d) none of these

Differential Calculus

Single Correct Answer Type

Let $f(x) = 4x + 8\cos x - \ln \{\cos x(1 + \sin x)\} + \tan x - 2\sec - 6$. If $f(x) > 0 \forall x \in (0, a)$ 1. then

a)
$$a = \frac{\pi}{6}$$
 b) $a = \frac{\pi}{3}$ c) $a = \frac{\pi}{2}$

Ans. a

Sol.
$$f'(x) = 4 - 8\sin x - \frac{(-\sin x + \cos^2 x - \sin^2 x)}{\cos x(1 + \sin x)} + \sec^2 x - \sec x \tan x$$

 $= 4(1 - 2\sin x) + \sec^2 x(1 - 2\sin x) - 4\sec(1 - 2\sin x)$
 $= f(x) = (\sec x - 2)^2 (1 - 2\sin x)$
If $f(x) > 0 \forall x \in (0, a)$, then f(x) is increasing in (0, a) $\Rightarrow a = \frac{\pi}{6}$
2. If f(x) is continuous for all real values of x, then $\sum_{r=1}^{n} \int_{0}^{1} f(r - 1 + x) dx =$
a) $\int_{0}^{n} f(x) dx$ b) $\int_{0}^{1} f(x) dx$ c) $n \int_{0}^{1} f(x) dx$ d) $(n - 1) \int_{0}^{1} f(x) dx$

Sol.
$$\sum_{r=1}^{n} \int_{0}^{1} f(r-1+x) dx = \int_{0}^{1} f(x) dx + \int_{0}^{1} f(1+x) dx + \int_{0}^{1} f(2+x) dx + \dots + \int_{0}^{1} f(n-1+x) dx$$
$$= \int_{0}^{1} f(x) dx + \int_{1}^{2} f(x) dx + \int_{2}^{3} f(x) dx + \dots + \int_{n-1}^{n} f(x) dx = \int_{0}^{n} f(x) dx$$
The coordinates of the point on the curve $x^{3} = y(x-a)^{2}$ a > 0 where the ordinate is minim

3. b) $\left(-2a, \frac{-8a}{9}\right)$ c) $\left(3a, \frac{27a}{4}\right)$ d) $\left(-3a, \frac{-27a}{16}\right)$ is minimum a) (2a, 8a) с

Ans.

The ordinates of any point on the curve is given by $y = \frac{x^3}{(x-a)^2}$

Sol.

$$\frac{dy}{dx} = \frac{x^2 (x - 3a)}{(x - a)^3}$$
Now, $\frac{dy}{dx} = 0 \Rightarrow x = 0 \text{ or } x = 3a$
 $\frac{d^2 y}{dx^2}\Big|_{x=0} = 0 \text{ and } \frac{d^2 y}{dx^2}\Big|_{x=3a} = \frac{72a^5}{(2a)^6} > 0$

Hence y is minimum at x = 3a and is equal to $\frac{27a}{4}$

Let $I_n = \int_{1}^{\frac{\pi}{2}} \frac{\sin(2n-1)x}{\sin x} dx$, $J_n = \int_{1}^{\frac{\pi}{2}} \frac{\sin^2 nx}{\sin^2 x} dx$, $n \in N$, then 4. a) $J_{(n+1)} - J_n = I_n$ b) $J_{(n+1)} - J_n = I_{(n+1)}$ c) $J_{n+1} + J_n = J_n$ d) $J_{n+1} + J_{n+1} = J_n$ Ans. $J_n - J_{n-1} = \int_{-\infty}^{\frac{\pi}{2}} \frac{\sin^2 nx - \sin^2 (n-1)x}{\sin^2 x} dx - \int_{-\infty}^{\frac{\pi}{2}} \frac{\sin(2n-1)x - \sin x}{\sin^2 x} dx = I_n$ Sol. $J_n - J_{n-1} = I_n \Longrightarrow J_{n+1} - J_n = I_{n+1}$ i.e A curve whose concavity is directly proportional to the logarithm of its x-coordinates at any 5. of the curve, is given by b) $c_1 x^2 (2 \log x + 3) + c_2 x + c_3$ a) $c_1 x^2 (2 \log x - 3) + c_2 x + c_3$ d) none of these c) $c_1 x^2 (2 \log x) + c_2$ Ans. $\frac{d^2 y}{dx^2} = k \log x \Longrightarrow \frac{dy}{dx} = k \left(x \log x - x \right) + A$ $ax \qquad (-5x - x) + A$ $\Rightarrow y = k \left[\frac{1}{2} x^2 \log x - \int \frac{1}{2} x^2 \cdot \frac{1}{x} - \frac{x^2}{2} dx \right] + Ax + B$ $\Rightarrow y - \frac{k}{2} (2x^2 - 1) + Ax + B$ Sol. $\Rightarrow y = \frac{k}{4} \{2x^2 \log x - x^2 - 2x^2\} + Ax + B$ $\Rightarrow y = c_1 (2\log x - 3)x^2 + c_2 x + c_3$ The domain of the function $f(x) = \sqrt{3 - 2^x - 2^{1-x}} + \sqrt{\sin^{-1} x}$ is a) [-1,0] b) [0,1] c) $\left[\frac{1}{2}, 1\right]$ 6. d) [1, 2] Ans. $\sin^{-1} x \ge 0 \Longrightarrow 0 \le x \le 1$ Sol. and $2^{x} + 2^{1-x} \le 3 \Longrightarrow 2^{x} + 2 \cdot 2^{-x} - 3 \le 0$ Put $2^x = t$, then $t^2 - 3t + 2 \le 0 \Longrightarrow (t-2)(t-1) \le 0$ $\Rightarrow 1 \le t \le 2 \ i.e \ 1 \le 2^x \le 2$ $\Rightarrow 0 \le x \le 1$ Area bounded by the curve y = sinx, y = cosx, $x = -\frac{\pi}{3}$, $x = 2\pi$ a) $4\sqrt{2} - \left(\frac{\sqrt{3}+1}{2}\right)$ b) $\sqrt{2} + \left(\frac{\sqrt{3}+1}{2}\right)$ c) $\sqrt{2} - \left(\frac{\sqrt{3}+2}{2}\right)$ d) $4\sqrt{2} + \left(\frac{\sqrt{3}+1}{2}\right)$ Ans. d Sol. $A = \int_{-\infty}^{2\pi} \left| \sin x - \cos x \right| dx \Longrightarrow 4\sqrt{2} + \frac{\sqrt{3}+1}{2}$ Let f(1) = 1 and $f(n) = 2\sum_{r=1}^{n-1} f(r)$, then $\sum_{n=1}^{m} f(n)$ is equal to 8.

