PHYSICS

The following questions given below consist of an "Assertion" (A) and 'Reason" (R) Type questions. Use the following Key to choose the appropriate answer.
(A) If both (A) and (R) are true, and (R) is the correct explanation of (A).
(B) If both (A) and (R) are true but (R) is not the correct explanation of (A).
(C) If (A) is true but (R) is false.
(D) If (A) is false but (R) is true.
Q. 1 Assertion : Melting point of ice decrease upon increase in pressure.
Reason : Volume of water is smaller than volume of ice.
Sol. Upon increasing pressure ice melts as to decrease the volume and thereby pressure. To freeze the melted ice one need to decrease the temperature down and hence melting point decreases.
Q. 2 Assertion : In lake or ocean water does not freeze completely.
Reason : Water has minimum volume at $4^{\circ} \mathrm{C}$
[A]
Q. 3 Assertion : The melting point of substances must rise with increase in pressure.
Reason : To melt a substance at its melting point heat is given to it.
[D]
Q. 4 Assertion : Amount of heat required to raise the temperature of 1 kg of water through $1^{\circ} \mathrm{C}$ is 1 kilocalorie.
Reason : By definition, 1 calorie is the amount of heat required to raise the temperature of 1 gram of water through $1^{\circ} \mathrm{C}$.
Q. 5 Assertion : Specific heat of a substance during change of state is infinite.
Reason : During change of state $\Delta \mathrm{Q}=\mathrm{mL}$, specific heat does not come in.
Q. 6 Assertion : Work required to produce 1 calorie of heat is 4.2 joule.
Reason : This is the standard value of Joule's mechanical equivalent of heat.
[A]
Q. 7 Statement I : Water equivalent of a body is depends upon the mass of body.

Statement II : Heat capacity of body is directly proportional to mass.
Q. 8 Statement I : If heat is given to a body then its temperature always increases.

Statement II : When heat is given to a solid body then its internal energy increases.
Q. $9 \quad$ Statement I : If same amount of ice at $0^{\circ} \mathrm{C}$ and water is taken, then total ice will only melt if the temp. of water is greater than $80^{\circ} \mathrm{C}$.

Statement II : From principle of calorimetry, when two substance at different temp. are mixed then heat given by hot substance is equal to heat taken by cold substance.
Q. 10 Assertion : During phase transformation internal energy of material doesn't changes.

Reason : Temperature of material remains same during phase-transformation.
Q. 11 Assertion : Figure shows an arrangement of heating cylinder ' C '. Cylinder is heated more efficiently if steam is passed from A to B.

Reason : Steam tends to stay more time in passed from A to B.
Q. 12 Assertion: Melting of solid at its given melting point will increase the internal kinetic energy.
Reason: Latent heat is the heat required to melt a unit mass of solid at its melting point.
Q. 13 Statement-1: Temperature of the body is lowered considerably if we put wet clothes.
Statement -2: Specific heat of water is high.
(A) Both statement -1 and statement -2 are true and statement -2 is a correct explanation of the statement -1
(B) Both statement -1 and statement -2 are true but statement -2 is not a correct explanation of the statement -1
(C) Both statement -1 and statement -2 are false
(D) statement -1 is false but the statement -2 is true.
Q. 14 Assertion : During phase change temperature of the substance remains constant i.e. during solid \rightarrow liquid and liquid \rightarrow gas.
Reason : Internal energy of the substance during change of phase remains constant. [C]
Q. 15 Statement-1 : The specific heat of a gas in an adiabatic process is zero but it is infinite in an isothermal process.
Statement-2 : Specific heat of a gas directly proportional to heat exchanged with the system and inversely proportional to change in temperature
Sol [A]
Q. 16 Assertion (A) : Melting of solid causes no change in internal energy
Reason (R) : Spécific latent heat is the heat required to melt a unit mass of solid.
Sol. [D]

PHYSICS

Q. 1 The specific heat capacity of a material is given as $\mathrm{C}=\mathrm{AT}$, where A is a constant, T is temperature. The substance is heated from $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$. Unit of A is $\mathrm{J} / \mathrm{kg} . \mathrm{K}^{2}$. Then match quantities in column I to that in column II.

Column-I

Column-II
(A) Mean specific
(P) 400 A
heat in the range $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$ is
(B) Actual specific heat at $127^{\circ} \mathrm{C}$ is
(C) Graph of specific
(Q) 350 A

年

heat versus temperature is
(D) Graph of amount of heat transferred versus temperature is
(A) $\rightarrow \mathrm{Q}$
(B) \rightarrow P

(S)

Column-I contains temperature-range and column-II contains type of thermometer that can be used to measure temperature in that range.

Column I

$\begin{array}{ll}\text { (A) }-60^{\circ} \mathrm{C} \text { to } 140^{\circ} \mathrm{C} & \text { (P) Radiation thermometer }\end{array}$
(B) $-260^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$
(Q) Thermoelectric thermometer
(C) $-200^{\circ} \mathrm{C}$ to $1600^{\circ} \mathrm{C}$
(R) Mercury thermometer
(D) $-4000^{\circ} \mathrm{C}$ to $5000^{\circ} \mathrm{C}$ (S) Platinum thermometer

Sol. $\quad \mathbf{A} \rightarrow \mathbf{Q}, \mathbf{R}, \mathbf{S} ; \mathbf{B} \rightarrow \mathbf{S} ; \mathbf{C} \rightarrow \mathbf{Q} ; \mathbf{D} \rightarrow \mathbf{P}$

Q. 3 Column-I

(A) Final mixture contain (P) 1 kg of ice at $-50^{\circ} \mathrm{C}$ only water \quad is mixed with $1 \times 10^{-2} \mathrm{~kg}$ of water at $0^{\circ} \mathrm{C}$
(B) Final mixture contain (Q) 1 kg of ice at 0° with only ice $\frac{1}{3} \mathrm{~kg}$ of steam at $100^{\circ} \mathrm{C}$
(C) Final mixture contain (R) $\frac{1}{3} \mathrm{~kg}$ of water at $100^{\circ} \mathrm{C}$ only steam with 1.8 kg of steam of $200^{\circ} \mathrm{C}$.
(D) Final temperature is
$100^{\circ} \mathrm{C}$
(S) 1 kg of ice at $0^{\circ} \mathrm{C}$ with 1 kg of water at $100^{\circ} \mathrm{C}$

Ans. $\quad \mathbf{A} \rightarrow \mathbf{Q}, \mathbf{S} ; \mathbf{B} \rightarrow \mathbf{P} ; \mathbf{C} \rightarrow \mathbf{R} ; \mathbf{D} \rightarrow \mathbf{Q}, \mathbf{R}$

Q. 4 Three liquids A, B and C are in three separate containers. Temperature at A, B and C are $10^{\circ} \mathrm{C}$, $15^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$. Mass of each liquid is same. Relation among specific heat capacity of A, B and C are $\mathrm{S}_{\mathrm{A}}=2 \mathrm{~S}_{\mathrm{B}}=4 \mathrm{~S}_{\mathrm{C}}$

Column-I

Column-II

(A) Thermal energy of A (P) When liquid A and B changes are mixed
(B) Thermal energy of B changes
(Q) When liquid A and C are mixed
(C) Final temperature is $\frac{35}{3}{ }^{\circ} \mathrm{C}$
(R) When liquid B and C are mixed
(D) Final temperature is $\frac{90}{7}{ }^{\circ} \mathrm{C}$
(S) When all three liquids are mixed

Ans. $\quad \mathrm{A} \rightarrow \mathbf{P}, \mathbf{Q}, \mathbf{S} ; \mathbf{B} \rightarrow \mathbf{P}, \mathbf{R}, \mathbf{S} ; \mathbf{C} \rightarrow \mathbf{P} ; \mathbf{D} \rightarrow \mathbf{S}$
Q. 5 Match the column

Column-I
(A) $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {mix }}<10^{\circ} \mathrm{C}$
(B) $\mathrm{T}_{\text {mix }} \leq 100^{\circ} \mathrm{C}$
(C) $20^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {mix }}<30^{\circ} \mathrm{C}$
(D) $30^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {mix }}$

Ans. $\quad \mathbf{A} \rightarrow \mathbf{R}, \mathbf{S}$
$\mathrm{C} \rightarrow \mathrm{Q}, \mathrm{T}$
(R) 100 gm water at $10^{\circ} \mathrm{C}$ $+$
3 gm steam at $100^{\circ} \mathrm{C}$

Column-II

(P) 10 gm water at $90^{\circ} \mathrm{C}$
$+$
5 gm water at $0^{\circ} \mathrm{C}$
(Q) 1 gm steam at $100^{\circ} \mathrm{C}$ + 6 gm ice at $0^{\circ} \mathrm{C}$
) 5 gm water at $70^{\circ} \mathrm{C}$ $+$
5 gm ice at $0^{\circ} \mathrm{C}$
(T) 1 gm water at $0^{\circ} \mathrm{C}$ $+$
1 gm steam at $100^{\circ} \mathrm{C}$
$\mathbf{B} \rightarrow \mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}, \mathbf{T}$
D $\rightarrow \mathbf{P}$
Q. 6 Column-I
(A) A steel ball is moving down in a viscous liquid

Column-II

(P) Internal energy of system must increase

(B) When a solid is given some amount of heat
(C) During melting of a substance
(Q) Temperature of system may increase
(D)

