3D-Geometry

Single Correct Answer Type

1. In a three dimensional co - ordinate system P, Q and R are images of a point $A(a, b, c)$ in the x y the $y-z$ and the $z-x$ planes respectively. If G is the centroid of triangle $P Q R$ then area of triangle AOG is (O is the origin)
a) 0
b) $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}$
c) $\frac{2}{3}\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)$
d) none of these
Key. A
Sol. Point A is (a, b, c)
\Rightarrow Points P, Q, R are $(a, b,-c),(-a, b, c)$ and $(a,-b, c)$ respectively.
\Rightarrow centroid of triangle $P Q R$ is $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$
$\Rightarrow \mathrm{G} \equiv\left(\frac{\mathrm{a}}{3}, \frac{\mathrm{~b}}{3}, \frac{\mathrm{c}}{3}\right)$
$\Rightarrow \mathrm{A}, \mathrm{O}, \mathrm{G}$ are collinear \Rightarrow area of triangle AOG is zero.
2. The four lines drawing from the vertices of any tetrahedron to the centroid of the opposite faces meet in a point whose distance from each vertex is ' k ' times the distance from each vertex to the opposite face, where k is
a) $\frac{1}{3}$
b) $\frac{1}{2}$
c) $\frac{3}{4}$
d) $\frac{5}{4}$

Key. C
Sol. Let $\mathrm{A}\left(x_{1}, y_{1}, z_{1}\right) \mathrm{B}\left(x_{2}, y_{2}, z_{2}\right) \mathrm{C}\left(x_{3}, y_{3}, z_{3}\right) \mathrm{D}\left(x_{4}, y_{4}, z_{4}\right)$ be the vertices of tetrahydron. If E is the centroid of face BCD and G is the centroid of ABCD the $\mathrm{AG}=3 / 4(A E) \therefore K=3 / 4$
3. The coordinates of the circumcentre of the triangle formed by the points $(3,2,-5),(-3,8,-5)$ $3,2,1$) are
a) $(-1,4,-3)$
b) $(1,4,-3)$
c) $(-1,4,3)$
d) $(-1,-4,-3)$

Key. A
Sol. Triangle formed is an equilateral \Rightarrow Circum centre $=$ centroid $=(-1,4,-3)$
4. The volume of a right triangular prism $\mathrm{ABCA}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ is equal to 3 . Than the co-ordinates of the vertex A_{1}, if the co-ordinates of the base vertices of the prism are $\mathrm{A}(1,0,1), \mathrm{B}(2,0,0)$ and $\mathrm{C}(0$, 1,0)
a) $(-2,2,2)$ or $(0,-2,1)$
b) $(2,2,2)$ or $(0,-2,0)$
c) $(0,2,0)$ or $(1,-2,0)$
d) $(3,-2,0)$ or $(1,-2,0)$

Key. B
Sol. Volume $=$ Area of base \times height

solving we get position vector of A_{1} are $(0,-2,0)$ or $(2,2,2)$
5. If \vec{a}, \vec{b} and \vec{c} are three unit vectors such that $\vec{a}+\vec{b}+\vec{c}$ is also a unit vector and θ_{1}, θ_{2} and θ_{3} are angles between the vectors $\vec{a}, \vec{b} ; \vec{b}, \vec{c}$ and \vec{c}, \vec{a}, respectively, then among θ_{1}, θ_{2} and θ_{3}.
a) all are acute angles
b) all are right angles
c) at least one is obtuse angle
d) None of these

Key. C

Sol. Since $|\vec{a}+\vec{b}+\vec{c}|=1 \Rightarrow(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c})=1 \Rightarrow \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-1$

$$
\Rightarrow \cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}=-1
$$

So, at least one of $\cos \theta_{1}, \cos \theta_{2}$ and $\cos \theta_{3}$ must be negative
6. Given that the points $A(3,2,-4), B(5,4,-6)$ and $C(9,8,-10)$ are collinear, the ratio in which B divides $\overline{A C}$ is:

1) $1: 2$
2) $2: 1$
3)3: 2
4)2:3

Key. 1
Sol. $\quad\left(\frac{9 m+3 n}{m+n}, \frac{8 m+2 n}{m+n}, \frac{-10 m-4 n}{m+n}\right)=(5,4,-6)$

$$
\frac{m}{n}=\frac{1}{2}
$$

7. If $A(0,1,2), B(2,-1,3)$ and $C(1,-3,1)$ are the vertices of a triangle, then its circumcentre and orthocenter are situated at a distance of
1) 3 units
2) 2 units
3)3/2 units
3) $3 / \sqrt{2}$ units

Key. 4
Sol. ortho center- $(2,-1,3)$
Circum center- $\left(\frac{1}{2},-1, \frac{3}{2}\right)$
8. Equation of the plane passing through the origin and perpendicular to the planes $x+2 y+z=1,3 x-4 y+z=5$ is

1) $x+2 y-5 z=0$
2) $x-2 y-3 z=0$
3) $x-2 y+5 z=0$
4) $3 x+y-5 z=0$

Key. 4
Sol. $\left|\begin{array}{ccc}i & j & k \\ 1 & 2 & 1 \\ 3 & -4 & 1\end{array}\right|=0$
$A=3 i+j-5 k$
$\Rightarrow 3 x+y-5 z=0$
9. If θ is the angle between $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{\lambda} z+4=0$ and is such that $\sin \theta=1 / 3$, the value of $\lambda=$

1) $-\frac{4}{3}$
2) $\frac{4}{3}$
3) $-\frac{3}{5}$
4) $\frac{5}{3}$

Key. 4
Sol. $\quad \operatorname{Sin} \theta=\left|\frac{2-2+2 \sqrt{\lambda}}{3 \sqrt{5+\lambda}}\right|=\frac{1}{3}$
$\lambda=\frac{5}{3}$
10. The image of the point $(-1,3,4)$ in the plane $x-2 y=0$ is

1) $(15,11,4)$
2) $\left(-\frac{17}{3},-\frac{19}{3}, 1\right)$
3) $\left.\left(\frac{9}{5},-\frac{13}{5}, 4\right) 4\right)\left(-\frac{17}{3},-\frac{19}{3}, 4\right)$

Key.
Sol. $\frac{h+1}{1}=\frac{k-3}{-2}=\frac{p-4}{0}=-2\left(\frac{-1-6}{5}\right)$

$$
(h, k, p)=\left(\frac{9}{5}, \frac{-13}{5}, 4\right)
$$

11. The plane passing through the points $(-2,-2,2)$ and containing the line joining the points $(1,1,1)$ and $(1,-1,2)$ makes intercepts on the coordinates axes, the sum of whose lengths is
12. 3
13. 4
3.6
14. 12

Key. 4
Sol. Equation of the plane be $a(x+2)+b(y+2)+c(z-2)=0$. As it passes through $(1,1,1)$ and $(1,-1,2), \frac{a}{1}=\frac{b}{-3}=\frac{c}{-6}$. Equation of the plane is $\frac{x}{-8}+\frac{y}{8 / 3}+\frac{z}{8 / 6}=1$ and the required sum $=12$.
12. An equation of the plane containing the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and the point $(0,7,-7)$ is

1. $x+y+z=0$
2. $x+2 y-3 z=35$
3. $3 x-2 y+3 z+35=0$
4. $3 x-2 y-z=21$

Key. 1
Sol. Equation of the plane is $A(x+1)+B(y-3)+C(z+2)=0$ where $3 A+2 B+1=0$ and $A+B(7-3)+C(-7+2)=0$
13. The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the coordinate axes at A, B, C respectively. D and E are the mid-points of $A B$ and $A C$ respectively. Coordinates of the mid-point of DE are

1. $(a, b / 4, c / 4)$
2. $(a / 4, b, c / 4)$
3. $(a / 4, b / 4, c)$
4. $(a / 2, b / 4, c / 4)$

Key. 4
Sol. $\quad A(a, 0,0), B(0, b, 0), C(0,0, c), D(a / 2, b / 2,0), E(a / 2,0, c / 2)$ so midpoint of $D E$ is ($a / 2, b / 4, c / 4$).
14. The coordinates of a point on the line $x=4 y+5, z=3 y-6$ at a distance $3 \sqrt{26}$ from the point $(5,0,-6)$ are

1. $(17,3,3)$
2. $(-7,3,-15)$
3. $(-17,-3,-3)$
4. $(7,-3,15)$

Key. 1
Sol. Line is $\frac{x-5}{4 / \sqrt{26}}=\frac{y}{1 / \sqrt{26}}=\frac{z+6}{3 / \sqrt{26}}$. A point on this line at a distance $3 \sqrt{26}$ from $(5,0,-6)$ is $(5 \pm(3 \times 4), \pm 3,-6 \pm 9)=(17,3,3)$ or $(-7,-3,-15)$.
15. The points $(0,7,10),(-1,6,6)$ and $(-4,9,6)$ are the vertices of

1. A right angled isosceles triangle
2. Equilateral triangle
3. An isosceles triangle
4. An obtuse angled triangle

Key. 1
Sol. Length of the sides are 18,18 and 36 .
16. Equation of a plane bisecting the angle between the planes $2 x-y+2 z+3=0$ and $3 x-2 y+6 z+8=0$ is

1. $5 x-y-4 z-45=0$
2. $5 x-y-4 z-3=0$
3. $23 x+13 y+32 z-45=0$
4. $23 x-13 y+32 z+5=0$

Key. 2
Sol. Equations of the planes bisecting the angle between the given planes are
$\frac{2 x-y+2 z+3}{\sqrt{2^{2}+(-1)^{2}+2^{2}}}= \pm \frac{3 x-2 y+6 z+8}{\sqrt{3^{2}+(-2)^{2}+6^{2}}}$
$\Rightarrow 7(2 x-y+2 z+3)= \pm 3(3 x-2 y+6 z+8)$
$\Rightarrow 5 x-y-4 z-3=0$ taking the + ve sign, and $23 x-13 y+32 z+45=0$ taking the - ve sign.
17. If the perpendicular distance of a point P other than the origin from the plane $x+y+z=p$ is equal to the distance of the plane from the origin, then the coordinates of P are

1. $(p, 2 p, 0)$
2. $(0,2 p,-p)$
3. $(2 p, p,-p)$
4. $(2 p,-p, 2 p)$

Key. 3
Sol. The perpendicular distance of the origin $(0,0,0)$ from the plane $x+y+z=p$ is $\left|\frac{-p}{\sqrt{1+1+1}}\right|=\frac{|p|}{\sqrt{3}}$.