2

c) $3^m - 1$ d) none of these

a) $3^{m-1}-1$ b) 3^{m-1}

Ans. b
Sol.
$$f(n) = 2(f(1) + f(2) + ... + f(n-1))$$

 $\therefore f(n + 1) = 3f(n) for $n \ge 2$
Also $f(2) = 2f(1) = 2$
 $f(3) = 3f(2) = 2 \cdot 3$
 $\sum_{n=1}^{\infty} f(n) = f(1) + f(2) + ... + f(m)$
 $= 1 + 2 + 2.3 + 2.3^{2} + ... + 2.3^{m-2} = 1 + 2(1 + 3 + 3^{2} + ... + 3^{m-2})$
9. $I = \int \frac{2 + 3\cos\theta}{\sin\theta + 2\cos\theta + 3} d\theta$, then
a) $I = \frac{6\theta}{5} + \frac{3}{5} \log|\sin\theta + 2\cos\theta + 3| - \frac{8}{5} \tan^{-4} \left(\frac{\tan\left(\frac{\theta}{2}\right) + 1}{2}\right) + c$
b) $I = \frac{6\theta}{5} - \frac{3}{5} \log|\sin\theta + 2\cos\theta + 3| - \frac{8}{5} \tan^{-4} \left(\frac{\tan\left(\frac{\theta}{2}\right) + 1}{2}\right) + c$
c) $I = \frac{6\theta}{5} - \frac{3}{5} \log|\sin\theta + 2\cos\theta + 3| - \frac{8}{5} \tan^{-4} \left(\frac{\tan\left(\frac{\theta}{2}\right) + 1}{2}\right) + c$
d) none of these
Ans. a
Sol. $2 + 3\cos\theta = I(\sin\theta + 2\cos\theta + 3) + m(\cos\theta - 2\sin\theta) + n$, then integrate
10. The value of $\lim_{n \to \infty} \left(\frac{\sqrt{n}}{(3 + 4\sqrt{n})^{2}} + \frac{\sqrt{n}}{\sqrt{2}(3\sqrt{2} + 4\sqrt{n})^{2}} + + \frac{1}{49n}\right)$ is equal to
a) $\frac{1}{14}$ (b) $\frac{2}{7}$ (c) $\frac{3}{7}$ d) none of these
Ans. a
Sol. $\lim_{n \to \infty} \sum_{n=1}^{2} \frac{\sqrt{n}}{\sqrt{x}(3\sqrt{x} + 4\sqrt{n})^{2}}$
Put $\frac{\pi}{n} = x \Rightarrow \frac{1}{n} = dx$
 $= \int_{0}^{1} \frac{dx}{\sqrt{x}(3\sqrt{x} + 4\sqrt{n})^{2}} = \frac{1}{14}$
11. Solution of differential equation $xdy - (y + xy^{3}(1 + \log x))dx = 0$
 $a) \frac{-x^{2}}{y^{2}} = \frac{2x}{3} \left(\frac{2}{3} + \log x\right) + c$ (b) $\frac{x^{2}}{y^{2}} = \frac{2x^{2}}{3} \left(\frac{2}{3} + \log x\right) + c$$

c)
$$\frac{-x^2}{y^2} = \frac{2x^2}{3} \left(\frac{2}{3} + \log x\right) + c$$
 d) none of these
Ans. c
Sol. $-d\left(\frac{x}{y}\right) = xy(1 + \log x)dx$
 $\int -\frac{x}{y} d\left(\frac{x}{y}\right) = \int x^2(1 + \log x)dx$ gives solution
12. Let $f: R \to R$ and $g: R \to R$ be twice differentiable function satisfying $f''(x) = g''(x)$,
 $2f'(1) = g'(1) = 4$ and $3f(2) = g(2) = 9$. The value of $f(4) - g(4)$ is equal to
 $a) - 6$ $b) - 16$ $c) - 10$ $d) - 8$
Ans. c
Sol. $f'(x) = g(x) - 2$
 $f(x) = g(x) - 2x - 2$
 $f(0) - g(u) = -10$
13. Let a, b, c be three real numbers such that $a < b < c$. Let $f(x)$ be continuous $\forall x \in [a, c]$ and
differentiable $\forall x \in (a, c)$. If $f''(x) > 0 \forall x \in (a, c)$ then
 $a) (c - b) f(a) + (b - a) f(c) > (c - a) f(b)$ $b) (c - b) f(a) + (a - c) f(b) < (a - b) f(c)$
 $(f(a) - f(b) < f(c)$ $d)$ none of these
Ans. a
Sol. By LMVT
 $\frac{f(b) - f(a)}{b - a} > \frac{f(c) - f(b)}{c - b}$
14. The solution of $y^5x + y - x\frac{dy}{dx} = 0$ is
 $a) \frac{x^4}{4} + \frac{1}{5} \left(\frac{x}{y}\right)^5 = c$ (b) $\frac{x^5}{5} + \frac{1}{4} \left(\frac{x}{y}\right)^4 = c$ (c) $\left(\frac{x}{y}\right)^5 + \frac{x^4}{4} = c$ (d) $(xy)^4 + \frac{x^5}{5} = c$
Ans. b
Sol. $y^5xdx + ydx - xdy = 0$, multiply by x^3 / y^5
 $\Rightarrow x^4 dx + \frac{x^3}{y^3} (d(x/y)) = 0$
 $x \frac{x^5}{5} + \frac{1}{4} \left(\frac{x}{y}\right)^4 = c$
15. A point P lying inside the curve $y = \sqrt{2ax - x^2}$ is moving such that its shortest distance from
the curve at any position is greater than its distance from x-axis. The point P enclose a region
whose area is equal to

