CHEMICAL BONDING AND MOLECULAR STRUCTURE

CHEMISTRY

Single Correct Answer Type

1.	The hybrid state of S in SO ₃ is simi	lar to that of		
	a) C in C_2H_2 b) C in	C_2H_4	c) C in CH ₄	d) C in CO ₂
2.	The hydration energy of Mg ²⁺ is la	rger than that of:		\wedge
	a) Al ³⁺ b) Na ⁺		c) Be ²⁺	d) None of these
3.	Number of lone pair (s) in XeOF ₄ i	s/are		
	a) 0 b) 1	•	c) 2	d) 3
4.	Van der Waals' forces between mo	lecules depend up	•	
		ge on nucleus	c) Radius of atoms	d) All of these
5.	XeF ₆ is:	O		X
	a) Octahedral		4 (4	Y
	b) Pentagonal pyramidal			
	c) Planar			
	d) tetrahedral			
6.	The bond order in NO is 2.5 while	that in NO ⁺ is 3. V	Which of the following state	ements is true for these two
	species?			
	a) Bond length in NO ⁺ is greater the	nan in NO		
	b) Bond length in NO is greater tha			
	c) Bond length in NO ⁺ is equal to t			
	d) Bond length is unpredictable			
7.	An atom with atomic number 20 is	s most likely to con	nbine chemically with the a	atom whose atomic number
	is:			
	a) 11 b) 16		c) 18	d) 10
8.	Which has the largest distance bet	ween the carbon h	•	., .
	a) Ethane b) Ethe		c) Ethyne	d) Benzene
9.	Length of hydrogen bond ranges fi			.,
	a) 3.0 Å b) 2.75	_	c) 2.6 Å	d) 3.2 Å
10.	If $H - X$ bond length is 2.00 Å and		•	•
	the percentage of ionic character i			U III,
	a) 10% b) 16%		c) 18%	d) 20%
11.	Which molecule is planar?		0) 1070	a) = 0 / 0
	a) NH ₃ b) CH ₄		c) C ₂ H ₄	d) SiCl ₄
12.	From the molecular orbital theory	one can show that		, .
	a) 2 b) 1	, one can snow tha	c) 3	d) 4
13	Two ice cubes are pressed over ea	ch other until thev	•	•
10.	forces dominates for holding them		unite to form one block.	men one of the following
	a) Dipole-dipole interaction	togomer.	b) Van der Waals' forces	
	c) Hydrogen bond formation		d) Covalent attraction	
14	Maximum number of covalent bon	ds hetween two lik	•	
.	a) Three b) Two	as between two m	c) Four	d) One
15	When sodium and chlorine react, of	energy is:	-, - oui	w, 5110
10.	a) Released and ionic bond is form			
	b) Released and covalent bond is f			
	c) Absorbed and covalent bond is			
	e, moder bed and covarent bond is			

	d) Absorbed and ionic bond is formed			
16.	The maximum possible number	er of hydrogen bonds is	a H ₂ O molecule can partic	ipate is
	a) 1 b) 2	2	c) 3	d) 4
17.	9		_	
	a) $1s^2$, $2s^22p^3$ b) 1	$1s^2, 2s^22p^6, 3s^1$	c) $1s^2$, $2s^22p^6$	d) $1s^2$, $2s^22p^5$
18.	Bond energies in NO, NO ⁺ and			
	a) $N0^- > N0 > N0^+$ b) N	$NO > NO^- > NO^+$	c) $N0^+ > N0 > N0^-$	d) $N0^+ > N0^- > N0$
19.	Two type FXF angles are prese	ent in which of the follo	wing molecules? (X=S, Xe,	C)
	a) SF ₄ b) X	KeF₄	c) SF ₆	d) CF ₄
20.	The bond angle between two h	nybrid orbitals is 105°.	The percentage of s-charac	eter of hybrid orbital is
	between			
	a) 50 – 55% b) 9	9 - 12%	c) 22 – 23%	d) 11 – 12%
21.	Which is electron deficient con	npound?		
	a) C ₂ H ₄ b) E	B_2H_6	c) C_2H_6	d) NaBH ₄
22.	CCl ₄ is insoluble in water beca	use:		
	a) CCl ₄ is non-polar and water	is polar		
	b) Water is non-polar and CCl ₄	ı is polar	. C 4	•
	c) Water and CCl ₄ both are pol	lar		
	d) None of the above			
23.	Which of the following is not co	orrect regarding the pr	operties of ionic compound	ds?
	a) Ionic compounds have high	metling and boiling po	ints	
	b) Their reaction velocity in aq	queous medium is very	high	
	c) Ionic compounds in their m	olten and aqueous solu	tions do not conduct electi	cicity
	d) They are highly soluble in p	olar solvents		
24.	The number of sigma and pi (τ) bonds present in ber	izene respectively are	
	a) 12, 6 b) 6	5, 6	c) 6, 12	d) 12, 3
25.	Which of the following is not to	etrahedral?		
	a) BF ₄ b) N	NH ₄	c) CO_3^{2-}	d) SO_4^{2-}
26.	In PCl ₅ molecule, P is:			
	a) sp^3 -hybridized b) a	dsp ² -hybridized	c) ds^3p -hybridized	d) sp^3d -hybridized
27.	The bond angle and % of d-cha	aracter in SF ₆ are		
	a) 120°, 20% b) 9	90°,33%	c) 109°, 25%	d) 90°, 25%
28.	Linear combination of two hyb	oridized orbitals, belon	ging to two atoms and each	having one electron lead
	to:			
	a) Sigma-bond			
	b) Double bond			
	c) Coordinate covalent bond			
	d) Pi-bond			
29.	In allene structure, three carbo	on atoms are joined by:		
	a) Three σ -and three π -bonds			
	b) Two σ - and one π -bond			
	c) Two σ -and two π -bonds			
	d) Three π-bonds only			
30.	Geometry of SiO_4^{4-} anion is			
	-	Γrigonal	c) Trihedral	d) Pentagonal
31.	The carbon atom in graphite is			
		sp ³ -hybridized	c) <i>sp</i> -hybridized	d) None of these
32.	Boron cannot form which one	=		
	a) BF ₆ ³⁻ b) E	•	c) $B(OH)_{4}^{-}$	d) BO ₂
33	If the ionic radii of K ⁺ and F ⁻ a	are ahout 1 34 Å each-t	hen the expected values of	atomic radii of K and F

	should be respectively:			
	a) 1.34 and 1.34 Å	b) 2.31 and 0.64 Å	c) 0.64 and 2.31 Å	d) 2.31 and 1.34 Å
34.	If <i>Z</i> -axis is the molecular	axis, then π -molecular orbi	tals are formed by the over	rlap of
	a) $s + p_z$	b) $p_x + p_y$	c) $p_z + p_z$	d) $p_x + p_x$
35.	Which one is the weakest	bond?		
	a) Hydrogen	b) Ionic	c) Covalent	d) Metallic
36.	The total number of valer	ncy electrons for PO_4^{3-} ion i	S:	
	a) 32	b) 16	c) 28	d) 30
37.	The ratio of σ and π -bond	ls in benzene is:		
	a) 2	b) 6	c) 4	d) 8
38.	The geometry of PF ₅ mole	ecule is:		
	a) Planar	b) Square planar	c) Trigonal bipyramidal	d) Tetrahedral
39.	Which one of the following	g linear structure?		
	$(I)I_3^- \qquad \qquad (II)NO_2^-$			
	$(III)I_3^+$ $(IV)SO_2$			
	$(V)N_3^-$			
	a) I, II and III	b) I and V	c) II, III and IV	d) All of these
40.	According to MO theory,	which of the following lists	ranks the nitrogen species	in terms of increasing bond
	order?			
	a) $N_2^- < N_2^{2-} < N_2$	b) $N_2^- < N_2 < N_2^{2-}$	c) $N_2^{2-} < N_2^- < N_2$	d) $N_2 < N_2^{2-} < N_2^{-}$
41.	The equilateral triangle s	hape has:		
	a) <i>sp</i> -hybridization	b) sp^2 -hybridization	c) sp^3 -hybridization	d) sp^3d -hybridization
42.	Which of the following ha	s fractional bond order?		
	a) 0_2^{2+}	b) 0_2^{2-}	c) F_2^{2-}	d) H ₂
43.	For which of the followin	g hybridization the bond ar	ngle is maximum?	
	a) sp^2	b) sp	c) sp^3	d) dsp^2
44.	Experiment shows that H	₂ 0 has a dipole moment wh	hereas, ${ m CO_2}$ has not. Point ${ m c}$	out the structures which
	best illustrate these facts			
		C'	O	О Н
	a) O=C=O,H-O-H	b) H-O-H	c) $0=C=0$, H	d)
		0 0	/ \ Н Н	C=O,O-H
45.	In TeCl ₄ , the central atom	tellurium involves		
	-		c) $sp^3 d^2$ hybridisation	d) dsn^2 hybridisation
46.	Stability of hydrides gene		of op well of the order	, wop j briwiowien
	a) Increase in bond angle	-		
	b) Decrease in bond angle			
	c) Decrease in resonance			
	d) None of these			
47.		isoelectronic with CO ₂ ?		
	a) NO ₂	b) NO	c) N ₂ 0	d) N_2O_4
48.		s a molecule with residual	, <u>-</u>	, , ,
	a) N ₂	b) CH ₄	c) NaCl	d) BeCl ₂
49.	, =	compound depends upon		,
	a) Charge on the ion and		b) Packing of ions only	
	c) Size of the ion only		d) Charge on the ion only	
50.	= = = = = = = = = = = = = = = = = = = =	nent from below, concerni	$_{\rm ng}$ the structure of $_{\rm CH_2} = 0$	$C = CH_2$
	a) The molecule is planar		One of the three	carbon atoms is in an-
			b) sp^3 hybridised state	carbon atoms is in an-
	The molecule is non -	planar with the two - CH		
		nes perpendicular to eac		

other

- 51. (i) H C H angle in CH_4
 - (ii) Cl B Cl angle in BCl_3
 - (iii) F I F angle in IF_7 in a plane
 - (iv) I I I angle in I_3^-

Increasing order of above bond angles is

a) (i) < (ii) < (iii) < (iv)

b) (ii) < (i) < (iii) < (iv)

c) (iii) < (i) < (ii) < (iv)

- d) (iv) < (ii) < (i) < (iii)
- 52. Among the following elements, the most electronegative is:
 - a) Oxygen
- b) Chlorine
- c) Nitrogen
- d) Fluorine

- 53. Metallic bonds do not play a role in:
 - a) Brass
- b) Copper
- c) Germanium
- d) Zinc

54. Which *p*-orbitals overlapping would give the strongest bond?

- 55. H₂O boils at higher temperature than H₂S because it is capable of forming:
 - a) Ionic bonds
- b) Covalent bonds
- c) Hydrogen bonds
- d) Metallic bonds

- 56. When two atomic orbitals combine, they form:
 - a) One molecular orbitals
 - b) Two molecular orbitals
 - c) Two bonding molecular orbitals
 - d) Two antibonding molecular orbitals
- 57. The correct increasing covalent nature is:
 - a) NaCl < LiCl < BeCl₂
- b) BeCl₂ < NaCl < LiCl
- c) BeCl₂ < LiCl < NaCl
- d) LiCl < NaCl < BeCl₂
- 58. IP_1 and IP_2 of Mg are 178 and 348 kcal mol^{-1} . The energy required for the reaction,

$$Mg \rightarrow Mg^{2+} + 2e^{-}$$
 is:

- a) +170 kcal
- b) +526 kca
- c) -170 kcal
- d) -526 kcal

59. The electronic configuration

$$(\sigma ls)^2 (\overset{*}{\sigma} ls)^2 (\sigma 2s)^2 (\overset{*}{\sigma} 2s)^2 (\sigma 2p_x)^2$$

$$(\pi 2p_y)^2 (\pi 2p_z)^2 (\pi 2p_y)^2 (\pi 2p_z)^1$$

can be assigned to

a) 0₂

b) 0_2^+

c) U_2

- d) 0_2^{2-}
- 60. Some of the properties of the two species, NO_3^- and H_3O^+ are described below. Which one of them is correct?
 - a) Dissimilar in hybridization for the central atom with different structure
 - b) Isostructural with same hybridization for the central atom
 - c) Isostructural with different hybridization for the central atom
 - d) Similar is hybridization for the central atom with different structure
- 61. 6, 6
 - a) 6, 6

b) 6, 6

c) 6, 6

d) 6, 6

- 62. Greater the dipole moment:
 - a) Greater is the ionic nature

	15.7			
	b) Lesser the polarity			
	c) Smaller the ionic nature	5		
	d) None of these			
63.	H–B–H bond angle in BH,	=	N	12
	a) 180°	b) 120°	c) 109°	d) 90°
64.	Which of the following mo		-	
	a) $\sigma 2p_x$	b) $\pi 2p_y$	c) $\pi^* 2p_y$	d) $\sigma^* 2p_x$
65.	The common feature amon			
	•	•	c) Bond order two and $\boldsymbol{\pi}\text{-}$	
	isoelectronic	weak field ligands	acceptors	field ligands
66.	Hydrogen bonding is maxi			
	a) C_2H_5OH	b) CH ₃ OCH ₃	c) $(CH_3)_2C = 0$	d) CH ₃ CHO
67.	The O—H bond distance in	_	0	
	a) 1.0Å	b) 1.33 Å	c) 0.96 Å	d) 1.45 Å
68.	O_2^{2+} has a bond order of		4	
	a) 1	b) 2	c) 3	d) 4
69.	Which among the following	g molecules/ ions is diama	agnetic?	Y
	a) Super oxide ion			<i>r</i>
	b) Oxygen			
	c) Carbon molecule			
	d) Unipositive ion of N ₂ mo			
70.	The enolic form of acetone			
	a) 9 sigma bonds, 1 pi bon		A \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
	b) 8 sigma bonds, 2 pi bon	=		
	c) 10 sigma bonds, 1 pi bo			
	d) 9 sigma bonds, 2 pi bon	-		
71.	Which of the following are		ctural?	
	$NO_3^-, CO_3^{2-}, ClO_3^-, S$			
	a) NO_3^-, CO_3^{2-}	b) SO ₃ , NO ₃	c) ClO_3^-, CO_3^{2-}	d) CO_3^{2-} , SO_3
72.	Which of the following is p			
	a) F ₂	b) H ₂ ⁺	c) N ₂	d) 0_2^-
73.	Water has high heat of var			
	a) Covalent bonding		c) Ionic bonding	d) None of these
74.	The C – H bond distance is	_		
	a) C ₂ H ₆	b) C ₂ H ₂	c) $C_2H_2Br_2$	d) C_2H_4
75.			is A and B is 2.0, then the p	ercentage of covalent
	character in the molecule		> 000 t	N =004
	a) 54%	b) 46%	c) 23%	d) 72%
76.	Structure of ICl ₂ is:			
	a) Trigonal			
7	b) Octahedral			
	c) Square planar			
	d) Distorted trigonal pyra			
77.	Polar covalent compounds			15 411 1 .
70	a) Polar solvents	b) Non-polar solvents	=	d) All solvents
∕႘.	\circ		owing is the structure of N ₂	2U? N
	N N	b) $N - O - N$	c) $N - O - N$	d) NO
79.	Which does not show hydr	= =		
	a) C ₂ H ₅ OH	b) Liquid NH ₃	c) H ₂ 0	d) Liquid HBr

80.	All bond angles are exact	ly equal to 109° 28` in		
	a) Methyl chloride		b) Iodoform	
	c) Chloroform		d) Carbon tetrachloride	
81.	Which among the followi	ng has highest ionic radius	?	
	a) F ⁻	b) B ³⁺	c) 0 ²⁻	d) Li ⁺
82.	Zero dipole moment is po	ssessed by		
	a) PCl ₃	b) BF ₃	c) ClF ₃	d) NH ₃
83.	The number of electrons	involved in the bond forma	ition of N ₂ molecule	
	a) 2	b) 4	c) 6	d) 10
84.	Which one of the following	ng orders is not in accordin	g with the property stated a	against it?
	a) $F_2 > Cl_2 > Br_2 > I_2$: Electronegativity		
	b) $F_2 > Cl_2 > Br_2 > I_2$: Bond dissociation energy	7	
	c) $F_2 > Cl_2 > Br_2 > I_2$			
	d) HI > HBr > HCl > HF	: Acidic property in water.		
85.	What is the dominant int	ermolecular force or bond	that must be overcome in c	onverting liquid CH ₃ OH to a
	gas?			
	a) London dispersion for	ce		
	b) Hydrogen bonding		10	
	c) Dipole-dipole interact	on		
	d) Covalent bonds			
86.	The incorrect statements	regarding bonding molecu	lar orbitals because:	
	a) Bonding molecular orl	oitals possess less energy th	nan combining atomic orbit	tals.
	b) Bonding molecular orl	oitals have low electron der	nsity between the two nucle	ei.
	c) Every electron in bond	ling molecular orbitals con	tributes to attraction betwe	een atoms.
	d) They are formed when	the lobes of the combining	g atomic orbitals have same	e sign.
87.	A coordinate bond is a da	tive covalent bond. Which	of the below is true?	
	a) Three atom form bond	by sharing their electrons	b) Two atoms form bond	by sharing their electrons
	c) Two atoms form bond	d and one of them provide	esd) Two atoms form be	ond by sharing electrons
	both electrons		obtained from third at	om.
88.	The bond length between	C – C bond in sp^2 hybridis	ed molecule is	
	a) 1.2 Å	b) 1.39 Å	c) 1.33 Å	d) 1.54 Å
89.	The electronegativity val	ues of C, H, O, N and S are 2	.5, 2.1, 3.5, 3.0 and 2.5 resp	ectively. Which of the
	following bonds is most p	oolar?		
	a) C—H	b) N—H	c) S—H	d) 0—H
90.	Which of the following ha	is largest size?		
	a) Al	b) Al ⁺	c) Al ²⁺	d) Al ³⁺
91.	In which of the followin	g, the bond length betwee	en hybridised carbon aton	n and other carbon atom is
	minimum?			
	a) Propyne	b) Propene	c) Butane	d) Propane
92.	Which is expected to con	duct electricity?		
	a) Diamond	b) Molten sulphur	c) Molten KCl	d) Crystalline NaCl
93.	Metals are good conducto	ors of electricity because th	ey contain	
	a) Ionic bonds		b) A network structure	
	c) Very few valence elect	rons	d) Free electrons	
94.	The species having pyran	nidal shape is		
	a) SO ₃	b) BrF ₃	c) SiO_3^{2-}	d) OSF ₂
95.	The attraction that non-p	olar molecules have for eac	ch other is primarily caused	d by:
	a) Hydrogen bonding			
	b) Difference in electrone	egativities		
	c) High ionisation energy	•		

- d) Van der Waals' forces
- 96. In HCHO carbon atom has hybridisation:
 - a) sp

b) sp^2

c) sp^3

- d) None of these
- 97. Which of the following species has four lone pairs of electrons in its outer shell?
 - a) I

b) 0⁻

c) Cl

- d) He
- 98. For AB bond if per cent ionic character is plotted against electronegativity difference $(X_A X_B)$, the shape of the curve would look like

The correct curve is

a) A

b) *B*

c) C

- d) D
- 99. Chlorine atom, in its third excited state, reacts with fluorine to form a compound *X*. The formula and shape of *X* are
 - a) ClF₅, pentagonal
 - b) ClF₄, tetrahedral
 - c) ClF₄, pentagonal bipyramidal
 - d) ClF₇, pentagonal bipyramidal
- 100. The formation of the oxide ion $O^{2-}(g)$ requires first an exothermic and then an endothermic step as shown below.

$$0(g) + e \rightarrow 0^{-}(g)$$
;

$$\Delta H = -142 \text{ kJ/mol}$$

$$0^{-}(g) + e \rightarrow 0^{2-}(g)$$
;

$$\Delta H = 844 \text{ kJ/mol}$$

This is because:

- a) 0⁻ ion has comparatively larger size than oxygen atom
- b) Oxygen has high electron affinity
- c) 0⁻ ion will lead to resist the addition of another electron
- d) Oxygen is more electronegative
- 101. In which of the following molecules are all the bonds not equal?
 - a) AlF₃

b) NF₃

c) ClF₃

d) BF₃

- 102. Which of the following compound is covalent?
 - a) H

b) KCl

c) Na₂S

- d) CaO
- 103. Which of the following molecular species has unpaired electron (s)?
 - a) N_2

b) F₂

c) 0_{2}^{-}

d) 0_2^{2-}

- 104. The correct order of bond angles is:
 - \checkmark a) PF₃ < PCl₃ < PBr₃ < PI₃
 - b) $PF_3 < PBr_3 < PCl_3 < PI_3$
 - c) $PI_3 < PBr_3 < PCl_3 < PF_3$
 - d) $PF_3 > PCl_3 < PBr_3 < PI_3$
- 105. If the bond length and dipole moment of a diatomic molecule are 1.25 A and 1.0 D respectively, what is the per cent ionic character of the bond?
 - a) 10.66
- b) 12.33
- c) 16.66
- d) 19.33

106. The molecule which does not exhibit dipole moment is

a) NH ₃	b) CHCl ₃	c) H ₂ 0	d) CCl ₄
107. N ₂ accept electron an	d convert into N_2^- , where this	s electron goes?	
a) Antibonding π-mo	olecular orbital		
b) Bonding π-molect	ılar orbital		
c) σ-bonding molecu	llar orbital		
d) σ-antibonding mo	lecular orbital		
108. The correct order of			
a) $N < Be < B$	b) $F^- < 0^{2-} < N^{3-}$	c) Na < Li < K	d) $Fe^{3+} < Fe^{2+} < Fe^{4+}$
109. The bond order is ma	aximum in:		
a) H ₂	b) H ₂ ⁺	c) He ₂	d) He ₂ ⁺
	ng atoms has minimum coval		
a) Si	b) N	c) C	d) B
111. The screening effect			
a) Equal to the p -ele			
b) Much more than p			
c) Same as <i>f</i> -electron			X
d) Less than <i>p</i> -electr			
112. Which of the following			
	drides increase from NH ₃ to	BiH_3 in group 15 of the pe	riodic table.
b) Nitrogen cannot fo		DI I	
	is weaker than the single P—	-P bona.	
d) N_2O_4 has two reso			
=	permanent dipole moment is		1) DE
a) SF ₄	b) XeF ₄	c) SiF ₄	d) BF ₃
a) Intermolecular hy	ng point of water is result of	b) Intramolecular hyd	lrogon honding
•	er molecular hydrogen bondi		nogen bonding
115. Which of the following	-	ing a) mgn specific fleat	
a) CaF ₂	b) CaBr ₂	c) CaI ₂	d) CaCl ₂
116. What bond order do		cj dai ₂	uj caci ₂
a) 1	b) 2	c) 3	d) 1/3
•	<i>b</i>) 2	•	are $+2$, $+2$ and -2 respectively
The possible formula		action states of A, I and Z	are 12, 12 and 2 respectively
a) XYZ ₂	b) $Y_2(XZ_3)_2$	c) $X_3(Y_4Z)_2$	d) $X_3(YZ_4)_3$
, =	owing is a non-polar molecul		a) 113(1 24)3
a) CCl ₄	b) CHCl ₃	c) CH ₂ Cl ₂	d) CH ₃ Cl
, ,	owing has the regular tetrahe	,	
	= 5, $S = 16$, $Ni = 28$, $Xe = 54$)		
a) XeF ₄	b) SF ₄	c) BF ₄	d) $[Ni(CN)_3]^{2-}$
,		•	hen what is the expected dipole
moment of <i>p</i> -nitro to		, , , , , , , ,	P
a) 3.50 D	b) 2.18 D	c) 4.36 D	d) 5.30 D
121. Which of the following		,	,
a) Pb ²⁺	b) Ge ²⁺	c) Si ²⁺	d) Sn ²⁺
122. In which of the follow	ving compound sp ² hybridisa	•	
a) $CH_2 = CH - CH =$		b) $CH \equiv C - CH_2 - CH$	\mathcal{H}_3
c) $CH_2 - CH = CH_2$	-	d) $CH_2 = CH - CH_2 -$	
	owing pairs of species has the		-
a) NO ⁺ and CN ⁺	b) CN ⁻ and NO ⁺	c) CN ⁻ and CN ⁺	d) 0_2^- and CN^-
124 Which of the following	na characteristics regarding h	alogens is not correct?	

- a) Ionization energy decreases with increase in atomic number.b) Electronegativity decreases with increase in atomic number.c) Electron affinity decreases with increase in atomic number.d) Enthalpy of fusion increases with increase in atomic number.
- 125. The number of S S bonds in sulphur trioxide is
 - a) Three
- b) Two

c) One

d) Zero

- 126. The low density of ice compared to water is due to
 - a) Induced dipole induced dipole interactions
 - b) Dipole induced dipole interaction
 - c) Hydrogen bonding interactions
 - d) Dipole -dipole interaction
- 127. Consider the following molecules or ions
 - $(i)H_20$
- (ii)NH₄⁺
- $(iii)SO_4^{2-}$
- $(iv)ClO_4^-$
- $(v)NH_3$
- sp^3 hybridisation is involved in the formation of
- a) (i), (ii) (v) only

b) (i), (ii) only

c) (ii) only

- d) (i), (ii), (iii), (iv) and (v)
- 128. Which of the following compounds has dipole moment approximately equal to that of chlorobenzene?
 - a) o-dichlorobenzene
 - b) *m*-dichlorobenzene
 - c) p-dichlorobenzene
 - d) p-chloronitrobenzene
- 129. Which of the following overlaps leads to bonding?

- 130. Which of the following is correct?
 - a) The number of electrons present in the valence shell of S in SF_6 is 12.
 - b) The rates of ionic reactions are very low.
 - c) According to VSEPR theory, SnCI₂ is a linear molecule.
 - d) The correct order of ability to form ionic compounds among Na⁺, Mg²⁺ and Al³⁺ is Al³⁺ > Mg²⁺ > Na⁺.
- 131. The number of sigma and pi bonds in peroxodisulphuric acid are respectively
 - a) 9 and 4
- b) 11 and 4
- c) 4 and 8
- d) 4 and 9

- 132. Which is not a paramagnetic species?
 - a) 0_2

b) 0^{+}_{2}

c) 0_2^-

d) 0_2^{2-}

133.

a) sp

b) sp^2

c) sp^3

d) dsp^2

134. Electron deficient species are known as:

a) Lewis acids	b) Hydrophilic	c) Nucleophiles	d) Lewis bases
135. The molecule having three			4) CO
a) NH ₃ 136. The structure of ICl ₂ is:	b) PCl ₅	c) SO ₂	d) CO ₂
a) Trigonal			
b) Octahedralc) Square planar			
d) Distorted trigonal bipy	ramid		
137. Among the following the i		lingle moment is	
a) CH ₃ Cl	b) CH ₂ Cl ₂	c) CHCl ₃	d) CCl ₄
138. Which of the following is	·	,	u) cci4
a) PO_4^{3-}	b) NH ₄ ⁺	c) SCl ₄	d) SO ₄ ²⁻
139. A molecule which cannot	•	c) 501 ₄	u) 30 ₄
a) SF ₄	b) OF_2	c) OF ₄	d) 0_2F_2
140. An atom <i>X</i> has three valer	, <u>-</u>	•	7 2 2
between them will have the		as six valetice electrons. Th	e compound formed
a) X_2Y_6	b) <i>XY</i> ₂	c) X_2Y_3	d) X_3Y_2
141. Which one is polar molecu	, <u>-</u>	C) A213	u) 1312
a) CH ₄	b) CCl ₄	c) CO ₂	d) H ₂ O
142. Shape of molecules is deci	•		u) 11 ₂ 0
a) Sigma bond	ided by.		
b) π-bond			
c) Both sigma and π-bond	le.		
d) Neither sigma nor π-bo		A. V.Y.	
143. The shape of carbon dioxi	,	X , y	
a) Pyramidal	b) Tetrahedral	c) Planar	d) linear
144. The correct ionic radii ord		C) Fidildi	u) iiileai
a) $N^{3-} > 0^{2-} > F^{-} > Na^{-}$			
b) $N^{3-} > Na^{+} > 0^{2-} > F$			
c) $Na^+ > 0^{2-} > N^{3-} > F^-$			
d) $0^{2-} > F^{-} > Na^{+} > N^{3-}$			
	> Mg > Al		
145. Which is not linear?	b) HCN	a) C II	4) II O
a) CO₂146. Hybridisation of oxygen in		c) C_2H_2	d) H ₂ O
	b) sp^2	c) sp^3	d) au3 d
a) Sp	, ,	, r	d) sp^3d
147. What is the effect of more			d) None of these
a) Increases	b) Decreases	c) Remains the same	d) None of these
148. Which of the following tw		a) CO2= CO2=	a) nel Tel
a) XeF ₂ , IF ₂	b) NH ₃ , BF ₃	c) CO_3^{2-} , SO_3^{2-}	d) PCl ₅ , ICl ₅
149. NF ₃ is:			
a) Non-polar compound	. J		
b) Electrovalent compour			
c) Having low value of dip			
d) Having more dipole mo			Chich and the are Dec. This
150. Molecular size of ICl and I	Br ₂ is nearly same, but boili	ing point of ICI is about 40°	C nigher than Br ₂ . This
might be due to:	d D. D.L J		
a) I—Cl bond is stronger to			
b) Ionisation energy of I <			
c) ICl is polar where as Br			
d) The size of $I > size$ of B	¹		

151. Which molecule is linear	?		
a) H ₂ S	b) NO ₂	c) ClO ₂	d) CO ₂
152. Which of the following sl	hows minimum melting po	int?	
a) Naphthalene	b) Diamond	c) NaCl	d) Mn
153. Which of the following d	oes not have a lone pair on	the central atom?	
a) NH ₃	b) PH ₃	c) BF ₃	d) PCl ₃
154. Molecular orbital theory	was given by		
a) Kossel	b) Mosley	c) Mulliken	d) Werner
155. NH ₃ has a net dipole mor	ment, but boron trifluoride	(BF ₃) has zero dipole mon	nent, because:
a) B is less electronegati	ve than N		
b) F is more electronega	tive than H		
c) BF_3 is pyramidal whil	e NH ₃ is planar		
d) NH ₃ is pyramidal whi			
156. Proton plays an importa	· ·		
a) Electrovalent	b) Hydrogen	c) Covalent	d) Coordinate
157. Which represents a colle			
a) Be, Al ³⁺ , Cl ⁻	b) Ca ²⁺ , Cs ⁺ , Br	c) Na ⁺ , Ca ²⁺ , Mg ²⁺	d) N ³⁻ , F ⁻ , Na ⁺
158. An electrovalent compou	and does not exhibit space i	isomerism due to:	•
a) Presence of ions			
b) High melting point			
	orces between constituent i	ons	
d) Non-directional natur			
159. In which molecule Sulph	• •		
a) SO ₄ ²	b) SF ₄	c) SF ₂	d) None of these
160. In which one of the follow		om has the type of hybridiz	zation which is not the same
as that present in other t		V	
a) SF ₄	b) I ₃	c) SbCl ₅ ²⁻	d) PCl ₅
161. The radii of F , F^- , O and O			
a) $0^{2-} > F^- > F > 0$		c) $0^{2-} > 0 > F^- > F$	
162. The correct order of deci			
	b) Mn > Cr > Ti > V	=	d) $Cr > Mn > V > Ti$
163. How many σ and π -bond		pound?	
$Ph - CH = C - C_2H_5$	X Y Y Y Y Y Y Y Y Y Y		
CH ₃	,	b) 22 d 4 b d-	
a) 19 σ and 4 π – bonds		b) 22 σ and 4 π – bonds	
c) 25 σ and 4 π – bonds	de C. Herrithere	d) 26 σ and 4 π – bonds	
164. C – Cl bond is stronger to			
a) C – Cl bond is more ic		b) C – Cl bond is polar co	
c) C – Cl bond is more co	ovalent than C – I	d) C – Cl bond length is l	onger than C - I
165. The ICl molecule is:			
a) Purely covalent			
b) Purely electrovalent			
c) Polar with negative er			
d) Polar with negative er			
166. Which of the following si			D. A. MO
a) AgClO ₄	b) Ag_2SO_4	c) AgF	d) AgNO ₃
167. Silicon has 4 electrons in		=	
a) It gains electrons	b) It losses electrons	c) It shares electrons	d) None of these
168 The shape of gaseous Spi	/ L. 10		

	a) Tetrahedral	b) Linear	c) Angular	d) T-shape
169	. Chlorine atom tends to ac	=		
	a) He	b) Ne	c) Ar	d) Kr
170	. The d – orbital involved in	$1 sp^3 d$ – hybridisation is		
	a) $d_{x^2-y^2}$	b) d_{xy}	c) d_{z^2}	d) d_{zx}
171	. When O_2 is converted into	$00_{2}^{+};$		
	a) Both paramagnetic cha	racter and bond order incr	ease	
	b) Bond order decreases			
	c) Paramagnetic characte	r increases		
	d) Paramagnetic characte	r decreases and the bond o	rder increases	(Y
172	. Intramolecular hydrogen	bond is present in		
	a) Water	b) <i>o</i> -nitrophenol	c) <i>p</i> -nitrophenol	d) methylamine
173	. A pair of compounds which	ch have odd electrons in the	e group NO, CO, ClO $_2$, N $_2$ O $_8$,	SO ₂ and O ₂ are
	a) NO and ClO ₂	b) COI and SO ₂	c) ClO ₂ and CO	d) SO_2 and O_3
174	. According to VSEPR theor	y the repulsion between di	ifferent pair (lone or bond)	of electrons obey the order
	a) <i>lp bp lp lp bp bp</i>		b) <i>lp bp bp bp lp lp</i>	V
	c) lp lp lp bp bp bp		d) bp bp lp lp lp bp	*
175	. The bond between two id	entical non-metal atoms ha	as a pair of electrons:	
	a) Unequally shared betw	een the two		
	b) Equally shared between	n the two		
	c) Transferred fully from	one atom to another		
	d) None of the above			
176	. The bond angle in AsH_3 is	greater than that in		
	a) NH ₃	b) H ₂ O	c) BCl ₃	d) None of these
177	. The correct order of incre	asing electropositive chara	acter among Cu, Fe and Mg	is:
	a) Cu ≈ Fe < Mg	b) Fe < Cu < Mg	c) Fe < Mg < Cu	d) Cu < Fe < Mg
178	. H—0—H bond angle in H	$_2$ 0 is 104.5 $^\circ$ and not 109 $^\circ$ 2	8' because of:	
	a) High electronegativity	of oxygen		
	b) Bond pair-bond pair re	pulsion		
	c) Lone pair-lone pair rep	ulsion		
	d) Lone pair-bond pair re	pulsion		
179	. The bond order in O_2^+ is e	qual to bond order in:		
	a) N ₂ ⁺	b) CN ⁻	c) CO	d) NO ⁺
180	. The electron affinity for ir	ert gases is likely to be:		
	a) High	b) Small	c) Zero	d) Positive
181	. The true statements from	the following are		
	1.PH ₅ and BiCl ₅ do not ex	ist		
	$2.p\pi - d\pi$ bond is present	t in SO ₂		
	3.Electrons travel at the s	peed of light		
	4.SeF ₄ and CH ₄ have same	e shape		
	5.I ₃ ⁺ has bent geometry			
	a) 1,3	b) 1,2,5	c) 1,3,5	d) 1,2,4
182	. 1,3-butadiene has:			
	a) 6σ and 2π -bonds	b) 2σ and 2π -bonds	c) 9σ and 2π -bonds	d) 6σ and 2π -bonds
183	. The bond between atoms		=	
	a) Covalent	b) Ionic	c) Coordinate	d) Metallic
184	. In methane the bond angl		-	-
	a) 180°	b) 90°	c) 109°	d) 120°
185	. One would expect the eler	•	•	-
	a) A network solid	b) A metallic solid	c) Non-polar liquid	d) An ionic liquid

- 186. Which of the following is false?
 - a) Glycerol has strong hydrogen bonding
 - b) Glycol is a poisonous alcohols
 - c) Waxes are esters of higher alcohols with higher acids
 - d) Alkyl halides have higher b.p. than corresponding alcohols
- 187. Ionic radii are:

 - a) $\propto \frac{1}{\text{effective nuclear charge}}$ b) $\propto \frac{1}{(\text{effective nuclear charge})^2}$
 - c) ∝ effective nuclear charge
 - d) \propto (effective nuclear charge)²
- 188. Which of the following statements is incorrect?
 - a) He2 does not exist because its bond order is zero
 - b) O_2 , O_2^- and O_2^+ are all paramagnetic
 - c) Any two atomic orbitals can combine to form two molecular orbitals
 - d) $\pi(2p_x)$ and $\pi(2p_y)$ are degenerate molecular orbitals
- 189. Which of the following pairs will from the most stable ionic bond?
 - a) Na and Cl
- b) Mg and F
- d) Na and F
- 190. Among NaF, NaCl NaBr and NaI, the NaF has highest melting point because:
 - a) It has maximum ionic character
 - b) It has minimum ionic character
 - c) It has associated molecules
 - d) It has least molecular weight
- 191. The planar structure of BF₃ can be explained by the fact that BF₃ is
 - a) *sp* hybridized
- b) sp^2 hybridised
- c) sp^3 hybridised
- d) $sp^3 d$ hybridized

- 192. The correct order of bond order value among the following is
 - (i) $N0^{-}$
- (ii) NO+
- (iii)NO
- (iv) $N0^{2+}$
- $(v) N0^{2}$
- a) (i) < (iv) < (iii) < (v)

b) (iv) = (ii) < (i) < (v) < (iii)

c) (v) < (i) < (iv) = (iii) < (ii)

- d) (ii) < (iii) < (iv) < (i) < (v)
- 193. The bond between chlorine and bromine in BrCl₃ is:
 - a) Ionic
 - b) Non-polar
 - c) Polar with negative end on Br-
 - d) Polar with negative end on Cl-
- 194. Which of the following has regular tetrahedral shape?
 - a) $[Ni(CN)_4]^{2-}$
- b) SF₄

- c) $[BF_4]^-$
- d) XeF₄

195. Which of the following will have large dipole moment?

- 196. PCl₅ exists but NCl₅ does not because:
 - a) Nitrogen has no vacant 2*d*-orbitals

	b) NCl ₅ is unstable			
	c) Nitrogen atom is much			
	d) Nitrogen is highly mert	Ī		
197	In which of the following	pairs the two species are no	ot isostructural?	
	a) PCl ₄ and SiCl ₄	b) PF ₅ and BrF ₅	c) AlF_6^{3-} and SF_6	d) CO_3^{2-} and NO_3^{-}
198	The molecule having a pyr	ramidal shape out of the fol	llowing is	
	a) CO ₂	b) BF ₃	c) SF ₄	d) NH ₃
199	. If Na ⁺ ion is larger than M	Ig^{2+} ion and S^{2-} is larger th	anCl ⁻ ion, which of the foll	owing will be stable soluble
	in water?			
	a) Sodium chloride	b) Sodium sulphide	c) Magnesium chloride	d) Magnesium sulphide
200	An atom of an element A	has three electrons in its	outermost orbit and that	of B has six electrons in its
	outermost orbit. The form	nula of the compound betw	een these two will be	
	a) A_3B_6	b) A_2B_3	c) A_3B_2	d) <i>A</i> ₂ <i>B</i>
201	The energy of σ 2s-orbita	l is greater than $\sigma*$ 1 s orbit	al because:	
	a) σ 2s orbital is bigger th	ıan σ∗ 1 <i>s</i> orbital		
	b) σ 2s orbital is a bondin	g orbital whereas, $\sigma * 1s$ is	an antibonding orbital	V ·
	=	er value of n than $\sigma*$ 1s orb	-	
	d) None of the above			
202	The bond angle in ammon	nia molecule is		
	a) 90°3′	b) 91°8′	c) 106°45′	d) 109°28′
203	The compound in which t	he number of d p bonds a	re equal to those present in	n ClO ₄
	a) XeF ₄	b) XeO ₃	c) XeO ₄	d) XeF ₆
204	The correct order of bond	l angles (smallest first) in H	I_2S , NH_3 , BF_3 and SiH_4 is	
	a) $H_2S < SiH_4 < NH_3 < I$	BF ₃	b) $NH_3 < H_2S < SiH_4 < H_2$	3F ₃
	c) $H_2S < NH_3 < SiH_4 < R$	BF₃ ▲	d) $H_2S < NH_3 < BF_3 < S$	iH_4
205	A covalent molecule AB_3	has pyramidal structure. T	The number of lone pair ar	nd bond pair of electrons in
	the molecule are respective	vely.		
	a) 2 and 2	b) 0 and 4	c) 3 and 1	d) 1 and 3
206	Be in BeCl ₂ undergoes			
	a) Diagonal hybridisation		b) Trigonal hybridisation	
	c) Tetrahedral hybridisat	ion	d) No hybridisation	
207	Which statement is wrong	g?		
		xing of atomic orbitals prio	_	
	b) sp^2 -hybrid orbitals are	formed from two p -atomic	c orbitals and one s-atomic	orbitals
		re all at 90° to one another		
		are directed towards the co		
208	In the anion HCOO ⁻ the t	wo carbon-oxygen bonds a	are found to be of equal lea	ngth. What is the reason for
	it?			
	a) Electronic orbits of car	bon atom are hybridised		
	b) The C=0 bond is weak	er than the $C - O$ bond		
1	c) The anion HCOO ⁻ has t	two resonating structures		
	d) The anion is obtained b	y removal of a proton fron	n the acid molecule	
209	Which of the following mo	olecules has three fold axis	of symmetry?	
	a) NH ₃	b) C ₂ H ₄	c) CO ₂	d) SO ₂
210	Oxygen and the oxide ion	have the		
	a) Same proton number		b) Same electronic config	uration
	c) Same electron number		d) Same size	
211	Valence bond theory of m			
	a) Dalton	b) Drudel	c) Fajan	d) Pauling
212	The correct order of secon	nd ionisation potential of ca	arbon, nitrogen, oxygen and	d fluorine is:

ne F S &	C > N > 0 > F The molecule which has Topical $C > N > 0$	=	c) $0 > F > N > C$	d) $F > O > N > C$
F S a		' – shaped structure is		
S a	PCl_2			
E	-	b) ClF ₃	c) NH ₃	d) BCl ₃
	a result of resonance:			
F	Bond length decreases			
	Energy of the molecule	s decreases		
S	Stability of the molecul	e increases		
F	All are correct			
ıe	e pair of species with th	ne same bond order is:		
ľ	NO, CO	b) N_2, O_2	c) O_2^{2-} , B_2	d) 0 ₂ ⁺ , N0 ⁺
h	ich of the following mo	olecules has pentagonal bip	yramidal shape?	
F	PF ₅	b) SF ₆ I	c) XeF ₆	d) $[Fe(CN)_6]^{3-}$
ıe	e number of types of bo	onds between two carbon a	toms in calcium carbide is	
(One sigma, two pi	b) One sigma, one pi	c) Two sigma, one pi	d) Two sigma, two pi
ıe	e bond angle between I	H—O—H in ice is closest to	:	
	115°	b) 109°28′	c) 110°	d) 90°
		o dipole moment the sigma	bonding orbitals used by <i>l</i>	M (at. No. < 21) is:
	Pure p	b) <i>sp</i> -hybrid	c) sp^2 -hybrid	d) sp^3 -hybrid
	•	ms can form a polar covale		<i>y</i> 1 <i>y</i>
	H and H	b) H and Br	c) N and N	d) Na and Br
		O_2 , O_2^- and O_2^{2-} follows the		,
			c) $0_2 > 0_2^- > 0_2^{2-} > 0_2^+$	d) $0^0 > 0^{2-}_0 > 0^+_0 > 0_0$
		le and hybridisation of xen		u) 02 > 02 > 02 > 02
	Fetrahedral and sp^3	ic and hybridisacion of xen	b) Square planar and dsp^2	2
	Square planar and sp^3	12	d) Octahedral and sp^3d^2	
	H_2^- ion, the bond order		uj octaneurai anu sp u	
	Zero	b) 1/2	c) -1/2	d) 1
	oonding is not present :		C) -1/2	u) I
	Glycerine	b) Water	c) H ₂ S	d) HF
			c character of the covalent	-
	HCl	b) HBr	c) HI	d) HF
		erlapping of one s-orbital a	•	u) III
	180°	b) 120°	c) 109°28′	d) 120°60′
	w many bonds are ther		C) 109 20	u) 120 00
٧,	w many bonus are then	e in:		
(
\				
1	14 σ, 8π	b) 18 σ, 8π	c) 19 σ, 4π	d) 14 σ, 2π
h	ich is the correct state	ment about σ and π molecu	ılar orbitals? Statements ar	e
) 1	π-bonding orbitals are	ungerade		
)	π -antibonding orbitals	s are ungerade		
i)) σ-antibonding orbital	ls are gerade		
((i) only	b) (ii) and (iii) only	c) (iii) only	d) (ii) only
n	ong the following state	ement, the correct statemen	nt about PH_3 and NH_3 is:	
ľ	$\mathrm{NH_3}$ is a better electron	n donor because the lone pa	air of electron occupies sph	erical s-orbital and is less
	directional			
F	PH ₃ is a better electron	donor because the lone pa	air of electron occupies sp^3	-orbital and is more
	directional	•	- •	
C	NH is a bottor electron	donor because the lone n	air of electron occupies sp^3	-orbital and more
	VII3 is a better electror	i donor because the fone pa	in of electron occupies sp	of bital and more
ľ	$\mathrm{NH_3}$ is a better electron directional	n donor because the lone pa	air of electron occupies	sph

	d) PH_3 is a better electron directional	n donor because the lone pa	air of electron occupies sph	nerical <i>s</i> -orbital and is less	
230	. Which is expected to have	e linear structure?			
	a) SO ₂	b) CO ₂	c) CO_3^{2-}	d) SO ₄ ²⁻	
231	. The bond angle in PH_3 is:				
	a) Much lesser than NH_3	b) Equal to that in NH ₃	c) $\frac{\text{Much greater than in}}{\text{NH}_3}$	d) $\frac{\text{Slightly more than in}}{\text{NH}_3}$	
232	. Carnallite in solution in w	rater shows the properties	of		
	a) K^+ , Mg^{2+} , Cl^-	b) K ⁺ , Cl ⁻ , SO ₄ ²⁻ , Br ⁻	c) K^+ , Mg^{2+} , CO_3^{2-}	d) K ⁺ , Mg ²⁺ , Cl ⁻ , Br ⁻	
233	. A simple of a coordinate of	ovalent bond is exhibited l	by	$\langle V \rangle$	
	a) HCl	b) NH ₃	c) C_2H_2	d) H ₂ SO ₄	
234	. In the series ethane, ethyl	ene and acetylene, the C—	H bond energy is:		
	a) The same in all the thre	ee compounds			
	b) Greatest in ethane				
	c) Greatest in ehtylene				
	d) Greatest in acetylene			V	
235	. In which molecule the var	n der Waals' force is likely	to be the most important in	determining the m.p. and	
	b.p.?				
	a) Br ₂	b) CO	c) H ₂ S	d) HCl	
236	. Identify the wrong statem	ent in the following:			
	a) Atomic radius of the el	ements increases as one m	oves down the first group of	of the periodic table	
	b) Atomic radius of the elements decreases as one moves across from left to right in the 2nd period of the				
	periodic table				
	c) Amongst isoelectronic	species, smaller the positiv	ve charge on the cation, sm	aller is the ionic radius	
	d) Amongst isoelectronic	species, greater the negati	ve charge on the anion, larg	ger is the ionic radius	
237	. (I)1, 2-dihydroxy benzeno	e)		
	(II) 1, 3-dihydroxy benzer	ne	<i>y</i>		
	(III) 1, 4-dihydroxy benze	ene			
	(IV) Hydroxy benzene				
	The increasing order of bo	oiling points of above men	tioned alcohols is		
	a) $I < II < III < IV$		b) $I < II < IV < III$		
	c) $IV < I < II < III$		d) $IV < II < I < III$		
238	. Dipole moment is shown	by			
	a) cis - 1, 2-dichloro ethan	ne	b) trans-1, 2-dichloro eth	ane	
	c) trans-1 2-dichloro-2 pe	eptene	d) Both (a) and (c)		
239	. Compounds formed by sp	d^3d^2 -hybridization will hav	e configuration:		
	a) Square planar				
	b) Octahedral				
	c) Trigonal bipyramidal				
	d) Pentagonal bipyramida	al			
240	. In which molecular are al	l atoms coplanar?			
()	a) PF ₃	b) NH ₃	c) BF ₃	d) CH ₄	
241	. The ${\sf AsF}_{\sf 5}$ molecule is trigo	onal bipyramidal.The hybr	id orbitals used by the As a	toms for bonding are	
	a) $d_{x^2-y^2}$, d_{z^2} , s , P_x , P_y	b) d_{xy} , s, P_x , P_z	c) $s, P_x, P_y, P_z, d_{z^2}$	d) $d_{x^2-y^2}$, s , P_x , P_y	
242	. The bond order of N_2^+ is			•	
	a) 1.5	b) 3.0	c) 2.5	d) 2.0	
243	. CO ₂ is isostructural with	-	-	-	
	a) C ₂ H ₂	b) SnCI ₂	c) NO ₂	d) MgCI ₂	
244	. The compound with the n			- 	
	a) <i>p</i> -dichlorobenzene	b) <i>m</i> -dichlorobenzene	c) <i>o</i> -dichlorobenzene	d) Carbon tetrachloride	