(S) Temperature of system must increase

Upper block is given
a velocity $\mathrm{v}_{0} \&$ lower
block initially at rest

Column I

(a) Final temperature is $2.5^{\circ} \mathrm{C}$
(b) Final mixture contain ice \& water
(c) Final mixture contains water \& steam
(d) Finaltemperature is $50^{\circ} \mathrm{C}$
(A) $\mathrm{a} \rightarrow \mathrm{q}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{s}, \mathrm{d} \rightarrow \mathrm{p}$
(B) $\mathrm{a} \rightarrow \mathrm{p}, \mathrm{b} \rightarrow \mathrm{s}, \mathrm{c} \rightarrow \mathrm{r}, \mathrm{d} \rightarrow \mathrm{q}$
(C) $\mathrm{a} \rightarrow \mathrm{p}, \mathrm{b} \rightarrow \mathrm{q}, \mathrm{c} \rightarrow \mathrm{r}, \mathrm{d} \rightarrow \mathrm{s}$
(D) $\mathrm{a} \rightarrow \mathrm{s}, \mathrm{b} \rightarrow \mathrm{p}, \mathrm{c} \rightarrow \mathrm{r}, \mathrm{d} \rightarrow \mathrm{q}$

Sol. [A]
Q. 10 Three liquids A, B and C are in three separate containers. Temperature at A, B and C are $10^{\circ} \mathrm{C}$, $15^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$. Mass of each liquid is same. Relation among specific heat capacity of A, B and C are $\mathrm{S}_{\mathrm{A}}=2 \mathrm{~S}_{\mathrm{B}}=4 \mathrm{~S}_{\mathrm{C}}$

Column-I

(A) Thermal energy of A changes
(B) Thermal energy of B changes
(C) Final temperature is $\frac{35}{3}^{\circ} \mathrm{C}$
(D) Final temperature is $\frac{90}{7}^{\circ} \mathrm{C}$

Column-II

(P) When liquid A and B are mixed
(Q) When liquid A and C are mixed
(R) When liquid B and C are mixed
(S) When all three liquids are mixed
(T) When half the sample of $A \& B$ are mixed

Column-I

Column-II
(A) A and B are mixed
with complete sample of C

Sol. $\quad(\mathrm{A}) \rightarrow \mathrm{P}, \mathrm{Q}, \mathrm{S}, \mathrm{T}$;
(B) $\rightarrow P, R, S, T$;
(C) $\rightarrow \mathrm{P}$;
(D) \rightarrow S
Q. 11

Match the column :

Column-I

(A) Final mixture
contains water
only
(B) Final mixture
contains both
ice and water

Column-II

(P) 5 gm of ice at $-20^{\circ} \mathrm{C}$ is mixed with 25 gm of water at $30^{\circ} \mathrm{C}$
(Q) 5 gm of ice at $-20^{\circ} \mathrm{C}$ is mixed with 18 gm of water at $25^{\circ} \mathrm{C}$
(C) Final mixture's
temperature is
$0^{\circ} \mathrm{C}$
(D) Final temperature is
of mixture is $10^{\circ} \mathrm{C}$
mixed with 5 gm of water at $20^{\circ} \mathrm{C}$
(T) 5 gm of water at $0^{\circ} \mathrm{C}$ is mixed with 2.5 gm of water at $30^{\circ} \mathrm{C}$
Sol.
(A) $\rightarrow \mathrm{P}, \mathrm{Q}, \mathrm{T}$;
(B) $\rightarrow \mathrm{R}$;
(C) $\rightarrow \mathrm{Q}, \mathrm{R}, \mathrm{S}$;
(D) $\rightarrow \mathrm{P}, \mathrm{T}$

PHYSICS

Q. 1 In three experiments, a material A at a particular low temperature T_{C} and a material B at a particular high temperature T_{H} are placed in an isolated and insulated container. When they reach thermal equilibrium with each other (No phase change occurs), their final temperature T_{f} is measured. The masses $\mathrm{m}_{\mathrm{A}} \& \mathrm{~m}_{\mathrm{B}}$ and specific heats $C_{A} \& C_{B}$ of the materials are given in the table. Assume that heat transferred is Q in the experiment.

Experiment	$\mathbf{m}_{\mathbf{A}}$	$\mathbf{C}_{\mathbf{A}}$	$\mathbf{m}_{\mathbf{B}}$	$\mathbf{C}_{\mathbf{B}}$
1	m	c	m	c
2	m	c	2 m	c
3	m	2 c	m	c

Then which of the following is correct
(A) $\left(\mathrm{T}_{\mathrm{f}}\right)_{1}>\left(\mathrm{T}_{\mathrm{f}}\right)_{2}>\left(\mathrm{T}_{\mathrm{f}}\right)_{3}$
(B) $\mathrm{Q}_{2}>\mathrm{Q}_{1}>\mathrm{Q}_{3}$
(C) $\mathrm{Q}_{1}>\mathrm{Q}_{2}>\mathrm{Q}_{3}$
(D) $\left(\mathrm{T}_{\mathrm{f}}\right)_{2}>\left(\mathrm{T}_{\mathrm{f}}\right)_{1}>\left(\mathrm{T}_{\mathrm{f}}\right)_{3}$
[A,B]
Q. 2 Three different materials of identical masses are placed in turn, in a special oyen where material absorbs energy at a constant rate. During the heating process, each material begins in liquid state and ends in gaseous state. Figure gives the temperature T versus time t for three materials. Then if T_{6} be the boiling temperature, C the specific heat of liquid, L the latent heat of vaporization, then -

(A) $\left(\mathrm{T}_{\mathrm{b}}\right)_{2}>\left(\mathrm{T}_{\mathrm{b}}\right)_{1}>\left(\mathrm{T}_{\mathrm{b}}\right)_{3}$
(B) $\mathrm{C}_{3}>\mathrm{C}_{2}>\mathrm{C}_{1}$
(C) $\mathrm{L}_{1}>\mathrm{L}_{3}>\mathrm{L}_{2}$
(D) $\mathrm{C}_{1}>\mathrm{C}_{2}>\mathrm{C}_{3}$
Q. 3 Heat is supplied to a ice at a constant rate Temperature variation with time is as shown in figure. Then -

(A) During AB volume of substance increases
(B) During BC volume of substance decreases
(C) Specific heat of substance in liquid phase is proportional to reciprocal of slope of portion AB , of graph
(D) Latent heat of fusion of substance is independent of portion AB of graph
[B,D]
Q. 4 A solid is, heated up and $\Delta \mathrm{H}$ vs $\Delta \theta(\Delta \mathrm{H}$: Heat given, $\Delta \theta$: change in temperature) is plotted as shown in figure. Material exist in only one phase in) -

(A) AB
(B) BC
(C) CD
(D) EF
[A,C,D]
Sol. If material exist in single phase, temperature always increases with heat supplied.
Q. 5 Thermometric property of a substance used to make thermometer varies with temperature as $\mathrm{x}=\mathrm{A} \theta^{\mathrm{n}}$ where θ is temperature, A is positive constant and n is positive rational number. The distance between two consecutive calibration on temperature scale -
(A) Increase with increase in temperature if $\mathrm{n}>1$
(B) Remains constant with change in temperature if $n=1$
(C) Increase with increase in temperature if $n=1 / 3$
(D) Decrease with increase in temperature if $\mathrm{n}<1$
[A,B,D]
Sol. x versus θ graph :

$$
[\mathrm{B}, \mathrm{C}]
$$

For same temperature difference change in ' x ' increase, with increase in temperature if $\mathrm{n}>1$, decrease with increase in temperature if $\mathrm{n}<1$, remains same if $\mathrm{n}=1$.
Q. 6 The heat capacity of a body depends on-
(A) the heat given
(B) the temperature raised
(C) the mass of the body
(D) the material of the body
Q. 7 If heat is supplied to a solid, its temperature-
(A) must increase
(B) may increase
(C) may remain constant(D) may decrease
[B,C]

The temperature of a solid object is observed to be constant during a period. In this period-
(A) heat may have been supplied to the body
(B) heat may have been extracted from the body
(C) no heat is supplied to the body
(D) no heat is extracted from the body
[A,B]
Q. 9 The temperature of an object is observed to rise in a period. In this period-
(A) heat is certainly supplied to it
(B) heat is certainly not supplied to it
(C) heat may have been supplied to it
(D) work may have been done on it
[C,D]
Q. 10 Heat is supplied to a certain homogeneous sample of matter at a uniform rate. Its temperature is plotted against time as shown in the figure

Which of the following conclusions can be drawn -
(A) its specific heat capacity is greater in the solid state than in the liquid state
(B) its specific heat capacity is greater in the liquid state in the solid state
(C) its latent heat of vaporization is greater than its latent heat of fusion
(D) its latent heat of vaporization is smaller than its latent heat of fusion
[A,C]
Sol. Slope of graph is greater in the solid state i.e. temperature is rising faster, hence lower heat capacity. The transition from solid to liquid state takes lesser time, hence latent heat is smaller.
Q. 11 The temperature change versus heat supplied curve is given for 1 kg of a solid block. Then, which of the following statements(s) is/are correct ?

