PHYSICS

Q. 1 Assertion : The capacity of conductor, under given circumstances remains constant irrespective of the charge present on it.
Reason : Capacity depends on size, shape of conductor and also on the memdium between the plates.
Q. 2 Assertion : Dielectric breakdown occurs under the influence of an intense light beam.

Reason : Electromagnetic radiations exert pressure.
[B]
Q. 3 Assertion : Work done in moving a charge between any two points in an electric field is independent of the path followed by the charge, between these points.

Reason : Electrostatic forces are non conservative.
Q. 4 Assertion : Farad is too big a unit of capacity.

Reason : Capacity of earth-which is the largest sphere is in microfarad.
Q. 5 Assertion : Capacity of a parallel plate condenser increases on introducing a conducting or insulating slab between the plates.

Reason: In both the cases, electric field intensity between the plates reduces.
[A]

Assertion : When charges are shared between any two bodies, no charge is really lost, but some lost of energy does occur.

Reason : Some energy disappears in the form of heat, sparking etc.
Q. 7 Statement - 1/Assertion : Two charges of magnitude q are placed at points A and B , between the two plates of parallel plate capacitor charged to a potential difference V as shown in the figure. The force on the two charge is same.
and

Statement-2/Reason :

The electric field inside the parallel plate capácitor is uniform.
[D]
Q. 8

Statement I : Farad is too big a unit of capacity.
Statement II : Capacity of earth- which is the largest sphere is in microfarad.
Q. 6 Statement I : Capacity of a parallel plate condenser increases on introducing a conducting or insulating slab between the plates.
Statement II : In both the cases, electric field intensity between the plates reduces. [A]
Q. 7 Statement I : When charges are shared between any two bodies, some charge is lost, and some loss of energy does occur.
Statement II : Some energy disappears in the form of heat, sparking etc. [D]
Q. 8 Statement I : The whole charge of a body can be transferred to another body.

Statement II : Charge can not be transferred partially. [C]
Q. 9 Statement I : In a series combination of capacitors, charge on each capacitor is same.
Statement II : In such a combination, charge can move only along one route.
[A]
Q. 10 Statement-I : When a dielectric slab is gradually inserted between the plates of an isolated parallelplate capacitor, the energy of the system decreases.
Statement-II : The force between the plates decreases.
Q. 11 Statement-I : A parallel plate capacitor is connected across battery through a key. A dielectric slab of dielectric constant k is introduced between the plates. The energy stored becomes k times.
Statement-II : The surface density of charge on the plate remain constant.
[C]
Q. 12 Statement - 1 : Presence of an uncharged conductor B in the neighbourhood of a charged conductor A decreases the potential of charged conductor A.
and
Statement - 2 : By induction negative charge is produced on face of the conductor B facing conductor A . The other face of the uncharged conductor B developes positive charge. The negative charge on the conductor B is closer to the conductor A in comparison to positive charge. Hence negative charge will have more dominating effect than positive charge. Therefore, as a whole potential of the system decreases.
[B]
Q. 13 Statement-I: In case of two concentric conducting spherical shells having radii a and $b(b$ $>$ a), the capacitance of the system is always $\frac{4 \pi c \cdot a b}{b-a}$.
Statement-II: The capacitance of two concentric conducting spherical shells depends upon the earthing of inner or outer shell.

Sol.[D] Statement-I is wrong but Statement-II is correct .
Q. 14 Statement-I: By increasing temperature the surface tension will decrease.

Statement-II : By increasing temperature the intermolecular force will decreased so surface tension decrease.
Sol.[A] Both statement are true \& correct explanation.
Q. 15 Statement-I: A parallel plate capacitor is connected across battery through a key. A dielectric slab of dielectric constant K is introduced between the plates. The energy yhich is stored becomes K times
Statement-II : The surface density of charge on the plate remains constant or unchanged.
Sol.[C] Statement (I) correct Statement (II) false.
Q. 16 Statement-I: When charges are shared between two bodies, there occurs no loss of charge but there does occura loss of energy.
Statement-II: In case of sharing of charges, conservation of energy fails.
Sol.[C] Statement (I) correct Statement (II) false.
Q. 17 Statement-I: A parallel plate capacitor is connected across battery through a key. A dielectric slab of dielectric constant K is introduced between the plates. The energy which is stored becomes K times
Statement-II : The surface density of charge on the plate remains constant or unchanged.
Sol.[C] Statement (I) correct Statement (II) false.
Q. 18 Statement-I: When charges are shared between two bodies, there occurs no loss of charge but there does occur a loss of energy.

Statement-II : In case of sharing of charges, conservation of energy fails.

Sol.[C] Statement (I) correct Statement (II) false.

PHYSICS

Q. 1 Match the columns for the capacitance of systems in column-I to their respective values of capacitance in column-II

Column-I

Capacitance C_{AB}
(B)

(Concentric shells) Capacitance C_{AB}

(concentric cylinders) Capacitance C_{AB} per unit length
(D)

D

Q. 2 In the cireuit shown in figure, the capacitor is initially uncharged. At $t=0$, the switch is closed at position (1) and remain closed for long time. Then at $\mathrm{t}=\mathrm{t}^{\prime}$, switch is shifted to position (2).

Column-II
(R) $\frac{2 \pi \varepsilon_{0}}{\log _{e}(d / R)}$
(P) $\frac{4 \pi \varepsilon_{0} \mathrm{c}^{2}}{\mathrm{c}-\mathrm{a}}$
(Q) $\frac{4 \pi \varepsilon_{0} \mathrm{ac}}{\mathrm{c}-\mathrm{a}}$
$\log _{\mathrm{e}}(\mathrm{d} / \mathrm{R})$

Column I

(A) As the capacitor charges from $\mathrm{t}=0$ to $\mathrm{t}=\mathrm{t}^{\prime}$
(B) As the capacitor discharge (Q) Current in the i.e. for $\mathrm{t}>\mathrm{t}^{\prime}$

Column II

(P) Current in the circuit falls exponentially circuit grows ${ }^{\text {- }}$ exponentially
(C) Maximum current in the (R) R, C circuit depends on
(D) Time to achieve 50% (S) R charging of the capacitor depends on

$[\mathbf{A} \rightarrow \mathbf{P} ; \mathbf{B} \rightarrow \mathbf{P} ; \mathbf{C} \rightarrow \mathbf{S} ; \mathbf{D} \rightarrow \mathbf{R}]$

Q. 3 Column-I
(A)
dielectric slab is graduallyinserted between the plates of an isołated parallel plate charged capacitor
(B) When a dielectric slab is gradually inserted between the plates of a parallel plate capacitor \& its potential is kept constant by connecting battery
(C) When the plates of a (R) Work done by parallel capacitor are pulled battery is apart, keeping its potential positive constant by connecting battery
(D) When the plates of a parallel plate capacitor are pulled apart, keeping its

Column-II
(P) The electric potential energy of the system decreases gative charge constant by disconnecting battery

$$
[\mathrm{A} \rightarrow \mathbf{P}, \mathbf{S} ; \mathbf{B} \rightarrow \mathbf{R}, \mathbf{S} ; \mathbf{C} \rightarrow \mathbf{P}, \mathbf{Q} ; \mathbf{D} \rightarrow \mathbf{Q}]
$$

Q. 4 A capacitor of capacitance C is charged to a potential V. Now it is connected to a battery of e.m.f E as shown in the figure :

Column-I
(A) If $\mathrm{V}=\mathrm{E}$, then
(B) If $\mathrm{V}>\mathrm{E}$
(C) If $\mathrm{V}<\mathrm{E}$, then
(D) If $\mathrm{V} \neq \mathrm{E}$, then

Column-II
(P) non-zero charge supplied by the +ve terminal of battery to + ve plate of capacitor
(Q)Zero charge is supplied by + ve terminal of battery to +ve plate of capacitor
(R) non-zero thermal energy will be dissipated in the circuit
(S) outer surfaces of the plates of capacitor have zero charge
is

Sol. $\quad \mathrm{A} \rightarrow \mathrm{PS}, \mathrm{B} \rightarrow \mathrm{RS}, \mathrm{C} \rightarrow \mathrm{PQ}, \mathrm{D} \rightarrow \mathbf{Q}$
For A:
Charge is constant, C increases, so energy stored decreases. System is isolated, so $\mathrm{W}_{\text {ext. }}+\mathrm{W}_{\text {el. }}=0$
$\therefore \mathrm{W}_{\text {ext. }}+\mathrm{W}_{\text {el. }}+\mathrm{W}_{\text {battery }}=0$

For B :

Potential is constant, C increases, so energgy stored increases.
i.e., $\quad d U>0$ and $W_{\text {el }}<0$
charged of capacitor increase, it means work done by battery is greater then zero. .
From $\quad \mathrm{W}_{\text {ext. }}+\mathrm{W}_{\text {el. }}+\mathrm{W}_{\text {batter }}=0$

$$
\mathrm{W}_{\text {ext. }}=-\mathrm{W}\left(\mathrm{~W}_{\text {battery }}+\mathrm{W}_{\text {el. }}\right)=0
$$

but $\quad W_{\text {battery }}=2 d U$
For C :
Potential is constant, C decreases, Q decreases and U also decreases.
So, $\mathrm{W}_{\text {battery }}<0, \mathrm{dU}<0, \mathrm{~W}_{\text {el. }}<0$
For D:
Charge is constant, C decreases, U increases
Sor, dU >0, $\mathrm{W}_{\text {el. }}<0$, so $\mathrm{W}_{\text {ext. }}>0$
Match the following :

Column I

(A) $\sigma^{2} / \varepsilon_{0}$
(B) ε_{0}
(C) $\frac{\text { ampere-second }}{\text { volt }}$
(D) $\frac{\mathrm{V}}{\mathrm{E}}$
(S) metre

Sol. $\quad \mathbf{A} \rightarrow \mathbf{R}, \mathbf{B} \rightarrow \mathbf{P}, \mathbf{C} \rightarrow \mathbf{Q}, \mathbf{D} \rightarrow \mathrm{S}$
$\mathrm{A} \rightarrow \frac{\sigma^{2}}{\varepsilon_{0}}=\varepsilon_{0}\left(\frac{\sigma}{\varepsilon_{0}}\right)^{2}=\varepsilon_{0} \mathrm{E}^{2}=$ energy/volume
$B \rightarrow F=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q^{2}}{r^{2}}, \varepsilon_{0}=\frac{q^{2}}{\text { (F.r.).r }}=\frac{C^{2}}{J-m}$
$\mathrm{C} \rightarrow \mathrm{C}=\frac{\mathrm{q}}{\mathrm{V}}=\frac{\mathrm{It}}{\mathrm{V}}$ or Farad $=\frac{\text { ampere-second }}{\text { volt }}$
$D \rightarrow \frac{\mathrm{~V}}{\mathrm{E}}=\frac{(\mathrm{kq} / \mathrm{r})}{\left(\mathrm{kq} / \mathrm{r}^{2}\right)} \mathrm{r}$
or $\frac{\mathrm{V}}{\mathrm{E}}$ has the units of length i.e., metre.
(D) When the plates of (S)Work done by external a parallel plate capacitor agent is negative are pulled apart, keeping its charge constant
Q. 7 Column-I
(A) When a dielectric slab is gradually inserted between the plates of an isolated parallel plate capacitor
(B) When a dielectric slab is gradually inserted between the plates of a parallel plate capacitor \& its potential is kept constant
(C) When the plates of a parallel capacitor are pulled apart, keeping its potential constant
(D) When the plates of a parallel plate capacitor are pulled apart, keeping its charge constant

Column-II
(P) The electric potential energy of the system decreases
(Q) Work done by external agent is positive
(R) Work done by battery is positive
(S) Work done by external agent is negative

$$
\mathbf{A} \rightarrow \mathbf{P}, \mathbf{S} \quad \mathbf{B} \rightarrow \mathbf{R}, \mathbf{S} \mathbf{C} \rightarrow \mathbf{P}, \mathbf{Q} \mathbf{D} \rightarrow \mathbf{Q}
$$

Q. 8 Match the following -

Column I

(A) Capacitance of parallel plate capacitor

Column II
Increase
when separation between the
(B) Potential
difference across plates of
(Q) Independent
of metal of
parallel plate
capacitor
(C) Charge on the (R) Increase by
insertion of
dielectric
slab between
plates of
isolated
parallel plate
capacitor
(D) Electrostatic
potential
energy of
capacitor
(S)