245. Which of the following bond	ds require the largest amo	ount of energy to dissociate	e the bond concerned?
a) H—H bond in H ₂	o) C—H bond in CH ₄	c) $N \equiv N \text{ bond in } N_2$	d) $0 = 0$ bond in 0_2
246. The sequence that correctl	ly describes the relative	bond strength pertaining	to oxygen molecule and its
cation or anion is			
a) $0_2^{2-} > 0_2^- > 0_2 > 0_2^+$		b) $0_2 > 0_2^+ > 0_2^- > 0_2^{2-}$	
c) $0_2^+ > 0_2 > 0_2^{2-} > 0_2^{-}$		d) $0_2^+ > 0_2 > 0_2^- > 0_2^{2-}$	
247. The type of hybridisation in	ı XeF4 is	· •	
	$p(s) = \frac{1}{sp^3d}$	c) sp^3d^2	d) sp^3d^3
248. What bond order does Li ₂ h	nave?		
	o) 1	c) 2	d) 0
249. Which have zero dipole mo	-		
a) 1,1-dichloroethene			
b) <i>Cis-</i> 1, 2-dichloroethene			A . Y
c) <i>trans-</i> 1, 2-dichlorothene	<u>j</u>		
d) None of the above			
250. Strongest bond is formed by	v the head on overlapping	g of:	
_	b) $2p$ - and $2p$ -orbitals	c) 2s- and 2s- orbitals	d) All of these
251. Hybridization state of I in IO	= = =	10	
· .	o) <i>sp</i>	c) sp^2	d) sp^3
252. Arrange the following comp	, ,	, ₁	- 7 - 1
	n-dichlorobenzene (II)	9	
o-dichlorobenzene (III)	` '		
a) I < IV < II < III		c) $IV < I < III < II$	d) $IV < II < I < III$
253. Which has maximum covale			
	o) MgCl ₂	c) NaCl	d) AlCl ₃
254. Which species does not exis	,		w) 111013
	o) (GeCl ₆) ²⁻	c) (CCl ₆) ²⁻	d) (SiCl ₆) ²⁻
255. Among the following which	T		a) (5151 ₆)
	o) CsF	c) LiF	d) NaF
256. The dipole moment of HBr			•
HBr is	is 1.0 × 10 × cm and n	iter atomic spacing is 1	The 70 forme character of
a) 7	1) 10	c) 15	d) 27
257. When an element of very lo	w ionisation notential is :	•	-
affinity, we get:	w formsation potential is	anowed to react with an en	ment of very high electron
a) A weak ionic bond	n) A strong ionic hond	c) A polar covalent bond	d) No hond
258. Ionization potential is lowe		c) 11 polar covalent bona	a) No bolla
-	o) Inert gases	c) Alkaline earth metals	d) Alkali metals
259. The orbitals of same energy	, ,		d) Aikan metais
	(a) (b) (b) (c)	c) sp^2-sp^2	d) All of these
260. The covalent compound HC	,		d) All of these
a) The electronegativity of l	•		
b) The electronegativity of l			
c) The electronegativity of			
d) Hydrogen and chlorine a	-	iat of flydrogen	
261. Identify the non-polar mole	=	nde given	
	cule ili tile set of compou	ilus giveii	
HCl, HF, H ₂ , HBr	o) HCl	c) HF, HBr	d) HBr
a) H ₂ k 262. Which one of the following			מן ווטו
_	compounds has sp hybra) SO_2	c) N ₂ 0	d) CO
a) CO ₂ b	· -		uj GO

a) S^{2-} , Cl^{-} , Ca^{2+} , K^{+} b) Ca^{2+} , K^{+} , Cl^{-} , S^{2-}	c) K ⁺ , S ²⁻ , Ca ²⁺ , Cl ⁻	d) Cl ⁻ , Ca ²⁺ , K ⁺ , S ²⁻
264. Which cannot exist on the basis of M.O. theory?		
a) C ₂ b) He ₂ ⁺	c) H ₂ ⁺	d) He ₂
265. Which of the following does not involve covalent bor	, <u>-</u>	, 2
a) PH ₃ b) CsF	c) HCl	d) H ₂ S
266. $B_{10}C_2H_{12}$ is isoelectronic with	0, 1101	w) 11 <u>7</u> 0
a) $B_{12}H_{12}^{2-}$ b) $B_{12}H_{12}$	c) B ₁₂ H ₁₂ ⁺	d) B ₁₂ H ₁₂ +
267. The electronegativity of A and B are 1.20 and 4.0 r		
	espectively. Therefore, for	iic character iii $A - B$ boild
will be	-) F2 20/	1) 72 220/
a) 50% b) 43%	c) 53.3%	d) 72.23%
268. During the formation of a chemical bond		
a) Electron-electron repulsion becomes more than	nb) Energy of the system d	oes not change
the nucleus-electron repulsion attraction		*
c) Energy increases	d) Energy decreases	
269. The number of ions formed when a molecule of K ₄ Fe	e(CN) ₆ dissociates is:	
a) 4 b) 5	c) 6	d) 2
270. Pair of species having identical shapes for molecules	is	*
a) CF ₄ , SF ₄ b) BF ₃ , PCl ₃	c) XeF ₂ , CO ₂	d) PF ₅ , IF ₇
271. An example of a polar covalent compound is		
a) KCl b) NaCl	c) CCl ₄	d) HCl
272. Which is not an exception to octet rule?		
a) BF ₃ b) SnCl ₄	c) Bel ₂	d) ClO ₂
273. The molecules having dipole moment are:	3) - 12	-, 2
a) 2, 2-dimethylpropane	^. / / / ·	
b) <i>Trans</i> -3-hexene	X > 1	
	1	
c) Trans-2-pentene		
d) 2, 2, 3, 3-tetramethylbutane		
274. Which of the following species has a bond order other		D of
a) CO b) CN ⁻	c) NO ⁺	d) 0_2^+
275. Which of the following is planar?		
a) XeF ₂ b) XeO ₃ F	c) XeO_2F_2	d) XeF ₄
276. Among the following species, identify the pair having		
a) CN^- and O_2^- b) O_2^- and NO^+	c) CN ⁻ and NO ⁺	d) CN ⁻ and CN ⁺
277. The bond angle and dipole moment of water respect	ively, are	
a) 109.5°, 1.84 D b) 107.5°, 1.56 D	c) 104.5°, 1.84 D	d) 102.5°, 1.56 D
278. The correct order of increasing bond angles in the fo	llowing species is:	
a) $Cl_2O < ClO_2 < ClO_2^-$ b) $ClO_2 < Cl_2O < ClO_2^-$	c) $Cl_2O < ClO_2^- < ClO_2$	d) $ClO_2^- < Cl_2O < ClO_2$
279. Which compound shows hydrogen bonding?		
a) RCH ₂ NHCH ₃ b) RCH ₂ CHO	c) C_2H_6	d) HCl
280. Chlorine atom differs from chloride ion in the number	· = *	
a) Protons		
b) Neutrons		
c) Electrons		
d) Protons and electrons		
281. What is the reason for unusual high b.p. of water?		
	h) Duata dinala dinala	intonactiona
a) Due to the presence of H ⁺ and OH ⁻ ions in water		interactions
c) Due to London forces	d) Strong London Forces	1 F (1 C
282. The increasing order of the first ionization enthalpie		
a) F < S < P < B b) P < S < B < F		•
283. The IP_1 , IP_2 , IP_3 , IP_4 , and IP_5 of an element are 7.1, 14.3	3, 34.5, 46.8, 162.2 eV resp	ectively. The element is

	likely to be:			
	a) Na	b) Si	c) F	d) Ca
284.	Which of the following is p	paramagnetic?		
	a) B ₂	b) C ₂	c) N ₂	d) F ₂
285.	Ionization potential of Na	would be numerically the s	same as:	- -
a) Electron affinity of Na ⁺				
	b) Electronegativity of Na			
	c) Electron affinity of He			
	d) Ionization potential of I	Mg		
286.			ge in both hybridisation an	d shape?
		b) $NH_3 \rightarrow NH_4^+$	c) $BF_3 \rightarrow BF_4^-$	d) $H_2O \rightarrow H_3O^+$
287.	According to MO theory,	, ,	, ,	
	_	l bond order greater than (),	A . Y
	b) 0_2^+ is paramagnetic and		-	
	c) 0_2^+ is diamagnetic and 1_2^+			
		bond order is more than 0_2		
288.				nt is 6.12 D (dbye), but the
			lculate the percentage ioni	, - ,
	a) 17	b) 83	c) 50	d) Zero
289.	The order of first electron	affinity of O, S and Se is:		•
	a) $0 > S > Se$	b) S > 0 > Se	c) Se $> 0 > S$	d) $Se > S > 0$
290.	The nodal plane in the π -b	ond of ethane is located in		
	a) The molecular plane			
	b) A plane parallel to the r	nolecular plane		
	c) A plane perpendicular t	to the molecular plane whi	ch bisects the carbon-carbo	on σ-bond at right angle
	d) A plane perpendicular t	to the molecular plane whi	ch contains the carbon-carl	oon σ-bond
291.	The correct electronegative			
	a) C, N, Si, P	b) N, Si, C, P	c) Si, P, C, N	d) P, Si, N, C
292.	The pair of species having	identical shapes for molec	ules of both species is	
	a) CF ₄ , SF ₄	b) XeF ₂ , CO ₂	c) BF ₃ , PCl ₃	d) PF ₅ , IF ₅
293.	Amongst the following, the	e molecule that is linear is		
	a) SO ₂	b) CO ₂	c) ClO ₂	d) NO ₂
294.	Using MO theory predict v	which of the following spec	ies has the shortest bond le	ength?
	a) 0_2^{2+}	b) 0 ₂ ⁺	c) 0_2^-	d) 0_2^{2-}
295.	The hybridisation of carbo	on atom in benzene is?		
	a) sp	b) sp^2	c) sp^3	d) dsp^2
296.	Bond angle between two h	nybrid orbitals is 105°. Hyb	rid character orbital is:	
	a) Between 20-21%	b) Between 19-20%	c) Between 21-22%	d) Between 22-23%
297.	KF combines with HF to fo	orm KHF_2 . The compound of	contains the species:	
	a) K^+ , F^- and H^+	b) K ⁺ , F ⁻ and HF	c) K ⁺ and [HF ₂] ⁻	d) [KHF] ⁺ and F ⁻
298.	o-hydroxy benzaldehyde,	although contains enolic gr	oup but does not give test	of group with FeCl ₃
	because:			
	a) It is steam volatile			
	b) Of intermolecular H-bo	nding		
	c) Of intramolecular H-bo	nding		
	d) All of the above			
299.	Iron is tougher than sodiu	m because:		
	a) Iron atom is smaller			
	b) Iron atoms are more clo	osely packed		
	c) Metallic bonds are stro	nger in iron		

d) None of the above		
300. Correct order of bond angles in NH_3 , PCl_3 and BCl_3 i	S	
a) $PCl_3 > NH_3 > BCl_3$	b) $NH_3 > BCl_3 > PCl_3$	
c) $NH_3 > PCl_3 > BCl_3$	d) $BCl_3 > NH_3 > PCl_3$	
301. The number of π - bonds present in propyne is		
a) 4 b) 1	c) 3	d) 2
302. A bond with maximum covalent character between	non-metallic elements is for	rmed:
a) Between identical atoms		
b) Between chemically similar atoms		
c) Between atoms of widely different electro-negati	vities	\wedge
d) Between atoms of the same size		
303. The compound in which underlined carbon uses onl	y its sp^3 hybrid orbitals for	bond formation is
a) CH ₃ COOH b) CH ₃ CONH ₂	c) CH ₃ CH ₂ OH	d) $CH_2CH = CH_2$
304. Consider the following compounds	, <u> </u>	
(i) chloroethene (ii) benzene		
(iii) 1, 3-butadiene (iv) 1,3,5 – hexatriene		
All the carbon atoms are sp^2 hybridised in	Ć.	
a) (i), (iii), (iv) only b) (i), (ii) only	c) (ii), (ii), (iv) only	d) (i), (ii), (iii) and (iv)
305. When ionic compounds get dissolved in water:		
a) They involve heat changes		
b) Inter-ionic attraction is reduced		
c) Ions show dipole-ion attraction with water molec	cules	
d) All are correct		
306. Pick the odd one out (The one having zero dipole mo	oment):	
a) NH ₃ b) H ₂ O	c) BCl ₃	d) SO ₂
307. Which of the following shows minimum bond angle?	4.7	, 2
a) H ₂ O b) H ₂ Se	c) H ₂ S	d) H ₂ Te
308. Among the following isostructural compounds, iden	, <u>-</u>	· -
a) LiF b) LiCl	c) NaCl	d) MgO
309. Which species is diamagnetic in nature?	•	, ,
a) He ₂ b) H ₂	c) H ₂ ⁺	d) H ₂
310. Which of the following compounds would have the h	nighest boiling point?	
a) CH ₃ CH ₂ CH ₂ CH ₃ b) CH ₃ NH ₂	c) CH ₃ OH	d) CH ₂ F ₂
311. Hybridisation of central atom in NF ₃ is		
a) sp^3 b) sp	c) sp^2	d) dsp^2
312. Which of the compounds has highest boiling point?		
a) Acetone b) Diethyl ether	c) Methanol	d) Ethanol
313. The number and type of bonds between two carbon	atoms in CaC ₂ are:	
a) One sigma (σ) and one pi (π)-bond		
b) One sigma (σ) and two pi (π)-bonds		
c) One sigma (σ) and one and a half pi (π)-bond		
d) One sigma (σ) bond		
314. Which of the following hydrogen bonds are stronges	st in vapour phase?	
a) HFHF b) HFHCl	c) HCLHCl	d) HFHi
315. The bond angle and hybridization in ether (CH_3OCH	(₃) is:	
a) $106^{\circ} 51'$, sp^3 b) $104^{\circ} 31'$, sp^3	c) 110° , sp^{3}	d) None of these
316. Which has the highest bond energy?		
a) Hydrogen bond b) Triple bond	c) Double bond	d) Single bond
317. Among the following compounds the one that is polar	ar and has central atom wit	h sp^2 -hybridisation is:
a) H_2CO_3 b) SiF_4	c) BF ₃	d) HClO ₂

318. T	he incorrect statement a	mong the following is:				
a]	a) The first ionization potential of Al is less than the first ionization potential of Mg					
b	b) The second ionization potential of Mg is greater than the second ionization potential of Na					
c]) The first ionization pote	ential of Na is less than the	first ionization potential of	f Mg		
ď) The third ionization pot	tential of Mg is greater than	n the third ionization poten	tial of Al		
319. T	he bond angle is smallest	in				
a]) H ₂ O	b) H ₂ S	c) BeCl ₂	d) N ₂ O		
320. T	he number of electrons in	n the valence shell of sulph	ur in SF ₆ is			
a]) 12	b) 10	c) 8	d) 11		
321. A	cetic acid exists as dimer	in benzene due to:				
a]) Condensation reaction					
b) Hydrogen bonding					
c]) Presence of carboxyl gr	oup				
ď) Presence of hydrogen a	tom at α-carbon				
322. T	he correct order of hybri	dization of the central ator	n in the following species N	$[H_3, [PtCl_4]^{2-}, PCl_5 and$		
	Cl ₃ is:			V ·		
a)	$) dsp^2, dsp^3, sp^2, sp^3$	b) sp^3 , dsp^2 , dsp^3 , sp^2	c) dsp^2 , sp^2 , sp^3 , dsp^3	d) dsp^2 , sp^3 , sp^2 , dsp^3		
	hemical bond formation					
a)) Energy is absorbed					
b) Forces of attraction ove	rcome forces of repulsion				
c)) Forces of repulsion ove	rcome forces of attraction				
d]) Forces of attraction are	equal to forces of repulsio	n			
324. N	H_3 has higher boiling poi	int than expected, because				
a]) With water it forms NH	₄ OH				
b) It has strong intermole	cular hydrogen bonds				
c]) It has strong intermole	cular covalent bonds	>			
ď) Its density decreases in	freezing				
325. W	Vhich of the following rep	resents the Lewis structur	e of N ₂ molecule?			
	×.,—_,, ×	×× ××	XX XX	×× ××		
a)) ×N==N×	b) ×N ××	c) *N***	$d) \stackrel{\times}{\times} \stackrel{\wedge}{N} = \stackrel{\wedge}{N} \stackrel{\times}{\times} \stackrel{\times}{\times}$		
226 W	Thick of the following has	on board and on of 1.752				
	Which of the following has		a) NO=	d) co2=		
-		b) ClO ₄	c) NO ₃	d) CO ₃ ²⁻		
	ligher is the bond order, §					
) Bond dissociation energ	gy				
	Covalent character					
-) Bond length					
-) Paramagnetism					
	Which has the highest ioni	-	-) C	ם עג		
) Na	b) Mg	c) C	d) F		
	trongest bond is in:	h) CaCl	a) Dath (a) and (b)	d) Nama of these		
) NaCl	b) CsCl	c) Both (a) and (b)	d) None of these		
			bond length of the species?			
-	$C_2 > C_2^{2-}$	b) $B_2^+ > B_2$	c) $\text{Li}_2^+ > \text{Li}_2$	d) $0_2 > 0_2^-$		
	he bond order in 0_2^{2-} ion		/ .	1) 4		
-) 3	b) 2	c) 3/2	d) 1		
	Which is likely to have the		-) MII	1) CIICI		
-) He	b) CsF	c) NH ₃	d) CHCl ₃		
	Which of the following are		a mirro mino tra disaraha ara	L		
-			n give rise to dipole momen	ι		
n) Dipole moment is vecto	r anantity				

334	c) CO_2 molecule has dipoled) Difference in electrone. In the formation of N_2^+ fro	gativities of combining ato	ms can lead to dipole mome	ent
337	a) a σ -orbital	b) a π -orbital	c) a σ*-orbital	d) a π*-orbital
225	. Bond angle of 109°28' is f	-	cj a o -orbitar	uja ii -orbitai
333.	. Dolla aligle of 109 20 18 f	ound in	A	A
	a) NH ₃	b) H ₂ O	c) ${}^{\bigoplus}_{C}$ H_5	d) [⊕] _{N H₄}
336.	. The half of the difference	between the number of ele	ctrons in bonding molecula	ar orbitals and antibonding
	molecular orbitals is know		O	
	a) Bond order	b) Proton order	c) Molecular order	d) Electron order
337.		-	ame angle around the centr	-
	a) SF ₄ , CH ₄ , NH ₃	b) NF ₃ , BCl ₃ , NH ₃	c) BF ₃ , NF ₃ , AlCl ₃	d) BF ₃ , BCl ₃ , BBr ₃
338.	. At ordinary temperature a	and pressure, among halog	ens, the chlorine is a gas, b	romine is a liquid and
	iodine is a solid. This is be	ecause:		
	a) The specific heat is in the	he order $Cl_2 > Br_2 > I_2$		
	b) Intermolecular forces a	mong molecules of chlorin	e are the weakest and thos	e in iodine are the
	strongest			
	c) The order of density is	$I_2 > Br_2 > Cl_2$	4/0	
	d) The order of stability is	$\operatorname{Cl}_2 > \operatorname{Br}_2 > \operatorname{I}_2$		
339.	. Which of the following ha	s lowest bond angle?		
	a) BeF ₂	b) H ₂ 0	c) NH ₃	d) CH ₄
340.	. Which of the following ha	s shortest carbon-carbon b	ond length?	
	a) C ₆ H ₆	b) C ₂ H ₆	c) C ₂ H ₄	d) C_2H_2
341.	. Which one of the followin	g constitutes a group of the	e isoelectronic species?	
	a) C_2^{2-} , O_2^- , CO, NO	b) NO ⁺ , C ₂ ²⁻ , CN ⁻ , N ₂	c) CN^- , N_2 , O_2^{2-} , CO_3^{2-}	d) N_2 , O_2^- , NO^+ , CO
342.	. The sp^3d^2 hybridisation α	of central atom of a molecu	le would lead to	
	a) Square planar geometr	y		
	b) Tetrahedral geometry			
	c) Trigonal bipyramidal g	eometry		
	d) Octahedral geometry			
343.	. Methanol and ethanol are	miscible in water due to:		
	a) Covalent character			
	b) Hydrogen bonding char			
	c) Oxygen bonding charac	cter		
	d) None of the above			
344.	. The shape of ClF ₃ is			
	a) Distorted T- shape	b) Pyramidal	c) Tetrahedral	d) Trigonal planar
345.	. Which are true statement			
	(1) PH ₅ and BiCl ₅ does no			
	(2) $p\pi - d\pi$ bonds are pro			
	(3) Electrons travel with s			
	(4) SeF ₄ and CH ₄ has sam	e shape		
	(5) I_3^+ has bent geometry	13425) 1 2 F	D 4 2 4
0.46	a) 1, 3	b) 1, 2, 5	c) 1, 3, 5	d) 1, 2, 4
346.	. The actual geometry of NO) TT 1	1) m + 1 1 1
245	a) Planar	b) Linear	c) V-shape	d) Tetrahedral
347.	. Which has the lowest anic		-) C-I	J) C-F
240	a) LiF	b) NaF	c) CsI	d) CsF
348.	The energy change accom		perow is,	
	$Na^+(g) + Cl^-(g) \rightarrow NaCl(g)$	• •	a) Floatner officit-	d) Lattice energy
	a i nyuralion enerev	b) Ionization energy	CT ETECHOU AHHIILV	d) Lattice energy

349	. Which of the following ha	s covalent bond?		
	a) Na ₂ S	b) AlCl ₃	c) NaH	d) MgCl ₂
350	. The correct order in which	h the $0-0$ bond length in	creases in the following is	
	a) $0_2 < 0_3 < H_2 O_2$	b) $H_2O_2 < O_3 < O_2$	c) $0_3 < 0_2 < H_2 O_2$	d) $0_2 < H_2 O_2 < O_3$
351	. N_2 is less reactive than CN	I [–] due to		
	a) Difference in spin quan	tum number	b) Presence of more elect	rons in orbitals
	c) Absence of dipole mom	ent	d) None of the above	
352	. According to molecular or	bital theory for 0_2^+ :		
	a) Bond order is less than	0_2 and 0_2^+ is paramagnetic	C	
	b) Bond order is more tha	n 0_2 and 0_2^+ is paramagnet	ic	KV
	c) Bond order is less than	O_2 and O_2^+ is diamagnetic		
	d) Bond order is more tha	$n O_2$ and O_2^+ is diamagnetic	С	
353	. As compared to covalent o	compounds, electrovalent c	compounds generally have:	
	a) Low melting points and	l low boiling points		
b) High melting points and high boiling points				
	c) Low melting points and	l high boiling points		V
	d) High melting points and	d low boiling points	CA	
354	. Which is present in perox	ides?	(10)	
	a) 0 ₂	b) 0 ²⁻	c) 0_2^{2-}	d) 0 ₂
355	. Two hybrid orbitals have	a bond angle of 120°. The p	oercentage ofs character in	the hybrid orbital is nearly
	a) 25%	b) 33%	c) 50%	d) 66%
356	. Which molecule is T-shap	ed?		
	a) BeF ₂	b) BCl ₃	c) NH ₃	d) ClF ₃
357	. Which of the following is p	paramagnetic?		
	a) 0 ₂	b) CN ⁻	c) CO	d) NO ⁺
358	. Dipole moment is highest	for:	> ′	
	a) CHCl ₃	b) CH ₄	c) CHF ₃	d) CCl ₄
359	. Which will not conduct ele	ectricity?		
	a) Aqueous KOH solution	b) Fused NaCl	c) Graphite	d) KCl in solid state
360	. The ionization potential o	rder for which set is correc	ct?	
	a) Li > K > Cs	b) B > Li > K	c) Cs > Li > B	d) Cs < Li < K
361	. The bond that determines	the secondary structure o	f a protein is:	
	a) Coordinate bond	b) Covalent bond	c) Hydrogen bond	d) Ionic bond
362	. Molecular orbital theory v	vas developed mainly by		
	a) Pauling	b) Mulliken	c) Thomson	d) Pauling and Slater
363	. Which species has lone pa	ir on central atom?		
	a) CCl ₄	b) CH ₄	c) NH ₄ ⁺	d) H ₂ O
364	. In which of the following i	molecules/ions are all the l	oonds not equal?	
	a) SF ₄	b) SiF ₄	c) XeF ₄	d) BF ₄
365	. Super octet molecule is:			
4	a) F ₃ Cl	b) PCl ₃	c) NH ₃	d) None of these
366	. The number of unpaired e	electrons in a paramagnetio	diatomic molecule of an el	ement with atomic number
	16 is:			
	a) 4	b) 1	c) 2	d) 3
367	. Which of the following sta	tement is not correct?		
	a) Hybridisation is the mi	xing of atomic orbitals pric	or to their combining into m	olecular orbitals
	b) <i>sp</i> ² hybrid orbitals are	formed from two <i>p</i> -atomic	orbitals and one s-orbital	
	c) d^2sp^3 hydride orbitals	are directed towards the c	orners of a regular octahed	ron
	d) dsp^3 hybrid orbitals are	e all at 90° to one another		
368	. Which statement is correc			

	a) Pi-bond always exists v	•		
	b) Pi-bond can exist indep	pendently		
	c) Sigma-bond is weaker	than pi-bond		
	d) Pi-bond is less reactive	than sigma-bond		
369.	Which of the following pa	ir has same structure?		
	a) PCl ₅ and SF ₆	b) SO ₂ and NH ₃	c) PH ₃ and BCl ₃	d) NH_4^+ and SO_4^{2-}
370.	Which of the following ha	s dipole moment?		
	a) CO ₂	b) <i>p</i> -dichlorobenzene	c) NH ₃	d) CH ₄
371.	· -	g is highest melting halide?	-	
	a) AgCl	b) AgBr	c) AgF	d) AgI
372.	The hybridisation state of	, ,	, 0	, 0
	a) sp^3d	b) sp^3d^2	c) sp^3	d) d^2sp^3
373.	•	easing bond angles in the fo	, ,	
		b) $NO_2^+ < NO_2 < NO_2^-$		d) $NO_2^- < NO_2^+ < NO_2$
374.	-	isoelectronic. The decreasi	-	
,, .,	a) $S^{2-} > Cl^{-} > K^{+} > Ca^{2-}$		ang or dor or drien or or	
	b) $Ca^{2+} > K^+ > Cl^- > S^{2-}$			
	c) $K^+ > Cl^- > Ca^{2+} > S^{2-}$		4/3	
	d) $Cl^- > S^{2-} > Ca^{2+} > K^{-}$			
275	,	ridization orbitals increases	the hand angle:	
<i>373</i> .	a) Increases	b) Decreases	c) Does not change	d) Becomes zero
276	•	F_3 is ionic. This fact can be j	,	a) becomes zero
<i>37</i> O.	a) Valence bond theory	•	c) Lattice energy	d) Fajan rule
377	-	g is a correct set with respe	, V , T	* *
,,,	a) BeCl ₂ , sp^2 , linear	is a correct set with respe	b) BeCl ₂ , sp^2 , triangular p	-
	c) BCl_3 , sp^2 , triangular pla	anar	d) BCl_3 , sp^3 , tetrahedral	ianai
378		e pairs occupy equatorial po		
<i>,</i> , , , , , , , , , , , , , , , , , ,	a) Lone pair – bond pair r		ositions to minimize	
	b) Bond pair – bond pair i			
	, .	epulsion and lone pair - bor	nd nair renulsion	
	d) Lone pair – lone pair re		ia pair repulsion	
379	The correct order of decre			
,,,,	a) HF $> SO_2 > H_2O > NH$		b) HF $> H_2O > SO_2 > NH$	
	c) HF > NH ₃ > SO ₂ > H ₂		d) $H_2O > NH_3 > SO_2 > H$	o .
380	The process requiring the		uj 1120 x 11113 x 002 x 11	•
	a) $F - F^-$	b) $H \rightarrow H^-$	c) $Cl \rightarrow Cl^-$	d) $0 \to 0^{2-}$
381		lar species, the total number		,
	a) 7, 6, 8	b) 1, 0, 2	c) 6, 6, 6	d) 8, 6, 8
382	sp^3 hybridisation is found		c, 0, 0, 0	u, 0, 0, 0
	a) CO_3^{2-}	b) BF ₃	c) NO ₃	d) NH ₃
383		als interatomic forces are p	, ,	u) 11113
,00	a) Cu	b) Ag	c) Zn	d) Hg
384	· ·	enomenon will occur when	•	, .
	in orbitals approach each		t two atoms of an element v	vicii same spin of electron
	a) Orbitals will overlap	other.		
	b) Orbitals will not overla	ın		
	c) Bonding will take place	•		
	d) A diatomic molecule w			
385	_	ent ionic character, the bon	d is:	
, 55.	a) Pure covalent	b) Partial covalent	c) Partial ionic	d) Coordinate covalent
	a, i are covarent	o, i ai dai covaiciit	o, i ai dai ionic	a, door amade covarent

	a) $\theta = 90^{\circ}$	b) $\theta = 120^{\circ}$	c) $\theta = 150^{\circ}$	d) $\theta = 180^{\circ}$
387.	The species having bond	order different from	that in CO is	
	a) NO ⁻	b) NO ⁺	c) CN ⁻	d) N ₂
388.	The species having octahe	edral shape is:		
	a) SF ₆	b) BF ₄	c) PCl ₅	d) BO ₃ ³⁻
389.	•		· · ·	ng thermal stabilities. Identify the
	correct order:	o .		· ·
	$K_2CO_3(I)$	MgCO ₃ (II)		
	CaCO ₃ (III)			
			c) IV < II < I < II	$I \qquad \qquad d) II < IV < III < I$
390.	Which of the following wi	-	=	
	a) Ethane	b) Ether	c) Ethanol	d) Water
391.	Which has the minimum		.,	
	a) H—Br	b) H—I	c) I—I	d) H—H
392.	The polarising ability of v	,	,	
	a) Small highly positive ic			
	b) Large positive ion		A	
	c) Small highly negative i	on	4	
	d) Large negative ion			>
393.	Which is expected to show	w paramagnetism?		7
	a) ClO ₂	b) SO ₂	c) CO ₂	d) SiO ₂
394.	Highest covalent characte	-		, 2
	a) CaF ₂	b) CaCl ₂	c) CaI ₂	d) CaBr ₂
395.	The molecule which has z	· -		2
	a) CH ₃ Cl	b) NF ₃	c) BF ₃	d) ClO ₂
396.	Hydrogen bond is stronge	est in		
	a) S——HO	b) O—HS	c) F——HF	d) ON
397.	The only molecule having	dipole moment is		
	a) 2,2-dimethylpropane			
	b) trans-2-pentene			
	c) trans-3-hexene			
	d) 2,2,3,3-tetramethylbut	ane		
398.	Two lone pairs of electron	ns and two bond pai	rs are present in:	
	a) NH ₃	b) BF ₃	c) CO_3^{2-}	d) NH ₂
399.	The lattice enthalpy and l	nydration enthalpy o	of four compounds are give	n below.
	Compound Lattice	Hydration		
	enthalpy			
	(in kJ mol			
	P +780 Q +1012	-920 -812		
	Q +1012 R +828	-878		
	S +632	-600		
	The pair of compounds w	hich is soluble in wa	ater is	
	a) P and Q	b) Q and R	c) R and S	d) Pand R
400.	The increase in bond orde	er results in:		
	a) Decrease in bond lengt	th and increase in bo	ond energy	
	b) Decrease in bond lengt	th and bond energy		
	c) Increase in bond lengt	n and bond energy		
	d) None of the above			
<i>1</i> .01	The correct stability orde	r of the following re	conanco etructuro ie	

386. Which bond angle θ would result in the maximum dipole moment for the triatomic molecule yxy?

418. From elementary molecular orbital theory we can gi	ive the electronic configura	tion of the singly positive
nitrogen molecular ion N_2^+ as		
a) $l\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\pi 2p^4$, $\sigma 2p^1$	b) $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2$	s^2 , $\sigma 2p^2$, $\pi 2p^3$
c) $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p^3$, $\pi 2p^2$	d) $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2$	s^2 , $\sigma 2p^2$, $\pi 2p^4$
419. NH ₃ has much higher boiling point than PH ₃ becaus	e	
a) NH ₃ has larger molecular weight		
b) NH ₃ undergoes umbrella inversion		
c) NH ₃ forms hydrogen bond		
d) NH ₃ contains ionic bonds whereas PH ₃ contains of	covalent bonds	
420. In a crystal, the atoms are located at the positions of	:	
a) Maximum potential energy		
b) Minimum potential energy		
c) Zero potential energy		
d) Infinite potential energy		
421. Which substance has the greatest ionic character?		
a) Cl ₂ O b) NCl ₃	c) PbCl ₂	d) BaCl ₂
422. The conductivity of the metal decreases with increase	ses in temperature because	
a) The kinetic energy of the electron increases		
b) The movement of electrons becomes haphazard		
c) The kernels start vibrating		
d) The metal becomes hot and starts emitting radiat	tions	
423. Which of the following when dissolved in water form	ns a solution, <i>i.e.</i> , non-cond	ucting?
a) Chile salt petre	b) Potash alum	
c) Green vitriol	d) Ethyl alcohol	
424. Which bond is more polar?		
a) Cl—Cl b) N—F	c) C—F	d) 0—F
425. The pairs of bases in DNA are held together by:	y	
a) Hydrogen bonds b) Ionic bonds	c) Phosphate groups	d) Deoxyribose groups
426. Which of the following has highest bond angle?		
a) H ₂ O b) H ₂ S	c) NH ₃	d) PH ₃
427. The compound in which carbon atom uses only sp^3	- hybrid orbitals for bond f	ormation is
a) HCOOH b) NH ₂ CONH ₂	c) $(CH_3)_3COH$	d) CH ₃ CHO
428. For the type of interactions; (I) Covalent bond, (II) v	an der Waals' forces, (III)	Hydrogen bonding, (IV)
Dipole-dipole interaction, which represents the corr	ect order of increasing stal	oility?
a) (I) < (III) < (IV)		
b) $(II) < (III) < (IV) < (I)$		
c) $(II) < (IV) < (III) < (I)$		
d) $(IV) < (II) < (III) < (I)$		
429. If the ionization potential for hydrogen atom is 13.6	eV, then the ionization pot	ential for He ⁺ ion should
be:		
a) 72.2 eV b) 54.4 eV	c) 6.8 eV	d) 13.6 eV
430. The hydrogen bonding is strongest in:		
a) 0—H S b) S—H 0	c) F—H F	d) F—H O
431. The correct increasing order of polarising power is:		
a) $Ca^{2+} < Mg^{2+} < Be^{2+} < K^+$		
b) $Mg^{2+} < Be^{2+} < K^+ < Ca^{2+}$		
c) $Be^{2+} < K^+ < Ca^{2+} < Mg^{2+}$		
d) $K^+ < Ca^{2+} < Mg^{2+} < Be^{2+}$		
432. Acetate ion contains:		
a) One C, O single bond and one C, O double bond		

	b) Two C, O single bonds			
	c) Two C, O double bonds			
	d) None of the above			
433.	Which one is paramagneti	c and has the bond order h	nalf (0.5)?	
	a) F ₂	b) N ₂	c) 0 ₂	d) H ₂ ⁺
434.	Which one is correct?			
	a) Dinitrogen is paramagn	etic		
	b) Dihydrogen is paramag	netic		
	c) Dioxygen is paramagne	tic		
	d) Dioxygen is diamagneti	С		
435.	IP is influenced by:			4
	a) Size of atom			
	b) Charge on nucleus			
	c) Electrons present in inr	ner shells		
	d) All of the above			
436.	The hybridization of atom	ic orbitals of nitrogen in N	0_2^+ , $N0_3^-$ and NH_4^+ are:	V ·
	a) sp, sp^3 and sp^2 respects		. (4	Y
	b) sp, sp^2 and sp^3 respects			
	c) sp^2 , sp and sp^3 respects	ively		
	d) sp^2 , sp^3 and sp respects	ively		
437.	The bond between carbon	atoms (1) and (2) in com	pound $N \equiv C - CH = CH_2$,	
			(1) (2)	
	involves the hybrid orbital			
	a) sp^2 , sp^3	b) sp, sp^2	c) sp, sp^3	d) <i>sp, sp</i>
438.	Which of the following has			
	a) NaCl	b) CuCl	c) CuCl ₂	d) CsCl
439.	When metals react with no			
	a) Share electrons	b) Lose electrons	c) Gain electrons	d) None of the above
440.	Which one has more tende			
	a) Ba	b) Be	c) Mg	d) Ca
441.	The order of melting point			
		b) $p > m > o$	c) $m > p > o$	d) $p > o > m$
442.			XeF ₄ and XeF ₂ respectively	
4.40	a) 6, 4, 2	b) 1, 2, 3	c) 3, 2, 1	d) 0, 3, 2
443.	The hybridization of carbo			12 3 2
		b) sp^3 , sp , sp^2	c) sp^2 , sp^3 , sp	d) sp, sp^3sp^2
444.	The molecule, ion which is		2.002-	D 00
445	a) NO_3^-	b) PCl ₃	c) CO_3^{2-}	d) SO ₃
	The number of lone pairs of lone pairs of the number of lone pairs of lo			1) (1 2
	a) 3, 2, 1	b) 2, 4, 6	c) 1, 2, 3	d) 6, 4, 2
_			and D are, $(A) = 1s^2$; $(B) = 1$	$= 1s^2, 2s^2 2p^2; (C) =$
	$1s^2, 2s^22p^5; (D) = 1s^2, 2s$	•		
	The tendency to form elec			ם נו
4 4 7	a) <i>A</i>	b) <i>B</i>	c) <i>C</i>	d) <i>D</i>
44/.	C – C bond order in benze		a) Patrus on 1 and 2	d) None of these
440	a) 1	b) 2	c) Between 1 and 2	d) None of these
44ŏ.			the value of electronegativ	ides should be:
	a) Equal to or less than 1.7	,		
	b) More than 1.7 c) 1.7 or more			
	C) 1.7 OF HIOTE			

449.	Which among the following	ng elements has lowest valu	ie of ionisation energy?	
	a) Pb	b) Sn	c) Si	d) C
450.	In coordinate bond, the aca) With paired electron	cceptor atoms must essenti b) With single electron	ally contain in its valency s c) With no electron	hell an orbitals: d) With three electrons
451.	How many σ -and π -bonds $N \equiv C$ $C \equiv N$ $N \equiv C$ $C \equiv N$	s are there in the molecule o	of tetracyanoethylene?	
		b) Five a and nine a	c) Nino a and coven a	d) Five σ - and eight π
		b) Five σ - and nine π is explained on the basis o	f its electronic configuratio	on of
	a) $(\pi^2 p_x)^1 (\pi^2 p_y)^1$	b) $(\pi^2 p_y)^1 (\pi^2 p_z)^1$	c) $(\sigma_{2s})^1 (\pi_{2p_y})^1$	d) $\left(\sigma_{2s}\right)^1 \left(\pi 2p_y\right)^1$
453.	The compound possessing	g most strongly ionic natur	e is:	
	a) SrCl ₂	b) BaCl ₂	c) CaCl ₂	d) CsCl
454.	•	as no ' d ' electrons in the cer		
	a) [MnO ₄] ⁻	b) $[Co(NH_3)_6]^{3+}$	c) $[Fe(CN)_6]^{3-}$	d) $[Cr(H_2O)_6]^{3+}$
455.	Which of the following spe			
	a) 0 ₂	b) 0 ₂ ⁺	c) 0_2^-	d) 0_2^{2-}
456.	The dipole moment of HB	r is 1.6×10^{-30} C-m and int	eratomic spacing is 1Å. The	e % ionic character of HBr
	is			
	a) 7	b) 10	c) 15	d) 27
457.	Which group of atoms have	ve nearly same atomic radio	ıs?	
	a) Na, K, Rb, Cs	b) Li, Be, B, C	c) Fe, Co, Ni, Cu	d) F, Cl, Br, I
458.	Bond polarity of diatomic	molecule is because of	> ′	
	a) Difference in electron a	offinity of the two atoms		
	b) Difference in electrones	gativities of the two atoms		
	c) Difference in ionisation	n potential		
	d) All of the above			
459.	The hybridization of P in I	PO_4^{3-} is same as in:		
		b) S in SO ₃	c) N in NO_3^-	d) S in SO_4^{2-}
460.	AB is an ionic solid. The	e ionic radii of A^+ and B	$^{+}$ are respectively r_{c} and r_{c}	r_a . Lattice energy of AB is
	proportional to			
	a) $\frac{r_c}{r_a}$	b) $(r_c + r_a)$	c) $\frac{r_a}{r_c}$	d) $\frac{1}{(r_c + r_a)}$
	r_a	$(r_c + r_a)$	r_c	$(r_c + r_a)$
461.	Which contains a coordinate	ate and covalent bond?		
	a) BaCl ₂	b) NH ₄ Cl	c) HCl	d) H_2O
462.	Covalent radius of Li is 12	3 pm. The crystal radius of	Li will be:	
	a) > 123 pm	b) < 123 pm	c) + 123 pm	$d) = \frac{123}{2} pm$
463.	Which of the following do	es not contain coordinate b	ond?	L
	a) BH ₄	b) NH ₄ ⁺	c) CO ₃ ²⁻	d) H ₃ O ⁺
464	The bond order of C_2^+ is:	5) 1114	c) do ₃	u) 1130
101.	a) 1	b) 2	c) 3/2	d) 1/2
465	With increasing bond orde	•	-, ~, -	<i>) - -</i>
100.	a) Increases	b) Decreases	c) Remains unaltered	d) None of these
466	Molecular orbitals theory	•	.,	.,
	a) Werner	b) Kossel	c) Moseley	d) Mullikan
467	The isoelectronic pair is	<i>y</i>	-,,	- ,
	a) Cl_2O , ICl_2^-	b) Cl ₂ -, ClO ₂	c) IF_2^+, I_3^-	d) ClO ₂ , ClF ₂ ⁺
		, <u>,</u> . <u>,</u> .	, <u>L</u> , <u>J</u>	Page 1 20
				U 2 M A I 70

d) None of the above

468.	The compound 1,2-butadiene has		
	a) sp, sp^2 and sp^3 hybridised carbon atoms	b) Only sp^2 hybridised can	rbon atoms
	c) Only <i>sp</i> hybridised carbon atoms	d) Only sp and sp^2 hybrid	ised carbon atoms
469.	The correct order of ionic radii is:		
	a) $Fe > Fe^{2+} > Fe^{3+}$ b) $O^{2-} > O^{-} > O^{+}$	c) $I^- > I > I^+$	d) All of these
470.	The shape of sulphate ion is	•	
	a) Square planar b) Trigonal	c) Trigonal planar	d) Tetrahedral
471.	Molecular shape of SF ₄ , CF ₄ and XeF ₄ are:	, , ,	,
	a) The same with 2, 0 and 1 lone pair of electrons res	spectively	
	b) The same with 1, 1 and 1 lone pair of electrons res	= =	
	c) Different with 0, 1 and 2 lone pairs of electrons re-	= -	
	d) Different with 1, 0 and 2 lone pairs of electrons re-	spectively.	
472.	Which of the following is sp^3 hybridised?		
	a) NH ₃ b) BH ₃	c) PCl ₅	d) AlCl ₃
473.	Sodium chloride is soluble in water but not in benzer	ne because	
	$\Delta H_{ m hdydration}$	$\Delta H_{ m hdydration}$	
	a) $< \Delta H_{\text{lattice energy in water}}$ and $\Delta H_{\text{hdydration}}$	b) $> \Delta H_{\text{lattice energy in water}}$	$_{\rm r}$ and $\Delta H_{\rm hdydration}$
	$> \Delta H_{\text{lattice energy in benzene}}$	$<\Delta H_{\text{lattice energy in benze}}$	
	$\Delta H_{ m hdydration}$	$\Delta H_{ m Hdydration}$	ene
	-		and AH
	c) = $\Delta H_{\text{lattice energy in water}}$ and $\Delta H_{\text{hdydration}}$	d) $< \Delta H_{\text{lattice energy in water}}$	
	$<\Delta H_{ m lattice}$ energy in benzene	$=\Delta H_{\text{lattice energy in benze}}$	ene
4/4.	The pair likely to form the strongest hydrogen bondi		
475		c) CH ₃ COOH and CH ₃ COO	(d) SiH ₄ and SiCl ₄
4/5.	The number of sigma and pi bonds in 1- butane 3-ynd		1) 0 1 2 -
176	a) 5σ and 5π b) 6σ and 4π	c) 7σ and 3π	d) 8σ and 2π
4/0.	Which is soluble in water? a) AgF b) AgCl	c) AgBr	d) AgI
177	Which of the following compounds has the lowest me	, .	d) AgI
	a) CaF ₂ b) CaCl ₂	c) CaBr ₂	d) CaI ₂
	sp^3 hybridisation is not found in	c) cabi ₂	uj Cai ₂
170.	a) H ₂ O b) CH ₄	c) BCl ₃	d) NH ₃
479	Amongst H_2O , H_2S , H_2Se and H_2Te , the one with high	, ,	u) 11113
1, ,.	a) H ₂ O because of hydrogen bonding	lest bonnig point is:	
	b) H ₂ Te because of higher molecular weight		
	c) H ₂ S because of hydrogen bonding		
	d) H ₂ Se because of lower molecular weight		
480.	Which of the following is false?		
	a) Methane molecule is tetrahedral in shape		
	b) Nickel tetrachloride is square planar in shape		
	c) P_2O_5 is like two pyramids joined at their apices		
	d) Acetylene is non-linear		
,	The pair of elements which on combination are most	likely to form an ionic com	pound is:
	a) Na and Ca b) K and O ₂	c) O ₂ and Cl ₂	d) Al and I ₂
482.	Among the following the maximum covalent character	= = =	nd.
	a) FeCl ₂ b) SnCl ₂	c) AlCl ₃	d) MgCl ₂
483.	Dipole-dipole attractive forces are strongest between	2 0	
	a) He b) CH ₄	c) CO ₂	d) H ₂ O
484.	The type of hybridization of sulphur atom present in	SO ₂ and SO ₃ is respectively	y:
	a) sp, sp^2 b) sp^2, sp^2	c) sp^2 , sp^3	d) sp, sp^3
485	The electrons used in honding atoms:		