(A) Specific heat capacity of the solid is $1 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
(B) Specific heat capacity of liquid phase is $\sqrt{3}$ $\mathrm{J} / \mathrm{kg} \mathrm{K}$
(C) Latent heat of vaporization is $100 \mathrm{~J} / \mathrm{kg}$
(D) Latent heat of vaporization is $200 \mathrm{~J} / \mathrm{kg}$
[A, D]
Q. 12 During the melting of a slab of ice at 273 K at atmospheric pressure,
[IIT-98]
(A) positive work is done by the ice-water system on the atmosphere
(B) positive work is done on the ice-water system by the atmosphere
(C) the internal energy of the ice-water system increases
(D) the internal energy of the ice-water system decreases
[B,C]
Q. 13 A material is heated up at constant rate and graph between rate of increment of temperature versus time is drawn -

Choose the correct option -
(A) Melting starts at 'P'
(B) Boiling starts at ' S '
(C) Specific heat of material in solid state is more than that in liquid state
(D) Latent heat of fusion is less than latent heat of vaporization
[B,D]
Sol. During phase transition temperature remains constant and hence $\frac{\mathrm{d} \theta}{\mathrm{dt}}=0$
Time during melting ($3 \mathrm{t}_{0}$) is less than time during vaporization ($15 \mathrm{t}_{0}$))
Q. 14 Choose the correct options -
(A) Specific heat is the property of substance alone
(B) Heat capacity is the property of substance alone
(C) Water equivalent is the property of substance alone
(D) Latent heat is the property of substance alone

Sol. conceptual
Q. 15 Three different liquids with equal masses (m), specific heat as $\mathrm{s}_{\mathrm{A}}, \mathrm{s}_{\mathrm{B}}$ and $\mathrm{s}_{\mathrm{C}} \&$ initial temperature as $T_{A}, T_{B} \& T_{C}$ are kept closed in a isolated container, then -
(A) final temperature of mixture will be $\frac{1}{3}\left(\mathrm{~T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{B}}+\mathrm{T}_{\mathrm{C}}\right)$ if $\mathrm{s}_{\mathrm{A}}=\mathrm{s}_{\mathrm{B}}=\mathrm{s}_{\mathrm{C}}$
(B) heat given by liquid A to liquid $B \& C$ will be $\frac{\mathrm{ms}_{\mathrm{A}}}{3}\left(2 \mathrm{~T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{C}}\right)$ if $\mathrm{s}_{\mathrm{A}}=\mathrm{s}_{\mathrm{B}}=\mathrm{s}_{\mathrm{C}}$
(C) heat absorbed by liquid C will be $\frac{\mathrm{ms}_{\mathrm{C}}}{\mathrm{s}_{\mathrm{A}}+\mathrm{s}_{\mathrm{B}}+\mathrm{s}_{\mathrm{C}}}\left[\mathrm{s}_{\mathrm{A}}\left(\mathrm{T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{C}}\right)+\mathrm{s}_{\mathrm{B}}\left(\mathrm{T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{C}}\right)\right]$
(D) heat absorbed by liquid A is

$$
\frac{\mathrm{ms}_{\mathrm{A}}}{3}\left(\mathrm{~T}_{\mathrm{B}}+\mathrm{T}_{\mathrm{C}}-2 \mathrm{~T}_{\mathrm{A}}\right) \text { if } \mathrm{s}_{\mathrm{A}} \stackrel{ }{=} \mathrm{s}_{\mathrm{B}}=\mathrm{s}_{\mathrm{C}}
$$

[A,B,C,D]
Sol. $\quad T_{\text {final }}=\frac{m_{A} s_{A} T_{A}+m_{B} s_{B} T_{B}+m_{C} s_{C} T_{C}}{m_{A} s_{A}+m_{B} s_{B}+m_{C} s_{C}}$
Q. $16 \mathrm{~m}_{1}$ gm ice at $0^{\circ} \mathrm{C}, \mathrm{m}_{2} \mathrm{gm}$ water at $50^{\circ} \mathrm{C}$ and $\mathrm{m}_{3} \mathrm{gm}$
steam at $100^{\circ} \mathrm{C}$ are mixed together then the
correct alternative is -
(A) Temperature of mixture is $0^{\circ} \mathrm{C}$

$$
\text { if } \mathrm{m}_{1} \geq \frac{5}{8} \mathrm{~m}_{2}+8 \mathrm{~m}_{3}
$$

(B) Temperature of mixture is $100^{\circ} \mathrm{C}$
if $\mathrm{m}_{3} \geq \frac{5}{54} \mathrm{~m}_{2}+\frac{\mathrm{m}_{1}}{3}$
(C) Temperature of mixture is $50^{\circ} \mathrm{C}$ if $23 \mathrm{~m}_{1}=59 \mathrm{~m}_{3}$
(D) Temperature of mixture is $50^{\circ} \mathrm{C}$ if $18 \mathrm{~m}_{1}=59 \mathrm{~m}_{3}$
[A,B,C]
Sol. Heat taken by (ice + water $)=$ Heat given by steam if temp of mixture is $100^{\circ} \mathrm{C}$.
Q. 171 kg of ice at $0^{\circ} \mathrm{C}$ is mixed with 1.5 kg of water at $45^{\circ} \mathrm{C}$ [latent heat of fusion $=80 \mathrm{cal} / \mathrm{g}$]. Then-
(A) the temperature of the mixture of $0^{\circ} \mathrm{C}$
(B) mixture contains 156.25 g of ice
(C) mixture contains 843.75 g of ice
(D) the temperature of the mixture is $15^{\circ} \mathrm{C}$

Sol. [A,B]
Use principle of calorimetery.
Q. 18 It takes 15 minutes to raise a certain amount of water $0^{\circ} \mathrm{C}$ to boiling point using an electric heater. After this one hour and twenty minutes are required in the same conditions to convert all the water into vapour -
(A) latent heat of vaporization if $\left.{ }^{2} 5338\right]_{\mathrm{cal}}$
(B) latent heat of vaporization is 533 cal
(C) mass of water is 1 kg
(D) latent heat of vaporization is 540 cal .[B]

Sol. $\quad \mathrm{L}=\frac{\mathrm{t}_{2}}{\mathrm{t}_{1}} \times 100$
Q. 19 Select the correct statements -
(A) When state of substance changes, heat is always absorbed by substance
(B) When substance changes its state its temperature during this period remains constant
(C) Internal energy changes
(D) None of these

Sol.[B,C]

Q. 20 The temperature change versus heat supplied curve is given for of a solid block. Then which of the following statement (s) is/are correct -

(A) Specific Heat of the solid is $1 \mathrm{~J} / \mathrm{kg}-\mathrm{k}$
(B) Specific Heat of the liquid is $\sqrt{3} \mathrm{~J} /(\mathrm{kg}-\mathrm{k})]$
(C) Latent heat of vaporization is $100 \mathrm{~J} / \mathrm{kg}$
(D) Latent Heat of vaporization is $200 \mathrm{~J} / \mathrm{kg}$

Sol.[A, D]

PHYSICS

Q. 1 On an X temperature scale, water freezes at $-125^{\circ} \mathrm{X}$ and boils at $375^{\circ} \mathrm{X}$. On a Y temperature scale water freezes at $-70^{\circ} \mathrm{Y}$ and boils at $-30^{\circ} \mathrm{Y}$ The value of temperature on X -scale equal to the temperature of $50^{\circ} \mathrm{Y}$ on Y -scale is \qquad ${ }^{\circ} \mathrm{X}$.

Sol. 1375
$\frac{\mathrm{X}-(-125)}{500}=\frac{\mathrm{Y}-(-70)}{40}$
if $\mathrm{Y}=50$
$\mathrm{X}=1375^{\circ} \mathrm{X}$
Q. 2 Heat required to convert 1 kg of water at $80^{\circ} \mathrm{C}$ to vapour at $100^{\circ} \mathrm{C}$ and 2 atm pressure $\left(1 \mathrm{~atm}=10^{5} \mathrm{~Pa}\right)($ in kJ$)$ is $\left(\mathrm{L}_{\mathrm{v}}=580 \mathrm{cal} / \mathrm{gm}\right.$ and specific heat of water $\left.=1 \mathrm{cal} / \mathrm{gm} /{ }^{\circ} \mathrm{C}\right)$.
[2606]
Sol. The process would be

1 kg vapour at $100^{\circ} \mathrm{C}$ and 2 atm pressure
$\Delta \mathrm{H}_{1}=\mathrm{ms} \Delta \theta=1 \times 4.2 \times 10^{3} \times 20$ $=8.4 \times 10^{4} \mathrm{~J}$
$\Delta \mathrm{H}_{2}=\mathrm{mL}_{\mathrm{v}}+\mathrm{P} \Delta \mathrm{V}$
$=1 \times 580 \times 10^{3} \times 4.2+2 \times 10^{5} \times 850.14 \times 10^{-3}$
$=26.06 \times 10^{5} \mathrm{~J}=2606 \mathrm{~kJ}$
Q. 3 A thermometer of mass 50 gm and specific heat $0.4 \mathrm{cal} / \mathrm{gm} /{ }^{\circ} \mathrm{C}$ reads $10^{\circ} \mathrm{C}$. It is then inserted into 1 kg of water and reads $40^{\circ} \mathrm{C}$ in thermal equilibrium. The temperature of water before insertion of thermometer in $10^{\circ} \mathrm{C}$ is (Neglect other heat losses).
[0041]
Sol. Neglecting other heat losses
Heat lost by water $=$ Heat gained by

thermometer

$\therefore m_{1} s_{1}\left(\theta_{1}-40^{\circ}\right)=m_{2} s_{2}\left(40^{\circ}-10^{\circ}\right)$
$\mathrm{m}_{1}=$ mass of water
$\mathrm{m}_{2}=$ mass of thermometer
$\mathrm{s}_{1}=$ specific heat of water
$\mathrm{s}_{2}=$ specific heat of thermometer

$$
\begin{aligned}
\Rightarrow \theta_{1} & =40.6^{\circ} \mathrm{C} \\
& \approx 41^{\circ} \mathrm{C}
\end{aligned}
$$

