CHEMICAL BONDING AND MOLECULAR STRUCTURE

CHEMISTRY

Single Correct Answer Type

1. The hybrid state of S in SO_{3} is similar to that of
a) C in $\mathrm{C}_{2} \mathrm{H}_{2}$
b) C in $\mathrm{C}_{2} \mathrm{H}_{4}$
c) C in CH_{4}
d) C in CO_{2}
2. The hydration energy of Mg^{2+} is larger than that of:
a) Al^{3+}
b) Na^{+}
c) Be^{2+}
d) None of these
3. Number of lone pair (s) in XeOF_{4} is/are
a) 0
b) 1
c) 2
d) 3
4. Van der Waals' forces between molecules depend upon:
a) Number of electrons
b) Charge on nucleus
c) Radius of atoms
d) All of these
5. XeF_{6} is:
a) Octahedral
b) Pentagonal pyramidal
c) Planar
d) tetrahedral
6. The bond order in NO is 2.5 while that in NO^{+}is 3 . Which of the following statements is true for these two species?
a) Bond length in NO^{+}is greater than in NO
b) Bond length in NO is greater than in NO^{+}
c) Bond length in NO^{+}is equal to than in NO
d) Bond length is unpredictable
7. An atom with atomic number 20 is most likely to combine chemically with the atom whose atomic number is:
a) 11
b) 16
c) 18
d) 10
8. Which has the largest distance between the carbon hydrogen atom?
a) Ethane
b) Ethene
c) Ethyne
d) Benzene
9. Length of hydrogen bond ranges from $2.5 \AA$ to:
a) $3.0 \AA$
b) $2.75 \AA$
c) $2.6 \AA$
d) $3.2 \AA$
10. If $\mathrm{H}-X$ bond length is $2.00 \AA$ and $\mathrm{H}-X$ bond has dipole moment $5.12 \times 10^{-30} \mathrm{C}-\mathrm{m}$, the percentage of ionic character in the molecule will be
a) 10%
b) 16%
c) 18%
d) 20%
11. Which molecule is planar?
a) NH_{3}
b) CH_{4}
c) $\mathrm{C}_{2} \mathrm{H}_{4}$
d) SiCl_{4}
12. From the molecular orbital theory, one can show that the bond order in F_{2} molecule as
a) 2
b) 1
c) 3
d) 4
13. Two ice cubes are pressed over each other until they unite to form one block. Which one of the following forces dominates for holding them together?
a) Dipole-dipole interaction
b) Van der Waals' forces
c) Hydrogen bond formation
d) Covalent attraction
14. Maximum number of covalent bonds between two like atoms can be:
a) Three
b) Two
c) Four
d) One
15. When sodium and chlorine react, energy is:
a) Released and ionic bond is formed
b) Released and covalent bond is formed
c) Absorbed and covalent bond is formed
d) Absorbed and ionic bond is formed
16. The maximum possible number of hydrogen bonds is a $\mathrm{H}_{2} \mathrm{O}$ molecule can participate is
a) 1
b) 2
c) 3
d) 4
17. The element having lowest ionisation energy among the following is:
a) $1 s^{2}, 2 s^{2} 2 p^{3}$
b) $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{1}$
c) $1 s^{2}, 2 s^{2} 2 p^{6}$
d) $1 s^{2}, 2 s^{2} 2 p^{5}$
18. Bond energies in $\mathrm{NO}, \mathrm{NO}^{+}$and NO^{-}are such as
a) $\mathrm{NO}^{-}>\mathrm{NO}>\mathrm{NO}^{+}$
b) $\mathrm{NO}>\mathrm{NO}^{-}>\mathrm{NO}^{+}$
c) $\mathrm{NO}^{+}>\mathrm{NO}>\mathrm{NO}^{-}$
d) $\mathrm{NO}^{+}>\mathrm{NO}^{-}>\mathrm{NO}$
19. Two type $\mathrm{F} X \mathrm{~F}$ angles are present in which of the following molecules? $(X=\mathrm{S}, \mathrm{Xe}, \mathrm{C})$
a) SF_{4}
b) XeF_{4}
c) SF_{6}
d) CF_{4}
20. The bond angle between two hybrid orbitals is 105°. The percentage of s-character of hybrid orbital is between
a) $50-55 \%$
b) $9-12 \%$
c) $22-23 \%$
d) $11-12 \%$
21. Which is electron deficient compound?
a) $\mathrm{C}_{2} \mathrm{H}_{4}$
b) $\mathrm{B}_{2} \mathrm{H}_{6}$
c) $\mathrm{C}_{2} \mathrm{H}_{6}$
d) NaBH_{4}
22. CCl_{4} is insoluble in water because:
a) CCl_{4} is non-polar and water is polar
b) Water is non-polar and CCl_{4} is polar
c) Water and CCl_{4} both are polar
d) None of the above
23. Which of the following is not correct regarding the properties of ionic compounds?
a) Ionic compounds have high metling and boiling points
b) Their reaction velocity in aqueous medium is very high
c) Ionic compounds in their molten and aqueous solutions do not conduct electricity
d) They are highly soluble in polar solvents
24. The number of sigma and pi (π) bonds present in benzene respectively are
a) 12,6
b) 6,6
c) 6,12
d) 12,3
25. Which of the following is not tetrahedral?
a) BF_{4}^{-}
b) NH_{4}^{+}
c) CO_{3}^{2-}
d) SO_{4}^{2-}
26. In PCl_{5} molecule, P is:
a) $s p^{3}$-hybridized
b) $d s p^{2}$-hybridized
c) $d s^{3} p$-hybridized
d) $s p^{3} d$-hybridized
27. The bond angle and $\%$ of d-character in SF_{6} are
a) $120^{\circ}, 20 \%$
b) $90^{\circ}, 33 \%$
c) $109^{\circ}, 25 \%$
d) $90^{\circ}, 25 \%$
28. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to:
a) Sigma-bond
b) Double bond
c) Coordinate covalent bond
d) Pi-bond
29. In allene structure, three carbon atoms are joined by:
a) Three σ-and three π-bonds
b) Two σ - and one π-bond
c) Two σ-and two π-bonds
d) Three π-bonds only
30. Geometry of SiO_{4}^{4-} anion is
a) Tetrahedral
b) Trigonal
c) Trihedral
d) Pentagonal
31. The carbon atom in graphite is:
a) $s p^{2}$-hybridized
b) $s p^{3}$-hybridized
c) $s p$-hybridized
d) None of these
32. Boron cannot form which one of the following anions?
a) BF_{6}^{3-}
b) BH_{4}^{-}
c) $\mathrm{B}(\mathrm{OH})_{4}^{-}$
d) BO_{2}^{-}
33. If the ionic radii of K^{+}and F^{-}are about $1.34 \AA$ each, then the expected values of atomic radii of K and F
should be respectively:
a) 1.34 and $1.34 \AA$
b) 2.31 and $0.64 \AA$
c) 0.64 and $2.31 \AA$
d) 2.31 and $1.34 \AA$
34. If Z-axis is the molecular axis, then π-molecular orbitals are formed by the overlap of
a) $s+p_{z}$
b) $p_{x}+p_{y}$
c) $p_{z}+p_{z}$
d) $p_{x}+p_{x}$
35. Which one is the weakest bond?
a) Hydrogen
b) Ionic
c) Covalent
d) Metallic
36. The total number of valency electrons for PO_{4}^{3-} ion is:
a) 32
b) 16
c) 28
d) 30
37. The ratio of σ and π-bonds in benzene is:
a) 2
b) 6
c) 4
d) 8
38. The geometry of PF_{5} molecule is:
a) Planar
b) Square planar
c) Trigonal bipyramidal
d) Tetrahedral
39. Which one of the following linear structure?
(I) I_{3}^{-}
(II) NO_{2}^{-}
(III) I_{3}^{+}
(IV) SO_{2}
(V) N_{3}^{-}
a) I, II and III
b) I and V
c) II, III and IV
d) All of these
40. According to MO theory, which of the following lists ranks the nitrogen species in terms of increasing bond order?
a) $\mathrm{N}_{2}^{-}<\mathrm{N}_{2}^{2-}<\mathrm{N}_{2}$
b) $\mathrm{N}_{2}^{-}<\mathrm{N}_{2}<\mathrm{N}_{2}^{2-}$
c) $\mathrm{N}_{2}^{2-}<\mathrm{N}_{2}^{-}<\mathrm{N}_{2}$
d) $\mathrm{N}_{2}<\mathrm{N}_{2}^{2-}<\mathrm{N}_{2}^{-}$
41. The equilateral triangle shape has:
a) $s p$-hybridization
b) $s p^{2}$-hybridization
c) $s p^{3}$-hybridization
d) $s p^{3} d$-hybridization
42. Which of the following has fractional bond order?
a) O_{2}^{2+}
b) O_{2}^{2-}
c) F_{2}^{2-}
d) H_{2}^{-}
43. For which of the following hybridization the bond angle is maximum?
a) $s p^{2}$
b) $s p$
c) $s p^{3}$
d) $d s p^{2}$
44. Experiment shows that $\mathrm{H}_{2} \mathrm{O}$ has a dipole moment whereas, CO_{2} has not. Point out the structures which best illustrate these facts:
a) $\mathrm{O}=\mathrm{C}=\mathrm{O}, \mathrm{H}-\mathrm{O}-\mathrm{H}$
b)

c) $\mathrm{O}=\mathrm{C}=\mathrm{O}$,

d)

45. In TeCl_{4}, the central atom tellurium involves
a) $s p^{3}$ hybridisation
b) $s p^{3} d$ hybridization
c) $s p^{3} d^{2}$ hybridisation
d) $d s p^{2}$ hybridisation
46. Stability of hydrides generally increases with:
a) Increase in bond angle
b) Decrease in bond angle
c) Decrease in resonance
d) None of these
47. Which of the following is isoelectronic with CO_{2} ?
a) NO_{2}
b) NO
c) $\mathrm{N}_{2} \mathrm{O}$
d) $\mathrm{N}_{2} \mathrm{O}_{4}$
48. Which can be described as a molecule with residual bonding capacity?
a) N_{2}
b) CH_{4}
c) NaCl
d) BeCl_{2}
49. Lattice energy of an ionic compound depends upon
a) Charge on the ion and size of the ion
b) Packing of ions only
c) Size of the ion only
d) Charge on the ion only
50. Identify the correct statement from below, concerning the structure of $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$
a) The molecule is planar
b) One of the three carbon atoms is in an-
c) The molecule is non - planar with the two $\left.-\mathrm{CH}_{2} \mathrm{~d}\right)$ All the carbon atoms are $s p$-hybridized groups being in planes perpendicular to each
other
51. (i) $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle in CH_{4}
(ii) $\mathrm{Cl}-\mathrm{B}-\mathrm{Cl}$ angle in BCl_{3}
(iii) $\mathrm{F}-\mathrm{I}-\mathrm{F}$ angle in IF_{7} in a plane
(iv) I - I - I angle in I_{3}^{-}

Increasing order of above bond angles is
a) (i) $<$ (ii) $<$ (iii) $<$ (iv)
b) (ii) $<$ (i) $<$ (iii) $<$ (iv)
c) (iii) $<$ (i) $<$ (ii) $<$ (iv)
d) (iv) $<$ (ii) $<$ (i) $<$ (iii)
52. Among the following elements, the most electronegative is:
a) Oxygen
b) Chlorine
c) Nitrogen
d) Fluorine
53. Metallic bonds do not play a role in:
a) Brass
b) Copper
c) Germanium
d) Zinc
54. Which p-orbitals overlapping would give the strongest bond?
a)

b)

c)

d)

55. $\mathrm{H}_{2} \mathrm{O}$ boils at higher temperature than $\mathrm{H}_{2} \mathrm{~S}$ because it is capable of forming:
a) Ionic bonds
b) Covalent bonds
c) Hydrogen bonds
d) Metallic bonds
56. When two atomic orbitals combine, they form:
a) One molecular orbitals
b) Two molecular orbitals
c) Two bonding molecular orbitals
d) Two antibonding molecular orbitals
57. The correct increasing covalent nature is:
a) $\mathrm{NaCl}<\mathrm{LiCl}<\mathrm{BeCl}_{2}$
b) $\mathrm{BeCl}_{2}<\mathrm{NaCl}<\mathrm{LiCl}$
c) $\mathrm{BeCl}_{2}<\mathrm{LiCl}<\mathrm{NaCl}$
d) $\mathrm{LiCl}<\mathrm{NaCl}<\mathrm{BeCl}_{2}$
58. IP_{1} and IP_{2} of Mg are 178 and $348 \mathrm{kcal} \mathrm{mol}^{-1}$. The energy required for the reaction,
$\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$is:
a) +170 kcal
b) +526 kcal
c) -170 kcal
d) -526 kcal
59. The electronic configuration

$$
\begin{aligned}
& (\sigma 1 s)^{2}(\sigma 1 s)^{2}(\sigma 2 s)^{2}(\sigma 2 s)^{2}\left(\sigma 2 p_{x}\right)^{2} \\
& \left(\pi 2 p_{y}\right)^{2}\left(\pi 2 p_{z}\right)^{2}\left(\pi 2 p_{y}\right)^{2}\left(\pi 2 p_{z}\right)^{1}
\end{aligned}
$$

can be assigned to
a) O_{2}
b) O_{2}^{+}
c) O_{2}^{-}
d) O_{2}^{2-}
60. Some of the properties of the two species, NO_{3}^{-}and $\mathrm{H}_{3} \mathrm{O}^{+}$are described below. Which one of them is correct?
a) Dissimilar in hybridization for the central atom with different structure
b) Isostructural with same hybridization for the central atom
c) Isostructural with different hybridization for the central atom
d) Similar is hybridization for the central atom with different structure
61. 6,6
a) 6,6
b) 6,6
c) 6,6
d) 6,6
62. Greater the dipole moment:
a) Greater is the ionic nature
b) Lesser the polarity
c) Smaller the ionic nature
d) None of these
63. $\mathrm{H}-\mathrm{B}-\mathrm{H}$ bond angle in BH_{4}^{-}is:
a) 180°
b) 120°
c) 109°
d) 90°
64. Which of the following molecular orbitals has two nodal planes?
a) $\sigma 2 p_{x}$
b) $\pi 2 p_{y}$
c) $\pi^{*} 2 p_{y}$
d) $\sigma^{*} 2 p_{x}$
65. The common feature among the species $\mathrm{CN}^{-}, \mathrm{CO}$ and NO^{+}are:
a) Bond order three and isoelectronic
b) Bond order three and
c) Bond order two and π acceptors
d) Isoelectronic and weak field ligands
66. Hydrogen bonding is maximum in
a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
b) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=0$
d) $\mathrm{CH}_{3} \mathrm{CHO}$
67. The $\mathrm{O}-\mathrm{H}$ bond distance in water molecule is:
a) $1.0 \AA$
b) $1.33 \AA$
c) $0.96 \AA$
d) $1.45 \AA$
68. O_{2}^{2+} has a bond order of
a) 1
b) 2
c) 3
d) 4
69. Which among the following molecules/ions is diamagnetic?
a) Super oxide ion
b) Oxygen
c) Carbon molecule
d) Unipositive ion of N_{2} molecule
70. The enolic form of acetone contains
a) 9 sigma bonds, 1 pi bond and two lone pairs
b) 8 sigma bonds, 2 pi bond and two lone pairs
c) 10 sigma bonds, 1 pi bond and one lone pairs
d) 9 sigma bonds, 2 pi bond and one lone pairs
71. Which of the following are isoelectronic and isostructural?

$$
\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}, \mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}
$$

a) $\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
b) $\mathrm{SO}_{3}, \mathrm{NO}_{3}^{-}$
c) $\mathrm{ClO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
d) $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}$
72. Which of the following is paramagnetic with bond order 0.5 ?
a) F_{2}
b) H_{2}^{+}
c) N_{2}
d) O_{2}^{-}
73. Water has high heat of vaporization due to:
a) Covalent bonding
b) H-bonding
c) Ionic bonding
d) None of these
74. The $\mathrm{C}-\mathrm{H}$ bond distance is the longest in
a) $\mathrm{C}_{2} \mathrm{H}_{6}$
b) $\mathrm{C}_{2} \mathrm{H}_{2}$
c) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2}$
d) $\mathrm{C}_{2} \mathrm{H}_{4}$
75. If the electronegativity difference between two atoms A and B is 2.0 , then the percentage of covalent character in the molecule is
a) 54%
b) 46%
c) 23%
d) 72%
76. Structure of ICl_{2}^{-}is:
a) Trigonal
b) Octáhedral
c) Square planar
d) Distorted trigonal pyramidal
77. Polar covalent compounds are soluble in:
a) Polar solvents
b) Non-polar solvents
c) Concentrated acids
d) All solvents
78. $\mathrm{N}_{2} \mathrm{O}$ is isoelectronic to CO_{2} and N_{3}^{-}. Which of the following is the structure of $\mathrm{N}_{2} \mathrm{O}$?
a)

b) $\mathrm{N}-\mathrm{O}-\mathrm{N}$
c) $N-O-N$
d)

79. Which does not show hydrogen bonding?
a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
b) Liquid NH_{3}
c) $\mathrm{H}_{2} \mathrm{O}$
d) Liquid HBr
80. All bond angles are exactly equal to $109^{\circ} 28^{`}$ in
a) Methyl chloride
b) Iodoform
c) Chloroform
d) Carbon tetrachloride
81. Which among the following has highest ionic radius?
a) F^{-}
b) B^{3+}
c) O^{2-}
d) Li^{+}
82. Zero dipole moment is possessed by
a) PCl_{3}
b) BF_{3}
c) ClF_{3}
d) NH_{3}
83. The number of electrons involved in the bond formation of N_{2} molecule
a) 2
b) 4
c) 6
d) 10
84. Which one of the following orders is not in according with the property stated against it?
a) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$: Electronegativity
b) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2} \quad$: Bond dissociation energy
c) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2} \quad$: Oxidising power
d) $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$: Acidic property in water.
85. What is the dominant intermolecular force or bond that must be overcome in converting liquid $\mathrm{CH}_{3} \mathrm{OH}$ to a gas?
a) London dispersion force
b) Hydrogen bonding
c) Dipole-dipole interaction
d) Covalent bonds
86. The incorrect statements regarding bonding molecular orbitals because:
a) Bonding molecular orbitals possess less energy than combining atomic orbitals.
b) Bonding molecular orbitals have low electron density between the two nuclei.
c) Every electron in bonding molecular orbitals contributes to attraction between atoms.
d) They are formed when the lobes of the combining atomic orbitals have same sign.
87. A coordinate bond is a dative covalent bond. Which of the below is true?
a) Three atom form bond by sharing their electrons
b) Two atoms form bond by sharing their electrons
c) Two atoms form bond and one of them providesd) Two atoms form bond by sharing electrons both electrons obtained from third atom.
88. The bond length between $\mathrm{C}-\mathrm{C}$ bond in $s p^{2}$ hybridised molecule is
a) $1.2 \AA$
b) $1.39 \AA$
c) $1.33 \AA$
d) $1.54 \AA$
89. The electronegativity values of $\mathrm{C}, \mathrm{H}, \mathrm{O}, \mathrm{N}$ and S are $2.5,2.1,3.5,3.0$ and 2.5 respectively. Which of the following bonds is most polar?
a) $\mathrm{C}-\mathrm{H}$
b) $\mathrm{N}-\mathrm{H}$
c) $\mathrm{S}-\mathrm{H}$
d) $\mathrm{O}-\mathrm{H}$
90. Which of the following hàs largest size?
a) Al
b) Al^{+}
c) Al^{2+}
d) Al^{3+}
91. In which of the following, the bond length between hybridised carbon atom and other carbon atom is minimum?
a) Propyne
b) Propene
c) Butane
d) Propane
92. Which is expected to conduct electricity?
a) Diamond
b) Molten sulphur
c) Molten KCl
d) Crystalline NaCl
93. Metals are good conductors of electricity because they contain
a) Ionic bonds
b) A network structure
c) Very few valence electrons
d) Free electrons
94. The species having pyramidal shape is
a) SO_{3}
b) BrF_{3}
c) SiO_{3}^{2-}
d) OSF_{2}
95. The attraction that non-polar molecules have for each other is primarily caused by:
a) Hydrogen bonding
b) Difference in electronegativities
c) High ionisation energy
d) Van der Waals' forces
96. In HCHO carbon atom has hybridisation:
a) $s p$
b) $s p^{2}$
c) $s p^{3}$
d) None of these
97. Which of the following species has four lone pairs of electrons in its outer shell?
a) I
b) O^{-}
c) Cl^{-}
d) He
98. For $A B$ bond if per cent ionic character is plotted against electronegativity difference ($X_{A}-X_{B}$), the shape of the curve would look like

The correct curve is
a) A
b) B
c) C
d) D
99. Chlorine atom, in its third excited state, reacts with fluorine to form a compound X. The formula and shape of X are
a) ClF_{5}, pentagonal
b) ClF_{4}, tetrahedral
c) ClF_{4}, pentagonal bipyramidal
d) ClF_{7}, pentagonal bipyramidal
100. The formation of the oxide ion $\mathrm{O}^{2-}(\mathrm{g})$ requires first an exothermic and then an endothermic step as shown below,
$\mathrm{O}(\mathrm{g})+e \rightarrow \mathrm{O}^{-}(\mathrm{g}) ; \quad \Delta H=-142 \mathrm{~kJ} / \mathrm{mol}$
$0^{-}(\mathrm{g})+e \rightarrow 0^{2-}(\mathrm{g}) ; \quad \Delta H=844 \mathrm{~kJ} / \mathrm{mol}$
This is because:
a) O^{-}ion has comparatively larger size than oxygen atom
b) Oxygen has high electron affinity
c) O^{-}ion will lead to resist the addition of another electron
d) Oxygen is more electronegative
101. In which of the following molecules are all the bonds not equal?
a) AlF_{3}
b) NF_{3}
c) ClF_{3}
d) BF_{3}
102. Which of the following compound is covalent?
a) H_{2}
b) KCl
c) $\mathrm{Na}_{2} \mathrm{~S}$
d) CaO
103. Which of the following molecular species has unpaired electron (s)?
a) N_{2}
b) F_{2}
c) O_{2}^{-}
d) O_{2}^{2-}
104. The correct order of bond angles is:
a) $\mathrm{PF}_{3}<\mathrm{PCl}_{3}<\mathrm{PBr}_{3}<\mathrm{PI}_{3}$
b) $\mathrm{PF}_{3}<\mathrm{PBr}_{3}<\mathrm{PCl}_{3}<\mathrm{PI}_{3}$
c) $\mathrm{PI}_{3}<\mathrm{PBr}_{3}<\mathrm{PCl}_{3}<\mathrm{PF}_{3}$
d) $\mathrm{PF}_{3}>\mathrm{PCl}_{3}<\mathrm{PBr}_{3}<\mathrm{PI}_{3}$
105. If the bond length and dipole moment of a diatomic molecule are 1.25 A and 1.0 D respectively, what is the per cent ionic character of the bond?
a) 10.66
b) 12.33
c) 16.66
d) 19.33
106. The molecule which does not exhibit dipole moment is
a) NH_{3}
b) CHCl_{3}
c) $\mathrm{H}_{2} \mathrm{O}$
d) CCl_{4}
107. N_{2} accept electron and convert into N_{2}^{-}, where this electron goes?
a) Antibonding π-molecular orbital
b) Bonding π-molecular orbital
c) σ-bonding molecular orbital
d) σ-antibonding molecular orbital
108. The correct order of radii is:
a) $\mathrm{N}<\mathrm{Be}<\mathrm{B}$
b) $\mathrm{F}^{-}<\mathrm{O}^{2-}<\mathrm{N}^{3-}$
c) $\mathrm{Na}<\mathrm{Li}<\mathrm{K}$
d) $\mathrm{Fe}^{3+}<\mathrm{Fe}^{2+}<\mathrm{Fe}^{4+}$
109. The bond order is maximum in:
a) H_{2}
b) H_{2}^{+}
c) He_{2}
d) He_{2}^{+}
110. Which of the following atoms has minimum covalent radius?
a) Si
b) N
c) C
d) B
111. The screening effect of d-electrons is:
a) Equal to the p-electrons
b) Much more than p-electrons
c) Same as f-electrons
d) Less than p-electrons
112. Which of the following statement is wrong?
a) The stability of hydrides increase from NH_{3} to BiH_{3} in group 15 of the periodic table.
b) Nitrogen cannot form $d \pi-p \pi$ bond.
c) Single $\mathrm{N}-\mathrm{N}$ bond is weaker than the single $\mathrm{P}-\mathrm{P}$ bond.
d) $\mathrm{N}_{2} \mathrm{O}_{4}$ has two resonance structure
113. The molecule having permanent dipole moment is:
a) SF_{4}
b) XeF_{4}
c) SiF_{4}
d) BF_{3}
114. Unusually high boiling point of water is result of
a) Intermolecular hydrogen bonding
b) Intramolecular hydrogen bonding
c) Both intra and inter molecular hydrogen bonding
d) High specific heat
115. Which of the following is least ionic?
a) CaF_{2}
b) CaBr_{2}
c) CaI_{2}
d) CaCl_{2}
116. What bond order does O_{2}^{2-} have?
a) 1
b) 2
c) 3
d) $1 / 3$
117. A compound contains X, Y and Z atoms. The oxidation states of X, Y and Z are $+2,+2$ and -2 respectively. The possible formula of the compound is
a) $X Y Z_{2}$
b) $Y_{2}\left(X Z_{3}\right)_{2}$
c) $X_{3}\left(Y_{4} Z\right)_{2}$
d) $X_{3}\left(Y Z_{4}\right)_{3}$
118. Which one of the following is a non-polar molecule?
a) CCl_{4}
b) CHCl_{3}
c) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
d) $\mathrm{CH}_{3} \mathrm{Cl}$
119. Which one of the following has the regular tetrahedral structure?
(Atomic numbers $\mathrm{B}=5, \mathrm{~S}=16, \mathrm{Ni}=28, \mathrm{Xe}=54$)
a) XeF_{4}
b) SF_{4}
c) BF_{4}^{-}
d) $\left[\mathrm{Ni}(\mathrm{CN})_{3}\right]^{2-}$
120. If the dipole moment of toluene and nitro-benzene are 0.43 D and 3.93 D , then what is the expected dipole moment of p-nitro toluene?
a) 3.50 D
b) 2.18 D
c) 4.36 D
d) 5.30 D
121. Which of the following is most stable?
a) Pb^{2+}
b) Ge^{2+}
c) Si^{2+}
d) Sn^{2+}
122. In which of the following compound $s p^{2}$ hybridisation is absent?
a) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
b) $\mathrm{CH} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
c) $\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$
d) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
123. Which one of the following pairs of species has the same bond order:
a) NO^{+}and CN^{+}
b) CN^{-}and NO^{+}
c) CN^{-}and CN^{+}
d) O_{2}^{-}and CN^{-}
124. Which of the following characteristics regarding halogens is not correct?
a) Ionization energy decreases with increase in atomic number.
b) Electronegativity decreases with increase in atomic number.
c) Electron affinity decreases with increase in atomic number.
d) Enthalpy of fusion increases with increase in atomic number.
125. The number of $\mathrm{S}-\mathrm{S}$ bonds in sulphur trioxide is
a) Three
b) Two
c) One
d) Zero
126. The low density of ice compared to water is due to
a) Induced dipole - induced dipole interactions
b) Dipole - induced dipole interaction
c) Hydrogen bonding interactions
d) Dipole -dipole interaction
127. Consider the following molecules or ions
(i) $\mathrm{H}_{2} \mathrm{O}$
(ii) NH_{4}^{+}
(iii) SO_{4}^{2-}
(iv) ClO_{4}^{-}
(v) NH_{3}
$s p^{3}$ hybridisation is involved in the formation of
a) (i), (ii) (v) only
b) (i), (ii) only
c) (ii) only
d) (i), (ii), (iii), (iv) and (v)
128. Which of the following compounds has dipole moment approximately equal to that of chlorobenzene?
a) o-dichlorobenzene
b) m-dichlorobenzene
c) p-dichlorobenzene
d) p-chloronitrobenzene
129. Which of the following overlaps leads to bonding?
a)

c)

b)

d)

130. Which of the following is correct?
a) The number of electrons present in the valence shell of S in SF_{6} is 12 .
b) The rates of ionic reactions are very low.
c) According to VSEPR theory, SnCI_{2} is a linear molecule.
d) The correct order of ability to form ionic compounds among $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}$ and Al^{3+} is $\mathrm{Al}^{3+}>\mathrm{Mg}^{2+}>\mathrm{Na}^{+}$. 131. The number of sigma and pi bonds in peroxodisulphuric acid are respectively
a) 9 and 4
b) 11 and 4
c) 4 and 8
d) 4 and 9
132. Which is not a paramagnetic species?
a) O_{2}
b) O_{2}^{+}
c) O_{2}^{-}
d) O_{2}^{2-}
133.

a) $s p$
b) $s p^{2}$
c) $s p^{3}$
d) $d s p^{2}$
134. Electron deficient species are known as:
a) Lewis acids
b) Hydrophilic
c) Nucleophiles
d) Lewis bases
135. The molecule having three folds of axis of symmetry is:
a) NH_{3}
b) PCl_{5}
c) SO_{2}
d) CO_{2}
136. The structure of ICl_{2}^{-}is:
a) Trigonal
b) Octahedral
c) Square planar
d) Distorted trigonal bipyramid
137. Among the following the molecule with the highest dipole moment is
a) $\mathrm{CH}_{3} \mathrm{Cl}$
b) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
c) CHCl_{3}
d) CCl_{4}
138. Which of the following is not isostructural with SiCl_{4} ?
a) PO_{4}^{3-}
b) NH_{4}^{+}
c) SCl_{4}
d) SO_{4}^{2-}
139. A molecule which cannot exist theoretically is:
a) SF_{4}
b) OF_{2}
c) OF_{4}
d) $\mathrm{O}_{2} \mathrm{~F}_{2}$
140. An atom X has three valence electrons and atom Y has six valence electrons. The compound formed between them will have the formula
a) $X_{2} Y_{6}$
b) $X Y_{2}$
c) $X_{2} Y_{3}$
d) $X_{3} Y_{2}$
141. Which one is polar molecule among the following?
a) CH_{4}
b) CCl_{4}
c) CO_{2}
d) $\mathrm{H}_{2} \mathrm{O}$
142. Shape of molecules is decided by:
a) Sigma bond
b) π-bond
c) Both sigma and π-bonds
d) Neither sigma nor π-bonds
143. The shape of carbon dioxide is
a) Pyramidal
b) Tetrahedral
c) Planar
d) linear
144. The correct ionic radii order is:
a) $\mathrm{N}^{3-}>\mathrm{O}^{2-}>\mathrm{F}^{-}>\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}$
b) $\mathrm{N}^{3-}>\mathrm{Na}^{+}>\mathrm{O}^{2-}>\mathrm{F}^{-}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}$
c) $\mathrm{Na}^{+}>\mathrm{O}^{2-}>\mathrm{N}^{3-}>\mathrm{F}^{-}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}$
d) $\mathrm{O}^{2-}>\mathrm{F}^{-}>\mathrm{Na}^{+}>\mathrm{N}^{3-}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}$
145. Which is not linear?
a) CO_{2}
b) HCN
c) $\mathrm{C}_{2} \mathrm{H}_{2}$
d) $\mathrm{H}_{2} \mathrm{O}$
146. Hybridisation of oxygen in diethyl ether is
a) $S p$
b) $s p^{2}$
c) $s p^{3}$
d) $s p^{3} d$
147. What is the effect of more electronegative atom on the strength of ionic bond?
a) Increases
b) Decreases
c) Remains the same
d) None of these
148. Which of the following two are isostructural?
a) $\mathrm{XeF}_{2}, \mathrm{IF}_{2}^{-}$
b) $\mathrm{NH}_{3}, \mathrm{BF}_{3}$
c) $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}$
d) $\mathrm{PCl}_{5}, \mathrm{ICl}_{5}$
149. NF_{3} is:
a) Non-polar compound
b) Electrovalent compound
c) Having low value of dipole moment than NH_{3}
d) Having more dipole moment than NH_{3}
150. Molecular size of ICl and Br_{2} is nearly same, but boiling point of ICl is about $40^{\circ} \mathrm{C}$ higher than Br_{2}. This might be due to:
a) $\mathrm{I}-\mathrm{Cl}$ bond is stronger than $\mathrm{Br}-\mathrm{Br}$ bond
b) Ionisation energy of $\mathrm{I}<$ ionisation energy of Br
c) ICl is polar where as Br_{2} is non-polar
d) The size of $\mathrm{I}>$ size of Br
151. Which molecule is linear?
a) $\mathrm{H}_{2} \mathrm{~S}$
b) NO_{2}
c) ClO_{2}
d) CO_{2}
152. Which of the following shows minimum melting point?
a) Naphthalene
b) Diamond
c) NaCl
d) Mn
153. Which of the following does not have a lone pair on the central atom?
a) NH_{3}
b) PH_{3}
c) BF_{3}
d) PCl_{3}
154. Molecular orbital theory was given by
a) Kossel
b) Mosley
c) Mulliken
d) Werner
155. NH_{3} has a net dipole moment, but boron trifluoride $\left(\mathrm{BF}_{3}\right)$ has zero dipole moment, because:
a) B is less electronegative than N
b) F is more electronegative than H
c) BF_{3} is pyramidal while NH_{3} is planar
d) NH_{3} is pyramidal while BF_{3} is trigonal planar
156. Proton plays an important role in...bonding.
a) Electrovalent
b) Hydrogen
c) Covalent
d) Coordinate
157. Which represents a collection of isoelectronic species?
a) $\mathrm{Be}, \mathrm{Al}^{3+}, \mathrm{Cl}^{-}$
b) $\mathrm{Ca}^{2+}, \mathrm{Cs}^{+}, \mathrm{Br}$
c) $\mathrm{Na}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$
d) $\mathrm{N}^{3-}, \mathrm{F}^{-}, \mathrm{Na}^{+}$
158. An electrovalent compound does not exhibit space isomerism due to:
a) Presence of ions
b) High melting point
c) Strong electrostatic forces between constituent ions
d) Non-directional nature of electrovalent bond
159. In which molecule Sulphur atom is not $s p^{3}$-hybridized?
a) SO_{4}^{2-}
b) SF_{4}
c) SF_{2}
d) None of these
160. In which one of the following species, the central atom has the type of hybridization which is not the same as that present in other three?
a) SF_{4}
b) I_{3}^{-}
c) SbCl_{5}^{2-}
d) PCl_{5}
161. The radii of $\mathrm{F}, \mathrm{F}^{-}, \mathrm{O}$ and O^{2-} are in the order of:
a) $\mathrm{O}^{2-}>\mathrm{F}^{-}>\mathrm{F}>0$
b) $\mathrm{F}^{-}>\mathrm{O}^{2-}>\mathrm{F}>0$
c) $\mathrm{O}^{2-}>\mathrm{O}>\mathrm{F}^{-}>\mathrm{F}$
d) $\mathrm{O}^{2-}>\mathrm{F}^{-}>\mathrm{O}>\mathrm{F}$
162. The correct order of decreasing second ionisation enthalpy of Ti (22), V (23), Cr (24) and Mn (25) is:
a) $\mathrm{V}>\mathrm{Mn}>\mathrm{Cr}>\mathrm{Ti}$
b) $\mathrm{Mn}>\mathrm{Cr}>\mathrm{Ti}>\mathrm{V}$
c) $\mathrm{Ti}>\mathrm{V}>\mathrm{Cr}>\mathrm{Mn}$
d) $\mathrm{Cr}>\mathrm{Mn}>\mathrm{V}>\mathrm{Ti}$
163. How many σ and π-bonds are present in given compound?

a) 19σ and 4π-bonds
b) 22σ and 4π - bonds
c) 25σ and 4π - bonds
d) 26σ and 4π - bonds
164. $\mathrm{C}-\mathrm{Cl}$ bond is stronger than $\mathrm{C}-\mathrm{I}$ bond, because
a) $\mathrm{C}-\mathrm{Cl}$ bond is more ionic than $\mathrm{C}-\mathrm{I}$
b) $\mathrm{C}-\mathrm{Cl}$ bond is polar covalent bond
c) C - Cl bond is more covalent than $\mathrm{C}-\mathrm{I}$
d) $\mathrm{C}-\mathrm{Cl}$ bond length is longer than $\mathrm{C}-\mathrm{I}$
165. The ICl molecule is:
a) Purely covalent
b) Purely electrovalent
c) Polar with negative end on chlorine
d) Polar with negative end on iodine
166. Which of the following silver salts is insoluble in water?
a) AgClO_{4}
b) $\mathrm{Ag}_{2} \mathrm{SO}_{4}$
c) AgF
d) AgNO_{3}
167. Silicon has 4 electrons in the outermost orbit. In forming the bond:
a) It gains electrons
b) It losses electrons
c) It shares electrons
d) None of these
168. The shape of gaseous SnCl_{2} is
a) Tetrahedral
b) Linear
c) Angular
d) T-shape
169. Chlorine atom tends to acquire the structure of:
a) He
b) Ne
c) Ar
d) Kr
170. The d - orbital involved in $s p^{3} d$-hybridisation is
a) $d_{x^{2}-y^{2}}$
b) $d_{x y}$
c) $d_{z^{2}}$
d) $d_{z x}$
171. When O_{2} is converted into O_{2}^{+};
a) Both paramagnetic character and bond order increase
b) Bond order decreases
c) Paramagnetic character increases
d) Paramagnetic character decreases and the bond order increases
172. Intramolecular hydrogen bond is present in
a) Water
b) o-nitrophenol
c) p-nitrophenol
d) methylamine
173. A pair of compounds which have odd electrons in the group $\mathrm{NO}, \mathrm{CO}, \mathrm{ClO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{\mathrm{s}}, \mathrm{SO}_{2}$ and O_{2} are
a) NO and ClO_{2}
b) COI and SO_{2}
c) ClO_{2} and CO
d) SO_{2} and O_{3}
174. According to VSEPR theory the repulsion between different pair (lone or bond) of electrons obey the order
a) $l p b p l p l p b p b p$
b) $l p b p b p b p l p l p$
c) $l p l p l p b p b p b p$
d) $b p b p I p I p I p b p$
175. The bond between two identical non-metal atoms has a pair of electrons:
a) Unequally shared between the two
b) Equally shared between the two
c) Transferred fully from one atom to another
d) None of the above
176. The bond angle in AsH_{3} is greater than that in
a) NH_{3}
b) $\mathrm{H}_{2} \mathrm{O}$
c) BCl_{3}
d) None of these
177. The correct order of increasing electropositive character among Cu, Fe and Mg is:
a) $\mathrm{Cu} \approx \mathrm{Fe}<\mathrm{Mg}$
b) $\mathrm{Fe}<\mathrm{Cu}<\mathrm{Mg}$
c) $\mathrm{Fe}<\mathrm{Mg}<\mathrm{Cu}$
d) $\mathrm{Cu}<\mathrm{Fe}<\mathrm{Mg}$
178. $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ is 104.5° and not $109^{\circ} 28^{\prime}$ because of:
a) High electronegativity of oxygen
b) Bond pair-bond pair repulsion
c) Lone pair-lone pair repulsion
d) Lone pair-bond pair repulsion
179. The bond order in O_{2}^{+}is equal to bond order in:
a) N_{2}^{+}
b) CN^{-}
c) CO
d) NO^{+}
180. The electron affinity for inert gases is likely to be:
a) High
b) Small
c) Zero
d) Positive
181. The true statements from the following are

1. PH_{5} and BiCl_{5} do not exist
2. $p \pi-d \pi$ bond is present in SO_{2}
3.Electrons travel at the speed of light
3. SeF_{4} and CH_{4} have same shape
4. I_{3}^{+}has bent geometry
a) 1,3
b) $1,2,5$
c) $1,3,5$
d) $1,2,4$
5. 1,3-butadiene has:
a) 6σ and 2π-bonds
b) 2σ and 2π-bonds
c) 9σ and 2π-bonds
d) 6σ and 2π-bonds
6. The bond between atoms of two elements of atomic number 37 and 53 is:
a) Covalent
b) Ionic
c) Coordinate
d) Metallic
7. In methane the bond angle is
a) 180°
b) 90°
c) 109°
d) 120°
8. One would expect the elemental form of Cs at room temperature to be:
a) A network solid
b) A metallic solid
c) Non-polar liquid
d) An ionic liquid
9. Which of the following is false?
a) Glycerol has strong hydrogen bonding
b) Glycol is a poisonous alcohols
c) Waxes are esters of higher alcohols with higher acids
d) Alkyl halides have higher b.p. than corresponding alcohols
10. Ionic radii are:
a) $\propto \frac{1}{\text { effective nuclear charge }}$
b) $\propto \frac{1}{(\text { (effective nuclear charge })^{2}}$
c) \propto effective nuclear charge
d) $\propto(\text { effective nuclear charge })^{2}$
11. Which of the following statements is incorrect?
a) He_{2} does not exist because its bond order is zero
b) $\mathrm{O}_{2}, \mathrm{O}_{2}^{-}$and O_{2}^{+}are all paramagnetic
c) Any two atomic orbitals can combine to form two molecular orbitals
d) $\pi\left(2 p_{x}\right)$ and $\pi\left(2 p_{y}\right)$ are degenerate molecular orbitals
12. Which of the following pairs will from the most stable ionic bond?
a) Na and Cl
b) Mg and F
c) Li and F
d) Na and F
13. Among $\mathrm{NaF}, \mathrm{NaCl} \mathrm{NaBr}$ and NaI , the NaF has highest melting point because:
a) It has maximum ionic character
b) It has minimum ionic character
c) It has associated molecules
d) It has least molecular weight
14. The planar structure of BF_{3} can be explained by the fact that BF_{3} is
a) $s p$ hybridized
b) $s p^{2}$ hybridised
c) $s p^{3}$ hybridised
d) $s p^{3} d$ hybridized
15. The correct order of bond order value among the following is
(i) NO^{-}
(ii) NO^{+}
(iii) NO
(iv) NO^{2+}
(v) NO^{2-}
a) (i) $<$ (iv) $<$ (iii) $<$ (ii) $<$ (v)
b) (iv) $=$ (ii) $<$ (i) $<$ (v) $<$ (iii)
c) (v) $<$ (i) $<$ (iv) $=$ (iii) $<$ (ii)
d) (ii) $<$ (iii) $<$ (iv) $<$ (i) $<$ (v)
16. The bond between chlorine and bromine in BrCl_{3} is:
a) Ionic
b) Non-polar
c) Polar with negative end on Br^{-}
d) Polar with negative end on Cl^{-}
17. Which of the following has regular tetrahedral shape?
a) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
b) SF_{4}
c) $\left[\mathrm{BF}_{4}\right]^{-}$
d) XeF_{4}
18. Which of the following will have large dipole moment?
a)

b)

c)

d)

19. PCl_{5} exists but NCl_{5} does not because:
a) Nitrogen has no vacant $2 d$-orbitals
b) NCl_{5} is unstable
c) Nitrogen atom is much smaller than phosphorus
d) Nitrogen is highly mert
20. In which of the following pairs the two species are not isostructural?
a) PCl_{4}^{+}and SiCl_{4}
b) PF_{5} and BrF_{5}
c) AlF_{6}^{3-} and SF_{6}
d) CO_{3}^{2-} and NO_{3}^{-}
21. The molecule having a pyramidal shape out of the following is
a) CO_{2}
b) BF_{3}
c) SF_{4}
d) NH_{3}
22. If Na^{+}ion is larger than Mg^{2+} ion and S^{2-} is larger thanCl ${ }^{-}$ion, which of the following will be stable soluble in water?
a) Sodium chloride
b) Sodium sulphide
c) Magnesium chloride
d) Magnesium sulphide
23. An atom of an element A has three electrons in its outermost orbit and that of B has six electrons in its outermost orbit. The formula of the compound between these two will be
a) $A_{3} B_{6}$
b) $A_{2} B_{3}$
c) $A_{3} B_{2}$
d) $A_{2} B$
24. The energy of $\sigma 2 s$-orbital is greater than $\sigma * 1 s$ orbital because:
a) $\sigma 2 s$ orbital is bigger than $\sigma * 1 s$ orbital
b) $\sigma 2 s$ orbital is a bonding orbital whereas, $\sigma * 1 s$ is an antibonding orbital
c) $\sigma 2 s$ orbital has a greater value of n than $\sigma * 1 s$ orbital
d) None of the above
25. The bond angle in ammonia molecule is
a) $90^{\circ} 3^{\prime}$
b) $91^{\circ} 8^{\prime}$
c) $106^{\circ} 45^{\prime}$
d) $109^{\circ} 28^{\prime}$
26. The compound in which the number of d bonds are equal to those present in ClO_{4}^{-}
a) XeF_{4}
b) XeO_{3}
c) XeO_{4}
d) XeF_{6}
27. The correct order of bond angles (smallest first) in $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{BF}_{3}$ and SiH_{4} is
a) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{SiH}_{4}<\mathrm{NH}_{3}<B \mathrm{~F}_{3}$
b) $\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{SiH}_{4}<B \mathrm{~F}_{3}$
c) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{SiH}_{4}<B \mathrm{~F}_{3}$
d) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{BF}_{3}<\mathrm{SiH}_{4}$
28. A covalent molecule $A B_{3}$ has pyramidal structure. The number of lone pair and bond pair of electrons in the molecule are respectively.
a) 2 and 2
b) 0 and 4
c) 3 and 1
d) 1 and 3
29. Be in BeCl_{2} undergoes
a) Diagonal hybridisation
b) Trigonal hybridisation
c) Tetrahedral hybridisation
d) No hybridisation
30. Which statement is wrong?
a) Hybridisation is the mixing of atomic orbitals prior to their combining into molecular orbitals
b) $s p^{2}$-hybrid orbitals are formed from two p-atomic orbitals and one s-atomic orbitals
c) $d s p^{2}$-hybrid orbitals are all at 90° to one another
d) $d^{2} s p^{2}$-hybrid orbitals are directed towards the corners of a regular tetrahedron
31. In the anion HCOO^{-}the two carbon-oxygen bonds are found to be of equal length. What is the reason for it?
a) Electronic orbits of carbon atom are hybridised
b) The $\mathrm{C}=0$ bond is weaker than the $\mathrm{C}-0$ bond
c) The anion HCOO^{-}has two resonating structures
d) The anion is obtained by removal of a proton from the acid molecule
32. Which of the following molecules has three fold axis of symmetry?
a) NH_{3}
b) $\mathrm{C}_{2} \mathrm{H}_{4}$
c) CO_{2}
d) SO_{2}
33. Oxygen and the oxide ion have the
a) Same proton number
b) Same electronic configuration
c) Same electron number
d) Same size
34. Valence bond theory of metallic bond was given by
a) Dalton
b) Drudel
c) Fajan
d) Pauling
35. The correct order of second ionisation potential of carbon, nitrogen, oxygen and fluorine is:
a) $\mathrm{C}>\mathrm{N}>0>\mathrm{F}$
b) $\mathrm{O}>\mathrm{N}>\mathrm{F}>\mathrm{C}$
c) O $>$ F $>$ N $>$ C
d) $\mathrm{F}>$ O $>$ N $>$ C
36. The molecule which has T - shaped structure is
a) PCl_{3}
b) ClF_{3}
c) NH_{3}
d) BCl_{3}
37. As a result of resonance:
a) Bond length decreases
b) Energy of the molecules decreases
c) Stability of the molecule increases
d) All are correct
38. The pair of species with the same bond order is:
a) NO, CO
b) $\mathrm{N}_{2}, \mathrm{O}_{2}$
c) $\mathrm{O}_{2}^{2-} \mathrm{B}_{2}$
d) $\mathrm{O}_{2}^{+}, \mathrm{NO}^{+}$
39. Which of the following molecules has pentagonal bipyramidal shape?
a) PF_{5}
b) $\mathrm{SF}_{6} \mathrm{I}$
c) XeF_{6}
d) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
40. The number of types of bonds between two carbon atoms in calcium carbide is
a) One sigma, two pi
b) One sigma, one pi
c) Two sigma, one pi
d) Two sigma, two pi
41. The bond angle between $\mathrm{H}-\mathrm{O}-\mathrm{H}$ in ice is closest to:
a) 115°
b) $109^{\circ} 28^{\prime}$
c) 110°
d) 90°
42. If a molecule $M X_{3}$ has zero dipole moment the sigma bonding orbitals used by M (at. No. <21) is:
a) Pure p
b) $s p$-hybrid
c) $s p^{2}$-hybrid
d) $s p^{3}$-hybrid
43. Which combination of atoms can form a polar covalent bond?
a) H and H
b) H and Br
c) N and N
d) Na and Br
44. The bond strength in $\mathrm{O}_{2}^{+}, \mathrm{O}_{2}, \mathrm{O}_{2}^{-}$and O_{2}^{2-} follows the order:
a) $\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}>\mathrm{O}_{2}^{+}$
b) $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}$
c) $\mathrm{O}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{+}$
d) $\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{+}>\mathrm{O}_{2}$
45. The shape of XeF_{4} molecule and hybridisation of xenon in it are
a) Tetrahedral and $s p^{3}$
b) Square planar and $d s p^{2}$
c) Square planar and $s p^{3} d^{2}$
d) Octahedral and $s p^{3} d^{2}$
46. In H_{2}^{-}ion, the bond order is:
a) Zero
b) $1 / 2$
c) $-1 / 2$
d) 1
47. H-bonding is not present in:
a) Glycerine
b) Water
c) $\mathrm{H}_{2} \mathrm{~S}$
d) HF
48. In which of the following gaseous molecules, the ionic character of the covalent bond is greatest?
a) HCl
b) HBr
c) HI
d) HF
49. The angle between the overlapping of one s-orbital and one p-orbital is:
a) 180°
b) 120°
c) $109^{\circ} 28^{\prime}$
d) $120^{\circ} 60^{\prime}$
50. How many bonds are there in?