486.	d) Belong to penultimate		ermost shell	der
407		lo which of the following co	, , , , , , , , , , , , , , , , , , , ,	
487.		le which of the following se		*
	a) $\sigma 2s$ and $\sigma 1s$	b) $\pi 2 p_x$ and $\overset{*}{\pi} 2 p_y$	c) $\pi 2p_x$ and $\sigma 2p_z$	d) $\sigma 2 p_z$ and $\pi 2 p_x$
	The electronegativity order a) F > O > Cl > Br Solid NaCl is a bad conduct a) In solid NaCl there are b) Solid NaCl is covalent	b) F > Cl < Br > 0 ctor of electricity because:	c) Br > Cl > F > 0	d) F < Cl < Br < 0
490.	c) In solid NaCl there is no d) In solid NaCl there are The number of lone pairs a) BCl ₃	no electrons	c) CCl ₄	d) PCl ₅
491.	energy of NaCl, the approx		(67)	
	a) $\frac{U}{2}$	b) <i>U</i>	c) 2 <i>U</i>	d) 4 <i>U</i>
492.		$CH = CH_2$, the hybridisation		
	a) $sp^2 - sp$		c) $sp^2 - sp^2$	d) $sp^3 - sp$
	A CONTRACTOR OF THE PROPERTY O	sp^3d d^2 sp^3d^3 t of properties belong toPCl	₅ ?	
		nce shell pairs of electrons		
		nidal, 5 valence shell pairs o		
	-	alence shell pairs of electron		
495		valence shell pairs of electronic charge is 4.8×10^{-10} es		is 1 Å unit than the dinale
175.	moment is	onic charge is 4.0 × 10 es	u. II the interionic distance	is 1 A unit, then the dipole
	a) 0.48 debye	b) 4.18 debye	c) 4.8 debye	d) 41.8 debye
496.		en the two carbon atoms in o		•
4	a) Two sigma-bonds at rig	_		
	b) One sigma-bond and or			
	c) Two pi-bonds at right a	=		
107	d) Two pi-bonds at an ang The state of hybridisation			
47/.	a) sp^3 and has a lone pair			
	b) sp^2 and has tetrahedra			
	c) sp^3d and has a trigonal			
	d) sp^3d^2 and has an octah			
498.		air and lone pairs of electro	ns are respectively:	
	a) 2, 6	b) 2, 8	c) 2, 10	d) 2, 9

499.	9. In which pair, the first atom or ion is not larger than the second?				
	a) N, F	b) Cl ⁻ , Cl	c) 0, S	d) Fe ²⁺ , Fe ³⁺	
500.	The maximum number of	hydrogen bonds that a mol	ecule of water can have is		
	a) 1	b) 2	c) 3	d) 4	
501.	The isoelectronic species a	among the following are:			
	I—CH ₃ ; II—NH ₂ ; III—NH ₃	⁺ ; IV—NH ₃			
	a) I, II, III	b) II, III, IV	c) I, II, IV	d) II, I	
502.	Dipole moment is exhibite	d by:			
	a) 1, 4-dichlorobenzene				
	b) 1, 2-dichlorobenzene				
	c) Trans- 1, 2-dichloroeth	ene			
	d) Trans-1, 2-dichloro-2-b	outene			
503.	In a multi-electron atom, t	he energy of a 2 <i>p</i> -orbital i	s:		
	a) Less than that of 2s-orb	oital			
	b) More than that of 2s-or	bital			
	c) Equal to that of 2s-orbi	tal		X .	
	d) Double that of 2s-orbita		, (4	Y	
504.	In which molecule the cen	-		=	
	a) NH ₂	b) BeF ₃	c) SO_2Cl_2	d) SO ₄ ²⁻	
505.	RbO ₂ is				
	a) Peroxide and paramagr		b) Peroxide and diamagne		
	c) Superoxide and paramagnetic d) Superoxide and diamagnetic				
506.	Ionization energy of nitrogen is more than oxygen because:				
	a) Nucleus has more attra	,			
b) Half-filled p -orbitals are more stable					
	c) Nitrogen atom is small				
	d) More penetration effect				
507.	The high melting point and		=		
500	a) Simple ionic	b) Cubic	c) Bipolar ionic	d) hexagonal	
508.	Which of the following doe			T) IIMO	
۲00	, <u>-</u>	b) H ₂ SO ₃	c) HNO ₂	d) HNO ₃	
509.	Which of the following sec a) $Cu > Ag > Au$				
510	Which, molecule has zero	b) Cu < Ag < Au	c) Cu > Ag < Au	d) Ag > Cu < Au	
510.	a) HBr	b) AgI	c) PbSO ₄	d) H ₂ O	
511	BCl ₃ is a planar molecule,	, ,	-	u) 1120	
511.	a) N – Cl bond is more cov		cause		
	b) Nitrogen atom is smalle				
	c) B – Cl bond is more pola				
	d) BCl ₃ has no lone pair of		one pair of electrons		
512.	Hybridisation of the under	-	one pair of electrons		
	a) AlH ₃ changes to AlH ₄	mie deem enangee m	b) H ₂ O changes to H ₃ O ⁺		
	c) NH ₃ changes to NH ₄ ⁺		d) In all cases		
513	Which molecule has hydro	ogen honding	aj in an cases		
010.	a) CH ₄	b) CH ₃ COOH	c) GeH ₄	d) H ₂ Te	
514.	The energy released when	, ,	•	· -	
J I II	a) Ionization energy	b) Solvation energy	c) Electronegativity	d) Electron affinity	
515	In NO_3^- ion, number of bor			, and and a	
	a) 2, 2	b) 3, 1	c) 1, 3	d) 4, 8	
516.	Which has sp^2 -hybridisati		· ·	· ·	

	a) CO ₂	b) SO ₂	c) N ₂ O	d) CO
517	. A sp^3 -hybrid orbital conta	nins:		
	a) 1/4 s-character	b) 1/2 s-character	c) 2/3 s-character	d) 3/4 s-character
518	. In the formation of NO^+ fr			, ,
	a) a σ orbital	b) a π orbital	c) $a\sigma^*$ orbital	d) a π^* orbital
519	. The decreasing order of th	•	y of K, Ca and Ba is:	
	a) K > Ca > Ba	b) Ca > Ba > K	c) Ba > K > Ca	d) K > Ba > Ca
520	The value of n in the mole	_		,
	a) 1	b) 2	c) 3	d) 4
521	•	•	mber of σ bonds and the n	umber of π - bonds present
	in X are, respectively.	1		
	a) 3, 3	b) 4, 2	c) 2, 4	d) 4, 3
522	. 0F ₂ is:	~, ,	·,	Y
	a) Linear molecule and <i>sp</i>	-hvbridized		
	b) Tetrahedral molecule a	_		
	c) Bent molecule and sp^3 -			
	d) None of the above	11) 01141204	Ċ.	
523	. Which is not true in case o	of ionic bond?	4	
	a) It is linear bond			
	b) It is 100% ionic			
	•	vo atoms with large electro	negativity difference	
	d) None of the above			
524	. Which of the following are	e possible resonating struct	ture of N ₂ O?	
	_			
	HN==N==N	_N=0:		
	I	II	>	
	•••	+ :: ~ ~ ~		
	:N=N-0: N=	=0= <u>N</u>		
	III	IV		
	a) I and II	b) I and III	c) I, II and III	d) All of these
525	. The number of σ and π – b	onds in a molecule of aceto	onitrile are respectively	
	a) 2, 5	b) 3, 4	c) 4, 3	d) 5, 2
526	. Strongest hydrogen bond			
	a) O——HF	b) SO	c) O——HS	d) FF
527	. In the cyanide ion, the for	mal negative charge is on:		
	a) C			
	b) N			
	c) Both C and N			
	d) Resonate between C an			
528	. The trigonal bipyramidal \S	-	-	
1	a) dsp^3 or sp^3d	b) dsp^2 or sp^2d	c) d^2sp^3 or sp^3d^2	d) d^3p^2 or d^2p^3
529	. Which one of the following	g molecules has the smalles	st bond angle?	
	a) NH ₃	b) PH ₃	c) H ₂ 0	d) H ₂ Se
530				
	The H H bond angle	e in H ₂ O is 104.5. This fact	can be best explained with	the help of
		n pair repulsion (VSEPR		
	theory		, ,	•
	c) Presence of hydrogen b	ond	d) Electronegativity diffe	erence between hydrogen
			and oxygen atoms	, 0
531	. Which of the two ions fror	n the list given below that l	• •	explained by the same
			-	

	hybridization of orbitals, NO ₂ , NO ₃ , NH ₂ , NH ₄ , SCN ⁻ ?				
	a) NO ₂ and NH ₂	b) NO_2^- and NO_3^-	c) NH ₄ and NO ₃	d) SCN ⁻ and NH ₂	
532.	Which of the following is	, 2	, 1	2	
	a) SO ₃	b) CO ₂	c) CS ₂	d) BeCl ₂	
533.	Which contains both cova	, _	, 2	, 2	
	a) CCl ₄	b) KCN	c) CaCl ₂	d) H ₂ O	
534.	•	y combination of Na and Cl	-	, 2	
a) Sodium and chlorine both lose electrons					
b) Sodium and chlorine both gain electrons					
	c) Sodium loses but chlor	ine gains electrons		Λ	
	d) Sodium gains but chlor	rine loses electrons			
535.	Which of the following ha	s linear structure?			
	a) CCl ₄	b) C ₂ H ₄	c) C ₂ H ₂	d) SO ₂	
536.	A molecule (X) has (i) for	our sigma bonds formed by	the overlap of sp^2 and $s-c$	orbitals (ii) one sigma bond	
	formed by sp^2 and sp^2 or	bitals and (iii) one π bond	formed by p_x and p_z orbita	ls. Which of the following is	
	<i>X</i> ?			V	
	a) C_2H_6	b) C ₂ H ₃ Cl	c) C ₂ H ₂ Cl ₂	d) C_2H_4	
537.	The lowest ionization ene	ergy would be associated wi	ith the electronic structure		
	a) $1s^2$, $2s^22p^6$, $3s^1$	b) $1s^2$, $2s^22p^5$	c) $1s^2$, $2s^22p^6$	d) $1s^2$, $2s^22p^6$, $3s^2$	
538.	Which is correct in the following	_			
		99Å, while that of Cl ⁺ ion is			
	-	99 Å, while that of Na atom			
		s 0.95Å , while that of Cl^- ic			
		95 Å, while that of Na ⁺ ion	is 1.54 Å		
539.	How many unpaired elect	rons are present in N_2^+ ?			
	a) 1	b) 2	c) 3	d) 4	
540.		g compounds has the small	-		
	a) SO ₂	b) OH ₂	c) SH ₂	d) NH ₃	
541.	Which of the following is				
	a) N ₂ 0	b) NO ₂	c) N_2O_5	d) NO	
542.		ion of four elements L, P, Q			
	$L(1s^2, 2s^2, 2p^4), P(1s^2, 2s^2, 2p^6, 3s^1), Q(1s^2, 2s^2, 2p^6, 3s^2, 3p^5), R(1s^2, 2s^2, 2p^6, 3s^2)$ The formula of ionic				
	•	rmed between these eleme		D 1 D 1 D 0 1 D 0	
= 40		b) LP, RL, PQ and RQ			
543.	_	ionisation processes, the b	ond order has increased a	and the magnetic behaviour	
	has changed? a) $C_2 \rightarrow C_2^+$	L) NO NO+	-) O + O+	1) NI NI+	
T 1 1	a) $C_2 \rightarrow C_2$	b) $NO \rightarrow NO^+$		d) $N_2 \rightarrow N_2^+$	
544.	a) $Cl^{7+} > Si^{4+} > Mg^{2+} >$	s correctly given in the orde	er:		
	b) $Na^+ > Mg^{2+} > Si^{4+} >$				
	o) Na $> Mg^{-1} > S1^{-1} >$	C;4+			
7	c) $Na^+ > Mg^{2+} > Cl^{7+} >$ d) $Cl^{7+} > Na^+ > Mg^{2+} >$	S1 - C;4+			
			.7		
545.	_	s the minimum bond length		d) O2-	
Г16	a) 0_2	b) 0_2^+	c) 0 ₂	d) 0_2^{2-}	
546.		tween the carbon atoms the		a and a	
	a) Three pi bonds	hands	b) One sigma and two pi b	onus	
5 17	c) Two sigma and one pi		d) Three sigma bonds		
J4/.	a) 1.36 , 1.40 , 1.71	and F^- are respectively gib) 1.36, 1.71, 1.40		d) 1 71 1 26 1 40	
540	Bond order of 1.5 is show		c) 1.71, 1.40, 1.36	d) 1.71, 1.36, 1.40	
J40.	אסוומ סו מבו חו זיס וף אווחת poila oi aci	II Uy.			

	a) 0_2^{2-}	b) 0 ₂	c) 0 ₂ ⁺	d) 0 ₂	
549.	In which of the process, th	ne bond order increases and	d magnetic behaviour chan	ges?	
	a) $N_2 \rightarrow N_2^+$	b) $C_2 \rightarrow C_2^+$	c) $NO \rightarrow NO^+$	d) $0_2 \to 0_2^+$	
550.	Which involves a bond for	ming process?		<u>-</u>	
	a) Stretching rubber				
	b) Dissolution of sugar in	water			
	c) Rusting of iron				
	d) Emission of γ-rays by ra	adioactive iron			
551.	Which is paramagnetic?				
	a) Cl ₂ O ₆	b) Cl ₂ O ₇	c) Cl ₂ 0	d) ClO ₂	
552.	Which one of the following	g pairs of molecules will ha	ive permanent dipole mom	ents for both members?	
	a) SiF ₄ and NO ₂	b) NO ₂ and CO ₂	c) NO_2 and O_3	d) SiF ₄ and CO ₂	
553.	The state of hybridization	of boron and oxygen atom	in boric acid (H ₃ BO ₃) is re	spectively:	
	a) sp^3 , sp^3	b) sp^2, sp^3	c) sp^3 , sp^2	d) sp^2 , sp^2	
554.	The correct order towards	s bond angle is			
	a) $sp^3 < sp^2 < sp$	b) $sp < sp^2 < sp^3$	c) $sp < sp^3 < sp^2$	d) $sp^2 < sp^3 < sp$	
555.	Which orbital is used by o		a bond with other oxyen at	om in O ₂ molecule?	
	a) Pure <i>p</i> -orbital	b) sp^2 -hybrid orbital	c) sp^3 - hybrid orbital	d) <i>sp</i> - hybrid orbital	
556.	Which of the following is a	a linear molecule?			
	a) BeCl ₂	b) H ₂ O	c) SO ₂	d) CH ₄	
557.	Which involves breaking of	of covalent bond?			
	a) Boiling H ₂ S	b) Melting KCN	c) Melting SiO ₂	d) Boiling CF ₄	
558.	For $\overline{N}H_2$, the best three-di	mensional view is			
	•	0	Н	H I	
	V H	1) H—N—H	N. m.		
	a) 🔾 N	b) H——N——H	C) C		
	() 'H	\odot			
	For the four quagacity tra	maitian alamanta (Cu Ma I	Es and Co) the stability of	∏ L2 avidation atata will ba	
559.			Fe and Co), the stability of -	+2 oxidation state will be	
	there in which of the follows:	wing order?			
	a) $Cr > Mn > Co > Fe$	4 X)			
	b) $Mn > Fe > Cr > Co$				
	c) Fe $>$ Mn $>$ Co $>$ Cr				
	d) $Co > Mn > Fe > Cr$ (At. no. $Cr = 24$, $Mn = 25$, $Fe = 26$, $Co = 27$)				
560			tom and the P – 0 bond or	dor rospostivoly are	
300.	a) $-0.75, 0.6$	b) -0.75, 1.0	c) $-0.75, 1.25$	d) -3, 1.25	
E 6 1		•	elongs to III period. Its mol	•	
301.	a) X				
562		b) X_2 ons in its outermost orbit x_1	c) X_4	d) <i>X</i> ₅	
302.	a) Complex ion	b) Negative ion	c) Positive ion	d) Zwitter ion	
562	-	lphur exhibits variable vale		u) Zwitter ion	
	y - =	=	ency of 2, 4 and 0, because.		
	a) Sulphur is less electronegative than oxygen				
	b) Sulphur is bigger atom than oxygenc) Ionisation potential of sulphur is more than oxygen				
	d) Of the presence of d -or		.11		
561		bitais in suiphur h one does not contain isoe	alactronic enecias?		
JU4.	_	b) SO_3^{2-} , CO_3^{2-} , NO_3^{-}	-	d) PO ₄ ³⁻ , SO ₄ ²⁻ , ClO ₄ ⁻	
	a_1 טע $_3$, געט , אטע , אטע , אטע	0, 3 0 3 , 6 0 3 , 1 10 3	$c_1 c_1 c_1 c_1 c_2$	$u_1 r u_4$, $s u_4$, $c u u_4$	

565. In which of the following, unpaired electrons are present?

 KO_2 , AlO_2^- , BaO_2 , NO_2^+

5 6 6	a) NO ₂ ⁺ , BaO ₂	b) KO ₂ , AlO ₂	c) Only KO ₂	d) Only BaO ₂	
566	666. Which transition involves maximum amount of energy?				
	a) $M^-(g) \rightarrow M(g) + e$				
	b) $M^{-}(g) \to M^{+}(g) + 2e$				
	c) $M^+(g) \to M^{2+}(g) + e$				
	d) $M^{2+}(g) \to M^{3+}(g) + e^{-g}$				
567		bond between B and O in (
	a) Covalent		b) Coordinate covalent		
	c) Ionic bond		d) Banana shaped bond		
568	-	ybrid orbitals in its bondir	=	\wedge	
	a) BeF ₃	b) OH ₃ ⁺	c) NH ₄ ⁺	d) NF ₃	
569	. Hybridisation of C ₂ and C ₃				
	$H_3C - CH = C = CH - CH$				
	a) sp, sp^3	b) <i>sp</i> ² , <i>sp</i>	c) sp^2 , sp^2	d) <i>sp</i> , <i>sp</i>	
570		n atom of an element is equ			
	,	ectrons in the s -and p -orbi	•		
	•	ectrons in the p -orbitals of	•	Y	
	_	ons in the <i>s</i> -and <i>p</i> -orbitals			
		ons in the p -orbitals of vale			
571	- -		r of outermost electrons th		
	a) Alkali metals	b) Noble gases	c) Halogens	d) None of these	
572	-	crystals of naphthalene are			
	a) Van der Waals' forces		c) Hydrogen bonding	d) None of these	
573	. Which does not show ine	=			
	a) Al	b) Sn	c) Pb	d) Thallium	
574	. The electronic theory of b				
	a) Pauling	b) Lewis	c) Bronsted	d) Mullikan	
575		easing first ionization pote			
	a) $C > B > Be > Li$		c) B > C > Be > Li	d) Be $>$ Li $>$ B $>$ C	
576		tals of N atom in NO_3^- , NO_2^+			
	a) sp, sp^2, sp^3	b) sp^2 , sp , sp^3	c) sp, sp^3, sp^2	d) sp^2 , sp^3 , sp	
577	. Which of the following is				
	a) NaCl	b) KCl	c) MgCl ₂	d) CaCl ₂	
578	. The species showing $p\pi$ -				
	a) NO ₃	b) PO ₄ ³⁻	c) CO_3^{2-}	d) NO ₂	
579	_	nent, while BeF ₂ has zero d	ipole moment, because:		
	a) H ₂ 0 molecule as linear	=			
	b) BeF ₂ molecule is linear	r, while H ₂ O is bent			
	c) Fluorine is more electr	onegative than oxygen			
	d) Be is more electronega	tive than oxygen			
580	. Among the following whi	ch is the strongest oxidisin	g agent?		
	a) Cl ₂	b) F ₂	c) Br ₂	d) I ₂	
581	Which of the following m	olecule in its valence shell	has three bond pairs of ele	ectrons and one lone pair of	
	electrons?				
	a) NH ₃	b) H ₂ O	c) BF ₃	d) CO ₂	
582	. Which of the following st				
	a) All carbon to carbon be	onds contain a σ - bond and	l one or more π - bonds		
	b) All carbon to hydroger	n bonds are $π$ - bonds			
		n bonds are hydrogen bond	S		
	d) All carbon to hydroger	h bonds are σ - bonds			

583. Which of the following has sp^2	² hybridisation?		
a) C ₂ H ₆ b) (C_2H_4	c) BeCl ₂	d) C_2H_2
584. The formation of energy bond	s in solids are in accord	lance with	
a) Heisenberg's uncertainty pi	rinciple	b) Bohr's theory	
c) Ohm's law		d) Rutherford's atomic mo	odel
585. Which of the following configu	ıration is associated wi	th biggest jump between 2	nd and 3rd <i>IE</i> ?
a) $1s^2$, $2s^22p^2$ b) 1	$1s^2, 2s^22p^6, 3s^1$	c) $1s^2$, $2s^22p^6$, $3s^2$	d) $1s^2$, $2s^22p^1$
586. The predominent intermolecu	=	= = = = = = = = = = = = = = = = = = =	
a) Dipole-induced dipole inter	action		
b) Dipole-dipole interaction			
c) Hydrogen bond interaction			
d) Dispersion interaction			
587. Correct order of bond length is	S		A . Y
a) $CO_3^{2-} > CO_2 > CO$		b) $CO_2 > CO > CO_3^{2-}$	
c) $CO > CO_2 > CO_3^{2-}$		d) None of these	
588. Which of the following molecu	ıles has nyramidal shar		
a) PCl ₃ b) S		c) CO ₃ ²⁻	d) NO ₃
589. The molecular electronic confi	· ·	c) co ₃	u) NO3
	igui ation of be ₂ is	*	d) None of the above
a) $\sigma ls^2 \overset{*}{\sigma} ls^2 \sigma 02s^2 \overset{*}{\sigma} 2p^2$ b) <i>I</i>	$KK\sigma 2S^2$	c) $\sigma ls^2 \overset{*}{\sigma} ls^2 \sigma 02s^2 \overset{*}{\sigma} 2s^2$	d) None of the above
590. The maximum number of 90°	angles between bond p	air-bond pair of electrons	is observed in
a) dsp^3 hybridisation		b) $sp^3 d$ hybridization	
c) dsp^2 hybridisation		d) $sp^3 d^2$ hybridisation	
591. In which of the following arran	ngement the order is no	ot correct according to pro	perty indicated against it?
a) Increasing size : Al ³⁺ < Mg			
b) Increasing IE_1 : B < C < N		>	
c) Increasing EA_1 : I < Br < F	(y		
d) Increasing metallic radius :			
592. Most covalent halide of alumir			
	AlI ₃	c) AlBr ₃	d) AlF ₃
593. The bond order of individual of	A -	, ,	3
a) One			
b) Two	Y		
c) Between 1 and 2			
d) One and two alternately			
594. In pyrophosphoric acid, H_4P_2O	0_{π} number of σ and $d\pi$	$-n\pi$ honds are respective	V_{Λ}
	6 and 2	c) 12 and zero	d) 12 and 2
595. The percentage s – character of		•	
	25, 50, 75	c) 50, 75, 100	d) 10, 20, 40
596. The types of bonds present in		cj 50, 75, 100	uj 10, 20, 10
a) Electrovalent and covalent			
b) Electrovalent and co-ordina			
c) Electrovalent, covalent and			
d) Covalent and co-ordinate co			
597. Which pair represents isostructure and GHT and GHT.	=) CO2- 1 DE-	DAULT I D. P
, ,		c) SO_4^{2-} and BF_4^{-}	d) NH ₂ and BeF ₂
598. In which of the following speci	ies, all the three types o	= = = = = = = = = = = = = = = = = = =	ent?
a) $CH_2 = C = CH_2$		b) $CH_3 - CH = CH - CH_2^+$	
c) $CH_3 - C \equiv C - CH_2^+$		d) $CH_3 - CH = CH - CH_2^-$	
599 Which statement is not correct	+7		

	a) Double bond is shorte	er than a single bond.		
	b) Sigma bond is weaker	-		
	c) Double bond is strong			
	=	nger than hydrogen bond.		
600	. The pair having similar g			
000.	a) BF ₃ , NH ₃	b) BF ₃ , AlF ₃	c) BeF ₂ , H ₂ O	d) BCl ₃ , PCl ₃
601	. Which of the following is		c) bei 2,1120	a) baig, i dig
001.	a) Cl^{-}	b) S ²⁻	c) Na ⁺	d) F ⁻
(02		,		
002.		gonal bipyramidal. The hybr		
		b) d_{xy} , s , p_x , p_y , p_z		d) $d_{x^2-y^2}$, s , p_x , p_y
603.	=	alogen containing compour	nds	
	, ,	(B) CCl ₄		A
	$(C) CH_2Cl_2$	(D) CH ₃ Cl		
	(E)			
	CI——CI		A	64
		. 11 1	, (4	
	=	et zero dipole moment are)
	a) B and E only	b) C only	c) C and D only	d) A and D only
604.	. Alkali metals in each per	riod have:		
	a) Largest size			
	b) Lowest <i>IE</i>			
	c) Highest <i>IE</i>			
	d) Highest electronegative	-	G. V	
605.	. In a regular octahedral n	nolecule, MX_6 the number of		}
	a) Three	b) Two	c) Six	d) Four
606.	. Valency means:		Y	
	a) Combining capacity of	f an element		
	b) Atomicity of an eleme	nt		
	c) Oxidation number of a	an element		
	d) None of the above			
607.	. Which does not form two	o or more chlorides?		
	a) Na	b) Hg	c) Cu	d) Fe
608.	. Which has the largest fir	st ionisation energy?		
	a) Li	b) Na	c) K	d) Rb
609.	. Polarization of electrons	in acrolein may be written	as:	
				12 s ⁺
	a) $CH_2 = CH - CH = O$	b) $_{\text{CH}_2=\text{CH-CH=O}}^{\circ}$	$^{\text{CJ}}$ $\overset{\circ}{\text{CH}}_2 = \overset{\circ}{\text{CH}} - \text{CH} = \text{O}$	$^{\text{d}}$ $^{\text{C}}$ H ₂ =CH-CH= $^{\text{C}}$
610.	. Which bond has the high			
	a) Coordinate bond	b) Sigma bond	c) Multiple bond	d) Polar covalent bond
611.		g molecules the van der Waa		=
7	determining the melting		Ž	1
	a) CO	01	b) H ₂ S	
	c) Br ₂		d) HCl	
612.	· -	cific heat of water in compa	_	e to:
O	a) High dielectric consta		and the content inquited to the	
	b) Polarity	•••		
	c) H-bonding			
	d) None of the above			
613		ar and non-polar covalent b	oonds?	
013.	a) NH ₄ Cl	ai ana non polai covalent t	JOHAJ.	
	u, 11114UI			

- b) HCN
- c) H_2O_2
- d) CH₄
- 614. How many bonds are present in naphthalene?
 - a) 4

b) 5

c) 6

- d) 7
- 615. If the electron pair forming a bond between two atoms A and B is not in the centre, then the bond is
 - a) Polar bond
- b) Single bond
- c) π -bond
- d) Non-polar bond

- 616. Which of the following species in non-linear?
 - a) ICl₂

b) I₃

c) N_3^-

- d) ClO_2^-
- 617. The bond order of CO molecule on the basis of molecular orbital theory is:
 - a) Zero

b) 2

c) 3

d) 1

- 618. Which one is the strongest bond?
 - a) Cl—F
- b) F—F

- c) Br—F
- d) Br—C

619. Which of the following compound has maximum volatility?

620. In the following electron-dot structure, calculate the formal charge from left to right nitrogen atom;

- a) -1, -1, +1
- b) -1, +1,-1
- c) +1, -1, -1
- d) +1, -1, +1
- 621. Hybridisation shown by carbon and oxygen of 0H group in phenol are respectively
 - a) sp^2 , sp^2
- b) sp^{3}, sp^{3}
- c) sp, sp^2
- d) sp^2 , sp^3

- 622. The molecule which has pyramidal shape is:
 - a) PCl₃

b) SO₃

c) CO_3^{2-}

d) NO_3^-

- 623. The correct increasing bond angles order is:
 - a) $BF_3 < NF_3 < PF_3 < ClF_3$
 - b) $ClF_3 < PF_3 < NF_3 < BF_3$
 - c) $BF_3 \approx NF_3 < PF_3 < ClF_3$
 - d) $BF_3 < NF_3 < PF_3 > ClF_3$
- 624. Van der Waals' forces are applied to:
 - a) Inert gases only
 - b) Rare gases only
 - c) Mixture of gases
 - d) Elementary gases only
- 625. Which bond angle results in the minimum dipole moment for the triatomic molecule XY_2 shown below?
 - a) 90°

b) 120°

c) 150°

d) 180°

- 626. Which shows the least dipole moment?
 - a) CHCl₃
- b) CH₃CH₂OH
- c) CH₃COCH₃
- d) CCl₄

- 627. Which force is strongest?
 - a) Dipole-dipole forces
 - b) Ion-ion forces
 - c) Ion-dipole forces
 - d) Ion-induced dipole forces
- 628. Which molecule has linear structure?
 - a) CO₂

b) H₂0

c) SO_2

d) H_2O_2

629. Out of the compounds below the vapour pressure of (B) at a particular temperature is ОН (*B*) (A)a) Higher than that of (A)b) lower than that of (A) c) Higher or lower than (A), depending on the size ofd) Same as that of (A) the vessel 630. Which ion has a higher polarizing power? a) Mg²⁺ b) Al³⁺ c) Ca²⁺ 631. Which of the following represent the given mode of hybridisation $sp^2 - sp^2$ from left to right? b) $HC \equiv C - CH_2 - C \equiv$ a) $H_2C = CH - C \equiv CN$ c) $H_2C = C = CH_2$ d) $HC = C - CH_2 - C = CH$ 632. The solubility of KCl is relatively more in (where D is dielectric constant): b) $(CH_3)_2CO(D = 2)$ c) $CH_3OH(D = 32)$ a) $C_6H_6(D=0)$ d) $CCl_4(D=0)$ 633. Elements have electronegativities 1.2 and 3.0, bond formed between them would be b) Covalent c) Co-ordinate d) metallic a) Ionic 634. Among the following, the pair in which the two species are not isostructural, is c) BH₄ and NH₄ a) SiF₄ and SF₄ b) 10_3^- and XeO_3 d) PF₆ and SF₆ 635. Which has zero dipole moment? a) ClF b) PCl₃ c) SiF₄ d) CFCl₃ 636. Which of the following molecules is covalent and shows expanded octet in its formation? a) HF b) NF₃ c) BF₃ d) ClF₃ 637. Which one of the following is a correct set? a) H_2O , sp^3 , angular b) $BCl_3 sp^3$, angular c) NH₄, dsp^2 , square planar d) CH_4 , dsp^2 , tetrahedral 638. Which property of halogens increases from F to I? a) Electronegativity b) First ionization energy c) Bond length in the molecule d) None of the above 639. The total number of bonds in acetylene molecule is: b) Two c) Three 640. The number of antibonding electron pairs in O_2^{2-} molecular ion on the basis of molecular orbital theory is (Atomic number of 0 is 18.) c) 3 d) 2 641. Variable valency is characteristic of: a) Noble gases b) Alkali metals c) Transition metals d) Non-metallic elements 642. In which molecule all atoms are coplanar? a) CH₄ b) BF₃ c) PF₃ d) NH₃

643. During change of O_2 to O_2^- ion, the electron adds on which one of the following orbitals?

a) $\pi*$ orbital b) π orbital 644. Bond energy of covalent O—H bond in water is:	c) σ* orbital	d) σ orbital
a) Greater than bond energy of hydrogen bond		
b) Equal to bond energy of hydrogen bond		
c) Less than bond energy of hydrogen bond		
d) None of the above		
645. Which one of the following has a coordinate bond?		
a) NH ₄ Cl b) AlCl ₃	c) NaCl	d) Cl ₂
646. Which carbon is more electronegative?		
a) sp^3 hybridised carbon		$\langle V \rangle$
b) <i>sp</i> – hybridised carbon		
c) sp^2 hybridised carbon		
d) Always same irrespective of its hybrid state		
647. Among $\mathrm{NH_3}$, $\mathrm{BeCl_2}$, $\mathrm{CO_2}$ and $\mathrm{H_2O}$, the non-linear mo	lecules are:	
a) BeCl ₂ and H ₂ O b) BeCl ₂ and CO ₂	c) NH ₃ and H ₂ O	d) NH ₃ and CO ₂
648. Paramagnetism is exhibited by molecules:		
a) Not attracted into a magnetic field	, (4	Y
b) Containing only paired electrons		
c) Carrying a positive charge		
d) Containing unpaired electrons		
649. Which molecule has the largest dipole moment?		
a) HF b) HCl	c) HBr	d) HI
650. The intermolecular attractive forces vary in the ord	er:	
a) Water < alcohol < ether	$\langle \lambda, \lambda' \rangle$	
b) Water > alcohol > ether		
c) Alcohol > water < ether		
d) Ether > water > alcohol		
651. Which of the following species has a linear shape?) NO=	1) 00
a) NO_2^+ b) O_3	c) NO_2^-	d) SO ₂
652. The electronic configuration of 4 elements K, L, M a	nd N are,	
$K = 1s^2, 2s^22p^1$ $L = 1s^2, 2s^22p^6$ $M = 1s^2, 2s^22p^4$ $N = 1s^2, 2s^22p^3$		
The element that would form a diatomic molecule v		4) N
a) K b) L (5.2) Which of the following will provide the most official	c) M	d) <i>N</i>
653. Which of the following will provide the most efficient	c) $sp^2 - sp^2$	d) on on
a) $s - s$ b) $s - p$, , ,	d) $sp - sp$
654. The state of hybridization of C_2 , C_3 , C_5 and C_6 of the	nyurocarbon,	
$ \begin{array}{c cccc} CH_3 & CH_3 \\ CH_3 - 6C - CH = CH - C - C = CH \\ 7 & 6 & 7 & 4 & 3 & 2 & 1 \end{array} $		
$CH_3 - CC - CH = CH - CC = CH$		
5 4 3 2 1		
CH ₃		
is in the following sequence:		
a) sp, sp^2, sp^3 and sp^2 b) sp, sp^3, sp^2 and sp^3		
655. Four diatomic species are listed below in different s	sequences. Which of these re	epresents the correct orde
of their increasing bond order?		
a) NO $<$ C_2^{2-} $<$ O_2^{-} $<$ He ₂ ⁺		
b) $C_2^{2-} < He_2^+ < NO < O_2^-$		
c) $He_2^+ < O_2^- < NO < C_2^{2-}$		
d) $O_2^- < NO < C_2^{2-} < He_2^+$		
656. Which one species has the longest bond length?		

ລໂ	NO.	

b)
$$0_{2}^{-}$$

c)
$$0_{2}^{+}$$

657. The pair of molecules forming strongest hydrogen bonds are

$$CH_3 - C - CH_3$$
 and $CHCl_3$

$$H - C - OH$$
 and $CH_3 - C - OH$

658. Which one of the following has not triangular pyramidal shape?

a) NH_a

b) NCl₃

c) PF₃

d) BCl₃

659. A covalent bond is formed between the atoms by the overlapping of orbitals containing:

- a) Single electron
- b) Paired electron
- c) Single electron with parallel spin
- d) Single electron with opposite spin

660. Which of the following bonds required the largest amount of bond energy to dissociate the atom concerned?

a)
$$H - H$$
 bond in H_2

b)
$$0 = 0$$
 bond in 0_2

c)
$$N \equiv N \text{ bond in } N_2$$

d)
$$C - C$$
 bond in C_2H_6

661. The covalency of nitrogen in HNO₃ is:

- a) Zero
- b) 3
- c) 4
- d) 5

662. Which is distilled first?

- a) Liquid H₂
- b) Liquid CO₂
- c) Liquid 0_2
- d) Liquid N₂

663. Which one of the following is a correct set?

- a) H_2O , sp^3 , angular
- c) NH_4^+ , dsp^2 , square planar

- b) H_2O , sp^2 , linear
- d) CH_4 , dsp^2 , tetrahedral

664. Which is correct order for electron gain enthalpy?

- a) S < 0 < Cl < F
- b) 0 < S < F < Cl
- c) Cl < F < S < 0
- d) F < Cl < 0 < S

665. Which is a pyramidal structure?

- a) Trimethylamine
- b) Methanol
- c) Acetylene
- d) Water

666. Among the following mixtures, dipole - dipole as the major interaction, is present in

a) Benzene and ethanol

b) Acetonitrile and acetone

c) KCl and water

d) Benzene and carbon tetrachloride

667. In dry ice there are ... in between molecules.

- a) Ionic bond
- b) Covalent bond
- c) Hydrogen bond
- d) None of these

668. The dipole moment of o, p and m-dichlorobenzene will be in the order

- a) o > p > m
- b) p > o > m
- c) m > o > p
- d) o > m > p

669. Which formulae does not correctly represents the bonding capacity of the atom involved?

670. Which has minimum ionic radius?

a) N³⁻

b) K⁺

c) Na⁺

d) F-

671. The bond order is maximum in

a) 0₂

b) 0_2^+

c) 0_2^-

d) 0_2^{2-}

672. PF₃ molecule is:

	a) Square planar	b) Trigonal bipyramidal	c) Tetrahedral	d) Trigonal pyramidal
673	Resonance is due to:	b) Trigonal bipyraimuai	c) retraileurar	uj Trigonai pyrannuai
073.	a) Delocalization of σ -elec	ctrons		
	=			
	b) Delocalization of π -ele	CUIOIIS		
	c) Migration of H atoms			
(71	d) Migration of protons	anler archibited ber a garralan	t aanan aun d?	
0/4.	• • •	only exhibited by a covalen	t compound?	
	a) High solubility in wate	r		
	b) Low m.p.			
	c) High electrical conduct	livity		\wedge
. 75	d) High b.p.			4 7
6/5.	Which of the following is	=) M . Cl	D. DE
 .	a) CH ₄	b) SiCl ₄	c) MgCl ₂	d) BF ₃
6/6.	-	bond angles from NH_3 (106	6°) to SbH $_3$ (101°) down gr	oup-15 of the periodic
	table is due to:	1.		0
	a) Increasing <i>bp</i> - <i>bp</i> repu			
	b) Increasing <i>p</i> -orbital ch	-	4 4	Y
	c) Decreasing <i>lp</i> - <i>bp</i> repu			7
	d) Decreasing electronega	=		
677.	The shape of ClO ₃ accord	=		
	a) Planar triangle	b) Pyramidal	c) Tetrahedral	d) Square planar
678.	-	r tendency to form metal or		
	a) Cr	b) Fe	c) Al	d) Ca
679.		-		of the following sequence
			wer of the cationic species,	
	a) $Mg^{2+} < Be^{2+} < K^+ <$	//	b) $Be^{2+} < K^+ < Ca^{2+} < M$	Mg^{2+}
	c) $K^+ < Ca^{2+} < Mg^{2+} <$	Be ²⁺	d) $Ca^{2+} < Mg^{2+} < Be^{2+} < Be^{2+}$	< K ⁺
680.	A p-block element in whi	ch last electron enters into	s-orbitals of valence shell	instead of p -orbital is:
	a) As	b) Ga	c) No such element exist	d) He
681.	How many electron pairs	are present in valence shel	ll of oxygen in water molec	ule?
	a) 4	b) 1	c) 2	d) 3
682.	Number of electrons in a	the valence orbit of nitroge	en in an ammonia molecule	is
	a) 8	b) 5	c) 6	d) 7
683.	The number of valency el	ectrons in carbon atom is:		
	a) Zero	b) 2	c) 6	d) 4
684.	The structure of IF ₅ can l	oe best described as		
		F I	E	d) None of these
	F 72°	F90°	F 90° F	

 $685. \, \text{The relationship}$ between the dissociation energy and N_2 and N_2^+ is

- a) dissociation energy of N_2 = dissociation energy of N_2^+
 - b) dissociation energy of N_2 can either be lower or higher than the dissociation energy of $\,\mathrm{N}_2^+$
 - c) dissociation energy of $\rm N_2^{} > dissociation$ energy of $\rm N_2^{+}$
 - d) dissociation energy of $\rm N_2^+ >$ dissociation energy of $\rm N_2$

686. The bond angle in H_2S (for H—S—H)is:

- a) Same as that of Cl—Be—Cl in BeCl_2
- b) Greater than H—N—H bond angle in NH₃
- c) Greater than H—Se—H and less than H—O—H

d) Same as Cl—Sn— Cl in SnCl ₂		
687. Which one among the following does not have the h	ydrogen bond?	
a) Phenol b) Water	c) Liquid NH ₃	d) Liquid HCl
688. Which of the following molecules/ions does not con	tain unpaired electrons.	
a) 0_2^{2-} b) B_2	c) N ₂ ⁺	d) 0 ₂
689. The $C - O - H$ bond angle in ethanol is nearly	-	
a) 90 b) 104	c) 120	d) 180
690. Which one of the following does not have sp^2 hybrid		,
a) Acetone b) Acetic acid	c) Acetonitrile	d) Acetamide
691. Among the following elements Ca, Mg, P and Cl the o	•	
a) $Mg < Ca < Cl < P$ b) $Cl < P < Mg < Ca$		d) Ca < Mg < P < Cl
692. Which has a giant covalent structure?	,	
a) PbO ₂ b) SiO ₂	c) NaCl	d) AlCl ₃
693. Bond angles of NH ₃ , PH ₃ , AsH ₃ and SbH ₃ is in the or	•	
a) $PH_3 > AsH_3 > SbH_3 > NH_3$	b) $SbH_3 > AsH_3 > PH_3 >$	> NH ₂
c) $SbH_3 > AsH_3 > NH_3 > PH_3$	d) $NH_3 > PH_3 > AsH_3 >$	
694. Amongst the elements with following electronic con		
ionization energy?		
a) Ne $[3s^23p^1]$ b) Ne $[3s^23p^3]$	c) Ne $[3s^23p^2]$	d) Ar $[3d^{10}4s^24p^3]$
695. Based on VSEPR theory, the number of 90 degree F		, , , , , ,
a) 0 b) 1	c) 2	d) 3
696. Which one of the following elements has lower valu		,
a) Mg b) Rb	c) Li	d) Ca
697. The lattice energy order for lithium halide is:	G. C.	,
a) LiF > LiCl > LiBr > LiI		
b) LiCl > LiF > LiBr > LiI	<i>></i> ′	
c) LiBr > LiCl > LiF > LiI	,	
d) LiI > LiBr > LiCl > LiF		
698. Among the species: CO_2 , CH_3COO^- , CO , CO_3^{2-} , $HCHO$ v	vhich has the weakest C – () bond?
a) CO b) CO ₂	c) CO_3^{2-}	d) CH ₃ COO ⁻
699. Peroxide ion	, ,	, ,
(i) has five completely filled antibonding molecular	orbitals	
(ii) is diamagnetic		
(iii) has bond order one		
(iv) is isoelectronic with neon		
Which one of these is correct?		
a) (ii) and (iii) b) (i),(ii) and (iv)	c) (i),(ii) and (iii)	d) (i) and (iv)
700. Which is the weakest among the following type of be	ond?	
a) Ionic bond b) Covalent bond	c) Metallic bond	d) Hydrogen bond
701. In which of the following pairs of molecules/ions, th	he central atom has sp^2 -hyb	ridization?
a) NO_2 and NH_3 b) BF_3 and NO_2^-	c) NH_2^- and H_2O	d) BF ₃ and NH ₂
702. Bond length decreases with:		
a) Decrease in size of the atom		
b) Increase in the number of bonds between the ato	ms	
c) Decrease in bond order		
d) Decrease in the number of bonds between the ato	oms	
703. Which of the following molecules/ ions does not cor	ntain unpaired electrons?	
a) O_2^{2-} b) B_2	c) N ₂ ⁺	d) 0 ₂
704. The structure of IF ₇ is		
a) Square pyramid	b) Trigonal bipyramid	

	c) Octahedral	d) Pentagonal bipyramid	
705.	The species C ₂		
	a) Has one σ bond and one π bond	b) Has both π bonds	
	c) Has both σ bonds	d) Does not exist	
706.	In which of the following bond angle is maximum?		
	a) NH ₃ b) NH ₄ ⁺	c) PCl ₅	d) SCl ₂
707.	Oxidising power of chlorine in aqueous solution can	be determined by the parai	neters indicated below
	$\frac{1}{2}\operatorname{Cl}_{2}(g) \xrightarrow{\frac{1}{2}\Delta_{\operatorname{diss}}H^{\circ}} \operatorname{Cl}(g) \xrightarrow{\Delta_{\operatorname{EA}}H^{\circ}} \operatorname{Cl}^{-}(g) \xrightarrow{\Delta_{\operatorname{hyd}}H^{\circ}} \operatorname{Cl}^{-}(aq)$		
	The energy involved in the conversion of $\frac{1}{2} \operatorname{Cl}_2(g)$ to ($Cl^{-}(aq)$ (Using the data)	
	$\Delta_{\mathrm{diss}^{H^{\circ}}\mathrm{Cl}_{2}} = 240 \mathrm{kJ} \mathrm{mol}^{-1}$		
	$\Delta_{\text{EA}^{H^{\circ}}\text{Cl}} = -349 \text{ kJ mol}^{-1}$		A.Y
	$\Delta_{\mathrm{hyd}^{H^{\circ}}}\mathrm{Cl}=-381\mathrm{kJ}\mathrm{mol}^{-1}\mathrm{will}\mathrm{be}$		
	a) $+152 \text{ kJ mol}^{-1}$ b) -610 kJ mol^{-1}	c) -850 kJ mol^{-1}	d) $+120 \text{ kJ mol}^{-1}$
708.	The hybridisation of the <i>ipso</i> – carbon dichlorobenze	ene is	
	a) sp hybridized b) sp^2 hybridised	c) $sp^2 d$ hybridized	d) sp^3 hybridised
709.	Which of the following has maximum dipole moment	t?	
	a) NCl ₃ b) NBr ₃	c) NH ₃	d) NI ₃
710.	The molecule having largest dipole moment among t	he following is	
	a) CHl ₃ b) CH ₄	c) CHCl ₃	d) CCl ₄
711.	Which of the following diatomic molecules would be	stabilized by the removal of	of an electron?
	a) C ₂ b) CN	c) N ₂	d) 0 ₂
712.	Which of the following possess maximum hydration	energy?	
	a) MgSO ₄ b) RaSO ₄	c) SrSO ₄	d) BaSO ₄
713.	In which of the following hydrogen bond is present?	>	
	a) H ₂ b) Ice	c) Sulphur	d) Hydrocarbon
714.	The correct order of decreasing polarisability of ion i	is:	
	a) Cl ⁻ , Br ⁻ , I ⁻ , F ⁻ b) F ⁻ , I ⁻ , Br ⁻ , Cl ⁻	c) I ⁻ , Br ⁻ , Cl ⁻ , F ⁻	d) F ⁻ , Cl ⁻ , Br ⁻ , I ⁻
715.	Which is highest melting point halide?		
	a) NaCl b) NaBr	c) NaF	d) NaI
716.	Number of σ and π bonds in acetylene are		
	a) 3 and 2 b) 2 and 2	c) 2 and 3	d) 4 and 3
717.	Which of the following halides is least stable and has	doubtful existence?	
	a) CI ₄ b) GeI ₄	c) SnI ₄	d) PbI ₄
718.	C – C bond length is maximum in		
	a) Diamond b) Graphite	c) Naphthalene	d) Fullerene
719.	The electronegativity difference between N and F is §	=	I and H yet the dipole
	moment of NH_3 (1.5 D) is larger than that of NF_3 (0.2		
	a) In $\ensuremath{\text{NH}_3}$ as well as $\ensuremath{\text{NF}_3}$ the atomic dipole and bond		
	In NH ₃ the atomic dipole and bond dipole are in the	ne opposite directions when	reas in NF ₃ these are in the
	b) same direction.		
	c) In $\mathrm{NH_3}$ as well as in $\mathrm{NF_3}$ the atomic dipole and bor		
	In NH ₃ the atomic dipole and bond dipole are in the	ne same direction whereas	in NF ₃ these are in
	opposite directions.		
720.	Resonance is not shown by:		
	a) C ₆ H ₆ b) CO ₂	c) CO_3^{2-}	d) SiO ₂
721.	The molecular shapes of SF ₄ , CF ₄ and XeF ₄ are		
	a) Different with 1, 0 and 2 lone pairs of electrons on	the central atom, respectiv	<i>r</i> ely
	b) Different with 0, 1 and 2 lone pairs of electrons on	the central atom, respectiv	ely

		and 1 lone pairs of electrons	-	-
- 00	=	and 1 lone pairs of electrons	on the central atom, respec	tively
722.	The shape of IF ₇ molec			
	a) Pentagonal bipyram	nidal	b) Trigonal bipyramidal	
	c) Tetrahedral		d) Octahedral	
723.	Decreasing order of C	-		
	$(I)C_2H_4$	$(II)C_2H_2$		
	$(III)C_6H_6$ ((IV)C ₂ H ₆		
	a) $IV > III > I > II$	b) $I > II > IV > III$	c) $II > I > IV > III$	d) IV $> I > III > II$
724.	In which of the followi	ng compounds, the bonds ha	ve the largest percentage of	fionic character:
	a) H ₂ 0	b) HF	c) IBr	d) N ₂ O ₄
725.	Oxygen and sulphur b	oth are the member of same	group in Periodic Table bu	at H ₂ O is liquid while H ₂ S is
	gas because			
	a) Molecular weight of	f water is more		
	b) Electronegativity of	sulphur is more		
	c) H ₂ S is weak acid		4	
	d) Water molecules ar	e having strong hydrogen bo	nds between them	
726.	The linear structure is	possessed by:		•
	a) SnCl ₂	b) NCO ⁻	c) NO ₂ ⁺	d) CS ₂
727.	, -	n state of carbon atom chang	ges from sp^3 to sp^2 and fina	
	the hybridized orbitals			3
	a) Decreases gradually			
	b) Decreases considera			
	c) Is not affected			
	d) Increases progressi	velv		
728		maximum number of lone pa	oir of electrons on the centr	al atom?
720.	a) $[ClO_3^-]$	b) XeF ₄	c) SF ₄	d) [I ₃]
720		plains that o -nitrophenol is r		
129.	a) Resonance	plants that b-introphenor is i	nore voladie dian p-ind opi	iello1:
	b) Steric hinderance	.48>		
	•			
	c) Hydrogen bond			
720	d) Hyperconjugation	strong point and proposent in IE	m alagula?	
/30.	-	ctron pairs are present in IF ₇		1) O
724	a) 6	b) 7	c) 5	d) 8
/31.	The comparatively hig	•		
	a) High reactivity of flu			
	b) Small size of hydrog			
		gen bonds and consequent a	ssociation	
	d) High IE of fluroine			
732.		wing species is diamagnetic i		
1	a) H ₂	b) H ₂ ⁺	c) H ₂	d) He ₂ ⁺
733.	-	f bonded pair of electrons be	tween two atoms in a mole	cule gives rise to:
	a) Ionic bond			
	b) Polar covalent bond			
	c) Non-polar covalent	bond		
	d) None of the above			
734.	In which of the followi	ng process energy is liberate		
	a) $Cl \rightarrow Cl^+ + e$	b) $HCl \rightarrow H^+ + Cl^-$	c) $Cl + e \rightarrow Cl^-$	d) $0^- + e \rightarrow 0^{2-}$
735.	Identify the least stabl	e ion amongst the following:		
	a) Li ⁻	b) Be ⁻	c) B ⁻	d) C ⁻