Q. 4 Temperature of a body while measuring with a centigrade scale was found to be $30^{\circ} \mathrm{C}$ and was
increasing at a rate $\frac{5}{3}^{\circ} \mathrm{C} / \mathrm{sec}$. What will be rate of increase if we are measuring it with a Fahrenheit scale at the same instant? (Ans in ${ }^{\circ} \mathrm{F} / \mathrm{sec}$)

Sol. \quad Rate of increase in Fahrenheit $=1.8 \times$ Rate of increase in Celsius scale
Ans. $3^{\circ} \mathrm{F} / \mathrm{sec}$
Q. 5 A cube of iron (density $=8000 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~s}_{\text {iron }}=470 \mathrm{~J} / \mathrm{kg}-$ K) is heated to a high temperature and is placed on a large block of ice at $0^{\circ} \mathrm{C}$. The cube melts the ice below it, displaces the water and sinks. In the final equilibrium position, its upper surface just goes inside the ice. If initial temperature of block is 10λ, then find the value of λ.
$d_{\text {ice }}=900 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~L}_{\mathrm{f}}=3.34 \times 10^{5} \mathrm{~J} / \mathrm{kg}$.
Sol. Cube will melt ice of equal volume.
Q. 6 Specific heat of a substance varies with absolute temperature as $\mathrm{s}=\mathrm{BT}^{2} \mathrm{~J} / \mathrm{kg}-\mathrm{K}$ where $B=\frac{3 J}{\mathrm{~kg}-\mathrm{K}^{3}}$. The amount of heat required to raise the temperature of 3 kg substance from 0 K to 10 K can be written as $\lambda \times 10^{\mathrm{n}} \mathrm{J}$. Find the value of λ, where λ and n are integers.
Sol. $\mathrm{H}=\int_{0}^{\mathrm{T}} \operatorname{msdT}=3000 \mathrm{~J}$
Q. 7 A certain bullet of mass 6 gm melts at $300^{\circ} \mathrm{C}$ and has specific heat as $0.20 \mathrm{Kcal} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ and a heat fusion of $\frac{15 \mathrm{kcal}}{\mathrm{kg}}$. The heat needed to melt the bullet if it was originally at $0^{\circ} \mathrm{C}$, can be written as $\lambda \mathrm{kJ}$. Then the value of λ is. $(\mathrm{J}=4)$

Sol.[9] $\mathrm{Q}=\mathrm{ms} \Delta \mathrm{T}+\mathrm{mL}$
$=450 \mathrm{cal}$
Ans. $450 \times 4=9000 \mathrm{~J}$
Q. 8 A piece of iron of mass $m=325 \mathrm{~g}$ is placed in a calorimeter filled with thawing ice. The amount of ice that will melt by the time thermal equilibrium is reached is $(\mathrm{n} .4) \times 10^{1} \mathrm{~g}$ where n is a single digit number. If the volume of the piece
of iron being lowered into the calorimeter is $\mathrm{V}=48 \mathrm{~cm}^{3}$. The density of iron at $0^{\circ} \mathrm{C}$ is $\mathrm{d}_{0}=6.8$ $\mathrm{g} / \mathrm{cm}^{3}$, its thermal capacity $\mathrm{C}=0.12 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$ and the coefficient of volume expansion of iron is $\gamma=3.3 \times 10^{-5} /{ }^{\circ} \mathrm{C}$. Find the value of n .
Sol. [6] $\mathrm{M}=\frac{\mathrm{ms}\left(\mathrm{V} \rho_{0}-\mathrm{m}\right)}{\mathrm{L} \gamma \mathrm{m}}=64$
Q. 9 To find C_{x} the specific heat capacity of material X, Ram places 75 g of it in a 30 g copper calorimeter that contains 65 g of water, all initially at $20^{\circ} \mathrm{C}$. When Ram adds 100 g of water at $80^{\circ} \mathrm{C}$, the final temperature is $49^{\circ} \mathrm{C}$. What is C_{x} ?
[Specific heat capacity of copper $=410 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$, Specific heat capacity of water $\mathrm{C}_{\mathrm{w}}=4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$]

Sol. [2180]
$\mathrm{C}_{\mathrm{x}}=2180 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\left(m_{x} C_{x}+m_{C u} C_{C u}+m_{w} C_{w}\right) \Delta \theta$
$=m_{\mathrm{hw}} \mathrm{C}_{\mathrm{hw}} \Delta \theta_{\mathrm{hw}}$
Q. 10 A calorimeter of negligible heat capacity contains 100 gm water at $40^{\circ} \mathrm{C}$. The water cools to $35^{\circ} \mathrm{C}$ in 5 min .. If water is now replaced by a hiquid of same volume as that of water at same initial temperature it cools to $35^{\circ} \mathrm{C}$ in 2 min . Given sp. heats of water and liquid are $4200 \mathrm{~J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$ and $2100 \mathrm{~J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$ respectively. Find the density of liquid give answer in, $\ldots \times 100 \mathrm{~kg} / \mathrm{m}^{3}$. [Assume Newton law of cooling is applicable]
Sol.[8] $-\frac{d T}{d t}=\frac{K}{100 \times S_{w}}\left(T-T_{0}\right)$
$\int_{40}^{35} \frac{-\mathrm{dT}}{\mathrm{T}-\mathrm{T}_{0}}=\int_{0}^{5} \frac{\mathrm{~K}}{100 \times \mathrm{S}_{\mathrm{w}}} d t$
$\int_{4 \theta}^{35} \frac{-\mathrm{dT}}{\left(\mathrm{T}-\mathrm{T}_{0}\right)}=\int_{0}^{2} \frac{\mathrm{dt}}{100 \times \rho_{\ell} \mathrm{s}_{\ell}}$
$\frac{5 \mathrm{~K}^{\prime}}{100 \mathrm{~S}_{\mathrm{w}}}=\frac{2 \mathrm{~K}}{100 \times \rho_{\ell} \mathrm{S}_{\ell}}$
$\rho_{\ell}=\frac{4}{5} \mathrm{~g} / \mathrm{cm}^{3}=\frac{4 \times 10^{-3} \mathrm{~kg}}{5 \times 10^{-6} \mathrm{~m}^{3}}=\frac{4}{5} \times 10^{3}$
$=\frac{40}{5} \times 10^{2}=800 \mathrm{~kg} / \mathrm{m}^{3}$
Q. 11 An insulated container is filled with mixture of water \& ice at $0^{\circ} \mathrm{C}$. Another container is filled with water that is continuous boiling at $100^{\circ} \mathrm{C}$. In a series of experiments, the containers are connected by various thick rods that pass through the walls of the containers. The rod is insulated in such a way that there is no heat loss to surroundings. In experiment 1 , a copper rod is used and the ice melts in 20 min . In experiment 2, a stell rod is used and ice melts in 60 min . How long would it take to melt the ice if the two rods are used in series givenans in $\ldots \ldots \times 10 \mathrm{~min}$.

Sol. [8]
When Cu rod is used
$\frac{100}{\mathrm{R}_{\mathrm{Cu}}} \times 20=\mathrm{m} \times \mathrm{L}$
when stell rod is used
$\frac{100}{\mathrm{R}_{\text {stell }}} \times 60=\mathrm{mL} \ldots$
when both are in series
$\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{\mathrm{Cu}} \times \mathrm{R}_{\text {stell }}$
$\frac{100}{\mathrm{R}_{\mathrm{Cu}} \times \mathrm{R}_{\text {stell }}} \times \mathrm{t}=\mathrm{mL}$
from (1) \& (2)
$\mathrm{R}_{\mathrm{Cu}}=\frac{2000}{\mathrm{~mL}}$
$\mathrm{R}_{\text {stell }}=\frac{6000}{\mathrm{~mL}}$
$\frac{100 \times \mathrm{mL} \times \mathrm{t}}{8000}=\mathrm{mL}$
$\mathrm{t}=80$ minutes
Q. 12 A steel drill making 180 rpm is used to drill a hole in a block of steel. The mass of steel block and the drill is 180 gm each. The entire mechanical work is used up in producing heat such that the rate of rise of temperature of the system is $0.5^{\circ} \mathrm{C} / \mathrm{sec}$. If τ is the couple required to drive the drill then, find its value in SI units.
$\left(\mathrm{C}_{\text {steel }}=0.10 \mathrm{cal} / \mathrm{gm}-{ }^{\circ} \mathrm{C}, \mathrm{J}=4.186\right)$
Sol.. [4] $\mathrm{P}=\tau \mathrm{W}=\frac{\mathrm{d} \theta}{\mathrm{dt}}=(2 \mathrm{~m}) \mathrm{s} \frac{(\Delta \mathrm{T})}{\Delta \mathrm{t}}$
Q. 13 A cylinder containing a gas is closed by a movable piston. The cylinder is submerged in an ice-bath at $0^{\circ} \mathrm{C}$. The piston is quickly pushed down to compress the gas. Now it is held in this position for some time until gas again reaches at $0^{\circ} \mathrm{C}$ and then slowly raised back to initial position. If 100 gm ice melted during the whole process, then how much work is done on the gas (in kcal)? $\left(\mathrm{L}_{\mathrm{f}}=80 \mathrm{cal} / \mathrm{gm}\right)$
Sol.[8] $\mathrm{Q}_{\text {cycle }}=\mathrm{W}_{\text {cycle }}$
Q. 14 A certain bullet of mass 6 gm melts at $300^{\circ} \mathrm{C}$ and has specific heat as $0.20 \mathrm{Kcal} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ and a heat fusion of $\frac{15 \mathrm{kcal}}{\mathrm{kg}}$. The heat needed to melt the bullet if it was originally at $0^{\circ} \mathrm{C}$, can be written as
$\lambda \mathrm{kJ}$. Then the value of λ is.
(Take mechanical equivalent $\mathrm{J}=4$)
Sol.[9] $\quad \mathrm{Q}=\mathrm{ms} \Delta \mathrm{T}+\mathrm{mL}$