a)
$$\frac{\pi a^2}{2}$$
 b) $\frac{a^2}{3}$ c) $\frac{2a^2}{3}$ d) $\left(\frac{3\pi - 4}{6}\right)a^2$

Ans. c

Sol.

Sol.

a) em b)
$$\frac{e}{m}$$
 c) $\frac{1}{em}$

b)
$$\frac{e}{m}$$
 c) $\frac{1}{em}$ d) none of these

Ans. c

Sol.
$$L = \lim_{n \to \infty} \frac{1}{m} \left(\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \dots \frac{n}{n} \right)^{1/n}$$
$$In \ L = \lim_{n \to \infty} \left[\ln \left(\frac{1}{m} \right) + \frac{1}{n} \left(\ln \frac{1}{n} + \ln \frac{2}{n} + \dots + \ln \frac{n}{n} \right) \right]$$
$$= \ln m + \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \ln \left(\frac{r}{n} \right) = -\ln m + \int_{0}^{1} \ln x \, dx = -\ln m - 1 = \ln \left(\frac{1}{em} \right)$$
$$\therefore L = \frac{1}{em}$$

Let A = {1, 2, 3, 4, 5} and f : A \rightarrow A be an into function such that $f(i) \neq i \forall i \in A$, then 24. number of such functions f are c) 984 d) none of these a) 1024 b) 904

Ans. d

- Sol. Total number of functions for which $f(i) \neq i = 4^5$ and number of onto functions in which $f(i) \neq i = 44$ \Rightarrow required numbers of functions = 980
- bounded between curves $y = e \|x|\ln|x\|$, 25. The area region of the the $x^2 + y^2 - 2(|x| + |y|) + 1 \ge 0$ and x-axis where $|x| \le 1$, if α is the x-coordinate of the point of intersection of curves is 1st quadrant, is

a)
$$4 \left[\int_{0}^{\alpha} ex \ln x dx + \int_{\alpha}^{1} \left(1 - \sqrt{1 - (x - 1)^{2}} \right) dx \right]$$

b) $\left[\int_{0}^{\alpha} ex \ln x dx - \int_{1}^{\alpha} \left(1 - \sqrt{1 - (x - 1)^{2}} \right) dx \right]$
c) $2 \left[-\int_{0}^{\alpha} ex \ln x dx + \int_{\alpha}^{1} \left(1 - \sqrt{1 - (x - 1)^{2}} \right) dx \right]$
d) $2 \left[\int_{0}^{\alpha} ex \ln x dx + \int_{\alpha}^{1} \left(1 - \sqrt{1 - (x - 1)^{2}} \right) dx \right]$

Ans.

Sol.

Required area is

$$2\left[\int_{0}^{\alpha} ex \ln x dx + \int_{1}^{\alpha} \left(1 - \sqrt{1 - (x - 1)^2}\right) dx\right]$$

26. The value of
$$\lim_{n \to \infty} n \left[\frac{1}{3n^2 + 8n + 4} + \frac{1}{3n^2 + 16n + 16} + \dots n \text{ terms} \right]$$
 is
a) $\frac{1}{4} \ln \left(\frac{9}{5} \right)$ b) $\frac{1}{5} \ln \left(\frac{9}{5} \right)$ c) $\frac{1}{4} \ln \left(\frac{8}{5} \right)$ d) $\frac{1}{4} \ln \left(\frac{9}{7} \right)$

Sol. Use definite integral of first principal as a limit of sum

$$\lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{4\left(1 + \frac{r}{n}\right)^2 - 1} \cdot \frac{1}{n}$$

27. The area of the region containing the points satisfying $|y| + \frac{1}{2} \le e^{-|x|}$, $\max(|x|, |y|) \le 2$ is

31. If x, {x} and 2[x] represent the segments of a focal chord and length of latus rectum of an ellipse respectively, then length of major axis of ellipse is always greater than (where $x \ddot{I} Z$) a) 7 b) 5 c) 8 d) 2

