

Q1. Find the ratio in which YZ -plane divides the line segment formed by joining the points $(-2, 4, 7)$ and $(3, -5, 8)$.

Q2. If the origin is the centroid of the triangle PQR with vertices $P(2a, 2, 6)$, $Q(-4, 3b, -10)$ and $R(8, 14, 2c)$, then find the values of a , b and c .

Q3. Two vertices of a triangle are $(1, 3, 5)$, $(3, 2, 1)$ and its centroid is $(-1, 0, 0)$. Find the coordinates of the third vertex.

Q4. Find the ratio in which the join of the points $P(2, -1, 3)$ and $Q(4, 3, 1)$ is divided by the point $R\left(\frac{20}{7}, \frac{5}{7}, \frac{15}{7}\right)$.

Q5. Find the co-ordinates of a point which devides the points $(1, 3, 7)$, $(6, 3, 2)$ in the ratio $2 : 3$.

Q6. A point R with x -co-ordinate 4, lies on the line segment joining the points $P(2, -3, 4)$ and $Q(8, 0, 10)$. Find the co-ordinates of the R .

Q7. The centroid of triangle ABC at the point $G(1, 1, 1)$. If the co-ordinates of A and B are $(3, -5, 7)$ and $(-1, 7, -6)$ respectively. Then find the co-ordinates of point C .

Q8. Find the co-ordinates of point R which devides the join of $P(0, 0, 0)$ and $Q(4, -1, -2)$ in the ratio $1 : 2$, externally and verify that P is the mid point of RQ .

Q9. A point R with x -coordinate 4 lies on the line segment joining the points $P(2, -3, 4)$ and $Q(8, 0, 10)$. Find the coordinates of R .

Q10. Find the co-ordinates of point R which divides PQ externally in the ratio $2 : 1$ and verify that Q is the mid point of PR .

Q11. Find the ratio in which the line joining $(2, 4, 16)$ and $(3, 5, -4)$ is devided by the plane

$$2x - 3y + z + 6 = 0$$

Q12. Find the ratio in which the line joining the points $(2, 4, 5)$ $(3, 5, -4)$ is devided by yz -plane.
 And hence find its co-ordinates .

Q13. If $A(3, 2, 0)$, $B(5, 3, 2)$ and $C(-9, 6, -3)$ are three points forming a triangle, AD is the bisector of angle BAC , meets BC at D . Find the co-ordinates of D .

Q14. Find the ratio in which yz -plane devides the line segment formed by joining the point $(-2, 4, 7)$ and $(3, -5, 8)$.

Q15. Find the coordinates of the point which divides the line segment joining the points $(1, -2, 3)$ and $(3, 4, -5)$ in the ratio $2 : 3$; (i) internally, and (ii) externally.

Q16. Find the lengths of the medians of the triangle $A(0, 0, 6)$, $B(0, 4, 0)$ and $C(6, 0, 0)$.

Q17. Find the ratio in which the line segment, joining the points $P(2, 3, 4)$ and $Q(-3, 5, -4)$ is divided by the YZ -plane. Also find the point of intersection.

Q18. Find the ratio in which the join of $A(2, 1, 5)$ and $B(3, 4, 3)$ is divided by the plane

$$2x + 2y - 2z = 1.$$

Also find the coordinates of the points of division.

Q19. Find the coordinates of the centroid of the triangle whose vertices are (x_1, y_1, z_1) , (x_2, y_2, z_2) and (x_3, y_3, z_3) .

Q20. Using section formula, show that the points $A(2, -3, 4)$, $B(-1, 2, 1)$ and $C\left(0, \frac{1}{3}, 2\right)$ are collinear.

Q21. Find the ratio in which the line segment joining the points $(4, 8, 10)$ and $(6, 10, -8)$ is divided by YZ -plane.

Q22. Find the centroid of a triangle mid points of whose sides are $(1, 2, -3)$, $(3, 0, 1)$ and $(-1, 1, -4)$ respectively.

Q23. Show that the plane $ax + by + cz + d = 0$. Divides the line joining the points (x_1, y_1, z_1) and (x_2, y_2, z_2) in the ratio

$$\frac{(ax_1 + by_1 + cz_1 + d)}{(ax_2 + by_2 + cz_2 + d)}$$

Q24. The midpoints of the sides of the triangle are $(1, 5, -1)$, $(0, 4, -2)$ and $(2, 3, 4)$. Find its vertices.

Q25. Find the ratio in which the line segment joining the points $(2, 4, -3)$ and $(-3, 5, 4)$ is divided by (a) the XY -plane; (b) $x + y + z = 8$.

Q26. Find the co-ordinates of the points which divides the join of $(-2, 3, 5)$ and $(1, -4, -6)$ in the ratio.

(a) $2 : 3$ internally

(b) $2 : 3$ externally

Q27. Find the length of medians of the triangle $A(0, 0, 6)$, $B(0, 4, 0)$ and $C(6, 0, 0)$.

Q28. The mid-points of the sides of a triangle are $(2, 2, 3)$, $(4, 4, 2)$ and $(3, 5, 4)$. Find its vertices.

Q29. Find the coordinates of the points which trisect the line segment joining the points $P(4, 2, -6)$ and $Q(10, -16, 6)$.

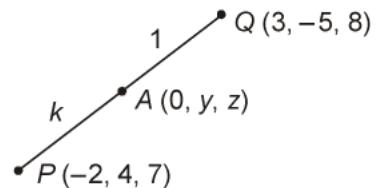
Q30. Find the coordinates of the foot of perpendicular drawn from the point $(1, 0, 1)$ to the line joining the points $(0, 2, 3)$ and $(2, 1, 0)$.

S1. Let the ratio be $k : 1$. As the point lies on YZ-plane, its x-coordinate will be 0

$$\Rightarrow \frac{3k - 2}{k + 1} = 0$$

$$\Rightarrow k = \frac{2}{3}$$

\Rightarrow The required ratio is 2 : 3.

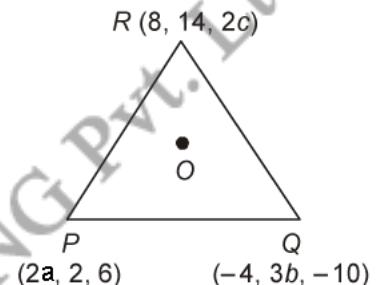


S2. It is given that the centroid is at the origin, we must have

$$\Rightarrow \frac{2a - 4 + 8}{3} = 0$$

$$\Rightarrow \frac{2 + 3b + 14}{3} = 0 \quad \text{and} \quad \frac{6 - 10 + 2c}{3} = 0$$

$$\Rightarrow a = -2, \quad b = -\frac{16}{3}, \quad c = 2$$



S3. Let the coordinates of the third vertex be (x, y, z)

$$\Rightarrow \frac{1 + 3 + x}{3} = -1$$

$$\frac{3 + 2 + y}{3} = 0$$

$$\frac{5 + 1 + z}{3} = 0$$

$$\Rightarrow x = -7, \quad y = -5, \quad z = -6$$

\Rightarrow The required point is $(-7, -5, -6)$.