a) $14 \sigma, 8 \pi$
b) $18 \sigma, 8 \pi$
c) $19 \sigma, 4 \pi$
d) $14 \sigma, 2 \pi$
51. Which is the correct statement about σ and π molecular orbitals? Statements are
(i) π-bonding orbitals are ungerade
(ii) π-antibonding orbitals are ungerade
(iii) σ-antibonding orbitals are gerade
a) (i) only
b) (ii) and (iii) only
c) (iii) only
d) (ii) only
52. Among the following statement, the correct statement about PH_{3} and NH_{3} is:
a) NH_{3} is a better electron donor because the lone pair of electron occupies spherical s-orbital and is less
a) directional
b) PH_{3} is a better electron donor because the lone pair of electron occupies $s p^{3}$-orbital and is more directional
c) $\begin{aligned} & \mathrm{NH}_{3} \text { is a better electron donor because the lone pair of electron occupies } s p^{3} \text {-orbital and more } \\ & \text { directional }\end{aligned}$
d) PH_{3} is a better electron donor because the lone pair of electron occupies spherical s-orbital and is less directional
53. Which is expected to have linear structure?
a) SO_{2}
b) CO_{2}
c) CO_{3}^{2-}
d) SO_{4}^{2-}
54. The bond angle in PH_{3} is:
a) Much lesser than NH_{3}
b) Equal to that in NH_{3}
c) Much greater than in
d) Slightly more than in
55. Carnallite in solution in water shows the properties of
a) $\mathrm{K}^{+}, \mathrm{Mg}^{2+}, \mathrm{Cl}^{-}$
b) $\mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{SO}_{4}^{2-}, \mathrm{Br}^{-}$
c) $\mathrm{K}^{+}, \mathrm{Mg}^{2+}, \mathrm{CO}_{3}^{2-}$
d) $\mathrm{K}^{+}, \mathrm{Mg}^{2+}, \mathrm{Cl}^{-}, \mathrm{Br}$
56. A simple of a coordinate covalent bond is exhibited by
a) HCl
b) NH_{3}
c) $\mathrm{C}_{2} \mathrm{H}_{2}$
d) $\mathrm{H}_{2} \mathrm{SO}_{4}$
57. In the series ethane, ethylene and acetylene, the $\mathrm{C}-\mathrm{H}$ bond energy is:
a) The same in all the three compounds
b) Greatest in ethane
c) Greatest in ehtylene
d) Greatest in acetylene
58. In which molecule the van der Waals' force is likely to be the most important in determining the m.p. and b.p.?
a) Br_{2}
b) CO
c) $\mathrm{H}_{2} \mathrm{~S}$
d) HCl
59. Identify the wrong statement in the following:
a) Atomic radius of the elements increases as one moves down the first group of the periodic table
b) Atomic radius of the elements decreases as one moves across from left to right in the 2 nd period of the periodic table
c) Amongst isoelectronic species, smaller the positive charge on the cation, smaller is the ionic radius
d) Amongst isoelectronic species, greater the negative charge on the anion, larger is the ionic radius
60. (I)1, 2-dihydroxy benzene
(II) 1, 3-dihydroxy benzene
(III) 1, 4-dihydroxy benzene
(IV) Hydroxy benzene

The increasing order of boiling points of above mentioned alcohols is
a) I $<$ II $<$ III $<$ IV
b) I $<$ II $<$ IV $<$ III
c) IV $<I<I I<I I I$
d) IV $<$ II $<$ I $<$ III
238. Dipole moment is shown by
a) cis-1,2-dichloro ethane
b) trans-1, 2-dichloro ethane
c) trans-1 2-dichloro-2 peptene
d) Both (a) and (c)
239. Compounds formed by $s p^{3} d^{2}$-hybridization will have configuration:
a) Square planar
b) Octahedral
c) Trigonal bipyramidal
d) Pentagonal bipyramidal
240. In which molecular are all atoms coplanar?
a) PF_{3}
b) NH_{3}
c) BF_{3}
d) CH_{4}
241. The AsF_{5} molecule is trigonal bipyramidal.The hybrid orbitals used by the As atoms for bonding are
a) $d_{x^{2}-y^{2}}, d_{z^{2}}, s, P_{x}, P_{y}$
b) $d_{x y}, s, P_{x}, P_{z}$
c) $s, P_{x}, P_{y}, P_{z}, d_{z}{ }^{2}$
d) $d_{x^{2}-y^{2}}, s, P_{x}, P_{y}$
242. The bond order of N_{2}^{+}is
a) 1.5
b) 3.0
c) 2.5
d) 2.0
243. CO_{2} is isostructural with
a) $\mathrm{C}_{2} \mathrm{H}_{2}$
b) SnCl_{2}
c) NO_{2}
d) MgCl_{2}
244. The compound with the maximum dipole moment among the following is:
a) p-dichlorobenzene
b) m-dichlorobenzene
c) o-dichlorobenzene
d) Carbon tetrachloride
245. Which of the following bonds require the largest amount of energy to dissociate the bond concerned?
a) $\mathrm{H}-\mathrm{H}$ bond in H_{2}
b) $\mathrm{C}-\mathrm{H}$ bond in CH_{4}
c) $\mathrm{N} \equiv \mathrm{N}$ bond in N_{2}
d) $\mathrm{O}=\mathrm{O}$ bond in O_{2}
246. The sequence that correctly describes the relative bond strength pertaining to oxygen molecule and its cation or anion is
a) $\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}>\mathrm{O}_{2}^{+}$
b) $\mathrm{O}_{2}>\mathrm{O}_{2}^{+}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}$
c) $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{-}$
d) $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}$
247. The type of hybridisation in XeF_{4} is
a) $d s p^{2}$
b) $s p^{3} d$
c) $s p^{3} d^{2}$
d) $s p^{3} d^{3}$
248. What bond order does Li_{2} have?
a) 3
b) 1
c) 2
d) 0
249. Which have zero dipole moment?
a) 1,1-dichloroethene
b) Cis-1, 2-dichloroethene
c) trans-1, 2-dichlorothene
d) None of the above
250. Strongest bond is formed by the head on overlapping of:
a) $2 s$-and $2 p$-orbitals
b) $2 p$ - and $2 p$-orbitals
c) $2 s$ - and $2 s$ - orbitals
d) All of these
251. Hybridization state of I in ICl_{2}^{+}is :
a) $d s p^{2}$
b) $s p$
c) $s p^{2}$
d) $s p^{3}$
252. Arrange the following compound in order of increasing dipole moment:

Toluene (I)
m-dichlorobenzene (II)
o-dichlorobenzene (III) $\quad p$-dichlorobenzene (IV)
a) I $<$ IV $<$ II $<$ III
b) IV $<$ I $<$ II $<$ III
c) IV $<$ I $<$ III $<$ II
d) IV $<$ II $<$ I $<$ III
253. Which has maximum covalent character?
a) SiCl_{4}
b) MgCl_{2}
c) NaCl
d) AlCl_{3}
254. Which species does not exist?
a) $\left(\mathrm{SnCl}_{6}\right)^{2-}$
b) $\left(\mathrm{GeCl}_{6}\right)^{2-}$
c) $\left(\mathrm{CCl}_{6}\right)^{2-}$
d) $\left(\mathrm{SiCl}_{6}\right)^{2-}$
255. Among the following which has the highest cation to anion size ratio?
a) CsI
b) CsF
c) LiF
d) NaF
256. The dipole moment of HBr is $1.6 \times 10^{-30} \mathrm{~cm}$ and inter - atomic spacing is $1 \AA$. The $\%$ ionic character of HBr is
a) 7
b) 10
c) 15
d) 27
257. When an element of very low ionisation potential is allowed to react with an element of very high electron affinity, we get:
a) A weak ionic bond
b) A strong ionic bond
c) A polar covalent bond
d) No bond
258. Ionization potential is lowest for:
a) Halogens
b) Inert gases
c) Alkaline earth metals
d) Alkali metals
259. The orbitals of same energy level providing the most efficient overlapping are:
a) $s p^{3}-s p^{3}$
b) $s p-s p$
c) $s p^{2}-s p^{2}$
d) All of these
260. The covalent compound HCl has the polar character because:
a) The electronegativity of hydrogen is greater than that of chlorine
b) The electronegativity of hydrogen is equal to than that of chlorine
c) The electronegativity of chlorine is greater than that of hydrogen
d) Hydrogen and chlorine are gases
261. Identify the non-polar molecule in the set of compounds given
$\mathrm{HCl}, \mathrm{HF}, \mathrm{H}_{2}, \mathrm{HBr}$
a) H_{2}
b) HCl
c) $\mathrm{HF}, \mathrm{HBr}$
d) HBr
262. Which one of the following compounds has $s p^{2}$ hybridisation?
a) CO_{2}
b) SO_{2}
c) $\mathrm{N}_{2} \mathrm{O}$
d) CO
263. The increasing order of the ionic radii of the given isoelectronic species is:
a) $\mathrm{S}^{2-}, \mathrm{Cl}^{-}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}$
b) $\mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{S}^{2-}$
c) $\mathrm{K}^{+}, \mathrm{S}^{2-}, \mathrm{Ca}^{2+}, \mathrm{Cl}^{-}$
d) $\mathrm{Cl}^{-}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{S}^{2-}$
264. Which cannot exist on the basis of M.O. theory?
a) C_{2}
b) He_{2}^{+}
c) H_{2}^{+}
d) He_{2}
265. Which of the following does not involve covalent bond?
a) PH_{3}
b) CsF
c) HCl
d) $\mathrm{H}_{2} \mathrm{~S}$
266. $\mathrm{B}_{10} \mathrm{C}_{2} \mathrm{H}_{12}$ is isoelectronic with
a) $\mathrm{B}_{12} \mathrm{H}_{12}^{2-}$
b) $\mathrm{B}_{12} \mathrm{H}_{12}$
c) $\mathrm{B}_{12} \mathrm{H}_{12}^{+}$
d) $\mathrm{B}_{12} \mathrm{H}_{12}^{2+}$
267. The electronegativity of A and B are 1.20 and 4.0 respectively. Therefore, ionic character in $A-B$ bond will be
a) 50%
b) 43%
c) 53.3%
d) 72.23%
268. During the formation of a chemical bond
a) Electron-electron repulsion becomes more thanb) Energy of the system does not change the nucleus-electron repulsion attraction
c) Energy increases
d) Energy decreases
269. The number of ions formed when a molecule of $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ dissociates is:
a) 4
b) 5
c) 6
d) 2
270. Pair of species having identical shapes for molecules is
a) $\mathrm{CF}_{4}, \mathrm{SF}_{4}$
b) $\mathrm{BF}_{3}, \mathrm{PCl}_{3}$
c) $\mathrm{XeF}_{2}, \mathrm{CO}_{2}$
d) $\mathrm{PF}_{5}, \mathrm{IF}_{7}$
271. An example of a polar covalent compound is
a) KCl
b) NaCl
c) CCl_{4}
d) HCl
272. Which is not an exception to octet rule?
a) BF_{3}
b) SnCl_{4}
c) BeI_{2}
d) ClO_{2}
273. The molecules having dipole moment are:
a) 2, 2-dimethylpropane
b) Trans-3-hexene
c) Trans-2-pentene
d) 2, 2,3, 3-tetramethylbutane
274. Which of the following species has a bond order other than 3 ?
a) CO
b) CN^{-}
c) NO^{+}
d) O_{2}^{+}
275. Which of the following is planar?
a) XeF_{2}
b) $\mathrm{XeO}_{3} \mathrm{~F}$
c) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
d) XeF_{4}
276. Among the following species, identify the pair having same bond order $\mathrm{CN}^{-}, \mathrm{O}_{2}^{-}, \mathrm{NO}^{+}, \mathrm{CN}^{+}$
a) CN^{-}and O_{2}^{-}
b) O_{2}^{-}and NO^{+}
c) CN^{-}and NO^{+}
d) CN^{-}and CN^{+}
277. The bond angle and dipole moment of water respectively, are
a) $109.5^{\circ}, 1.84 \mathrm{D}$
b) $107.5^{\circ}, 1.56 \mathrm{D}$
c) $104.5^{\circ}, 1.84 \mathrm{D}$
d) $102.5^{\circ}, 1.56 \mathrm{D}$
278. The correct order of increasing bond angles in the following species is:
a) $\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}<\mathrm{ClO}_{2}^{-}$
b) $\mathrm{ClO}_{2}<\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}^{-}$
c) $\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}^{-}<\mathrm{ClO}_{2}$
d) $\mathrm{ClO}_{2}^{-}<\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}$
279. Which compound shows hydrogen bonding?
a) $\mathrm{RCH}_{2} \mathrm{NHCH}_{3}$
b) $\mathrm{RCH}_{2} \mathrm{CHO}$
c) $\mathrm{C}_{2} \mathrm{H}_{6}$
d) HCl
280. Chlorine atom differs from chloride ion in the number of:
a) Protons
b) Neutrons
c) Electrons
d) Protons and electrons
281. What is the reason for unusual high b.p. of water?
a) Due to the presence of H^{+}and OH^{-}ions in water
b) Due to dipole - dipole interactions
c) Due to London forces
d) Strong London Forces
282. The increasing order of the first ionization enthalpies of the elements B, P, S and F (lower first) is:
a) $\mathrm{F}<\mathrm{S}<\mathrm{P}<\mathrm{B}$
b) $\mathrm{P}<\mathrm{S}<\mathrm{B}<\mathrm{F}$
c) $\mathrm{B}<\mathrm{P}<\mathrm{S}<\mathrm{F}$
d) B $<$ S $<$ P $<$ F
283. The $\mathrm{IP}_{1}, \mathrm{IP}_{2}, \mathrm{IP}_{3}, \mathrm{IP}_{4}$, and IP_{5} of an element are 7.1, 14.3, $34.5,46.8,162.2 \mathrm{eV}$ respectively. The element is
likely to be:
a) Na
b) Si
c) F
d) Ca
284. Which of the following is paramagnetic?
a) B_{2}
b) C_{2}
c) N_{2}
d) F_{2}
285. Ionization potential of Na would be numerically the same as:
a) Electron affinity of Na^{+}
b) Electronegativity of Na^{+}
c) Electron affinity of He
d) Ionization potential of Mg
286. Which one of the following conversions involve change in both hybridisation and shape?
a) $\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
b) $\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}$
c) $\mathrm{BF}_{3} \rightarrow \mathrm{BF}_{4}^{-}$
d) $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$
287. According to MO theory,
a) O_{2}^{+}is paramagnetic and bond order greater than O_{2}
b) O_{2}^{+}is paramagnetic and bond order less than O_{2}
c) O_{2}^{+}is diamagnetic and bond order is less than O_{2}
d) O_{2}^{+}is diamagnetic and bond order is more than O_{2}
288. If the molecule of HCl were totally polar, the expected value of dipole moment is 6.12 D (dbye), but the experimental value of dipole moment was 1.03 D . Calculate the percentage ionic character
a) 17
b) 83
c) 50
d) Zero
289. The order of first electron affinity of $0, S$ and $S e$ is:
a) $0>S>S e$
b) $\mathrm{S}>0>\mathrm{Se}$
c) $\mathrm{Se}>0>\mathrm{S}$
d) $\mathrm{Se}>$ S >0
290. The nodal plane in the π-bond of ethane is located in:
a) The molecular plane
b) A plane parallel to the molecular plane
c) A plane perpendicular to the molecular plane which bisects the carbon-carbon σ-bond at right angle
d) A plane perpendicular to the molecular plane which contains the carbon-carbon σ-bond
291. The correct electronegativity order is:
a) $\mathrm{C}, \mathrm{N}, \mathrm{Si}, \mathrm{P}$
b) N, Si, C, P
c) $\mathrm{Si}, \mathrm{P}, \mathrm{C}, \mathrm{N}$
d) P, Si, N, C
292. The pair of species having identical shapes for molecules of both species is
a) $\mathrm{CF}_{4}, \mathrm{SF}_{4}$
b) $\mathrm{XeF}_{2}, \mathrm{CO}_{2}$
c) $\mathrm{BF}_{3}, \mathrm{PCl}_{3}$
d) $\mathrm{PF}_{5}, \mathrm{IF}_{5}$
293. Amongst the following, the molecule that is linear is
a) SO_{2}
b) CO_{2}
c) ClO_{2}
d) NO_{2}
294. Using MO theory predict which of the following species has the shortest bond length?
a) O_{2}^{2+}
b) O_{2}^{+}
c) O_{2}^{-}
d) O_{2}^{2-}
295. The hybridisation of carbon atom in benzene is?
a) $s p$
b) $s p^{2}$
c) $s p^{3}$
d) $d s p^{2}$
296. Bond angle between two hybrid orbitals is 105°. Hybrid character orbital is:
a) Between $20-21 \%$
b) Between 19-20\%
c) Between 21-22\%
d) Between 22-23\%
297. KF combines with HF to form KHF_{2}. The compound contains the species:
a) $\mathrm{K}^{+}, \mathrm{F}^{-}$and H^{+}
b) $\mathrm{K}^{+}, \mathrm{F}^{-}$and HF
c) K^{+}and $\left[\mathrm{HF}_{2}\right]^{-}$
d) $[\mathrm{KHF}]^{+}$and F^{-}
298. o-hydroxy benzaldehyde, although contains enolic group but does not give test of group with FeCl_{3} because:
a) It is steam volatile
b) Of intermolecular H-bonding
c) Of intramolecular H-bonding
d) All of the above
299. Iron is tougher than sodium because:
a) Iron atom is smaller
b) Iron atoms are more closely packed
c) Metallic bonds are stronger in iron
d) None of the above
300. Correct order of bond angles in $\mathrm{NH}_{3}, \mathrm{PCl}_{3}$ and BCl_{3} is
a) $\mathrm{PCl}_{3}>\mathrm{NH}_{3}>B C l_{3}$
b) $\mathrm{NH}_{3}>\mathrm{BCl}_{3}>\mathrm{PCl}_{3}$
c) $\mathrm{NH}_{3}>\mathrm{PCl}_{3}>\mathrm{BCl}_{3}$
d) $\mathrm{BCl}_{3}>\mathrm{NH}_{3}>\mathrm{PCl}_{3}$
301. The number of π - bonds present in propyne is
a) 4
b) 1
c) 3
d) 2
302. A bond with maximum covalent character between non-metallic elements is formed:
a) Between identical atoms
b) Between chemically similar atoms
c) Between atoms of widely different electro-negativities
d) Between atoms of the same size
303. The compound in which underlined carbon uses only its $s p^{3}$ hybrid orbitals for bond formation is
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
d) $\mathrm{CH}_{2} \underline{\mathrm{CH}}=\mathrm{CH}_{2}$
304. Consider the following compounds
(i) chloroethene
(ii) benzene
(iii) 1, 3-butadiene
(iv) 1,3,5 - hexatriene

All the carbon atoms are $s p^{2}$ hybridised in
a) (i), (iii), (iv) only
b) (i), (ii) only
c) (ii), (ii), (iv) only
d) (i), (ii), (iii) and (iv)
305. When ionic compounds get dissolved in water:
a) They involve heat changes
b) Inter-ionic attraction is reduced
c) Ions show dipole-ion attraction with water molecules
d) All are correct
306. Pick the odd one out (The one having zero dipole moment):
a) NH_{3}
b) $\mathrm{H}_{2} \mathrm{O}$
c) BCl_{3}
d) SO_{2}
307. Which of the following shows minimum bond angle?
a) $\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{H}_{2} \mathrm{Se}$
c) $\mathrm{H}_{2} \mathrm{~S}$
d) $\mathrm{H}_{2} \mathrm{Te}$
308. Among the following isostructural compounds, identify the compound which has the highest lattice energy
a) LiF
b) LiCl
c) NaCl
d) MgO
309. Which species is diamagnetic in nature?
a) He_{2}^{+}
b) H_{2}
c) H_{2}^{+}
d) H_{2}^{-}
310. Which of the following compounds would have the highest boiling point?
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
b) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
c) $\mathrm{CH}_{3} \mathrm{OH}$
d) $\mathrm{CH}_{2} \mathrm{~F}_{2}$
311. Hybridisation of central atom in NF_{3} is
a) $s p^{3}$
b) $s p$
c) $s p^{2}$
d) $d s p^{2}$
312. Which of the compounds has highest boiling point?
a) Acetone
b) Diethyl ether
c) Methanol
d) Ethanol
313. The number and type of bonds between two carbon atoms in CaC_{2} are:
a) One sigma (σ) and one pi (π)-bond
b) One sigma (σ) and two pi (π)-bonds
c) One sigma (σ) and one and a half pi (π)-bond
d) One sigma (σ) bond
314. Which of the following hydrogen bonds are strongest in vapour phase?
a) HF---HF
b) $\mathrm{HF}---\mathrm{HCl}$
c) $\mathrm{HCL}---\mathrm{HCl}$
d) $\mathrm{HF}---\mathrm{Hi}$
315. The bond angle and hybridization in ether $\left(\mathrm{CH}_{3} \mathrm{OCH}_{3}\right)$ is:
a) $106^{\circ} 51^{\prime}, s p^{3}$
b) $104^{\circ} 31^{\prime}, s p^{3}$
c) $110^{\circ}, s p^{3}$
d) None of these
316. Which has the highest bond energy?
a) Hydrogen bond
b) Triple bond
c) Double bond
d) Single bond
317. Among the following compounds the one that is polar and has central atom with $s p^{2}$-hybridisation is:
a) $\mathrm{H}_{2} \mathrm{CO}_{3}$
b) SiF_{4}
c) BF_{3}
d) HClO_{2}
318. The incorrect statement among the following is:
a) The first ionization potential of Al is less than the first ionization potential of Mg
b) The second ionization potential of Mg is greater than the second ionization potential of Na
c) The first ionization potential of Na is less than the first ionization potential of Mg
d) The third ionization potential of Mg is greater than the third ionization potential of Al
319. The bond angle is smallest in
a) $\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{H}_{2} \mathrm{~S}$
c) BeCl_{2}
d) $\mathrm{N}_{2} \mathrm{O}$
320. The number of electrons in the valence shell of sulphur in SF_{6} is
a) 12
b) 10
c) 8
d) 11
321. Acetic acid exists as dimer in benzene due to:
a) Condensation reaction
b) Hydrogen bonding
c) Presence of carboxyl group
d) Presence of hydrogen atom at α-carbon
322. The correct order of hybridization of the central atom in the following species $\mathrm{NH}_{3},\left[\mathrm{PtCl}_{4}\right]^{2-}, \mathrm{PCl}_{5}$ and BCl_{3} is:
a) $d s p^{2}, d s p^{3}, s p^{2}, s p^{3}$
b) $s p^{3}, d s p^{2}, d s p^{3}, s p^{2}$
c) $d s p^{2}, s p^{2}, s p^{3}, d s p^{3}$
d) $d s p^{2}, s p^{3}, s p^{2}, d s p^{3}$
323. Chemical bond formation takes place when?
a) Energy is absorbed
b) Forces of attraction overcome forces of repulsion
c) Forces of repulsion overcome forces of attraction
d) Forces of attraction are equal to forces of repulsion
324. NH_{3} has higher boiling point than expected, because:
a) With water it forms $\mathrm{NH}_{4} \mathrm{OH}$
b) It has strong intermolecular hydrogen bonds
c) It has strong intermolecular covalent bonds
d) Its density decreases in freezing
325. Which of the following represents the Lewis structure of N_{2} molecule?
a) ${ }_{\times} \times N \equiv{ }^{\times} \times$
b)

c)

d)

326. Which of the following has a bond order of 1.75 ?
a) ClO_{3}^{-}
b) ClO_{4}^{-}
c) NO_{3}^{-}
d) CO_{3}^{2-}
327. Higher is the bond order, greater is:
a) Bond dissociation energy
b) Covalent character
c) Bond length
d) Paramagnetism
328. Which has the highest ionisation potential?
a) Na
b) Mg
c) C
d) F
329. Strongest bond is in:
a) NaCl
b) CsCl
c) Both (a) and (b)
d) None of these
330. Which of the following is not correct with respect to bond length of the species?
a) $\mathrm{C}_{2}>\mathrm{C}_{2}^{2-}$
b) $\mathrm{B}_{2}^{+}>\mathrm{B}_{2}$
c) $\mathrm{Li}_{2}^{+}>\mathrm{Li}_{2}$
d) $\mathrm{O}_{2}>\mathrm{O}_{2}^{-}$
331. The bond order in O_{2}^{2-} ion is
a) 3
b) 2
c) $3 / 2$
d) 1
332. Which is likely to have the highest melting point?
a) He
b) CsF
c) NH_{3}
d) CHCl_{3}
333. Which of the following are not correct?
a) Lone pair of electrons present on central atom can give rise to dipole moment
b) Dipole moment is vector quantity
c) CO_{2} molecule has dipole moment
d) Difference in electronegativities of combining atoms can lead to dipole moment
334. In the formation of N_{2}^{+}from N_{2}, the electron is lost from:
a) a σ-orbital
b) a π-orbital
c) a σ^{*}-orbital
d) a π^{*}-orbital
335. Bond angle of $109^{\circ} 28^{\prime}$ is found in
a) NH_{3}
b) $\mathrm{H}_{2} \mathrm{O}$
c) $\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{5}$
d) $\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{4}$
336. The half of the difference between the number of electrons in bonding molecular orbitals and antibonding molecular orbitals is known as:
a) Bond order
b) Proton order
c) Molecular order
d) Electron order
337. Which of the following set contains species having same angle around the central atom?
a) $\mathrm{SF}_{4}, \mathrm{CH}_{4}, \mathrm{NH}_{3}$
b) $\mathrm{NF}_{3}, \mathrm{BCl}_{3}, \mathrm{NH}_{3}$
c) $\mathrm{BF}_{3}, \mathrm{NF}_{3}, \mathrm{AlCl}_{3}$
d) $\mathrm{BF}_{3}, \mathrm{BCl}_{3}, \mathrm{BBr}_{3}$
338. At ordinary temperature and pressure, among halogens, the chlorine is a gas, bromine is a liquid and iodine is a solid. This is because:
a) The specific heat is in the order $\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$
b) Intermolecular forces among molecules of chlorine are the weakest and those in iodine are the strongest
c) The order of density is $\mathrm{I}_{2}>\mathrm{Br}_{2}>\mathrm{Cl}_{2}$
d) The order of stability is $\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$
339. Which of the following has lowest bond angle?
a) BeF_{2}
b) $\mathrm{H}_{2} \mathrm{O}$
c) NH_{3}
d) CH_{4}
340. Which of the following has shortest carbon-carbon bond length?
a) $\mathrm{C}_{6} \mathrm{H}_{6}$
b) $\mathrm{C}_{2} \mathrm{H}_{6}$
c) $\mathrm{C}_{2} \mathrm{H}_{4}$
d) $\mathrm{C}_{2} \mathrm{H}_{2}$
341. Which one of the following constitutes a group of the isoelectronic species?
a) $\mathrm{C}_{2}^{2-}, \mathrm{O}_{2}^{-}, \mathrm{CO}, \mathrm{NO}$
b) $\mathrm{NO}^{+}, \mathrm{C}_{2}^{2-}, \mathrm{CN}^{-}, \mathrm{N}_{2}$
c) $\mathrm{CN}^{-}, \mathrm{N}_{2}, \mathrm{O}_{2}^{2-}, \mathrm{CO}_{3}^{2-}$
d) $\mathrm{N}_{2}, \mathrm{O}_{2}^{-}, \mathrm{NO}^{+}, \mathrm{CO}$
342. The $s p^{3} d^{2}$ hybridisation of central atom of a molecule would lead to
a) Square planar geometry
b) Tetrahedral geometry
c) Trigonal bipyramidal geometry
d) Octahedral geometry
343. Methanol and ethanol are miscible in water due to:
a) Covalent character
b) Hydrogen bonding character
c) Oxygen bonding character
d) None of the above
344. The shape of ClF_{3} is
a) Distorted T-shape
b) Pyramidal
c) Tetrahedral
d) Trigonal planar
345. Which are true statements among the following?
(1) PH_{5} and BiCl_{5} does not exist
(2) $p \pi-d \pi$ bonds are present in SO_{2}
(3) Electrons travel with speed of light
(4) SeF_{4} and CH_{4} has same shape
(5) I_{3}^{+}has bent geometry
a) 1,3
b) $1,2,5$
c) $1,3,5$
d) $1,2,4$
346. The actual geometry of NO_{2}^{-}is
a) Planar
b) Linear
c) V-shape
d) Tetrahedral
347. Which has the lowest anion to cation size ratio?
a) LiF
b) NaF
c) CsI
d) CsF
348. The energy change accompanying the process given below is, $\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \longrightarrow \mathrm{NaCl}(s):$
a) Hydration energy
b) Ionization energy
c) Electron affinity
d) Lattice energy
349. Which of the following has covalent bond?
a) $\mathrm{Na}_{2} \mathrm{~S}$
b) AlCl_{3}
c) NaH
d) MgCl_{2}
350. The correct order in which the $\mathrm{O}-\mathrm{O}$ bond length increases in the following is
a) $\mathrm{O}_{2}<\mathrm{O}_{3}<\mathrm{H}_{2} \mathrm{O}_{2}$
b) $\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{O}_{3}<\mathrm{O}_{2}$
c) $\mathrm{O}_{3}<\mathrm{O}_{2}<\mathrm{H}_{2} \mathrm{O}_{2}$
d) $\mathrm{O}_{2}<\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{O}_{3}$
351. N_{2} is less reactive than CN^{-}due to
a) Difference in spin quantum number
b) Presence of more electrons in orbitals
c) Absence of dipole moment
d) None of the above
352. According to molecular orbital theory for O_{2}^{+}:
a) Bond order is less than O_{2} and O_{2}^{+}is paramagnetic
b) Bond order is more than O_{2} and O_{2}^{+}is paramagnetic
c) Bond order is less than O_{2} and O_{2}^{+}is diamagnetic
d) Bond order is more than O_{2} and O_{2}^{+}is diamagnetic
353. As compared to covalent compounds, electrovalent compounds generally have:
a) Low melting points and low boiling points
b) High melting points and high boiling points
c) Low melting points and high boiling points
d) High melting points and low boiling points
354. Which is present in peroxides?
a) O_{2}
b) O^{2-}
c) O_{2}^{2-}
d) O_{2}^{-}
355. Two hybrid orbitals have a bond angle of 120°. The percentage ofs character in the hybrid orbital is nearly
a) 25%
b) 33%
c) 50%
d) 66%
356. Which molecule is T-shaped?
a) BeF_{2}
b) BCl_{3}
c) NH_{3}
d) ClF_{3}
357. Which of the following is paramagnetic?
a) O_{2}
b) CN^{-}
c) CO
d) NO^{+}
358. Dipole moment is highest for:
a) CHCl_{3}
b) CH_{4}
c) CHF_{3}
d) CCl_{4}
359. Which will not conduct electricity?
a) Aqueous KOH solution
b) Fused NaCl
c) Graphite
d) KCl in solid state
360. The ionization potential order for which set is correct?
a) $\mathrm{Li}>\mathrm{K}>\mathrm{Cs}$
b) $\mathrm{B}>\mathrm{Li}>\mathrm{K}$
c) $\mathrm{Cs}>\mathrm{Li}>\mathrm{B}$
d) $\mathrm{Cs}<\mathrm{Li}<\mathrm{K}$
361. The bond that determines the secondary structure of a protein is:
a) Coordinate bond
b) Covalent bond
c) Hydrogen bond
d) Ionic bond
362. Molecular orbital theory was developed mainly by
a) Pauling
b) Mulliken
c) Thomson
d) Pauling and Slater
363. Which species has lone pair on central atom?
a) CCl_{4}
b) CH_{4}
c) NH_{4}^{+}
d) $\mathrm{H}_{2} \mathrm{O}$
364. In which of the following molecules/ions are all the bonds not equal?
a) SF_{4}
b) SiF_{4}
c) XeF_{4}
d) BF_{4}^{-}
365. Super octet molecule is:
a) $\mathrm{F}_{3} \mathrm{Cl}$
b) PCl_{3}
c) NH_{3}
d) None of these
366. The number of unpaired electrons in a paramagnetic diatomic molecule of an element with atomic number 16 is:
a) 4
b) 1
c) 2
d) 3
367. Which of the following statement is not correct?
a) Hybridisation is the mixing of atomic orbitals prior to their combining into molecular orbitals
b) $s p^{2}$ hybrid orbitals are formed from two p-atomic orbitals and one s-orbital
c) $d^{2} s p^{3}$ hydride orbitals are directed towards the corners of a regular octahedron
d) $d s p^{3}$ hybrid orbitals are all at 90° to one another
368. Which statement is correct?
a) Pi-bond always exists with sigma-bond
b) Pi-bond can exist independently
c) Sigma-bond is weaker than pi-bond
d) Pi-bond is less reactive than sigma-bond
369. Which of the following pair has same structure?
a) PCl_{5} and SF_{6}
b) SO_{2} and NH_{3}
c) PH_{3} and BCl_{3}
d) NH_{4}^{+}and SO_{4}^{2-}
370. Which of the following has dipole moment?
a) CO_{2}
b) p-dichlorobenzene
c) NH_{3}
d) CH_{4}
371. Which one of the following is highest melting halide?
a) AgCl
b) AgBr
c) AgF
d) AgI
372. The hybridisation state of central atom in PCl_{5} is
a) $s p^{3} d$
b) $s p^{3} d^{2}$
c) $s p^{3}$
d) $d^{2} s p^{3}$
373. The correct order of increasing bond angles in the following triatomic species is:
a) $\mathrm{NO}_{2}^{-}<\mathrm{NO}_{2}<\mathrm{NO}_{2}^{+}$
b) $\mathrm{NO}_{2}^{+}<\mathrm{NO}_{2}<\mathrm{NO}_{2}^{-}$
c) $\mathrm{NO}_{2}^{+}<\mathrm{NO}_{2}^{-}<\mathrm{NO}_{2}$
d) $\mathrm{NO}_{2}^{-}<\mathrm{NO}_{2}^{+}<\mathrm{NO}_{2}$
374. $\mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{Ca}^{2+}, \mathrm{S}^{2-}$ ions are isoelectronic. The decreasing order of their size is:
a) $\mathrm{S}^{2-}>\mathrm{Cl}^{-}>\mathrm{K}^{+}>\mathrm{Ca}^{2+}$
b) $\mathrm{Ca}^{2+}>\mathrm{K}^{+}>\mathrm{Cl}^{-}>\mathrm{S}^{2-}$
c) $\mathrm{K}^{+}>\mathrm{Cl}^{-}>\mathrm{Ca}^{2+}>\mathrm{S}^{2-}$
d) $\mathrm{Cl}^{-}>\mathrm{S}^{2-}>\mathrm{Ca}^{2+}>\mathrm{K}^{+}$
375. As the s-character of hybridization orbitals increases, the bond angle:
a) Increases
b) Decreases
c) Does not change
d) Becomes zero
376. AlCl_{3} is covalent while AlF_{3} is ionic. This fact can be justified on the basis of
a) Valence bond theory
b) Crystal structure
c) Lattice energy
d) Fajan rule
377. Which one of the following is a correct set with respect to molecule, hybridisation and shape?
a) $\mathrm{BeCl}_{2}, s p^{2}$, linear
b) $\mathrm{BeCl}_{2}, s p^{2}$, triangular planar
c) $\mathrm{BCl}_{3}, s p^{2}$, triangular planar
d) $\mathrm{BCl}_{3}, s p^{3}$, tetrahedral
378. In BrF_{3} molecule, the lone pairs occupy equatorial positions to minimize
a) Lone pair - bond pair repulsion only
b) Bond pair - bond pair repulsion only
c) Lone pair - lone pair repulsion and lone pair - bond pair repulsion
d) Lone pair - lone pair repulsion only
379. The correct order of decreasing polarity is
a) $\mathrm{HF}>\mathrm{SO}_{2}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}$
b) $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{SO}_{2}>\mathrm{NH}_{3}$
c) $\mathrm{HF}>\mathrm{NH}_{3}>\mathrm{SO}_{2}>\mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}>\mathrm{SO}_{2}>\mathrm{HF}$
380. The process requiring the absorption of energy is:
a) $\mathrm{F}-\mathrm{F}^{-}$
b) $\mathrm{H} \rightarrow \mathrm{H}^{-}$
c) $\mathrm{Cl} \rightarrow \mathrm{Cl}^{-}$
d) $\mathrm{O} \rightarrow \mathrm{O}^{2-}$
381. In $\mathrm{O}_{2}^{-}, \mathrm{O}_{2}$ and O_{2}^{2-} molecular species, the total number of antibonding electrons respectively are
a) $7,6,8$
b) $1,0,2$
c) $6,6,6$
d) $8,6,8$
382. $s p^{3}$ hybridisation is found in
a) CO_{3}^{2-}
b) BF_{3}
c) NO_{3}^{-}
d) NH_{3}
383. Among the following metals interatomic forces are probably weakest in:
a) Cu
b) Ag
c) Zn
d) Hg
384. Which of the following phenomenon will occur when two atoms of an element with same spin of electron in orbitals approach each other?
a) Orbitals will overlap
b) Orbitals will not overlap
c) Bonding will take place
d) A diatomic molecule will be formed
385. If the bond has zero per cent ionic character, the bond is:
a) Pure covalent
b) Partial covalent
c) Partial ionic
d) Coordinate covalent
386. Which bond angle θ would result in the maximum dipole moment for the triatomic molecule $y x y$?
a) $\theta=90^{\circ}$
b) $\theta=120^{\circ}$
c) $\theta=150^{\circ}$
d) $\theta=180^{\circ}$
387. The species having bond order different from that in CO is
a) NO^{-}
b) NO^{+}
c) CN^{-}
d) N_{2}
388. The species having octahedral shape is:
a) SF_{6}
b) BF_{4}^{-}
c) PCl_{5}
d) BO_{3}^{3-}
389. The following compounds have been arranged in order of their increasing thermal stabilities. Identify the correct order:

$$
\begin{array}{ll}
\mathrm{K}_{2} \mathrm{CO}_{3} \text { (I) } & \mathrm{MgCO}_{3} \text { (II) } \\
\mathrm{CaCO}_{3} \text { (III) } & \mathrm{BeCO}_{3} \text { (IV) }
\end{array}
$$

a) I $<$ II $<$ III $<$ IV
b) IV $<$ II $<$ III $<$ I
c) IV $<$ II $<$ I $<$ III
d) II $<$ IV $<$ III $<$ I
390. Which of the following will show least dipole moment?
a) Ethane
b) Ether
c) Ethanol
d) Water
391. Which has the minimum bond energy?
a) $\mathrm{H}-\mathrm{Br}$
b) $\mathrm{H}-\mathrm{I}$
c) $I-I$
d) $\mathrm{H}-\mathrm{H}$
392. The polarising ability of which one of the following is highest?
a) Small highly positive ion
b) Large positive ion
c) Small highly negative ion
d) Large negative ion
393. Which is expected to show paramagnetism?
a) ClO_{2}
b) SO_{2}
c) CO_{2}
d) SiO_{2}
394. Highest covalent character is found in which of the following?
a) CaF_{2}
b) CaCl_{2}
c) CaI_{2}
d) CaBr_{2}
395. The molecule which has zero moment is
a) $\mathrm{CH}_{3} \mathrm{Cl}$
b) NF_{3}
c) BF_{3}
d) ClO_{2}
396. Hydrogen bond is strongest in
a) $\mathrm{S}-\mathrm{H}----\mathrm{O}$
b) $\mathrm{O}-\mathrm{H}-\mathrm{H}^{--\mathrm{S}}$
c) $\mathrm{F}-\mathrm{H}----\mathrm{F}$
d) $\mathrm{O}-\mathrm{H}----\mathrm{N}$
397. The only molecule having dipole moment is
a) 2,2-dimethylpropane
b) trans-2-pentene
c) $\operatorname{trans-3-hexene}$
d) 2,2,3,3-tetramethylbutane
398. Two lone pairs of electrons and two bond pairs are present in:
a) NH_{3}
b) BF_{3}
c) CO_{3}^{2-}
d) NH_{2}^{-}
399. The lattice enthalpy and hydration enthalpy of four compounds are given below.
$\left.\begin{array}{|c|c|c|}\hline \text { Compound } & \begin{array}{c}\text { Lattice } \\ \text { enthalpy } \\ \text { (in kJ mol }\end{array}\end{array} \begin{array}{c}\text { Hydration } \\ \text { enthalpy } \\ \text { (in kJ mol }\end{array}\right)$

The pair of compounds which is soluble in water is
a) P and Q
b) Q and R
c) R and S
d) P and R
400. The increase in bond order results in:
a) Decrease in bond length and increase in bond energy
b) Decrease in bond length and bond energy
c) Increase in bond length and bond energy
d) None of the above
401. The correct stability order of the following resonance structure is

a) (I) $>$ (II) $>$ (IV) $>$ (III)
b) (I) $>$ (III) $>$ (II) $>$ (IV)
c) (II) $>$ (I) $>$ (III) $>$ (IV)
d) (III) $>$ (I) $>$ (IV) $>$ (II)
402. Which is not characteristic of π-bond?
a) π-bond is formed when a sigma bond already formed
b) π-bond is formed from hybrid orbitals
c) π-bond may be formed by the overlapping of p-orbitals
d) π-bond results from lateral overlap of atomic orbitals
403. A molecule in which $s p^{2}$-hybrid orbitals are used by the central atom in forming covalent bond is:
a) He_{2}
b) SO_{2}
c) PCl_{5}
d) N_{2}
404. Which species has the highest bond order?
a) O_{2}
b) O_{2}^{2-}
c) N_{2}
d) Both O_{2} and O_{2}^{2-}
405. Molecular shapes of $\mathrm{SF}_{4}, \mathrm{CF}_{4}, \mathrm{XeF}_{4}$ are
a) The same with 2,0 and 1 lone pair of electron respectively
b) The same with 1,1 and 1 lone pair of electrons respectively
c) Different with 0,1 and 2 lone pair of electrons respectively
d) Different with 1, 0 and 2 lone pair of electrons respectively
406. The correct sequence of hybridisation of methane, ethene and acetylene is
a) $s p, s p^{2}, s p^{3}$
b) $s p^{2}, s p^{3}, s p$
c) $s p^{3}, s p^{2}, s p$
d) $s p^{3}, s p, s p^{2}$
407. The nature of the bond in diamond is
a) Ionic
b) Covalent
c) Metallic
d) Coordinate covalent
408. The set representing the correct order of first ionization potential is:
a) $\mathrm{K}>\mathrm{Na}>\mathrm{Li}$
b) $\mathrm{Be}>\mathrm{Mg}>\mathrm{Ca}$
c) $\mathrm{B}>\mathrm{C}>\mathrm{N}$
d) $\mathrm{Ge}>\mathrm{Si}>\mathrm{C}$
409. Amongst the following, the molecule that is linear is
a) SO_{2}
b) BeH_{2}
c) ClO_{2}
d) NO_{2}
410. Which of the following species does not exist under normal conditions?
a) Be^{2+}
b) Be_{2}
c) B_{2}
d) Li_{2}
411. How many σ and π - bonds are present in toluene?
a) $3 \pi+8 \sigma$
b) $3 \pi+10 \sigma$
c) $3 \pi+15 \sigma$
d) $6 \pi+3 \sigma$
412. Octet rule is not valid for the molecule:
a) CO_{2}
b) $\mathrm{H}_{2} \mathrm{O}$
c) O_{2}
d) CO
413. CO_{2} has the same geometry as:
(A) $\mathrm{HgCl}_{2},(B) \mathrm{NO}_{2},(C) \mathrm{SnCl}_{4},(D) \mathrm{C}_{2} \mathrm{H}_{2}$
a) A and C
b) B and D
c) A and D
d) C and D
414. Concept of bond order in the molecular orbital theory depends on the number of electrons in the bonding and antibonding orbitals. The bond order:
a) Can have a -ve value
b) Has always an integral value
c) Is a non-zero quantity
d) Can assume any + ve value, including zero
415. The number of σ and π-bonds in pent-4-en-1-yne are respectively:
a) 3,10
b) 9,4
c) 4,9
d) 10,3
416. The $\mathrm{Cl}-\mathrm{C}-\mathrm{Cl}$ angle in 1, 1, 2, 2-tetrachloroethene and tetrachloromethane respectively will be about:
a) 109.5° and 900°
b) 120° and 109.5°
c) 90° and 109.5°
d) 109.5° and 120°
417. Which set has strongest tendency to form anions?
a) $\mathrm{Ga}, \mathrm{In}, \mathrm{Te}$
b) $\mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$
c) $\mathrm{N}, \mathrm{O}, \mathrm{F}$
d) $\mathrm{V}, \mathrm{Cr}, \mathrm{Mn}$
418. From elementary molecular orbital theory we can give the electronic configuration of the singly positive nitrogen molecular ion N_{2}^{+}as
a) $l \sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \pi 2 p^{4}, \sigma 2 p^{1}$
b) $\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p^{2}, \pi 2 p^{3}$
c) $\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p^{3}, \pi 2 p^{2}$
d) $\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p^{2}, \pi 2 p^{4}$
419. NH_{3} has much higher boiling point than PH_{3} because
a) NH_{3} has larger molecular weight
b) NH_{3} undergoes umbrella inversion
c) NH_{3} forms hydrogen bond
d) NH_{3} contains ionic bonds whereas PH_{3} contains covalent bonds
420. In a crystal, the atoms are located at the positions of:
a) Maximum potential energy
b) Minimum potential energy
c) Zero potential energy
d) Infinite potential energy
421. Which substance has the greatest ionic character?
a) $\mathrm{Cl}_{2} \mathrm{O}$
b) NCl_{3}
c) PbCl_{2}
d) BaCl_{2}
422. The conductivity of the metal decreases with increases in temperature because
a) The kinetic energy of the electron increases
b) The movement of electrons becomes haphazard
c) The kernels start vibrating
d) The metal becomes hot and starts emitting radiations
423. Which of the following when dissolved in water forms a solution, i.e., non-conducting?
a) Chile salt petre
b) Potash alum
c) Green vitriol
d) Ethyl alcohol
424. Which bond is more polar?
a) $\mathrm{Cl}-\mathrm{Cl}$
b) $\mathrm{N}-\mathrm{F}$
c) $\mathrm{C}-\mathrm{F}$
d) $0-\mathrm{F}$
425. The pairs of bases in DNA are held together by:
a) Hydrogen bonds
b) Ionic bonds
c) Phosphate groups
d) Deoxyribose groups
426. Which of the following has highest bond angle?
a) $\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{H}_{2} \mathrm{~S}$
c) NH_{3}
d) PH_{3}
427. The compound in which carbon atom uses only $s p^{3}$ - hybrid orbitals for bond formation is
a) HCOOH
b) $\mathrm{NH}_{2} \mathrm{CONH}_{2}$
c) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
d) $\mathrm{CH}_{3} \mathrm{CHO}$
428. For the type of interactions; (I) Covalent bond, (II) van der Waals' forces, (III) Hydrogen bonding, (IV) Dipole-dipole interaction, which represents the correct order of increasing stability?
a) (I) $<$ (III) $<$ (II) $<$ (IV)
b) (II) $<$ (III) $<$ (IV) $<$ (I)
c) (II) $<$ (IV) $<$ (III) $<$ (I)
d) (IV) $<$ (II) $<$ (III) $<$ (I)
429. If the ionization potential for hydrogen atom is 13.6 eV , then the ionization potential for He^{+}ion should be:
a) 72.2 eV
b) 54.4 eV
c) 6.8 eV
d) 13.6 eV
430. The hydrogen bonding is strongest in:
a) $0-\mathrm{H} \ldots \mathrm{S}$
b) $\mathrm{S}-\mathrm{H} . . . \mathrm{O}$
c) $\mathrm{F}-\mathrm{H}$... F
d) $\mathrm{F}-\mathrm{H} . . . \mathrm{O}$
431. The correct increasing order of polarising power is:
a) $\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}<\mathrm{K}^{+}$
b) $\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}$
c) $\mathrm{Be}^{2+}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}$
d) $\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}$
432. Acetate ion contains:
a) One C, O single bond and one C, O double bond
b) Two C, 0 single bonds
c) Two C, O double bonds
d) None of the above
433. Which one is paramagnetic and has the bond order half (0.5)?
a) F_{2}
b) N_{2}
c) O_{2}
d) H_{2}^{+}
434. Which one is correct?
a) Dinitrogen is paramagnetic
b) Dihydrogen is paramagnetic
c) Dioxygen is paramagnetic
d) Dioxygen is diamagnetic
435. IP is influenced by:
a) Size of atom
b) Charge on nucleus
c) Electrons present in inner shells
d) All of the above
436. The hybridization of atomic orbitals of nitrogen in $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$and NH_{4}^{+}are:
a) $s p, s p^{3}$ and $s p^{2}$ respectively
b) $s p, s p^{2}$ and $s p^{3}$ respectively
c) $s p^{2}, s p$ and $s p^{3}$ respectively
d) $s p^{2}, s p^{3}$ and $s p$ respectively
437. The bond between carbon atoms (1) and (2) in compound $\mathrm{N} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$,
involves the hybrid orbitals;
a) $s p^{2}, s p^{3}$
b) $s p, s p^{2}$
c) $s p, s p^{3}$
d) $s p, s p$
438. Which of the following has lowest boiling point?
a) NaCl
b) CuCl
c) CuCl_{2}
d) CsCl
439. When metals react with non-metals, the metal atoms tend to
a) Share electrons
b) Lose electrons
c) Gain electrons
d) None of the above
440. Which one has more tendency to form covalent compounds?
a) Ba
b) Be
c) Mg
d) Ca
441. The order of melting point of ortho, para, meta-nitrophenol is
a) $o>m>p$
b) $p>m>0$
c) $m>p>o$
d) $p>o>m$
442. Number of non-bonding electron pair on Xe in $\mathrm{XeF}_{6}, \mathrm{XeF}_{4}$ and XeF_{2} respectively will be
a) $6,4,2$
b) $1,2,3$
c) $3,2,1$
d) $0,3,2$
443. The hybridization of carbon in diamond, graphite and acetylene is:
a) $s p^{3}, s p^{2}, s p$
b) $s p^{3}, s p, s p^{2}$
c) $s p^{2}, s p^{3}, s p$
d) $s p, s p^{3} s p^{2}$
444. The molecule, ion which is pyramidal in shape is
a) NO_{3}^{-}
b) PCl_{3}
c) CO_{3}^{2-}
d) SO_{3}
445. The number of lone pairs of Xe in $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}$ and XeF_{6} respectively are
a) $3,2,1$
b) $2,4,6$
c) $1,2,3$
d) $6,4,2$
446. The electronic structure of the four elements A, B, C and D are, $(A)=1 s^{2} ;(B)=1 s^{2}, 2 s^{2} 2 p^{2} ;(C)=$ $1 s^{2}, 2 s^{2} 2 p^{5} ;(D)=1 s^{2}, 2 s^{2} 2 p^{6}$.
The tendency to form electrovalent bond is maximum in:
a) A
b) B
c) C
d) D
447. $\mathrm{C}-\mathrm{C}$ bond order in benzene is
a) 1
b) 2
c) Between 1 and 2
d) None of these
448. For the formation of covalent bond, the difference in the value of electronegativities should be:
a) Equal to or less than 1.7
b) More than 1.7
c) 1.7 or more
d) None of the above
449. Which among the following elements has lowest value of ionisation energy?
a) Pb
b) Sn
c) Si
d) C
450. In coordinate bond, the acceptor atoms must essentially contain in its valency shell an orbitals:
a) With paired electron
b) With single electron
c) With no electron
d) With three electrons
451. How many σ-and π-bonds are there in the molecule of tetracyanoethylene?