If the coordinates of P are (x, y, z), then we must have

$$
\begin{aligned}
& \left|\frac{x+y+z-p}{\sqrt{3}}\right|=\frac{|p|}{\sqrt{3}} \\
& \Rightarrow|x+y+z-p|=|p|
\end{aligned}
$$

Which is satisfied by (c)
18. If p_{1}, p_{2}, p_{3} denote the distances of the plane $2 x-3 y+4 z+2=0$ from the planes $2 x-3 y+4 z+6=0,4 x-6 y+8 z+3=0$ and $2 x-3 y+4 z-6=0$ respectively, then

1. $p_{1}+8 p_{2}-p_{3}=0$
2. $p_{3}^{2}=16 p_{2}^{2}$
3. $8 p_{2}^{2}=p_{1}^{2}$
4. $p_{1}+2 p_{2}+3 p_{3}=\sqrt{29}$

Key. 1 or 4

Sol. Since the planes are all parallel planes, $p_{1}=\frac{|2-6|}{\sqrt{2^{2}+3^{2}+4^{2}}}=\frac{4}{\sqrt{4+9+16}}=\frac{4}{\sqrt{29}}$

Equation of the plane $4 x-6 y+8 z+3=0$ can be written as $2 x-3 y+4 z+3 / 2=0$

So $p_{2}=\frac{|2-3 / 2|}{\sqrt{2^{2}+3^{2}+4^{2}}}=\frac{1}{2 \sqrt{29}}$ and $p_{3}=\frac{|2+6|}{\sqrt{2^{2}+3^{2}+4^{2}}}=\frac{8}{\sqrt{29}}$
$\Rightarrow \quad p_{1}+8 p_{2}-p_{3}=0$
19. The radius of the circle in which the sphere $x^{2}+y^{2}+z^{2}+2 x-2 y-4 z-19=0$ is cut by the plane $x+2 y+2 z+7=0$ is

1. 2
2. 3
3. 4
4. 1

Key. 2
Sol. Centre of the sphere is $(-1,1,2)$ and its radius is $\sqrt{1+1+4+19}=5$.
Length of the perpendicular from the centre on the plane is $\left|\frac{-1+2+4+7}{\sqrt{1+4+4}}\right|=4$

Radius of the required circle is $\sqrt{5^{2}-4^{2}}=3$.
20. The shortest distance from the plane $12 x+4 y+3 z=327$ to the sphere $x^{2}+y^{2}+z^{2}+4 x-2 y-6 z=155$ is

1. $11 \frac{3}{4}$
2. 13
3. 39
4. 26

Key. 2
Sol. The centre of the sphere is $(-2,1,3)$ and its radius is $\sqrt{4+1+9+155}=13$

Length of the perpendicular from the centre of the sphere on the plane is
$\left|\frac{-24+4+9-327}{\sqrt{144+16+9}}\right|=\frac{338}{13}=26$

So the plane is outside the sphere and the required distance is equal to $26-13=13$.
21. An equation of the plane passing through the line of intersection of the planes $x+y+z=6$ and $2 x+3 y+4 z+5=0$ and the point $(1,1,1)$ is

1. $2 x+3 y+4 z=9$
2. $x+y+z=3$
3. $x+2 y+3 z=6$
4.

$20 x+23 y+26 z=69$

Key. 4

Sol. Equation of any plane through the line of intersection of the given planes is
$2 x+3 y+4 z+5+\lambda(x+y+z-6)=0$
It passes through $(1,1,1)$ if $(2+3+4+5)+\lambda(1+1+1-6)=0 \Rightarrow \lambda=14 / 3$ and the required equation is therefore, $20 x+23 y+26 z=69$.
22. The volume of the tetrahedron included between the plane $3 x+4 y-5 z-60=0$ and the coordinate planes is

1. 60
2. 600
3. 720
4. None of these

Key. 2
Sol. Equation of the given plane can be written as $\frac{x}{20}+\frac{y}{15}+\frac{z}{-12}=1$

Which meets the coordinates axes in points $A(20,0,0), B(0,15,0)$ and $C(0,0,-12)$ and the coordinates of the origin are $(0,0,0)$.
\therefore the volume of the tetrahedron $O A B C$ is

$$
\frac{1}{6}\left|\begin{array}{cccc}
0 & 0 & 0 & 1 \\
20 & 0 & 0 & 1 \\
0 & 15 & 0 & 1 \\
0 & 0 & -12 & 1
\end{array}\right|=\left|\frac{1}{6} \times 20 \times 15 \times(-12)\right|=600
$$

23. Two lines $x=a y+b, z=c y+d$ and $x=a^{1} y+b^{1}, z=c^{1} y+d^{1}$ will be perpendicular, if and only if
24. $a a^{1}+b b^{1}+c c^{1}=0$
25. $\left(a+a^{1}\right)\left(b+b^{1}\right)\left(c+c^{1}\right)=0$
26. $a a^{1}+c c^{1}+1=0$
27. $a a^{1}+b b^{1}+c c^{1}+1=0$

Key. 3
Sol. Lines can be written as $\frac{x-b}{a}=\frac{y}{1}=\frac{z-d}{c}$ and $\frac{x-b^{1}}{a^{1}}=\frac{y}{1}=\frac{z-d^{1}}{c^{1}}$ which will be
perpendicular if and only if $a a^{1}+1+c c^{1}=0$
24. A tetrahedron has vertices at $O(0,0,0), A(1,2,1), B(2,1,3)$ and $C(-1,1,2)$. Then the angle between the faces $O A B$ and $A B C$ will be

1. $\cos ^{-1}(17 / 31)$
2. 30^{0}
3. 90^{0}
4. $\cos ^{-1}(19 / 35)$

Key. 4

Sol. Let the equation of the face $O A B$ be $a x+b y+c z=0$ where

$$
a+2 b+c=0 \text { and } 2 a+b+3 c=0 \Rightarrow \frac{a}{5}=\frac{b}{-1}=\frac{c}{-3}
$$

25. If the angle θ between the lines $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{\lambda} z+4=0$ is such that $\sin \theta=1 / 3$, then the value of λ is
26. $3 / 4$
27. $-4 / 3$
28. $5 / 3$
29. $-3 / 5$

Key. 3
Sol. Since the line makes an angle θ with the plane in makes an angle $\pi / 2-\theta$ with normal to the plane
$\therefore \quad \cos \left(\frac{\pi}{2}-\theta\right)=\frac{2(1)+(-1)(2)+(\sqrt{\lambda})(2)}{\sqrt{1+4+4} \times \sqrt{4+1+\lambda}}$
$\Rightarrow \frac{1}{3}=\frac{2 \sqrt{\lambda}}{3 \sqrt{\lambda+5}} \Rightarrow \lambda+5=4 \lambda$
$\Rightarrow \lambda=5 / 3$
26. The ratio in which the $y z$ plane divides the segment joining the points $(-2,4,7)$ and $(3,-5,8)$ is

1. $2: 3$
2. $3: 2$
3. $4: 5$
4. $-7: 8$

Key. 1
Sol. Let $y z$ plane divide the segment joining $(-2,4,7)$ and $(3,-5,8)$ in the ration $\lambda: 1$. Then $\Rightarrow \frac{3 \lambda-2}{\lambda+1}=0 \Rightarrow \lambda=\frac{2}{3}$ and the required ratio is $2: 3$.
27. The coordinates of the point equidistant from the points $(a, 0,0),(0, a, 0),(0,0, a)$ and $(0,0,0)$ are

1. $(a / 3, a / 3, a / 3)$
2. $(a / 2, a / 2, a / 2)$
3. (a, a, a)
4. $(2 a, 2 a, 2 a)$

Key. 2
Sol. Let the coordinates of the required point be (x, y, z) then
$x^{2}+y^{2}+z^{2}=(x-a)^{2}+y^{2}+z^{2}=x^{2}+(y-a)^{2}+z^{2}=x^{2}+y^{2}+(z-a)^{2}$
$\Rightarrow x=a / 2=y=z$. Hence the required point is $(a / 2, a / 2, a / 2)$.
28. Algebraic sum of the intercepts made by the plane $x+3 y-4 z+6=0$ on the axes is

1. $-13 / 2$
2. 19/2
3. $-22 / 3$
4. $26 / 3$

Key. 1
Sol. Equation of the plane can be written as $\frac{x}{-6}+\frac{y}{-2}+\frac{z}{3 / 2}=1$
So the intercepts on the coordinates axes are $-6,-2,3 / 2$ and the required sum is $-6-2+3 / 2=-13 / 2$.
29. If a plane meets the co-ordinate axes in A, B, C such that the centroid of the triangle $A B C$ is the point $\left(1, r, r^{2}\right)$, then equation of the plane is

1. $x+r y+r^{2} z=3 r^{2}$
2. $r^{2} x+r y+z=3 r^{2}$
3. $x+r y+r^{2} z=3$
4. $r^{2} x+r y+z=3$

Key. 2
Sol. Let an equation of the required plane be $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$

This meets the coordinates axes in $A(a, 0,0), B(0, b, 0)$ and $C(0,0, c)$.

So that the coordinates of the centroid of the triangle $A B C$ are
$(a / 3, b / 3, c / 3)=\left(1, r, r^{2}\right)($ given $) \Rightarrow a=3, b=3 r, 3 r^{2}$ and the required equation of the plane is $\frac{x}{3}+\frac{y}{3 r}+\frac{z}{3 r^{2}}=1$ or $r^{2} x+r y+z=3 r^{2}$.
30. An equation of the plane passing through the point $(1,-1,2)$ and parallel to the plane $3 x+4 y-5 z=0$ is
1.
2. $3 x+4 y-5 z=11$
3. $6 x+8 y-10 z=1$
4. $3 x+4 y-5 z=2$
$3 x+4 y-5 z+11=0$

Key.
Sol.
Equation of any plane parallel to the plane $3 x+4 y-5 z=0$ is $3 x+4 y-5 z=K$

If it passes through $(1,-1,2)$, then $3-4-5(2)=K \Rightarrow K=-11$

So the required equation is $3 x+4 y-5 z+11=0$.
31. Equations of a line passing through $(2,-1,1)$ and parallel to the line whose equations are

$$
\frac{x-3}{2}=\frac{y+1}{7}=\frac{z-2}{-3} \text {,is }
$$

1. $\frac{x-2}{3}=\frac{y+1}{-1}=\frac{z-1}{2}$
2. $\frac{x-2}{2}=\frac{y+1}{7}=\frac{z-1}{-3}$
3. $\frac{x-2}{2}=\frac{y-7}{-1}=\frac{z+3}{1}$
4. $\frac{x-3}{2}=\frac{y+1}{-1}=\frac{z-2}{1}$

Key. 2
Sol. The required line passes through $(2,-1,1)$ and its direction cosines are proportional to
$2,7,-3$ so its equation is $\frac{x-2}{2}=\frac{y+1}{7}=\frac{z-1}{-3}$
32. The ratio in which the plane $2 x-1=0$ divides the line joining $(-2,4,7)$ and $(3,-5,8)$ is

1. $2: 3$
2. $4: 5$
3. $7: 8$
4. 1:1

Key. 4
Sol. Let the required ratio be $k: 1$, then the coordinates of the point which divides the join of the points $(-2,4,7)$ and $(3,-5,8)$ in this ratio are given by $\left(\frac{3 k-2}{k+1}, \frac{-5 k+4}{k+1}, \frac{8 k+7}{k+1}\right)$

