
BIOMOLECULES

BIOLOGY

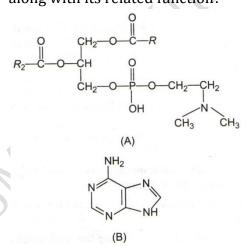
Single Correct Answer Type

1. Which kinds of structures of proteins are shown in the figures given below

- a) $A = 1^{\circ}$ structure, $B = 2^{\circ}$ structure, $C = 3^{\circ}$ structure, $D = 4^{\circ}$ structure
- b) $A = 4^{\circ}$ structure, $B = 2^{\circ}$ structure, $C = 3^{\circ}$ structure, $D = 1^{\circ}$ structure
- c) $A = 1^{\circ}$ structure, $B = 4^{\circ}$ sstructure, $C = 3^{\circ}$ structure, $D = 2^{\circ}$ structure
- d) $A = 4^{\circ}$ structure, $B = 3^{\circ}$ structure, $C = 2^{\circ}$ structure, $D = 1^{\circ}$ structure
- 2. Lipid are found in acid insoluble fraction during the analysis of chemical composition of tissues. Given the reason
 - a) It has very high molecular weight
 - b) It is polymer
 - c) It has low molecular weight
 - d) On grinding, the biomembranes are broken into pieces and form insoluble vesicles
- 3. Choose the element which is negligible in living matter
 - a) Si

b) Mg

c) Ca


d) S

- 4. Name the plant pigments present in the following
 - I. Carrots
 - II. Tomatoes
 - a) I-Tycopene II-Carotene

b) I-Carotene II-Lycopene

c) I-Leucopene II-Carotene

- d) None of the above
- 5. Which one of the following structural formulae of two organic compounds is correctly identified along with its related function?

- a) A- Triglyceride major-Source of energy
- b) B- Uracil
- -A component of DNA
- c) A-Lecithin
- -A component of cell membrane
- d) B-Adenine
- -A nucleotide that makes up nucleic acids
- 6. Silk consists of

	a) Central core of sericin	b) Central core of fibro	oin
	c) Both (a) and (b)	d) A fine mixture of fib	roin and sericin
7.	Which statement regarding coenzyme is incorre		
	a) Every coenzyme is a cofactor and every cofac		
	b) Every coenzyme is a cofactor but every cofac		
	c) Most of the coenzymes are nucleotides and a		:
	d) Coenzymes are the active constituents of enz	-	•
8.	The rate of the reaction doubles or decreases by hal	·	oither direction
0.	a) 10° b) 15°	c) 20°	d) 27°
9.	Enzyme often have additional parts in their stru		,
۶.		=	
	proteins. When this additional chemical part is	_	
4.0	a) Cofactor b) Coenzyme	c) Substrate	d) Both (a) and (b)
10.	Which one is imino acid?		
	a) Pepsin b) Proline	c) Cysteine	d) Rennin
11.	The sum total composition of acid soluble and acid i	•	
	a) Molecular b) Dead cells	c) Gene library	d) Cellular pool
12.	The 'lock' and 'key' model of enzyme action illus	strates that a particular	enzyme molecule
	a) May be destroyed and resynthesised several	times	
	b) Interacts with a specific type of substrate mo	lecule	
	c) Reacts at identical rates under all conditions		
	d) Forms a permanent enzyme-substrate compl	ex	
13.	Acidic amino acids carry two -COOH and one -NH ₂	groups per molecule. Kee	ping this in mind, select the
	correct pair of acidic amino acid	\^ \\ \	
	a) Lysine and arginine	b) Aspartic acid and glut	amic acid
	c) Glycine and alanine	d) Both (a) and (b)	
14.	After doing the chemical analysis of organic compou	ınds found in living organi	sms, two fractions were
	observed namely		
	a) Acid soluble pool and acid insoluble pool		
	b) Carbon pool and hydrogen pool		
	c) Inorganic pool and organic pool		
	d) Aquous pool and non-aquous pool		
15.	Which one is not an example for hydrolases?		
	a) Dehydrogenase b) Protease	c) Amylase	d) Esterase
16.	Which type of protein is present in human skin?		
	a) Primary proteins	b) Secondary proteins	
	c) Tertiary proteins	d) Quarternary proteins	
17.			
	a) Dynamic state of body constituents		
4	b) Flow of traffic junctions		
	c) Turn over flow		
10	d) Adiabatic flow of reactions		1. 1
18.	Read the two reaction A and B given below and sele	ct the correct option accor	dingly
	A. $ADP + Pi \rightarrow ATP$		
	B. ATP → ADP + Pi		
	a) A-Endergonic; B-Exergonic		
	b) A-Exergonic; B-Endergonic		
	c) A-Endergonic; B-Endergonic		
10	d) A-Exergonic; B-Exergonic The presimilation because which confere additional of	stability to DNA DN	A ia
17.	The pyrimidine base, which confers additional s	stability to DNA over RN	A, IS

	a) Adenine	b) Guanine	c) Cytosine	d) Thymine		
20.	If the total amount of a		•	60%, then the amount of		
	guanine in this DNA wil					
	a) 15%	b) 20%	c) 30%	d) 40%		
21.	*	n subjected to electric fie	-	-		
	the same reaction. Thes	•	ora, separates mite two m	accione each eacary 2mg		
	a) Allosteric enzymes		c) Inducible enzymes	d) Coenzymes		
22	•	ed methanes. Name the fou				
	positions	ed medianes. Name are for	ar substituent groups occu	pying the roar valency		
	a) Hydrogen, carboxyl grovariable group (R)	oup, amino group and a	b) Two carboxyl groups	amino group and OH		
	= - ' '	boxyl group, amino group	d) Two amino groups, or carboxyl group	ne hydrogen and one		
23.	= - ,	ory of enzyme structure a		sed by		
	a) Morgan	b) Robertson	c) Brown	d) Fischer		
24.	Histone octamer contai					
	a) Eight types of histon		b) Eight histones of for	ır different types		
	c) Five histones		d) Six types of histones	• •		
25.	What is grape sugar?					
	a) Glucose	b) Fructose	c) Sucrose	d) Galactose		
26.	Pepsin is anenzyme					
	a) Intracellular	b) Extracellular	c) Both (a) and (b)	d) None of these		
27.	Which one is a polymer	?				
	a) Sucrose	b) Glycogen	c) Fructose	d) Lactose		
28.	Which of the following sta					
	I. Acetic acid can form cholesterol					
	II. Flow of metabolites through metabolic pathway has a definite rate and direction. It is called dynamic					
	state of body constituents					
	III. Anabolic pathway is endergonic while catabolic pathway is exergonic IV. All biomolecules have a term over, <i>i. e.</i> , they are constantly being changed into some other					
		de from other biomolecule		nto some other		
	The correct options is	de irom ether biomolecule				
	a) All are correct	,	b) I and II are correct			
	c) Only IV is correct		d) All are wrong			
29.	An α -helix is the example	of protein structure				
	a) Primary	b) Secondary	c) Tertiary	d) Quaternary		
30.	Which is a reducing sug	gar?				
	a) Galactose		b) Gluconic acid			
	c) β- methyl galactoside		d) Sucrose			
31.	Formation of glycogen from					
	a) Glycogenolysis	b) Glycogenesis	c) Glycolysis	d) Gluconeogenesis		
32.	-	atements are correct for po				
	= =	I. The polysaccharides are found as a part of the acid insoluble pellet				
	II. These are long chains of	-	paridos as building blocks			
	=	aining different monosacch ic polysaccharide consistin	-	osaccharide i a fructosa		
	a) All are correct	ie porysacenariue consistin	b) All are correct except			
	c) III and IV		d) Only IV is correct	- ·		
33.	Select the false statement		, ,			

	I. Living process is a cons	stant effort to promote falli	ng into equilibrium	
	II. Energy can enter and	leave a cell		
	III. Matter can enter and	leave a cell		
	IV. Metabolic pathways a	are interlinked		
	a) Only I	b) Only IV	c) I and IV	d) Only II
34.	Arachidonic acid is			
	a) Non-essential fatty a	acid	b) Essential fatty acid	
	c) Polyunsaturated fat		d) Both (b) and (c)	
35.		ty aciu	a) both (b) and (c)	
33.	Inulin is a polymer of	1.) (2.1)	.) T	D 4 1:
2.6	a) Glucose	b) Galactose	c) Fructose	d) Arabinose
36.	Table sugar consists of			
	a) Lactose	b) Sucrose	c) Maltose	d) glucose
37.	For nucleic acids, the but	ilding block is a		
	a) Nucleotide	b) Nucleoside	c) Polynucleotide	d) Sugar
38.	An example of feedbac	k inhibition is		
	a) Cyanide action on cy	ytochrome		
	b) Sulpha drug on folic	acid synthesizer bacteria	a 4	
		of hexokinase by glucose		
		uccinic dehydrogenase ar		
39.		•	ia saccinate	
3).		rymatically catalysed chemi	cal reactions constantly tak	ring place in the cells and
	tissues of the living or		carreactions constantly tar	ang place in the eens and
		e the small molecules into la	irger ones	
		ts the large molecules into		
	d) None of the above	is the large molecules into	Silianci Olics	
40.	=		Y	
10.	a) Polysaccharide		b) Nitrogenous polysac	charido
	c) Lipoprotein			chariue
11	• •		d) protein	
41.	000			D. C
	a) Creatine phosphate		c) Carbohydrate	d) fat
42.	Select the wrong state:			
	a) The building blocks	of lipids are amino acids		
	b) Majority of enzymes	s contain a non-protein pa	art called the prosthetic $arepsilon$	group
	c) The thylakoids are a	nrranged one above the o	ther like a stack of coins	forming a granum
	d) Crossing over occur	s at pachytene stage of m	eiosis-I	
43.	Which of the following is	s an essential amino acids?		
	a) Valine	b) Leucine	c) Tryptophan	d) All of these
44.	The aggregation of the va	arious kinds of biomolecule	es in a cell is referred to as t	he
	a) Acid soluble pool		b) Acid insoluble pool	
	c) Cellular pool		d) None of the above	
45.	Secondary metabolites c	an be observed in	•	
	a) Plant cells	b) Fungal cells	c) Microbial cells	d) All of these
46.	•	tabolites from the list given		
	I. alkaloids	S		
	II. flavonoids			
	III. rubber			
	IV. essential oils			
	V. antibiotics			
	VI. coloured pigments			

VII. scents

VIII. gums

IX. spices

Choose the correct option

a) I to IX

- b) All except II and IX
- c) I, III, IV and VI
- d) All except I and VII

- 47. What is the starting point in the production of food?
 - a) Catabolism
- b) Metabolism
- c) Anabolism
- d) Photosynthesis

48. Name the amino acids A - C correctly

a) A-Glycine, B-Serine, C-Alanine

b) A-Alanine, B-Glycine, C-Serine

c) A-Serine, B-Glycine, C-Alanine

- d) A-Serine, B-Alanine, C-Glycine
- 49. Name the heterocyclic compounds which are known as nitrogenous bases

Choose the most appropriate options

- a) Adenine, guanine, uracil, cytosine and thymine
- b) Adenine, guanine, uracil and thymine
- c) Adenine, guanine, cytosine, uracil
- d) None of these
- 50. In which one of the following enzymes copper is necessarily associated as an activator?
 - a) Carbonic anhydrase

b) Tryptophanase

c) Lactic dehydrogenase

- d) Tyrosinase
- 51. Identify the structural formulae and select the correct option

- a) A-Adenine, B-Adenosine, C-Adenylic acid
- b) A-Guanine, B-Adenosine, C-Adenylic acid
- c) A-Adenosine, B-Adenylic acid, C-Adenine
- d) A-Uracil, B-Adenosine, C-Adenylic acid
- 52. The regulation of the chemical composition of blood and body fluids and other aspects of its internal environment by an organism to maintain the physiological process is called
 - a) Entropy
- b) Enthalpy
- c) Homeostasis
- d) Metabolism
- 53. Name the term given to the left and right ends of a polysaccharide

Left end Right end

- Left end-N-terminal end, Right
- Left end-reducing end, Right end-non-reducing

end-C -terminal end

- Left end—C —terminal end, Right end—N —terminal end
- Left end—non-reducing end, Right end—reducing
- 54. 'G' in DNA strand base pairs with 'C' by 3... bonds

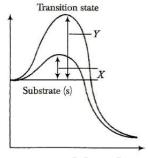
	a) Hydrogen	b) Von der Waal	c) Covalent	d) Ionic
55.		nich inhibits the enzyme activity	=	e site of the enzyme, due to the
		ce to the substrate in its molecul		
	a) Non-competi		b) Competitive inl	
	c) Allosteric mo		d) Feedback inhib	itor
56.		et pair of substituted purines		
	a) Cytosine and	_	b) Adenine and gu	
	c) Uracil and cyt		d) Guanine and ur	acil
57.		ne following is wrongly match		
	a) Fungi	– Chitin	b) Phospholipid	– Plasma membrane
	c) Enzyme	 Lipopolysaccharide 		- Nucleotide derivative
58.	Amino acids are	organic compounds and are calle	ed α-amino acids. Why	?
	a) Amino acids a	re organic compounds containin	g an amino group and	acidic group as substituents n two
	different carb			*
	b) Amino acids a	are organic compounds containin	g an amino group and	an acidic group as substituents on
	the same carb			
	-	• .	ing an amino group an	d acidic group as substituents on
	two different			
	=		ing an amino group an	d acidic group as substituents on
	the same carb			y'
59.	Enzymes that of	atalyze inter-conversion of op	tical, geometrical or	positional isomers, are
	a) Ligases	b) Lyases	c) Hydrolases	d) Isomerases
60.	All the carbon co	ompounds obtained from living t		
	a) Biomolecules		b) Inorganic comp	oounds
	c) Organic comp	ounds	d) Only DNA	
61.	-	a carboxyl group attached to R gr	oup. The R group coul	d be a
	a) Methyl		b) Ethyl	
		er of $-CH_2$ groups (1 to 19 carbo		
62.		to enzymes, which one of following	_	
	a) Apoenzyme:	=Holoenzyme+Coenzyme	b) Holoenzyme=	:Apoenzyme+Coenzyme
	c) Coenzyme=	Apoenzyme+Holoenzyme	d) Holoenzyme=	Coenzyme+Apoenzyme
63.	Benedict's reag	gent test is conducted to confir	m the presence of	
	a) Polysacchar	des like starch	b) Lipids	
	c) Reducing su	gars	d) proteins	
64.	When a metabol	ic disequilibrium is in effect, the	n only cells continue to	function
	How do cells avo	oid reaching metabolic equilibriu	m?	
	a) Use feedback	inhibition to turn off pathways		
	b) The products	of one reaction become the react	ant of another reaction	n and are unable to accumulate
	c) Cellular meta	bolism utilises only those reactio	ns that are irreversible	
	d) Providing cor	stant supply of enzymes		
65.	Which of the fo	llowing radioisotope is not su	itable for DNA labelii	ng based studies?
	a) H ³	b) P ³²	c) N ¹⁵	d) S ³⁵
66.	Jacob and Mon	od named some enzymes as al	losteric, whose activ	ity is regulated by
	a) End product		c) A by-product	d) Coenzyme
67.	•	n 'ash' in term of living tissue san		•
•	-	_	=	ft after burning the tissue which
		ounds oxidised to gaseous form	contains inorga	nic elements (<i>e.g.</i> , calcium,
	$^{\prime}$ (CO ₂ and wat	er vapour) after burning of the ti	ssue magnesium etc	· –
	c) Compounds r	emoved in the form of gases	-	nich may be soluble in intracellular

fluid

- 68. Grinding of a living tissue in trichloroacetic acid shows the presence of the inorganic compounds like sulphate, phosphate etc, which are categorised in
 - a) Acid insoluble fraction
 - b) Acid soluble fraction
 - c) Both (a) and (b)
 - d) Not found in cellular pool
- 69. Formation of lactic acid form glucose occurs in... metabolic steps

b) 5

- d) 10
- 70. A nucleotide has three chemically distinct compounds. These are A, B and C