a) Nine σ - and nine π
b) Five σ - and nine π
c) Nine σ - and seven π
d) Five σ - and eight π
452. Paramagnetism of oxygen is explained on the basis of its electronic configuration of
a) $\left(\stackrel{*}{\pi} 2 p_{x}\right)^{1}\left(\pi 2 p_{y}\right)^{1}$
b) $\left(\stackrel{*}{\pi} 2 p_{y}\right)^{1}\left(\stackrel{*}{\pi} 2 p_{z}\right)^{1}$
c) $\left({ }^{*} \alpha 2 s\right)^{1}\left(\pi 2 p_{y}\right)^{1}$
d) $\left(\sigma_{2 s}^{*}\right)^{1}\left(\pi 2 p_{y}\right)^{1}$
453. The compound possessing most strongly ionic nature is:
a) SrCl_{2}
b) BaCl_{2}
c) CaCl_{2}
d) CsCl
454. The complex ion which has no ' d ' electrons in the central metal atom is:
a) $\left[\mathrm{MnO}_{4}\right]^{-}$
b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
c) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
d) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
455. Which of the following species is least stable?
a) O_{2}
b) O_{2}^{+}
c) O_{2}^{-}
d) O_{2}^{2-}
456. The dipole moment of HBr is $1.6 \times 10^{-30} \mathrm{C}-\mathrm{m}$ and interatomic spacing is $1 \AA$. The \% ionic character of HBr is
a) 7
b) 10
c) 15
d) 27
457. Which group of atoms have nearly same atomic radius?
a) $\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$
b) $\mathrm{Li}, \mathrm{Be}, \mathrm{B}, \mathrm{C}$
c) $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}$
d) $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$
458. Bond polarity of diatomic molecule is because of
a) Difference in electron affinity of the two atoms
b) Difference in electronegativities of the two atoms
c) Difference in ionisation potential
d) All of the above
459. The hybridization of P in PO_{4}^{3-} is same as in:
a) $\mathrm{I} \mathrm{in} \mathrm{ICl}_{4}^{-}$
b) S in SO_{3}
c) N in NO_{3}^{-}
d) S in SO_{4}^{2-}
460. $A B$ is an ionic solid. The ionic radii of A^{+}and B^{+}are respectively r_{c} and r_{a}. Lattice energy of $A B$ is proportional to
a) $\frac{r_{c}}{r_{a}}$
b) $\left(r_{c}+r_{a}\right)$
c) $\frac{r_{a}}{r_{c}}$
d) $\frac{1}{\left(r_{c}+r_{a}\right)}$
461. Which contains a coordinate and covalent bond?
a) BaCl_{2}
b) $\mathrm{NH}_{4} \mathrm{Cl}$
c) HCl
d) $\mathrm{H}_{2} \mathrm{O}$
462. Covalent radius of Li is 123 pm . The crystal radius of Li will be:
a) $>123 \mathrm{pm}$
b) $<123 \mathrm{pm}$
c) +123 pm
d) $=\frac{123}{2} \mathrm{pm}$
463. Which of the following does not contain coordinate bond?
a) BH_{4}^{-}
b) NH_{4}^{+}
c) CO_{3}^{2-}
d) $\mathrm{H}_{3} \mathrm{O}^{+}$
464. The bond order of C_{2}^{+}is:
a) 1
b) 2
c) $3 / 2$
d) $1 / 2$
465. With increasing bond order, stability of a bond
a) Increases
b) Decreases
c) Remains unaltered
d) None of these
466. Molecular orbitals theory was proposed by:
a) Werner
b) Kossel
c) Moseley
d) Mullikan
467. The isoelectronic pair is
a) $\mathrm{Cl}_{2} \mathrm{O}, \mathrm{ICl}_{2}^{-}$
b) $\mathrm{Cl}_{2}^{-}, \mathrm{ClO}_{2}$
c) $\mathrm{IF}_{2}^{+}, \mathrm{I}_{3}^{-}$
d) $\mathrm{ClO}_{2}^{-}, \mathrm{ClF}_{2}^{+}$
468. The compound 1,2-butadiene has
a) $s p, s p^{2}$ and $s p^{3}$ hybridised carbon atoms
b) Only $s p^{2}$ hybridised carbon atoms
c) Only $s p$ hybridised carbon atoms
d) Only $s p$ and $s p^{2}$ hybridised carbon atoms
469. The correct order of ionic radii is:
a) $\mathrm{Fe}>\mathrm{Fe}^{2+}>\mathrm{Fe}^{3+}$
b) $\mathrm{O}^{2-}>\mathrm{O}^{-}>\mathrm{O}^{+}$
c) $\mathrm{I}^{-}>$I $>\mathrm{I}^{+}$
d) All of these
470. The shape of sulphate ion is
a) Square planar
b) Trigonal
c) Trigonal planar
d) Tetrahedral
471. Molecular shape of $\mathrm{SF}_{4}, \mathrm{CF}_{4}$ and XeF_{4} are:
a) The same with 2, 0 and 1 lone pair of electrons respectively
b) The same with 1,1 and 1 lone pair of electrons respectively.
c) Different with 0,1 and 2 lone pairs of electrons respectively.
d) Different with 1, 0 and 2 lone pairs of electrons respectively.
472. Which of the following is $s p^{3}$ hybridised?
a) NH_{3}
b) BH_{3}
c) PCl_{5}
d) AlCl_{3}
473. Sodium chloride is soluble in water but not in benzene because
$\Delta H_{\text {hdydration }}$
$\Delta H_{\text {hdydration }}$
a) $<\Delta H_{\text {lattice energy in water }}$ and $\Delta H_{\text {hdydration }}$
b) $>\Delta H_{\text {lattice energy in water }}$ and $\Delta H_{\text {hdydration }}$
$>\Delta H_{\text {lattice energy in benzene }}$
$<\Delta H_{\text {lattice energy in benzene }}$
$\Delta H_{\text {hdydration }}$
$\Delta H_{\text {Hdydration }}$
c) $=\Delta H_{\text {lattice energy in water }}$ and $\Delta H_{\text {hdydration }}$
d) $<\Delta H_{\text {lattice energy in water }}$ and $\Delta H_{\text {Hdydration }}$
$<\Delta H_{\text {lattice energy in benzene }}$
$=\Delta H_{\text {lattice energy in benzene }}$
474. The pair likely to form the strongest hydrogen bonding:
a) $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$
b) HCOOH and $\mathrm{CH}_{3} \mathrm{COOH}$
c) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}$
d) SiH_{4} and SiCl_{4}
475. The number of sigma and pi bonds in 1- butane 3-yne are:
a) 5σ and 5π
b) 6σ and 4π
c) 7σ and 3π
d) 8σ and 2π
476. Which is soluble in water?
a) AgF
b) AgCl
c) AgBr
d) AgI
477. Which of the following compounds has the lowest melting point?
a) CaF_{2}
b) CaCl_{2}
c) CaBr_{2}
d) CaI_{2}
478. $s p^{3}$ hybridisation is not found in
a) $\mathrm{H}_{2} \mathrm{O}$
b) CH_{4}
c) BCl_{3}
d) NH_{3}
479. Amongst $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}$ and $\mathrm{H}_{2} \mathrm{Te}$, the one with highest boiling point is:
a) $\mathrm{H}_{2} \mathrm{O}$ because of hydrogen bonding
b) $\mathrm{H}_{2} \mathrm{Te}$ because of higher molecular weight
c) $\mathrm{H}_{2} \mathrm{~S}$ because of hydrogen bonding
d) H_{2} Se because of lower molecular weight
480. Which of the following is false?
a) Methane molecule is tetrahedral in shape
b) Nickel tetrachloride is square planar in shape
c) $\mathrm{P}_{2} \mathrm{O}_{5}$ is like two pyramids joined at their apices
d) Acetylene is non-linear
481. The pair of elements which on combination are most likely to form an ionic compound is:
a) Na and Ca
b) K and O_{2}
c) O_{2} and Cl_{2}
d) Al and I_{2}
482. Among the following the maximum covalent character is shown by the compound.
a) FeCl_{2}
b) SnCl_{2}
c) AlCl_{3}
d) MgCl_{2}
483. Dipole-dipole attractive forces are strongest between the molecules of:
a) He
b) CH_{4}
c) CO_{2}
d) $\mathrm{H}_{2} \mathrm{O}$
484. The type of hybridization of sulphur atom present in SO_{2} and SO_{3} is respectively:
a) $s p, s p^{2}$
b) $s p^{2}, s p^{2}$
c) $s p^{2}, s p^{3}$
d) $s p, s p^{3}$
485. The electrons used in bonding atoms:
a) Belong to outermost shell
b) Belong to penultimate shell
c) Belong to outermost shell and sometimes penultimate shell
d) Belong to penultimate shell and sometimes to outermost shell
486. Given are $\mathrm{O}_{2}, \mathrm{O}_{2}^{+}, \mathrm{O}_{2}^{2+}$ and O_{2}^{2-} respectively. Find the correct increasing bond order
a) $\mathrm{O}_{2}<\mathrm{O}_{2}^{2-}<\mathrm{O}_{2}^{2+}<\mathrm{O}_{2}^{+}$
b) $\mathrm{O}_{2}^{2-}<\mathrm{O}_{2}<\mathrm{O}_{2}^{+}<\mathrm{O}_{2}^{2+}$
c) $\mathrm{O}_{2}^{2-}<\mathrm{O}_{2}<\mathrm{O}_{2}^{+}<\mathrm{O}_{2}^{2-}$
d) $\mathrm{O}_{2}^{+}<\mathrm{O}_{2}^{2-}<\mathrm{O}_{2}<\mathrm{O}_{2}^{2+}$
487. In a homonuclear molecule which of the following set of orbitals is degenerate?
a) $\sigma 2 s$ and $\sigma 1 s$
b) $\pi 2 p_{x}$ and $\stackrel{*}{\pi} 2 p_{y}$
c) $\pi 2 p_{x}$ and $\sigma 2 p_{z}$
d) $\sigma 2 p_{z}$ and ${ }^{*} 2 p_{x}$
488. The electronegativity order of $\mathrm{O}, \mathrm{F}, \mathrm{Cl}$ and Br is:
a) $\mathrm{F}>\mathrm{O}>\mathrm{Cl}>\mathrm{Br}$
b) $\mathrm{F}>\mathrm{Cl}<\mathrm{Br}>\mathrm{O}$
c) $\mathrm{Br}>\mathrm{Cl}>\mathrm{F}>$ O
d) $\mathrm{F}<\mathrm{Cl}<\mathrm{Br}<\mathrm{O}$
489. Solid NaCl is a bad conductor of electricity because:
a) In solid NaCl there are no ions
b) Solid NaCl is covalent
c) In solid NaCl there is no velocity of ions
d) In solid NaCl there are no electrons
490. The number of lone pairs is same in PCl_{3} and:
a) BCl_{3}
b) NCl_{3}
c) CCl_{4}
d) PCl_{5}
491. CaO and NaCl have the same crystal structure and approximately the same ionic radii. If U is the lattice energy of NaCl , the approximate lattice of CaO is
a) $\frac{U}{2}$
b) U
c) $2 U$
d) $4 U$
492. In the molecule $\mathrm{CH} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$, the hybridisation of $\mathrm{C}-\mathrm{C}$ bond is
a) $s p^{2}-s p$
b) $s p^{3}-s p^{3}$
c) $s p^{2}-s p^{2}$
d) $s p^{3}-s p$
493. Shape and hybridisation of IF_{5} respectively are
a) Trigonal bipyramidal, $s p^{3} d$
b) Sea-saw, $s p^{3} d$
c) Square pyramidal, $s p^{3} d^{2}$
d) Pentagonal pyramidal, $s p^{3} d^{3}$
494. Which of the following set of properties belong to PCl_{5} ?
a) $s p^{3}$, tetrahedral, 4 valence shell pairs of electrons
b) $s p^{3} d$, trigonal bipyramidal, 5 valence shell pairs of electrons
c) $s p^{3} d^{2}$, octahedral, 6 valence shell pairs of electrons
d) $s p^{3} d$, square planar, 4 valence shell pairs of electrons
495. In a polar molecule, the ionic charge is 4.8×10^{-10} esu. If the interionic distance is $1 \AA$ unit, then the dipole moment is
a) 0.48 debye
b) 4.18 debye
c) 4.8 debye
d) 41.8 debye
496. The double bonds between the two carbon atoms in ethylene consists of:
a) Two sigma-bonds at right angles to each other
b) One sigma-bond and one pi-bond
c) Two pi-bonds at right angles to each other
d) Two pi-bonds at an angle of 60° to each other
497. The state of hybridisation of S in SF_{4} is
a) $s p^{3}$ and has a lone pair of electron
b) $s p^{2}$ and has tetrahedral structure
c) $s p^{3} d$ and has a trigonal bipyramidal structure
d) $s p^{3} d^{2}$ and has an octahedral structure
498. In OF_{2}, number of bond pair and lone pairs of electrons are respectively:
a) 2,6
b) 2,8
c) 2,10
d) 2,9
499. In which pair, the first atom or ion is not larger than the second?
a) N, F
b) $\mathrm{Cl}^{-}, \mathrm{Cl}$
c) $0, S$
d) $\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$
500. The maximum number of hydrogen bonds that a molecule of water can have is
a) 1
b) 2
c) 3
d) 4
501. The isoelectronic species among the following are:
$\mathrm{I}-\mathrm{CH}_{3}^{+} ; \mathrm{II}-\mathrm{NH}_{2}^{+} ; \mathrm{III}-\mathrm{NH}_{4}^{+} ; \mathrm{IV}-\mathrm{NH}_{3}$
a) I, II, III
b) II, III, IV
c) I, II, IV
d) II, I
502. Dipole moment is exhibited by:
a) 1,4-dichlorobenzene
b) 1,2-dichlorobenzene
c) Trans-1,2-dichloroethene
d) Trans-1, 2-dichloro-2-butene
503. In a multi-electron atom, the energy of a $2 p$-orbital is:
a) Less than that of $2 s$-orbital
b) More than that of $2 s$-orbital
c) Equal to that of $2 s$-orbital
d) Double that of $2 s$-orbital
504. In which molecule the central atom does not use $s p^{3}$-hybrid orbitals in its bonding?
a) NH_{2}^{-}
b) BeF_{3}^{-}
c) $\mathrm{SO}_{2} \mathrm{Cl}_{2}$
d) SO_{4}^{2-}
505. RbO_{2} is
a) Peroxide and paramagnetic
b) Peroxide and diamagnetic
c) Superoxide and paramagnetic
d) Superoxide and diamagnetic
506. Ionization energy of nitrogen is more than oxygen because:
a) Nucleus has more attraction for electrons
b) Half-filled p-orbitals are more stable
c) Nitrogen atom is small
d) More penetration effect
507. The high melting point and insolubility in organic solvents of sulphanilic acid are due to its---structure
a) Simple ionic
b) Cubic
c) Bipolar ionic
d) hexagonal
508. Which of the following does not have a coordinate bond?
a) SO_{2}
b) $\mathrm{H}_{2} \mathrm{SO}_{3}$
c) HNO_{2}
d) HNO_{3}
509. Which of the following sequence regarding ionisation potential of coinage metal is correct:
a) $\mathrm{Cu}>\mathrm{Ag}>\mathrm{Au}$
b) $\mathrm{Cu}<\mathrm{Ag}<\mathrm{Au}$
c) $\mathrm{Cu}>\mathrm{Ag}<\mathrm{Au}$
d) $\mathrm{Ag}>\mathrm{Cu}<\mathrm{Au}$
510. Which, molecule has zero dipole moment?
a) HBr
b) AgI
c) PbSO_{4}
d) $\mathrm{H}_{2} \mathrm{O}$
511. BCl_{3} is a planar molecule, while NCl_{3} is pyramidal, because
a) $\mathrm{N}-\mathrm{Cl}$ bond is more covalent than $\mathrm{B}-\mathrm{Cl}$ bond
b) Nitrogen atom is smaller than boron atom
c) $\mathrm{B}-\mathrm{Cl}$ bond is more polar than $\mathrm{N}-\mathrm{Cl}$ bond
d) BCl_{3} has no lone pair of electrons but NCl_{3} has a lone pair of electrons
512. Hybridisation of the underline atom changes in
a) AlH_{3} changes to AlH_{4}^{-}
b) $\mathrm{H}_{2} \underline{\mathrm{O}}$ changes to $\mathrm{H}_{3} \mathrm{O}^{+}$
c) NH_{3} changes to NH_{4}^{+}
d) In all cases
513. Which molecule has hydrogen bonding
a) CH_{4}
b) $\mathrm{CH}_{3} \mathrm{COOH}$
c) GeH_{4}
d) $\mathrm{H}_{2} \mathrm{Te}$
514. The energy released when a neutral gaseous atom takes up an electron is called:
a) Ionization energy
b) Solvation energy
c) Electronegativity
d) Electron affinity
515. In NO_{3}^{-}ion, number of bond pair and lone pair electrons are respectively:
a) 2,2
b) 3,1
c) 1,3
d) 4,8
516. Which has $s p^{2}$-hybridisation?
a) CO_{2}
b) SO_{2}
c) $\mathrm{N}_{2} \mathrm{O}$
d) CO
517. A $s p^{3}$-hybrid orbital contains:
a) $1 / 4 \mathrm{~s}$-character
b) $1 / 2 \mathrm{~s}$-character
c) $2 / 3 \mathrm{~s}$-character
d) $3 / 4 \mathrm{~s}$-character
518. In the formation of NO^{+}from NO , the electron is removed from
a) a σ orbital
b) a π orbital
c) $\mathrm{a} \sigma^{*}$ orbital
d) a π^{*} orbital
519. The decreasing order of the second ionization energy of K, Ca and Ba is:
a) $\mathrm{K}>\mathrm{Ca}>\mathrm{Ba}$
b) $\mathrm{Ca}>\mathrm{Ba}>\mathrm{K}$
c) $\mathrm{Ba}>\mathrm{K}>\mathrm{Ca}$
d) $\mathrm{K}>\mathrm{Ba}>\mathrm{Ca}$
520. The value of n in the molecular formula $\mathrm{Be}_{n} \mathrm{AI}_{2} \mathrm{Si}_{6} \mathrm{O}_{18}$ is
a) 1
b) 2
c) 3
d) 4
521. Compound X is anhydride of sulphuric acid. The number of σ bonds and the number of π - bonds present in X are, respectively.
a) 3,3
b) 4,2
c) 2,4
d) 4,3
522. OF_{2} is:
a) Linear molecule and $s p$-hybridized
b) Tetrahedral molecule and $s p^{3}$-hybridized
c) Bent molecule and $s p^{3}$-hybridized
d) None of the above
523. Which is not true in case of ionic bond?
a) It is linear bond
b) It is 100% ionic
c) It is formed between two atoms with large electronegativity difference
d) None of the above
524. Which of the following are possible resonating structure of $\mathrm{N}_{2} \mathrm{O}$?

a) I and II
b) I and III
c) I, II and III
d) All of these
525. The number of σ and π - bonds in a molecule of acetonitrile are respectively
a) 2,5
b) 3,4
c) 4,3
d) 5, 2
526. Strongest hydrogen bond is present in
a) $\mathrm{O}-\mathrm{H}-----\mathrm{F}$
b) $\mathrm{S}-\mathrm{H}----\mathrm{O}$
c) $\mathrm{O}-\mathrm{H}----\mathrm{S}$
d) $\mathrm{F}-\mathrm{H}----\mathrm{F}$
527. In the cyanide ion, the formal negative charge is on:
a) C
b) N
c) Both C and N
d) Resonate between C and N
528. The trigonal bipyramidal geometry results from the hybridisation
a) $d s p^{3}$ or $s p^{3} d$
b) $d s p^{2}$ or $s p^{2} d$
c) $d^{2} s p^{3}$ or $s p^{3} d^{2}$
d) $d^{3} p^{2}$ or $d^{2} p^{3}$
529. Which one of the following molecules has the smallest bond angle?
a) NH_{3}
b) PH_{3}
c) $\mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{H}_{2} \mathrm{Se}$
530.

a) Valence shell electron pair repulsion (VSEPR)b) Molecular orbital theory theory
c) Presence of hydrogen bond $\quad \begin{aligned} & \text { d) Electronegativity difference between hydrogen } \\ & \text { and oxygen atoms }\end{aligned}$
531. Which of the two ions from the list given below that have the geometry that is explained by the same
hybridization of orbitals, $\mathrm{NO}_{2}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{NH}_{2}^{-}, \mathrm{NH}_{4}^{+}, \mathrm{SCN}^{-}$?
a) NO_{2}^{-}and NH_{2}^{-}
b) NO_{2}^{-}and NO_{3}^{-}
c) NH_{4}^{+}and NO_{3}^{-}
d) SCN^{-}and NH_{2}^{-}
532. Which of the following is non - linear molecule?
a) SO_{3}
b) CO_{2}
c) CS_{2}
d) BeCl_{2}
533. Which contains both covalent and ionic bonds?
a) CCl_{4}
b) KCN
c) CaCl_{2}
d) $\mathrm{H}_{2} \mathrm{O}$
534. In the formation of NaCl by combination of Na and Cl :
a) Sodium and chlorine both lose electrons
b) Sodium and chlorine both gain electrons
c) Sodium loses but chlorine gains electrons
d) Sodium gains but chlorine loses electrons
535. Which of the following has linear structure?
a) CCl_{4}
b) $\mathrm{C}_{2} \mathrm{H}_{4}$
c) $\mathrm{C}_{2} \mathrm{H}_{2}$
d) SO_{2}
536. A molecule (X) has (i) four sigma bonds formed by the overlap of $s p^{2}$ and s - orbitals (ii) one sigma bond formed by $s p^{2}$ and $s p^{2}$ orbitals and (iii) one π bond formed by p_{x} and p_{z} orbitals. Which of the following is X ?
a) $\mathrm{C}_{2} \mathrm{H}_{6}$
b) $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$
c) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$
d) $\mathrm{C}_{2} \mathrm{H}_{4}$
537. The lowest ionization energy would be associated with the electronic structure:
a) $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{1}$
b) $1 s^{2}, 2 s^{2} 2 p^{5}$
c) $1 s^{2}, 2 s^{2} 2 p^{6}$
d) $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2}$
538. Which is correct in the following?
a) Radius of Cl atom is $0.99 \AA$, while that of Cl^{+}ion is $1.54 \AA$
b) Radius of Cl atom is $0.99 \AA$, while that of Na atom is $1.54 \AA$
c) The radius of Cl atom is $0.95 \AA$, while that of Cl^{-}ion is $0.81 \AA$
d) Radius of Na atom is $0.95 \AA$, while that of Na^{+}ion is $1.54 \AA$
539. How many unpaired electrons are present in N_{2}^{+}?
a) 1
b) 2
c) 3
d) 4
540. Which one of the following compounds has the smallest bond angle in its molecule?
a) SO_{2}
b) OH_{2}
c) SH_{2}
d) NH_{3}
541. Which of the following is isostructural with CO_{2} ?
a) $\mathrm{N}_{2} \mathrm{O}$
b) NO_{2}
c) $\mathrm{N}_{2} \mathrm{O}_{5}$
d) NO
542. The electronic configuration of four elements L, P, Q and R are given in brackets $L\left(1 s^{2}, 2 s^{2}, 2 p^{4}\right), P\left(1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{1}\right), Q\left(1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{5}\right), R\left(1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}\right)$ The formula of ionic compounds that can be formed between these elements are
a) $L_{2} p, R L, P Q$ and $R_{2} Q$
b) $L P, R L, P Q$ and $R Q$
c) $P_{2} L, R L, P Q$ and $R Q_{2}$
d) $L P, R_{2} L, P_{2} Q$, and $R Q$
543. In which of the following ionisation processes, the bond order has increased and the magnetic behaviour has changed?
a) $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}^{+}$
b) $\mathrm{NO} \rightarrow \mathrm{NO}^{+}$
c) $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{+}$
d) $\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2}^{+}$
544. The size of ionic species is correctly given in the order:
a) $\mathrm{Cl}^{7+}>\mathrm{Si}^{4+}>\mathrm{Mg}^{2+}>\mathrm{Na}^{+}$
b) $\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Si}^{4+}>\mathrm{Cl}^{7+}$
c) $\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Cl}^{7+}>\mathrm{Si}^{4+}$
d) $\mathrm{Cl}^{7+}>\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Si}^{4+}$
545. Which of the following has the minimum bond length?
a) O_{2}
b) O_{2}^{+}
c) O_{2}^{-}
d) O_{2}^{2-}
546. In acetylene molecule, between the carbon atoms there are
a) Three pi bonds
b) One sigma and two pi bonds
c) Two sigma and one pi bonds
d) Three sigma bonds
547. The ionic radii of $\mathrm{N}^{3-}, \mathrm{O}^{2-}$ and F^{-}are respectively given by:
a) $1.36,1.40,1.71$
b) $1.36,1.71,1.40$
c) $1.71,1.40,1.36$
d) $1.71,1.36,1.40$
548. Bond order of 1.5 is shown by:
a) O_{2}^{2-}
b) O_{2}
c) O_{2}^{+}
d) O_{2}^{-}
549. In which of the process, the bond order increases and magnetic behaviour changes?
a) $\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2}^{+}$
b) $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}^{+}$
c) $\mathrm{NO} \rightarrow \mathrm{NO}^{+}$
d) $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{+}$
550. Which involves a bond forming process?
a) Stretching rubber
b) Dissolution of sugar in water
c) Rusting of iron
d) Emission of γ-rays by radioactive iron
551. Which is paramagnetic?
a) $\mathrm{Cl}_{2} \mathrm{O}_{6}$
b) $\mathrm{Cl}_{2} \mathrm{O}_{7}$
c) $\mathrm{Cl}_{2} \mathrm{O}$
d) ClO_{2}
552. Which one of the following pairs of molecules will have permanent dipole moments for both members?
a) SiF_{4} and NO_{2}
b) NO_{2} and CO_{2}
c) NO_{2} and O_{3}
d) SiF_{4} and CO_{2}
553. The state of hybridization of boron and oxygen atom in boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ is respectively:
a) $s p^{3}, s p^{3}$
b) $s p^{2}, s p^{3}$
c) $s p^{3}, s p^{2}$
d) $s p^{2}, s p^{2}$
554. The correct order towards bond angle is
a) $s p^{3}<s p^{2}<s p$
b) $s p<s p^{2}<s p^{3}$
c) $s p<s p^{3}<s p^{2}$
d) $s p^{2}<s p^{3}<s p$
555. Which orbital is used by oxygen atom to form a sigma bond with other oxyen atom in O_{2} molecule?
a) Pure p-orbital
b) $s p^{2}$-hybrid orbital
c) $s p^{3}$ - hybrid orbital
d) $s p$-hybrid orbital
556. Which of the following is a linear molecule?
a) BeCl_{2}
b) $\mathrm{H}_{2} \mathrm{O}$
c) SO_{2}
d) CH_{4}
557. Which involves breaking of covalent bond?
a) Boiling $\mathrm{H}_{2} \mathrm{~S}$
b) Melting KCN
c) Melting SiO_{2}
d) Boiling CF_{4}
558. For $\overline{\mathrm{N}} \mathrm{H}_{2}$, the best three-dimensional view is
a)

b)

c)

d)

559. For the four successive transition elements ($\mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}$ and Co), the stability of +2 oxidation state will be there in which of the following order?
a) $\mathrm{Cr}>\mathrm{Mn}>\mathrm{Co}>\mathrm{Fe}$
b) $\mathrm{Mn}>\mathrm{Fe}>\mathrm{Cr}>\mathrm{Co}$
c) $\mathrm{Fe}>\mathrm{Mn}>\mathrm{Co}>\mathrm{Cr}$
d) $\mathrm{Co}>\mathrm{Mn}>\mathrm{Fe}>\mathrm{Cr}$
d) (At. no. $\mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27$)
560. In PO_{4}^{3-}, the formal charge on each on each oxygen atom and the $\mathrm{P}-0$ bond order respectively are
a) $-0.75,0.6$
b) $-0.75,1.0$
c) $-0.75,1.25$
d) $-3,1.25$
561. An element X has 3 electrons in p-orbitals and also belongs to III period. Its molecular formula should be:
a) X
b) X_{2}
c) X_{4}
d) X_{5}
562. Elements having six electrons in its outermost orbit generally form:
a) Complex ion
b) Negative ion
c) Positive ion
d) Zwitter ion
563. Oxygen is divalent, but sulphur exhibits variable valency of 2,4 and 6 , because:
a) Sulphur is less electronegative than oxygen
b) Sulphur is bigger atom than oxygen
c) Ionisation potential of sulphur is more than oxygen
d) Of the presence of d-orbitals in sulphur
564. Of the following sets which one does not contain isoelectronic species?
a) $\mathrm{BO}_{3}^{3-}, \mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
b) $\mathrm{SO}_{3}^{2-}, \mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
c) $\mathrm{CN}^{-}, \mathrm{N}_{2}, \mathrm{C}_{2}^{2-}$
d) $\mathrm{PO}_{4}^{3-}, \mathrm{SO}_{4}^{2-}, \mathrm{ClO}_{4}^{-}$
565. In which of the following, unpaired electrons are present?
$\mathrm{KO}_{2}, \mathrm{AlO}_{2}^{-}, \mathrm{BaO}_{2}, \mathrm{NO}_{2}^{+}$
a) $\mathrm{NO}_{2}^{+}, \mathrm{BaO}_{2}$
b) $\mathrm{KO}_{2}, \mathrm{AlO}_{2}^{-}$
c) Only KO_{2}
d) Only BaO_{2}
566. Which transition involves maximum amount of energy?
a) $M^{-}(\mathrm{g}) \longrightarrow M(\mathrm{~g})+\mathrm{e}$
b) $M^{-}(\mathrm{g}) \rightarrow M^{+}(\mathrm{g})+2 \mathrm{e}$
c) $M^{+}(\mathrm{g}) \rightarrow M^{2+}(\mathrm{g})+\mathrm{e}$
d) $M^{2+}(\mathrm{g}) \rightarrow M^{3+}(\mathrm{g})+\mathrm{e}$
567. What is the nature of the bond between B and O in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{OBH}_{3}$?
a) Covalent
b) Coordinate covalent
c) Ionic bond
d) Banana shaped bond
568. Which does not use $s p^{3}$-hybrid orbitals in its bonding?
a) BeF_{3}^{-}
b) OH_{3}^{+}
c) NH_{4}^{+}
d) NF_{3}
569. Hybridisation of C_{2} and C_{3} of
$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}=\mathrm{C}=\mathrm{CH}-\mathrm{CH}_{3}$ are
a) $s p, s p^{3}$
b) $s p^{2}, s p$
c) $s p^{2}, s p^{2}$
d) $s p, s p$
570. Maximum covalence of an atom of an element is equal to:
a) Number of unpaired electrons in the s-and p-orbitals of valency shell
b) Number of unpaired electrons in the p-orbitals of valency shell
c) Total number of electrons in the s-and p-orbitals of valency shell
d) Total number of electrons in the p-orbitals of valency shell
571. Which main group elements have a different number of outermost electrons than their group number?
a) Alkali metals
b) Noble gases
c) Halogens
d) None of these
572. The forces present in the crystals of naphthalene are:
a) Van der Waals' forces
b) Electrostatic forces
c) Hydrogen bonding
d) None of these
573. Which does not show inert pair effect?
a) Al
b) Sn
c) Pb
d) Thallium
574. The electronic theory of bonding was proposed by
a) Pauling
b) Lewis
c) Bronsted
d) Mullikan
575. The correct order of decreasing first ionization potential is:
a) $\mathrm{C}>\mathrm{B}>\mathrm{Be}>\mathrm{Li}$
b) $\mathrm{C}>\mathrm{Be}>\mathrm{B}>\mathrm{Li}$
c) $\mathrm{B}>\mathrm{C}>\mathrm{Be}>\mathrm{Li}$
d) $\mathrm{Be}>\mathrm{Li}>\mathrm{B}>\mathrm{C}$
576. The hybridisation of orbitals of N atom $\mathrm{in} \mathrm{NO}_{3}^{-}, \mathrm{NO}_{2}^{+}$, and NH_{4}^{+}are respectively
a) $s p, s p^{2}, s p^{3}$
b) $s p^{2}, s p, s p^{3}$
c) $s p, s p^{3}, s p^{2}$
d) $s p^{2}, s p^{3}, s p$
577. Which of the following is more ionic?
a) NaCl
b) KCl
c) MgCl_{2}
d) CaCl_{2}
578. The species showing $p \pi-d \pi$ overlapping is:
a) NO_{3}^{-}
b) PO_{4}^{3-}
c) CO_{3}^{2-}
d) NO_{2}^{-}
579. $\mathrm{H}_{2} \mathrm{O}$ has a net dipole moment, while BeF_{2} has zero dipole moment, because:
a) $\mathrm{H}_{2} \mathrm{O}$ molecule as linear while BeF_{2} is bent
b) BeF_{2} molecule is linear, while $\mathrm{H}_{2} \mathrm{O}$ is bent
c) Fluorine is more electronegative than oxygen
d) Be is more electronegative than oxygen
580. Among the following which is the strongest oxidising agent?
a) Cl_{2}
b) F_{2}
c) Br_{2}
d) I_{2}
581. Which of the following molecule in its valence shell has three bond pairs of electrons and one lone pair of electrons?
a) NH_{3}
b) $\mathrm{H}_{2} \mathrm{O}$
c) BF_{3}
d) CO_{2}
582. Which of the following statements is correct?
a) All carbon to carbon bonds contain a σ - bond and one or more π - bonds
b) All carbon to hydrogen bonds are π - bonds
c) All oxygen to hydrogen bonds are hydrogen bonds
d) All carbon to hydrogen bonds are σ - bonds
583. Which of the following has $s p^{2}$ hybridisation?
a) $\mathrm{C}_{2} \mathrm{H}_{6}$
b) $\mathrm{C}_{2} \mathrm{H}_{4}$
c) BeCl_{2}
d) $\mathrm{C}_{2} \mathrm{H}_{2}$
584. The formation of energy bonds in solids are in accordance with
a) Heisenberg's uncertainty principle
b) Bohr's theory
c) Ohm's law
d) Rutherford's atomic model
585. Which of the following configuration is associated with biggest jump between 2 nd and 3rd $I E$?
a) $1 s^{2}, 2 s^{2} 2 p^{2}$
b) $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{1}$
c) $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2}$
d) $1 s^{2}, 2 s^{2} 2 p^{1}$
586. The predominent intermolecular forces in hydrogen fluoride is due to:
a) Dipole-induced dipole interaction
b) Dipole-dipole interaction
c) Hydrogen bond interaction
d) Dispersion interaction
587. Correct order of bond length is
a) $\mathrm{CO}_{3}^{2-}>\mathrm{CO}_{2}>\mathrm{CO}$
b) $\mathrm{CO}_{2}>\mathrm{CO}>\mathrm{CO}_{3}^{2-}$
c) $\mathrm{CO}>\mathrm{CO}_{2}>\mathrm{CO}_{3}^{2-}$
d) None of these
588. Which of the following molecules has pyramidal shape?
a) PCl_{3}
b) SO_{3}
c) CO_{3}^{2-}
d) NO_{3}^{-}
589. The molecular electronic configuration of Be_{2} is
a) $\sigma 1 s^{2} \stackrel{*}{\sigma} 1 s^{2} \sigma 02 s^{2} \stackrel{*}{\sigma} 2 p^{2}$
b) $K K \sigma 2 S^{2}$
c) $\sigma 1 s^{2} \stackrel{*}{\sigma} 1 s^{2} \sigma 02 s^{2} \sigma 2 s^{2}$
d) None of the above
590. The maximum number of 90° angles between bond pair-bond pair of electrons is observed in
a) $d s p^{3}$ hybridisation
b) $s p^{3} d$ hybrídization
c) $d s p^{2}$ hybridisation
d) $s p^{3} d^{2}$ hybridisation
591. In which of the following arrangement the order is not correct according to property indicated against it?
a) Increasing size : $\mathrm{Al}^{3+}<\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{F}^{-}$
b) Increasing $I E_{1}$: $\mathrm{B}<\mathrm{C}<\mathrm{N}<0$
c) Increasing $E A_{1}$: I $<\mathrm{Br}<\mathrm{F}<\mathrm{Cl}$
d) Increasing metallic radius: $\mathrm{Li}<\mathrm{Na}<\mathrm{K}<\mathrm{Rb}$
592. Most covalent halide of aluminium is:
a) AlCl_{3}
b) AlI_{3}
c) AlBr_{3}
d) AlF_{3}
593. The bond order of individual carbon-carbon bonds in benzene is:
a) One
b) Two
c) Between 1 and 2
d) One and two alternately
594. In pyrophosphoric acid, $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$, number of σ and $d \pi-p \pi$ bonds are respectively
a) 8 and 2
b) 6 and 2
c) 12 and zero
d) 12 and 2
595. The percentage s - character of the hybrid orbitals in methane, ethene and ethyne are respectively
a) $25,33,50$
b) $25,50,75$
c) $50,75,100$
d) $10,20,40$
596. The types of bonds present in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ are only
a) Electrovalent and covalent
b) Electrovalent and co-ordinate
c) Electrovalent, covalent and co- ordinate covalent
d) Covalent and co-ordinate covalent
597. Which pair represents isostructural species?
a) CH_{3}^{-}amd CH_{3}^{+}
b) NH_{4}^{+}and NH_{3}
c) SO_{4}^{2-} and BF_{4}^{-}
d) NH_{2}^{-}and BeF_{2}
598. In which of the following species, all the three types of hybrid carbons are present?
a) $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$
b) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}^{+}$
c) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}^{+}$
d) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}^{-}$
599. Which statement is not correct?
a) Double bond is shorter than a single bond.
b) Sigma bond is weaker than π-bond.
c) Double bond is stronger than a sigma bond.
d) Covalent bond is stronger than hydrogen bond.
600. The pair having similar geometry is:
a) $\mathrm{BF}_{3}, \mathrm{NH}_{3}$
b) $\mathrm{BF}_{3}, \mathrm{AlF}_{3}$
c) $\mathrm{BeF}_{2}, \mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{BCl}_{3}, \mathrm{PCl}_{3}$
601. Which of the following is largest?
a) Cl^{-}
b) S^{2-}
c) Na^{+}
d) F^{-}
602. The AsF_{5} molecule is trigonal bipyramidal. The hybrid orbitals used by the As atoms for bonding are
a) $d_{x^{2}-y^{2}}, d_{z^{2}, s}, p_{x}, p_{y}$
b) $d_{x y}, s, p_{x}, p_{y}, p_{z}$
c) $s, p_{x}, p_{y}, p_{z}, d_{z^{2}}$
d) $d_{x^{2}-y^{2}}, s, p_{x}, p_{y}$
603. Consider the following halogen containing compounds
(A) CHCl_{3}
(B) CCl_{4}
(C) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(D) $\mathrm{CH}_{3} \mathrm{Cl}$
(E)

The compounds with a net zero dipole moment are
a) B and E only
b) C only
c) C and D only
d) A and D only
604. Alkali metals in each period have:
a) Largest size
b) Lowest $I E$
c) Highest $I E$
d) Highest electronegativity
605. In a regular octahedral molecule, $M X_{6}$ the number of $X-M-X$ bonds at 180° is
a) Three
b) Two
c) Six
d) Four
606. Valency means:
a) Combining capacity of an element
b) Atomicity of an element
c) Oxidation number of an element
d) None of the above
607. Which does not form two or more chlorides?
a) Na
b) Hg
c) Cu
d) Fe
608. Which has the largest first ionisation energy?
a) Li
b) Na
c) K
d) Rb
609. Polarization of electrons in acrolein may be written as:
a) $\stackrel{\delta^{-}}{\mathrm{C}_{2}}=\mathrm{CH}-\stackrel{\delta^{+}}{\mathrm{C}} \mathrm{H}=\mathrm{O}$
b) $\stackrel{\delta}{\mathrm{C}}_{\mathrm{C}_{2}^{-}}=\mathrm{CH}-\mathrm{CH}=\stackrel{\delta^{+}}{\mathrm{O}}$
c) $\stackrel{\delta}{\mathrm{C}}_{\mathrm{C}_{2}^{-}}=\stackrel{\delta^{+}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}=\mathrm{O}$
d) $\stackrel{\delta^{+}}{\mathrm{CH}_{2}}=\mathrm{CH}-\mathrm{CH}=\stackrel{\delta^{-}}{\mathrm{O}}$
610. Which bond has the highest bond energy?
a) Coordinate bond
b) Sigma bond
c) Multiple bond
d) Polar covalent bond
611. In which of the following molecules the van der Waals' forces is likely to be the most important in determining the melting and boiling point?
a) CO
b) $\mathrm{H}_{2} \mathrm{~S}$
c) Br_{2}
d) HCl
612. The higher values of specific heat of water in comparison to other liquids is due to:
a) High dielectric constant
b) Polarity
c) H-bonding
d) None of the above
613. Which contains both polar and non-polar covalent bonds?
a) $\mathrm{NH}_{4} \mathrm{Cl}$
b) HCN
c) $\mathrm{H}_{2} \mathrm{O}_{2}$
d) CH_{4}
614. How many - bonds are present in naphthalene?
a) 4
b) 5
c) 6
d) 7
615. If the electron pair forming a bond between two atoms A and B is not in the centre, then the bond is
a) Polar bond
b) Single bond
c) π-bond
d) Non-polar bond
616. Which of the following species in non-linear?
a) ICl_{2}^{-}
b) I_{3}^{-}
c) N_{3}^{-}
d) ClO_{2}^{-}
617. The bond order of CO molecule on the basis of molecular orbital theory is:
a) Zero
b) 2
c) 3
d) 1
618. Which one is the strongest bond?
a) $\mathrm{Cl}-\mathrm{F}$
b) $\mathrm{F}-\mathrm{F}$
c) $\mathrm{Br}-\mathrm{F}$
d) $\mathrm{Br}-\mathrm{Cl}$
619. Which of the following compound has maximum volatility?
a)

b)

c)

d)

620. In the following electron-dot structure, calculate the formal charge from left to right nitrogen atom;

a) $-1,-1,+1$
b) $-1,+1,-1$
c) $+1,-1,-1$
d) $+1,-1,+1$
621. Hybridisation shown by carbon and oxygen of -OH group in phenol are respectively
a) $s p^{2}, s p^{2}$
b) $s p^{3}, s p^{3}$
c) $s p, s p^{2}$
d) $s p^{2}, s p^{3}$
622. The molecule which has pyramidal shape is:
a) PCl_{3}
b) SO_{3}
c) CO_{3}^{2-}
d) NO_{3}^{-}
623. The correct increasing bond angles order is:
a) $\mathrm{BF}_{3}<\mathrm{NF}_{3}<\mathrm{PF}_{3}<\mathrm{ClF}_{3}$
b) $\mathrm{ClF}_{3}<\mathrm{PF}_{3}<\mathrm{NF}_{3}<\mathrm{BF}_{3}$
c) $\mathrm{BF}_{3} \approx \mathrm{NF}_{3}<\mathrm{PF}_{3}<\mathrm{ClF}_{3}$
d) $\mathrm{BF}_{3}<\mathrm{NF}_{3}<\mathrm{PF}_{3}>\mathrm{ClF}_{3}$
624. Van der Waals' forces are applied to:
a) Inert gases only
b) Rare gases only
c) Mixture of gases
d) Elementary gases only
625. Which bond angle results in the minimum dipole moment for the triatomic molecule $X Y_{2}$ shown below?
a) 90°
b) 120°
c) 150°
d) 180°
626. Which shows the least dipole moment?
a) CHCl_{3}
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
c) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
d) CCl_{4}
627. Which force is strongest?
a) Dipole-dipole forces
b) Ion-ion forces
c) Ion-dipole forces
d) Ion-induced dipole forces
628. Which molecule has linear structure?
a) CO_{2}
b) $\mathrm{H}_{2} \mathrm{O}$
c) SO_{2}
d) $\mathrm{H}_{2} \mathrm{O}_{2}$
629. Out of the compounds below the vapour pressure of (B) at a particular temperature is

(A)

(B)
a) Higher than that of (A)
b) lower than that of (A)
c) Higher or lower than (A), depending on the size ofd) Same as that of (A) the vessel
630. Which ion has a higher polarizing power?
a) Mg^{2+}
b) Al^{3+}
c) Ca^{2+}
d) Na^{+}
631. Which of the following represent the given mode of hybridisation $s p^{2}-s p^{2}-s p-s p$ from left to right?
a) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CN}$
b) $\mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$
c) $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$
d) $\mathrm{HC}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}=\mathrm{CH}$
632. The solubility of KCl is relatively more in (where D is dielectric constant):
a) $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{D}=0)$
b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(\mathrm{D}=2)$
c) $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{D}=32)$
d) $\mathrm{CCl}_{4}(\mathrm{D}=0)$
633. Elements have electronegativities 1.2 and 3.0, bond formed between them would be
a) Ionic
b) Covalent
c) Co-ordinate
d) metallic
634. Among the following, the pair in which the two species are not isostructural, is
a) SiF_{4} and SF_{4}
b) IO_{3}^{-}and XeO_{3}
c) BH_{4}^{-}and NH_{4}^{+}
d) PF_{6}^{-}and SF_{6}
635. Which has zero dipole moment?
a) CIF
b) PCl_{3}
c) SiF_{4}
d) CFCl_{3}
636. Which of the following molecules is covalent and shows expanded octet in its formation?
a) HF
b) NF_{3}
c) BF_{3}
d) ClF_{3}
637. Which one of the following is a correct set?
a) $\mathrm{H}_{2} \mathrm{O}, s p^{3}$, angular
b) $\mathrm{BCl}_{3} s p^{3}$, angular
c) $\mathrm{NH}_{4}, d s p^{2}$, square planar
d) $\mathrm{CH}_{4}, d s p^{2}$, tetrahedral
638. Which property of halogens increases from F to I?
a) Electronegativity
b) First ionization energy
c) Bond length in the molecule
d) None of the above
639. The total number of bonds in acetylene molecule is:
a) One
b) Two
c) Three
d) Five
640. The number of antibonding electron pairs in O_{2}^{2-} molecular ion on the basis of molecular orbital theory is (Atomic number of O is 18.)
a) 5
b) 4
c) 3
d) 2
641. Variable valency is characteristic of:
a) Noble gases
b) Alkali metals
c) Transition metals
d) Non-metallic elements
642. In which molecule all atoms are coplanar?
a) CH_{4}
b) BF_{3}
c) PF_{3}
d) NH_{3}
643. During change of O_{2} to O_{2}^{-}ion, the electron adds on which one of the following orbitals?
a) $\pi *$ orbital
b) π orbital
c) $\sigma *$ orbital
d) σ orbital
644. Bond energy of covalent $\mathrm{O}-\mathrm{H}$ bond in water is:
a) Greater than bond energy of hydrogen bond
b) Equal to bond energy of hydrogen bond
c) Less than bond energy of hydrogen bond
d) None of the above
645. Which one of the following has a coordinate bond?
a) $\mathrm{NH}_{4} \mathrm{Cl}$
b) AlCl_{3}
c) NaCl
d) Cl_{2}
646. Which carbon is more electronegative?
a) $s p^{3}$ hybridised carbon
b) $s p$-hybridised carbon
c) $s p^{2}$ hybridised carbon
d) Always same irrespective of its hybrid state
647. Among $\mathrm{NH}_{3}, \mathrm{BeCl}_{2}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$, the non-linear molecules are:
a) BeCl_{2} and $\mathrm{H}_{2} \mathrm{O}$
b) BeCl_{2} and CO_{2}
c) NH_{3} and $\mathrm{H}_{2} \mathrm{O}$
d) NH_{3} and CO_{2}
648. Paramagnetism is exhibited by molecules:
a) Not attracted into a magnetic field
b) Containing only paired electrons
c) Carrying a positive charge
d) Containing unpaired electrons
649. Which molecule has the largest dipole moment?
a) HF
b) HCl
c) HBr
d) HI
650. The intermolecular attractive forces vary in the order:
a) Water < alcohol < ether
b) Water $>$ alcohol $>$ ether
c) Alcohol > water < ether
d) Ether > water > alcohol
651. Which of the following species has a linear shape?
a) NO_{2}^{+}
b) O_{3}
c) NO_{2}^{-}
d) SO_{2}
652. The electronic configuration of 4 elements K, L, M and N are,
$K=1 s^{2}, 2 s^{2} 2 p^{1} \quad L=1 s^{2}, 2 s^{2} 2 p^{6}$
$M=1 s^{2}, 2 s^{2} 2 p^{4} \quad N=1 s^{2}, 2 s^{2} 2 p^{3}$
The element that would form a diatomic molecule with double bond is:
a) K
b) L
c) M
d) N
653. Which of the following will provide the most efficient overlap?
a) $s-s$
b) $s-p$
c) $s p^{2}-s p^{2}$
d) $s p-s p$
654. The state of hybridization of $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{5}$ and C_{6} of the hydrocarbon,

is in the following sequence:
a) $s p, s p^{2}, s p^{3}$ and $s p^{2}$
b) $s p, s p^{3}, s p^{2}$ and $s p^{3}$
c) $s p^{3}, s p^{2}, s p^{2}$ and $s p$
d) $s p, s p^{2}, s p^{2}$ and $s p^{3}$
655. Four diatomic species are listed below in different sequences. Which of these represents the correct order of their increasing bond order?
a) $\mathrm{NO}<\mathrm{C}_{2}^{2-}<\mathrm{O}_{2}^{-}<\mathrm{He}_{2}^{+}$
b) $\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}<\mathrm{NO}<\mathrm{O}_{2}^{-}$
c) $\mathrm{He}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-}$
d) $\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}$
656. Which one species has the longest bond length?
a) NO^{+}
b) O_{2}^{-}
c) O_{2}^{+}
d) N_{2}^{+}
657. The pair of molecules forming strongest hydrogen bonds are
a) SiH_{4} and SiF_{6}
b) $\quad \begin{aligned} & \text { II } \\ & 0\end{aligned}$
$\mathrm{H}-\mathrm{C}-\mathrm{OH}$ and $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{OH}$
c) $\quad{ }_{0}^{\mathrm{II}}$
II
d) $\mathrm{H}_{2} \mathrm{O}$ and H_{2}
0
658. Which one of the following has not triangular pyramidal shape?
a) NH_{3}
b) NCl_{3}
c) PF_{3}
d) BCl_{3}
659. A covalent bond is formed between the atoms by the overlapping of orbitals containing:
a) Single electron
b) Paired electron
c) Single electron with parallel spin
d) Single electron with opposite spin
660. Which of the following bonds required the largest amount of bond energy to dissociate the atom concerned?
a) $\mathrm{H}-\mathrm{H}$ bond in H_{2}
b) $0=0$ bond in O_{2}
c) $\mathrm{N} \equiv \mathrm{N}$ bond in N_{2}
d) $\mathrm{C}-\mathrm{C}$ bond in $\mathrm{C}_{2} \mathrm{H}_{6}$
661. The covalency of nitrogen in HNO_{3} is:
a) Zero
b) 3
c) 4
d) 5
662. Which is distilled first?
a) Liquid H_{2}
b) Liquid CO_{2}
c) Liquid O_{2}
d) Liquid N_{2}
663. Which one of the following is a correct set?
a) $\mathrm{H}_{2} \mathrm{O}, s p^{3}$, angular
b) $\mathrm{H}_{2} \mathrm{O}, s p^{2}$, linear
c) $\mathrm{NH}_{4}^{+}, d s p^{2}$, square planar
d) $\mathrm{CH}_{4}, d s p^{2}$, tetrahedral
664. Which is correct order for electron gain enthalpy?
a) $\mathrm{S}<\mathrm{O}<\mathrm{Cl}<\mathrm{F}$
b) $\mathrm{O}<\mathrm{S}<\mathrm{F}<\mathrm{Cl}$
c) $\mathrm{Cl}<$ F $<$ S <0
d) $\mathrm{F}<\mathrm{Cl}<\mathrm{O}<\mathrm{S}$
665. Which is a pyramidal structure?
a) Trimethylamine
b) Methanol
c) Acetylene
d) Water
666. Among the following mixtures, dipole - dipole as the major interaction, is present in
a) Benzene and ethanol
b) Acetonitrile and acetone
c) KCl and water
d) Benzene and carbon tetrachloride
667. In dry ice there are ...in between molecules.
a) Ionic bond
b) Covalent bond
c) Hydrogen bond
d) None of these
668. The dipole moment of o, p and m-dichlorobenzene will be in the order
a) $o>p>m$
b) $p>o>m$
c) $m>o>p$
d) $o>m>p$
669. Which formulae does not correctly represents the bonding capacity of the atom involved?
(Sa)

b)

c)

d)

