	
	a) 0.233 min	b) 62.18 min	c) 112.12 min	d) 36.18 min	
ł23.	Order of radioactive disin	tegration reaction is			
	a) Zero	b) First	c) Second	d) Third	
124.	Ethylene is produced by c	yclobutane as:			
	$C_4H_8 \xrightarrow{\Delta} 2C_2H_4$				
		$\times 10^{-4} \text{cac}^{-1}$ In what time	will the molar ratio of the	ethylene to cyclobutane in	
	reaction mixture attain th		will the molar ratio of the	curyiche to cyclobatane m	
	a) 27.25 minute	b) 28.25 minute	c) 25 minute	d) 20 minute	
125	,	he activation energies of for	,	,	
r2J.	a) $\Delta H = 0$	b) $\Delta S = 0$	c) The order is zero	d) There is no catalyst	
126	,	rst order chemical reaction		,	
r20.		cion will be (log 2=0.302)		red for the completion of	
		b) 23.03 min		d) 460.6 min	
127			c) 46.06 min	d) 460.6 min	
t4/.		ary reaction, $2NO + O_2$	⁷ 2NO ₂ , when the volume	e of the reaction vessel is	
	doubled:	Pita initial wate			
	a) Will grow eight times of				
	b) Reduce to one-eight of				
	c) Will grow four times of				
120	d) Reduce to one-fourth o	its initial rate			
t∠o.	For the reaction system $2NO(5) + O(5) = 2NO(5)$	(a) :f th a walvena af th a mag	ation would be and wood to a	no thind of its swimmel	
		g) if the volume of the reac	ction vessel is reduced to o	ne-third of its original	
1	volume, what will be the o		h) Diminish ad to an a torre		
	a) Diminished to one four			nty seven of its initial value	
120	, -	en times of its initial value	=		
ł 29.		a second order reaction	is $10^{-2}M$ s ⁻¹ . The rate	te constant expressed in	
	cc. $molecule^{-1}min^{-1}$ is:	12.006 40-22	2006 40-21	22.4.0044.0=24	
	a) 9.96×10^{-22}	b) 9.96×10^{-23}	c) 9.96×10^{-21}	d) 1.004×10^{-24}	
ŀ30.	Radioactive decay is a				
	a) First order reaction		b) Zero order reaction		
	c) Second order reaction		d) Third order reaction		
ŀ31.	-	N ₂ O ₅ at a particular temper	rature, according to the eq	uations	
	$2N_2O_5 \rightarrow 4NO_2 + O_2$				

$N_2O_5 \rightarrow 2NO_2 +$	- 0 ₂		
The activation er	ergies are E_1 and E_2 respec	ctively then	
a) $E_1 > E_2$	b) $E_1 < E_2$	c) $E_1 = 2E_2$	d) $E_1 = E_2$
	, , <u> </u>		$a_1 B_1 = B_2$ action vessel containing these
	by one-fourth of the initial	volume. The rate of the read	ction would be
a) $\frac{1}{16}$	b) $\frac{16}{1}$	c) $\frac{1}{8}$	d) $\frac{8}{1}$
33. The rate law of th	ne reaction,	· ·	
$A + 2B \longrightarrow \text{Produ}$			
		taken in large excess, the or	
a) Zero	b) 1	c) 2	d) 3
434. A first order reac to 3 g?	tion has a rate constant 1.1	$5 \times 10^{-3} s^{-1}$. How long will	5g of this reactant take to reduce
a) 444 s	b) 402 s	c) 442 s	d) None of these
¹³⁵ . For a certain rea	ection a plot of $\frac{[c_0-c]}{c}$ agains	st time t, yields a straight l	ine. c_0 and c are concentrations of
reactant at $t = 0$ a) 3	and $t = t$ respectively. The b) 0	rate of reaction is: c) 1	d) 2
•	•		37°C. Activation energy in kJ is
a) 34	b) 54	c) 100	d) 53
	•	I by $'x'$ then rate constant k	,
k	•		
a) $\ln \frac{\pi}{x}$	b) $\frac{k}{x}$	c) $k + x$	d) <i>k</i>
	4		
		\('	
		\mathcal{J}	
	A.X		
	474)	7	
•			
7			

CHEMICAL KINETICS

CHEMISTRY

						: ANSV	V	ER K	ΕY	' :						
1)	b	2)	d	3)	b			177)	d	178)	a	179)	d	180)	a
5)	b	6)	a	7)	b	-	d	_	a	182)	С	183	-	2	184)	a
9)	С	10)	С	11)	c	-	b	185)	a	186)	b	187	-	d	188)	d
13)	a	14)	c	15)	a	16)	b	189)	b	190)	a	191)	; (192)	С
17)	C	18)	d	19)	c	20)	d	193)	c	194)	c	195) ;	a	196)	d
21)	b	22)	b	23)	d	24)	a	197)	d	198)	a	199)^	d	200)	b
25)	b	26)	c	27)	b	28)	a	201)	a	202)	d	203))	204)	b
29)	a	30)	b	31)	a	32)	c	205)	d	206)	C	207) 1	o	208)	c
33)	d	34)	d	35)	c	36)	d	209)	a	210)	a	211) 1	o	212)	a
37)	C	38)	a	39)	a	40)	d	213)	b	214)	b	215)])	216)	d
41)	C	42)	a	43)	d	44)	b	217)	b	218)	b	219	-	d	220)	d
45)	C	46)	c	47)	a	,	d	,	c	222)	b	223	-	a	224)	a
49)	d	50)	c	51)	d	,	d	_	a	226)	d	227	-	d	228)	c
53)	d	54)	c	55)	d	,	a	229)	d	230)	b	231	,)	232)	C
57)	d	58)	a	59)	d	,	a	233)	d	234)	d	235	-)	236)	a
61)	d	62)	b	63)	C	- ,	b		d	238)	a	239	-	d -	240)	С
65)	b	66)	d	67)	C	,	C	241)	d	242)	b	243	-	d	244)	C
69) 	d	70)	С	71)	C	,	C	245)	a	246)	C	247	-	d	248)	С
73)	d	74)	c	75) 7 2)	a	-	C		С	250)	b	251	-	a	252)	a
77)	b	78)	d	79)	b		C	253)	a	254)	b	255	-	o	256)	c
81)	a	82)	a	83)	b		b	,	C	258)	a	259	-)	260)	b
85)	b	86)	C	87)	d		a	261)	d	262)	b	263	-)	264)	d
89)	a	90)	d h	91)	b			265)	d	266) 270)	d	267 271	-)	268) 272)	a
93) 97)	a	94) 98)	b	95) 99)	a		b b	269) 273)	c	270) 274)	C	271 275	-	: b	272) 276)	c b
101)	c c	102)	a	103)	c b	-	d	_	c d	274)	a d	273 279	-) :	280)	c
101)	c	102)	a c	103)	C	•		281)	a	282)	a	283	-	a	284)	d
109)	d	110)	c	111)	a	•	b	_	b	286)	d	287	-)	288)	a
113)	d	114)	c	115)	d	-		289)	b	290)	b	291	-	d	292)	С
117)	d	118)	a	119)	d	-		293)	d	294)	c	295	-	d	296)	С
121)	a	122)	b	123)	b	-		297)	С	298)	c	299	-	- 1	300)	c
125)	b	126)	a	127)	С	-		301)	a	302)	d	303	-	d	304)	c
129)	a	130)	d	131)	b	-		305)	b	306)	С	307	-	b	308)	b
133)	b	134)	a	135)	c	-		309)	b	310)	b	311	-	a	312)	d
137)	d	138)	d	139)	c	140)	a	313)	c	314)	c	315)]	o	316)	a
141)	C	142)	c	143)	c	144)	c	317)	b	318)	c	319)	C	320)	d
145)	a	146)	a	147)	b	148)	b	321)	a	322)	c	323) ;	a	324)	c
149)	c	150)	d	151)	a	152)	d	325)	b	326)	d	327) ;	a	328)	c
153)	b	154)	a	155)	b	156)	c	329)	d	330)	a	331) 1	b	332)	a
157)	d	158)	d	159)	c	160)	b	333)	b	334)	c	335) ;	a	336)	b
161)	a	162)	a	163)	c	164)	a	337)	d	338)	a	339) 1	b	340)	c
165)	c	166)	b	167)	c	168)	C	341)	b	342)	d	343) (C	344)	c
169)	b	170)	d	171)	d	-		345)	b	346)	a	347) (d	348)	b
173)	b	174)	b	175)	a	176)	a	349)	a	350)	b	351)	d	352)	a

365) c 366) a 367) a 368) b 369) d 370) b 371) b 372) a 373) a 374) b 375) a 376) c 377) c 378) c 379) b 380) a 381) b 382) a 383) b 384) b 385) c 386) d 387) a 388) c 389) b 390) b 391) a 392) b 393) b 394) a 395) a 396) a 397) b 398) d 399) a 400) b 401) d 402) d 403) d 404) c 405) c 406) a 407) b 408) b 409) b 410) a 411) a 412) a 413) b 414) d 415) a 416) d 417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	365) c 366) a 367) a 368) b 369) d 370) b 371) b 372) a 373) a 374) b 375) a 376) c 378) c 378) c 379) b 380) a 381) b 382) a 383) b 384) b 385) c 386) d 387) a 388) c 389) b 390) b 391) a 392) b 393) b 394) a 395) a 396) a 397) b 398) d 399) a 400) b 401) d 402) d 403) d 404) c 405) c 406) a 407) b 408) b 409) b 410) a 411) a 412) a 413) b 414) d 415) a 416) d 447) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	365) c 366) a 367) a 368) b 369) d 370) b 371) b 372) a 373) a 374) b 375) a 376) c 377) c 378) c 379) b 380) a 381) b 382) a 383) b 384) b 385) c 386) d 387) a 388) c 389) b 390) b 391) a 392) b 393) b 394) a 395) a 396) a 397) b 398) d 399) a 400) b 401) d 402) d 403) d 404) c 405) c 406) a 407) b 408) b 409) b 410) a 411) a 412) a 413) b 414) d 415) a 416) d 417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	365) c 366) a 367) a 368) b 369) d 370) b 371) b 372) a 373) a 374) b 375) a 376) c 377) c 378) c 379) b 380) a 381) b 382) a 383) b 384) b 385) c 386) d 387) a 388) c 389) b 390) b 391) a 392) b 393) b 394) a 395) a 396) a 397) b 398) d 399) a 400) b 401) d 402) d 403) d 404) c 405) c 406) a 407) b 408) b 409) b 410) a 411) a 412) a 413) b 414) d 415) a 416) d 417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	365) C 366) a 367) a 368) b 369 d 370) b 371) b 372) a 373) a 374) b 375) a 376) c 378) c 378) c 378) c 378) b 382) a 383) b 384) b 385) c 386) d 387) a 388) c 389) b 390) b 391) a 392) b 393) b 394) a 395) a 396) a 397) b 398) d 399) a 400) b 401) d 402) d 403) d 404) c 405) c 406) a 407) b 408) b 440) b 410) a 411) a 412) a 413) b 414) d 415) a 416) d 441) b 422) b 428) c 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 4437) d	353) c 357) a 361) c	358)	b 355) a c 359) c b 363) b	360) c			
385) c 386) d 387) a 388) c 389) b 390) b 391) a 392) b 393) b 394) a 395) a 396) a 397) b 398) d 399) a 400) b 401) d 402) d 403) d 404) c 405) c 406) a 407) b 408) b 409) b 410) a 411) a 412) a 413) b 414) d 415) a 416) d 417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	385) c 386) d 387) a 388) c 389) b 390) b 391) a 392) b 393) b 394) a 395) a 396) a 397) b 398) d 399) a 400) b 401) d 402) d 403) d 404) c 405) c 406) a 407) b 408) b 410) a 411) a 412) a 413) b 414) d 415) a 416) d 417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	385) c 386) d 387) a 388) c 389) b 390) b 391) a 392) b 393) b 394) a 395) a 396) a 397) b 398) d 399) a 400) b 401) d 402) d 403) d 404) c 405) c 406) a 407) b 408) b 410) a 411) a 412) a 413) b 414) d 415) a 416) d 417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	385) c 386) d 387) a 388) c 389) b 390) b 391) a 392) b 393) b 394) a 395) a 396) a 397) b 398) d 399) a 400) b 401) d 402) d 403) d 404) c 405) c 406) a 407) b 418) a 411) a 412) a 413) b 414) d 415) a 416) d 417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	385) c 386) d 387) a 388) c 389) b 390) b 391) a 392) b 393) b 394) a 395) a 396) a 397) b 398) d 399) a 400) b 401) d 402) d 403) d 404) c 405) c 406) a 407) b 418) a 411) a 412) a 413) b 414) d 415) a 416) d 417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	365) c 369) d 373) a	366) 370) 374)	a 367) a b 371) b b 375) a	368) b 372) a 376) c			
401) d 402) d 403) d 404) c 405) c 406) a 407) b 408) b 409) b 410) a 411) a 412) a 413) b 414) d 415) a 416) d 417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	401) d 402) d 403) d 404) c 405) c 406) a 407) b 408) b 409) b 410) a 411) a 412) a 413) b 414) d 415) a 416) d 417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	401) d 402) d 403) d 404) c 405) c 406) a 407) b 408) b 409) b 410) a 411) a 412) a 413) b 414) d 415) a 416) d 417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	401) d 402) d 403) d 404) c 405) c 406) a 407) b 408) b 409) b 410) a 411) a 412) a 413) b 414) d 415) a 416) d 417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	401) d 402) d 403) d 404) c 405) c 406) a 407) b 408) b 409) b 410) a 411) a 412) a 413) b 414) d 415) a 416) d 417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	381) b 385) c 389) b 393) b	382) 3 386) 6 390) 1 394) 3	a 383) b d 387) a b 391) a a 395) a	384) b 388) c 392) b 396) a			W.
417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	417) b 418) a 419) b 420) c 421) d 422) b 423) b 424) a 425) a 426) c 427) b 428) c 429) a 430) a 431) d 432) b 433) b 434) a 435) d 436) b 437) d	401) d 405) c 409) b	402) (406) (410) (410)	d 403) d a 407) b a 411) a	404) c 408) b 412) a			
433) b 434) a 435) d 436) b 437) d	433) b 434) a 435) d 436) b 437) d	433) b 434) a 435) d 436) b 437) d	433) b 434) a 435) d 436) b 437) d	433) b 434) a 435) d 436) b 437) d	417) b 421) d 425) a	418) 3 422) 4 426) 6	a 419) b b 423) b c 427) b	420) c 424) a 428) c		R. A.	
			SMARI ACHIRIPERS LIVE	SMART ACHIER LEVE	433) b	=	=		RRIV.		
			SMARI ACHIRI	SMARIA				ADS1			
			SMARIA	SMARI ACITY							

CHEMICAL KINETICS

CHEMISTRY

: HINTS AND SOLUTIONS :

1 **(b)**

For first reaction,

$$E_1 = \frac{2.303RT_1T_2}{(T_1 - T_2)}\log\frac{k_1'}{k_1}$$
 ... (i)

For second reaction

For second reaction,
$$E_{2} = \frac{2.303RT_{1}T_{2}}{(T_{1} - T_{2})}\log\frac{k'_{2}}{k_{2}} \qquad ... (ii)$$
Given, $E_{1} > E_{2}$

$$\Rightarrow \frac{2.303RT_{1}T_{2}}{(T_{1} - T_{2})}\log\frac{k'_{1}}{k_{1}}$$

$$> \frac{2.303RT_{1}T_{2}}{(T_{1} - T_{2})}\log\frac{k'_{2}}{k_{2}}$$

$$\therefore \frac{k'_{1}}{k_{1}} > \frac{k'_{2}}{k_{2}}$$

2 (d)

These are the characteristics of effective collisions.

3 **(b)**

Pseudo first order rate constant is doubled as well as rate of reaction is doubled. It may be noted that in presence of acid, hydrolysis of ethyl acetate is a pseudo-unimolecular reaction but the actual value of k depends upon the concentration reaction but the actual value of k depends upon the concentration of H^+ ions, otherwise rate constant of a reaction is constant at constant temperature.

4 (b)

We know that, $\frac{(t_{1/2})}{(t_{1/2})} = \left[\frac{a_2}{a_1}\right]^{n-1}$

Where, n=order of reaction

Given,
$$(t_{1/2}) = 0.1s$$
, $a_1 = 400$

$$(t_{1/2}) = 0.8s, a_1 = 50$$

On substituting the values

$$\frac{0.1}{08} = \left[\frac{50}{400}\right]^{n-1}$$

On taking log both sides

$$log \frac{0.1}{0.8} = (n-1)log \frac{50}{400}$$

$$log \frac{1}{8} = (n-1)log \frac{1}{8}$$

$$0.90 = (n-1)0.90$$

$$n-1=1$$

$$n=2$$

6 **(a)**

For *n*th order reaction

$$k = (\text{mol L}^{-1})^{1-n} \text{ s}^{-1}$$

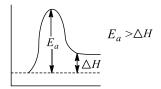
For Ist order reaction

Unit of
$$k = s^{-1}$$

For zero order reaction

Unit of $k = \text{mol } L^{-1} s^{-1} = M s^{-1}$

7 **(b)**


For II order reaction, $t_{1/2} = \frac{1}{\kappa_0}$

8 **(d**)

If $\frac{1}{[A]^2}$ vs times are a straight line then order of reaction is third.