Ans. d Clearly, x, [x] and {x} are in H.P = $\begin{bmatrix} x \end{bmatrix} = \frac{2x \{x\}}{x + \{x\}} \Longrightarrow \begin{bmatrix} x \end{bmatrix} = 1$ Sol. $\Rightarrow \frac{b^2}{a} = 1 \Rightarrow a(1 - e^2) = 1 \Rightarrow 2a > 2$ [since 0 < e < 1] The value of $\overset{6}{\mathbf{O}}\left(\sqrt{x+\sqrt{12x-36}}+\sqrt{x-\sqrt{12x-36}}\right)dx$ is equal to 32. a) $6\sqrt{3}$ b) $4\sqrt{3}$ c) $12\sqrt{3}$ d) none of these Ans. $I = \int_{-\infty}^{6} \left(\left(\sqrt{x-3} + \sqrt{3} \right) + \left(\sqrt{3} - \sqrt{x-3} \right) \right) dx = 6\sqrt{3}$ Sol. If integral $\dot{O} \frac{dx}{(\sec x + \cos ecx + \tan x + \cot x)^2} = \frac{x}{a} + \frac{\sqrt{2}\cos^2 x^2}{b}$ $\cos 2x$ 33. a + b + c is equal to b) – 4 c) 2 d) none of these a) – 2 Ans. b Sol. Clearly, $I = \int \frac{\sin^2 x \cos^2 x}{\left(\sin x + \cos x + 1\right)^2} dx = \frac{1}{4} \int \frac{\left(\left(\sin x + \cos x\right)^2 - 1\right)^2}{\left(\sin x + \cos x + 1\right)} dx = \frac{1}{4} \int \left(\sin x + \cos x - 1\right)^2 dx$ On simplifying a + b + c = -4If $I_n = \overset{n}{O}(\{x+1\}\{x^2+2\}+\{x^2+3\}\{x^2+4\})dx$, (where {.} denotes the fractional part) 34. then I_1 is equal to c) $\frac{1}{3}$ d) none of these Ans. $I_{1} = \int \left(\{x\} + \{x^{3}\} \right) \left\{ x^{2} \right\} dx = -2 \int_{0}^{1} \left\{ x^{2} \right\} dx = -2 \times \frac{x^{3}}{3} \Big|_{0}^{1} = -\frac{2}{3}$ Sol. Area bounded by $y = f^{-1}(x)$ and tangent and normal drawn to it at the points with abscissae π 35. and 2π , where f(x) = sinx - x is a) $\frac{p^2}{2}$ - 1 b) $\frac{p^2}{2}$ - 2 c) $\frac{p^2}{2}$ - 4 d) $\frac{p^2}{2}$ Ans. Required area A = $\int_{-\infty}^{2\pi} \left((\sin x - x) + 2\pi \right) dx = \frac{\pi^2}{2} - 2 \ sq.units$ Sol. Let a curve y = f(x), $f(x)^3 = 0$ " $x\hat{1} = R$ has property that for every point P on the curve 36. length of subnormal is equal to abscissa of P. If f(1) = 3, then f(4) is equal to a) - $2\sqrt{6}$ b) $2\sqrt{6}$ c) $3\sqrt{5}$ d) none of these

Ans. b Sol. Given $y \frac{dy}{dx} = x$ y dy = x dx $y^2 = x^2 + c$ $f(1) = 3 \Longrightarrow 9 - 1 + c \Longrightarrow c = 8$ $\Rightarrow y^2 = x^2 + 8$ $f(x) = \sqrt{x^2 + 8}$ $f(4) = \sqrt{16 + 8} = 2\sqrt{6}$

37. Range of
$$f(x) = \cos^{-1}\left(\frac{x^2 + x + 1}{x^4 + 1}\right)$$
 is
a) $\left[0, \frac{\pi}{2}\right]$ b) $\left[0, \frac{\pi}{2}\right]$

c)
$$\left(0, \frac{\pi}{2}\right]$$
 d) $[0, \pi]$

Ans. b

Sol. Let
$$g(x) = \frac{x^2 + x + 1}{x^4 + 1}$$

 $\Rightarrow 0 < g(x) \le 1$
So range of f(x) is $\left[0, \frac{\pi}{2}\right]$

38. If f(x) = 0 is a cubic equation with positive and distinct roots α , β , γ such that β is H.M of the roots of f'(x) = 0, then α , β and γ are in

a) A.P b) G.P c) H.P d) none of these Ans. b

Sol.
$$f(x) = (x - \alpha)(x - \beta)(x - \gamma)$$

$$\Rightarrow f'(x) = 3x^2 - 2x(\alpha + \beta + \gamma) + \alpha\beta + \beta\gamma + \gamma\alpha$$

$$\Rightarrow \beta = \frac{2\alpha_1\beta_1}{\alpha_1 + \beta_1} \text{ (where } \alpha_1, \beta_1 \text{ are the roots of } f'(x) = 0)$$

$$\Rightarrow \beta^2 = \gamma\alpha$$

39. Let a curve y = f(x), $f(x) \ge 0 \forall x \in R$ has property that for every point P on the curve, the length of subnormal is equal to abscissa of P. If f(1) = 3, then f(4) is equal to

a)
$$-2\sqrt{6}$$
 b) $2\sqrt{6}$ c) $3\sqrt{5}$ d) none of these is, b

Sol.
$$y \frac{dy}{dx} = x \Rightarrow y^2 = x^2 + c$$

 $f(x) = \sqrt{x^2 + 8} \Rightarrow f(4) = 2\sqrt{6}$
40. If $\int_{-2}^{\pi/2} \frac{dx}{x^2 + 8} = \frac{\pi}{2\pi}$, then the value of $\int_{-2}^{\pi/2} \frac{dx}{x^2 + 8} = \frac{\pi}{2\pi}$

D. If
$$\int_{0}^{\pi} \frac{dx}{a^{2}\cos^{2}x + b^{2}\sin^{2}x} = \frac{\pi}{2ab}$$
, then the value of
$$\int_{0}^{\pi} \frac{dx}{\left(4\cos^{2}x + 9\sin^{2}x\right)^{2}}$$
 is equal to
a) $\frac{11\pi}{864}$ b) $\frac{13\pi}{864}$ c) $\frac{17\pi}{864}$ d) none of these

Ans. b
Sol.
$$I = \int_{0}^{\pi/2} \frac{dx}{a^{2} \cos^{2} x + b^{2} \sin^{2} x} = \frac{\pi}{2ab}$$