670. Which has minimum ionic radius?
a) N^{3-}
b) K^{+}
c) Na^{+}
d) F^{-}
671. The bond order is maximum in
a) O_{2}
b) O_{2}^{+}
c) O_{2}^{-}
d) O_{2}^{2-}
672. PF_{3} molecule is:
a) Square planar
b) Trigonal bipyramidal
c) Tetrahedral
d) Trigonal pyramidal
673. Resonance is due to:
a) Delocalization of σ-electrons
b) Delocalization of π-electrons
c) Migration of H atoms
d) Migration of protons
674. Which property is commonly exhibited by a covalent compound?
a) High solubility in water
b) Low m.p.
c) High electrical conductivity
d) High b.p.
675. Which of the following is an electrovalent linkage?
a) CH_{4}
b) SiCl_{4}
c) MgCl_{2}
d) BF_{3}
676. The decreasing values of bond angles from $\mathrm{NH}_{3}\left(106^{\circ}\right)$ to $\mathrm{SbH}_{3}\left(101^{\circ}\right)$ down group- 15 of the periodic table is due to:
a) Increasing $b p-b p$ repulsion
b) Increasing p-orbital character in $s p^{3}$
c) Decreasing $l p-b p$ repulsion
d) Decreasing electronegativity
677. The shape of ClO_{3}^{-}according to VSEPR model is:
a) Planar triangle
b) Pyramidal
c) Tetrahedral
d) Square planar
678. Which metal has a greater tendency to form metal oxide?
a) Cr
b) Fe
c) Al
d) Ca
679. The charge/size ratio of a cation determines its polarising power. Which one of the following sequences represents the increasing order of the polarising power of the cationic species, $\mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Be}^{2+}$?
a) $\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}$
b) $\mathrm{Be}^{2+}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}$
c) $\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}$
d) $\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}<\mathrm{K}^{+}$
680. A p-block element in which last electron enters into s-orbitals of valence shell instead of p-orbital is:
a) As
b) Ga
c) No such element exist
d) He
681. How many electron pairs are present in valence shell of oxygen in water molecule?
a) 4
b) 1
c) 2
d) 3
682. Number of electrons in a the valence orbit of nitrogen in an ammonia molecule is
a) 8
b) 5
c) 6
d) 7
683. The number of valency electrons in carbon atom is:
a) Zero
b) 2
c) 6
d) 4
684. The structure of IF_{5} can be best described as
a)

b)

c)

685. The relationship between the dissociation energy and N_{2} and N_{2}^{+}is
a) dissociation energy of N_{2} = dissociation energy of N_{2}^{+}
b) dissociation energy of N_{2} can either be lower or higher than the dissociation energy of N_{2}^{+}
c) dissociation energy of $\mathrm{N}_{2}>$ dissociation energy of N_{2}^{+}
d) dissociation energy of $\mathrm{N}_{2}^{+}>$dissociation energy of N_{2}
686. The bond angle in $\mathrm{H}_{2} \mathrm{~S}$ (for $\mathrm{H}-\mathrm{S}-\mathrm{H}$)is:
a) Same as that of $\mathrm{Cl}-\mathrm{Be}-\mathrm{Cl}$ in BeCl_{2}
b) Greater than $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in NH_{3}
c) Greater than $\mathrm{H}-\mathrm{Se}-\mathrm{H}$ and less than $\mathrm{H}-\mathrm{O}-\mathrm{H}$
d) Same as $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ in SnCl_{2}
687. Which one among the following does not have the hydrogen bond?
a) Phenol
b) Water
c) Liquid NH_{3}
d) Liquid HCl
688. Which of the following molecules/ions does not contain unpaired electrons.
a) O_{2}^{2-}
b) B_{2}
c) N_{2}^{+}
d) O_{2}
689. The $\mathrm{C}-\mathrm{O}-\mathrm{H}$ bond angle in ethanol is nearly
a) 90
b) 104
c) 120
d) 180
690. Which one of the following does not have $s p^{2}$ hybridised carbon?
a) Acetone
b) Acetic acid
c) Acetonitrile
d) Acetamide
691. Among the following elements $\mathrm{Ca}, \mathrm{Mg}, \mathrm{P}$ and Cl the order of increasing atomic radius is:
a) $\mathrm{Mg}<\mathrm{Ca}<\mathrm{Cl}<\mathrm{P}$
b) $\mathrm{Cl}<\mathrm{P}<\mathrm{Mg}<\mathrm{Ca}$
c) $\mathrm{P}<\mathrm{Cl}<\mathrm{Ca}<\mathrm{Mg}$
d) $\mathrm{Ca}<\mathrm{Mg}<\mathrm{P}<\mathrm{Cl}$
692. Which has a giant covalent structure?
a) PbO_{2}
b) SiO_{2}
c) NaCl
d) AlCl_{3}
693. Bond angles of $\mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{AsH}_{3}$ and SbH_{3} is in the order
a) $\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{NH}_{3}$
b) $\mathrm{SbH}_{3}>A s \mathrm{H}_{3}>P \mathrm{H}_{3}>\mathrm{NH}_{3}$
c) $\mathrm{SbH}_{3}>\mathrm{AsH}_{3}>\mathrm{NH}_{3}>\mathrm{PH}_{3}$
d) $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$
694. Amongst the elements with following electronic configurations, which one of them may have the highest ionization energy?
a) $\mathrm{Ne}\left[3 s^{2} 3 p^{1}\right]$
b) $\mathrm{Ne}\left[3 s^{2} 3 p^{3}\right]$
c) $\mathrm{Ne}\left[3 s^{2} 3 p^{2}\right]$
d) $\operatorname{Ar}\left[3 d^{10} 4 s^{2} 4 p^{3}\right]$
695. Based on VSEPR theory, the number of 90 degree $\mathrm{F}-\mathrm{Br}-\mathrm{F}$ angles in BrF_{5} is
a) 0
b) 1
c) 2
d) 3
696. Which one of the following elements has lower value of ionisation energy?
a) Mg
b) Rb
c) Li
d) Ca
697. The lattice energy order for lithium halide is:
a) $\mathrm{LiF}>\mathrm{LiCl}>\mathrm{LiBr}>\mathrm{LiI}$
b) $\mathrm{LiCl}>\mathrm{LiF}>\mathrm{LiBr}>$ LiI
c) $\mathrm{LiBr}>\mathrm{LiCl}>\mathrm{LiF}>$ LiI
d) $\mathrm{LiI}>\mathrm{LiBr}>\mathrm{LiCl}>\mathrm{LiF}$
698. Among the species: $\mathrm{CO}_{2}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{CO}, \mathrm{CO}_{3}^{2-}, \mathrm{HCHO}$ which has the weakest $\mathrm{C}-\mathrm{O}$ bond?
a) CO
b) CO_{2}
c) CO_{3}^{2-}
d) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
699. Peroxide ion
(i) has five completely filled antibonding molecular orbitals
(ii) is diamagnetic
(iii) has bond order one
(iv) is isoelectronic with neon

Which one of these is correct?
a) (ii) and (iii)
b) (i),(ii) and (iv)
c) (i),(ii) and (iii)
d) (i) and (iv)
700. Which is the weakest among the following type of bond?
a) Ionic bond
b) Covalent bond
c) Metallic bond
d) Hydrogen bond
701. In which of the following pairs of molecules/ions, the central atom has $s p^{2}$-hybridization?
a) NO_{2} and NH_{3}
b) BF_{3} and NO_{2}^{-}
c) NH_{2}^{-}and $\mathrm{H}_{2} \mathrm{O}$
d) BF_{3} and NH_{2}^{-}
702. Bond length decreases with:
a) Decrease in size of the atom
b) Increase in the number of bonds between the atoms
c) Decrease in bond order
d) Decrease in the number of bonds between the atoms
703. Which of the following molecules/ions does not contain unpaired electrons?
a) O_{2}^{2-}
b) B_{2}
c) N_{2}^{+}
d) O_{2}
704. The structure of IF_{7} is
a) Square pyramid
b) Trigonal bipyramid
c) Octahedral
d) Pentagonal bipyramid
705. The species C_{2}
a) Has one σ bond and one π bond
b) Has both π bonds
c) Has both σ bonds
d) Does not exist
706. In which of the following bond angle is maximum?
a) NH_{3}
b) NH_{4}^{+}
c) PCl_{5}
d) SCl_{2}
707. Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below
$\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{\frac{1}{2} \Delta_{\text {diss }} H^{\circ}} \mathrm{Cl}(\mathrm{g}) \xrightarrow{\Delta_{\mathrm{EA}} H^{\circ}} \mathrm{Cl}^{-}(\mathrm{g}) \xrightarrow{\Delta_{\text {hyd }} H^{\circ}} \mathrm{Cl}^{-}(a q)$
The energy involved in the conversion of $\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})$ to $\mathrm{Cl}^{-}(a q)$ (Using the data)
$\Delta_{\text {diss }^{H^{\circ}} \mathrm{Cl}_{2}}=240 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{\mathrm{EA}^{H^{\circ} \mathrm{Cl}}}=-349 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{\text {hyd }}{ }^{\circ} \mathrm{Cl}=-381 \mathrm{~kJ} \mathrm{~mol}^{-1}$ will be
a) $+152 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b) $-610 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c) $-850 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d) $+120 \mathrm{~kJ} \mathrm{~mol}^{-1}$
708. The hybridisation of the ipso - carbon dichlorobenzene is
a) $s p$ hybridized
b) $s p^{2}$ hybridised
c) $s p^{2} d$ hybridized
d) $s p^{3}$ hybridised
709. Which of the following has maximum dipole moment?
a) NCl_{3}
b) NBr_{3}
c) NH_{3}
d) NI_{3}
710. The molecule having largest dipole moment among the following is
a) CHl_{3}
b) CH_{4}
c) CHCl_{3}
d) CCl_{4}
711. Which of the following diatomic molecules would be stabilized by the removal of an electron?
a) C_{2}
b) CN
c) N_{2}
d) O_{2}
712. Which of the following possess maximum hydration energy?
a) MgSO_{4}
b) RaSO_{4}
c) SrSO_{4}
d) BaSO_{4}
713. In which of the following hydrogen bond is present?
a) H_{2}
b) Ice
c) Sulphur
d) Hydrocarbon
714. The correct order of decreasing polarisability of ion is:
a) $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{F}^{-}$
b) $\mathrm{F}^{-}, \mathrm{I}^{-}, \mathrm{Br}, \mathrm{Cl}^{-}$
c) $\mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{Cl}^{-}, \mathrm{F}^{-}$
d) $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$
715. Which is highest melting point halide?
a) NaCl
b) NaBr
c) NaF
d) NaI
716. Number of σ and π bonds in acetylene are
a) 3 and 2
b) 2 and 2
c) 2 and 3
d) 4 and 3
717. Which of the following halides is least stable and has doubtful existence?
a) CI_{4}
b) GeI_{4}
c) SnI_{4}
d) PbI_{4}
718. $\mathrm{C}-\mathrm{C}$ bond length is maximum in
a) Diamond
b) Graphite
c) Naphthalene
d) Fullerene
719. The electronegativity difference between N and F is greater than that between N and H yet the dipole moment of $\mathrm{NH}_{3}(1.5 \mathrm{D})$ is larger than that of $\mathrm{NF}_{3}(0.2 \mathrm{D})$. This is because:
a) In NH_{3} as well as NF_{3} the atomic dipole and bond dipole are in opposite directions.
b) In NH_{3} the atomic dipole and bond dipole are in the opposite directions whereas in NF_{3} these are in the b) same direction.
c) In NH_{3} as well as in NF_{3} the atomic dipole and bond dipole are in the same direction.
d) In NH_{3} the atomic dipole and bond dipole are in the same direction whereas in NF_{3} these are in d) opposite directions.
720. Resonance is not shown by:
a) $\mathrm{C}_{6} \mathrm{H}_{6}$
b) CO_{2}
c) CO_{3}^{2-}
d) SiO_{2}
721. The molecular shapes of $\mathrm{SF}_{4}, \mathrm{CF}_{4}$ and XeF_{4} are
a) Different with 1,0 and 2 lone pairs of electrons on the central atom, respectively
b) Different with 0,1 and 2 lone pairs of electrons on the central atom, respectively
c) The same with 1,1 and 1 lone pairs of electrons on the central atoms, respectively
d) The same with 2, 0 and 1 lone pairs of electrons on the central atom, respectively
722. The shape of IF_{7} molecule is
a) Pentagonal bipyramidal
b) Trigonal bipyramidal
c) Tetrahedral
d) Octahedral
723. Decreasing order of $\mathrm{C}-\mathrm{C}$ bond length is
(I) $\mathrm{C}_{2} \mathrm{H}_{4}$
(II) $\mathrm{C}_{2} \mathrm{H}_{2}$
(III) $\mathrm{C}_{6} \mathrm{H}_{6}$
(IV) $\mathrm{C}_{2} \mathrm{H}_{6}$
a) IV $>I I I>I>I I$
b) $\mathrm{I}>I I>I V>I I I$
c) II $>$ I $>$ IV $>$ III
d) IV $>$ I $>$ III $>$ I
724. In which of the following compounds, the bonds have the largest percentage of ionic character:
a) $\mathrm{H}_{2} \mathrm{O}$
b) HF
c) IBr
d) $\mathrm{N}_{2} \mathrm{O}_{4}$
725. Oxygen and sulphur both are the member of same group in Periodic Table but $\mathrm{H}_{2} \mathrm{O}$ is liquid while $\mathrm{H}_{2} \mathrm{~S}$ is gas because
a) Molecular weight of water is more
b) Electronegativity of sulphur is more
c) $\mathrm{H}_{2} \mathrm{~S}$ is weak acid
d) Water molecules are having strong hydrogen bonds between them
726. The linear structure is possessed by:
a) SnCl_{2}
b) NCO^{-}
c) NO_{2}^{+}
d) CS_{2}
727. When the hybridization state of carbon atom changes from $s p^{3}$ to $s p^{2}$ and finally to $s p$, the angle between the hybridized orbitals:
a) Decreases gradually
b) Decreases considerably
c) Is not affected
d) Increases progressively
728. Which species has the maximum number of lone pair of electrons on the central atom?
a) $\left[\mathrm{ClO}_{3}^{-}\right]$
b) XeF_{4}
c) SF_{4}
d) $\left[\mathrm{I}_{3}^{-}\right]$
729. Which concept best explains that o-nitrophenol is more volatile than p-nitrophenol?
a) Resonance
b) Steric hinderance
c) Hydrogen bond
d) Hyperconjugation
730. How many bonded electron pairs are present in IF_{7} molecule?
a) 6
b) 7
c) 5
d) 8
731. The comparatively high b.p. of HF is due to
a) High reactivity of fluorine
b) Small size of hydrogen atom
c) Formation of hydrogen bonds and consequent association
d) High IE of fluroine
732. Which one of the following species is diamagnetic in nature?
a) H_{2}^{-}
b) H_{2}^{+}
c) H_{2}
d) He_{2}^{+}
733. The unequal sharing of bonded pair of electrons between two atoms in a molecule gives rise to:
a) Ionic bond
b) Polar covalent bond
c) Non-polar covalent bond
d) None of the above
734. In which of the following process energy is liberated?
a) $\mathrm{Cl} \longrightarrow \mathrm{Cl}^{+}+e$
b) $\mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$
c) $\mathrm{Cl}+e \rightarrow \mathrm{Cl}^{-}$
d) $\mathrm{O}^{-}+e \rightarrow \mathrm{O}^{2-}$
735. Identify the least stable ion amongst the following:
a) Li^{-}
b) Be^{-}
c) B^{-}
d) C^{-}
736. The lowest bond energy exist in the following bonds for:
a) $\mathrm{C}-\mathrm{C}$
b) $\mathrm{N}-\mathrm{N}$
c) $\mathrm{H}-\mathrm{H}$
d) $0-0$
737. Number of lone pair (s) in XeOF_{4} is/are
a) 0
b) 1
c) 2
d) 3
738. Which one is electron deficient compound?
a) NH_{3}
b) ICl
c) BCl_{3}
d) PCl_{3}
739. Which type of bond is present in $\mathrm{H}_{2} \mathrm{~S}$ molecule?
a) Ionic bond
b) Covalent bond
c) Coordinate
d) All of three
740. In compound X, all the bond angles are exactly $109^{\circ} 28^{\prime}, X$ is:
a) Chloromethane
b) Iodoform
c) Carbon tetrachloride
d) Chloroform
741. The hybridisation of P in PCl_{5} is
a) $s p^{2}$
b) $s p^{3} d$
c) $s p^{3}$
d) $d s p^{2}$
742. Pauling's electronegativity values for elements are useful in predicting:
a) Polarity of bonds in molecules
b) Position of elements in electromotive series
c) Coordination number
d) Dipole moment of various molecules
743. The hybridization of carbon atoms in $\mathrm{C}-\mathrm{C}$ single bond of $\mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$ is:
a) $s p^{3}-s p^{3}$
b) $s p^{2}-s p^{3}$
c) $s p-s p^{2}$
d) $s p^{3}-s p$
744. It is thought that atoms combine with each other such that the outermost orbit acquires a stable configuration of 8 electrons. If stability were attained with 6 electrons rather than with 8 , what would be the formula of the stable fluoride ions?
a) F^{3+}
b) F^{+}
c) F
d) F^{2-}
745. The number of antibonding electrons pairs in O_{2}^{2-} on the basis of MO theory are:
a) 4
b) 3
c) 2
d) 5
746. Which has triangular planar shape?
a) CH_{3}^{+}
b) ClO_{2}^{-}
c) $\mathrm{H}_{3} \mathrm{O}^{+}$
d) ClO_{3}^{-}
747. Specify the coordination geometry around and hybridization of N and B atoms in a $1: 1$ complex of BF_{3} and NH_{3} :
a) N : tetrahedral, $s p^{3}$; B : tetrahedral, $s p^{3}$
b) $\mathrm{N}:$ pyramidal, $s p^{3}$; B ; pyramidal, $s p^{3}$
c) N : pyramidal, $s p^{3} ; \mathrm{B}$: planar, $s p^{2}$
d) N : pyramidal, $s p^{3}$; B : tetrahedral, $s p^{3}$
748. Which of the following molecule has highest bond energy?
a) $\mathrm{C}-\mathrm{C}$
b) $\mathrm{N}-\mathrm{N}$
c) $0-0$
d) $F-F$
749. The number of oxygen atoms bonded to one phosphorus atom in $\mathrm{P}_{4} \mathrm{O}_{6}$ is
a) 4
b) 3
c) 6
d) 5
750. Bond energies in $\mathrm{NO}^{2}, \mathrm{NO}^{+}$and NO^{-}are such as
a) $\mathrm{NO}^{-}>\mathrm{NO}>\mathrm{NO}^{+}$
b) $\mathrm{NO}^{+}>\mathrm{NO}^{-}>\mathrm{NO}$
c) $\mathrm{NO}>\mathrm{NO}^{-}>\mathrm{NO}^{+}$
d) $\mathrm{NO}^{+}>\mathrm{NO}>\mathrm{NO}^{-}$
751. In XeF_{6}, oxidation state and state of hybridisation of Xe and shape of the molecule are, respectively
a) $+6, s p^{3} d^{3}$, distorted octahedral
b) $+4, s p^{3} d^{2}$, square planar
c) $+6, s p^{3}$, pyramidal
d) $+6, s p^{3} d^{2}$, square pyramidal
752. Which one of the following pairs of species have the same bond order?
a) CN^{-}and NO^{+}
b) CN^{-}and CN^{+}
c) O_{2}^{-}and CN^{-}
d) NO^{+}and CO
753. The bond length of species $\mathrm{O}_{2}, \mathrm{O}_{2}^{+}$and O_{2}^{-}are in the order of
a) $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}$
b) $\mathrm{O}_{2}^{-}>\mathrm{O}_{2}>\mathrm{O}_{2}^{+}$
c) $\mathrm{O}_{2}>\mathrm{O}_{2}^{+}>\mathrm{O}_{2}^{-}$
d) $\mathrm{O}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{+}$
754. Which hybridization results non-polar orbitals?
a) $s p$
b) $s p^{2}$
c) $s p^{3}$
d) $d s p^{2}$
755. The d-orbital involed in $s p^{3} d$ hybridization is
a) $d_{x^{2}-y^{2}}$
b) $d_{x y}$
c) $d_{z^{2}}$
d) $d_{z x}$
756. The element with strong electropositive nature is:
a) Cu
b) Cs
c) Cr
d) Ba
757. Which statement is correct?
a) X^{+}ion is larger than X^{-}ion
b) X^{-}ion is larger in size than X atom
c) X^{+}and X^{-}have the same size
d) X^{+}ion is larger in size than X atom
758. $\mathrm{SF}_{2}, \mathrm{SF}_{4}$ and SF_{6} have the hybridisations at sulphur atom respectively, as
a) $s p^{2}, s p^{3}, s p^{2} d^{2}$
b) $s p^{3}, s p^{3}, s p^{3} d^{2}$
c) $s p^{3}, s p^{3} d, s p^{3} d^{2}$
d) $s p^{3}, s p d^{2}, d^{2} s p^{3}$
759. Solid CH_{4} is:
a) Molecular solid
b) Ionic solid
c) Covalent solid
d) Not exist
760. The bond angles of $\mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}$and NH_{2}^{-}are in the order
a) $\mathrm{NH}_{2}^{-}>\mathrm{NH}_{3}>\mathrm{NH}_{4}^{+}$
b) $\mathrm{NH}_{4}^{+}>\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}$
c) $\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}>\mathrm{NH}_{4}^{+}$
d) $\mathrm{NH}>\mathrm{NH}_{4}^{+}>\mathrm{NH}_{2}^{-}$
761. $s p^{2}$-hybridization is shown by:
a) BeCl_{2}
b) BF_{3}
c) NH_{3}
d) XeF_{2}
762. $\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}$ bond angles in PCl_{5} molecule are
a) 120 and 90
b) 60 and 90
c) 60 and 120
d) 120 and 30
763. Which one of the following pairs is isostructural (i.e., having the same shape and hybridization)?
a) $\left[\mathrm{NF}_{3}\right.$ and $\left.\mathrm{BF}_{3}\right]$
b) $\left[\mathrm{BF}_{4}^{-}\right.$and $\left.\mathrm{NH}_{4}^{+}\right]$
c) $\left[\mathrm{BCl}_{3}\right.$ and $\left.\mathrm{BrCl}_{3}\right]$
d) $\left[\mathrm{NH}_{3}\right.$ and $\left.\mathrm{NO}_{3}^{-}\right]$
764. Which one of the following sets of ions represents a collection of isoelectronic species?
a) $\mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}$
b) $\mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}$
c) $\mathrm{N}^{3-}, \mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{S}^{2-}$
d) $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}$
765. Which molecule has zero dipole-moment?
a) HF
b) HBr
c) $\mathrm{H}_{2} \mathrm{O}$
d) CO_{2}
766. Four diatomic species are listed below. Identify the correct order in which the bond order is increasing in them:
a) $\mathrm{NO}<\mathrm{O}_{2}^{-}<\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}$
b) $\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}$
c) $\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{NO}$
d) $\mathrm{He}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-}$
767. Which one of the following compounds has bond angle as nearly 90° ?
a) NH_{3}
b) $\mathrm{H}_{2} \mathrm{~S}$
c) $\mathrm{H}_{2} \mathrm{O}$
d) CH_{4}
768. The hybrid state of sulphur in SO_{3} molecule is
a) $s p^{3} d$
b) $s p^{3}$
c) $s p^{3} d^{2}$
d) $s p^{2}$
769. In which of the following pair both molecules do not possess same type of hybridisation?
a) CH_{4} and $\mathrm{H}_{2} \mathrm{O}$
b) PCl_{5} and SF_{4}
c) SF_{6} and XeF_{4}
d) BCl_{3} and NCl_{3}
770. Which is the most covalent?
a) $\mathrm{C}-\mathrm{F}$
b) $\mathrm{C}-\mathrm{O}$
c) $\mathrm{C}-\mathrm{S}$
d) $\mathrm{C}-\mathrm{Br}$
771. The shape of NO_{3}^{-}is planar. It is formed by the overlapping of oxygen orbitals with ... orbitals of nitrogen.
a) $s p^{3}$-hybridized
b) $s p^{2}$-hybridized
c) Three p-orbitals
d) None of these
772. Which of the ions has the largest ionic radius?
a) Be^{2+}
b) Mg^{2+}
c) Ca^{2+}
d) Sr^{2+}
773. A σ-bonded molecule $M X_{3}$ is T-shaped. The number non-bonding pairs of electron is
a) 0
b) 2
c) 1
d) Can be predicted only if atomic number of M is known
774. Which of the following is not isoelectronic?
a) NO^{-}
b) CN^{-}
c) N_{2}
d) O_{2}^{2+}
775. In which set of molecules are all the species paramagnetic?
a) $\mathrm{B}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}$
b) $\mathrm{B}_{2}, \mathrm{O}_{2}, \mathrm{NO}$
c) $\mathrm{B}_{2}, \mathrm{~F}_{2}, \mathrm{O}_{2}$
d) $\mathrm{B}_{2}, \mathrm{O}_{2}, \mathrm{Li}_{2}$
776. Which of the following has strongest hydrogen bonding?
a) Ethylamine
b) Ammonia
c) Ethyl Alcohol
d) Diethyl ether
777. The bonds present in $\mathrm{N}_{2} \mathrm{O}_{5}$ are:
a) Ionic
b) Covalent and coordinate
c) Covalent
d) Ionic and covalent
778. The angle between two covalent bonds is maximum in:
a) CH_{4}
b) $\mathrm{H}_{2} \mathrm{O}$
c) CO_{2}
d) SO_{3}
779. The pair having similar geometry is
a) $\mathrm{PCl}_{3}, \mathrm{NH}_{4}$
b) $\mathrm{BeCl}_{2}, \mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{CH}_{4}, \mathrm{CCl}_{4}$
d) $\mathrm{IF}_{5}, \mathrm{PF}_{5}$
780. In the electronic structure of acetic acid there are:
a) 16 shared and 8 unshared valency electrons
b) 8 shared and 16 unshared valency electrons
c) 12 shared and 12 unshared valency electrons
d) 18 shared and 6 unshared valency electrons
781. Increasing order (lower first) of size of the various hybridised orbitals is:
a) $s p, s p^{2}, s p^{3}$
b) $s p^{3}, s p^{2}, s p$
c) $s p^{2}, s p^{3}, s p$
d) $s p^{2}, s p, s p^{3}$
782. Among the following, the compound that contains ionic, covalent and coordinate linkage is
a) NH_{3}
b) $\mathrm{NH}_{4} \mathrm{Cl}$
c) NaCl
d) CaO
783. How many bridging oxygen atoms are present in $\mathrm{P}_{4} \mathrm{O}_{10}$?
a) 6
b) 4
c) 2
d) 5
784. Consider the Born-Haber cycle for the formation of an ionic compound given below and identify the compound (Z) formed.
$\left[\begin{array}{l}M(s) \xrightarrow{\Delta H_{1}} M(\mathrm{~g}) \xrightarrow{\Delta H_{2}} M^{+}(\mathrm{g}) \\ \frac{1}{2} X_{2}(\mathrm{~g}) \xrightarrow{\Delta H_{3}} X(\mathrm{~g}) \xrightarrow{\Delta H_{4}} X^{-}(\mathrm{g})\end{array}\right] \xrightarrow{\Delta H_{5}} Z$
a) $M^{+} X^{-}$
b) $M^{+} X^{-}(s)$
c) $M X$
d) $M^{+} X^{-}(\mathrm{g})$
785. The bond length is maximum in:
a) $\mathrm{H}_{2} \mathrm{~S}$
b) HF
c) $\mathrm{H}_{2} \mathrm{O}$
d) Ice
786. N_{2} andO $_{2}$ are converted into monocations, N_{2}^{+}and O_{2}^{+}respectively. Which of the following is wrong?
a) In $N_{2}^{+}, N-N$ bond weakens
b) In O_{2}^{+}, the $\mathrm{O}-\mathrm{O}$ bond order increases
c) In O_{2}^{+}, paramagnetism decreases
d) N_{2}^{+}become diamagnetic
787. The number of nodal planes present in ${ }_{\sigma}^{*} s$-antibonding orbitals is
a) 1
b) 2
c) 0
d) 3
788. Which of the following has maximum number of lone pairs associated with Xe ?
a) XeO_{3}
b) XeF_{4}
c) XeF_{6}
d) XeF_{2}
789. Which is most volatile compound?
a) HI
b) HCl
c) HBr
d) HF
790. The calculated bond order in O_{2}^{-}ion is
a) 1
b) 1.5
c) 2
d) 2.5
791. A C $\equiv \mathrm{C}$ bond is:
a) Weaker than $\mathrm{C}=\mathrm{C}$ bond
b) Weaker than $\mathrm{C}-\mathrm{C}$ bond
c) Longer than $\mathrm{C}-\mathrm{C}$ bond
d) Shorter than $\mathrm{C}=\mathrm{C}$ bond
792. In which of the following pairs bond angle is $109^{\circ} 28^{\prime}$?
a) $\left[\mathrm{NH}_{4}^{+}\right],\left[\mathrm{BF}_{4}^{-}\right]$
b) $\left[\mathrm{NH}_{4}^{+}\right],\left[\mathrm{BF}_{3}\right]$
c) $\left[\mathrm{NH}_{3}\right],\left[\mathrm{BF}_{4}^{-}\right]$
d) $\left[\mathrm{NH}_{3}\right],\left[\mathrm{BF}_{3}\right]$
793. Which of the following molecules has three-fold axis of symmetry?
a) NH_{3}
b) $\mathrm{C}_{2} \mathrm{H}_{4}$
c) CO_{2}
d) SO_{2}
794. In which of the following arrangements the sequence is not strictly according to the property written against it?
a) $\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$: increasing acid strength
b) $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$: increasing basic strength
c) $\mathrm{B}<\mathrm{C}<\mathrm{O}<\mathrm{N}$: increasing first ionization enthalpy
d) $\mathrm{CO}_{2}<\mathrm{SiO}_{2}<\mathrm{SnO}_{2}<\mathrm{PbO}_{2}$:increasing oxidising power
795. Which one of the following is paramagnetic?
a) N_{2}
b) NO
c) CO
d) O_{3}
796. Which of the following has largest ionic radius?
a) Na^{+}
b) K^{+}
c) Li^{+}
d) Cs^{+}
797. Lattice energy of a solid increases if
a) Size of ions is small
b) Charges of ions are small
c) Ions are neutral
d) None of the above
798. Which one is most polar?
a) CCl_{4}
b) CHCl_{3}
c) $\mathrm{CH}_{3} \mathrm{Cl}$
d) $\mathrm{CH}_{3} \mathrm{OH}$
799. The high boiling point of water is due to:
a) Weak dissociation of water molecules
b) Hydrogen bonding among water molecules
c) Its high specific heat
d) Its high dielectric constant
800. The states of hybridisation of boron and oxygen atoms in boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ are respectively
a) $s p^{2}$ and $s p^{2}$
b) $s p^{2}$ and $s p^{3}$
c) $s p^{3}$ and $s p^{2}$
d) $s p^{3}$ and $s p^{3}$
801. In which pair of species, both species do have the similar geometry?
a) $\mathrm{CO}_{2}, \mathrm{SO}_{2}$
b) $\mathrm{NH}_{3}, \mathrm{BH}_{3}$
c) $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}$
d) $\mathrm{SO}_{4}^{2-}, \mathrm{ClO}_{4}^{-}$
802. Which of the following is largest ion?
a) Na^{+}
b) Mg^{2+}
c) O^{2-}
d) F^{-}
803. The electronic configuration of sodium and chlorine justifies:
a) Their physical state
b) Their reactivity
c) The formation of electrovalent compound NaCl
d) None of the above
804. $s p^{3}$ hybridisation is found in
a) $\stackrel{+}{\mathrm{C}} \mathrm{H}_{3}$
b) $: \overline{\mathrm{C}} \mathrm{H}_{3}$
c) ClO_{3}^{-}
d) SO_{3}
805. Glycerol is more viscous than ethanol due to
a) High molecular weight
b) High boiling point
c) Many hydrogen bonds per molecule
d) Fajan's rule
806. In the case of alkali metals, the covalent character decreases in the order:
a) $\mathrm{MI}>\mathrm{MBr}>\mathrm{MCl}>\mathrm{MF}$
b) $\mathrm{MCl}>\mathrm{MI}>\mathrm{MBr}>\mathrm{MF}$
c) $\mathrm{MF}>\mathrm{MCl}>\mathrm{MBr}>\mathrm{MI}$
d) $\mathrm{MF}>\mathrm{MCl}>\mathrm{MI}>\mathrm{MBr}$
807. Two nodal planes are present in
a) $\stackrel{*}{\pi} 2 p_{x}$
b) $\sigma 2 p_{z}$
c) $\pi 2 p_{x}$
d) $\pi 2 p_{y}$
808. H - bond is not present in
a) Water
b) Glycerol
c) Hydrogen fluoride
d) Hydrogen sulphide
809. In which of the following pairs molecules have bond order three and are isoelectronic?
a) $\mathrm{CN}^{-}, \mathrm{CO}$
b) $\mathrm{CO}, \mathrm{O}_{2}^{+}$
c) $\mathrm{NO}^{+}, \mathrm{CO}^{+}$
d) $\mathrm{CN}^{-}, \mathrm{O}_{2}^{+}$
810. Which of the following halides has maximum melting point?
a) NaF
b) NaCl
c) NaBr
d) NaI
811. Which atomic orbital is always involved in sigma bonding only?
a) s
b) p
c) d
d) f
812. Which of the following acts sometimes as a metal and sometimes as a non-metal?
a) Hg
b) Cl
c) K
d) At
813. Amongst the following elements the configuration having the highest ionization energy is:
a) $[\mathrm{Ne}] 3 s^{2} 3 p^{1}$
b) $[\mathrm{Ne}] 3 s^{2} 3 p^{3}$
c) $[\mathrm{Ne}] 3 s^{2} 3 p^{2}$
d) $[\mathrm{Ar}] 3 d^{10} 4 s^{2} 4 p^{3}$
814. Which of the following species exhibits the diamagnetic behaviour?
a) O_{2}^{2-}
b) O_{2}^{+}
c) O_{2}
d) NO
815. Which is a good solvent for ionic and polar covalent compounds?
a) $\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{CH}_{3} \mathrm{COOH}$
c) CCl_{4}
d) Liquid NH_{3}
816. The following salt shows maximum covalent character
a) AlCl_{3}
b) MgCl_{2}
c) CsCl
d) LaCl_{3}
817. Each of the followings has non-zero dipole moment, except:
a) $\mathrm{C}_{6} \mathrm{H}_{6}$
b) CO
c) SO_{2}
d) NH_{3}
818. Bonded electron pairs present in octahedral SF_{6} molecule:
a) 3
b) 4
c) 6
d) 5
819. Resonance structures can be written for
a) O_{3}
b) NH_{3}
c) CH_{4}
d) $\mathrm{H}_{2} \mathrm{O}$
820. Born-Haber cycle may be used to calculate
a) Electronegativity
b) Mass number
c) Oxidation number
d) Electron affinity
821. The electronic structure of four elements A, B, C, D are
(A) $1 s^{2}$
(B) $1 s^{2}, 2 s^{2}, 2 p^{2}$
(C) $1 s^{2}, 2 s^{2}, 2 p^{5}$
(D) $1 s^{2}, 2 s^{2}, 2 p^{6}$

The tendency to form electrovalent bond is largest in
a) A
b) B
c) C
d) D
822. In which element shielding effect is not possible?
a) H
b) Be
c) B
d) N
823. The hybridisation of orbitals of N atom in $\mathrm{NO}_{3}^{-}, \mathrm{NO}_{2}^{+}$and NH_{4}^{+}are respectively:
a) $s p, s p^{2}, s p^{3}$
b) $s p^{2}, s p, s p^{3}$
c) $s p, s p^{3}, s p^{2}$
d) $s p^{2}, s p^{3}, s p$
824. Which of the following is isoelectronic with carbon atom?
a) Na^{+}
b) Al^{3+}
c) O^{2-}
d) N^{+}
825. Which of the following statement is correct?
a) Polarization of an anion is maximum by high charged cation
b) Small sized cation minimises the polarization
c) A smallanion brings about a large degree of polarisation
d) A small anion undergoes a high degree of polarization
826. Among $\mathrm{LiCl}, \mathrm{BeCl}_{2}, \mathrm{BCl}_{3}$ and CCl_{4}, the covalent bond character follows the order:
a) $\mathrm{LiCl}>\mathrm{BeCl}_{2}>\mathrm{BCl}_{3}>\mathrm{CCl}_{4}$
b) $\mathrm{LiCl}<\mathrm{BeCl}_{2}<\mathrm{BCl}_{3}<\mathrm{CCl}_{4}$
c) $\mathrm{LiCl}>\mathrm{BeCl}_{2}>\mathrm{CCl}_{4}>\mathrm{BCl}_{3}$
d) $\mathrm{LiCl}<\mathrm{BeCl}_{2}<\mathrm{BCl}_{3}>\mathrm{CCl}_{4}$
827. The value of bond order in nitrogen and oxygen molecule is:
a) 3,2
b) 4,2
c) 2,3
d) 1,2
828. Pauling received Nobel Prize for his work on:
a) Photosynthesis
b) Atomic structure
c) Chemical bonding
d) Thermodynamics
829. With which of the given pairs CO_{2} resembles?
a) $\mathrm{HgCl}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}$
b) $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{NO}_{2}$
c) $\mathrm{HgCl}_{2}, \mathrm{SnCl}_{4}$
d) $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}$
830. The enhanced force of cohesion in metals is due to:
a) The covalent linkages between atoms
b) The electrovalent linkages between atoms
c) The lack of exchange of valency electrons
d) The exchange energy of mobile electrons
831. Among $\mathrm{H} X$, the maximum dipole moment is of:
a) HF
b) HCl
c) HBr
d) HI
832. Dative bond is present in:
a) SO_{3}
b) NH_{3}
c) BaCl_{2}
d) BF_{3}
833. In which of the following molecule, the central atom does not have $s p^{3}$-hybridization?
a) CH_{4}
b) SF_{4}
c) BF_{4}^{-}
d) NH_{4}^{+}
834. Which has an odd electron and shows paramagnetic character?
a) NO
b) SO_{2}
c) CO_{2}
d) $\mathrm{H}_{2} \mathrm{O}$
835. Which ion is not isoelectronic with O^{2-} ?
a) N^{3-}
b) Na^{+}
c) F^{-}
d) Ti^{+}
836. Which species is paramagnetic?
a) O_{2}^{-}
b) CH_{3}^{-}
c) CO
d) NO^{+}
837. Structure of ammonia is
a) Pyramidal
b) Tetrahedral
c) Trigonal
d) Trigonal pyramidal
838. The example of the p - p-orbital overlapping is the formation of:
a) H_{2} molecule
b) Cl_{2} molecule
c) Hydrogen chloride
d) Hydrogen bromide molecule
839. In which of the following $p \pi-d \pi$ bonding is observed?
a) NO_{3}^{-}
b) SO_{3}^{2-}
c) BO_{3}^{3-}
d) CO_{3}^{2-}
840. The shape of ClO_{4}^{-}ion is:
a) Square planar
b) Square pyramidal
c) Tetrahedral
d) Trigonal bipyramidal
841. The critical temperature of water is higher than that of O_{2} because $\mathrm{H}_{2} \mathrm{O}$ molecule has:
a) Fewer electrons than O_{2}
b) Two covalent bonds
c) V-shape
d) Dipole moment
842. Compound formed by $s p^{3} d$-hybridization will have structure:
a) Trigonal bipyramidal
b) T-shaped
c) Linear
d) Either of these depending on number of lone pair of electrons of central atom
843. Which has the lowest bond angle?
a) NH_{3}
b) BeF_{2}
c) $\mathrm{H}_{3} \mathrm{O}^{+}$
d) CH_{4}
844. Assuming that Hund's rule is violated, the bond order and magnetic nature of the diatomic molecule B_{2} is
a) 1 and diamagnetic
b) 0 and diamagnetic
c) 1 and paramagnetic
d) 0 and paramagnetic
845. The energy of antibonding molecular orbitals is:
a) Greater than the bonding M.O.
b) Smaller than the bonding M.O.
c) Equal to that of bonding M.O.
d) None of the above
846. The set representing the correct order of ionic radius is:
a) $\mathrm{Na}^{+}>\mathrm{Li}^{+}>\mathrm{Mg}^{2+}>\mathrm{Be}^{2+}$
b) $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Be}^{2+}$
c) $\mathrm{Mg}^{2+}>\mathrm{Be}^{2+}>\mathrm{Li}^{+}>\mathrm{Na}^{+}$
d) $\mathrm{Li}^{+}>\mathrm{Be}^{2+}>\mathrm{Na}^{+}>\mathrm{Mg}^{2+}$
847. Which of the following hydrogen bonds is the strongest?
a) $\mathrm{O}-\mathrm{H}----\mathrm{N}$
b) $\mathrm{F}-\mathrm{H}----\mathrm{F}$
c) $\mathrm{O}-\mathrm{H}-\cdots--\mathrm{O}$
d) $\mathrm{O}-\mathrm{H}----\mathrm{F}$
848. $\mathrm{H}_{2} \mathrm{O}$ is dipolar, whereas BeF_{2} is not. It is because
a) The electronegativity of F is greater than that of O
b) $\mathrm{H}_{2} \mathrm{O}$ involves hydrogen bonding whereas BeF_{2} is a discrete molecule
c) $\mathrm{H}_{2} \mathrm{O}$ is linear and BeF_{2} is angular
d) $\mathrm{H}_{2} \mathrm{O}$ is angular and BeF_{2} is linear
849. Which of the following statements is most correct? Effective nuclear charge of an atom depends on:
a) The atomic number of the atom
b) The charge on the ion
c) The shielding effect
d) Both the actual nuclear charge and the shielding effect
850. The total number of valency electrons in PH_{4}^{+}ion is:
a) 8
b) 9
c) 6
d) 14
851. Phosphoric acid is syrupy in nature due to
a) Strong covalent bonding
b) Hydrogen bonding
c) van der Waals' forces
d) None of the above
852. The correct order of bond angles is:
a) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{BF}_{3}<\mathrm{SiH}_{4}$
b) $\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{SiH}_{4}<\mathrm{BF}_{3}$
c) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{SiH}_{4}<\mathrm{BF}_{3}$
d) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{SiH}_{4}<\mathrm{NH}_{3}<\mathrm{BF}_{3}$
853. Metallic lusture is explained by
a) Diffusion of metal ions
b) Oscillation of loose electrons
c) Excitation of free protons
d) Existence of bcc lattice
854. Which of the following phenomenon will occur when two atoms of same spin will react?
a) Bonding will not occur
b) Orbital overlap will not occur
c) Both (a) and (b)
d) None of the above
855. The hybrid state of S in SO_{3} is similar to that of
a) C in $\mathrm{C}_{2} \mathrm{H}_{2}$
b) C in $\mathrm{C}_{2} \mathrm{H}_{4}$
c) C in CH_{4}
d) C in CO_{2}
856. Among the following the pair in which the two species are not isostructural is
a) IO_{3}^{-}and XeO_{3}
b) PF_{6}^{-}and SF_{6}
c) BH_{4}^{-}and NH_{4}^{+}
d) SiF_{4} and SF_{4}
857. Which of the following species contains three bond pairs and one lone pair around the central atom?
a) NH_{2}^{-}
b) PCl_{3}
c) $\mathrm{H}_{2} \mathrm{O}$
d) BF_{3}
858. Intramolecular hydrogen bonding is found in:
a) Salicyldehyde
b) Water
c) Acetaldehyde
d) Phenol
859. The type of bond formed between H^{+}and NH_{3} in NH_{4}^{+}ion is:
a) Ionic
b) Covalent
c) Dative
d) Hydrogen
860. Which of the following statements is correct about N_{2} molecule?
a) It has a bond order of 3
b) The number of unpaired electrons present in it is zero and hence, it is diamagnetic
c) The order of filling of MOs is $\pi\left(2 p_{x}\right)=$
d) All the above three statements are correct
c) $\pi\left(2 p_{y}\right), \sigma\left(2 p_{z}\right)$
861. Ice has an open structure compared to water due to which it floats on water and occupies a greater volume
of space. The open structure of ice is due to:
a) Solid state of ice
b) Its low density
c) Crystalline nature
d) Hydrogen bonding
862. Which of the following has minimum melting point?
a) CsF
b) HCl
c) HF
d) LiF
863. Geometry of ammonia molecule and the hybridisation of nitrogen involved in it are
a) $s p^{3}$ hyridisation and tetrahedral geometry
b) $s p^{3}$ hyridisation and distorted tetrahedral geometry
c) $s p^{2}$ hyridisation and triangular geometry
d) None of the above
864. The molecule having smallest bond angle is
a) $\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{H}_{2} \mathrm{~S}$
c) NH_{3}
d) $\mathrm{H}_{2} \mathrm{Te}$
865. For a covalent solid, the units which occupy lattice points are:
a) Atoms
b) Ions
c) Molecules
d) Electrons
866. Carbon suboxide $\left(\mathrm{C}_{3} \mathrm{O}_{2}\right)$ has recently been shown as a component of the atmosphere of Venus. Which of the following formulation raepresents the correct ground state Lewis structure for carbon suboxide?
a) $: 0: \mathrm{C}: \mathrm{C}: \mathrm{C}: \mathrm{O}$:
b) :0::C::C:C::O:
c) : Ö::C::C::C:: Ö:
d) : O: C: C: C: O:
867. The ionization energy will be maximum for the process:
a) $\mathrm{Ba} \longrightarrow \mathrm{Ba}^{2+}$
b) $\mathrm{Be} \rightarrow \mathrm{Be}^{2+}$
c) $\mathrm{Cs} \rightarrow \mathrm{Cs}^{+}$
d) $\mathrm{Li} \longrightarrow \mathrm{Li}^{+}$
868. Born Haber cycle is used to determine:
a) Lattice energy
b) Electron affinity
c) Ionization energy
d) Either of them
869. In which of the following molecules/ions $\mathrm{BF}_{3}, \mathrm{NO}_{2}^{-}, \mathrm{NH}_{2}^{-}$, and $\mathrm{H}_{2} \mathrm{O}$ the central atom is $s p^{2}$ hybridized?
a) BF_{3} and NO_{2}^{-}
b) NO_{2}^{-}and NH_{2}^{-}
c) NH_{2}^{-}and $\mathrm{H}_{2} \mathrm{O}$
d) NO_{2}^{-}and $\mathrm{H}_{2} \mathrm{O}$
870. $s p^{3} d$ hybridisation results in
b) An octahedron molecule
a) A square planar molecule
d) A tetrahedron molecule
871. In the electronic structure of $\mathrm{H}_{2} \mathrm{SO}_{4}$, the total number of unshared electrons is
a) 20
b) 16
c) 12
d) 8
872. Which of the following element has higher ionisation energy?
a) Boron
b) Carbon
c) Oxygen
d) Nitrogen
873. The bond length of HCl molecule is $1.275 \AA$ and its dipole moment is 1.03 D . The ionic character of the molecule (in per cent) (charge of the electron $=4.8 \times 10^{-10} \mathrm{esu}$) is
a) 100
b) 67.3
c) 33.66
d) 16.83
874. In a double bond connécting two atoms there is a sharing of:
a) 2 electrons
b) 4 electrons
c) 1 electron
d) All electrons
875. Number of $\mathrm{P}-\mathrm{O}$ bonds in $\mathrm{P}_{4} \mathrm{O}_{10}$ is
a) 17
b) 16
c) 15
d) 6
876. Elements whose electronegativities are 1.2 and 3.0 form:
a) Ionic bond
b) Covalent bond
c) Coordinate bond
d) Metallic bond
877. Which of the following is correct?
a) Decreases in bond length means increase in bond strength
b) Covalent radius of carbon is less than that of nitrogen
c) Single bonds are stronger than double bonds
d) Fe (III) chloride cannot exist in the dimeric form $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$
878. Which of the following is a favourable factor for cation formation?
a) Low ionisation potential
b) High electron affinity
c) High electronegativity
d) Small atomic size
879. A number of ionic compounds, e.g., $\mathrm{AgCl}, \mathrm{CaF}_{2}, \mathrm{BaSO}_{4}$ are insoluble in water. This is because:
a) Ionic compounds do not dissolve in water
b) Water has a high dielectric constant
c) Water is not a good ionizing solvent
d) These molecules have exceptionally high attractive forces in their lattice
880. Ionisation potential values of ' d ' block elements as compared to ionisation potential values of ' f ' block elements are:
a) Higher
b) Lower
c) Equal
d) Either of these
881. When a metal atom combines with a non-metal atom, the non-metal atom will
a) Lose electrons and decrease in size
b) Lose electrons and increase in size
c) Gain electrons and decrease in size
d) Gain electrons and increase in size
882. The hydration of ionic compounds involves:
a) Evolution of heat
b) Weakening of attractive forces
c) Dissociation into ions
d) All of the above
883. Which of the following is diamagnetic?
a) H_{2}^{+}
b) O_{2}
c) Li_{2}