S4. Let the required ratio be $\lambda : 1$.

Then the coordinates of R are

$$\left(\frac{4\lambda + 2}{\lambda + 1}, \frac{3\lambda - 1}{\lambda + 1}, \frac{\lambda + 3}{\lambda + 1} \right)$$

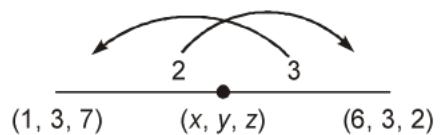
But the co-ordinates of R are $\left(\frac{20}{7}, \frac{5}{7}, \frac{15}{7} \right)$.

$$\therefore \frac{4\lambda + 2}{\lambda + 1} = \frac{20}{7} \Rightarrow \lambda = \frac{3}{4}$$

So the required ratio is 3 : 4.

S5. Let the co-ordinates of the required point be (x, y, z)

$$\therefore x = \frac{2 \times 6 + 3 \times 1}{2 + 3} = \frac{12 + 3}{5} = 3$$



$$y = \frac{2 \times 3 + 3 \times 3}{2 + 3} = \frac{6 + 9}{5} = 3$$

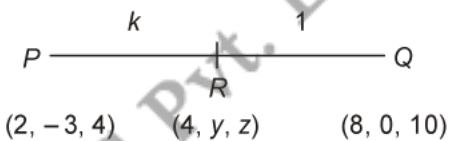
$$z = \frac{2 \times 2 + 3 \times 7}{2 + 3} = \frac{4 + 21}{5} = 5$$

Required point is $(3, 3, 5)$.

S6. Let the co-ordinates of R be $(4, y, z)$.

Let R divides PQ in ratio $k : 1$.

$$\therefore R \text{ is } \left(\frac{8k + 2}{k + 1}, \frac{k \times 0 - 3}{k + 1}, \frac{10k + 4}{k + 1} \right)$$



But x -co-ordinate of R is 4.

$$\text{So, } \frac{8k + 2}{k + 1} = 4 \Rightarrow 8k + 2 = 4k + 4$$

$$\Rightarrow 4k = 2 \Rightarrow k = \frac{1}{2}$$

$$y = \frac{-3}{k+1} = \frac{-3}{\frac{1}{2}+1} = \frac{(-3) \times 2}{3} = -2$$

$$z = \frac{10k + 4}{k + 1} = \frac{10\left(\frac{1}{2}\right) + 4}{\frac{1}{2} + 1} = \frac{9 \times 2}{3} = 6.$$

S7. Let the co-ordinates of point C be (x, y, z)

The co-ordinate of the centroid G are

$$\left(\frac{3-1+x}{3}, \frac{-5+7+y}{3}, \frac{7-6+z}{3} \right)$$

$$= \left(\frac{2+x}{3}, \frac{2+y}{3}, \frac{1+z}{3} \right)$$

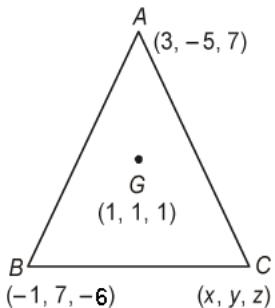
But the co-ordinates of G are $(1, 1, 1)$

$$\therefore \frac{2+x}{3} = 1, \quad \frac{2+y}{3} = 1, \quad \frac{1+z}{3} = 1$$

$$\Rightarrow 2+x = 3, \quad 2+y = 3, \quad 1+z = 3$$

$$\Rightarrow x = 1, \quad y = 1, \quad z = 2$$

\therefore The co-ordinates of C are $(1, 1, 2)$.



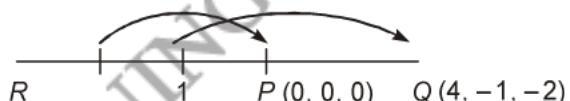
S8. Let R divides the join of $P(0, 0, 0)$ and $Q(4, -1, -2)$ in the ratio $1 : 2$ externally, the co-ordinates of R are

$$\left(\frac{1 \times 4 + (-2) \times 0}{1-2}, \frac{1 \times (-1) + (-2) \times 0}{1-2}, \frac{1 \times (-2) + (-2) \times 0}{1-2} \right)$$

$$= \left(\frac{4}{-1}, \frac{-1}{-1}, \frac{-2}{-1} \right) = (-4, 1, 2)$$

Now mid point of RQ is $\left(\frac{-4+4}{2}, \frac{1-1}{2}, \frac{2-2}{2} \right)$

\therefore Mid point of RQ is $(0, 0, 0)$ but P is $(0, 0, 0)$.



Thus, P is mid point of RQ .

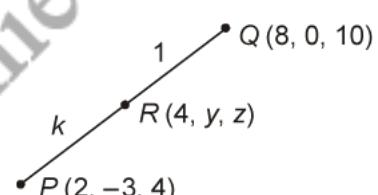
S9. Let the coordinates of R be $(4, y, z)$

Let R divide PQ in $k : 1$. We must have

$$4 = \frac{8k+2}{k+1}, \quad y = \frac{0-3}{k+1}, \quad z = \frac{10k+4}{k+1}$$

$$\Rightarrow 8k+2 = 4k+4 \Rightarrow k = \frac{1}{2}$$

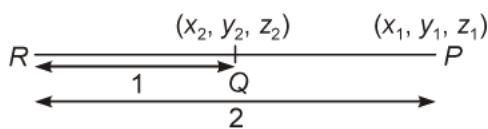
$$y = \frac{-3}{k+1} = \frac{-3}{\frac{1}{2}+1} = -2$$



$$z = \frac{10k+4}{k+1} = \frac{10\left(\frac{1}{2}\right)+4}{\frac{1}{2}+1} = 6$$

\Rightarrow The coordinates of R will be $(4, -2, 6)$

S10. Let R divides the join $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ in ratio $2 : 1$ externally



Then the co-ordinates of R are

$$\left(\frac{2x_2 - x_1}{2-1}, \frac{2y_2 - y_1}{2-1}, \frac{2z_2 - z_1}{2-1} \right)$$

$$\Rightarrow (2x_2 - x_1, 2y_2 - y_1, 2z_2 - z_1)$$

Now, mid point of PR is

$$(x_2, y_2, z_2)$$

But Q is (x_2, y_2, z_2)

Thus, Q is the mid point of RP .