 $\frac{dl}{da} = \frac{-\pi}{2a^{2}b}$
 $\Rightarrow \int_{0}^{\pi/2} \frac{\cos^{2} x dx}{(a^{2} \cos^{2} x + b^{2} \sin^{2} x)} = \frac{\pi}{4a^{2}b}$
differentiating with respect to b
 $\int_{0}^{\pi/2} \frac{\sin^{2} x dx}{(a^{2} \cos^{2} x + b^{2} \sin^{2} x)} = \frac{\pi}{2ab} \left[\frac{1}{a^{2}} + \frac{1}{b^{2}}\right] = \frac{\pi}{24} \left[\frac{1}{4} + \frac{1}{9}\right] = \frac{13\pi}{864}$
41. If $\int \frac{dx}{(a^{2} \cos^{2} x + b^{2} \sin^{2} x)} = A \tan^{-1}(\sin x + \cos x) + B \ln f(x) + C, \text{ then A is equal to}$
a) $\frac{2}{3}$ b) $\frac{2}{5}$ c) $-\frac{2}{3}$ d) none of these
Ans. a
Sol. $I = \int \frac{dx}{(\cos x - \sin x)\left(1 + \frac{\sin 2x}{2}\right)} = \int \frac{\cos x - \sin x}{(\cos x - \sin x)^{2}\left(1 + \frac{\sin 2x}{2}\right)} dx$
Put $\cos x + \sin x = t$
 $I = \frac{2}{3} \tan^{-1}(\sin x + \cos x) - \frac{2}{3\sqrt{2}} \ln f(x) + c$
42. Solution of the differential equation $y(2x^{4} + y)\frac{dy}{dx} = (1 - 4xy^{2})x^{2}$ is given by
a) $3(x^{2}y)^{2} + y^{2} - x^{2} = c$ b) $xy^{2} + \frac{y^{3}}{3} - \frac{x^{3}}{3} + c = 0$
c) $\frac{2}{5}yx^{3} + \frac{y^{3}}{3} = \frac{x^{3}}{3} - \frac{4xy^{2}}{3} + c$ d) none of these
Ans. a
Sol. Given equation can be written as
 $2x^{2}y(x^{2}dy + 2ydy) + y^{2}dy - x^{2}dx = 0$
integrating, we get
 $3(x^{2}y)^{2} + y^{2} - x^{2} = c$
43. If $I = \int_{0}^{1} \frac{\cos x}{(x + 2)^{2}} dx$, then $\int_{0}^{1} \frac{\sin x}{x + 1} dx$ is equal to
a) 21 b) $\frac{1}{\pi + 2} - \frac{1}{2} - 1$ c) 0 d) $\frac{1}{\pi + 2} + \frac{1}{2} - 1$
Ans. d
Sol. $I = \int_{0}^{1} \cos x d\left(-\frac{1}{x + 2}\right) = \left[-\frac{\cos x}{x + 2}\right]_{0}^{\pi} - \int_{0}^{\pi} \frac{\sin x}{x + 2} dx$

$$=\frac{1}{\pi+2}+\frac{1}{2}-\int_{0}^{\pi/2}\frac{\sin 2x}{x+1}dx$$

44. The number of solutions of $\sin \pi x = |\log |x||$ is

Ans. c

45. If $f(x) = |x^2 + (k-1)|x| - k|$ is non differentiable at five real points, then k will lie in a) $(-\infty, 0)$ b) $(0, \infty)$ c) $(-\infty, 0) - \{-1\}$ d) $(0, \infty) - \{1\}$

Ans. c

Sol. $f(x) = |x^2 + (k-1)|x| - k| = |(|x|-1)(|x|+k)|$ Both roots of (x - 1) (x + k) = 0 should be positive and distinct $\Rightarrow k \in (-\infty, 0) - \{-1\}$

46. Let
$$g(x) = \int_{a}^{x} f(t) dt$$
 and $f(x)$ satisfies the following condition
 $f(x+y) = f(x) + f(y) + 2xy - 1, \forall x, y \in R$ and $f'(0) = \sqrt{3+a-a^2}$, then the exhaustive set
of values of x where $g(x)$ increases is
a) $\left(-\infty, -\frac{3}{2}\right)$ b) $\left(-\frac{3}{2}, 0\right)$ c) $(0, \infty)$ d) $(-\infty, \infty)$
Ans. d
Sol. $f(x) = x^2 + \left(\sqrt{3+a-a^2}\right)x + 1$
 $g'(x) = f(x) > 0, \forall x \in R$
47. Number of positive continuous function $f(x)$ defined in [0,1] for which
 $\int_{0}^{1} f(x) dx = 1, \int_{0}^{1} xf(x) dx = 2, \int_{0}^{1} x^2 f(x) dx = 4$, is
a) 1 b) 4 c) infinite d) none of these

Ans.

d

Sol. Multiplying these three integral by 4, - 4, 1 and adding we get $\int_{0}^{1} f(x)(x-2)^{2} dx = 0$.

Hence there does not exist any function satisfying these conditions.