$$
=450 \mathrm{cal}
$$

$450 \times 4=9000 \mathrm{~J}$
Q. 1564 gm of steam at $100^{\circ} \mathrm{C}$ is kept in a vessel of negligible heat capacity. Amount of ice required at $0^{\circ} \mathrm{C}$ so that at equilibrium only water is remaining at $0^{\circ} \mathrm{C}$ is mgm . Find m .
Sol.[8] $\mathrm{m}=\frac{64}{8}=8 \mathrm{gm}$
Q. 16 In two colorimeters we poured 200 gm of water each at temperature of $+30^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$. From the 'hot' calorimeter 50 gm of water, is poured into 'cold' calorimeter and stirred. Then, from 'cold' colorimeter 50 gm of water is poured into 'hot and again stirred. How many times from starting do you have to poured the same portion of water back and forth so that temperature difference between water in colorimeters becomes less than $3^{\circ} \mathrm{C}$? Heat loss during transfer and heat capacity of calorimeters is neglected.
Sol.[5] $\mathrm{T}_{\mathrm{mix}}=\frac{\mathrm{m}_{1} \mathrm{sT}+\mathrm{m}_{2} s \mathrm{~T}_{2}}{\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right) \mathrm{s}}$

PHYSICS

Q. 1 A calorimeter contain 20 gm of water at $20^{\circ} \mathrm{C}$. The water equivalent of Calorimeter is 10 gm . The amount of heat required to raise the temperature of water from $20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}(\mathrm{Sp}$. heat of water $=1 \mathrm{cal} / \mathrm{gm}-{ }^{\circ} \mathrm{C}$)
(A) 1000 cal
(B) 800 cal
(C) 400 cal
(D) 1200 cal
[D]
Sol. $\quad \mathrm{Q}=30 \times 1 \times 40$
$=1200 \mathrm{cal}$.
Q. 2 If two sphare having same radius but the ratio of their specific heat is $2: 1$ and the ratio of their density is $1: 4$ then the ratio of their heat capacity is -
(A) $2: 1$
(B) $1: 2$
(C) $1: 1$
(D) $1: 4$
[B]
Sol. $\frac{C_{1}}{C_{2}}=\frac{\rho_{1} \mathrm{v}_{1} \mathrm{~s}_{1}}{\rho_{2} \mathrm{v}_{2} \mathrm{~s}_{2}}$
$=\frac{2}{1} \times \frac{1}{4}=\frac{1}{2}$
Q. 3 Ice at $0^{\circ} \mathrm{C}$ is added to 200 gm of water initially at $70^{\circ} \mathrm{C}$ in a vacuum flask. When 50 gm of ice has been added and has all melted, the temperature of flask and contents is $40^{\circ} \mathrm{C}$, When a further 80 gm of ice is added and has all melted, the temperature of whole becomes $10^{\circ} \mathrm{C}$. Neglecting heat lost to surroundings the latent heat of fusion of ice is :
(A) $80 \mathrm{cal} / \mathrm{gm}$
(B) $90 \mathrm{cal} / \mathrm{gm}$
(C) $70 \mathrm{cal} / \mathrm{gm}$
(D) $540 \mathrm{cal} / \mathrm{gm}$
[B]
Sol. Accoding to principle of calorimetry,
$M L_{F}+M s \Delta T=(m s \Delta T)_{\text {water }}+(m s \Delta T)_{\text {flask }}$
$50 \mathrm{~L}_{\mathrm{f}}+50 \times \mathrm{T} \times(40-0)$
$=200 \times 1 \times(70-40)+\mathrm{W}(70-40)$
or $50 \mathrm{~L}_{\mathrm{f}}+200=(200+\mathrm{W}) 30$
or $5 \mathrm{~L}_{\mathrm{f}}=400+3 \mathrm{~W}$
Now the system contains $(200+50) \mathrm{gm}$ of water
at $40^{\circ} \mathrm{C}$, so when further 80 gm of ice is added.
$80 \mathrm{~L}_{\mathrm{f}}+80 \times 1 \times(10-0)$

$$
=250 \times 1 \times(40-10)+\mathrm{W}(40-10)
$$

or $80 \mathrm{~L}_{\mathrm{f}}+800=(250+\mathrm{W}) 30$
or $80 \mathrm{~L}_{\mathrm{f}}=670+3 \mathrm{~W}$
Solving equation (i) and (ii),
$\mathrm{L}_{\mathrm{f}}=90 \mathrm{cal} / \mathrm{gm}$ and $\mathrm{W}=\frac{50}{3} \mathrm{gm}$
Q. 4 Heat is absorbed by a body but its temperature does not change. Which of the following statements explains the phenomenon?
(A) Only kinetic energy of vibration increases
(B) Only potential energy of intermolecular force field increases
(C) No increase in internal energy takes place
(D) Increase in kinetic energy is balanced by decrease in potential energy
Sol. [B]
Only potential energy will increase as
$\mathrm{U}=\mathrm{K} . \mathrm{E}+\mathrm{P} . \mathrm{E}$
Q. 5 If specific heat of a substance is infinite, it means-
(A) Heat is given out
(B) Heat is taken in
(C) No change in temperature takes place whether
heat is taken in or given out
(D) All of the above

Sol. [C]
$\mathrm{Q}=\mathrm{m} . \mathrm{c} \cdot \Delta \theta \Rightarrow \mathrm{c}=\frac{\mathrm{Q}}{\mathrm{m} \cdot \Delta \theta} ;$ when $\Delta \theta=0 \Rightarrow \mathrm{c}=\infty$
Q. 62 gm ice at $0^{\circ} \mathrm{C}$ is mixed with 5 gm steam at $100^{\circ} \mathrm{C}$ in a calorimeter of negligible heat capacity. At equilibrium the calorimeter will contain -
(A) $\frac{13}{3}$ gm steam and water at $100^{\circ} \mathrm{C}$
(B) $\frac{1}{3}$ gm ice and water at $0^{\circ} \mathrm{C}$
(C)only water at temperature $67^{\circ} \mathrm{C}$
(D) none of these

Sol. [A]
Heat given by steam $=$ Heat taken by ice.
Q. 7 A copper block of mass 2 kg is heated to a temperature of $500^{\circ} \mathrm{C}$ and then placed in a large block of ice at $0^{\circ} \mathrm{C}$. What is the maximum amount of ice that can melt? The specific heat of copper is $400 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$ and latent heat of fusion of ice is $3.5 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}$:
(A) $\frac{4}{3} \mathrm{~kg}$
(B) $\frac{6}{5} \mathrm{~kg}$
(C) $\frac{8}{7} \mathrm{~kg}$
(D) $\frac{10}{9} \mathrm{~kg}$
[C]
Sol. $2 \times 400 \times 500=\mathrm{m} \times 3.5 \times 10^{5}$
$4=\mathrm{m} \times 3.36 \Rightarrow \mathrm{~m}=\frac{4}{3.56} \mathrm{~kg}=\frac{40}{35}=\frac{8}{7} \mathrm{~kg}$
Q. 8 Evaporation of perspiration is an important mechanism for temperature control in warmblooded animals. What mass of water must evaporate from the surface of an 80 kg human body to cool it $1^{\circ} \mathrm{C}$? The specific heat capacity of the human body is approximately $1 \mathrm{cal} \mathrm{g}^{-1}\left({ }^{\circ} \mathrm{C}\right)^{-1}$, and the latent heat of vaporisation of water at body temperature $\left(37^{\circ} \mathrm{C}\right)$ is $577 \mathrm{cal} \mathrm{g}^{-1}$.
(A) 139 g
(B) 128 g
(C) 110 g
(D) 109 g

Sol. [A]

$$
80 \times 1000 \times 1=m \times 577
$$

$\mathrm{m}=\frac{8000}{577}=139 \mathrm{gm}$
Q. 9 A stream of photons impinging normally on a completely absorbing screen in vacuum exerts a pressure P . If I is the irradiance then -
(A) $\mathrm{P}=\frac{2 \mathrm{I}}{\mathrm{c}}$
(B) $P=I c$
(C) $P=\frac{I}{c}$
(D) $\mathrm{P}=2 \mathrm{Ic}$