[^0]884. Molecular orbital electronic configuration for ' X ' anion is $K K(\sigma 2 s)^{2}(\stackrel{*}{\sigma} 2 s)^{2}\left(\pi 2 p_{x}\right)^{2}\left(\pi 2 p_{y}\right)^{2}\left(\sigma 2 p_{z}\right)^{2}\left(\stackrel{*}{\pi} 2 p_{x}\right)^{1}$.
The anion ' X ' is
a) N_{2}^{-}
b) O_{2}^{-}
c) N_{2}^{2-}
d) O_{2}^{2-}
885. According to Fajan's rule polarization is more when:
a) Small cation and large anion
b) Small cation and small anion
c) Large cation and large anion
d) Large cation and small anion
886. Organic compounds soluble in water contain:
a) $\mathrm{C}, \mathrm{H} . \mathrm{Cl}$
b) C, H
c) $\mathrm{C}, \mathrm{H}, \mathrm{O}$
d) C, S
887. Atomic radii of fluorine and neon in angstrom unit are respectively given by:
a) $0.72,1.60$
b) $1.60,1.60$
c) $0.72,0.72$
d) $1.60,0.72$
888. The decreasing order of bond angle is
a) $\mathrm{NO}_{2}>\mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}^{-}$
b) $\mathrm{NO}_{2}^{-}>\mathrm{NO}_{2}>\mathrm{NO}_{2}^{+}$
c) $\mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}>\mathrm{NO}_{2}^{-}$
d) $\mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}^{-}>\mathrm{NO}_{2}$
889. The correct order of dipole moment is:
a) $\mathrm{CH}_{4}<\mathrm{NF}_{3}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{NF}_{3}<\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{NH}_{3}<\mathrm{NF}_{3}<\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{NF}_{3}<\mathrm{CH}_{4}$
890. Which oxide of nitrogen is isoelectronic with CO_{2} ?
a) NO_{2}
b) $\mathrm{N}_{2} \mathrm{O}$
c) NO
d) $\mathrm{N}_{2} \mathrm{O}_{2}$
891. Which of the following molecules does not possess a permanent electric dipole moment?
a) $\mathrm{H}_{2} \mathrm{~S}$
b) SO_{2}
c) SO_{3}
d) CS_{2}
892. Among $\mathrm{O}, \mathrm{C}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ the correct order of increasing atomic radii is:
a) $\mathrm{F}<\mathrm{O}<\mathrm{C}<\mathrm{Cl}<\mathrm{Br}$
b) $\mathrm{F}<\mathrm{C}<\mathrm{O}<\mathrm{Br}<\mathrm{Cl}$
c) $\mathrm{F}<\mathrm{Cl}<\mathrm{Br}<\mathrm{O}<\mathrm{C}$
d) $\mathrm{C}<\mathrm{O}<\mathrm{F}<\mathrm{Cl}<\mathrm{Br}$
893. In which of the following diatomic molecules /ions is the bond order of each molecule/ion $=2.5$?
a) $\mathrm{O}_{2}^{+}, \mathrm{NO}, \mathrm{CN}^{-}$
b) $\mathrm{CN}^{-}, \mathrm{N}_{2}^{+}, \mathrm{N}_{2}$
c) $\mathrm{N}_{2}^{+}, \mathrm{NO}, \mathrm{O}_{2}^{+}$
d) $\mathrm{O}_{2}^{+}, \mathrm{CN}^{-}, \mathrm{N}_{2}^{+}$
894. What type of hybridisation takes place in the N atom of NH_{3} ?
a) $s p^{2}$
b) $s p^{3}$
c) $d s p^{2}$
d) $s p$
895. Identify the correct order of solubility of $\mathrm{Na}_{2} \mathrm{~S}, \mathrm{CuS}$ and ZnS in aqueous medium:
a) $\mathrm{CuS}>\mathrm{ZnS}>\mathrm{Na}_{2} \mathrm{~S}$
b) $\mathrm{ZnS}>\mathrm{Na}_{2} \mathrm{~S}>\mathrm{CuS}$
c) $\mathrm{Na}_{2} \mathrm{~S}>\mathrm{CuS}>\mathrm{ZnS}$
d) $\mathrm{Na}_{2} \mathrm{~S}>\mathrm{ZnS}>\mathrm{CuS}$
896. In the following molecule, the two carbon atoms marked by asterisk $\left(^{*}\right)$ possess the following type of hybridized orbitals:
$$
\mathrm{H}_{3} \mathrm{C}-\stackrel{*}{\mathrm{C}} \equiv \stackrel{*}{\mathrm{C}}-\mathrm{CH}_{3}
$$
a) $s p^{3}$-orbital
b) $s p^{2}$-orbital
c) $s p$-orbital
d) s-orbital
897. Debye an unit of dipole moment is of the order of:
a) $10^{-10} \mathrm{esu} \mathrm{cm}$
b) 10^{-18} esu cm
c) $10^{-6} \mathrm{esu} \mathrm{cm}$
d) 10^{-12} esu cm
898. Which of the following is a favourable factor for cation formation?
a) High electronegativity
b) High electron affinity
c) Low ionisation potential
d) Smaller atomic size
899. The paramagnetic molecule at ground state among the following is
a) H_{2}
b) O_{2}
c) N_{2}
d) CO
900. The bond in the formation of fluorine molecule will be
a) Due to $s-s$ overlapping
b) Due to s - poverlapping
c) Due to $p-p$ overlapping
d) Due to hybridisation
901. The diamagnetic molecules are:
a) $\mathrm{B}_{2}, \mathrm{C}_{2}, \mathrm{~N}_{2}$
b) $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{~F}_{2}$
c) $\mathrm{C}_{2}, \mathrm{~N}_{2}, \mathrm{~F}_{2}$
d) $\mathrm{B}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}$
902. The IP_{1} is maximum for:
a) K
b) Na
c) Be
d) He
903. In the transition of Cu to Cu^{2+}, there is a decrease in:
a) Atomic number
b) Atomic mass
c) Equivalent weight
d) Number of valency electrons
904. In the following, which bond will be responsible for maximum value of hydrogen bond?
a) $\mathrm{N}-\mathrm{H}$
b) $\mathrm{O}-\mathrm{H}$
c) $\mathrm{F}-\mathrm{H}$
d) $\mathrm{S}-\mathrm{H}$
905. The bond order of O_{2}^{+}is the same as in
a) N_{2}^{+}
b) CN^{-}
c) CO
d) NO^{+}
906. Structure of XeF_{5}^{+}ion is
a) Trigonal bipyramidal
b) Square pyramidal
c) Octahedral
d) Pentagonal
907. The fHOMO in CO is
a) π-bonding
b) π-antibonding
c) σ-antibonding
d) σ-bonding
908. Which of the following has $s p^{3}$-hybridization on central atom?
a) BF_{2}
b) BCl_{3}
c) SO_{3}
d) CCl_{4}
909. Which one has $s p^{3}$ hybridisation?
a) $\mathrm{N}_{2} \mathrm{O}$
b) CO_{2}
c) SO_{2}
d) CO
910. Coordinate compounds are formed by:
a) Transfer of electrons
b) Sharing of electrons
c) Donation of electron pair
d) None of the above
911. In $\mathrm{P}_{4} \mathrm{O}_{10}$ the
a) Second bond in $\mathrm{P}=0$ is formed by $p \pi-d \pi$ back bonding
b) $\mathrm{P}=0$ bond is formed by $\mathrm{p} \pi-\mathrm{p} \pi$ bonding
c) $P=0$ bond is formed by $d \pi-d \pi$ bonding
d) $\mathrm{P}=0$ bond is formed by $\mathrm{d} \pi-\mathrm{d} \pi-3 \sigma$ back bonding
912. Allene $\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)$ contains
a) One double bond, one triple bond and one single bond
b) One triple and two double bonds
c) Two triple and one double bond
d) Two double and four single bond
913. Which shows non-directional bonding?
a) BCl_{3}
b) CsCl
c) NCl_{3}
d) BeCl_{3}
914. Which one of the following contains both ionic and covalent bonds?
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
b) $\mathrm{H}_{2} \mathrm{O}$
c) NaOH
d) CO_{2}
915. $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Al}^{3+}, \mathrm{Si}^{4+}$ are isoelectronics. Their ionic size follows the order:
a) $\mathrm{Na}^{+}<\mathrm{Mg}^{2+}<\mathrm{Al}^{3+}<\mathrm{Si}^{4+}$
b) $\mathrm{Na}^{+}>\mathrm{Mg}^{2+}<\mathrm{Al}^{3+}<\mathrm{Si}^{4+}$
c) $\mathrm{Na}^{+}<\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}>\mathrm{Si}^{4+}$
d) $\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}>\mathrm{Si}^{4+}$
916. Which of the following does not apply to metallic bond?
a) Overlapping valence orbitals
b) Mobile valence electrons
c) Delocalized electrons
d) Highly directed bonds
917. Van der Waals' forces are maximum in:
a) HBr
b) LiBr
c) LiCl
d) AgBr
918. The internuclear distance in H_{2} and Cl_{2} molecules are 74 and 198 pm respectively. The bond length of $\mathrm{H}-$ Cl may be:
a) 272 pm
b) 70 pm
c) 136 pm
d) 248 pm
919. The molecule having zero dipole moment is
a) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
b) BF_{3}
c) NF_{3}
d) ClF_{3}
920. For a stable molecule, the value of bond order must be
a) There is no relationship between stability and bond order
b) Zero
c) Positive
d) negative
921. Which compound among the following has more covalent character?
a) AlCl_{3}
b) AlI_{3}
c) MgI_{2}
d) NaI
922. Which among the following has the largest dipole moment?
a) NH_{3}
b) $\mathrm{H}_{2} \mathrm{O}$
c) HI
d) SO_{3}
923. The hybridization of phosphorus in POCl_{3} is same as in:
a) P in PCl_{3}
b) S in SF_{6}
c) Cl in ClF_{3}
d) B in BCl_{3}
924. A square planar complex is formed by hybridisation of the following atomic orbitals
a) s, p_{x}, p_{y}, p_{z}
b) $s, p_{x}, p_{y}, p_{z}, d$
c) d, s, p_{x}, p_{y}
d) $s, p_{x}, p_{y}, p_{z}, d, d$
925. Which of the following pairs are isostructural?
a) $\mathrm{SO}_{3}^{2}, \mathrm{NO}_{3}^{-}$
b) $\mathrm{BF}_{3}, \mathrm{NF}_{3}$
c) $\mathrm{BrO}_{3}^{-}, \mathrm{XeO}_{3}$
d) $\mathrm{SF}_{4}, \mathrm{XeF}_{4}$
926. Among $\mathrm{HF}, \mathrm{CH}_{4}, \mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$ intermolecular hydrogen bond is expected
a) In two
b) In all
c) In all leaving one
d) None of these
927. Hydration of different ions in aqueous solution is an example of
a) Ion - induced dipole interaction
b) Dipole - dipole interaction
c) Dipole - induced dipole interaction
d) Ion - dipole interaction
928. Amongst $\mathrm{LiCl}, \mathrm{RbCl}, \mathrm{BeCl}_{2}$ and MgCl_{2}, the compounds with the greatest and the least ionic character, respectively
a) LiCl and RbCl
b) RbCl and MgCl_{2}
c) RbCl and BeCl_{2}
d) MgCl_{2} and BeCl_{2}
929. The percentage of p-character in the orbitals forming $P-P$ bonds in P_{4} is
a) 25
b) 33
c) 50
d) 75
930. Atoms or group of atoms which are electrically charged are known as:
a) Anions
b) Cations
c) Ions
d) Atoms
931. Which among the following elements has lowest value of ionisation energy?
a) Mg
b) Ca
c) Ba
d) Sr
932. IP_{2} for an element is invariably higher than IP_{1} because:
a) The size of cation is smaller than its atom
b) It is difficult to remove ' e ' from cation
c) Effective nuclear charge is more for cation
d) All of the above
933. In forming (i) $\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2}^{+}$and (ii) $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{+}$; the electrons respectively are removed from
a) $\left(\stackrel{*}{\pi} 2 p_{y}\right.$ or $\left.\stackrel{*}{\pi} 2 p_{x}\right)$ and $\left(\stackrel{*}{\pi} 2 p_{y}\right.$ or $\left.\stackrel{*}{\pi} 2 p_{x}\right)$
b) $\left(\pi 2 p_{y}\right.$ or $\left.\pi 2 p_{x}\right)$ and $\left(\pi 2 p_{y}\right.$ or $\left.\pi 2 p_{x}\right)$
c) $\left(\pi 2 p_{y}\right.$ or $\left.\pi 2 p_{x}\right)$ and $\left(\stackrel{*}{\pi} 2 p_{y}\right.$ or $\left.\stackrel{*}{\pi} 2 p_{x}\right)$
d) $\left(\stackrel{*}{\pi} 2 p_{y}\right.$ or $\left.\stackrel{*}{\pi} 2 p_{x}\right)$ and ($\pi 2 p_{y}$ or $\left.\pi 2 p_{x}\right)$
934. Which one pair of atoms or ions will have same configuration?
a) Li^{+}and He^{-}
b) Cl^{-}and Ar
c) Na and K
d) F^{+}and Ne
935. Which combination is best explained by the coordinate covalent bond?
a) $\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{Cl}+\mathrm{Cl}$
c) $\mathrm{Mg}+\frac{1}{2} \mathrm{O}_{2}$
d) $\mathrm{H}_{2}+\mathrm{I}_{2}$
936. The dipole moment of CHCl_{3} is 1.05 debye while that of CCl_{4} is zero, because CCl_{4} is:
a) Linear
b) Symmetrical
c) Planar
d) Regular tetrahedral
937. Which shows the highest lattice energy?
a) RbF
b) CsF
c) NaF
d) KF
938. In a polar molecule, the ionic charge is 4.8×10^{-10} e.s.u. If the inter ionic distance is $1 \AA$ unit, then the dipole moment is
a) 41.8 debye
b) 4.18 debye
c) 4.8 debye
d) 0.48 debye
939. The correct order regarding the electronegativity of hybrid orbitals of carbon is:
a) $s p<s p^{2}>s p^{3}$
b) $s p<s p^{2}<s p^{3}$
c) $s p>s p^{2}<s p^{3}$
d) $s p>s p^{2}>s p^{3}$
940. Which of the following groups all do not have $s p^{3} d$ hybridisation?
a) $\mathrm{ClF}_{3}, \mathrm{IF}_{3}, \mathrm{XeF}_{3}^{+}$
b) $\mathrm{ICl}_{2}^{-}, \mathrm{ClF}_{2}^{-}, \mathrm{I}_{3}^{-}$
c) $\mathrm{ClF}_{3}, \mathrm{BrF}_{3}, \mathrm{IF}_{3}$
d) $\mathrm{PCl}_{3}, \mathrm{AsCl}_{3}, \mathrm{PF}_{5}$
941. Which of the following compounds does not follow the octet rule for electron distribution?
a) $\mathrm{H}_{2} \mathrm{O}$
b) PH_{3}
c) PCl_{3}
d) PCl_{5}
942. Which of the following sets represents the collection of isoelectronic species?
a) $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Al}^{3+}, \mathrm{Cl}^{-}$
b) $\mathrm{Na}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}, \mathrm{F}^{-}$
c) $\mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{Mg}^{2+}, \mathrm{Sc}^{3+}$
d) $\mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}, \mathrm{Cl}^{-}$
943. Which of the following has unchanged valency?
a) H
b) Na
c) Fe
d) 0
944. The structure of XeF_{4} is:
a) Planar
b) Tetrahedral
c) Square planar
d) Pyramidal
945. N_{2} and O_{2} are converted into N_{2}^{+}and O_{2}^{+}respectively.

Which of the following is not correct?
a) In N_{2}^{+}, the $\mathrm{N}-\mathrm{N}$ bond weakens
b) In $\mathrm{O}_{2}^{+}, 0-0$ bond order increases
c) In O_{2}^{+}, paramagnetism decreases
d) N_{2}^{+}becomes diamagnetic
946. Which molecule has trigonal planar geometry?
a) IF_{3}
b) PCl_{3}
c) NH_{3}
d) BF_{3}
947. Malleability and ductility of metals can be accounted due to
a) The presence of electrostatic force
b) The crystalline structure in metal
c) The capacity of layers of metal ions to slide over the other
d) The interaction of electrons with metal ions in the lattice
948. Underlined carbon is $s p^{3}$ hybridised in
a) $\mathrm{CH}_{3} \underline{\mathrm{CH}}=\mathrm{CH}_{2}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
c) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \underline{\mathrm{CN}}$
949. Hydrogen fluoride is a liquid unlike other hydrogen halides because:
a) HF molecules associate due to hydrogen bonding
b) F_{2} is highly reactive
c) HF is the weakest acid of all hydrogen halides
d) Fluorine atom is the smallest of all halogens
950. The number of sigma (σ) and pi (π) covalent bonds respectively in banzene nitrile are
a) 5,13
b) 15,3
c) 13,5
d) 16,2
951. In which one of the following cases, breaking of covalent bond takes place?
a) Boiling of $\mathrm{H}_{2} \mathrm{O}$
b) Melting of KCN
c) Boiling of CF_{4}
d) Melting of SiO_{2}
952. Which compound is soluble in water
a) CS_{2}
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
c) CCl_{4}
d) CHCl_{3}
953. A π-bond is formed by sideways overlapping of:
a) $s-s$ orbitals
b) $p-p$ orbitals
c) $s-p$ orbitals
d) $s-p-s$ orbitals
954. Which statement is true?
a) Absolutely pure water does not contain any ion.
b) Some covalent compounds may also give ions in aqueous solution.
c) In aqueous solution only electrovalent compound give ions.
d) Very sparingly soluble substances do not dissociate in aqueous solution
955. Formation of π-bond:
a) Increases bond length
b) Decreases bond length
c) Distorts the geometry of molecule
d) Makes homoatomic molecules more reactive
956. In which reaction, the hybridisation on the central atom changes from $s p^{2}$ to $s p^{3}$?
a) $\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+}$
b) $\mathrm{BF}_{3}+\mathrm{F}^{-} \rightarrow \mathrm{BF}_{4}^{-}$
c) $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$
d) $\mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
957. The low solubility of BaSO_{4} in water is due to:
a) Low dissociation energy
b) Ionic bonds
c) High value of lattice energy
d) None of the above
958. The number of lone pairs of electron on Xe in XeOF_{4} is:
a) 1
b) 2
c) 3
d) 4
959. Which compound does not contain double bond or triple bond?
a) $\mathrm{C}_{2} \mathrm{H}_{4}$
b) $\mathrm{H}_{2} \mathrm{O}$
c) N_{2}
d) HCN
960. The compound showing maximum covalent character is:
a) BI_{3}
b) BCl_{3}
c) BF_{3}
d) BBr_{3}
961. Carbon atoms in $\mathrm{C}_{2}(\mathrm{CN})_{4}$ are:
a) $s p$-hybridised
b) $s p^{2}$-hybridised
c) $s p$ - and $s p^{2}$-hybridised
d) $s p, s p^{2}$ and $s p^{3}$-hybridised
962. Which statement is wrong?
a) 2nd ionisation energy shows jump in alkali metals
b) 2nd electron affinity for halogens is zero
c) Maximum electron affinity exists for F
d) Maximum ionization energy exists for He
963. Value of x in potash alum,
$\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{AI}_{x}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$ is
a) 4
b) 1
c) 2
d) None of these
964. Among the following, the paramagnetic compound is
a) $\mathrm{Na}_{2} \mathrm{O}_{2}$
b) O_{3}
c) $\mathrm{N}_{2} \mathrm{O}$
d) KO_{2}
965. HCl molecule in the vapour state is an example of:
a) Non-polar bond
b) Ionic bond
c) Polar covalent bond
d) Pure covalent bond
966. The electrons in an incomplete outershell are known as:
a) Kernel electrons
b) Valency electrons
c) Shell electrons
d) None of the above
967. According to bond order concept the correct order of stability of $\mathrm{O}_{2}, \mathrm{O}_{2}^{+}$, and O_{2}^{-}is
a) $\mathrm{O}_{2}>\mathrm{O}_{2}^{+}>\mathrm{O}_{2}^{-}$
b) $\mathrm{O}_{2}^{-}>\mathrm{O}_{2}>\mathrm{O}_{2}^{+}$
c) $\mathrm{O}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{+}$
d) $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}$
968. The element which exists in both hard and soft form is:
a) Fe
b) Si
c) C
d) Al
969. Which of the following is not a correct statement?
a) Every AB_{5} molecule does in fact have square pyramid structure.
b) Multiple bonds are always shorter than corresponding single bonds.
c) The electron-deficient molecules can act as Lewis acids.
d) The canonical structures have no real existence.
970. The bond strength increases:
a) With increasing bond order
b) With increasing extent of overlapping of orbitals
c) With decreasing difference between energies of overlapping orbitals
d) All of the above
971. The number of unpaired electrons in O_{2} molecule is:
a) Zero
b) 1
c) 2
d) 3
972. Which has higher bond energy and stronger bond?
a) F_{2}
b) Cl_{2}
c) Br_{2}
d) I_{2}
973. Which of the following statements regarding carbon monoxide is correct?
a) It involves $s p$-orbitals of carbon
b) It contains a lone pair only on carbon
c) It contains a lone pair only on oxygen
d) In carbonyl, oxygen end is attached to the metal atoms
974. Which of the following is having highest bond length?
a) NO^{-}
b) NO^{+}
c) CN^{-}
d) CN^{+}
975. Which of the following statement is correct for CsBr_{3} ?
a) It is a covalent compound
b) It contains Cs^{3+} and Br^{-}ions
c) It contains Cs^{+}and Br_{3}^{-}ions
d) It contains $\mathrm{Cs}^{+}, \mathrm{Br}^{-}$and lattice Br_{2} molecule
976. In 1 - butene number of σ - bonds is
a) 8
b) 10
c) 11
d) 12
977. Which does not have pyramidal geometry?
a) SO_{3}^{2-}
b) NO_{3}^{-}
c) NH_{3}
d) $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}^{-}$
978. The nature of bonding in CCl_{4} and CaH_{2} :
a) Electrovalent in both CCl_{4} and CaH_{2}
b) Covalent in CCl_{4} and electrovalent in CaH_{2}
c) Electrovalent in CCl_{4} and covalent in CaH_{2}
d) None of the above
979. Which of the following oxides is not expected to react with sodium hydroxide?
a) BeO
b) $\mathrm{B}_{2} \mathrm{O}_{3}$
c) CaO
d) SiO_{2}

CHEMICAL BONDING AND MOLECULAR STRUCTURE

CHEMISTRY

353)	b	354)	c	355)	b	356)	d	557)	c	558)	a	559)	b	560)	
357)	a	358)	c	359)	d	360)	b	561)	c	562)	b	563)	d	564)	
361)	c	362)	b	363)	d	364)	a	565)	c	566)	d	567)	b	568)	
365)	a	366)	c	367)	d	368)	a	569)	b	570)	c	571)	b	572)	
369)	d	370)	c	371)	c	372)	a	573)	a	574)	b	575)	b	576)	b
373)	a	374)	a	375)	a	376)	d	577)	b	578)	b	579)	b	580)	
377)	a	378)	d	379)	b	380)	d	581)	a	582)	d	583)	b	584)	
381)	a	382)	d	383)	d	384)	b	585)	c	586)	c	587)	a	588)	
385)	a	386)	a	387)	a	388)	a	589)	c	590)	d	591)	b	592)	
389)	b	390)	a	391)	c	392)	a	593)	c	594)	d	595)	a	596)	
393)	a	394)	c	395)	c	396)	c	597)	c	598)	c	599)	b	600)	
397)	b	398)	d	399)	d	400)	a	601)	b	602)	c	603)	a	604)	b
401)	b	402)	b	403)	b	404)	c	605)	a	606)	a	607)		608)	a
405)	d	406)	c	407)	b	408)	b	609)	d	610)	c	611)	c	612)	c
409)	b	410)	b	411)	c	412)	b	613)	c	614)	b	615)	a	616)	d
413)	c	414)	d	415)	d	416)	b	617)	c	618)	c	619)	c	620)	
417)	c	418)	a	419)	c	420)	b	621)	d	622)	a	623)	b	624)	
421)	d	422)	c	423)	d	424)	c	625)	d	626)		627)	b	628)	
425)	a	426)	c	427)	c	428)	b	629)	a	630)		631)	a	632)	
429)	b	430)	c	431)	d	432)	a	633)	b	634)	a	635)	c	636)	
433)	d	434)	c	435)	d	436)	b	637)		638)	c	639)	d	640)	
437)	b	438)	c	439)	b	440)	b	641)		642)	b	643)	a	644)	
441)	b	442)	c	443)	a	444)	b	645)		646)	b	647)	c	648)	
445)	a	446)	c	447)	c	448)	a	649)		650)	b	651)	a	652)	
449)	b	450)	c	451)	a	452)	b	653)	a	654)	b	655)	c	656)	
453)	d	454)	a	455)	d	456)	b	657)	c	658)	d	659)	d	660)	
457)	c	458)	b	459)	d	460)	d	661)	c	662)	a	663)	a	664)	
461)	b	462)	a	463)	c	464)	c	665)	a	666)	b	667)	b	668)	
465)	a	466)	d	467)		468)	a	669)	d	670)	c	671)	b	672)	
469)	d	470)	d	471)	d	472)	a	673)	b	674)	b	675)	c	676)	
473)	b	474)	b	475)		476)	a	677)	b	678)	d	679)	c	680)	
477)	d	478)	c	479)		480)	d	681)	a	682)	a	683)	d	684)	
481)	b	482)	c	483)	d	484)	b	685)	c	686)	c	687)	d	688)	
485)	c	486)	b	487)	b	488)	a	689)	b	690)	c	691)	b	692)	
489)	c	490)		491)	d	492)	a	693)	d	694)	b	695)	a	696)	
493)	c	494)	b	495)	c	496)	b	697)	a	698)	c	699)	a	700)	
497)	c	498)	b	499)	c	500)	d	701)	b	702)	b	703)	a	704)	
501)	d	502)	b	503)	b	504)	b	705)	b	706)	b	707)	b	708)	
505)		506)	b	507)	c	508)	c	709)	c	710)	c	711)	d	712)	
509)		510)	b	511)	d	512)	a	713)	b	714)	c	715)	c	716)	
513)		514)	d	515)	d	516)	b	717)	d	718)	a	719)	d	720)	
517)		518)	d	519)	a	520)	c	721)	a	722)	a	723)	a	724)	
521)	a	522)	c	523)	a	524)	b	725)	d	726)	d	727)	d	728)	
525)	d	526)	a	527)	d	528)	a	729)	c	730)	b	731)	c	732)	
529)	d	530)	a	531)	b	532)	a	733)	b	734)	c	735)	b	736)	
533)	b	534)	c	535)	c	536)	d	737)	b	738)	c	739)	b	740)	
537)	a	538)	b	539)	a	540)	c	741)	b	742)	a	743)	c	744)	
541)	a	542)	c	543)	b	544)	a	745)	a	746)	a	747)	a	748)	
545)	b	546)	b	547)	c	548)	d	749)	b	750)	d	751)	a	752)	
549)	c	550)	c	551)	d	552)	c	753)	b	754)	c	755)	c	756)	
553)	b	554)	a	555)	b	556)	a	757)	b	758)	c	759)	a	760)	b

761)	b	762)	a	763)	b	764)	a	873)	d	874)	b	875)	b	876)	
765)	d	766)	d	767)	b	768)	d	877)	a	878)	a	879)	d	880)	
769)	d	770)	c	771)	b	772)	d	881)	d	882)	d	883)	c	884)	
773)	b	774)	a	775)	b	776)	c	885)	a	886)	c	887)	a	888)	c
777)	b	778)	c	779)	c	780)	a	889)	a	890)	b	891)	d	892)	
781)	a	782)	b	783)	a	784)	b	893)	c	894)	b	895)	d	896)	
785)	a	786)	d	787)	a	788)	d	897)	b	898)	c	899)	b	900)	
789)	b	790)	b	791)	d	792)	a	901)	c	902)	d	903)	d	904)	
793)	a	794)	b	795)	b	796)	d	905)	a	906)	b	907)	d	908)	
797)	a	798)	d	799)	b	800)	b	909)	c	910)	c	911)	a	912)	
801)	d	802)	c	803)	c	804)	b	913)	b	914)	c	915)	d	916)	d
805)	c	806)	a	807)	a	808)	d	917)	d	918)	c	919)	b	920)	
809)	a	810)	a	811)	a	812)	d	921)	b	922)	b	923)	a	924)	
813)	b	814)	a	815)	a	816)	a	925)	c	926)	a	927)	d	928)	
817)	a	818)	c	819)	a	820)	d	929)	d	930)	c	931)	c	932)	
821)	c	822)	a	823)	b	824)	d	933)	c	934)	b	935)	a	936)	
825)	a	826)	b	827)	a	828)	c	937)	c	938)		939)	d	940)	d
829)	a	830)	d	831)	a	832)	a	941)	d	942)		943)	b	944)	
833)	b	834)	a	835)	d	836)	a	945)	d	946)	d	947)	c	948)	
837)	a	838)	b	839)	b	840)	c	949)	a	950)		951)	d	952)	
841)	d	842)	d	843)	a	844)	a	953)		954)	b	955)	b	956)	b
845)	a	846)	a	847)	b	848)	d	957)		958)	a	959)	b	960)	
849)	d	850)	a	851)	b	852)		961)		962)	c	963)	c	964)	d
853)	b	854)	c	855)	b	856)	d	965)		966)	b	967)	d	968)	
857)	b	858)	a	859)	c	860)	d	969)	a	970)	d	971)	c	972)	b
861)	d	862)	b	863)	b	864)	d	973)	a	974)	a	975)	c	976)	
865)	a	866)	c	867)	b	868)		977)	b	978)	b	979)	c		
869)	a	870)	c	871)	b	872)									

CHEMICAL BONDING AND MOLECULAR STRUCTURE

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (b)

Molecule	Hybridizatio \mathbf{n}
SO_{3}	$s p^{2}$
$\mathrm{C}_{2} \mathrm{H}_{2}$	$s p$
$\mathrm{C}_{2} \mathrm{H}_{4}$	$s p^{2}$
CH_{4}	$s p^{3}$
CO_{2}	$s p$

2 (b)
Mg^{2+} is smaller thanNa ${ }^{+}$and thus, smaller is cation more is hydration energy.
3 (b)
Number of lone pair in XeOF_{4} is one (1). The structure of XeOF_{4} is given as follows:

One π-bond so remaining six electron pairs form an octahedron with one position occupied by a lone pair.
4 (d)
These are the factors on which van der Waals' forces depend.
5 (b)
It has $s p^{3} d^{3}$-hybridization with one lone pair on $\mathrm{X} e$.
6 (b)
Bond order $\propto \frac{1}{\text { Bond length }}$
BO of $\mathrm{NO}<\mathrm{BO}$ of NO^{+}
\therefore Bond length of NO is greater than the bond length of NO^{+}.
7 (b)
Element with atomic number 20 is metal (Ca); it
will combine with non-metal.
8 (a)
A decrease in s-character increases bond length.
10 (b)
Calculated dipole moment,

$$
\begin{aligned}
\mu_{\text {cal }} & =2.0 \times 10^{-10} \mathrm{~m} \times 1.6 \times 10^{-19} \mathrm{C} \\
& =3.2 \times 10^{-29} \mathrm{C}-\mathrm{m} .
\end{aligned}
$$

Percentage of ionic character $=\frac{\mu_{\text {exp }}}{\mu_{\text {cal }}} \times 100$

$$
=\frac{5.12 \times 10^{-29}}{3.2 \times 10^{-29}} \times 100=16 \%
$$

11 (c)
$\mathrm{C}_{2} \mathrm{H}_{4}$ involves $s p^{2}$-hybridization on carbon atoms.
12 (b)
According to molecular orbital theory.
$\mathrm{F}_{2}(18)=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2}$

$$
\approx \pi 2 p_{y, \pi}^{2 *} 2 p_{x}^{2} \approx{ }_{\pi}^{*} 2 p_{y}^{2}
$$

Bond order in $\mathrm{F}_{2}=\frac{N_{b-} N_{a}}{2}=\frac{10-8}{2}=1$
15 (a)
Bond formation is always exothermic. Compounds of sodium are ionic.
16 (d)
In case of water, five water molecules are attached together through four hydrogen bonding
(c)

Bond order of NO^{+}, NO and NO^{-}are $3,2.5$ and 2 respectively.
Bond energy \propto bond order.
19 (a)
$\mathrm{F} X \mathrm{~F}$ angles of two types are present in $s p^{3} d$ hybrid orbitals. Since, SF_{4} shows $s p^{3} d$ hybridisation as follows, therefore, it exhibits two different $\mathrm{F} X \mathrm{~F}$ angles.

20 (c)
s-character \propto bond angle
For $25 \% s$ character (as in $s p^{3}$ hybrid orbital), bond angle is 109.5°, for $33.3 \% s$ character (as in
$s p^{2}$ hybrid orbital), bond angle is 120° and for $50 \% s$ character (as in $s p$ hybrid orbital), bond angle is 180°.
Similarly, when the bond angle decreases below $1.9 .5^{\circ}$,thes -character will decrease accordingly Decreasing in angle $=120^{\circ}-109.5^{\circ}=10.5^{\circ}$
\therefore Decrease in s-character $=33.3-25=8.3$
Actual decrease in bond angle $=109.5^{\circ}-105^{\circ}=$ 4.5°
\therefore Expected decrease in s-character
$=\frac{8.3}{10.5} \times 4.5=3.56 \%$
Thus, the s-character should decrease by about 3.56%, $i e, s$-character $=25-3.56=21.44 \%$
21 (b)
B has only six electron in $\mathrm{B}_{2} \mathrm{H}_{6}$.
22 (a)
Like gets dissolved in like. It is theory.
23 (c)
Ionic compounds are good conductor of electricity in molten or in solution state. However, they are bad-conductor in solid state.
24 (d)
In benzene 12σ and 3π bonds are present. The structure of benzene is

25 (c)
In CO_{3}^{2-} ion the C -atom undergoes $s p^{2}$ hybridisation. It has triangular planar structure. While $\mathrm{BF}_{4}^{-}, \mathrm{NH}_{4}^{+}$and SO_{4}^{2-} have tetrahedral structure.
26 (d)
PCl_{5} has trigonal bipyramid geometry.
27 (b)
SF_{6} has octahedral geometry, $s p^{3} d^{2}$ hybridisation and bond angle is 90°

$\%$ of d-character $=\frac{2 \text { (no.of } d \text {-orbitals) }}{6 \text { (total hybridised orbitals) }} \times$ 100

$$
=33 \%
$$

So, SF_{6} are bond angle $=90^{\circ}$
and $\quad d$-character $=33 \%$.
(a)

Head on overlapping give rise to σ-bond formation.
29 (c)
Allene is $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$.
30 (a)
Silicate ion $\left(\mathrm{Sio}_{4}^{4-}\right)$ is the basic structural unit of silicates. Silicates are metal derivatives of silicic acid.
31 (a)
Due to planar equilateral geometry of graphite.

Due to non-availability of d-orbitals, boron cannot expand its octet. Therefore, the maximum covalence of boron cannot exceed 4.
33 (b)
Cations are always shorter than their parent atom, anion are always larger.
35 (a)
H -bonding is weakest bonding.
(a)

5 of $\mathrm{P}+24$ of $\mathrm{O}+3$ of -ve charge $=32$.
37 (c)
Benzene has 12σ - and 3π-bonds.
(c)
PF_{5} involves $s p^{3} d$-hybridization.
39 (b)
I_{3}^{-}ion is made up of an I_{2} molecule with an I^{-} bonded to it by means of a coordinate bond in which I_{2} is lone pair acceptor (Lewis acid) and I^{-} the lone pair donor (Lewis base). There are two bond pairs and three lone pairs in the outer shell of central atom. To minimize the repulsive forces the three lone pairs occupy the equatorial position. The ion is therefore, linear in shape with a bond angle of exactly 180°.

Lewis Lewis
acid base
Similarly, N_{3}^{-}ion is also linear in shape.
40 (c)
According to M.O. theory, bond order of $\mathrm{N}_{2}, \mathrm{~N}_{2}^{-}$and N_{2}^{2-} are $3,2.5$ and 2 respectively.
41 (b)
e.g., BF_{3}.

42 (d)
Bond order for $\mathrm{H}_{2}^{-}=+1 / 2$
43 (b)
$s p$-hybridization leads to bond angle of 180°.
44 (c)
$\mu \mathrm{H}_{2} \mathrm{O} \neq 0, \mu_{\mathrm{CO}_{2}}=0$
45 (b)
No, of hybrid orbital $=\frac{1}{2}$ [No.of e^{-}in V-shell of atom + No.of monovalent atoms -charge on cation +charge on anion]
No. of hybrid orbital $2 \begin{array}{lllll}5\end{array}$ $6 \quad 7$
Type of hybridisation $s p \quad s p^{2} \quad s p^{3} \quad s p^{3} d$ $s p^{3} d^{2} \quad s p^{3} d^{3}$
Hybridisation in TeCl_{4} :
No. of hybrid orbital $=\frac{1}{2}[6+4+0+0]=5$
Hence, TeCl_{4} shows $s p^{3} d$ hybridisation.
46 (a)
The stability and bond angle order for hybrids in a group is $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{BiH}_{3}$.
47 (c)
Isoelectronic species are those species which have equal number of electrons. Hence, CO_{2} is isoelectronic with $\mathrm{N}_{2} \mathrm{O}$.
Number of electron in $\mathrm{CO}_{2}=22$
Number of electron in $\mathrm{N}_{2} \mathrm{O}=22$
48 (d)
In BeCl_{2}, Be atom has incomplete octet.
49 (a)
Greater the charge, smaller the radius, greater the polarising power and thus greater the covalent nature. This leads to increase in lattice energy.

The structure, $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$ is non-planar with two $-\mathrm{CH}_{2}$ groups being in planes perpendicular to each other.

52
(b)

Removal of two electrons (one by one) from an atom requires energy $=\mathrm{IP}_{1}+\mathrm{IP}_{2}$.
59 (c)
The molecular orbital electronic configuration.
$(\sigma 1 s)^{2}(\sigma 1 s)^{2}(\sigma 2 s)^{2} \stackrel{*}{(\sigma 2 s)^{2}\left(\sigma 2 p_{x}\right)^{2}}$
$\left(\pi 2 p_{y}\right)^{2}\left(\pi 2 p_{z}\right)^{2}\left(\pi 2 p_{y}\right)^{2} \stackrel{*}{\left(\pi 2 p_{z}\right)^{1}}$
Total electrons $=17$
Hence, this configuration belongs to $\mathrm{O}_{2}^{-}\left(17 e^{-}\right)$ ion.
60 (a)
$\mathrm{H}_{3} \mathrm{O}^{+}: s p^{3} ; \mathrm{NO}_{3}^{-}: s p^{2}$
6, 6
62 (a)
More is the dipole moment more is ionic nature.
$\mu=\delta \times \mathrm{d}$; higher is μ, more will be δ on the atom.

Each species has 14 electrons and bond order for each is three.
66 (a)
Among the given choices of compound having oxygen attached to hydrogen will have maximum hydrogen bonding.
\because Among $\mathrm{CH}_{3} \mathrm{OCH}_{3},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}, \mathrm{CH}_{3} \mathrm{CHO}$ and
\because Among $\mathrm{CH}_{3} \mathrm{OCH}_{3},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}, \mathrm{CH}_{3} \mathrm{CHO}$ and
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ only $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ has oxygen attached to hydrogen atom.
$\therefore \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ shows maximum hydrogen bonding.
(d)

Electronegativity increases along the period and decreases down the group.
(a)

Brass in an alloy.
(c)

It is head on overlapping and thus, forms more stronger bond.
(c)

H -bonding in molecule gives rise to increase in its b.p.
(b)

One bonding molecular orbital and one antibonding.
7 (a)
Follow Fajáns' rule.
b) antoqures energy $=\mathrm{I}_{1}+\mathrm{I}_{2}$.

Due to $s p^{3}$-hybridization.
(c)

It is experimental value.
68 (c)
O_{2}^{2+} has 14 electrons. Its electronic configuration is as
$\mathrm{O}_{2}^{+}: \sigma 1 s^{2}{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2}{ }_{\sigma}^{*} 2 s^{2}, \pi 2 p_{y}^{2} \pi 2 p_{z}^{2} \sigma 2 p_{x}^{2}$
Bond order $=\frac{N_{b-} N_{a}}{2}=\frac{10-4}{2}=3$
69 (c)
In diamagnetic molecule, all the electrons are paired
70 (a)

Hence, enolic form of acetone contains 9 sigma bonds, 1 pi bond and two lone pairs.
71 (a)
In NO_{3}^{-}ion, total number of electrons $=$ $7+24+1=32$ and in it central atom is $s p^{2}$ hybrid.
No. of hybrid orbitals $=\frac{V-8 B}{2}+B=\frac{24-8 \times 3}{2}+3$
($V \rightarrow$ total number of electrons in valence shell
$B \rightarrow$ probability of formation of bond)
In CO_{3}^{2-} ion, total number of electrons $=$ $6+24+2=32$ and in it central atom is $s p^{2}$ hybrid.
No. of hybrid orbital $=\frac{24-8 \times 3}{2}+3=3$
Hence, NO_{3}^{-}and CO_{3}^{2-} ions are isoelectronic and isostructural.
72 (b)
$\mathrm{H}_{2}^{+}=\sigma 1 s^{2}$ (According to molecular orbital theory)
Bond order $=\frac{\text { bonding electrons-antibonding electrons }}{2}$

$$
=\frac{1}{2}=0.5
$$

H_{2}^{+}is paramagnetic due to the presence of one unpaired electron.
73 (b)
H -bonding in molecules gives rise to increase in b.p.

74 (a)
Bond distance is in the order :
$\mathrm{C}-\mathrm{C}>C=C>C \equiv C$

$$
s p^{3}>s p^{2}>s p
$$

75 (a)
$\%$ ionic character $=16\left(x_{A}-x_{B}\right)+3.5\left(x_{A}-x_{B}\right)^{2}$
$=16 \times 2+3.5 \times\left(2^{2}\right)$
$=46$
\therefore The $\%$ covalent character $=100-46=54$
76 (d)
ICl_{2}^{-}has $s p^{3} d$-hybridized state (i.e., trigonal
bipyramidal shape but distorted due to the presence of lone pair of electron on I atom.)
77 (a)
Like gets dissolved in like.
78
(c)
$\mathrm{N}_{2} \mathrm{O}$ is isoelectronic with CO_{2} and N_{3}^{-}.
Hence, its structure is linear.

$$
\mathrm{N}-\mathrm{N}-\mathrm{O}
$$

79 (d)
H atom attached on $\mathrm{N}, \mathrm{O}, \mathrm{F}$ develops hydrogen bonding molecule.

In CCl_{4} all bonds of carbon being identical, the molecule is a regular tetrahedron
81 (c)
In O^{2-} effective nuclear charge is minimum due to more number of electrons and thus the size of 0^{2-} is maximum.
82 (b)
The zero dipole moment of BF_{3} molecule is due to its symmetrical (triangular planar) structure.

84 (b)
Bond dissociation energy order:
$\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{F}_{2}>\mathrm{I}_{2}$
$\begin{array}{llll}242.6 & 192.8 & 158.8 & 151.1\end{array} \mathrm{in} \mathrm{kJ} \mathrm{mol}^{-1}$
85
(b)
$\mathrm{CH}_{3} \mathrm{OH}$ shows H -bonding in liquid state.
86 (b)
They have high electron density.
87 (c)
A coordinate bond is a dative covalent bond in which two atoms form bond and one of them provides both electrons.

$$
X:+Y \rightarrow X: Y \text { or } X \rightarrow Y
$$

88 (b)
$\mathrm{C}-\mathrm{C}$ bond length in $s p^{2}$ hybrid molecule is= $1.39 \AA ̊$
89
(d)

More is electronegativity differences, more is
ionic character
90 (a)
Cation are always smaller than their parent atoms:
$\mathrm{Al}^{3+}<\mathrm{Al}^{2+}<\mathrm{Al}^{+}<\mathrm{Al}$.
91 (a)
We know that the $\mathrm{C}-\mathrm{C}$ bond length $=1.54 \mathrm{~A}, \mathrm{C}$ $=\mathrm{C}$ bond length $=1.34 \mathrm{~A}$ and $\mathrm{C} \equiv \mathrm{C}$ bond length $=1.20$ A. Since propyne has triple bond; therefore, it has minimum bond length.
92 (c)
Ionic compounds conduct current in molten state.
93 (d)
Metals are good conductor of electricity because they contain free electrons.
94 (d)
OSF_{2} has pyramidal shape

95 (d)
Non-polar species exert van der Waals' forces among themselves.
96 (b)
It has 3σ-and 1π-bond.
97 (c)
Cl^{-}has $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6}$ configuration.
98 (c)
Per cent ionic character is given by $\%$ of ionic character.
$=16\left(X_{A}-X_{B}\right)+3.5\left(X_{A}-X_{B}\right)^{2}$
From the above relation, it is clear that as soon as $\left(X_{A}-X_{B}\right)$ increases, $\%$ ionic character will also increase.
Therefore, curve C shows a correct path.
99 (d)
$7 \mathrm{Cl}=1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p_{x}^{2}, 3 p_{y}^{2}, 3 p_{z}^{1}$
$\mathrm{Cl}=1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{1}, 3 p_{x}^{1}, 3 p_{y}^{1}, 3 p_{z}^{1}, 3 d^{1}, 3 d^{1} 3 d^{1}$
(3rd excited state)
Chlorine atom, in its third excited state, reacts with fluorine to form ClF_{7}. Its shape is pentagonal bipyramidal.
100 (c)
Anion $\left(\mathrm{O}^{-}\right)$repels the test electron because of same charge.
101 (c)
Cl in ClF_{3} has $s p^{3} d$-hybridization

and possesses two axial $\mathrm{Cl}-\mathrm{F}$ bonds and one equatorial bond. Two lone pairs are at equatorial position give rise to bent ' T ' shape to ClF_{3}.
O_{2}^{-}has one unpaired electron in its antibonding molecular orbital.
104 (d)
$\mathrm{PCl}_{3}<\mathrm{PBr}_{3}<\mathrm{PI}_{3}$, the bond angle order is explained in terms of increasing electronegativity of halogens, whereas, $\mathrm{PF}_{3}>\mathrm{PCl}_{3}$, bond angle order is explained in terms of $\mathrm{p} \pi-\mathrm{d} \pi$ bonding in PF_{3}.
105 (c)
μ experimental $=$ Dipole moment $\times 10^{-18}$
μ theoretical $=$ Bond length $\times 4.8 \times 10^{-10}$ esu

$$
\times \mathrm{cm}
$$

Percentage ionic character $=\frac{\mu_{\text {experimental }}}{\mu_{\text {theoretical }}} \times 100$

$$
\begin{gathered}
=\frac{1.0 \times 10^{-18} \times 100}{1.25 \times 4.8 \times 10^{-10} \times 10^{-8}} \\
=16.66 \%
\end{gathered}
$$

106 (d)
CCl_{4} does not exhibit dipole moment due to its symmetrical structure.

107 (a)
N_{2} molecule has 14 electrons. The molecular orbital electronic configuration of the molecule is as
$\mathrm{N}_{2}: K K(\sigma 2 s)^{2}\left({ }_{\sigma}^{*} 2 s\right)^{2}\left(\pi 2 p_{x}\right)^{2}$
$=\left(\pi 2 p_{y}\right)^{2}\left(\pi 2 p_{z}\right)^{2}$
N_{2}^{-}ion is formed when N_{2} accept an electron hence it has 15 electrons. The molecular orbital electronic configuration of the molecule is as
$\mathrm{N}_{2}^{-}: K K(\sigma 2 s)^{2}\left({ }_{\sigma}^{*} 2 s\right)^{2}\left(\pi 2 p_{x}\right)^{2}\left(\pi 2 p_{y}\right)^{2}$
$\left(\sigma 2 p_{z}\right)^{2}\left({ }_{\pi}^{*} 2 p_{x}\right)^{1}$
Hence, this electron goes to antibonding π
molecular orbital.
108 (b)
The size of isoelectronic decreases with increase in atomic number.

109 (a)
The bond orders for $\mathrm{H}_{2}, \mathrm{H}_{2}^{+}, \mathrm{He}_{2}$ and He_{2}^{+}are 1.0, $0.5,0.0$ and 0.5 respectively.
110 (b)
N atom has smallest radius.
111 (d)
The order of screening effect for a given shell electrons is $s>p>d>f$.
112 (a)
The stability of hydrides decreases down the gp, i.e., from NH_{3} to BiH_{3} which can be observed from their bond dissociation enthalpy. The correct order is

$$
\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}<\mathrm{BiH}_{3}
$$

$$
\begin{array}{llll}
\text { Property } & \mathrm{NH}_{3} & \mathrm{PH}_{3} & \mathrm{AsH}_{3} \\
\Delta_{\text {dics }} H^{-}(E-H) / \mathrm{kl} \mathrm{~mol}^{-1} & 389 & 322 & 297
\end{array}
$$

113 (a)
SF_{4} has $s p^{3} d^{2}$-hybridization and see-saw geometry.
114 (a)
Due to presence of intermolecular hydrogen bonding in $\mathrm{H}_{2} \mathrm{O}$, its molecules are associated with each other which results unusual high boiling point of water.
115 (c)
Larger is anion, more is covalent character.
116 (a)
Molecular orbital configuration of,
O_{2}^{2-}
$=\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p^{2}, \pi 2 p_{x}^{2}, \pi 2 p_{y}^{2}, \pi^{*} 2 p$
117 (a)
Valencies of X, Y and Z is $+2,+2$ and -2 respectively so, they will form a compound having of formula XYZ_{2}.
118 (a)
The molecule in which the bond dipoles of all the bonds are cancel out by each other, is called non polar e.g., CCl_{4}.
In CCl_{4}, there is a large difference between the electronegativities of C and Cl but all the four $\mathrm{C}-$ Cl bond dipoles cancel each other, hence it is a non-polar molecule.

(non-polar)
119 (c)
Tetrahedral structure is associated with $s p^{3}$ hybridised central atom without any lone pair. The structure of all the compounds given are as follows:

$\mathrm{SbH}_{3} \quad \mathrm{BiH}_{3}$
255
Distorted octahedral

Square planar

Distorted trigonal bipyramidal

Tetrahedral

Methyl group has $+I$ effect and $-\mathrm{NO}_{2}$ group has $-I$ effect. Therefore, in p-nitro toluene the dipole moments of $-\mathrm{CH}_{3}$ and $-\mathrm{NO}_{2}$ groups act in the same direction. So, the resultant dipole moment is additive.
i.e., $3.93+0.43=4.36$ debye

121 (a)
The tendency to show lower ionic state increases down the group due to inert pair effect.
122 (b)
$\mathrm{CH} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
sp sp sp $p^{3} \quad s p^{3}$
In butyne - 1 , there is no carbon with $s p^{2}$ hybridisation.
123 (b)
$\mathrm{NO}^{+}: \sigma 1 s^{2}, \sigma^{x} 1 s^{2}, \sigma 2 s^{2}, \sigma^{x} 2 s^{2}, \sigma 2 p_{x}^{2}\left[\begin{array}{l}\pi 2 p_{y}^{2} \\ \pi 2 \pi_{z}^{2}\end{array}\right]$
\therefore B. O. $=\frac{10-4}{2}=3$
$\mathrm{CN}^{-}: \sigma 1 s^{2}, \sigma^{x} 1 s^{2}, \sigma 2 s^{2}, \sigma^{x} 2 s^{2}, \sigma 2 p_{\mathrm{x}}^{2}\left[\begin{array}{l}\pi 2 p_{y}^{2} \\ \pi 2 p_{z}^{2}\end{array}\right]$
\therefore B. O. $=\frac{10-4}{2}=3$
124 (c)
Electron affinity order for halogens is $\mathrm{Cl}>\mathrm{F}>$ $\mathrm{Br}>\mathrm{I}$.

(d)

Sulphur trioxide has no $S-S$ linkage. It has triangular planar geometry.

127 (d)
All molecules or ions i.e., $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{4}^{+}, \mathrm{SO}_{4}^{2-}, \mathrm{ClO}_{4}^{-}$, and NH_{3} are involved in $s p^{3}$ hybridisation in their formation.
129 (b)
p-orbitals always show lateral overlapping.
130 (a)
SF_{6} does not obey octet rule as in it S -atom has 12 electrons in its valence shell.

131 (b)
The structure of peroxodisulphuric acid $\left(\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\right)$ is

Hence, it contains 11σ and 4π-bonds.
132 (d)
Paramagnetic species have unpaired electrons

N in it has three σ-bonds and one lone pair of electron.
134 (a)
Electron deficient species can accept lone pair of electron and thus, act as Lewis acid.
135 (a)
NH_{3} has pyramidal shape and thus, possesses three folds axis of symmetry.
136 (d)
ICl_{2}^{-}has $s p^{3} d$-hybridization and has two bond pairs and three lone pairs of electrons.