(c)

For an endothermic reaction where ΔH represents the enthalpy of the reaction, the minimum value for the energy of activation is more than ΔH , ie, $E_a > \Delta H$

11 (c)

$$T_{\frac{1}{2}} = T_{50}, x = \frac{R}{2}$$

$$T_{50} = \frac{R}{k_0}$$
So $T_{50} \propto R$

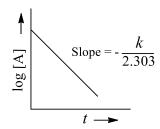
$$T_{50} \propto \frac{R}{k_0}$$

Therefore, the formula of $t_{1/2}$ for a zero order reaction is $\frac{[R]_0}{2k}$

12 **(b)**

The curve *Y* shows a gradual increase in the concentration with time.

13 **(a)**


Acid hydrolysis of sucrose is a pseudo unimolecular or pseudo first order reaction. Hydrolysis of sucrose in presence of mineral acid is a biomolecular reaction. But as water is taken in large excess, so the rate of reaction only depends upon concentration of sucrose. Hence, order of the reaction is one.

Therefore, it is called a pseudo first order reaction.

14 **(c)**

For first order reaction

$$\log[A] = -\frac{kt}{2.303} + \log[A]_0$$

15 (a)

$$r = K[A] = 4 \times 10^{-3} \times 0.02 = 8 \times 10^{-5} M \text{ sec}^{-1}$$

For the first order reaction,

$$2N_2O_5 \rightarrow 2NO_2 + O_2$$

$$rate \frac{dx}{dt} = k(N_2O_5) \dots (i)$$

Given.

$$\frac{dx}{dt} = 2.400 \times 10^{-5} mol \ L^{-1} s^{-1}$$

$$k = 3.0 \times 10^{-5} s^{-1}$$

$$[N_2O_5] = ?$$

Substituting these values in (i)

$$2.4 \times 10^{-5} = 3.0 \times 10^{-5} [N_2 O_5]$$

$$or \left[N_2 O_5 \right] = \frac{2.4 \times 10^{-5}}{3.0 \times 10^{-5}}$$

 $= 0.8 mol L^{-1}$

(c) 17

The definition of activation energy.

$$2.303 \log \frac{K_2}{K_1} = \frac{E_a}{R} \frac{[T_2 - T_1]}{T_1 T_2}$$

$$2.303 \log \frac{K_2}{K_1} = \frac{E_a}{R} \frac{[T_2 - T_1]}{T_1 T_2}$$
$$\therefore 2.303 \log \frac{K_2}{K_1} = \frac{9}{2 \times 10^{-3}} \left[\frac{10}{298 \times 308} \right];$$

$$\therefore \frac{K_2}{K_1} = 1.63; i.e., 63\% \text{ increase}$$

19 **(c)**

$$r = K[A]^1$$
;

Thus,
$$7.5 \times 10^{-4} = K \times 0.5$$
;

$$\therefore K = 15 \times 10^{-4} \text{sec}^{-1} = 1.5 \times 10^{-3} \text{sec}^{-1}$$

20 **(d)**

$$2N_2O_5 \rightleftharpoons 4NO_2 + O_2$$

Rate

$$=\pm\frac{1}{\substack{stoichiometrics\\coefficient}}\frac{d[product\ or\ reactant}{dt}$$

$$\therefore Rate = \frac{-1}{2} \frac{d[N_2 O_5]}{dt} = +\frac{1}{4} \frac{d[N O_2]}{dt} = \frac{d[O_2]}{dt}$$

$$Or \quad -\frac{d[N_2 O_5]}{dt} = 2 \frac{d[O_2]}{dt}$$

$$Or \quad -\frac{d[N_2O_5]}{dt} = 2\frac{d[O_2]}{dt}$$

$$Or \quad \frac{-2d[N_2O_5]}{dt} = 4\frac{d[NO_2]}{dt}$$

$$Or \quad \frac{d[NO_2]}{dt} = \frac{4d[O_2]}{dt}$$

21 **(b)**

For parallel path reaction

$$K_{\text{average}} = K_1 + K_2 = 1.26 \times 10^{-4} + 3.8 \times 10^{-5}$$

= $1.64 \times 10^{-4} \text{sec}^{-1}$

Also fractional yield of $B = \frac{K_B}{K_{av}} = \frac{1.26 \times 10^{-4}}{1.64 \times 10^{-4}} =$

Fractional yield of $A = \frac{K_A}{K_{av}} = \frac{3.8 \times 10^{-5}}{1.64 \times 10^{-4}} = 0.2317$

23

For first order :
$$K = \frac{0.693}{t_{1/2}} = \frac{0.693}{1386} = 5 \times 10^{-4} \text{s}^{-1}$$

Ionic reactions are instantaneous one.

25 **(b)**

For zero order reaction, rate of reaction is independent of concentration i.e., rate of reaction does not depend upon the concentration of reactant.

$$\frac{dx}{dt} = k[A]^0$$

26 (c)

$$t_{1/2} = 100s$$

$$t_{1/2} = 100s$$
$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{100}$$

$$k = 6.93 \times 10^{-3} s^{-1}$$

27 **(b)**

The rate law for the reaction is as

$$r = \frac{dx}{dt} = k(A)(B)^{2}(C)^{0} = k(A)(B)^{2}$$

on increasing the concentration of A,B and C two

$$r' = \frac{dx}{dt} = k(2A)(2B)^2(2C)^0$$

 $=8k(A)(B)^{2}$

Thus, the rate increases eight times.

28 (a)

Activation energy is the needed by reactant molecules to gain threshold energy level.

29 (a)

The rate of zero order reaction is independent of the concentration of the reactants or the

concentration of the reactant do not change with time. Thus, the rate of reaction remains constant.

$$\frac{dx}{dt} = k(a - x)^0 \Rightarrow \frac{dx}{dt} = k$$

Or Rate=k

30 **(b)**

For first order reaction,

$$k = \frac{2.303}{t} \log_{10} \frac{a}{a - x}$$

Where, a= initial concentration

X= change in concentration during time't'. If 75% of the reaction was completed in 32 min, then

$$k = \frac{2.303}{32} \log_{10} \frac{100}{100 - 75} = \frac{2.033}{32} \log_{10} 4$$
$$k = 0.0433 \text{min}^{-1}$$

Hence, time required for the completion of 50% reaction.

$$t = \frac{2.303}{0.0433} \log_{10} \frac{100}{100 - 75}$$
$$= \frac{2.033}{32} \log_{10} 2 = 16 \min$$

31 (a)

For the reaction:

$$CCl_3CHO + NO \rightarrow CHCl_3 + NO + CO$$

Rate =
$$\frac{dx}{dt}$$
 = k [CCl₃CHO][NO]

$$k = \frac{dx}{dt \times [CCl_3CHO][NO]}$$

$$= \frac{\text{mol/L}}{\text{s} \times \text{mol/L} \times \text{mol/L}}$$

$$k = \text{L mol}^{-1} \text{s}^{-1}$$

32 **(c)**

$$2A + B \rightarrow C$$

Rate of reaction,

$$= -\frac{1}{2} \frac{d[A]}{dt} = -\frac{d[B]}{dt} = \frac{d[C]}{dt}$$

$$\therefore -\frac{d[A]}{dt} = 2 \frac{d[C]}{dt}$$

$$= 2 \times 2.2 \times 10^{-3}$$

$$= 4.4 \times 10^{-3} mol L^{-1} min^{-1}$$

33 (d)

For third order reaction,

rate =
$$k[A]^3$$

 $\frac{\text{mol } L^{-1}}{\text{s}} = k(\text{mol} - L^{-1})^3$
 $k = \frac{1}{\text{mol}^2 L^{-2} \text{ s}}$

 $= \text{mol}^{-2} L^2 s^{-1}$

 $CH_3COOC_2H_5 + H_2O \xrightarrow{H+} CH_3COOH + C_2H_5OH$ Since, in this reaction, water is excess, it is an example of psedo first order reaction (as rate depends only on the concentration of $CH_3COOC_2H_5$).

36 **(d)**

The efficiency of an enzyme in catalyzing a reaction is due to its capacity to lower the activation energy of the reaction

37 **(c)**

The rate of reaction is:

$$= -\frac{1}{2}\frac{d[A]}{dt} = -\frac{d[B]}{dt} = \frac{1}{3}\frac{d[C]}{dt} = \frac{d[D]}{dt}$$

38 (a)

For exothermic reaction, activation energy of reverse reaction is greater than activation energy of forward reaction, ie, E_f < E_r

2.303
$$\log \frac{K_2}{K_1} = \frac{E_a}{R} \frac{[T_2 - T_1]}{T_1 T_2}$$

2.303 $\log 3 = \frac{E_a}{2} \frac{[313 - 273]}{313 \times 273}$
 $E_a = 4693$ cal

40 **(d**)

 $\ln K = \ln A - \frac{E_a}{RT}$ is Arrhenius equation. Thus plots of $\ln K \ vs \ 1/T$ will give slope $= E_a/R$.

$$k = \frac{1}{t} \left[\frac{x}{a(a-x)} \right]$$

$$k = \frac{1}{500} \left[\frac{0.2a}{a(a - 0.2a)} \right]$$

$$k = \frac{1}{2000a}$$

$$\frac{1}{2000a} = \frac{1}{t} \left[\frac{0.6a}{a(a - 0.6a)} \right]$$

$$t = 3000 \, \text{s}$$

42 **(a)**

K does not change with time; also unit of *K* suggest it to be II order.

43 **(d)**

Follow review of rate of reaction.

44 **(b)**

Molecularity represents the number of molecules of reactants taking part in an elementary step of reaction.

$$t_{1/2} \propto (a)^{1-n}$$

or
$$t_{1/2} = Z(a)^{1-n}$$

or
$$\log_{t_1/2} = \log Z + (1-n)\log a$$

or
$$y = c + mx$$

Thus, slope = m = 1 - n or 1 - n = 0 : n = 1and for I order reaction $t_{1/2} = \frac{0.693}{\kappa}$.

46

$$t_{1/2} \propto (a)^{1-n}$$

47 (a)

A pseudounimolecular reaction.

48 **(d)**

Rate becomes x^y times if concentration is made x time of a reactant giving y^{th} order reaction.

Rate =
$$k[A]^n[B]^m$$

Concentration of A is doubled hence x=2, y=nand rate becomes $= 2^n$ times

Concentration of B is halved ,hence $x = \frac{1}{2}$ and y = m

and rate becomes= $\left(\frac{1}{2}\right)^m$ times

Net rate becomes= $(2)^n \left(\frac{1}{2}\right)^m$ times $=(2)^{n-m}$ times

49 (d)

For the reaction $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$ Rate of reaction = $k[H_2][Br_2]^{1/2}$

Molecularity of reaction = 1 + 1 = 2

Order of reaction = $1 + \frac{1}{2} = \frac{3}{2}$

50 **(c)**

When heat energy is supplied, kinetic energy of reactant molecules increase. This will increase the number of collisions and ultimately rate of reaction will be enhanced.

51 **(d)**

$$t = \frac{2.303}{K} \log \frac{a}{(a-x)}$$

$$K = \frac{2.303}{20} \log \frac{1}{0.25}$$

I step of mechanism B shows I order in both reactants.

$$K_a = Ae^{-E_a/RT}$$
 and $K_b = Ae^{-E_b/RT}$
Also, $K_a > K_b$
 $E_a < E_b$

Now notice that all the given facts are satisfied.

54 (c)

Half-life depends upon rate constant and rate constant (K) varies with temperature as K = A. $e^{-E_n/RT}$; K increase with temperature. Also $t_{1/2} \propto$

55 **(d)**

 $Rate = k[NOBr_2][NO]$...(i) But NOBr₂ is in equilibrium

$$k_{eq} = \frac{[NOBr_2]}{[NO][Br_2]}$$

$$[NOBr_2] = k_{eq}[NO][Br_2] \dots (ii)$$

Putting the $[NOBr_2]$ in (i)

$$rate = k.k_{eq}[NO][Br_2][NO]$$

Hence, $rate = k. k_{eq}[NO]^2[Br_2]$

$$rate = k'[NO]^2[Br_2]$$

where, k'.Keg

the order, of reaction with respect to NO(g) is 2

56 (a)

For zero order reaction, for example,

$$A \rightarrow B$$

$$\frac{-d[A]}{dt} = k[A]^0$$

$$\frac{-d[A]}{dt} = k$$

(d)

The increase in collision frequency brings in an increase in effective collisions and thus, rate of reaction increases.

58 (a)

$$t_{1/2} \propto \frac{1}{a^{n-1}}$$

When n = 4

$$t_{1/2} \propto \frac{1}{a^3}$$

Hence, order of reaction = 4

59 **(d)**

There are two different reactants (say A and B).

$$A + B \rightarrow product$$

Thus, it is a bimolecular reaction.

If
$$\frac{dx}{dt} = k[A][B]$$

It is second order reaction

If
$$\left(\frac{dx}{dt}\right) = k[A]$$

Or
$$=k[B]$$

It is first order reaction.

Molecularity is independent of rate, but is the sum of the reacting substance thus it cannot be unimolecular reaction.

$$rate = K[A][B]^2$$

$$10^{-2} = K[1][1]^2$$

or
$$K = 10^{-2} \, \text{litre}^2 \, \text{mol}^{-2} \, \text{sec}^{-1}$$

$$\therefore$$
 rate II = $10^{-2}[0.5] \times [0.5]^2$

$$= 1.2 \times 10^{-3}$$
 mol/litre-sec

61 **(d)**

If
$$E_a = 0$$
, $k = Ae^{-E_a/RT} = Ae^0 = A$

Hence, k becomes independent of T

62 **(b)**

Larger is surface area, more is rate of reaction.

63 **(c**)

Reactions having lower energy of activation occurs more fast under similar experimental conditions.

64 **(b)**

For the first order reaction

$$Rate\left(\frac{dx}{dt}\right) = k[A]$$

[A]→concentration of reactant

K→rate constant

Given that,

$$\frac{dx}{dt} = 1.5 \times 10^{-2} mol \ L^{-1} min^{-1}$$

$$K=?$$
 and $[A]=0.5 M$

$$1.5 \times 10^{-2} = k \times 0.5$$

$$k = \frac{1.5 \times 10^{-2}}{0.5} = 3 \times 10^{-3} \text{min}^{-1}$$

For first order reaction,

Half-life period
$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{3 \times 10^{-2}}$$

=23.1min

65 **(b)**

Temperature coefficient,

$$= \frac{k_t + 10}{k_t}$$

$$2 = \frac{10^{-3}}{k_t}$$

$$k_t = \frac{10^{-3}}{k_t} = \frac{10 \times 10^{-4}}{k_t} = 5 \times 10^{-1}$$

66 **(d**

The minimum energy required by reaction molecules to undergo reaction is called activation energy.

67 **(c)**

For an *n*th order reaction

$$t_{1/2} \propto \frac{1}{a^{n-1}}$$

For 1st order reaction, $t_{1/2} \propto \frac{1}{a^{1-1}} \propto a^0$

For every 10°C rise of temperature, rate is doubled. Thus, temperature coefficient of the reaction=2

When temperature is increased by 50°C , rate becomes

$$=2^{50/10} = 2^5$$
 times=32 times

69 **(d)**

Order may or may not be equal to molecularity.

70 **(c**

Use $r = K[A]^m[B]^n$

71 **(c)**

The reaction occurring in two steps has two activation energy peaks. The first step, being fast needs less activation energy. The second step being slow, needs more activation energy. Therefore, second peak will be higher than the first

73 **(d)**

$$r_1 = K[A]^1; \quad r_2 = K[A]^2, r_3 = K[A]^3$$

if $[A] > t; \quad r_3 > r_2 > r_1$

$$t = \frac{2.303}{k} log \frac{a}{(a-x)}$$

If
$$t = t_{1/4}$$
; $x = a/4$

$$\therefore t_{1/4} = \frac{2.303}{k} log \frac{a}{(a-1/4)}$$

$$\frac{2.303}{k}\log\frac{4}{3}$$

$$K = Ae^{-E_a/RT}$$

76 (c

$$100 \xrightarrow{2 days} 50$$

$$50 \xrightarrow{4 days} 25$$

$$25 \xrightarrow{8 days} 12.5$$

Hence, the order of reaction is second.

For second order reaction,

$$k = \frac{1}{2} \left[\frac{x}{a(a-x)} \right] = \frac{1}{2} \left[\frac{50}{100 \times 50} \right]$$

$$=\frac{1}{200}$$

$$t_{1/2} = \frac{1}{k. a}$$

$$\Rightarrow = \frac{1}{1/200100}$$

$$=\frac{200}{100}=2days$$

$$\frac{1}{3}\frac{d[Br_2]}{dt} = -\frac{1}{5}\frac{d[Br^-]}{dt}$$

The reaction is said to be of second order if its reaction rate is determined by the variation of two concentration terms of reactants.

 $CH_3COOCH_3 + NaOH \rightarrow CH_3COONa + H_2O$ Is an example of second order reaction.

79 **(b)**

Temperature coefficient is the ratio of two velocity constant having the difference of 10° C. For most of the reaction the value of temperature coefficient lies between 2 and 3

81 **(a)**

Rate is
$$\frac{dx}{dt}$$
 or $-\frac{d[A]}{dt}$;

Where *x* stands for product concentration and [*A*] stands for reactant concentration. It continuously decreases with decrease in concentration of reactant with time.

82 **(a)**

For zero order reaction, $t_{1/2} \propto [R]_0$

83 **(b**)

Effect of temperature on reaction rate is given by Arrhenius equation

$$k = Ae^{-E_a/RT}$$

84 **(b)**

This is Arrhenius equation.