736. The lowest bond ene	rgy exist in the following bond	ds for:	
a) C—C	b) N—N	c) H—H	d) 0—0
737. Number of lone pair	(s) in XeOF ₄ is/are		
a) 0	b) 1	c) 2	d) 3
738. Which one is electron	n deficient compound?		
a) NH ₃	b) ICl	c) BCl ₃	d) PCl ₃
739. Which type of bond i	s present in H ₂ S molecule?		
a) Ionic bond		b) Covalent bond	
c) Coordinate		d) All of three	
740. In compound <i>X</i> , all the	e bond angles are exactly 109	9°28′, <i>X</i> is:	KV
a) Chloromethane	b) Iodoform	c) Carbon tetrachloride	d) Chloroform
741. The hybridisation of	P in PCl ₅ is		
a) <i>sp</i> ²	b) sp^3d	c) sp^3	d) dsp^2
742. Pauling's electronega	ativity values for elements are	useful in predicting:	
a) Polarity of bonds i	n molecules		
b) Position of elemer	its in electromotive series	A	V ·
c) Coordination num	ber		
d) Dipole moment of	various molecules		
743. The hybridization of	carbon atoms in C—C single b	ond of $HC \equiv C - CH = CH_2$ is:	
a) $sp^{3}-sp^{3}$	b) $sp^2 - sp^3$	c) $sp-sp^2$	d) sp^3-sp
744. It is thought that atom	ms combine with each other s		acquires a stable
configuration of 8 ele	ectrons. If stability were attain	ned with 6 electrons rather the	han with 8, what would be
the formula of the sta			
a) F ³⁺	b) F ⁺	c) F	d) F ²⁻
745. The number of antib	onding electrons pairs in 0^{2-}_{2}	on the basis of MO theory ar	e:
a) 4	b) 3	c) 2	d) 5
746. Which has triangular	planar shape?	<i>y</i> 3	
a) CH ₃ ⁺	b) ClO ₂	c) H ₃ 0 ⁺	d) ClO ₃
, ,	tion geometry around and hyb		, ,
NH ₃ :			1 3
_	3 ; B: tetrahedral, sp^3		
b) N : pyramidal, sp ³			
c) N : pyramidal, sp^3			
d) N : pyramidal, sp^3	· · · · · ·		
	ng molecule has highest bond	energy?	
a) C – C	b) N – N	c) 0 – 0	d) F — F
	en atoms bonded to one phosp	,	
a) 4	b) 3	c) 6	d) 5
750. Bond energies in NO		-,	- 9 -
	INO allu NO ale sucil as		
		c) $NO > NO^- > NO^+$	d) $NO^+ > NO > NO^-$
	b) $N0^+ > N0^- > N0$	_	_
$a_1 + 6.sp^3 d^3$, distort	b) $N0^+ > N0^- > N0$ ate and state of hybridisation	of Xe and shape of the mole	cule are, respectively
a) $+6$, $sp^3 d^3$, distort	b) $NO^+ > NO^- > NO$ ate and state of hybridisation red octahedral	of Xe and shape of the molec b) $+4$, $sp^3 d^2$, square pla	cule are, respectively nar
c) $+6$, sp^3 , pyramida	b) $NO^+ > NO^- > NO$ ate and state of hybridisation sed octahedral	of Xe and shape of the molec b) $+4$, $sp^3 d^2$, square pla d) $+6$, $sp^3 d^2$, square pyra	cule are, respectively nar
c) $+6$, sp^3 , pyramida 752. Which one of the foll	b) NO ⁺ > NO ⁻ > NO ate and state of hybridisation red octahedral l owing pairs of species have th	of Xe and shape of the molecular b) $+4$, $sp^3 d^2$, square pland) $+6$, sp^3d^2 , square pyrate same bond order?	cule are, respectively nar amidal
c) +6, sp ³ , pyramida 752. Which one of the foll a) CN ⁻ and NO ⁺	b) NO ⁺ > NO ⁻ > NO ate and state of hybridisation red octahedral l owing pairs of species have th b) CN ⁻ and CN ⁺	of Xe and shape of the molec b) $+4$, sp^3 d^2 , square plated) $+6$, sp^3d^2 , square pyrate same bond order? c) O_2^- and CN^-	cule are, respectively nar
c) +6, sp ³ , pyramida 752. Which one of the foll a) CN ⁻ and NO ⁺ 753. The bond length of sp	b) $NO^+ > NO^- > NO$ ate and state of hybridisation red octahedral l owing pairs of species have th b) CN^- and CN^+ pecies O_2 , O_2^+ and O_2^- are in the	of Xe and shape of the molection $(a, b) + 4$, (a, c) , square plant (a, c) , square pyrame same bond order? c) (a, c) and (a, c) are corder of	cule are, respectively nar amidal d) NO ⁺ and CO
c) +6, sp^3 , pyramida 752. Which one of the foll a) CN^- and NO^+ 753. The bond length of sp^2 a) $O_2^+ > O_2 > O_2^-$	b) $NO^+ > NO^- > NO$ ate and state of hybridisation red octahedral l owing pairs of species have th b) CN^- and CN^+ pecies O_2 , O_2^+ and O_2^- are in the b) $O_2^- > O_2 > O_2^+$	of Xe and shape of the molec b) $+4$, sp^3 d^2 , square plated) $+6$, sp^3d^2 , square pyrate same bond order? c) O_2^- and CN^-	cule are, respectively nar amidal
c) +6, sp^3 , pyramida 752. Which one of the foll a) CN^- and NO^+ 753. The bond length of sp^2 a) $O_2^+ > O_2 > O_2^-$	b) $NO^+ > NO^- > NO$ ate and state of hybridisation red octahedral l owing pairs of species have th b) CN^- and CN^+ pecies O_2 , O_2^+ and O_2^- are in the	of Xe and shape of the molection $(a, b) + 4$, (a, c) , square plant (a, c) , square pyrame same bond order? c) (a, c) and (a, c) are corder of	cule are, respectively nar amidal d) NO ⁺ and CO

	a) $d_{x^2-y^2}$	b) d_{xy}	c) d_{z^2}	d) d_{zx}		
756.	The element with strong e	lectropositive nature is:	•			
	a) Cu	b) Cs	c) Cr	d) Ba		
757.	Which statement is correct	t?				
	a) X^+ ion is larger than X^- ion					
	b) X^- ion is larger in size than X atom					
	c) X^+ and X^- have the sar					
	d) X^+ ion is larger in size t					
758.	SF ₂ , SF ₄ and SF ₆ have the		ntom respectively, as			
		b) sp^3, sp^3, sp^3d^2		d) sp^3 , spd^2 , d^2sp^3		
759.	Solid CH ₄ is:					
	a) Molecular solid	b) Ionic solid	c) Covalent solid	d) Not exist		
760.	The bond angles of NH ₃ , N	•	_			
	_	b) $NH_4^+ > NH_3 > NH_2^-$		d) $NH > NH_4^+ > NH_2^-$		
761.	sp^2 -hybridization is show					
	a) BeCl ₂	b) BF ₃	c) NH ₃	d) XeF ₂		
762.	Cl - P - Cl bond angles in	, ,		2		
	a) 120 and 90	b) 60 and 90	c) 60 and 120	d) 120 and 30		
763.	•	•	., having the same shape an	_		
	a) [NF ₃ and BF ₃]	• • • • • • • • • • • • • • • • • • • •	c) [BCl ₃ and BrCl ₃]	d) $[NH_3 \text{ and } NO_3^-]$		
764.			collection of isoelectronic s			
		b) Ba ²⁺ , Sr ²⁺ , K ⁺ , Ca ²⁺		d) Li ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺		
765.	Which molecule has zero			, , , , , , ,		
	a) HF	b) HBr	c) H ₂ O	d) CO ₂		
766.	•	•	correct order in which the b	-		
		3		0		
	them:					
		35)				
	a) $NO < O_2^- < C_2^{2-} < He_2^+$,DS)				
	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$	CRS)				
	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$	TERS				
767.	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$	z compounds has bond ans	ale as nearly 90°?			
767.	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following			d) CH√		
	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH_3	b) H ₂ S	gle as nearly 90°? c) H ₂ O	d) CH ₄		
	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH_3 The hybrid state of sulphur	b) H ₂ S r in SO ₃ molecule is	c) H ₂ O			
768.	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH_3 The hybrid state of sulphura) sp^3d	b) H_2S r in SO_3 molecule is b) sp^3	c) H_2O c) sp^3d^2	d) sp^2		
768.	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH_3 The hybrid state of sulphua) sp^3d In which of the following p	b) $\rm H_2S$ in $\rm SO_3$ molecule is b) $\rm sp^3$ pair both molecules do not	c) H_2O c) sp^3d^2 possess same type of hybri	d) sp^2 disation?		
768. 769.	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH_3 The hybrid state of sulphura) sp^3d In which of the following part of the follow	b) H_2S or in SO_3 molecule is b) sp^3 oair both molecules do not b) PCl_5 and SF_4	c) H_2O c) sp^3d^2	d) sp^2		
768. 769.	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH_3 The hybrid state of sulphua) sp^3d In which of the following parameters and Sp^3d In which of the following parameters and Sp^3d Which is the most covalent	b) H_2S r in SO_3 molecule is b) sp^3 pair both molecules do not b) PCl_5 and SF_4 t?	c) H_2O c) sp^3d^2 possess same type of hybric) SF_6 and XeF_4	d) sp^2 disation? d) BCl_3 and NCl_3		
768. 769. 770.	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH_3 The hybrid state of sulphura) sp^3d In which of the following part of the follow	b) H_2S r in SO_3 molecule is b) sp^3 pair both molecules do not b) PCl_5 and SF_4 t? b) $C - O$	c) H_2O c) sp^3d^2 possess same type of hybric) SF_6 and XeF_4 c) $C - S$	d) sp^2 disation? d) BCl_3 and NCl_3 d) $C - Br$		
768. 769. 770. 771.	a) NO $<$ $O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH ₃ The hybrid state of sulphu a) sp^3d In which of the following part of the follo	b) H ₂ S r in SO ₃ molecule is b) sp ³ pair both molecules do not b) PCl ₅ and SF ₄ t? b) C = O r. It is formed by the overla	 c) H₂O c) sp³d² possess same type of hybric c) SF₆ and XeF₄ c) C – S apping of oxygen orbitals we 	d) sp^2 disation? d) BCl_3 and NCl_3 d) $C - Br$ with orbitals of nitrogen.		
768. 769. 770. 771.	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH_3 The hybrid state of sulphu a) sp^3d In which of the following parameters as CH_4 and CH_2 Which is the most covalence as CH_4 and	b) H_2S r in SO_3 molecule is b) sp^3 pair both molecules do not b) PCl_5 and SF_4 t? b) $C - O$ r. It is formed by the overlaption of the second	c) H_2O c) sp^3d^2 possess same type of hybric) SF_6 and XeF_4 c) $C - S$	d) sp^2 disation? d) BCl_3 and NCl_3 d) $C - Br$		
768. 769. 770. 771.	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH_3 The hybrid state of sulphu a) sp^3d In which of the following P_1 a) CH_4 and H_2O Which is the most covalence a) $C - F$ The shape of NO_3^- is plana a) sp^3 -hybridized Which of the ions has the P_2	b) H_2S or in SO_3 molecule is b) sp^3 or in both molecules do not b) PCl_5 and SF_4 t? b) $C = O$ or. It is formed by the overland sp^2 -hybridized largest ionic radius?	 c) H₂O c) sp³d² possess same type of hybric c) SF₆ and XeF₄ c) C – S apping of oxygen orbitals we c) Three p-orbitals 	 d) sp² disation? d) BCl₃ and NCl₃ d) C – Br rith orbitals of nitrogen. d) None of these 		
768. 769. 770. 771.	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH_3 The hybrid state of sulphura) sp^3d In which of the following parameters as CH_4 and H_2O Which is the most covalent a) CH_4 and	b) H ₂ S r in SO ₃ molecule is b) sp^3 pair both molecules do not b) PCl ₅ and SF ₄ t? b) C = O r. It is formed by the overlance of the content of the	 c) H₂O c) sp³d² possess same type of hybric c) SF₆ and XeF₄ c) C – S apping of oxygen orbitals we c) Three p-orbitals c) Ca²⁺ 	d) sp^2 disation? d) BCl_3 and NCl_3 d) $C - Br$ with orbitals of nitrogen. d) None of these d) Sr^{2+}		
768. 769. 770. 771.	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH_3 The hybrid state of sulphu a) sp^3d In which of the following PA a) CA and CA binch is the most covalence a) CA and CA binch is the ions has the latest CA bonded molecule CA and CA bonded molecule CA and CA bonded molecule C	b) H ₂ S r in SO ₃ molecule is b) sp^3 pair both molecules do not b) PCl ₅ and SF ₄ t? b) C = O r. It is formed by the overlance of the content of the	 c) H₂O c) sp³d² possess same type of hybric c) SF₆ and XeF₄ c) C – S apping of oxygen orbitals we c) Three p-orbitals 	d) sp^2 disation? d) BCl_3 and NCl_3 d) $C - Br$ with orbitals of nitrogen. d) None of these d) Sr^{2+}		
768. 769. 770. 771.	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH_3 The hybrid state of sulphura) sp^3d In which of the following parameters as CH_4 and H_2O Which is the most covalent a) CH_4 and	b) H ₂ S r in SO ₃ molecule is b) sp^3 pair both molecules do not b) PCl ₅ and SF ₄ t? b) C = O r. It is formed by the overlance of the content of the	 c) H₂O c) sp³d² possess same type of hybric c) SF₆ and XeF₄ c) C – S apping of oxygen orbitals we c) Three p-orbitals c) Ca²⁺ 	d) sp^2 disation? d) BCl_3 and NCl_3 d) $C - Br$ with orbitals of nitrogen. d) None of these d) Sr^{2+}		
768. 769. 770. 771.	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH_3 The hybrid state of sulphu a) sp^3d In which of the following pa a) CH_4 and CH_2 Which is the most covalent a) $C - F$ The shape of CH_2 Which is the ions has the land CH_2 Which of the ions has the land CH_2 Be ²⁺ A C -bonded molecule CH_2 A CH_2 Be ²⁺ A C -bonded molecule CH_2 Be ²⁺ A C -bonded molecule CH_2 Be ²⁺ Be ²⁺ A C -bonded molecule CH_2 Be ²⁺	b) H ₂ S r in SO ₃ molecule is b) sp^3 pair both molecules do not b) PCl ₅ and SF ₄ t? b) C = O r. It is formed by the overlance of the content of the	 c) H₂O c) sp³d² possess same type of hybric c) SF₆ and XeF₄ c) C – S apping of oxygen orbitals we c) Three p-orbitals c) Ca²⁺ 	d) sp^2 disation? d) BCl_3 and NCl_3 d) $C - Br$ with orbitals of nitrogen. d) None of these d) Sr^{2+}		
768. 769. 770. 771.	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH_3 The hybrid state of sulphura) sp^3d In which of the following PA a) CH_4 and CH_2 Which is the most covalent a) $C - F$ The shape of CH_2 The shape of CH_2 Which of the ions has the CH_2 Beautiful CH_2 A CH_2 -bonded molecule CH_2 Beautiful CH_2 Beautiful CH_2 Beautiful CH_2 Compared to CH_2 Beautiful $CH_$	b) H ₂ S r in SO ₃ molecule is b) sp ³ pair both molecules do not b) PCl ₅ and SF ₄ t? b) C = O r. It is formed by the overlate of the sp ² -hybridized fargest ionic radius? b) Mg ²⁺ is T-shaped. The number	c) H_2O c) sp^3d^2 possess same type of hybric) SF_6 and XeF_4 c) $C - S$ apping of oxygen orbitals w.c) Three p -orbitals c) Ca^{2+} non-bonding pairs of electrons	d) sp^2 disation? d) BCl_3 and NCl_3 d) $C - Br$ with orbitals of nitrogen. d) None of these d) Sr^{2+}		
768. 769. 770. 771. 772.	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH_3 The hybrid state of sulphus a) sp^3d In which of the following P_1 a) CH_4 and CH_2 Which is the most covalent a) $C-F$ The shape of CH_2 The shape of CH_2 Which of the ions has the CH_2 Be CH_2 A CH_2 Be	b) H ₂ S r in SO ₃ molecule is b) sp ³ pair both molecules do not b) PCl ₅ and SF ₄ t? b) C = O r. It is formed by the overla b) sp ² -hybridized argest ionic radius? b) Mg ²⁺ g is T-shaped. The number	c) H_2O c) sp^3d^2 possess same type of hybric) SF_6 and XeF_4 c) $C - S$ apping of oxygen orbitals w.c) Three p -orbitals c) Ca^{2+} non-bonding pairs of electrons	d) sp^2 disation? d) BCl_3 and NCl_3 d) $C - Br$ with orbitals of nitrogen. d) None of these d) Sr^{2+}		
768. 769. 770. 771. 772.	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH_3 The hybrid state of sulphu a) sp^3d In which of the following parameters and $C = F$ The shape of NO_3^- is planar a) $C = F$ The shape of	b) H ₂ S r in SO ₃ molecule is b) sp ³ pair both molecules do not b) PCl ₅ and SF ₄ t? b) C = O r. It is formed by the overla b) sp ² -hybridized argest ionic radius? b) Mg ²⁺ s is T-shaped. The number of atomic number of M is kn not isoelectronic?	c) F_2 0 c) F_2 0 c) F_3 0 c) F_4 2 possess same type of hybric c) F_6 and F_4 c) F_6 0 c) F_6 1 c) F_6 2 c) F_6 3 c) F_6 4 c) F_6 4 c) F_6 5 c) F_6 5 c) F_6 6 c) F_6 7 c) F_6 8	d) sp^2 disation? d) BCl_3 and NCl_3 d) $C - Br$ with orbitals of nitrogen. d) None of these d) Sr^{2+} on is		
768. 769. 770. 771. 772. 773.	a) $NO < O_2^- < C_2^{2-} < He_2^+$ b) $O_2^- < NO < C_2^{2-} < He_2^+$ c) $C_2^{2-} < He_2^+ < O_2^- < NO$ d) $He_2^+ < O_2^- < NO < C_2^{2-}$ Which one of the following a) NH_3 The hybrid state of sulphus a) sp^3d In which of the following P_1 a) CH_4 and CH_2 Which is the most covalent a) $C-F$ The shape of CH_2 The shape of CH_2 Which of the ions has the CH_2 Be CH_2 A CH_2 Be	b) H ₂ S r in SO ₃ molecule is b) sp ³ pair both molecules do not b) PCl ₅ and SF ₄ t? b) C = O r. It is formed by the overlance of sp ² -hybridized dargest ionic radius? b) Mg ²⁺ g is T-shaped. The number of statement is only in the solution of the specific or	c) H_2O c) sp^3d^2 possess same type of hybric) SF_6 and XeF_4 c) $C - S$ apping of oxygen orbitals w c) Three p -orbitals c) Ca^{2+} non-bonding pairs of electrown	d) sp^2 disation? d) BCl_3 and NCl_3 d) $C - Br$ with orbitals of nitrogen. d) None of these d) Sr^{2+}		

	a) B_2 , U_{2,N_2}	b) B_2, O_2, NO	c) B_2, F_2, O_2	d) B_2 , O_2 , Li_2
776	. Which of the following h	as strongest hydrogen bond	ling?	
	a) Ethylamine	b) Ammonia	c) Ethyl Alcohol	d) Diethyl ether
777	. The bonds present in N_2	0 ₅ are:		
	a) Ionic			
	b) Covalent and coordinate	ate		
	c) Covalent			
	d) Ionic and covalent			
778	. The angle between two o	covalent bonds is maximum	in:	
	a) CH ₄	b) H ₂ O	c) CO ₂	d) SO ₃
779	. The pair having similar g	geometry is		
	a) PCl ₃ , NH ₄	b) BeCl ₂ , H ₂ O	c) CH ₄ , CCl ₄	d) IF ₅ , PF ₅
780	. In the electronic structur	re of acetic acid there are:		
	a) 16 shared and 8 unsha	ared valency electrons		
	b) 8 shared and 16 unsha	ared valency electrons		
	c) 12 shared and 12 unsl	hared valency electrons		V
	d) 18 shared and 6 unsha	ared valency electrons	. C4	Y
781	. Increasing order (lower	first) of size of the various l	nybridised orbitals is:	
	a) sp, sp^2, sp^3	b) sp^3 , sp^2 , sp	c) sp^2 , sp^3 , sp	d) sp^2 , sp , sp^3
782	. Among the following, the	e compound that contains ic	onic, covalent and coordinate	te linkage is
	a) NH ₃	b) NH ₄ Cl	c) NaCl	d) CaO
783	. How many bridging oxyg	gen atoms are present in P_4 0	O ₁₀ ?	
	a) 6	b) 4	c) 2	d) 5
784	. Consider the Born-Habe	er cycle for the formation	of an ionic compound give	ven below and identify the
	compound (Z) formed.	4		
	$ [M(s) \xrightarrow{\Delta H_1} M(g) \xrightarrow{\Delta H_2} M^+(g) \xrightarrow{\Delta H_2} M^+(g) \xrightarrow{\Delta H_3} M^+(g) M^+($	g)],,,)	
	$\begin{bmatrix} M(s) \xrightarrow{\Delta H_1} M(g) \xrightarrow{\Delta H_2} M^+(g) \\ \frac{1}{2} X_2(g) \xrightarrow{\Delta H_3} X(g) \xrightarrow{\Delta H_4} X^-(g) \\ \vdots \\ X_2 & \text{otherwise} \end{bmatrix}$	$\stackrel{\Delta H_5}{\longrightarrow} Z$,	
	$\left[\frac{1}{2}X_2(g) \stackrel{\circ}{\longrightarrow} X(g) \stackrel{\circ}{\longrightarrow} X^{-1}(g)\right]$	(g)		
	a) M^+X^-	b) $M^{+}X^{-}(s)$	c) <i>MX</i>	d) $M^+X^-(g)$
785	. The bond length is maxir	num in:		
	a) H ₂ S	b) HF	c) H ₂ O	d) Ice
786	. N_2 and O_2 are converted i	nto monocations, N ₂ and O ₃	trespectively. Which of the	following is wrong?
	a) In N_2^+ , N – N bond we	akens	b) In O_2^+ , the $O-O$ bond of	order increases
	c) In O ₂ ⁺ , paramagnetism	decreases	d) N ₂ ⁺ become diamagnet	ic
787	. The number of nodal pla	nes present in $_{\sigma}^{*}$ s -antibono	ling orbitals is	
	a) 1	b) 2	c) 0	d) 3
788	. Which of the following h	as maximum number of lon	e pairs associated with Xe?	
	a) XeO ₃	b) XeF ₄	c) XeF ₆	d) XeF ₂
789	. Which is most volatile co	empound?		
	a) HI	b) HCl	c) HBr	d) HF
790	. The calculated bond ord	er in 0_2^- ion is		
	a) 1	b) 1.5	c) 2	d) 2.5
791	$AC \equiv C$ bond is:			
	a) Weaker than C=C bon	ıd		
	b) Weaker than C—C box	nd		
	c) Longer than C—C bon	d		
	d) Shorter than C=C bon			
792	. In which of the following	g pairs bond angle is 109°28	3′ ?	
	a) [NH ₄ ⁺], [BF ₄ ⁻]	b) [NH ₄ ⁺], [BF ₃]	c) [NH ₃], [BF ₄]	d) [NH ₃], [BF ₃]
793	. Which of the following m	nolecules has three-fold axis	s of symmetry?	

. A NITT	LA C. II	-) ((0	1) (0)
-	b) C ₂ H ₄	c) CO ₂	d) SO ₂
794. In which of the following ar	rrangements the sequence	e is not strictly according to	o the property written
against it?			
a) HF < HCl < HBr < HI : i		.1	
b) $NH_3 < PH_3 < AsH_3 < Sh$	-	-	
c) $B < C < 0 < N$: increasi	_	= =	
$d) CO_2 < SiO_2 < SnO_2 < Pl$		power	
795. Which one of the following	= =		
	b) NO	c) CO	d) 0 ₃
796. Which of the following has	•		
a) Na ⁺	b) K ⁺	c) Li ⁺	d) Cs ⁺
797. Lattice energy of a solid inc	creases if		
a) Size of ions is small		b) Charges of ions are sm	all
c) Ions are neutral		d) None of the above	
798. Which one is most polar?			
a) CCl ₄	b) CHCl ₃	c) CH ₃ Cl	d) CH ₃ OH
799. The high boiling point of wa	ater is due to:	. C 4	Y
a) Weak dissociation of wa	ter molecules		
b) Hydrogen bonding amor	ng water molecules		
c) Its high specific heat			
d) Its high dielectric consta	int		
800. The states of hybridisation	of boron and oxygen aton	ns in boric acid (H_3BO_3) a	re respectively
a) sp^2 and sp^2	b) sp^2 and sp^3	c) sp^3 and sp^2	d) sp^3 and sp^3
801. In which pair of species, bo	th species do have the sin	nilar geometry?	
a) CO ₂ , SO ₂	b) NH ₃ , BH ₃	c) CO_3^{2-} , SO_3^{2-}	d) SO_4^{2-} , ClO_4^-
802. Which of the following is la	rgest ion?	> '	
a) Na ⁺	b) Mg ²⁺	c) 0^{2-}	d) F ⁻
803. The electronic configuratio	n of sodium and chlorine		
a) Their physical state		•	
b) Their reactivity			
c) The formation of electro	valent compound NaCl		
d) None of the above			
804. sp^3 hybridisation is found in	in		
A X		-) CIO=	4) CO
a) $\overset{+}{\text{C}}_{\text{H}_3}$	b) : C H ₃	c) ClO ₃	d) SO ₃
805. Glycerol is more viscous that	an ethanol due to		
a) High molecular weight		b) High boiling point	
c) Many hydrogen bonds p	er molecule	d) Fajan's rule	
806. In the case of alkali metals,	the covalent character de	ecreases in the order:	
a) $MI > MBr > MCl > MF$			
b) MCl > MI > MBr > MF			
c) $MF > MCl > MBr > MI$			
d) MF > MCl > MI > MBr			
807. Two nodal planes are prese	ent in		
a) $\pi^* 2p_x$	b) $\sigma 2p_z$	c) $\pi 2p_x$	d) $\pi 2p_{\nu}$
	υ) υ <i>Σ</i> ρ _Ζ	c_{j} $\pi z p_{\chi}$	$u_j \pi z p_y$
808. H – bond is not present in		h) Clusorol	
a) Water		b) Glycerol	
c) Hydrogen fluoride	aina malagulag h ll	d) Hydrogen sulphide	atnonia?
809. In which of the following pa			
a) CN ⁻ , CO	b) CO, O ₂ +	c) $N0^+, C0^+$	d) CN^{-}, O_{2}^{+}

810	. Which of the following ha	lides has maximum melting	point?	
	a) NaF	b) NaCl	c) NaBr	d) NaI
811	. Which atomic orbital is al	ways involved in sigma bor	iding only?	
	a) s	b) <i>p</i>	c) <i>d</i>	d) <i>f</i>
812	. Which of the following ac	ts sometimes as a metal and	l sometimes as a non-meta	1?
	a) Hg	b) Cl	c) K	d) At
813	. Amongst the following ele	ements the configuration ha	ving the highest ionization	energy is:
	a) [Ne] $3s^23p^1$	b) [Ne] $3s^23p^3$	c) [Ne] $3s^23p^2$	d) [Ar] $3d^{10}4s^24p^3$
814	. Which of the following sp	ecies exhibits the diamagne	tic behaviour ?	
	a) 0_2^{2-}	b) 0 ₂ ⁺	c) 0 ₂	d) NO
815	. Which is a good solvent fo	or ionic and polar covalent o	compounds?	
	a) H ₂ 0	b) CH ₃ COOH	c) CCl ₄	d) Liquid NH ₃
816	. The following salt shows	maximum covalent characto	er	
	a) AlCl ₃	b) MgCl ₂	c) CsCl	d) LaCl ₃
817	. Each of the followings has	s non-zero dipole moment, e	except:	
	a) C ₆ H ₆	b) CO	c) SO ₂	d) NH ₃
818		esent in octahedral SF ₆ mol	-	
	a) 3	b) 4	c) 6	d) 5
819	. Resonance structures can	be written for	18	,
	a) 0 ₃	b) NH ₃	c) CH ₄	d) H ₂ O
820	. Born-Haber cycle may be	- 0		, <u>, , , , , , , , , , , , , , , , , , </u>
	a) Electronegativity	b) Mass number	c) Oxidation number	d) Electron affinity
821	, ,	of four elements A, B, C, D ar		, ,
	$(A)1s^2$ $(B)1s^2, 2$			
	$(C)1s^2, 2s^2, 2p^5 (D)1s^2, 3$	-		
		ctrovalent bond is largest in	>	
	a) A	b) B	c) <i>C</i>	d) <i>D</i>
822	. In which element shieldin	,		u) 2
022	a) H	b) Be	c) B	d) N
823	•	tals of N atom in NO_3^- , NO_2^+ a	•	u) 11
020	a) on sn^2 sn^3	b) sp^2 , sp , sp^3	c) on $5n^3$ on ²	d) sp^2 , sp^3 , sp
824		isoelectronic with carbon a		aj 5p ,5p ,5p
021	a) Na ⁺	b) Al ³⁺	c) 0 ²⁻	d) N ⁺
825	. Which of the following sta		c) o	u) II
023		n is maximum by high charg	ged cation	
	b) Small sized cation mini		sea cation	
		oout a large degree of polar	sation	
	-	es a high degree of polariza		
826		and CCl_4 , the covalent bond of		
020	a) LiCl > BeCl ₂ > BCl ₃ >		maracter follows the order	•
	b) LiCl $<$ BeCl ₂ $<$ BCl ₃ $<$			
	c) LiCl > BeCl ₂ > CCl ₄ >			
	d) LiCl $<$ BeCl ₂ $>$ GCl ₄ $>$	_		
		n nitrogen and oxygen mole	ocula ic	
027	a) 3, 2	b) 4, 2	c) 2, 3	d) 1, 2
g20	a) کی عربی علی عربی الله علی الله علی الله علی الله علی ا	•	Cj 2, 3	uj 1, 2
040	a) Photosynthesis	b) Atomic structure	c) Chemical bonding	d) Thermodynamics
220	. With which of the given p		c) Gilcinical bollullig	a) Thermoughamiles
047	a) HgCl ₂ , C ₂ H ₂	b) C_2H_2 , NO_2	c) HgCl ₂ , SnCl ₄	d) N ₂ O, NO ₂
გვი	The enhanced force of col		c, 115012, 011014	u, 1120,1102
-	. The chimalicea follower to the	icolon in miciais is duc tu.		

	a) The covalent linkages b	etween atoms		
	b) The electrovalent linkage	ges between atoms		
	c) The lack of exchange of	valency electrons		
	d) The exchange energy of	mobile electrons		
831.	Among H X , the maximum	dipole moment is of:		
	a) HF	b) HCl	c) HBr	d) HI
832.	Dative bond is present in:			
	a) SO ₃	b) NH ₃	c) BaCl ₂	d) BF ₃
833.	In which of the following r	nolecule, the central atom	does not have sp^3 -hybridiz	zation?
	a) CH ₄	b) SF ₄	c) BF ₄	d) NH ₄ ⁺
834.	Which has an odd electron	and shows paramagnetic	character?	
	a) NO	b) SO ₂	c) CO ₂	d) H ₂ O
835.	Which ion is not isoelectro	onic with 0^{2-} ?		
	a) N ³⁻	b) Na ⁺	c) F ⁻	d) Ti ⁺
836.	Which species is paramag	netic?		
	a) 0 ₂	b) CH ₃	c) CO	d) NO ⁺
837.	Structure of ammonia is		CA	
	a) Pyramidal	b) Tetrahedral	c) Trigonal	d) Trigonal pyramidal
838.	The example of the <i>p-p-</i> or	bital overlapping is the for	mation of:	
	a) H ₂ molecule			
	b) Cl ₂ molecule			
	c) Hydrogen chloride			
	d) Hydrogen bromide mol	ecule		
839.	In which of the following p	$\sigma\pi$ - $d\pi$ bonding is observe	d?	
	a) NO ₃	b) SO ₃ ²⁻	c) BO_3^{3-}	d) CO ₃ ²⁻
840.	The shape of ClO ₄ ion is:		> '	
	a) Square planar	b) Square pyramidal	c) Tetrahedral	d) Trigonal bipyramidal
841.	The critical temperature o	f water is higher than that	of O ₂ because H ₂ O molecul	le has:
	a) Fewer electrons than 0	2		
	b) Two covalent bonds			
	c) V-shape			
	d) Dipole moment			
842.	Compound formed by sp^3	d -hybridization will have ${f s}$	structure:	
	a) Trigonal bipyramidal	Y		
	b) T-shaped	*		
	c) Linear			
			of electrons of central atom	1
843.	Which has the lowest bond	d angle?		
	a) NH ₃	b) BeF ₂	c) H_3O^+	d) CH ₄
844.	Assuming that Hund's rule	e is violated, the bond orde	r and magnetic nature of th	he diatomic molecule B_2 is
1	a) 1 and diamagnetic			
	b) 0 and diamagnetic			
	c) 1 and paramagnetic			
	d) 0 and paramagnetic			
845.	The energy of antibonding			
	a) Greater than the bonding	_		
	b) Smaller than the bonding	=		
	c) Equal to that of bonding	g M.O.		
	d) None of the above			
846.	The set representing the c	orrect order of ionic radius	s is:	

	a) $Na^+ > Li^+ > Mg^{2+} > Be^{2+}$		
	b) $Li^+ > Na^+ > Mg^{2+} > Be^{2+}$		
	c) $Mg^{2+} > Be^{2+} > Li^+ > Na^+$		
	d) $Li^+ > Be^{2+} > Na^+ > Mg^{2+}$		
847.	Which of the following hydrogen bonds is the stro	ongest?	
	a) O——HF	c) O——HO	d) OF
848.	H ₂ O is dipolar, whereas BeF ₂ is not. It is because		
	a) The electronegativity of F is greater than that of	of O	
	b) H ₂ O involves hydrogen bonding whereas BeF ₂	is a discrete molecule	
	c) H ₂ O is linear and BeF ₂ is angular		$\langle \cdot \rangle$
	d) H ₂ O is angular and BeF ₂ is linear		
849.	Which of the following statements is most correct	t? Effective nuclear charge o	f an atom depends on:
	a) The atomic number of the atom		
	b) The charge on the ion		1 1
	c) The shielding effect		
	d) Both the actual nuclear charge and the shielding	ng effect	N i
850.	. The total number of valency electrons in PH_4^+ ion	is:	*
	a) 8 b) 9	c) 6	d) 14
851.	Phosphoric acid is syrupy in nature due to		
	a) Strong covalent bonding	b) Hydrogen bonding	
	c) van der Waals' forces	d) None of the above	
852.	The correct order of bond angles is:		
	a) $H_2S < NH_3 < BF_3 < SiH_4$		
	b) $NH_3 < H_2S < SiH_4 < BF_3$	CA J	
	c) $H_2S < NH_3 < SiH_4 < BF_3$		
	d) $H_2S < SiH_4 < NH_3 < BF_3$		
853.	Metallic lusture is explained by)	
	a) Diffusion of metal ions	b) Oscillation of loose e	
	c) Excitation of free protons	d) Existence of bcc latti	
854.	. Which of the following phenomenon will occur w	hen two atoms of same spin	will react?
	a) Bonding will not occur		
	b) Orbital overlap will not occur		
	c) Both (a) and (b)		
	d) None of the above		
855.	The hybrid state of S in SO_3 is similar to that of		
0= 6	a) C in C ₂ H ₂ b) C in C ₂ H ₄	c) C in CH ₄	d) C in CO ₂
856.	Among the following the pair in which the two sp		
055	a) IO_3^- and XeO_3^- b) PF_6^- and SF_6^-		d) SiF ₄ and SF ₄
85/.	Which of the following species contains three bor		
050	a) NH ₂ b) PCl ₃	c) H ₂ 0	d) BF ₃
858.	Intramolecular hydrogen bonding is found in:	> A . 11 1 1	l) Di
050	a) Salicyldehyde b) Water	c) Acetaldehyde	d) Phenol
859.	The type of bond formed between H ⁺ and NH ₃ in		12.11
0.60	a) Ionic b) Covalent	c) Dative	d) Hydrogen
860.	Which of the following statements is correct abou	-	
	a) It has a bond order of 3	=	red electrons present in it is
	The order of filling of MOs is = (2x) =	zero and hence, it is o	-
	The order of filling of MOs is $\pi(2p_x) = c$	d) All the above three s	tatements are correct
	c) $\pi(2p_y), \sigma(2p_z)$. 1.1.0	
861.	Ice has an open structure compared to water due	to which it floats on water a	and occupies a greater volume

	of space. The open structure of ice	is due to:		
	•	ow density	c) Crystalline nature	d) Hydrogen bonding
862.	Which of the following has minim		., . ,	
	a) CsF b) HCl		c) HF	d) LiF
863.	Geometry of ammonia molecule a	nd the hybridisatio	•	•
000.	a) sp^3 hyridisation and tetrahedra	-		
	b) sp^3 hyridisation and distorted	= -	rv	
	c) sp^2 hyridisation and triangular		1 y	
	d) None of the above	geometry		
864	The molecule having smallest bon	d angle is		
001.	a) H_2O b) H_2S	a angle is	c) NH ₃	d) H ₂ Te
865	For a covalent solid, the units whi	ch occupy lattice no	· ·	uj 11210
005.	a) Atoms b) Ions	=	c) Molecules	d) Electrons
866	Carbon suboxide (C_3O_2) has recen		•	
000.	the following formulation raepres			
		:::C:C::0:	c) : Ö::C::C::C:: Ö:	d) :0: C: C: C: 0:
967	The ionization energy will be max			u) .o. d. d. d. o.
007.		Hindin for the proce → Be ²⁺	c) Cc \ Cc ⁺	4) I; \ I;+
060	-		c) $Cs \rightarrow Cs^+$	u) Li → Li
000.	Born Haber cycle is used to determ		a) Ionization analys	d) Either of them
060		tron affinity	c) Ionization energy	-
009.	In which of the following molecule			
070		and NH ₂	c) NH_2^- and H_2O	d) NO_2^- and H_2O
870.	$sp^3 d$ hybridisation results in		lo) A	
	a) A square planar molecule		b) An octahedron molecul	
071	c) A trigonal bipyramidal molecul		d) A tetrahedron molecule	
8/1.	In the electronic structure of H ₂ SO	D_4 , the total number		1) 0
070	a) 20 b) 16		c) 12	d) 8
872.	Which of the following element ha			1) 111.
070	a) Boron b) Carb		c) Oxygen	d) Nitrogen
8/3.	The bond length of HCl molecule			The ionic character of the
	molecule (in per cent) (charge of		•	
	a) 100 b) 67.3		c) 33.66	d) 16.83
874.	In a double bond connecting two a		=	
	a) 2 electrons b) 4 ele	ectrons	c) 1 electron	d) All electrons
875.	Number of P – O bonds in P_4O_{10} is			
	a) 17 b) 16		c) 15	d) 6
876.	Elements whose electronegativitie			
		alent bond	c) Coordinate bond	d) Metallic bond
877.	Which of the following is correct?			
	a) Decreases in bond length mean		_	
7	b) Covalent radius of carbon is les		gen	
	c) Single bonds are stronger than			
	d) Fe (III) chloride cannot exist in			
878.	Which of the following is a favour	able factor for catio		
	a) Low ionisation potential		b) High electron affinity	
	c) High electronegativity		d) Small atomic size	
879.	A number of ionic compounds, e.g		are insoluble in water. This	is is because:
	a) Ionic compounds do not dissolv			
	b) Water has a high dielectric cons	stant		
	c) Water is not a good ionizing so	vent		

•	ive exceptionally high attrac		
-	ilues of ' d' block elements as	s compared to ionisation pote	ential values of 'f' block
elements are:			
a) Higher	b) Lower	c) Equal	d) Either of these
		om, the non-metal atom will	
a) Lose electrons and			
b) Lose electrons and	increase in size		
c) Gain electrons and	decrease in size		
d) Gain electrons and	increase in size		
882. The hydration of ionic	compounds involves:		$\langle V \rangle$
a) Evolution of heat			
b) Weakening of attra	ctive forces		
c) Dissociation into io	ns		
d) All of the above			
883. Which of the following	g is diamagnetic?		
a) H ₂ ⁺	b) O ₂	c) Li ₂	d) Fe ₂ ⁺
884. Molecular orbital elec	tronic configuration for $'X'$ a	anion is	_
	$(\pi 2p_y)^2 (\sigma 2p_z)^2 (\pi 2p_x)^1$.		
$KK(\sigma 2s)(\sigma 2s)(\pi 2p_x)$	$(\pi^2 p_y) (\sigma^2 2 p_z) (\pi^2 p_x)$.		
The anion ' X ' is			
a) N ₂	b) 0 ⁻ 2	c) N ₂ ²	d) 0_2^{2-}
	ule polarization is more whe	en:	, <u>,</u>
a) Small cation and lar	=		
b) Small cation and sn	=		
c) Large cation and la		X)	
d) Large cation and sn	-	\	
886. Organic compounds so		Y	
a) C, H. Cl	b) C, H	c) C, H, O	d) C, S
•	e and neon in angstrom unit		aj d, o
	b) 1.60, 1.60	c) 0.72, 0.72	d) 1.60, 0.72
888. The decreasing order		0,72,0.72	d) 1.00, 0.72
a) $NO_2 > NO_2^+ > NO_2^-$		b) $NO_2^- > NO_2 > NO_2^+$	
c) $NO_2^+ > NO_2 > NO_2^-$		d) $NO_2^+ > NO_2^- > NO_2$	
889. The correct order of d		$U_1 NO_2 > NO_2 > NO_2$	
a) $CH_4 < NF_3 < NH_3$	•		
b) $NF_3 < CH_4 < NH_3$			
c) $NH_3 < CH_4 < RH_3$	_		
d) $H_2O < NH_3 < NF_3$	=		
, 2	1	1	
	en is isoelectronic with CO ₂ ?		J) M O
a) NO ₂	b) N ₂ 0	c) NO	d) N_2O_2
	t molecules does not possess	s a permanent electric dipole	moment?
a) H ₂ S			
b) SO ₂			
c) SO ₃			
d) CS ₂			
_	ne correct order of increasin	_	
•	•	(c) F < Cl < Br < 0 < C	
	= :	s is the bond order of each m	-
a) 0_2^+ , NO, CN ⁻	b) CN^-, N_2^+, N_2	c) N_2^+ , $N0$, O_2^+	d) O_2^+ , CN^- , N_2^+
	ation takes place in the N ato		
a) <i>sp</i> ²	b) sp^3	c) dsp^2	d) <i>sp</i>