Remain

constant	if
capacitor	is
connected	to
battery	or

power source
Ans. $\quad \mathrm{A} \rightarrow \mathrm{Q}, \mathrm{R}, \mathrm{S} ; \mathrm{B} \rightarrow \mathrm{P}, \mathrm{Q}, \mathrm{S} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{P}, \mathrm{Q}, \mathrm{S}$
Q. 9 Referring to fig. match column-I with column II

(B)

			capacitor	Q. 11		Column - I		Column - II
(C)	Capacitor 8C in	(R)	No other		(A)	If distance between		Potential
	fig C		capacitor in			plates of capacitor		difference across
			the given			(isolated) decrease		plate is decreased
			figure stores		(B)	If dielectric is inser		capacitance of the
			an amount of			between plates of		capacitor will
			charge			capacitor whose		increase
			smaller than			plates are connect		,
			the stored in			with battery		
			this capacitor					Energy of
(D)	Capacitor 2C in fig C	(S)	Charge in			(isolated) capacitor		capacitor will
			this capacitor			is increased		increase
			is more than			If		
			the charge in			If distance between	(S)	Force between the
			any other			plates of capacitor is		plates will
			capacitor in			decreased when		decrease
			the given fig.			plate of capacitor a		

Ans. $\quad \mathbf{A} \rightarrow \mathbf{Q}, \mathbf{R} ; \mathbf{B} \rightarrow \mathbf{P}, \mathbf{R} ; \mathbf{C} \rightarrow \mathbf{Q}, \mathbf{R} ; \mathbf{D} \rightarrow \mathbf{Q}, \mathbf{R}$
Q. 10 In the given figure, the separation between the plates of C_{1} is slowly increased to double of its initial value, then match the following

Column - I
Column II
(A) The potential difference (P) increases across C_{1} -
(B) The potential difference (Q) decreases across C_{2}
(C) The energy stored in C_{1} (R) increases by a factor of $\frac{6}{5}$
(D) The energy stored in C_{2} (S) decreases by a

$$
\text { factor of } \frac{18}{25}
$$

Sol. $\quad \mathbf{A} \rightarrow \mathbf{P}, \mathbf{R} ; \mathbf{B} \rightarrow \mathbf{Q} ; \mathbf{C} \rightarrow \mathbf{Q} ; \mathbf{D} \rightarrow \mathbf{Q}$

Ans. $\mathrm{A} \rightarrow \mathrm{P}, \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{R}, \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{P}, \mathrm{Q}, \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{R}, \mathrm{Q}$
(A) For an isolated capacitor
$\mathrm{Q}=$ constant
\therefore If distance between plate decrease, then capacitance will increase.
$\mathrm{Q}=\mathrm{CV}$
$\therefore \quad \mathrm{V} \propto \frac{1}{\mathrm{C}}$
[\therefore as C increases V decreases]
Energy $=\frac{Q^{2}}{2 C}$
[as C increase energy decreases]
Force $\mathrm{F}=\frac{\mathrm{Q}^{2}}{2 \mathrm{~A} \varepsilon_{0}}$
[as $\mathrm{Q}=$ constant, $\mathrm{F}=$ constant]
(B) As battery is connected $\mathrm{V}=$ constant as slab is inserted C increases
Energy $\mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}$
[\therefore as C increases U increases]

$$
F=\frac{\text { Energy }}{\text { Separation }}
$$

[\therefore as U increases F also increases]
(C) If area of plates of capacitor increases

C increases.
as capacitor is isolated
$\mathrm{Q}=$ constant

$$
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{C}}
$$

[\therefore as C increases V decreases]

$$
\mathrm{U}=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}}
$$

[\therefore as C increases U decreases]

$$
\mathrm{F}=\frac{\mathrm{U}}{\mathrm{~d}}
$$

[\therefore as U decreases F decreases]
(D) Capacitor is connected with battery
$\mathrm{V}=$ constant
as d decreases C increases

$$
\mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}
$$

[\therefore as C increases U increases]

$$
\mathrm{F}=\frac{\mathrm{Q}^{2}}{2 \mathrm{~A} \varepsilon_{0}}
$$

$\mathrm{Q}=\mathrm{CV}$
$[\therefore$ as C increases Q increases
\therefore F increases]
Q. 12 Two singly ionized isotopes of an element are accelerated from rest through the same potential difference and they enter perpendicular into a uniform magnetic field.

Column - I
(A) Their respective KE (P) Remains constant before entering into
magnetic field
(B) Their respéctive KE (Q) Are equal during motion in magnetic field
(C) In the magnetic field (R) Straight line path traced is
(D) In the magnetic field (S) Circular arc they cannot trace a path in

Ans. $\quad \mathbf{A} \rightarrow \mathbf{Q} ; \mathbf{B} \rightarrow \mathbf{P} ; \mathbf{C} \rightarrow \mathbf{S} ; \mathbf{D} \rightarrow \mathbf{R}$
Q. 13

Column - I
(A) When a dielectric slab is gradually inserted between the plates of an isolated parallel plate capacitor
(B) When a dielectric slab is gradually inserted between the plates of a parallel plate capacitor and its potential is kept constant
(C) When the plates of a parallel capacitor are pulled apart, keeping
its potential constant
(D) When the plates of a parallel plate capacitor are pulled apart, keeping

Column II

(P) The electric potential energy of the system decreases
(Q) Work done by ${ }^{\circ}$ external agent is its charge constant

Ans. $\quad \mathbf{A} \rightarrow \mathbf{P}, \mathbf{S} ; \mathbf{B} \rightarrow \mathbf{R}, \mathbf{S} \quad ; \mathbf{C} \rightarrow \mathbf{P}, \mathbf{Q} \quad ; \mathbf{D} \rightarrow \mathbf{Q}$
Q. 14 In the given figure, the separation between the plates of C_{1} is slowly increased to double of its initial value, then match the following :

Column -I	Column-II
(A) The potential	(P) increases
difference across C_{1}	
(B) The potential	
difference across C_{2}	(Q) decreases
(C) The energy stored	(R) increases by a factor of
in C_{1}	$\frac{6}{5}$
(D) The energy stored	(S) decreases by a factor of
in C_{2}	$\frac{18}{25}$
Sol. $\quad \mathbf{A} \rightarrow \mathbf{P , R ;}$	$\mathbf{B} \rightarrow \mathbf{Q}$;

As d is double $\therefore \mathrm{C}$ becomes $\frac{2}{2}=1 \mu \mathrm{~F}$

$\mathrm{V}_{1}=\frac{4}{6} \times \mathrm{V}=\frac{4}{6} \mathrm{~V}=\frac{2}{3} \mathrm{~V}=0.6 \mathrm{~V}$
$\mathrm{V}_{2}=\frac{2}{6} \times \mathrm{V}=\frac{\mathrm{V}}{3}=0.3 \mathrm{~V}$

$\mathrm{V}_{1}=\frac{4 \mathrm{~V}}{5}=0.8 \mathrm{~V}$
$\mathrm{V}_{2}=\frac{1 \mathrm{~V}}{5}=0.2 \mathrm{~V}$
Potential difference across Q_{1} increases, C_{2} decreases.
Energy stored :
U_{i} in $\mathrm{C}_{1}=\frac{1}{2} \mathrm{C}_{1} \mathrm{~V}_{1}^{2}=\frac{1}{2} \times 2 \times \frac{16}{36} \mathrm{~V}^{2}=\frac{16}{36} \mathrm{~V}^{2}$
U_{i} in $\mathrm{C}_{2}=\frac{1}{2} \mathrm{C}_{2} \mathrm{~V}_{2}{ }^{2}=\frac{1}{2} * 4 \times \frac{\mathrm{V}^{2}}{9}=\frac{8}{9} \mathrm{~V}^{2}$
U_{f} in $\mathrm{C}_{1}=\frac{1}{2} \times 1 \times \frac{16}{25} \mathrm{~V}^{2}=\frac{8}{25} \mathrm{~V}^{2}$
U_{f} in $\mathrm{C}_{2}=\frac{1}{2} \times 4 \times \frac{\mathrm{V}^{2}}{25}=\frac{2}{25} \mathrm{~V}^{2}$
Potential energy of C_{1} decreases by $\frac{18}{25}$ factor.
Potential energy of C_{2} decreases.
Q. 15 A parallel plate capacitor with air between its plates is charged using a battery and then disconnected from the battery.
Match Column - I with Column - II :
Column - I
Column - II
(A) Potential difference (P) Separation between between the plates the plates is increased will decrease if
to $\frac{K}{2}$ times the the initial value and space between the plates after the separation has increased, is completely filled with a dielectric (here K is the dielectric constant)
(B) ElectríG field strength (Q)Separation between between the plates will the plates is reduce if increased
(C) Electric energy stored (R) A dielectric with in the capacitor will $\quad K>1$ is filled decrease if between the plates of capacitor
(D) Electric energy density (S) Separation will decrease if the plates is reduced
Sol. \quad A $\rightarrow \mathbf{P}, \mathbf{R}, \mathbf{S} ; \mathbf{B} \rightarrow \mathbf{P}, \mathbf{R} ; \mathbf{C} \rightarrow \mathbf{P}, \mathbf{R}, S ; \mathbf{D} \rightarrow \mathbf{P}, \mathbf{R}$
Q. 16 Match the column -

Column I

Column II

(p) C_{eq} between $\mathrm{a} \& \mathrm{~b}$ is 2 C
(a)

(q) C_{eq} between a \& b is C
(c)

(r) C_{eq} between $\mathrm{a} \& \mathrm{~b}$ is 3 C
(d)

(A) (a) $\rightarrow \mathrm{p}$, (b) $\rightarrow \mathrm{p}$, (c) $\rightarrow \mathrm{q},(\mathrm{d}) \rightarrow \mathrm{r}$
(B) (a) $\rightarrow \mathrm{p}$, (b) $\rightarrow \mathrm{p}$, (c) $\rightarrow \mathrm{r}$, (d) $\rightarrow \mathrm{q}$
(C) (a) $\rightarrow \mathrm{r}$, (b) $\rightarrow \mathrm{p}$, (c) $\rightarrow \mathrm{q}$, (d) $\rightarrow \mathrm{p}$
(D) (a) $\rightarrow \mathrm{p}$, (b) $\rightarrow \mathrm{r}$, (c) $\rightarrow \mathrm{q}$, (d) $\rightarrow \mathrm{r}$
[B]
Sol. $\quad(\mathrm{a}) \rightarrow \mathrm{p},(\mathrm{b}) \rightarrow \mathrm{p},(\mathrm{c}) \rightarrow \mathrm{r},(\mathrm{d}) \rightarrow \mathrm{q}$
(a)
(b)

$$
\mathrm{C}_{\mathrm{eq}}=2 \mathrm{C} \rightarrow \mathrm{p}
$$

(d)

Q. 17 Match the Column :

Consider the situation shown. The switch s is open for a long time and then closed. Then:

Columa II

(A) Charge flow through battery when S is Closed

$$
\text { (P) } \frac{\mathrm{CE}^{2}}{2}
$$

(B) Work done by battery
(Q) $\frac{C E}{2}$
(C) Change in energy stored in capacitor
(R) $\frac{\mathrm{CE}^{2}}{4}$
(D) Heat developed in the system

Sol. $\quad(\mathrm{A}) \rightarrow(\mathrm{Q}) ;(\mathrm{B}) \rightarrow(\mathrm{R}) ;(\mathrm{C}) \rightarrow(\mathrm{R}) ;(\mathrm{D}) \rightarrow(\mathrm{S})$
Q. 18 Two identical parallel plate capacitor are connected in series and the combination is connected with a battery as shown. Some changes in capacitor 1 are now made independently after the steady state is achived listed in column I. Some effects which may occur in new steady state due to these changes on the capacitor 2 are listed in column II. Match the changes on capacitor 1 in column I with corresponding effect on capacitor 2 in column II.