Sol.[C] Pressure $=\frac{\mathrm{F}}{\mathrm{A}}=\frac{\mathrm{P} \times \mathrm{n}}{\mathrm{At}}=\frac{\mathrm{h}}{\lambda} \times \frac{\mathrm{n}}{\mathrm{At}}$
Irradiance $=$ Intensity $=I=\frac{\text { nhc }}{\lambda A t}$
Q. 105 g of steam at $100^{\circ} \mathrm{C}$ is passed into 6 g of ice at $0^{\circ} \mathrm{C}$. If the latent heats of steam and ice are 540 $\mathrm{cal} / \mathrm{g}$ and $80 \mathrm{cal} / \mathrm{g}$, then the final temperature is :
(A) $0^{\circ} \mathrm{C}$
(B) $50^{\circ} \mathrm{C}$
(C) $30^{\circ} \mathrm{C}$
(D) $100^{\circ} \mathrm{C}$
[D]
Sol. $6<3$
So, temp of mixture is $100^{\circ} \mathrm{C}$
Q. 11 The temperatures of equal masses of three different liquids A, B and C are $12^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ respectively. The temperature when A and B are mixed is $16^{\circ} \mathrm{C}$. When B and C are mixed it is $23^{\circ} \mathrm{C}$. The temperature when A and C are mixed will be -
(A) $15^{\circ} \mathrm{C}$
(B) $18.2^{\circ} \mathrm{C}$
(C) $20.25^{\circ} \mathrm{C}$
(D) $24.5^{\circ} \mathrm{C}$

Sol. $\quad[C] \mathrm{ms}_{\mathrm{A}} \times 4=\mathrm{ms}_{\mathrm{B}} \times \Rightarrow 4 \mathrm{~s}_{\mathrm{A}}=3 \mathrm{~s}_{\mathrm{B}}$
$\mathrm{ms}_{\mathrm{B}} \times 4=\mathrm{ms}_{\mathrm{C}} \times 5 \Rightarrow 4 \mathrm{~s}_{\mathrm{B}}=5 \mathrm{~s}_{\mathrm{C}}$
By (i) \& (ii)
$16 \mathrm{~s}_{\mathrm{A}}=15 \mathrm{~s}_{\mathrm{C}}$
$\mathrm{ms}_{\mathrm{A}}(\theta-12)=\mathrm{ms}_{\mathrm{C}}(28-\theta)$
By (i) \& (iv)
$\theta=20.25^{\circ} \mathrm{C}$
Q. 12 The temperature of a body on Kelvin scale is found to be x K . When it is measured by a Fahrenheit thermometer, it is found to be $x^{\circ} F$. Then x is :
(A) 301.25
(B) 574.25
(C) 313
(D) 40 .
[B]
Sol. $\frac{x-273}{373-273}=\frac{f-32}{212-32}$
$\Rightarrow x-273=\frac{5}{9}(x-32)$
$\Rightarrow 9 x-9 \times 273=5 \mathrm{x}-160 \Rightarrow \mathrm{x}=574.25$
Q. 13 A substance of mass m kg requires a power input of P watts to remains in the molten state at its melting point. When the power is turned off, the sample completely solidifies in time t sec . What is the latent heat of fusion of the substance?
(A) $\frac{\mathrm{Pm}}{\mathrm{t}}$
(B) $\frac{\mathrm{Pt}}{\mathrm{m}}$
(C) $\frac{\mathrm{m}}{\mathrm{Pt}}$
(D) $\frac{\mathrm{t}}{\mathrm{Pm}}$

Sol. [B] Heat lost in $\mathrm{t} \sec =\mathrm{mL}$ or heat lost per $\sec =\frac{\mathrm{mL}}{\mathrm{t}}$.
This must be the heat supplied for keeping the substance in molten state per sec.

$$
\therefore \frac{\mathrm{mL}}{\mathrm{t}}=\mathrm{P} \quad \text { or } \quad \mathrm{L}=\frac{\mathrm{Pt}}{\mathrm{~m}}
$$

Q. 14 Which of the curves in figure represents the relation between Celsius and Fahrenheit temperature-

(A) 1
(B) 2
(C) 3
(D) 4

Sol. [A] $\frac{\mathrm{C}}{5}=\frac{\mathrm{F}-32}{9} \Rightarrow \mathrm{C}=\left(\frac{5}{9}\right) \mathrm{F}-\frac{20}{3}$. Hence graph between ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$ will be a straight line with positive slope and negative intercept.
Q. 15 Two liquids A and B are at $32^{\circ} \mathrm{C}$ and $24^{\circ} \mathrm{C}$. When mixed in equal masses the temperature of the mixture is found to be $28^{\circ} \mathrm{C}$. Their specific heats are in the ratio of -
(A) $3: 2$
(B) $2: 3$
(C) $1: 1$
(D) $4: 3$

Sol. [B]
$\frac{\mathrm{H}_{1}}{\mathrm{H}_{2}}=\frac{\mathrm{R}_{1}^{3}}{\mathrm{R}_{2}^{3}} \times \frac{\rho_{1}}{\rho_{2}} \times \frac{\mathrm{s}_{1}}{\mathrm{~s}_{2}}$
Q. 16 Boiling water is changing into steam. At this stage the specific heat of water is-
(A) <1
(B) ∞
(C) 1
(D) 0

Sol. [B]
$\mathrm{C}=\frac{\mathrm{Q}}{\mathrm{m} \cdot \Delta \theta} ;$ as $\Delta \theta=0$, hence c becomes $\left.\infty.\right]$
Q. 17 A 1 kg cube of ice of volume 1000 ml at temperature $0^{\circ} \mathrm{C}$ is placed in a cylinder of cross sectional area $200 \mathrm{~cm}^{2}$. If ice melts only on top surface by absorbing heat from environment at a rate 80 cal per second. The time when ice lifts from base of cylinder is -
(given density of water $1000 \mathrm{~kg} / \mathrm{m}^{3}$)
(A) 4 min .10 sec .
(B) 8 min .20 sec .
(C) will never lift
(D) more than 10 min.

Sol. [B] Ice will float when completely immersed.
Q. 18 In an energy recycling process X g of steam at $100^{\circ} \mathrm{C}$ becomes water at $100^{\circ} \mathrm{C}$ which converts Y g of ice at $0^{\circ} \mathrm{C}$ into water at $100^{\circ} \mathrm{C}$. The ratio of X / Y will be -
(A) $1 / 3$
(B) $2 / 3$
(C) 3
(D) 2

Sol. [A]
Sp. heat of vaporization $=22.68 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
$=\mathrm{X} \times 10^{-3} \times 22.68 \times 10^{5}$
$=\mathrm{Y} \times 10^{-3} \times 3.36 \times 10^{5}+\mathrm{Y} \times 10^{-3} \times 4200 \times 100$
$\therefore \frac{X}{Y}=\frac{1}{3}$
Q. 19 If a thermometer reads freezing point of water as $20^{\circ} \mathrm{C}$ and boiling point as $150^{\circ} \mathrm{C}$, how much thermometer read when the actual temperature is $60^{\circ} \mathrm{C}-$
(A) $98^{\circ} \mathrm{C}$
(B) $110^{\circ} \mathrm{C}$
(C) $40^{\circ} \mathrm{C}$
(D) $60^{\circ} \mathrm{C}$

Sol. [A] Temperature on any scale can be converted into other scale by $\frac{\mathrm{x}-\mathrm{LFP}}{\mathrm{UFP}-\mathrm{LFP}}=$ constant for all scales
$\frac{x-20}{150-20}=\frac{60}{100} \Rightarrow x=98^{\circ} \mathrm{C}$
Q. 20 Liquids A and B are at $30^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$. When mixed in equal masses, the temperature of the mixture is found to be $26^{\circ} \mathrm{C}$. Their specific heats are of ratio -
(A) $3: 2$
(B) $1: 1$
(C) $2: 3$
(D) $4: 3$
-
Sol. $\quad[A] \mathrm{ms}_{\mathrm{A}}(30-26)=\mathrm{ms}_{\mathrm{B}}(26-20)$
$4 \mathrm{~s}_{\mathrm{A}}=6 \mathrm{~s}_{\mathrm{B}} \Rightarrow \frac{\mathrm{s}_{\mathrm{A}}}{\mathrm{s}_{\mathrm{B}}}=\frac{3}{2}$
Q. 21 A body A of mass 0.5 kg and specific heat 0.85 is at a temperature of $60^{\circ} \mathrm{C}$. Another body B of mass 0.3 kg and specific heat 0.9 is at a temperature of $90^{\circ} \mathrm{C}$. When they are connected to a conducting rod, heat will flow from -
(A) A to B
(B) B to A
(C) heat can't flow
(D) first from A to B, then B to A

Sol.[B] Heat flows from a body at higher temperature to a body at tower temperature. So heat will flow from B to A.
Q. 2210 gm of ice at $0^{\circ} \mathrm{C}$ is mixed with 10 gm steam at $100^{\circ} \mathrm{C}$ in a container of negligible heat capacity. Amount of steam in the mixture after some time will be $\left(\mathrm{S}_{\mathrm{w}}=1 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}, \mathrm{L}_{\mathrm{v}}=540 \mathrm{cal} / \mathrm{gm}\right.$, $\left.\mathrm{L}_{\mathrm{f}}=80 \mathrm{cal} / \mathrm{gm}\right)-$
(A) 0 gm
(B) $\frac{20}{3} \mathrm{gm}$
(C) $\frac{10}{3} \mathrm{gm}$
(D) None of these
[B]
Sol. Amount of steam required to convert all the ice in water at $100^{\circ} \mathrm{C}$ is $\frac{10}{3} \mathrm{gm}$.
Q. 23 The ratio of densities of two substance is 2:3 and their specific heats are in the ratio $3: 4$. The ratio of their thermal capacities for unit volume is -
(A) $1: 1$
(B) $1: 2$
$\begin{array}{lll}\text { (C) } 2: 1 & \text { (D) } 8: 9\end{array}$