Tangents are drawn at the point of intersection P of ellipse $x^2 + 2y^2 = 50$ and hyperbola 48. $\frac{x^2}{1-x^2} = 1$, in the first quadrant. The area of the circle passing through the point P which cuts the intercept of 2 unit length each from these tangents, is b) $\sqrt{2\pi}$ c) 4π a) 2π d) 6π Ans. а Sol. Given conic are confocal so they cut orthogonally. Let $f(x) = x^3 + \frac{1}{x^3}$, $x^1 = 0$. If the intervals in which f(x) increases are (-¥, a] and 49. [b,]) then min(b – a) is equal to b) 2 a) 0 c) 3 Ans. h Here $f'(x) = 3x^2 - \frac{3}{x^4} \ge 0 \Longrightarrow x^6 - 1 \ge 0 \Longrightarrow x \in (-\infty, 1] \cup [1, \infty)$ Sol. \therefore min (b - a) = min(b) - max(a) = 1 - (-1) = 2 Let y = f(x), f : R \rightarrow R be an odd differentiable function such that $f \notin (x) > 0$ and 50. $g(\alpha, \beta) = \sin^8 \alpha + \cos^8 \beta + 2 - 4 \sin^2 \alpha \cos^2 \beta$. If $f \not = (g(a, b)) = 0$, then $\sin^2 a + \sin^2 b$ is equal to b) 1 a) 0 c) 2 Ans. b f''(x) is odd function $\Rightarrow g(\alpha, \beta) = 0$ Sol. $\Rightarrow \left(\sin^4 \alpha - 1\right)^2 + \left(\cos^4 \beta - 1\right)^2 + 2\left(\sin^2 \alpha - \cos^2 \beta\right)^2 = 0$ $\Rightarrow \sin^2 \alpha + \sin^2 \beta = 1$ If $f(x) = \dot{O}(f(t))^2 dt$, $f: R \otimes R^+$ be differentiable function and f(g(x)) is differentiable 51. function at x = a, then b) g(x) may be non-differentiable at x=a a) g(x) must be differentiable at x = ac) g(x) may be discontinuous at x = ad) none of these Ans. а Here, $f'(x) = (f(x))^2 > 0; \frac{d}{dx} f(g(x))|_{x=a} = f'(g(x)) \lim_{x \to a} \frac{g(x) - g(a)}{x - a}$ Sol. As $f'(g(x)) \neq 0$ g(x) must be differentiable at x = a. A polynomial of 6th degree f(x) satisfies f(x) = f(2 - x) " $x\hat{I} R$, if f(x) = 0 has 4 distinct and 52. two equal roots, then sum of roots of f(x) = 0 is a) 4 b) 5 c) 6 d) 7 Ans. С Let α be the root of f(x) = 0 \Rightarrow $f(\alpha) = f(2-\alpha) = 0$ Sol. f(x) has 4 distinct and two equal roots. \therefore sum of roots = 6