Column -I

(A) A dielectric slab is inserted
(B) separation between plates is increased
(C) A metal plate is i nserted connecting both plate
(D) Separation between between
is plate decreased capacitor
the plates of increase
(T) Potential difference across the plate of capacitor will increase
Sol. A \rightarrow Q;
B $\rightarrow \mathbf{P}, \mathbf{R}, \mathbf{S}, \mathbf{T}$;
$\mathbf{C} \rightarrow \mathbf{P}, \mathbf{R}, \mathbf{S}, \mathbf{T} ;$
$\mathbf{D} \rightarrow \mathbf{Q}$

Q. 19 Column-I

(A) When a dielectric slab is gradually inserted between the plates of an isolated parallel plate capacitor
(B) When a dielectric slab is gradually inserted between the plates of a parallel plate capacitor \& its potential is kept constant
(C) When the plates of a (R) Work done by parallel capacitor are pulled battery is apart, keeping its potential positive constant
(D) When the plates of a (S) Work done by parallel plate capacitor are external agent pulled apart, keeping its is negative

Sol. $\mathrm{A} \rightarrow \mathbf{P}, \mathbf{S} ; \mathbf{B} \rightarrow \mathbf{R}, \mathbf{S} ; \mathbf{C} \rightarrow \mathbf{P}, \mathbf{Q} ; \mathbf{D} \rightarrow \mathbf{Q}$

PHYSICS

Q. 1 A parallel plate air capacitor is connected to a battery. If plates of the capacitor are pulled further apart, then which of the following statements are correct?
(A) Strength of electric field inside the capacitor remain unchanged, if battery is disconnected before pulling the plate.
(B) During the process, work is done by an external force applied to pull the plates whether battery is disconnected or it remain connected.
(C) Potential energy in the capacitor decreases if the battery remains connected during pulling plates apart.
(D) None of the above
[A,B,C]
Sol.

If battery is disconnected and plate are pulled apart, then charge will remain constant
$\mathrm{E}=\frac{\mathrm{Q}}{2 \mathrm{~A} \epsilon_{0}} \times 2=\frac{\mathrm{Q}}{\mathrm{A} \epsilon_{0}}$
\therefore E remain same (A) is correct
work is done against attractive force by F_{ex}
(B) is correct

$\mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}$
$\mathrm{V}=$ constant [as battery is connected]
$C=\frac{\epsilon_{0} A}{d}$ as d increase, C decrease
$\therefore \mathrm{U}$ decrease, option (C) is correct.
Q. 2 You have a parallel plate capacitor, a spherical capacitor and cylindrical capacitor. Each capacitor is charged by and then removed from the same battery. Consider the following situations
(i) separation between the plates of parallel plate capacitor is reduced
(ii) radius of the outer spherical shell of the spherical capacitor is increased
(iii) radius of the outer cylinder of cylindrical capacitor is increased
Which of the following is correct ?
(A) In each of these situations (i), (ii) and (iii), charge on the given capacitor remains the same and potential difference across it also remains the same
(B) In each of these situations (i), (ii) and (iii), charge on the given capacitor remains the same but potential difference, in situations (i) ánd (iii), decreases, and in situation (ii), increases
(C) In each of these situations (i), (ii) and (iii), charge on the given capacitor remains the same but potential difference, in situations (i), decreases, and in situations (ii) and (iii), increases
(D) Charge on the capacitor in each situation changes. It increases in all these situations but potential difference remains the same
Q. 3 Three capacitor each having capacitance $\mathrm{C}=2 \mu \mathrm{~F}$ are connected with a battery of e.m.f 30 V as shown in the figure. When the switch S is closed, then -

(A) the amount of charge flown through the battery is $20 \mu \mathrm{C}$
(B) the heat generated in the circuit is 0.6 mJ
(C) the energy supplied by the battery is 0.6 mJ
(D) the amount of charge flown through the switch S is $60 \mu \mathrm{C}$

Sol. [A,C,D]

The charges stored in different capacitors before and after closing the switch S are :

The amount of charge flown through the battery
is $\mathrm{q}=20 \mu \mathrm{C}$
\therefore Energy supplied by the battery is :
$\mathrm{U}=\mathrm{qV}=\left(20 \times 10^{-6}\right) \times(30) \mathrm{J}$
$=0.6 \mathrm{~mJ}$
Energy stored in all the capacitors before closing the switch S is :
$\mathrm{U}_{\mathrm{i}}=\frac{1}{2} \mathrm{C}_{\text {net }} \mathrm{V}^{2}=\frac{1}{2}\left(\frac{4}{3} \times 10^{-6}\right)(30)^{2}=0.6 \mathrm{~mJ}$ and after closing the switch,
$\mathrm{U}_{\mathrm{f}}=\frac{1}{2} \mathrm{C}_{\mathrm{net}} \mathrm{V}^{2}=\frac{1}{2}\left(2 \times 10^{-6}\right)(30)^{2}=0.9 \mathrm{~mJ}$
\therefore Heat generated,
$\mathrm{H}=\Delta \mathrm{U}=\left(\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}\right)=0.3 \mathrm{~mJ}$
and charge flown through the switch is $60 \mu \mathrm{C}$.
Q. 4 A parallel plate capacitor is charged and then disconnected from the source of steady e.m.f. The plates are then drawn apart farther. Again it is connected to the same source. Then :
(A) the potential difference across the plates increases, while the plates are being drawn apart
(B) the potential difference across the plates decreases during the drawing apart of the plates
(C) the charge from the capacitor flows into the source, when the capacitor is reconnected
(D) the electric intensity between the plates remains constant during the drawing apart of the plates
[A,C,D]
Q. 5 Three capacitors each having capacitance $\mathrm{C}=2 \mu \mathrm{~F}$ are connected with a battery of emf 30 V as shown in figure. When the switch S is closed :

(A) the amount of charge flown through the battery is $20 \mu \mathrm{C}$
(B) the heat generated in the circuit is 0.6 mJ
(C) the energy supplied by the battery is 0.6 mJ
(D) the amount of charge flown through the switch S is $60 \mu \mathrm{C}$

Sol. [A,C,D]
The charges stored in different capacitors before and after closing the switch S are
$20 \mu \mathrm{C}$

before
The amount of charge flown through the battery is $\mathrm{q}=20 \mu \mathrm{C}$
\therefore Energy supplied by the battery is
$\mathrm{U}=\mathrm{qV}=\left(20 \times 10^{-6}\right)(30) \mathrm{J}$
$\mathrm{U}=0.6 \mathrm{~mJ}$
Energy stored in all the capacitors before closing the switch S is

$$
\begin{aligned}
\mathrm{U}_{\mathrm{i}} & =\frac{1}{2} \mathrm{C}_{\mathrm{net}} \mathrm{~V}^{2}=\frac{1}{2}\left(\frac{4}{3} \times 10^{-6}\right)(30)^{2} \\
& =0.6 \mathrm{~mJ}
\end{aligned}
$$

and after closing the switch

$$
\mathrm{U}_{\mathrm{f}}=\frac{1}{2} \mathrm{C}_{\mathrm{net}} \mathrm{~V}^{2}=\frac{1}{2}\left(2 \times 10^{-6}\right)(30)^{2}
$$

$$
=0.9 \mathrm{~mJ}
$$

\therefore Heat generated $H=U-\left(\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}\right)=0.3 \mathrm{~mJ}$ and charge flown through the switch is $60 \mu \mathrm{C}$.
Q. 6 In the circuit shown in figure.

$\mathrm{C}_{1}=\mathrm{C}_{2}=2 \mu \mathrm{~F}$. Then charge stored in :
(A) capacitor C_{1} is zero
(B) capacitor C_{2} is zero
(C) both capacitors is zero
(D) capacitor C_{1} is $40 \mu \mathrm{C}$

Sol. [B,D]

Potential difference across $\mathrm{C}_{1}=20 \mathrm{~V}$
Potential difference across $\mathrm{C}_{2}=0 \mathrm{~V}$
\therefore Charge stored on $\mathrm{C}_{1}=40 \mu \mathrm{C}$
and Charge stored on $\mathrm{C}_{2}=0 \mu \mathrm{C}$

Q. 7 A parallel plate air capacitor is connected to a battery. If plates of the capacitor are pulled further apart, then which of the following statements are correct -
(A) Strength of electric field inside the capacitor remain unchanged, if battery is disconnected before pulling the plate.
(B) During the process, work is done by an externat force applied to pull the plates whether battery is disconnected or it remain connected.
(C) Potential energy in the capacitor decreases if the battery remains connected during pulling plates apart.
(D) None of the above

[A,B,C]

If battery is disconnected and plate are pulled apart, then charge will remain constant
$\mathrm{E}=\frac{\mathrm{Q}}{2 \mathrm{~A} \in_{0}} \times 2=\frac{\mathrm{Q}}{\mathrm{A} \in_{0}}$
$\therefore \quad$ E remain same (A) is correct work is done against attractive force

Fext. (B) is
$\mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}$
$\mathrm{V}=$ constant [as battery is connected]
$C=\frac{\in_{0} A}{d}$
as d increase
C decrease Udecrease
option (C) is correct.
Q. 8 A parallel plate capacitor of plate area A and plate separation d is charged to potential difference V and then the battery is diseonnected A slab of dielectric constant K is then inserted between the plates of the capacitor so as to fill the space between the plates. If Q, E and W denote respectively, the magnitude of charge on each plate, the electric field between the plates (after the slab is inserted), and work done on the system, in question, in the process of inserting the slab, then -
[IIT-91]
(A) $\mathrm{Q}=\frac{\varepsilon_{0} A V}{\mathrm{~d}}$
(B) $\mathrm{Q}=\frac{\varepsilon_{0} \mathrm{KAV}}{\mathrm{d}}$
(C) $\mathrm{E}=\frac{\mathrm{V}}{\mathrm{Kd}}$
(D) $\mathrm{W}=\frac{\varepsilon_{0} \mathrm{AV}^{2}}{2 \mathrm{~d}}\left[1-\frac{1}{\mathrm{~K}}\right]$
[A,C,D]
Q. 9 A large non-conducting sheet M is given a uniform charge density. Two uncharged small metal rods A and B are placed near the sheet as shown in figure-

(A) M attracts A
(B) M attracts B
(C) A attracts B
(D) B attracts A
[A,B,C,D]
Q. 10 Each plate of a parallel plate capacitor has a charge q on it. The capacitor is now connected to a battery. Now -
(A) The facing surfaces of the capacitor have equal and opposite charges
(B) The two plates of the capacitor have equal and opposite charges
(C) The battery supplies equal and opposite charges to the two plates
(D) The outer surfaces of the plates have equal charges
[A,C,D]
Q. 11 The separation between the plates of a charged parallel plate capacitor is increased. Which of the following quantities will change ?
(A) Charge on the capacitor
(B) Potential difference across the capacitor
(C) Energy of the capacitor
(D) Energy density between the plates
[B,C]
Q. 12 Following operations can be performed on a neutran capacitor -

X -connect the capacitor to a battery of emf ε.
Y-disconnect the battery
Z -reconnect the battery with polarity reversed.
W-insert a dielectric slab in the capacitor
(A) In XYZ (perform X, then Y, then, Z) the stored electric energy remains unchanged and no thermal energy is developed
(B) The charge appearing on the capacitor is greater after the action XWY than after the action XYW
(C) The electric energy stored in the capacitor is greater after the action WXY than after the action XYW
(D) The electric field in the capacitor after the action XW is the same as that after WX

[B,C,D]

Q. 13 A, B \& C are three large, parallel conducting plates horizontally. A \& C are rigidly fixed and earthed. B is given some charge. Under electrostatics and gravitation forces B may be

(A) in equilibrium if it closer to A than to C
(B) in equilibrium midway between A and C (C) in equilibrium if it is closer to C than to A (D) B can never be in stable equilibrium

[A,D]

Q. 14 A charge Q is imparted to two identical capacitors in parallel. Separation of the plates in each capacitor is d_{0}. Suddenly, the first plate of the first capacitor and the second plate of the second capacitor starts moving to the left with speed v, then -
(A) Charge on the two capacitor as a function

$$
\text { of time are } \frac{\mathrm{Q}\left(\mathrm{~d}_{0}-\mathrm{vt}\right)}{2 \mathrm{~d}_{0}}, \frac{\mathrm{Q}\left(\mathrm{~d}_{0}+\mathrm{vt}\right)}{2 \mathrm{~d}_{0}}
$$

(B) Charge on the two capacitors as a function of time are $\frac{\mathrm{Qd}_{0}}{2\left(\mathrm{~d}_{0}-\mathrm{vt}\right)}, \frac{\mathrm{Qd}_{0}}{2\left(\mathrm{~d}_{0}+\mathrm{vt}\right)}$
(C) Current in the circuit will increase as time passes
(D) Current in the circuit will be constant
Q. 15 In the circuit diagram shown below :