S11. Let plane $2x - 3y + z + 6 = 0$

Devide the join of $A(2, 4, 16)$ and $B(3, 5, -4)$ at $P(x, y, z)$ in ratio $k : 1$.

Then the co-ordinates of P are

$$\left(\frac{3k+2}{k+1}, \frac{5k+4}{k+1}, \frac{-4k+16}{k+1} \right)$$

Since P lies on the plane

$$2x - 3y + z + 6 = 0$$

$$\Rightarrow 2\left(\frac{3k+2}{k+1}\right) - 3\left(\frac{5k+4}{k+1}\right) + \left(\frac{-4k+16}{k+1}\right) + 6 = 0$$

$$\Rightarrow 6k + 4 - 15k - 12 - 4k + 16 + 6k + 6 = 0$$

$$\Rightarrow -7k + 14 = 0 \Rightarrow k = 2 : 1.$$

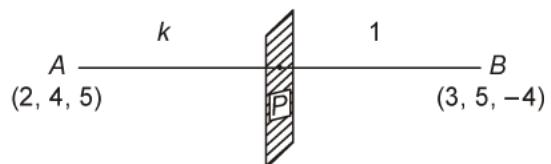
Therefore given plane devides AB in ratio $2 : 1$.



S12. Let yz -plane devides the join $A(2, 4, 5)$ and $B(3, 5, -4)$ at $P(0, y, z)$ in ratio $k : 1$ where P lies on yz -plane

Then the co-ordinates of P are

$$\left(\frac{3k+2}{k+1}, \frac{5k+4}{k+1}, \frac{-4k+5}{k+1} \right)$$



$\therefore P$ lies on yz -plane, its x co-ordinate is zero.

$$\Rightarrow \frac{3k+2}{k+1} = 0 \Rightarrow k = \frac{-2}{3}$$

Hence ratio is $-2 : 3$.

Other co-ordinates of P

$$\left(0, \frac{-10+12}{1}, \frac{8+15}{1}\right) = (0, 2, 23)$$

Hence P is $(0, 2, 23)$.

S13. Since AD is the bisector of angle $\angle BAC$

$$\Rightarrow \frac{BD}{DC} = \frac{AB}{AC}$$

$$\text{Now, } AB = \sqrt{(3-5)^2 + (2-3)^2 + (0-2)^2} \\ = \sqrt{4+1+4} = 3$$

$$AC = \sqrt{(3+9)^2 + (2-6)^2 + (0+3)^2} \\ = \sqrt{144+16+9} = \sqrt{169} = 13$$

$$\therefore \frac{BD}{DC} = \frac{3}{13}.$$

Hence D devides BC in the ratio $3 : 13$.

The co-ordinates of D are

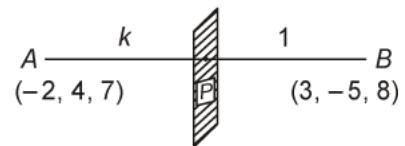
$$\left(\frac{3 \times (-9) + 13 \times 5}{3+13}, \frac{3 \times 6 + 13 \times 3}{3+13}, \frac{3 \times (-3) + 13 \times 2}{3+13} \right) = \left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16} \right).$$

S14. Let yz -plane devides the join of $A(-2, 4, 7)$ and $B(3, -5, 8)$ at $P(x, y, z)$ in the ratio $k : 1$, then the co-ordinates of P are

$$\left(\frac{3k-2}{k+1}, \frac{-5k+4}{k+1}, \frac{8k+7}{k+1} \right)$$

Since P lies on yz -plane its x co-ordinate is zero.

$$\frac{3k-2}{k+1} = 0 \Rightarrow 3k-2 = 0$$



$$\Rightarrow k = \frac{2}{3}.$$

Therefore yz -plane divides AB in ratio $2 : 3$.

S15. (i) Let $P(x, y, z)$ be the point which divides line segment joining $A(1, -2, 3)$ and $B(3, 4, -5)$ internally in the ratio $2 : 3$. Therefore,

$$x = \frac{2(3) + 3(1)}{2+3} = \frac{9}{5}, \quad y = \frac{2(4) + 3(-2)}{2+3} = \frac{2}{5}, \quad z = \frac{2(-5) + 3(3)}{2+3} = \frac{-1}{5}$$

Thus, the required point is $\left(\frac{9}{5}, \frac{2}{5}, \frac{-1}{5} \right)$.

(i) Let $P(x, y, z)$ be the point which divides line segment joining $A(1, -2, 3)$ and $B(3, 4, -5)$ externally in the ratio $2 : 3$. Therefore,

$$x = \frac{2(3) + (-3)(1)}{2 + (-3)} = -3, \quad y = \frac{2(4) + (-3)(-2)}{2 + (-3)} = -14, \quad z = \frac{2(-5) + (-3)(3)}{2 + (-3)} = 19$$

Therefore, the required point is $(-3, -14, 19)$.

S16. Given : $A(0, 0, 6)$, $B(0, 4, 0)$ and $C(6, 0, 0)$.

Mid-point of BC ,

i.e., $D\left(\frac{0+6}{2}, \frac{4+0}{2}, \frac{0+0}{2}\right)$ or $D(3, 2, 0)$

Mid-point of AC ,

i.e., $E\left(\frac{0+6}{2}, \frac{0+0}{2}, \frac{6+0}{2}\right)$ or $(3, 0, 3)$

Mid-point of AB ,

i.e., $F\left(\frac{0+0}{2}, \frac{0+4}{2}, \frac{6+0}{2}\right)$ or $F(0, 2, 3)$

Now, Median $AD = \sqrt{(3-0)^2 + (2-0)^2 + (0-6)^2}$
 $= \sqrt{9+4+36} = 7$

Median $BE = \sqrt{(3-0)^2 + (0-4)^2 + (3-0)^2}$
 $= \sqrt{9+16+9} = \sqrt{34}$

and Median $CF = \sqrt{(0-6)^2 + (2-0)^2 + (3-0)^2}$
 $= \sqrt{36+4+9} = 7$

Hence, the lengths of the medians are 7 , $\sqrt{34}$ and 7 .

S17. Let PQ be divided by the YZ -plane at a point R in the ratio $\lambda : 1$.