The dipole moment of a polar molecule depends upon its geometry. A symmetrical molecule is non-polar even though it contain polar bonds. Methane molecule $\left(\mathrm{CH}_{4}\right)$ has zero moment value of dipole moment due to its symmetrical structure.
In CHCl_{3}, the resultant of $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{Cl}$ dipole oppose the resultant of two $\mathrm{C}-\mathrm{Cl}$ dipoles while in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the resultant of $\mathrm{C}-\mathrm{H}$ dipoles adds to resultant of two $\mathrm{C}-\mathrm{Cl}$. In case $\mathrm{CH}_{3} \mathrm{Cl}$, the resultant of two $\mathrm{C}-\mathrm{H}$ dipole adds to the resultant of two C - Cl . In case $\mathrm{CH}_{3} \mathrm{Cl}$ the resultant of two $\mathrm{C}-\mathrm{H}$ dipoles add to the resultant of $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{Cl}$ dipoles.
Thus dipole moment of $\mathrm{CH}_{3} \mathrm{Cl}$ is highest among the given compounds. The molecule (CCl_{4}) again becomes symmetrical and dipole moment reduces
to zero.
138 (c)
S in SCl_{4} is $s p^{3} d$-hybridized and possesses seesaw structure whereas SiCl_{4} is tetrahedral.

139 (c)
Oxygen cannot expand its octet due to absence of d-orbitals in its valence shell.
142 (a)
Geometry is explained by taking an account of single bonds only. However, presence of double bond may distort bond angles, e.g., HCHO has $s p^{2}$ hybridization but angle $\mathrm{H}-\mathrm{C}-\mathrm{H}$ is 116° and angle $\mathrm{H}-\mathrm{C}-\mathrm{O}$ is 122° due to double bond. In BF_{3} ($s p^{2}$-hybridization) each angle is of 120°.
143 (d)
The shape of carbon dioxide is linear because it has $s p$ hybridisation and bond angle 180°.
$0=\mathrm{C}=0$
144 (a)
Addition of electrons to an atom results an increase in its size.
145 (d)
$\mathrm{H}_{2} \mathrm{O}$ is V shaped.
146 (c)
In diethyl ether oxygen undergoes $s p^{3}$ hybridisation forming four $s p^{3}$ hybrid orbitals.
147 (a)
As soon as the electronegativity increases, ionic bond strength increases
148 (a)
Both are linear.
149 (c)
Inspite of three polar bond, the lone pair of electron on N atom decreases the dipole moment of NF_{3} than NH_{3}.
150 (c)
Polarity in a molecule gives rise to an increase in forces of attractions among molecules and thus, more becomes boiling point.
152 (a)
The melting point of naphthalene is minimum because it is non - polar covalent compound and has less melting point.

153 (c)
BF_{3} is a electron deficient compound. So, it has no lone pair orbital over B atom.
154 (c)
Molecular orbital theory was given by Mulliken.
155 (d)
The trigonal geometry of $B F_{3}$ with three vectors $(B \rightarrow F)$ acting at 120° leads to zero dipole moment. In NH_{3} three vectors $(\mathrm{N} \leftarrow \mathrm{H})$ act as 107° along with one lone pair giving dipole moment in molecule.
156 (d)
Proton $\left(\mathrm{H}^{+}\right)$can only accept a lone pair from donor atom.
157 (d)
Each has 10 electrons
158 (d)
Isomerism is arised due to directional nature of covalent bonding.
159 (b)
SF_{4} has $s p^{3} d$-hybridized sulphur atom.
160 (c)
SbCl_{5}^{2-} has $s p^{3} d^{2}$-and rest all has $s p^{3} d$ -
hybridisation.
161 (d)
Size of anions is larger than their parent atoms.
Also more is ENC lesser is size.
162 (d)
${ }_{22} \mathrm{Ti}: 3 s^{2}, 4 s^{2} \xrightarrow{I E_{1}} 3 d^{2}, 4 s^{1}$
${ }_{23} \mathrm{~V}: 3 d^{3}, 4 s^{2} \xrightarrow{I E_{1}} 3 d^{3}, 4 s^{1}$
${ }_{24} \mathrm{Cr}: 3 d^{5}, 4 s^{1} \xrightarrow{I E_{1}} 3 d^{5} \xrightarrow[\text { hlaf-filled }]{I E_{2} \text { from }}$ maximum
${ }_{25} \mathrm{Mn}: 3 d^{5}, 4 s^{2} \xrightarrow{I E_{1}} 3 d^{5}, 4 s^{1}$
164 (a)
$\mathrm{C}-\mathrm{Cl}$ bond is more ionic than $\mathrm{C}-\mathrm{I}$ bond because of the greater difference in electronegativities of C and Cl as compared to that of carbon and iodine. Therefore, $\mathrm{C}-\mathrm{Cl}$ bond is stronger than $\mathrm{C}-\mathrm{I}$ bond.
165 (c)
Cl is more electronegative than I .
166 (b)
The solubility of a compound depends upon its hydration enthalpy. If hydration enthalpy exceeds the lattice enthalpy than it is soluble in water. For $\mathrm{Ag}_{2} \mathrm{SO}_{4}$, hydration enthalpy is lower than lattice enthalpy, so it is insoluble in water.
167 (c)
Silicon has the tendency to show covalent
bonding because of higher IP values.

In SnCl_{2}, Sn has $s p^{2}$ hybridisation and hence, has angular shape
169 (c)
The inert gas just after chlorine is argon.
170 (d)
The d-orbital involved in $s p^{3} d$-hybridization is $d_{z x}$.

171 (d)

$$
\begin{array}{r}
\mathrm{O}_{2}=\sigma 1 s^{2}{ }_{\sigma}^{*} 1 s^{2} \sigma 2 s^{2}{ }_{\sigma}^{*} 2 s^{2} \sigma 2 p_{z}^{2} \pi 2 p_{x}^{2} \\
=\pi 2 p_{y}^{2}{ }_{\pi}^{*} 2 p_{x \prime}={ }_{\pi}^{*} 2 p_{y \prime}
\end{array}
$$

In O_{2}^{+}, one electron is removed from Na
BO for $\mathrm{O}_{2}=2$ and for $\mathrm{O}_{2}^{+}=2.5$
Therefore, paramagnetism decreases,
increases.
172 (b)
Intramolecular H -bonding is present in ortho nitrophenol.
174 (c)
According to valence shell electron pair repulsion (VSEPR) theory, the order of repulsive interactions between various electron is

$$
l p-l p>l p-b p>b p-b p
$$

175 (b)
In like atoms, electronegativity difference is zero.
176 (d)
BCl_{3} has bond angle equal to 120° (trigonal planar). NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ have $s p^{3}$ hybridisation but due to the presence of lone pair of electrons, they have bond angle less than $109.28^{\prime}\left(\mathrm{NH}_{3}-\right.$ $107^{\circ}, \mathrm{H}_{2} \mathrm{O}-104.5^{\circ}$), AsH_{3} ($s p^{3}$ hybrid) has smaller bond angle than NH_{3} due to less electronegativity of As than N .
177 (d)
$E_{o p}^{\circ}$ order is $\mathrm{Mg}>\mathrm{Fe}>\mathrm{Cu}$; more is $E_{o p}^{\circ}$, more is electropositive character.
178 (c)
0 atom possesses two lone pair of electrons.
179 (a)
M.O. configuration of O_{2}^{+}is:
$\sigma 1 s^{2} \sigma^{*} 1 s^{2}, \sigma^{*} 2 s^{2} \sigma 2 p^{2}, \pi 2 p_{y}^{2} \pi 2 p_{y}^{2} \pi^{*} 2 p_{x}^{1}$
Bond order of $\mathrm{O}_{2}^{+}=\frac{1}{2}[6-1]=\frac{5}{2}$
M.O. configuration of N_{2}^{+}is:
$\sigma 1 s^{2} \sigma^{*} 1 s^{2}, \sigma 2 s^{2} \sigma^{*} 2 s^{2}, \pi 2 p_{y}^{2} \pi 2 p_{y}^{2} \sigma 2 p^{1}$
Bond order of $\mathrm{N}_{2}^{+}=\frac{1}{2}[5-0]=\frac{5}{2}$
180 (c)
No scope for addition in completely filled valence orbitals of inert gases.
181 (b)
SeF_{4} has distorted tetrahedral geometry while, CH_{4} has tetrahedral geometry
Speed of electron \neq speed of light
182 (c)
Butadiene is $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$.
183 (b)
37 is atomic number of Rb the electropositive element and 53 is atomic number of iodine (the electronegative element).
184 (c)
In methane bond angle is $109^{\circ} 2^{\prime}$. Methane molecule is tetrahedral in structure.

Cs is metal and solid.
186 (d)

1. Glycerol has strong hydrogen bonding due to presence of $3-\mathrm{OH}$ groups in it. It is correct statement.
2. Alkyl halides have lower boiling point than alcohols because alcohols have stronger forces of attraction between the hydrogen bonds as compared to weaker van der Waals' forces between molecules of alkyl halide.
\therefore Statement (d) is false.
187 (a)
Ionic radii $=\frac{n^{2} a_{0}}{Z_{\text {eff }}}$
188 (c)
Only those atomic orbitals combine, that have nearly equal energy
189 (b)
The stability of the ionic bond depends upon the lattice energy which is expected to be more between Mg and F due to +2 charge on Mg atom

Smaller is anion, lesser is its polarization.
191 (b)

$s p^{2}$ - hybridisation
Boron has planar structure due to $s p^{2}$ hybridisation.
192 (c)
3. $\mathrm{NO}^{-}(16)$. According to MOT.
$\sigma 1 s^{2}, \stackrel{*}{\sigma} 1 s^{2}, \sigma 2 s^{2}, \stackrel{*}{\sigma} 2 s^{2}, \sigma 2 p_{x}^{2},\left\{\begin{array}{l}\pi p_{y}^{2} \\ \pi 2 p_{z}^{2}, \\ \begin{array}{l}\stackrel{N}{2}^{2} 2 p_{y}^{\frac{1}{y}} \\ \pi_{2} 2 p_{z}^{1},\end{array}\end{array}\right.$
Bond order $=\frac{\text { bonding electrons }- \text { antibonding electrons }}{2}$

$$
=\frac{10-6}{2}=2
$$

4. $\mathrm{NO}^{+}(14)$.
$\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{x}^{2},\left\{\begin{array}{l}\pi 2 p_{y}^{2} \\ \pi 2 p_{z}^{2},\end{array}\right.$
Bond order $==\frac{10-4}{2}=3$
5. NO (15)
$\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{x}^{2}, \begin{aligned} & \pi 2 p_{y}^{2} \\ & \pi 2 p_{2}^{2}, \\ & \begin{array}{l}\stackrel{*}{\pi} 2 p_{y}^{1} \\ w_{2}^{*} 2 p_{z}^{0} \\ \pi\end{array}\end{aligned}$
Bond order $==\frac{10-5}{2}=2.5$
(iv) $\mathrm{NO}^{2+}(13)$.
$\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{x}^{2},\left\{\begin{array}{l}\pi 2 p_{y}^{2} \\ \pi 2 p_{z}^{2},\end{array}\right.$
Bond order $==\frac{9-4}{2}=2.5$
6. $\mathrm{NO}^{2-}(17)$
$\sigma 1 s^{2}, \stackrel{*}{\sigma} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{x}^{2}, \begin{aligned} & \pi 2 p_{y}^{2} \\ & \pi 2 p_{2}^{2}, \\ & \begin{array}{l}* \\ \pi_{2} 2 p_{y}^{2} \\ w_{2}^{*} 2 p_{z}^{1}\end{array}\end{aligned}$
Bond order $==\frac{10-7}{2}=1.5$
The order of bond order is
$\mathrm{NO}^{2-}<\mathrm{NO}^{-}<\mathrm{NO}^{2+} \approx \mathrm{NO}<\mathrm{NO}^{+}$
193 (d)
Cl is more electronegative than Br .
194 (c)
Boron in $\left[\mathrm{BF}_{4}\right]^{-}$has regular tetrahedral geometry because of $s p^{3}$-hybridization on boron atom.
195 (d)
Usually symmetrical molecules have less dipole moment in comparison to unsymmetrical molecules.

Hence,

(m-nitroaniline) has the highest dipole moment among the given.
196
Thus, excitation of $2 s$-electron in N is not possible.
197 (b)
PF_{5} has $s p^{3} d$ hybridization (trigonal bipyramid);
BrF_{5} has $s p^{3} d^{2}$ hybridization (square pyramidal)

198 (d)
In $\mathrm{NH}_{3} s p^{3}$ hybridisation is present but its shape becomes pyramidal due to the presence of one lone pair of electron.

199 (d)
Higher the lattice energy lower the solubility. Out of the four combinations possible, the lattice energy of MgS (bi-bivalent ionic solid) is higher than those of $\mathrm{Na}_{2} \mathrm{~S}, \mathrm{MgCl}_{2}$ (uni-bivalent or biunivalent ionic solids) and NaCl (uni-univalent ionic solids) and hence, MgS is the least soluble.
(b)
A three electrons in its outermost orbit, its valency is 3 . B has six electrons in its outermost orbit, its valency is 2
Element

Valency
Formula of the compound $=A_{2} B_{3}$

201 (c)

A reason for the given fact.
202 (c)
In $\mathrm{NH}_{3}, s p^{3}$-hybridization is present but bond angle is $106^{\circ} 45^{\prime}$ because nitrogen has lone pair of electrons, according to VSEPR theory due to $b p$ and $l p$ repulsion, bond angle decreases from $109^{\circ} 28^{\prime}$ to $106^{\circ} 45^{\prime}$
203 (b)
ClO_{4}^{-}and XeO_{3} both contain $3 d \pi-p \pi$ bonds

204 (c)

Spec ies	Structure	$l p$	$b p$	VSE PR	Bond angle

Thus, bond angle $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{SiH}_{4}<B \mathrm{~F}_{3}$.
205 (d)
The pyramidal structure of covalent molecule $A B_{3}$ is as :

No. of lone pair $=1$
No. of bond pair $=3$
207 (d)
$d^{2} s p^{3}$-leads to octahedral geometry.
209 (a)
A molecule is said to possess a three-fold axis of symmetry if on rotation around this axis through an angle of $360 / 3, i e, 120^{\circ}$,gives the same
arrangement of atoms. Since NH_{3} has a pyramidal geometry, therefore, it hâs a three fold axis of symmetry
210 (a)
Proton number does not change in ion formation, though number of electrons and size change during this.

Valence bond theory (Resonance theory) of metallic bond was given by Pauling (1937). According to this theory, the metallic bonding is essentially covalent in origin and metallic structure exhibits resonance of electro-pair bonds between each atom and its nearest neighbours. In other words, there is a resonance of a large number of canonical forms.

Notice configuration of $\mathrm{N}^{+}, \mathrm{C}^{+}, \mathrm{O}^{+}$and F^{+}.
213 (b)
ClF_{3} has $s p^{3} d$ hybridisation. Out of five $s p^{3} d$ hybrid orbitals two are completely filled by $l p$ and three are half filled which overlap with three $2 p_{z}$ half filled orbitals of three F-atoms. Due to the presence of two lps its geometry is bent T-shaped.

214
(d)

These are characteristics of resonance.
215 (c)
$\mathrm{O}_{2}^{2-}: \sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2} \sigma^{*} 2 s^{2} \sigma 2 p^{2}\left[\begin{array}{l}\pi 2 p_{y}^{2} \\ \pi 2 p_{z}^{2}\end{array}\right] \pi^{*} 2 p_{y}^{2}$
B.O. $=\frac{10-8}{2}=1$
$\mathrm{B}_{2}: \sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}\left[\begin{array}{l}\pi 2 p_{y}^{1} \\ \pi 2 p_{z}^{1}\end{array}\right]$
B. $0 .=\frac{6-4}{2}=1$

In the formation of XeF_{6} molecule, three $5 p$ electrons are promoted to $5 d$ orbitals. Now, one 5 s , three 5 p and three 5 d -orbitals of Xe atom intermix together and form seven $s p^{3} d^{3}$ hybrid orbitals. One $s p^{3} d^{3}$ hybrid orbital contains one lone pair of electrons while other six are halffilled. The expected geometry is pentagonal bipyramidal.

(excited state)

Shape : Pentagonal bipyramidal
217 (a)
$\mathrm{CaC}_{2} \rightleftharpoons \mathrm{Ca}^{2+}+\mathrm{C}_{2}^{2-}$
Carbide ion
In carbide ion, two carbon atoms are joined by triple bond
(If is isoelectronic with N_{2})

$$
-\mathrm{C} \equiv \mathrm{C}-
$$

with two π and one σ-bonds.

218 (b)
$\mathrm{H}_{2} \mathrm{O}$ has $s p^{3}$-hybridization.
219 (c)
e. g., BF_{3}, a non-polar molecule having $s p^{2}$ hybridization.
220 (b)
When there is less difference in electronegativities of two atoms (but electronegativities are not same) and large difference in their size, polar covalent bond forms. H and Br : Small difference in electronegativities and large difference in size. Hence, form polar covalent bond.
Na and Br : large difference in electronegativities, hence electrovalent bond is formed.
221 (b)
The bond order for $\mathrm{O}_{2}^{2-}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}, \mathrm{O}_{2}^{+}$are 1.0, 1.5,
$2.0,2.5$ respectively. Higher is bond order, more is bond energy.
222 (c)
In XeF_{4}, the central atom, Xe , has eight electrons in its outermost shell. Out of these four are used for forming four σ-bonds with F and four remain as lone pairs.
$\therefore \mathrm{XeF}_{4} \Rightarrow 4 \sigma$ bonds +2 lone pairs
$\Rightarrow 6$ bybridised orbitals, i.e., $s p^{3} d^{2}$ hybridisation Since, two lone pairs of electrons are present, the geometry of XeF_{4} becomes square planar from octahedral.

223 (b)
Bond order $=\frac{1}{2}$ [no. of bonding electrons - no. of antibonding electrons]
224 (c)
H -bonding is noticed in molecules having H atom attached on N, O or F .
225 (d)
F is more electronegative.
226 (a)
s-orbitals always lead head on overlapping.
228 (a)
According to molecular orbital theory,π-bonding orbital are ungerade.
229 (c)
Basic character of hydrides is $\mathrm{NH}_{3}>\mathrm{PH}_{3}$.
230 (b)
CO_{2} has $s p$-hybridization.
231 (a)
Bond angles decrease on moving down the group for similar compounds, i.e., $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>$ SbH_{3}.
232 (a)
Ionic compounds break into their constituent ions when dissolved in water.
Carnallite is double salt having composition,
$\mathrm{KCl} . \mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. It gives $\mathrm{K}^{+}, \mathrm{Cl}^{-}$and Mg^{2+} ions when dissolved in water.
234 (d)
An increase in s-character give rise to an increase in bond strength.
235 (a)
In rest all dipole-dipole forces also exist.
236 (c)
Among the isoelectronic species smaller is + ve charge, larger is ionic radius, e.g.,
Ionic radius : $\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}$
237 (c)
1, 4-dihydroxy benzene shows the highest boiling point among given compounds because it forms strong intermolecular hydrogen bonds (It does not form intermolecular H -bonding.)

Order of H-bonding in o, m and p-isomers of a compound is given below
Intermolecular H-bonding, $o<m<p$-isomers intermolecular H -bonding
$o>m>p$ isomers.
Hydroxy benzene do not form a chain of Hbonding . Hence, intermolecular H -bond is stronger than intermolecular H -bonds, so the stability of 1,4 -dihydroxy benzene is highest. Hence its boiling point is highest. The increasing order of the boiling points of the given compound is
IV $<$ I $<$ II $<$ III
238 (d)
Molecules in trans-1, 2-dichloroethene are symmetrical hence, no dipole moment.
239 (b)
$s p^{3} d^{2}$-hybridization leads to octahedral geometry.
240 (c)
In BF_{3}, boron is $s p^{2}$ hybridised, so its all atoms are
coplanar
241 (c)
Since, the geometry of AsF_{5} molecule is trigonal bipyramidal, it is $s p^{3} d$ hybridised. Thus, s, p_{x}, p_{y}, p_{z} and $d_{z^{2}}$ orbitals are utilised by As atom from bonding.
242 (c)
Molecular orbital configuration of N_{2}^{+}is
$\mathrm{N}_{2}^{+}=(\sigma 1 s)^{2}\left({ }_{\sigma}^{*} 1 s\right)^{2}(\sigma 2 s)^{2}\left({ }_{\sigma}^{*} 2 s\right)^{2}\left(\pi 2 p_{y}\right)^{2}$

$$
=\left(\pi 2 p_{z}\right)^{2}\left(\sigma 2 p_{x}\right)^{1}
$$

Bond order $=\frac{N_{b-} N_{a}}{2}=\frac{9-4}{2}=2.5$
243 (a)
Structure of $\mathrm{C}_{2} \mathrm{H}_{2}$ is linear.
$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
Structure of CO_{2} is also linear
$\mathrm{O}=\mathrm{C}=\mathrm{O}$
So, both are isostructural species.
244 (c)
In o-dichlorobenzene, $\alpha=60^{\circ}$
$\therefore \cos \alpha=+\mathrm{ve}$
$\mu=\sqrt{\mu_{1}^{2}+\mu_{2}^{2}+2 \mu_{1} \mu_{2} \cos \alpha}$
245 (c)
Multiplicity of bonds gives higher bond energy.
246 (d)
Bond order of oxygen molecule $=2$
Bond order of oxygen molecule ion $=2.5$
Bond order of superoxide ion $\left(\mathrm{O}_{2}^{-}\right)=1.5$
Bond order of peroxide ion $\left(\mathrm{O}_{2}^{2-}\right)=1$
Hence, the order of bond strength is as
$\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}$
247 (c)
Electronic configuration of Xe in ground state

Electronic configuration of Xe in excited state

Electronic configuration of Xe in XeF_{4}

$s p^{3} d^{2}$-hybridisation
Note The expected geometry of XeF_{4} is octahedral. On account of the fact that $I p-I p$ repulsion $>l p-b p$ repulsion, there is some distortion octahedral geometry with two lone pair of electrons. In other words, it has a square planar geometry.
248 (b)
$\mathrm{Li}_{2}: K K(\sigma 2 s)^{2}, \mathrm{BO}=\frac{1}{2}(2-0)=1$
Hence, structure of Li_{2} is [$\left.\mathrm{Li}-\mathrm{Li}\right]$.
More directionally concentrated orbitals show more overlapping.
251
(d)

It is the hybridization of ICl_{2}^{+}.
252 (b)
$o-, m-, p$-derivatives has $\alpha=60^{\circ}, 120^{\circ}$ and 180° and thus, resultant vector has zero dipole moment in p-derivative. Also dipole moment of m -
dichlorobenzene is more than toluene.
253 (a)
Covalent character α charge of cation
254 (c)
Carbon cannot accept 6Cl$\%$, since it has no vacant d-orbitals.
255 (b)
Cs^{+}is largest cation and F^{-}is smallest anion.
256 (b)
Charge of $e^{-}=1.6 \times 10^{-19}$
Dipole moment of $\mathrm{HBr}=1.6 \times 10^{-30}$
Inter-atomic spacing $=1 \AA$

$$
=1 \times 10^{-10} \mathrm{~m}
$$

Percentage of ionic character in HBr

$$
\begin{aligned}
& =\frac{\text { Dipole moment of } \mathrm{HBr} \times 100}{\text { inter spacing distance } \times q} \\
& =\frac{1.6 \times 10^{-30}}{1.6 \times 10^{-19} \times 10^{-10}} \times 100 \\
& =10^{-30} \times 10^{29} \times 100 \\
& =10^{-1} \times 100 \\
& =0.1 \times 100 \\
& =10 \%
\end{aligned}
$$

257 (b)
Lower $I E$, more $E A$ and high lattice energy are required conditions for ionic bonding.
258 (d)
Ionisation potential increases along the period.

More is s-character, smaller is hybridized orbital, more becomes tendency for overlapping, more is bond energy, lesser is bond length.
260 (c)
Larger is the difference in electronegativities of two atom, more is polar character in bond.
261 (a)
The molecules having no difference in electronegativity of bonded atoms are non-polar in nature. They are molecules having same atoms.
\therefore Among $\mathrm{HCl}, \mathrm{HF}, \mathrm{HBr}$ and $\mathrm{H}_{2} . \mathrm{H}_{2}$ is non-polar
molecule.
262 (b)
In SO_{2} molecule, S is $s p^{2}$-hybridised.
S (16) $=1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{4}$

S in excited | 16 | 1 | 1 | 1 | 1 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | state

263 (b)
The size of isoelectronic species increases with decrease in effective nuclear charge.
264 (d)
Bond order for He_{2} is zero.
265 (b)
CsF is ionic compound.
266 (a)
Isoelectronic species have same number of electrons
267 (d)
Ionic character $=16\left(E_{A}-E_{B}\right)+3.5\left(E_{A}-E_{B}\right)^{2}$

$$
\begin{aligned}
& =16(4-1.2)+3.5(4-1.2)^{2} \\
& =72.24 \%
\end{aligned}
$$

268 (d)
During the formation of chemical bond energy decreases
269 (b)
$\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \rightarrow 4 \mathrm{~K}^{+}+\mathrm{Fe}(\mathrm{CN})_{6}^{4-}$.
270 (c)
7.

Tetrahedral
($s p^{3}$ hybridisation)
\therefore Both have different structure.
8. $\mathrm{BF}_{3}, \mathrm{PCl}_{3}$

Trigonal planar ($s p^{2} d$ hybridisation)

Pyramidal structure ($s p^{3} d$ hybridisation)
\therefore Both have different structure.
9. $\mathrm{XeF}_{2}, \mathrm{CO}_{2}$

Trigonal bipyramidal

Pentagonal bipyramidal
\therefore Both have different structure.

Both have linear structure.
They have same structure.

271 (d)

Covalent union between two unlike atoms gives rise to the formation of a polar covalent bond in which shared pair of electron shifted towards more electronegative atom. This gives rise to equal but opposite partial charges on two ends. HCl shows polar covalent bond.
(b)

Rest all either has incomplete $\left(\mathrm{BF}_{3}, \mathrm{BeF}_{2}\right)$ octer or expanded octet $\left(\mathrm{ClO}_{2}\right)$.
$\mathrm{CO}, \mathrm{CN}^{-}$and NO^{+}all the three species have 14 electrons.
According to MOT
$\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{x}^{2}\left(\pi 2 p_{y}^{2}=\pi 2 p_{z}^{2}\right)$
Bond order $=\frac{10-4}{2}=3$
Similarly bond order for $\mathrm{O}_{2}^{+}=2.5$
XeF_{2} molecule contains two bond pairs and three lone pairs in the outer-shell of central atom and thus its hybridisation is $s p^{3} d^{2}$ but to minimise the repulsive forces the three lone pairs occupy the equatorial position and the molecule becomes
linear shape.

276 (c)
Species having the same number of electron, have same bond order.

Species	Number of electrons
CN^{-}	$6+7+1=14$
O_{2}^{-}	$8+8+1=17$
NO^{+}	$7+8-1=14$
CN^{-}	$6+7-1=12$

Since, CN^{-}and NO^{+}have same number of electrons, they have same bond order, i.e., 3.
CN^{-}or $\mathrm{NO}^{+}=14=$ $\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2} \approx \pi 2 p_{y}^{2}$,
Bond order $=\frac{N_{b-} N_{a}}{2}$

$$
=\frac{10-4}{2}=3
$$

277 (c)

In water molecule the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle is 104.5° and dipole moment is 1.84 D .
The bond angle of $\mathrm{H}_{2} \mathrm{O}$ is lower than $109.28^{\prime \prime}$ due to the presence of two lone pair of electrons on the oxygen atom.
278 (d)
Follow text.
279 (a)
$R \mathrm{CH}_{2} \mathrm{NHCH}_{3}$ shows the hydrogen bonding, since H is attached to N atom.
280 (c)
Cl atom has 17 electrons, Cl^{-}ion has 18 electrons.
281 (a)
High boiling point. of water is due to dipole-dipole interaction.
282 (d)
Ionisation enthalpy increases along the period and decreases down the group.
283
(b)

The jump in IP values exist in IP_{5} and thus, removal of fifth electron occurs from inner shell. Thus, element contains four electrons in its valency shell.
284 (a)
Paramagnetic species has unpaired electron.
$\mathrm{B}_{2}=5+5=10 \sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \pi 2 p_{x}^{1}$

$$
=\pi 2 p_{y}^{1}
$$

$C_{2}=6+6=12$

$$
\begin{aligned}
= & \sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2}, \stackrel{*}{\sigma} 2 s^{2}, \pi 2 p_{x}^{2} \\
& =\pi 2 p_{y}^{2} \\
\mathrm{~N}_{2}=7+7=14 & =\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2} \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2,} \pi 2 p_{x}^{2} \\
& =\pi 2 p_{y}^{2}, \sigma 2 p_{z}^{2}
\end{aligned}
$$

$\mathrm{F}_{2}=9+9=18$
$=\sigma 1 s^{2,{ }_{\sigma}^{*}} 1 s^{2}, \sigma 2 s^{2,}{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2}$
$=\pi 2 p_{y}^{2},{ }_{\pi}^{*} 2 p_{x}^{2}={ }_{\pi}^{*} 2 p_{y}^{2}$
$\therefore \mathrm{B}_{2}$ is paramagnetic because it has unpaired electron.
285 (a)
$\mathrm{Na} \rightarrow \mathrm{Na}^{+}+\mathrm{e} ; I E$ of $\mathrm{Na}=+\mathrm{ve}$
$\mathrm{Na}^{+}+e \rightarrow \mathrm{Na} ; \quad E A$ of $\mathrm{Na}^{+}=-$ve
Both are equal but opposite in nature.
286 (c)
(a) $\begin{array}{ccc}\mathrm{CH}_{4} & \rightarrow & \mathrm{CH}_{3}-\mathrm{CH}_{3} \\ 4 b p+0 \mathrm{l} p & & 4 b p \quad 4 b p\end{array}$

Hybridisation $s p^{3} \quad s p^{3} \quad s p^{3}$
Structure tetrahedral tetrahedral
(b) $\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}$

$$
3 b p+1 l p \quad 4 b p
$$

Hybridisation $s p^{3} \quad s p^{3}$
Structure pyramidal tetrahedral
(c) BF_{3}
$\rightarrow \mathrm{BF}_{4}^{-}$
$3 b p \quad 4 b p$
Hybridisation $s p^{2} \quad s p^{3}$
Structure trigonal tetrahedral
planar
$\begin{array}{cll}(\mathrm{d}) & \mathrm{H}_{2} \mathrm{O} \\ 2 b p+2 \mathrm{l} p & & \mathrm{H}_{3} \mathrm{O}^{+} \\ 2 b p+1 \mathrm{lp}\end{array}$
Hybridisation $s p^{3} \quad s p^{3}$
Structure angular pyramidal
Thus conversion of BF_{3} into BF_{4}^{-}involves change in both hybridisation and shape.
287 (a)
In O_{2} molecule, the total number of electrons $=16$ Electronic distribution in molecular orbital of
$\mathrm{O}_{2}=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{x}^{2}\left(\pi 2 p_{y}^{2}, \pi 2 p_{z}^{2}\right)$
, $\left({ }_{\pi}^{*} 2 p_{y}^{1},{ }_{\pi}^{*} 2 p_{z}^{1}\right)$
Bond order in $\mathrm{O}_{2}=\frac{1}{2}\left[N_{b-} N_{a}\right]=\frac{1}{2}[10-6]=2.0$
In $\mathrm{O}_{2}^{+}=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{x}^{2}$
$\left(\pi 2 p_{y}^{2}=\pi 2 p_{z}^{2}\right),\left({ }_{\pi}^{*} 2 p_{y}^{1}\right)$
Bond order in $\mathrm{O}_{2}^{+}=\frac{N_{b-} N_{a}}{2}=\frac{10-5}{2}=2.5$
288 (a)
Percentage ionic character
$\frac{\text { experimental value of } D M}{\text { theoretical value of } D M} \times 100$

$$
=\frac{1.03}{6.12} \times 100=17 \%
$$

289 (b)
Electron affinity decreases down the group, but ' 0 ' has small atomic size and $2 p$-orbital becomes very compact and already has 6 electrons, hence, there is a repulsive force among the already present and added electrons. Some of the energy evolved, due to addition of electron, is used to reduce the repulsion. Hence, the E.A. of 0 is less than S, so the order is $S>0>S e$.
290 (a)
A π-bond has a nodal plane passing through the two bonded nuclei, i.e., molecular plane.

291 (c)
Electronegativity of elements increases along the period and decreases down the group.
292 (b)
In $\mathrm{CO}_{2}, \mathrm{C}$-atom is $s p$-hybridised, thus it has linear structure. In $\mathrm{XeF}_{2}, \mathrm{Xe}$ is $s p^{3} d$ hybridised with three lone-pairs of electrons on equatorial position. This minimises repulsion, hence it has also linear structure.
293 (b)
Structure of CO_{2} is linear due to $s p$-hybridisation. ($s p$)
$0=\mathrm{C}=0$
294 (a)
Higher the bond order short the bond length O_{2}^{2+} has the shortest the bond length $(\mathrm{BO}=3)$
Bond order of remaining species are :
$\mathrm{O}_{2}^{+}(2.5), \mathrm{O}_{2}^{-}$(1.5) and $\mathrm{O}_{2}^{2-}(1)$
295 (b)
11. The first bond between any two atoms is σ and rest are π bonds.
12. π bond is formed by sideways overlapping of unhybridised p-orbital.

Each carbon has 3σ and 1π-bond.
\therefore All carbon atoms of $\mathrm{C}_{6} \mathrm{H}_{6}$ are $s p^{2}$ hybridised.

Nearer to 25%, the angle is $109^{\circ} 28^{\prime}$ for $s p^{3}$ hybridization.
297 (c)
$\mathrm{KHF}_{2} \rightarrow \mathrm{~K}^{+}+\mathrm{HF}_{2}^{-}$.
298 (c)
Intramolecular H —bonding in salicyl aldehyde prevents its test with $\mathrm{FeCl}_{3}(a q)$.

Stronger is metallic bonding (Fe has d-subshell), more is hardness.
300 (d)

Compound	Bond angle
NH_{3}	107°
PCl_{3}	93°
BCl_{3}	120°

301 (d)
In propyne there are 2π-bonds and six sigma bonds.
$\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}$
302 (a)
Like atoms results in covalent bonding leading to the formation of non-polar bond, e.g., $\mathrm{H}-\mathrm{H}$ or H_{2}.

$s p^{2}$

304 (d)

chloroethene benzene
all carbon atoms are
$s p^{2}$ hybridised chloroethene
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
$s p^{2} \quad s p^{2} \quad s p^{2} \quad s p^{2}$
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
$\begin{array}{llllll}s p^{2} & s p^{2}\end{array}$
1,3,5-hexatriene
305 (d)
If the lattice energy < hydration energy, then only ionic compounds are soluble.
306 (c)
BCl_{3} has equilateral triangular shape leading to vector sum of polar bonds to zero.
307 (d)
Hybride: $\quad \mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{2} \mathrm{~S} \quad \mathrm{H}_{2} \mathrm{Se} \quad \mathrm{H}_{2} \mathrm{Te}$
Bond angle : $104^{\circ} 92^{\circ} \quad 91^{\circ} \quad 90^{\circ}$
In all of the given species central atom is $s p^{3}$ hybridised. They have angular shape due to the presence of two lone pair of electron. The bond angle decreases with decrease in electronegativity therefore $\mathrm{H}_{2} \mathrm{Te}$ shows minimum bond angle.
308 (d)
Lattice energy \propto charge of ions $\propto \underset{\text { size ofions }}{1}$
309 (b)
$\mathrm{He}_{2}^{+}, \mathrm{H}_{2}^{-}$have 3 electrons, one must be unpaired.
H_{2}^{+}has one unpaired electron. H_{2} has two (paired) electrons.
310 (c)
Among the given, only $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{NH}_{2}$ are able to form H -bonds but H -bonding in $\mathrm{CH}_{3} \mathrm{OH}$ due to high electronegativity of O -atom is strong. Hence, $\mathrm{CH}_{3} \mathrm{OH}$ has the highest boiling point.
311 (a)

$(\sigma-\mathrm{bps}+\mathrm{lps}=3+1=4)$
In $\mathrm{NF}_{3} \mathrm{~N}$-atoms is $s p^{3}$-hybride, but due to presence of a lone pair of electron, NF_{3} has pyramidal structure.
312 (d)
The boiling point of ethanol is highest among
these due to the presence of hydrogen bonding.
313 (b)
C_{2}^{2-} has $[\mathrm{C} \equiv \mathrm{C}]^{2-}$ structure.
314 (a)
A compound having maximum electronegative element will form strong hydrogen bond

The bond angle in $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ is 110° inspite of $s p^{3}$ hybridization of O and two lone pair due to stearic hindrance.
316 (b)
Multiplicity in bonding give rise to an increase in bond energy.
317 (a)
Carbon in $\mathrm{H}_{2} \mathrm{CO}_{3}$ has sp^{2}-hybridization and also polar. BF_{3} has sp^{2} but non-polar. SIF_{4} has $s p^{3}$ hybridization. HClO_{2} has $s p^{3}$-hybridisation.
318 (b)
The removal of second electron from Mg takes place from $3 s$-orbital whereas, the removal of second electron from Na takes place from $2 p$ orbital. More closer are shells to the nucleus, difficult is removal of electron.

319 (b)

Bond angle depends on the structure of molecule. If two molecules have same structure, then bond angle is decided by the electronegativity of central atom. Electrongeativity of central atom \propto bond angle.
The bond angle of $\mathrm{H}_{2} \mathrm{~S}$ is less than $\mathrm{H}_{2} \mathrm{O}$ because S is less electronegative than $\mathrm{H}_{2} \mathrm{O}$.
Hence,

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S} \\
\left(104.5^{\circ}\right)\left(92.2^{\circ}\right)
\end{gathered}
$$

Further the BeCl_{2} has linear structure, hence its bond angle is 180°. The $\mathrm{N}_{2} \mathrm{O}$ molecule also has linear structure with bond angle 180°.

320 (a)
S has 6 electrons in its the valence shell and it shares 6 electrons with 6 fluorine atoms.
\therefore In $\mathrm{SF}_{6}, \mathrm{~S}$ has 12 electrons in its valence shell

(b)
$\mathrm{NH}_{3},\left[\mathrm{PtCl}_{4}\right]^{2-}, \mathrm{PCl}_{5}$ and BCl_{3} have $s p^{3}, d s p^{2} s p^{3} d$
and $s p^{2}$ hybridization respectively. Note that hybridization of P in PCl_{5} is wrongly reported in problem.
323 (b)
The bond formation process is exothermic and thus resultant acquires lower energy level.
324 (b)
Due to H -bonding in NH_{3}.
325 (a)
Lewis structure of N_{2} molecule is

326 (b)
The resonating structure of ClO_{4}^{-}are as

\Rightarrow Bond order $=\frac{\text { Total number of bonds between } \mathrm{Cl} \text { and } \mathrm{O}}{\text { Total number of resonating structure }}$ $=\frac{7}{4}=1.75$
327 (a)
Bond energy increases with increase in bond order.
328 (d)
Ionisation potential increases along the period.
329 (b)
CsCl is most ionic because of most electropositive nature of Cs.
330 (d)
$\mathrm{O}_{2}<\mathrm{O}_{2}^{-}$
Bond order
$\mathrm{C}_{2}=2$
$\mathrm{C}_{2}^{2-}=3$
$B_{2}=2$
$\mathrm{B}_{2}^{+}=1.5$
$L_{2}=1$
$\mathrm{Li}_{2}^{+}=0.5$
$\mathrm{N}_{2}=3$
$\mathrm{N}_{2}^{+}=2.5$
$\mathrm{O}_{2}=2$
$\mathrm{O}_{2}^{-}=1.5$
331 (d)
The molecular configuration of O_{2}^{-}is as
$\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{y}^{2}$

$$
\approx \pi 2 p_{z}^{2},{ }_{\pi}^{*} 2 p_{x}^{2} \approx{ }_{\pi}^{*} 2 p_{y}^{2}
$$

Bond order $=\frac{N_{b-} N_{a}}{2}$

$$
=\frac{10-8}{2}
$$

\therefore Bond order $=1$
332 (b)
It is an ionic compound. The most ionic compound is CsF.

333 (c)
CO_{2} is linear molecule.
334 (b)
M.O. configuration of N_{2} is:
$\sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2} \sigma^{*} 2 \mathrm{~s}^{2}, \pi 2 \mathrm{p}_{y}^{2}, \pi 2 \mathrm{p}_{z}^{2}, \sigma 2 \mathrm{p}_{x}^{2}$
M.O. configuration of N_{2}^{+}is:
$\sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2} \sigma^{*} 2 \mathrm{~s}^{2}, \pi 2 \mathrm{p}_{y}^{2}, \pi 2 \mathrm{p}_{z}^{2}, \sigma 2 \mathrm{p}_{x}^{1}$
335 (d)
In NH_{4}^{+}ion, N is $s p^{3}$ hybridised therefore, bond angle in NH_{4}^{+}(tetrahedral shape) is $109^{\circ} 28^{\prime}$.
336 (a)
The definition of bond order.
338 (b)
The intermolecular forces increase with increases in mol. wt.
339 (b)
Bond angles of $\mathrm{BeF}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$ and CH_{4} are 180°, $104^{\circ} 31^{\prime}, 106^{\circ} 50^{\prime}, 109^{\circ} 28^{\prime}$ respectively.
340 (d)
Bond length decreases with increase in s character.

341 (b)

Isoelectronic species have same number of electrons, $\mathrm{NO}^{+}, \mathrm{C}_{2}^{2-}, \mathrm{CN}^{-}$and N_{2}. All have 14 electrons.
342 (d)
$s p^{3} d^{2}$ hybridised molecule have octahedral geometry.
343 (b)
$R-\mathrm{O}-\mathrm{H} \ldots \mathrm{H}-\mathrm{O}-\mathrm{H}$
344 (a)
The shape of ClF_{3} is distorted T-shape due to the presence of two lone pair of electrons.

345 (b)
These are facts.
346 (c)
NO_{2}^{-}has $s p^{2}$ hybridisation. Its expected geometry is trigonal planar but actual geometry is V -shape due to presence of lone pair of electrons.
347 (d)
Cs^{+}is biggest ion among these. F^{-}is smallest.

348 (d)
Formation of solid lattice from oppositely charged ionized gaseous atoms give rise to evolution of lattice energy.
349 (b)
We know that Al^{3+} cation is smaller than Na^{+} (because of greater nuclear charge). According to Fajan's rule, small cation polarise anion upto greater extent. Hence, Al^{3+} polarise Cl^{-}ions upto greater extent, therefore, AlCl_{3} has covalent bond between Al and Cl atoms.
350 (a)
$\mathrm{H}-\mathrm{O}-\mathrm{O}-\mathrm{H}, \quad \mathrm{O} \leftarrow \mathrm{O}=\mathrm{O}, \mathrm{O}=\mathrm{O}$

Due to resonance, in O_{3}, the $\mathrm{O}-\mathrm{O}$ bond length will be in between $0=0$ and $0-0$
352 (b)
Bond order for $\mathrm{O}_{2}=2$ and for $\mathrm{O}_{2}^{+}=2.5$
Both are paramagnetic (O_{2} has 2 unpaired electron, O_{2}^{+}has one unpaired electron).
354 (c)
$[0-0]^{2-}$
355 (b)
For $s p^{2}$ hybridization, bond angle is 120°
In $s p^{2}$ hybridization,
s character $=\frac{1}{3} \times 100=33 \%$
356 (d)
ClF_{3} has $s p^{3} d$-hybridization with two lône pair of electron on Cl .
357 (a)
13. $\mathrm{O}_{2}=8+8=16$
$=\quad \sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2},\left(\pi 2 p_{x}^{2}=\right.$ $\left.\pi 2 p_{y}^{2}\right),\left({ }_{\pi}^{*} 2 p_{x}^{1}={ }_{p}^{*} 2 p_{y}^{1}\right)$
\because It has 2 unpaired electrons.
\therefore It is paramagnetic.
14. $\mathrm{CN}^{-}=6+7+1=14$
$=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2},\left(\pi 2 p_{x}^{2}=\pi 2 p_{y}^{2}\right)$
\therefore No unpaired electron and no paramagnetic.
15. $\mathrm{CO}=6+8=14$
$=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2},\left(\pi 2 p_{x}^{2}=\pi 2 p_{y}^{2}\right)$
\therefore No unpaired electron and no paramagnetic.
16. $\mathrm{NO}^{+}=7+8-1=14$
$=\sigma 1 s^{2}{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2},\left(\pi 2 p_{x}^{2}=\pi 2 p_{y}^{2}\right)$
\therefore No unpaired electron and not paramagnetic.
358 (c)
$\mathrm{C}-\mathrm{F}$ bond is more polar than $\mathrm{C}-\mathrm{Cl}$.

359 (d)
Ionic compounds conduct current only in fused state.
360 (b)
IP_{1} of $\mathrm{B}>\mathrm{IP}_{1}$ of Li ENC of boron is more than Li . Also IP_{1} of $\mathrm{Li}>\mathrm{IP}_{1}$ of K because removal of electron in K occurs from 4 s .
361 (c)
It is a fact.
363 (d)
0 has two lone pair of electrons.
364 (a)
In $\mathrm{SF}_{4}, \mathrm{~S}$ has $s p^{3} d$-hybridisation. Thus, it contains two axial and two equatorial bonds to give seesaw structure.

365 (a)
$\mathrm{F}_{3} \mathrm{Cl}$ has 10 electrons on Cl atom. A superoctet
molecule means for expanded octet on an atom.
S_{2} molecule is paramagnetic like O_{2} having 2
unpaired electrons.
368 (a)
π-bonding occurs only after σ-bond is formed.
369 (d)
NH_{4}^{+}and SO_{4}^{2-} both show $s p^{3}$ hybridisation and tetrahedral geometry
(c)

Dipole moment is a vector quantity. The dipole moment of symmetrical molecule is zero. Only the molecule which has distorted shape has dipole moment.

p-dichlorobenzene
(a)
$\because \mathrm{CO}_{2}, p$-dichlorobenzene and CH_{4} have regular symmetrical shape.
\therefore They don't have dipole moment.

$\left(\mathrm{NH}_{3}\right)$
(c)
NH_{3} has distorted structure due to presence of lone pair of electron.
\therefore It has dipole moment.
371 (c)
According to Fajan's rule smaller anion is polarised to lesser extent than the larger anion.
\therefore compound having smaller anion has more ionic character.
\therefore Higher melting
Since, the size of F^{-}ion is smallest, it is polarised.
\therefore AgF will have highest ionic character and hence highest melting point.
(\because Ionic compounds have greater melting point than covalent compound)
372 (a)
Number of hybrid orbitals for neutral atom $=\frac{1}{2}$
[Number of valence electron in central atom + Number of monovalent atom]
Number of hybrid orbital $=\frac{5+5}{5}=5$
Hence, hybridisation is $s p^{3} d$.
374 (a)
The size of isoelectronic decreases with increase in atomic number.
375 (a)
Bond angle for $s p, s p^{2}$ and $s p^{3}$-orbitals are 180°, 120° and $109^{\circ} 28^{\prime}$ respectively.
378 (d)
In BrF_{3} molecule, Br is $s p^{3} d$ hybrid, but geometry is T -shaped due to distortion of geometry from trigonal-bipyramidal to T-shaped by the involvement of lone pair-lone pair repulsion.
Here

$$
\begin{aligned}
& l p-l p \text { repulsion }=0 \\
& l p-b p \text { repulsion }=4 \\
& b p-b p \text { repulsion }=2
\end{aligned}
$$

379 (b)
As the distance between the atoms, increases, bond polarity increases

380 (d)
$E A_{1}$ for elements is exothermic and $E A_{2}$ is endothermic. Also $E A_{2}$ for $0>E A_{1}$ for 0 .
381 (a)
$\mathrm{O}_{2}^{-}=8+8+1$
$=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2,} \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2,} \sigma 2 p_{z}^{2,} \pi 2 p_{x}^{2}$
$=\pi 2 p_{y}^{2},{ }_{\pi}^{*} 2 p_{x}^{2}={ }_{\pi}^{*} 2 p_{y}^{1}$
\therefore Total antibonding electrons $=7$
$\mathrm{O}_{2}=8+8=16$
$=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2}=$
$\pi 2 p_{y}^{2}, \pi 2 p_{x}^{1}={ }_{\pi}^{*} 2 p_{y}^{1}$
\therefore Total antibonding electrons $=6$
$\mathrm{O}_{2}^{2-}=8+8+2=18$

$$
\begin{gathered}
=\sigma 1 s^{2, *}{ }_{\sigma}^{*} 1 s^{2,} \sigma 2 s^{2, *}{ }_{\sigma}^{*} 2 s^{2,} \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2} \\
=\pi 2 p_{y}^{2},{ }_{\pi}^{*} 2 p_{x}^{2}={ }_{\pi}^{*} 2 p_{y}^{2}
\end{gathered}
$$

\therefore Total antibonding electrons $=8$
382 (d)
In $\mathrm{NH}_{3}, \mathrm{~N}$ undergoes $s p^{3}$ hybridisation. Due to the presence of one lone-pair, it is pyramidal in shape.

383 (d)
Hg exists in liquid state.

According to valence bond theory, overlapping orbitals must possess half-filled nature as well as antispin electron.
385 (a)
Non-polar or pure covalent bond has zero per cent ionic character due to the absence of partial charges on either end.

The dipole moment of two dipoles inclines at an angle θ is given by the equation $\pi=$ $\sqrt{x^{2}+y^{2}+2 x y \cos \theta, \cos 90=0}$, since, the angle increases from $90-180$, the value of $\cos \theta$
becomes more and more -ve and hence resultant decreases. Thus, dipole moment is maximum, when, $\theta=90^{\circ}$
387 (a)
$\operatorname{CO}(14)=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \pi 2 p_{y}^{2}$

$$
=\pi 2 p_{z}^{2}, \sigma 2 p_{x}^{2}
$$

$\mathrm{BO}=\frac{N_{b-} N_{a}}{2}=\frac{10-4}{2}=3$
$\mathrm{NO}^{-}(16)=$
$\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{x}^{2},\left(\pi 2 p_{y}^{2}=\pi 2 p_{z}^{2}\right)$,
${ }_{\pi}^{*} 2 p_{y}^{1}={ }_{\pi}^{*} 2 p_{z}^{1}$
$\mathrm{BO}=\frac{10-6}{2}=2$
$\mathrm{NO}^{+}(13) ; \mathrm{BO}=3$
$\mathrm{CN}^{-}(14) ; \mathrm{BO}=3$
$\mathrm{N}_{2}(14) ; B O=3$
Hence, bond order of NO^{-}is different from that of CO.
388 (a)
S atom in SF_{6} is $s p^{3} d^{2}$-hybridized state and shows octahedral shape.
389 (b)
The stability of carbonates increases with increasing electropositive character of metal.
391 (c)
Larger is the size of atom, lesser is the tendency for overlapping, lesser is bond energy.
392 (a)
The polarising ability is characteristic of cation, smaller the size of cation with large magnitude of positive charge, more will be its polarising ability. (\because It can cause large distortions in anion cloud.)
393 (a)
ClO_{2} has 33 electrons, i.e., one unpaired.
394 (c)
Larger anion is polarized more (Fajans' rule).
395 (c)
The molecules having distorted geometry have dipole moment and those having regular geometry have zero dipole moment.
$\because \mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{Cl}$ and ClO_{2} have distorted geometry.
\therefore They have dipole moment.
$\because \mathrm{BF}_{3}$ has regular triangular planar geometry.
The dipole moment of BF_{3} is zero.
396 (c)
When hydrogen forms hydrogen bonding with fluorine it will be strongest H -bonding because fluorine is strongest electronegative element.
397 (b)
Trans 2-pentene has dipole moment.