(A) The effective capacity between A and C is $\frac{3}{2} \mu \mathrm{f}$
(B) The effective capacity between A and C is $\frac{5}{2} \mu \mathrm{f}$
(C) The potential difference between A and B in steady state is $\frac{75}{2}$ volt
(D) The potential difference between B and C in steady state is $\frac{75}{2}$ volt
Q. 17 A dielectric slab of thickness d is inserted in a parallel plate capacitor whose negative plate is at $\mathrm{x}=0$ and positive pate is at $\mathrm{x}=3 \mathrm{~d}$. The slab is equidistant from the plates. The capacitor is given some charge. As x goes from 0 to 3 d -
[IIT -JEE 98]
(A) the magnitude of the electric field remains the same
(B) the direction of the electric field remains the same
(C) the electric potential increases continuously
(D) the electric potential increases at first, then decreases and again increases
[Ans. B,C]
Q. 18 A parallel plate condenser is charged by a battery. The battery is removed and a thick glass slab is placed between the plates. Now-
[REE-98]
(A) the capacity of the condenser is increased
(B) the electrical energy stored in the condenser is decreased
(C) the potential across the plates is decreased
(D) the electric field between the plates is decreased
[Ans. A,B,C,D]
Q. 16 Two plates of a parallel plate capacitors carry charges q and $-q$ and are separated by a distance x from each other. The capacitor is connected to a constant voltage source V_{0}. The distance between the plates is changed to $\mathrm{x}+\mathrm{dx}$. Then in steady state :

(A) Change in electrostatic energy stored in the capacitor is $\frac{-U d x}{x}$
(B) Change in electrostatic energy stored in the capacitor is $\frac{-\mathrm{Ux}}{\mathrm{dx}}$
(C) Attraction force between the plates is $1 / 2 \mathrm{qE}$
(D) Attraction force between the plates is qE (where E is electric field between the plates)
(D) None of the above
[A,B,C]
Sol. If battery is disconnected and plate are pulled apart, then charge will remain constant

$$
\mathrm{E}=\frac{\mathrm{Q}}{2 \mathrm{~A} \varepsilon_{0}} \times 2=\frac{\mathrm{Q}}{\mathrm{~A} \varepsilon_{0}}
$$

\therefore E remain same
(A) is correct

Work is done against attractive force by $\mathrm{F}_{\text {ext }}$

(B) is correct.
$\mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}$
$\mathrm{V}=$ constant \quad [as battery is connected]
$\mathrm{C}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
as d increase
C decrease $\quad \therefore$ U decrease
Option (C) is correct.

PHYSICS

Q. 1 Each plate of a parallel capacitor has area $\mathrm{S}=5 \times 10^{-3} \mathrm{~m}^{2}$ and are $\mathrm{d}=8.85 \mathrm{~mm}$ apart. Plate A has a positive charge $\mathrm{q}_{1}=10^{-10} \mathrm{Cb}$ and plate B has charge $q_{2}=+2 \times 10^{-10} \mathrm{Cb}$. Energy supplied by a battery of emf $\mathrm{E}=10$ volt when its positive terminal is connected with plate A and negative terminal with plate B is $\ldots . .10^{-9}$ Joule.
[0001]

Sol.

$$
10^{-10}-x \rrbracket x-x \rrbracket 2 \times 10^{-10}+x
$$

A B
$10^{-10}-\mathrm{x}=2 \times 10^{-10}+\mathrm{x}$
$2 \mathrm{x}=-10^{-10}$
$\mathrm{x}=-5 \times 10^{-11} \mathrm{Cb}$

Kirchoff law

$$
\begin{aligned}
\mathrm{q}+\mathrm{x} & =\mathrm{CE} \\
\mathrm{q} & =\mathrm{CE}-\mathrm{x} \\
& =\frac{\varepsilon_{0} \mathrm{~S}}{\mathrm{~d}} \cdot \mathrm{E}-\left(+5 \times 10^{-41}\right) \\
& \left.=10 \times 5 \times 10^{-12}\right)+5 \times 10^{-11}=10^{-10} \mathrm{Cb}
\end{aligned}
$$

Energy supplied

$$
=\mathrm{qE}=10^{-10} \times 10=10^{-9} \text { Joule }
$$

Q. 2 In the figure shown, the emf E for which charge on $2 \mu \mathrm{~F}$ capacitor is $4 \mu \mathrm{C}$ is \qquad $\times 17$ volt.

Sol.[2]

Potential across $2 \mu \mathrm{~F}=\frac{4}{2}=2$ volt
$\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}=0$
$(4-\mathrm{E}) \times 1+7 \times 3+[2 \times 2+5 \times 1]=0$
$4-E+21+9=0$
$\mathrm{E}=34 \mathrm{volt}$
Q. 3 In figure $\mathrm{C}_{1}=2 \mu \mathrm{FC} \mathrm{C}_{2}=6 \mu \mathrm{~F} \& \mathrm{C}_{3}=3.5 \mu \mathrm{~F}$. If break down voltages of the individual capacitors are $\mathrm{V}_{1}=100 \mathrm{~V}, \mathrm{~V}_{2}=50 \mathrm{~V} \& \mathrm{~V}_{3}=400 \mathrm{~V}$. Maximum voltage can be placed across points a \&

Sol. [4]

$\mathrm{V}_{1}=\frac{6}{8} \times \mathrm{V}=\frac{3}{4} \mathrm{~V}$
$\mathrm{V}_{2}=\frac{1}{4} \mathrm{~V}$
Now $\quad \frac{3}{4} \mathrm{~V}<100 \Rightarrow \mathrm{~V}<\frac{400}{3}$
$\frac{\mathrm{V}}{4}<50 \quad \Rightarrow \quad \mathrm{~V}<200 \mathrm{~V}$
$\mathrm{V}<400 \quad \Rightarrow \quad \mathrm{~V}<400$

Common solution $\mathrm{V}<\frac{400}{3}$
Q. 4 A capacitor of capacity $2 \mu \mathrm{~F}$ is charged to a potential difference of 12 V . It is then connected across an inductor of inductance 0.6 mH . The current in the circuit at a time when the potential difference across the capacitor is 6.0 volt $\ldots \ldots \times 10^{-1} \mathrm{Amp}$.
Sol. [6] In case of oscillatory discharge of capacitor through an inductor
$\mathrm{q}=\mathrm{q}_{0} \cos \omega \mathrm{t}$ with $\omega=\frac{1}{\sqrt{\mathrm{LC}}}$
$\mathrm{q}=\mathrm{CV}$
$\cos \omega \mathrm{t}=\frac{\mathrm{q}}{\mathrm{q}_{0}}=\frac{\mathrm{V}}{\mathrm{V}_{0}}=\frac{6}{12}=\frac{1}{2}$
$\omega \mathrm{t}=\frac{\pi}{3} \mathrm{rad}$
$\omega=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{10^{5}}{\sqrt{12}} \mathrm{rad} / \mathrm{sec}$
$\mathrm{I}=\frac{\mathrm{dq}}{\mathrm{dt}}=-\mathrm{q}_{0} \omega \sin \omega \mathrm{t}$
$|\mathrm{I}|=\mathrm{CV}_{0} \omega \sin \omega \mathrm{t}$
$=2 \times 10^{-6} \times 12 \times \frac{10^{5}}{\sqrt{12}} \times \frac{\sqrt{3}}{2}=0.6 \mathrm{Amp}$
Q. 5 A parallel plate capacitor is maintained at a certain potential difference. When a 3 mm thick slab is introduced between the plates, in order to maintain the same potential difference the distance between the plates is increased by 2.4 mm . Find the dielectric constant of slab.

Sol. [5]

$\mathrm{C}_{0} \mathrm{~V}_{0}=\mathrm{CV}$
$\mathrm{C}_{0}=\mathrm{C} \quad$ as $\mathrm{V}=\mathrm{V}_{0}$ given

But by increasing d to $\mathrm{d}+0.24 \mathrm{~cm}$ then

$$
C_{1} \text { becomes } C=\frac{\epsilon_{0} A}{(d+0.24-t)+\frac{t}{K}}
$$

$$
\begin{aligned}
& \mathrm{d}=\mathrm{d}+0.24-\mathrm{t}+\frac{\mathrm{t}}{\mathrm{~K}} \\
& \mathrm{~K}=\frac{\mathrm{t}}{\mathrm{t}-0.24}=5
\end{aligned}
$$

Q. 6 Two identical capacitors are connected as shown and having initial charge Q_{0}. Separation between plates of each capacitor is d_{0}. Suddenly the left plate of upper capacitor and right plate of lower capacitor start moving with speed v towards left while other plate of each capacitor remains fixed.
(given $\frac{\mathrm{Q}_{0} \mathrm{~V}}{2 \mathrm{~d}_{0}}=10 \mathrm{amp}$). The value of current (in amp) in the circuit is......... $\times 4$ ampere.
$\frac{\mathrm{q}_{1}}{\mathrm{C}_{1}}=\frac{\mathrm{q}_{2}}{\mathrm{C}_{2}}$
$\mathrm{q}_{1}+\mathrm{q}_{2}=2 \mathrm{Q}_{0}$
$\mathrm{C}_{1}=\frac{\epsilon_{0} \mathrm{~A}}{\mathrm{~d}_{0}+\mathrm{Vt}}, \mathrm{C}_{2}=\frac{\epsilon_{0} \mathrm{~A}}{\mathrm{~d}_{0}-\mathrm{Vt}}$
$\frac{\mathrm{q}_{1}}{\mathrm{q}_{2}}=\frac{\mathrm{d}_{0}-\mathrm{Vt}}{\mathrm{d}_{0}+\mathrm{Vt}} \Rightarrow \mathrm{q}_{2}+\mathrm{q}_{2}\left(\frac{\mathrm{~d}_{0}-\mathrm{Vt}}{\mathrm{d}_{0}+\mathrm{Vt}}\right)=2 \mathrm{Q}_{0}$
$\Rightarrow \mathrm{q}_{2}\left(\frac{2 \mathrm{~d}_{0}}{\mathrm{~d}_{0}+\mathrm{Vt}}\right)=2 \mathrm{Q}_{0}$
$\Rightarrow \mathrm{q}_{2}=\frac{2 \mathrm{Q}_{0}}{2 \mathrm{~d}_{0}}\left(\mathrm{~d}_{0}+\mathrm{Vt}\right)$
$\mathrm{I}=\frac{\mathrm{dq}_{2}}{\mathrm{dt}}=\frac{\mathrm{Q}_{0} \mathrm{~V}}{\mathrm{~d}_{0}}=20 \mathrm{amp}$
Q. 7 A leaky parallel plate capacitor is filled completely with a material having dielectric constant $\mathrm{K}=5$ and electric conductivity $\sigma=7.4 \times 10^{-12} \Omega^{-1} \mathrm{~m}^{-1}$. If the charge on the plate at the instant $\mathrm{t}=0$ is $\mathbf{q}=8.85 \mu \mathrm{C}$, then the leakage current at the instant $t=12 \mathrm{sec}$ is. $\ldots \ldots . \times 10^{-1} \mu \mathrm{~A}$.