Then the coordinates of R are

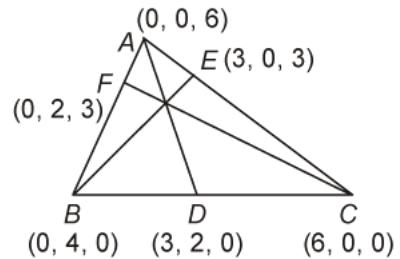
$$\left(\frac{-3\lambda + 2}{\lambda + 1}, \frac{5\lambda + 3}{\lambda + 1}, \frac{-4\lambda + 4}{\lambda + 1}\right) \dots (i)$$

Since R lies on YZ -plane, then x -coordinate of R is zero.

$$\therefore \frac{-3\lambda + 2}{\lambda + 1} = 0 \Rightarrow \lambda = \frac{2}{3}$$

So the required ratio is $2 : 3$.

Putting $\lambda = \frac{2}{3}$ in Eq. (i) the point of intersection of line segment PQ and the YZ -plane is



$$R\left(0, \frac{19}{5}, \frac{4}{5}\right).$$

S18. Suppose the given plane intersects AB at point C and let the required ratio be $\lambda : 1$. Then the coordinates of C are

$$\left(\frac{3\lambda+2}{\lambda+1}, \frac{4\lambda+1}{\lambda+1}, \frac{3\lambda+5}{\lambda+1}\right) \dots (i)$$

Since C lies on the plane $2x + 2y - 2z = 1$. Hence

$$\therefore 2\left(\frac{3\lambda+2}{\lambda+1}\right) + 2\left(\frac{4\lambda+1}{\lambda+1}\right) - 2\left(\frac{3\lambda+5}{\lambda+1}\right) = 1$$

$$\Rightarrow \lambda = \frac{5}{7}$$

So the required ratio is $5 : 7$ and the required point of deviation is putting $\lambda = \frac{5}{7}$ in Eq. (i)

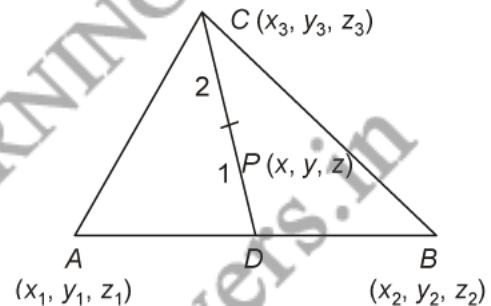
$$C\left(\frac{29}{12}, \frac{9}{4}, \frac{25}{6}\right).$$

S19. D is the midpoint of AB , therefore, its coordinates are

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$

The centroid divides the median in the ratio of $2 : 1$.

Applying the section formula, we get



$$x = \frac{2\left(\frac{x_1+x_2}{2}\right) + 1(x_3)}{2+1} = \frac{x_1+x_2+x_3}{3}$$

$$y = \frac{2\left(\frac{y_1+y_2}{2}\right) + 1(y_3)}{2+1} = \frac{y_1+y_2+y_3}{3}$$

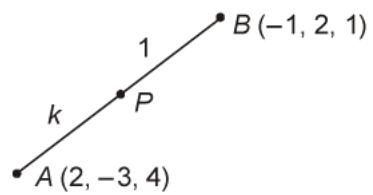
$$z = \frac{2\left(\frac{z_1+z_2}{2}\right) + 1(z_3)}{2+1} = \frac{z_1+z_2+z_3}{3}$$

\Rightarrow The centroid is

$$\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}, \frac{z_1+z_2+z_3}{3}\right).$$

S20. Let the point P divide AB in the ratio $k : 1$, its coordinates will be

$$\left[\frac{-k+2}{k+1}, \frac{2k-3}{k+1}, \frac{k+4}{k+1} \right]$$



We will examine whether for some value of k the point P coincides with point C .

$$\Rightarrow \frac{-k+2}{k+1} = 0 \quad \dots \text{(i)}$$

$$\frac{2k-3}{k+1} = \frac{1}{3} \quad \dots \text{(ii)}$$

$$\frac{k+4}{k+1} = 2 \quad \dots \text{(iii)}$$

From Eq. (i) $k = 2$, this value of k satisfies Eq. (ii) and Eq. (iii)

\Rightarrow C divides AB in the ratio $2 : 1$

\Rightarrow A, B and C are collinear.

S21. Let YZ -plane divides the line segment joining $A(4, 8, 10)$ and $B(6, 10, -8)$ at $P(x, y, z)$ in the ratio $k : 1$. Then the coordinates of P are:

$$\left(\frac{4+6k}{k+1}, \frac{8+10k}{k+1}, \frac{10-8k}{k+1} \right)$$

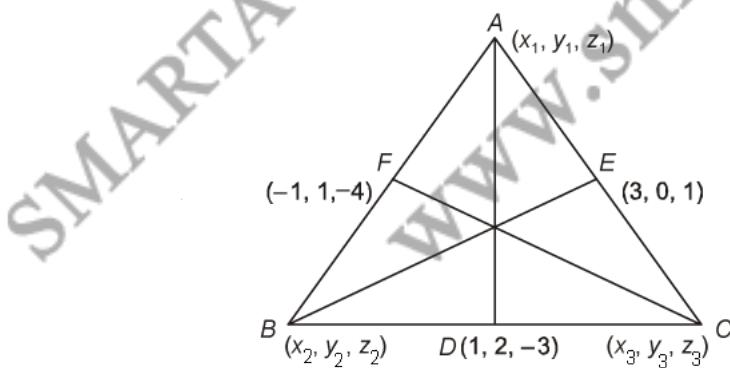
Since, P lies on the YZ -plane, its x -coordinate is zero, i.e., $\frac{4+6k}{k+1} = 0$.

or $k = -\frac{2}{3}$

Therefore, YZ -plane divides AB externally in the ratio $2 : 3$.

S22. Let the vertices of the ΔABC are $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ and $C(x_3, y_3, z_3)$ respectively.