85 **(b)**

Let ,initial concentration=a

Final concentration= $a - \frac{2}{3}a = \frac{a}{3}$

$$t_{\frac{2}{3}} = \frac{2.303}{k} log \frac{a}{a/3}$$
$$= \frac{2.303}{5.48 \times 10^{-14}} log 3$$
$$= 2.01 \times 10^{13} s$$

86 **(c**)

Let the order with respect to A and B is x and y respectively.

Hence,

Rate
$$r = [A]^x [B]^y$$
 ...(i)

On doubling the concentration of A, rate increases 4 times,

$$4r = [A]^x [B]^y$$
 ... (ii

From Eqs. (i) and (ii)

$$\frac{1}{4} = \left(\frac{1}{2}\right)^3$$

∴ order with respect to A is 2

If concentration of A and B both are doubled,

$$8r = [2A]^x [2B]^y$$
 ... (iii)

From Eqs. (i) and (iii), we get

$$\frac{1}{8} = \frac{1}{(2)^{x}} \cdot \frac{1}{(2)^{y}} \qquad [\because x = 2]$$

$$\frac{1}{8} = \frac{1}{(2)^{2}} \cdot \frac{1}{(2)^{y}}$$

$$\frac{1}{8} = \frac{1}{4 \times 2^{y}}$$

$$2^{y} = 2$$

$$\therefore Y = 1$$

Hence, differential rate equation is

$$r \propto [A]^2 [B]^1$$
 or $\frac{dC}{dt} = kC_A^2 \times C_B$

[Where, C_A and C_B =concentrations of A and B]

87 **(d)**

$$r = k[A]^n \qquad \dots (i)$$

When concentration is doubled then

$$4r = k(2A)^n \qquad ...(ii)$$

Divide Eq. (ii) by (i)

$$4 = 2^{r}$$

$$n = 2$$

88 (a

$$t = \frac{0.693}{k} log \frac{[A]_0}{[A]}$$

$$= \frac{2.303}{60} log \frac{a}{\frac{a}{16}} = \frac{2.303}{60} log 16$$

$$= \frac{2.303}{60} \times 1.204$$

$$= 0.0462s$$

$$= 4.6 \times 10^{-2} s$$

89 (a)

From the unit of rate constant $(i.e., s^{-1})$, it is clear that the reaction is of first order.

$$2N_2O_5 \rightarrow 4NO_2 + O_2$$

Hence, for first order reaction,

$$k = \frac{2.303}{t} log \frac{p_0}{p_t}$$

$$\therefore 3.38 \times 10^{-5} = \frac{2.303}{10 \times 60} \log \frac{500}{p_t}$$

Or
$$log \frac{500}{p_t} = 0.00880$$

$$\therefore \quad \frac{500}{p_t} = anti \log 0.00880$$

$$=1.02$$

$$p_t = \frac{500}{1.02} = 490 \ atm$$

$$t = \frac{2.303}{k} \log \frac{a}{a - x}$$
$$\therefore x = \frac{3}{4} a$$

$$\therefore t = \frac{2.303}{k} \log \frac{a}{a - \frac{3}{4} a}$$
$$= \frac{2.303}{k} \log 4$$

92 **(b)**

$$2N_2O_5 \to 4NO_2 + O_2$$

Rate of decomposition of $N_2O_5 = -\frac{1}{2}\frac{k[N_2O_5]}{dt}$

Rate of formation of $NO_2 = \frac{1}{4} \frac{k[NO_2]}{dt}$

$$\therefore \frac{\text{rate of decompsition of N}_2 O_5}{\text{rate of formation of NO}_2} = \frac{\frac{1}{2} k \frac{[N_2 O_5]}{dt}}{\frac{1}{4} k \frac{[NO_2]}{dt}}$$

or
$$\frac{1}{2}k\frac{[N_2O_5]}{dt} \times \frac{4}{1}\frac{dt}{k[NO_2]}$$

= $\frac{4}{2} = \frac{2}{1} = 2:1$

93 **(a)**

$$k = \frac{2.303}{t} log \frac{a}{a - x}$$

Given, reaction is 75% completed is 32 min A=100.x=75

$$\therefore \qquad k = \frac{2.303}{32} \log \frac{100}{100 - 75} \qquad \dots (1)$$

For 50% completion of reaction

A=100, x=50

$$\therefore \qquad k = \frac{2.303}{t} \log \frac{100}{100 - 50} \qquad \dots (2)$$

$$: LHSof Eq.(1) = Eq.(2)$$

$$\therefore$$
 RHSof Eq. (1) = Eq. (2)

$$\therefore \frac{2.303}{32} \log \frac{100}{100 - 75} = \frac{2.303}{t} \log \frac{100}{100 - 50}$$

$$or \frac{2.303}{32} \log 4 = \frac{2.303}{t} \log 2$$

$$Or \frac{t}{32} = \frac{\log 2}{\log 4} \text{ or } t = \frac{32 \times \log 2}{2 \log 2}$$

$$\operatorname{Or} \frac{t}{32} = \frac{\log 2}{\log 4} \text{ or } t = \frac{32 \times \log 2}{2 \log 2}$$

$$\therefore$$
 $t = 16 min$

∴ reaction will be 50% completed in 16 min

94 **(b)**

Rate
$$\left(\frac{+d[C]}{dt}\right) = k[A][B]$$

Thus, the order of reaction w.r.t. A=1

The order of reaction w.r.t.B=1

Total order of reaction=1+1=2

The intersection point indicates that half of the reactant *X* is converted into *Y*.

96 **(b)**

At
$$T_1 = 200 \, K$$
, $T_2 = 400 \, K$, $k_1 = k$, $k_2 = 10 \, k$

$$\because \log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{T_2 - T_1}{T_1 \cdot T_2} \right)$$

$$\log \frac{10 \ k}{k} = \frac{E_a}{2.303R} \left(\frac{400 - 200}{400 \times 200} \right)$$

$$E_a = 921.2 R$$

97

Zero order reactions occur with constant rate.

98 **(a)**

$$t = \frac{2.303}{K} \log \frac{a}{(a-x)};$$
Thus, $K = \frac{2.303}{10} \log 8 = (2.303 \times 3 \log 2) / 10$

99 (c)

> For the reaction $A \rightarrow B$ On increasing the concentration of reactant (i.e.,A) by 4 times, the rate of reaction becomes double, hence order of reaction is $\frac{1}{2}$.

100 **(b)**

The rate of chemical reaction always decreases with time as reaction proceeds due to decrease in number of reactant molecules. Only for zero order reactions the rate of chemical reaction remains same.

101 (c)

For a zero order reaction,

 $R \rightarrow \text{product}$

$$Rate = -\frac{d[R]}{dt} = k[R]^0 = k$$

Integrating the above equation.

$$-\int d[R] = k \int dt$$

-[R] = kt + I ...(i)

Where, I is integration constant

At
$$t = 0, R = [R]_0$$

 $-[R]_0 = k \times 0 + I$
 $I = -[R]_0$

Put this value in Eq. (i)

$$-[R] = kt - [R]_0$$

or
$$[R] = -kt + [R]_0$$

102 (a)

For first order reaction,

Half-life period
$$(t_{1/2}) = \frac{0.693}{k}$$

Where, k=rate constant

$$(t_{1/2}) = \frac{0.693}{69.3} s^{-1}$$
$$= 0.01 s^{-1}$$

103 **(b)**

For *n*th order reaction :

$$t_{1/2} \propto \frac{1}{a^{n-1}}$$

For second order reaction

$$t_{1/2} = \frac{1}{ka} = \frac{1}{0.5 \times 0.2} = \frac{100}{10} = 10 \text{ min}$$

104 (d)

$$r = K[\mathsf{CH}_3\mathsf{COCH}_3]^a[\mathsf{Br}_2]^b[\mathsf{H}^+]^c$$

$$\therefore 5.7 \times 10^{-5}$$

$$= K[0.30]^{a}[0.05]^{b}[0.05]^{c} ...(1)$$

$$= K[0.30]^a[0.10]^b[0.5]^c$$
 ... (2)

$$= K[0.30]^{a}[0.10]^{b}[0.10]^{c} ... (3)$$

$$3.1 \times 10^{-4}$$

$$= K[0.40]^{a}[0.05]^{b}[0.20]^{c} \dots (4)$$

By (1) and (2) a = 1

By (2) and (3) b = 0

By (3) and (4) c = 1

$$\therefore \qquad r = K[CH_3COCH_3]^1[Br_2]^0[H^+]^1$$

105 (c)

Unit of rate constant

$$=\frac{time^{-1}}{conc^{(n-1)}}$$

Where, n=order of reaction

Given, unit of rate constant = $L mol^{-1}s^{-1}$

$$\therefore L \, mol^{-1}s^{-1} = \frac{(s)^{-1}}{(L \, mol^{-1})^{n-1}}$$

$$=\frac{(s)^{-1}}{(I \ mol^{-1})^{n-1}}$$

$$= s^{-1}(L \, mol^{-1})^{n-1}$$

0r

$$1 = n-1$$

0r

:. order of reaction =2

106 (c)

Activation energy of a chemical reaction can be determined by evaluating rate constants at two different temperatures

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 \, R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

107 (c)

Molecularity can never be fractional.

109 (d)

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

For this reaction, rate

$$(r_1) = k[SO_2]_1^2[O_2]_1 \qquad \dots (i$$

On doubling the volume of vessel, concentration would be half. Hence,

Rate
$$(r_2) = k \left(\frac{[SO_2]_1}{2}\right)^2 \left(\frac{[O_2]_1}{2}\right) = \frac{r_1}{8}$$

$$\frac{r_1}{r_2} = 8:1$$

110 (c)

$$r = k[RCl]$$

If
$$[RCl] = \frac{1}{2}$$
, then rate= $\frac{r}{2}$

111 (a)

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C \xrightarrow{k_3} D$$

$$\because k_3 > k_2 > k_1$$

As k_1 is slowest hence $A \rightarrow B$ is the rate determining step of the reaction

$$k = \frac{2.303}{t} \log_{10} \frac{a}{a - x}$$

$$=\frac{2.303}{10}\log_{10}\frac{100}{80}$$

$$=\frac{2.303}{10} \left[\log 10 - 3 \log 2 \right]$$

$$=\frac{2.303}{10} \left[1 - 3 \times 0.3010\right]$$

$$k = 0.0223$$

113 **(d)**

$$E_a(A \rightarrow B) = 80 \text{ kJ mol}^{-1}$$

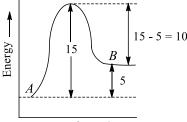
Heat of reaction $(A \rightarrow B) = 200 \text{ kJ mol}^{-1}$

For $(B \rightarrow A)$ backward reaction,

$$E_a(B \to A) = E_a(A \to B) + \text{heat of reaction}$$

$$= 80 + 200 = 280$$
kJ mol⁻¹

114 (c)


For endothermic reaction $A \rightarrow B$

Activation energy = 15 kcal/mol

Energy of reaction = 5 kcal/mol

Hence, activation energy for the reaction $B \rightarrow A$ is

$$15 - 5 = 10 \text{ kcal/mol}$$

Progress of reaction ---

115 (d)

For zero order
$$[A]_t = [A]_0 - kt$$

$$0.5 = [A]_0 - 2 \times 10^{-2} \times 25$$

$$[A]_0 = 1.0 \text{ M}$$

116 **(b)**

$$t = \frac{2.303}{k} log \frac{a}{a - x}$$

Where, k=rate constant= $10^{-3}s^{-1}$

a=initial amount=100

a - x=amount left after time t=25

t=time to leave 25% reaction

$$\therefore t = \frac{2.303}{10^{-3}} \log \frac{100}{25}$$

$$= \frac{2.303}{10^{-3}} \log 4$$

$$= \frac{2.303 \times 0.6020}{10^{-3}}$$

$$= 1386s$$

117 (d)

By increasing 10 K temperature the rate of reaction becomes double. When temperature is increased from 303 K to 353 K, the rate increases in steps of 10° and has been made 5 times. Hence, the rate of reaction should increases 2^5 times *i.e.*, 32 times.

118 (a)

Temperature coefficient

$$= \frac{\text{rate of recation at } 35^{\circ}\text{C}}{\text{rate of recation at } 25^{\circ}\text{C}} = 2$$

Thus, increase in rate is two times, when temperature is increased 10°C. Hence, by the increase of 70° C($100-30=70^{\circ}$ C), the increase in rate will be

$$= (2)^7 : 70^\circ = 7 \times 10^\circ$$

= 128 times

119 (d)

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

$$\log \frac{k_2}{k_1} = \frac{9000}{2.303 \times 2} \left(\frac{5}{295 \times 300} \right)$$

$$\log \frac{k_2}{k_1} = 0.1103$$

$$\frac{k_2}{k_1} = 1.288, k_2 = 1.288 \, k$$

ie, increase by 28.8%

120 **(b)**

$$\frac{1}{2}A \rightarrow 2B$$

Remember for $a A \rightarrow bB$

$$-\frac{1}{a}\frac{d[A]}{dt} = \frac{1}{b}\frac{d[B]}{dt}$$
 = Rate of reaction

For the given reaction

$$\frac{2d[A]}{dt} = \frac{1}{2} \frac{d[B]}{dt} = \text{rate of reaction}$$

Rate of disappearance of A

$$= -\frac{d[A]}{dt} = \frac{1}{2 \times 2} \frac{d[B]}{dt}$$
$$= \frac{1}{4} \frac{d[B]}{dt}$$

121 (a)

$$K = \frac{2.303}{k} \log \frac{a}{(a-x)}$$

$$= \frac{2.303}{40} \log \frac{0.1}{0.025} = 0.0347$$

$$\therefore r = K \times [A] = 0.0347 \times 0.01$$

$$= 3.47 \times 10^{-4} M/min$$

123 **(b)**

For zero order reaction

$$x = kt$$

$$= 0.2 \text{ mol dm}^{-3} \text{ h}^{-1} \times \frac{30}{60} \text{ h}$$

$$= 0.1 \text{ mol dm}^{-3}$$

Now, concentration = 0.05 mol dm^{-3}

Hence, initial concentration = 0.1 + 0.05 = 0.15 mol dm^{-3}

124 (c)

For the reaction,

$$2X + Y \rightarrow Z$$

Rate =
$$-\frac{1}{2}\frac{d[X]}{dt} = \frac{d[Z]}{dt}$$

= 0.05 mol L⁻¹ min⁻¹

$$\frac{1}{2}\frac{d[X]}{dt} = 0.05$$

$$-\frac{d[X]}{dt} = 2 \times 0.05$$

$$= 0.1 \text{ mol } L^{-1} \text{ min}^{-1}$$

125 **(b)**

$$X(g) \rightarrow Y(g) + Z(g)$$

The reaction is a first order reaction.

$$k = \frac{0.693}{t_{1/2}} = \frac{2.303}{t} \log \frac{a}{(a-x)}$$

$$02234 \ \frac{0.693}{10} = \frac{2.303}{t} \log \frac{a}{a/10}$$

Or
$$t = \frac{2.303 \times 10}{0.693} \times \log 10$$

= 33min

126 (a)

To be solved with the help of formula,

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$

$$T_1 = 273 + 27 = 300 \text{ K}$$

$$T_2 = 273 + 67 = 340 \text{ K}$$

$$\log \frac{6.9 \times 10^{-3}}{3.45 \times 10^{-5}} = \frac{E_a}{2.303 \times 8.31} \left[\frac{340 - 300}{340 \times 300} \right]$$

$$\log 200 = \frac{E_a}{19.1379} \times \frac{40}{102000}$$

$$2.3010 = \frac{E_a}{19.14} \times \frac{4}{10200}$$

$$E_a = \frac{19.14 \times 10200 \times 2.3010}{4}$$
$$= 112304.907 \text{ J} = 112.3 \text{ kJ}$$

127 (c)

 $\frac{dx}{dt} = K(a - x)^2$ is differential form of II order. Integrate it to get (c).

128 **(d)**

$$A^m + B^n \rightarrow ABx$$

In this case,

Overall order of reaction = m + n

Hence, code 3 is wrong

129 (a)

For the first order reaction,

$$t_{1/2} = \frac{1n2}{k}$$
Or $t_{1/2} = \frac{0.693}{k}$

130 (d)

Order of reaction is an experimentally determined quantity and thus, cannot be predicted from the given equation.

131 **(b)**

The rate for first order reaction is expressed as $A \rightarrow products$

Rate=
$$-\frac{d[A]}{dt}$$

Rate=k[A]

And the rate constant (k) is given as

$$k = \frac{2.303}{t} log \frac{[A_0]}{[A_t]}$$

$$or -k = \frac{t}{2.303} log \frac{[A_t]}{[A_0]}$$

132 (d)

$$t_{1/2} = \frac{1}{(a)^{n-1}}$$

Where, n=order of reaction

a= initial concentration

For first order reaction,

$$n=1$$

$$t_{1/2} = \frac{1}{a^{n-1}}$$

 $a = \frac{1}{a^0} = 0$

Thus for a first order reaction, $t_{1/2}$ is independent of initial concentration.