Choose the correct option for A, B and C

- a) A-Sugar, B-carbonates, C-chlorides
- b) A-DNA, B-cellulose, C-chitin
- c) A-Heterocyclic compound, B-Monosaccharide, C-a phosphate
- d) A-Phosphoric acid, B-Proteins, C-acids
- 71. Answer briefly
 - I. Hydrolysis of glycogen to glucose is termed as?
 - II. Name the enzyme which takes part in the hydrolysis of glycogen
 - III. Amylum is an another name of
 - IV. Name the polysaccharide formed as the end product of the photosynthesis

Correct option with all the answers is

- a) I-Glycogenolysis, II-Amylases, III-Starch, IV-Starch b) I-Starch, II-Amylases, III-Glycogenolysis, IV-Starch
- c) I-Starch, II-Glycogenolysis, III-Starch, IV-Amylases d) I-Amylases, II-Glycogenolysis, III-Starch, IV-Starch
- 72. Which of the following is not a conjugated protein?
 - a) Peptone
- b) Phosphoprotein 4
- c) Lipoprotein
- d) Chromoprotein

- 73. is the most abundant protein in whole of the biosphere
 - a) Collagen
- b) Trypsin
- d) RUBISCO
- 74. Choose the correct option representing X and Y in the given graph

- a) X-Activation energy without enzymes, Y-Activation energy with enzyme
- c) X-Substrate concentration with enzyme, Y-Substrate concentration without enzyme
- b) X- Activation energy with enzyme, Y-Activation energy without enzyme
- d) X-Substrate concentration without enzyme, Y-Substrate concentration with enzyme
- 75. Given below is the chemical formula of

0

Ш

 $CH_3(CH_2)_{14} - C - OH$

- a) Palmitic acid
- b) Stearic acid
- c) Glycerol
- d) Galactose
- 76. Which enzyme is useful as colour brightening agent in detergent industry?
 - a) Amylase
- b) Lipase
- c) Protease
- d) Cellulase
- 77. Locations or sites in the human DNA where single base DNA differences occur, are called
 - a) Repetitive DNA

b) VNTR

	c) SNP		a) SSCP			
78.	An organic substance bo	und to an enzyme and e	ssential for its activity, is	called		
	a) Coenzyme	b) Holoenzyme	c) Apoenzyme	d) Isoenzyme		
79.	Choose the correct statem	ents		•		
	I. Bond energy (ATP) is uti	lised for biosynthesis, osm	notic and mechanical work	that we perform		
	II. When glucose is degrad			-		
	III. Assembly of a proteins		••			
	IV. Majority of metabolic re	-	=-			
	V. There are many example					
	a) Except IV and V	b) I and III	c) All of these	d) None of these		
80.	Maltose consists of whic	h one of the following?				
	a) β – glucose and α – g	alactose	b) α – glucose and α – f	fructose		
	c) α – sucrose and β – g		d) Glucose and glucose			
81.		,	,	4 \ \ \ \ \ \ \		
		b) Amino alcohol	c) Sugar alcohol	d) Sugar acid		
82.	Almost all enzymes are i		of Sugar alcohol	a) bugui acia		
02.		b) Proteins	c) Carbohydrates	d) Nucleic Acid		
83	One of the secondary struc			a) Nucleic field		
05.	_	b) Watson-Crick model	c) Bohr's model	d) Wilkenson model		
84.		,		w)		
0 1.	a) Enzyme	may mes is directed by wi	b) Substrate			
	c) End products		d) Intermediate end pro	ducte		
85.	All the chemical reactions	occurring in living organic		ducts		
05.		b) Anabolism	c) Catabolism	d) Enzymatic		
86			\ \frac{1}{2}	•		
00.	Given below are two statements A and B. Choose the correct answer related to the statements. Statement A Amino acids are amphoteric in their function.					
		•				
		acids are necessary for		A d D		
	a) Statement A is correct	but statement B is	b) Both the statements A	A and B are correct		
	wrong	1	D.D. d. d	4 ID		
	c) Statement A is wrong	but statement B is	d) Both the statements A	A and B are wrong		
	correct		_			
87.	, , , , , , , , , , , , , , , , , , ,	the proteins containing		chieved through		
	a) Hydrogen bonds		b) Disulphide bonds			
	c) Van der Waal's force		d) Ionic bonds			
88.	Maltose gives rise to two	molecules of				
	a) Fructose	b) Lactose	c) Glucose	d) Sucrose		
89.	One of the following is a	simple protein.				
	a) Nucleoprotein	b) Glycoprotein	c) Lipoprotein	d) Albumin		
90.	Identify X and Y in the give	en protein structure				
	First Last	-				
	amino acid amino a	cid				
						
	X Y	J V C tamein al amin a acid				
	a) X-N-terminal amino acid					
	b) X-N-terminal amino acidc) X-C-terminal amino acid					
	d) X-C-terminal amino acid					
91	Which of the following state					
JΙ.	vvinch of the following Sta	concins are correct:				

I. Relative abundance of carbon and hydrogen with respect to other elements is higher in any living

	organisms			
	II. Living organisms have more nitro	gen and oxygen j	per unit mass than in	animate objects (e . g ., earth
	crust)			
	III. All the elements present in a sam	ple of earth's cru	ist are also present ir	a sample of living tissue
	IV. Living organisms have more Ca, M	Иg, Na in them th	an inanimate object	
	a) All of these b) All exc	ept IV	c) Only IV	d) None of these
92.	Which one is diaminodicarboxylic	c amino acid?		
	a) Cystine b) Lysine)	c) Cysteine	d) Aspartic acid
93.	Which of the following statements al		•	
	I. Enzymes do not alter the overall cl	-		
	II. Enzymes are highly specific for re	_	8,	
	III. The energy input needed to start		ion is called activatio	on energy
	IV. Enzymes are proteins whose three			
	a) I and V b) I, II and		c) II and V	d) All of these
94.	Which amino acid is denoted by s			
	a) Phenylalanine	J	b) Proline	
	c) Tryptophan		d) Methionine	C_{λ}
95.	Which enzyme catalyse the break do	own of hydrogen	· ·	id ovygan?
75.	a) A carbonic anhydrase and catalas		b) Hydrolyase and o	
	c) Peroxidase and catalase	C	d) Hydrolase and ox	
96.	Sugar and amino acids are		uj fiyuf olase allu ox	iluasc
<i>7</i> 0.	_		h) Cogon down moto	holitog
	a) Primary metabolites		b) Secondary meta	ibolites
0.7	c) Feedback		d) Inoculum	-2
97.	Which of the following statement			
	a) Non-competitive inhibition of a		_	
	b) Competitive inhibition is seen	when a substrat	te competes with a	n enzyme for binding to an
	inhibition protein			
	c) Competitive inhibition is seen	when the substr	rate and the inhibit	or compete
	d) Non-competitive inhibitors ofto	en bind to the e	nzyme irreversibly	•
98.	Enzymes are functional at	4		
	a) 10-15°C b) 15-25°	°C	c) 25-30°C	d) 30-50°C
99.	Cellulose is made up of		,	,
	Branched chain of glucose mole	ecule linked by	$\alpha = 1$ 4 glycosidic	hond in straight chain and ß –
	a) 1, 6 glycosidic bond at the site		a 1, 1 gly coolaic	zona m ou aigne onam ana p
		_	$\alpha = 1$ 6 alycocidic	bond in straight chain and β-1,
	b) 4 glycosidic bond at the site of		u 1, o giyeosidie	bond in straight chain and p-1,
		_	ber 0 1 4 aleranaidia	hand
	c) Unbranched chain of glucose m			
	d) Unbranched chain of glucose m		by α -1, 6 glycosidic	bond
100	Which of the following statement	s is wrong?		
	a) Sucrose is a disaccharide		b) Cellulose is a po	llysaccharide
	c) Glycine is a sulphur containing	amino acid	d) Uracil is a pyrin	nidine
101	Name the four elements called 'Big-f	our' which make	up 95% of all eleme	nts found in a living system
	a) C, H, O, P b) C, H, O,	, N	c) C, N, O, K	d) C, H, O, S
102	Proteins are heteropolymers which	are madeup of	type of monomers	of amino acids
	a) 10 b) 4		c) 20	d) 3
103	Catabolic and anabolic pathways are	=	-	
	a) Both the path are the same energy	y		eleased from are pathway is used
			to drive other	

c) The intermediate of a catabolic pathway are in the anabolic pathway	used d) Their enzymes are co and inhibitors	ontrolled by their activators
	and minibitors	
104. Molecular weight of protein is		1) 600 2000
a) >12000 b) >6000	c) <12000	d) 600-3000
105. Name the disaccharide which is the major sugar		12 A11 C.1
a) Trehalose b) Chitin	c) Cellulose	d) All of these
106. One turn of DNA has nucleotide pairs		
a) 8 b) 100	c) 6	d) 10
107. Phospholipids are		A\)
a) Amphipathic b) Amphibolic	c) Hydrophobic	d) None of these
108. The following reaction is catalysed by which of	the enzyme?	
$NADH + H^+ + \frac{1}{2}O_2 \longrightarrow NAD^+ + H_2O$		
a) Hydrolases		
b) Cytochrome oxidases		07
c) Transferases		
d) Lyases	4	*
109. Why metabolic pathways are comparable to aut		
a) Because they have definite direction	b) Because they result i	in clumsiness
c) Because they result in massive production of	toxic d) None of the above	
compounds		
110. A bond formed between carboxyl group of o	one amino acid and amino g	group of adjacent amino
acid, is called		
a) Peptide bond b) Hydrogen bond	c) Covalent bond	d) All of these
111. In animal tissues, the categories of compounds	present are called	
a) Molecules b) Primary metaboli	tes c) Secondary metabolit	tes d) Biomolecules
112. Cellulose is a polymer of		
a) α – glucose b) α – fructose	c) β – glucose	d) β – fructose
113. Proteins with catalytic power are called		•
a) Reactants b) Substrate	c) Co-factors	d) Enzymes
114. The enzyme which converts corn starch into	o fructose rich corn syrup i	S
a) Amylase b) Glucoamylase	c) Glucoisomerase	d) All of these
115. The globular proteins undergo structural ch		emes of pH or temperature
the process called	g,	
a) Renaturation b) Denaturation	c) Combination	d) Both (a) and (b)
116. Which of the following is a disaccharide?	of dombination	a) Both (a) that (b)
	c) Sucrose	d) Calactors
	•	d) Galactose
117. During Meselson and Stahl's experiments, h	leavy DNA was distinguishe	ed from normal DNA by
centrifugation in	15	
a) CsOH gradient b) ¹⁴ NH ₄ Cl	c) ¹⁵ NH ₄ Cl	d) CsCl gradient
118. Protein in silk thread is		
a) Fibroin b) Keratin	c) Albumin	d) Globulin
119. What are proenzymes?		
a) Inactive form of enzymes	b) Active form of enzyn	nes
c) Neutral form of enzymes	d) None of these	
120. Which of the following is the simplest amin	o acid?	
a) Tyrosine b) Asparagine	c) Glycine	d) Alanine
121. Hydrolysis of a glycosidic bond in a disaccharid	e is an example of	