895. Identify the correct order		_	
a) $CuS > ZnS > Na_2S$	b) $ZnS > Na_2S > CuS$	c) $Na_2S > CuS > ZnS$	d) $Na_2S > ZnS > CuS$
896. In the following molecule	, the two carbon atoms ma	rked by asterisk (*) posses	s the following type of
hybridized orbitals:			
$H_3C - \overset{*}{C} \equiv$	*		
$H_3C-C\equiv$	$C-CH_3$		
a) sp^3 -orbital	b) <i>sp</i> ² -orbital	c) <i>sp</i> -orbital	d) s-orbital
897. Debye an unit of dipole m	noment is of the order of:		
a) 10^{-10} esu cm	b) 10 ⁻¹⁸ esu cm	c) 10^{-6} esu cm	d) 10 ⁻¹² esu cm
898. Which of the following is	a favourable factor for cation	on formation?	
a) High electronegativity		b) High electron affinity	
c) Low ionisation potenti		d) Smaller atomic size	
899. The paramagnetic molecu			A Y
a) H ₂	b) 0 ₂	c) N ₂	d) CO
900. The bond in the formation	· -		
a) Due to $s - s$ overlapping		b) Due to $s - p$ overlapping	10
c) Due to $p - p$ overlappi		d) Due to hybridisation	15
901. The diamagnetic molecul	•	a) Duc to hybridisation	
-	b) O_2 , N_2 , F_2	a) C N E	A) D O M
a) B_2 , C_2 , N_2	$U_1 U_2, N_2, \Gamma_2$	c) C ₂ , N ₂ , F ₂	d) B_2 , O_2 , N_2
902. The IP_1 is maximum for:	L) N.	a) D.	J) II.
a) K	b) Na	c) Be	d) He
903. In the transition of Cu to	Lu ²¹ , there is a decrease in		
a) Atomic number			
b) Atomic mass		$\langle \lambda, \rangle$	
c) Equivalent weight			
d) Number of valency ele			
904. In the following, which be			
a) N — H	b) 0 – H	c) F — H	d) S – H
905. The bond order of O_2^+ is the	he same as in		
a) N ₂ +	b) CN ⁻	c) CO	d) NO ⁺
906. Structure of XeF ₅ ⁺ ion is			
a) Trigonal bipyramidal	b) Square pyramidal	c) Octahedral	d) Pentagonal
907. The fHOMO in CO is			
a) π - bonding	b) π -antibonding	c) σ -antibonding	d) σ - bonding
908. Which of the following ha	ns sp^3 -hybridization on cen	tral atom?	
a) BF ₂	b) BCl ₃	c) SO ₃	d) CCl ₄
909. Which one has sp^3 hybrid	disation?		,
a) N ₂ O	b) CO ₂	c) SO ₂	d) CO
910. Coordinate compounds a		-, 2	,
a) Transfer of electrons			
b) Sharing of electrons			
c) Donation of electron p	air		
d) None of the above	an		
911. In P_4O_{10} the			
*	is formed by now do back	handing	
_	is formed by $p\pi - d\pi$ back	bolluling	
b) $P = 0$ bond is formed by $P = 0$ bond is formed by $P = 0$ bond is formed by			
c) $P = 0$ bond is formed by $P = 0$ bond is formed by	_	dina	
	by $d\pi - d\pi - 3\sigma$ back bond	ung	
912. Allene (C_3H_4) contains		L I	
_	triple bond and one single l	pona	
b) One triple and two dou	ible bonds		

	c) Two triple and one do	uble bond		
	d) Two double and four s	ingle bond		
913.	Which shows non-direction	onal bonding?		
	a) BCl ₃	b) CsCl	c) NCl ₃	d) BeCl ₃
914.	, ,	ng contains both ionic and o		, ,
	a) C ₆ H ₅ Cl	b) H ₂ O	c) NaOH	d) CO ₂
915.		isoelectronics. Their ionic	-	·) <u>Z</u>
	a) $Na^+ < Mg^{2+} < Al^{3+} <$			
	b) $Na^+ > Mg^{2+} < Al^{3+} <$			
	c) $Na^+ < Mg^{2+} > Al^{3+} >$			
	d) $Na^+ > Mg^{2+} > Al^{3+} >$			
916.	, ,	es not apply to metallic bo	ond?	
	a) Overlapping valence of	= = =		A . Y
	b) Mobile valence electro			
	c) Delocalized electrons			
	d) Highly directed bonds			
917.	Van der Waals' forces are	maximum in:		
	a) HBr	b) LiBr	c) LiCl	d) AgBr
918.	•		re 74 and 198 pm respectiv	, 0
	Cl may be:	Z		,
	a) 272 pm	b) 70 pm	c) 136 pm	d) 248 pm
919.	The molecule having zero			, 1
	a) CH ₂ Cl ₂	b) BF ₃	c) NF ₃	d) ClF ₃
920.		value of bond order must	be	, <u> </u>
	a) There is no relationshi	p between stability and bo	ond order	
	b) Zero)	
	c) Positive		,	
	d) negative			
921.	Which compound among	the following has more cov	valent character?	
	a) AlCl ₃	b) AlI ₃	c) MgI ₂	d) NaI
922.	Which among the following	ng has the largest dipole m	ioment?	
	a) NH ₃	b) H ₂ O	c) HI	d) SO ₃
923.	The hybridization of phos	sphorus in $POCl_3$ is same a	s in:	
	a) P in PCl ₃	b) S in SF ₆	c) Cl in ClF ₃	d) B in BCl ₃
924.	A square planar complex	is formed by hybridisation	of the following atomic orb	itals
	a) s, p_x, p_y, p_z	b) s, p_x, p_y, p_z, d	c) d, s, p_x, p_y	d) s, p_x, p_y, p_z, d, d
925.	Which of the following pa	irs are isostructural?		
	a) SO_3^2 , NO_3^-	b) BF ₃ , NF ₃	c) BrO_3^- , XeO_3	d) SF ₄ , XeF ₄
926.	Among HF, CH ₄ , CH ₃ OH a	nd N ₂ O ₄ intermolecular hy	ydrogen bond is expected	
	a) In two	b) In all	c) In all leaving one	d) None of these
927.	Hydration of different ion	is in aqueous solution is an	n example of	
	a) Ion – induced dipole in	iteraction		
	b) Dipole - dipole interact	tion		
	c) Dipole – induced dipol	e interaction		
	d) Ion – dipole interaction	n		
928.	Amongst LiCl, RbCl, BeCl ₂	and MgCl ₂ , the compound	s with the greatest and the	least ionic character,
	respectively			
	a) LiCl and RbCl	b) RbCl and MgCl ₂	c) RbCl and BeCl ₂	d) MgCl ₂ and BeCl ₂
929.	The percentage of p – cha	racter in the orbitals form	ing P – P bonds in P_4 is	
	a) 25	b) 33	c) 50	d) 75

930. Atoms or group of atoms	which are electrically charg	ged are known as:	
a) Anions	b) Cations	c) Ions	d) Atoms
931. Which among the followi	ng elements has lowest valı	ue of ionisation energy?	
a) Mg	b) Ca	c) Ba	d) Sr
932. IP ₂ for an element is invariant		ise:	
a) The size of cation is sm			
b) It is difficult to remove	e 'e' from cation		
c) Effective nuclear charg	ge is more for cation		
d) All of the above			
933. In forming (i) $N_2 \rightarrow N_2^+$		rons respectively are remo	ved from
a) $(\pi 2 p_y \text{ or } \pi 2 p_x)$ are	·		
b) $(\pi 2 p_y \text{ or } \pi 2 p_x)$ are	$\operatorname{ad}\left(\pi 2 p_{y} \operatorname{or} \pi 2 p_{x}\right)$		
c) $(\pi 2 p_y \text{ or } \pi 2 p_x)$ ar	$\operatorname{ad}\left(\stackrel{*}{\pi} 2 p_{y} \text{ or } \stackrel{*}{\pi} 2 p_{x} \right)$	4	01
d) $(\pi 2 p_y \text{ or } \pi 2 p_x)$ are	ad $(\pi 2 p_y \text{ or } \pi 2 p_x)$	4(4	
934. Which one pair of atoms	or ions will have same conf	iguration?	,
a) Li ⁺ and He ⁻	b) Cl ⁻ and Ar	c) Na and K	d) F ⁺ and Ne
935. Which combination is bes	st explained by the coordina	ate covalent bond?	
a) $H^+ + H_2 O$	b) Cl + Cl	c) Mg $+\frac{1}{2}O_2$	d) $H_2 + I_2$
936. The dipole moment of CH	$[Cl_3]$ is 1.05 debye while tha	t of CCl ₄ is zero, because CC	Cl ₄ is:
a) Linear	b) Symmetrical	c) Planar	d) Regular tetrahedral
937. Which shows the highest	=-	>	
a) RbF	b) CsF	c) NaF	d) KF
938. In a polar molecule, the	ionic charge is 4.8×10^{-10}	o e.s.u. If the inter ionic di	stance is 1 Å unit, then the
dipole moment is			
a) 41.8 debye	b) 4.18 debye	c) 4.8 debye	d) 0.48 debye
939. The correct order regard			
	b) $sp < sp^2 < sp^3$		$d) sp > sp^2 > sp^3$
940. Which of the following gr			
a) ClF ₃ , IF ₃ , XeF ₃ ⁺		c) ClF ₃ , BrF ₃ , IF ₃	d) PCl ₃ , AsCl ₃ , PF ₅
941. Which of the following co	/ -		
a) H ₂ 0	b) PH ₃	c) PCl ₃	d) PCl ₅
942. Which of the following se			d) K ⁺ , Ca ²⁺ , Sc ³⁺ , Cl ⁻
	b) Na ⁺ , Ca ²⁺ , Sc ³⁺ , F ⁻	c) K', Cl', Mg ²⁺ , Sc ³⁺	a) K ¹ , Ca ²¹ , Sc ³¹ , Cl
943. Which of the following ha	= -	a) Ea	4) 0
	b) Na	c) Fe	d) 0
944. The structure of XeF ₄ is: a) Planar	b) Tetrahedral	c) Square planar	d) Pyramidal
945. N_2 and O_2 are converted	_		u) i yi aiiiluai
Which of the following is		y.	
a) In N_2^+ , the N – N bond v			
b) In O_2^+ , $O - O$ bond orde			
c) In O_2^+ , paramagnetism			
d) N ₂ ⁺ becomes diamagne			
946. Which molecule has trigo			
a) IF ₃	b) PCl ₃	c) NH ₃	d) BF ₃
947. Malleability and ductility	, ,	, ,	~, ~ · 3

	a) The presence of electrostatic force		
	b) The crystalline structure in metal	.1 .1	
	c) The capacity of layers of metal ions to slide over		
0.40	d) The interaction of electrons with metal ions in the	ie lattice	
948.	Underlined carbon is sp^3 hybridised in		
	a) $CH_3\underline{C}H = CH_2$ b) $CH_3\underline{C}H_2NH_2$	c) CH ₃ CONH ₂	d) CH ₃ CH ₂ CN
949.	Hydrogen fluoride is a liquid unlike other hydrogen		
	a) HF molecules associate due to hydrogen bonding	5	
	b) F ₂ is highly reactive		
	c) HF is the weakest acid of all hydrogen halides		
	d) Fluorine atom is the smallest of all halogens		
950.	The number of sigma (σ) and pi (π) covalent bonds		
	a) 5, 13 b) 15, 3	c) 13, 5	d) 16, 2
951.	In which one of the following cases, breaking of cov	-	
	a) Boiling of H ₂ O b) Melting of KCN	c) Boiling of CF ₄	d) Melting of SiO ₂
952.	Which compound is soluble in water		
	a) CS_2 b) C_2H_5OH	c) CCl ₄	d) CHCl ₃
953.	A π -bond is formed by sideways overlapping of:		<i>T</i>
	a) <i>s-s</i> orbitals b) <i>p-p</i> orbitals	c) <i>s-p</i> orbitals	d) <i>s-p-s</i> orbitals
954.	Which statement is true?		
	a) Absolutely pure water does not contain any ion.		
	b) Some covalent compounds may also give ions in	aqueous solution.	
	c) In aqueous solution only electrovalent compoun	d give ions.	
	d) Very sparingly soluble substances do not dissoci	ate in aqueous solution	
955.	Formation of π -bond:		
	a) Increases bond length		
	b) Decreases bond length		
	c) Distorts the geometry of molecule		
	d) Makes homoatomic molecules more reactive		
956.	In which reaction, the hybridisation on the central a	atom changes from sp^2 to s	p^{3} ?
	a) $NH_3 + H^+ \rightarrow NH_4^+$ b) $BF_3 + F^- \rightarrow BF_4^-$	c) $H_20 + H^+ \rightarrow H_30^+$	d) $C_2H_2 + 2H_2 \rightarrow C_2H_6$
957.	The low solubility of BaSO ₄ in water is due to:		
	a) Low dissociation energy		
	b) Ionic bonds		
	c) High value of lattice energy		
	d) None of the above		
958.	The number of lone pairs of electron on Xe in XeOF.	4 is:	
	a) 1 b) 2	c) 3	d) 4
959.	Which compound does not contain double bond or	•	,
	a) C ₂ H ₄ b) H ₂ O	c) N ₂	d) HCN
960.	The compound showing maximum covalent characteristics		,
	a) BI ₃ b) BCl ₃	c) BF ₃	d) BBr ₃
961	Carbon atoms in $C_2(CN)_4$ are:	-, 3	- 7 3
	a) <i>sp</i> -hybridised		
	b) <i>sp</i> ² -hybridised		
	c) <i>sp</i> - and <i>sp</i> ² -hybridised		
	d) sp, sp^2 and sp^3 -hybridised		
962	Which statement is wrong?		
, 02	a) 2nd ionisation energy shows jump in alkali meta	ls	
	b) 2nd electron affinity for halogens is zero		
	,		

	c) Maximum electron affir	nity exists for F		
	d) Maximum ionization en	ergy exists for He		
963.	Value of <i>x</i> in potash alum,			
	K_2SO_4 . $AI_x(SO_4)_3$. $24H_2O_1$	is		
	a) 4	b) 1	c) 2	d) None of these
964.	Among the following, the p	paramagnetic compound is		
	a) Na ₂ O ₂	b) 0 ₃	c) N_2O	d) KO ₂
965.	HCl molecule in the vapou	r state is an example of:		
	a) Non-polar bond	b) Ionic bond	c) Polar covalent bond	d) Pure covalent bond
966.	The electrons in an incom	plete outershell are known	as:	
	a) Kernel electrons	b) Valency electrons	c) Shell electrons	d) None of the above
967.	According to bond order c	oncept the correct order of	f stability of O_2 , O_2^+ , and O_2^-	
	a) $0_2 > 0_2^+ > 0_2^-$	b) $0_2^- > 0_2 > 0_2^+$	c) $0_2 > 0_2^- > 0_2^+$	d) $0_2^+ > 0_2 > 0_2^-$
968.	The element which exists	in both hard and soft form	is:	
	a) Fe	b) Si	c) C	d) Al
969.	Which of the following is r	not a correct statement?		V
	a) Every AB ₅ molecule do	es in fact have square pyra	mid structure.	
	b) Multiple bonds are always	ays shorter than correspon	ding single bonds.	
	c) The electron-deficient r	nolecules can act as Lewis	acids.	
	d) The canonical structure	es have no real existence.		
970.	The bond strength increas	es:		
	a) With increasing bond o	rder		
	b) With increasing extent	of overlapping of orbitals		
	c) With decreasing differe	nce between energies of or	verlapping orbitals	
	d) All of the above	4		
971.	The number of unpaired e	lectrons in O_2 molecule is:	> '	
	a) Zero	b) 1	c) 2	d) 3
972.	Which has higher bond en			
	a) F ₂	b) Cl ₂	c) Br ₂	d) I ₂
973.		tements regarding carbon	monoxide is correct?	
	a) It involves <i>sp</i> -orbitals of			
	b) It contains a lone pair o			
	c) It contains a lone pair o	, , ,		
		l is attached to the metal at		
974.		naving highest bond length		
	a) NO ⁻	b) NO ⁺	c) CN ⁻	d) CN ⁺
975.	_	tement is correct for CsBr ₃	?	
	a) It is a covalent compound			
	b) It contains Cs ³⁺ and Br			
	c) It contains Cs ⁺ and Br ₃ ⁻			
1	d) It contains Cs ⁺ , Br ⁻ and			
976.	In 1 – butene number of σ			
	a) 8	b) 10	c) 11	d) 12
977.	Which does not have pyra			
	a) SO_3^{2-}	b) NO ₃	c) NH ₃	d) $C(C_6H_5)_3^-$
978.	The nature of bonding in (
	a) Electrovalent in both Co	-		
	b) Covalent in CCl ₄ and ele			
	c) Electrovalent in CCl ₄ and	id covalent in CaH ₂		
	d) None of the above			

979. Which of the following oxides is not expected to react with sodium hydroxide? a) BeO d) SiO_2

b) B_2O_3 c) CaO

Page | 61

CHEMICAL BONDING AND MOLECULAR STRUCTURE

CHEMISTRY

						: ANSV	V	ER K	(E)Y					
1)	b	2)	b	3)	b	4)	d	177)	d	178)	С	179) a	180) c
5)	b	6)	b	7)	b		a	181)	b	182)	c	183) b		-
9)	b	10)	b	11)	c	12)	b	185)	b	186)	d	187) a	188) c
13)	c	14)	a	15)	a	16)	d	189)	b	190)	a	191) b	192) c
17)	b	18)	c	19)	a	20)	c	193)	d	194)	c	195) d	196) a
21)	b	22)	a	23)	c	24)	d	197)	b	198)	d	199) d	200) b
25)	c	26)	d	27)	b	28)	a	201)	c	202)	c	203) b	204) c
29)	c	30)	a	31)	a	32)	a	205)	d	206)	a	207) d	208) c
33)	b	34)	d	35)	a	36)	a	209)	a	210)	a	211) d	212) c
37)	c	38)	c	39)	b	40)	c	213)	b	214)	d	215) c	216) c
41)	b	42)	d	43)	b	44)	c	217)	a	218)	b	219) c	220) b
45)	b	46)	a	47)	c	48)	d	221)	b	222)	C	223) b	224	·) c
49)	a	50)	c	51)	c	52)	d	225)	d	226)	a	227) c	228) a
53)	a	54)	c	55)	C	56)	b	229)	c	230)	b	231) a	232) a
57)	a	58)	b	59)	c	60)	a	233)	d	234)	d	235) a	236) c
61)	a	62)	a	63)	C	64)	c	237)	c	238)	d	239) b	240) c
65)	a	66)	a	67)	C	,	C	241)	c	-	C	243) a		-
69)	C	70)	a	71)	a	,	b	,	c	246)	d	247) c	248	-
73)	b	74)	a	75)	a	· ·	d	249)	С	250)	b	251) d		-
77)	a	78)	C	79)	d		ď	253)	a	254)	c	255) b		-
81)	C	82)	b	83)	C	417	b	257)	b	258)	d	259) b		-
85)	b	86)	b	87)	C		b	261)	a	262)	b	263) b		-
89)	d	90)	a	91)	a	,	C	265)	b	266)	a	267) d		-
93)	d	94)	d	95)	d	, , ,	b	269)	b	270)	C	271) d		-
97)	C	98)	C		d	,	C	273)	С	274)	d	275) a		-
101)	C	102)	a	103)	c	,	d	277)	С	278)	d	279) a		-
105)	C	106)	d	107)	a	,	b	281)	a	282)	d	283) b		-
109)	a	110)	b	111)	d	,	a	285)	a	286)	C	287) a	288	-
113)	a	114)	/ >	115)	C	-		289)	b	290)	a	291) c	292	-
117)	a	118)	a	119)	C	-		293)	b	294)	a	295) b		-
121)	a	122)	b	123)	b	•		297)	c	298)	C	299) c	300	-
125)	d 🗸	126)	С	127)	d	•		301)	d	302)	a	303) c	304	-
129)	b	130)	a	131)	b	-		305)	d	306)	C	307) d		-
133)		134)	a	135)	a	-		309)	b	310)	С	311) a		-
137)	a	138)	C	139)	C	-		313)	b	314)	a	315) c		-
141)		142)	a	143)	d	-		317)	a	318)	b	319) b		-
145)	d	146)	C	147)	a	-		321)	b	322)	b	323) b		-
149)	c	150)	c	151) 155)	d	-		325)	a	326)	b	327) a		-
153) 157)	C	154)	C	155)	d L	-		329)	b	330)	d h	331) d		-
157) 161)	d	158) 163)	d	159) 162)	b	-		333)	C	334)	b h	335) d		-
161)	d	162)	d b	163)	c	-		337)	d b	338)	b	339) b		-
165)	c	166)	b a	167)	C	-		341)	b b	342)	d	343) b		-
169)	c	170)	d	171)	d h	-		345)	b b	346) 250)	c	347) d		-
173)	a	174)	С	175)	b	176)	u	349)	b	350)	a	351) c	352) b

353)	b	354)	c	355)	b	356) d	557)	c	558)	a	559)	b	560)	c
357)	a	358)	c	359)	d	360) b	561)	C	562)	b	563)	d	564)	b
361)	c	362)	b	363)	d	364) a	565)	C	566)	d	567)	b	568)	a
365)	a	366)	c	367)	d	368) a	569)	b	570)	c	571)	b	572)	a
369)	d	370)	c	371)	c	372) a	573)	a	574)	b	575)	b	576)	b
373)	a	374)	a	375)	a	376) d	577)	b	578)	b	579)	b	580)	b
377)	a	378)	d	379)	b	380) d	581)	a	582)	d	583)	b	584)	b
381)	a	382)	d	383)	d	384) b	585)	c	586)	c	587)	a	588)	a
385)	a	386)	a	387)	a	388) a	589)	C	590)	d	591)	b	592)	b
389)	b	390)	a	391)	c	392) a	593)	c	594)	d	595)	a	596)	c
393)	a	394)	c	395)	c	396) c	597)	C	598)	c	599)	b_	600)	b
397)	b	398)	d	399)	d	400) a	601)	b	602)	c	603)	a	604)	b
401)	b	402)	b	403)	b	404) c	605)	a	606)	a	607)	a	608)	a
405)	d	406)	c	407)	b	408) b	609)	d	610)	c	611)	C	612)	c
409)	b	410)	b	411)	c	412) b	613)	C	614)	b	615)	a	616)	d
413)	c	414)	d	415)	d	416) b	617)	C	618)	C	619)	c	620)	b
417)	c	418)	a	419)	c	420) b	621)	d	622)	a	623)	b	624)	c
421)	d	422)	c	423)	d	424) c	625)	d	626)	d	627)	b	628)	a
425)	a	426)	c	427)	c	428) b	629)	a	630)	b	631)	a	632)	c
429)	b	430)	c	431)	d	432) a	633)	b	634)	a	635)	c	636)	d
433)	d	434)	c	435)	d	436) b	637)	a	638)	c	639)	d	640)	b
437)	b	438)	c	439)	b	440) b	641)	С	642)	b	643)	a	644)	a
441)	b	442)	c	443)	a	444) b	645)	a	646)	b	647)	C	648)	d
445)	a	446)	c	447)	c	448) a	649)	a	650)	b	651)	a	652)	c
449)	b	450)	c	451)	a	452) b	653)	a	654)	b	655)	C	656)	b
453)	d	454)	a	455)	d	456) b	657)	C	658)	d	659)	d	660)	c
457)	c	458)	b	459)	d	460) d	661)	C	662)	a	663)	a	664)	b
461)	b	462)	a	463)	c	464) c	665)	a	666)	b	667)	b	668)	d
465)	a	466)	d	467)	d	468) a	669)	d	670)	c	671)	b	672)	d
469)	d	470)	d	471)	d	472) a	673)	b	674)	b	675)	c	676)	d
473)	b	474)	b	475)	c	476) a	677)	b	678)	d	679)	C	680)	d
477)	d	478)	C		a	•	681)	a	682)	a	683)	d	684)	c
481)	b	482)	C	483)	d	484) b	685)	C	686)	C	687)	d	688)	a
485)	C	486)	b	487)	b	488) a	689)	b	690)	C	691)	b	692)	b
489)	C	490)	b	491)	d	492) a	,	d	694)	b	695)	a	696)	b
493)	C	494)	b	,	C	•	697)	a	698)	C	699)	a	700)	d
497)	C	498)	b	499)	C	-	701)	b	702)	b	703)	a	704)	d
501)	d	502)	b	503)	b	•	705)	b	706)	b	707)	b	708)	b
505)	C	506)	b	507)	C	508) c	_	C	710)	C	711)	d	712)	a
509)	C	510)	b	511)	d	-	713)	b	714)	C	715)	C	716)	a
513)	b	514)	d	515)	d	-	717)	d	718)	a	719)	d	720)	d
517)	a	518)	d	519)	a	-	721)	a	722)	a	723)	a	724)	b
521)	a	522)	C	523)	a	•	725)	d	726)	d	727)	d	728)	d
525)	d	526)	a	527)	d	528) a	_	C	730)	b	731)	C	732)	C
529)	d	530)	a	531)	b	532) a	_	b	734)	C	735)	b	736)	d
533)	b	534)	c	535)	C	-	737)	b	738)	C	739)	b	740)	c
537)	a	538)	b	539)	a	540) c	,	b	742)	a	743)	C	744)	b
541)	a	542)	c	543)	b	544) a	,	a	746)	a	747)	a	748)	b
545)	b	546)	b	547)	c	•	749)	b	750)	d	751)	a	752)	a
549)	C	550)	c	551)	d	•	753)	b	754)	C	755)	C	756)	b
553)	b	554)	a	555)	b	556) a	757)	b	758)	С	759)	a	760)	b

761)	b	762)	a	763)	b	764)	a 8	373)	d	874)	b	875)	b	876)	a
765)	d	766)	d	767)	b	768)	d 8	377)	a	878)	a	879)	d	880)	a
769)	d	770)	c	771)	b	772)	d 8	3 81)	d	882)	d	883)	c	884)	a
773)	b	774)	a	775)	b	776)	c 8	38 5)	a	886)	c	887)	a	888)	C
777)	b	778)	C	779)	c	780)	a 8	389 <u>)</u>	a	890)	b	891)	d	892)	a
781)	a	782)	b	783)	a	784)	b 8	393)	c	894)	b	895)	d	896)	c
785)	a	786)	d	787)	a	788)	d 8	397)	b	898)	c	899)	b	900)	C
789)	b	790)	b	791)	d	792)	a 9	901)	c	902)	d	903)	d	904)	c
793)	a	794)	b	795)	b	796)	d 9	905)	a	906)	b	907)	d	908)	d
797)	a	798)	d	799)	b	800)	b 9	909)	c	910)	c	911)	a	912)	d
801)	d	802)	c	803)	c	804)	b 9	913)	b	914)	c	915)	d,	916)	d
805)	c	806)	a	807)	a	808)	d 9	917)	d	918)	c	919)	b	920)	c
809)	a	810)	a	811)	a	812)	d 9	921)	b	922)	b	923)	a	924)	c
813)	b	814)	a	815)	a	816)	a 9	925)	c	926)	a	927)	d	928)	C
817)	a	818)	C	819)	a	820)	d 9	929)	d	930)	c	931)	C	932)	d
821)	c	822)	a	823)	b	824)	d 9	933)	c	934)	b	935)	a	936)	d
825)	a	826)	b	827)	a	828)	c 9	937)	c	938)	C	939)	d	940)	d
829)	a	830)	d	831)	a	832)	a 9	941)	d	942)	d	943)	b	944)	C
833)	b	834)	a	835)	d	836)	a 9	945)	d	946)	d	947)	C	948)	b
837)	a	838)	b	839)	b	840)	c 9	949)	a	950)	C	951)	d	952)	b
841)	d	842)	d	843)	a	844)		953)	b	954)	b	955)	b	956)	b
845)	a	846)	a	847)	b	,		957)	C	958)	a	959)	b	960)	c
849)	d	850)	a	851)	b	,		961)	c	962)	c	963)	C	964)	d
853)	b	854)	C	855)	b	,		965)	c	966)	b	967)	d	968)	C
857)	b	858)	a	859)	c	860) 🗸		969)	a	970)	d	971)	C	972)	b
861)	d	862)	b	863)	b	864)		973)	a	974)	a	975)	C	976)	C
865)	a	866)	C	867)	b	868)	d 9	977)	b	978)	b	979)	C		
869)	a	870)	C	871)	b	872)	d								
					4		J								
						4									
				411											
				AAP											
				O '											
			V	7											
		O >													
	-														
*		\													
		~													
C	7					868)									
7															

CHEMICAL BONDING AND MOLECULAR STRUCTURE

CHEMISTRY

: HINTS AND SOLUTIONS :

1 **(b)**

Molecule	Hybridizatio
	n
SO ₃	sp^2
C_2H_2	sp
C_2H_4	sp^2
CH ₄	sp^3
CO_2	sp

2 **(b)**

Mg²⁺is smaller thanNa⁺ and thus, smaller is cation more is hydration energy.

3 **(b)**

Number of lone pair in $XeOF_4$ is one (1). The structure of $XeOF_4$ is given as follows:

Xe atom in ground state

Xe in excited state

Lone pair sp^3d^2

One π -bond so remaining six electron pairs form an octahedron with one position occupied by a lone pair.

4 **(d)**

These are the factors on which van der Waals' forces depend.

5 **(b)**

It has sp^3d^3 -hybridization with one lone pair on Xe.

6 **(b)**

Bond order $\propto \frac{1}{\text{Bond length}}$

BO of NO<BO of NO⁺

 \therefore Bond length of NO is greater than the bond length of NO⁺.

7 **(b)**

Element with atomic number 20 is metal (Ca); it

will combine with non-metal.

8 (a)

A decrease in s-character increases bond length.

10 **(b**)

Calculated dipole moment,

$$\begin{split} \mu_{cal} &= 2.0 \times 10^{-10} \text{ m} \times 1.6 \times 10^{-19} \text{ C} \\ &= 3.2 \times 10^{-29} \text{ C} - \text{m}. \end{split}$$

Percentage of ionic character = $\frac{\mu_{exp}}{\mu_{exp}} \times 100$

$$= \frac{5.12 \times 10^{-29}}{3.2 \times 10^{-29}} \times 100 = 16\%$$

11 **(c)**

 C_2H_4 involves sp^2 -hybridization on carbon atoms.

12 **(b**)

According to molecular orbital theory.

$$F_{2}(18) = \sigma 1s^{2}, {}_{\sigma}^{*}1s^{2}, \sigma 2s^{2}, {}_{\sigma}^{*}2s^{2}, \sigma 2p_{z}^{2}, \pi 2p_{x}^{2}$$

$$\approx \pi 2p_{y,\pi}^{2} 2p_{x}^{2} \approx {}_{\pi}^{*}2p_{y}^{2}$$

Bond order in $F_2 = \frac{N_{b-}N_a}{2} = \frac{10-8}{2} = 1$

15 **(a)**

Bond formation is always exothermic. Compounds of sodium are ionic.

16 **(d)**

In case of water, five water molecules are attached together through four hydrogen bonding

17 **(b)**

Removal of electron is easier in the order of shell 4 > 3 > 2 > 1

18 **(c)**

Bond order of NO⁺, NO and NO⁻ are 3, 2.5 and 2 respectively.

Bond energy \propto bond order.

19 **(a)**

FXF angles of two types are present in sp^3d hybrid orbitals. Since, SF₄ shows sp^3d hybridisation as follows, therefore, it exhibits two different FXF angles.

20 **(c**)

s-character ≤ bond angle

For 25% s character (as in sp^3 hybrid orbital), bond angle is 109.5°, for 33.3% s character (as in

 sp^2 hybrid orbital),bond angle is 120° and for 50% s character (as in sp hybrid orbital), bond angle is 180°.

Similarly, when the bond angle decreases below $1.9.5^{\circ}$, the s —character will decrease accordingly Decreasing in angle = $120^{\circ} - 109.5^{\circ} = 10.5^{\circ}$

∴ Decrease in s-character = 33.3 - 25 = 8.3Actual decrease in bond angle = $109.5^{\circ} - 105^{\circ} = 4.5^{\circ}$

∴ Expected decrease in s-character

$$=\frac{8.3}{10.5}\times4.5=3.56\%$$

Thus, the *s*-character should decrease by about 3.56%, *ie*, *s*-character = 25 - 3.56 = 21.44%

21 **(b)**

B has only six electron in B_2H_6 .

- 22 **(a)**Like gets dissolved in like. It is theory.
- 23 **(c)**Ionic compounds are good conductor of electricity in molten or in solution state. However, they are
- bad-conductor in solid state. 24 **(d)**

In benzene 12σ and 3π bonds are present. The structure of benzene is

25 **(c)**

In CO_3^{2-} ion the C-atom undergoes sp^2 -hybridisation. It has triangular planar structure. While BF_4^- , NH_4^+ and SO_4^{2-} have tetrahedral structure.

26 **(d)**

PCl₅ has trigonal bipyramid geometry.

27 **(b**)

 ${\rm SF_6}$ has octahedral geometry, sp^3d^2 hybridisation and bond angle is 90°

% of d-character = $\frac{2 \text{ (no.of } d\text{-orbitals)}}{6 \text{(total hybridised orbitals)}}$

100

So, SF₆ are bond angle = 90° and d-character = 33%

28 **(a)**

Head on overlapping give rise to σ -bond formation.

- 29 **(c)** Allene is $CH_2 = C = CH_2$
- 30 (a) Silicate ion (Sio_4^{4-}) is the basic structural unit of silicates. Silicates are metal derivatives of silicic acid.
 - 1 (a)

Due to planar equilateral geometry of graphite.

32 **(a**)

Due to non-availability of d-orbitals, boron cannot expand its octet. Therefore, the maximum covalence of boron cannot exceed 4.

33 **(b)**

Cations are always shorter than their parent atom, anion are always larger.

- 35 **(a)** H-bonding is weakest bonding.
- 36 (a) 5 of P + 24 of 0 + 3 of -ve charge = 32.
- 37 **(c)** Benzene has 12σ and 3π -bonds.
- 38 **(c)** PF₅ involves sp^3d -hybridization.
- 39 **(b)** I₃

 I_3^- ion is made up of an I_2 molecule with an I^- bonded to it by means of a coordinate bond in which I_2 is lone pair acceptor (Lewis acid) and I^- the lone pair donor (Lewis base). There are two bond pairs and three lone pairs in the outer shell of central atom. To minimize the repulsive forces the three lone pairs occupy the equatorial position. The ion is therefore, linear in shape with a bond angle of exactly 180° .

acid base

Similarly, N_3^- ion is also linear in shape.

40 **(c)**

According to M.O. theory, bond order of N_2 , N_2^- and N_2^{2-} are 3, 2.5 and 2 respectively.

41

e.g., BF₃.

42 **(d)**

Bond order for $H_2^- = +1/2$

43

sp-hybridization leads to bond angle of 180°.

44

 $\mu H_2 0 \neq 0, \mu_{CO_2} = 0$

45 **(b)**

No, of hybrid orbital $=\frac{1}{2}$ [No.of e^- in V-shell of atom + No.of monovalent atoms -charge on cation +charge on anion]

No. of hybrid orbital

6

Type of hybridisation sp sp^3d^2 sp^3d^3

Hybridisation in TeCl₄:

No. of hybrid orbital = $\frac{1}{2}[6+4+0+0] = 5$

Hence, $TeCl_4$ shows sp^3d hybridisation.

46

The stability and bond angle order for hybrids in a group is $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$.

47

Isoelectronic species are those species which have 65 equal number of electrons. Hence, CO₂ is isoelectronic with N2O.

Number of electron in $CO_2 = 22$

Number of electron in $N_2O = 22$

48

In BeCl₂, Be atom has incomplete octet.

49

Greater the charge, smaller the radius, greater the polarising power and thus greater the covalent nature. This leads to increase in lattice energy.

50 (c) The structure, $CH_2 = C = CH_2$ is non-planar with two - CH2 groups being in planes perpendicular to each other.

52 (d)

> Electronegativity increases along the period and decreases down the group.

53 (a)

Brass in an alloy.

54

It is head on overlapping and thus, forms more stronger bond.

55

H-bonding in molecule gives rise to increase in its b.p.

56 (b)

> One bonding molecular orbital and one antibonding.

57 (a)

Follow Fajans' rule.

58 (b)

> Removal of two electrons (one by one) from an atom requires energy = $IP_1 + IP_2$.

59

The molecular orbital electronic configuration.

$$(\sigma 1s)^2 (\sigma 1s)^2 (\sigma 2s)^2 (\sigma 2s)^2 (\sigma 2p_x)^2$$

$$(\pi 2p_y)^2 (\pi 2p_z)^2 (\pi 2p_y)^2 (\pi 2p_z)^1$$

Total electrons =17

Hence, this configuration belongs to O_2^- (17 e^-)

60 (a)

5

$$H_3O^+: sp^3 ; NO_3^-: sp^2$$

(a) 61

6,6

62 (a)

> More is the dipole moment more is ionic nature. $\mu = \delta \times d$; higher is μ , more will be δ on the atom.

63 (c)

Due to sp^3 -hybridization.

(a)

Each species has 14 electrons and bond order for each is three.

66 (a)

> Among the given choices of compound having oxygen attached to hydrogen will have maximum hydrogen bonding.

> : Among CH_3OCH_3 , $(CH_3)_2C = 0$, CH_3CHO and C₂H₅OH only C₂H₅OH has oxygen attached to hydrogen atom.

∴ C₂H₅OH shows maximum hydrogen bonding.

67 (c) It is experimental value.

68 **(c)**

 $\ensuremath{\mathrm{O}}_2^{2+}$ has 14 electrons. Its electronic configuration is as

$$0_2^+: \sigma 1s^2 {}_{\sigma}^* 1s^2$$
, $\sigma 2s^2 {}_{\sigma}^* 2s^2$, $\pi 2p_y^2 \pi 2p_z^2 \sigma 2p_x^2$
Bond order $= \frac{N_b - N_a}{2} = \frac{10 - 4}{2} = 3$

69 **(c)**

In diamagnetic molecule, all the electrons are paired

70 **(a)**

Hence, enolic form of acetone contains 9 sigma 81 bonds, 1 pi bond and two lone pairs.

71 **(a)**

In NO₃⁻ ion, total number of electrons = 7+24+1=32 and in it central atom is sp^2 hybrid. No. of hybrid orbitals = $\frac{V-8B}{2} + B = \frac{24-8\times3}{2} + 3$

 $(V \rightarrow \text{total number of electrons in valence shell}$ $B \rightarrow \text{probability of formation of bond})$ In CO_3^{2-} ion, total number of electrons =

6+24+2=32 and in it central atom is sp^2 hybrid. No. of hybrid orbital= $\frac{24-8\times3}{2}+3=3$

Hence, NO_3^- and CO_3^{2-} ions are isoelectronic and isostructural.

72 **(b)**

 $H_2^+ = \sigma 1s^2$ (According to molecular orbital theory)

Bond order = $\frac{\text{bonding electrons-antibonding electrons}}{2}$

$$=\frac{1}{2}=0.5$$

 H_2^+ is paramagnetic due to the presence of one unpaired electron.

73 **(b)**

H-bonding in molecules gives rise to increase in b.p.

74 **(a)**

Bond distance is in the order:

$$C - C > C = C > C \equiv C$$

 $sp^3 > sp^2 > sp$

75 **(a)**

% ionic character = $16(x_A - x_B) + 3.5(x_A - x_B)^2$ = $16 \times 2 + 3.5 \times (2^2)$ = 46

 \therefore The % covalent character = 100 - 46 = 54

76 **(d)**

 ICl_2^- has sp^3d -hybridized state (*i. e.*, trigonal bipyramidal shape but distorted due to the presence of lone pair of electron on I atom.)

77 **(a)**

Like gets dissolved in like.

78 **(c)**

 $\rm N_2O$ is isoelectronic with $\rm CO_2$ and $\rm N_3^-$. Hence, its structure is linear.

$$N - N - 0$$

79 **(d)**

H atom attached on N, O, F develops hydrogen bonding molecule.

80 **(d)**

In CCl₄ all bonds of carbon being identical, the molecule is a regular tetrahedron

31 **(c)**

In 0^{2-} effective nuclear charge is minimum due to more number of electrons and thus the size of 0^{2-} is maximum.

82 **(b)**

The zero dipole moment of BF_3 molecule is due to its symmetrical (triangular planar) structure.

84 **(b**)

Bond dissociation energy order:

$$Cl_2$$
 > Br_2 > F_2 > I_2
242.6 192.8 158.8 151.1 in kJ mol⁻¹

85 **(b)**

CH₃OH shows H—bonding in liquid state.

86 **(b**)

They have high electron density.

87 **(c)**

A coordinate bond is a dative covalent bond in which two atoms form bond and one of them provides both electrons.

$$X: +Y \longrightarrow X: Y \text{ or } X \longrightarrow Y$$

88 **(b)**

C-C bond length in sp^2 hybrid molecule is= 1.39Å

89 (d)

More is electronegativity differences, more is

ionic character.

90 **(a)**

Cation are always smaller than their parent

$$Al^{3+} < Al^{2+} < Al^{+} < Al$$
.

91 **(a)**

We know that the C - C bond length = 1.54 A, C =C bond length = 1.34 A and $C \equiv C$ bond length = 1.20 A. Since propyne has triple bond; therefore, it has minimum bond length.

92 **(c)**

Ionic compounds conduct current in molten state.

93 (d)

Metals are good conductor of electricity because 104 (d) they contain free electrons.

94 **(d)**

OSF₂ has pyramidal shape

95 (d)

> Non-polar species exert van der Waals' forces among themselves.

96 **(b)**

It has 3σ -and 1π -bond.

97

 Cl^- has $1s^2$, $2s^22p^6$, $3s^23p^6$ configuration.

98

Per cent ionic character is given by % of ionic character.

$$= 16(X_A - X_B) + 3.5(X_A - X_B)^2$$

From the above relation, it is clear that as soon as $(X_A - X_B)$ increases, % ionic character will also increase.

Therefore, curve *C* shows a correct path.

99 **(d)**

7Cl=1
$$s^2$$
,2 s^2 ,2 p^6 ,3 s^2 ,3 p_x^2 ,3 p_y^2 ,3 p_z^1
Cl=1 s^2 ,2 s^2 ,2 p^6 ,3 s^1 ,3 p_x^1 ,3 p_y^1 ,3 p_z^1 ,3 d^1 ,3 d^1 3 d^1
(3rd excited state)

Chlorine atom, in its third excited state, reacts with fluorine to form ClF₇. Its shape is pentagonal bipyramidal.

100 (c)

Anion (0^-) repels the test electron because of same charge.

101 (c)

Cl in ClF₃ has sp^3d -hybridization

and possesses two axial Cl—F bonds and one equatorial bond. Two lone pairs are at equatorial position give rise to bent 'T' shape to ClF₃.

103 (c)

 O_2^- has one unpaired electron in its antibonding molecular orbital.

 $PCl_3 < PBr_3 < PI_3$, the bond angle order is explained in terms of increasing electronegativity of halogens, whereas, PF₃ > PCl₃, bond angle order is explained in terms of $p\pi$ - $d\pi$ bonding in PF_3 .

105 (c)

$$\mu$$
 experimental = Dipole moment \times 10⁻¹⁸ μ theoretical = Bond length \times 4.8 \times 10⁻¹⁰ esu \times cm

Percentage ionic character =
$$\frac{\mu_{experimental}}{\mu_{theoretical}} \times 100$$

$$= \frac{1.0 \times 10^{-18} \times 100}{1.25 \times 4.8 \times 10^{-10} \times 10^{-8}}$$

106 (d)

CCl₄ does not exhibit dipole moment due to its symmetrical structure.

107 (a)

N₂ molecule has 14 electrons. The molecular orbital electronic configuration of the molecule is

$$N_2: KK (\sigma 2s)^2 ({}_{\sigma}^* 2s)^2 (\pi 2p_x)^2$$

= $(\pi 2p_y)^2 (\pi 2p_z)^2$

 N_2^- ion is formed when N_2 accept an electron hence it has 15 electrons. The molecular orbital electronic configuration of the molecule is as

$$N_2^-: KK (\sigma 2s)^2 ({}_{\sigma}^* 2s)^2 (\pi 2p_x)^2 (\pi 2p_y)^2 (\sigma 2p_z)^2 ({}_{\pi}^* 2p_x)^1$$

Hence, this electron goes to antibonding π

molecular orbital.

108 **(b)**

The size of isoelectronic decreases with increase in atomic number.

109 (a)

The bond orders for H_2 , H_2^+ , He_2 and He_2^+ are 1.0, 0.5, 0.0 and 0.5 respectively.

110 **(b)**

N atom has smallest radius.

111 (d)

The order of screening effect for a given shell electrons is s > p > d > f.

112 (a)

The stability of hydrides decreases down the gp, i.e., from NH₃ to BiH₃ which can be observed from their bond dissociation enthalpy. The correct order is

$$NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$$

Property $NH_3 PH_3 AsH_3$
 $\Delta_{diss}H^-(E-H)/kJ mol^{-1}$ 389 322 297

113 (a)

 SF_4 has sp^3d^2 -hybridization and see-saw geometry.

114 (a)

Due to presence of intermolecular hydrogen bonding in H₂O, its molecules are associated with each other which results unusual high boiling point of water.

115 **(c)**

Larger is anion, more is covalent character.

Molecular orbital configuration of, 0^{2}

$$= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p^2, \pi 2p_x^2, \pi 2p_y^2, \pi^* 2p$$

117 (a)

Valencies of X, Y and Z is +2, +2 and -2respectively so, they will form a compound having of formula XYZ_2 .

118 (a)

The molecule in which the bond dipoles of all the bonds are cancel out by each other, is called non $- |_{120}$ (c) polar *e.g*., CCl₄.

In CCl₄, there is a large difference between the electronegativities of C and Cl but all the four C -Cl bond dipoles cancel each other, hence it is a non-polar molecule.