133 **(b)**

Relation between $(t_{1/2})$ and initial concentration of reactant for (n-1) order reaction $t_{1/2} \propto [R]_0^{2-n}$

134 (a)

$$K = \frac{2.303}{40} \log \frac{0.1}{0.025}$$

$$K = 0.03466 \text{ min}^{-1}$$
rate = $K \times 0.01 = 0.03466 \times 0.01$
= $3.47 \times 10^{-4} M \text{ min}^{-1}$

135 (c)

Rate of endothermic reactions increase with increase in temperature while that of exothermic reactions decrease with increasing temperature.

136 **(d)**

$$k = \frac{2.303}{t} \log_{10} \frac{a}{a - x}$$

For half-life period, $x = \frac{a}{2}$

$$t = \frac{2.303}{k} \log_{10} \frac{a}{a - \frac{a}{2}}$$

$$t = \frac{2.303}{k} \log_{10} 2$$

$$\because t = t_{1/2}$$

$$t_{1/2} = \frac{2.303 \times 0.3010}{k}$$

$$t_{1/2} = \frac{0.693}{k}$$

137 (d)

: Rate constant (k') > rate constant (k'')

Greater the rate constant lesser will be the activation energy

$$\therefore E_a' < E_a''$$

138 (d)

The reactant concentration drop from 0.8 to 0.4 *M*, *i. e.* ,50% takes place in 15 minute.

$$K = \frac{2.303}{15} \log \frac{0.8}{0.4} = \frac{0.693}{15} = 0.0462 \text{ min}^{-1}$$
Also, $t = \frac{2.303}{K} \log \frac{0.1}{0.025} = \frac{2.303}{0.0462} \log \frac{0.1}{0.025}$

$$= 30 \text{ min}$$

139 (c)

For II order,
$$t = \frac{1}{Ka} \frac{x}{(a-x)}$$

$$\therefore t = \frac{1}{8 \times 10^{-5} \times 1} \left(\frac{0.5}{0.5}\right)$$

$$= 1.25 \times 10^{-4} \text{ minute}$$

140 **(a)**

The Arrhenius equation can be written as

$$\log k = \log A - \frac{E_a}{2.303 \, RT}$$

On comparing this equation with standard equation of straight line

$$y = mx + c$$
, we get,
 $y = \log k$
 $x = \frac{1}{T}$
 $m = -\frac{E_a}{2.303R}$

 $c = \log A$ Hence, on plotting graph between $\log k$ (y -axis)and $\frac{l}{r}$ (x-axis), we get a line with slope equal

to
$$m = -\frac{E_a}{2.303 R}$$

$$\begin{split} K_1 &= 10^{16} e^{-2000/T}; K_2 = 10^{15} e^{-1000/T} \\ \text{if} & K_1 = K_2 \text{ then } 10^{16} e^{-2000/T} \\ &= 10^{15} e^{-1000/T} \\ \text{or} & \log 10 - \frac{2000}{T} = -\frac{1000}{T} \text{ or } T = \frac{1000}{2.303} \text{ K} \end{split}$$

142 (c)

As we know that, rate of reaction is directly proportional to concentration of reactant and inversely proportional to the volume of vessel.

i.e.,concentration $\alpha \propto \frac{n}{v}$

For a given reaction,

$$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$

Rate of reaction= $k[NO]^2[O_2]$

If volume of vessel is reduced by $\frac{1}{3}rd$ of its initial value, then concentration of compound is increase by 3 times. Hence, the rate of reaction will be increased by 27 times.

143 **(c)**

For a zero order reaction

$$k_0 = \frac{[A_0]}{2t_{1/2}}$$

Since $[A]_0 =$

Since, $[A]_0 = 2 M$, $t_{1/2} = 1 h$

So, $k_0 = 1$ and

$$k_0 = \frac{\Delta x}{t}$$
 or $t = \frac{0.50 - 0.25}{1} = 0.25 h$

144 **(c)**

$$A + B \rightarrow C + D$$

Rate
$$(r)=k[A]^a[B]^b$$
 ...(i)

$$2r = k[2A]^a[B]^b$$
 ... (ii)

$$3r = k[A]^a [9B]^b$$
 ...(iii)

Dividing eq.(ii) by eq.(i)

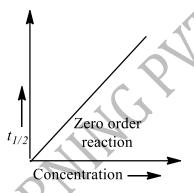
$$2 = 2^a$$
 or $a = 1$

Dividing eq (iii) by eq.(i)

$$3 = 9^b \text{ or } 3 = 3^{2b} \text{ or } 2b = 1 \text{ or } b = 1/2$$

So order of reaction = $1 + \frac{1}{2} = \frac{3}{2}$

145 (a)


$$N = \frac{N_0}{2^n}$$

$$n = \frac{T}{t_{1/2}} = \frac{40}{20} = 2$$

$$\therefore N = \frac{N_0}{2^2} = \frac{N_0}{4}$$

146 (a)

$$p_1 = 80 \text{ kPa}, (t_{1/2})_1 = 350s$$

 $p_1 = 40 \text{ kPa}, (t_{1/2})_1 = 175s$
 $\frac{80}{40} = \frac{350}{175} = 2$

$$\therefore \frac{p_1}{p_2} = \frac{\left(\mathsf{t}_{1/2}\right)_1}{\left(\mathsf{t}_{1/2}\right)_2} = \frac{a_1}{a_2}$$

 $(t_{1/2}) \propto a(zero\ order\ reaction)$

147 **(b)**

Thermal decomposition,

$$CH_3CHO \xrightarrow{\Delta} CH_4 + CO$$

$$\frac{dx}{dt} = k[CH_3CHO]^{3/2}$$

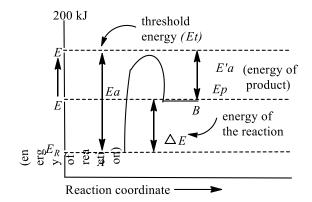
148 (b)

For the reaction : $A \rightarrow 2B + C$

$$p_1 = 0 = 0$$

After 10 min $p_1 - p$ 2p p

After long time $0 2p_1 p_1$


Total pressure = $(p_1 - p + 2p + p) = 176 \text{ mm}$

Total pressure after long time

$$= 2p_1 + p_1 = 270 \text{ mm}$$

Calculate the value of p from above two equation and then the difference of p_1 and p will be the pressure of A

149 (c)

Where,

 E_a =activation energy of forward reaction $E_a^{\prime\prime}$ = activation energy of backward reaction The above energy profile diagram shows that $E_a > E_a^{\prime\prime}$

The potential energy of the product is greater than that of the reactant, so the reaction is endothermic.

$$E_a = E_a'' + \Delta E$$

$$E_t = E_a \text{ or } E_t > E_a''$$

150 (d)

Combination of H_2 and B_{r2} to give HBr is zero order reaction as the rate of reaction is not affected by the concentration of reactants.

$$H_2 + B_{r2} \xrightarrow{hv} 2HBr$$

151 (a)

Rate of reaction =
$$\frac{1}{4} \frac{d(NO_2)}{dt} = \frac{5.2 \times 10^{-3}}{4 \times 100}$$

= $1.3 \times 10^{-5} Ms^{-1}$

152 (d)

$$9 = \left(\frac{3.24 \times 10^{-2}}{1.2 \times 10^{-3}}\right)^{7}$$

order of the reaction is=2/3

153 **(b)**

For zero order reaction

$$k = \frac{a}{2t_{1/2}} = \frac{a}{2 \times 100} = \frac{a}{200}$$

When 80% completion take place

$$k = \frac{x}{t}$$

$$\frac{a}{200} = \frac{0.80a}{t}$$

$$t = 200 \times 0.8 = 160 \text{ min}$$

154 (a)

 $2A + B \rightarrow product$

[B] is doubled, half-life didn't change Half-life is independent of change in concentration of reactant i.e., first order First order w.r.t. to B

When [A] is doubled, rate increased by two times ⇒ First order w.r.t.A

Hence, net order of reaction =1+1=2Unit for the rate constant= $conc.^{(1-n)}t^{-1}$ $= (mol^{-1})^{-1}.s^{-1}$

 $L.mol^{-1}s^{-1}$

156 (c)

 $H_2O + O \rightarrow 2OH$; $\Delta H = 72kJ$ at 500 K; Given $E_a = 77 \text{ kJmol}^{-1}$

 $20H \rightarrow H_20 + 0$; $E_{a_{B,R}}$

For a reaction $E_{a_{F,P}} = \Delta H + E_{a_{R,P}}$

$$: 77 = 22 + E_{a_{B.R}}$$

$$\therefore 77 = 22 + E_{a_{B,R}}$$
$$\therefore E_{a_{B,R}} = 5 \text{kJ mol}^{-1}$$

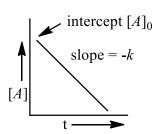
157 (d)

According to Arrhenius equation, the relationship between the activation energy and temperature is $k = Ae^{-E_a/RT}$

$$\log k = \frac{-E_a}{2.303 \, RT} + \log A$$

: Activation energy decreases with rise in temperature, thereby increasing the rate of the reaction.

158 (d)


rate =
$$K[A]^1$$

$$K = \frac{2.0 \times 10^{-5}}{0.01} = 2.0 \times 10^{-3} \text{s}^{-1}$$

$$\therefore t_{1/2} = \frac{0.693}{2 \times 10^{-3}} = 347 \text{s}$$

159 (c)

For a zero order reaction, the plot of concentration of reactant vs time is a straight line (linear) with a negative slope and non-zero intercept.

160 **(b)**

$$r = K[A]^m [B]^n;$$

Also, $\frac{r}{4} = K[A]^m [2B]^n$
 $4 = \left(\frac{1}{2}\right)^n \text{ or } 2^2 = 2^{-n}$

$$n=-2$$

161 (a)

The ratio of rate constant when temperature is raised 10°C, is called temperature coefficient. For most of the reaction, it has a value of 2.

Hence, for the given reaction,

Rate constant at 290 K= 3.2×10^{-3}

 \therefore Rate constant at 300 K=2 \times 3.2 \times 10⁻³ $= 6.4 \times 10^{-3}$

162 (a)

 $\frac{dc}{dt}$ represent the change in concentration of reactant with time. As, in a reaction, concentration of reactant always decrease with time hence, rate of reaction is represented as d.t.

163 (c)

$$k = \frac{2.303}{t} log \frac{A_0}{A_t}$$
$$= \frac{2.303}{2 \times 10^4} log \frac{800}{50}$$
$$= 1.386 \times 10^4 s^{-1}$$

164 (a)

For, $N_2 + 3H_2 = 2NH_3$ Rate of reaction = $-\frac{d[N_2]}{dt} = -\frac{1}{3}\frac{d[H_2]}{dt} = \frac{1}{2}\frac{d[NH_3]}{dt}$

Where, $-\frac{d[N_2]}{dt}$ is rate consumption of $N_2(-ve^{-t})$

 $-\frac{d[\mathrm{H}_2]}{dt}$ is rate of consumption of $\mathrm{H}_2(-\mathrm{ve}\,\mathrm{sign})$ $\frac{+d[\mathrm{NH}_3]}{dt}$ is rate of formation of $\mathrm{NH}_3(+\mathrm{ve}\,\mathrm{sign})$

Individual rates become equal when each of these is divided by their respective stoichiometric coefficient.

165 (c)

Given, $R_1 = k[A]^2[B]$ According to equation $R_2 = k[3A]^2[B]$ $= k \times 9[A]^2 2[B]$ $= 18 \times k[A]^2[B]$ $= 18R_1$

For the reaction, $A+B \rightarrow C$ $Rate = k[A]_{0}^{x}.[B]_{0}^{y}$ $\frac{Rate_2}{Rate_3} = \frac{k(0.024)^x(0.070)^y}{k(0.024)^x(0.035)^y} = \frac{0.80}{0.10}$ $(2)^y = 8$ y = 3 $\frac{Rate_3}{Rate_1} = \frac{k(0.024)^x(0.035)^y}{k(0.012)^x(0.035)^y} = \frac{0.10}{0.10}$

$$(2)^{x} = 1$$

 $x = 0$
 $Rate = k[B]^{3}$, where, k=rate constant

For second order reaction, $\frac{dx}{dt}$ (rate) $\propto [A]^2$

- : Rate Of reaction increases four times when concentration of reaction is increased two times.
- : It is second order reaction.

169 **(b)**

$$\begin{split} N_2 + 3H_2 &\rightleftharpoons 2NH_3 \\ \frac{d[H_2]}{dt} &= -0.3 \times 10^{-4} ms^{-1} \\ rate &= -\frac{1}{3} \frac{d[H_2]}{dt} = +\frac{1}{2} \frac{d[NH_3]}{dt} \\ &= \frac{d[NH_3]}{dt} = -\frac{2}{3} \frac{d[H_2]}{dt} \\ &= -\frac{2}{3} \times (-0.3 \times 10^{-4}) \\ &= 0.2 \times 10^{-4} \end{split}$$

170 **(d)**

According to collision theory,

- 1. The reaction rate depends on collision frequency and effective collisions. For a molecule to have effective collision it should fulfill two conditions; proper orientation and sufficient energy.
- 2. The collision rate *i.e.*, the number of collisions taking place in unit volume is also termed as collision frequency (Z) and is given by

$$z = \frac{\pi n^2 \sigma^2 u_{av}}{\sqrt{2}}$$

3. Greater the temperature, greater will be the collision rate.

171 (d)

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + 22 \text{ kcal.}$

- :The activation energy for the forward reaction = 50 kcal
- : The activation energy for the backward reaction=50+22=72 kcal.

172 (d)

Only those collisions are effective collisions which are energetic enough and cross over the threshold energy level.

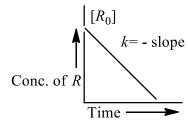
$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{480} \text{ s}^{-1}$$

$$k = 1.44 \times 10^{-3} \,\mathrm{s}^{-1}$$

174 **(b)**

It is a characteristic of zero order reaction.

175 (a)


Follow review of order of reaction.

176 (a)

Average life is defined as, "reciprocal of decay constant." If decay constant for a reaction is λ

Average life= $\frac{1}{2}$

177 **(d)**

[variation in the concentration V_s time plot for a zero order reaction]

178 (a)

Energy of activation does not depend on the stoichiometry of change. It is characteristic value for a chemical reaction.

179 (d)

Use;
$$r = K[A]^m[B]^n$$

180 (a)

Slow reaction rate indicates higher free energy of activation

181 (a)

It is the definition of molecularity.

182 (c)

183 (c)

No doubt order cannot be predicted by merely looking chemical reaction but this can be treated as standard example of II order reaction.

184 (a)

Rate
$$= -\left[\frac{dc}{dt}\right] = \left[-\frac{dn}{dt}\right]\frac{1}{V}$$
 $\left[\because c = \frac{n}{V}\right]$

$$\therefore \qquad -\left[\frac{dc}{dt}\right] = -\frac{1}{RT}\left[\frac{dP}{dt}\right]. \quad \left[c = \frac{P}{RT}\right]$$

185 (a)

For zero order reaction

$$Rate = [A]^0 = k$$

$$\frac{mol\ L^{-1}}{s} = k$$

 $K = mol L^{-1} s^{-1}$

186 **(b)**

$$A \xrightarrow{k_1} B,$$

$$A \xrightarrow{k_2} C.$$

By Arrhenius equation,

$$R_1 = A'e^{-E_a 1/RT}$$
 and $k_2 = A'e^{-E_a 2/RT}$

(A' is Arrhenius constant) (Since, $E_{a2} = 2E_{a1}$)

$$\therefore k_2 = A'e^{-2E_{a'}|RT}$$

$$\frac{k_1}{k_2} = \frac{A'e^{-E_a 1|RT}}{A'e^{-2E_a|RT}} = e^{E_a 1|RT}$$

$$\therefore k_1 = k_2 e^{E_a 1/RT}$$

$$\therefore k_1 = k_2 e^{E_a 1/RT}$$

187 (d)

For the reaction, $2A + B \rightarrow A_2B$

According to rate laws,

Rate ∝ concentration of reactants

$$rate = k[A]^2[B]$$

Where, k=rate constant

188 (d)

This is activation state and orientation concept for mechanism of reactions.

