

SMART ACHIEVERS Nurturing Success...

SCIENCE - X

Ch 10 Light Reflection and Refraction

Date: 18/11/2025

)1 .	Defi	Define the principal focus of a concave mirror.							
12.	The radius of curvature of a spherical mirror is 20 cm. What is its focal length?								
)3	Name a mirror that can give an erect and enlarged image of an object.								
14	Why do we prefer a convex mirror as a rear-view mirror in vehicles?								
)5	Find the focal length of a convex mirror whose radius of curvature is 32 cm.								
26.	The Whe	The image formed by a concave mirror is observed to be virtual, erect and larger than the object. Where should be the position of the object?							
	(a) (b) (c)	Between the principal focus and the centre of curvature. At the centre of curvature. Beyond the centre of curvature.							
	(d)	Between the pole of the mirror and its principal focus. matter how far you stand from a mirror, your image appears erect. The mirror is likely to be							
27 .	No n (a)	natter how far you plane				e appears erec	V	is likely to be er plane or convex	
28.	A ray	y of light travelling way from the norm	; in air e	nters obliquely in	, ,			•	
	Define 1 dioptre of power of lens. 1 Gind the power of a concave lens of focal length 2 m.								
		ch one of the follow	wing m			o make a lens? Plastic	? (d)	Clay	
Q1 2	(a) (b) (c) (d)	re should an object At the principal for At twice the focal At infinity. Between the optic	ocus of length.	the lens.		Softo	eal image of th	ne size of object?	
	spherical mirror and a thin spherical lens have each a focal length of - 15 cm. The mirror and the lens are likely to be								
	(a) (c)	Both concave The mirror is conc	ave and	the lens is convex	(b) (d)	Both convex The mirror is	convex, but t	he lens is concave	
Q1 4	Whic (a)	ch of the following A convex lens of 1			use w (b)		mall letters fou ns of focal len		
	(c)	A convex lens of f		0	(d)		ns of focal len		
doctor has prescribed a corrective lens of power + 1.5 D. Find the focal length of the lens. Is the prescribed lens diverging or converging?									

- O1 Find the focal length of a lens of power 2.0 D. What type of lens is this?
- O17he refractive index of diamond is 2.42. What is the meaning of this statement?
- **Q18** ou are given kerosene, alcohol and water. In which of these does the light travel fastest? Use the information given in Table.

Medium Air Ice Water Alcohol Kerosene Rubby Sapphire Diamond Refractive index 1.0003 1.31 1.33 1.36 1.44 1.71 1.77 2.42

O15 ind out from below table, the mediums having highest and lowest optical density.

Medium Air Ice Water Alcohol Kerosene Rubby Sapphire Diamond Refractive index 1.0003 1.31 1.33 1.36 1.44 1.71 1.77 2.42

- **O2** The magnification produced by a plane mirror is +1. What does this mean?
- **Q2**An object is placed at a distance of 10 cm from a convex mirror of focal length 15 cm. Find the position and nature of the image.

WWW.Smartachilevers.if

SMART ACHIEVERS

SCIENCE - X | Ch 10 Light Reflection and Refraction-Solution

Date: 18/11/2025

S1. Principal focus of a concave mirror is the point on its principal axis, where light rays coming parallel to the principal axis actually converge after reflection from the mirror.

S2. Given that radius of curvature of the mirror

$$R = 20 \text{ cm}$$

$$\therefore \qquad \text{Focal length } f = \frac{R}{2} = \frac{20 \text{ cm}}{2} = 10 \text{ cm}.$$

Only a concave mirror can give an erect and enlarged image of an object.

S4. We prefer a convex mirror as a rear-view mirror in vehicles because a convex mirror gives an erect and diminished image. As a result, convex mirror helps the driver to have a much wider field of view.

S5. Given that radius of curvature of convex mirror

$$R = 32 \, \text{cm}$$

situated between the pole of the mirror and its principal focus.]

 \therefore Focal length of convex mirror $f = \frac{R}{2} = \frac{32 \text{ cm}}{2} = 16 \text{ cm}.$

S6. (d) Between the pole of the mirror and its principal focus.

[Hint: A concave mirror forms virtual, erect and larger size image of an object when the object is

S7. (d) Either plane or convex.

[Hint: Both plane and convex mirrors form erect image of an object placed in front of them irrespective of the position of the object.]

S8. The light bends towards the normal on entry into water. It is due to the fact that as compared to air, the water is an optically denser medium.

1 dioptre power is defined as the power of a lens having a focal length of 1 m.

S1 Given that focal length of concave lens f = -2 m

$$\therefore \qquad \text{Power of concave lens } P = \frac{1}{f} = \frac{1}{(-2\,\text{m})} = -0.5\,\text{D}.$$

S11(d) Clay.

[Hint: Clay is opaque for light. Refraction of light is not possible in clay.]

S12^{b)} At twice the focal length.

[**Hint:** When object is placed in front of a convex lens at $2F_1$, its real, inverted and same sized image is formed at $2F_2$.]

S13(a) Both concave

[Hint: Focal length of a concave lens and a concave mirror are taken negative as per sign convention followed.]

S14c) A convex lens of focal length 5 cm.

[Hint: A convex lens is preferred because it can form a magnified image. Morever, we prefer lens of lower focal length (f = 5 cm), so that its power is large.]

S15Given that power of the prescribed lens $P = +1.5 \,\mathrm{D}$ and $P = \frac{1}{f}$.

$$\therefore$$
 Focal length of the lens $f = \frac{1}{P} = \frac{1}{+1.5 \text{ D}} = +0.67 \text{ m}.$

As the power of the lens is + ve, the lens is a converging (convex) lens.

S16 Given that power of lens P = -2.0 D.

As power
$$P = \frac{1}{f}$$
, hence focal length of lens $f = \frac{1}{P} = \frac{1}{-2.0 \text{ D}} = -0.5 \text{ m}$.

The -ve sign of focal length means that the lens is a concave lens.

S17When we say that refractive index of diamond is 2.43, it means that speed of light in diamond

$$= \frac{\text{Speed of the light in vacuum}}{2.42} = \frac{3 \times 10^8 \text{ m/s}}{2.42} = 1.24 \times 10^8 \text{ m/s}.$$

S18 From given table, we find the values of refractive index of given substances as:

For kerosene n = 1.44

For alcohol n = 1.36

and for water n = 1.33

As refractive index of water is least out of three substances, hence as per relation v = speed of light is maximum in water. So, light travels fastest in water.

S19 As per table, diamond has highest optical density (n = 2.42).

Medium with lowest optical density is air (n = 1.0003).

S20 We know that magnification produced by a mirror is given by

$$m = \frac{h'}{h} = -\frac{v}{u}$$

As magnification produced by a plane mirror m = +1, hence we have

$$+1 = \frac{h'}{h} = -\frac{v}{u}$$

$$h' = h \text{ and } v = -u.$$

Thus,

$$h' = h$$
 and $v = -u$.

It means that the size of image formed by a plane mirror is exactly equal to the size of the object placed in front of it. Moreover, the image is formed as much behind the mirror as the object is in front of it.

S21As per sign convention f = +15 cm and u = -10 cm.

$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u} \implies \frac{1}{+15} = \frac{1}{v} + \frac{1}{(-10)} \implies \frac{1}{v} = \frac{1}{15} + \frac{1}{10} \implies \frac{1}{v} = \frac{5}{30}$$

 \therefore v = +6 cm. The image is formed 6 cm behind the mirror, it is a virtual and erect image.