The mid points of BC , CA and AB are $D(1, 2, -3)$, $E(3, 0, 1)$ and $F(-1, 1, 4)$



Since,

$$\frac{x_1 + x_2}{2} = -1, \quad \frac{y_1 + y_2}{2} = 1, \quad \frac{z_1 + z_2}{2} = -4$$

$$\Rightarrow x_1 + x_2 = -2 \quad \dots \text{(i)}$$

$$y_1 + y_2 = 2 \quad \dots \text{(ii)}$$

$$z_1 + z_2 = -8 \quad \dots \text{(iii)}$$

Similarly,

$$\frac{x_2 + x_3}{2} = +1, \quad \frac{y_2 + y_3}{2} = 2, \quad \frac{z_2 + z_3}{2} = -3$$

$$\Rightarrow x_2 + x_3 = 2 \quad \dots \text{(iv)}$$

$$y_2 + y_3 = 4 \quad \dots \text{(v)}$$

$$z_2 + z_3 = -6 \quad \dots \text{(vi)}$$

Similarly,

$$x_3 + x_1 = 6 \quad \dots \text{(vii)}$$

$$y_3 + y_1 = 0 \quad \dots \text{(viii)}$$

$$z_3 + z_1 = 2 \quad \dots \text{(ix)}$$

On adding Eq. (i), (iv) and (vii), we get

$$2(x_1 + x_2 + x_3) = 6 \Rightarrow x_1 + x_2 + x_3 = 3 \quad \dots \text{(x)}$$

On adding Eq. (ii), (v) and (viii), we get

$$2(y_1 + y_2 + y_3) = 6 \Rightarrow y_1 + y_2 + y_3 = 3 \quad \dots \text{(xi)}$$

On adding Eq. (iii), (vi) and (ix), we get

$$2(z_1 + z_2 + z_3) = -12 \Rightarrow z_1 + z_2 + z_3 = -6 \quad \dots \text{(xii)}$$

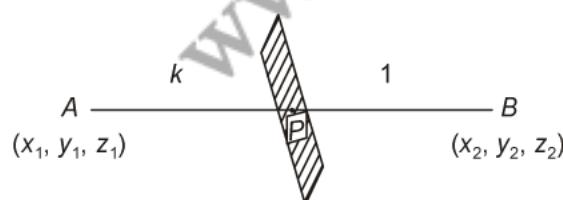
\therefore Co-ordinates of centriod of a triangles

$$= \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3} \right)$$

$$= \left(\frac{3}{3}, \frac{3}{3}, \frac{-6}{3} \right) = (1, 1, -2)$$

Hence centroid of the triangle is $(1, 1, -2)$.

S23. Let $ax + by + cz + d = 0$ is a plane, which divides the line joining the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ at P in ratio $k : 1$.



Then the co-ordinates of P are

$$\left(\frac{kx_2 + x_1}{k+1}, \frac{ky_2 + y_1}{k+1}, \frac{kz_2 + z_1}{k+1} \right)$$

But P lies on the line $ax + by + cz + d = 0$. Then

$$\begin{aligned} a\left(\frac{kx_2 + x_1}{k+1}\right) + b\left(\frac{ky_2 + y_1}{k+1}\right) + c\left(\frac{kz_2 + z_1}{k+1}\right) + d &= 0 \\ \Rightarrow a(kx_2 + x_1) + b(ky_2 + y_1) + c(kz_2 + z_1) + d(k+1) &= 0 \\ \Rightarrow k(ax_2 + by_2 + cz_2 + d) + (ax_1 + by_1 + cz_1 + d) &= 0 \\ \Rightarrow k(ax_2 + by_2 + cz_2 + d) - (ax_1 + by_1 + cz_1 + d) &= 0 \\ \Rightarrow k &= \frac{(ax_1 + by_1 + cz_1 + d)}{(ax_2 + by_2 + cz_2 + d)} \end{aligned}$$

Hence ratio is

$$\frac{(ax_1 + by_1 + cz_1 + d)}{(ax_2 + by_2 + cz_2 + d)}.$$

S24. Let $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ and $C(x_3, y_3, z_3)$ be the vertices of the triangle.

Let $D(1, 5, -1)$, $E(0, 4, -2)$ and $F(2, 3, 4)$ be the mid points of the sides BC , CA and AB respectively. Then we have

D is the mid point of BC

$$\begin{aligned} \Rightarrow \frac{x_2 + x_3}{2} &= 1, \quad \frac{y_2 + y_3}{2} = 5, \quad \frac{z_2 + z_3}{2} = -1 \\ \Rightarrow x_2 + x_3 &= 2, \quad y_2 + y_3 = 10, \quad z_2 + z_3 = -2 \end{aligned} \quad \dots (i)$$

E is the mid point of CA

$$\begin{aligned} \Rightarrow \frac{x_1 + x_3}{2} &= 0, \quad \frac{y_1 + y_3}{2} = 4, \quad \frac{z_1 + z_3}{2} = -2 \\ \Rightarrow x_1 + x_3 &= 0, \quad y_1 + y_3 = 8, \quad z_1 + z_3 = -4 \end{aligned} \quad \dots (ii)$$

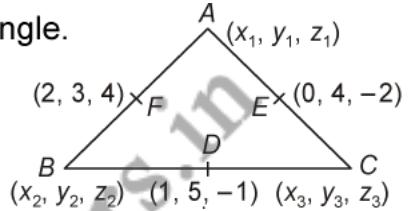
F is the mid point of AB

$$\begin{aligned} \Rightarrow \frac{x_1 + x_2}{2} &= 2, \quad \frac{y_1 + y_2}{2} = 3, \quad \frac{z_1 + z_2}{2} = 4 \\ \Rightarrow x_1 + x_2 &= 4, \quad y_1 + y_2 = 6, \quad z_1 + z_2 = 8 \end{aligned} \quad \dots (iii)$$

Adding first three Eq. in (i), (ii) and (iii), we get

$$\begin{aligned} 2(x_1 + x_2 + x_3) &= 2 + 0 + 4 \\ \Rightarrow x_1 + x_2 + x_3 &= 3 \end{aligned} \quad \dots (iv)$$

Solving first three Eq. in (i), (ii) and (iii) with Eq. (iv), we get



$$x_1 = 1, \quad x_2 = 3, \quad x_3 = -1.$$

Adding second three Eq. in (i), (ii) and (iii) we get

$$2(y_1 + y_2 + y_3) = 10 + 8 + 6$$

$$\Rightarrow y_1 + y_2 + y_3 = 12 \quad \dots (v)$$

Solving second three Eq. in (i), (ii) and (iii) with Eq. (v), we get

$$y_1 = 2, \quad y_2 = 4, \quad y_3 = 6.$$

Adding second three Eq. in (i), (ii) and (iii) we get

$$2(z_1 + z_2 + z_3) = -2 - 4 + 8$$

$$\Rightarrow z_1 + z_2 + z_3 = 1 \quad \dots (vi)$$

Solving last three Eq. in (i), (ii) and (iii) with Eq. (vi), we get

$$z_1 = 3, \quad z_2 = 5, \quad z_3 = -7.$$

Hence the vertices of triangle are $A(1, 2, 3)$, $B(3, 4, 5)$ and $C(-1, 6, -7)$.