189 (b)

Rate depends upon the slowest step. Hence, from equation

$$0 + 0_3 \rightarrow 20_2$$

$$r = k[03][0]$$

And from equation $0_3 \rightleftharpoons 0_2 + 0$

$$K_{\text{eq}} = \frac{[O_2][O]}{[O_3]}$$

$$[0] = \frac{K_{\text{eq}}[0_3]}{[0_2]}$$

$$\therefore r = k[O_3] \frac{K_{\text{eq}}[O_3]}{[O_2]}$$

$$= k'[0_3]^2[0_2]^{-1}$$

190 (a)

Amount of *A* left in n_1 halves $=\frac{[A_0]}{2^{n_1}}$

Amount of *B* left in n_2 halves = $\frac{[B_0]}{2^{n_2}}$

Also if $\frac{[A_0]}{2^{n_1}} = \frac{[B_0]}{2^{n_2}}$ when A decays to n_1 halves and B decays to n_2 halves.

$$(A_0) = 4[B_0]$$

$$(A_0] = 4[B_0]$$

$$4 = \frac{2^{n_1}}{2^{n_2}} = (2)^{n_1 - n_2}$$

or
$$(n_1 - n_2) = 2$$

$$\begin{array}{ll} \vdots & n_2 \\ = n_1 - 2 & \dots \text{(i)} \\ \text{Now,} & T = n_1 \times t_{1/2A} \text{ and } T = n_2 \times t_{1/2B} \\ \vdots & \frac{n_1 \times t_{1/2A}}{n_2 \times t_{1/2B}} = 1 \\ \text{or} & \frac{n_1 \times 5}{n_2 \times 15} = 1 \\ \text{or} & \frac{n_1}{n_2} \end{array}$$

= 3 ... (ii) \therefore By Eqs. (i) and (ii) $n_1 = 3, n_2 = 1$ Thus, $T = 3 \times 5 = 15$ minute

191 (c)

- : On doubling the concentration of A, the rate of reaction becomes two times.
- : The order of reaction w.r.t. A is 1
- : On doubling the concentration of B, the rate of reaction does not change.
- ∴ the order of reaction respect to B is 0
- \because on doubling the concentration of C, the rate of reaction becomes four times
- : the order of reaction w.r.t. C is 2
- \therefore the overall order of reaction=1+0+2=3

192 (c)

For *n*th order; unit of rate constant may be derived by

$$K = \frac{\text{rate}}{[\text{reactant}]^n}$$

193 **(c)**

$$r = K[N_2O_5] = 6.2 \times 10^{-4} \times 1.25$$

= 7.75 × 10⁻⁴M/s

194 (c)

$$A \rightarrow product$$

Initially

After time t

After $t_{1/4}$

$$\left(a-\frac{a}{4}\right) \quad \frac{a}{4}$$

For the first order kinetics,

$$k = \frac{2.303}{t} \log\left(\frac{a}{a - x}\right)$$
$$k = \frac{2.303}{t_{1/4}} \log\frac{a}{\frac{3a}{4}}$$

$$t_{1/4} = \frac{2.303 \log \frac{4}{3}}{k}$$
$$= \frac{0.29}{l}$$

195 (a)

The order of reaction is zero. Suppose the following reaction take place .

$$A + B \rightarrow product$$

 $\therefore rate = [A][B]^{-1}$

$$\therefore$$
 order =1+(-1)=0

196 (d)

Pseudo first order reactions are those reactions which are not truly first order but show first order kinetics under specific conditions. For examples, acidic hydrolysis of an ester and hydrolysis of cane sugar.

197 (d)

The differential rate law for the reaction, $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g) \text{ is}$ $Rate = -\frac{1}{4}\frac{d[NH_3]}{dt} = -\frac{1}{5}\frac{d[O_2]}{dt}$ $= +\frac{1}{4}\frac{d[NO]}{dt} = +\frac{1}{6}\frac{d[H_2O]}{dt}$

198 (a)

$$_{79}\mathrm{Au}^{198} \xrightarrow{-B} _{80}\mathrm{Hg}^{198}$$

$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{65}$$

After 260 hr,

$$k = \frac{2.303}{260} \log \frac{a}{a - x}$$

$$\frac{0.693}{65} = \frac{2.303}{260} \log \frac{a}{a - x}$$

$$\frac{a}{a-x} = 16$$

$$\frac{1}{1-x} = 16$$

$$x = \frac{15}{16} \text{ g} = 0.9375 \text{ g}$$

199 (d)

Rate = $k[NO_2Cl]$

Hence, rate determining step is

 $NO_2CL \rightarrow NO_2 + CL$

200 **(b)**

Rate =
$$k[RCl]$$

For this reaction rate of reaction is depends upon the concentration of *RC*l

It means, the rate of reaction is halved by reducing the concentration of *RCl* by one half

201 **(a)**

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 \, R} \times \frac{T_2 - T_1}{T_1 \cdot T_2}$$

$$\log \frac{105}{100} = \frac{E_a}{2.303 \times 8.314} \times \frac{1}{300 \times 301}$$

$$E_a = 36.65 \text{ kJ}$$

202 (d)

Molecularity of reaction is simply the number of molecules reacting in balanced chemical equation. It can be simply determined by examining balanced equation.

203 **(b)**

Time required to complete a definite fraction is independent of initial concentration.

204 **(b)**

For this reaction $2A + B_2 \rightleftharpoons 2AB$ $k = \frac{[AB]^2}{[A]^2[B_2]}$

For this reaction,

$$A + B_2 \rightleftharpoons AB + B$$

$$k_1 = \frac{[AB][B]}{[A][B_2]}$$

For this reaction,

For this reaction,

$$A + B \rightleftharpoons AB$$

$$k_2 = \frac{[AB]}{[A][B]}$$

$$k_1 \times k_2 = \frac{[AB][B]}{[A][B_2]} \times \frac{[AB]}{[A][B]}$$

$$= \frac{[AB]^2}{[A]^2[B_2]}$$

$$\therefore k_1 \times k_2 = k$$

205 (d)

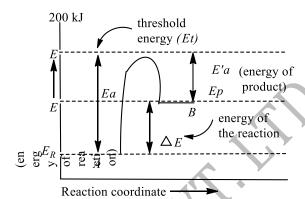
The collision frequency (Z) and rate contant(k) increase on increase of temperature. With the increase in temperature, the average kinetic energy of the molecules increases and this leads to an increase in number of collisions per unit time (Z). The rate constant(k) of a reaction is also increases with increase of temperature.

206 (c)

For first order reaction,

$$k = \frac{2.303}{t_{1/2}} \log \frac{a}{\left(a - \frac{a}{2}\right)} = \frac{2.303}{t} \log \frac{a}{(a - x)}$$

$$\frac{2.303}{t_{1/2}} \log 2 = \frac{2.303}{1} \log \frac{a}{a/4}$$


$$\frac{2.303 \times 0.3010}{t_{1/2}} = 2.303 \times \log 4$$

$$t_{1/2} = \frac{0.3010}{\log 4} = \frac{0.3010}{0.6020} = \frac{1}{2}h$$

207 **(b)**

In the given graph, $E_a = E_a^{"} + \Delta H$

where, $E_a^{\prime\prime}$ =activation energy of reverse reaction $150=E_a^{\prime\prime}+100$ $E_a^{\prime\prime}=50~{\rm kJ}$

$$T_{50} = 15 min$$

$$k = \frac{2.303 log 2}{T_{50}} = \frac{2.303 log 2}{15}$$

a = 0.1M

$$(a-x)=0.025\,M$$

For first order reaction,

For instorder reaction,
$$k = \frac{2.303log2}{T_{50}} \log \left(\frac{a}{a-x}\right)$$

$$\frac{2.303log2}{15} = \frac{2 \times 2.303log2}{t} log \frac{0.1}{0.025}$$

$$= \frac{2.303}{t} log4$$

$$\therefore \frac{2.303log2}{15} = \frac{2 \times 2.303log2}{t}$$

$$\therefore t = 30 min$$

210 **(a)**

The slowest step is the rate determining step. Formation of B(i.e., step I) is the slowest step, therefore step I is the rate determining step.

211 **(b)**

For a reaction E_a for forward reaction = E_a for backward reaction $+\Delta H$,

∴
$$85 = A - 20$$

or $A = 105 \text{ kJ mol}^{-1}$.

212 **(a)**

$$\frac{-d[N_2]}{dt} = \frac{1}{2} \frac{d[NH_3]}{dt}$$

213 **(b**)

 $10 \text{ g} \rightarrow 5 \text{ g} \rightarrow 2.5 \text{ g} \rightarrow 1.25 \text{ g}$ takes 30 min in each step, ie, $t^{1/2}$ is independent of 'a' hence, it is a first order reaction

$$B + 5D \to 3A + 2C$$

$$-\frac{d[B]}{dt} = -\frac{1}{5}\frac{d[D]}{dt} = +\frac{1}{3}\frac{d[A]}{dt} = +\frac{1}{2}\frac{d[C]}{dt}$$
215 **(b)**

$$r = K[A]^m;$$

Also, $100r = K[10A]^m$;

$$\frac{1}{100} = \left(\frac{1}{10}\right)^m;$$

216 (d)

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$
Rate = $-\frac{1}{4}\frac{d[NH_3]}{dt} = -\frac{1}{5}\frac{d[O_2]}{dt} = +\frac{1}{4}\frac{d[NO]}{dt}$

$$=+\frac{1}{6}\frac{d[\mathrm{H}_2\mathrm{O}]}{dt}$$

217 **(b)**

$$r = k[A]^{\alpha} = ka^{\alpha}$$

$$1.837 r = k(1.5a)^{\alpha}$$

Dividing, $1.837 = (1.5)^{\alpha}$

$$\alpha = 1.5$$

Hence, order of reaction = 1.5

218 **(b)**

$$Cl_2 + 2l^- \rightarrow I_2 + 2Cl^-$$

Rate of formation of

$$I_2 = \frac{dI_2}{dt} = -\frac{1}{2} \frac{dI^-}{dt}$$

$$= \frac{1}{2} \times \frac{0.20 - 0.18}{20}$$

$$= \frac{1}{2} \times \frac{0.02}{20}$$

$$= 5 \times 10^{-4} \text{mol } L^{-1} \text{min}^{-1}$$

219 **(d)**

$$A_2 + B_2 \rightleftharpoons 2AB$$

 E_a (forward)= 180 kJ mol⁻¹

 E_a (backward)= 200 kJ mol⁻¹

In the presence of catalyst

 E_a (forward)=180-100=80 kJ mol⁻¹

 E_a (backward)=200-100=100 kJ mol⁻¹

 $\Delta H = E_a$ (forward) – E_a (backward)

= 80 - 100

 $= -20 \text{ kJ mol}^-$

220 (d)

Increase in pressure or concentration brings in an increase in collision frequency as well as increase in effective collision. Recall that energy of activation is not at all related with exothermic or endothermic nature.

221 (c)

 $\frac{K_{t+10}}{K_t}$ = 2,3 *i. e.*, temperature coefficient is the ratio of rate constant at two temperatures differing by 10°C, preferably at 35°C and 25°C.

222 **(b)**

Negative sign indicates for the decrease in concentration with time.

223 (a)

For first order reaction

$$k = \frac{2.303}{t} log \frac{[A_0]}{[A]}$$

$$k = \frac{2.303}{45} log \frac{0.05}{0.035}$$

$$k = \frac{2.303}{45} log 1.42$$

$$k = \frac{2.303 \times 0.1523}{45} = 0.0078$$

$$t_{1/2} = \frac{0.693}{0.0078} = 88 \, min$$

224 **(a**)

 $r = K[A]^n$ where n is order of reaction when $V_F = 2V_{\text{initial}}$,

then
$$\frac{1}{2}r = K \left[\frac{A}{V}\right]^n$$

 $\therefore \qquad 2 = 2^n \text{ or } n = 1$

225 (a)

$$\frac{-d[N_2O_5]}{dt} = \frac{1}{2} \frac{d[NO_2]}{dt} = \frac{2d[O_2]}{dt}$$
$$\therefore K_1[N_2O_5] = \frac{K_2}{2} [N_2O_5] = 2K_3[N_2O_5]$$

226 (d)

Arrhenius equation gives relation of rate constant with temperature.

$$k = A.e^{-E_a/RT}$$

On taking logarithm, we get

$$\ln k = \ln A - \frac{E_a}{RT} \ln e$$
or $\ln k = \ln A - \frac{E_a}{RT}$

227 (d)

$$k_{27^{\circ}\text{C}} = \frac{0.693}{30} \text{ min}^{-1},$$

$$k_{47^{\circ}\text{C}} = \frac{0.693}{10} \text{ min}^{-1}$$

$$k_{47^{\circ}\text{C}}/k_{27^{\circ}\text{C}} = 3$$

$$\operatorname{Or} \log \frac{k_{47^{\circ}\text{C}}}{k_{37^{\circ}\text{C}}} = \log 3$$

We know that

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 \, R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

So,
$$E_a = \frac{\log 3 \times 2.303 R \times T_1 T_2}{T_2 - T_1}$$

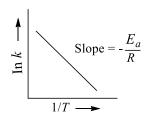
$$=\frac{0.4771 \times 2.303 \times 8.314 \times 300 \times 320}{20}$$

$$= 43.84 \text{ kJ}$$

228 (c)

Increase in the concentration of the reactants leads to the change in collision frequency because greater the concentration, greater is the collision frequency

229 (d)


Arrhenius equation is:

$$k = Ae^{-E_a/RT}$$

$$\ln k = \ln A - \frac{E_a}{RT}$$

$$\ln k = \ln A - \frac{E_a}{RT}$$

Slope =
$$-\frac{E_a}{R}$$

230 **(b)**

Given,
$$k_1 10^{10} e^{-20,000/T}$$

$$k_2 = 10^{12} e^{-24,606/T}$$

$$\nu - \nu$$

$$10^{10}e^{-20,000/T} = 10^{12}e^{-24,606/T}$$

$$e^{\frac{-20,000}{T} + \frac{24,606}{T}} = 10^2$$

$$e^{\frac{4,606}{T}} = 10^2$$

On taking log both sides,

$$\frac{4606}{2.303T} = \log 10^2$$

$$\frac{1}{2.303T} = \log 10^{-3}$$

$$2\log 10 \times T = \frac{4606}{2.303}$$

$$T = \frac{4606}{2.303 \times 2}$$
$$= \frac{4606}{4.606} = 1000 \text{ K}$$

231 **(b)**

The change in molarity $=\frac{n}{V}=\frac{\Delta P}{RT}=\frac{0.8}{0.0821\times273}=$

0.0327

 \therefore rate of reaction = change in molarity per sec

$$= \frac{0.0327}{50 \times 60} = 1.09 \times 10^{-5} \text{ mol litre}^{-1} \text{sec}^{-1}$$

233 (d)

The rate of reaction varies with time as well as with concentration and pressure.

234 (d)

For a first order reaction,

rate = k[reactant]

$$[reactant] = \frac{rate}{k}$$

$$=\frac{2.40\times10^{-5}}{3.0\times10^{-5}}=0.8$$

235 **(b)**

For first order reaction,

$$k = \frac{2.303}{t} \log \frac{a}{a - x}$$

$$k_1 = \frac{2.303}{10} log \frac{33.05}{33.05 - 6.25}$$

$$= 2 \times 10^{-3} \text{min}^{-1}$$

Constant values of k calculated for different times, shows first order reaction.

236 (a)

For I order reaction:

$$[A]_t = [A]_0 \times e^{-Kt}$$

$$= [A]_0 e^{-K \times \frac{1}{K}} = \frac{[A]_0}{e}$$

237 **(d)**

Comparing the slope and intercept of the given equation with the following Arrhenius equation:

$$\log k = -\frac{E_a}{2.303RT} + \log A$$

Hence, $\log A = 6 i.e.$, $A = 10^6 \text{s}^{-1}$

Comparing slope gives $E_a = 38.3 \text{ kJ/mol}$

238 (a)

The factor $-E_a/RT$ is Boltzmann factor and A is frequency factor.

239 **(d)**

Ionic reactions are instantaneous.

240 (c)

$$2NO \rightarrow N_2 + O_2$$

Rate =
$$k[NO]^2$$

Hence, order of reaction is 2

$$H_2 + I_2 \rightarrow 2HI$$

Rate =
$$k[H_2][I_2]$$

Hence, order of reaction is (1+1)=2

Therefore these reactions are most likely to be elementary reaction that occurs in one step.

241 (d)

$$aG + bH \rightarrow Products$$

Suppose order of reaction = n

When concentration of both G and H doubled then rate increases by eight times.

$$rate = k(reactants)^n$$

$$(8) = k(2)^n$$

$$(2)^3 = k(2)^n$$

n=3

When concentration of G is doubled keeping the concentration of H fixed, the rate is doubled.

$$Rate = [G]^1$$

then.

$$Rate = [G]^{1}[H]^{2}$$

242 **(b)**

For a zero order reaction

$$A \rightarrow B$$

$$\frac{-d[A]}{dt} = k$$

$$\operatorname{Or} - \int_{C_0}^{C_t} d[A] = k \int_{t=0}^{t=0} dt$$

$$(C_0 - C_t) = kt$$

Or
$$k = (C_0 - C_t)/t$$

243 (d)

$$t_{99.9\%} = \frac{2.303}{k} \log \frac{a}{a - 99.9a}$$
$$t_{50\%} = \frac{0.693}{k}$$

(b)
$$k = \frac{1}{t} \ln \frac{100}{100 - 99.9} = \frac{1}{t} \ln \frac{100}{0.1}$$

Or
$$\frac{\ln 2}{t_{1/2}} = \frac{1}{t} \ln 10^3$$

Or
$$\frac{\log 2}{t_{1/2}} = \frac{1}{t} \log 10^3 = 3/t$$

$$t_{1/2} = \frac{\log 2}{3} \times t$$

$$\therefore t = 10t_{1/2}$$

245 (a)

Rate constant $k = 1.155 \times 10^{\circ}$

$$k = \frac{2.303}{t} \log \frac{a}{(a-x)} \quad \because a = a, (a-x) = \frac{a}{2}$$
$$t_{1/2} = \frac{2.303}{t} \log \frac{a}{a/2}$$

$$= \frac{2.303}{1.155 \times 10^{-3}} log 2$$

$$= \frac{2.303}{2.303}$$

$$1.155 \times 10^{-3}$$
 2.303

$$= \frac{2.303}{1.155 \times 10^{-3}} \times 0.3010$$

$$= \frac{0.693 \times 10^3}{1.155} = 600 \, s$$

$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{1.155 \times 10^{-3}}$$

= 600 s

246 (c)

For the reaction

$$A + 2B \rightarrow C$$

Rate of reaction at a given instant can be represented by

rate =
$$-\frac{d[A]}{dt}$$
 = $-\frac{1}{2}\frac{d[B]}{dt}$ = $+\frac{d[C]}{dt}$

247 (d)

VSEPR theory is for bonding concept.