a) Cleavage of biomolecules	b) Hydrolysis of biom	loiecules
c) Transformation of biomolecules	d) Formation of biom	olecules
122. Which of the following is non-reducing sugar	r?	
a) Starch b) Sucrose	c) Maltose	d) Galactose
123. Phospholipids are		
a) Conjugated lipids b) Derived lipids	c) Simple lipids	d) None of these
124. Richest source of protein is		•
a) Rice b) Gram	c) Wheat	d) <i>Glycine max</i>
125. Which of the following polysaccharide is present	•	•
a) Glycogen b) Cellulose	c) Insulin	d) Starch
126. Which form of keratin is present in human hair?	-	u) com on
a) Parallel β-sheet	b) α-helix	
c) Antiparallel β-sheet	d) None of these	
127. The most abundant chemical in living organisms	=	
a) Protein	b) Water	
c) Lipids	d) Nucleic acids	
128. Basic structure of proteins was given by		
a) W M Stanley b) Nicholson	c) Waston	d) F Sanger
129. Name the structural formulae of the given struct		w) i builger
NH ₂ NH ₂	cures correctly	
N HN		
ON!		
N N H	A. VY	
A B		
a) A-Adenine; B-Uracil	b) A-Guanine; B-Thyr	
c) A-Adenine; B-Guanine	d) A-Cytosine; B-Thy	mine
130. Name the most abundant protein in animal worl		
a) RUBISCO	b) Carboxylase-oxyge	enase
c) Collagen	d) Cellulose	
131. Proteins with catalytic power are known as	h) Eggantial proteins	
a) Metabolites		
	b) Essential proteins	
c) Enzymes	d) Receptors	
c) Enzymes 132. In a polypeptide chain, a β -pleated sheet is an ex	d) Receptors cample of	J) 20 -tt
c) Enzymes 132. In a polypeptide chain, a β -pleated sheet is an ex a) 2° structure b) 1° structure	d) Receptors cample of c) 4° structure	d) 3° structure
c) Enzymes 132. In a polypeptide chain, a β-pleated sheet is an exal 2° structure b) 1° structure 133. Which of the following is the example of structure	d) Receptors cample of c) 4° structure actural protein?	•
 c) Enzymes 132. In a polypeptide chain, a β-pleated sheet is an exa) 2° structure b) 1° structure 133. Which of the following is the example of structure a) Myosin b) Collagen 	d) Receptors cample of c) 4° structure actural protein? c) Keratin	d) 3° structure d) All of these
c) Enzymes 132. In a polypeptide chain, a β-pleated sheet is an exaple of structure 133. Which of the following is the example of structure a) Myosin b) Collagen 134. Which of the following statements are incorrect?	d) Receptors cample of c) 4° structure actural protein? c) Keratin	d) All of these
c) Enzymes 132. In a polypeptide chain, a β-pleated sheet is an exal 2° structure 133. Which of the following is the example of structure a) Myosin b) Collagen 134. Which of the following statements are incorrect? I. Left end of a polysaccharide is called non-redu	d) Receptors cample of c) 4° structure actural protein? c) Keratin	d) All of these
c) Enzymes 132. In a polypeptide chain, a β-pleated sheet is an exa) 2° structure b) 1° structure 133. Which of the following is the example of structure a) Myosin b) Collagen 134. Which of the following statements are incorrect? I. Left end of a polysaccharide is called non-redu II. Starch and glycogen are branched molecules	d) Receptors cample of c) 4° structure actural protein? c) Keratin ? ccing end while right end is	d) All of these called reducing end
c) Enzymes 132. In a polypeptide chain, a β-pleated sheet is an exal 2° structure 133. Which of the following is the example of structure 134. Which of the following statements are incorrected. I. Left end of a polysaccharide is called non-reduling. Starch and glycogen are branched molecules. III. Starch and glycogen are the reserve food materials.	d) Receptors cample of c) 4° structure actural protein? c) Keratin c defined while right end is terials of plants and animal	d) All of these called reducing end
c) Enzymes 132. In a polypeptide chain, a β-pleated sheet is an exa) 2° structure 133. Which of the following is the example of structure 134. Which of the following statements are incorrect? I. Left end of a polysaccharide is called non-redu II. Starch and glycogen are branched molecules III. Starch and glycogen are the reserve food mat IV. Starch can hold iodine molecules in its helical	d) Receptors cample of c) 4° structure actural protein? c) Keratin c defined while right end is terials of plants and animal	d) All of these called reducing end
c) Enzymes 132. In a polypeptide chain, a β-pleated sheet is an exal 2° structure 133. Which of the following is the example of structure 134. Which of the following statements are incorrected. I. Left end of a polysaccharide is called non-reduling. Starch and glycogen are branched molecules. III. Starch and glycogen are the reserve food mat IV. Starch can hold iodine molecules in its helical cannot hold iodine.	d) Receptors cample of c) 4° structure actural protein? c) Keratin c defined while right end is terials of plants and animal	d) All of these called reducing end
c) Enzymes 132. In a polypeptide chain, a β-pleated sheet is an exa) 2° structure 133. Which of the following is the example of structure 134. Which of the following statements are incorrect? I. Left end of a polysaccharide is called non-redu II. Starch and glycogen are branched molecules III. Starch and glycogen are the reserve food mat IV. Starch can hold iodine molecules in its helical cannot hold iodine a) Statements I and II are incorrect	d) Receptors cample of c) 4° structure actural protein? c) Keratin claim end while right end is terials of plants and animal disecondary structure but of	d) All of these called reducing end ls, respectively cellulose being non-helical,
c) Enzymes 132. In a polypeptide chain, a β-pleated sheet is an exa) 2° structure 133. Which of the following is the example of strua) Myosin 134. Which of the following statements are incorrect? I. Left end of a polysaccharide is called non-redu II. Starch and glycogen are branched molecules III. Starch and glycogen are the reserve food mat IV. Starch can hold iodine molecules in its helical cannot hold iodine a) Statements I and II are incorrect c) Only statement IV is incorrect	d) Receptors cample of c) 4° structure actural protein? c) Keratin claim end while right end is terials of plants and animal disecondary structure but of b) All statement are if d) None of these	d) All of these called reducing end ls, respectively cellulose being non-helical,
c) Enzymes 132. In a polypeptide chain, a β-pleated sheet is an exa) 2° structure 133. Which of the following is the example of structure 134. Which of the following statements are incorrect? I. Left end of a polysaccharide is called non-redu II. Starch and glycogen are branched molecules III. Starch and glycogen are the reserve food mat IV. Starch can hold iodine molecules in its helical cannot hold iodine a) Statements I and II are incorrect c) Only statement IV is incorrect 135. Enzymes catalyses the biochemical reactions by	d) Receptors cample of c) 4° structure actural protein? c) Keratin c cing end while right end is terials of plants and animal l secondary structure but of b) All statement are i d) None of these the activation energy	d) All of these called reducing end ls, respectively cellulose being non-helical, ncorrect
c) Enzymes 132. In a polypeptide chain, a β-pleated sheet is an exa) 2° structure 133. Which of the following is the example of strua) Myosin 134. Which of the following statements are incorrect? I. Left end of a polysaccharide is called non-redu II. Starch and glycogen are branched molecules III. Starch and glycogen are the reserve food mat IV. Starch can hold iodine molecules in its helical cannot hold iodine a) Statements I and II are incorrect c) Only statement IV is incorrect	d) Receptors cample of c) 4° structure actural protein? c) Keratin claims and animal actions of plants and animal actions secondary structure but of the secondary structure are in the activation energy c) Unaltering	d) All of these called reducing end ls, respectively cellulose being non-helical,

- a) Ribose
- b) Sucrose
- c) Glucose
- d) Ribulose

137. Answer briefly

I. Which colour glycogen gives on its reaction with iodine solution?

II. What is satellite DNA?

III. Name three components of a nucleotide molecule

Correct option will all answers is

a) I-Blue

II-Long sequences

III-Phosphoric acid, pentose sugar and nitrogenous base

c) I-Blue

II-Non-repetitive base pairs

III-Glucose phosphoric acid, nucleic acids

138. The acid soluble pool, roughly represents

a) Chemical composition of cell

c) Both (a) and (b)

b) I-Red

II-Repetitive base pairs

III-Phosphoric acid, pentose sugar and nitrogenous organic base

d) I-Red

II-Non-repetitive base pairs

III-Phosphoric acid, fructose, nucleotides

b) Cytoplasmic composition of cell

d) None of the above

139. Choose the type of enzyme involved in the following reaction

$$S - G + S' \rightarrow S + S' - G$$

- a) Dehydrogenase
- b) Transferase
- c) Hydrolase
- d) Lyase

140. Which of the following is an isozyme?

- a) α-amylase
- c) Lactic dehydrogenase
- 141. Primary metabolites play known roles in
 - a) Ecology
 - c) Human welfare

- b) Glucokinase d) All of these

b) Chemical process

d) Physiological process

- 142. Sucrose, a common table sugar is composed of
 - a) Glucose and fructose
 - c) Fructose and galactose
- 143. Double sugar is
 - a) Table sugar
 - c) Sugar in germinating seeds

 - c) Position of hydrogen

- b) Milk sugar
- d) All of the above
- 144. Variety of amino acids are formed on the basis of
 - a) Position of hydroxyl group

b) Position of carboxyl group

b) Glucose and galactose

d) None of the above

- d) Nature of R group
- 145. Carbohydrates, the most abundant biomolecules earth, are produced by
 - a) All bacteria, fungi and algae

- b) Fungi, algae and green plant cells
- c) Some bacteria, algae and green plant cells
- d) Viruses, fungi and bacteria
- 146. Which of the two groups of following formula is involved in peptide bond formation between different amino acids?

- a) 1 and 3
- b) 2 and 3
- c) 2 and 4
- d) 1 and 4

147. Where the starch is stored in the plant cell?

- - a) Golgi bodies
- b) Amyloplasts
- c) Chromoplast
- d) None of these

148	The form of DNA with 34.	Å pitch with a rise per base	pair of 3.4Å is called	
	a) A-DNA	b) B-DNA	c) Z-DNA	d) C-DNA
149	. The catalytic efficiency	of two different enzymes	s can be compared by the	
	a) The Km value		b) The pH optimum val	ue
	c) Formation of the pro	duct	d) Molecular size of the	enzyme
150	. A competitive inhibitor, c	ompetes with the substrate	e, for the substrate binding	site of enzymes due to its
	a) Structural similarity w	ith substrate		
	b) Molecular weight simil	larity with substrate		
	c) Both (a) and (b)			
	d) Larger size than that o			Y
151	. The most abundant mo	lecule in cell, is		
	a) Water	b) Carbohydrate	c) Lipid	d) Protein
152	. The left handed DNA is ca	alled		
	a) A-DNA	b) B-DNA	c) Z-DNA	d) C-DNA
153	. Adult human haemoglobi		4	
	a) 2 subunits	b) 2 subunits (β, β)	c) 4 subunits $(2\alpha, 2\beta)$	d) 3 subunits $(2\alpha, 1\beta)$
154	. The below structural form	nula belongs to	4//3	•
	CH₂OH ├──Oੑ			
	но он			
	OH OH	h) Chuana	a) Curvea	d) Decembrile es
155	a) Ribose	b) Glucose	c) Sucrose	d) Deoxyribose
133	Which enzyme is most	•	3) (J) NI - 1
4 = 6	a) Trypsin	b) Pepsin	c) Sucrase	d) Nuclease
156	-	ich are found in the acid ins		
455	a) Biomolecules	b) Macromolecules	c) Micromolecules	d) Both (a) and (b)
157	. Lipids are generally			
	I. water soluble			
	II. water insoluble			
	III. soluble in non-polar o	O .		
	IV. not soluble in non-pol	_		
	Choose the correct option a) Only I	b) II and III	c) II and IV	d) Only IV
150	Nucleotides are formed	**	c) if allu iv	u) Omy IV
130			h) Deswin a neswinai dina a	nd nhoanhata
	a) Purine, sugar and ph	-	b) Purine, pyrimidine an	
450	c) Purine or pyrimidine		d) Pyrimidine, sugar an	• •
159			he normal functioning of	
	a) Cofactor	b) Coenzyme	c) Holoenzyme	d) None of these
160	. Water molecules are co	nnected by		
1	a) Van der Waal's force		b) Covalent bond	
	c) H-bond		d) Amide linkage	
161	. The physical and the cher	nical compositions of amin	o acids are essentially of th	e
	a) Only the carboxyl grou	р	b) Only the <i>R</i> -functional g	group
	c) Amino, carboxyl and R	groups	d) Only amino group	
162	. The proteinaceous molec	ule that joins a non-protein	naceous prosthetic group to	form a functional enzyme
	is called			
	a) Co-factor	b) Apoenzyme	c) Holoenzyme	d) Isoenzyme
163	. Select the correct constitu	-		
	a) Carbon, hydrogen, oxy	gen and nitrogen	b) Carbon, hydrogen, nitr	ogen and sulphur

164		rogen, oxygen and sulphur cture found in proteins is d	d) Carbon, hydrogen and	oxygen
104.	a) Linking together of tw	-	iuc to	
	b) Coiling of polypeptide			
	c) Formation of peptide			
	d) Folding of the coiled p			
165.			fied into a single category	of biological chemicals,
	because all of these			
	a) Enhance oxidative n	netabolism		
	b) Are conjugated prot	eins		
	c) Are exclusively synt	hesized in the body of a l	living organism as at pres	ent
	d) Help in regulating m			
166.	Paraffin wax is			4
	a) Ester	b) Acid	c) Monohydric alcohol	d) Cholesterol
167.		•	teins. One such function inv	
	a) Antibiotics		4 (4	
	b) Hormones			
	c) Pigment making colou	ırs of flowers		
	d) Pigment conferring co			
168.		al strand involves steps		
	a) 20	b) 15	c) 34	d) 10
169.	One strand of DNA has	sequence of nucleotide	3' ATTCGCTAT 5' then otl	ner strand of DNA has
	a) 3' TAAGCGATA 5'	b) 5' TAGCACGTA 5'	c) 5' TAGCACGTA 3'	d) 5' TAAGCGATA 3'
170.	In a protein molecule, th	e amino acid units are linke	ed together by bonds f	formed between the amino
	acid units and the carbox	xyl group of successive ami	no acids	
	a) Peptide	b) Hydrogen	c) Covalent	d) Ionic
171.	A in the given structure i	represents		
	0	_		
	$HO-\ddot{P} OCH_2 O N-base$	<u>se</u>		
	OH			
	a) Ector hand		h) Ionia hond	
	a) Ester bondc) Phosphate bond		b) Ionic bondd) Glycosidic bond	
172	•	ven statements are true or :		
1,2.	· · · · · · · · · · · · · · · · · · ·	housand of organic compo		
	•	nolecules in an organism is		
	a) I-True; II-True	b) I-False; II-False	c) I-True; II-False	d) I-False; II-True
173.	Michaelis Menten consta		,	,
	a) The rate of enzymatic	· · · · =		
^ \	b) The rate of reaction			
	c) Substrate concentrati	on at which the reaction at	tains half of its maximum ve	elocity
	d) Substrate concentration	on at which the rate of reac	ction is maximum	
174.	Which one of the follow	wing amino acids was no	t found to be synthesized	$in \ Miller's \ experiement?$
	a) Glycine	b) Aspartic acid	c) Glutamic acid	d) Alanine
175.	Which of the following	gamino acids is not optica	ally active?	
	a) Glycine	b) Valine	c) Leucine	d) Isoleucine
176.	What provides roughage	e (fibre) in our diet?		
	a) Cellulose	b) Sucrose	c) Maltose	d) Collagen