119 (c)

Tetrahedral structure is associated with sp^3 hybridised central atom without any lone pair. The structure of all the compounds given are as follows:

 SbH_3 BiH₃

Square planar

 SF_4

Distorted trigonal bipyramidal

Tetrahedral

Methyl group has +I effect and $-NO_2$ group has—I effect. Therefore, in p-nitro toluene the dipole moments of -CH3 and-NO2 groups act in the same direction. So, the resultant dipole moment is additive.

i.e., 3.93+0.43=4.36 debye

121 (a)

The tendency to show lower ionic state increases down the group due to inert pair effect.

122 **(b)**

$$CH \equiv C - CH_2 - CH_3$$

$$sp \quad sp \quad sp^3 \quad sp^3$$

In butyne – 1, there is no carbon with sp^2 hybridisation.

123 **(b)**

NO⁺:
$$\sigma 1s^2$$
, $\sigma^x 1s^2$, $\sigma 2s^2$, $\sigma^x 2s^2$, $\sigma 2p_x^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2\pi_z^2 \end{bmatrix}$
 \therefore B. O. $=\frac{10-4}{2}=3$

CN⁻:
$$\sigma 1s^2$$
, $\sigma^x 1s^2$, $\sigma 2s^2$, $\sigma^x 2s^2$, $\sigma 2p_x^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{bmatrix}$
 \therefore B. O. $=\frac{10-4}{2}=3$

124 (c)

Electron affinity order for halogens is Cl > F > Br > I.

125 (d)

Sulphur trioxide has no S-S linkage. It has triangular planar geometry.

127 (d)

All molecules or ions *i. e.*, H_2O , $NH_{4,}^+SO_4^{2-}$, ClO_4^- , and NH_3 are involved in sp^3 hybridisation in their formation.

129 **(b**)

p-orbitals always show lateral overlapping.

130 (a)

 SF_6 does not obey octet rule as in it S-atom has 12 electrons in its valence shell.

131 **(b)**

The structure of peroxodisulphuric acid $(H_2S_2O_8)$ is

Hence, it contains 11σ and 4π -bonds.

132 **(d)**

Paramagnetic species have unpaired electrons

133 **(c)**

N in it has three σ -bonds and one lone pair of electron.

134 **(a)**

Electron deficient species can accept lone pair of electron and thus, act as Lewis acid.

135 (a)

NH₃ has pyramidal shape and thus, possesses three folds axis of symmetry.

136 (d)

 ICl_2^- has sp^3d -hybridization and has two bond pairs and three lone pairs of electrons.

137 (a)

The dipole moment of a polar molecule depends upon its geometry. A symmetrical molecule is non-polar even though it contain polar bonds. Methane molecule (CH_4) has zero moment value of dipole moment due to its symmetrical structure.

In CHCl₃, the resultant of C – H and C – Cl dipole oppose the resultant of two C – Cl dipoles while in CH_2Cl_2 , the resultant of C – H dipoles adds to resultant of two C – Cl. In case CH_3Cl , the resultant of two C – H dipole adds to the resultant of two C – Cl. In case CH_3Cl the resultant of two C – H dipoles add to the resultant of C – H and C – Cl dipoles.

Thus dipole moment of CH_3Cl is highest among the given compounds. The molecule (CCl_4) again becomes symmetrical and dipole moment reduces

to zero.

138 **(c)**

S in SCl₄ is sp^3d -hybridized and possesses seesaw structure whereas SiCl₄ is tetrahedral.

139 (c)

Oxygen cannot expand its octet due to absence of *d*-orbitals in its valence shell.

142 (a)

Geometry is explained by taking an account of single bonds only. However, presence of double bond may distort bond angles, e.g., HCHO has sp^2 hybridization but angle H—C—H is 116° and angle H—C—O is 122° due to double bond. In BF₃ (sp^2 -hybridization) each angle is of 120°.

143 **(d)**

The shape of carbon dioxide is linear because it has sp hybridisation and bond angle 180°.

$$0 = C = 0$$

144 (a)

Addition of electrons to an atom results an increase in its size.

145 (d)

 H_2O is V shaped.

146 (c)

ether oxygen undergoes hybridisation forming four sp^3 hybrid orbitals.

147 (a)

As soon as the electronegativity increases, ionic bond strength increases

148 (a)

Both are linear.

149 (c)

Inspite of three polar bond, the lone pair of electron on N atom decreases the dipole moment of NF_3 than NH_3 .

150 (c)

Polarity in a molecule gives rise to an increase in forces of attractions among molecules and thus, more becomes boiling point.

152 (a)

The melting point of naphthalene is minimum 167 (c) because it is non - polar covalent compound and has less melting point.

153 (c)

BF₃ is a electron deficient compound. So, it has no lone pair orbital over B atom.

154 (c)

Molecular orbital theory was given by Mulliken.

155 (d)

The trigonal geometry of BF_3 with three vectors $(B \rightarrow F)$ acting at 120° leads to zero dipole moment. In NH_3 three vectors ($N \leftarrow H$) act as 107° along with one lone pair giving dipole moment in molecule.

156 (d)

Proton (H⁺) can only accept a lone pair from donor atom.

157 (d)

Each has 10 electrons

158 (d)

Isomerism is arised due to directional nature of covalent bonding.

159 **(b)**

 SF_4 has sp^3d -hybridized sulphur atom.

160 (c)

SbCl₅²⁻ has sp^3d^2 -and rest all has sp^3d hybridisation.

161 (d)

Size of anions is larger than their parent atoms. Also more is ENC lesser is size.

162 (d)

$$_{22}\text{Ti}: 3s^2, 4s^2 \xrightarrow{IE_1} 3d^2, 4s^1$$
 $_{23}\text{V}: 3d^3, 4s^2 \xrightarrow{IE_1} 3d^3, 4s^1$
 $_{24}\text{Cr}: 3d^5, 4s^1 \xrightarrow{IE_I} 3d^5 \xrightarrow{IE_2 \text{ from hlaf-filled}} \text{maximum}$
 $_{25}\text{Mn}: 3d^5, 4s^2 \xrightarrow{IE_1} 3d^5, 4s^1$

164 (a)

C - Cl bond is more ionic than C - I bond because of the greater difference in electronegativities of C and Cl as compared to that of carbon and iodine. Therefore, C – Cl bond is stronger than C – I bond.

165 **(c)**

Cl is more electronegative than I.

166 **(b)**

The solubility of a compound depends upon its hydration enthalpy. If hydration enthalpy exceeds the lattice enthalpy than it is soluble in water. For Ag₂SO₄, hydration enthalpy is lower than lattice enthalpy, so it is insoluble in water.

Silicon has the tendency to show covalent bonding because of higher IP values.

168 (c)

In $SnCl_2$, Sn has sp^2 hybridisation and hence, has angular shape

169 (c)

The inert gas just after chlorine is argon.

170 (d)

The *d*-orbital involved in sp^3d -hybridization is 183 **(b)**

171 (d)

$$O_2 = \sigma 1s^2 {}_{\sigma}^* 1s^2 \sigma 2s^2 {}_{\sigma}^* 2s^2 \sigma 2p_z^2 \pi 2p_x^2$$

= $\pi 2p_y^2 {}_{\pi}^* 2p_{x'} = {}_{\pi}^* 2p_{y'}$

In O_2^+ , one electron is removed from Na BO for $O_2 = 2$ and for $O_2^+ = 2.5$ Therefore, paramagnetism decreases.

BO increases.

172 **(b)**

Intramolecular H-bonding is present in ortho nitrophenol.

174 (c)

According to valence shell electron pair repulsion (VSEPR) theory, the order of repulsive interactions between various electron is

$$lp - lp > lp - bp > bp - bp$$

175 **(b)**

In like atoms, electronegativity difference is zero.

176 **(d)**

BCl₃ has bond angle equal to 120° (trigonal planar). NH₃ and H₂O have sp^3 hybridisation but 187 (a) due to the presence of lone pair of electrons, they have bond angle less than 109.28'(NH₃ - 107° , $H_2O - 104.5^{\circ}$), As H_3 (sp^3 hybrid) has smaller bond angle than NH3 due to less electronegativity of As than N.

177 (d)

 E_{op}° order is Mg > Fe > Cu; more is E_{op}° , more is electropositive character.

178 (c)

O atom possesses two lone pair of electrons.

179 (a)

M.O. configuration of O_2^+ is:

 $\sigma 1s^2\sigma^*1s^2, \sigma^*2s^2\sigma 2p^2, \pi 2p_y^2\pi 2p_y^2\pi^*2p_x^1$

Bond order of $O_2^+ = \frac{1}{2}[6-1] = \frac{5}{2}$

M.O. configuration of N_2^+ is:

 $\sigma 1s^2 \sigma^* 1s^2$, $\sigma 2s^2 \sigma^* 2s^2$, $\pi 2p_v^2 \pi 2p_v^2 \sigma 2p^1$

Bond order of $N_2^+ = \frac{1}{2}[5-0] = \frac{5}{2}$

180 (c)

No scope for addition in completely filled valence orbitals of inert gases.

181 **(b)**

SeF₄ has distorted tetrahedral geometry while, CH₄ has tetrahedral geometry Speed of electron ≠ speed of light

182 **(c)**

Butadiene is $CH_2 = CH - CH = CH_2$.

37 is atomic number of Rb the electropositive element and 53 is atomic number of iodine (the electronegative element).

184 (c)

In methane bond angle is 109°28'. Methane molecule is tetrahedral in structure.

185 **(b)**

Cs is metal and solid.

186 (d)

- Glycerol has strong hydrogen bonding due 1. to presence of 3 - OH groups in it. It is correct statement.
- 2. Alkyl halides have lower boiling point than alcohols because alcohols have stronger forces of attraction between the hydrogen bonds as compared to weaker van der Waals' forces between molecules of alkyl halide.

: Statement (d) is false.

Ionic radii=
$$\frac{n^2 a_0}{Z_{\text{off}}}$$

188 (c)

Only those atomic orbitals combine, that have nearly equal energy

189 **(b)**

The stability of the ionic bond depends upon the lattice energy which is expected to be more between Mg and F due to +2 charge on Mg atom

190 (a)

Smaller is anion, lesser is its polarization.

191 **(b)**

$$B_{(G.S.)}$$
 $2s$ $2p$

$$sp^2$$
- hybridisation

Boron has planar structure due to sp^2 hybridisation.

192 **(c)**

3. NO⁻(16). According to MOT.

$$\sigma 1s^2, \, {}^*_\sigma 1s^2 \, , \sigma 2s^2, \, {}^*_\sigma 2s^2, \sigma 2p_x^2, \, \left\{ \begin{matrix} \pi p_y^2 \\ \pi 2 p_z^2 \\ \frac{\pi}{2} 2 p_y^2 \\ \frac{\pi}{2} 2 p_z^2 \end{matrix} \right.$$

Bond order = $\frac{\text{bonding electrons-antibonding electrons}}{2}$ = $\frac{10-6}{2}$ = 2

4. $NO^+(14)$

$$\sigma 1s^2$$
, $_{\sigma}^* 1s^2$, $\sigma 2s^2$, $_{\sigma}^* 2s^2$, $\sigma 2p_x^2$, $\begin{cases} \pi 2p_x^2 \\ \pi 2p_z^2 \end{cases}$
Bond order $=\frac{10-4}{2}=3$

$$\sigma 1s^2, \, {}^*_{\sigma} 1s^2 \, , \sigma 2s^2, \, {}^*_{\sigma} 2s^2, \sigma 2p_x^2, \left\{ \begin{smallmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \\ \frac{\pi}{\pi} 2p_y^1 \\ \frac{\pi}{\pi} 2p_y^2 \end{smallmatrix} \right.$$

Bond order = $=\frac{10-5}{2} = 2.5$ (iv)NO²⁺(13).

$$\sigma 1s^2$$
, ${}_{\sigma}^* 1s^2$, $\sigma 2s^2$, ${}_{\sigma}^* 2s^2$, $\sigma 2p_x^2$, ${}_{\pi 2p_x^2}^2$,

Bond order =
$$=\frac{9-4}{2} = 2.5$$

6.
$$N0^{2-}(17)$$

$$\sigma 1s^2, \, {}^*_\sigma 1s^2 \, , \sigma 2s^2, \, {}^*_\sigma 2s^2, \sigma 2p_x^2, \, \left\{ \begin{smallmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \\ \frac{\pi}{2} 2p_y^2 \\ \frac{\pi}{2} 2p_z^2 \\ \frac$$

Bond order =
$$=\frac{10-7}{2} = 1.5$$

The order of bond order is $NO^{2-} < NO^- < NO^{2+} \approx NO < NO^{3-}$

193 **(d)**

Cl is more electronegative than Br.

194 (c)

Boron in $[BF_4]^-$ has regular tetrahedral geometry because of sp^3 -hybridization on boron atom.

195 (d)

Usually symmetrical molecules have less dipole moment in comparison to unsymmetrical molecules.

Hence, NO₂ (*m*-nitroaniline) has the highest dipole moment among the given.

196 (a)

Thus, excitation of 2s-electron in N is not possible.

197 **(b)**

PF₅ has sp^3d hybridization (trigonal bipyramid); BrF₅ has sp^3d^2 hybridization (square pyramidal)

198 (d)

In NH_3 sp^3 hybridisation is present but its shape becomes pyramidal due to the presence of one lone pair of electron.

199 (d)

Higher the lattice energy lower the solubility. Out of the four combinations possible, the lattice energy of MgS (bi-bivalent ionic solid) is higher than those of Na₂S, MgCl₂ (uni-bivalent or biunivalent ionic solids) and NaCl (uni-univalent ionic solids) and hence, MgS is the least soluble.

200 **(b)**

A three electrons in its outermost orbit, its valency is 3. B has six electrons in its outermost orbit, its valency is 2

Element

Valency

Formula of the compound = A_2B_3

201 (c)

A reason for the given fact.

202 **(c)**

In NH₃, sp^3 -hybridization is present but bond angle is $106^{\circ}45'$ because nitrogen has lone pair of electrons, according to VSEPR theory due to bp- and lp repulsion, bond angle decreases from $109^{\circ}28'$ to $106^{\circ}45'$

203 **(b)**

 ClO_4^- and XeO_3 both contain $3d\pi - p\pi$ bonds

204 (c)

` ,						
Spec	Structure	lp	bp	VSE	Bond	_
ies				PR	angle	

Thus, bond angle $H_2S < NH_3 < SiH_4 < BF_3$.

205 (d)

The pyramidal structure of covalent molecule AB_3 is as:

No. of lone pair = 1No. of bond pair =3

207 (d)

 d^2sp^3 -leads to octahedral geometry.

209 (a)

A molecule is said to possess a three-fold axis of symmetry if on rotation around this axis through an angle of 360/3, ie, 120°, gives the same arrangement of atoms. Since NH₃ has a pyramidal geometry, therefore, it has a three fold axis of symmetry

210 (a)

Proton number does not change in ion formation, though number of electrons and size change during this.

211 (d)

Valence bond theory (Resonance theory) of metallic bond was given by Pauling (1937). 217 (a) According to this theory, the metallic bonding is essentially covalent in origin and metallic structure exhibits resonance of electro-pair bonds between each atom and its nearest neighbours. In other words, there is a resonance of a large number of canonical forms.

212 (c)

Notice configuration of N^+ , C^+ , O^+ and F^+ .

213 **(b)**

 ClF_3 has sp^3d hybridisation. Out of five sp^3d hybrid orbitals two are completely filled by lp and three are half filled which overlap with three $2p_z$ half filled orbitals of three F-atoms. Due to the presence of two *lps* its geometry is bent *T*-shaped.

214 (d)

These are characteristics of resonance.

215 (c)

$$0_2^{2-}: \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2 \sigma^* 2s^2 \sigma 2p^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{bmatrix} \pi^* 2p_y^2$$

B.O. $= \frac{10-8}{2} = 1$

$$B_2 : \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2 \begin{bmatrix} \pi 2p_y^1 \\ \pi 2p_z^1 \end{bmatrix}$$

B.0. =
$$\frac{6-4}{2}$$
 = 1

216 (c)

In the formation of XeF_6 molecule, three 5 pelectrons are promoted to 5d orbitals. Now, one 5s, three 5p and three 5d-orbitals of Xe atom intermix together and form seven sp^3d^3 hybrid orbitals. One sp^3d^3 hybrid orbital contains one lone pair of electrons while other six are halffilled. The expected geometry is pentagonal bipyramidal.

Xe atom 1, 1 1 1 (excited state)

Shape: Pentagonal bipyramidal

$$CaC_2 \rightleftharpoons Ca^{2+} + C_2^{2-}$$

In carbide ion, two carbon atoms are joined by triple bond

(If is isoelectronic with N_2)

$$-C \equiv C -$$

with two π and one σ -bonds.

218 **(b)**

 H_2O has sp^3 -hybridization.

219 (c)

e. g., BF₃, a non-polar molecule having sp^2 hybridization.

220 **(b)**

When there is less difference in electronegativities of two atoms (but electronegativities are not same) and large difference in their size, polar covalent bond forms. H and Br: Small difference in electronegativities and large difference in size. Hence, form polar 234 (d) covalent bond.

Na and Br: large difference in electronegativities, hence electrovalent bond is formed.

221 **(b)**

The bond order for O_2^{2-} , O_2^{-} , O_2^{-} , O_2^{+} are 1.0, 1.5, 2.0, 2.5 respectively. Higher is bond order, more is bond energy.

222 **(c)**

In XeF_4 , the central atom, Xe, has eight electrons 237 (c) in its outermost shell. Out of these four are used for forming four σ -bonds with F and four remain as lone pairs.

∴ XeF_4 ⇒ 4σ bonds + 2 lone pairs

 \Rightarrow 6 bybridised orbitals, *i. e.*, sp^3d^2 hybridisation Since, two lone pairs of electrons are present, the geometry of XeF₄ becomes square planar from octahedral.

223 **(b)**

Bond order = $\frac{1}{2}$ [no. of bonding electrons – no. of antibonding electrons]

224 (c)

H-bonding is noticed in molecules having H atom attached on N, O or F.

225 (d)

F is more electronegative.

226 (a)

s-orbitals always lead head on overlapping.

228 (a)

According to molecular orbital theory, π -bonding orbital are ungerade.

Basic character of hydrides is $NH_3 > PH_3$.

230 **(b)**

CO₂ has *sp*-hybridization.

231 (a)

Bond angles decrease on moving down the group for similar compounds, i. e., $NH_3 > PH_3 > AsH_3 >$ SbH₃.

232 (a)

Ionic compounds break into their constituent ions when dissolved in water.

Carnallite is double salt having composition, KCl. MgCl₂. 6H₂O. It gives K⁺, Cl⁻ and Mg²⁺ ions when dissolved in water.

An increase in s-character give rise to an increase in bond strength.

235 **(a)**

In rest all dipole-dipole forces also exist.

236 (c)

Among the isoelectronic species smaller is +ve charge, larger is ionic radius, e.g.,

Ionic radius : $Na^+ > Mg^{2+} > Al^{3+}$

1, 4-dihydroxy benzene shows the highest boiling point among given compounds because it forms strong intermolecular hydrogen bonds (It does not form intermolecular H-bonding.)

Order of H-bonding in o, m and p-isomers of a compound is given below

H-bonding

Intermolecular H-bonding, o < m < p-isomers intermolecular H-bonding

o > m > p isomers.

Hydroxy benzene do not form a chain of Hbonding . Hence, intermolecular H-bond is stronger than intermolecular H-bonds, so the stability of 1, 4-dihydroxy benzene is highest. Hence its boiling point is highest. The increasing order of the boiling points of the given compound

IV < I < II < III

238 (d)

Molecules in *trans*-1, 2-dichloroethene symmetrical hence, no dipole moment.

239 **(b)**

 sp^3d^2 -hybridization leads to octahedral geometry.

240 (c)

In BF₃,boron is sp^2 hybridised, so its all atoms are

coplanar

241 **(c)**

Since, the geometry of AsF₅ molecule is trigonal bipyramidal, it is sp^3d hybridised. Thus, s, p_x , p_y , p_z and d_{z^2} orbitals are utilised by As atom from bonding.

242 **(c)**

Molecular orbital configuration of N₂⁺ is

$$N_{2}^{+} = (\sigma 1s)^{2} ({}_{\sigma}^{*} 1s)^{2} (\sigma 2s)^{2} ({}_{\sigma}^{*} 2s)^{2} (\pi 2p_{y})^{2}$$
$$= (\pi 2p_{z})^{2} (\sigma 2p_{x})^{1}$$

Bond order =
$$\frac{N_{b}-N_{a}}{2} = \frac{9-4}{2} = 2.5$$

243 (a)

Structure of C₂H₂ is linear.

$$H - C \equiv C - H$$

Structure of CO₂ is also linear

$$0 = C = 0$$

So, both are isostructural species.

244 (c)

In o-dichlorobenzene, $\alpha = 60^{\circ}$

$$\therefore \cos \alpha = +ve$$

$$\mu = \sqrt{\mu_1^2 + \mu_2^2 + 2\mu_1\mu_2 \cos \alpha}$$

245 (c)

Multiplicity of bonds gives higher bond energy.

246 (d)

Bond order of oxygen molecule = 2 Bond order of oxygen molecule ion = 2.5 Bond order of superoxide ion $(O_2^-) = 1.5$ Bond order of peroxide ion $(O_2^{2^-}) = 1$ Hence, the order of bond strength is as

$$0_2^+ > 0_2 > 0_2^- > 0_2^{2-}$$

247 **(c)**

Electronic configuration of Xe in ground state

5 <i>s</i>		5 <i>p</i>)		5d	1	, ,
14	11	1,	1,	L,	L		

Electronic configuration of Xe in excited state

Electronic configuration of Xe in XeF₄

Note The expected geometry of XeF_4 is octahedral. On account of the fact that lp-lp repulsion > lp-bp repulsion, there is some distortion octahedral geometry with two lone pair of electrons. In other words, it has a square planar geometry.

248 **(b)**

$$\text{Li}_2$$
: $KK(\sigma 2s)^2$, $BO = \frac{1}{2}(2-0) = 1$

Hence, structure of Li₂ is [Li - Li].

250 **(b)**

More directionally concentrated orbitals show more overlapping.

251 (d)

It is the hybridization of ICl₂⁺.

252 **(b)**

o-, m-, p-derivatives has $\alpha=60^{\circ}$, 120° and 180° and thus, resultant vector has zero dipole moment in p-derivative. Also dipole moment of m-dichlorobenzene is more than toluene.

253 **(a)**

Covalent character α charge of cation

254 (c)

Carbon cannot accept $6Cl^{-}$, since it has no vacant d-orbitals.

255 **(b)**

Cs⁺ is largest cation and F⁻ is smallest anion.

256 **(b**

Charge of
$$e^- = 1.6 \times 10^{-19}$$

Dipole moment of HBr = 1.6×10^{-30}

Inter-atomic spacing
$$= 1 \,\text{Å}$$

$$= 1 \times 10^{-10} \text{ m}$$

Percentage of ionic character in HBr

$$= \frac{\text{Dipole moment of HBr} \times 100}{\text{inter spacing distance} \times q}$$

$$= \frac{1.6 \times 10^{-30}}{1.6 \times 10^{-19} \times 10^{-10}} \times 100$$

$$= 10^{-30} \times 10^{29} \times 100$$

$$= 10^{-1} \times 100$$

$$= 0.1 \times 100$$

$$= 10\%$$

257 **(b)**

Lower *IE*, more *EA* and high lattice energy are required conditions for ionic bonding.

258 **(d)**

Ionisation potential increases along the period.

259 **(b)**

More is *s*-character, smaller is hybridized orbital, more becomes tendency for overlapping, more is bond energy, lesser is bond length.

260 (c)

Larger is the difference in electronegativities of two atom, more is polar character in bond.

261 **(a)**

The molecules having no difference in electronegativity of bonded atoms are non-polar in nature. They are molecules having same atoms.

∴ Among HCl, HF, HBr and H₂. H₂ is non-polar

molecule.

262 **(b)**

In SO_2 molecule, S is sp^2 -hybridised.

$$S(16) = 1s^2, 2s^2, 2p^6, 3s^2, 3p^4$$

263 **(b)**

The size of isoelectronic species increases with decrease in effective nuclear charge.

264 **(d)**

Bond order for He₂ is zero.

265 **(b)**

CsF is ionic compound.

266 (a)

Isoelectronic species have same number of electrons

267 (d)

Ionic character=
$$16(E_A - E_B) + 3.5(E_A - E_B)^2$$

= $16(4 - 1.2) + 3.5(4 - 1.2)^2$
= 72.24%

268 **(d)**

During the formation of chemical bond energy decreases

269 **(b)**

$$K_4 Fe(CN)_6 \rightarrow 4K^+ + Fe(CN)_6^{4-}$$

270 **(c)**

 (sp^3) hybridisation)

Tetrahedral

Sec-saw structure $(sp^3d$ hybridisation)

∴ Both have different structure.

8.
$$BF_3$$
, PCl_3

Trigonal planar $(sp^2d \text{ hybridisation})$

Pyramidal structure $(sp^3d$ hybridisation)

: Both have different structure.

9. XeF_2, CO_2

Trigonal bipyramidal

Pentagonal bipyramidal

: Both have different structure.

10.
$$PF_5$$
, IF_7
 $F \longrightarrow Xe \longrightarrow F$ $O \longrightarrow C \longrightarrow O$
Linear Linear

· Both have linear structure.

They have same structure.

271 (d)

Covalent union between two unlike atoms gives rise to the formation of a polar covalent bond in which shared pair of electron shifted towards more electronegative atom. This gives rise to equal but opposite partial charges on two ends. HCl shows polar covalent bond.

272 **(b)**

Rest all either has incomplete (BF₃, BeF₂) octer or expanded octet (ClO₂).

274 (d)

CO, CN⁻ and NO⁺ all the three species have 14 electrons.

According to MOT

$$\sigma1s^2$$
 , $_\sigma^*1s^2$, $\sigma2s^2$, $_\sigma^*2s^2$, $\sigma2p_x^2(\pi2p_y^2=\pi2p_z^2)$ Bond order = $\frac{10-4}{2}=3$

Similarly bond order for $O_2^+ = 2.5$

275 (a)

XeF₂ molecule contains two bond pairs and three lone pairs in the outer-shell of central atom and thus its hybridisation is sp^3d^2 but to minimise the repulsive forces the three lone pairs occupy the equatorial position and the molecule becomes linear shape.

276 (c)

Species having the same number of electron, have same bond order.

Species	Number of
	electrons
CN-	6+7+1=14
0_{2}^{-}	8+8+1=17
NO ⁺	7+8-1=14
CN-	6+7-1=12

Since, CN⁻ and NO⁺ have same number of electrons, they have same bond order, i. e., 3.

CN⁻ or NO⁺ = 14=
$$\sigma 1s^2$$
, ${}^*\sigma 1s^2$, $\sigma 2s^2$, ${}^*\sigma 2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2 \approx \pi 2p_y^2$,

Bond order = $\frac{N_{b-}N_a}{2}$

$$= \frac{10-4}{2} - 3$$

277 (c)

In water molecule the H - O - H bond angle is 104.5° and dipole moment is 1.84 D.

The bond angle of H₂O is lower than 109.28" due to the presence of two lone pair of electrons on the oxygen atom.

278 **(d)**

Follow text.

RCH₂NHCH₃ shows the hydrogen bonding, since H is attached to N atom.

Cl atom has 17 electrons, Cl⁻ ion has 18 electrons.

281 (a)

High boiling point. of water is due to dipole-dipole interaction.

282 (d)

Ionisation enthalpy increases along the period and decreases down the group.

The jump in IP values exist in IP₅ and thus, removal of fifth electron occurs from inner shell. Thus, element contains four electrons in its valency shell.

284 (a)

Paramagnetic species has unpaired electron. $B_2 = 5 + 5 = 10 \sigma 1s^2$, $_{\sigma}^* 1s^2$, $_{\sigma} 2s^2$, $_{\sigma}^* 2s^2$, $_{\sigma} 2s^2$, $_{\sigma} 2s^2$ $C_2 = 6 + 6 = 12$ $= \sigma 1s^{2}, {}_{\sigma}^{*}1s^{2}, \sigma 2s^{2}, {}_{\sigma}^{*}2s$ $= \pi 2p_{y}^{2}$ $N_2 = 7 + 7 = 14 = \sigma 1s^2, {}_{\sigma}^* 1s^2 \sigma 2s^2$ $F_2 = 9 + 9 = 18$ = $\sigma 1s^{2}$, * $\sigma 1s^{2}$, $\sigma 2s^{2}$, * $\sigma 2s^{2}$, $\sigma 2p_{z}^{2}$, $\sigma 2p_{z}^{2}$, $\sigma 2p_{z}^{2}$

∴ B₂ is paramagnetic because it has unpaired electron.

285 (a)

 $Na \rightarrow Na^{+} + e$; IE of Na = +ve $Na^+ + e \rightarrow Na$; EA of $Na^+ = -ve$ Both are equal but opposite in nature.

 $=\pi 2p_y^2$, $_{\pi}^* 2p_x^2 = _{\pi}^* 2p_y^2$

286 (c)

(a) CH_4 \rightarrow CH₃ - CH₃ 4bp + 0lp4*bp* Hybridisation sp^3 sp^3 Structure tetrahedral tetrahedral

(b)
$$NH_3 \rightarrow NH_4^+$$

 $3bp + 1lp \qquad 4bp$
Hybridisation $sp^3 \qquad sp^3$

Structure pyramidal tetrahedral

(c)
$$BF_3 \rightarrow BF_4^-$$

 $3bp \quad 4bp$
Hybridisation $sp^2 \quad sp^3$
Structure trigonal tetrahedral planar

(d)
$$H_2O \rightarrow H_3O^+$$

 $2bp + 2lp \qquad 3bp + 1lp$
Hybridisation $sp^3 \qquad sp^3$
Structure angular pyramidal

Thus conversion of BF₃ into BF₄ involves change in both hybridisation and shape.

287 (a)

In O_2 molecule, the total number of electrons = 16 Electronic distribution in molecular orbital of $0_2 = \sigma 1s^2$, $_{\sigma}^* 1s^2$, $_{\sigma} 2s^2$, $_{\sigma}^* 2s^2$, $_{\sigma} 2p_x^2 \left(\pi 2p_y^2, \pi 2p_z^2\right)$ $(_{\pi}^{*}2p_{v}^{1},_{\pi}^{*}2p_{z}^{1})$

Bond order in
$$O_2 = \frac{1}{2}[N_{b-}N_a] = \frac{1}{2}[10-6] = 2.0$$

In $O_2^+ = \sigma 1s^2$, ${}_{\sigma}^*1s^2$, ${}_{\sigma}2s^2$, ${}_{\sigma}^*2s^2$, ${}_{\sigma}2s^2$

$$(\pi 2p_y^2 = \pi 2p_z^2), ({*}_{\pi} 2p_y^1)$$

Bond order in $O_2^+ = \frac{N_b - N_a}{2} = \frac{10 - 5}{2} = 2.5$

288 (a)

Percentage ionic character

experimental value of DM theoretical value of DM
$$\times 100$$

$$= \frac{1.03}{6.12} \times 100 = 17\%$$

289 **(b)**

Electron affinity decreases down the group, but 'O' has small atomic size and 2p-orbital becomes very compact and already has 6 electrons, hence, there is a repulsive force among the already present and added electrons. Some of the energy evolved, due to addition of electron, is used to reduce the repulsion. Hence, the E.A. of O is less than S, so the order is S > O > Se.

290 (a)

A π -bond has a nodal plane passing through the two bonded nuclei, *i. e.*, molecular plane.

291 (c)

Electronegativity of elements increases along the period and decreases down the group.

292 **(b)**

In CO_2 , C-atom is sp-hybridised, thus it has linear structure. In XeF_2 , Xe is sp^3d hybridised with three lone-pairs of electrons on equatorial position. This minimises repulsion, hence it has also linear structure.

293 **(b)**

Structure of CO_2 is linear due to sp-hybridisation. (sp)

O = C = 0

294 (a)

Higher the bond order short the bond length O_2^{2+} has the shortest the bond length (B0=3) Bond order of remaining species are : $O_2^+(2.5)$, $O_2^-(1.5)$ and $O_2^{2-}(1)$

295 **(b)**

- 11. The first bond between any two atoms is σ and rest are π bonds.
- 12. π bond is formed by sideways overlapping of unhybridised *p*-orbital.

Each carbon has 3σ and 1π -bond

 \therefore All carbon atoms of C_6H_6 are sp^2 hybridised.

296 **(d)**

Nearer to 25%, the angle is $109^{\circ}28'$ for sp^3 -hybridization.

297 (c)

$$KHF_2 \rightarrow K^+ + HF_2^-$$

298 (c)

Intramolecular H—bonding in salicyl aldehyde prevents its test with $FeCl_3(aq)$.

299 **(c)**

Stronger is metallic bonding (Fe has d-subshell), more is hardness.

300 (d)

Compound	Bond angle
NH_3	107°
PCl ₃	93°
BCl ₃	120°

301 **(d)**

In propyne there are 2 π – bonds and six sigma bonds.

$$CH_3C \equiv CH$$

302 (a)

Like atoms results in covalent bonding leading to the formation of non-polar bond, *e.g.*, H—H or H₂.

303 (c)

$$\begin{array}{ccc} & & & & & & 0 \\ & & & & & || \\ \text{CH}_3 - \text{C} - \text{OH} & & & \text{CH}_3 - \text{C} - \text{NH}_2 \\ & & & sp^2 & & sp^2 \end{array}$$

CICH
$$CH_2$$
, sp^2 , sp^2 ,

chloroethene

benzene all carbon atoms are

 sp^2 hybridised chloroethene

$$\begin{array}{lll} {\rm CH_2 = CH - CH = CH_2} \\ sp^2 & sp^2 & sp^2 & sp^2 \\ {\rm CH_2 = CH - CH = CH - CH = CH_2} \\ sp^2 & sp^2 & sp^2 & sp^2 & sp^2 \\ {\rm 1, 3, 5-hexatriene} \end{array}$$

305 (d)

If the lattice energy < hydration energy, then only ionic compounds are soluble.

306 **(c)**

 BCl_3 has equilateral triangular shape leading to vector sum of polar bonds to zero.

307 **(d)**

Hybride:
$$H_2O$$
 H_2S H_2Se H_2Te
Bond angle: 104° 92° 91° 90°

In all of the given species central atom is sp^3 hybridised. They have angular shape due to the presence of two lone pair of electron. The bond angle decreases with decrease in electronegativity therefore $\rm H_2 Te$ shows minimum bond angle.

308 **(d)**

Lattice energy
$$\propto$$
 charge of ions $\propto \frac{1}{\text{size of ions}}$

309 **(b)**

 He_2^+, H_2^- have 3 electrons, one must be unpaired. H_2^+ has one unpaired electron. H_2 has two (paired) electrons.

310 (c)

Among the given, only CH_3OH and CH_3NH_2 are able to form H-bonds but H-bonding in CH_3OH due to high electronegativity of O-atom is strong. Hence, CH_3OH has the highest boiling point.

311 **(a)**

$$(\sigma - bps + 1ps = 3 + 1 = 4)$$

In NF_3 N-atoms is sp^3 -hybride, but due to presence of a lone pair of electron, NF_3 has pyramidal structure.

312 (d)

The boiling point of ethanol is highest among

these due to the presence of hydrogen bonding.

313 **(b)**

$$C_2^{2-}$$
 has $[C \equiv C]^{2-}$ structure.

314 **(a)**

A compound having maximum electronegative element will form strong hydrogen bond

315 (c)

The bond angle in CH_3OCH_3 is 110° inspite of sp^3 -hybridization of O and two lone pair due to stearichindrance.

316 **(b)**

Multiplicity in bonding give rise to an increase in bond energy.

317 (a)

Carbon in $\rm H_2CO_3$ has $\rm sp^2$ -hybridization and also polar. $\rm BF_3$ has $\rm sp^2$ but non-polar. $\rm SlF_4$ has $\rm sp^3$ -hybridization. $\rm HClO_2$ has $\rm sp^3$ -hybridisation.

318 **(b)**

The removal of second electron from Mg takes place from 3*s*-orbital whereas, the removal of second electron from Na takes place from 2*p*-orbital. More closer are shells to the nucleus, difficult is removal of electron.

319 (b)

Bond angle depends on the structure of molecule. If two molecules have same structure, then bond angle is decided by the electronegativity of central atom. Electrongeativity of central atom \propto bond angle.

The bond angle of H_2S is less than H_2O because S is less electronegative than H_2O .

Hence,

$$H_2O > H_2S$$
 (104.5°) (92.2°)

Further the $BeCl_2$ has linear structure, hence its bond angle is 180° . The N_2O molecule also has linear structure with bond angle 180° .

$$CI \xrightarrow{180^{\circ}} CI$$

$$\vdots N \xrightarrow{+} N \xrightarrow{+} N \xrightarrow{+} N$$

320 (a)

S has 6 electrons in its the valence shell and it shares 6 electrons with 6 fluorine atoms.

∴ In SF₆, S has 12 electrons in its valence shell

322 **(b)**

 $\mathrm{NH_3}$, $[\mathrm{PtCl_4}]^{2-}$, $\mathrm{PCl_5}$ and $\mathrm{BCl_3}$ have sp^3 , dsp^2sp^3d

and sp^2 hybridization respectively. Note that hybridization of P in PCl₅ is wrongly reported in problem.

323 **(b)**

The bond formation process is exothermic and thus resultant acquires lower energy level.

324 **(b)**

Due to H-bonding in NH₃.

325 (a)

Lewis structure of N₂ molecule is

326 **(b)**

The resonating structure of ClO₄ are as

⇒Bond order = $\frac{\text{Total number of bonds between Cl and 0}}{\text{Total number of bonds}}$ $=\frac{7}{4}=1.75$

327 (a)

Bond energy increases with increase in bond order.

328 (d)

Ionisation potential increases along the period.

329 **(b)**

CsCl is most ionic because of most electropositive nature of Cs.

330 **(d)**

 $0_2 < 0_2^-$

Bond order

$$C_2 = 2$$

 $C_2^{2-} = 3$

$$C_2^{2-} = 3$$

$$B_2 = 2$$

$$B_2^+ = 1.5$$

$$Li_2 = 1$$

$$Li_2^+ = 0.5$$

$$M - 3$$

$$N_2^+ = 2.5$$

$$0_2 = 2$$

$$0^{-}_{2} = 1.5$$

331 **(d)**

The molecular configuration of O_2^- is as $\sigma 1s^2$, $_{\sigma}^* 1s^2$, $\sigma 2s^2$, $_{\sigma}^* 2s^2$, $\sigma 2p_z^2$, $\pi 2p_y^2$

$$\approx \pi 2 p_z^2$$
, $_{\pi}^* 2 p_x^2 \approx _{\pi}^* 2 p_y^2$

Bond order =
$$\frac{N_{b-}N_{a}}{2}$$
$$= \frac{10-8}{2}$$

 \therefore Bond order = 1

332 **(b)**

It is an ionic compound. The most ionic compound

333 (c)

CO₂ is linear molecule.

334 **(b)**

M.O. configuration of N₂ is:

$$\sigma 1s^2 \sigma^* 1s^2$$
, $\sigma 2s^2 \sigma^* 2s^2$, $\pi 2p_y^2$, $\pi 2p_z^2$, $\sigma 2p_x^2$

M.O. configuration of N_2^+ is:

$$\sigma 1s^2 \sigma^* 1s^2$$
, $\sigma 2s^2 \sigma^* 2s^2$, $\pi 2p_y^2$, $\pi 2p_z^2$, $\sigma 2p_x^1$

335 (d)

In $\mathrm{NH_4^+}$ ion, N is sp^3 hybridised therefore, bond angle in NH₄⁺ (tetrahedral shape) is 109°28'.

336 **(a)**

The definition of bond order.

338 **(b)**

The intermolecular forces increase with increases in mol. wt.

339 **(b)**

Bond angles of BeF₂, H₂O, NH₃ and CH₄ are 180°, 104°31′, 106°50′, 109°28′ respectively.

340 **(d)**

Bond length decreases with increase in scharacter.

341 (b)

Isoelectronic species have same number of electrons, NO^+ , C_2^{2-} , CN^- and N_2 . All have 14 electrons.

342 (d)

 sp^3d^2 hybridised molecule have octahedral geometry.

343 **(b)**

344 (a)

The shape of ClF₃ is distorted T-shape due to the presence of two lone pair of electrons.

345 **(b)**

These are facts.

346 (c)

 NO_2^- has sp^2 hybridisation. Its expected geometry is trigonal planar but actual geometry is V-shape due to presence of lone pair of electrons.

347 (d)

Cs⁺ is biggest ion among these. F⁻ is smallest.

Formation of solid lattice from oppositely charged ionized gaseous atoms give rise to evolution of lattice energy.

349 **(b)**

We know that Al3+ cation is smaller than Na+ (because of greater nuclear charge). According to Fajan's rule, small cation polarise anion upto 361 (c) greater extent. Hence, Al3+ polarise Cl- ions upto greater extent, therefore, AlCl₃ has covalent bond 363 (d) between Al and Cl atoms.

350 (a)

$$H = 0 = 0$$
, $0 = 0$, $0 = 0$

Due to resonance, in O_3 , the O-O bond length will be in between 0 = 0 and 0 - 0

352 **(b)**

Bond order for $O_2 = 2$ and for $O_2^+ = 2.5$ Both are paramagnetic (O₂has 2 unpaired electron, O_2^+ has one unpaired electron).

354 (c) $[0-0]^{2-}$

355 **(b)**

For *sp*²hybridization, bond angle is 120° In sp^2 hybridization,

s character = $\frac{1}{3} \times 100 = 33\%$

356 (d)

 ClF_3 has sp^3d -hybridization with two lone pair of electron on Cl.

357 (a)

13.
$$0_2 = 8 + 8 = 16$$

=
$$\sigma 1s^2$$
, $^*_{\sigma}1s^2$, $\sigma 2s^2$, $^*_{\sigma}2s^2$, $\sigma 2p_z^2$, $(\pi 2p_x^2 = \pi 2p_y^2)$, $(^*_{\pi}2p_x^1 = ^*_{p}2p_y^1)$

: It has 2 unpaired electrons.

∴ It is paramagnetic.

14.
$$CN^- = 6 + 7 + 1 = 14$$

 $=\sigma 1s^2$, ${}_{\sigma}^*1s^2$, $\sigma 2s^2$, ${}_{\sigma}^*2s^2$, $\sigma 2p_z^2$, $(\pi 2p_x^2 = \pi 2p_y^2)$

∴ No unpaired electron and no paramagnetic.

15.
$$CO = 6 + 8 = 14$$

 $= \sigma 1s^2$, $\sigma 1s^2$, $\sigma 2s^2$, $\sigma 2s^2$, $\sigma 2p_z^2$, $(\pi 2p_z^2 = \pi 2p_z^2)$

: No unpaired electron and no paramagnetic.

16.
$$N0^+ = 7 + 8 - 1 = 14$$

 $= \sigma 1s^2 {}_{\sigma}^* 1s^2$, $\sigma 2s^2$, ${}_{\sigma}^* 2s^2$, $\sigma 2p_z$, $(\pi 2p_z^2 = \pi 2p_z^2)$

: No unpaired electron and not paramagnetic.

358 (c)

C— F bond is more polar than C— Cl.

359 (d)

Ionic compounds conduct current only in fused state.

360 **(b)**

 IP_1 of $B > IP_1$ of Li ENC of boron is more than Li. Also IP_1 of Li > IP_1 of K because removal of electron in K occurs from 4s.

It is a fact.

O has two lone pair of electrons.

364 (a)

In SF₄, S has sp^3d -hybridisation. Thus, it contains two axial and two equatorial bonds to give seesaw structure.

365 (a)

F₃Cl has 10 electrons on Cl atom. A superoctet molecule means for expanded octet on an atom.

366 (c)

S₂ molecule is paramagnetic like O₂ having 2 unpaired electrons.

368 (a)

 π -bonding occurs only after σ -bond is formed.

369 (d)

 NH_4^+ and SO_4^{2-} both show sp^3 hybridisation and tetrahedral geometry

370 (c)

Dipole moment is a vector quantity. The dipole moment of symmetrical molecule is zero. Only the molecule which has distorted shape has dipole moment.

 $: CO_2, p$ -dichlorobenzene and CH_4 have regular symmetrical shape.

: They don't have dipole moment.

 $\mathrm{NH_3}$ has distorted structure due to presence of lone pair of electron.

∴ It has dipole moment.

371 (c)

According to Fajan's rule smaller anion is polarised to lesser extent than the larger anion.

 \div compound having smaller anion has more ionic character.

∴ Higher melting

Since, the size of F⁻ ion is smallest, it is polarised.

∴ AgF will have highest ionic character and hence highest melting point.

(: Ionic compounds have greater melting point than covalent compound)

372 (a)

Number of hybrid orbitals for neutral atom = $\frac{1}{2}$ [Number of valence electron in central atom + Number of monovalent atom]

Number of hybrid orbital = $\frac{5+5}{5}$ = 5 Hence, hybridisation is sp^3d .

374 (a)

The size of isoelectronic decreases with increase in atomic number.

375 (a)

Bond angle for sp, sp^2 and sp^3 -orbitals are 180°, 120° and 109°28′ respectively.

378 **(d)**

In ${\rm BrF_3}$ molecule, ${\rm Br~is~}sp^3d$ hybrid, but geometry is T-shaped due to distortion of geometry from trigonal-bipyramidal to T-shaped by the involvement of lone pair-lone pair repulsion. Here

$$lp - lp$$
 repulsion = 0
 $lp - bp$ repulsion = 4
 $bp - bp$ repulsion = 2

379 **(b)**

As the distance between the atoms, increases, bond polarity increases

380 (d)

 EA_1 for elements is exothermic and EA_2 is endothermic. Also EA_2 for $O > EA_1$ for O.

381 (a)

$$\begin{aligned} & 0_{2}^{-} = 8 + 8 + 1 \\ & = \sigma 1 s^{2}, \ _{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2}, \ _{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2} \\ & = \pi 2 p_{y}^{2}, \ _{\pi}^{*} 2 p_{x}^{2} = \ _{\pi}^{*} 2 p_{y}^{1} \end{aligned}$$

$$\therefore$$
 Total antibonding electrons = 7

$$\begin{array}{l} 0_2 = 8 + 8 = 16 \\ = \sigma 1 s^2 \text{, } {}_{\sigma}^* 1 s^2 \text{ , } \sigma 2 s^2 \text{, } {}_{\sigma}^* 2 s^{2,\sigma} 2 p_z^2 \text{ , } \pi 2 p_x^2 = \\ \pi 2 p_y^2 \text{, } \pi 2 p_x^1 = {}_{\pi}^* 2 p_y^1 \end{array}$$

$$\therefore$$
 Total antibonding electrons = 6

$$0_{2}^{2-} = 8 + 8 + 2 = 18$$

$$= \sigma 1 s^{2}, {}^{*}_{\sigma} 1 s^{2}, \sigma 2 s^{2}, {}^{*}_{\sigma} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2}$$

$$= \pi 2 p_{y}^{2}, {}^{*}_{\pi} 2 p_{x}^{2} = {}^{*}_{\pi} 2 p_{y}^{2}$$

∴ Total antibonding electrons = 8

382 **(d)**

In NH₃, N undergoes sp^3 hybridisation. Due to the presence of one lone-pair, it is pyramidal in shape.