Sol.[B] $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{\mathrm{m}_{1} \mathrm{~S}_{1}}{\mathrm{~m}_{2} \mathrm{~S}_{2}}=\frac{\mathrm{p}_{1} v \mathrm{~S}_{1}}{\mathrm{p}_{2} \mathrm{vS}_{2}}=\frac{2}{3} \times \frac{3}{4}=\frac{1}{2}$
Q. 24 The absolute zero temperature in Fahrenheit is -
(A) $-273^{\circ} \mathrm{F}$
(B) $-32^{\circ} \mathrm{F}$
(C) $-460^{\circ} \mathrm{F}(\mathrm{D})-132^{\circ} \mathrm{F}$

Sol. [C] $\frac{\mathrm{F}-32}{9}=\frac{\mathrm{K}-273}{5} \Rightarrow \frac{\mathrm{~F}-32}{9}=\frac{0-273}{5}$
$\Rightarrow \mathrm{F}=-459.4^{\circ} \mathrm{F}=-460^{\circ} \mathrm{F}$
Q. 25 Latent heat of ice is $80 \mathrm{cal} \mathrm{g}^{-1}$ and $\mathrm{J}=4.2 \mathrm{~J} \mathrm{cal}^{-1}$.

A boy can melt 60 gram ice in 1 minute by chewing. His power is -
(A) 4800 W
(B) 336 W
(C) 1.33 W
(D) 0.75 W
[B]
Q. 26 Heat required to convert one gram of ice at $0^{\circ} \mathrm{C}$ into steam at $100^{\circ} \mathrm{C}$ is -
(A) 100 cal
(B) 0.01 kcal
(C) 716 cal
(D) 1 kcal
[C]
Q. 2780 gm of water at $30^{\circ} \mathrm{C}$ is poured on a large block of ice at $0^{\circ} \mathrm{C}$. The mass of ice that melts is -
(A) 160 gm
(B) 80 gm
(C) 40 gm
(D) 30 gm

Sol. [D]

Heat released by water
$\Delta \mathrm{Q}=80 \times 1 \times 30=2400 \mathrm{cal}$
Mass of Ice melt

$$
\begin{align*}
& 2400=\mathrm{m} \times 80 \quad[\Delta \mathrm{Q}=\mathrm{mL}] \tag{i}\\
& \therefore \mathrm{m}=\frac{2400}{80}=30 \mathrm{gm}
\end{align*}
$$

Q. 28 One gm of ice at $0^{\circ} \mathrm{C}$ is added to 5 gm of water at $10^{\circ} \mathrm{C}$. If the latent heat is $80 \mathrm{cal} / \mathrm{gm}$, the final temperature of the mixture is -
(A) $5^{\circ} \mathrm{C}$
(C) $-5^{\circ} \mathrm{C}$
(B) $0^{\circ} \mathrm{C}$
(D) none of these
[B]
Q. 29 One gm of ice is mixed with one gm of steam. After thermal equilibrium is reached, the temperature of mixture is -
(A) $100^{\circ} \mathrm{C}$
(B) $55^{\circ} \mathrm{C}$
(C) $75^{\circ} \mathrm{C}$
(D) $0^{\circ} \mathrm{C}$
[A]

Which one of the following would raise the temperature of 20 gm of water at $30^{\circ} \mathrm{C}$ most when mixed with :
(A) 20 gm of water at $40^{\circ} \mathrm{C}$
(B) 40 gm of water at 35°
(C) 10 gm of water at $50^{\circ} \mathrm{C}$
(D) 4 gm of water at $80^{\circ} \mathrm{C}$
[D]

Sol. $\mathrm{T}=\frac{\mathrm{m}_{1} \mathrm{~s}_{1} \mathrm{~T}_{1}+\mathrm{m}_{2} \mathrm{~s}_{2} \mathrm{~T}_{2}}{\mathrm{~m}_{1} \mathrm{~s}_{1}+\mathrm{m}_{2} \mathrm{~s}_{2}}$,
T is maximum, If we take 4 gm of water at $80^{\circ} \mathrm{C}$
Q. 31 When 300 J of heat is added to 25 gm of sample of a material its temperature rises from $25^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$. The thermal capacity of the sample and specific heat of the material are respectively given by -
(A) $15 \mathrm{~J} /{ }^{\circ} \mathrm{C}, 600 \mathrm{~J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$
(B) $600 \mathrm{~J} /{ }^{\circ} \mathrm{C}, 15 \mathrm{~J} /{ }^{\circ} \mathrm{C}-\mathrm{kg}$
(C) $150 \mathrm{~J} /{ }^{\circ} \mathrm{C}, 60 \mathrm{~J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$
(D) none of these
Q. 3270 calories are required to raise the temperature of 2 moles of an ideal gas at constant pressure from $30^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$. The amount of heat required (in calories) to raise the temperature of the same gas through the same range $\left(30^{\circ} \mathrm{C}\right.$ to $\left.35^{\circ} \mathrm{C}\right)$ at constant volume is -
(A) 30
(B) 50
(C) 70
(D) 90
[B]
Q. 33 The heat required to convert one kg of ice to water is -
(A) latent heat of vaporisation specific heat
(C) molar specific heat
(D) latent heat of fusion
[D]
Q. 34 A liquid of mass m and specific heat C is heated to a temperature 2 T . Another liquid of mass ($\mathrm{m} / 2$) and specific heat 2 C is heated to a temperature $2 T$. If these two liquids are mixed, the resulting temperature of the mixture is -
(A) $(2 / 3) \mathrm{T}$
(B) $(8 / 5) \mathrm{T}$
(C) $(3 / 5) \mathrm{T}$
(D) $(3 / 2) \mathrm{T}$
[D]
Q. $35 \quad 10 \mathrm{gm}$ of ice at $-20^{\circ} \mathrm{C}$ is added to 10 gm of water at $50^{\circ} \mathrm{C} . S_{\text {water }}=1 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}, \mathrm{S}_{\text {ice }}=0.5 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}$. $\mathrm{L}_{\mathrm{f}_{\mathrm{ice}}}=80 \mathrm{cal} / \mathrm{gm}$. The resulting temperature is -
(A) $-20^{\circ} \mathrm{C}$
(B) $15^{\circ} \mathrm{C}$
(C) $0^{\circ} \mathrm{C}$
(D) $50^{\circ} \mathrm{C}$
[C]
Sol. Some ice will left in the mixture.
Q. 36 Liquids A and B are at $30^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$. When mixed in equal masses, the temperature of the
mixture is found to be $26^{\circ} \mathrm{C}$. Their specific heats are in the ratio of -
(A) $3: 2$
(B) $1: 1$
(C) $2: 3$
(D) $4: 3$
[A]
Q. 37 The densities of two materials X and Y are in the ratio $1: 3$. Their specific heats are in the ratio 3 :

1. If we take same volumes of the two substances, the ratio of their thermal capacities will be :
(A) $1: 1$
(B) $1: 3$
(C) $1: 6$
(D) $1: 9$
[A]
Sol. $\quad \frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}=\frac{\mathrm{P}_{1} \mathrm{Vs}_{1}}{\mathrm{P}_{2} \mathrm{Vs}_{2}}=\frac{1}{3} \times \frac{3}{1}=1: 1$
Q. 38 Two tanks A and B contains water at $30^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively, calculate the amount of water that must be taken from each tank to prepare 40 kg of water at $50^{\circ} \mathrm{C}$ -
(A) $24 \mathrm{~kg}, 16 \mathrm{~kg}$
(B) $16 \mathrm{~kg}, 24 \mathrm{~kg}$
(C) $20 \mathrm{~kg}, 20 \mathrm{~kg}$
(D) $30 \mathrm{~kg}, 10 \mathrm{~kg}$

Sol. $\quad m_{1} \times 1(50-30)=m_{2}(80-50) \quad \ldots$ (i)
$\mathrm{m}_{1}+\mathrm{m}_{2}=40 \mathrm{~kg}$
Q. 39 Two liquids are at temperature $20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$. When same mass of both of them is mixed, the temperature of the mixture is $32^{\circ} \mathrm{C}$. What is the ratio of the their specific heats ?
(A) $1 / 3$
(B) $2 / 3$
(C) $1 / 5$
(D) $2 / 5$
[B]
Sol. $\quad \mathrm{ms}_{\mathrm{A}}(32-20)=\mathrm{ms}_{\mathrm{B}}(40-32)$
$12 \mathrm{~s}_{\mathrm{A}}=8 \mathrm{~s}_{\mathrm{B}}$
$\frac{\mathrm{s}_{\mathrm{A}}}{\mathrm{s}_{\mathrm{B}}}=\frac{2}{3}$
Q. 40 The minimum mass of ice at $0^{\circ} \mathrm{C}$ required to just condense m grams of steam at $100^{\circ} \mathrm{C}$ is: (latent heat of steam and ice are $540 \mathrm{cal} / \mathrm{g}$ and $80 \mathrm{cal} / \mathrm{g}$ respectively)
(A) 5.4 m
(B) 7 m
(C) 3 m
(D) 6.75 m
[C]
Sol. Let m_{1} is mass of ice required
then, $\quad m_{1} \times 80+m_{1} \times 1 \times 100=540 \mathrm{~m}$

$$
180 \mathrm{~m}_{1}=540 \mathrm{~m} \Rightarrow \mathrm{~m}_{1}=3 \mathrm{~m}
$$