248 (c)

$$A \rightarrow B$$

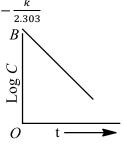
$$\frac{dx}{dt} = k[A]^n$$

$$\frac{dx'}{dt} = k[4A]^n$$

$$\frac{dx'/dt}{dx/dt} = \left(\frac{4}{1}\right)^n$$

$$2 = \left(\frac{4}{1}\right)^n$$

$$n = \frac{1}{2}$$


249 (c)

Rate law
$$\frac{dx}{dt} = k[A]^{1}[B]^{2}[C]^{0} = k[A]^{1}[B]^{2}$$

Hence, order of reaction = 1 + 2 = 3

250 **(b)**

A graph between the log concentration (log c) of reactant and time t for the first order reaction gives a straight line, whose slope is equal to

$$\log_{10} C_A = -\frac{kt}{2.303} + \log_{10} (C_A)_0$$

Hence, the order of the above reaction is one.

251 (a)

$$2\text{FeCl}_3 + \text{SnCl}_2 \rightarrow 2\text{FeCl}_2 + \text{SnCl}_4$$

It is a third order reaction. As the concentration of both FeCl3 and SnCl2 affect the rate of reaction

$$\therefore$$
 Rate = $k[FeCl_3]^2[SnCl_2]$

Hence, order of reaction = 2 + 1 = 3

252 (a)

The order of this reaction over water is zero and in general case it is two. This is an experimental

fact.

253 (a)

Rate = $K[sugar][H_2O]^\circ$.

$$\frac{1}{2} \frac{d[NH_3]}{dt} = -\frac{1}{3} \frac{d[H_2]}{dt}$$

$$\therefore -\frac{d[H_2]}{dt} = \frac{3}{2} \times \frac{d[NH_3]}{dt} = \frac{3}{2} \times 2 \times 10^{-4}$$

$$= 3 \times 10^{-4}$$

255 **(b)**

$$-\frac{d[N_2O_5]}{dt} = \frac{1}{2}\frac{d[NO_2]}{dt} = \frac{2d[O_2]}{dt}$$

256 (c)

Rate constant is characteristic constant of a reaction and depends only on temperature and catalyst.

257 **(c)**

Unit of A depends on unit of k.

258 (a)

Oppositely charged ions are attracted instantaneously to show reaction.

259 **(b)**

for first order reaction,

$$t = \frac{2.303}{k} log \frac{[A]_0}{[A]}$$

$$k = \frac{2.303}{1.386 \times 60 \times 60} log \frac{100}{25}$$

$$k = \frac{2.303 \times 0.6021}{1.386 \times 60 \times 60} = 2.8 \times 10^{-4} s^{-1}$$

260 **(b)**

Molarity =
$$\frac{\text{Mole of solute}}{\text{Volume of solution in litre}}; \text{Also } a$$
$$= b \times c_m$$

261 (d)

We know that if temperature is increased 10°C then velocity increases 2 times.

$$\frac{r_1 + 10}{r_1} = 2$$

Because temperature increases 100°C hence, rate of reaction will increase 2¹⁰ times or 1024 times.

262 **(b)**

$$\frac{-d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt} = \frac{1}{3}\frac{d[C]}{dt} = \frac{d[D]}{dt}$$
$$\frac{d[C]}{dt} = -\frac{3}{2}\frac{d[B]}{dt} = -\frac{3d[A]}{dt} = \frac{3d[D]}{dt}$$

263 **(b)**

We know,
$$\frac{t_1}{t_2} = \left[\frac{a_2}{a_1}\right]^{n-1}$$

Where, t_1 and t_2 are the half-life periods when the initial concentration are a_1 and a_2

According to question

$$t_1 = 0.1s$$
, $a_1 = 200$

$$t_2 = 0.4s$$
, $a_2 = 50$

On substitution the values

$$\frac{0.1}{0.4} = \left[\frac{50}{200}\right]^{(n-1)}$$

On taking log on both sides

$$\log \frac{0.1}{0.4} = (n-1)\log \frac{50}{200}$$

$$0.60 = (n-1) \times 0.60$$

$$(n-1) = \frac{0.60}{0.60} = 1$$

$$n - 1 = 1$$

$$n = 1 + 1 = 2$$

264 (d)

 $A \rightarrow product$

$$-\frac{d[A]}{dt} = k_1[A]^0$$
 Units of $k_1 = Ms^{-1}$ B $\rightarrow product$

$$-\frac{d[B]}{dt} = k_2[B]$$

265 (d)

Choice (c) is an exceptional case. The rate of reaction always increases with increase in temperature.

266 (d)

Slowest step is rate determining step, thus, in case (A), rate law is given as rate = $k[Cl_2][H_2S]$ While for the reaction given in case (B), rate law is given as rate= $k[H_2S][Cl_2][H^+]^{-1}$ Hence, only mechanism (A) is consistent with give rate law.

267 **(b)**

Rate of reaction

$$= \frac{1}{2} \left[\frac{-d[A]}{dt} \right] = \frac{1}{2} \left[\frac{0.5 - 0.4}{10} \right]$$
$$= 0.005 \text{ mol litre}^{-1} \text{min}^{-1}.$$

268 (a)

For 2/3 of a reaction

$$[A]_0 = a, [A] = a - \frac{2}{3} a = \frac{a}{3}$$

$$\because t_{2/3} = \frac{2.303}{k} \log \frac{[A]_0}{[A]}$$

$$=\frac{2.303}{5.48\times10^{-14}}\log\frac{a}{a/3}$$

$$=\frac{2.303}{5.48\times10^{-14}}\log3$$

$$t_{2/3} = 2.01 \times 10^{13} \text{ s}$$

269 (c)

First calculate number of half-lives with

$$C_n = \frac{C_0}{2^n}$$

calculate

 $t_{1/2}$ as $t_{1/2} =$

total time taken

$$\frac{\text{total time taken}}{\text{number of half-lives}} \text{ afterwards}$$

$$t_{1/2} = \frac{0.693}{k}$$

$$50 = \frac{800}{2^n}$$

$$2^n = \frac{800}{50} = 16 = 2^4$$

$$n = 4$$

$$T = n \times t_{1/2}$$

$$t_{1/2} = \frac{2 \times 10^4}{4} = 0.5 \times 10^4 \text{ s}$$

$$k = \frac{0.693}{0.5 \times 10^4} = 1.386 \times 10^{-4}$$

270 (c)

Given N_0 =initial concentration =1

N=concentration after time $t = \frac{1}{8}$

$$K=6.9 \times 10^{-3} s^{-1}$$

$$N = N_0 \left(\frac{1}{2}\right)^n$$

Or

$$\frac{1}{8} = 1 \left(\frac{1}{2}\right)^n$$

$$\therefore n = 3$$

$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{6.9 \times 10^{-3}} = 100s$$

$$T=n \times t_{1/2}$$

$$=3 \times 100$$

$$=300s$$

∴ after 300s it will be reduced to 1/8 of original concentration.

271 **(c)**

Order of reaction is sum of powers raised on concentration terms in order to write rate expression.

272 **(c)**

In Haber's process, ammonia is synthesized as $N_2 + 3H_2 \frac{\text{Fe,Mo,300}^{\circ}\text{C}}{\text{High Pressure}} \rightarrow 2NH_3$

Rate of synthesis of ammonia= $\frac{60}{60}$

=1 mol/min

: Rate of disappearance of nitrogen, i.e.,

$$\frac{-d[N_2]}{dt} = \frac{1}{2} \frac{d[NH_3]}{dt}$$
$$= \frac{1}{2} \times = 0.5 \text{ mol/min}$$

273 (c)

$$t_{1/2} \propto \frac{1}{(a)^{n-1}}$$

For second order reaction, n = 2

$$\therefore t_{1/2} \propto \frac{1}{a}$$

274 (a)

For I order: $(t_{1/2})_1 = \frac{0.693}{K_1}$

For zero order : $(t_{1/2})_0 = \frac{a}{2K_0}$

$$\therefore \frac{K_1}{K_0} \times \frac{1.386}{2 \times 0.693} = \frac{\left(t_{1/2}\right)_0}{\left(t_{1/2}\right)_1}$$

$$\frac{K_1}{K_0} = \frac{20 \times 2 \times 0.693}{40 \times 1.386} = 0.5 \text{ mol}^{-1} \text{litre}$$

275 **(b)**

On increasing the temperature the kinetic energy of the reacting molecules increases and hence, number of collisions increases. So, the rate of reaction will also be increased.

276 **(b)**

For I order reaction,

$$\log(a - x) = \log a - \frac{Kt}{2.303}$$

$$y = c + mx$$

277 **(d)**

The half-life period of a first order reaction is independent of the initial concentration of the reactant

$$t_{1/2} = \frac{0.693}{k}$$

278 (d)

 $\frac{r_{(t+10)}}{2} = 2$ for each 10° rise in temperature $\therefore \frac{r_{100}}{r_{10}} = (2)^9 = 512 \text{ times}$

279 (c)

For zero order reaction,

$$[A] = -kt + [A]0$$

Where, [A]0= initial concentration=a

[A]=remaining concentration= a - a = 0

On putting value of $[A]_0$ and [A],we get

$$t = \frac{a}{k}$$

280 (c)

 $2N_2O_5 \rightleftharpoons 2N_2O_4 + O_2$ Bimolecular but of first order.

281 (a)

For first order reaction:

$$t = \frac{2.303}{k} \log \frac{a}{a - x}$$

For Ist case:

$$a = 100, x = 50, t = 120 \text{ min}$$

$$k = \frac{2.303}{120} \log \frac{100}{100 - 50}$$

$$= \frac{2.303}{120} \log 2$$

$$k = \frac{2.303 \times 0.3010}{120}$$

 $k = 0.0057 \, \mathrm{min^{-1}}$

For the IInd case:

$$t = \frac{2.303}{0.0057} \log \frac{100}{100 - 90}$$

$$= \frac{2.303}{0.0057} \log 10$$

$$t = 404 \min$$

$$\approx 400 \min$$

282 (a)

Order of reaction may be fractional.

283 (a)

Difference in threshold energy barrier gives different values of energy of activation.

Also $K = Ae^{-E_a/RT}$ and rate $= K[\text{reactant}]^n$

284 (d)

Order of reaction is sum of powers raised on concentration terms in order to write rate expression.

285 **(b)**

Let,
$$r = K[A]^m[B]^n$$

 $r_1 = K[A]^m[2B]^n$
 $r_2 = K[2A]^m[2B]^n$
Also, $\frac{r_1}{r} = 2$ and $\frac{r_2}{r} = 8$ (Given)
Therefore $m = 2$ and $n = 1$
 $\therefore r = K[A]^2[B]^1$

286 (d)

The higher threshold energy barrier prevents coal to burn spontaneously and provides kinetic stability to fuel.

287 **(b)**

$$[H^+] = \frac{6 \times 10^{-7} \text{ mol}}{5 \times 10^{-5} \text{ L}} = 1.2 \times 10^{-2} \text{M}$$

$$\text{rate} = \frac{dx}{dt} \text{ or } dt = \frac{dx}{\text{rate}} = \frac{1.2 \times 10^{-2} \text{M}}{6 \times 10^5 \text{ M/s}}$$

$$= 2 \times 10^{-8} \text{ s}$$

289 **(b)**

$$2NO_2 \xrightarrow{k_1} N_2O_4$$

$$Rate = -\frac{1}{2} \frac{d[NO_2]}{dt}$$

$$= k_1[NO_2]^2 - k_2[N_2O_4]$$

$$\therefore \text{ Rate of disappearance of } NO_2$$

$$ie, -\frac{d[NO_2]}{dt} = 2k_1[NO_2]^2 - 2k_2[N_2O_4]$$

290 **(b)**

$$N_{2} + 3H_{2} \rightleftharpoons 2NH_{3}$$

$$\frac{d[H_{2}]}{dt} = -0.3 \times 10^{-4} \text{ Ms}^{-1}$$

$$Rate = -\frac{1}{3} \frac{d[H_{2}]}{dt} = +\frac{1}{2} \frac{d[NH_{3}]}{dt}$$

$$= \frac{d[NH_{3}]}{dt} = -\frac{2}{3} \frac{d[H_{2}]}{dt}$$

$$= -\frac{2}{3} \times (-0.3 \times 10^{-4})$$

$$= 0.2 \times 10^{-4} \text{ Ms}^{-1}$$

291 (d)

For the given reaction,

$$\frac{-d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt} = \frac{1}{3}\frac{d[C]}{dt} = \frac{d[D]}{dt}$$

292 (c)

The order of reaction with respect to a reacting compound *Y*, is zero. It means rate of reaction is independent of its concentration.

293 (d)

Rate of formation of SO_3 = rate of disappearance of SO_2

=
$$1.28 \times 10^{-3}$$
g/sec = $\frac{1.28 \times 10^{-3}}{64}$ M/sec
= $\frac{1.28 \times 10^{-3}}{64} \times 80$ g/sec
= 1.60×10^{-3} g/sec

²94 (c)

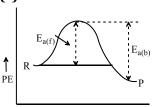
$$N = N_0 \times \left(\frac{1}{2}\right)^n$$

$$\frac{1}{8}N_0 = N_0 \times \left(\frac{1}{2}\right)^n$$

$$N=3$$

$$T = n \times t_{1/2}$$

$$=3 \times 14 = 42s$$


295 (d)

$$\log_e K = \log_4 A - \frac{E_a}{RT}$$
; (Arrhenius eq.)
If $T \to \infty$, then $\log_e K = \log_e A$

296 (c)

For first order reaction, rate=k[concentration] $k = 3 \times 10^{-6}$ per second, concentration=0.1M Rate= $3 \times 10^{-6} \times 0.1$ = $3 \times 10^{-7} ms^{-1}$

297 (c)

Reaction progress -

i.e.,
$$E_{a_{(b)}} > E_{a_{(f)}}$$

Rate = k[A]

$$\therefore k = \frac{10^{-2}}{0.2} = 5 \times 10^{-2}$$

Now,
$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{5 \times 10^{-2}} = 13.86 \text{ min}$$

299 (a)

$$\log K = \log A - \frac{E_a}{RT}$$

$$2.9 = \log A - \frac{E_a}{2.303R \times 769} \qquad ...(i)$$

L1 =
$$\log A = \frac{E_a}{2.303R \times 667}$$
 ... (ii)

Eqs.
$$(i) - (ii)$$

$$1.8 = \frac{E_a}{R} \left[\frac{1}{667} - \frac{1}{769} \right]$$
$$1.8 = \frac{E_a}{R} \frac{[769 - 667]}{667 \times 769 \times 2.303}$$

$$E_a = 4.17 \times 10^4 \text{ cal/mol.}$$

300 **(c)**

$$r = K[P]^{2}[Q]$$

$$r_{1} = K[2P]^{2}[Q]$$

$$\therefore \frac{r_{1}}{r} = 4$$

301 (a)

In the presence of acid, hydrolysis of ethyl acetate is a pseudo-unimolecular reaction but the actual value of k depends upon the concentration of H⁺ ion. As H₂SO₄ is stronger acid than HCl and moreover H⁺ ions produced from 0.05 M H₂SO₄ is double than 0.05 M HCl therefore, $k_1 < k_2$

304 (c)

$$-\frac{d[X]}{dt} = -\frac{1}{2}\frac{d[Y]}{dt} = \frac{d[P]}{dt}$$

305 **(b)**

For first order reaction $t_{1/2} \propto [a]^{\circ}$.

306 (c)

$$t_{50\%} = \frac{0.693}{k} = \frac{0.693}{100} \text{ s}$$

$$= 0.693 \times 10^{-3} \text{ s}$$

≈ 7 milli second

308 (b)

For exothermic reaction $E_a \ge \Delta E$. However, rest all are true.

We have

$$E_{a_{(f)}} = E_{\text{Threshold}} - E_{\text{Reactant}}$$

$$E_{a_{(b)}} = E_{\text{Threshold}} - E_{\text{Product}}$$

Thus,
$$E_{a_{(f)}} - E_{a_{(b)}} = E_{Product} - E_{Reaction} = \Delta E$$

If,
$$\Delta E = -\text{ve then } E_{a_{(f)}} < E_{(b)}$$

If,
$$\Delta E = +\text{ve then } E_{a_{(b)}} > E_{(f)}$$

309 **(b)**

Rate constant is characteristic of a reaction.