1//. Starch can be used as	s an indicator for the dete	ection of traces of	
a) Glucose in aqueous	s solution	b) Proteins in blood	
c) Iodine in aqueous		d) All of the above	
178. Pick the odd statement		•	
	n amino acids converts an a	amino acid into an amine	
b) All the biomolecules			
	are termed as transformati	on reactions	
	always follows a linear rou		
179. Which one is the swe			
a) Glucose	b) Fructose	c) Sucrose	d) Maltose
		H on the velocity of a typical	
V	V	V	V
a) '	b)	c) ' /	d) '
<u>/</u> рН	pH	ρΗ	pH
181. In which one of the fo	ollowing sets of three ite	ms each belong to the cate	egory mentioned against
them?	,	and determ a drown of the first	
a) Lysine, glycine,		b) Myosin, oxytocin	<i>J.</i>
thiamine	- Amino acids		- Hormones
	- Allillo acius	and gastric	- normones
c) Rennin, helicase	D.	d) Optic nerve,	0
and hyaluronidase	•	oculomotor, vagus	· · · · · · · · · · · · · · · · · · ·
	=	ther than the active site and	do not resemble the
substrate in structure i	s called		
a) Activator		b) Substrate analogue	n
c) Competitive inhibito		d) Non-competitive inhi	
		ome other biomolecules and	
a) Amino acids	b) Biomolecules only	c) Monosaccharides	d) Enzymes
184. A physical change, duri	_	ers to	
b) Change in state of m	hout breaking of bonds		
, ,	energy during the chemical	l reaction	
d) Both (a) and (b)	energy during the chemical	reaction	
	e following carbon compou	ınds, heterocyclic rings can l	he found?
a) Proteins	b) Amino acids	c) Nitrogen bases	d) Lipids
186. Hydrolysis of lipid yi		ej merogen bases	и) шртаз
a) Fats	cius.	b) Fatty acids and glyo	rerol
c) Mannose and glyce	arol	d) Maltose and fatty a	
		-	
		then the remaining part i	
a) Amide	b) Oligosaccharide	c) Polypeptide	d) Amino acid
188. In a polysaccharide, t	the individual monosacci		
a) Glycosidic bond		b) Peptide bond	
c) Ester bond		d) Phosphodiester bo	nd
189. The free energy of a sy	stem, in a spontaneous rea		
a) Decreases		b) Increases	
c) Becomes equal to ze		d) Remains unchanged	_
	• •	which reversibly modifies	the structure of the active
site of the enzyme is	called		
a) Competitive inhibi	tion	b) Non-competitive re	eversible inhibition

c) Allosteric inhibition

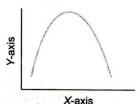
- d) None of the above
- 191. Pentoses and hexoses are common
 - a) Monosaccharides
- b) Disaccharides
- c) Polysaccharides
- d) Oligosaccharides

- 192. Which one of the following is polysaccharide?
 - a) Glycogen
- b) Sucrose
- c) Lactose
- d) Maltose
- 193. Oxygenic compounds of biological process, which activate chemical reactions are
 - a) Vitamins
- b) Hormones
- c) Enzymes
- d) Fats

- 194. A product of metabolism is called a
 - a) Metabolite
- b) Catabolite
- c) Anabolite
- d) All of these

- 195. Starch and cellulose are compounds of many units of
 - a) Glycerol
- b) Amino acids
- c) Simple sugars
- d) Fatty acids
- 196. According to Watson-Crick model, DNA exists as a ...A... . The two strands of polynucleotides are ...B... . The backbone is formed by the sugar ...C..., ...D... chain. The nitrogen bases are more or less ...E... to this backbone

Choose the correct options for the blanks A, B, C, D and E


- a) A-chain, B-perpendicular, C-carbonate, D-base, E-parallel
- b) A-helix, B-parallel, C-sugar, D-phosphate, E-perpendicular
- c) A-double helix, B-antiparallel, C-phosphate, D-sugar, E-perpendicular
- d) A-strand, B-parallel, C-sulphate, D-sugar, E-perpendicular
- 197. After grinding a living tissue in trichloroacetic acid and then straining it, you would obtain two fractions : acid soluble pool and acid insoluble fraction. Acid insoluble fraction does not contains
 - a) Nucleic acids

b) Polysaccharides

c) Lipids

- d) Flavonoids and alkaloids
- 198. The curve given below shows enzymatic activity with relation to three conditions (pH, temperature and substrate concentration)

What do the two axes (*X* and *Y*) represent?

	X-axis	Y-axis				
a)	Temperature	Enzyme activity				
b)	Substrate	Enzymatic				
	concentration	activity				
c)	Enzymatic activity	Temperature				
d)	Enzymatic activity	рН				

- 199. Choose the correct options
 - a) $E + S \rightarrow ES \rightarrow E + P \rightarrow EP$
 - b) $E + S \rightleftharpoons ES \rightarrow E P \rightarrow E + P$
 - c) $E + S \rightarrow ES \rightleftharpoons E P \rightarrow E + P$
 - d) $E + S \rightleftharpoons ES \rightleftharpoons E P \rightleftharpoons E + P$
- 200. Which of the following statement(s) are/is correct?
 - I. In the process of metabolism, all organic biomolecules are constantly being broken down but not being built up through chemical reactions
 - II. A product of metabolism in called a metabolite, but not always
 - III. Metabolism is always known to built up new products
 - IV. Metabolism is the characteristic feature of non-living things

a) All are incorrec	t	b) All are correct				
c) Only IV is corre	ect	d) II and IV are correct				
201. The 'Repeating u	ınit' of glycogen is					
a) Fructose	b) Mannose	c) Glucose	d) galactose			
202. Every chemical (n	netabolic) reaction is a reactio	n				
a) Induced	b) Reversible	c) Catalysed	d) Spontaneous			
203. Which of the follow	wing secondary metabolites are	used as drugs?				
a) Vinblastin and	curcumin	b) Anthocyanin				
c) Gums and cellu	lose	d) Abrin and ricin				
-	t functional at the temperature r	•				
a) 15° – 25°C	b) 20° – 30°C	c) 30° – 50°C	d) 50° – 60°C			
	eature of metabolic reaction is the	hat they are	AY			
a) Elementary rea						
b) Non-linked rea						
c) Heat evolving r						
d) Catalysed react						
206. Which of these is		4				
a) Acetoacetic ac	rid	b) Acetone				
c) Succinic acid		d) Betahydroxy buty	ric acid			
207. Which of the foll	owing is not a cell inclusion?					
a) Protein	b) Carbohydrate	c) Pigment	d) Vacuole			
208. Which of the follow	wing is incorrect?					
a) In cellular orga	nisms, DNA is genetic material	b) Adenylic acid is nuc	leoside			
c) Cytidine is nucl	eoside	d) N-bases (A, G, C, T, U	J) have heterocyclic rings			
209. Identify wheather	the given conditions are anabol	ic or catabolic				
I. Glucose → Lection	cacid	Y				
II. Amino acids →	Proteins					
a) I-catabolic; II-c	atablic	b) I-anabolic; II-catabo	lic			
c) I-catabolic; II-a	nabolic	d) I-catabolic; II-catabo	olic			
210. Choose the correc						
	is a non-equilibrium steady stat	——————————————————————————————————————				
	ow of material for energy in and	out of cell prevent the cell	from reaching equilibrium			
	d metabolism are synonyms					
d) All are correct	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
211. Pick out the wro						
a) Amino acids a	re substituted methanes	b) Glycerol is a trihyc	droxy propone			
c) Lysine is a net	ıtral amino acid	d) Lecithin is a phosp	pholipid			
212. Each active sites	in enzyme is bounded by hov	v many amino acids?				
a) 20	b) Infinite	c) 3	d) None of these			
213. Select the wrong	statement					
a) Proteins are h	eteropolymers made of amino	o acids				
	e nucleic acids with catalytic p					
· ·	serve as genetic material					
	e most abundant protein in th	e whole of the biosphere	e and Rubisco is the most			
	teins in animal world					
-	nydroxy ketone molecule cont	raining 3-7 carhone is a				
a) Disaccharide	b) Monosaccharide	c) Polysaccharide	d) dipeptide			
-	of proteins is due to the present	•	w) uipepuue			
a) Peptide bond	b) Covalent bond	c) Disulphide bond	d) Ionic bonds			
a, i cpaac bond	b) dovaicht bolla	e, bisaipinae bona	aj ionic bonas			

216. Identify the zwitterionic form in the given reversible reaction

$$H_3^{\dagger}N$$
 CH
 CH
 $COOH$
 A
 R
 R
 $H_3^{\dagger}N$
 CH
 COO^{-}
 A
 CH
 COO

Choose the correct option

- a) A is the zwitterionic form
- b) C is the zwitterionic form
- c) B is the zwitterionic form
- d) None of the above

217. Removal of amino group from an amino acid is known as

- a) Deamination
- b) Excretion
- c) Amination
- d) Egestion

218. The tightly bound non-proteinaceous organic compound in enzyme, is

- a) Coenzyme
- b) Prosthetic group
- c) Cofactor
- d) Apoenzyme

219. Why living state cannot afford to reach equilibrium?

- a) Due to insufficiency of biomolecules
- b) To remain active all the time

c) To save the energy

d) None of the above

220. Chemical compounds that have molecular weights less than one thousand dalton are usually referred to as

- a) Biomolecules
- b) Micromolecules
- c) Macromolecules
- d) Both (a) and (b)

221. Find out the wrongly matched pair.

a) Primary metabolite - Ribose

b) Secondary metabolic - Anthocyanin

c) Protein - Insulin

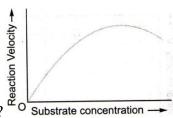
d) Cellulose – Heteropolymer

222. The bond present between two carbohydrate molecules is

- a) Amide
- b) Hydrogen
- c) Glycosidic
- d) phosphodiester

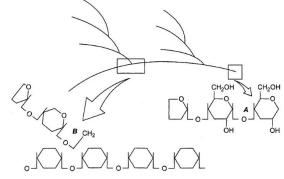
223. Name the given amino acids

- a) Glutamic acid, tyrosine and cysteine, respectively
- b) Tyrocine, cysteine and glutamic acid, respectively
- c) Cysteine, tyrosine and glutamic acid, respectively
- d) Cysteine, glutamic acid and tyrosine, respectively


224. Enzyme having different molecular arrangement but similar functions is

- a) Isoenzyme
- b) Holoenzyme
- c) Apoenzyme
- d) Coenzyme

225. The chemical reactions which liberate energy by enzymatic oxidation of food stuffs to CO_2 and H_2O , in the tissues are referred to as the


- a) Energy metabolism
- b) Respiratory metabolism
- c) None of these
- d) Both (a) and (b)

226. The given graph shows the effect of substrate concentration on the rate of reaction of the enzyme

green gram-phosphatase. What does the graph indicate?

- a) The rate of enzyme reaction is directly proportional to the substrate concentration
- b) Presence of an enzyme inhibitor in the reaction mixture
- c) Formation of an enzyme-substrate complex
- d) At higher substrate concentration, the pH increase
- 227. Identify A and B bonds in the following diagrammatic representation of a portion of glycogen

Choose the correct option

- a) $A = 1 6\alpha$ -glycosidic bonds, $B = 1 4\alpha$ -glycosidic bonds
- b) $A = 1 1\alpha$ -glycosidic bonds, $B = 1 1\alpha$ -glycosidic bonds
- c) $A = 1 4\alpha$ -glycosidic bonds, $B = 1 4\alpha$ -glycosidic bonds
- d) $A = 1 4\alpha$ -glycosidic bonds, B = 1 6, α -glycosidic bonds
- 228. Which is an organic compound found in most cells?
 - a) Glucose
- b) Water
- c) Sodium chloride
- d) Oxygen
- 229. Select the correct which represents the homopolysaccharides made up of glucose monomers
 - a) Sucrose, lactose, maltose
 - b) Chitin, glycogen, starch
 - c) Starch, inulin, peptidoglycan
 - d) Starch, glycogen, cellulose
- 230. A high fever is dangerous to humans because
 - a) Proteins are used up quickly

b) Fats are oxidised

c) Enzymes are denatured

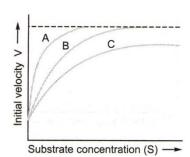
d) BMR is lowered

- 231. All enzymes are basically
 - a) Carbohydrates
- b) Steroids
- c) Proteins
- d) Lipoproteins

232. In a DNA, 'A' base pairs with ...by... H bonds.

Chooses the correct option for the blanks A and B

- a) T, three
- b) C, four
- c) T, two
- d) G, two


- 233. is a heteropolymer
 - a) Starch
- b) Glycogen
- c) Chitin
- d) Cellulose

- 234. Those nucleic acids which behave like enzymes are known as
 - a) Ribozymes
- b) Pepzymes
- c) Both (a) and (b)
- d) Ribose
- 235. How many of the twenty two amino acids are essential for children?
 - a) 6

b) 8

c) 10

- d) 7
- 236. The figure given below shows three velocity substrate concentration curves for an enzyme reaction. What do the curves A, B and C depict respectively?

- a) A-normal enzyme reaction, B-competitive inhibition, C-non-competitive inhibition
- b) A-enzyme with an allosteric modulator added, B-normal enzyme activity, C-competitive inhibition
- c) A-enzyme with an allosteric stimulator, B-competitive inhibitor added, C- normal enzyme reaction
- d) A- normal enzyme reaction, B-non-competitive inhibitor added, C- allosteric inhibitor added
- 237. Raffinose is a
 - a) Monosaccharides
- b) Disaccharides
- c) Trisaccharides
- d) Polysaccharides

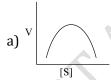
- 238. Example of a typical homopolysaccharide is
 - a) Lignin
- b) Suberin
- c) Inulin
- d) Starch

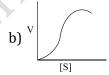
- 239. The aleurone layer in maize grain is specially rich in
 - a) Lipids
- b) Auxins
- c) Proteins
- d) Starch

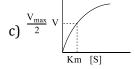
240. Given below is the structural formula of

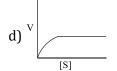
- a) Sucrose
- b) Ribose
- c) Glucose
- d) Deoxyribose
- 241. Ribozymes are molecules that function as biocatalysts in modern cells
 - a) DNA

b) RNA


c) Both DNA and RNA


- d) None of these
- 242. Types of amino acids found in proteins are
 - a) 21


b) 19


c) 20

- d) 23
- 243. Select the correct graph which shows the relationship between the rate of an enzymatic activity and substrate concentration

- 244. The effectiveness of an enzyme is affected least by
 - a) Temperature

- b) Concentration of the substrate
- c) Original activation energy of the system
- d) Concentration of the enzyme
- 245. Fluidity of bio-membranes can be shown by
 - a) Electron microscope

b) Tissue culture

c) Phase-contrast microscope

- d) Fluorescence microscope
- 246. A mathematical explanation for enzyme action on substrate was formulated by
 - a) Leonor Michaelis and Maud Menten
- b) Hans Gaffron

c) Melvin Calvin

d) Vant Krebs

- 247. Insulin is a polymer of
 - a) Fructose
- b) Glucose
- c) Sucrose
- d) Xylose
- 248. What is the approximate percentage of proteins in the cell contents?