Because $+I$ effect of ethyl group is more than that of CH_{3} group, hence the two dipoles do not cancel each other.
398 (d)
NH_{2}^{-}has $s p^{3}$-hybridization having two covalent bonds and two lone pair of N atom.
399 (d)

The solubility of a compound mainly depend upon its hydration energy. If the hydration energy of a compound is greater than from its lattice enthalpy, then its is soluble in water. Thus, for solubility

$$
\text { Hydration enthalpy }>\text { lattice }
$$

enthalpy
For compounds P and R hydration enthalpy exceeds the lattice enthalpy, so they are soluble in water.
400 (a)
It is a fact derived from bond order.
401
(b)

I has maximum covalent bond and negative charge on electronegative nitrogen, most stable. III has more covalent bond than both II and IV, III is second most stable. Between II and IV, II is more stable since it has negative charge on nitrogen while IV has negative charge carbon.
402 (b)
Hybrid orbitals never form π-bond.
$\mathrm{O}_{2}(16)=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2}$

$$
\approx \pi 2 p_{y}^{2},{ }_{\pi}^{*} 2 p_{x}^{1} \approx{ }_{\pi}^{*} 2 p_{y}^{1}
$$

$\mathrm{BO}=\frac{10-6}{2}=2$
$\mathrm{O}_{2}^{2-}(18)=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2}$

$$
\approx \pi 2 p_{y}^{2},{ }_{\pi}^{*} 2 p_{x}^{2} \approx{ }_{\pi}^{*} 2 p_{y}^{2}
$$

$\mathrm{BO}=\frac{10-8}{2}=1$
$\mathrm{N}_{2}(14)=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \pi 2 p_{x}^{2}$

$$
\approx \pi 2 p_{y}^{2}, \sigma 2 p_{z}^{2}
$$

$\mathrm{BO}=\frac{10-4}{2}=3$
Thus, bond order is highest for N_{2}.
405 (d)
Molecular shapes of $\mathrm{SF}_{4}, \mathrm{CF}_{4}, \mathrm{XeF}_{4}$ are different with 1, 0 and 2 lone pair or electrons respectively.

The correct sequence of hybridisation of methane, ethene and ethyne is $s p^{3}, s p^{2}$ and $s p$.
407 (b)
Diamond has a three-dimensional structure in which a large number of carbon atoms are arranged tetrahedrally by covalent bonds. It is an allotropic form of carbon.
408 (b)
The ionisation potential decreases down the group.
409 (b)
BeH_{2} molecule is linear because it has $s p$ hybridisation. It has bond angle 180°.

410 (b)
$\mathrm{Be}_{2}\left(\sigma 1 \mathrm{~s}^{2}, \sigma^{*} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma^{*} 2 \mathrm{~s}^{2}\right)$ has bond order equal to zero.
411 (c)

15σ and 3π - bonds are present in toluene.
412 (b)
In $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}$-atom contains only two electrons.
413 (c)
Both HgCl_{2} and $\mathrm{C}_{2} \mathrm{H}_{2}$ are linear like CO_{2} because of $s p$-hybridization.
414 (d)
Follow concept of bond order in M.O. theory.
415 (d)
$\mathrm{HC} \equiv \mathrm{C}-\mathrm{HC}=\mathrm{CH}-\mathrm{CH}_{3} 10 \sigma, 3 \pi$
416 (b)
$\mathrm{CCl}_{2}=\mathrm{CCl}_{2}$ has $s p^{3}$-hybridization. CCl_{4} has $s p^{3}$ hybridization.
417 (c)
All are non-metals.
419 (c)
Boiling point of ammonia is much higher than phosphine. It is due to extensive hydrogen bonding found in ammonia.

Intermolecular hydrogen bonding
420 (b)
Lower potential energy level imparts stability.
421 (d)
$\begin{aligned} \text { Covalent character } & \propto \frac{1}{\text { size of cation }} \\ & \propto \text { size of anion }\end{aligned}$
(according to Fajan's rule)
Lower the covalent character, higher will be ionic
character.
$\mathrm{Cl}_{2} \mathrm{O}$, contains $\mathrm{O}^{2-}, \mathrm{NCl}_{3}$ contains N^{3-}
, PbCl_{2} contains Pb^{2+} and BaCl_{2} contains Ba^{2+}.
Hence, the order of covalent character is $\mathrm{NCl}_{3}>\mathrm{Cl}_{2} \mathrm{O}>\mathrm{PbCl}_{2}>\mathrm{BaCl}_{2}$
$\therefore \mathrm{BaCl}_{2}$ has the greatest ionic character.

Kernals start vibrating and hence, create hindrance in the flow of electrons

423 (d)

Chile salt petre $\left(\mathrm{NaNO}_{3}\right)$, potash alum
$\left(\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}\right)$ and green vitriol ($\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$) are ionic compounds. They produce ions in their aqueous solutions, so they are conducting in nature. Ethyl alcohol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ being covalent in nature, does not produce any ion in aqueous solution. Hence, it is nonconducting in nature.
424 (c)
Due to large electronegativity difference in C and F atoms.
425 (a)
Proteins show H-bonding.
426 (c)
Bond angles decreases down the group.
$\therefore \mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}$. Also bond angle of $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}$ due to lone pair effect.
427 (c)

$$
s p^{3}
$$

In the above compound all bonds are σ bond and hence, carbon atom uses only $s p^{3}$ - hybrid orbitals for bond formation.

428 (b)

It is the order of stability.
429 (b)
E_{1} for $\mathrm{He}^{+}=E_{1}$ for $H \times \mathrm{Z}^{2}$ (where $Z=$ at. no. of He).
430 (c)
H -bonding order:
$\cdots \mathrm{H}-\mathrm{F}>\cdots \mathrm{H}-\mathrm{O}>\cdots \mathrm{H}-\mathrm{N}$
431 (d)
The charge-size ratio increases and thus
polarizing power increases.
434 (c)
O_{2} has two unpaired electrons.
435 (d)
These are the factors on which IP depends.
436 (b)
The hybridised states of N in $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$and NH_{4}^{+} are $s p, s p^{2}$ and $s p^{3}$ respectively.
437 (b)
Carbon (1) has 2σ - and 2μ - bonds. Carbon (2) has 3σ and 1π-bond.
438 (c)
According to Fajan's rule, as the size of cation decreases, its polarising power increases. Hence, Cu^{2+} polarise Cl^{-}ions more than Cu^{+}. Therefore, CuCl_{2} has more covalent character and hence, its boiling point is less.
439 (b)
Metals are more electropositive and lose electrons, while non - metals have tendency to gain electron.
440 (b)
Be has smallest size and thus, Be cation possesses more polarizing power.
441 (b)
Due to intermolecular hydrogen bonding in ortho-isomer, it has least melting point. Due to effective intermolecular hydrogen bonding in para isomer, it has highest melting point among the isomers. So, the order is
Para isomer $>$ meta $>$ ortho
$\left(114^{\circ} \mathrm{C}\right)$
$\left(97^{\circ} \mathrm{C}\right)\left(54^{\circ} \mathrm{C}\right)$

443 (a)
Based on geometry of molecule.
444 (b)
The structure of these molecules/species are as follows:

$(\sigma-b p s+l p s=3+0=3)$
$(\sigma-b p s+l p s=3+1=4)$
$s p^{2}$-hybridisation trigonal planar $s p^{2}$-hybridisation pyramidal

$s p^{2}$-hybridisation trigonal planar $s p^{2}$-hybridisation trigonal planar
PCl_{3} has $s p^{3}$-hybridisation but due to presence of a lone-pair, its shape is pyramidal instead of
tetrahedral.
446 (c)
[C] forms anion readily by gaining one electron only.
447
Number of bonds between two atoms is called bond order.
Resonating structures of benzene are

\therefore In benzene, the carbon carbon bond is between the double and single bond due to the resonance, so its bond order is 1.5 .
448 (a)
If difference in electronegativity in between two atoms is 1.7 , the molecule possesses 50% covalent $+50 \%$ ionic nature.
IP_{1} of $\mathrm{Pb}>\mathrm{IP}_{1}$ of Sn (an exception).
450 (c)
Only then it can accept lone pair in that shell.
451 (a)
Count σ-and π-bonds.
452 (b)
The molecular electronic configuration of O_{2} is

$$
\begin{aligned}
\mathrm{O}_{2} & =\left[K K,(\sigma 2 s)^{2},\left({ }_{\sigma}^{*} 2 s\right)^{2},\left(\sigma 2 p_{x}\right)^{2},\left(\pi 2 p_{y}\right)^{2}\right. \\
& \left.=\left(\pi 2 p_{z}\right)^{2},\left({ }_{\pi}^{*} 2 p_{y}\right)^{1}=\left(\pi 2 p_{z}\right)^{1}\right]
\end{aligned}
$$

453 (d)
Cs is more electropositive.
454 (a)
In MnO_{4}^{-}, the oxidation no. of Mn is +7 , i.e., all the $4 s$ and $3 d$ electrons are lost.
455 (d)
Stability \propto bond order
456 (b)
Charge of $e^{-}=1.6 \times 10^{-19} \mathrm{C}$
Dipole moment of $\mathrm{HBr}=1.6 \times 10^{-30} \mathrm{C}-\mathrm{m}$
Interionic spacing $=1 \AA=1 \times 10^{-10} \mathrm{~m}$
$\%$ of ionic character in
$\mathrm{HBr}=\frac{\text { Dipole moment of } \mathrm{HBr} \times 100}{\text { Interspacing distance } \times q}$
$=\frac{1.6 \times 10^{-30} \times 100}{1.6 \times 10^{-19} \times 10^{-10}}$
$=10^{-30} \times 10^{29} \times 100=0.1 \times 100=10 \%$
457 (c)
Due to shielding effect of $(n-1) d$-subshell.
459 (d)
P in PO_{4}^{3-} has $s p^{3}$-hybridization like S in SO_{4}^{2-}.

460 (d)
The lattice becomes stronger (i.e., the lattice energy U becomes more negative). As r the interionic distance decreases. U is proportional to $\frac{1}{r}$
or

$$
U \propto \frac{1}{\left(r_{c}+r_{a}\right)}
$$

462 (a)
Covalent radius are always smaller than crystal radius as the former involves overlapping region.
463 (c)
CO_{3}^{2-} has the following structure

It contains only covalent bonds
464 (c)
Molecular orbital configuration of,
$\mathrm{C}_{2}^{+}=\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p_{x}^{2}, \pi 2 p_{y}^{1}$
466 (d)
Mullikan proposed M.O. theory.
467 (d)
$\mathrm{Cl}_{2} \mathrm{O}=42$ electrons
$\mathrm{ICl}_{2}^{-}=88$ electrons
$\mathrm{Cl}_{2}^{-}=35$ electrons
$\mathrm{IF}_{2}^{+}=70$ electrons
$\mathrm{I}_{3}^{-}=160$ electrons
$\mathrm{Cl}_{2} \mathrm{O}=33$ electrons
$\mathrm{ClO}_{2}^{-}=34$ electrons
$\mathrm{ClF}_{2}^{+}=34$ electrons
ClO_{2}^{-}and ClF_{2}^{+}contain 34 electrons each hence they are isoelectronic.
468 (a)
1, 2-butandiene has the structure.

469 (d)
Anions are always larger in size than their parent atom. Cations are always smaller in size than their parent atom.
470 (d)
Sulphade ion (SO_{4}^{2-}) has tetrahedral geometry, as in S -atom undergoes $s p^{3}$ hybridisation.

S in II excited state $=$

Tetrahedral shape of SO_{4}^{2-}
(d)
SF_{4} has $s p^{3} d$-hybridization with one lone pair, CF_{4} has $s p^{3}$-hybridization with no lone pair and XeF_{4} has $s p^{3} d^{2}$-hybridization with two lone pairs.

Hence, hybridisation $=s p^{3}$
In $\mathrm{NH}_{3} \mathrm{~N}$-atoms is $s p^{3}$ hybridised, but due to presence of a lone pair of electron on N -atom. It is pyramidal in shape.
473 (b)
For a compound to be soluble, the hydration energy must be greater than the lattice energy. Since, NaCl is soluble in water but insoluble in benzene.

$$
\begin{aligned}
& \Delta H_{\text {hydration }}>\Delta H_{\text {lattice energy in water }} \\
& \Delta H_{\text {hydration }} \\
& \quad<\Delta H_{\text {lattice energy in benzene }}
\end{aligned}
$$

and $\quad \Delta H_{\text {hydration }}$

474 (b)
Dimerization occurs in carboxylic acids which indicates strong H -bonding.
475 (c)

Thus, the number of σ and π bonds respectively are 7 and 3
476 (a)
Solubility order : $\mathrm{AgF}>\mathrm{AgCl}>\mathrm{AgBr}>\mathrm{AgI}$.
477 (d)
CaI_{2} has maximum covalent character due to large size of anion and possesses lowest lattice energy.

Thus melting point is lowest.
478 (c)
Hybridisation $=\frac{1}{2}$ [no. of electron in valence shell + no. of monovalent atoms-charge on cation+ charge on anion]
17. $\mathrm{H}_{2} \mathrm{O}$
$H=\frac{1}{2}(6+2+0-0)=\frac{8}{2}=4$
$\therefore s p^{3}$ hybridisation
18. CH_{4}
$H=\frac{1}{2}(4+4+0-0)$
$=\frac{8}{2}=4$
$\therefore s p^{3}$ hybridisation
19. BCl_{3}
$H=\frac{1}{2}(3+3+0-0)$
$=\frac{6}{2}=3$
$\therefore s p^{3}$ hybridisation
20. NH_{3}
$H=\frac{1}{2}(5+3+0-0)$
$=\frac{8}{2}=4$
$\therefore s p^{3}$ hybridisation
\therefore (c) is correct answer.

479 (a)

$\mathrm{H}_{2} \mathrm{O}$ shows high b.p. (inspite of lowest mol. wt.) on account of strong H -bonding.
480 (d)
$\mathrm{C}_{2} \mathrm{H}_{2}$ is a linear molecule with $s p$-hybridization.
481 (b)
KO_{2} is an ionic compound.
In all the given compounds, anion is same $\left(\mathrm{Cl}^{-}\right)$, hence polarising power is decided by size and charge of cation. Al^{3+} with maximum charge and smallest size has maximum polarising power hence, AlCl_{3} is maximum covalent.
483 (d)
Dipole forces exist only in polar molecule.

Both possess $s p^{2}$-hybridization but different geometry.
485 (c)
In transition elements, penultimate shell electrons also participate in bonding.
486 (b)
Species $\begin{array}{lllll}\mathrm{O}_{2} & \mathrm{O}_{2}^{+} & \mathrm{O}_{2}^{2+} & \mathrm{O}_{2}^{2-}\end{array}$
$\begin{array}{lllll}\text { Bond Order } & 2 & 2.5 & 3 & 1\end{array}$
Hence, the increasing bond order is as follows :
$\mathrm{O}_{2}^{2-}<\mathrm{O}_{2}<\mathrm{O}_{2}^{+}<\mathrm{O}_{2}^{2+}$
$\pi 2 p_{x}$ and $\pi 2 p_{y}$ or ${ }^{*} \pi 2 p_{x}$ and ${ }^{*} \pi 2 p_{y}$ orbitals have nearly equal energy and thus, are called degenerate orbitals.
488 (a)
The most electronegative element is F and next to F is 0 .
489 (c)
Ions are held in NaCl by coulombic forces and thus, possess no velocity.
490 (b)
Both have one lone pair of electron.
491 (d)
Lattice energy, $U=\frac{q_{1} q_{2}}{r^{2}}$
Since, interionic distances in CaO and NaCl are similar, (larger cation has smaller anion and vice versa) r is almost the same. Therefore, lattice energy depends only on charge. Since, the magnitude of charge on Na^{+}and Cl^{-}ions is same $i e$, unity and that on Ca^{2+} and O^{2-} ions is 2 each, therefore, the lattice energy of CaO is four times the lattice energy of $\mathrm{NaCl}, i e, 4 \mathrm{U}$
$s p \quad s p \quad s p^{2} \quad s p^{2}$
$\mathrm{CH} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$
Hence, carbon atom bonded to each other by single
($\mathrm{C}-\mathrm{C}$) are $s p$ and $s p^{2}$ hybrid.
493 (c)
In IF_{5}, halogens are member of VII group.
Summation of group number

$$
\begin{aligned}
&=42 \\
& \text { Bond pair }=\frac{42}{8}=5(\text { Residue }) 2 \\
& \text { Lone pair }=\frac{2}{2}=1
\end{aligned}
$$

5 bond pair, 1 lone pair means the geometry is square pyramidal and $s p^{3} d^{2}$ hybridisation.
494 (b)
PCl_{5} molecule has $s p^{3} d$ hybridiation.

Its geometry is trigonal bipyramidal and it has 5 valence shell pairs of electrons.
495 (c)
Given, ionic charge $=4.8 \times 10^{-10}$ esu
and, ionic distance $=1 \AA=10^{-8} \mathrm{~cm}$
We know that
Dipole moment $=$ ionic charge \times ionic distance
$=4.8 \times 10^{-10} \times 10^{-8}$
$=4.8 \times 10^{-18} \mathrm{esu} \mathrm{cm}^{-1}$
$=4.8$ debye
496 (b)
$\mathrm{CH}_{2}=\mathrm{CH}_{2}$ has 1σ-and 1π-in between two $s p^{2}$ hybridized carbon.
497 (c)
S in SF_{4} possesses trigonal bipyramidal structure with $s p^{3} d$ hybridisation.
S in ground state
S in ground state

S in excited state

S in excited state

499 (c)
Atomic size decreases along the period and increases down the gp.

One water molecules is joined to four water molecules-two with H -atoms and other two with 0 -atoms. Thus, The maximum number of hydrogen bonds that a molecule of water can have is four as shown below :

501 (d)
CH_{3}^{+}and NH_{2}^{+}both have 8 electrons.
(b)

Energy level order $2 p>2 s$.

504 (b)
Be in BeF_{3}^{-}is $s p^{2}$-hybridized
505 (c)
RbO_{2} means Rb^{+}and $0_{2}^{-}, 0_{2}^{-}$is the superoxide ion.

$$
\begin{gathered}
0_{2}^{-}(17)=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2} \\
\\
\approx \pi 2 p_{y, \pi}^{2} 2 p_{x,}^{2} \approx{ }_{\pi}^{*} 2 p_{y}^{1}
\end{gathered}
$$

As it contains one unpaired electron, thus paramagnetic in nature.
506 (b)
A reason for the given fact.
507 (c)
Sulphanilic acids have dipolar structure to their melting point is high and insoluble in organic solvent
509 (c)
Atomic size of Ag and Au are closer to each other but nuclear charge is more on Au.
511 (d)
BCl_{3} has trigonal planar structure due to 3 bond pairs in the valence shell of boron whereas NCl_{3} has distorted tetrahearal structure due to one lone pair and three bond pair in the valence shell of nitrogen.
512 (a)
In $\mathrm{AlH}_{3}, \mathrm{Al}$ is $s p^{2}$ hybridised while in $\mathrm{AlH}_{4}^{-}, \mathrm{Al}$ is $s p^{3}$ hybridised.
513 (b)
$\mathrm{CH}_{3} \mathrm{COOH}$ dimerises in gaseous state due to H bonding.

514 (d)
It is the definition of electron affinity.
516 (b)
SO_{2} has $s p^{2}$-hybridization.
517 (a)
One of s-orbital +3 of p-orbital $=s p^{3}$
518 (d)
$\mathrm{NO}(7+8=15)$
$=\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2}$
$\approx \pi 2 p_{y}^{2}, \pi^{*} 2 p_{x}^{1}$
$\mathrm{NO}^{+}(7+8-1=14)$
$=\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2} \approx \pi 2 p_{y}^{2}$
Thus, in the formation of NO^{+}from NO, the
electron is removed from a π^{*} orbital
519 (a)

2nd $I E_{1}$ of alkali metals is abnormally higher.
520 (c)
For $\mathrm{Be}_{n} \mathrm{Al}_{2} \mathrm{Si}_{6} \mathrm{O}_{18}$

$$
\begin{aligned}
2 n+6+24-36 & =0 \\
n & =3
\end{aligned}
$$

521 (a)
The structure of an hydride of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is :

522 (c)
0 atom possesses $s p^{3}$-hybridization with two lone pair of electron.
523 (a)
Ionic bonds are non-directional.
524 (b)
The molecule of $\mathrm{N}_{2} \mathrm{O}$ is linear as would be expected for a triatomic molecule with 16 outer shell electrons. Its resonance structure is

525 (d)

Hence, number of σ and π-bond in acetonitrile are 5 and 2 respectively.
526 (a)
More the difference in electronegativity of atoms, stronger will be the hydrogen bond.
Electronegativity difference between H and F is highest.
(\because F has highest electronegativity)
$\because \mathrm{F}-\mathrm{H}----0$ hydrogen bond is strongest.
527 (d)
Cyanideion is,
$-\overline{\mathrm{C}} \equiv \mathrm{N} \longrightarrow-\overline{\mathrm{N}} \overline{\mathrm{C}} \mathrm{C}$.
528 (a)
21. $d s p^{3}$ or $s p^{3} d$ hybridisation results in trigonal bipyramidal geometry according to VSEPR theory.
22. $d s p^{2}$ hybridisation has square planar geometry.
23. $d^{2} s p^{3}$ or $s p^{3} d^{2}$ hybridisation has
octahedral planar geometry.
529 (d)
Bond angles of
$\mathrm{NH}_{3}=107^{\circ}, \mathrm{H}_{2} \mathrm{Se}=91.0^{\circ}, \mathrm{H}_{2} \mathrm{O}=104.5^{\circ}, \mathrm{H}_{2} \mathrm{~S}$

$$
=92.2^{\circ}
$$

So, the $\mathrm{H}_{2} \mathrm{Se}$ molecule has smallest bond angle.
530 (a)

The $\mathrm{H} \quad \mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ is 104.5° due to the presence of two lone pairs of electrons. This fact can be best explained with the help of valence shell electron pair repulsion (VSEPR) theory.
531 (b)
$\mathrm{NO}_{2}^{-} \quad s p^{2}$
$\mathrm{NO}_{3}^{-} \quad s p^{2}$
$\mathrm{NH}_{2}^{-} \quad s p^{3}$
NH_{4}^{+}

$$
s p^{3}
$$

SCN^{-}
533 (b)
$\mathrm{K}^{+}[\mathrm{C} \equiv \mathrm{N}]^{-} ; \mathrm{K}^{+}$and CN^{-}ionic, C and N forms covalent bonds.
534 (c)
NaCl exist as $\mathrm{Na}^{+} \mathrm{Cl}^{-}$.
535 (c)
$\mathrm{C}_{2} \mathrm{H}_{2}$ has a linear structure because it has $s p$ hybridisation.
$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
536 (d)
Structure of $\mathrm{C}_{2} \mathrm{H}_{4}$ is

Geomerry of the molecule)
So, the compound (X) is $\mathrm{C}_{2} \mathrm{H}_{4}$.
(a)

Ionization energy increases along the period and decreases down the group.
538 (b)
The atomic radius decreases along the period.
Also cations are always smaller than their parent atom and anions are always larger than their parent atom.
539 (a)
In N_{2}, all electrons are paired. Thus, N_{2}^{+}has one electron unpaired.
540 (c)

Mo lec ule	Hyb ridi sati on	Repulsion	Bond angle
SO_{2}	$s p^{2}$	$I p . b p, b p-b p$	119°
OH_{2}	$s p^{3}$	$I p-l p, b p-l p b p-b p$	104.5°
SH_{2}	$s p^{3}$	$-\mathrm{do-}$	
NH_{3}	$s p^{3}$	$I p-b p, b p-b p$	90°
		107°	

541 (a)
CO_{2} is isostructural with $\mathrm{N}_{2} \mathrm{O}$ because both have linear structure.

CO_{2}

542 (c)
Valencies of L, Q, P and R is- $2,-1,+1$, and +2 respectively. So, they will form $P_{2} L, R L P Q$, and $R Q_{2}$
543 (b)
$\mathrm{NO} \rightarrow \mathrm{NO}^{+}$
$\left(\mathrm{NO}^{+}\right)$Total $\mathrm{e}^{-}=14$
$\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \pi 2 p_{x}^{1+1}=\pi 2 p_{y}^{1+1} \sigma 2 p_{z}^{2}$

Diamagnetic

Bond order $=\frac{10-4}{2}=3$
(NO) Total $e^{-}=15$
$\sigma 1 s^{2}{ }_{\sigma}^{*} 1 s^{2} \sigma 2 s^{2}{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2} \pi 2 p_{x}^{1+1} \pi 2 p_{y}^{1+1},{ }_{\pi}^{*} 2 p_{x}^{1}$

$$
={ }_{\pi}^{*} 2 p_{y}
$$

Paramagnetic

Bond order $==\frac{10-5}{2}=2.5$
Electron is taken away from non-bonding molecular orbital that's why bond order increases.
544 (a)
All are isoelectronic species; more is nuclear charge smaller is ionic size.
545 (b)
Bond order for $\mathrm{O}_{2}=2 ; \mathrm{O}_{2}^{+}=2.5, \mathrm{O}_{2}^{-}=1.5, \mathrm{O}_{2}^{2-}=1$
Thus bond length is $\mathrm{O}_{2}^{+}<\mathrm{O}_{2}<\mathrm{O}_{2}^{-}<\mathrm{O}_{2}^{2-}$
546 (b)

The structure of acetylene is

In acetylene, both the C -atoms are $s p$ hybridised. Hence in acetylene molecule, there are one sigma and two pi bonds are present between carbon atoms.
547 (c)
Size of isoelectronics decreases with increasing atomic number.
548 (d)
O_{2}^{-}:
$\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p^{2}\left[\begin{array}{l}\pi 2 p_{y}^{2} \\ \pi 2 p_{z}^{2}\end{array}\right]\left[\begin{array}{l}\pi^{*} 2 p_{y}^{2} \\ \pi^{*} 2 p_{z}^{1}\end{array}\right]$
\therefore B.O. $=\frac{10-7}{2}=1.5$
549 (c)
NO has 15 electrons (paramagnetic) whereas NO^{+} has 14 electrons (diamagnetic).
550 (c)
$2 \mathrm{Fe}+3[\mathrm{O}] \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$ (rust).
551 (d)
ClO_{2} has 33 electron; one will be unpaired.
552 (c)
NO_{2} and O_{3} both are having irregular geometry.
554 (a)
s character \propto bond angle
555 (b)
Since the two 0 atoms in O_{2} are connected by a double bond $(0=0)$, therefore,hybridization of 0 is $s p^{2}$
556 (a)
$\mathrm{Cl}-\mathrm{Be}-\mathrm{Cl}$
In $\mathrm{BeCl}_{2}, \mathrm{Be}$ is $s p$-hybridised, hence it has linear structure.

Angular

Tetrahedral

557 (c)
On fusion KCN, ionic bonding is disturbed; on boiling $\mathrm{H}_{2} \mathrm{~S}$ and CF_{4} only kinetic energy of molecules increases.
558 (a)
Structure of $\overline{\mathrm{N}} \mathrm{H}_{2}$ is as follows

559 (b)
Mn^{2+} is most stable as it has half-filled d-orbitals.
560 (c)
The structure of PO_{4}^{3-} is $\left[\begin{array}{c}0 \\ \mathrm{I} \\ \mathrm{O}-\mathrm{P}-\mathrm{O} \\ \| \\ 0\end{array}\right]^{3-}$
Here, there units negative charge is shared by four 0 atoms and five bond pairs are shared between four $\mathrm{P}-\mathrm{O}$ bonds
\therefore Formal charge $=\frac{3}{4}=-0.75$
BO of $\mathrm{P}-\mathrm{O}$ bond $=\frac{5}{4}=1.25$
561 (c)
The element is P which exists as P_{4}.
(b)

Elements having six electrons in valency shell are electronegative elements, e.g., 0 .
563 (d)
In sulphur, the excitation of $n p$-electrons to $n d-$ subshell gives rise to increase in number of unpaired electrons.

Spe cies	Elec tro n in cent ral ele me	Electrons in other element	Cha rge gain ed	Tot al
nt				
BO_{3}^{3-}	5	$3 \times 8=24$	+3	32
CO_{3}^{2-}	6	$3 \times 8=24$	+2	32
NO_{3}^{-}	7	$3 \times 8=24$	+1	32
SO_{3}^{2-}	16	$3 \times 8=24$	+2	42
CN^{-}	6		1	14
$\mathrm{~N}_{2}$	7	7	0	14
C_{2}^{2-}	6	6	+2	14
PO_{4}^{3-}	15	$4 \times 8=32$	+3	50
SO_{4}^{2-}	16	$4 \times 8=32$	+2	50
ClO_{4}^{-}	17	$4 \times 8=32$	+1	50

Thus, (b) $\mathrm{SO}_{3}^{2-}, \mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$are not isoelectronic.

Unpaired electrons are present in KO_{2}, while others have paired electrons.
$\mathrm{NO}_{2}^{+} \longrightarrow 22$ electrons
$\mathrm{BaO}_{2} \rightarrow 72$ electrons
$\mathrm{AlO}_{2}^{-} \rightarrow 30$ electrons
$\mathrm{KO}_{2} \rightarrow 35$ electrons
(d)
$\mathrm{IP}_{3}>\mathrm{IP}_{2}>\mathrm{IP}_{1}$
567 (b)
Coordinate bond is formed.
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O} \rightarrow \mathrm{BH}_{3}$
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ gives one lone pair of electron to BH_{3}.
So, it is called electron pair donar and BH_{3} is called electron pair acceptor.
568 (a)
BeF_{3}^{-}involves $s p^{2}$-hybridization.
570 (c)
Maximum covalence in most of the atoms (except $\mathrm{N}, \mathrm{O}, \mathrm{F})$ is given by the number of valency electrons. The paired s electrons are also get unpaired during excitation.
571 (b)
Noble gases are in zero group however they possess eight electrons in their valence shell.
572 (a)
Solid molecules possess stronger van der Waals' forces

573 (a)
Inert pair effect is not noticed for elements having their outermost shell (n) if $n<4$.
574 (b)
(a) Pauling gave scale of electronegativity.
(b) Bronsted gave concept of acid and base.
(c) Mullikan determined charge on electron.
(d) Lewis gave electronic theory of bonding.

575 (b)
Ionization potential increases along the period.
Also Be has $1 s^{2}, 2 s^{2}$,i.e., removal of electrons from $2 s$ while in Boron it occurs from $2 p$ and therefore, Be has high I.P.
576 (b)
$\mathrm{NO}_{3}^{-}(\mathrm{I})$

$\mathrm{NO}_{2}{ }_{2}$ (II)

NO_{4}^{+}(II)

	$\sigma-$ bond	Lone pair	Unpaired electron	Total
I.	3	\times	\times	$3\left(s p^{2}\right.$
II.	2	\times	\times	2
III.	4	\times	\times	(sp)
				$4\left(s p^{3}\right)$

577 (b)

Larger cation favours ionic bonding (Fajan's rule). 578 (b)

Only P has d-orbitals.
579 (b)
$\mathrm{H}_{2} \mathrm{O}$ is $s p^{3}$-hybridized; BeF_{2} is $s p$-hybridized.
580 (b)
Oxidising power: $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$.
581 (a)
NH_{3} molecule in its valence shell has three bond pairs of electrons and one lone pair of electrons. The shape of NH_{3} molecule is pyramidal due to the presence of one lone pair electron. It has $s p^{3}$ hybridisation.

582 (d)
All carbon to hydrogen bonds are σ-bonds
583 (b)
In $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}$ is $s p^{3}$ hybridised.
In $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}$ is $s p^{2}$ hybridised.
In $\mathrm{BeCl}_{2}, \mathrm{Be}$ is $s p$ hybridised.
In $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}$ is $s p$ hybridised
584 (b)
Energy bonds in solids are formed in accordance with Bohr's theory.
585 (c)
The jump in ionisation energy occurs when valence shell changes during removal of electron.
586 (c)
H atom attached on F is responsible for $\mathrm{H}-$ bonding..
587 (a)

Bond length increases when bond order decrease, hence the correct order of bond length is
$\mathrm{CO}_{3}^{2-}>\mathrm{CO}_{2}>\mathrm{CO}$
588 (a)
In PCl_{3} molecule, phosphorus is $s p^{3}$-hybridised but due to presence of lone-pair of electron. It has pyramidal structure.

589 (c)
$\mathrm{Be}_{2}=(8$ electrons $)$
$\sigma 1 s^{2} \sigma 1 s^{2} \sigma 2 s^{2}{ }_{\sigma}^{*} S^{2}$
(d)
$s p^{3} d^{2}$ hybridisation has octahedral structure such that four hybrid orbitals are at 90° w.r.t each other and others two at 90° with first four.

591 (b)
$I E_{1}$ of $\mathrm{N}>I E_{1}$ of O due to half filled nature in N .
592 (b)
Larger anion is easily deformed (Follow Fajans' rule).
593 (c)
Due to resonance structure of $\mathrm{C}_{6} \mathrm{H}_{6}$.
594 (d)
Draw bond structure and then count bonds.

$\Rightarrow 12 \sigma, 2 \mathrm{~d} \pi-\mathrm{p} \pi$ bonds.
595 (a)
In methane, ethene and ethyne, the hybridisations are respectively $s p^{3}, s p^{2}$ and $s p$. Hence, $\% s$ character will be
$s p^{3}=\frac{1}{4} \times 100=25 \%$
$s p^{2}=\frac{1}{3} \times 100=33 \%$
$s p=\frac{1}{2} \times 100=50 \%$
597 (c)
Both SO_{4}^{2-} and BF_{4}^{-}have $s p^{3}$-hybridization and are tetrahedral.
598 (c)
If there is four σ - bonds, hybridisation is $s p^{3}$, if three σ - bonds, hybridisation is $s p^{2}$ and if two
$\sigma-$ bonds, hybridisation is $s p$.
(a) $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$ $s p^{2} \quad s p \quad s p^{2}$
(b) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}^{+}$
$s p^{3} s p^{2} s p^{2} s p^{2}$
(c) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}^{+}$
$s p^{3} s p$ sp $s p^{2}$
(d) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}^{-}$
$s p^{3} \quad s p^{2} \quad s p^{2} \quad s p^{3}$
(e) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
$s p^{2} s p^{2} s p^{2} \quad s p^{2}$
Hence, in $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}^{+}$, all the three types of hybrid carbons are present.
(b)

Sigma bond formation involves more overlapping and thus stronger.
600 (b)
Both have $s p^{2}$-hybridization geometry.
601 (b)
Anions are always larger than their parent atom. Also atomic radius increases down the group, decreases along the period.
602 (c)
AsF ${ }_{5}$ has $\mathrm{sp}^{3} d$ hybridization. In $s p^{3} d$
hybridization, it is $d_{z^{2}}$ orbitals which takes part 603 (a)

compounds has
CCl_{4} and zero dipole moment due to their symmetrical structure.
604 (b)
Ionisation energy increases along the period.
605 (a)
In octahedral structure $M X_{6}$, the six hybrid orbitals $\left(s p^{3} d^{2}\right)$ are directed towards the corners of a regular octahedral with an angle of 90°. According to following structure of $M X_{6}$ the number of $X-M-X$ bonds at 180° must be three.

606 (a)

It is the definition of valency.
607 (a)
Only Na shows +1 oxidation state. Rest all have
$+1,+2(\mathrm{Hg}),+1,+2(\mathrm{Cu})$ and $+2,+3(\mathrm{Fe})$
oxidation states.
608 (a)
The ionisation energy of elements decreases down the group.
609 (d)
O is more electronegative than C .
610 (c)
Bond energy increases with multiplicity of bonds.
Br_{2} is a non-polar molecule and hence, its melting point and boiling point depend only upon van der Waals' forces of attraction while all the remaining molecules have dipole moments and hence, their melting points and boiling points depend upon dipole-dipole interactions
612 (c)
H -bonding in $\mathrm{H}_{2} \mathrm{O}$ increases forces of attracting among molecules and develops abnormal properties.
614 (b)
In a double bond $(=)$ one σ and one π-bond is present while in a single bond $(-)$ only σ-bond is present.
The structure of the naphthalene is as

In naphthalene five double bonds are present, hence 5π bonds are present in naphthalene.
616 (d)
$\mathrm{ICl}_{2}^{-}, \mathrm{I}_{3}^{-}, \mathrm{N}_{3}^{-}$are
linear
but
ClO_{2}^{-}is angular due to $s p^{3}$ hybridisation of Cl aton

So, ClO_{2}^{-}is non-linear.
617 (c)
Bond order $=\frac{1}{2}$ [bonding electrons - antibonding electrons]
618 (c)
The difference of electronegativity is more.
619 (c)

Ortho hydroxyl benzaldehyde has maximum volatility due to intra molecular H-bonding.
620 (b)
Formal charge $=$ Number of electrons in valence shell -
($\frac{1}{2} \times$ numbers of electrons as bond pair + numbers of electrons as lone pair)

For N_{1} and N_{3}
Formal charge $=5-\left(\frac{4}{2}+4\right)=5-(6)=-1$
For $\quad N_{2}=5-\frac{1}{2} \times 8-0=5-4=+1$
621 (d)
In phenol each C atom is $s p^{2}$ hybridised and O atom is $s p^{3}$ hybridised.
622 (a)
Due to $s p^{3}$-hybridization on carbon atoms.
623 (b)
Bond angles of $\mathrm{ClF}_{3}, \mathrm{PF}_{3}, \mathrm{NF}_{3}$ and BF_{3} are $\left(180^{\circ}\right.$, $\left.90^{\circ}\right),(101)^{\circ},\left(106^{\circ}\right)$ and $\left(120^{\circ}\right)$ respectively.
624 (c)
Operates in each gaseous molecule.
625 (d)
Resultant of two opposite vectors produces zero dipole moment.
626 (d)
Because of its regular tetrahedral geometry, CCl_{4} has least dipole moment
627 (b)
Coulombic forces are strongest among all.
628 (a)
CO_{2} has linear structure. It has $s p$-hybridisation $0=\mathrm{C}=0$
629 (a)
In (A) para-nitro phenol intermolecular (between two molecules) H-bonding exists while in (B) ortho -nitrophenol, intramolecular H bonding exists.
Because of the presence of intramolecular H bonding, the boiling point of (B) is lower as compare to (A) and thus, (B) is more volatile i.e., has higher vapour pressure as compare to (A).
630 (b)
Small cation has more polarizing power.
632 (c)
Polar solute are more soluble in polar solvents.
633 (b)
Since, the electronegativity (EN) different is 3.0 -
$1.2=1.8$, which is less than 1.9 , therefore, bond is
expected to be covalent
634 (a)
SiF_{4} and SF_{4} are not isostructural because SiF_{4} is tetrahedral due to $s p^{3}$ hybridisation of Si while SF_{4} is not tetrahedral but it is distorted tetrahedral because in it S is $s p^{3} d$ hybridised and has a lone pair of electron.
635 (c)
SiF_{4} has regular tetrahedral geometry.
636 (d)
Cl possesses 10 electrons in ClF_{3}.
637 (a)

Molec ule	$b p$ $+l p$	Hybridisa tion	Shape
$\mathrm{H}_{2} \mathrm{O}$	$2+2$	$s p^{3}$	Angular
			Trigonal
BCl_{3}	$3+0$	$s p^{2}$	Planar
NH_{4}^{+}	$4+0$	$s p^{3}$	Tetrahedral
CH_{4}	$4+0$	$s p^{3}$	Tetrahedral

638 (c)
Electronegativity and ionisation energy decreases from F to .
639 (d)
$\mathrm{CH} \equiv \mathrm{CH} ; 3$ for triple bonds and two for $\mathrm{C}-\mathrm{H}$
bond.
640 (b)
The electronic configuration of O_{2}^{2-} ion is O_{2}^{2-}
$-\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2} \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2}, \pi 2 p_{y}^{2},{ }_{\pi}^{*} 2 p_{x}^{2}$,
Hence, number of antibonding electron pair in O_{2}^{2-} molecular ion are four.
641 (c)
Due to the presence of d-subshell electrons.
642 (b)
Due to $s p^{2}$-hybridization.
643 (a)
M.O. configuration of O_{2} :
$\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma * 2 s^{2}, \sigma 2 \mathrm{p}_{\mathrm{x}}^{2}\left[\begin{array}{l}\pi 2 p_{y}^{2} \\ \pi 2 p_{z}^{2}\end{array}\right]\left[\begin{array}{l}\pi^{*} 2 p_{y}^{2} \\ \pi^{*} 2 p_{z}^{1}\end{array}\right]$
Molecular orbitals $\pi^{*} 2 p_{z}$ gains electron when O_{2}^{-} is formed from O_{2}
644 (a)
H -bonding is weakest bonding.
646 (b)
Out of $s p^{3}, s p, s p^{2}$ hybridised carbon, $s p$ hybridised carbon is more electronegative.
647 (c)
Both NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ have $s p^{3}$-hybridization. CO_{2} and BeCl_{2} are linear ($s p$-hybridization).
648 (d)
Unpaired electrons give rise to paramagnetism.

649 (a)
HF has largest dipole moment because electronegativity difference of both is high so, it is highly polar
650 (b)
Due to H -bonding which is more in water than alcohol and not in ether.
652 (c)
$1 s^{2}, 2 s^{2} 2 p^{4}$ leads a sharing of two electron pairs to form molecule, e.g., O_{2}.
654 (b)
Count σ and π bonds.
655 (c)
Bond order $\mathrm{C}_{2}^{-}>\mathrm{NO}>\mathrm{O}_{2}^{-}>\mathrm{He}_{2}^{+}$

$$
\begin{array}{llll}
3 & 5 / 2 & 3 / 2 & 1 / 2
\end{array}
$$

656 (b)
Larger is bond order, lesser is bond length.
657 (c)
Strongest H-bonds are formed in between HCOOH and $\mathrm{CH}_{3} \mathrm{COOH}$. This is because H - bonding increases with electronegativity and decreases with size of atom
658 (d)
BCl_{3} has $s p^{2}$-hybridization. Rest all have $s p^{3}$ hybridization having one lone pair of electron and thus, pyramidal in nature.
659 (d)
The overlapping orbitals must possess half-filled nature with anti-spin electron.
661 (c)
HNO_{3} is $\mathrm{HO}-\mathrm{N}=\mathrm{O}$, assume one covalence
for each coordinate bond.
662 (a)
B.p. of H_{2} is minimum.

663 (a)
$\mathrm{H}_{2} \mathrm{O}$ has $s p^{3}$-hybridisation and is angular in shape.
664 (b)
Electron gain enthalpy of Cl is maximum.
665 (a)
The structure of trimethyl amine is pyramidal.

666 (b)

Molecules	Interaction
Benzene and	Dispersion force
ethanol	Dipole-dipole
Acetonitrile and	Ion-dipole
acetone	Dispersion
KCl and water	(London) force
Benzene and carbon tetrachloride	

Dry ice is CO_{2} having $\mathrm{C}-\mathrm{O}$ covalent bonds.

In p-dichlorobenzene, two $\mathrm{C}-\mathrm{Cl}$ dipole cancel each other
$\therefore \mu=0$
In, o-dichlorobenzene, two $\mathrm{C}-\mathrm{Cl}$ dipoles (say x)
are inclined at an angle of 60°.Therefore,
according to parallelogram law of forces, the resultant
$=\sqrt{x^{2}+x^{2}+2 x \times \cos 60^{\circ}}$
$=\sqrt{x^{2}+x^{2}+2 x^{2} \times 1 / 2}$
$=\sqrt{3 x^{2}}=\sqrt{3 x}$
In m-dichlorobenzene, the two dipoles are inclined to each other at an angle of 120°, therefore, resultant
$=\sqrt{x^{2}+x^{2}+2 x \times \cos 120^{\circ}}$
$=x^{2}+x^{2}+2 x^{2} \times(-1 / 2)$
$=\sqrt{x^{2}}=x$
Thus , the decreasing order of dipole moments:
$o>m>p$
669 (d)
One carbon has three bonds and other five where as each should have four bonds.
670 (c)
Cations are smaller in size than their parent atoms.
671 (b)
$\mathrm{O}_{2}(8+8=16)$
$=\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2}$
$\approx \pi 2 p_{y}^{2}, \pi^{*} 2 p_{x}^{1} \approx \pi^{*} 2 p_{y}^{1}$
Bond order $=\frac{10-6}{2}=2$
$\mathrm{O}_{2}^{+}(8+8-1=15)$

Bond order $=\frac{10-5}{2}=2.5$
$\mathrm{O}_{2}^{-}(8+8+1=17)$,
Bond order $=\frac{10-7}{2}=1.5$
$\mathrm{O}_{2}^{2-}(8+8+2=18)$,
Bond order $=\frac{10-8}{2}=1$
Thus, bond order is maximum for O_{2}^{+}
672 (d)
P atom has $s p^{3}$-hybridization with one position occupied by lone pair of electron.
673
(b)

A characteristic of resonance.
674
(b)

Covalent compounds have lower m.p. and b.p. than ionic one.
676 (d)
It is a reason for given fact.
677
(b)
ClO_{3}^{-}has $s p^{3}$-hybridization with one lone pair of electron.
678 (d)
Greater the stability of oxide, greater is the case of its formation. Generally ionic oxides are more stable than covalent oxides and among the given metals only Ca form ionic oxide. Hence, Ca has greater tendency to form oxide.
679 (c)
Higher the charge/size ratio, more is the polarising power.
$\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}$
680 (d)
He has $1 s^{2}$ configuration.
681 (a)
Water molecules has following structure

Therefore, there are 4 pairs of electrons (2 lone pairs and 2-bond pairs) in the valence shell of 0 atom in water molecule.
682 (a)
Total electrons in valence shell of nitrogen and hydrogen.

\therefore Total electrons in $\mathrm{NH}_{3}=5+1+1+1=8$
683 (d)
The electronic configuration of carbon is $1 s^{2}, 2 s^{2} 2 p^{2}$.

684 (c)
Number of hybrid orbitals $=$ no. of $\mathrm{bp}+$ no. of $l p$ $=5+1=6$
Thus, hybridization is $s p^{3} d^{2}$ but geometry, due to the presence of one pair, is square pyramidal, ie

685 (c)
(i) N_{2} (14 electrons)
$=K K^{*}, \sigma 2 s^{2}, \sigma 2 s^{2}, \pi 2 p_{x}^{2} \approx \pi 2 p_{y}^{2}, \sigma 2 p_{z}^{2}$
Bond Order $=\frac{1}{2}\left(N_{b}-N_{a}\right)$
$=\frac{1}{2}(8-2)=3$
(ii) N_{2}^{+}(13 electrons)
$=K K^{*}, \sigma 2 s^{2,}, \sigma s^{2}, \pi 2 p_{x}^{2} \approx \pi 2 p_{y}^{2}, \sigma 2 p_{z}^{1}$
Bond Order $=\frac{1}{2}(7-2)=2.5$
Since, bond dissociation energy \propto bond order. Hence, bond dissociation energy of N_{2} is greater than that of the bond dissociation energy of N_{2}^{+}.

Bond angles in $\mathrm{BeCl}_{2}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$ and SnCl_{2} are $180^{\circ}, 107^{\circ}, 104.5^{\circ}$ and 119° respectively. Also $\mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{Se}$ has $s p^{3}$-hybridization and bond angles of hydrides decreases down the group.
687 (d)
Liquid HCl does not from H -bonds
688 (a)
O_{2} has two unpaired electrons but are paired in
O_{2}^{2-}.
689 (b)
In ethanol the oxygen of -OH group is bonded to the $s p^{3}$ hybridised carbon by a sigma bond. The $\mathrm{C}-\mathrm{O}-\mathrm{H}$ bond angle in ethanol is less than the tetrahedral angle $\left(109^{\circ}, 28^{\prime \prime}\right)$ due to larger repulsions between the lone pair of repulsions between the lone pairs of oxygen. Hence, it is 104° in ethanol.

690 (c)
(a)

(b)

(c)

(d)

Acetonitrile does not contain $s p^{2}$ hybridised carbon.
691 (b)
The atomic radii decreases along the period and increases down the gp.
(b)
SiO_{2} possesses giant molecular structure due to tetra valence and catenation nature of Si.
693 (d)
According to VSEPR theory the bond angle decreases with increase in the size of the valence shell of the central atom because electronegativity decreases. i.e., decreasing order of bond angles is $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$
694 (b)
Half-filled orbitals are more stable.
695 (a)
In BrF_{5} number of electrons $=6$ (1 $1 p+5 \mathrm{bp}$)

So, the structure is supposed to be square pyramidal but will be distorted because of additional $l p-b p$ interaction.
Additional $l p-b p$ interaction reduced the all bond angle and do not let any angle to be 90°.
696 (b)
Ionisation energy decreases down the group and increases along the period.
697 (a)
Smaller is size of anion, lesser is its polarization, more is ionic nature, more is lattice energy.
698 (c)
Among the given species, the bond dissociation energy of $\mathrm{C}-0$ bond is minimum in case of CO_{3}^{2-} by which $\mathrm{C}-$ Obond become more weaker in CO_{3}^{2-} or the bond order of $\mathrm{CO}_{3}^{2-}(1.33)$ is minimum so, the bond become weaker

Peroxide ion in O_{2}^{2-}
$\mathrm{O}_{2}^{2-}(18)=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2},{ }_{\sigma} 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2}$
$\pi 2 p_{x}^{2}=\pi 2 p_{y}^{2}, * 2 p_{x}^{2}={ }_{\pi}^{*} 2 p_{y}^{2}$
Bond order $=\frac{N_{b}-N_{a}}{2}=\frac{10-8}{2}=1$
It contains four completely filled antibonding molecular orbitals. Since, all the electrons are paired, O_{2}^{2-} is diamagnetic.
Peroxide ion is isoelectronic with argon, not with neon.
701 (b)
$\mathrm{BF}_{3}: s p^{2} \quad \mathrm{NO}_{2}^{-}: s p^{2} \quad \mathrm{NH}_{3}:$
$s p^{3} \quad \mathrm{NH}_{2}^{-}: s p^{3} \quad \mathrm{H}_{2} \mathrm{O}: s p^{3}$
702 (b)
Multiplicity in bonds decreases bond length.
703 (a)
O_{2}^{2-} (Total number of electrons $=18$)
$\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2}=\pi 2 p_{y}^{2}{ }_{\pi}^{*} 2 p_{x}^{2}$
(d)
IF_{7}

Inclined at 72°
with one each other
seven $s p^{3} d^{3}$ hybrid orbitals
forming σ - bonds with F-atoms,

Pentagonal bipyramidal structure

In C_{2}, only 2π bonds are present
706 (b)
NH_{4}^{+}has angle of $109^{\circ} 28^{\prime}$.
707 (b)

$$
\begin{aligned}
& \frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cl}^{-}(a q) \\
& \begin{aligned}
\Delta H=\frac{1}{2} \Delta H_{\mathrm{diss}} & \left(\mathrm{Cl}_{2}\right)+\Delta H_{\mathrm{EA}} \mathrm{Cl}+\Delta H_{\mathrm{hyd}}\left(\mathrm{Cl}^{-}\right) \\
& =\frac{240}{2}-349-381 \\
& =-610 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
\end{aligned}
$$

708

(b)

The position at which substituent is present, is called ipso-position.