S25. Suppose the line joining the points $P(2, 4, -3)$ and $Q(-3, 5, 4)$ is devided by XY -plane at a point R in the ratio $K : 1$. Then the co-ordinates of R are

$$\left(\frac{-3k+2}{k+1}, \frac{5k+4}{k+1}, \frac{4k-3}{k+1} \right)$$

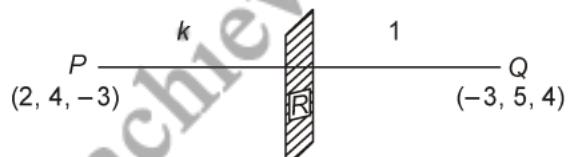
(a) Since R lies on XY -plane so its z co-ordinate must be zero. Therefore

$$\frac{4k-3}{k+1} = 0 \quad \Rightarrow \quad 4k-3 = 0 \quad \Rightarrow \quad k = \frac{3}{4}$$

So the required ratio is $\frac{3}{4} : 1$ or $3 : 4$ internally

(b) Since the point R lies on the plane

$$x + y + z = 8$$



The co-ordinates of the point will satisfy the above equation.

$$\Rightarrow \frac{-3k+2}{k+1} + \frac{5k+4}{k+1} + \frac{4k-3}{k+1} = 8$$

$$\Rightarrow -3k+2 + 5k+4 + 4k-3 = 8k+8$$

$$\Rightarrow -3k+5k+4k-8k = 3-2-4+8$$

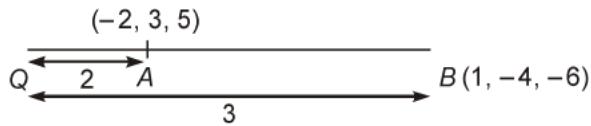
$$\Rightarrow -2k = 5 \quad \Rightarrow \quad k = \frac{-5}{2}$$

S26. (a) Let $P(x, y, z)$ divides the join of $A(-2, 3, 5)$ and $B(1, -4, -6)$ in the ratio $2 : 3$ internally. Then the co-ordinates of P are

$$\left(\frac{2 \times 1 + 3 \times (-2)}{2+3}, \frac{2 \times (-4) + 3 \times 3}{2+3}, \frac{2 \times (-6) + 3 \times 5}{2+3} \right) = \left(\frac{-4}{5}, \frac{1}{5}, \frac{3}{5} \right)$$

Hence co-ordinates of P are $\left(\frac{-4}{5}, \frac{1}{5}, \frac{3}{5} \right)$.

(b) Let $Q(x, y, z)$ divides the join of $A(-2, 3, 5)$ and $B(1, -4, -6)$ in the ratio $2 : 3$ externally



Then the co-ordinates of Q are

$$\left(\frac{2 \times 1 - 3 \times (-2)}{2-3}, \frac{2 \times (-4) + 3 \times 3}{2-3}, \frac{2 \times (-6) - 3 \times 5}{2-3} \right) = (-8, 17, 27)$$

Hence co-ordinates of Q are $(-8, 17, 27)$.

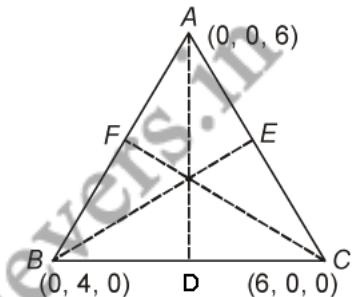
S27. Here the vertices of the triangle are $A(0, 0, 6)$, $B(0, 4, 0)$ and $C(6, 0, 0)$.

Let D, E, F be the mid points of BC , CA and AB respectively

$$D \text{ is } \left(\frac{0+6}{2}, \frac{4+0}{2}, \frac{0+0}{2} \right) = (3, 2, 0)$$

$$E \text{ is } \left(\frac{6+0}{2}, \frac{0+0}{2}, \frac{0+6}{2} \right) = (3, 0, 3)$$

$$F \text{ is } \left(\frac{0+0}{2}, \frac{4+0}{2}, \frac{0+6}{2} \right) = (0, 2, 3)$$



$$\begin{aligned} \text{Median } AD &= \sqrt{(3-0)^2 + (2-0)^2 + (0-6)^2} \\ &= \sqrt{9+4+36} = 7 \end{aligned}$$

$$\begin{aligned} \text{Median } BE &= \sqrt{(3-0)^2 + (0-4)^2 + (3-0)^2} \\ &= \sqrt{9+16+9} = \sqrt{34} \end{aligned}$$

$$\begin{aligned} \text{Median } CF &= \sqrt{(0-6)^2 + (2-0)^2 + (3-0)^2} \\ &= \sqrt{36+4+9} = 7 \end{aligned}$$

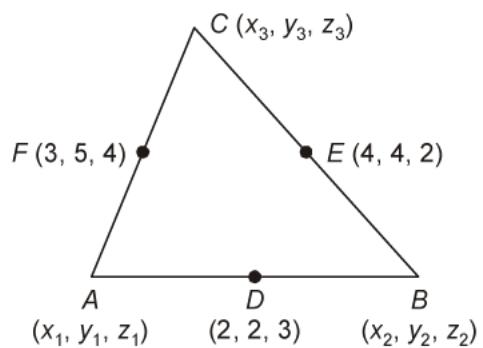
Length of medians are $7, \sqrt{34}, 7$.

S28. We have,

$$\frac{x_1 + x_2}{2} = 2, \quad \frac{y_1 + y_2}{2} = 2, \quad \frac{z_1 + z_2}{2} = 3$$

$$\frac{x_2 + x_3}{2} = 4, \quad \frac{y_2 + y_3}{2} = 4, \quad \frac{z_2 + z_3}{2} = 2$$

$$\frac{x_1 + x_3}{2} = 3, \quad \frac{y_1 + y_3}{2} = 5, \quad \frac{z_1 + z_3}{2} = 4$$



$$\Rightarrow \begin{aligned} x_1 + x_2 &= 4, & y_1 + y_2 &= 4, & z_1 + z_2 &= 6 \\ x_2 + x_3 &= 8, & y_2 + y_3 &= 8, & z_2 + z_3 &= 4 \\ x_1 + x_3 &= 6, & y_1 + y_3 &= 10, & z_1 + z_3 &= 8 \end{aligned}$$

On adding we get

$$2(x_1 + x_2 + x_3) = 18, \quad 2(y_1 + y_2 + y_3) = 22, \quad 2(z_1 + z_2 + z_3) = 18$$

$$\Rightarrow x_1 + x_2 + x_3 = 9, \quad y_1 + y_2 + y_3 = 11, \quad z_1 + z_2 + z_3 = 9$$

On solving, we get

$$x_1 = 1, \quad x_2 = 3, \quad x_3 = 5$$

$$x_1 = 1, \quad x_2 = 3, \quad x_3 = 5$$

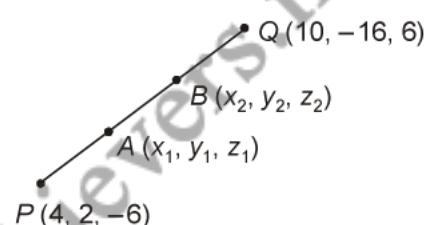
$$x_1 = 1, \quad x_2 = 3, \quad x_3 = 5$$

\Rightarrow The vertices of the triangle are (1, 3, 5), (3, 1, 1) and (5, 7, 3).

