

SMART ACHIEVERS

MATH - X | Polynomials BSQs

Date: 28/9/2021

Q1. Answer the following and justify.

If on division of a polynomial p(x) by a polynomial g(x), the quotient is zero, what is the relation between the degree of p(x) and g(x)?

Q2. Answer the following and justify.

If on division of a non-zero polynomial p(x) by a polynomial g(x), the remainder is zero, what is the relation between the degrees of p(x) and g(x)?

Q3. Answer the following and justify.

Can x^2 – 1 be the quotient on division of x^6 + $2x^3$ + x – 1 by a polynomial in x of degree 5?

Q4. Answer the following and justify.

Can the quadratic polynomial $x^2 + kx + k$ have equal zeroes for some odd integer k > 1

- **Q5.** Are the following statements 'True' or 'False'? Justify your answer.
 - (i) If the zeroes of a quadratic polynomial $ax^2 + bx + c$ are both positive, then a, b and c all have the same sign.
 - (ii) If the graph of a polynomial intersects the X-axis at only one point, it cannot be a quadratic polynomial.
- Q6. Are the following statements 'True' or 'False'? Justify your answer.
 - (i) If the graph of a polynomial intersects the *X*-axis at exactly two points, it need not be a quadratic polyomial.
 - (ii) If two of the zeroes of a cubic polynomial are zero, then it does not have limear and constant terms.
- **Q7.** Are the following statements 'True' or 'False'? Justify your answer.
 - (i) If all the zeroes of a cubic polynomial are negative, then all the coefficients and the constant term of the polynomial have the same sign.
 - (ii) If all three zeroes of a cubic polynomial $x^3 + ax^2 bx + c$ are positive, then at least one of a, b and c is non-negative.
- **Q8.** Find the zeroes of the polynomial by factorisation method and verify the relations between the zeroes and the coefficients of the polynomial.

$$3x^2 + 4x - 4$$

Q9. Find the zeroes of the polynomial by factorisation method and verify the relations between the zeroes and the coefficients of the polynomial.

$$5t^2 + 12t + 7$$

Q10.Find the zeroes of the polynomial by factorisation method and verify the relations between the zeroes and the coefficients of the polynomial.

$$t^3 - 2t^2 - 15t$$

Q11.Find the zeroes of the polynomial by factorisation method and verify the relations between the zeroes and the coefficients of the polynomial.

$$4x^2 - 3x - 1$$

Q12. If the zeroes of the cubic polynomial $x^3 - 6x^2 + 3x + 10$ are of the form a, a + b and a + 2b for some real numbers a and b, find the values of a and b as well as the zeroes of the given polynomial.

Q13. Answer the following and justify.

What will the quotient and remainder be on division of $ax^2 + bx + c$ by $px^3 + qx^2 + rx + s$, $p \ne 0$?

- **Q14.** If $\sqrt{2}$ is a zero of the cubic polynomial $6x^3 + \sqrt{2}x^2 10x 4\sqrt{2}$, the find its other two zeroes.
- **Q15.**Find the zeroes of the polynomial by factorisation method and verify the relations between the zeroes and the coefficients of the polynomial.

$$2x^2 + \frac{7}{2}x + \frac{3}{4}$$

Q16.Find the zeroes of the polynomial by factorisation method and verify the relations between the zeroes and the coefficients of the polynomial.

 $y^2 + \frac{3}{2}\sqrt{5}y - 5$

Q17.Find the zeroes of the polynomial by factorisation method and verify the relations between the zeroes and the coefficients of the polynomial.

 $v^2 + 4\sqrt{3}v - 15$

Q18.Find the zeroes of the polynomial by factorisation method and verify the relations between the zeroes and the coefficients of the polynomial.

 $2s^2 - (1 + 2\sqrt{2})s + \sqrt{2}$

Q19.Find the zeroes of the polynomial by factorisation method and verify the relations between the zeroes and the coefficients of the polynomial.

 $4x^2 + 5\sqrt{2}x - 3$

Q20. Find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also, find the zeroes of polynomial by factorisation.

$$\frac{-3}{2\sqrt{5}}$$
, $-\frac{1}{2}$

Q21. Find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also, find the zeroes of polynomial by factorisation.

$$-2\sqrt{3}, -9$$

Q22. Find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also, find the zeroes of polynomial by factorisation.

$$\frac{21}{8}$$
, $\frac{5}{16}$

- **Q23.** Find k, so that $x^2 + 2x + k$ is a factor of $2x^4 + x^3 14x^2 + 5x + 6$. Also, find all the zeroes of the two polynomials.
- **Q24.** If $x \sqrt{5}$ is a factor of the cubic polynomial $x^3 3\sqrt{5}x^2 + 13x 3\sqrt{5}$, then find all the zeroes of the polynomial.
- **Q25.** For which values of a and b, the zeroes of $q(x) = x^3 + 2x^2 + a$ are also the zeroes of the polynomial $p(x) = x^5 x^4 4x^3 + 3x^2 + 3x + b$? Which zeroes of p(x) are not the zeroes of q(x)?

Date: 28/9/2021

S8.
$$-2 \text{ and } \frac{2}{3}$$

S9.
$$\frac{-7}{5}$$
 and -1

S10.
$$-3$$
, 0 and 5

S11.
$$x = 1$$
 and $x = \frac{-1}{4}$

56. (i) T (ii) T
57. (i) T (ii) F
58.
$$-2$$
 and $\frac{2}{3}$
59. $\frac{-7}{5}$ and -1
510. -3 , 0 and 5
511. $x = 1$ and $x = \frac{-1}{4}$
512. When $a = -1$, then $b = 3$ and when $a = 5$, then $b = -3$ and the zeroes are -1 , 2 and 5.
513. Theory.
514. Its other zeroes are $\frac{-1}{\sqrt{2}}$ and $\frac{-4}{3\sqrt{2}}$.
515. $\frac{-3}{2}$ and $\frac{-1}{4}$
516. $-2\sqrt{5}$ and $\sqrt{5}$
517. $-5\sqrt{3}$ and $\sqrt{3}$
518. $\frac{1}{2}$ and $\sqrt{2}$
519. $\frac{-3}{\sqrt{2}}$ and $\frac{1}{2\sqrt{2}}$
520. Theory.

S14. Its other zeroes are
$$\frac{-1}{\sqrt{2}}$$
 and $\frac{-4}{3\sqrt{2}}$.

S15.
$$\frac{-3}{2}$$
 and $\frac{-1}{4}$

S16.
$$-2\sqrt{5}$$
 and $\frac{\sqrt{5}}{2}$

S17.
$$-5\sqrt{3}$$
 and $\sqrt{3}$

S18.
$$\frac{1}{2}$$
 and $\sqrt{2}$

S19.
$$\frac{-3}{\sqrt{2}}$$
 and $\frac{1}{2\sqrt{2}}$

S23. k = -1 or -3.

The zeroes of $x^2 + 2x - 3$ are 1, -3 and the zeroes of $2x^4 + x^3 - 14x^2 + 5x + 6$ are 1, -3, 2, $\frac{-1}{2}$.

- **S24.** All the zeroes of polynomial are $\sqrt{5}$, $(\sqrt{5} + \sqrt{2})$ and $(\sqrt{5} \sqrt{2})$
- **S25.** For a = -1 and b = -2, the zeroes of q(x) are also the zeroes of the polynomial p(x). The zeroes of p(x) are 1 and 2 which are not the zeroes of q(x).