As this point lies on the plane $2 x-1=0$.
$\Rightarrow \frac{3 k-2}{k+1}=\frac{1}{2} \Rightarrow k=1$ and thus the required ratio as $1: 1$.
33. If $l_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1}$ and $l_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}$, are d.c.'s of $\overrightarrow{O A}, \overrightarrow{O B}$ such that $\lfloor A O B=\theta$ where ' O ' is the origin, then the d.c.'s of the internal bisector of the angle $\lfloor A O B$ are
(A) $\frac{l_{1}+l_{2}}{2 \sin \theta / 2}, \frac{m_{1}+m_{2}}{2 \sin \theta / 2}, \frac{n_{1}+n_{2}}{2 \sin \theta / 2}$
(B) $\frac{l_{1}+l_{2}}{2 \cos \theta / 2}, \frac{\mathrm{~m}_{1}+\mathrm{m}_{2}}{2 \cos \theta / 2}, \frac{\mathrm{n}_{1}+\mathrm{n}_{2}}{2 \cos \theta / 2}$
(C) $\frac{l_{1}-l_{2}}{2 \sin \theta / 2}, \frac{m_{1}-m_{2}}{2 \sin \theta / 2}, \frac{n_{1}-n_{2}}{2 \sin \theta / 2}$
(D) $\frac{l_{1}-l_{2}}{2 \cos \theta / 2}, \frac{\mathrm{~m}_{1}-\mathrm{m}_{2}}{2 \cos \theta / 2}, \frac{\mathrm{n}_{1}-\mathrm{n}_{2}}{2 \cos \theta / 2}$

Key. B
Sol. Let $O A$ and $O B$ be two lines with d.c's I_{1}, m_{1}, n_{1} and I_{2}, m_{2}, n_{2}. Let $O A=O B=1$. Then, the coordinates of A and B are (l_{1}, m_{1}, n_{1}) and ($\left.l_{2}, m_{2}, n_{2}\right)$, respectively. Let OC be the bisector of $\angle A O B$. Then, C is the mid point of $A B$ and so its coordinates are $\left(\frac{l_{1}+l_{2}}{2}, \frac{\mathrm{~m}_{1}+\mathrm{m}_{2}}{2}, \frac{\mathrm{n}_{1}+\mathrm{n}_{2}}{2}\right)$.
\therefore d.r's of OC are $\frac{l_{1}+l_{2}}{2}, \frac{\mathrm{~m}_{1}+\mathrm{m}_{2}}{2}, \frac{\mathrm{n}_{1}+\mathrm{n}_{2}}{2}$
We have, $\mathrm{OC}=\sqrt{\left(\frac{\mathrm{l}_{1}+\mathrm{l}_{2}}{2}\right)^{2}+\left(\frac{\mathrm{m}_{1}+\mathrm{m}_{2}}{2}\right)^{2}+\left(\frac{\mathrm{n}_{1}+\mathrm{n}_{2}}{2}\right)^{2}}$

$$
\begin{aligned}
& =\frac{1}{2} \sqrt{\left(l_{1}^{2}+\mathrm{m}_{1}^{2}+\mathrm{n}_{1}^{2}\right)+\left(l_{2}^{2}+\mathrm{m}_{2}^{2}+\mathrm{n}_{2}^{2}\right)+2\left(l_{1} l_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right)} \\
& =\frac{1}{2} \sqrt{2+2 \cos \theta} \quad\left[\mathrm{Q} \cos \theta=l_{1} l_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right] \\
& =\frac{1}{2} \sqrt{2(1+\cos \theta)}=\cos \left(\frac{\theta}{2}\right)
\end{aligned}
$$

\therefore d.c's of OC are $\frac{l_{1}+l_{2}}{2(\mathrm{OC})}, \frac{\mathrm{m}_{1}+\mathrm{m}_{2}}{2(\mathrm{OC})}, \frac{\mathrm{n}_{1}+\mathrm{n}_{2}}{2(\mathrm{OC})}$
34. A line is drawn from the point $P(1,1,1)$ and perpendicular to a line with direction ratios $(1,1,1)$ to intersect the plane $x+2 y+3 z=4$ at Q. The locus of point Q is
A) $\frac{x}{1}=\frac{y-5}{-2}=\frac{z+2}{1}$
B) $\frac{x}{-2}=\frac{y-5}{1}=\frac{z+2}{1}$
C) $x=y=z$
D) $\frac{x}{2}=\frac{y}{3}=\frac{z}{5}$

Key. A
Sol. Locus of ' Q ' is the line of intersection of the plane $x+2 y+3 z=4$ and

$$
1(x-1)+1(y-1)+1(z-1)=0 \Rightarrow \text { then the line is } \frac{x}{1}=\frac{y-5}{-2}=\frac{z+2}{1}
$$

35.

A line is drawn from the point $\mathrm{P}(1,1,1)$ and perpendicular to a line with direction ratios $(1,1,1)$ to intersect the plane $x+2 y+3 z=4$ at Q . The locus of point Q is
A) $\frac{x}{1}=\frac{y-5}{-2}=\frac{z+2}{1}$
B) $\frac{x}{-2}=\frac{y-5}{1}=\frac{z+2}{1}$
C) $x=y=z$
D) $\frac{x}{2}=\frac{y}{3}=\frac{z}{5}$

Key: A
Hint: Locus of Q is the line of intersection of the plane $x+2 y+3 z=4$ and $1(x-1)+1(y-1)+1(z-1)=0 \Rightarrow$ then line is $\frac{x}{1}=\frac{y-5}{-2}=\frac{z+2}{1}$
36. If a line with direction ratios $2: 2$: 1 intersects the line $\frac{x-7}{3}=\frac{y-5}{2}=\frac{z-3}{1}$ and $\frac{x-1}{2}=\frac{y+1}{4}=\frac{z+1}{3}$ at A and B then $A B=$.
a) $\sqrt{2}$
b) 2
c) $\sqrt{3}$
d) 3

Key:
Hint $\mathrm{A}(7+3 \alpha, 5+2 \alpha, 3+\alpha), \mathrm{B}(1+2 \beta,-1+4 \beta,-1+3 \beta)$
Dr's of $A B$ are 2:2:1
$\frac{6+3 \alpha-2 \beta}{2}=\frac{3+\alpha-2 \beta}{1}=\frac{4+\alpha-3 \beta}{1}$
$\alpha=-2, \beta=1$
$A(1,1,1) B(3,3,2)$
$A B=3$
37. $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the points on x, y and z axes respectively in a three dimensional co-ordinate system with O as origin. Suppose the area of triangles OAB, OBC and OCA are 4, 12 and 6 respectively, then the area of the triangle ABC equals
(A) 16
(B) 14
(C) 28
(D) 32

Key: B
Hint
$[A B C]=\sqrt{[O A B]^{2}+[O B C]^{2}+[O C A]^{2}}$
where $[A B C]=$ area of triangle $A B C$
38. The area of the figure formed by the points $(-1,-1,1) ;(1,1,1)$ and their mirror images on the plane $3 x+2 y+4 z+1=0$ is
(a) $\frac{5 \sqrt{33}}{29}$
(b) $\frac{4 \sqrt{33}}{29}$
(c) $\frac{20 \sqrt{33}}{27}$
(d) $\frac{20 \sqrt{33}}{29}$

Key. D

Sol.
Req. area $=\triangle P Q Q^{1}$
$=2 \triangle P Q M$
$=2 \cdot \frac{1}{2} \cdot Q M \cdot P M$
39. If a plane passes through the point $(1,1,1)$ and is perpendicular to the line $\frac{x-1}{3}=\frac{y-1}{0}=\frac{z-1}{4}$ then its perpendicular distance from the origin is
(A) $\frac{3}{4}$
(B) $\frac{4}{3}$
(C) $\frac{7}{5}$
(D) 1

Key: C
Hint: The d.r of the normal to the plane is $3,0,4$. The equation of the plane is $3 x+0 y+4 z+d=0$ since it passes through $(1,1,1)$ so; $d=-7$
Now distance of the plane $3 x+4 z-7=0$ from $(0,0,0)$ is $\frac{7}{\sqrt{3^{2}+4^{2}}}=\frac{7}{5}$ unit
40. Three straight lines mutually perpendicular to each other meet in a point P and one of them intersects the x-axis and another intersects the y-axis, while the third line passes through a fixed point ($0,0, c$) on the z-axis. Then the locus of P is
A) $x^{2}+y^{2}+z^{2}-2 c x=0$
B) $x^{2}+y^{2}+z^{2}-2 c y=0$
C) $x^{2}+y^{2}+z^{2}-2 c z=0$
D) $x^{2}+y^{2}+z^{2}-2 c(x+y+z)=0$

Key: C
Hint: Let L_{1}, L_{2}, L_{3} be the mutually perpendicular lines and $\mathrm{P}\left(x_{0}, y_{0}, z_{0}\right)$ be their point of concurrence. If L_{1} cuts the x -axis at $\mathrm{A}(\mathrm{a}, 0,0), L_{2}$ meets the y -axis at $\mathrm{B}(0, \mathrm{~b}, 0)$ and $\mathrm{C}(0,0, \mathrm{c})$ $\in L_{3}$, then $L_{1} 11\left(x_{0}-a, y_{0}, z_{0}\right), L_{2} 11\left(x_{0}, y_{0}-b, z_{0}\right)$ and $L_{3} 11\left(x_{0}, y_{0}, z_{0}-c\right)$. Hence $\left.x_{0}\left(x_{0}-a\right)+y_{0}\left(y_{0}-b\right)+z_{0}^{2}=0\right\}$
$\left.x_{0}^{2}+\left(y_{0}-b\right) y_{0}+z_{0}\left(z_{0}-c\right)=0\right\}$
$x_{0}\left(x_{0}-a\right)+y_{0}^{2}+z_{0}\left(z_{0}-c\right)=0$
Eliminating a and b from the equations, we get
$x_{0}^{2}+y_{0}^{2}+z_{0}^{2}-2 c z_{0}=0$
41. The centroid of the triangle formed by $(0,0,0)$ and the point of intersection of
$\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-1}{1}$ with $x=0$ and $y=0$ is
(a) $(1,1,1)$
(b) $\left(\frac{1}{6}, \frac{-1}{3}, \frac{1}{6}\right)$
(c) $\left(\frac{-1}{6}, \frac{1}{3}, \frac{-1}{6}\right)$
(d) $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

Key. B
Sol. Any point on the given line $(K+1,2 K+1, K+1)$
but $x=0 \quad \Rightarrow A(0,-1,0)$

$$
y=0 \Rightarrow B\left(\frac{1}{2}, 0, \frac{1}{2}\right) ; 0(0,0,0)
$$

42. The plane $x-y-z=4$ is rotated through 90° about its line of intersection with the plane $x+y+2 z=4$ and equation in new position is $A x+B y+C z+D=0$ where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are least positive integers and $D<0$ then
(a) $D=-10$
(b) $A B C=-20$
(c) $A+B+C+D=0$
(d) $A+B+C=10$

Key. D
Sol. Given planes are $x-y-z=4$ \qquad (1) and $x+y+2 z=4$ \qquad
Since required plane passes through the line of intersection (1) \& (2)
\Rightarrow Its equation is $(x-y-z-4)+\alpha(x+y+2 z-4)=0$
$\Rightarrow(1+\alpha) x+(\alpha-1) y+(2 \alpha-1) z-(4 \alpha+4)=0$
Since (1) \& (3) are perpendicular
$\Rightarrow 1(1+\alpha)-1(\alpha-1)-1(2 \alpha-1)=0$
$1+\alpha-\alpha+1-2 \alpha+1=0 \quad \Rightarrow \alpha=3 / 2$
\Rightarrow Its equations is $(x-y-z-4)+\frac{3}{2}(x+y+2 z-4)=0$
$5 x+y+4 z-20=0$
43. Three lines $y-z-1=0=x ; z+x+1=0=y ; x-z-1=0=y$ intersect the $x y$ plane at A , B, C then orthocenter of triangle $A B C$ is
(a) $(0,1,0)$
(b) $(-1,0,0)$
(c) $(0,0,0)$
(d) $(1,1,1)$

Key. A
Sol. Intersection of $y-z-1=0=x$ with xy plane gives $A(0,1,0)$ similarly $B(-1,0,0)$, $C(1,0,0)$
\therefore orthocentre is $(0,1,0)$
44. The lines $\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta} ; \frac{x-b+c}{\beta-r}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+r}$ are coplanar and the equation of the plane in which they lie is
(a) $x+y+z=0$
(b) $x-y+z=0$
(c) $x-2 y+z=0$
(d) $x+y-2 z=0$

Key. C
Sol.