S29. Let the points trisecting PQ be $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$

$\Rightarrow A$ divides PQ in $1:2$ and B divides PQ in $2:1$.

$$\Rightarrow x_1 = \frac{10+8}{1+2} = 6$$



$$y_1 = \frac{-16+4}{1+2} = -4,$$

$$z_1 = \frac{6-12}{1+2} = -2$$

$\Rightarrow A$ will be $(6, -4, -2)$.

Now, B divide PQ in $2:1$.

$$x_2 = \frac{20+4}{2+1} = 8$$

$$y_2 = \frac{-32+2}{2+1} = -10$$

$$z_2 = \frac{12-6}{2+1} = 2$$

$\Rightarrow B$ will be $(8, -10, 2)$.

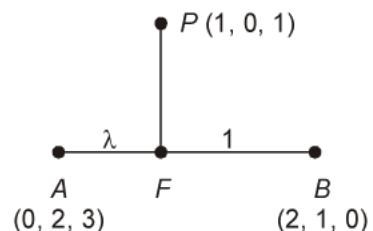
S30. Let F , the foot of the perpendicular divide AB in the ratio of $\lambda : 1$. The coordinates of F will be,

$$\left[\frac{2\lambda}{\lambda+1}, \frac{\lambda+2}{\lambda+1}, \frac{3}{\lambda+1} \right]$$

Direction ratios of AB are

$$a_1 = 2 - 0 = 2, \quad b_1 = 1 - 2 = -1, \quad c_1 = 0 - 3 = -3$$

Direction ratios of PF ,



$$a_2 = \frac{2\lambda}{\lambda+1} - 1 = \frac{\lambda-1}{\lambda+1}$$

$$b_2 = \frac{\lambda+2}{\lambda+1} - 0 = \frac{\lambda+2}{\lambda+1}$$

$$c_2 = \frac{3}{\lambda+1} - 1 = \frac{2-\lambda}{\lambda+1}$$

As $PF \perp AB$, we get

$$a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$$

$$\Rightarrow 2 \left[\frac{\lambda-1}{\lambda+1} \right] - 1 \left[\frac{\lambda+2}{\lambda+1} \right] - 3 \left[\frac{2-\lambda}{\lambda+1} \right] = 0$$

$$\Rightarrow 2\lambda - 2 - \lambda - 2 - 6 + 3\lambda = 0$$

$$\Rightarrow \lambda = 5/2$$

\Rightarrow The coordinates of F are

$$\left[\frac{2\left(\frac{5}{2}\right)}{\frac{5}{2}+1}, \frac{\frac{5}{2}+2}{\frac{5}{2}+1}, \frac{3}{\frac{5}{2}+1} \right] = \left[\frac{10}{7}, \frac{9}{7}, \frac{6}{7} \right].$$

- Q1.** Show that the points $P(-2, 3, 5)$, $Q(1, 2, 3)$ and $R(7, 0, -1)$ are collinear.
- Q2.** Prove that the points $(0, -1, -7)$, $(2, 1, -9)$ and $(6, 5, -13)$ are collinear, find the ratio in which the first two points devides the join of other two.
- Q3.** Using section formula prove that the three points $(-2, 3, 5)$, $(1, 2, 3)$ and $(7, 0, -1)$ are collinear.
- Q4.** Prove that by distance formula that the points $P(1, 2, 3)$, $Q(-1, -1, -1)$ and $R(3, 5, 7)$ are collinear.
- Q5.** Given that $P(3, 2, -4)$ and $Q(5, 4, -6)$, $R(9, 8, -10)$ are collinear. Then find the ratio in which Q devides PR .
- Q6.** Using section formula prove that the three points $(-4, 6, 10)$, $(2, 4, 6)$ and $(14, 0, -2)$ are collinear.
- Q7.** If $A = (1, 2, 3)$ and $B(2, 3, 4)$ and AB is produced upto C such that $2AB = BC$ then find the co-ordinates of C .
- Q8.** If the points $(5, 4, 2)$, $(8, k, -7)$ and $(6, 2, -1)$ are collinear then find the value of k .
- Q9.** If $A = (1, 2, 3)$, $B(2, 10, 1)$, Q are collinear points and $Q_x = -1$, then $Q_z = ?$

S1. We know that points are said to be collinear if they lie on a line.

Now,

$$\begin{aligned} PQ &= \sqrt{(1+2)^2 + (2-3)^2 + (3-5)^2} \\ &= \sqrt{9+1+4} = \sqrt{14} \end{aligned}$$

$$\begin{aligned} QR &= \sqrt{(7-1)^2 + (0-2)^2 + (-1-3)^2} \\ &= \sqrt{36+4+16} = \sqrt{56} = 2\sqrt{14} \end{aligned}$$

and

$$\begin{aligned} PR &= \sqrt{(7+2)^2 + (0-3)^2 + (-1-5)^2} \\ &= \sqrt{81+9+36} = \sqrt{126} = 3\sqrt{14} \end{aligned}$$

Thus, $PQ + QR = PR$.

Hence, P , Q and R are collinear.

S2. Since given points are $A(0, -1, -7)$, $B(2, 1, -9)$ and $C(6, 5, -13)$.

$$AB = \sqrt{(2-0)^2 + (1+1)^2 + (-9+7)^2}$$

$$= \sqrt{4+4+4} = \sqrt{12} = 2\sqrt{3}$$

$$BC = \sqrt{(6-2)^2 + (5-1)^2 + (-13+9)^2}$$

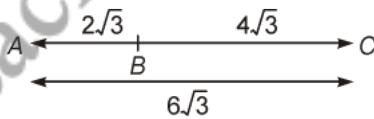
$$= \sqrt{16+16+16} = 4\sqrt{3}$$

$$AC = \sqrt{(6-0)^2 + (5+1)^2 + (-13+7)^2}$$

$$= \sqrt{36+36+36} = 6\sqrt{3}$$

As $(AC = BC + AB)$

$$\frac{AC}{AB} = \frac{6\sqrt{3}}{2\sqrt{3}} = \frac{3}{1}$$



$\therefore AC : AB = 3 : 1$. Externally.