The number of	f integral solution	ns of equation 4	$\dot{\mathbf{O}} \frac{\ln t dt}{x^2 + t^2} - p \ln 2 =$	= 0 ; x > 0 is
a) 0 c	b) 1	c) 2	d) 3	
We have on pu	utting $t = \frac{x^2}{2}$ an	d solving		
$\int_{0}^{\infty} \frac{\ln x}{x^2 + t^2} dt =$	$\frac{2\pi\ln x}{x} \Longrightarrow \frac{\ln x}{x}$	$=\frac{\ln 2}{2}$		
\Rightarrow x = 2 and 4	; two solutions.			
If $f(x) = \frac{1}{4}x$	e^{x-1} , 0£ + 1- {x}, 1<	$\begin{array}{c} x \pm 1 \\ x < 3 \end{array}$ and g(x) =	= x ² – ax + b, such th	at f(x). g(x) is continuous
in [0, 3) then tl	he values of a an	d b is		$\langle \cdot \rangle$
a) 2, 3	b) 3, 2	$c0\frac{3}{2},1$	d) none of these	
b Clearly $f(x)$ is d and $g(2) = 0 \implies$	liscontinuous at > a = 3 and b = 2	x = 1 and 2, for 1	(x) g(x) to be contin	uous at x = 1 and 2 ; g(1)
$\overset{16n^2/p}{\underset{0}{}}\cos\frac{p}{2}\overset{\acute{e}n}{}$	pù —údx is 1 Él		Els.	
a) 0 a	b) 1	c) 2	∕d) 3	
Let $\frac{x\pi}{n} = t \Longrightarrow$	$\frac{\pi}{\int_{0}^{\pi}}\cos\frac{\pi}{2}\left[\frac{\pi x}{n}\right]$	$dx = \frac{n}{\pi} \int_{0}^{16n} \cos \frac{\pi}{2}$	$\frac{4n^2}{\pi} \int_{0}^{4} \cos \frac{\pi}{2} dt = \frac{4n^2}{\pi} \int_{0}^{4} \cos \frac{\pi}{2} dt$	$\frac{d}{dt} \left[t \right] dt = 0$
If $\partial_{x^{2}}^{-1}(ax^{2}-5)$	dx = 0 and $5+$	$\overset{2}{\mathbf{O}}(bx+c)dx =$	= 0 then	
a) $ax^{2} - bx + c =$ b) $ax^{2} - bx + c =$ c) $ax^{2} + bx + c =$ d) none of these	= 0 has atleast or = 0 has atleast or = 0 has atleast or se	ne root in (1, 2) ne root in (-2, -1) ne root in (-2, -1))	
b				
We have $\int_{-2}^{-1} (c)$	$ax^2-5\bigg)dx+\int_{1}^{2}(bx)dx+\int$	(bx+c)dx+5 =	$\int_{2}^{1} (ax^2 - 5 - bx + c + c) dx = 0$	$5\big)dx=0$
$\Rightarrow ax^2 - bx +$	c = 0 has atleas	t one root in (-2,	-1)	
	The number of a) 0 c We have on put $\int_{0}^{\infty} \frac{\ln x}{x^{2} + t^{2}} dt =$ $\Rightarrow x = 2 \text{ and } 4$ If $f(x) = \frac{1}{4} x^{-1}$ in [0, 3) then the a) 2, 3 b Clearly $f(x)$ is c and $g(2) = 0 =$ $\int_{0}^{16n^{2}/p} \cos \frac{p}{2} \frac{ex}{e} n$ a) 0 a Let $\frac{x\pi}{n} = t \Rightarrow$ If $\overset{\circ}{O} (ax^{2} - 5)$ a) $ax^{2} - bx + c$ b) $ax^{2} - bx + c$ c) $ax^{2} + bx + c$ d) none of the b We have $\int_{-2}^{-1} (ax^{2} - bx) dx^{2} + bx + c$	The number of integral solution a) 0 b) 1 c We have on putting $t = \frac{x^2}{2}$ and $\int_{0}^{\infty} \frac{\ln x}{x^2 + t^2} dt = \frac{2\pi \ln x}{x} \Rightarrow \frac{\ln x}{x}$ $\Rightarrow x = 2 \text{ and } 4; \text{ two solutions.}$ If $f(x) = \frac{1}{4} e^{x-1}$, 0£ $f(x) = \frac{1}{4} e^{x-1}$, 0. $f(x) = \frac{1}{4} e^{x-1}$	The number of integral solutions of equation 4 a) 0 b) 1 c) 2 c We have on putting $t = \frac{x^2}{2}$ and solving $\int_{0}^{\infty} \frac{\ln x}{x^2 + t^2} dt = \frac{2\pi \ln x}{x} \Rightarrow \frac{\ln x}{x} = \frac{\ln 2}{2}$ $\Rightarrow x = 2 \text{ and } 4; \text{ two solutions.}$ If $f(x) = \frac{1}{4} e^{x-1}$, $0 \notin x \notin 1$ in [0, 3) then the values of a and b is a) 2, 3 b) 3, 2 co $\frac{3}{2}$, 1 b Clearly f(x) is discontinuous at x = 1 and 2, for f and g(2) = 0 \Rightarrow a = 3 and b = 2 $\int_{0}^{16n^2/p} \cos \frac{p}{2} \frac{\exp \psi}{6n} \frac{\psi}{6n} \frac{dx}{6n}$ a) 0 b) 1 c) 2 a Let $\frac{x\pi}{n} = t \Rightarrow \int_{0}^{\frac{16n^2}{\pi}} \cos \frac{\pi}{2} \left[\frac{\pi x}{n}\right] dx = \frac{n}{\pi} \int_{0}^{16n} \cos \frac{\pi}{2}$ If $\sum_{1}^{0} (ax^2 - 5) dx = 0$ and $5 + \sum_{1}^{0} (bx + c) dx = a) ax^2 - bx + c = 0$ has atleast one root in (1, 2) b) ax^2 - bx + c = 0 has atleast one root in (-2, -1) d) none of these b We have $\int_{-2}^{-1} (ax^2 - 5) dx + \int_{1}^{2} (bx + c) dx + 5 = \int_{-2}^{2} ax^2 - bx + c = 0$ has atleast one root in (-2, -1) d) none of these b	The number of integral solutions of equation $4 \oint_{0}^{4} \frac{\ln tdt}{x^{2} + t^{2}}$. $p \ln 2 = a) 0$ a) 0 b) 1 c) 2 d) 3 We have on putting $t = \frac{x^{2}}{2}$ and solving $\int_{0}^{\infty} \frac{\ln x}{x^{2} + t^{2}} dt = \frac{2\pi \ln x}{x} \Rightarrow \frac{\ln x}{x} = \frac{\ln 2}{2}$ $\Rightarrow x = 2$ and 4; two solutions. If $f(x) = \frac{1}{4} e^{x-1}$, $0 \text{ f. } x \text{ f. } 1$ $f(x) = \frac{1}{4} e^{x-1}$, $0 \text{ f. } x \text{ f. } 1$ $f(x) = \frac{1}{4} e^{x-1}$, $0 \text{ f. } x \text{ f. } 1$ $f(x) = \frac{1}{4} e^{x-1}$, $0 \text{ f. } x \text{ f. } 1$ $f(x) = \frac{1}{4} e^{x-1}$, $0 \text{ f. } x \text{ f. } 1$ $f(x) = \frac{1}{4} e^{x-1}$, $1 < x < 3$ $and g(x) = x^{2} - ax + b$, such the in $[0, 3)$ then the values of a and b is a) 2, 3 b) 3, 2 $co \frac{3}{2}, 1$ d) none of these b Clearly $f(x)$ is discontinuous at $x = 1$ and 2, for $f(x) g(x)$ to be continuing $g(2) = 0 \Rightarrow a = 3$ and $b = 2$ $\int_{0}^{16\pi^{2}/p} \cos \frac{p}{2} \frac{\xi xp}{6} \frac{h}{4} \frac{h}{4} x$ a) 0 b) 1 c) 2 d) 3 a Let $\frac{x\pi}{n} = t \Rightarrow \int_{0}^{\frac{16\pi^{2}}{n}} \cos \frac{\pi}{2} \left[\frac{\pi x}{n} \right] dx = \frac{n}{\pi} \int_{0}^{3\pi^{0}} \cos \frac{\pi}{2} [t] dt = \frac{4n^{2}}{\pi} \int_{0}^{4} \cos \frac{\pi}{2} t$ If $\int_{0}^{1} (ax^{2} - 5) dx = 0$ and $5 + \int_{0}^{2} (bx + c) dx = 0$ then $a) ax^{2} - bx + c = 0$ has atleast one root in $(1, 2)$ $b) ax^{2} - bx + c = 0$ has atleast one root in $(-2, -1)$ $c) ax^{2} + bx + c = 0$ has atleast one root in $(-2, -1)$ d) none of these b We have $\int_{-2}^{1} (ax^{2} - 5) dx + \int_{1}^{2} (bx + c) dx + 5 = \int_{-2}^{1} (ax^{2} - 5 - bx + c + 4) = ax^{2} - bx + c = 0$ has atleast one root in $(-2, -1)$