0.40	a) 12%	b) 10%	c) 15%	d) 20%
249.		tions inactivates enzymes?	IND I	
		g tertiary structure		primary structure
250	c) Both (a) and	` '	d) None of the al	oove
250.		ing enzyme, in the biological kir		
	a) Lipase		b) Amylase	
	c) Peptidase		d) Carbonic anh	
251.	The most impor	tant form of energy currency in liv	ring organisms is the	bond energy in the chemical called
	a) Adenosine Tr	riphosphate (ATP)		
	=	phosphate (ADP)		
	c) Phosphate (P			
	d) None of the a			
252.	=	competitive inhibition of an en	zyme is the inhibit	on of
	•	ydrogenase by malonic acid	-	oxidase by cyanide
		by glucose-6-phosphate	-	ydrase by carbon dioxide
253.		s are acidic, basic and neutral base		, and by the boar areas are
	a) Amino group			
	b) Amino and ca			
	•	d carboxyl group		
	d) Carboxyl grou			
254.		nd involved in the formation of	sodium chloride, is	5
	a) Ester bond	b) Peptide bond	c) Ionic bond	d) Covalent bond
255.	=	ulation is due to inhibition action		•
	a) Competitive		b) Substrate co	ncentration
	c) Products of		d) Enzyme cond	
256	=	onsidered as a crucial molecule in a	•	
_00.	a) Necessary for			
	b) Energy source			
		olysis of glycogen		
	, ,	ny vertebrate hormones and other	steroids	
257.	•	ct option that identifies the nature		o-factor correctly
	Apoenzyme	Co-factor		-
	a) Protein	Non-protein	b) Non-protein	Protein
	c) Protein	Protein	d) Non-protein	Non-protein
258.	The double hel	lical model of the DNA was prop	osed by Watson a	nd Crick based on what data
	produced by W	lilkins and Franklin?		
	a) Hybridizatio	on	b) DNA sequenc	cing
	c) Southern blo		d) X-ray diffrac	· ·
259.		eps of catalytic action of an enzy	•	
		e releases the products of the re		•
	substrate.	e releases the products of the re	caction and the enz	yme is nee for unother
		site of enzyme is in close proxin	nity of the substrat	e and breaks of chemical bonds
	of the subs		,	
			ne to alter its shan	e fitting more tightly around the
	substrate.	5 - Judge are madeed the chizyl	to areer its sirap	more agains around the
		ate binds to the active site of the	a anzuma fitting in	to the active site
	a) IV, III, II, I	b) III, II, I, IV	c) IV, II, I, III	d) II, I, IV, III
	α, 1 γ , 111, 11. I	UTIII, II. I. IV	C	u j 11. 1. 1 V . 1 l l

260	. How many carbon atoms	generally take part in the f	ormulation of monosaccha	rides?			
	a) 5 to 10	b) 1 to 5	c) 5 to 15	d) 3 to 7			
261	. Enzymes catalysts differ f	from inorganic catalysts in	which way?				
	a) Enzyme catalysts are s	maller in size and lesser in	weight in comparision to t	hat of inorganic catalysts			
			ature but enzymes catalyst	•			
	enzymes)		, , ,				
		work efficiently at high pr	essure but enzyme catalyst	t cannot			
	d) Both (b) and (c)			• • • • • • • • • • • • • • • • • • • •			
262	, , , , ,	which shows the effect of to	emperature on the velocity	of a typical enzymatic			
202	reaction	winen shows the effect of the	imperature on the velocity	of a typical chizymatic			
	l	1	I				
	a) V	b) V	c) V	d) V			
		5,					
	Temp.	Temp.	Temp.	Temp.			
263	. Malonate inhibits succina	te dehydrogenase, is an ex	•	0 / .			
	a) Allosteric inhibition	ive werry are egentuse, is an en	b) Negative feedback				
	c) Competitive inhibition		d) Non-competitive inhib	ition			
264	. Which disaccharide has		a) Non compensive mino	ition			
204			a) C	J) T			
-	a) Maltose	b) Starch	c) Sucrose	d) Lactose			
265		ring is not a fibrillar prot					
	a) Elastin	b) Collagen	c) Myosin	d) Albumin			
266	. The rate of physical or ch	emical process can be defir	ned as				
	a) The amount of reactan	t consumed per unit time	$G_{i}(V)$				
	b) The amount of product	t formed per unit time					
	c) The bond energy relea	sed during bond formation	per unit time				
	d) All of the above	26	<i>y</i>				
267	. Enzymes that catalyses th	ne removal of groups from s	substrates by mechanism o	ther than hydrolysis,			
	addition of groups to dou	ble bonds are called					
	a) Lyases	b) Ligases	c) Hydrolases	d) Dehydrogenases			
268	. Which of the following		, ,	, ,			
	a) NAD	b) NADP	c) FAD	d) ATP			
260			s opposite to that of other s	-			
207	opposite direction is calle	-	s opposite to that of other s	stranu when read from			
	a) Satellite DNA	b) Palindromic DNA	c) Repetitious DNA	d) Non-coding DNA			
270		=	, .	d) Non-coding DNA			
270		i combines with non-pro	tein part to form a funct	ionai enzyme, iš known			
	as						
	a) Coenzyme	b) Holoenzyme	c) Apoenzyme	d) Prosthetic group			
271	. Which of the following sta	atements are true?					
	I. Genetic RNA occurs in o	ertain viruses called ribovi	irus				
~	II. RNA of riboviruses ma	y be single stranded					
	III. Double stranded RNA	may also be present in ribo	oviruses				
	a) All are correct	b) Only I	c) All are incorrect	d) Only II			
272	Lactose is composed of	following components					
	a) Glucose and fructose		b) Glucose and glucose				
	c) Glucose, fructose and		d) Glucose and galactose				
272	. Holoenzyme is a/an	- Baiactooc	Gracose aria garactos				
2 73	•	ongumo	h) Drotoin and ansar	rm o			
	a) Non-protein and apo	•	b) Protein and apoenzy				
	c) Enzyme protein and	coenzyme	d) Enzyme, non-protein and coenzyme				

- 274. One feature common to all the compounds found in the acid soluble pool is
 - a) They have molecular weights ranging from 18 to around 800 daltons (Da) approx
 - b) They have molecular weights ranging from 18 to around 80 daltons (Da) approx
 - c) They have molecular weights ranging from 18 to around 800 approx
 - d) None of the above
- 275. Which of the following statements are correct?
 - a) Living steady state has a self regulatory mechanism called homeostasis
 - c) Metabolism is the release and gain of energy
- b) Energy flow and energy transformation of living system follows law of thermodynamics
- d) All of the above

ACTIVE SITE TUTORIALS

TEST ID: 274 BIOLOGY

9.BIOMOLECULES

						: ANSW	131	R K	ΕY	:				
1)	С	2)	d	3)	a		14		d	142)	a	143)	d	144) d
5)	c	-) 6)	b	7)	a	8) a		45)	С	146)	a	147)	b	148) b
9)	b	10)	b	11)	d	12) k		49)	a	150)	a	151)	a	152) c
13)	b	14)	a	15)	a			53)	С	154)	b	155)		156) b
17)	a	18)	a	19)	d		1!	57)	b	158)	b	159)	a	160) c
21)	b	22)	a	23)	d	24) ł	10	61)	c	162)	b	163)	С	164) a
25)	a	26)	b	27)	b	28) a	10	6 5)	d	166)	a	167)	b	168) d
29)	b	30)	a	31)	b	32) ł	10	69)	d	170)	a	171)	a	172) c
33)	a	34)	d	35)	c	36) l	1	73)	c	174)	c	175)	a	176) a
37)	a	38)	c	39)	a	40) l	1	77)	c	178)	d	179)	b	180) c
41)	a	42)	a	43)	d	44) 0	18	81)	c	182)	d	183)	b	184) a
45)	d	46)	a	47)	d	48) ł	18	85)	c	186)	b	187)	d	188) a
49)	a	50)	d	51)	a	52) 0	18	89)	a	190)	c	191)	a	192) a
53)	c	54)	a	55)	b	56) ł	19	93)	C	194)	a	195)	C	196) c
57)	c	58)	b	59)	d	60) a	19	97)	d	198)	a	199)	b	200) a
61)	d	62)	b	63)	c	64)	2	01)	c	202)	c	203)	a	204) c
65)	d	66)	a	67)	b	68) l	2	05)	d	206)	c	207)	d	208) b
69)	d	70)	c	71)	a	72) a	20	09)	c	210)	d	211)	C	212) a
73)	d	74)	b	75)	a	76) c	1 2	13)	d	214)	b	215)	a	216) c
77)	c	78)	a	79)	C	80) d	1 2	17)	a	218)	b	219)	b	220) d
81)	c	82)	b	83)	b	84) (22	21)	d	222)	c	223)	C	224) a
85)	a	86)	d	87)	b	88) (25)	d	226)	b	227)	d	228) a
89)	d	90)	a	91)	b	92) a		29)	d	230)	c	231)	C	232) c
93)	d	94)	a	95)	c	96) a		33)	C	234)	a	235)	C	236) a
97)	C	98)	d	99)	C	100) c		37)	C	238)	d	239)	C	240) b
101)	b	102)	С	103)	b	,		41)	b	242)	a	243)	C	244) c
105)	a	106)	d	107)	a	,	2	,	d	246)	a	247)	a	248) a
109)	a	110)	a	111)	b	112) (49)	a	250)	d	251)	a	252) a
113)	d	114)	d	115)	b	-		53)	b	254)	C	255)	C	256) d
117)	d	118)	a	119)	a	=		57)	a	258)	d	259)	a	260) d
121)		122)	b	123)	a	-		61)	b	262)	c	263)	С	264) c
125)	d	126)	b	•	b	-		6 5)	d	266)	b	267)	a	268) d
129)		130)	c	131)	c	-		69) >	b	270)	C	271)	a	272) d
133)	d	134)	d	-	b	-		73)	a	274)	a	275)	a	
137)	b	138)	b	139)	b	140) c	:							

ACTIVE SITE TUTORIALS

TEST ID: 274 BIOLOGY

9.BIOMOLECULES

: HINTS AND SOLUTIONS :

1 (c)

 $A = 1^{\circ}$ structure $B = 4^{\circ}$ sstructure $C = 3^{\circ}$ structure $D = 2^{\circ}$ structure

2 **(d)**

When we grind a tissue, we are distrupting the cell structure

Cell membrane and other membranes are broken into pieces and form vesicles which are not water soluble. Therefore, these membrane fragments in the form of vesicles get separated along with the acid insoluble pool and hence, in the macromolecular fraction. Lipids are not strictly macromolecules

3 **(a)**

Silicon is almost negligible in living organism. A comparison of elements present in non-living and living matter is as follows

Element	% Weight of Earth's crust Human Body			
Hydrogen (H)	0.14	0.5		
Carbon (C)	0.03	18.5		
Oxygen (0)	46.6	65.0		
Nitrogen (N)	Very little	3.3		
Sulphur (S)	0.03	0.3		
Sodium (Na)	2.8	0.2		
Calcium (Ca)	3.6	1.5		
Magnesium (Mg)	2.1	0.1		
Silicon (Si)	27.7	negligible		

*Adapted from CNR Rao, Understanding Chemistry Universities Press Hyderabad

4 **(b**)

(i) Carrots - Carotene

(ii) tomatoes - Lycopene

5 (c)

Lecithin is a phospholipid composed of choline and inositol. It is found in all living cells as a major component of cell membrane.

6 **(b**)

The central core of silk fibre is made up of fibroin protein. Silk fibres are soft and flexible. These are composed of β -pleated

sheets.

7 (a)

Every coenzyme is a cofactor but every cofactor is not coenzyme.

8 **(a**)

The rate of reaction doubles are decreases by half for every 10°C change in either direction

9 **(b**)

Special non-protein molecules are called cofactors. These help enzymes to catalyze chemical reactions. Organic cofactors are called coenzymes.

10 **(b)**

There are 20 different amino acids. In proline and hydroxyl proline instead of $-\mathrm{NH}_2$ group, NH group is present. These are called **imino** acids.

Methionine and **cysteine** are sulphur containing amino acids.

11 (d)

The sum total composition of acid soluble and acid insoluble fraction represents the composition of cellular pool

12 **(b)**

Emil Fisher (1894) proposed 'lock and key theory' for the mechanism of enzyme action, according to which the active sites of enzyme have a specific geometric shape wherein the substrate molecules fit in just like a key in a particular lock. In other words, it illustrates that a particular enzyme molecule interacts with a specific type of substrate molecule.

13 **(b)**

Acidic amino acids have two carboxyl groups and one amino groups per molecule. They are called monoamino dicarboxylic amino acids. They include aspartic acid and glutamic acid

14 **(a)**

After doing the chemical analysis of organic

compounds found in living organisms, two types of organic compounds were observed. There are filtrate (acid soluble pool) and the retentate (acid insoluble pool)

15 **(a)**

Dehydrogenase is not an example of hydrolases. It is an example for oxidoreductases.

16 **(b)**

Human skin contains α -keratin, which is a secondary form of proteins

17 **(a)**

Dynamic state of body constituents

18 **(a)**

ADP + $P_i \rightarrow$ ATP (endergonic) ATP \rightarrow ADP + P_i (exergonic)

19 **(d)**

In DNA, thymine (5 – methyl uracil) is present. Uracil is present in RNA at the place of thymine.

20 **(b)**

Purine and pyrimidine nitrogenous base are found in DNA. Among purines, adenine pairs only with the pyrimidine thymine. Similarly, guanine pairs with the cytosine. The fact that total amount of purine will be equal to total amount of pyrimidine was first enunciated by Chargaff in 1950. From this law, Adenine=Thymine=60/2=30% Guanine=Cytosine=40/2=20%

21 **(b)**

Isoenzymes are one of the several forms of an enzyme in an individual or population that catalyse the same reaction but differ from each other in such properties as substrate affinity and maximum rates of enzymesubstrate reaction.

22 (a)

Amino acids are substituted methanes, there are four substituent groups occupying the four valency positions. These are hydrogen, carboxyl group, amino group and a variable group designrated as *R* group

23 **(d)**

Emil Fisher (1894) proposed 'lock and key' theory to explain the mechanism of enzyme action. According to this theory, the active sites of enzyme have a specific geometric

shape wherein the substrate molecule get fitted to form enzyme-substrate complex. This is like the fitting of a key to a particular lock.