Sol. [2]

As in case of discharging of a capacitor through a resistance
$\mathrm{q}=\mathrm{q}_{0} \mathrm{e}^{-\mathrm{t} / C R}$
$\mathrm{i}=-\frac{\mathrm{dq}}{\mathrm{dt}}=\frac{\mathrm{q}_{0}}{\mathrm{CR}} \mathrm{e}^{-\mathrm{t} / \mathrm{CR}}$
Here, $C R=\left(\frac{\epsilon_{0} K A}{d}\right)\left(\rho \frac{d}{A}\right)=\frac{\in_{0} K}{\sigma} \quad$ as $\rho=$
$1 / \sigma]$
i.e., $\mathrm{CR}=\frac{8.846 \times 10^{-12} \times 5}{7.4 \times 10^{-12}}=6$

$$
\begin{aligned}
\text { So, } \mathrm{i} & =\frac{8.85 \times 10^{-6}}{6} \mathrm{e}^{-12 / 6} \\
& =\frac{8.85 \times 10^{-6}}{6 \times 7.39} \quad\left[\text { As e }=2.718, \mathrm{e}^{2}=7.39\right] \\
& =0.20 \mu \mathrm{~A}
\end{aligned}
$$

Q. 8 A capacitor has charge $50 \mu \mathrm{C}$. When the gap between the plates is filled with glass wool, then $120 \mu \mathrm{C}$ charge flows through the battery to capacitor. The dielectric constant of glass wool is. \qquad
Sol. [2]

Q. 9 An isolated parallel plate capacitor is maintained at a certain potential difference. When a 3 mm thick slab is introduced between the plates, in order to maintain the same potential difference the distance between the plates is increased by 2.4 mm . Find the dielectric constant of slab.
Sol. [5]
$\mathrm{q}=\mathrm{q}^{\prime}, \mathrm{C}_{0} \mathrm{~V}_{0}=\mathrm{CV}, \mathrm{C}_{0}=\mathrm{C}$
as $\mathrm{V}=\mathrm{V}_{0}$ given
$\mathrm{C}_{0}=\frac{\in_{0} A}{\mathrm{~d}}, \mathrm{C}_{1}=\frac{\in_{0} A}{\mathrm{~d}-\mathrm{t}+\frac{\mathrm{t}}{\mathrm{K}}}$
But by increasing d to $\mathrm{d}+0.24 \mathrm{~cm}$ then

PHYSICS

Q. 1 In the figure shown the plates of a parallel plate capacitor have unequal charges. Its capacitance is ' C ' P is a point outside the capacitor and close to the plate of charge -Q . The distance between the plates is ' d ' select incorrect alternative

(A) A point charge at point ' P ' will experience electric force due to capacitor
(B) The potencial difference between the plates will be $3 \mathrm{Q} / 2 \mathrm{C}$
(C) The energy stored in the electric field in the region between the plates is $\frac{9 \mathrm{Q}^{2}}{8 \mathrm{C}}$
(D) The force on one plate due to the other plate is $\frac{Q^{2}}{2 \pi \epsilon_{0} \mathrm{~d}^{2}}$
[D]

Sol. $\quad \mathrm{E}=\frac{2 \mathrm{Q}}{2 \mathrm{~A} \varepsilon_{0}}+\frac{\mathrm{Q}}{2 \mathrm{~A} \varepsilon_{0}} \Rightarrow \mathrm{E}=\frac{3 \mathrm{Q}}{2 \mathrm{~A} \varepsilon_{0}}$
$\mathrm{E}=\frac{3}{2} \frac{\mathrm{Q}}{\mathrm{Cd}} \Rightarrow \mathrm{Ed}=\frac{3 \mathrm{Q}}{2 \mathrm{C}}=\mathrm{V}$
(ii) $\mathrm{F}=\mathrm{EQ} / 2$
$\mathrm{F}=\left(\frac{2 \mathrm{Q}}{2 \mathrm{~A} \varepsilon_{0}}\right) \times \frac{(-\mathrm{Q})}{1}=\frac{-\mathrm{Q}^{2}}{\mathrm{~A} \varepsilon_{0}}$

(iii) Energy $=\frac{1}{2} \varepsilon_{0} E^{2} \mathrm{Ad}$

$$
=\frac{1}{2} \varepsilon_{0}\left(\frac{3 \mathrm{Q}}{2 \mathrm{~cd}}\right)^{2} \mathrm{Ad}=\frac{9}{8} \frac{\mathrm{Q}^{2}}{\mathrm{C}}
$$

Q. 2 Three capacitors A,B and C each of capacitance $1 \mu \mathrm{~F}$ are connected as shown. The charge on capacitor C is -

(A) $4 \mu \mathrm{C}$
(B) $6 \mu \mathrm{C}$
(C) $8 \mu \mathrm{C}$
(D) $2 \mu \mathrm{C}$
[A]

Sol. Equivalent circuit

Q. 3 A parallel plate capacitor is made by stacking 10 identical metallic plates equally spaced from one another and having the same dielectric between the plates. The alternate plates are then connected. If capacitor formed by two neighbouring plates has a capacitance C , the total capacitance of combination will be -
(A) $\frac{C}{10}$
(B) $\frac{\mathrm{C}}{9}$
(C) 9C
(D) 10 C

Sol. $\quad C_{e q}=(n-1) C=9 C$
Q. 4 A capacitor of capacitance $1 \mu \mathrm{~F}$ is filled with two dielectrics of dielectric constants 4 and 6 . What is the new capacitance ?

(A) $10 \mu \mathrm{~F}$
(B) $5 \mu \mathrm{~F}$
(C) $4 \mu \mathrm{~F}$
(D) None of these
[A]
Sol. $\quad \mathrm{C}_{\mathrm{eq}}=\left(\frac{\in \mathrm{r}_{1}+\in \mathrm{r}_{2}}{2}\right) \mathrm{C}$
$=\left(\frac{4+6}{2}\right)(1 \mu \mathrm{~F})=5 \mu \mathrm{~F}$
Q. 5 Separation between the plates of a parallel plate capacitor is 5 mm . This capacitor, having air as the dielectric medium between the plates, is charged to a potential difference 25 V using a battery. The battery is then disconnected and a dielectric slab of thickness 3 mm and dielectric constant $\mathrm{K}=10$ is placed between the plates, as shown.
Potential difference between the plates after the dielectric slab has been introduced is -

(A) 18.5 V
(B) 13.5 V
(C) 11.5 V
(D) 6.5 V

Sol. [C]
The capacitor is charged by a battery of 25 V . Let the magnitude of surface charge density on each plate be σ. Before inserting the dielectric slab, electric field strength between the plates,

$$
\mathrm{E}=\frac{\sigma}{\varepsilon_{0}}=\frac{\mathrm{V}}{\mathrm{~d}}
$$

or $\mathrm{E}=\frac{\sigma}{\varepsilon_{0}}=\frac{25}{5 \times 10^{-3}}=5000 \mathrm{~N} / \mathrm{C}$
The capacitor is disconnected from the battery but charge on it will not change so that σ has the same value. When a dielectric slab of thickness 3 mm is placed between the plates, the thickness of air between the plates will be $5-3$ $=2 \mathrm{~mm}$. Electric field strength in air will have the same value ($5000 \mathrm{~N} / \mathrm{C}$) but inside the dielectric, it will be $\frac{5000}{\mathrm{~K}}=\frac{5000}{10}$
$=500 \mathrm{~N} / \mathrm{C}$
so potential difference $=\mathrm{E}_{\text {air }} \mathrm{d}_{\text {mir }}+\mathrm{E}_{\text {med }} \mathrm{d}_{\text {med }}$
$=5000 \times\left(2 \times 10^{-3}\right)+500 \times\left(3 \times 10^{-3}\right)$
$=11.5 \mathrm{~V}$
Q. 6 Current versus, time and voltage versus time graphs of a circuit element are shown in figure.

The type of the circuit element is :
(A) capacitance of 2 F
(B) resistance of 2Ω
(C) capacitance of 1 F
(D) a voltage source of e.m.f 1 V

Sol. [C]
In case of a capacitor

$$
\begin{array}{ll}
& \mathrm{q}=\mathrm{CV} \\
\therefore \quad & \mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}=\mathrm{C}\left(\frac{\mathrm{dV}}{\mathrm{dt}}\right)
\end{array}
$$

$$
\frac{\mathrm{dV}}{\mathrm{dt}}=\frac{4.0}{4.0} \mathrm{~V} / \mathrm{s}=1.0 \mathrm{~V} / \mathrm{s}
$$

Therefore, if $\mathrm{C}=1 \mathrm{~F}$ then $\mathrm{i} \Rightarrow 1 \times 1=1 \mathrm{~A}$ (constant)
Q. 7 A circuit element is placed ín a closed box. At time $t=0$, a constant current generator supplying a current of I amp is connected across the box. Potential difference across the box varies according to graph shown in the figure. The element in the box is :

(A) a resistance of 2 ohm
(B) a battery of e.m.f 6 V
(C) an inductance of 2 H
(D) a capacitance of 0.5 F
Q. 8 A,B,C,D,E,F are conducting plates each of area A and any two consecutive plates separated by a distance d . The net energy stored in the system after the switch S is closed is :

(A) $\frac{3 \varepsilon_{0} A}{2 d} V^{2}$
(B) $\frac{5 \varepsilon_{0} \mathrm{~A}}{12 \mathrm{~d}} \mathrm{~V}^{2}$
(C) $\frac{\varepsilon_{0} \mathrm{~A}}{2 \mathrm{~d}} \mathrm{~V}^{2}$
(D) $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}} \mathrm{~V}^{2}$

Sol. [C]
$\mathrm{C}_{\text {eff }}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$ since effective capacitance between plates A and E is zero
$\therefore \mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}=\frac{\varepsilon_{0} \mathrm{~A}}{2 \mathrm{~d}} \mathrm{~V}^{2}$
Q. 9 Three identical metal plates of area 'A' are at distance $\mathrm{d}_{1} \& \mathrm{~d}_{2}$ from each other. Metal plate A is uncharged, while plate $B \& C$ have respective charges $+\mathrm{q} \&-\mathrm{q}$. If metal plates $\mathrm{A} \& \mathrm{C}$ are connected by switch K through a consumer of unknown resistance, what energy does the consumer give out to its surrounding ?
Assume $\mathrm{d}_{1}=\mathrm{d}_{2}=\mathrm{d}$

(A) $\frac{q^{2} d}{4 \varepsilon_{0} A}$
(B) $\frac{q^{2} d}{\varepsilon_{0} A}$
(C) $\frac{q^{2} d}{2 \varepsilon_{0} A}$
(D) $\frac{2 q^{2} d}{\varepsilon_{0} \mathrm{~A}}$

Sol. [A]

Energy loss $=\frac{1}{2} \frac{C^{2}}{C+C} \times V^{2}=\frac{1}{2} \frac{C}{2} \times \frac{q^{2}}{C^{2}}$

$$
=\frac{q^{2}}{4 \mathrm{C}}=\frac{\mathrm{q}^{2} \mathrm{~d}}{4 \varepsilon_{0} \mathrm{~A}}
$$

Q. 10 Initially K_{1} is closed, now if K_{2} is also closed, find the heat dissipated in the resistances of connecting wires

(A) $\frac{1}{2} \mathrm{CV}^{2}$
(B) $\frac{2}{3} \mathrm{CV}^{2}$
(C) $\frac{1}{3} \mathrm{CV}^{2}$
(D) $\frac{1}{4} \mathrm{CV}^{2}$

Sol. [C]
When K_{1} is closed

$\mathrm{Q}=\mathrm{CV}$
energy $U_{i}=\frac{1}{2} \mathrm{CV}^{2}$
When K_{2} is also closed

Equivalent circuit

$\mathrm{C}_{\mathrm{eq}}=\mathrm{C}+\frac{2 \mathrm{C}}{3}=\frac{5 \mathrm{C}}{3}$
Energy $\mathrm{U}_{\mathrm{f}}=\frac{1}{2} \times \frac{5 \mathrm{C}}{3} \mathrm{~V}^{2}=\frac{5}{6} \mathrm{CV}^{2}$
Charge supplied by battery after closing K_{2}

$$
=\frac{5}{3} \mathrm{CV}-\mathrm{CV}=\frac{2}{3} \mathrm{CV}
$$

Energy supplied by battery $=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}+\Delta \mathrm{H}$
$\frac{2}{3} \mathrm{CV}^{2}=\frac{5}{6} \mathrm{CV}^{2}-\frac{1}{2} \mathrm{CV}^{2}+\Delta \mathrm{H}$
$\therefore \Delta \mathrm{H}=\frac{1}{3} \mathrm{CV}^{2}$
Q. 11 Find the capacitance between the inner \& outer curved conductor surface as shown in figure

(A) 6.86 PF
(B) 1.86 PF
(C) 3.26 PF
(D) 12.63 PF

Sol. [A]

$\mathrm{dc}=\frac{\epsilon_{0} \mathrm{KRd} \theta \times \mathrm{h}}{\mathrm{b}}$
all small discs are in parallel
$\therefore \mathrm{C}_{\mathrm{eq}}=\sum \mathrm{dc}=\int_{\theta=0}^{\frac{\pi}{6}} \mathrm{dc}$
$=\frac{6 K h}{b} R \int_{\theta=0}^{\frac{\pi}{6}} d \theta$
$=\frac{\pi}{6} \times \frac{\in_{0} \mathrm{khR}}{\mathrm{b}}$
Q. 12 Capacity of an isolated sphere is increased n times when it is enclosed by an earthed concentric sphere. The ratio of their radi is
(A) $\frac{\mathrm{n}^{2}}{\mathrm{n}-1}$
(B) $\frac{n}{n-1}$
(C) $\frac{2 \mathrm{n}}{\mathrm{n}+1}$
(D) $\frac{2 n+1}{n+1}$

Sol. [B]

and $\mathrm{C}_{2}=4 \pi \varepsilon_{0}\left(\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{2}-\mathrm{R}_{1}}\right)$
Given that $\mathrm{C}_{2}=\mathrm{nC}_{1}$
or $\frac{\mathrm{R}_{2} \mathrm{R}_{1}}{\mathrm{R}_{2}-\mathrm{R}_{1}}=\mathrm{nR} \mathrm{R}_{1}$
or $\frac{R_{2} / R_{1}}{R_{2} / R_{1}-1}=n$
or $\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=\frac{\mathrm{n}}{\mathrm{n}-1}$
Q. 13 A capacitor is composed of three parallel conducting plates. All three plates are of same area A. The first pair of plates are kept a distance d_{1} apart and the space between them is filled with a medium of a dielectric \&1. The corresponding data for the second pair are $d_{2} \& \varepsilon_{2}$ respectively. What is the surface charge density on the middle plate ?