45. The reflection of the point $P(1,0,0)$ in the line $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$ is
(a) $(3,-4,-2)$
(b) $(5,-8,-4)$
(c) $(1,-1,-10)$
(d) $(2,-3,8)$

Key: b

Hint: Coordinates of any point Q on the given line are
$(2 r+1,-3 r-1,8 r-10)$ for some $r \in R$
So the direction ratios of $P Q$ are $2 r,-3 r-1,8 r-10$
Now $P Q$ is perpendicular to the given line
if $\quad 2(2 r)-3(-3 r-1)+8(8 r-10)=0$
$\Rightarrow 77 r-77=0 \Rightarrow r=1$
and the coordinates of Q, the foot of the perpendicular from P on the line are $(3,-4,-2)$.
Let $R(a, b, c)$ be the reflection of P in the given lines when Q is the mid-point of $P R$
$\Rightarrow \frac{\mathrm{a}+1}{2}=3, \frac{\mathrm{~b}}{2}=-4, \frac{\mathrm{c}}{2}=-2$
$\Rightarrow a=5, b=-8, c=-4$
and the coordinates of the required point are $(5,-8,-4)$.
46. Reflection of plane $2 x+3 y+4 z+1=0$ in plane $x+2 y+3 z-2=0$ is
(A) $6 x-19 y+32 z=47$
(B) $6 x+19 y+32 z=47$
(C) $6 x+19 y+16 z=47$
(D) $3 x+19 y+16 z=47$

Key. B
Sol. $2 x+3 y+4 z+1=0$
$x+2 y+3 z-2=0$

(iii) is reflection of plane
reflection of $a x+b y+c z+d=0$ in $a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}=0$
$=\left(a a^{\prime}+b b^{\prime}+c c^{\prime}\right)\left(a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}\right)$
$=\left(a^{\prime 2}+b^{\prime 2}+c^{\prime 2}\right)(a x+b y+c z+d)$
$2(2+6+12)(x+2 y+3 z-2)=\left(1^{2}+2^{2}+3^{2}\right)(2 x+3 y+4 z+1)$
$4(\mathrm{x}+2 \mathrm{y}+32-2)=14(2 \mathrm{x}+3 \mathrm{y}+4 \mathrm{z}+1)$
$12 x+38 y+64 z=94$
$\Rightarrow 6 x+19 y+32 z=47$
47. The reciprocal of the distance between two points, one on each of the lines $\frac{x-2}{3}=\frac{y-4}{2}=\frac{z-5}{5}$ and $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$
(A) cannot be less than 9
(B) having minimum value $5 \sqrt{3}$
(C) cannot be greater than 78
(D) cannot be $2 \sqrt{19}$

Key. D

Sol. The shortest distance $(S D)=\frac{\left.\left|\begin{array}{ccc}2-1 & 4-2 & 5-3 \\ 2 & 3 & 4 \\ 3 & 2 & 5\end{array}\right| \right\rvert\,}{\left.\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & 3 & 4 \\ 3 & 2 & 5\end{array}\right| \right\rvert\,}=\frac{1}{\sqrt{78}}$
So, $\frac{1}{\mathrm{SD}}=\sqrt{78}$
48. Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is
(A) $x+2 y-2 z=0$
(B) $3 x+2 y-2 z=0$
(C) $x-2 y+z=0$
(D) $5 x+2 y-4 z=0$

Key. C
Sol. Vector along the required plane is $\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 3 & 4 & 2 \\ 4 & 2 & 3\end{array}\right|=8 \hat{i}-\hat{j}-10 \hat{k}$ So, normal vector ($\overrightarrow{\mathrm{n}}$) to the plane is $\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 8 & -1 & -10 \\ 2 & 3 & 4\end{array}\right|=26 \hat{\dot{i}}-52 \hat{j}+26 \hat{k}$.
So, equation of the plane is $\vec{r} \cdot \vec{n}=0 \Rightarrow x-2 y+z=0$.
49. The distance between the plane $x-2 y+z-6=0$ and the plane containing the sets of points $(1+2 \lambda, 2+3 \lambda, 3+4 \lambda)$ and $(2+3 \mu, 3+4 \mu, 4+5 \mu)$, where λ, μ are parameters, is
(A) $\sqrt{3 / 2}$
(B) $\sqrt{6}$
(C) $\sqrt{12}$
(D) $2 \sqrt{6}$

Key. B
Sol. Normal vector : $\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right|=-\hat{i}+2 \hat{j}-\hat{k}$
equation of plane: $-1(x-1)+2(y-2)-1(z-3)=0$
$\Rightarrow \mathrm{x}-2 \mathrm{y}+\mathrm{z}=0$
So, required distance $=\frac{|6|}{\sqrt{1+4+1}}=\sqrt{6}$
50. If the point $(0, \lambda, 1)$ lies within the triangular prism formed by the planes $x=0,2 y-z+2=0$ and $2 y+3 z-6=0$ then the set of values of λ is
(A) $(-2,2)$
(B) $\left(-\frac{1}{2}, \frac{3}{2}\right)$
(C) $\left(-4,-\frac{4}{3}\right)$
(D) $(0,4)$

Key. B
Sol. The planes are $2 y+z=0,5 x-12 y=13$ and $3 x+4 z=10$
Solving we get $\mathrm{z}=\frac{11}{2}$
51. Number of lattice point (x, y, z all being integers) inside the tetrahedron (not on the surface) having vertices $(0,0,0),(21,0,0),(0,21,0),(0,0,21)$ is
(A) 1140
(B) 4000
(C) 2024
(D) none of these

Key. A
Sol.

Tetrahedron is bounded by $x \geq 0, y \geq 0, z \geq 0$
and
$x+y+z=21$
Total no. of lattice point in side the tetrahedron is $=1140$

52. The equations of hypotenuse of a right angled isosceles triangle are $\frac{x+6}{5}=\frac{y+10}{3}=\frac{z+14}{8}$ and the centroid of the triangle is $\left(\frac{20}{3},-1, \frac{16}{3}\right)$. If (α, β, γ) is the circumcentre of the triangle then $\gamma=$
A) 6
B) -4
C) 5
D) 3

Key. A
Sol. Let $\bar{a}=5 i+3 j+8 k$ (vector parallel to given line)
$G=\left(\frac{20}{3},-1, \frac{16}{3}\right), P=(5 \lambda-6,3 \lambda-10,8 \lambda-14)$
P is the circumcentre $\overrightarrow{G P} \cdot \bar{a}=0$.
53. The distance of the point of intersection of lines $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$ and $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$ from $(7,-4,7)$ is
A) 6
B) $\sqrt{24}$
C) $\sqrt{14}$
D) 5

Key. C
Sol. \quad Point of intersection $=(5,-7,6)$
54. Let ABCD be a tetrahedron in which position vectors of $\mathrm{A}, \mathrm{B}, \mathrm{C} \& \mathrm{D}$ are $\hat{i}+\hat{j}+\widehat{k}, 2 \widehat{i}+\widehat{j}+2 \widehat{k}$, $3 \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+3 \hat{j}+2 \hat{k}$. If ABC be the base of tetrahedron then height of tetrahedron is
A) $\sqrt{\frac{3}{2}}$
B) $\sqrt{\frac{3}{5}}$
C) $\frac{2 \sqrt{2}}{\sqrt{3}}$
D) $\frac{1}{\sqrt{3}}$

Key. C
Sol. $\overrightarrow{A B} \times \overrightarrow{A C}=-\hat{i}+2 \hat{j}+\hat{k}$
Height $=\frac{|\overrightarrow{A D} \cdot(\overrightarrow{A B} \times \overrightarrow{A C})|}{|\overrightarrow{A B} \times \overrightarrow{A C}|}=\frac{2 \sqrt{3}}{\sqrt{3}}$
55. The plane passing through the point whose position vector is $i+j-k$ and parallel to the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and $\frac{x-1}{-1}=\frac{y+1}{-2}=\frac{z-1}{1}$ has l, m, n as direction cosines of its normal then $|l+m+n|=$
A) $1 / \sqrt{3}$
B) $1 / \sqrt{2}$
C) $1 / \sqrt{5}$
D) $1 / \sqrt{6}$

Key. C
Sol. $a+2 b+3 c=0$
$-a-2 b+c=0$
$\Rightarrow a: b: c=2:-1: 0$
56. If a line with direction ratios 2:2:1 intersects the lines $\frac{x-7}{3}=\frac{y-5}{2}=\frac{z-3}{1}$ and $\frac{x-1}{2}=\frac{y+1}{4}=\frac{z+1}{3}$ at A and B then $\mathrm{AB}=$
A) $\sqrt{2}$
B) 2
C) $\sqrt{3}$
D) 3

Key. D
Sol. Let $A(7+3 \alpha, 5+2 \alpha, 3+\alpha), B(1+2 \beta,-1+4 \beta,-1+3 \beta)$
D.R's of $A B$ are in $2: 2: 1$
$\therefore \frac{6+3 \alpha-2 \beta}{2}=\frac{3+\alpha-2 \beta}{1}=\frac{4+\alpha-3 \beta}{1}$
$\therefore \alpha=-2, \beta=1, A(1,1,1), B(3,3,2)$
57. The two lines whose direction cosines are connected by the relations $a l+b m+c n=0$ and $u l^{2}+v m^{2}+w n^{2}=0$ are perpendicular then
(a) $a^{2}(v-w)+b^{2}(w-u)+c^{2}(u-v)=0$
(b) $\frac{a^{2}}{u}+\frac{b^{2}}{v}+\frac{c^{2}}{w}=0$
(c) $a\left(v^{2}+w^{2}\right)+b\left(w^{2}+u^{2}\right)+c\left(u^{2}+v^{2}\right)=0$
(d) $a^{2}(v+w)+b^{2}(w+u)+c^{2}(u+v)=0$