S3. Let the points be $A(-2, 3, 5)$, $B(1, 2, 3)$ and $C(7, 0, -1)$ are collinear.

Let B devides the join of A and C in ratio

$$\Rightarrow \left(\frac{-2+7k}{k+1}, \frac{3}{k+1}, \frac{5-k}{k+1} \right) = (1, 2, 3)$$

$$\Rightarrow \frac{-2+7k}{k+1} = 1 \quad \dots (i)$$

$$\Rightarrow \frac{3}{k+1} = 2 \quad \dots \text{(ii)}$$

$$\Rightarrow \frac{5-k}{k+1} = 3 \quad \dots \text{(iii)}$$

After solving each Eq., we get

$$k = \frac{1}{2}$$

Therefore, B devides the join of A and C in the ratio $1 : 2$.

Hence, A, B, C are collinear.

S4. We have,

$$PQ = \sqrt{(-1-1)^2 + (-1-2)^2 + (-1-3)^2}$$

$$= \sqrt{4+9+16} = \sqrt{29}$$

$$QR = \sqrt{(3+1)^2 + (5+1)^2 + (7+1)^2}$$

$$= \sqrt{16+36+64} = \sqrt{116} = 2\sqrt{29}$$

and

$$PR = \sqrt{(3-1)^2 + (5-2)^2 + (7-3)^2}$$

$$= \sqrt{4+9+16} = \sqrt{29}$$

Since $QR = PQ + PR$, therefore the points are collinear.

S5. Let $Q(5, 4, -6)$ devides join of $P(3, 2, -4)$ and $R(9, 8, -10)$ in ratio $K : 1$.

Then the co-ordinates of Q are

$$\left(\frac{9k+3}{k+1}, \frac{8k+2}{k+1}, \frac{-10k-4}{k+1} \right)$$

But the co-ordinate of Q is $(5, 4, -6)$ hence

$$\frac{9k+3}{k+1} = 5 \quad \dots \text{(i)}$$

$$\frac{8k+2}{k+1} = 4 \quad \dots \text{(ii)}$$

$$\frac{-10k-4}{k+1} = -6 \quad \dots \text{(iii)}$$

From each of the Eq. we get. $k = \frac{1}{2}$ hence Q devides PR in ratio $1 : 2$ internally.

S6. If points $(-4, 6, 10)$, $(2, 4, 6)$ and $(14, 0, 2)$ are collinear.

Let point $(2, 4, 6)$ devides the join of $(-4, 6, 10)$ and $(14, 0, -2)$ in the ratio $k : 1$.

$$\Rightarrow \left(\frac{14k - 4}{k + 1}, \frac{6}{k + 1}, \frac{-2k + 10}{k + 1} \right) = (2, 4, 6)$$

$$\Rightarrow \frac{14k - 4}{k + 1} = 2 \quad \dots \text{(i)}$$

$$\Rightarrow \frac{6}{k + 1} = 4 \quad \dots \text{(ii)}$$

$$\Rightarrow \frac{-2k + 10}{k + 1} = 6 \quad \dots \text{(iii)}$$

After solving each Eq., we get

$$k = \frac{1}{2}$$

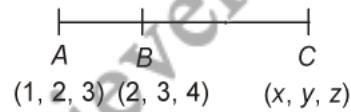
Hence point $(2, 4, 6)$ devides the join of points $(-4, 6, 10)$ and $(14, 0, -2)$ in the ratio $\frac{1}{2} : 1 \Rightarrow 1 : 2$

Hence the given points are collinear.

S7. \because

$$2AB = BC$$

$$\Rightarrow \frac{AB}{BC} = 1 : 2$$



Let the co-ordinates of point C be (x, y, z)

$$\therefore 2 = \frac{1 \times 2 + x \times 1}{1 + 2} \Rightarrow 2 + x = 6$$

$$\Rightarrow x = 4.$$

$$3 = \frac{2 \times 2 + y \times 1}{1 + 2} \Rightarrow 4 + y = 9$$

$$\Rightarrow y = 5$$

$$4 = \frac{3 \times 2 + z \times 1}{1 + 2} \Rightarrow 6 + z = 12$$

$$\Rightarrow z = 6$$

hence point C is $(4, 5, 6)$.

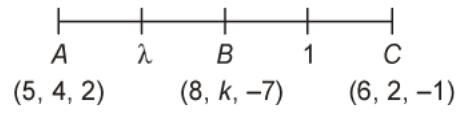
S8. Let $A = (5, 4, 2)$, $B = (8, k, -7)$ and $C(6, 2, -1)$

Let B devides AC in ratio $\lambda : 1$

$$\therefore 8 = \frac{6\lambda + 5}{\lambda + 1}$$

$$\Rightarrow 8\lambda + 8 = 6\lambda + 5 \Rightarrow 2\lambda = -3$$

$$\Rightarrow \lambda = \frac{-3}{2}$$



$$k = \frac{2\lambda + 4}{\lambda + 1} \Rightarrow k = \frac{2 \times \left(\frac{-3}{2}\right) + 4}{\frac{-3}{2} + 1}$$

$$\Rightarrow k = \frac{-3 + 4}{-1} = \frac{1}{\left(\frac{-1}{2}\right)} = -2$$

Hence $k = -2$.

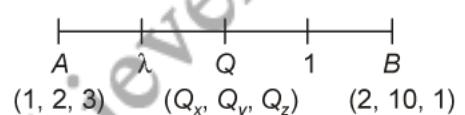
S9. Let co-ordinates of Q are (Q_x, Q_y, Q_z) respectively.

Let Q devides AB in ratio $\lambda : 1$

$$\therefore Q_x = -1 \quad \text{(Given)}$$

$$-1 = \frac{1 \times 1 + 2 \times \lambda}{\lambda + 1} \Rightarrow 2\lambda + 1 = -\lambda - 1$$

$$\Rightarrow 3\lambda = -2 \Rightarrow \lambda = \frac{-2}{3}$$



$$Q_z = \frac{1 \times \lambda + 3 \times 1}{\lambda + 1}$$

$$Q_z = \frac{\lambda + 3}{\lambda + 1} = \frac{\frac{-2}{3} + 3}{\frac{-2}{3} + 1}$$

$$= \frac{\frac{-2 + 9}{3}}{\frac{-2 + 3}{3}} = +7$$

Hence

$$Q_z = +7.$$