(A) $\varepsilon_{0} \mathrm{~V}\left[\frac{\varepsilon_{1}}{\mathrm{~d}_{1}}+\frac{\varepsilon_{2}}{\mathrm{~d}_{2}}\right]$
(B) $-\varepsilon_{0} \mathrm{~V}\left[\frac{\varepsilon_{1}}{\mathrm{~d}_{1}}+\frac{\varepsilon_{2}}{\mathrm{~d}_{2}}\right]$
(C) $2 \varepsilon_{0} \mathrm{~V}\left[\frac{\varepsilon_{1}}{\mathrm{~d}_{1}}+\frac{\varepsilon_{2}}{\mathrm{~d}_{2}}\right]$
(D) $-2 \varepsilon_{0} \mathrm{~V}\left[\frac{\varepsilon_{1}}{\mathrm{~d}_{1}}+\frac{\varepsilon_{2}}{\mathrm{~d}_{2}}\right]$

Sol. [A]
Equivalent circuit

Total charge on 2 \& 2' plate $=\left[\frac{\varepsilon_{1} \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}_{1}}+\frac{\varepsilon_{2} \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}_{2}}\right]$ V
$\sigma=\varepsilon_{0} \mathrm{~V}\left[\frac{\varepsilon_{1}}{\mathrm{~d}_{1}}+\frac{\varepsilon_{2}}{\mathrm{~d}_{2}}\right]$
Q. 14 A thin conducting plate is inserted in half way between the plates of a parallel plates capacitor of capacitance C .

What does the value of capacitance, if both the plate of capacitor is shortened ?
(A) C
(B) 2 C
(C) 3 C
(D) 4C

Sol. [D]

$$
=2 \times \frac{\left(\epsilon_{0} \mathrm{~A}\right) \times 2}{\mathrm{~d}}=4 \cdot \frac{\in_{0} \mathrm{~A}}{\mathrm{~d}}=4 \widehat{\mathrm{C}}
$$

Q. 15 An air parallel plate capacitor has capacity C. When the area and distance between the plates is doubled, the capacitance is C_{1}, then $\frac{C_{1}}{C}$ is -
(A) 1
(B) 2
(C) 3
(D) 4
[A]

Sol.

$$
\mathrm{C}_{1}=\frac{\epsilon_{0}(2 \mathrm{~A})}{2 \mathrm{~d}}=C
$$

$\frac{\mathrm{C}_{1}}{\mathrm{C}}=1$
Q. 16 Equivalent capacitance in the circuit is -

(A) $1.0 \mu \mathrm{~F}$
(B) $2.0 \mu \mathrm{~F}$
(C) $1.5 \mu \mathrm{~F}$
(D) $3.0 \mu \mathrm{~F}$

Sol.

$\Rightarrow \mathrm{C}_{\mathrm{eq}}=1 \mu \mathrm{~F}$
Q. 17 The two spherical shells are at large separation one of them has radius 10 cm and has $1.25 \mu \mathrm{C}$ charge. The other is of 20 cm radius and has $0.75 \mu \mathrm{C}$ charge. If they are connected by a conducting wire of negligible capacity, the charge on the shells are-
(A) $1 \mu \mathrm{C}, 1 \mu \mathrm{C}$
(B) $\frac{2}{3} \mu \mathrm{C}, \frac{4}{3} \mu \mathrm{C}$
(C) $\frac{4}{3} \mu \mathrm{C}, \frac{2}{3} \mu \mathrm{C}$
(D) $0.25 \mu \mathrm{C}, 0.25 \mu \mathrm{C}$

Sol. Total charge $=1.25 \mu \mathrm{C}+0.75 \mu \mathrm{C}=2 \mu \mathrm{C}$
$\mathrm{q}_{1}{ }^{\prime}: \mathrm{q}_{2}{ }^{\prime}=\mathrm{R}_{1}: \mathrm{R}_{2}=1: 2$

$$
\left.\begin{array}{rl}
\therefore & \mathrm{q}_{1}^{\prime}=\frac{1}{3} \times 2=\frac{2}{3} \mu \mathrm{C} \\
& \mathrm{q}_{2}^{\prime}=\frac{2}{3} \times 2=\frac{4}{3} \mu \mathrm{C}
\end{array}\right]
$$

Q. 18 A capacitor of $10 \mu \mathrm{~F}$ is connected to a source of 50 V and then disconnected. When the space between the plates is filled with teflon of dielectric constant 2.5 . The new potential difference is -
(A) 20 V
(B) 20.8 V
(C) 23.8 V
(D) 25 V
[A]
Sol. Battery disconnected so $\mathrm{Q}=$ constant
$\mathrm{C}^{\prime}=2.5 \mathrm{C}$
$\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{C}} \propto \frac{1}{\mathrm{C}}$
$\therefore \mathrm{V}^{\prime}=\frac{\mathrm{V}}{2.5}=\frac{50}{2.5}=20$ volt
Q. 19 Two metal spheres of capacitances C_{1} and C_{2} carry some charges. They are put in contact and then separated. The final charges Q_{1} and Q_{2} on them will satisfy -
(A) $\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}<\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}$
(B) $\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}=\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}$
(C) $\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}>\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}$
(D) $\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}=\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}$
[B]
Q. 20 How much positive charge should be given to the earth so that to have same potential that of a positively charged sphere of $1 \mu \mathrm{C}$ and radius 1 cm . Radius of earth $=6400 \mathrm{~km}-$
(A) 600 Coulomb
(B) 640 Coulomb
(C) 340 Coulomb
(D) 240 Coulomb
[B]
(A) $\frac{\varepsilon_{0} \mathrm{AV}}{\mathrm{d}}, \frac{2 \varepsilon_{0} \mathrm{AV}}{\mathrm{d}}$
(B) $\frac{-\varepsilon_{0} \mathrm{AV}}{\mathrm{d}}, \frac{2 \varepsilon_{0} \mathrm{AV}}{\mathrm{d}}$
(C) $\frac{\varepsilon_{0} \mathrm{AV}}{\mathrm{d}}, \frac{-2 \varepsilon_{0} \mathrm{AV}}{\mathrm{d}}$
(D) $\frac{-\varepsilon_{0} A V}{d}, \frac{-2 \varepsilon_{0} A V}{d}$
Q. 23 A condenser of capacitance $10 \mu \mathrm{~F}$ has been charged to 100 V . It is now connected to another uncharged condenser in parallel. The common potential becomes 40 V . The capacitance of another condenser is -
(A) $15 \mu \mathrm{~F}$
(B) $5 \mu \mathrm{~F}$
(C) $10 \mu \mathrm{~F}$
(D) $16 \mu \mathrm{~F}$
[A]
Sol. $\quad \mathrm{C}_{1}=10 \mu \mathrm{~F} \quad \mathrm{C}_{2}=$?
$\mathrm{V}_{1}=100 \mathrm{~V} \quad \mathrm{~V}_{2}=0$
$\mathrm{V}_{\text {common }}=40 \mathrm{~V}$
$V_{\text {commmon }}=\frac{\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$
Q. 21 Find the equivalent capacitance between A and B.

(A) $2 \mu \mathrm{~F}$
(B) $6 \mu \mathrm{~F}$
(C) $8 \mu \mathrm{~F}$
(D) $12 \mu \mathrm{~F}$
[C]
Q. 22 Five identical plates each of area A are joined as shown in the figure the distance between the plates is d. The plates are connected to a potential difference of V volts. The charges on plates 1 and 4 will be -

Q. 24 The net capacitance between A and B is

(A) 6 C
(B) $\frac{2 \mathrm{C}}{5}$
(C) $\frac{2 \mathrm{C}}{3}$
(D) None of these
[B]

Sol. Use Junction method

$\frac{1}{\mathrm{C}_{\mathrm{eq}}}=\frac{1}{\mathrm{C}}+\frac{1}{2 \mathrm{C}}+\frac{1}{\mathrm{C}}$
$\therefore \mathrm{C}_{\mathrm{eq}}=\frac{2 \mathrm{C}}{5}$
Q. 25 If C_{0} is the capacitance between two adjacent plates, find the capacitance of the combination between A and B-

(A) $\frac{\mathrm{C}_{0}}{2}$
(B) $\frac{3 \mathrm{C}_{0}}{2}$
(B) $\frac{\mathrm{C}_{0}}{4}$
(D) $2 \mathrm{C}_{0}$
[B]
Q. 26 Four equal capacitors, each with a capacitance (C) are connected to a battery of E.M.F 10 volts as shown in the adjoining figure. The mid point of the capacitor system is connected to earth. Then the potentials of B and D are respectively -

(A) +10 volts, zero volts
(B) +5 volts, -5 volts
(C) -5 volts +5 volts
(D) zero volts, 10 volts
[B]
Q. 27 The equivalent capacity between the terminals X and Y in the figure shown will be -

(A) 100 pF
(B) 200 pF
(C) 300 pF
(D) 400 pF
[B]
Q. 28 What is the capacitance of the capacitor of square plates of area A, Shown in figure -

(A) $\frac{\in_{0} A}{4 d} \frac{K_{1} K_{2}}{K_{1}+K_{2}}$
(B) $\frac{\in_{0} A}{d} \frac{K_{1}\left(K_{1}+K_{2}\right)}{3 K_{1}+K_{2}}$

$$
\text { (C) } \frac{\epsilon_{0} A}{4 d} \frac{K_{1}\left(K_{1}+3 K_{2}\right)}{K_{1}+K_{2}} \text { (D) } \frac{\epsilon_{0} A}{4 \mathrm{~d}\left(\mathrm{~K}_{1}+3 \mathrm{~K}_{2}\right)}
$$

[C]
Q. 29 A dielectric slab of area A and thickness d is inserted between the plates of a capacitor of area 2 A and distance between plates d with a constant speed v as shown in the fig. The capacitor is connected to a battery of emf E. The current in the circuit varies with time as

(A)

(B)

(C)

(D)

Q. 30 Find the capacitance of a system of three parallel plates each of area A separated by distance d_{1} and d_{2}. The space between them is filled with dielectrics of relative dielectric constants ε_{1} and ε_{2}. The dielectric constant of free space is $\varepsilon_{0}-$
(A) $\frac{\varepsilon_{1} \varepsilon_{2} \varepsilon_{0} \mathrm{~A}}{\varepsilon_{1} \mathrm{~d}_{2}+\varepsilon_{2} \mathrm{~d}_{1}}$
(B) $\frac{\varepsilon_{1} \varepsilon_{2} \varepsilon_{0} A}{\varepsilon_{1} \mathrm{~d}_{1}+\varepsilon_{2} \mathrm{~d}_{2}}$
(C) $\frac{\varepsilon_{1} \varepsilon_{2} \mathrm{~A}}{\varepsilon_{0}\left(\varepsilon_{1}+\varepsilon_{2}\right) \mathrm{d}_{1} \mathrm{~d}_{2}}$
(D) $\frac{\mathrm{A}}{\varepsilon_{1} \varepsilon_{2} \varepsilon_{0}\left(\varepsilon_{1} \mathrm{~d}_{1}+\varepsilon_{2} \mathrm{~d}_{2}\right)}$
[A]
Q. 31 For making a parallel plate capacitor , two plates of copper, a sheet of mica (thickness $=0.1 \mathrm{~mm}, \mathrm{~K}=5.4$), a sheet of glass (thickness $=0.2 \mathrm{~mm}, \mathrm{~K}=7$) and a slab of paraffin (thickness $=1.0 \mathrm{~cm}, \mathrm{~K}=2$) are available. To obtain the largest capacitance, which sheet should you place between the copper plates ?
(A) Mica
(B) Glass
(C) Paraffin
(D) None of these
[A]
Q. 32 The capacity of a parallel plate condenser is C_{0}. If a dielectric of relative permittivity ε_{r} and thickness equal to one fourth the plate separation is placed between the plates, then its capacity becomes C . Then value of $\frac{\mathrm{C}}{\mathrm{C}_{0}}$ will be-
(A) $\frac{5 \varepsilon_{\mathrm{r}}}{4 \varepsilon_{\mathrm{r}}+1}$
(B) $\frac{4 \varepsilon_{r}}{3 \varepsilon_{r}+1}$
(C) $\frac{3 \varepsilon_{\mathrm{r}}}{2 \varepsilon_{\mathrm{r}}+1}$
(D) $\frac{2 \varepsilon_{r}}{\varepsilon_{r}+1}$
[B]
Q. 33 In the adjoining diagram the capacitors C_{1} and C_{2} are connected to battery. Air is filled between the plates of C_{1} and a dielectric is filled between the plates C_{2}, then -