24 **(b)**

Histones are a set of positively-charged, basic proteins. Histones are rich in the basic amino acid residuesl lysines and arginines. Both the amino acid residues carry positive charges in their side chains. Two molecules of each of the four types of histones – H_2A , H_2B , H_3 and H_4 are organized to form **histone octamers**. These form the inner core of nucleosome. The negatively charged DNA is wrapped around the positively – charged histone octamer to form a structure called

25 **(a)**

nucleosome.

Grape sugar is glucose, it is the main fuel in all cells. It is the blood sugar of many mammals

26 **(b)**

Pepsin is an extracellular enzyme

27 **(b)**

Glycogen is the main storage polysaccharide in animals. Like those of amylopectin, glycogen molecules are also large highly branched (branch points are α' 1-6 linkages) polymers of thousands of D-glucose residues linked by α , 1-4 glycosidic bonds.

28 **(a)**All are correct

29 **(b)**

An $\alpha\text{-helix}$ is an example of secondary protein structure

30 **(a)**

Glucose, fructose, mannose and galactose are hexose monosaccharides. The monosaccharides have free aldehyde or ketone group, which can reduce Cu²⁺to Cu. Therefore, these are called reducing sugars.

31 **(b**)

Formation of glycogen from glucose is called glycogenesis

32 **(b)**

Cellulose is a polymeric polysaccharide consisting of only one type of monosaccharide, *i.e.*, glucose

33 **(a)**As living organisms work continuously, they

cannot afford to reach equilibrium. Hence, the living state is a non-equilibrium steady-state to be able to perform work, living process is a constant effort to prevent falling into equilibrium

34 **(d)**

Arachidonic acid is polyunsaturated (*i.e.*, have more than one double bond) and essential fatty acids.

35 **(c)**

Inulin (Dahlia starch) is a polymer of **fructose**. It consists of 30 fructose units linked by $\beta 1 - 2$ linkage.

36 **(b)**

Sucrose is a sugar comprising one molecule of glucose linked to a fructose molecule. It is abundant in sugarcane, sugar beet, etc, from which it is extracted and defined as table sugar.

37 **(a)**

For nucleic acids, the building block is a nucleotide. A nucleotide has three chemically distinct components. One is a heterocyclic compound, second is a monosaccnaride and the third a phosphoric acid or phosphate

38 **(c)**

In feedback inhibition, the product of an enzyme-catalyzed reaction (chain of reactions) accumulates and acts as inhibitor of the reaction, *e. g.*,

Glucose + ATP $\xrightarrow{\text{Hexokinase}}$ Glucose - 6 - phosphate + ATP

39 **(a)**

The term metabolism refers to the sum of all the enzymatically catalysed chemical reactions constantly taking place in the cells and tissues of the living organisms. These include those that change the small molecules into large ones as well as those which convert the large molecules into small ones

40 **(b)**

Chitin is a homopolymer of $\beta - 1$, 4-linked N-acetyl-D-glucosamine residue. It is a principal structural component of the exoskeleton of invertebrates, *e. g.*, arthropods; and is also a major cell wall constituent of most fungi.

41 **(a)**

Creatine phosphate is a reservoir of high energy phosphate in muscle cells, as the energy released by its hydrolysis is greater than ATP. **Fat** contains more energy as compared to carbohydrate and protein. It is not directly used in respiration instead first broken down to intermediates common to glucose oxidation, *ie.*, acetul Co-A, glyceraldehydes phosphate.

42 **(a)**

Amino acids are organic acids (with carboxylic group (-COOH) and having amino group (-NH $_2$) generally attached to α – carbon or next to the carboxylic group. Carboxylic group provides an acidic property to the amino acid, while amino group gives it a basic reaction. Amino acids are **building blocks** of proteins and enzymes.

43 **(d)**

Seven amino acids are the essential amino acids for man. They include leucine, isoleucine, lysine, methionine, phenylalanine, tryptophan and valine

44 **(**c)

The aggregation of the various kinds of biomolecules in a cell is referred to as the cellular pool

45 **(d)**

Secondary metabolites can be observed in plant, fungal and micbrobial cells

Some Secondary Metabolites

Pigments – Carotenoids, Anthocyanins, etc.

Alkaloids – Morphine, Codeine, etc.

Terpenoides – Monoterpenes, Diterpenes etc.

Essential oils - Lemon grass oil, etc.

Toxins – Abrin, Ricin

Lectins – Concanavaline –A

Drugs – Vinblastin, curcumin, etc. Polymeric – Rubber, gums, cellulose

substances

46 **(a**)

Thousands of compounds including flavonoids, rubber, essential oils, antibiotics, coloured pigments, scents, gums, spices. There are called secondary metabolites

47 **(d)**

Photosynthesis is the starting point, in the production of food. It produces glucose, from which all other food materials are produced

49 **(a)**

The heterocyclic compounds in nucleic acids are the nitrogeneous bases named adenine, guanine,

uracil, cytosine and thymine

50 **(d)**

Tyrosinase is a copper containing oxides, which is widely distributed in plants and animals including human. It oxidizes tyrosine to melanin in mammal and causes the cut surfaces of many fruits and vegetables to darken.

52 **(c)**

The regulation of the chemical composition of blood and body fluids and other aspects of its internal environment by an organism, to maintain its physiological processes is called homeostasis

53 **(c)**

In a polysaccharide chain (say glycogen), the right end is called the reducing end and the left end is called the non-reducing end

54 (a)

Hydrogen.

A and G of one strand compulsorily base pairs with T and C, respectively, on the other strand. There are two hydrogen bonds between A and T and three H-bonds between G and C

55 **(b)**

When the inhibitor closely resembles the substrate in its molecular structure and inhibits the activity of the enzyme, it is known as competitive inhibitor

56 **(b)**

Adenine and guanine are substituted purines, while the rest (uracil, cytosine and thymine) are substituted pyrimidines

57 **(c)**

Almost all enzymes are basically made up of proteins. However, a small group of RNA molecules (*e. g.*, ribozyme) have also been found to be enzymatic exceptionally.

58 **(b)**

Amino acids are organic amino acids containing an amino group and an acidic group pas substituents on the same carbon, *i.e.*, the α -carbon. Hence, they are called α -amino acids

59 **(d)**

Isomerases are the enzymes which bring about rearrangement of molecular structure and catalyse the interconversion of optical, geometrical or positional isomers.

60 **(a)**

All the carbon compounds obtained from living

tissues are named as biomolecules

61 **(d)**

A fatty acid has a carboxyl group attached to R group. The R group could be a methyl ($-CH_3$), or ethyl ($-C_2H_5$) or higher number of $-CH_2$ groups (1 carbon to 19 carbons)

62 **(b)**

Enzymes are water soluble colloidal macromolecules which are wholly or partially proteinaceous in nature. The proteinaceous part of enzyme is called **apoenzyme** while the non-protein part is called **prosthetic group**, which may be organic (*ie.*, coenzyme) or inorganic (*i.e.*, cofactor). This complex enzyme is called holoenzyme.

63 **(c**)

Such sugars, which give positive tests with Benedict's solution and Tollen's reagent are called reducing sugars. Most monosaccharides and some disaccharides are reducing sugars.

64 **(c)**

When a metabolic disequilibrium is in effect, then only cells continue to functions. The cellular metabolism utilises only those reactions that are irreversible

65 **(d)**

S³⁵ radioisotope is not suitable for DNA labelling based studies as DNA does not contain sulphur. S³⁵ radioisotope is suitable for protein labeling based studies because protein contains sulphur.

66 **(a)**

Allosteric modulation or feedback inhibition of enzymes is influenced by **end product**. It was shown by **Jacob and Monod** (1961) through Lac operon in *E. coli*.

67 **(b)**

After burning the dry tissues, all the organic compounds are oxidised to gaseous form (CO_2 and water vapour) and are removed. The material left is termed 'ash' which contains inorganic elements (*e.g.*, calcium, magnesium etc.)

68 **(b)**

The inorganic compounds like sulphate, phosphate *etc.*, are categorised in acid soluble pool

69 **(d)**

Metabolic pathway from glucose to lactic acid occurs in 10 metabolic steps. This pathway is known as glycolysis

70 **(c)**

A nucleotide has three components. One is a heterocyclic compounds, second is a monosaccharide and third is a phosphate or phosphoric acid

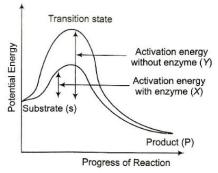
71 **(a)**

I. Hydrolysis of glycogen to glucose is termed as glycogenolysis

II. Amylases takes part in the hydrolysis of glycogen

III. Amylum is another name of starch
IV. Polysaccharide formed as the end product of
photosynthesis is starch

72 **(a)**


Peptone is any group of soluble and diffusable derived proteins formed by the action of enzymes on proteins, as in the process of digestion or by acid hydrolysis.

73 **(d)**

RUBISCO is the most abundant protein in whole of the biosphere

74 **(b)**

The amount of activation energy in the present of an enzyme is very less as compare to the amount, which is needed in the absence of enzymes

75 **(a)**

 $CH_3(CH_2)_{14}COOH$ is the chemical formula of **palmitic acid**. It is a saturated fatty acid.

76 **(d)**

Cellulase enzyme is used in detergent industry for colour brightening and softening.

77 **(c)**

In human DNA at Single-Nucleotide Polymorphism (SNP), single base differences occur.

78 **(a)**

Coenzyme is non-proteinaceous organic molecule required bound to the enzyme for

functioning. Apoenzyme is the proteinaceous part of enzyme.

Coenzyme+Apoenzyme=Holoenzyme

79 **(c**)

Majority of the metabolic reactions do not occur in isolation, they are always linked to some other reactions. There are many examples of catalysed metabolic reactions examples of catalysed metabolic reactions

80 **(d)**

Maltose or malt sugar, is abundantly occurred in germinating starchy seeds. Maltose is a homodisaccharide, *ie.*, made up of two similar D-glucose residues, which are linked by α 1, 4 glycosidic bond.

81 **(c)**

Mannitol is a sugar alcohol.

82 **(b)**

Almost all enzymes are proteinaceous in nature

83 **(b**)

Nucleic acids exhibit a wide variety of secondary structures. For example, one of the secondary structures exhibited by DNA is the famous Watson-Crick model. This model says that DNA exists as a double helix. The two strands of polynucleotides are antiparallel *i.e.*, run in the opposite direction. The backbone is formed by the sugar-phosphate-sugar chain. The nitrogen bases are projected more or less perpendicular to this backbone but face inside

84 **(c)**

Feedback inhibition is an enzyme regulatory mechanism, where the end product functions as an allosteric inhibitor, if its concentration crosses a threshold value.

85 (a)

Molecules are constantly being changed into some other biomolecules and also made from some other biomolecules. This breaking and making is through chemical reactions constantly occurring in living organisms. Together all these chemical reactions are called metabolism. Each of the metabolic reactions results in the transformation of biomolecules. A few example for such metabolic transformations are removal of ${\rm CO}_2$ from amino acids making an amino acids into an amine, removal of amino group in a nucleotide base; hydrolysis of a glycosidic bond in a disaccharide, etc.

86 **(d)**

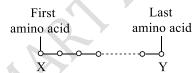
In the solid state, an amino acid ordinarily exist as Zwitter ion, which is formed by the transfer of protons from α — COOH group to — NH $_2$ group. Essential amino acids are those, which our body can not manufacture of its own that's why these are required in diet, while non-essential amino acids required in diet, while non-essential amino acids are those, which are not required in our diet essentially.

87 **(b)**

The shape of a protein in its functional mode is its teritiary structure, determined largely by primary structure, positively charged regions attract and bind to negatively charged regions and hydrophobic R groups interact and form water-free pockets inside the folded protein. Cysteines may link to protein, together with **disulphide bonds**.

88 **(c)**

Maltose is a disaccharide that given two molecules of glucose on hydrolysis. It is found during germination of starchy seeds. It is produced commercially from starch hydrolyzing enzyme, diastase.


89 **(d)**

Albumin is a simple water soluble protein composed of nitrogen, carbon, hydrogen, oxygen and sulphur, occurring in animal and vegetable juices.

90 (a)

 $X \rightarrow N$ -terminal amino acid

 $Y \rightarrow C$ -terminal amino acid

91 **(b)**

All statements are correct. Only IV is wrong. After performing elemental analysis of a plant tissue, animal tissue, microbial paste (living matter) and of a piece of earth's crust (animate object), it was found that all living and non-living systems are made-up of same chemicals *i.e.*, elements (*e.g.*, carbon, hydrogen, oxygen and several others) Most living organisms have relatively high abundance of carbon and hydrogen than in earth's

crust

92 **(a)**

Cystine is a dimeric amino acid formed by the oxidation of two cysteine residues, which covalently link to make a disulphide bond.

93 **(d**)

All the statements about enzymes are correct

94 **(a)**

Amino acid	Symbol
Phenylalanine	F
Proline	P
Tryptophan	W
Methionine	M

95 **(c)**

Peroxidase and catalase, catalyze the break down of hydrogen peroxide to water and oxygen

96 **(a)**

Sugar and amino acids are **primary** metabolites. Sugars are building blocks of starch, glycogen, etc., while amino acids are the building blocks of proteins.

97 **(c)**

Competitive inhibition is seen, when the substrate and the inhibitor compete for active site.

98 **(d)**

Enzymes are thermolabile and their activity increases rapidly from $0^{\circ}\text{C} - 35^{\circ}\text{C}$. In most of the animals, the optimum temperature is between $25^{\circ}\text{C} - 40^{\circ}\text{C}$ for most of the enzymes. Many enzymes stop activity at 60°C and are denaturated.

99 (c)

Cellulose is made up of unbranched chain of glucose molecule linked by β -1, 4 glycosidic bond.

100 (c)

Except glycine, all the amino acids contain asymmetric carbon. It is simplest amino acid. Cysteine and cystine contain sulphur.

101 **(b)**

The four main elements found in a living system which make 95% of all elements are

Carbon - 18.5%

Hydrogen - 0.5%

Oxygen - 65%

Nitrogen - 3.3%

These four elements are called 'Big-four' elements

102 **(c)**

Proteins are heteropolymers which are made up of 20 types of monomers of amino acids

103 **(b)**

Catabolic and anabolic pathways are often coupled in a cell because the free energy released from one pathway is used to drive other pathways

104 **(b)**

Proteins are linear polymers of amino acids. Hence, these are made up of C, H, O, N and in some cases S also. These are macromolecules of high molecular weight (from 6000 to several millions). The elimination of water during interaction between the amino acids is called condensation and the linkage so formed is a carbon nitrogen bond called peptide bond. The compound so formed is called dipeptide.

105 (a)

Trehalose is the major sugar of insect haemolymph, in disaccharide form

106 **(d)**

These are five forms of DNA, B.DNA is most common.