383 **(d)**

Hg exists in liquid state.

384 **(b)**

According to valence bond theory, overlapping orbitals must possess half-filled nature as well as antispin electron.

385 (a)

Non-polar or pure covalent bond has zero per cent ionic character due to the absence of partial charges on either end.

386 (a)

The dipole moment of two dipoles inclines at an angle θ is given by the equation $\pi = \sqrt{x^2 + y^2 + 2xy\cos\theta}$, $\cos 90 = 0$, since, the angle increases from 90 - 180, the value of $\cos \theta$ becomes more and more —ve and hence resultant decreases. Thus, dipole moment is maximum,

when, $\theta = 90^{\circ}$

CO(14) =
$$\sigma 1s^2$$
, ${}_{\sigma}^* 1s^2$, $\sigma 2s^2$, ${}_{\sigma}^* 2s^2$, $\pi 2p_y^2$
= $\pi 2p_z^2$, $\sigma 2p_x^2$
BO = $\frac{N_{b}-N_a}{2} = \frac{10-4}{2} = 3$
NO⁻(16) =

$$\sigma 1s^2$$
, $_{\sigma}^* 1s^2$, $\sigma 2s^2$, $_{\sigma}^* 2s^2$, $\sigma 2p_x^2$, $(\pi 2p_y^2 = \pi 2p_z^2)$, $_{\pi}^* 2p_y^1 = _{\pi}^* 2p_z^1$

$$BO = \frac{10 - 6}{2} = 2$$

 $N0^{+}(13)$; B0=3

 $CN^{-}(14); BO = 3$

 $N_2(14); BO = 3$

Hence, bond order of NO⁻ is different from that of

388 (a)

S atom in SF_6 is sp^3d^2 -hybridized state and shows octahedral shape.

389 **(b)**

The stability of carbonates increases with increasing electropositive character of metal.

391 **(c)**

Larger is the size of atom, lesser is the tendency for overlapping, lesser is bond energy.

392 (a)

The polarising ability is characteristic of cation, smaller the size of cation with large magnitude of positive charge, more will be its polarising ability. (: It can cause large distortions in anion cloud.)

393 (a)

ClO₂ has 33 electrons, *i. e.*, one unpaired.

394 (c)

Larger anion is polarized more (Fajans' rule).

395 (c)

The molecules having distorted geometry have dipole moment and those having regular geometry have zero dipole moment.

- : NH₃, CH₃Cl and ClO₂ have distorted geometry.
- ∴ They have dipole moment.
- ∴ BF₃ has regular triangular planar geometry. The dipole moment of BF₃ is zero.

396 (c)

When hydrogen forms hydrogen bonding with fluorine it will be strongest H-bonding because 406 (c) fluorine is strongest electronegative element.

397 **(b)**

Trans 2-pentene has dipole moment.

Because +I effect of ethyl group is more than that of CH_3 group, hence the two dipoles do not cancel 408 **(b)** each other.

398 (d)

 NH_2^- has sp^3 -hybridization having two covalent bonds and two lone pair of N atom.

399 (d)

The solubility of a compound mainly depend upon its hydration energy. If the hydration energy of a compound is greater than from its lattice enthalpy, then its is soluble in water. Thus, for solubility

> Hydration enthalpy > lattice

enthalpy

For compounds P and R hydration enthalpy exceeds the lattice enthalpy, so they are soluble in water.

400 (a)

It is a fact derived from bond order.

401 **(b)**

I has maximum covalent bond and negative charge on electronegative nitrogen, most stable. III has more covalent bond than both II and IV, III is second most stable. Between II and IV, II is more stable since it has negative charge on nitrogen while IV has negative charge carbon.

402 **(b)**

Hybrid orbitals never form π -bond.

404 (c)

$$0_{2}(16) = \sigma 1s^{2}, {}_{\sigma}^{*}1s^{2}, \sigma 2s^{2}, {}_{\sigma}^{*}2s^{2}, \sigma 2p_{z}^{2}, \pi 2p_{x}^{2}$$

$$\approx \pi 2p_{y}^{2}, {}_{\pi}^{*}2p_{x}^{1} \approx {}_{\pi}^{*}2p_{y}^{1}$$

$$B0 = \frac{10-6}{2} = 2$$

$$0_{2}^{2-}(18) = \sigma 1s^{2}, \ _{\sigma}^{*}1s^{2}, \sigma 2s^{2}, \ _{\sigma}^{*}2s^{2}, \sigma 2p_{z}^{2}, \pi 2p_{x}^{2}$$

$$\approx \pi 2p_{y}^{2}, \ _{\pi}^{*}2p_{x}^{2} \approx \ _{\pi}^{*}2p_{y}^{2}$$

$$BO = \frac{10-8}{2} = 1$$

$$N_2(14) = \sigma 1s^2$$
, ${}_{\sigma}^* 1s^2$, $\sigma 2s^2$, ${}_{\sigma}^* 2s^2$, $\pi 2p_x^2$
 $\approx \pi 2n^2 \sigma^2 n^2$

$$BO = \frac{10-4}{2} = 3$$

Thus, bond order is highest for N_2 .

405 **(d)**

Molecular shapes of SF₄, CF₄, XeF₄ are different with 1, 0 and 2 lone pair or electrons respectively.

The correct sequence of hybridisation of methane, ethene and ethyne is sp^3 , sp^2 and sp.

407 **(b)**

Diamond has a three-dimensional structure in which a large number of carbon atoms are arranged tetrahedrally by covalent bonds. It is an allotropic form of carbon.

The ionisation potential decreases down the group.

409 **(b)**

BeH₂ molecule is linear because it has sphybridisation. It has bond angle 180°.

410 **(b)**

 $Be_2(\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2)$ has bond order equal to zero.

411 **(c)**

 15σ and 3π - bonds are present in toluene.

412 **(b)**

In H₂O, H-atom contains only two electrons.

413 **(c)**

Both $HgCl_2$ and C_2H_2 are linear like CO_2 because of sp-hybridization.

414 **(d)**

Follow concept of bond order in M.O. theory.

415 (d)

$$HC \equiv C - HC = CH - CH_3 10\sigma, 3\pi$$

416 **(b)**

 $\mathrm{CCl}_2 = \mathrm{CCl}_2$ has sp^3 -hybridization. CCl_4 has sp^3 -hybridization.

417 (c)

All are non-metals.

419 (c)

Boiling point of ammonia is much higher than phosphine. It is due to extensive hydrogen bonding found in ammonia.

420 (h)

Lower potential energy level imparts stability.

421 (d)

Covalent character $\propto \frac{1}{\text{size of cation}}$ $\propto \text{size of anion}$

(according to Fajan's rule)

Lower the covalent character, higher will be ionic

character.

 ${\rm Cl_2O}$, contains ${\rm O^{2-}}$, ${\rm NCl_3}$ contains ${\rm N^{3-}}$, ${\rm PbCl_2}$ contains ${\rm Pb^{2+}}$ and ${\rm BaCl_2}$ contains ${\rm Ba^{2+}}$. Hence, the order of covalent character is ${\rm NCl_3} > {\rm Cl_2O} > {\rm PbCl_2} > {\rm BaCl_2}$

∴ BaCl₂ has the greatest ionic character.

422 (c)

Kernals start vibrating and hence, create hindrance in the flow of electrons

423 **(d)**

Chile salt petre (NaNO $_3$), potash alum (K $_2$ SO $_4$. Al $_2$ (SO $_4$) $_3$. 24H $_2$ O) and green vitriol (FeSO $_4$. 7H $_2$ O) are ionic compounds. They produce ions in their aqueous solutions, so they are conducting in nature. Ethyl alcohol, C $_2$ H $_5$ OH being covalent in nature, does not produce any ion in aqueous solution. Hence, it is non-conducting in nature.

424 **(c)**

Due to large electronegativity difference in C and F atoms.

425 **(a)**

Proteins show H-bonding.

426 (c)

Bond angles decreases down the group.

 \therefore H₂O > H₂S. Also bond angle of H₂O < NH₃ due to lone pair effect.

427 **(c)**

In the above compound all bonds are σ bond and hence, carbon atom uses only sp^3 - hybrid orbitals for bond formation.

428 **(b)**

It is the order of stability.

429 **(b)**

 E_1 for He⁺ = E_1 for $H \times Z^2$ (where Z=at. no. of He).

430 (c)

H—bonding order:

$$\cdots$$
 H - F > \cdots H - O > \cdots H - N

431 (d)

The charge-size ratio increases and thus

polarizing power increases.

434 (c)

O₂ has two unpaired electrons.

435 (d)

These are the factors on which IP depends.

436 **(b)**

The hybridised states of N in NO₂⁺, NO₃⁻ and NH₄⁺ are sp, sp^2 and sp^3 respectively.

437 **(b)**

Carbon (1) has 2σ – and 2μ – bonds. Carbon (2) has 3σ and 1π -bond.

438 (c)

According to Fajan's rule, as the size of cation decreases, its polarising power increases. Hence, Cu²⁺ polarise Cl⁻ ions more than Cu⁺. Therefore, CuCl₂ has more covalent character and hence, its boiling point is less.

439 **(b)**

Metals are more electropositive and lose electrons, while non - metals have tendency to gain electron.

440 **(b)**

Be has smallest size and thus, Be cation possesses more polarizing power.

441 **(b)**

Due to intermolecular hydrogen bonding in ortho-isomer, it has least melting point. Due to effective intermolecular hydrogen bonding in para isomer, it has highest melting point among the isomers. So, the order is

Para isomer > meta > ortho(114°C) (97°C) (54°C)

443 (a)

Based on geometry of molecule.

444 **(b)**

The structure of these molecules/species are as follows:

 $(\sigma - bps + lps = 3 + 0 = 3)$

 $(\sigma - bps + lps = 3 + 1 = 4)$

 p^2 -hybridisation trigonal planar sp^2 -hybridisation pyramidal

 $(\sigma - bps + lps = 3 + 0 = 3)$

 sp^2 -hybridisation trigonal planar sp^2 -hybridisation trigonal planar

 PCl_3 has sp^3 -hybridisation but due to presence of 459 (d) a lone-pair, its shape is pyramidal instead of

tetrahedral.

446 **(c)**

[C] forms anion readily by gaining one electron

447 **(c)**

Number of bonds between two atoms is called bond order.

Resonating structures of benzene are

: In benzene, the carbon - carbon bond is between the double and single bond due to the resonance, so its bond order is 1.5.

448 (a)

If difference in electronegativity in between two atoms is 1.7, the molecule possesses 50% covalent +50% ionic nature.

449 **(b)**

 IP_1 of Pb > IP_1 of Sn (an exception).

450 (c)

Only then it can accept lone pair in that shell.

451 (a)

Count σ -and π -bonds.

452 **(b)**

The molecular electronic configuration of O_2 is $O_2 = [KK, (\sigma 2s)^2, ({}_{\sigma}^* 2s)^2, (\sigma 2p_x)^2, (\pi 2p_y)^2]$

= $(\pi 2p_z)^2$, $({}_{\pi}^* 2p_v)^1 = (\pi 2p_z)^1$]

453 (d)

Cs is more electropositive.

454 (a)

In MnO_4^- , the oxidation no. of Mn is +7, i. e., all the 4s and 3d electrons are lost.

455 (d)

456 **(b)**

Charge of $e^- = 1.6 \times 10^{-19}$ C

Dipole moment of HBr = 1.6×10^{-30} C-m

Interionic spacing = $1 \text{ Å} = 1 \times 10^{-10} \text{m}$

% of ionic character in

Dipole moment of HBr \times 100 Interspacing distance $\times q$

$$= \frac{1.6 \times 10^{-30} \times 100}{1.6 \times 10^{-19} \times 10^{-10}}$$
$$= 10^{-30} \times 10^{29} \times 100 = 0.1 \times 100 = 10\%$$

457 (c)

Due to shielding effect of (n-1)d-subshell.

P in PO_4^{3-} has sp^3 -hybridization like S in SO_4^{2-} .

The lattice becomes stronger (*i.e.*, the lattice energy U becomes more negative). As r the interionic distance decreases. U is proportional to $\frac{1}{2}$

 $\frac{1}{r}$ or

$$U \propto \frac{1}{(r_c + r_a)}$$

462 (a)

Covalent radius are always smaller than crystal radius as the former involves overlapping region.

463 (c)

 CO_3^{2-} has the following structure

It contains only covalent bonds

464 (c)

Molecular orbital configuration of,

 $C_2^+ = \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_x^2, \pi 2p_y^1$

466 **(d)**

Mullikan proposed M.O. theory.

467 **(d)**

 $Cl_2O = 42$ electrons

 $ICl_2^- = 88$ electrons

 $Cl_2^- = 35$ electrons

 $IF_2^+ = 70$ electrons

 $I_3^- = 160$ electrons

 $Cl_2O = 33$ electrons

 $ClO_2^- = 34$ electrons

 $ClF_2^+ = 34$ electrons

 ClO_2^- and ClF_2^+ contain 34 electrons each hence they are isoelectronic.

468 (a)

1, 2-butandiene has the structure.

469 (d)

Anions are always larger in size than their parent atom. Cations are always smaller in size than their parent atom.

470 (d)

Sulphade ion $(S0_4^{2-})$ has tetrahedral geometry, as in S-atom undergoes sp^3 hybridisation.

S in II excited state =

1 1 1 1 1 1 1

Tetrahedral shape of SO₄²-

471 (d)

 SF_4 has sp^3d -hybridization with one lone pair, CF_4 has sp^3 -hybridization with no lone pair and XeF_4 has sp^3d^2 -hybridization with two lone pairs.

472 (a)

Hence, hybridisation= sp^3

In NH_3 N-atoms is sp^3 hybridised, but due to presence of a lone pair of electron on N-atom. It is pyramidal in shape.

473 **(b)**

For a compound to be soluble, the hydration energy must be greater than the lattice energy. Since, NaCl is soluble in water but insoluble in benzene.

 $\Delta H_{
m hydration} > \Delta H_{
m lattice\ energy\ in\ water} \ \Delta H_{
m hydration} \ < \Delta H_{
m lattice\ energy\ in\ benzene}$

474 **(b)**

and

Dimerization occurs in carboxylic acids which indicates strong H-bonding.

475 (c)

$$\begin{array}{c}
H \\
\sigma C \stackrel{2\pi}{=} C \stackrel{\sigma}{=} C \stackrel{\sigma}{=} C \stackrel{\pi}{=} H \\
\downarrow \sigma \\
H
\end{array}$$

Thus, the number of σ and π bonds respectively are 7 and 3

476 (a)

Solubility order : AgF > AgCl > AgBr > AgI.

477 (d

CaI₂ has maximum covalent character due to large size of anion and possesses lowest lattice energy.

Thus melting point is lowest.

478 (c)

Hybridisation= $\frac{1}{2}$ [no. of electron in valence shell 485 (c) + no. of monovalent atoms-charge on cation+ charge on anion]

17. H_2O

$$H = \frac{1}{2}(6+2+0-0) = \frac{8}{2} = 4$$

 $\therefore sp^3$ hybridisation

18. CH_{4}

$$H=\frac{1}{2}(4+4+0-0)$$

$$=\frac{8}{2}=4$$

 $\therefore sp^3$ hybridisation

19. BCl₃

$$H=\frac{1}{2}(3+3+0-0)$$

$$=\frac{6}{2}=3$$

 $\therefore sp^3$ hybridisation

20. NH_3

$$H = \frac{1}{2}(5 + 3 + 0 - 0)$$

$$=\frac{8}{2}=4$$

 $\therefore sp^3$ hybridisation

 \therefore (c) is correct answer.

479 (a)

H₂O shows high b.p. (inspite of lowest mol. wt.) on account of strong H-bonding.

480 (d)

 C_2H_2 is a linear molecule with sp-hybridization.

481 **(b)**

KO₂ is an ionic compound.

482 (c)

In all the given compounds, anion is same(Cl⁻), hence polarising power is decided by size and charge of cation. Al3+ with maximum charge and smallest size has maximum polarising power hence, AlCl₃ is maximum covalent.

483 (d)

Dipole forces exist only in polar molecule.

484 **(b)**

Both possess sp^2 -hybridization but different geometry.

In transition elements, penultimate shell electrons also participate in bonding.

486 **(b)**

 0_2 0_2^+ 0_2^{2+} 0_2^{2-} 2 2.5 3 1 **Species Bond Order**

Hence, the increasing bond order is as follows: $0_2^{2-} < 0_2 < 0_2^+ < 0_2^{2+}$

487 **(b)**

 $\pi 2p_x$ and $\pi 2p_y$ or $^*_{\pi\,2p_x}$ and $^*_{\pi\,2p_y}$ orbitals have nearly equal energy and thus, are called degenerate orbitals.

488 (a)

The most electronegative element is F and next to F is 0.

489 (c)

Ions are held in NaCl by coulombic forces and thus, possess no velocity.

Both have one lone pair of electron.

491 **(d)**

Lattice energy, $U = \frac{q_1 q_2}{r^2}$

Since, interionic distances in CaO and NaCl are similar, (larger cation has smaller anion and vice versa) r is almost the same. Therefore, lattice energy depends only on charge. Since, the magnitude of charge on Na⁺ and Cl⁻ ions is same ie, unity and that on Ca^{2+} and O^{2-} ions is 2 each, therefore, the lattice energy of CaO is four times the lattice energy of NaCl, ie,4U

492 (a)

$$sp$$
 sp sp^2 sp^2

 $CH \equiv C - CH = CH_2$

Hence, carbon atom bonded to each other by

(C - C) are sp and sp^2 hybrid.

493 **(c)**

In IF₅, halogens are member of VII group.

Summation of group number

= 42
Bond pair =
$$\frac{42}{8}$$
 = 5(Residue) 2
Lone pair = $\frac{2}{2}$ =1

5 bond pair, 1 lone pair means the geometry is square pyramidal and sp^3d^2 hybridisation.

494 **(b)**

 PCl_5 molecule has sp^3 d hybridiation.

Its geometry is trigonal bipyramidal and it has 5 504 **(b)** valence shell pairs of electrons.

495 (c)

Given, ionic charge = 4.8×10^{-10} esu and, ionic distance = $1 \text{ Å} = 10^{-8} \text{cm}$

We know that

Dipole moment =ionic charge×ionic distance

$$=4.8 \times 10^{-10} \times 10^{-8}$$

$$= 4.8 \times 10^{-18} \text{ esu cm}^{-1}$$

= 4.8 debye

496 **(b)**

 $CH_2 = CH_2$ has 1σ -and 1π -in between two sp^2 hvbridized carbon.

497 (c)

S in SF₄ possesses trigonal bipyramidal structure | 509 (c) with sp^3d hybridisation.

S in ground state

S in ground state

S in excited state

S in excited state

499 (c)

Atomic size decreases along the period and increases down the gp.

500 (d)

One water molecules is joined to four water molecules-two with H-atoms and other two with 0-atoms. Thus, The maximum number of 514 (d) hydrogen bonds that a molecule of water can have is four as shown below:

CH₃⁺ and NH₂⁺ both have 8 electrons.

503 **(b)**

Energy level order 2p > 2s.

Be in BeF $_3^-$ is sp^2 -hybridized

505 **(c)**

 RbO_2 means Rb^+ and O_2^- , O_2^- is the superoxide ion. $0_2^-(17) = \sigma 1s^2$, $_{\sigma}^*1s^2$, $\sigma 2s^2$, $_{\sigma}^*2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2$ $\approx \pi 2 p_{y,\pi}^2 {}^*_{\pi} 2 p_{x,\infty}^2 \approx {}^*_{\pi} 2 p_{y,\infty}^1$

As it contains one unpaired electron, thus paramagnetic in nature.

506 **(b)**

A reason for the given fact.

507 **(c)**

Sulphanilic acids have dipolar structure to their melting point is high and insoluble in organic solvent

Atomic size of Ag and Au are closer to each other but nuclear charge is more on Au.

511 (d)

BCl₃ has trigonal planar structure due to 3 bond pairs in the valence shell of boron whereas NCl₃ has distorted tetrahearal structure due to one lone pair and three bond pair in the valence shell of nitrogen.

512 (a)

In AlH₃, Al is sp^2 hybridised while in AlH₄, Al is sp³ hybridised.

513 **(b)**

CH₃COOH dimerises in gaseous state due to Hbonding.

It is the definition of electron affinity.

516 **(b)**

 SO_2 has sp^2 -hybridization.

517 **(a)**

One of *s*-orbital +3 of *p*-orbital = sp^3

N0(7 + 8 = 15)
=
$$\sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2$
 $\approx \pi 2p_y^2$, $\pi^* 2p_x^1$
N0⁺(7 + 8 - 1 = 14)
= $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2 \approx \pi 2p_y^2$
Thus, in the formation of N0⁺ from N0, the

electron is removed from a π^* orbital

519 (a)

2nd IE_1 of alkali metals is abnormally higher.

520 **(c)**

For Be_nAl₂Si₆O₁₈ 2n + 6 + 24 - 36 = 0n = 3

521 **(a)**

The structure of an hydride of H₂SO₄ is:

$$0 = \frac{1\sigma}{1\pi} S = \frac{1\sigma}{1\pi} O$$

522 (c)

O atom possesses sp^3 -hybridization with two lone pair of electron.

523 (a)

Ionic bonds are non-directional.

524 **(b)**

The molecule of N_2O is linear as would be expected for a triatomic molecule with 16 outer shell electrons. Its resonance structure is

525 (d)

Hence, number of σ and π -bond in acetonitrile are 5 and 2 respectively.

526 (a)

More the difference in electronegativity of atoms, stronger will be the hydrogen bond. : Electronegativity difference between H and F is highest.

(:F has highest electronegativity)

: F - H - - - - 0 hydrogen bond is strongest.

527 **(d)**

Cyanide ion is,

$$-\bar{C} \equiv N \longrightarrow -\bar{N} \equiv C.$$

528 (a)

- 21. dsp^3 or sp^3d hybridisation results in trigonal bipyramidal geometry according to VSEPR theory.
- 22. dsp^2 hybridisation has square planar geometry.
- 23. d^2sp^3 or sp^3d^2 hybridisation has

octahedral planar geometry.

529 **(d)**

Bond angles of

$$NH_3 = 107^{\circ}, H_2Se = 91.0^{\circ}, H_2O = 104.5^{\circ}, H_2S$$

= 92.2°

So, the H₂Se molecule has smallest bond angle.

530 **(a)**

The H H bond angle in H₂O is 104.5° due to the presence of two lone pairs of electrons. This fact can be best explained with the help of valence shell electron pair repulsion (VSEPR) theory.

531 **(b)**

 $NO_2^ sp^2$

 $NO_3^ sp^2$

 $NH_2^- sp^3$

 NH_4^+ sp^3

SCN- sp

533 **(b)**

 $K^+[C \equiv N]^-$; K^+ and CN^- ionic, C and N forms covalent bonds.

534 **(c)**

NaCl exist as Na⁺Cl⁻.

535 (c)

C₂H₂ has a linear structure because it has *sp*-hybridisation.

$$H - C \equiv C - H$$

536 **(d)**

Structure of C₂H₄ is

So, the compound (X) is C_2H_4 .

has 537 (a)

Ionization energy increases along the period and decreases down the group.

538 **(b)**

The atomic radius decreases along the period. Also cations are always smaller than their parent atom and anions are always larger than their parent atom.

539 (a)

In N_2 , all electrons are paired. Thus, N_2^+ has one electron unpaired.

540 (c)

Mo lec ule	Hyb ridi sati on	Repulsion	Bond angle
SO ₂ OH ₂ SH ₂	sp^2 sp^3 sp^3	<i>lp.bp, bp – bp lp – lp, bp – lp bp – bp</i> –do–	119° 104.5°
NH ₃	sp^3	lp - bp, bp - bp	90° 107°

541 (a)

 ${\rm CO_2}$ is isostructural with ${\rm N_2O}$ because both have linear structure.

$$0 = C = 0 \qquad \text{in} = N^{+} = 0 \qquad \text{in} = N = 0 \qquad \text{in} = 0 \qquad \text{in$$

542 **(c)**

Valencies of L, Q, P and R is-2,-1,+1, and +2 respectively. So, they will form P_2L , RL PQ, and RQ_2

543 **(b)**

NO \rightarrow NO⁺ (NO⁺) Total e⁻ = 14 $\sigma 1s^2$, $_{\sigma}^* 1s^2$, $\sigma 2s^2$, $_{\sigma}^* 2s^2$, $\pi 2p_x^{1+1} = \pi 2p_y^{1+1}\sigma 2x^2$

Diamagnetic

Bond order = $=\frac{10-4}{2}=3$ (NO) Total $e^-=15$ $\sigma 1s^2 {}^*_{\sigma} 1s^2 \sigma 2s^2 {}^*_{\sigma} 2s^2$, $\sigma 2p_z^2 \pi 2p_x^{1+1} \pi 2p_y^{1+1}$, ${}^*_{\pi} 2p_x^1$ $= {}^*_{\pi} 2p_y$

Paramagnetic

Bond order = $=\frac{10-5}{2} = 2.5$

Electron is taken away from non-bonding molecular orbital that's why bond order increases.

544 (a)

All are isoelectronic species; more is nuclear charge smaller is ionic size.

545 **(b)**

Bond order for $O_2=2$; $O_2^+=2.5$, $O_2^-=1.5$, $O_2^{2-}=1$ Thus bond length is $O_2^+<O_2<O_2^-<O_2^{2-}$

546 **(b)**

The structure of acetylene is

$$H \longrightarrow C \xrightarrow{1\sigma} C \longrightarrow H$$

In acetylene, both the C-atoms are *sp* hybridised. Hence in acetylene molecule, there are one sigma and two pi bonds are present between carbon atoms.

547 **(c)**

Size of isoelectronics decreases with increasing atomic number.

548 **(d)**

 $0_{2}^{-}:$

$$\sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{bmatrix} \begin{bmatrix} \pi^* 2p_y^2 \\ \pi^* 2p_z^2 \end{bmatrix}$

549 **(c)**

NO has 15 electrons (paramagnetic) whereas NO⁺ has 14 electrons (diamagnetic).

550 (c)

 $2\text{Fe} + 3[0] \rightarrow \text{Fe}_2\text{O}_3 \text{ (rust)}.$

551 **(d)**

ClO₂ has 33 electron; one will be unpaired.

552 (c)

 NO_2 and O_3 both are having irregular geometry.

554 (a)

s character \propto bond angle

555 (b

Since the two 0 atoms in O_2 are connected by a double bond (0 = 0), therefore, hybridization of 0 is sp^2

556 **(a)**

$$Cl - Be - Cl$$

In $BeCI_2$, Be is sp-hybridised, hence it has linear structure.

557 (c)

On fusion KCN, ionic bonding is disturbed; on boiling H_2S and CF_4 only kinetic energy of molecules increases.

558 (a)

Structure of $\overline{N}H_2$ is as follows

559 **(b)**

 $\mathrm{Mn^{2+}}$ is most stable as it has half-filled d-orbitals.

560 **(c)**

The structure of
$$PO_4^{3-}$$
 is
$$\begin{bmatrix} 0 \\ | \\ 0 - P - 0 \\ || \\ 0 \end{bmatrix}^{3-}$$

Here, there units negative charge is shared by four O atoms and five bond pairs are shared between four P-O bonds

∴ Formal charge =
$$\frac{3}{4}$$
 = -0.75
BO of P - O bond = $\frac{5}{4}$ = 1.25

561 **(c)**

The element is P which exists as P_4 .

562 **(b)**

Elements having six electrons in valency shell are electronegative elements, *e.*g., 0.

563 (d)

In sulphur, the excitation of *np*-electrons to *nd*-subshell gives rise to increase in number of unpaired electrons.

564 **(b)**

Spe	Elec	Electrons	Cha	Tot
cies	tro	in other	rge	al
	n in	element	gain	
	cent		ed	
	ral		47	
	ele			7
	me			7
	nt		, 7	
BO_3^{3-}	5	$3 \times 8 = 24$	+3	32
CO_3^{2-}	6	$3 \times 8 = 24$	+2	32
NO_3^-	7	$3 \times 8 = 24$	+1	32
SO ₃ ²⁻	16	$3 \times 8 = 24$	+2	42
CN-	6	7	1	14
N_2	7	7	0	14
C_2^{2-}	6	6	+2	14
PO_4^{3-}	15	$4 \times 8 = 32$	+3	50
$SO_4^{\frac{7}{2}-}$	1 6	$4 \times 8 = 32$	+2	50
ClO_4^-	17	$4 \times 8 = 32$	+1	50

Thus, (b) SO_3^{2-} , CO_3^{2-} , NO_3^{-} are not isoelectronic.

565 (c

Unpaired electrons are present in KO_2 , while others have paired electrons.

 $NO_2^+ \rightarrow 22$ electrons

 $BaO_2 \rightarrow 72$ electrons

 $AlO_2^- \rightarrow 30$ electrons

 $KO_2 \rightarrow 35$ electrons

566 (d)

$$IP_3 > IP_2 > IP_1$$

567 **(b)**

Coordinate bond is formed.

$$(C_2H_5)_2O \rightarrow BH_3$$

 $(C_2H_5)_2O$ gives one lone pair of electron to BH_3 . So, it is called electron pair donar and BH_3 is called electron pair acceptor.

568 (a)

Be F_3^- involves sp^2 -hybridization.

570 **(c)**

Maximum covalence in most of the atoms (except N, O, F) is given by the number of valency electrons. The paired *s* electrons are also get unpaired during excitation.

571 **(b)**

Noble gases are in zero group however they possess eight electrons in their valence shell.

572 (a)

Solid molecules possess stronger van der Waals' forces.

573 (a)

Inert pair effect is not noticed for elements having their outermost shell (n) if n < 4.

574 **(b)**

- (a) **Pauling** gave scale of electronegativity.
- (b) **Bronsted** gave concept of acid and base.
- (c) Mullikan determined charge on electron.
- (d) Lewis gave electronic theory of bonding.
- 575 **(b)**

Ionization potential increases along the period. Also Be has $1s^2$, $2s^2$, i.e., removal of electrons from 2s while in Boron it occurs from 2p and therefore, Be has high I.P.

576 **(b)**

	σ-	Lone	Unpaired	Total
	bond	pair	electron	
I.	3	×	×	$3 (sp^2)$
II.	2	×	×	2
III.	4	×	×	(sp)
				$ \begin{array}{c} \text{(sp)} \\ 4(sp^3) \end{array} $

577 **(b)**

Larger cation favours ionic bonding (Fajan's rule).

578 **(b)**

Only P has d-orbitals.

579 **(b)**

 H_2O is sp^3 -hybridized; BeF_2 is sp-hybridized.

580 **(b)**

Oxidising power: $F_2 > Cl_2 > Br_2 > I_2$.

581 (a)

NH₃ molecule in its valence shell has three bond pairs of electrons and one lone pair of electrons. The shape of NH₃ molecule is pyramidal due to the presence of one lone pair electron. It has sp^3 hybridisation.

582 (d)

All carbon to hydrogen bonds are σ -bonds

583 **(b)**

In C_2H_6 , C is sp^3 hybridised.

In C_2H_4 , C is sp^2 hybridised.

In BeCl₂, Be is *sp* hybridised.

In C₂H₂, C is *sp* hybridised

584 **(b)**

Energy bonds in solids are formed in accordance 594 (d) with Bohr's theory.

585 (c)

The jump in ionisation energy occurs when valence shell changes during removal of electron.

586 (c)

H atom attached on F is responsible for Hbonding..

587 (a)

Bond length increases when bond order decrease, hence the correct order of bond length is

$$CO_3^{2-} > CO_2 > CO$$

588 (a)

In PCl₃ molecule, phosphorus is sp^3 -hybridised 597 **(c)** but due to presence of lone-pair of electron. It has pyramidal structure.

589 (c)

 $Be_2 = (8 \text{ electrons})$

$$\sigma 1s^2 \sigma 1s^2 \sigma 2s^2 \sigma 2s^2$$

590 (d)

 $sp^3 d^2$ hybridisation has octahedral structure such that four hybrid orbitals are at 90° w.r.t each other and others two at 90° with first four.

591 (b)

 IE_1 of N > IE_1 of O due to half filled nature in N.

Larger anion is easily deformed (Follow Fajans' rule).

593 (c)

Due to resonance structure of C_6H_6 .

Draw bond structure and then count bonds.

 \Rightarrow 12 σ , 2d π – p π bonds.

595 (a)

In methane, ethene and ethyne, the hybridisations are respectively sp^3 , sp^2 and sp. Hence, % scharacter will be

$$sp^{3} = \frac{1}{4} \times 100 = 25\%$$
$$sp^{2} = \frac{1}{3} \times 100 = 33\%$$
$$sp = \frac{1}{2} \times 100 = 50\%$$

Both SO_4^{2-} and BF_4^- have sp^3 -hybridization and are tetrahedral.

598 (c)

If there is four σ – bonds, hybridisation is sp^3 , if three σ – bonds, hybridisation is sp^2 and if two

 σ – bonds, hybridisation is *sp*.

(a)
$$CH_2 = C = CH_2$$

 $sp^2 \quad sp \quad sp^2$

(b)
$$CH_3 - CH = CH - CH_2^+$$

 $sp^3 \quad sp^2 \quad sp^2 \quad sp^2$

(c)
$$CH_3 - C \equiv C - CH_2^+$$

 $sp^3 \quad sp \quad sp \quad sp^2$

(d)
$$CH_3 - CH = CH - CH_2^-$$

 $sp^3 \quad sp^2 \quad sp^2 \quad sp^3$

(e)
$$CH_2 = CH - CH = CH_2$$

 $sp^2 \quad sp^2 \quad sp^2 \quad sp^2$

Hence, in $CH_3 - C \equiv C - CH_2^+$, all the three types of hybrid carbons are present.

599 **(b)**

Sigma bond formation involves more overlapping and thus stronger.

600 **(b)**

Both have sp^2 -hybridization geometry.

601 **(b)**

Anions are always larger than their parent atom. Also atomic radius increases down the group, decreases along the period.

602 (c)

AsF₅has sp³ d hybridization. In $sp^3 d$ hybridization, it is d_{z^2} orbitals which takes part

603 (a)

CCl₄ and compounds has zero dipole moment due to their symmetrical structure.

604 **(b)**

Ionisation energy increases along the period.

605 (a)

In octahedral structure MX_6 , the six hybrid orbitals $(sp^3 d^2)$ are directed towards the corners of a regular octahedral with an angle of 90° . |616 (d) According to following structure of MX_6 the number of X - M - X bonds at 180° must be three.

606 (a)

It is the definition of valency.

607 **(a)**

Only Na shows +1 oxidation state. Rest all have +1, +2(Hg), +1, +2 (Cu) and +2, +3 (Fe) oxidation states.

608 (a)

The ionisation energy of elements decreases down the group.

609 **(d)**

O is more electronegative than C.

610 (c)

Bond energy increases with multiplicity of bonds.

611 (c)

Br₂is a non-polar molecule and hence, its melting point and boiling point depend only upon van der Waals' forces of attraction while all the remaining molecules have dipole moments and hence, their melting points and boiling points depend upon dipole-dipole interactions

612 (c)

H-bonding in H₂O increases forces of attracting among molecules and develops abnormal properties.

614 **(b)**

In a double bond (=) one σ and one π -bond is present while in a single bond (-) only σ -bond is

The structure of the naphthalene is as

In naphthalene five double bonds are present, hence 5π bonds are present in naphthalene.

 ICl_2^-, I_3^-, N_3^- are

linear

 ClO_2^- is angular due to sp^3 hybridisation of Cl aton

So, ClO_2^- is non-linear.

Bond order = $\frac{1}{2}$ [bonding electrons – antibonding electrons]

618 **(c)**

The difference of electronegativity is more.

619 (c)

Ortho hydroxyl benzaldehyde has maximum volatility due to intra molecular H-bonding.

620 **(b)**

Formal charge = Number of electrons in valence shell –

 $(\frac{1}{2} \times \text{numbers of electrons as bond pair} + \text{numbers of electrons as lone pair})$

For N₁ and N₃

Formal charge = $5 - \left(\frac{4}{2} + 4\right) = 5 - (6) = -1$

For $N_2 = 5 - \frac{1}{2} \times 8 - 0 = 5 - 4 = +1$

621 **(d)**

In phenol each C atom is sp^2 hybridised and O atom is sp^3 hybridised.

622 **(a)**

Due to sp^3 -hybridization on carbon atoms.

623 **(b)**

Bond angles of ClF_3 , PF_3 , NF_3 and BF_3 are (180°, 90°), (101)°, (106°) and (120°) respectively.

624 **(c)**

Operates in each gaseous molecule.

625 (d)

Resultant of two opposite vectors produces zero dipole moment.

626 **(d)**

Because of its regular tetrahedral geometry, ${\rm CCI}_4$ has least dipole moment

627 **(b)**

Coulombic forces are strongest among all.

628 (a)

 ${\rm CO_2}$ has linear structure. It has sp-hybridisation ${\rm O} = {\rm C} = {\rm O}$

629 (a)

In (A) para-nitro phenol intermolecular (between two molecules) H-bonding exists while in (B) ortho –nitrophenol, intramolecular H-bonding exists.

Because of the presence of intramolecular H-bonding, the boiling point of (B) is lower as compare to (A) and thus, (B) is more volatile i.e., has higher vapour pressure as compare to (A).

630 **(b)**

Small cation has more polarizing power.

632 **(c)**

Polar solute are more soluble in polar solvents.

633 **(b)**

Since, the electronegativity (EN) different is 3.0 - 1.2 = 1.8, which is less than 1.9, therefore, bond is

expected to be covalent

634 (a)

 SiF_4 and SF_4 are not isostructural because SiF_4 is tetrahedral due to sp^3 hybridisation of Si while SF_4 is not tetrahedral but it is distorted tetrahedral because in it S is sp^3d hybridised and has a lone pair of electron.

635 **(c)**

SiF₄ has regular tetrahedral geometry.

636 **(d**)

Cl possesses 10 electrons in ClF₃.

637 **(a)**

Molec	bp	Hybridisa	Shape
ule	+ lp	tion	
H_2O	2 +2	sp^3	Angular
			Trigonal
BCl_3	3 + 0	sp^2	Planar
NH_4^+	4 + 0	sp^3	Tetrahedral
CH ₄	4 + 0	sp^3	Tetrahedral

638 (c)

Electronegativity and ionisation energy decreases from F to I.

639 **(d)**

 $CH \equiv CH$; 3 for triple bonds and two for C-H bond.

640 **(b)**

The electronic configuration of O_2^{2-} ion is O_2^{2-}

 $-\sigma 1s^2$, $^*_{\sigma}1s^2$ $\sigma 2s^2$, $^*_{\sigma}2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2$, $\pi 2p_y^2$, $^*_{\pi}2p_x^2$, Hence, number of antibonding electron pair in 0_2^{2-} molecular ion are four.

641 **(c)**

Due to the presence of d-subshell electrons.

642 **(b)**

Due to sp^2 -hybridization.

643 (a)

M.O. configuration of O_2 :

$$\sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma * 2s^2$, $\sigma 2p_x^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{bmatrix} \begin{bmatrix} \pi^* 2p_y^2 \\ \pi^* 2p_z^2 \end{bmatrix}$

Molecular orbitals $\pi^* 2p_z$ gains electron when O_2^- is formed from O_2

644 **(a)**

H-bonding is weakest bonding.

646 **(b)**

Out of sp^3 , sp, sp^2 hybridised carbon, sp hybridised carbon is more electronegative.

647 **(c**)

Both NH_3 and H_2O have sp^3 -hybridization. CO_2 and $BeCl_2$ are linear (sp-hybridization).

648 **(d)**

Unpaired electrons give rise to paramagnetism.

649 (a)

HF has largest dipole moment because electronegativity difference of both is high so, it is highly polar

650 **(b)**

Due to H-bonding which is more in water than alcohol and not in ether.

652 (c)

 $1s^2$, $2s^22p^4$ leads a sharing of two electron pairs to form molecule, e. g., O_2 .

654 **(b)**

Count σ and π bonds.

655 (c)

Bond order
$$C_2^- > NO > O_2^- > He_2^+$$

3 5/2 3/2 1/2

656 **(b)**

Larger is bond order, lesser is bond length.

657 (c)

Strongest H-bonds are formed in between HCOOH and CH₃COOH. This is because H-bonding increases with electronegativity and decreases with size of atom

658 (d)

 BCl_3 has sp^2 -hybridization. Rest all have sp^3 hybridization having one lone pair of electron and thus, pyramidal in nature.

659 **(d)**

The overlapping orbitals must possess half-filled nature with anti-spin electron.

661 **(c)**

HNO₃ is HO
$$-$$
N $=$ O, assume one covalence \downarrow

for each coordinate bond

662 (a)

B.p. of H_2 is minimum.

663 (a)

 H_2O has sp^3 -hybridisation and is angular in $|_{669}$ (d)

664 **(b)**

Electron gain enthalpy of Cl is maximum.

The structure of trimethyl amine is pyramidal.

666 **(b)**

<u>` '</u>	
Molecules	Interaction
Benzene and	Dispersion force
ethanol	Dipole-dipole
Acetonitrile and	Ion-dipole
acetone	Dispersion
KCl and water	(London) force
Benzene and	
carbon	
tetrachloride	

667 **(b)**

Dry ice is CO₂ having C—O covalent bonds.

668 (d)

In p-dichlorobenzene, two C — Cl dipole cancel each other

$$\therefore \mu = 0$$

In, o-dichlorobenzene, two C — Cl dipoles (say x) are inclined at an angle of 60°. Therefore, according to parallelogram law of forces, the resultant

$$= \sqrt{x^2 + x^2 + 2x \times \cos 60^{\circ}}$$

$$= \sqrt{x^2 + x^2 + 2x^2 \times 1/2}$$

$$= \sqrt{3x^2} = \sqrt{3x}$$

In *m*-dichlorobenzene, the two dipoles are inclined to each other at an angle of 120°, therefore, resultant

$$= \sqrt{x^2 + x^2 + 2x \times \cos 120^{\circ}}$$

$$= x^2 + x^2 + 2x^2 \times (-1/2)$$

$$= \sqrt{x^2} = x$$

Thus ,the decreasing order of dipole moments: o > m > p

One carbon has three bonds and other five where as each should have four bonds.

670 **(c)**

Cations are smaller in size than their parent atoms.

671 **(b)**

$$0_{2}(8+8=16)$$

$$= \sigma 1s^{2}, \sigma^{*}1s^{2}, \sigma 2s^{2}, \sigma^{*}2s^{2}, \sigma 2p_{z}^{2}, \pi 2p_{x}^{2}$$

$$\approx \pi 2p_{y}^{2}, \pi^{*}2p_{x}^{1} \approx \pi^{*}2p_{y}^{1}$$
Bond order = $\frac{10-6}{2}$ = 2
$$0_{2}^{+}(8+8-1=15)$$

Bond order=
$$\frac{10-5}{2}$$
 = 2.5

$$0_2^-(8+8+1=17)$$
,

Bond order =
$$\frac{10-7}{2}$$
 = 1.5

$$0_2^{2-}(8+8+2=18)$$
,

Bond order =
$$\frac{10-8}{2}$$
 = 1

Thus, bond order is maximum for O_2^+

672 (d)

P atom has sp^3 -hybridization with one position occupied by lone pair of electron.

673 **(b)**

A characteristic of resonance.

674 **(b)**

Covalent compounds have lower m.p. and b.p. than ionic one.

676 (d)

It is a reason for given fact.

677 **(b)**

 ClO_3^- has sp^3 -hybridization with one lone pair of electron.

678 (d)

Greater the stability of oxide, greater is the case of its formation. Generally ionic oxides are more stable than covalent oxides and among the given metals only Ca form ionic oxide. Hence, Ca has greater tendency to form oxide.

679 (c)

Higher the charge/size ratio, more is the polarising power.

$$K^+ < Ca^{2+} < Mg^{2+} < Be^{2+}$$

680 (d)

He has $1s^2$ configuration.

681 (a)

Water molecules has following structure

Therefore, there are 4 pairs of electrons (2 lone pairs and 2-bond pairs) in the valence shell of 0atom in water molecule.

682 **(a)**

Total electrons in valence shell of nitrogen and hydrogen.

$$H \times_{\bullet} N_{\bullet} \times H$$

∴ Total electrons in NH₃=5+1+1+1=8

683 (d)

The electronic configuration of carbon is $1s^2, 2s^22p^2$.

684 (c)

Number of hybrid orbitals = no. of bp + no. of lp

Thus, hybridization is sp^3d^2 but geometry, due to the presence of one pair, is square pyramidal, ie

685 (c)

(i)N₂ (14 electrons)

$$=KK^*, \sigma 2s^2, \sigma 2s^2, \pi 2p_x^2 \approx \pi 2p_y^2, \sigma 2p_z^2$$

Bond Order = $\frac{1}{2}(N_b - N_a)$

$$=\frac{1}{2}(8-2)=3$$

 $(ii)N_2^+$ (13 electrons)

$$= KK^*, \sigma 2s^2, \sigma^2 2s^2, \pi 2p_x^2 \approx \pi 2p_y^2, \sigma 2p_z^2$$
Bond Order = $\frac{1}{2}(7-2) = 2.5$

Bond Order =
$$\frac{1}{2}(7-2) = 2.5$$

Since, bond dissociation energy ∝ bond order. Hence, bond dissociation energy of N2 is greater than that of the bond dissociation energy of N_2^+ .

686 **(c)**

Bond angles in BeCl₂, NH₃, H₂O and SnCl₂ are 180° , 107° , 104.5° and 119° respectively. Also H_2S , H_2O , H_2Se has sp^3 -hybridization and bond angles of hydrides decreases down the group.

687 **(d)**

LiquidHCl does not from H-bonds

688 (a)

O₂ has two unpaired electrons but are paired in 0^{2}_{2} .

689 **(b)**

In ethanol the oxygen of -OH group is bonded to the sp^3 hybridised carbon by a sigma bond. The C - O - H bond angle in ethanol is less than the tetrahedral angle (109°, 28") due to larger repulsions between the lone pair of repulsions between the lone pairs of oxygen. Hence, it is 104° in ethanol.

690 (c)

Acetonitrile does not contain sp^2 hybridised carbon.

691 **(b)**

The atomic radii decreases along the period and increases down the gp.

692 **(b)**

 SiO_2 possesses giant molecular structure due to tetra valence and catenation nature of Si.

693 (d)

According to VSEPR theory the bond angle decreases with increase in the size of the valence shell of the central atom because electronegativity decreases. *i. e.*, decreasing order of bond angles is

$$NH_3 > PH_3 > AsH_3 > SbH_3$$

694 **(b)**

Half-filled orbitals are more stable.

695 (a)

In BrF₅ number of electrons = 6 (1 lp + 5 bp)

So, the structure is supposed to be square pyramidal but will be distorted because of additional *lp-bp* interaction.

Additional *lp-bp* interaction reduced the all bond angle and do not let any angle to be 90°.

696 **(b)**

Ionisation energy decreases down the group and increases along the period.

697 (a)

Smaller is size of anion, lesser is its polarization, more is ionic nature, more is lattice energy.