310 **(b)**

For a first order reaction, Arrhenius equation is given as

$$k = A. e^{-E_a/RT}$$

where, E_a =energy of activation

$$\frac{k_2}{k_1} = \frac{e^{-E_a/RT_1}}{e^{-E_a/RT_2}} \\
= e^{E_a/RT_2 - E_a/RT_1} \\
= e^{\frac{E_a}{R}} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \\
= e^{\frac{E_a}{R}} \left(\frac{T_2 - T_1}{T_1 T_2}\right)$$

Taking log on both the sides, we get

$$\log \frac{k_2}{k_1} = \log e^{\frac{Ea}{R}} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

$$= \frac{E_a}{2.303R} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

311 (a)

24 g of Na has 6.02×10^{23} atoms

$$2 \times 10^{-4}$$
 g of Na will have = $\frac{6.02 \times 10^{23}}{24} \times 2 \times 10^{-4}$ atoms

$$= 0.502 \times 10^{19}$$
 atoms

$$k = \frac{\text{disintegration (in atom s}^{-1})}{\text{no. of atoms present}}$$

$$=\frac{7.0\times10^{12}}{0.502\times10^{19}}$$

$$= 13.94 \times 10^{-7} \text{ s}^{-1}$$

Therefore,
$$t_{1/2} = \frac{0.693}{13.94 \times 10^{-7}} = 4.97 \times 10^5 \text{ s}$$

312 (d)

$$k = \frac{2.303}{t} log \frac{A_0}{A}$$
$$= \frac{2.303}{t} log \frac{0.1}{0.005}$$
$$= \frac{2.303}{t} log 20 = 0.075$$

Rate of reaction when concentration of X is $0.01\ M$ will be

$$0.075 \times 0.01 = 7.5 \times 10^{-4} \text{min}^{-1}$$

313 (c)

For a zero order reaction

$$A \rightarrow \text{product}$$

Rate =
$$\frac{-d[A]}{dt} = k[A]^0 = k$$

$$-d[A] = k \cdot dt$$

Integrating the above equation

$$-\int d[A] = k \int dt$$
$$-[A] = kt + \theta \qquad \dots (i)$$

At
$$t = 0$$
, $A[A]_0$

$$-[A]_0 = k \times 0 + \theta$$

$$\theta = -[A]_0$$

$$\therefore -[A] = kt - [A]_0$$

Or
$$[A] = -kt + [A]_0$$

314 (c)

$$2A + B \rightarrow C$$

Rate=k[A][B]

It represents second order reaction.

Thus, unit of k is $M^{-1}S^{-1}$

∴ (a) is false

 T_{50} is dependent of concentration but not constant

$$-\frac{1}{2}\frac{d[A]}{dt} = \frac{d[C]}{dt},$$

thus (C)is correct

315 **(b)**

For *nth* order reaction the unit of k is expressed

 $conc.^{(1-n)} time^{-1}$

Hence, for second order, the unit of rate constant

$$conc.^{(1-2)} time^{-1}$$

 $conc.^{-1} time^{-1}$

$$conc.^{-1} time^{-1}$$

316 (a)

$$t = \frac{2.303}{k} \log \frac{[A]_0}{[A]}$$

$$= \frac{2.303}{60} \log \frac{a}{\frac{a}{16}} = \frac{2.303}{60} \log 16$$

$$=\frac{2.303}{60}\times 1.204$$

$$= 0.0462 s$$

$$= 4.6 \times 10^{-2} \text{s}$$

317 **(b)**

The rate constant of reaction depends upon

temperature.

318 (c)

If the temperature is increased by 60°C then 10° increase has been made 6 times and therefore, rate will increase by $2^6 = 64$ times

320 (d)

Rate of reaction depends upon nature of reactants, concentration of the reactants, temperature and presence of catalyst.

321 (a)

No doubt an increase in temperature may increase no. of collisions also but this is the increase in number of effective collisions (with more energy) which decide the rate.

322 (c)

From slow step, rate = $k[B_2][A]$

From 1st equation
$$k_{eq} = \frac{[A]^2}{[A_2]}$$

$$Or[A] = \sqrt{k_{eq}[A_2]} = k_{eq}^{1/2} A_2^{1/2}$$

Hence, rate =
$$k[B_2] k_{eq}^{1/2} A_2^{1/2}$$

$$= k'[A_2]^{1/2}[B_2]$$

Hence, order

$$=1\frac{1}{2}$$

323 (a)

According to formula $k = PZe^{-\frac{E_a}{RT}}$ Lowering of E_a (activation energy), raises the value of *k*.

324 (c)

$$k = Ae^{-\frac{E_a}{RT}}$$

k = rate constant

A = pre-exponential, frequency factor

 E_a =activation energy

R = gas constant

T = temperature

325 **(b)**

Slowest step of mechanism decides the rate expression,

Thus, rate = $K[NO_2][F_2]$

326 (d)

Net rate of reaction = rate of forward reaction rate of backward reaction

$$= K_f[reactants] - K_h[Product]$$

Also $K_c = \frac{K_f}{K_h}$ at equilibrium.

327 (a)

When volume is reduced to one fourth, concentration become four times. Hence, the rate of reaction becomes 16 times as compared to the initial rate.

328 **(c)**

We know that,

$$t_{1/2} = \frac{0.693}{k}$$
or $k = \frac{0.693}{t_{1/2}} = \frac{0.693}{480}$

$$= 1.44 \times 10^{-3} s^{-1}$$

329 (d)

Number of collisions of one molecules/unit time—*X*

Number of collision of N molecules/unit time=NX.

As in one collision, two molecules are involved, collision frequency=NX/2.

330 **(a)**

$$K=2.34s^{-1}$$

Unit of k suggest that the reaction is of 1^{st} order, hence for 1^{st} order reaction,

$$t_{1/2} = \frac{0.693}{k}$$
$$= \frac{0.693}{2.34} = 0.30s$$

331 **(b)**

For zero order reaction integrated rate equation

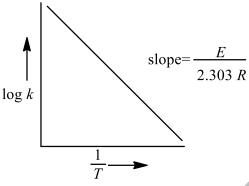
$$kt = [A]_0 - [A]$$
If $[A]_0 = a$, $[A] = \frac{a}{2}$, $t = t_{1/2}$

$$kt_{1/2} = a - \frac{a}{2}$$

$$kt_{1/2} = \frac{a}{2}$$

$$kt_{1/2} = \frac{a}{2}$$
$$t_{1/2} = \frac{a}{2k}$$

$$\therefore t_{1/2} \propto a$$


332 **(a)**

Arrhenius equation $k = Ae^{-\frac{E}{RT}}$

$$\ln k = \ln A - \frac{E}{RT}$$

$$\log k = \log A - \frac{E}{2.303 \, RT}$$

Hence, \vec{E} is calculated with the help of slope of following.

333 **(b)**

 $k = 2.1 \times 10^{10} \exp(-2700/RT)$ ie, $\log k \, vs \, 1/T$ will be straight line Intercept of $\log k \,$ axis = $\log 2.1 \times 10^{10}$

$$\frac{dA}{dt} = k[A]^2$$

K= reaction rate constant

Then unit of second order reaction rate constant

$$k = -\frac{d[A]}{dt} \times \frac{1}{[A]^2}$$
$$= \frac{1}{s \cdot mol \ L^{-1}}$$

 $or \ L \ mol^{-1} s^{-1} or \ L \ mol^{-1} t^{-1}$

335 **(a)**

Given,
$$R_1 = k[A]^2[B]$$

Let concentration of B is changed by x times.

$$R_2 = k[A/2]^2[xB]$$

= $k \times x/4[A]^2[B]$
= $x/4 \times k[A]^2[B]$
As $R_2 = R_1$, thus $x = 4$

336 **(b)**

The intermediates species is one which is formed and used up during the course of reaction.

337 **(d)**

Integrated rate expression for 1/2 order is $-2c^{1/2} = Kt - 2c_0^{1/2}$.

338 (a)

If the order of reaction w.r.t. A is n and the order of reaction w.r.t. B is m, rate law become Rate $=k[A]^n[B]^m$

$$5 \times 10^{-5} = [0.20]^n [0.30]^m \dots (i)$$

From (2)

$$5 \times 10^{-5} = [0.20]^n [0.10]^m \dots (ii)$$

From (3)

$$1 \times 10^{-4} = [0.40]^n [0.05]^m \dots (iii)$$

or
$$10 \times 10^{-4} = [0.40]^n [0.05]^m$$

from eqs.(i) and (ii)

$$\frac{5 \times 10^{-5}}{5 \times 10^{-5}} = \left[\frac{0.20}{0.20}\right]^n \left[\frac{0.30}{0.10}\right]^m$$

$$1 = (3)^m \Rightarrow (3)^0 = (3)^m \Rightarrow m = 0$$
From eqs. (iii) and (iv)
$$\frac{5 \times 10^{-5}}{5 \times 10^{-5}} = \left[\frac{0.20}{0.40}\right]^n \left[\frac{0.10}{0.05}\right]^m$$

$$\frac{1}{2} = \left(\frac{1}{2}\right)^n \times \left(\frac{0.10}{0.05}\right)^0$$

$$\Rightarrow \frac{1}{2} = \left(\frac{1}{2}\right)^n \Rightarrow \left(\frac{1}{2}\right)^1 = \left(\frac{1}{2}\right)^n \Rightarrow n = 1$$

Overall order of the reaction = n + m = 1 + 0 = 1

339 **(b)**

For II order reaction, $t = \frac{1}{K} \frac{x}{a(a-x)}$;

if
$$x = a/2$$
, $t_{1/2} = \frac{1}{K \cdot a}$.

340 (c)

$$2.303 \log \frac{K_2}{K_1} = \frac{E_a}{R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$

$$\therefore 2.303 \log \frac{K_2}{K_1} = \frac{65 \times 10^3}{8.314} \left[\frac{25}{298 \times 273} \right]$$

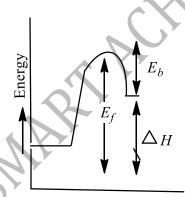
$$\therefore \frac{K_2}{K_1} = 11.05$$

341 **(b)**

Arrhenius equation is,

Rate constant, $k = Ae^{-E_a|RT}$

$$k = Ae^{-2.303 RT/RT}$$


$$\frac{k}{A} = e^{-2.303}$$

On solving, we get

$$\frac{k}{A} = 10^{-1}$$

342 (d)

 $X \rightarrow Y$ is an endothermic reaction $\Delta H = +$ ve

 E_b = energy of activation of backward reaction E_f = energy of activation of forward reaction

 ΔH = heat of reaction

Thus, $E_f = E_b + \Delta H$

Thus, $E_f > E_b$

343 (c)

 $[A]_{left} = [B]_{formed} = n \times [A]_{decayed}$

$$A_0 e^{-\lambda t} = n \times A_0 [1 - e^{\lambda t}]$$

$$\therefore e^{-\lambda t} = \frac{n}{n+1}$$

$$\therefore [B]_{\text{formed}} = n \times A_0 \times \left[1 - \frac{n}{n+1}\right] = \frac{nA_0}{n+1}$$

344 (c)

Three molecules are taking part in elementary step.

345 **(b)**

The rate expression is derived for slowest step of mechanism.

346 **(a)**

$$t_1 = \frac{\left(t_{1/2}\right)_1}{0.693} \ln\left(\frac{1}{1 - (1/4)}\right)$$

And
$$t_2 = \frac{(t_{1/2})_2}{0.693} \ln \left(\frac{1}{1 - (3/4)} \right)$$

$$\frac{t_1}{t_2} = \frac{8}{1} \times \frac{\ln(4/3)}{\ln 4}$$

$$= \frac{8 \times 0.125}{0.602} = \frac{0.001}{0.602}$$

$$= 1 : 0.602$$

348 **(b)**

For zero order reaction

$$kt = [A]_0 - [A]$$
For $t_{1/2}$, $[A] = [A]_0/2$

$$\therefore kt_{1/2} = [A]_0 - [A]_0/2$$

$$= \frac{[A]_0}{2}$$

$$t_{1/2} = \frac{[A]_0}{2k}$$

349 (a)

Given, $R = k[A][B]^2$ Where [A] = [2A] and B = [2B] $R' = k[2A][2B]^2$ $= k[2A]4[B]^2$ $= 8k[A][B]^2$ R' = 8R

Thus, the rate will become eight times

351 (d)

A decrease in E_a will increase rate constant K and thus rate of reaction increases.

352 (a)

The temperature coefficient is the ratio of two velocity constants having the difference of 10°C.

Temperature coefficient

$$=\frac{k_t+10}{k_t}$$

For most of the reactions its value lies between 2 and 3.

353 **(c)**

$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{693} = 0.001 \text{ s}^{-1}$$

354 **(b)**

$$-\frac{1}{3}\frac{d[H_2]}{dt} = \frac{1}{2}\frac{d[NH_3]}{dt}$$

$$\therefore -\frac{d[H_2]}{dt} = \frac{3}{2} \times \frac{d[NH_3]}{dt}$$

$$= \frac{3}{2} \times \frac{10^{-3} \times 10^3}{17} \text{ mol hr}^{-1}$$

$$= \frac{3}{2} \times \frac{10^{-3} \times 10^3}{17} \times 2 \times 10^{-3} \text{ kg hr}^{-1}$$

$$= 1.76 \times 10^{-4} \text{kg hr}^{-1}$$

355 (a)

For I order reaction,
$$K = \frac{2.303 \log_{10} 2}{t_{1/2}}$$

$$\therefore \qquad t_{1/2} = \frac{0.693}{K} = \frac{\ln 2}{K}$$

356 **(b)**

For second order reaction $r = k[A]^2$...(1)

When concentration of A(reactant)is doubled $r' = k[2A]^2$ $r' = 4k[A]^2$... (2) Comparing Eqs.(1) and (2)

357 (a)

r' = 4r

With increase in temperature reaction rate increases due to increase in number of molecules having threshold energy.

358 (c)

The value of first order rate constant expends on the units of the concentration term used is not the correct statement.

359 (c)

Since rate constant = 1.0×10^7 mol litre⁻¹ sec⁻¹ ∴ Zero order reaction.

For zero order $t = \frac{x}{v} =$

concentration used rate constant

 $: 0.05 \text{ mL has } 3 \times 10^{-6} \text{mole of H}^+$

∴ 1000 mL has $\frac{3 \times 10^{-6} \times 10^{3}}{0.05}$ $= 0.6 \times 10^{-1}$ mol/litre of H⁺

: By Eq. (i), $t = \frac{0.6 \times 10^{-1}}{1 \times 10^{7}} = 6 \times 10^{-9}$ second

360 (c)

 $2A + B \rightarrow \text{products}$

Rate of reaction, $r_1 = k[A]^2[B]$

If the concentration of *A* become double then the rate will be

 $r_2 = k[2A]^2[B]$ $r_2 = 4k[A]^2[B]$

$$r_2 = 4r_1$$
 361 **(c)**

From
$$t_{1/2} \propto C_0^{1-n}$$

Where, n =order of reaction

For second order n = 2


$$\label{eq:t12} \begin{split} & \therefore t_{1/2} \propto C_0^{1-2} \\ & t_{1/2} \propto C_0^{-1} \end{split}$$

362 **(b)**

10% of the reaction is completed in 20min .Next 20% of the reaction will be completed in next 20min. Hence, 10%+9%=19% of the reaction will be completed in 20+20=40min.

363 **(b)**

A graph plotted between $\log k$ versus $\frac{1}{r}$ for calculating activation energy is shown as:

From Arrhenius equation

$$\log k = \log A - \frac{E_a}{2.303 \, RT}$$

364 (a)

$$A \rightarrow B + C$$

$$t_{1/2} = \frac{a}{2k} = \frac{1}{2 \times 0.001} = 500 \text{ s}$$

And
$$T = \frac{a}{k} = \frac{1}{0.001} = 1000 \text{ s}$$

365 (c)

$$r \propto [CO]^{2}$$

$$r^{1} \propto [2CO]^{2}$$

$$r^{1} \propto 4[CO]^{2}$$
Hence,
$$\frac{r^{1} \propto 4[CO]^{2}}{r^{1} \propto [CO]^{2}}$$

$$r^{1} \propto 4r$$

366 (a)

$$2A \rightarrow B + C$$

 $2p \quad 0 \quad 0$
 $2p-x \quad x \quad x \quad after \ 10 \ min$
 $0 \quad p \quad p \quad after \ completion$

Given, P+P=200

After 10 min,

$$2p - x + x + x = 300$$
 (given)

$$2p + x = 300$$

$$x = 300 - 200 = 100$$

$$k = \frac{2.303}{10} log \frac{200}{100} = 0.0693 \text{ min}^{-1}$$

367 **(a)**

Arrhenius equation is written as

$$k = Ae^{-E_a/RT}$$

Taking logarithm, above equation may be written

$$\ln k = \ln A - \frac{E_a}{R} \times \frac{1}{T}$$

$$\therefore \ln k_1 = \ln A - \frac{E_a}{R} \times \frac{1}{T_1} \qquad \dots$$

$$In k_2 = In A - \frac{E_a}{R} \times \frac{1}{T_2} \qquad ... (ii)$$

Subtracting the Eq. (i) from Eq. (ii)

$$\ln k_2 - \ln k_1 = \frac{E_a}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

368 **(b)**

$$c_{12}H_{22}O_{11} + H_2O \xrightarrow{Dil.acid} C_6H_{12}O_6 + C_6 + H_{12}O_6$$
Excess glucose fructose

when one of the reactant is present in large excess, the second order reaction confirms to the first order and is knows as Pseudo-unimolecular reaction

369 (d)

Rate of reaction = $-\frac{1}{3}\frac{d[H_2]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{2}\frac{d[NH_3]}{dt}$

370 **(b)**

$$r = K[A]^n$$

$$2.4 = K[2.2]^n$$

$$2.4 = K[2.2]^n$$
$$0.6 = K[1.1]^n$$

$$4 = (2)^n \text{ or } n = 2$$

371 **(b)**

$$\frac{dx}{dt} = k[A]^2$$

$$k = \frac{dx}{dx}$$

$$dt[A]^2$$

$$=\frac{mot(L)}{L\times s\times (mol)^2}$$

 $mol^{-1}Ls^{-1}$

372 (a)

 $A \rightarrow product$ (first order reaction)

For first order reaction,

Rate constant (k)= $\frac{2.303}{t}log_{10}\frac{[A]_0}{[A]_t}$

At

t = 40 min.

$$=\frac{2.303}{40}log_{10}\frac{0.1}{0.025}=\frac{2.303}{40}log_{10}4$$

$$\frac{2.303}{40} \times 2log_{10}2 = \frac{2.303}{40} \times 2 \times 0.3010$$

$$=0.0347 \, \text{min}^{-1}$$

At concentration of A = 0.01 M = [A]

Rate
$$\frac{dx}{dt}k[A]$$

$$\frac{dx}{dt} = 0.0347 \times 0.01$$

$$= 3.47 \times 10^{-4} mol L^{-1} min^{-1}$$

373 (a)

$$2A + B \rightarrow A_2B$$

$$r_1 = k[A]^2[B]$$

$$r_2 = k[2A]^2[B/2]$$

Or
$$r_2 = 2k[A]^2[B]$$

$$\therefore r_2 = 2r_1$$

375 (a)

Given that, $k = 2.34s^{-1}$ unit of 'k' suggest that the reaction is of Ist order, hence for Ist order reaction,

$$t_{1/2} = \frac{0.693}{1}$$

=0.30 s

376 (c)

$$2.303 \log \frac{K_2}{K_1} = \frac{E_a}{R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]; T_1 = 280 \text{ K},$$

$$T_2 = 290 \text{ K}; \frac{K_2}{K_1} = 2$$

2.303
$$\log \frac{K_2'}{K_1'} = \frac{E_a}{R} \left[\frac{T_2' - T_1'}{T_1' T_2'} \right]; T_1' = 290 \text{ K}; T_2$$

= 310 K

377 (c)

Arrheniu equation gives relation between rate constant and temperature of a reaction. It can be written in many forms, as

$$k = Ae^{-E_a/RT}$$

Where, k = rate constant

 E_a = activation energy

T =absorbption temperature

A =frequency factor

378 (c)

Order of reaction is sum of the power raised on concentration terms to express rate expression.