(A) $\mathrm{q}_{1}<\mathrm{q}_{2}$
(B) $q_{1}>q_{2}$
(C) $q_{1}+q_{2}$
(D) None of these .
[A]
Q. 34 Figure below shows fourplates each of area A and separated from one another by a distance d . What is the capacitance between P and Q -

(C) $\frac{3 \varepsilon_{0} A}{d}$
(D) $\frac{4 \varepsilon_{0} A}{d}$
[B]

Sol. By using point potential method equivalent circuit is

$\therefore \mathrm{C}_{\mathrm{eq}}=\frac{2 \epsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
Q. 35 In the adjoining figure given below, charge on $10 \mu \mathrm{~F}$ capacitor is -

(A) $2 \times 10^{-3} \mathrm{C}$
(B) $16 \times 10^{-4} \mathrm{C}$
(C) $4 \times 10^{-3} \mathrm{C}$
(D) $8 \times 10^{-4} \mathrm{C}$
[A]
Sol. $\quad V_{10 \mu \mathrm{~F}}=200 \mathrm{~V}$
$\therefore \mathrm{Q}=\mathrm{CV}=\left(10 \times 10^{-6}\right)(200)=2 \times 10^{-3} \mathrm{C}$
Q. 36 Separation between the plates of a parallel plate capacitor is 5 mm . This capacitor, having air as the dielectric medium between the plates, is charged to a potential difference 25 V using a battery. The battery is then disconnected and a dielectric slab of thickness 3 mm and dielectric constant $\mathrm{K}=10$ is placed between the plates, as
shown. Potential difference between the plates after the dielectric slab has been introduced is -

(A) 18.5 V
(B) 13.5 V
(C) 11.5 V
(D) 6.5 V

Sol. [C]
The capacitor is charged by a battery 25 V . Let the magnitude of surface charge density on each plate be σ. Before inserting the dielectric slab, field strength between the plates,

$$
\begin{aligned}
\mathrm{E} & =\frac{\sigma}{\varepsilon_{0}}=\frac{\mathrm{V}}{\mathrm{~d}} \\
\text { or } \mathrm{E} & =\frac{\sigma}{\varepsilon_{0}}=\frac{25}{5 \times 10^{-3}}=5000 \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

The capacitor is disconnected form the battery but charge on it will not change so that σ has the same value. When a dielectric slab of thickness 3 mm is placed between the plates, the air thickness between the plates will be $5-3=2 \mathrm{~mm}$. Electric field strength in air will have the same value ($5000 \mathrm{~N} / \mathrm{C}$) but inside the dielectric, it will be $\frac{5000}{\mathrm{~K}}=\frac{5000}{10}=500 \mathrm{~N} / \mathrm{C}$ So potential difference

$$
\begin{aligned}
&= \mathrm{E}_{\text {air }} \mathrm{d}_{\text {air }}+\mathrm{E}_{\text {med }} \mathrm{d}_{\text {med }} \\
&=5000 \times\left(2 \times 10^{-3}\right)+500 \times\left(3 \times 10^{-3}\right) \\
&=11.5 \mathrm{~V}
\end{aligned}
$$

Q. 37 The equivalent capacitance of the combination of the capacitors is -

(A) $3.20 \mu \mathrm{~F}$
(B) $7.80 \mu \mathrm{~F}$
(C) $3.90 \mu \mathrm{~F}$
(D) $2.16 \mu \mathrm{~F}$
[A]
(A) $100 \mu \mathrm{~J}$
(B) $-100 \mu \mathrm{~J}$
(C) $80 \mu \mathrm{~J}$
(D) $-80 \mu \mathrm{~J}$
[C]

Sol.

Before the switch S is closed

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{i}} & =\mathrm{C}_{\mathrm{eq}} \mathrm{~V} \\
& =5 \times 4=20 \mu \mathrm{C}
\end{aligned}
$$

When the switch S is closed

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{f}}=\mathrm{CV} \\
& \quad=10 \times 4=40 \mu \mathrm{C} \\
& \begin{aligned}
& \mathrm{W}(\text { cell })=\Delta \mathrm{QE}=\left(\mathrm{Q}_{\mathrm{f}}-\mathrm{Q}_{\mathrm{i}}\right) \times \mathrm{E} \\
&=20 \times 4=80 \mu \mathrm{~J}
\end{aligned}
\end{aligned}
$$

Q. 39 A capacitor stores $50 \mu \mathrm{C}$ charge when connected across a battery. When the gap between the plates is filled with a dielectric, a charge of $100 \mu \mathrm{C}$ flows through the battery. The dielectric constant of the material is -
(A) 2.5
(B) 2
(C) 4
(D) 3
[D]
Sol. $\quad \mathrm{Q}_{1}=\mathrm{C}_{1} \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{Q}_{2}=\mathrm{C}_{2} \mathrm{~V} \\
& \frac{50}{150}=\frac{\varepsilon_{0}}{\mathrm{~K} \varepsilon_{0}}
\end{aligned}
$$

$$
K=3
$$

Q. 40 Three identical, parallel conducting plates A, B and C are placed as shown. Switches S_{1} and S_{2} are open, and can connect A and C to earth when closed. +Q charge is given to B . Then:

Fig.
(A) If S_{1} is closed with S_{2} open, a charge of amount Q will pass through S_{1}
(B) If S_{2} is closed with S_{1} open, a charge of amount Q will pass through S_{2}
(C) If S_{1} and S_{2} are closed together, a charge of amount $\mathrm{Q} / 3$ will pass through S_{1} and a charge of amount $2 \mathrm{Q} / 3$ will pass through S_{2}
(D) All of the above statements are incorrect
[D]
Sol. When either A or C is earthed (but not both together), a parallel-plate capacitor is formed with B , with $\pm \mathrm{Q}$ charges on the inner surfaces. [The other plate, which is not earthed, plays no role]. Hence, charge of amount $+Q$ flows to earth.
When both are earthed together A and C effectively become connected. The plates now form two capacitors in parallel with capacitances in the ratio $1: 2$ and hence, share charges Q in the same ratio
Q. 41 Two capacitor $\mathrm{C}_{1} \& \mathrm{C}_{2}$, charged with $\mathrm{q}_{1} \& \mathrm{q}_{2}$ are connected in series with an uncharged capacitor C , as shown in figure. As the switch S is closed

(A) C gets charged in any condition
(B) C gets charged only when $\mathrm{q}_{1} \mathrm{C}_{2}>\mathrm{q}_{2} \mathrm{C}_{1}$
(C) C gets charged only when $\mathrm{q}_{1} \mathrm{C}_{2}<\mathrm{q}_{2} \mathrm{C}_{1}$
(D) C gets charged when $\mathrm{q}_{1} \mathrm{C}_{2} \neq \mathrm{q}_{2} \mathrm{C}_{1}$
[D]

Sol. Charge in the circuit flows only when potential difference across C_{1} is either greater or less than that across C_{2}
ie. $\frac{\mathrm{q}_{1}}{\mathrm{C}_{1}} \neq \frac{\mathrm{q}_{2}}{\mathrm{C}_{2}} \therefore \mathrm{q}_{1} \mathrm{C}_{2} \neq \mathrm{q}_{2} \mathrm{C}_{1}$
Q. 42 In the condenser show in the circuit is charged to 5 V and left in the circuit, in 12 s the charge on the condenser will become -

(A) $\frac{10}{\mathrm{e}} \mathrm{C}$
(B) $\frac{\mathrm{e}}{10} \mathrm{C}$
(C) $\frac{10}{e^{2}}$
(D) $\frac{\mathrm{e}^{2}}{10} \mathrm{C}$
[A]

Sol. During discharge

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{c}}=C E\left(\mathrm{e}^{\frac{-\mathrm{t}}{\mathrm{RC}}}\right) \\
& =2 \times 5\left(\mathrm{e}^{-\frac{12}{12}}\right) \\
& =\frac{10}{\mathrm{e}}
\end{aligned}
$$

Q. 43 Two capacitors are joined in series as shown in figure. The area of each plate is A. The equivalent of the combination is -

(A) $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}_{1}-\mathrm{d}_{2}}$
(B) $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{a}-\mathrm{b}}$
(C) $\varepsilon_{0} \mathrm{~A}\left(\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~b}}\right)$
(D) $\varepsilon_{0} \mathrm{~A}\left(\frac{1}{\mathrm{~d}_{1}}-\frac{1}{\mathrm{~d}_{2}}\right)$
[B]
Sol. When two capacitors are in series

$\Rightarrow \frac{1}{\mathrm{C}_{\mathrm{eq}}}=\frac{\mathrm{x}_{1}}{\epsilon_{0} \mathrm{~A}}+\frac{\mathrm{x}_{2}}{\epsilon_{0} \mathrm{~A}}=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{\epsilon_{0} \mathrm{~A}}$
$\therefore \mathrm{C}_{\mathrm{eq}}=\frac{\epsilon_{0} \mathrm{~A}}{\mathrm{x}_{1}+\mathrm{x}_{2}}$
$=\frac{\in_{0} \mathrm{~A}}{\text { Sum of separations between plates }}$
Now in given arrangement
Capacitors are in series
\& sum of separations $=\mathrm{a}-\mathrm{b}$
$\therefore \mathrm{C}_{\mathrm{eq}}=\frac{\in_{0} \mathrm{~A}}{\mathrm{a}-\mathrm{b}}$
Q. 44 A closed body, whose surface F is made of metal foil, has an electrical capacitance C with respect to an uniformly distant point. The foil is now dented in such a way that the new surface F^{*} is entirely inside or an the original surface as shown in the figure. Then -

(A) Capacitance of $\mathrm{F}^{*}>$ capacitance of F
(B) Capacitance of F^{*} < capacitance of F
(C) Capacitance of $\mathrm{F}^{*}=$ capacitance of F
(D) Nothing can be concluded from given
[B]
Sol. $\quad U_{i}=\frac{Q^{2}}{2 C_{i}}$
$\mathrm{U}_{\mathrm{f}}=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}_{\mathrm{f}}}$
As surface was deformed in such a way that charge on original surface are coming closer or moving perpendicular to electric force acting on them total energy of foil get increase.
$\mathrm{U}_{\mathrm{f}}>\mathrm{U}_{\mathrm{i}} \longrightarrow$
$\frac{Q^{2}}{2 C_{f}}>\frac{Q^{2}}{2 C_{i}}$
$C_{1}>C_{f}$
Q. 45

If the current, charging a capacitor, is kept constant then the potential difference V across the capacitor varies with time t as -
(A)

(C)

(B)

(D)

-
Q. 46 Find the capacitance between the inner and outer curved cylindrical conductor surface as shown in figure :
[Space between conductor surface is filled with

(A) 6.86 PF
(B) 1.86 PF
(C) 3.26 PF
(D) 12.63 PF
[A]

Sol.