Key. D
Sol. Given relations are
$a l+b m+c n=0$
$u l^{2}+v m^{2}+w n^{2}=0$

Eliminating ' n ' between the given relations we get $u l^{2}+v m^{2}+w\left(\frac{a l+b m}{-c}\right)^{2}=0$
$c^{2} u l^{2}+c^{2} v m^{2}+w a^{2} l^{2}+w b^{2} m^{2}+2 a b w l m=0$
$\left(c^{2} u+w a^{2}\right) \frac{l^{2}}{m^{2}}+2 a b w \frac{l}{m}+\left(b^{2} w+c^{2} v\right)=0 \rightarrow 1$
The above is quadratic equation in $\frac{l}{m}$, whose roots are $\frac{l_{1}}{m_{1}}, \frac{l_{2}}{m_{2}}$
$\frac{l_{1} l_{2}}{m_{1} m_{2}}=\frac{b^{2} w+c^{2} v}{c^{2} u+w a^{2}}$
$\frac{l_{1} l_{2}}{b^{2} w+c^{2} v}=\frac{m_{1} m_{2}}{c^{2} u+w a^{2}}=\frac{n_{1} n_{2}}{a^{2} v+b^{2} u}$
If the lines are perpendicular, then $l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0$
$b^{2} w+c^{2} v+c^{2} u+w a^{2}+a^{2} v+b^{2} u=0$ $a^{2}(v+w)+b^{2}(u+w)+c^{2}(u+v)=0$
58. $\quad f(x)$ be a polynomial in x satisfying the condition $f(x) f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$ and $f(2)=9$. Then the direction cosines of the ray joining the origin and point $(f(0), f(1), f(-1))$ are given by
a) $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right)$
b) $(1,2,0)$
c) $(0,1,-1)$
d) $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$

Key. A
Sol. $\quad f(x)=x^{n}+1 . f(2)=9$ imply $f(x)=x^{3}+1$ and $f(0)=1 \quad f(1)=2, f(-1)=0$,
Dc's of ray joining $(0,0,0) \&(1,2,0)$ is $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right)$.
59. The plane $x-y-z=4$ is rotated through 90° about its line of intersection with the plane $x+y+2 z=4$ and equation in new position is $A x+B y+C z+D=0$ where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are least positive integers and $D<0$ then
a) $D=-10$
b) $A B C=-20$
c) $A+B+C+D=0$
d)
$A+B+C=10$
Key. D
Sol. Given planes are $x-y-z=4$
(1) and $x+y+2 z=4$

Since required plane passes through the line of intersection (1) \& (2)
\Rightarrow Its equation is $(x-y-z-4)+\alpha(x+y+2 z-4)=0$
$\Rightarrow(1+\alpha) x+(\alpha-1) y+(2 \alpha-1) z-(4 \alpha+4)=0$
Since (1) \& (3) are perpendicular

$$
\Rightarrow 1(1+\alpha)-1(\alpha-1)-1(2 \alpha-1)=0 \Rightarrow 1+\alpha-\alpha+1-2 \alpha+1=0 \quad \Rightarrow \alpha=3 / 2
$$

\Rightarrow Its equation is $(x-y-z-4)+\frac{3}{2}(x+y+2 z-4)=0 \Rightarrow 5 x+y+4 z-20=0$
60. The equation of motion of a point in space is $x=2 t, y=-4 t, z=4 t$. where it is measured in hour and the coordinates of moving point in kilometers. The distance of the point from the starting point $\mathrm{O}(0,0,0)$ in 10 hours is
a) 20 km
b) 40 km
c) 55 km
d) 60 km

Key. D
Sol. Eliminating ' t ' from the equation we get the equation of the path, $\quad \frac{x}{2}=\frac{y}{-4}=\frac{z}{4}$
Thus the path represents a straight line through the origin. For $t=10 h$, we have $x=$ $20, \mathrm{y}=-40, \mathrm{z}=40$ and $|\vec{r}|=|O \vec{M}|=\sqrt{\left(x^{2}+y^{2}+z^{2}\right)}=\sqrt{400+1600+1600}=60 \mathrm{~km}$
61. A mirror and a source of light are situated at the origin O and a point on $O X$ respectively.

A ray of light from the source strikes the mirror and is reflected. If the DRs of normal to the plane of mirror are $1,-1,1$, then DCs for the reflected ray are
а) $\frac{1}{3}, \frac{2}{3}, \frac{2}{3}$
b) $-\frac{1}{3},-\frac{2}{3}, \frac{2}{3}$
c) $-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}$
d) $-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}$

Key. B
Sol. DCs of the reflected ray are $-\frac{1}{3},-\frac{2}{3}, \frac{2}{3}$
62. Through a point $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ a plane is drawn at right angles to OP to meet the coordinate axes in A, B and C. If $O P=p$, then the area of $\triangle A B C$ is
(A) $\frac{p^{2} a b}{c^{2}}$
(B) $\frac{p^{3} c}{3 a b}$
(C) $\frac{p^{2} c^{2}}{2 a b}$
(D) $\frac{p^{5}}{2 a b c}$

Key. D
Sol. Here $\mathrm{OP}=\sqrt{\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}}=\mathrm{p}$
$\therefore \quad$ DRs of OP are:
$\frac{\mathrm{h}}{\sqrt{\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}}}, \frac{\mathrm{k}}{\sqrt{\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}}}, \frac{\mathrm{l}}{\sqrt{\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}}}$
or $\frac{\mathrm{h}}{\mathrm{p}}, \frac{\mathrm{k}}{\mathrm{p}}, \frac{1}{\mathrm{p}}$
Since OP is normal to the plane, therefore, equation of plane is

$\frac{h}{p} x+\frac{k}{p} y+\frac{1}{p} z=p$ or $h x+k y+l z=p^{2}$
$\therefore \mathrm{A}\left(\frac{\mathrm{p}^{2}}{\mathrm{~h}}, 0,0\right), B\left(0, \frac{\mathrm{p}^{2}}{\mathrm{k}}, 0\right), \mathrm{C}\left(0,0, \frac{\mathrm{p}^{2}}{1}\right)$
Now, Area of $\Delta \mathrm{ABC}, \Delta=\sqrt{\mathrm{A}_{\mathrm{xy}}^{2}+\mathrm{A}_{\mathrm{yz}}^{2}+\mathrm{A}_{\mathrm{zx}}^{2}}$
Where, $\mathrm{A}_{\mathrm{xy}}^{2}$ is area of projection of $\triangle \mathrm{ABC}$ on xy plane $=$ area of $\triangle \mathrm{AOB}$
Now, $\mathrm{A}_{\mathrm{xy}}=\frac{1}{2}\left|\begin{array}{ccc}\mathrm{p}^{2} / \mathrm{h} & 0 & 1 \\ 0 & \mathrm{p}^{2} / \mathrm{k} & 1 \\ 0 & 0 & 1\end{array}\right|=\frac{\mathrm{p}^{4}}{2|\mathrm{hk}|}$

Similarly, $A_{y z}=\frac{p^{4}}{2|k l|}$ and $A_{z x}=\frac{p^{4}}{2|\operatorname{lh}|}$

$$
\therefore \Delta^{2}=\mathrm{A}_{\mathrm{xy}}^{2}+\mathrm{A}_{\mathrm{yz}}^{2}+\mathrm{A}_{\mathrm{zx}}^{2}, \Delta=\frac{\mathrm{p}^{5}}{2 \mathrm{hkl}}
$$

63. If $\mathrm{l}_{\mathrm{i}}^{2}+\mathrm{m}_{\mathrm{i}}^{2}+\mathrm{n}_{\mathrm{i}}^{2}=1 \forall \mathrm{i} \in\{1,2,3\}$ and $\mathrm{l}_{\mathrm{i}} \mathrm{l}_{\mathrm{j}}+\mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}}+\mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}=0 \forall \mathrm{i}, \mathrm{j} \in\{1,2,3\}(\mathrm{i} \neq \mathrm{j})$
$\Delta=\left|\begin{array}{lll}l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3}\end{array}\right|$ then
(A) $|\Delta|=3$
(B) $|\Delta|=2$
(C) $|\Delta|=1$
(D) $\Delta=0$

Key. C
Sol. We have,

$$
\begin{aligned}
& \Delta^{2}=\Delta \Delta=\left|\begin{array}{ccc}
l_{1} & m_{1} & n_{1} \\
l_{2} & m_{2} & n_{2} \\
l_{3} & m_{3} & n_{3}
\end{array}\right|\left|\begin{array}{ccc}
l_{1} & m_{1} & n_{1} \\
l_{2} & m_{2} & n_{2} \\
l_{3} & m_{3} & n_{3}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
l_{1}^{2}+m_{1}^{2}+n_{1}^{2} & l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} & l_{1} l_{3}+m_{1} m_{3}+n_{1} n_{3} \\
l_{1} 1_{2}+m_{1} m_{2}+n_{1} n_{2} & l_{2}^{2}+m_{2}^{2}+n_{2}^{2} & l_{2} l_{3}+m_{2} m_{3}+n_{1} n_{3} \\
l_{1} 1_{3}+m_{1} m_{3}+n_{1} n_{3} & l_{2} l_{3}+m_{2} m_{3}+n_{2} n_{3} & l_{3}^{2}+m_{3}^{2}+n_{3}^{2}
\end{array}\right| \\
& =\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=1 \Rightarrow \Delta= \pm 1 \Rightarrow|\Delta|=1
\end{aligned}
$$

64. Equation of the straight line in the plane $\vec{r} \cdot \vec{n}=d$ which is parallel to $\vec{r}=\vec{a}+\lambda \vec{b}$ and passes through the foot of perpendicular drawn from the point $P(\vec{a})$ to the plane $\vec{r} \cdot \vec{n}=d$. (where $\vec{n} \cdot \vec{b}=0)$ is
A) $\vec{r}=\vec{a}+\left(\frac{d-\vec{a} \cdot \vec{n}}{n^{2}}\right) \vec{n}+\lambda \vec{b}$
B) $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\left(\frac{\mathrm{d}-\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{n}}}{\mathrm{n}}\right) \overrightarrow{\mathrm{n}}+\lambda \overrightarrow{\mathrm{b}}$
C) $\vec{r}=\vec{a}+\left(\frac{\vec{a} \cdot \vec{n}-d}{n^{2}}\right) \vec{n}+\lambda \vec{b}$
D) $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\left(\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{n}}-\mathrm{d}}{\mathrm{n}}\right) \overrightarrow{\mathrm{n}}+\lambda \overrightarrow{\mathrm{b}}$

Key.
Sol. Foot perpendicular from point $A(\vec{a})$ on the plane $\vec{r} \cdot \vec{n}=d$ is $\vec{a}+\frac{(d-\vec{a} \cdot \vec{n})}{|\vec{n}|^{2}} \vec{n}$
$\therefore \quad$ Equation of line parallel to $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$ in the plane $\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{n}}=\mathrm{d}$ is given by
$\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\frac{(\mathrm{d}-\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{n}})}{|\overrightarrow{\mathrm{n}}|^{2}} \overrightarrow{\mathrm{n}}+\lambda \overrightarrow{\mathrm{b}}$
65. If the foot of the perpendicular from the origin to a plane is $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$, the equation of the plane is
A) $\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}+\frac{\mathrm{z}}{\mathrm{c}}=3$
B) $a x+b y+c z=3$
C) $a x+b y+c z=a^{2}+b^{2}+c^{2}$
D) $a x+b x+c z=a+b+c$

Key. C
Sol. Direction ratios of OP are $\langle\mathrm{a}, \mathrm{b}, \mathrm{c}\rangle$
$\therefore \quad$ equation of the plane is

$$
\begin{array}{ll}
& e(x-a)+b(y-b)+c(z-c)=0 \\
\text { i.e. } & x a+y b+z c=a^{2}+b^{2}+c^{2}
\end{array}
$$