379 **(b)**

$$k = Ae^{-E/RT}$$

E is activation energy, it is that energy, which molecule must have to give the product.

381 **(b)**

$$\frac{K_{t+10}}{K_t} = \frac{r_t + 10}{r_t} = 2;$$

For an increase of temperature to 50°C, i. e., 5 times, the rate increases by 2^5 times, *i.e.*, 32 times.

382 (a)

$$A_2(g) \longrightarrow B(g) + \frac{1}{2}C(g)$$

$$\therefore -\frac{d[A_2]}{dt} = 2 \cdot \frac{d[C]}{dt} = \frac{d[B]}{dt}$$

Also the increase in pressure is due to the formation of C because one mole of A_2 gives one mole of B and half mole of C.

Thus,

$$\frac{d[C]}{dt} = \frac{120 - 100}{5} = 4 \text{ mm min}^{-1}$$

383 **(b)**

The units of the rate constant for nth order reaction is $\left(\frac{mol}{L}\right)^{1-n} s^{-1}$

 \therefore for second order reaction,

Unit of rate constant $\left(\frac{mol}{l}\right)^{1-n} s^{-1}$ $mol^{-1}Ls^{-1} = L / mol - s$

384 **(b)**

However, order should not be suggested from chemical equation. This question is not correct.

385 (c)

$$A + B \rightarrow C$$

On doubling the concentration of A, rate of reaction increases by 4 times.

$$\therefore$$
 rate $\propto [A]^2$ (w.r.t. A)

However, on doubling the concentration of B rate of reaction increases two times.

$$\therefore$$
 rate $\propto [B]^2$ (w.r.t.B)

Thus, overall order of reaction =2+1=3

386 (d)

$$K_1 = A_1 e^{-E_1/RT}$$
 and $K_2 = A_2 e^{-E_2/RT}$
 $\frac{K_1}{K_2} = \frac{A_1}{A_2} e^{(-E_1 + E_2)/RT}$; A_1 and A_2 are not given.

387 (a)

$$H_2 + I_2 \rightarrow 2HI$$

Rate of reaction,

$$= \frac{-d[H_2]}{dt} = \frac{-d[I_2]}{dt} = \frac{1}{2} \frac{d[HI]}{dt}$$
Or
$$= \frac{-2d[H_2]}{dt} = \frac{-2d[I_2]}{dt} = \frac{d[HI]}{dt}$$

388 (c)

87.5% completion means 3 half lives.

389 **(b)**

$$k = \frac{0.693}{t_{1/2}}$$

$$k = \frac{0.693}{10} \text{ yr}^{-1}$$

$$t = \frac{2.303}{k} \log \frac{a}{a - x}$$

$$= \frac{2.303 \times 10}{0.693} \log \frac{a}{a - 0.99a}$$

$$= \frac{23.03}{0.693} \log 100$$

$$t = \frac{23.03}{0.693} \times 2 = 66.46 \text{ yr} \approx 70 \text{ yr}$$

391 (a)

Luminescence is the emission of light by a substance for any reason other than rise in its temperature.

- 1. Chemiluminescence it is luminescence resulting from a chemical reaction, this is emission of visible light
- 2. **Phosphorescence** if the luminescence persists significantly after the existing cause is removed, it is called phosphorescence if it does not, and it is called **fluorescence**.
- Bioluminescence It is luminescence produced by living organism *e.g.*, firefly.

392 **(b)**

Reactions having low E_a are fast reactions and reactions having high E_a are slow reactions. If the E_a is high, then the number of effective collisions will be small and the reaction will be slow.

393 **(b)**

For the reaction,

$$3A \rightarrow 2R$$

$$Rate = -\frac{1}{3}\frac{d[A]}{dt} = +\frac{1}{2}\frac{d[B]}{dt}$$
$$\therefore +\frac{d[B]}{dt} = -\frac{2}{3}\frac{d[A]}{dt}$$

394 (a)

For first order reaction the half-life period is independent of the initial concentration of the reactants.

$$t_{1/2} = \frac{0.693}{k}$$

395 (a)

First order kinetics,
$$k_1 = \frac{0.693}{t_{1/2}} = \frac{0.693}{40} s^{-1}$$

Zero order kinetics, $k_0 = \frac{C_0}{2t_{1/2}} = \frac{1.386}{2 \times 20}$

Hence,
$$\frac{k_1}{k_0} = \frac{0.693}{1.386} = 0.5$$

396 (a)

Given,
$$r = KC_A^{3/2} c^{-1/2}$$

$$\therefore$$
 order of reaction $=\frac{3}{2}+\left(-\frac{1}{2}\right)$

$$=\frac{3-1}{2}=1$$

397 **(b**)

$$A_1 \cdot e^{-E_{a_1}/RT} = A_2 \cdot e^{-E_{a_2}/RT}$$

$$\frac{A_2}{A_1} = e^{(E_{a_2} - E_{a_1})/RT}$$

$$10^2 = \exp\left(\frac{1200}{RT}\right)$$

$$2 \ln 10 = \frac{1200}{2T}$$

$$T = \left(\frac{600}{4.606}\right) K$$

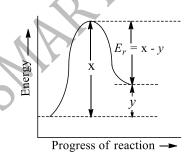
398 (d)

Nature and concentration of the reactants and temperature of the reaction influence the rate of reaction. But molecularity does not affect the rate of reaction as it includes the number of atoms, ions or molecules that must collide with one another to result into a chemical reaction.

399 (a)

$$k_I = \frac{\Delta[R]}{\Delta t} = \frac{0.25}{0.05} = 5$$

 $k_{II} = \frac{\Delta[R]}{\Delta t} = \frac{0.60}{0.12} = 5$


So reaction must be zero order

400 **(b)**

For zero order, x = Kt, i.e., y = mx + c; \therefore c = 0 or line passes through origin.

402 (d)

For an endothermic reaction

403 (d)

For a zero order reaction rate and rate constant are independent of reactant concentration

404 (c)

Rate constant is a characteristic constant for a given reaction.

405 (c)

The rate law for an elementary step can be given by simply observing the rate expression.

406 (a)

Threshold energy level is a characteristic of a reaction which may be however lowered, if catalyst is used.

407 **(b)**

$$t_{1/2} = 69.3 \,\mathrm{sec}$$
 $\therefore K = \frac{0.693}{69.3} = 10^{-2} \mathrm{sec}^{-1}$
Now, $r = K[A] = 10^{-2} \times 0.1 = 10^{-3} M \,\mathrm{sec}^{-1}$

408 **(b)**

(b)
Rate =
$$k[N_2O_5]$$

 $2.4 \times 10^{-5} = 3.0 \times 10^{-5}[N_2O_5]$
 $[N_2O_5] = \frac{2.4 \times 10^{-5}}{3.0 \times 10^{-5}} = 0.8 \text{ mol L}^{-1}$

409 **(b)**

Enzyme catalysed reactions decreases energy of activation to greater extent.

410 (a)

 $k = Ae^{-E_a/RT}$, As temperature increases kincreases exponentially.

411 (a)

For the homogenous gaseous reaction,

$$A + B \xrightarrow{k} c$$
, the rate law is $\frac{dx}{dt} = k[A][B]$

$$\frac{d}{dt} = k[A][I]$$

$$k = \frac{dx}{dt \times [A][B]}$$
$$mol \ L^{-1}$$

 $\overline{time \times mol \ L^{-1} \times mol \ L^{-1}}$ Or unit of rate constant 'k' is $mol^{-1}L time^{-1} or mol^{-1}Ls^{-1}$.

412 (a)

For zero order reaction, $K = \frac{x}{t}$ If x = a (complete reactant to react);

413 **(b)**

for two-third of a reaction,

$$[A]_0 = a, [A] = a - \frac{2}{3}a = \frac{a}{3}$$

$$t_{2/3} = \frac{2.303}{k} log \frac{[A]_0}{[A]}$$

$$= \frac{2.303}{k} log \frac{a}{\frac{a}{3}} = \frac{2.303}{k} log 3$$

$$t_{2/3} = \frac{2.303 \times 0.4771}{5.48 \times 10^{-14}} = 2.01 \times 10^{13} s$$

414 (d)

Rate constant almost gets doubled by the increase of 10°C in temperature. Hence, the rate constant at 310 K will be

$$=3.2\times10^{-3}\times(2)^{2}$$

(∵increase in temperature=20 K)

$$= 1.28 \times 10^{-2} J^{-1}$$

415 (a)

Unit of
$$k = conc^{1-n}t^{-1}$$

$$\left(\frac{mol}{L}\right)^{1-4}t^{-1}$$

$$\left(\frac{mol}{L}\right)^{-3}t^{-1}$$

Therefore, the unit of k is

$$\left(\frac{mol}{L}\right)^{-3}t^{-1}$$
 for fourth order reaction.

416 (d)

It is the definition of chemical kinetics.

417 **(b)**

$$r = K[N_2O_5]$$

$$\therefore [N_2 O_5] = \frac{r}{K} = \frac{1.02 \times 10^{-4}}{3.4 \times 10^{-5}} = 3M$$

418 (a)

For 50% *B* reacted,
$$K_2 = \frac{2.303}{t_2} \log \frac{100}{50}$$

For 94% *A* reacted,
$$K_1 = \frac{2.303}{t_1} \log \frac{100}{6}$$

$$\frac{K_2}{K_1} = \frac{t_2}{t_1} \times \frac{0.3010}{1.2218}$$

Since $t_2 = t_1$, because 50% *B* has reacted when

$$\therefore \frac{K_2}{K_1} = \frac{0.3010}{1.2218} = 0.246 \text{ and } \frac{K_1}{K_2} = 4.06$$

419 **(b)**

For first order half-life period is independent of initial concentration

420 (c)

$$K_1 = Ae^{-Ea/RT}$$

$$K_2 = Ae^{-[E_a-2]/RT}$$

$$K_a - \Delta \rho^{-}[E_a-2]/RT$$

$$\frac{K_1}{K_2} = e^{2/RT} = e^{2/2 \times 10^{-3} \times 300} = 28$$

421 (d)

Rate = $K_1[A] - K_2[B]$ for a reversible reaction of I order opposed by I order.

422 **(b)**

For Ist order reaction

$$k = \frac{2.303}{t} \log \frac{[A]_0}{[A]}$$

If
$$[A]_0 = a$$
, $[A] = a - \frac{a \times 20}{100} = 0.80a$

$$t = 10 \, \text{min}$$

$$k = \frac{2.303}{10} \log \frac{a}{0.80 \ a} = \frac{2.303}{10} \times 0.0969$$

$$= 0.0223$$

If
$$[A]_0 = a$$
, $[A] = a - \frac{a \times 75}{100} = 0.25 a$

$$t = \frac{2.303}{k} \log \frac{[A]_0}{[A]}$$

$$=\frac{2.303}{0.0223}\log\frac{a}{0.25\,a}$$

$$=\frac{2.303}{0.0223}\times0.6021$$

$$= 62.18 \, \text{min}$$

423 **(b)**

Order of radioactive disintegration reaction is first. For example

$$_{88}Ra^{226} \rightarrow_{86} Rn^{222} +_{2}He^{4}$$

Radium radon a-par

424 **(a)**

$$C_4H_8 \xrightarrow{\Delta} 2C_2H_4$$

Mole at
$$t = 0$$
 a 0

Mole at
$$t = t (a - x) 2x$$

When
$$\frac{2x}{a-x} = 1$$
, then $x = \frac{a}{3}$

$$t = \frac{2.303}{K} \log \frac{a}{a - x}$$

$$= \frac{2.303}{2.48 \times 10^{-4}} \log \frac{a}{a - \frac{a}{3}}$$

$$= 1635.2 \text{ second} = 27.25 \text{ minute}$$

425 (a)

If energy of activation for forward and backward reactions are same, reaction is neither exothermic not endothermic.

426 (c)

Half-life=6.93 min

$$k = \frac{0.693}{6.93} = 0.1$$

We know k_1 for per cent completion

$$k_1 = \frac{2.303}{t} \log\left(\frac{100}{1}\right)$$

$$0.1 = \frac{2.303}{t} \log \frac{100}{1}$$

$$0.1 = \frac{2.303}{t} \log 10^2$$

$$t = \frac{2.303 \times 2}{0.1} = 46.06$$

427 **(b)**

Rate =
$$K[N0]^2[O_2]^1$$
;

Concentration of each species are reduced by 1/2

on increasing volume to two times and thus, rate becomes 1/8 times of initial rate.

428 **(c)**

The rate of reaction is

$$rate = k[NO]^2[O_2]$$

When the volume is reduced to $\frac{1}{3}$, the concentration of each reactant is increased by 3 times

rate' =
$$k[3N0]^2[30_2]$$

$$= 27k[N0]^2[0_2]$$

$$\frac{\text{rate}'}{\text{rate}} = \frac{27k[\text{NO}]^2[\text{O}_2]}{k[\text{NO}]^2[\text{O}_2]}$$

$$rate' = 27 rate$$

429 (a)

$$K = 10^{-2} \text{mol}^{-1} \text{litre sec}^{-1}$$

$$= \frac{10^{-2} \times 1000 \times 60}{6.02 \times 10^{23}} \text{ cc molecule}^{-1} \text{min}^{-1}$$
$$= 9.9618 \times 10^{-22} \text{ cc molecule}^{-1} \text{ min}^{-1}$$

431 **(d)**

Activation energy of a reaction is constant at constant temperature hence, $E_1 = E_2$

432 **(b)**

Rate
$$(r) = k[A][B] = kab$$

When volume is reduced by one fourth then concentration becomes 4 times

Hence,
$$r' = k(4a)(4b)$$

$$= 16kab$$

$$\therefore r' = 16r$$

433 **(b)**

The reactant taken in excess obeys zero order reaction;

$$r = K[B]$$
.

434 (a)

For first order reaction,

$$t = \frac{2.303}{k} log \frac{[A]_0}{[A]}$$

$$[A]_0 = 5g, [A] = 3g k = 1.15 \times 10^{-3} s^{-1}$$

$$t = \frac{2.303}{1.15 \times 10^{-3}} \log \frac{5}{3}$$

$$= \frac{2.303}{1.15 \times 10^{-3}} [log5 - log3]$$

$$= \frac{2.303}{1.15 \times 10^{-3}} \times 0.2218$$

$$= 444s$$

435 (d)

For II order reaction $\frac{c_0 - c}{c} = K \cdot t \cdot c_0$.

436 **(b)**

We know,

Given,
$$T_1 = 27 + 273 = 300 \, KK_1 = k$$

 $T_2 = 37 + 273 = 310K \, K_2 = 2k$
 $R = 8.314 \times 10^{-3} \, \text{kJ}$
 $2.303 \log \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{T_2 - T_1}{T_1 - T_2} \right)$

$$2.303 \log \frac{1}{k_1} = \frac{1}{R} \left(\frac{1}{T_1 - T_2} \right)$$

$$2.303 \log \frac{2k}{k} = \frac{E_a}{8.314 \times 10^{-3}} \times \left(\frac{310 - 300}{310 \times 300} \right)$$

$$2.303 \log 2 = \frac{E_a}{8.314 \times 10^{-3}} \times \frac{10}{93000}$$

$$2.303 \times 0.3010 = \frac{E_a}{8.314 \times 10^{-3}} \times 0.000108$$

$$E_a = \frac{2.303 \times 0.3010 \times 8.314 \times 10^{-3}}{0.000108}$$
$$= \frac{5.7633 \times 10^{-3}}{0.000108}$$
$$E_a = 53.363 \text{ kJ}$$

437 **(d)**

If the concentration of reactants is increased by x, then rate constant k remains same, ie,k because change of concentration has no effect on the rate constant