Q. 41 Two bodies of specific heats S_{1} and S_{2} having same heat capacities are combined to form a single composite body. Specific heat of composite body is -
(A) $\mathrm{S}_{1}+\mathrm{S}_{2}$
(B) $\frac{S_{1}+S_{2}}{2}$
(C) $\frac{2 \mathrm{~S}_{1} \mathrm{~S}_{2}}{\mathrm{~S}_{1}+\mathrm{S}_{2}}$
(D) $\frac{1}{\mathrm{~S}_{1}}+\frac{1}{\mathrm{~S}_{2}}$
[C]
Sol. $\quad m_{1} \mathrm{~s}_{1}=\mathrm{m}_{2} \mathrm{~s}_{2}$
$\mathrm{m}_{1} \mathrm{~s}_{1}+\mathrm{m}_{2} \mathrm{~s}_{2}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{s} \ldots$ (2)
$\mathrm{s}=\frac{\mathrm{m}_{1} \mathrm{~s}_{1}+\mathrm{m}_{2} \mathrm{~s}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=\frac{2 \mathrm{~m}_{1} \mathrm{~s}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\left(\therefore \mathrm{~m}_{1} \mathrm{~s}_{1}=\mathrm{m}_{2} \mathrm{~s}_{2}\right)$
$=\frac{2 \mathrm{~m}_{1} \mathrm{~s}_{1}}{\mathrm{~m}_{1}+\frac{\mathrm{m}_{1} \mathrm{~s}_{1}}{\mathrm{~s}_{2}}}=\frac{2 \mathrm{~s}_{1} \mathrm{~s}_{2}}{\mathrm{~s}_{1}+\mathrm{s}_{2}}$
Q. 42 The steam point and ice point of a mercury thermometer are marked as 80° and 10°. At what temperature on centigrade scale the reading of this thermometer will be 59° ?
(A) $70^{\circ} \mathrm{C}$
(B) $60^{\circ} \mathrm{C}$
(C) $80^{\circ} \mathrm{C}$
(D) None of these
[A]
Sol. $\frac{T-10}{80-10}=\frac{T_{C}}{100} ; T^{\prime}=59^{\circ}$
Q. 43

300 g of water at $25^{\circ} \mathrm{C}$ is added to 100 g of ice at $0^{\circ} \mathrm{C}$. The amount of ice melts is -
(A) 6.25 g
(B) 93.75 g
(C) 100 g
(D) none of the above
[B]
Sol. heat release by water $=\mathrm{m} \mathrm{sd} \theta$
$=300 \times 1 \times 25$
$=7500 \mathrm{Cal}$.
amount of Ice melts from this heat
$d \mathrm{Q}=\mathrm{mL}$

$$
\mathrm{m}=\frac{\mathrm{dQ}}{\mathrm{~L}}=\frac{7500}{80}=93.75 \mathrm{~g}
$$

Q. 44 A temperature difference of $5^{\circ} \mathrm{C}$ on Celsius scale corresponding to the following temperature difference in the Fahrenheit scale -
(A) 9°
(B) 41°
(C) 2.8°
(D) 15°
[A]
Sol. $\frac{\mathrm{C}}{5}=\frac{\mathrm{F}-32}{9}$
$\frac{\Delta \mathrm{C}}{5}=\frac{\Delta \mathrm{F}}{9}$
$\Delta \mathrm{F}=9 \times \frac{5}{5}=9^{\circ}$
Q. $45 \quad 250 \mathrm{gm}$ of water and equal volume of alcohol of mass 200 gm are replaced successively in the same calorimeter and cool from $60^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ in 130 sec and 67 sec respectively. If the water equivalent of calorimeter is 10 gm . The specific heat of alcohol in $\mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}$ is -
(A) 1.30
(B) 0.67
(C) 0.62
(D) None of these [C]

Sol. Hint : Rate of heat loss are equal in both case.
Q. 462 kg ice at $-20^{\circ} \mathrm{C}$ is mixed with 5 kg water at $20^{\circ} \mathrm{C}$ in an insulating vessel having negligible heat capacity. Calculate the final mass of water remaining in container.
Given \quad sp. heat water $=4.186 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$
sp. heat Ice $=2.092 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$
Latent heat of fusion of ice $=334.7 \mathrm{~kJ} \mathrm{Kg}^{-1}$
(A) 7 kg
(B) 6 kg
(C) 4 kg
(D) 2 kg
[B]
Sol. Heat that can be given to ice by water
$=5 \mathrm{~kg} \times 1 \times(20-0)$
$\mathrm{Q}=100 \mathrm{kcal}$.
Energy required to raise temp of ice from $-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$
$\mathrm{E}=2 \mathrm{~kg} \times 0.5 \times(0-(-20)=20 \mathrm{kcal}$.
Heat available for $=\mathrm{Q}-\mathrm{E}$
Melting ice $=100-20=80 \mathrm{kcal}$.
$\mathrm{L}=80 \mathrm{cal} / \mathrm{gram}$
Ice that can be melted $=\frac{80 \mathrm{kcal}}{80 \mathrm{cal}}=1000 \mathrm{gram}=1$
kg.
Hence water left in container $=6 \mathrm{~kg}$
Q. 47 Water of volume 2 litre in a container is heated with a coil of 1 kW at $27^{\circ} \mathrm{C}$. The lid of the container is open and energy dissipates at rate of $160 \mathrm{~J} / \mathrm{s}$. In how much time temperature will rise from $27^{\circ} \mathrm{C}$ to $77^{\circ} \mathrm{C}$?
[Given specific heat of water is $4.2 \mathrm{~kJ} / \mathrm{kg}$]
(A) 8 min 20 s
(B) 6 min 2 s
(C) 7 min
(D) 14 min
[A]
Sol. Energy gained by water (in 1 s)
= energy supplied - energy lost
$=(1000 \mathrm{~J}-160 \mathrm{~J})=840 \mathrm{~J}$
Total heat required to raise the temperature of water from $27^{\circ} \mathrm{C}$ to $77^{\circ} \mathrm{C}$ is $\mathrm{ms} \Delta \theta$.
Hence, the required time

$$
\begin{aligned}
& \mathrm{t}=\frac{\mathrm{ms} \Delta \theta}{\text { rate by which energy is gained by water }} \\
& =\frac{2 \times\left(4.2 \times 10^{3}\right) \times 50}{840} \\
& =500 \mathrm{~s} \\
& =8 \mathrm{~min} 20 \mathrm{~s}
\end{aligned}
$$

Q. 48 One gram of ice is mixed with one gram of steam. After thermal equilibrium, the temperature of the mixture is -
(A) $0^{\circ} \mathrm{C}$
(B) $100^{\circ} \mathrm{C}$
(C) $55^{\circ} \mathrm{C}$
(D) $80^{\circ} \mathrm{C}$
[B]
Sol. Heat release when 1 gm steam convert into water at $100^{\circ} \mathrm{C}$ is $=\mathrm{mL}_{\text {cond }}$.

$$
=1 \times 536 \mathrm{cal}
$$

heat required to convert ice into water
at $100^{\circ} \mathrm{C}=\mathrm{mL}_{\text {fus. }}+\mathrm{mS}_{\mathrm{w}} \mathrm{d} \theta$

$$
=(1 \times 80)+1 \times 1 \times 100
$$

180 cal
Since 536 cal is greater than 180 cal so partial condensation will take place and the final temperature will be $100^{\circ} \mathrm{C}$
Q. 49 If x grams of steam at $100^{\circ} \mathrm{C}$ becomes water at $100^{\circ} \mathrm{C}$ which converts y grams of ice at $0^{\circ} \mathrm{C}$ into water at $100^{\circ} \mathrm{C}$, then the ratio x / y will be -
(A) $\frac{1}{3}$
(B) $\frac{27}{4}$
(C) 3
(D) $\frac{4}{27}$

Sol. [A] $\mathrm{x} \times 540=\mathrm{y} \times 80+\mathrm{y} \times 1 \times 100$
$\Rightarrow 540 \mathrm{x}=180 \mathrm{y}$ or $\frac{\mathrm{x}}{\mathrm{y}}=\frac{1}{3}$
Q. 50 Ice point and steam point on a particular scale reads 10° and 80° respectively. The temperature on ${ }^{\circ} \mathrm{F}$ scale when temperature on new scale is 45° is -
(A) $50^{\circ} \mathrm{F}$
(B) $112^{\circ} \mathrm{F}$
(C) $122^{\circ} \mathrm{F}$
(D) $138^{\circ} \mathrm{F}$
[C]
Sol. Relation between the two scales
$\frac{\mathrm{t}-10}{80-10}=\frac{\mathrm{F}-32}{180}$
$\mathrm{F}=\frac{18}{7}(\mathrm{t}-10)+32$