A-DNA - 11 pairs

B-DNA - 10 pairs

C-DNA - 9.33 pairs

D-DNA - 8 pairs

Z-DNA - 12 pairs

107 **(a)**

The phospholipid is a bipolar molecule having long fatty acid called hydrophobic tail (water hating) or non-polar end and hydrophilic (water loving) or polar end, hence it is amphipathic in nature.

108 **(b)**

$$NADH + H^{+} + 1/2O_{2} \xrightarrow{Cytochrome} NAD^{2} + H_{2}O$$

Cytochrome oxidases catalyses the transfer of hydrogen to oxygen, forming water in the last reaction of electron transport system

109 (a)

Flow of metabolites through metabolic pathway has a definite rate and direction like automobile traffic. These pathways criss-cross each other

110 (a)

A peptide bond is a chemical bond formed between two molecules when the carboxyl group of one molecule reacts with the amino group of the other molecule; thereby releasing a molecule of H_2O . This is a dehydration synthesis reaction and usually occurs between amino acids. The resulting bond is a peptide bond and the resulting molecules is an amide.

111 **(b)**

In animal tissues, the categories of compounds present are called primary metabolites

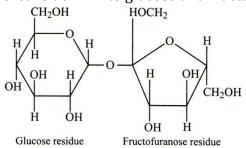
112 (c)

Cellulose is homopolysaccharide, a polymer of $\beta-$ glucose. The glucose monomers are linked together by $\beta-1,4$ linkage. Cellulose is the main constituent of plant cell wall.

113 (d)

The catalysts which hasten the rate of a given metabolic conversation are also proteins. These proteins with catalytic power are named enzymes

114 (d)


Amylases, glucoamylases and glucoisomerases are all enzymes that convert corn starch into high fructose syrup, which is used to flavour soft drinks and to sweeten biscuits and cakes.

115 **(b)**

Denaturation means deviation from natural form. Proteins or nucleic acids whenever exposed to extreme heat, pH or acids their structure become change. This process is known as **denaturation**.

116 **(c)**

Sucrose is a disaccharide, which on hydrolysis breaks down into glucose and fructose.

117 (d)

In Meselson and Stahl's experiment, bacterial cells were grown for several generations in a medium containing a heavy isotope of nitrogen (N¹⁵) and then, were transferred to a new medium containing the normal lighter isotope (N¹⁴). At various times thereafter, samples of bacteria were collected and their

DNA was dissolved in a solution of cesium chloride, which was spun rapidly in a centrifuge. Because the cesium ion is so massive, it tends to settle towards the bottom of the spinning tube, establishing a gradient of caesium density.

118 (a)

Protein	Present in
Fibroin	Silk
Albumin	Egg, blood plasma
Keratin	Hair, skin
Globulin	Blood plasma

119 (a)

Inactive form of enzymes is called proenzymes

120 **(c)**

Among these, glycine is the simplest amino acid.

121 **(c)**

Transformation of biomolecules results due to the metabolic reactions occurring in body. Hydrolysis of glycosidic bond in a disaccharide results in the formation of simpler monosaccharides

122 **(b)**

Sucrose is most abundant in plants. It consists of 1-D glucose and 1, D fructose units jointed by α 1-2 glycosidic linkage. Due to absence of aldehyde group at 1-C atom, the sucrose is non-reducing sugar.

123 **(a)**

Phospholipids are conjugated lipids. There are esters of fatty acids and alcohol but contain some acids and glycerol

124 **(d)**

Glycine max or soybean is the richest source of protein (36-44%). From its seeds edible oil and a milk-like substance is obtained, which is used as a substitute of milk.

125 **(d)**

Starch is present as a store house of energy in plant tissues

126 **(b)**

Keratin of hair and myosin of muscle have α -helical structure. Fibroin, the protein in silk fibres produced by insects and spiders, has pleated structure

127 **(b)**

The most abundant chemical in living organisms is water.

Water content is 70-90% of the total cellular mass

128 (d)

F Sanger (1953) first time deciphered the sequence of amino acid in a protein, *i. e.*, bovine insulin. Proteins are made up of amino acids and amino acids are held together by peptide bonds.

130 **(c)**

Collagen is the most abundant protein in animal word

131 (c)

Proteins with catalytic power are called enzymes. Their basic function is their involvement in the change of rate of reaction either increase or decrease

132 **(a)**

The α -helix, random coil and β -pleated sheets are termed the secondary structure of proteins

133 (d)

All are structural proteins.

134 **(d)**

All statements are correct

135 **(b)**

Enzymes catalyses the biochemical reactions by lowering the activation energy

136 (c)

Glucose

137 **(b)**

I. Red

II. Long stretches of repetitive base pairs is called satellite DNA

III. Phosphoric acid, pentose sugar and nitrogenous organic base

138 **(b)**

The acid soluble pool represents the cytoplasmic composition of cell. The macromolecules from cytoplasm and organelles becomes acid insoluble fraction. Together, they represent the entire chemical composition of living tissues or organisms

139 **(b)**

Transferases catalyze transfer of group G (other than hydrogen) between a pair of substrates, S and S', e. g.,

$$S - G + G' \xrightarrow{Transferase} S + S' - G$$

140 (c)

There are certain enzymes which have slightly different molecular structure but have similar catalytic function. Such enzymes are called isoenzymes or simply isozymes. LDH (Lactic dehydrogenase) is a good example of isoenzymes

141 **(d)**

Primary metabolities includes amino acids, sugars etc. They play a major role in physiological processes

142 (a)

Sucrose is a non-reducing sugar. It consists of one glucose and one fructose moiety, and is the main transporting sugar in plants.

143 **(d)**

All of the above. Double sugar is sucrose (table sugar) and milk sugar is lactose. Sugar in germinating seeds is also an example of double sugar

144 (d)

Based on the nature of *R* group, there are many amino acids

145 (c)

Carbohydrates are the products of photosynthesis, which is carried out by photosynthetic bacteria, green algae and green plant cells.

146 (a)

Amino acids have a central four valence carbon atom, called the alpha (α) carbon to which are attached (i) an amino group ($-NH_2$) on one side, (ii) a carboxyl groups (-COOH) on the other side, (iii) a hydrogen atom (H) on the third side and (iv) a variable group symbolised by R on the fourth side. Out of them, NH_2 and COOH are involved in peptide bond formation

147 **(b)**

Starch remain stored in chloroplasts and amyloplasts in plant cells

148 **(b)**

Each strand appears like a helical staircase. Each step of ascent is represented by a pair of bases. At each step of ascent, the strand turns the pitch would be 34Å. The rise per base pair would be 3.4Å. this form of DNA with the above mentioned salient features is called B-DNA

149 (a)

The catalytic efficiency of two different enzymes can be compared by the K_m value.

150 (a)

When the inhibitor closely resembles the substrate in its molecular structure and inhibits the activity of the enzyme, it is known as competitive inhibitor. Due to its close structural similarity with the substrate, the inhibitor

competes with the substrate for the substratebinding site of the enzyme.

Consequently, the substrate cannot bind and as a result, the enzyme action declines, *e. g.*, inhibition of succinic dehydrogenase by malonate which closely resembles the substrate succinate in structure. Such competitive inhibitors are often used in the control of bacterial pathogens

151 **(a)**

Cellular pool consists of both organic and inorganic compounds. The relative percentage of each of these is as follow:

Water - 80%

Protein - 12%

Lipids - 3.0%

Nucleic acids - 2.0%

Carbohydrates - 1.0%

Inorganic salt - 1.0%

152 **(c)**

Five forms of DNA have been reported A, B, C and D forms are right handed, while the Z-DNA is left handed

153 **(c)**

Adult human haemoglobin consists of 4 subunits $(2\alpha, 2\beta)$

155 (d)

Nuclease is an enzyme that breaks phosphodiester bonds in nucleic acid molecules. It is the most specific enzyme as it functions at specific sites (between specific nucleotides) on the nucleic acid molecule.

156 **(b)**

Chemical compounds, which are found in the acid insoluble fraction are called biomacromolecules or macromolecules

157 **(b)**

Lipids are generally, water insoluble because they are non-polar. They dissolve in non-polar organic solvents, such as ether, chloroform, acetone and benzene. They disperse in water uniformly as minute droplets forming an emulsion

158 **(b)**

The nucleotide is formed by the union of a phosphate group with a nucleoside. A

nucleoside contains a sugar molecule along with an organic nitrogenous base. Thus, a nucleotide contains a organic nitrogenous base (purine or pyrimidine) along with a sugar molecule and a phosphate group, *i. e.*, Nucleoside=Sugar molecule+Organic nitrogenous base.

Nucleotide=Nucleoside+Phosphate group.

159 (a)

Cofactor is a non-protein component essential for the normal catalytic activity of an enzyme. Cofactors may be organic molecule or inorganic ions.

160 **(c)**

Water has structural and chemical properties that make it particularly suitable for its role in living cells. Every water molecule is capable of forming four **hydrogen bond** with nearby water molecules. Because of this strong attraction, a great deal of heat is separate water molecules from each other.

161 (c)

The physical and the chemical compositions of amino acids are essentially of the amino, carboxyl and *R* groups

162 **(b)**

The enzymes which work only in the presence of cofactors are known as apoenzymes.

A working combination of an apoenzyme and cofactor (mineral ion, prosthetic group or coenzyme) is called enzyme system or

Apoenzyme + Mineral ion/Prosthetic/ Coenzyme group → Enzyme system or holoenzyme

163 **(c)**

holoenzyme.

The proteins are composed of carbon, hydrogen, oxygen, nitrogen and sulphur. Certain proteins may contain phosphorous, iron or other elements also

164 (a)

Two or more polynucleotide chains may join together by intermolecular hydrogen bonds and may bend into parallel folds to form β -pleated sheet

165 (d)

Enzymes, vitamins and hormones are helpful in metabolism regulation.

166 (a)

Waxes are the **esters** formed between a long

chain alcohol and saturated fatty acids. This material is typically pliable and soft when warm but hard and water resistant when cold, *e. g.*, paraffin wax.

167 **(b)**

Certain proteins form enzymes, some coenzymes and many hormones (insulin, parathormone) and regulate metabolism. They are called functional proteins

168 **(d)**

On full turn of the helical strand would involves ten steps or ten base pairs

169 **(d)**

In a double stranded DNA, the sequence of nucleotides is complementary to each other, *i. e.*, A pair with T and G pair with C. So, the sequence of nucleotide for 3' ATTCGCTAT 5' will be 5' TAAGCGATA 3'.

170 **(a)**

In a protein molecule, the amino acid units are linked together by peptide bonds formed between the amino acid units and the carboxyl groups of successive amino acids

171 (a)

A is ester bond formed by condensation reactions, involving elimination of water

$$\begin{array}{c|c}
O \\
HO-P & OCH_2 & N-base \\
\downarrow A \\
OH & OH
\end{array}$$

172 (c)

Statement II is false. Amount of biomolecules in an organisms is fixed

173 (c)

Michaelis Menten constant (km) is equal to the substrate concentration at which the velocity of the reaction is half maximum. It is inversely proportional to the enzyme activity

174 (c)

Miller and Urey were the two scientists, who recreated the condition of primitive earth in laboratory and abiotically synthesized amino acids and bases. They synthesized glycine, aspartic acid and alanine in abundant quantities, while glutamic acid was not synthesized in their experiment.

175 **(a)**

Glycine is not optically active amino acid.

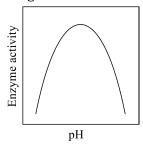
176 (a)

Cellulose provides roughage (fibre) in our diet

177 **(c)**

Starch can be used as an indicator for the detection of traces of **iodine** in aqueous solution.

178 (d)


Metabolic pathways not always follow linear routes. They are circular sometimes. These pathways criss-cross each other

179 **(b)**

Fructose is the sweetest sugar. It is found in sweet fruits and honey.

180 (c)

Some enzymes acts best in an acid medium and others in an alkaline medium. For every enzyme, there is an optimum pH where its action is maximum. Most enzymes shows activity in a pH range of about 6.0 to 7.5 *i.e.*, neutral pH. A shift towards the alkaline or acid side rapidly decreases the enzyme activity and finally, stops it altogether

181 (c)

Rennin, helicase and hyaluronidase, all are enzymes.

182 **(d)**

The non-competitive inhibitor binds to the enzyme at some site other than the substrate binding site and no product is formed. e.g., cyanide inhibits the mitochondrial enzyme cytochrome oxidase, which is essential for cellular 191 (a) respiration

183 **(b)**

Biomolecules only

184 (a)

A physical change simply refers to a change in shape without breaking of bonds. This is a physical process. Another physical process is a change in state of matter when ice melts into water, or when water becomes a vapour. These are also physical processes. However, when bonds are broken and new bonds are formed during transformation, this will be called a chemical reaction

185 (c)

Living organisms have a number of carbon compound in which heterocyclic rings can be found. Some of these are nitrogen bases-adenine, guanine, cytosine, uracil and thymine

186 **(b)**

Lipid is a fat, which on hydrolysis forms **fatty** acids and glycerol.

187 **(d)**

Protein is the polymer of amino acids joined together by peptide bonds so, if all peptide bonds of protein are broken, then the remaining part will be amino acid.

188 (a)

Polysaccharides are large sized carbohydrates $(C_6H_{10}O_5)_n$ which are formed by condensation of a number of monosaccharides. These are also called glycan because of their formation from sugars. Linkage between adjacent monosaccharides is through glycosidic bonds (-COC-). A molecules of water is released at each point of condensation.

189 (a)

The free energy of a system decreases in a spontaneous reaction

190 (c)

Allosteric inhibition is the inhibition of enzyme activity by binding of an effector molecule to site (allosteric site) other than active site.

Pentoses (e. g., ribose, deoxyribose) and hexoses (e. g., glucose, fructose, galactose) are common monosaccharides.

192 (a)

Polysaccharides are polymers of monosaccharides. Glycogen and starch are both polymer of α – glucose. Glycogen is found in liver and muscles and store energy in mammals.

193 **(c)**

Enzymes are biological catalysts, which catalyse a vast number of chemical reactions at the temperature suitable for living organisms.

194 (a)

A product of metabolism is called a metabolite

195 **(c)**

Starch has straight chain or amylose part of $200\text{-}2000,1 \rightarrow 4~\alpha-D$ pyranose glucose units and side chain or amylopectin part of 2000-200,000 glucose units that are attached to straight chains by $1 \rightarrow 6\alpha-D$ glycosidic linkages. Cellulose is the most abundant organic substance on earth. It has a molecular linear chain of 6000-10,000,1-4 linked- β pyranone glucose chain with molecular weight of 0.5-2.5 million. Adjacent glucose molecules lies at 180° to each other.