66. Equation of line in the plane $\pi=2 x-y+z-4=0$ which is perpendicular to the line l whose equation is $\frac{x-2}{1}=\frac{y-2}{-1}=\frac{z-3}{-2}$ and which passes through the point of intersection of l and π is
A) $\frac{x-2}{3}=\frac{y-1}{5}=\frac{z-1}{-1}$
B) $\frac{x}{3}=\frac{y-3}{5}=\frac{z-5}{-1}$
C) $\frac{x+2}{2}=\frac{y+1}{-1}=\frac{z+1}{1}$
D) $\frac{x+2}{2}=\frac{y-1}{-1}=\frac{z-1}{1}$

Key. B
Sol. Let direction ratios of the line by $\langle\mathrm{a}, \mathrm{b}, \mathrm{c}\rangle$, then
$2 \mathrm{a}-\mathrm{b}+\mathrm{c}=0$
$\mathrm{a}-\mathrm{b}-2 \mathrm{c}=0$
i.e. $\quad \frac{a}{3}=\frac{b}{5}=\frac{c}{-1}$
$\therefore \quad$ direction ratios of the line are $\langle 3,5,-1\rangle$
Any point on the line is $(2+\lambda, 2-\lambda, 3-2 \lambda)$. It lies on the plane π if

$$
2(2+\lambda)-(2-\lambda)+(3-2 \lambda)=4
$$

i.e. $\quad 4+2 \lambda-2+\lambda+3-2 \lambda=4$
i.e. $\quad \lambda=-1$
$\therefore \quad$ The point of intersection of the line and the plane is $(1,3,5)$
$\therefore \quad$ equation of the required line is $\frac{x-1}{3}=\frac{y-3}{5}=\frac{z-5}{-1}$
67. Equation of plane which passes through the point of intersection of lines $\frac{x-1}{3}=\frac{y-2}{1}=\frac{z-3}{2}$ and $\frac{x-3}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ at greatest distance from the point $(0,0,0)$ is
A) $4 x+3 y+5 z=25$
B) $4 x+3 y+5 z=50$
C) $3 x+4 y+5 z=49$
D) $x+7 y-5 z=2$

Key. B
Sol. Let a point $(3 \lambda+1, \lambda+2,2 \lambda+3)$ of the first line also lies on the second line
Then $\frac{3 \lambda+1-3}{1}=\frac{\lambda+2-1}{2}=\frac{2 \lambda+3-2}{3} \Rightarrow \lambda=1$
Hence the point of intersection P of the two lines is $(4,3,5)$
Equation of plane perpendicular to OP where O is $(0,0,0)$ and passing through P is

$$
4 x+3 y+5 z=50
$$

68. Let $A(\vec{a})$ and $B(\vec{b})$ be points on two skew lines $\vec{r}=\vec{a}+\lambda \vec{p}$ and $\vec{r}=\vec{b}+u \vec{q}$ and the shortest distance between the skew lines is 1 , where \vec{p} and \vec{q} are unit vectors forming adjacent sides of a parallelogram enclosing an area of $\frac{1}{2}$ units. If an angle between AB and the line of shortest distance is 60°, then $\mathrm{AB}=$
A) $\frac{1}{2}$
B) 2
C) 1
D) $\lambda \in \mathrm{R}-\{0\}$

Key. B
Sol. $\quad 1=\left|(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}) \cdot \frac{(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})}{|\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}|}\right| \Rightarrow|\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}| \cos 60^{\circ}=\frac{1}{2} \mathrm{AB} \quad \Rightarrow \quad \mathrm{AB}=2$
69. If plane $2 x+3 y+6 z+k=0$ is tangent to the sphere $x^{2}+y^{2}+z^{2}+2 x-2 y+2 z-6=0$, then a value of k is
A) 26
B) 16
C) -26
D) none of these

Key. A
Sol. Centre and radius of the sphere are $(-1,1,-1)$ and 3 respectively.
Distance of $(-1,1,-1)$ from the plane is $\left|\frac{-2+3-6+k}{\sqrt{4+9+36}}\right|$
Since the plane is tangent to the sphere
$\therefore \quad\left|\frac{\mathrm{k}-5}{7}\right|=3 \quad$ is $|\mathrm{k}-5|=21$
$\therefore \quad \mathrm{k}=-16,26$
70. If $P_{1}: \vec{r} . \vec{n}_{1}-d_{1}=0, P_{2}: \vec{r} \cdot \vec{n}_{2}-d_{2}=0$ and $P_{3}: \vec{r} \cdot \vec{n}_{3}-\vec{d}_{3}=0$ are three planes and $\vec{n}_{1} \cdot \vec{n}_{2}$ and \vec{n}_{3} are three non-coplanar vectors then, the three lines $P_{1}=0, P_{2}=0 ; P_{2}=0, P_{3}=0$ and $\mathrm{P}_{3}=0, \mathrm{P}_{1}=0$ are
A) parallel lines
B) coplanar lines
C) coincident lines
D) concurrent lines

Key. D
Sol. $P_{1}=P_{2}=0, P_{2}=P_{3}=0$ and $P_{3}=P_{1}=0$ are lines of intersection of the three planes P_{1}, P_{2} and P_{3}. As \vec{n}_{1}, \vec{n}_{2} and \vec{n}_{3} are non-coplanar, planes $P_{1}, P_{2} P_{3}$ will intersect at unique point. So the given lives will pass through a fixed point.
71. If \vec{a}, \vec{b} and \vec{c} are three unit vectors equally inclined to each other at an angle α. Then the angle between \vec{a} and plane of \vec{b} and \vec{c} is
A) $\theta=\cos ^{-1}\left(\frac{\cos \alpha}{\cos \frac{\alpha}{2}}\right)$
B) $\theta=\sin ^{-1}\left(\frac{\cos \alpha}{\cos \frac{\alpha}{2}}\right)$
C) $\theta=\cos ^{-1}\left(\frac{\sin \frac{\alpha}{2}}{\sin \alpha}\right)$
D) $\theta=\sin ^{-1}\left(\frac{\sin \frac{\alpha}{2}}{\sin \alpha}\right)$

Key. A

Sol. Let θ be the required angle then θ will be the angle between \vec{a} and $\vec{b}+\vec{c}(\vec{b}+\vec{c}$ lies along the angular bisector of \vec{a} and \vec{b})
$\cos \theta=\frac{\dot{a} \cdot(\dot{b}+\dot{c})}{|\vec{a}||\vec{b}+\vec{c}|}$
$=\frac{2 \cos \alpha}{\sqrt{2+2 \cos \alpha}}=\frac{\cos \alpha}{\cos \frac{\alpha}{2}}$
$\theta=\cos ^{-1}\left(\frac{\cos \alpha}{\cos \alpha / 2}\right)$
72. The reflection of the point $P(1,0,0)$ in the line $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$ is
A) $(3,-4,-2)$
B) $(5,-8,-4)$
C) $(1,-1,-10)$
D) $(2,-3,8)$

Key. B
Sol. Let reflection of $\mathrm{P}(1,0,0)$ in the line
$\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$ be (α, β, γ)
Then $\left(\frac{\alpha+1}{2}, \frac{\beta}{2}, \frac{\gamma}{2}\right)$ lies on the line
and $(\alpha-1) \hat{i}+\beta \hat{\mathrm{j}}+\gamma \hat{\mathrm{k}}$ is perpendicular to $2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+8 \hat{\mathrm{k}}$
$\therefore \quad \frac{\frac{\alpha+1}{2}}{2}=\frac{\frac{\beta}{2}+1}{-3}=\frac{\frac{\gamma}{2}+10}{8}=\lambda$
And $\quad 2(\alpha-1)-3(\beta)+\gamma(8)=0$
$\Rightarrow \quad \alpha=5, \beta=-8, \gamma=-4$
73. Let $\mathrm{A}(1,1,1), \mathrm{B}(2,3,5), \mathrm{C}(-1,0,2)$ be three points, then equation of a plane parallel to the plane $A B C$ which is at a distance 2 is
A) $2 x-3 y+z+2 \sqrt{14}=0$
B) $2 x-3 y+z-\sqrt{14}=0$
C) $2 x-3 y+z+2=0$
D) $2 x-3 y+z-2=0$

Key. A
Sol. $\mathrm{A}(1,1,1), \mathrm{B}(2,3,5), \mathrm{C}(-1,0,2)$ directions ratios of AB are $\langle 1,2,4>$ direction ratios of AC are $\langle-2,-1,1\rangle$
direction ratios of normal to plane ABC are $\langle 2,-3,1\rangle$
Equation of the plane $A B C$ is $2 x-3 y+z=0$
Let the equation of the required plane be $2 x-3 y+z=k$, then $\left|\frac{k}{\sqrt{4+9+1}}\right|=2$

$$
\mathrm{k}= \pm 2 \sqrt{14}
$$

$\therefore \quad$ Equation of the required plane is $2 x-3 y+z+2 \sqrt{14}=0$
74. The points $\mathrm{A}(2-\mathrm{x}, 2,2), \mathrm{B}(2,2-\mathrm{y}, 2), \mathrm{C}(2,2,2-\mathrm{z})$ and $\mathrm{D}(1,1,1)$ are coplanar, then locus of $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is
A) $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$
B) $x+y+z=1$
C) $\frac{1}{1-x}+\frac{1}{1-y}+\frac{1}{1-z}=1$
D) None of these

Key. A
Sol. Here $\overrightarrow{\mathrm{AB}}=x \hat{\mathrm{i}}-y \hat{\mathrm{j}}$
$\overrightarrow{\mathrm{AC}}=x \hat{\mathrm{i}}-z \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{AD}}=(\mathrm{x}-1) \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$
As these vectors are coplanar $\Rightarrow\left|\begin{array}{ccc}x & -y & 0 \\ x & 0 & -z \\ x-1 & -1 & -1\end{array}\right|=0 \Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$
75. The equation of plane through $(1,2,3)$ and at the maximum distance from origin is
A) $x+2 y+3 z=14$
B) $x+y+z=6$
C) $x+2 y+3 z+14=0$
D) $3 x$

Key. A
Sol. Direction rations of normal to the plane is $(1,2,3)$
$\Rightarrow \quad$ Equation of plane $(x-1) 1+(y-2) .2+(z-3) .3=0$
$\Rightarrow \quad x+2 y+3 z=14$
76. If $P(\alpha, \beta, \gamma)$ be a vertex of an equilateral triangle $P Q R$ where vertex Q and R are $(-1,0,1)$ and $(1,0,-1)$ respectively then P will lie on the plane
a) $x+y+z+6=0$
b) $2 x+4 y+3 z+10=0$
c) $x-y+z+12=0$
d) $x+y+z+3 \sqrt{2}=0$

Ans. d

$$
Q R=2 \sqrt{2}=O P=6
$$

77. The length of the perpendicular from $(1,0,2)$ on the line $\frac{x+1}{3}=\frac{y-2}{-2}=\frac{z+1}{-1}$ is
a) $\frac{3 \sqrt{6}}{2}$
b) $\frac{6 \sqrt{3}}{5}$
c) $3 \sqrt{2}$
d) $2 \sqrt{3}$

Ans. a

$$
P M=\sqrt{\left(1-\frac{1}{2}\right)^{2}+(0-1)^{2}\left(2+\frac{3}{2}\right)^{2}}=\frac{3 \sqrt{6}}{2}
$$

78. In triangle $\mathrm{OAB}, \mathrm{B}=(3,4)$. If $H \equiv(1,4)$ be the orthocenter of the triangle, then the coordinates of A are (where O is the origin)
a) $\left(0, \frac{15}{4}\right)$
b) $\left(0, \frac{17}{4}\right)$
c) $\left(0, \frac{21}{4}\right)$
d) $\left(0, \frac{19}{4}\right)$