$\mathrm{dC}=\frac{\varepsilon_{0} \mathrm{KRd} \theta \times \mathrm{h}}{\mathrm{b}}$
All small dC are in parallel

$$
\begin{aligned}
& \therefore \mathrm{C}_{\mathrm{eq}}=\Sigma \mathrm{dC}=\int_{\theta=0}^{\frac{\pi}{6}} \mathrm{dC} \\
& \quad=\frac{6 \mathrm{KhR}}{\mathrm{~b}} \int_{\theta=0}^{\frac{\pi}{6}} \mathrm{~d} \theta=\frac{\pi}{6} \times \frac{\varepsilon_{0} \mathrm{KhR}}{\mathrm{~b}}
\end{aligned}
$$

Q. 47 A parallel plate capacitor is made by stacking n equally spaced plates connected alternately. If the capacitance between any two plates is C. Then the resultant capacitance is -
(A) C
(B) nC
(C) $(\mathrm{n}-1) \mathrm{C}$
(D) $(\mathrm{n}+1) \mathrm{C}$
[C]
Q. 48 A capacitor of capacitance $160 \mu \mathrm{~F}$ is charged to a potential difference of 200 V and then connected across a discharge tube which conducts until the potential deference across it has failed to 100 V . The energy dissipated in the tube is -
(A) 6.4 J
(B) 4.8 J
(C) 3.2 J
(D) 2.4 J
[D]
Q. 49 A capacitor of capacitance C is charged to a potential difference V_{0}. The charging battery is disconnected and the capacitor is connected to a capacitor of unknown capacitance C_{x}. The P.D. across the combination is V. The value of C_{x} should be-
(A) $\frac{C\left(V_{0}-V\right)}{V}$

(C) $\frac{\mathrm{CV}}{\mathrm{V}_{0}}$
(D) $\frac{\mathrm{CV}_{0}}{\mathrm{~V}}$
[A]
Q. 50 In the figure initial status of capacitance and their connection is shown. Which of the following is incorrect about this circuit -

(A) Final charge on each capacitor will be zero
(B) Final total electrical energy of the capacitors will be zero

PHYSICS

Q. 1 Two conducting spheres of radii 6 cm and 12 cm each having same charge of $3 \times 10^{-8} \mathrm{C}$ are kept very far apart. If the spheres are connected to each other by a conducting wire (a) find the direction and amount of charge transferred and (b) final potential of each sphere.

Ans. $\quad\left[(a)\right.$ charge transferred $=\left(q_{1}-q^{\prime}{ }_{1}\right)=\left(q_{2}-q^{\prime}{ }_{2}\right)$ $\left.=1 \times 10^{-8} \mathrm{C}(\mathrm{b}) \mathrm{V}_{1}^{\prime}=\mathrm{V}_{2}^{\prime}=\mathrm{V}=3 \mathrm{kV}\right]$
Q. 2 Figure shows three concentric thin spherical shells A, B and C of radii a, b and c respectively. The shells A and C are given charges q and $-q$ respectively and the shell B is earthed. Find the charges appearing on the outer surfaces of B and C.

Ans. $\left[\frac{\mathrm{bq}}{\mathrm{c}},-\mathrm{q}\left(1-\frac{\mathrm{b}}{\mathrm{c}}\right)\right]$
Q. 3 What amount of heat will be generated in the circuit shown in the figure when the switch S is shifted from position 1 to 2 ?

Q. 4 A parallel plate capacitor of plate area $A=10^{-2} \mathrm{~m}^{2}$ and plate separation $d=10^{-2} \mathrm{~m}$ is charged to $V_{0}=100$ volt. Then after removing the charging battery, a slab of insulating material of thickness $b=0.5 \times 10^{-2}$ metre and dielectric constant
$K=7$ is inserted between the plates. Calculate the free charge on the plates of the capacitor, electric field intensity in air, electric field intensity in the dielectric, potential difference between the plates and capacitance (with dielectric present).
Ans. $\quad\left[16 \times 10^{-12}\right.$ farad $\left.=16 \mu \mu \mathrm{~F}\right]$
Q. 5 Three dielectric slabs A, B, C of thicknesses 5 $\mathrm{mm}, 3 \mathrm{~mm}, 2 \mathrm{~mm}$ and dielectric constants 2,3 and 5 respectively fill the space between the plates of a parallel plate capacitor. The distance between the plates being 10 mm . If a potential difference of 351 V is applied to the plates. Find the electric field intensity in each of the dielectric.
Ans. $\quad[45 \mathrm{~K} V / \mathrm{m}, 30 \mathrm{~K} \mathrm{~V} / \mathrm{m}, 18 \mathrm{~K} \mathrm{~V} / \mathrm{m}]$
Q. 6 The parallel plates of a capacitor have an area 0.2 m^{2} and are $10^{-2} \mathrm{~m}$ apart. The original potential difference between them is 3000 V , and it decreases to 1000 V when a sheet of dielectric is inserted between the plates. Compute:
(a) original capacitance C_{0}
(b) the charge Q on each plate
(c) capacitance C after insertion of the dielectric
(d) dielectric constant K
(e) permittivity ε of the dielectric
(f) the original field E_{0} between the plates and
(g) the electric field E after insertion of the dielectric. $\left(\varepsilon_{0}=9 \times 10^{-12}\right.$ S.I. unit $)$

Ans.
(a) 180 pF
(b) $54 \times 10^{-8} \mathrm{C}$
(c) 540 pF
(d) 3 (e) $27 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
(f) $3 \times 10^{5} \mathrm{~V} / \mathrm{m}$
(g) $\left.10^{5} \mathrm{~V} / \mathrm{m}\right]$
Q. 7 A charge of $+2.0 \times 10^{-8} \mathrm{C}$ is placed on the positive plate and a charge of $-1.0 \times 10^{-8} \mathrm{C}$ on the negative plate of a parallel-plate capacitor of capacitance $1.2 \times 10^{-3} \mu \mathrm{~F}$. Calculate the potential difference developed between the plates.
Ans. [12.5 V]
Q. 8 A circuit has a section $A B$ shown in fig. The emf of the source equals $\mathrm{E}=10 \mathrm{~V}$ the capacitances are equal to $\mathrm{C}_{1}=1.0 \mu \mathrm{~F}, \mathrm{C}_{2}=2 \mu \mathrm{~F}$ and the potential difference $\phi_{\mathrm{A}}-\phi_{\mathrm{B}}=5.0 \mathrm{~V}$. Find the voltage across each capacitor.

Ans. $\quad\left[\mathrm{V}_{1}=\mathrm{q} / \mathrm{C}_{1}=10 / 3 \mathrm{~V}, \mathrm{~V}_{2}=\mathrm{q} / \mathrm{C}_{2}=5 / 3 \mathrm{~V}\right.$, where $\mathrm{q}=\left(\phi_{\mathrm{A}}-\phi_{\mathrm{B}}+\varepsilon\right) \mathrm{C}_{1} \mathrm{C}_{2} /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$
Q. 9 Four perfect capacitors are connected as shown to the three terminals A, B and C. Now, terminals B and C are connected together, what capacitance would be measured across terminals A and B ?

Ans. $\quad\left[\frac{61}{30} \mu \mathrm{~F}\right]$
Q. 10 Three capacitors of capacitances 0.002, 0.004 and $0.006 \mu \mathrm{~F}$ are connected in serfes. The puncture voltage of each capacitor is 4000 . The electric potential of 11000 V is applied across the series combination of capacitors. Will the breakdown of capacitor having capacitance $0.006 \mu \mathrm{~F}$ take place ? Give answer analytically.
Ans. [No]
-
An infinite number of identical capacitors, each of capacitance $1 \mu \mathrm{~F}$ are connected as infinite number of rows having capacitors $1,4,16,64,256$,
\qquad respectively as indicated in the fig. If these rows are connected in parallel, evaluate the equivalent capacitance between points A and B .

Ans. $\quad[4 / 3 \mu \mathrm{~F}]$
Q. 12 A capacitor of capacity $C_{1}=1.0 \mu \mathrm{~F}$ withstands are maximum voltage $\mathrm{V}_{\mathrm{I}}=6 \mathrm{kV}$ while another capacitor of eapacitance $C_{2}=2 \mu \mathrm{~F}$ withstands the maximum voltage $\mathrm{V}_{2}=4 \mathrm{kV}$. What maximum voltage will the system of these two capacitors withstand if they are connected in series?
Ans. $[9 \mathrm{KV}]$

A particle of mass $9 \times 10^{-31} \mathrm{~kg}$ and a negative charge of 1.6×10^{-19} coulomb projected horizontally with a velocity of $10^{5} \mathrm{~m} / \mathrm{s}$ into a region between two infinite horizontal parallel plate having 0.3 cm gap and the particles enters 0.1 cm below the top plate. The top and bottom plates are connected respectively to the positive and negative terminals of a 30 volt battery. Find the component of the velocity of the particle just before it hits on one of the plate.

Ans. $\quad\left[1.88 \times 10^{6} \mathrm{~m} / \mathrm{s}\right]$
Q. 14 Find the potential difference between the points A and B in the fig. The values of capacitances are in $\mu \mathrm{F}$.

Ans. [1 V]
Q. 15 Three parallel metallic plates, each of area A are kept as shown in the figure and charges $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and Q_{3} are given to them. Edge effects are negligible. Calculate the charges on the two outermost surfaces ' a ' and ' f '. Is there any relation between charge on ' a ' and charge on f ?

Ans. $\quad\left[\left(\frac{\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}}{2}\right)\right.$ oneach, $\left.\mathrm{Q}_{\mathrm{a}}=\mathrm{Q}_{\mathrm{f}}\right]$
Q. 16 Two parallel-plate capacitors are arranged perpendicular to the common axis. The separation d between the capacitors is much larger than the separation l between their plates and than their size. The capacitors are charged to q_{1} and q_{2} respectively. Find the force F of interaction between the capacitors.

Ans.

$\left[\frac{3}{2} \frac{\mathrm{q}_{1} \mathrm{q}_{2} \mathbf{I}_{2}}{\pi \varepsilon_{0} \mathrm{~d}^{4}}\right]$
Q. 17 Two parallel plate capacitors with different distances between the plates are connected in parallel to a voltage source. A point positive charge is moved from point ' 1 ' i.e. exactly in the middle between the plates of a capacitor C_{1} to a point ' 2 ' that lies at a distance from the negative plate of C_{2} equal to half the distance between the
plates of C_{1}. Is any work done in the process ? Explain clearly.

Ans. [Yes]
Q. 18 Four capacitances C_{1}, C_{2}, C_{3} and C_{4} are connected to a battery of constant e.m.f. 12 volt as shown in the figure. Find the charge on each capacitor when (a) the switch S_{1} is closed and
(b) the switch S_{2} is also closed.

Given $\mathrm{C}_{1}=1 \mu \mathrm{~F}, \mathrm{C}_{2}=2 \mu \mathrm{~F}, \mathrm{C}_{3}=3 \mu \mathrm{~F}$ and
$\mathrm{C}_{4}=4 \mu \mathrm{~F}$. Calculate the total charge drawn from the battery in each case.

Ans. $\mathrm{Q}_{1}=\mathrm{Q}_{3}=9 \mu \mathrm{C}, \mathrm{Q}_{2}=\mathrm{Q}_{4}=16 \mu \mathrm{C}$ (ii) $\mathrm{Q}_{1}=8.4$ $\mu \mathrm{C}, \mathrm{Q}_{2}=16.8 \mu \mathrm{C}, \mathrm{Q}_{3}=10.8 \mu \mathrm{C}, \mathrm{Q}_{4}=14.4 \mu \mathrm{C}$
Q. 19 The gap between the plates of a parallel-plate capacitor is filled with isotropic dielectric whose permittivity ε varies linearly from ε_{1} to $\varepsilon_{2}\left(\varepsilon_{2}>\right.$ ε_{1}) in the direction perpendicular to the plates. The area of each plate equals S, the separation between the plates is equal to d. Find the capacitance of the capacitor;

Ans. $\quad\left[C=\varepsilon_{0}\left(\varepsilon_{2}-\varepsilon_{1}\right) S / d \ln \left(\varepsilon_{2} / \varepsilon_{1}\right)\right]$
Q. 20 A sheet of mica, 1 mm thick and of relative permittivity 6 , is interposed between two parallel brass plates 3 mm apart. The remainder of the space between the plates is occupied by air. Calculate the area of each plate if the capacitance between them is $0.001 \mu \mathrm{~F}$. Assuming that air can withstand a potential gradient of $3 \mathrm{MV} / \mathrm{m}$. Show that a p.d. of 5 KV between the plates will not cause a flashover.

Ans. $\quad\left[\mathrm{A}=0.2447 \mathrm{~m}^{2}, \mathrm{E}_{\text {air }}=2.3 \times 10^{6} \mathrm{~V} / \mathrm{m}\right]$