196 (c)

A-double helix, B-antiparallel, C-phosphate, D-sugar, E-perpendicular.

Adenine and guanine are substituted purines, while the rest (uracil, cytosine and thymine) are substituted pyrimidines

197 (d)

After grinding a living living tissue in trichloroacetic acid and then staining it, two fractions, acid-soluble and acid-insoluble can be found

Flavonoids and alkaloids all secondary metabolites, which are not present in acid insoluble fraction

198 (a)

X-axis represents temperature while Y-axis represent enzyme activity. All enzymes act at an optimum temperature, above and below this temperature, the enzyme activity declines.

199 **(b)**

Each enzyme [E] has a substrate [S] binding site in its molecule so that a highly reactive enzyme substrate complex [ES] is produced. This complex is short lived and dissociates into its product and the unchanged enzyme with an intermediate formation of the enzyme product complex [EP] The formation of the ES complex is essential for catalysis

$$E + S \rightleftharpoons Es \longrightarrow E - P \longrightarrow E + P$$

200 (a)

All statements are incorrect. Metabolism is features of living beings. During the process of

metabolism, the organic molecules are being broken down and build up through the series of chemical reactions. The new product produced during the metabolism are termed as metabolism are termed as metabolite

201 (c)

Starch, glycogen, cellulose, chitin, etc. are homoglycans (glucans) containing only glucose units. Homoglycans are the polysaccharides having only one type of monosaccharide units in them.

202 (c)

There is no uncatalysed metabolic conversion in living systems. Even ${\rm CO_2}$ dissolving in water, a physical process, is a catalysed reaction in living system

203 **(a)**

Vinblastin and curcumin are used as drugs

204 **(c)**

Enzymes are most functional at the temperature range of $30^{\circ} - 50^{\circ}\text{C}$

205 (d)

Catalyzed reactions.

There is no uncatalysed metabolic conversion in living systems. Even ${\rm CO_2}$ dissolving in water, a physical process, is a catalysed reaction in living systems

206 **(c)**

In humans and most other mammals, acetyl CO-A formed in liver during oxidation of fatty acids, can enter the citric acid cycle for production of energy or can be converted to ketone bodies, *e. g.*, acetone, acetoacetate and betahydroxy butyric acid.

208 **(b)**

Adenylic acid is not a nucleoside, it is a nucleotide

209 (c)

Glucose is degraded into lactic acid in skeletal muscles by a catabolic process as energy is liberated

Assembly of a protein from amino acids requires energy and hence, it is an anabolic process

210 (d)

All statement are correct

211 **(c)**

The chemical and physical properties of amino acids are essentially of the amino, carboxyl and the *R* functional groups. Based

on number of amino and carboxyl groups, these are acidic (e. g., glutamic acid) and, basic (e. g., lysine) neutral (e. g., valine amino acids).

212 **(a)**

On the surface of enzyme, there are several sites for binding substrate molecules called active sites. It is lined by approximately 20 amino acids.

213 **(d)**

Collagen is the most abundant protein in animal world and Ribulose bisphosphate carboxylase-oxygenase (RUBISCO) is the most abundant protein in the whole of the biosphere.

214 **(b)**

Monosaccharides are simple sugars with empirical formula $C_n(H_2O)_n$ and containing 3-7 ccarbon, *ie.*, trioses (3C), tetroses (4C), pentoses (5C) and hexoses (6C).

215 (a)

Primary structure of proteins is due to the present of peptide bond

216 **(c)**

A form of amino acid with both positive and negative charges simultaneously in the same molecule is called twitter ionic form

$$R = H_3^+ N - CH - COO^-$$

217 (a)

Removal of an amino group (-NH₂) frequently from an amino acid by transaminase enzyme is known as **deamination**. In mammals, deamination occurs chiefly in the liver.

218 **(b)**

Cofactors are non-proteinaceous constituents of conjugated enzyme which are associated with proteinaceous apoenzyme. These are divided into three categories.

- 1. **Prosthetic Groups**: Organic compound tightly bound to apoenzyme.
- 2. **Coenzyme**: Organic in nature and bound to apoenzyme at the time of course of action.
- 3. **Metal Ions**: Inorganic in nature.

219 **(b)**

System at equilibrium cannot perform work. As living organisms work continuously, they make a constant effort to prevent falling into equilibrium

220 (d)

Chemical compounds that have molecular weightless than one thousand Dalton are usually referred to as biomolecules or micromolecules

221 (d)

Cellulose is the most important structural component of the cell wall of plants. It is a linear polymer of $\beta-D$ glucose units connected through $\beta-1,$ 4-glycosidic linkage. The linear chains form microfibrillae or bundles of parallel chains held together by hydrogen bonds.

222 **(c)**

The covalent bond by which monosaccharide molecules link in polymerization is called a **glycosidic bond**. In a glycosidic linkage, the **aldehyde** or **ketone** part of one monosaccharide molecule condenses with an **alcoholic group** of another monosaccharide molecule, releasing a molecule of water.

224 (a)

Isonzymes (isoenzymes) are different forms of an enzyme, which catalyse the same reaction but possess different kinetic properties and different amino acid composition.

225 **(d)**

The chemical reactions which liberate energy by enzymatic oxidation of food stuffs to CO_2 and H_2O in the tissues are referred to as the energy metabolism or respiratory metabolism

226 **(b)**

In given graph, initial rate of enzymatic reaction increases but after sometime began to show down due to presence of an enzyme inhibitor.

227 (d)

 $A = 1 - 4\alpha$ -glycosidic bonds, $B = 1 - 6\alpha$ -glycosidic binds

228 **(a)**

Glucose $(C_6H_{12}O_6)$ is an organic compound (carbohydrate), which is found in most of the cells.

229 (d)

Homopolysaccharides are composed of monosaccharide molecule of a single type. They include three biologically important substances: glycogen, starch and cellulose

230 **(c)**

At high temperature, enzymes present in the body gets destroyed

231 **(c)**

Enzymes are biocatalyst, which are basically proteins. All enzymes are proteins but all proteins are not enzymes.

232 **(c)**

A and G of one strand compulsorily base pairs with T and C, respectively, on the other strand. There are two hydrogen bonds between A and T and three H-bonds between G and C

233 **(c)**Chitin is a heteropolymer

234 **(a)**

Ribozymes are RNA molecules that are capable of performing specific biochemical reactions. They play very important role is therapeutic agents

235 **(c)**

In children, among twenty two amino acids, a total of **ten amino acids** are essential amino acids *viz*. leucine, isoleucine, valine, tryptophan, phenylalanine, lysine, methionine and three additional as threonine, arginine, histidine.

236 (a)

In the figure given in question, curve a shows normal enzyme reaction while curve b shows a competitive inhibition reaction, in which competitive that resemble the substrate molecules, bind to the active site of the enzyme, whereas curve c shows noncompetitive inhibition reaction, in which the inhibitor binds to a part of the enzyme or enzyme substrate complex, other than the active site, known as the allosteric site.

237 (c)

Trisaccharides are composed of three monosaccharides. **Raffinose** is a common trisaccharide found in plant. On hydrolysis, it yields one molecule each of glucose, fructose and galactose.

238 **(d)**

Polysaccharides are branched or unbranched

polymer of monosaccharides.

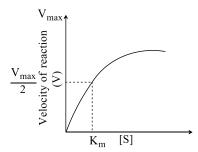
Homopolysaccharides contain a single type of monomers, *eg.*, starch, glycogen, cellulose, etc.

239 **(c)**

Outermost layer of endosperm in cereals such as maize is known as aleurone layer. This layer is consisted of aleurone grains. Each grain is surrounded by a single unit membrane layer. Aleurone grains contain protein, phytin, phospholipids and carbohydrate.

241 **(b)**

Ribozymes are RNA molecules that functions as biocatalysts in modern cells


242 **(a)**

Amino acids which occurs in proteins are mainly of 21 types

243 **(c)**

When enzyme molecules are more than substrate molecules, a progressive increase in the substrate molecules (*s*), increases the velocity (*v*) of their conversion to products

However, eventually the rate of reaction reaches a maximum. At this stage, the active sites of all the available enzyme molecules are occupied by the substrate molecules. Therefore, the substrate molecules occupy the active sites vacated by the products and cannot increase the rate of reaction further

244 **(c)**

The enzymes lower the requirement of activation energy for catalyzing a reaction and these are least affected by the original activation energy of the system. Enzymes are thermolabile. Increase in substrate concentration or enzyme concentration increases the rate of reaction.

245 **(d)**

In fluorescence microscopy, the object is stained with a fluorescent substance and

when stained cell or all parts are observed through ordinary microscope using UV light, appear as luminous objects. This technique is helpful to show the fluidity of biomembranes.

246 (a)

Michaelis and Menten in 1913 gave a mathematical expression to an enzyme catalyzed reaction. The equation is commonly called the Michaelis equation.

247 (a)

Insulin is a polymer of fructose

248 (a)

In cell contents, the approximate percentage of proteins is 12%

249 (a)

Radiation inactivates enzyme by destroying the tertiary structure of enzyme

250 **(d)**

Carbonic anhydrase is found in red blood cells. This is the fastest acting enzyme and helps in the formation as well as decomposition of carbonic acid to carry carbon dioxide.

251 (a)

The most important form of energy currency in living organism is the bond energy in the chemical called ATP

252 (a)

Classical example of competitive inhibiton is reduction of activity of succinate dehydrogenase by malonate, oxaloacetate and other anions.

253 **(b)**

Based on number of amino and carboxyl groups, amino acids are acidic (e.g., glutamic acid), basic (lysine) and neutral (valine)

254 **(c)**

Sodium chloride is formed by bonding between positively charged sodium ions (Na^+) and negatively charged chloride ions (Cl^-) . The type of bonding between these ions is ionic bonding as ionic bonds are formed by the electrical attractions between ions bearing opposite charges $(eg.,Na^+)$ and Cl^- .

255 **(c)**

Enzyme inhibition caused by a product of enzyme catalyzed reaction is allosteric

modulation or feedback inhibition. Thus, products of reaction inhibits the enzyme action, *e. g.*, glucose-6-phosphate, the end product in glycolysis, can inhibit hexokinase activity.

256 (d)

Cholesterol is considered as a crucial molecule in animals because it is the source of many vertebrate hormones and other steroids

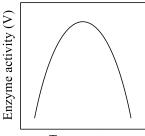
257 (a)

Many enzymes show enzymatic (catalytic) activity only in association with certain non-protein substance. Such substances are called cofactor. Apoenzyme is the proteinaceous substance that combines with prosthetic group to form holoenzyme

258 (d)

In 1953, **James Wateson** and **Francis Crick** based on the X-ray diffraction data produced by **Maurice**, **Wilkins** and **Rosalind Franklin**, proposed a very simple but famous double helix model for the structure of DNA.

260 **(d)**


Generally, 3-7 carbon atoms take part in the formation of monosaccharides

261 **(b)**

Enzyme catalysts differ from inorganic catalysts in many ways, but one major difference is that inorganic catalysts work efficiently at high temperatures and high pressures, while enzymes get damaged at high temperatures (say above 40° C). However, enzymes isolated from organisms who normally live under extremely high temperature (e. g., hot vents and sulphur springs), are stable and retain their catalytic power even at high temperatures (up to $80-90^{\circ}$ C). Thermal stability is thus, an important quality of such enzymes isolated from thermophilic organisms

262 **(c)**

Enzymes generally function in a narrow range of temperature. Each enzyme shows its highest activity at a particular temperature, called the optimum value

Temperature

Low temperature preserves the enzyme in a temporarily inactive state whereas high temperature destroys enzymatic activity because proteins are denatured by heat

263 **(c)**

Malonate inhibits succinate dehydrogenase is an example of competitive inhibition, which closely resembles the substrate succinate in structure. Such competitive inhibitors are often used in the control of bacterial pathogens

264 **(c)**

Sucrose has different linkage. It consists of 1, D-glucose and 1, D-fructose units jointed by $\alpha - 1,2 -$ glycosidic linkage.

265 **(d)**

Albumins are the simple proteins soluble in water and dilute salt solutions are heat-coagulable. The common albumins are leucosin (from wheat), ricin (from caster seeds), legumelin (from legume seeds), β -amylase from barley and albumin from egg white.

266 **(b)**

Rate of a physical or chemical process refers to the amount of product formed per unit time. It can be expressed as

Rate =
$$\frac{\delta P}{\delta t}$$

Rate can also be called velocity if the direction is specified. Rates of physical and chemical processes are influenced by temperature among other factors. A general rule of thumb is that rate doubles or decreases by half for every 10°C change in either direction. Catalysed reactions proceed at rates vastly higher than that of uncatalysed ones. When enzyme catalysed reactions are observed, the rate would be vastly higher than the same but uncatalysed reaction

267 (a)

Lyases catalyse the breakage of specific covalent bonds and removal of groups without hydrolysis. Example histidine decarboxylase splits C - C bonds of histidine forming CO_2 and histamine

268 (d)

Coenzymes are loosely attached non-protein low molecular weight thermostable organic groups, which readily separate from the apoenzyme, e. g., NAD (Nicotinamide Adenine Dinucleotide), NADP (Nicotinamide Adenine Dinucleotide Phosphate), FAD, FMN, Co-A, TPP (Thiamine Pyrophosphate), lipoic acid, etc. ATP (Adenosine Triphosphate) is the common energy currency of all cells.

269 **(b)**

Palindromic DNA Satellite DNA part of DNA having long stretches of repetitive base pairs Non-coding DNA Greater part of DNA is eukaryotic cells does not code for RNAs. This 'extra' DNA seems to have no function. It has two special forms

- (i) Repetitions DNA
- (ii) Jumping genes

270 (c)

Functional form of enzymes is known as **holoenzyme**. It consists of a proteins part known as apoenzyme and non-protein part called prosthetic group (coenzyme of a metal ion).

271 **(a)**

All are correct

272 **(d)**

Lactose or milk sugar is reducing sugar formed through β , $1 \rightarrow 4$ condensation between galactose and glucose.

273 (a)

Holoenzyme is an entire conjugated enzyme consisting of a protein component (an apoenzyme) and a non-protein component (a coenzyme or an activator).

274 **(a)**

There is a common feature to all the compounds found in the acid soluble pool. They have molecular weights ranging from 18 to around 800 dalton (Da) approximately

275 (a)

All statements are correct