Ans. d
Sol. Let $A=(h, k)$, slope of $A H=\frac{k-4}{h-1}$, slope of $\mathrm{OB}=\frac{4}{3}$
$\Rightarrow \frac{4(k-4)}{3(h-1)}=-1$
$\Rightarrow 4 k+3 h=19$
Slope of $\mathrm{OA}=\frac{k}{h}$, slope of $\mathrm{BH}=0 \mathrm{As} O A \perp B H$
$\therefore h=0$, put in (1)
$k=\frac{19}{4}$
79. In an acute angles triangle $A B C, A A_{1}, A A_{2}$ are the median and altitude respectively. Then $A_{1} A_{2}$ is equal to
a) $\frac{\left|a^{2}-c^{2}\right|}{2 b}$
b) $\frac{\left|a^{2}-b^{2}\right|}{2 c}$
c) $\frac{\left|b^{2}-c^{2}\right|}{2 a}$
d) none of these

Ans. C
Sol. $A_{2} C=A B \cos B=c \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a}$
Also $A_{1} B=\frac{a}{2}$ and $A_{2} A_{1}=B A_{1}-B A_{2}=\left|\frac{a}{2}-\frac{a^{2}+c^{2}-b^{2}}{2 a}\right|$
$=\left|\frac{b^{2}-c^{2}}{2 a}\right|$
80. If a chord of the circle $x^{2}+y^{2}-4 x-2 y-c=0$ is trisected at the points $\left(\frac{1}{3}, \frac{1}{3}\right)$ and $\left(\frac{8}{3}, \frac{8}{3}\right)$, then $\mathrm{c}=$
a) 10
b) 20
c) 30
d) 40

Ans. b
Sol. Cut A : $\left(\frac{1}{3}, \frac{1}{3}\right)$ and $B\left(\frac{8}{3}, \frac{8}{3}\right)$. Also $\mathrm{C}(2,1)$.
Then equation of AB is $\mathrm{y}=\mathrm{x}$, and length $\mathrm{AB}=\frac{7 \sqrt{2}}{3}$
If PQ be the chord, then
Length $P Q=7 \sqrt{2}$
Now $\mathrm{CP}^{2}=\mathrm{PM}^{2}+\mathrm{CM}^{2}$

$\Rightarrow 4+1+c=\left(\frac{7 \sqrt{2}}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}=25 \Rightarrow c=20$
81. From a point on hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ tangents are drawn to circle $x^{2}+y^{2}=9$ then locus of midpoint of chord of contact
a) $9\left(9 x^{2}-4 y^{2}\right)=4\left(x^{2}+y^{2}\right)^{2}$
b) $9\left(4 x^{2}-9 y^{2}\right)=4\left(x^{2}+y^{2}\right)^{2}$
c) $5\left(9 x^{2}-4 y^{2}\right)=4\left(x^{2}+y^{2}\right)^{2}$
d) $9\left(9 x^{2}-5 y^{2}\right)=4\left(x^{2}-y^{2}\right)^{2}$

Ans. b

Sol. Equation of chord of contact is $3 x \sec \theta+2 y \tan \theta=9$
Let midpoint of chord of contact be (h, k) then $h x+k y=h^{2}+k^{2}$
(1) and (2) are identical
$\sec \theta=\frac{9 h}{3\left(h^{2}+k^{2}\right)}, \tan \theta=\frac{9 k}{2\left(h^{2}+k^{2}\right)}$
Then $\sec ^{2} \theta-\tan ^{2} \theta=1$
82. In figure shown two points A and B are given on x-axis and third point C on y-axis. Then locus of P such that four $\mathrm{A}, \mathrm{B}, \mathrm{P}$ and C lie on a circle
a) $\left(x-\frac{a+b}{2}\right)^{2}+\left(y-\frac{c^{2}+a b}{2 c}\right)^{2}=\frac{c^{4}+a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}{4 c^{2}}$
b) $\left(x+\frac{a+b}{2}\right)^{2}+\left(y-\frac{c^{2}+a b}{2 c}\right)^{2}=\frac{c^{4}+a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}{4 c^{2}}$
c) $\left(x-\frac{a+b}{2}\right)^{2}+\left(y+\frac{c^{2}+a b}{2 c}\right)^{2}=\frac{c^{4}+a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}{4 c^{2}}$
d) none of these

Ans. a

Sol. Let equation of circle be $(x-\alpha)^{2}+(y-\beta)^{2}=r^{2}$
Since it passes through A, B, C

$$
\begin{aligned}
& r^{2}=(a-\alpha)^{2}+\beta^{2} \\
& r^{2}=(b-\alpha)^{2}+\beta^{2} \quad \text { on solving get equation } \\
& r^{2}=\alpha^{2}+(c-\beta)^{2}
\end{aligned}
$$

83. Let A be the fixed point $(0,4)$ and B be a moving point $(2 t, 0), M$ be the midpoint of $A B$ and let the perpendicular bisector of $A B$ meet the y-axis at R. The locus of the midpoint of $M R$ is
a) $x^{2}=-(y-2)$
b) $x^{2}+(y-2)^{2}=1 / 4$
c) $x^{2}+1 / 4=(y-2)^{2}$
d) none of these

Ans. a
Sol. $\mathrm{M}(\mathrm{t}, 2) \Rightarrow$ equation of MR is $y-2=\frac{t}{2}(x-t)$
$\Rightarrow R \equiv\left(0,2-t^{2} / 2\right)$, let midpoint be (h, k)
$\Rightarrow h=t / 2, k=2-t^{2} / 4$
84. If P be a point inside an equilateral $\triangle A B C$ such that $P A=3, P B=4$ and $P C=5$, then the side length of the equilateral $\triangle A B C$ is
a) $\sqrt{25-12 \sqrt{3}}$
b) 13
c) $\sqrt{25+12 \sqrt{3}}$
d) 17

Ans. c
Sol.

Rotate the triangle in clockwise direction through an angle 60°. Let the points A, B, C and P will be A, B^{\prime}, B and P^{\prime} respectively after the rotation. We have $P A=P^{\prime} A=3$ and $\quad P A P^{\prime}=60^{\circ} \Rightarrow P P^{\prime}=3$. Also $C P=B P^{\prime}=5$. So $\Delta B P P^{\prime}$ is right angle triangle which $\left\lfloor B P P^{\prime}=90^{\circ}\right.$. Now apply cosine rule in $\triangle \mathrm{BPA}$ because $\underline{B P A}=90^{\circ}+60^{\circ}=150^{\circ}, \mathrm{PA}=3$ and $B P=4$, we can get $A B$.

85. Consider $A \equiv(3,4), B \equiv(7,13)$. If P be a point on the line $\mathrm{y}=\mathrm{x}$ such that $\mathrm{PA}+\mathrm{PB}$ is minimum, then the coordinate of P are
a) $\left(\frac{13}{7}, \frac{13}{7}\right)$
b) $\left(\frac{23}{7}, \frac{23}{7}\right)$
c) $\left(\frac{31}{7}, \frac{31}{7}\right)$
d) $\left(\frac{33}{7}, \frac{33}{7}\right)$

Ans. c
Sol. Let A , be the reflection of A in $y=x \Rightarrow A_{1} \equiv(4,3)$
Now $P A+P B=A_{1} P+P B$, which is minimum when A_{1}, P, B are collinear
Equation of $\mathrm{A}_{1} \mathrm{~B}$ is $(y-3)=\frac{13-3}{7-4}(x-4) \Rightarrow 3 y=10 x-31$ and $\mathrm{y}=\mathrm{x}$ gives $P \equiv\left(\frac{31}{7}, \frac{31}{7}\right)$
86. In triangle $A B C$, equation of the side $B C$ is $x-y=0$. Circumcentre and orthocenter of the triangle are $(2,3)$ and $(5,8)$ respectively. Equation of the circumcircle of the triangle is
a) $x^{2}+y^{2}-4 x+6 y-27=0$
b) $x^{2}+y^{2}-4 x-6 y-27=0$
c) $x^{2}+y^{2}+4 x+6 y-27=0$
d) $x^{2}+y^{2}+4 x-6 y-27=0$

Ans. b
Sol.
Reflection P in BC will lie on BC
\therefore Equation of circumcircle is

$$
\begin{aligned}
& (x-2)^{2}+(y-3)^{2}=(8-2)^{2}+(5-3)^{2} \text { or } \\
& x^{2}+y^{2}-4 x-6 y-27=0
\end{aligned}
$$

87. The locus of the midpoints of the chords of the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ that pass
through the origin is
a) $x^{2}+y^{2}+2 g x+2 f y=0$
b) $x^{2}+y^{2}+g x+f y+c=0$
c) $x^{2}+y^{2}+g x+f y=0$
d) $2\left(x^{2}+y^{2}+g x+|y|+c=0\right.$

Ans. C
Sol. $\quad T=S_{1} \Rightarrow x x_{1}+y y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c=x_{1}^{2}+y_{1}^{2}+2 g x_{1}+2 f y_{1}+c$
It passes through (0,0)
$\therefore x_{1}^{2}+y_{1}^{2}+g x_{1}+f y_{1}=0$
\therefore Locus is $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{gx}+\mathrm{fy}=0$
88. Circles C_{1} and C_{2} having centres G_{1} and G_{2} respectively intersect each other at the points A and B, secants L_{1} and L_{2} are drawn to the circles C_{1} and C_{2} to intersect them in the points A_{1}, B_{1} and A_{2}, B_{2} respectively. If the secants L_{1} and L_{2} intersect each other at a point P in the exterior
region of circles C_{1} and C_{2} and $\mathrm{PA}_{1} \times \mathrm{PB}_{1}=\mathrm{PA}_{2} \times \mathrm{PB}_{2}$ then which of the following statement is false
a) points P, A and B are collinear
b) line joining G_{1} and G_{2} is perpendicular to line joining P and A
c) $\mathrm{PA}_{1} \times \mathrm{PB}_{1}=\mathrm{PA} \times \mathrm{PB}$
d) $P A=P A_{1}$

Ans. d
Sol. Line joining PAB will be the radical axis of the two circles so a, b and c are correct
89. Distance between centres of circles which pass through $A(a, a)$ and $B(2 a, 2 a)$ and touch the y axis is
a) $4 a$
b) $2 \sqrt{2} a$
c) $4 \sqrt{2} a$
d) $\sqrt{2} a$

Ans. c
Sol. Let $(\alpha, 3 a-\alpha),(\beta, 3 a-\beta)$ be the centres of the circle
$\Rightarrow \alpha, \beta$ are the roots of equation $(x-a)^{2}+(2 a-x)^{2}=x^{2}$
$\Rightarrow \alpha+\beta=6 a, \alpha \beta=5 a^{2}$
$\Rightarrow|\alpha-\beta|=4 a$
$\Rightarrow C_{1} C_{2}=4 a \sqrt{2}$
90. The locus of the centre of a circle which cuts orthogonally the parabola $y^{2}=4 x$ at $(1,2)$ will pass through points
a) $(3,4)$
b) $(4,3)$
c) $(5,3)$
d) $(2,4)$

