EXERCISE-II

Q.1 The compounds C₂H₅OC₂H₅ and CH₃OCH₂CH₂CH₃ are (1) chain isomers (2) geometrical isomers (3) metamers (4) conformational isomers Q.2 The number of primary, secondary and tertiary amines possible with the molecular formula C₃H_oN respectively. (1) 1, 2, 2 (2) 1, 2, 1 (3) 2, 1, 1(4) 3, 0, 1 Q.3 Ethylethanoate and α – methyl propionic acid are – (1) Chain isomers (2) Functional isomers (3) Geometrical isomers (4) Optical isomers Q.4 The pair of structures represents :-Me Me H H Me H H H Η аң а a (3) Conformers (4) None (1) Enantiomers (2) Position isomers Which of the following compounds will exhibit geometrical isomerism -Q.5 (1) 1–Phenyl–2–butene (2) 3–Phenyl–1–butene (3) 2–Phenyl–1–butene (4)1,1–Diphenyl–1–propene Which of the following has incorrect relation Q.6 Me identical (1)& Лe & positional isomers (2)Et Et (3) & positional isomers Me Et (4)& homologues

Q.7 Which of the following compounds can exist as geometrical isomers –

(1) CH_2Cl_2	(2) $CH_2Cl - CH_2Cl$
(3) $CHBr = CHCl$	(4) $CH_2Cl - CH_2Br$

Q.8	The simplest alkanol exhibiting optical activit (1) n-butyl alcohol (2) Isobutyl alcohol	ty is (3) s-butyl alcohol (4) t-butyl alcohol						
Q.9	Which of the following pairs of compounds (1) Propyne and cyclopropene (3) Propene and cyclopropene	are not isomers - (2) Propyne and propadiene (4) 1-Propanol and methoxyethane						
Q.10	The type of isomerism observed in urea molec(1) Chain(2) Position	cule is (3) Geometrical (4) Functional						
Q.11	Among the following compounds, the one w (1) $C_6H_5N = NC_6H_5$ (3) $C_6H_5 - C = N - OH$	hich does not show geometrical isomerism is - (2) $C_6H_5CH = CHC_6H_5$ (4) $C_6H_5 - C = N - CH_3$						
Q.12	How many minimum no. of C-atoms are requi $(1) 4, 3$ $(2) 4, 4$	red for position & geometrical isomerism in alkene? (3) 3, 4 (4) 3, 3						
Q.13	$H_{sC} \xrightarrow{H} H = Exhibits :-$	(2) Optical isomerism						
Q.14	 (3) Geometrical isomerism (4) Geometrical and optical isomerism Which of the following compounds has no geometrical isomer - (1) 1-Phenylpropene (2) 1, 2-Diphenylethene (3) 1, 2 Diphenylpropene (4) L1 Diphenylpropene 							
Q.15	(3) 1, 2-Diphenylpropene (4) 1,1-Diphenylpropene Given compound shows which type of isomerism $ \begin{array}{c} $							
0.14		CH_3 $C = C$ H H						

- Q.16 The following compound can exhibit -
- CH₃ CH₃ C COOH
- (1) Geometrical isomerism

(2) Geometrical and optical isomerisms

(3) Optical isomerism

(4) Tautomerism

Q.17 The pair of structures given below represents :

Q.20 Which of the following statements is not correct?

- (1) Molecules that are superimposable on their mirror images are chiral
- (2) Molecules that are not superimposable on their mirror images are chiral
- (3) A compound whose molecules are chiral can exist as enantiomers
- (4) A compound whose molecules are achiral can not exist as enantiomers
- Q.21 Which of the following compound is optically inactive:

Q.22 The number of cis-trans isomer possible for the following compound

Q.23 Which of the following starred C – atom is asymmetric –

(1) CH_3CH_2 ^{\circ} HCH₃CH₂OH (2) CH_3CH_2CH ^{\circ} H₃CH₂OH (3) CH_3 ^{\circ} H₂CHCH₃CH₂OH (4) $CH_3CH_2CHCH_3$ ^{\circ} H₂OH

Q.24 Which of the following structures has the S-configuration at the chiral centre ?

- Q.26 Increasing order of stability among the three main conformation (i.e. eclipse, anti, gauche) of ethylene glycol is:
 (1) Folimes, gauche, anti.
 (2) Couche colimes, anti.
 - (1) Eclipse, gauche, anti (3) Eclipse, anti, gauche

- (2) Gauche, eclipse, anti (4) Anti, gauche, eclipse
- Q.27 In plane clockwise rotation of the projection formula (A) of a compound by 90° and 180° yields the projection formulae (B) and (C) respectively -

Q.29 The two isomers given below are -

- Q.31 Which of the following compounds can exist both as a cis pair of enantiomers and a trans pair of eantiomers -
- (1) $CH_3CHClCH = CH_2$ (3) $CH_2 = CH CHOHCH = CH_2$ (2) $CH_3CHClCH = CHCH_3$ (4) $CH_2 = CH CHClCH = C(CH_3)_2$ Q.32 Correct configuration of the following is -

Q.33 Which of the following compounds is a meso compound -

Q.34 The most stable conformation of 2, 3-dimethylbutane is -

Q.35 Which one of the following is the most stable conformation of 2, 3-butanediol :-

Q.36 Which of the following structures represents a threo-stereoisomer -

Q.40 Which of the following pairs of structures represent enantiomers -

2 .41	Number of structural			
	(1) 3	(2) 4	(3) 5	(4) 6

ANSWER KEY

Q.1	3	Q.2	3	Q.3	2	Q.4	2	Q.5	1	Q.6	2	Q.7	3
Q.8	3	Q.9	3	Q.10	4	Q.11	4	Q.12	2	Q.13	2	Q.14	4
Q.15	3	Q.16	3	Q.17	3	Q.18	3	Q.19	1	Q.20	1	Q.21	4
Q.22	1	Q.23	1	Q.24	2	Q.25	2	Q.26	3	Q.27	4	Q.28	3
Q.29	1	Q.30	4	Q.31	2	Q.32	1	Q.33	3	Q.34	2	Q.35	3
Q.36	3	Q.37	3	Q.38	3	Q.39	4	Q.40	2	Q.41	3	Page	# 10