698 (c)

Among the given species, the bond dissociation energy of C-0 bond is minimum in case of CO_3^{2-} by which C-0bond become more weaker in CO_3^{2-} or the bond order of $CO_3^{2-}(1.33)$ is minimum so, the bond become weaker

699 (a)

Peroxide ion in
$$O_2^{2-}$$

 $O_2^{2-}(18) = \sigma 1s^2$, $_{\sigma}^*1s^2$, $_{\sigma}2s^2$, $_{\sigma}^*2s^2$, $\sigma 2p_z^2$
 $\pi 2p_x^2 = \pi 2p_y^2$, $_{\pi}^*2p_x^2 = _{\pi}^*2p_y^2$
Bond order $= \frac{N_b - N_a}{2} = \frac{10 - 8}{2} = 1$

It contains four completely filled antibonding molecular orbitals. Since, all the electrons are paired, O_2^{2-} is diamagnetic.

Peroxide ion is isoelectronic with argon, not with neon.

$$BF_3: sp^2 NO_2^-: sp^2 NH_3: sp^3 NH_2^-: sp^3 H_2O: sp^3$$

702 **(b)**

Multiplicity in bonds decreases bond length.

 0_2^{2-} (Total number of electrons =18) $\sigma 1s^2$, $_{\sigma}^*1s^2$, $\sigma 2s^2$, $_{\sigma}^*2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2 = \pi 2p_y^2 {}_{\pi}^*2p_x^2$ $= {}_{\pi}^*2p_y^2$

704 (d)

 ${\rm IF}_7$

 sp^3d^3 hybridisation in excited state

Inclined at 72°

with one each other seven sp^3d^3 hybrid orbitals

at 90° with *ABCDE* plane

forming σ - bonds with F-atoms,

705 **(b)**

In C_2 , only 2π bonds are present

706 **(b)**

NH₄ has angle of 109°28′.

707 **(b)**

$$\frac{1}{2}\text{Cl}_{2}(g) \to \text{Cl}^{-}(aq)$$

$$\Delta H = \frac{1}{2}\Delta H_{\text{diss}}(\text{Cl}_{2}) + \Delta H_{\text{EA}} \text{Cl} + \Delta H_{\text{hyd}}(\text{Cl}^{-})$$

$$= \frac{240}{2} - 349 - 381$$

$$= -610 \text{ kJ mol}^{-1}$$

708 **(b)**

The position at which substituent is present, is called ipso-position.

Chlorobenzene

The hybridisation of ipso-carbon in chlorobenzene is sp^2 .

709 (c)

Electronegativity difference between N (3,0) and Cl(3.0) is zero and hence, N – Cl bonds are nonpolar. As a result, the overall dipole moment of NCl₃ molecule and its direction is just the dipole moment of the lone pair of electrons

On the other hand, N - Br, (3.0 - 2.8), N - I(3.0 -2.5) and N – H (3.0 - 2.1) are polar and hence, contribute towards the overall dipole moment of the respective moleculas. Since, the EN difference is higher in case of N – H bonds, therefore, NH₃ has the higher dipole moment

710 (c)

CHCl₃ molecule has largest dipole moment among the given species.

711 (d)

In O_2 , there are two electrons in antibonding orbitals. Removal of one electron from the O_2 molecular gives O_2^+ in which the number of antibonding electrons is one less and hence, BO increases. Thus, removal of the electron from O₂stabilized the molecule

712 (a)

 Mg^{2+} is a smaller cation in these. Smaller is cation | 722 (a) more is hydration energy.

713 **(b)**

Hydrogen bonding ∝ electronegativity

714 (c)

Larger is anion, more is its polarization.

715 (c)

NaF is more ionic; F is smallest anion among all and thus, least polarized.

716 (a)

$$H \xrightarrow{\sigma} C \xrightarrow{\sigma} H$$
 and 2π

Hence, In acetylene, there are 3 σ and 2 π bond.

717 (d)

+4 ionic state is not possible for head with iodide because I⁻ reduces Pb⁴⁺ to Pb²⁺.

718 **(a)**

The C-C bond length in sp^3 hybridisation is greater than sp^2 hybridisation due to large size of p-orbitals.

In diamond sp^3 hybridisation is present while in graphite, naphthalene and fullerene hybridisation is present therefore the C-C bond length is maximum in diamond.

720 (d)

SiO₂ structure is definite.

721 (a)

L	(a)			
	Mo lec ule	Structure	Hybr idisa tion of centr al atom	Lone pair
	SF ₄	F F F	sp^3d	One
	CF ₄	F F - C - F F	sp^3	Zero
	XeF	F Xe F	sp^3d^2	Two

We know that the shape of IF₇ (molecule) is

pentagonal bipyramidal because central atom I have sp^3d^3 hybridisation.

723 (a)

C - C bond length = 1.54 Å

C = C bond length = 1.34 Å

 $C \equiv C \text{ bond length} = 1.20^{\circ} \text{ Å}$

Thus, correct decreasing order C to C bond lengths is

724 **(b)**

Due to larger difference in electronegativity.

725 (d)

Both O and S belong to same group but H₂O is a liquid while H₂S is a gas. This can be explained on the basis of electronegativity. In water due to the high electronegativity of oxygen hydrogen bonds are formed. As a result the molecules of H2O get associate together, hence water exists as a liquid at room temperature. On the other hand, the |730 **(b)** electronegativity of S is less and therefore, hydrogen bonding in H₂S is almost negligible. As a result of which molecules of H_2S are not 731 (c) associated and H2S exsists as a gas at room temperature.

$$S = C = S$$
.

727 (d)

The bond angles in sp^3 , sp^2 and sp-hybridization are 109°, 120° and 180° respectively.

728 (d)

In ClO_3^- , Cl is central atom, it is sp^3 hybrid and on 732 (c) lone electrons it one pair (free pair of electrons) is present.

Pyramidal shape

In XeF_4 , Xe is central atom it is sp^3d^2 hybrid and on it two lone pair of electrons are present.

Square planar

In SF₄, S is central atom and sp^3d -hybridised and

it lone electrons on one pair of is present.

Irregular tetrahedral

In I_3^- , I is central atom and it is sp^3d hybridised and on it three lone pair of electrons are present.

Linear shape

Seven atoms of fluorine are covalently bonded with iodine.

Intermolecular hydrogen bonding is found in $(HF)_n$ due to higher electronegativity of fluorine atoms.

Hydrogen bonding

Hydrogen bonding is helpfull in the association of HF molecule, so HF is found in liquid form.

A species is said to be diamagnetic if it has all electrons paired

Sp eci es	El ect ro ns	MO electronic configurati on	Magnetic behaviour
H_2^-	3	$\sigma 1s^2 *_{\sigma} 1s^1$	Paramagnetic
H_2^+	1	$\sigma 1s^1$	Paramagnetic
H_2	2	$\sigma 1s^2$	Diamagnetic
He ₂ ⁺	3	$\sigma 1s^{2} *_{\sigma} 1s^{1}$	Paramagnetic

733 **(b)**

This give rise to polarity in bonds.

734 (c)

First electron affinity is energy releasing process.

735 **(b)**

 $Li^-: 1s^2, 2s^2; Be^-: 1s^2, 2s^2, 2p^1$; in Li, addition of electron has taken place in 2s orbital; in Be⁻, addition of electron has taken place in 2p orbital loosing its 2s completely filled configuration. EA_1 for Be is more positive than EA_1 for Li. Thus Be⁻ is least stable.

Bond energy for C—C, N—N, H—H and O—O are: H-H > C-C > N-N > 0-0.

737 **(b)**

The number of lone pair in $XeOF_4$ is one (1). The structure of XeOF₄ is given as follows

738 (c)

BCl₃ has six electrons in outer shell of boron atom.

739 **(b)**

 H_2S contain only covalent bonds, as the 746 (a) electronegativity difference between H and S is only (2.6 - 2.1 = 0.5).

740 (c)

 CCl_4 has sp^3 -hybridization giving regular tetrahedron geometry. In others the geometry is little distorted inspite of sp^3 -hybridization due to different atoms on the vertices of tetrahedron.

741 **(b)**

P undergoes sp^3d hybridisation in PCl_5 and it has trigonal bipyramidal structure

Trigonal bipyramidal shape of PCl₅

$$PCl_{5} = [Ne] (sp^{3}d)^{1} (sp^{3}d)^{1} (sp^{3}d)^{1} (sp^{3}d)^{1} (sp^{3}d)^{1}$$

$$\begin{bmatrix} \sigma & | \sigma & | \sigma & | \sigma & | \sigma \\ & | \sigma & | \sigma & | \sigma & | \sigma \end{bmatrix}$$

742 (a)

Electronegativity difference in two atoms involved in bonding is a measure of polarity in molecule.

743 (c)

 \equiv C— has 2σ -and 2π - (thus, sp-hybridization); -CH= has 3σ - and 1π - (thus, sp^2 -hybridization). Remember hybridized orbitals do not form π bonds.

744 **(b)**

F has 7 electrons in its valence shell. Thus, to attain stability, it should have lost one electron.

745 (a)

In O_2^{2-} , 8 electrons are present in antibonding orbitals

$$\sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p_x^2 \begin{bmatrix} \pi^2 p_y^2 \\ \pi^2 p_z^2 \end{bmatrix}$, $\begin{bmatrix} \pi^* p_y^2 \\ \pi^* 2p_z^2 \end{bmatrix}$

 CH_3^+ possesses sp^2 -hybridization.

747 (a)

No doubt NH₃ and BF₃ have sp^3 (pyramidal) and sp^2 (coplanar) hybridization respectively having one lone pair of electron on N atom which is responsible for pyramidal shape of NH₃ inspite of sp^3 hybridization. However, as soon as it is coordinated to BF₃, both attain tetrahedral geometry and acquire sp^3 -hybridization.

748 **(b)**

Nitrogen molecule has highest bond energy due to presence of triple bond

749 **(b)**

P₄O₆ has following structure.

Thus, every P-atom is linked to 3 oxygen atoms.

Bond energy ∝ Bond order

751 (a)

In XeF₆, the oxidation state of Xe is +6. The shape of XeF₆ should be pentagonal bipyramid due to sp^3d^3 hybridisation but due to the presence of one lone pair at one *trans* position its shape becomes distorted octahedral.

752 (a)

CN⁻ and NO⁺ both have same number of electrons and same bond order (3).

753 **(b)**

Bond length $\propto \frac{1}{\text{bond order}}$

754 (c)

 sp^3 -hybridization leads to tetrahedral geometry.

756 **(b)**

Alkali metals are most electropositive elements.

757 **(b)**

Anions are always larger than parent atom; cations are always lesser than parent atom.

758 (c)

Total number = $4 \rightarrow sp^3$ hybridisation

Total number = $5 \rightarrow sp^3 d$ hybridisation

Total number = $6 \rightarrow sp^3 d^2$ hybridisation

759 (a)

Van der Waals' forces increases in CH₄ to give solid CH₄.

760 **(b)**

As the number of lone pairs of electrons increases, bond angle decreases. Thus, the order of bond angle is

 $NH_4^+ > NH_3 > NH_2^-$ (no lp) (1 lp) (2lp)

761 **(b)**

 $\mathrm{BeCl_2}-sp$, $\mathrm{BF_3}-sp^2$; $\mathrm{NH_3}-sp^3$; $\mathrm{XeF_2}-sp^3d$ 762 **(a)**

Cl-P-Cl bond angles in PCl_5 molecule are 120° and 90° . PCl_5 , having sp^3d hybridised P atom (trigonal bipyramidal geometry) has two types of bonds; axial and equatorial. The two types of bond have different bond lengths 1, 2, 3 and 4 equatorial bonds and 4, 5 axial bonds.

763 **(b)**

Both BF₄ and NH₄ have sp^3 -hybridisation and therefore possess tetrahedral geometry.

764 **(a)**

Each possesses 18 electrons.

766 **(d)** $He_{2}^{+}(B. 0. = 0.5) < O_{2}^{-}(B. 0. = 1.5)$ $< NO(B. 0. = 2.5) < C_{2}^{2-}(B. 0. = 3.0)$

768 **(d)**

In SO_3 molecules, S-atom remains sp^2 hybrid, hence, it has trigonal planar structure

 $BCl_3 = 3\sigma \text{ bonds} + 0lp \text{ of } e^- = 3 \Longrightarrow$ sp²hybridisation

 $NCl_3 = 3\sigma \text{ bonds} + 1lp \text{ of } e^- = 4 \Longrightarrow$

771 **(b)**

N is sp^2 -hybridized in NO $_3$.

772 **(d)**

The ionic radius increases down the group.

773 **(b)**

The formula of MX_3 shows the presence of 3σ bonds. Since, it has T-shape geometry, it must contain 2 lone pairs as

774 (a)

Except NO⁻ (16 electrons), rest all have 14 electrons.

776 **(c)**

Ethyl alcohol forms stronger H-bonds than ethylamine or ammonia due to greater 784 (b) electronegativity of oxygen than nitrogen atom. Diethyl ether, however, does not form H-bonds since, it does not have a H-atom attached to Oatom.

778 **(c)**

Carbon in CO_2 has sp-hybridization.

In both CH_4 and CCl_4 , sp^3 hybridisation is present and both have tetrahedral geometry.

781 (a)

As the s-character increases in hybrid orbitals, bond energy increases, size of the hybridized orbital decreases. s-characters in sp, sp^2 and sp^3 are 1/2, 1/3, 1/4 respectively.

782 **(b)**

NH₄Cl contains ionic, covalent and coordinate linkage.

sp³hybridisation

783 (a)

 P_4O_{10} is

The Born-Haber cycle takes place as follows

Hence, Z is $M^+ X^- (s)$

785 (a)

S atom is larger in size than 0 and F.

$$N_2(7 + 7 = 14) = \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \pi 2p_x^2$$

$$\approx \pi 2p_y^2, \sigma 2p_z^2$$
Bond order = $\frac{10-4}{2}$ = 3

$$N_2^+(7+7-1=13)$$

$$= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \pi 2p_x^2$$

 $=\pi 2p_{\nu}^{2}, \sigma 2p_{\pi}^{1}$ (paramagnetic)

Bond order =
$$\frac{9-4}{2}$$
 = 2.5

Since, N_2^+ has less bond, then N — Nbond gets weak

$$0_2(8+8=16)$$

$$=\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \pi 2p_x^2$$

$$\approx \pi 2 p_y^2, \pi^* 2 p_x^1 \approx \pi^* 2 p_y^1$$

Bond order =
$$\frac{10-6}{2}$$
 = 2

$$0_2^+(8+8-1=15)$$

$$= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \pi 2p_x^2$$

$$\approx \pi 2 p_y^2, \pi^* 2 p_x^1$$

Bond order =
$$\frac{10-5}{2}$$
 = 2.5

Thus, in the formation of O_2^+ from

 O_2 , paramagnetism decreases but the bond order increases

787 (a)

In an antibonding molecular orbital, most of the electron density is located away from the space between the nuclei, as a result of which there is a nodal plane (*i.e.*, a plane at which the electron density is zero) between the nuclei.

788 (d)

	Speci	Hybridisa	Lone	Bondin
	es	tion of Xe	pair on	g pairs
			Xe	
(a)	XeO_3	$ \begin{array}{c} sp^3 \\ sp^3d^2 \\ sp^3d^3 \\ sp^3d \end{array} $	1	3
(b)	XeF ₄	sp^3d^2	2	4
(c)	XeF ₆	sp^3d^3	1	6
(d)	XeF ₂	sp^3d	3	2
			(Max.)	

789 **(b)**

Boiling point of HF is highest due to H-bonding. For other halogen acids boiling point increase in the order HCl < HBR < HI. Therefore, most volatile (with Lower b.pt.) is HCl.

790 **(b)**

The MO electronic configuration of

$$0_{2}^{-}(8+8+1=17)$$

$$= \sigma 1s^2, {}_{\sigma}^{*}1s^2, \sigma 2s^2, {}_{\sigma}^{*}2s^2, \sigma 2p_z^2, \pi 2p_x^2$$

$$\approx \pi 2p_{y,\pi}^2 2p_{x,\pi}^2 \approx {}_{\pi}^* 2p_y^1$$
Bond order = $\frac{N_{b-N_a}}{2}$

$$=\frac{10-7}{2}=1.5$$

791 (d)

Multiplicity in bonds decreases bond lengths.

792 (a)

Both NH_4^+ and BF_4^- have sp^3 -hybridization.

793 (a)

 ${
m NH_3}$ molecule has three fold axis of symmetry because it has sp^3 hybridisation but due to presence of one lone pair of electron it has pyramidal structure.

794 **(b)**

Basic character of hydrides decreases down the gp.

795 **(b)**

NO is paramagnetic in nature

796 **(d)**

Cation radius increases down the group.

797 (a)

According to Born-lande equation

$$U = \frac{Z^+ Z^- e^2 \operatorname{An}}{r_{\text{node}}} \left(\frac{1}{n} - 1\right)$$

Where , U is lattice energy

 $r_{
m node}$ is interionic distance

$$U \propto \frac{1}{\text{interionic disance}}$$

 \therefore Ions should be of small size to have high lattice energy.

798 **(d)**

Dipole moment of CH₃OH is maximum in these.

799 **(b)**

Intermolecular H-bonding gives rise to an increase in b.p.

800 **(b)**

H₃BO₃ has structure

Boron has three bonds thus sp^2 hybrdised. Each oxygen has two bonds and two

801 (d)

Species having same hybridisation show similar geometry.

 SO_4^{2-} :Hybridisation of $S \rightarrow sp^3$

 ClO_4^- :Hybridisation of $Cl \rightarrow sp^3$

802 (c)

Anions are larger in size than their parent atom.

803 **(c)**

Na⁺ and Cl⁻ are formed.

804 **(b)**

: $-CH_3$ has sp^3 hybridisation.

805 (c)

Glycerol and ethanol both have intermolecular 816 (a) hydrogen bonding but glycerol (CH₂OH. CHOH. CH₂OH) hydrogen bonds per molecule is more than ethanol (C2H5OH). It increases attraction between the molecules and hence, glycerol is more viscous than ethanol.

806 (a)

Larger anion is more polarised.

807 (a)

In $_{\pi 2P_x}^*$ orbital, two nodal planes are present.

808 (d)

Hydrogen bond is formed between molecules of compounds having O, F and N with H.

hydrogen fluoride hydrogen sulphide

: H₂S does not have O, F or N.

∴ It does not form hydrogen bond.

810 (a)

NaF has maximum melting point, melting point decreases with increases in size of halide ion and their bond energy get lower

s-orbitals never go for lateral overlapping because of non-directional nature.

The metallic character is found in iodine as well as 821 (c) in astatine (At). Note that metallic character increases down the group.

813 **(b)**

Ionization energy increases along the period and decreases down the group. Also (b) has [Ne] $3s^2$, $3p^3$, *i. e.*, half filled configuration, being more stable and thus, have high ionization energy.

814 (a)

The correct option is O_2^{2-} . This species has 18

electrons, which are filled in such a way that all molecular orbitals are fully filled, so diamagnetic. $\sigma 1s^2 {*\atop \sigma} 1s^2$, $\sigma 2s^2 {*\atop \sigma} 2s^2 \sigma 2p_z^2$, $\pi 2p_x^2 = \pi 2p_y^2$, ${*\atop \pi} 2p_x^2 =$

815 (a)

Water is an universal solvent.

According to Fajan's rule, as the charge on cation increase its size decreases. As a result its tendency to polarise anion increases. This brings covalent character more and more electrovalent compounds.

: Among AlCl₃, LaCl₃, MgCl₂ and CsCl size of Al³⁺ is smallest.

∴ Al³⁺ polarises anion to highest extent.

: AlCl₃ has maximum covalent character.

817 (a)

C₆H₆ has regular hexagonal geometry.

SF₆ has six S–F bonds.

819 (a)

Resonating structure can be written only for such molecules in which multiple bonds are presents,

820 **(d)**

According to Born-Haber cycle the enthalpy of formation (ΔH_f) of an ionic compound may be given as

$$\Delta H_f = S + \frac{1}{2}D + I + E + U$$

Where, I = ionisation energy

S = sublimation energy

E = electron affinity

D = dissociation energy

U = lattice energy of compound

Born-Haber cycle is used to determine the lattice energy of the compound. It also may be used to calculate electron affinity of an element.

Element C has electronic structure $1s^2$, $2s^2$, $2p^5$, it requires only one electron to complete its octet and it will form anion so it will form electrovalent bond

822 (a)

H atom has 1s¹ configuration. Shielding effect is property of penultimate shell electrons.

823 **(b)**

 NO_2^+ : The species is linear with *sp*-hybridisation.

$$O = \stackrel{+}{\underset{Sp}{N}} = O$$

 NO_3^- : The species is trigonal planar with sp^2 -hybridisation.

 $\mathrm{NH_4^+}$: The species is tetrahedral with sp^3 -hybridisation.

824 (d)

Both C and N⁺ have six electrons.

825 (a)

According to Fajans' rule, polarization of anion is influenced by charge of cation, size of cation. More is the charge on cation, more is polarization of anion.

826 **(b)**

Smaller cation causes more polarization of anion.

827 (a)

Bond order = $\frac{1}{2}$ [no. of bonding electrons-no. of antibonding electron]

828 **(c)**

Pauling work on chemical bonding.

829 (a)

All have linear structure O = C = O, Cl - Hg - Cl, $H - C \equiv C - H$

830 **(d)**

A characteristic of metallic bonding.

831 (a)

Due to larger differences in electronegativity.

833 **(b**)

 ${\rm SF_4}$ has sp^3d –hybridization. Rest all have sp^3 -hybridization.

834 **(a)**

NO has 15 electrons.

835 (d)

Ti⁺ has 21 electrons in it. Rest all have 10 electrons.

836 (a)

 0_{2}^{-} has one unpaired electron.

837 (a)

Structure of ammonia is pyramidal (Distorted from tetrahedral to pyramidal due to repulsion between lone pair and bond pair of electrons).

838 **(b)**

 Cl_2 involves 3p - 3p overlapping.

839 **(b)**

Only Sulphur has *d*-orbitals.

840 (c)

 ClO_4^- has sp^3 -hybridization on Cl atom.

841 (d)

Due to dipole moment intermolecular forces of attraction becomes stronger and thus, liquefaction becomes easier.

842 **(d)**

sp³ *d*-hybridisation leads to trigonal bipyramidal geometry if no lone pair is present, *e.g.*, PCl₅; in ClF₃ geometry is T-shaped due to the presence of two lone pair of electron. In XeF₂, geometry is linear due to the presence of three lone pair of electrons.

843 **(a)**

Due to the presence of lone pair on N atom.

844 (a)

 B_2 : Total electrons = 10

Configuration : $\sigma 1s^2 {}_{\sigma}^* 1s^2 \sigma 2s^2 {}_{\sigma}^* 2s^2 \pi 2p_x^1 = \pi 2p_y^1$

If Hund's rule is violated, then

$$\sigma 1s^2 {*\atop\sigma} 1s^2 \sigma 2s^2 {*\atop\sigma} 2s^2 \pi 2p_x^2 = \pi 2p_y^0$$

So, diamagnetic

Bond order = $\frac{6-4}{2}$ = 1

845 (a)

Bonding molecular orbitals possess lower energy levels than antibonding orbitals.

846 (a)

Be²⁺ is smallest and Na⁺ has largest radius.

847 **(b)**

Hydrogen bond is strongest in HF due to higher electronegativity of F.

848 **(d)**

The structure of $\rm H_2O$ is angular V-shape and has sp^3 - hybridisation and bond angle is 105°. Its dipole moment value is positive or more than zero.

But in BeF $_2$, structure is linear due to $\it sp$ -hybridisation ($\mu=0$). Thus, due to $\mu>0$, H $_2O$ is dipolar and due to $\mu=0$, BeF $_2$ is non-polar.

These are factors on which effective nuclear charge depends.

850 **(a)**

$$5(\text{on P}) + 4(\text{on H}) - 1 = 8.$$

851 **(b)**

Phosphoric acid has 3 – OH groups, which are involved in hydrogen bonding.

The type of hydrogen bonding, found , is intermolecular. Due to this, it is syrupy.

852 **(c)**

The bond angles are H_2S NH_3 SiH_4 BF_3

120°

853 **(b)**

The metals have low ionization energy. In a piece of metal many free electrons are found which move form one atom to other. The presence of mobile electrons or oscillation of loose electrons are responsible for metallic lusture.

854 (c)

Same spin electrons in two atoms do not take part in bonding.

855 **(b)**

Molecule	Hybridisation
SO_3	sp^2
C_2H_2	sp
C_2H_4	sp^2
CH ₄	$\begin{array}{c} sp^2 \\ sp^3 \end{array}$
CO_2	sp

Hence, the hybrid state of S in SO_3 is similar to that of C in C_2H_4 .

856 (d)

 IO_3^- , XeO_3 , $(sp^3 \text{ hybridisation})$ pyramidal

 PF_6^- , SF_6 (sp^3d^2) octahedral

 $\mathrm{BH_4^-}$, $\mathrm{NH_4^+}$, $\mathrm{SiF_4}$ (sp^3) tetrahedral

 $CO_3^{2-}(sp^2)$ trigonal planar

 $NO_3^-(sp^2)$ trigonal planar

 $SF_4(sp^3d)$ see – saw

Hence, SiF_4 and SF_4 are not isostructural (same structure).

857 (b)

 PCl_3 has sp^3 -hybridisation and possesses one lone pair on P-atom and three bond pair of electron

$$(sp^3)^2$$
 $(sp^3)^1$ $(sp^3)^1$ $(sp^3)^1$
 \vdots \vdots \vdots $3p$ of $3p$ of $3p$ of Cl Cl

859 **(c)**

N atom in NH_3 provides electron pair to H^+ to form coordinate or dative bond $(H_3N \rightarrow H)$.

861 (d)

Due to H-bonding, $V_{\text{ice}} > V_{\text{water}}$.

862 **(b)**

The covalent compounds have low melting point due to weaker forces of attraction among them as compared to strong forces of attraction in ionic compounds.

 \because HCl is covalent compound among CsF, HCl HF and Li

(CsF, HF and LiF are ionic compounds)

: HCl has minimum boiling point.

863 **(b)**

- (i) Hybridisation $=\frac{1}{2}$ (no. of e^- in valence shell of central atom + no. of monovalent atoms + charge on anion charge on cation)
- (ii) Shape or geometry of molecule depends on lone pair and bond pair of electrons present in it.

Hybridisation of

N in NH₃ =
$$\frac{1}{2}$$
 (5 + 3 + 0 - 0) = 4

- \therefore sp^3 hybridisation.
- : It has 3 bond pair and 1 lone pair of electrons, so it has distorted tetrahedron shape.

864 (d)

- 24. The bond angle decreases with decrease in electronegativity. It results in decrease in repulsion between bond pair-bond pair electrons and bond angle becomes smaller.
- 25. Between NH³ and H₂O, H₂O has smaller bond angle due to presence of two lone pair of electrons causing more repulsion among electrons as compared of NH³ which has only one lone pair of electron.

Hydrides

 NH^3 H₂S H₂Se H₂Te Bond angles

107° 105° 900

H₂ Te has smallest bond angle.

865 (a)

In ionic solids, ions exist at lattice points. In covalent solids atoms lie at lattice points.

866 (c)

In structure (c), all the atoms have complete octet. Thus, it is the correct representation of carbon suboxide

867 **(b)**

Smaller is atom, more is energy needed to remove electron, i.e., ionisation energy. Also removal of two electrons needs more energy.

868 (d)

Born-Haber cycle inter-relates the various energy terms involved in ionic bonding.

869 (a)

 $BF_3(sp^2)$, $NO_2^-(sp^2)$, $NH_2^-(sp^3)$ and $H_2O(sp^3)$.

870 (c)

 sp^3 hybridisation Tetrahedron

molecule

Square planar 881 (d) dsp² hybridisation

molecule

 sp^3d hybridisation

bipyramidal molecule

 sp^3d^2 or d^2sp^3

molecule

hybridisation

871 **(b)**

Total number of unshared electrons = $4 \times 4 = 16$

872 (d)

Ionisation energy order is B < C < 0 < N.

873 **(d)**

Given,

observed dipole moment = 1.03 D

Bond length of HCl molecule, d = 1.275 Å

$$= 1.275 \times 10^{-8} \text{ cm}$$

Charge of electron, $e^- = 4.8 \times 10^{-10}$ esu

Percentage ionic character = ?

Theoretical value of dipole moment = $e \times d$

$$= 4.8 \times 10^{-10} \times 1.275 \times$$

 10^{-8} esu.cm

$$= 6.12 \times 10^{-18}$$
 esu.cm

$$= 6.12 D$$

Percentage ionic character

observed dipole moment

$$= \frac{1.03}{6.12} \times 100 = 16.83\%$$

874 **(b)**

Double bond involves the sharing of two electron pairs or four electrons.

875 **(b)**

There are 16 P - 0 bonds in $P_4 O_{10}$.

876 **(a)**

Difference of electronegativity > 1.7 produces ionic compound.

877 (a)

It is a concept.

878 **(a)**

Low ionisation potential indicates that element can easily lose electron to form cation.

879 (d)

Ionic compounds having lattice energy higher than hydration energy are insoluble in water.

880 (a)

Removal of electron is easier in *f*-block elements due to more shielding.

Trigonal

Octahedron

Metals and non-metals combine to complete their octet. Since, non-metals have lack of electrons, in order to complete their octet, they gain electrons, consequently, the size of non-metal atom will increase.

 $Metal + Non - metal \rightarrow Electrovalent bond$ (Na^+) (Cl) NaCl

882 (d)

These are characteristics of hydration.

883 (c)

Molecules or ion having no unpaired electrons are diamagnetic, e.g.,

$$\text{Li}_2 = 6e^- = \sigma 1s^2, \, ^*_\sigma 1s^2, \sigma 2s^2$$

884 (a)

Given electronic configuration of anion *X* is $\sigma 1s^2$, $^*_{\sigma}1s^2$, $\sigma 2s^2$, $^*_{\sigma}2s^2$, $\pi 2p_x^2$

$$=\pi 2p_{y}^{2}$$
, $\sigma 2p_{z}^{2}$, $_{\pi }^{*}2p_{x}^{1}$

∴ Total number of electrons of anion X = 15Hence, the anion X is N_2^- .

885 (a)

Small cation causes more polarization in anion. Also larger anions are easily polarized by a cation. More is polarization of anion, more is covalent character.

886 (c)

Hydrogen bonding is responsible for their solubility.

887 (a)

Ne has van der Waals radius larger than covalent radius of fluorine.

888 (c)

As the number of unpaired electrons (lone pair of electrons) increases, bond angle decreases. Thus, the decreasing order of bond angle is

 $NO_2^+ > NO_2 > NO_2^-$ Species: **Bond angle**: 180° 135° 115°

889 (a)

Dipole moment of $CH_4 = 0$.

890 **(b)**

Each has 22 electrons.

891 (d)

CS₂ is linear having zero dipole moment.

892 (a)

Atomic radius decreases along the period, increases down the group.

894 **(b)**

In NH₃, the N atom contains a one lone pair of 906 (b) electrons and three bond pairs in its valence shell. So, it shows sp^3 hybridisation. Due to presence of one lone pair of electron, its shape deviates from tetrahedral because lone pair shows more repulsion than bond pairs.

As

$$lp - lp > lp - bp > bp - bp$$

So, its shape is pyramidal and angle 107°.

895 (d)

The K_{sp} value of CuS is less than ZnS and thus, ZnS | 907 (d) is more soluble. Also sodium salts are highly soluble in water.

896 (c)

Both carbon atoms have 2σ -and 2π -bonds.

897 **(b)**

 $1 \text{debye} = 10^{-18} \text{esu.}$

898 (c)

Low ionisation energy indicates that electron can be easily lost and cation formation is easier.

899 **(b)**

The paramagnetic species has unpaired electron in it.

(a)
$$H_2 = 1 + 1 = \sigma 1s^2$$

$$(b)N_2 = 7 + 7 = 14 =$$

$$\sigma 1s^2$$
, $^*_{\sigma}1s^2$, $\sigma 2s^2$, $^*_{\sigma}2s^2$, $\pi 2p_x^2 = \pi 2p_y^2$, $\sigma 2p_z^2$

$$(c)CO = 6 + 8 = 14 =$$

$$\sigma 1s^2$$
, *1s², $\sigma 2s^2$, *2s², $\pi 2p_x^2 = \pi 2p_y^2$, $\sigma 2p_z^2$

(d)
$$0_2 = 8 + 8 = 16 =$$

 $\sigma 1s^2$, ${}_{\sigma}^* 1s^2$, $\sigma 2s^2$, ${}_{\sigma}^* 2s^2$, $\sigma 2p_z^2$, $(\pi 2p_x^2 =$

$$\pi 2p_y^2$$
), $\binom{*}{\pi}2p_x^1 = {*}{\pi}2p_y^1$)

 $: O_2$ molecule has unpaired electrons.

 \therefore O_2 molecule is paramagnetic.

901 **(c)**

C₂, N₂ and F₂ has no unpaired electron in their molecular orbital configuration.

902 **(d)**

IP of inert gases is maximum.

903 **(d)**

Cu loses two electron to form Cu²⁺

905 (a)

$$0_2^+ (15 e^-)$$

$$=KK^*\left(\sigma2s\right)^2({}^*_\sigma2s)^2(\sigma2p_x)^2,\left(\pi2p_y\right)^2$$

$$= (\pi 2p_z)^2 ({}_{\pi}^* 2p_y)^1 = ({}_{\pi}^* 2p_z)^0$$

Hence, bond order = $\frac{1}{2}(10 - 5) = 2.5$

$$N_2^+ (13 e^-) = KK^* (\sigma 2s)^2 ({}_{\sigma}^* 2s)^2 (\pi 2p_y)^2$$

= $(\pi 2p_z)^2$, $(\sigma 2p_x)^1$

Hence, Bond order = $\frac{1}{2}(9-4) = 2.5$

In XeF₅⁺, Xe atom has only seven electrons , i.e., $5s^2$ $5p^5$. Here two 5p electrons are promoted to 5d-sublevel. Then 5s, three 5p and two 5d orbitals hybridize to give six sp^3d^2 hybrid orbitals in an octahedral geometry. Out of these five orbitals are singly occupied which form sigma bonds with five F atoms. The sixth hybrid orbital is occupied by a lone pair in trans position giving a square pyramid structure.

HOMO, means highest occupied molecular orbital and in CO (14 electron ion), σ bonding molecular orbital in HOMO

CO =
$$\sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\pi 2p_x^2$
= $\pi 2p_y^2$, $\sigma 2p_z^2$

909 (c)

Sulphur is sp^2 hybridised in SO_2 . $S = 1s^2, 2s^2 2p^6, 3s^2 3p^4 3d^0$

 sp^2 -hybridisation

Due to sp^2 -hybridisation and presence of one lone pair of electrons SO₂ has angular geometry.

N₂O, CO₂ and CO, Among all have sphybridisation.

910 (c)

Coordinate bonding involves sharing of an electron pair provided by a donor to acceptor atom.

911 (a)

In the structure of P_4O_{10} , each phosphorus atom is covalently linked with three oxygen atoms and each oxygen atom is bonded to two phosphorus atoms. Each phosphorus atom is also linked with an additional oxygen atom with the help of a coordinate linkage by lone pair of electron 920 (c) present on P atom.

912 (d)

$$H_2C = C = CH_2$$
 or Allene (C_3H_4)

It has 2 double and 4 single bonds

913 **(b)**

CsCl is ionic.

914 (c)

In NaOH, Na+ and OH- ions are bonded together by ionic bond while in OH⁻ ion oxygen and 928 (c) hydrogen atoms are bonded together by covalent bond Na⁺ $[0 - H]^{-}$.

915 (d)

Effective nuclear charge increases in this order.

917 (d)

AgBr has higher lattice energy.

918 (c)

$$r_{H} = \frac{74}{2} = 37 \text{pm}, \ r_{Cl} = \frac{198}{2} = 99 \text{pm}.$$
 B.L. of HCl $\approx r_{H} + r_{Cl}$

919 **(b)**

A symmetrical molecule have zero dipole moment. The dipole moment of BF3 molecule is zero due to its symmetrical (triangular planar) structure.

The three fluoride atoms lie at the corners of an equilateral triangle with boron at the centre. Thus, the vectorial addition of the dipole moments of the three bonds gives a net sum of

Hence, for a stable molecule the value of bond order must be positive. When bond order is zero the molecule will not exist.

921 (b)

Follow Fajans' rule.

922 **(b)**

It is a fact.

923 (a)

In PCl_3 and $POCl_3$, P atom is sp^3 -hybridized.

924 (c)

Square planar geometry has dsp^2 -hybridisation.

Both BrO_3^- and XeO_3 have sp^3 -hybridisation and one lone pair of electron.

926 (a)

HF and CH₃OH shows intermolecular hydrogen bonding.

927 (d)

During hydration of ions in aqueous solution, there exists an attractive force between ions and water molecules, which are polar in nature and acts as dipole. So, hydrogen of ions in aqueous solution is an example ion-dipole interaction.

According to Fajan's rule, largest cation and smallest ions form ionic bond

929 (d)

Phosphorus atom is sp^3 hybridised in P_4 usually. Therefore, *p*-character 75%

930 (c)

 Na^+ is cation; Cl^- , PO_4^{3-} are anion.

931 (c)

Ionisation energy decreases down the group.

932 (d)

The characteristics to be observed during removal of II electron.

933 **(c)**

1.
$$(N_2 \to (\sigma 1s)^2 \ (^*_{\sigma} 1s)^2 \ (\sigma 2s)^2 (^*_{\sigma} 2s)^2$$

 $(\sigma 2p_z)^2 \ (\pi 2p_x)^2 (\pi 2p_y)^2$

$$N_2^+ \to (\sigma 1s)^2 \ ({}_{\sigma}^* 1s)^2 \ (\sigma 2s)^2 ({}_{\sigma}^* 2s)^2$$

 $(\sigma 2p_z)^2 \ (\pi 2p_x)^2 (\pi 2p_y)^1$

$$1.0_2 \to (\sigma 1s)^2 \ (^*_{\sigma} 1s)^2 \ (\sigma 2s)^2 (^*_{\sigma} 2s)^2 \ (\sigma 2p_z)^2$$
$$(\sigma 2p_x)^2 (\sigma 2p_y)^2 (^*_{\pi} 2p_x)^1 (^*_{\pi} 2p_y)^1$$

$$0_{2}^{+} \to (\sigma 1s)^{2} \ (_{\sigma}^{*}1s)^{2} \ (\sigma 2s)^{2} \ (_{\sigma}^{*}2s)^{2} \ (2p_{z})^{2}$$
$$(\pi 2p_{x})^{2} (\pi 2p_{y})^{2} \ (_{\pi}^{*}2p_{y})^{1}$$

Since , $\pi 2p_x$ and $\pi 2p_y$ are nearly same in energy,

the electrons can be removed from $(\pi 2p_y \text{ or } \pi 2p_x)$

and ($^*_{\pi 2p_y}$ or $^*_{\pi 2p_x}$) respectively.

934 **(b)**

Both possess $1s^2$, $2s^22p^6$, $3s^23p^6$ configuration.

936 (d)

The resultant dipole in regular tetrahedron is zero.

937 (c)

Smaller the size of cation, more is ionic character, more is attraction among ions.

938 (c)

Given ionic charge = 4.8×10^{-10} e.s.u. and ionic distance = $1\text{Å} = 10^{-8}$ cm. We know that dipole moment = Ionic charge × ionic distance

$$= (4.8 \times 10^{-10}) \times 10^{-8}$$

= 4.8×10^{-18} e. s. u. per cm
= 4.8 debye.

939 (d)

As the *s*-character increases in hybridised orbitals, its electronegativity increases.

940 (d)

 PCl_3 and $AsCl_3$ have sp^3 hybridisation and PF_5 has sp^3d hybridisation. Hence, in group of PCl_3 , $AsCl_3$ and PF_5 all do not have sp^3d hybridisation.

942 **(d)**

Each has 18 electrons.

943 **(b)**

Alkali metals are always univalent.

944 **(c)**

 ${\rm XeF_4}$ has sp^3d^2 -hybridized Xe atom having two lone pair of electrons and thus, octahedral geometry changes to square planar due to lone pair effect.

945 (d)

 $PCl_5 = sp^3d$ (Trigonal pyramidal) $IF_7 = sp^3d^3$ (Pentagonal bipyramidal) $H_3O^+ = sp^3$ (Pyramidal)

 $ClO_2 = sp^2$ (Angular) bond length are shorter than single bond due to resonance.

 $NH_4^+ = sp^3$ (Tetrahedral)

946 (d)

B in BF₃ has sp^2 -hybridization.

947 (c)

In metallic bonds, the valence shell electrons are delocalised and shared between many atoms. These delocalised electrons allow the metal atoms to slide past one another without being subjected strong repulsive forces. The malleability and ductility of metals is due to this sliding capacity of the delocalised electrons.

948 **(b)**

$$\begin{array}{cccc} {\rm CH_3-CH_2-NH_2} \\ sp^3 & sp^3 \\ {\rm CH_3-CH=CH_2} \\ sp^3 & sp^2 & sp^2 \\ & {\rm O} \\ & || \\ {\rm CH_3-C-NH_2} \\ sp^3 & sp^3 \\ {\rm CH_3-CH_2-C} \equiv {\rm N} \\ sp^3 & sp^2 & sp \end{array}$$

949 (a)

A reason for given fact.

950 (c)

$$C = N$$
 H
 H
 H

Benzene nitrile contains 13σ and 5π bonds.

951 (d)

During melting of SiO_2 , the gient network structure held by covalent bonds breaks to give

individual molecules ofSiO₂. In contrast, during boiling of H₂O only change of state occurs from liquid to gaseous; during melting of KCN, electrostatic attraction between K⁺ and CN⁻ ions is overcome; during boiling of CF₄, van der Waals' 963 (c) forces of attraction breaks

952 (b)

Ethyl alcohol C₂H₅OH is soluble in water due to Hbonding.

953 **(b)**

Only *p*-orbitals give rise to σ -bond (head on overlapping) and π -bond (lateral overlapping).

954 **(b)**

HCl and AlCl₃ are covalent but give ions in solution.

955 **(b)**

As a result of more overlapping. Note that π bonds are formed after σ -has already formed.

956 **(b)**

(a)
$$NH_3 + H^+ \rightarrow NH_4^+$$

 $(3bp + 1lp) \quad (4bp \Rightarrow sp^3 \text{ hybridisation})$
 $\Rightarrow sp^3 \text{ hybridisation})$

(b)
$$BF_3 + F^- \rightarrow BF_4^-$$

 $(3bp + sp^2 \text{ hybridisation})$
 $(4bp \Rightarrow sp^3 \text{ hybridisation})$

(c)
$$H_2O + H^+ \rightarrow H_3O^+$$

 $(2bp + 2lp)$ $(3bp + 1lp)$

$$\Rightarrow sp^3$$
 hybridisation) $\Rightarrow sp^3$ hybridisation)

(d)
$$CH \equiv CH + 2H_2 \rightarrow CH_3 - CH_3$$

 $sp \quad sp \quad sp^3 \quad sp^3$

Hence, reaction given in option (b) involves the change of hybridisation from sp^2 to sp^3 .

957 (c)

Lattice energy of BaSO₄ is appreciable high and predominates over hydration energy.

958 (a)

Xe in XeOF₄ has sp^3d^2 -hybridization having one lone pair on Xe atom.

960 (c)

Due to back bonding in BF₃.

961 **(c)**

$$\begin{array}{ccc} & N \!\equiv\! C \!-\! C \!-\! C \!\!\equiv\! N \\ C_2(CN)_4 \text{ is} & & \parallel \\ & N \!\equiv\! C \!-\! C \!-\! C \!\!\equiv\! N \end{array}$$

C = C is sp^3 -hybridization and $C \equiv N$ is sp-

hybridized.

962 (c)

Electron affinity order for halogens is Cl > F >

Potash alum is a double salt.

Potash alum, K_2SO_4 . $Al_x(SO_4)_3$. $24H_2O$ (given)

Ions Al Valency +3

Therefore, $Al_3(SO_4)_3$ is compound of Al^{3} SO_4^{2-} .

On comparing, x=2

Hence, formula of potash alum is

$$= K_2SO_4. Al_2(SO_4)_3. 24H_2O$$

964 **(d)**

For KO_2, O_2^- has unpaired electron so, it is paramagnetic.

 $0_2^-(17)$ $\sigma 1s^2$, $^*_{\sigma}1s^2$, $\sigma 2s^2$, $^*_{\sigma}2s^2$, $\sigma 2p_x^2$, $(\sigma 2p_y^2 = \sigma 2p_z^2)$, $_{\pi}^{*}2p_{y}^{2}=_{\pi}^{*}2p_{z}^{1}$

965 (c)

HCl exists as $H^{\delta+}$ — $Cl^{\delta-}$ due to difference in electronegativity of H and Cl.

966 **(b)**

Outer shell electrons are referred as valence electrons.

967 (d)

Bond order ∝ stability

Species Bond order 0_{2}^{+} 2.5 0_2 2.0 0_{2}^{-} 1.5 Hence, the order of stability is $0_2^+ > 0_2 > 0_2^-$

968 (c)

Diamond is hard, graphite is soft.

969 (a)

IF₅ is square pyramid (sp^3d^2 -hybridisation in I); PCl_5 is trigonal bipyramid (sp^3d -hybridisation in P).

970 (d)

Characteristics of bond order concept.

971 (c)

M.θ. configuration of O_2 is $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p^2$, $\pi 2p_x^2$, $\pi 2p_y^2$, $\pi^* 2p_x^1$, 1

972 **(b)**

Bond energy of Cl₂ is highest among all halogen molecules. B.E. of F₂, Cl₂, Br₂, I₂ are 37, 58, 46 and 36 kcal mol⁻¹ respectively.

Bond length $\propto \frac{1}{\text{Bond order}}$ NO⁻ = 16e⁻ = $\sigma 1s^2$, ${}_{\sigma}^* 1s^2$, $\sigma 2s^2$, ${}_{\sigma}^* 2s^2$, $\sigma 2p_x^2$, $\pi 2p_y^2$ = $\pi 2p_z^2$, ${}_{\pi}^* 2p_y^1$ = ${}_{\pi}^* 2p_z^1$ BO = $\frac{N_b - N_a}{2}$ = $\frac{10 - 6}{2}$ = 2

Similarly BO of NO⁺ will be calculated as

$$N0^{+} = 14e^{-}$$

$$B0 = \frac{10^{-4}}{2} = 3$$

$$CN^{-} = 14e^{-}, B0 = 3$$

$$CN^{+} = 13e^{-}, B0 = \frac{9 - 4}{2} = 2.5$$

Bond order is least for $N0^-$. So, its bond length is highest.

975 **(c)**

 $CsBr_3 \rightarrow Cs^+ + Br_3^-$

976 **(c)**

Number of σ bonds in 1-butene are 11.

977 **(b)**

 NO_3^- has sp^2 -hybridization and possesses coplanar or equilateral triangular geometry.

978 **(b)**

CCl₄ involves two non-metals C and Cl and thus, bonding is covalent. CaH₂ is an ionic compound as it involves alkaline earth metal.

979 **(c)**

CaO is basic oxide.