Ans. a
Sol. Tangent to parabola $y^{2}=4 x$ at $(1,2)$ will be the locus
i.e $y \cdot 2=2(x+1)$
$y=x+1$
91. Let $A B$ be any chord of the circle $x^{2}+y^{2}-4 x-4 y+4=0$ which subtends an angle of 90° at the point $(2,3)$, then the locus of the midpoint of $A B$ is circle whose centre is
a) $(1,5)$
b) $\left(1, \frac{5}{2}\right)$
c) $\left(1, \frac{3}{2}\right)$
d) $\left(2, \frac{5}{2}\right)$

Ans. d
Sol. Let midpoint of $A B$ is $M(h, k)$
AB subtends 90° at $(2,3)$
$\Rightarrow A M=M B$
$\Rightarrow \sqrt{(h-2)^{2}+(k-3)^{2}}$
Also, $\mathrm{CM}^{2}+\mathrm{MB}^{2}=\mathrm{CB}^{2}$
$\Rightarrow(h-2)^{2}+(k-2)^{2}+(h-2)^{2}+(k-3)^{2}=4$
$\Rightarrow x^{2}+y^{2}-4 x-5 y+\frac{17}{2}=0$

92. If line $y=2 x+c$ neither cuts the circle $(x-2)^{2}+(y-3)^{2}=4$ nor the ellipse $x^{2}+6 y^{2}=6$, then the range of c is
a) $[-5,5]$
b) $(-\infty,-5) \cup(5, \infty)$
c) $(-4,4)$
d) none of these

Ans. b
Sol. Since the given line does not meet the given ellipse and circle.
$c^{2}>6 \times 2^{2}+1$
[From c ${ }^{2}>a^{2} m^{2}+b^{2}$]
and $\mathrm{c}^{2}>4(1+4)$
$\left[\right.$ From $\left.c^{2}>a^{2}\left(1+m^{2}\right)\right]$
$\Rightarrow c^{2}>25$
$\therefore c \in(-\infty,-5) \cup(5 . \infty)$
93. If the eccentricity of the hyperbola $x^{2} \operatorname{cosec}^{2} \theta-y^{2} \sec ^{2} \theta=5$ is 5 times the eccentricity of the ellipse $x^{2} \operatorname{cosec}^{2} \theta+y^{2} \sec ^{2} \theta=25$, then $\theta=$
a) $\frac{\pi}{4}$
b) $\frac{\pi}{2}$
c) $\cot ^{-1}\left(\frac{ \pm 2}{\sqrt{3}}\right)$
d) $\tan ^{-1}\left(\frac{4}{5}\right)$

Ans. c
Sol. $\frac{x^{2}}{5 \sin ^{2} \theta}-\frac{y^{2}}{5 \cos ^{2} \theta}=1, \frac{x^{2}}{25 \sin ^{2} \theta}+\frac{y^{2}}{25 \cos ^{2} \theta}=1$
$e_{H}^{2}=1+\cot ^{2} \theta$
$e_{e}^{2}=1-\cot ^{2} \theta$
$1+\cot ^{2} \theta=5\left(1-\cot ^{2} \theta\right)$
$6 \cot ^{2} \theta=4 \quad=\cot ^{2} \theta=\frac{2}{3}$
$\cot \theta= \pm \sqrt{\frac{2}{3}}$
$\theta=\cot ^{-1}\left(\frac{+2}{\sqrt{3}}\right)$
94. Area enclosed by ellipse $x^{2}+\sin ^{4} \alpha y^{2}=\sin ^{2} \alpha, \alpha \in\left(0, \frac{\pi}{2}\right)$ is
a) 2π
b) π
c) 1
d) none of these

Ans. b
Sol. Area $=\pi \mathrm{ab}-\pi \sin \alpha \operatorname{cosec} \alpha=\pi$.
95. Find the eccentricity of the conic formed by the locus of the point of intersection of the lines $\sqrt{3} x-y-4 \sqrt{3} k=0$ and $\sqrt{3} k x+k y-4 \sqrt{3}=0$
a) 4
b) $1 / 4$
c) 2
d) $1 / 2$

Ans. c
Sol. $\quad \sqrt{3} x-y-4 \sqrt{3} k=0, \sqrt{3} k x+k y-4 \sqrt{3}=0$
In order to find the locus of point of intersection
We have to eliminate k
$\frac{\sqrt{3} x-y}{4 \sqrt{3}}=k$ put this k in another
$(\sqrt{3} x-y)(\sqrt{3} x+y)=(4 \sqrt{3})^{2}$
or $3 x^{2}-y^{2}=48$
$\frac{x^{2}}{16}-\frac{y^{2}}{48}=1 \quad \therefore a^{2}=16, b^{2}=48$
Clearly locus form a hyperbola.
$b^{2}=a^{2}\left(e^{2}-1\right)$
$48=10\left(\mathrm{e}^{2}-1\right)$
$\therefore \mathrm{e}=2$
96. If a pair of variable straight lines $x^{2}+4 y^{2}+\alpha x y=0$ (where α is a real parameter) cut the ellipse $x^{2}+4 y^{2}=4$ at two points A and B, then locus of point of intersection of tangents at A and B is
a) $x^{2}-4 y^{2}+8 x y=0$
b) $(2 x-y)(2 x+y)=0$
c) $x^{2}-4 y^{2}+4 x y=0$
d) $(x-2 y)(x+2 y)=0$

Ans. d
Sol. Let the point of intersection of tangents at A and B be $P(h, k)$ then equation of $A B$ is
$\frac{x h}{4}+\frac{y k}{1}=1$
Homogenizing the ellipse with (1)
$\frac{x^{2}}{4}+\frac{y^{2}}{1}=\left(\frac{x h}{4}+\frac{y k}{1}\right)^{2}$
$\Rightarrow x^{2}\left(\frac{h^{2}-4}{16}\right)+y^{2}\left(k^{2}-1\right)+\frac{2 h k}{4} x y=0 \quad-$

Given, equation of OA and OB is
$x^{2}+4 y^{2}+\alpha x y=0$
(2) and (3) are same
$\Rightarrow(\mathrm{h}-2 \mathrm{k})(\mathrm{h}+2 \mathrm{k})=0$
Therefore locus is $(x-2 y)(x+2 y)=0$
97. A man starts from point $P(-3,4)$ and reaches the point $Q(0,1)$ touching x-axis at R, such that $P R+R Q$ is minimum, then the coordinates of point R is
a) $\left(-\frac{3}{5}, 0\right)$
b) $(1,0)$
) $(-1,0)$
d) $\left(\frac{3}{5}, 0\right)$

Ans. a
Sol. Let $P^{\prime}(-3,-4)$ be the image of P with respect to x -axis PR

+ RQ minimum
$\Rightarrow P^{\prime} R+R Q$ is minimum
$\Rightarrow P^{\prime} R Q$ should be collinear

98. Let A, B and C are any three points on the ellipse $36 x^{2}+\frac{y^{2}}{192}=1$, then the maximum area of the triangle $A B C$ is
a) 1
b) 2
c) 3
d) 4

Ans. c
Sol. Area of the triangle inscribed in the ellipse is maximum in difference of the eccentric angles of the point A, B, C is $\frac{2 \pi}{3}$
So maximum area of the inscribed triangle is $\frac{3 \sqrt{3}}{4} \cdot \frac{1}{6} \cdot 8 \sqrt{3}=3$ sq.units
99. If $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right)$ and $S\left(x_{4}, y_{4}\right)$ are four concyclic points on the rectangular hyperbola $x y=c^{2}$, then the coordinates of the orthocenter of $\triangle P Q R$ are
a) $\left(x_{4},-y_{4}\right)$
b) $\left(x_{4}, y_{4}\right)$
c) $\left(-x_{4},-y_{4}\right)$
d) $\left(-x_{4}, y_{4}\right)$

Ans. c
Sol. Orthocentre and $\left(x_{4}, y_{4}\right)$ are the images of each other with respect to the origin.
100. If two of the lines given by $3 x^{3}+3 x^{2} y-3 x y^{2}+d y^{3}=0$ are at right angled, then the slope of the third line is
a) -1
b) 1
c) 3
d) -3

Ans. a
Sol. Let the lines be $y=m_{1} x, y=m_{2} x, y=m_{3} x$
$\therefore m_{1} m_{2} m_{3}=-\frac{3}{d}$
Let $m_{1} m_{2}=-1$ (two of the lines are perpendicular)
$\therefore m_{3}=\frac{3}{d}$
$y=\frac{3}{d} x$ satisfying given equation
$\Rightarrow d\left(\frac{3}{d}\right)^{3}-3\left(\frac{3}{d}\right)^{2}+3\left(\frac{3}{d}\right)+3=0$
$\Rightarrow d=-3$
\therefore The given equation $\mathrm{x}^{3}+\mathrm{x}^{2} \mathrm{y}-\mathrm{xy}^{2}-\mathrm{y}^{3}=0$
$\Rightarrow(x+y)\left(x^{2}-y^{2}\right)=0$
\therefore slopes of other 2 lines are $1,-1$
101. If the angle between tangents drawn to $x^{2}+y^{2}-6 x-8 y+9=0$ at the points where it is cut by the line $y=3 x+k$ is $\frac{\pi}{2}$, then
a) $k=-5 \pm 2 \sqrt{5}$
b) $k=-5 \pm 3 \sqrt{5}$ c) $k=2 \sqrt{5}+\sqrt{2}$
d) none of these

Ans. a
Sol.
$\mathrm{CD}=\mathrm{CB} \cos \frac{\pi}{4}=\sqrt{2}$
$\sqrt{2}=\frac{|4-9-k|}{\sqrt{1^{2}+3^{2}}}=\frac{|-5-k|}{\sqrt{10}}$
$20=(5+k)^{2}$
$\Rightarrow k=-5 \pm 2 \sqrt{5}$

102. If directions of two sides of a triangle are fixed and length of third side is constant and is sliding between these sides, then locus of the orthocenter of the triangle is
a) circle
b) ellipse
c) straight line
d) hyperbola

Ans. a
Sol. Let fixed directions be OA and OB inclined at a constant angle α and $\mathrm{AB}=\mathrm{c}$.
Let $\lfloor B A O=\theta$ then $\mathrm{BC}=c \sin \theta$ and $\mathrm{AC}=c \cos \theta$.
$\therefore O C=c \sin \theta \cdot \cot \alpha$
Equation of the line passing through A and perpendicular to OB is $y=-\cot \theta(x-c \sin \theta \cot \theta-c \cos \theta)$ and equation of BC is x

$=c \sin \theta \cdot \cot \alpha$
\therefore orthocenter is $(c \sin \theta \cdot \cot \theta, c \cos \theta \cdot \cot \alpha)$
\Rightarrow Required locus is $\mathrm{x}^{2}+\mathrm{y}^{2}=c^{2} \cot ^{2} \alpha$, which is the
equation of a circle.
103. The number of triangles having two vertices are $(1,2)$ and $(6,2)$ and incentre $(4,6)$ is
a) 2
b) 1
c) infinite
d) 0

Ans. d
Sol. Equation of $B C$ is $y=2$, which is parallel to x-axis
$\therefore \tan \frac{B}{2}=\frac{4}{3} \Rightarrow B>\frac{\pi}{2}$ and $\tan \frac{C}{2}=2 \Rightarrow C>\frac{\pi}{2}$
In a triangle two angles cannot be greater than 90° and hence there is no such triangle.