Chlorobenzene

The hybridisation of ipso-carbon in chlorobenzene is $s p^{2}$.
709 (c)
Electronegativity difference between $\mathrm{N}(3,0)$ and $\mathrm{Cl}(3.0)$ is zero and hence, $\mathrm{N}-\mathrm{Cl}$ bonds are nonpolar. As a result, the overall dipole moment of NCl_{3} molecule and its direction is just the dipole moment of the lone pair of electrons

On the other hand, $\mathrm{N}-\mathrm{Br},(3.0-2.8), \mathrm{N}-\mathrm{I}(3.0-$ $2.5)$ and $\mathrm{N}-\mathrm{H}(3.0-2.1)$ are polar and hence, contribute towards the overall dipole moment of the respective moleculas. Since, the EN difference is higher in case of $\mathrm{N}-\mathrm{H}$ bonds, therefore, NH_{3} has the higher dipole moment
710 (c)
CHCl_{3} molecule has largest dipole moment among the given species.
711 (d)
In O_{2}, there are two electrons in antibonding orbitals. Removal of one electron from the O_{2} molecular gives O_{2}^{+}in which the number of antibonding electrons is one less and hence, BO increases. Thus, removal of the electron from O_{2} stabilized the molecule
712 (a)
Mg^{2+} is a smaller cation in these. Smaller is cation more is hydration energy.

713 (b)
Hydrogen bonding \propto electronegativity
714 (c)
Larger is anion, more is its polarization.
715 (c)
NaF is more ionic; F is smallest anion among all and thus, least polarized.
716 (a)

Hence, In acetylene, there are 3σ and 2π bond.
717 (d)
+4 ionic state is not possible for head with iodide because I^{-}reduces Pb^{4+} to Pb^{2+}.
718 (a)
The $\mathrm{C}-\mathrm{C}$ bond length in $s p^{3}$ hybridisation is greater than $s p^{2}$ hybridisation due to large size of p-orbitals.
In diamond $s p^{3}$ hybridisation is present while in graphite, naphthalene and fullerene $s p^{2}$ hybridisation is present therefore the $\mathrm{C}-\mathrm{C}$ bond length is maximum in diamond.
720 (d)
SiO_{2} structure is definite.
721 (a)
$\left.\begin{array}{|l|c|c|c|c|}\hline \begin{array}{l}\text { Mo } \\ \text { lec } \\ \text { ule }\end{array} & \text { Structure } & \begin{array}{c}\text { Hybr } \\ \text { idisa } \\ \text { tion } \\ \text { of } \\ \text { centr } \\ \text { al } \\ \text { atom }\end{array} & \text { Lone } \\ \text { pair }\end{array}\right]$

722 (a)
We know that the shape of IF_{7} (molecule) is
pentagonal bipyramidal because central atom I have $s p^{3} d^{3}$ hybridisation.
723 (a)
C - C bond length $=1.54 \AA$
$\mathrm{C}=\mathrm{C}$ bond length $=1.34 \AA$
$\mathrm{C} \equiv \mathrm{C}$ bond length $=1.20^{\circ} \AA$
Thus, correct decreasing order C to C bond lengths is
IV $>$ III $>$ I $>$ II
724 (b)
Due to larger difference in electronegativity.
725 (d)
Both O and S belong to same group but $\mathrm{H}_{2} \mathrm{O}$ is a liquid while $\mathrm{H}_{2} \mathrm{~S}$ is a gas. This can be explained on the basis of electronegativity. In water due to the high electronegativity of oxygen hydrogen bonds are formed. As a result the molecules of $\mathrm{H}_{2} \mathrm{O}$ get associate together, hence water exists as a liquid at room temperature. On the other hand, the electronegativity of S is less and therefore, hydrogen bonding in $\mathrm{H}_{2} \mathrm{~S}$ is almost negligible. As a result of which molecules of $\mathrm{H}_{2} \mathrm{~S}$ are not associated and $\mathrm{H}_{2} \mathrm{~S}$ exsists as a gas at room temperature.
726 (d)
$\mathrm{S}=\mathrm{C}=\mathrm{S}$.
727 (d)
The bond angles in $s p^{3}, s p^{2}$ and $s p$-hybridization are $109^{\circ}, 120^{\circ}$ and 180° respectively.
728 (d)
In $\mathrm{ClO}_{3}^{-}, \mathrm{Cl}$ is central atom, it is $s p^{3}$ hybrid and on it one lone pair of electrons (free pair of electrons) is present.

Pyramidal shape
In XeF_{4}, Xe is central atom it is $s p^{3} d^{2}$ hybrid and on it two lone pair of electrons are present.

Square planar
In $\mathrm{SF}_{4}, \mathrm{~S}$ is central atom and $s p^{3} d$-hybridised and
on it one lone pair of electrons is present.

Irregular tetrahedral
In I_{3}^{-}, I is central atom and it is $s p^{3} d$ hybridised and on it three lone pair of electrons are present.

Linear shape

Seven atoms of fluorine are covalently bonded with iodine.

Intermolecular hydrogen bonding is found in (HF) ${ }_{n}$ due to higher electronegativity of fluorine atoms.

Hydrogen bonding
Hydrogen bonding is helpfull in the association of HF molecule, so HF is found in liquid form.
732 (c)
A species is said to be diamagnetic if it has all electrons paired

Sp eci es	El ect ro ns	M0 electronic configurati on	Magnetic behaviour
H_{2}^{-}	3	$\sigma 1 s^{2}{ }_{\sigma}^{*} 1 s^{1}$	Paramagnetic
H_{2}^{+}	1	$\sigma 1 s^{1}$	Paramagnetic
H_{2}	2	$\sigma 1 s^{2}$	Diamagnetic
He_{2}^{+}	3	$\sigma 1 s^{2}{ }_{\sigma} 1 s^{1}$	Paramagnetic

733 (b)
This give rise to polarity in bonds.
First electron affinity is energy releasing process.
$\mathrm{Li}^{-}: 1 s^{2}, 2 s^{2} ; \mathrm{Be}^{-}: 1 s^{2}, 2 s^{2}, 2 p^{1}$; in Li, addition of electron has taken place in 2 s orbital; in Be^{-}, addition of electron has taken place in $2 p$ orbital loosing its $2 s$ completely filled configuration.
$E A_{1}$ for Be is more positive than $E A_{1}$ for Li . Thus Be^{-}is least stable.

736 (d)
Bond energy for $\mathrm{C}-\mathrm{C}, \mathrm{N}-\mathrm{N}, \mathrm{H}-\mathrm{H}$ and $\mathrm{O}-\mathrm{O}$ are : $\mathrm{H}-\mathrm{H}>\mathrm{C}-\mathrm{C}>\mathrm{N}-\mathrm{N}>\mathrm{O}-\mathrm{O}$.
737 (b)
The number of lone pair in XeOF_{4} is one (1). The structure of XeOF_{4} is given as follows

738 (c)
BCl_{3} has six electrons in outer shell of boron atom.
739 (b)
$\mathrm{H}_{2} \mathrm{~S}$ contain only covalent bonds, as the electronegativity difference between H and S is only (2.6-2.1 = 0.5).

740 (c)
CCl_{4} has $s p^{3}$-hybridization giving regular tetrahedron geometry. In others the geometry is little distorted inspite of $s p^{3}$-hybridization due to different atoms on the vertices of tetrahedron.
741 (b)
P undergoes $s p^{3} d$ hybridisation in PCl_{5} and it has trigonal bipyramidal structure

Trigonal bipyramidal shape of PCl_{5}

742 (a)
Electronegativity difference in two atoms involved in bonding is a measure of polarity in molecule.
743 (c)
$\equiv \mathrm{C}$ - has 2σ-and 2π - (thus, $s p$-hybridization); $-\mathrm{CH}=$ has 3σ - and 1π - (thus, $s p^{2}$-hybridization). Remember hybridized orbitals do not form π bonds.
744 (b)
F has 7 electrons in its valence shell. Thus, to attain stability, it should have lost one electron.

In $\mathrm{O}_{2}^{2-}, 8$ electrons are present in antibonding orbitals
$\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p_{x}^{2}\left[\begin{array}{c}\pi 2 p_{y}^{2} \\ \pi 2 p_{z}^{2}\end{array}\right],\left[\begin{array}{c}\pi^{*} p_{y}^{2} \\ \pi^{*} 2 p_{z}^{2}\end{array}\right]$
746 (a)
CH_{3}^{+}possesses $s p^{2}$-hybridization.
747 (a)
No doubt NH_{3} and BF_{3} have $s p^{3}$ (pyramidal) and $s p^{2}$ (coplanar) hybridization respectively having one lone pair of electron on N atom which is responsible for pyramidal shape of NH_{3} inspite of $s p^{3}$ hybridization. However, as soon as it is coordinated to BF_{3}, both attain tetrahedral geometry and acquire $s p^{3}$-hybridization.
748 (b)
Nitrogen molecule has highest bond energy due to presence of triple bond
749 (b)
$\mathrm{P}_{4} \mathrm{O}_{6}$ has following structure.
Thus, every P -atom is linked to 3 oxygen atoms.

750 (d)
Bond energy \propto Bond order
751 (a)
In XeF_{6}, the oxidation state of Xe is +6 . The shape of XeF_{6} should be pentagonal bipyramid due to $s p^{3} d^{3}$ hybridisation but due to the presence of one lone pair at one trans position its shape becomes distorted octahedral.

distorted octahedral shape

752 (a)

CN^{-}and NO^{+}both have same number of electrons and same bond order (3).
753 (b)

754 (c)
$s p^{3}$-hybridization leads to tetrahedral geometry.
756 (b)
Alkali metals are most electropositive elements.
757 (b)
Anions are always larger than parent atom; cations are always lesser than parent atom.
758 (c)
$F-\underset{-C}{-}-F$
Total number $=4 \rightarrow s p^{3}$ hybridisation
SF_{4} :

Total number $=5 \rightarrow s p^{3} d$ hybridisation

Total number $=6 \rightarrow s p^{3} d^{2}$ hybridisation
759 (a)
Van der Waals' forces increases in CH_{4} to give solid CH_{4}.
760 (b)
As the number of lone pairs of electrons increases, bond angle decreases. Thus, the order of bond angle is
$\mathrm{NH}_{4}^{+}>\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}$
(no $l p$) (1 lp) (2lp)
761 (b)
$\mathrm{BeCl}_{2}-s p, \mathrm{BF}_{3}-s p^{2} ; \mathrm{NH}_{3}-s p^{3} ; \mathrm{XeF}_{2}-s p^{3} d$
(a)
$\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}$ bond angles in PCl_{5} molecule are 120° and 90°. PCl_{5}, having $s p^{3} d$ hybridised P atom (trigonal bipyramidal geometry) has two types of bonds; axial and equatorial. The two types of bond have different bond lengths $1,2,3$ and 4 equatorial bonds and 4,5 axial bonds.

763 (b)
Both BF_{4}^{-}and NH_{4}^{+}have $s p^{3}$-hybridisation and therefore possess tetrahedral geometry.

$$
\begin{array}{lll}
\mathrm{NF}_{3}: s p^{3} & \mathrm{BCl}_{3}: s p^{2} \\
\mathrm{BF}_{3}: s p^{2} & \mathrm{BrCl}_{3}: s p^{3} d \\
\mathrm{BF}_{4}^{-} & : s p^{3} & \mathrm{NH}_{3}: s p^{3} \\
\mathrm{NH}_{4}^{+}: s p^{3} & \mathrm{NO}_{3}^{-}: s p^{2}
\end{array}
$$

764 (a)
Each possesses 18 electrons.
766 (d)

$$
\begin{aligned}
\mathrm{He}_{2}^{+}(\text {B. } 0 .=0.5) & <\mathrm{O}_{2}^{-}(\text {B. } 0 .=1.5) \\
& <\mathrm{NO}(\text { B. } 0 .=2.5)<\mathrm{C}_{2}^{2-}(\text { B. } 0 . \\
& =3.0)
\end{aligned}
$$

768 (d)
In SO_{3} molecules, S -atom remains $s p^{2}$ hybrid, hence, it has trigonal planar structure

769 (d)
$\mathrm{BCl}_{3}=3 \sigma$ bonds $+0 l p$ of $e^{-}=3 \Rightarrow$ $s p^{2}$ hybridisation
$\mathrm{NCl}_{3}=3 \sigma$ bonds $+1 l p$ of $e^{-}=4 \Rightarrow$
771 (b)
N is $s p^{2}$-hybridized in NO_{3}^{-}.
772 (d)
The ionic radius increases down the group.
773 (b)
The formula of $M X_{3}$ shows the presence of 3σ bonds. Since, it has T-shape geometry, it must contain 2 lone pairs as

774 (a)
Except NO^{-}(16 electrons), rest all have 14 electrons.
776 (c)
Ethyl alcohol forms stronger H -bonds than ethylamine or ammonia due to greater electronegativity of oxygen than nitrogen atom. Diethyl ether, however, does not form H-bonds since, it does not have a H -atom attached to 0 atom.
778 (c)
Carbon in CO_{2} has $s p$-hybridization.
779 (c)
In both CH_{4} and $\mathrm{CCl}_{4}, s p^{3}$ hybridisation is present and both have tetrahedral geometry.
781 (a)
As the s-character increases in hybrid orbitals, bond energy increases, size of the hybridized orbital decreases. s-characters in $s p, s p^{2}$ and $s p^{3}$ are $1 / 2,1 / 3,1 / 4$ respectively.
(b)
$\mathrm{NH}_{4} \mathrm{Cl}$ contains ionic, covalent and coordinate linkage.
$s p^{3}$ hybridisation

783 (a)

784 (b)
The Born-Haber cycle takes place as follows

Hence, Z is $M^{+} X^{-}(s)$
785 (a)
S atom is larger in size than O and F .
786 (d)

$$
\begin{aligned}
\mathrm{N}_{2}(7+7=14) & =\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \pi 2 p_{x}^{2} \\
& \approx \pi 2 p_{y}^{2}, \sigma 2 p_{z}^{2}
\end{aligned}
$$

Bond order $=\frac{10-4}{2}=3$
$\mathrm{N}_{2}^{+}(7+7-1=13)$ $=\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \pi 2 p_{x}^{2}$
$=\pi 2 p_{y}^{2}, \sigma 2 p_{\pi}^{1}$ (paramagnetic)

Bond order $=\frac{9-4}{2}=2.5$
Since, N_{2}^{+}has less bond, then N - Nbond gets
weak
$\mathrm{O}_{2}(8+8=16)$
$=\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2}$
$\approx \pi 2 p_{y}^{2}, \pi^{*} 2 p_{x}^{1} \approx \pi^{*} 2 p_{y}^{1}$
Bond order $=\frac{10-6}{2}=2$
$\mathrm{O}_{2}^{+}(8+8-1=15)$
$=\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2}$
$\approx \pi 2 p_{y}^{2}, \pi^{*} 2 p_{x}^{1}$
Bond order $=\frac{10-5}{2}=2.5$
Thus, in the formation of O_{2}^{+}from
O_{2}, paramagnetism decreases but the bond order increases
787 (a)
In an antibonding molecular orbital, most of the electron density is located away from the space between the nuclei, as a result of which there is a nodal plane (i.e., a plane at which the electron density is zero) between the nuclei.

788 (d)

	Speci es	Hybridisa tion of Xe	Lone pair on Xe	Bondin gpairs
(a)	XeO_{3}	$s p^{3}$	1	3
(b)	XeF_{4}	$s p^{3} d^{2}$	2	4
(c)	XeF_{6}	$s p^{3} d^{3}$	1	6
(d)	XeF_{2}	$s p^{3} d$	3	2

789 (b)
Boiling point of HF is highest due to H -bonding. For other halogen acids boiling point increase in the order $\mathrm{HCl}<H B R<H I$. Therefore, most volatile (with Lower b.pt.) is HCl .
(b)

The MO electronic configuration of
$\mathrm{O}_{2}^{-}(8+8+1=17)$
$=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2}$
$\approx \pi 2 p_{y,}^{2}{ }_{\pi}^{*} 2 p_{x}^{2} \approx{ }_{\pi}^{*} 2 p_{y}^{1}$
Bond order $=\frac{N_{b-N_{a}}}{2}$

$$
=\frac{10-7}{2}=1.5
$$

791 (d)
Multiplicity in bonds decreases bond lengths.

Both NH_{4}^{+}and BF_{4}^{-}have $s p^{3}$-hybridization.
793 (a)
NH_{3} molecule has three fold axis of symmetry because it has $s p^{3}$ hybridisation but due to presence of one lone pair of electron it has pyramidal structure.
794 (b)
Basic character of hydrides decreases down the gp.
795 (b)
NO is paramagnetic in nature
796 (d)
Cation radius increases down the group.
797 (a)
According to Born-lande equation

$$
U=\frac{Z^{+} Z-e^{2} \mathrm{An}}{r_{\text {node }}}\left(\frac{1}{n}-1\right)
$$

Where, U is lattice energy
$r_{\text {node }}$ is interionic distance
$\because \quad U \propto \underset{\text { interionic disance }}{ }$
\therefore Ions should be of small size to have high lattice energy.
798 (d)
Dipole moment of $\mathrm{CH}_{3} \mathrm{OH}$ is maximum in these.
799 (b)
Intermolecular H -bonding gives rise to an increase in b.p.
800 (b)
$\mathrm{H}_{3} \mathrm{BO}_{3}$ has structure

Boron has three bonds thus $s p^{2}$ hybrdised. Each oxygen has two bonds and twi

Species having same hybridisation show similar geometry.
SO_{4}^{2-} :Hybridisation of $\mathrm{S} \longrightarrow s p^{3}$
ClO_{4}^{-}: Hybridisation of $\mathrm{Cl} \longrightarrow s p^{3}$
802 (c)
Anions are larger in size than their parent atom.
803 (c)
Na^{+}and Cl^{-}are formed.
804 (b)
: $-\mathrm{CH}_{3}$ has $s p^{3}$ hybridisation.

805 (c)
Glycerol and ethanol both have intermolecular hydrogen bonding but in glycerol $\left(\mathrm{CH}_{2} \mathrm{OH} . \mathrm{CHOH} . \mathrm{CH}_{2} \mathrm{OH}\right)$ hydrogen bonds per molecule is more than ethanol ($\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$). It increases attraction between the molecules and hence, glycerol is more viscous than ethanol.
806 (a)
Larger anion is more polarised.
807 (a)
In ${ }_{\pi 2 P_{x}}$ orbital, two nodal planes are present.
808 (d)
Hydrogen bond is formed between molecules of compounds having O, F and N with H .

(a)

H ——F
hydrogen fluoride
(c)

(b)

hydrogen sulphide
(d)
$\because \mathrm{H}_{2} \mathrm{~S}$ does not have O, F or N
\therefore It does not form hydrogen bond.
810 (a)
NaF has maximum melting point, melting point decreases with increases in size of halide ion and their bond energy get lower
811 (a)
s-orbitals never go for lateral overlapping because of non-directional nature.
812 (d)
The metallic character is found in iodine as well as in astatine (At). Note that metallic character increases down the group.
813 (b)
Ionization energy increases along the period and decreases down the group. Also (b) has
[Ne$] 3 s^{2}, 3 p^{3}$, i.e., half filled configuration, being more stable and thus, have high ionization energy.
814 (a)
The correct option is O_{2}^{2-}. This species has 18
electrons, which are filled in such a way that all molecular orbitals are fully filled, so diamagnetic. $\sigma 1 s^{2}{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2}{ }_{\sigma}^{*} 2 s^{2} \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2}=\pi 2 p_{y}^{2},{ }_{\pi}^{*} 2 p_{x}^{2}=$ ${ }_{\pi}^{*} 2 p_{y}^{2}$
815 (a)
Water is an universal solvent.
816 (a)
According to Fajan's rule, as the charge on cation increase its size decreases. As a result its tendency to polarise anion increases. This brings more and more covalent character to electrovalent compounds.
\because Among $\mathrm{AlCl}_{3}, \mathrm{LaCl}_{3}, \mathrm{MgCl}_{2}$ and CsCl size of Al^{3+} is smallest.
$\therefore \mathrm{Al}^{3+}$ polarises anion to highest extent.
$\therefore \mathrm{AlCl}_{3}$ has maximum covalent character.
817 (a)
$\mathrm{C}_{6} \mathrm{H}_{6}$ has regular hexagonal geometry.
818 (c)
SF_{6} has six $S-F$ bonds.
819 (a)
Resonating structure can be written only for such molecules in which multiple bonds are presents,
eg, O_{3}

820 (d)
According to Born-Haber cycle the enthalpy of formation $\left(\Delta H_{f}\right)$ of an ionic compound may be given as

$$
\Delta H_{f}=S+\frac{1}{2} D+I+E+U
$$

Where, $I=$ ionisation energy
$S=$ sublimation energy
$E=$ electron affinity
$D=$ dissociation energy
$U=$ lattice energy of compound
Born-Haber cycle is used to determine the lattice energy of the compound. It also may be used to calculate electron affinity of an element.

Element C has electronic structure $1 s^{2}, 2 s^{2}, 2 p^{5}$, it requires only one electron to complete its octet and it will form anion so it will form electrovalent bond
822 (a)
H atom has $1 s^{1}$ configuration. Shielding effect is property of penultimate shell electrons.
823 (b)
NO_{2}^{+}: The species is linear with $s p$-hybridisation.

NO_{3}^{-}: The species is trigonal planar with $s p^{2}$ hybridisation.

NH_{4}^{+}: The species is tetrahedral with $s p^{3}$ hybridisation.

824 (d)
Both C and N^{+}have six electrons.
825 (a)
According to Fajans' rule, polarization of anion is influenced by charge of cation, size of cation. More is the charge on cation, more is polarization of anion.
826 (b)
Smaller cation causes more polarization of anion.
827 (a)
Bond order $=\frac{1}{2}$ [no. of bonding electrons-no. of antibonding electron]
828 (c)
Pauling work on chemical bonding.
829 (a)
All have linear structure
$\mathrm{O}=\mathrm{C}=\mathrm{O}, \mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}, \mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
830 (d)
A characteristic of metallic bonding.
831 (a)
Due to larger differences in electronegativity.
833 (b)
SF_{4} has $s p^{3} d$-hybridization. Rest all have $s p^{3}$ hybridization.
834 (a)
NO has 15 electrons.
835 (d)
Ti^{+}has 21 electrons in it. Rest all have 10 electrons.
836 (a)
O_{2}^{-}has one unpaired electron.
837 (a)
Structure of ammonia is pyramidal (Distorted from tetrahedral to pyramidal due to repulsion between lone pair and bond pair of electrons).

838 (b)
Cl_{2} involves $3 p-3 p$ overlapping.
839 (b)
Only Sulphur has d-orbitals.
840 (c)
ClO_{4}^{-}has $s p^{3}$-hybridization on Cl atom.
841 (d)
Due to dipole moment intermolecular forces of attraction becomes stronger and thus,
liquefaction becomes easier.
842 (d)
$\mathrm{sp}^{3} d$-hybridisation leads to trigonal bipyramidal geometry if no lone pair is present, e.g., PCl_{5}; in ClF_{3} geometry is T -shaped due to the presence of two lone pair of electron. $\mathrm{In}_{\mathrm{XeF}}^{2}$, geometry is linear due to the presence of three lone pair of electrons.
843 (a)
Due to the presence of lone pair on N atom.
844 (a)
B_{2} : Total electrons $=10$
Configuration: $\sigma 1 s^{2}{ }_{\sigma}^{*} 1 s^{2} \sigma 2 s^{2}{ }_{\sigma}^{*} 2 s^{2} \pi 2 p_{x}^{1}=\pi 2 p_{y}^{1}$
If Hund's rule is violated, then
$\sigma 1 s^{2}{ }_{\sigma}^{*} 1 s^{2} \sigma 2 s^{2}{ }_{\sigma}^{*} 2 s^{2} \pi 2 p_{x}^{2}=\pi 2 p_{y}^{0}$
So, diamagnetic
Bond order $=\frac{6-4}{2}=1$
845 (a)
Bonding molecular orbitals possess lower energy levels than antibonding orbitals.
846 (a)
Be^{2+} is smallest and Na^{+}has largest radius.
847 (b)
Hydrogen bond is strongest in HF due to higher electronegativity of F.

The structure of $\mathrm{H}_{2} \mathrm{O}$ is angular V-shape and has $s p^{3}$ - hybridisation and bond angle is 105°. Its dipole moment value is positive or more than zero.

But in BeF_{2}, structure is linear due to $s p$ hybridisation ($\mu=0$). Thus, due to $\mu>0, \mathrm{H}_{2} \mathrm{O}$ is dipolar and due to $\mu=0, \mathrm{BeF}_{2}$ is non-polar.

849 (d)
These are factors on which effective nuclear charge depends.
850 (a)
$5($ on P$)+4($ on H$)-1=8$.
851 (b)
Phosphoric acid has 3 - OH groups, which are involved in hydrogen bonding.
The type of hydrogen bonding, found , is intermolecular. Due to this, it is syrupy.
852 (c)
The bond angles are $\begin{array}{lll}\mathrm{H}_{2} \mathrm{~S} & \mathrm{NH}_{3} & \mathrm{SiH}_{4}\end{array}$
BF_{3}
$92.6^{\circ} \quad 107^{\circ} \quad 109^{\circ} 28^{\prime}$
120°
853 (b)
The metals have low ionization energy. In a piece of metal many free electrons are found which move form one atom to other. The presence of mobile electrons or oscillation of loose electrons are responsible for metallic lusture.
854 (c)
Same spin electrons in two atoms do not take part in bonding.
855 (b)

Molecule	Hybridisation
SO_{3}	$s p^{2}$
$\mathrm{C}_{2} \mathrm{H}_{2}$	$s p$
$\mathrm{C}_{2} \mathrm{H}_{4}$	$s p^{2}$
CH_{4}	$s p^{3}$
CO_{2}	$s p$

Hence, the hybrid state of S in SO_{3} is similar to that of C in $\mathrm{C}_{2} \mathrm{H}_{4}$.
856 (d)
$\mathrm{IO}_{3}^{-}, \mathrm{XeO}_{3}$, ($s p^{3}$ hybridisation) pyramidal
$\mathrm{PF}_{6}^{-}, \mathrm{SF}_{6}\left(s p^{3} d^{2}\right)$ octahedral
$\mathrm{BH}_{4}^{-}, \mathrm{NH}_{4}^{+}, \mathrm{SiF}_{4}\left(s p^{3}\right)$ tetrahedral
$\mathrm{CO}_{3}^{2-}\left(s p^{2}\right)$ trigonal planar
$\mathrm{NO}_{3}^{-}\left(s p^{2}\right)$ trigonal planar
$\mathrm{SF}_{4}\left(s p^{3} d\right)$ see - saw
Hence, SiF_{4} and SF_{4} are not isostructural (same structure).
857 (b)
PCl_{3} has $s p^{3}$-hybridisation and possesses one lone pair on P -atom and three bond pair of electron

859 (c)
N atom in NH_{3} provides electron pair to H^{+}to form coordinate or dative bond $\left(\mathrm{H}_{3} \mathrm{~N} \rightarrow \mathrm{H}\right)$.
861 (d)
Due to H -bonding, $V_{\text {ice }}>V_{\text {water }}$.

The covalent compounds have low melting point due to weaker forces of attraction among them as compared to strong forces of attraction in ionic compounds.
$\because \mathrm{HCl}$ is covalent compound among CsF, HCl HF and Li
(CsF, HF and LiFare ionic compounds)
$\therefore \mathrm{HCl}$ has minimum boiling point.
863 (b)
(i) Hybridisation $=\frac{1}{2}$ (no. of e^{-}in valence shell of central atom + no. of monovalent atoms + charge on anion - charge on cation)
(ii) Shape or geometry of molecule depends on lone pair and bond pair of electrons present in it.

Hybridisation of
N in $\mathrm{NH}_{3}=\frac{1}{2}(5+3+0-0)=4$
$\therefore s p^{3}$ hybridisation.
\because It has 3 bond pair and 1 lone pair of electrons, so it has distorted tetrahedron shape.
24. The bond angle decreases with decrease in electronegativity. It results in decrease in repulsion between bond pair-bond pair electrons and bond angle becomes smaller.
25. Between NH^{3} and $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}$ has smaller bond angle due to presence of two lone pair of electrons causing more repulsion among electrons as compared of NH^{3} which has only one lone pair of electron.

Hydrides

NH^{3}	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{~S}$	$\mathrm{H}_{2} \mathrm{Se}$	$\mathrm{H}_{2} \mathrm{Te}$	
Bond					
					angles
107°	105°	92°	91°	90°	

H_{2} Te has smallest bond angle.
865 (a)
In ionic solids, ions exist at lattice points. In covalent solids atoms lie at lattice points.
866 (c)
In structure (c), all the atoms have complete octet. Thus, it is the correct representation of carbon suboxide
867 (b)
Smaller is atom, more is energy needed to remove electron, i.e., ionisation energy. Also removal of two electrons needs more energy.
868 (d)
Born-Haber cycle inter-relates the various energy terms involved in ionic bonding.
869 (a)
$\mathrm{BF}_{3}\left(s p^{2}\right), \mathrm{NO}_{2}^{-}\left(s p^{2}\right), \mathrm{NH}_{2}^{-}\left(s p^{3}\right)$ and $\mathrm{H}_{2} \mathrm{O}\left(s p^{3}\right)$.
870 (c)
$s p^{3}$ hybridisation
molecule
$d s p^{2}$ hybridisation
molecule
$s p^{3} d$ hybridisation
bipyramidal molecule
$s p^{3} d^{2}$ or $d^{2} s p^{3}$
Tetrahedron
Square planar

Trigonal
molecule
hybridisation
871 (b)

Total number of unshared electrons $=4 \times 4=16$
872 (d)
Ionisation energy order is $\mathrm{B}<\mathrm{C}<\mathrm{O}<\mathrm{N}$.
873 (d)
Given,
observed dipole moment $=1.03 \mathrm{D}$
Bond length of HCl molecule, $d=1.275 \AA$

$$
=1.275 \times 10^{-8} \mathrm{~cm}
$$

Charge of electron, $e^{-}=4.8 \times 10^{-10}$ esu
Percentage ionic character $=$?
Theoretical value of dipole moment $=e \times d$

$$
=4.8 \times 10^{-10} \times 1.275 \times
$$

10^{-8} esu.cm

$$
=6.12 \times 10^{-18} \text { esu.cm }
$$

$$
=6.12 \mathrm{D}
$$

Percentage ionic character
$\underset{\text { observed dipole moment }}{=} \times 100$

$$
=\frac{1.03}{6.12} \times 100=16.83 \%
$$

874 (b)
Double bond involves the sharing of two electron pairs or four electrons.
875 (b)
There are $16 \mathrm{P}-0$ bonds in $\mathrm{P}_{4} \mathrm{O}_{10}$.
876 (a)
Difference of electronegativity >1.7 produces ionic compound.
877 (a)
It is a concept.
878 (a)
Low ionisation potential indicates that element can easily lose electron to form cation.
879 (d)
Ionic compounds having lattice energy higher than hydration energy are insoluble in water.

Removal of electron is easier in f-block elements due to more shielding.

Metals and non-metals combine to complete their octet. Since, non-metals have lack of electrons, in order to complete their octet, they gain electrons, consequently, the size of non-metal atom will increase.
Metal + Non - metal \rightarrow Electrovalent bond
$\left(\mathrm{Na}^{+}\right)$
(Cl) $\quad \mathrm{NaCl}$

882 (d)
These are characteristics of hydration.
883 (c)
Molecules or ion having no unpaired electrons are diamagnetic, e.g.,
$\mathrm{Li}_{2}=6 e^{-}=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2}$
884 (a)
Given electronic configuration of anion X is

$$
\begin{aligned}
& \sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \pi 2 p_{x}^{2} \\
&=\pi 2 p_{y}^{2}, \sigma 2 p_{z}^{2},{ }_{\pi}^{*} 2 p_{x}^{1}
\end{aligned}
$$

\therefore Total number of electrons of anion $X=15$
Hence, the anion X is N_{2}^{-}.
885 (a)
Small cation causes more polarization in anion.
Also larger anions are easily polarized by a cation.
More is polarization of anion, more is covalent character.

886 (c)
Hydrogen bonding is responsible for their solubility.
887 (a)
Ne has van der Waals radius larger than covalent radius of fluorine.
888 (c)
As the number of unpaired electrons (lone pair of electrons) increases, bond angle decreases. Thus, the decreasing order of bond angle is
Species : $\quad \mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}>\mathrm{NO}_{2}^{-}$
Bond angle: $180^{\circ} \quad 135^{\circ} \quad 115^{\circ}$
889 (a)
Dipole moment of $\mathrm{CH}_{4}=0$.
890 (b)
Each has 22 electrons.
891 (d)
CS_{2} is linear having zero dipole moment.
892 (a)
Atomic radius decreases along the period, increases down the group.
894 (b)
In NH_{3}, the N atom contains a one lone pair of electrons and three bond pairs in its valence shell. So, it shows $s p^{3}$ hybridisation. Due to presence of one lone pair of electron, its shape deviates from tetrahedral because lone pair shows more repulsion than bond pairs.
As
$l p-l p>l p-b p>b p-b p$
So, its shape is pyramidal and angle 107°.
895 (d)
The $K_{s p}$ value of CuS is less than ZnS and thus, ZnS is more soluble. Also sodium salts are highly soluble in water
896 (c)
Both carbon atoms have 2σ-and 2π-bonds.
897 (b)
1 debye $=10^{-18}$ esu.
898 (c)
Low ionisation energy indicates that electron can be easily lost and cation formation is easier.
899 (b)
The paramagnetic species has unpaired electron in it.
(a) $\mathrm{H}_{2}=1+1=\sigma 1 s^{2}$
(b) $\mathrm{N}_{2}=7+7=14=$
$\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \pi 2 p_{x}^{2}=\pi 2 p_{y}^{2}, \sigma 2 p_{z}^{2}$
(c) $\mathrm{CO}=6+8=14=$
$\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \pi 2 p_{x}^{2}=\pi 2 p_{y}^{2}, \sigma 2 p_{z}^{2}$
(d) $\mathrm{O}_{2}=8+8=16=$
$\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{z}^{2},\left(\pi 2 p_{x}^{2}=\right.$
$\left.\pi 2 p_{y}^{2}\right),\left({ }_{\pi}^{*} 2 p_{x}^{1}={ }_{\pi}^{*} 2 p_{y}^{1}\right)$
$\because \mathrm{O}_{2}$ molecule has unpaired electrons.
$\therefore \mathrm{O}_{2}$ molecule is paramagnetic.
901 (c)
$\mathrm{C}_{2}, \mathrm{~N}_{2}$ and F_{2} has no unpaired electron in their molecular orbital configuration.

IP of inert gases is maximum.
903 (d)
Cu loses two electron to form Cu^{2+}.
905 (a)
$\mathrm{O}_{2}^{+}\left(15 e^{-}\right)$
$=K K^{*}(\sigma 2 s)^{2}\left({ }_{\sigma}^{*} 2 s\right)^{2}\left(\sigma 2 p_{x}\right)^{2},\left(\pi 2 p_{y}\right)^{2}$
$=\left(\pi 2 p_{z}\right)^{2}\left({ }_{\pi}^{*} 2 p_{y}\right)^{1}=\left({ }_{\pi}^{*} 2 p_{z}\right)^{0}$
Hence, bond order $=\frac{1}{2}(10-5)=2.5$
$\mathrm{N}_{2}^{+}\left(13 e^{-}\right)=K K^{*}(\sigma 2 s)^{2}\left({ }_{\sigma}^{*} 2 s\right)^{2}\left(\pi 2 p_{y}\right)^{2}$
$=\left(\pi 2 p_{\mathrm{z}}\right)^{2},\left(\sigma 2 p_{x}\right)^{1}$
Hence, Bond order $=\frac{1}{2}(9-4)=2.5$

906 (b)

In $\mathrm{XeF}_{5}^{+}, \mathrm{Xe}$ atom has only seven electrons, i.e., $5 s^{2} 5 p^{5}$. Here two $5 p$ electrons are promoted to $5 d$-sublevel. Then $5 s$, three $5 p$ and two $5 d$ orbitals hybridize to give six $s p^{3} d^{2}$ hybrid orbitals in an octahedral geometry. Out of these five orbitals are singly occupied which form sigma bonds with five F atoms. The sixth hybrid orbital is occupied by a lone pair in trans position giving a square pyramid structure.
907 (d)
HOMO, means highest occupied molecular orbital and in CO (14 electron ion), σ bonding molecular orbital in HOMO

$$
\begin{gathered}
\mathrm{CO}=\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \pi 2 p_{x}^{2} \\
=\pi 2 p_{y}^{2}, \sigma 2 p_{z}^{2}
\end{gathered}
$$

909 (c)
Sulphur is $s p^{2}$ hybridised in SO_{2}.
$S=1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{4} 3 d^{0}$
$S($ in excited state)

Due to $s p^{2}$-hybridisation and presence of one lone pair of electrons SO_{2} has angular geometry.

Among $\mathrm{N}_{2} \mathrm{O}, \mathrm{CO}_{2}$ and CO , all have $s p$ hybridisation.
910 (c)
Coordinate bonding involves sharing of an electron pair provided by a donor to acceptor atom.
911 (a)
In the structure of $\mathrm{P}_{4} \mathrm{O}_{10}$, each phosphorus atom is covalently linked with three oxygen atoms and each oxygen atom is bonded to two phosphorus atoms. Each phosphorus atom is also linked with an additional oxygen atom with the help of a coordinate linkage by lone pair of electron present on P atom.

912 (d)
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ or
Allene $\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)$

$$
\stackrel{H}{H-C=}
$$

It has 2 double and 4 single bonds
913 (b)
CsCl is ionic.
914 (c)
In $\mathrm{NaOH}, \mathrm{Na}^{+}$and OH^{-}ions are bonded together by ionic bond while in OH^{-}ion oxygen and hydrogen atoms are bonded together by covalent bond $\mathrm{Na}^{+}[\mathrm{O}-\mathrm{H}]^{-}$.
915 (d)
Effective nuclear charge increases in this order.
917 (d)
AgBr has higher lattice energy.
918 (c)
$\mathrm{r}_{\mathrm{H}}=\frac{74}{2}=37 \mathrm{pm}, \mathrm{r}_{\mathrm{Cl}}=\frac{198}{2}=99 \mathrm{pm}$.
B.L. of $\mathrm{HCl} \approx \mathrm{r}_{\mathrm{H}}+\mathrm{r}_{\mathrm{Cl}}$

919 (b)
A symmetrical molecule have zero dipole moment. The dipole moment of BF_{3} molecule is zero due to its symmetrical (triangular planar) structure.
The three fluoride atoms lie at the corners of an equilateral triangle with boron at the centre. Thus, the vectorial addition of the dipole moments of the three bonds gives a net sum of zero.

920 (c)

Bond order \propto Stability
Hence, for a stable molecule the value of bond order must be positive. When bond order is zero the molecule will not exist.
921 (b)
Follow Fajans' rule.
922 (b)
It is a fáct.
923 (a)
In PCl_{3} and $\mathrm{POCl}_{3}, \mathrm{P}$ atom is $s p^{3}$-hybridized.
924 (c)
Square planar geometry has $d s p^{2}$-hybridisation.
925 (c)
Both BrO_{3}^{-}and XeO_{3} have $s p^{3}$-hybridisation and one lone pair of electron.
926 (a)
HF and $\mathrm{CH}_{3} \mathrm{OH}$ shows intermolecular hydrogen bonding.
927 (d)
During hydration of ions in aqueous solution, there exists an attractive force between ions and water molecules, which are polar in nature and acts as dipole. So, hydrogen of ions in aqueous solution is an example ion-dipole interaction.

According to Fajan's rule, largest cation and smallest ions form ionic bond
929 (d)
Phosphorus atom is $s p^{3}$ hybridised in P_{4} usually.
Therefore, p-character 75%
930 (c)
Na^{+}is cation; $\mathrm{Cl}^{-}, \mathrm{PO}_{4}^{3-}$ are anion.
931 (c)
Ionisation energy decreases down the group.
932 (d)

The characteristics to be observed during removal of II electron.
933 (c)

$$
\begin{aligned}
\text { 1. }\left(\mathrm{N}_{2} \rightarrow\right. & (\sigma 1 s)^{2}\left({ }_{\sigma}^{*} 1 s\right)^{2}(\sigma 2 s)^{2}\left({ }_{\sigma}^{*} 2 s\right)^{2} \\
& \left(\sigma 2 p_{z}\right)^{2}\left(\pi 2 p_{x}\right)^{2}\left(\pi 2 p_{y}\right)^{2} \\
\mathrm{~N}_{2}^{+} \rightarrow & (\sigma 1 s)^{2}\left({ }_{\sigma}^{*} 1 s\right)^{2}(\sigma 2 s)^{2}\left({ }_{\sigma}^{*} 2 s\right)^{2} \\
& \left(\sigma 2 p_{z}\right)^{2}\left(\pi 2 p_{x}\right)^{2}\left(\pi 2 p_{y}\right)^{1} \\
1 . O_{2} \rightarrow & (\sigma 1 s)^{2}\left({ }_{\sigma}^{*} 1 s\right)^{2}(\sigma 2 s)^{2}\left({ }_{\sigma}^{*} 2 s\right)^{2}\left(\sigma 2 p_{z}\right)^{2} \\
& \left(\sigma 2 p_{x}\right)^{2}\left(\sigma 2 p_{y}\right)^{2}\left(\stackrel{*}{\pi}_{\pi} 2 p_{x}\right)^{1}\left({ }_{\pi}^{*} 2 p_{y}\right)^{1} \\
\mathrm{O}_{2}^{+} \rightarrow & (\sigma 1 s)^{2}\left({ }_{\sigma}^{*} 1 s\right)^{2}(\sigma 2 s)^{2}\left({ }_{\sigma}^{*} 2 s\right)^{2}\left(2 p_{z}\right)^{2} \\
& \left(\pi 2 p_{x}\right)^{2}\left(\pi 2 p_{y}\right)^{2}\left(\stackrel{*}{\pi} 2 p_{x}\right)^{1}
\end{aligned}
$$

Since , $\pi 2 p_{x}$ and $\pi 2 p_{y}$ are nearly same in energy, the electrons can be removed from ($\pi 2 p_{y}$ or $\pi 2 p_{x}$)
and $\left({ }_{\pi 2 p_{y}}^{*}\right.$ or $\left.{ }_{\pi 2 p_{x}}^{*}\right)$ respectively.
934 (b)
Both possess $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6}$ configuration.
936 (d)
The resultant dipole in regular tetrahedron is zero.
937 (c)
Smaller the size of cation, more is ionic character, more is attraction among ions.
938 (c)
Given ionic charge $=4.8 \times 10^{-10}$ e.s.u. and ionic distance $=1 \AA=10^{-8} \mathrm{~cm}$. We know that dipole moment $=$ Ionic charge \times ionic distance

$$
\begin{aligned}
& =\left(4.8 \times 10^{-10}\right) \times 10^{-8} \\
& =4.8 \times 10^{-18} \text { e. s. u. per cm } \\
& =4.8 \text { debye }
\end{aligned}
$$

939 (d)
As the s-character increases in hybridised orbitals, its electronegativity increases.

$s p$	$s p^{2}$	$s p^{3}$
s-character 50%	33.3%	25%

940 (d)
PCl_{3} and AsCl_{3} have $s p^{3}$ hybridisation and PF_{5} has $s p^{3} d$ hybridisation. Hence, in group of PCl_{3}, AsCl_{3} and PF_{5} all do not have $s p^{3} d$ hybridisation.
942 (d)
Each has 18 electrons.

Alkali metals are always univalent.
944 (c)
XeF_{4} has $s p^{3} d^{2}$-hybridized Xe atom having two lone pair of electrons and thus, octahedral geometry changes to square planar due to lone pair effect.
945 (d)
$\mathrm{PCl}_{5}=s p^{3} d$ (Trigonal pyramidal)
$\mathrm{IF}_{7}=s p^{3} d^{3}$ (Pentagonal bipyramidal)
$\mathrm{H}_{3} \mathrm{O}^{+}=s p^{3}$ (Pyramidal)
$\mathrm{ClO}_{2}=s p^{2}$ (Angular) bond length are shorter than single bond due to resonance.
$\mathrm{NH}_{4}^{+}=s p^{3}$ (Tetrahedral)

946 (d)
B in BF_{3} has $s p^{2}$-hybridization.
947 (c)
In metallic bonds, the valence shell electrons are delocalised and shared between many atoms. These delocalised electrons allow the metal atoms to slide past one another without being subjected strong repulsive forces. The malleability and ductility of metals is due to this sliding capacity of the delocalised electrons.
948 (b)
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
$s p^{3} \quad s p^{3}$
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
$s p^{3} \quad s p^{2} \quad s p^{2}$
0
$\mathrm{CH}_{3}-\mathrm{C}-\mathrm{NH}_{2}$
$s p^{3} \quad s p^{3}$
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{N}$
$s p^{3} \quad s p^{2} \quad s p$
949 (a)
A reason for given fact.
950 (c)

Benzene nitrile contains 13σ and 5π bonds.
951 (d)
During melting of SiO_{2}, the gient network structure held by covalent bonds breaks to give
individual molecules ofSiO ${ }_{2}$. In contrast, during boiling of $\mathrm{H}_{2} \mathrm{O}$ only change of state occurs from liquid to gaseous; during melting of KCN , electrostatic attraction between K^{+}and CN^{-}ions is overcome ; during boiling of CF_{4}, van der Waals' forces of attraction breaks

(b)

Ethyl alcohol $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is soluble in water due to H bonding.

Hydrogen bonding
953 (b)
Only p-orbitals give rise to σ-bond (head on overlapping) and π-bond (lateral overlapping).
954 (b)
HCl and AlCl_{3} are covalent but give ions in solution.

955 (b)
As a result of more overlapping. Note that π bonds are formed after σ-has already formed.
956 (b)
(a) $\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+}$
$(3 b p+1 l p) \quad\left(4 b p \Rightarrow s p^{3}\right.$ hybridisation $)$
$\Rightarrow s p^{3}$ hybridisation)
(b) $\mathrm{BF}_{3}+\mathrm{F}^{-} \rightarrow \mathrm{BF}_{4}^{-}$
(3bp+sp2 hybridisation)
($4 b p \Rightarrow s p^{3}$ hybridisation)
(c) $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$
$(2 b p+2 l p$
$(3 b p+11 p$
$\Rightarrow s p^{3}$ hybridisation) $\Rightarrow s p^{3}$ hybridisation)
(d) $\mathrm{CH} \equiv \mathrm{CH}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{3}$
$s p s p \quad s p^{3} s p^{3}$
Hence, reaction given in option (b) involves the change of hybridisation from $s p^{2}$ to $s p^{3}$.
957 (c)
Lattice energy of BaSO_{4} is appreciable high and predominates over hydration energy.
958 (a)
Xe in XeOF_{4} has $s p^{3} d^{2}$-hybridization having one lone pair on Xe atom.
960 (c)
Due to back bonding in BF_{3}.
961 (c)

$\mathrm{C}=\mathrm{C}$ is $s p^{3}$-hybridization and $\mathrm{C} \equiv \mathrm{N}$ is $s p$ -
hybridized.
962 (c)
Electron affinity order for halogens is $\mathrm{Cl}>\mathrm{F}>$ $\mathrm{Br}>\mathrm{I}$.
963 (c)
Potash alum is a double salt.
Potash alum, $\mathrm{K}_{2} \mathrm{SO}_{4} . \mathrm{Al}_{\mathrm{x}}\left(\mathrm{SO}_{4}\right)_{3} .24 \mathrm{H}_{2} \mathrm{O}$ (given)

Ions	Al	SO_{4}
Valency	+3	-2

Therefore, $\mathrm{Al}_{3}\left(\mathrm{SO}_{4}\right)_{3}$ is compound of Al^{3+} and SO_{4}^{2-}.
On comparing, $x=2$
Hence, formula of potash alum is

$$
=\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}
$$

964 (d)
For $\mathrm{KO}_{2}, \mathrm{O}_{2}^{-}$has unpaired electron so, it is paramagnetic.
O_{2}^{-}(17)
$\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{x}^{2},\left(\sigma 2 p_{y}^{2}=\sigma 2 p_{z}^{2}\right)$,
${ }_{\pi}^{*} 2 p_{y}^{2}={ }_{\pi}^{*} 2 p_{z}^{1}$
965 (c)
HCl exists as $\mathrm{H}^{\delta+}-\mathrm{Cl}^{\delta-}$ due to difference in electronegativity of H and Cl .
966 (b)
Outer shell electrons are referred as valence electrons.
967 (d)
Bond order \propto stability
Species Bond order
$\mathrm{O}_{2}^{+} \quad 2.5$
O_{2}
2.0
$\mathrm{O}_{2}^{-} \quad 1.5$
Hence, the order of stability is
$\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}$
968 (c)
Diamond is hard, graphite is soft.
969 (a)
IF_{5} is square pyramid ($s p^{3} d^{2}$-hybridisation in I);
PCl_{5} is trigonal bipyramid ($s p^{3} d$-hybridisation in P).

970 (d)
Characteristics of bond order concept.
971 (c)
M. θ. configuration of O_{2} is
$\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p^{2}, \pi 2 p_{x}^{2}, \pi 2 p_{y}^{2}, \pi^{*} 2 p_{x}^{1}, 1$

972 (b)
Bond energy of Cl_{2} is highest among all halogen molecules. B.E. of $\mathrm{F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}$ are $37,58,46$ and $36 \mathrm{kcal} \mathrm{mol}^{-1}$ respectively.

974 (a)

Bond length $\propto \frac{1}{\text { Bond order }}$
$\mathrm{NO}^{-}=16 e^{-}$
$=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{x}^{2}, \pi 2 p_{y}^{2}$
$=\pi 2 p_{z}^{2},{ }_{\pi}^{*} 2 p_{y}^{1}={ }_{\pi}^{*} 2 p_{z}^{1}$

$$
\begin{aligned}
\text { BO } & =\frac{N_{b}-N_{a}}{2} \\
& =\frac{10-6}{2}=2
\end{aligned}
$$

Similarly BO of NO^{+}will be calculated as $\mathrm{NO}^{+}=14 e^{-}$
$\mathrm{BO}=\frac{10-4}{2}=3$
$\mathrm{CN}^{-}=14 e^{-}, \mathrm{BO}=3$
$\mathrm{CN}^{+}=13 e^{-}, \mathrm{BO}=\frac{9-4}{2}=2.5$
Bond order is least for NO^{-}. So, its bond length is highest.
975 (c)
$\mathrm{CsBr}_{3} \rightarrow \mathrm{Cs}^{+}+\mathrm{Br}_{3}^{-}$
976 (c)

I	I
H	H

Number of σ bonds in 1-butene are 11.
977 (b)
NO_{3}^{-}has $s p^{2}$-hybridization and possesses coplanar or equilateral triangular geometry.
CCl_{4} involves two non-metals C and Cl and thus, bonding is covalent. CaH_{2} is an ionic compound as it involves alkaline earth metal.

CaO is basic oxide.

[^0]: d) Fe_{2}^{+}