a) fg(x) is continuous in
$$[0, \pi)$$
 b) fg(x) is not continuous in $[0, \pi)$
c) fg(x) is differentiable in $[0, \pi)$ d) fg(x) is not differentiable in $[0, \pi)$
Ans. a,d
Sol. $fg(x) = \begin{cases} 3+ \tan x, & 0 \le x < \frac{\pi}{4} \\ 3+ \cot x, & \frac{\pi}{4} \le x < \pi \end{cases}$
fg(x) is continuous in $[0, \pi)$
but fg(x) is not differentiable at $x = \frac{\pi}{4}$
5. If $f(x) = \frac{f_x}{f_x} \frac{dt}{\ln t}, x > 0$ and $n > m$, then
a) $f'(x) = \frac{x^{m-1}(x-1)}{\ln x}$ b) f(x) is decreasing for $x > 1$
c) f(x) is increasing in $(0, 1)$ d) f(x) is increasing for $x > 1$
Ans. c,d
Sol. $f'(x) = \frac{1 \cdot x^{n-1}}{(\ln x^n)} - \frac{1 \cdot mx^{n-1}}{(\ln x^n)}$, clearly c and d are the answers.
6. The triangle formed by the normal to the curve $f(x) = x^2 - ax + 2a$ at the point (2, 4) and
the co-ordinate axes lies in second quadrantifits area is 2 sq. units then a can be
a) 2 b) $\frac{17}{4}$ c) 5 d) $\frac{19}{4}$
Ans. b, c
Sol. $f'(x) = 2x - a$
At $\{2, 4\}$
 $f'(x) = 4 - a$
Equation of normal at $\{2, 4\}$ is
 $(y-4) = \frac{1}{(4-a)}(x-2)$
Let point or intersection with x and y - axis be A and B respectively then
A = $(4a + 18, 0), B = \left(0, \frac{4a - 18}{a-4}\right)$
Hence $a > \frac{9}{2}$ as
 \therefore area of triangle $= \frac{1}{2}(4a - 18)\frac{(4a - 18)}{(a-4)} = 2$
 $\Rightarrow (4a - 17)(a - 5) = 0$
 $\Rightarrow a = 5 or \frac{17}{4}$

Let $I_n = \int_{-\infty}^{2} \cos^n x \, dx, n \in \mathbb{N}$, then 7. a) $I_{n-2} > I_n$ b) $n(I_{n-2} - I_n) = I_{n-2}$ c) $I_n - I_{n-1} = \frac{n}{n+1}$ d) none of these a.b Ans. $I_n = \frac{n-1}{n} I_{n-2}$ and I_n , $I_{n-1} > 0$ as $\cos^n x \ge 0$ in $\left[0, \frac{\pi}{2}\right]$ Sol. $\therefore I_{n-1} > I_n$ Also $I_n = \left(\frac{n-1}{n}\right) I_{n-2}$ If f(x) be such that $f(x) = \max\{|2-x|, 2-x^3\}$ then 8. a) f(x) is continuous $\forall x \in R$ b) f(x) is differentiable $\forall x \in R$ c) f(x) is non-differentiable at one point only d) f(x) is non-differentiable at 4 points only Ans. a,d Sol. Clearly from the graph, f(x) is continuous $\forall x \in R$ but not differentiable at -1, 0, 1, 2, (4 points) (0, 2) -1 = 2 Let $I_n = \int_0^{\pi} \frac{\sin^2 n\theta}{\sin^2 \theta} d\theta$, $n \in N$, then 9. a) $I_{4}=4\pi$ Ans. a, b b) $I_{5} = 5\pi$ c) $I_4 = 5\pi$ d) $I_5 = 4\pi$ $= \int_{0}^{\pi} \frac{\sin(2n+1)\theta}{\sin\theta} \, d\theta = \pi \,\,\forall n \in \mathbb{N}$ Sol. $I_{n+1} - I_n$ I_1, I_2, I_3 form an AP with common difference π $I_n = \pi + (n-1)\pi \Longrightarrow I_n = n\pi$ Let $f(x) = ab \sin x + b\sqrt{1-a^2} \cos x + c$, where |a| < 1, b > 0, then 10. a) maximum value of f(x) is b if c = 0b) difference of maximum and minimum value of f(x) is 2b d) f(x) = c if $x = cos^{-1} a$ c) f(x) = c if $x = -cos^{-1}a$ Ans. a,b,c Sol. $f(x) = \sqrt{a^2b^2 + b^2 - b^2a^2} \sin(x + \alpha) + c = b\sin(x + \alpha) + c$ where $\tan \alpha = \frac{\sqrt{1 - a^2}}{c}$ $(f(x))_{\max} - (f(x))_{\min} = 2b$

Also, at $x = -\cos^{-1} a$, f(x) = c $\lim_{x \to 0} \left(\left\lfloor n \frac{\sin x}{x} \right\rfloor + \left\lceil m \frac{\tan x}{x} \right\rceil \right), \text{ (where } \left[\cdot \right] \text{ represent greatest integer function) is}$ 11. b) m + n – 2 if m $\in I$, n $\in N$ a) m + n – 1 if n, m \in N c) m + n if m \in N, n \in I⁻ d) m + n – 1 if m, n $\in I^{-}$ Ans. a,b,c,d Sol. If $m, n \in N$, and L = n - 1 + mIf $m \in I^-$, $n \in N$, then L = m - 1 + n = m + n - 2 If $m \in N$, $n \in I^-$, then L = n + m $m, n \in I^-$ then L = n + m - 1 Let $f: R \to R$, such that $f''(x) - 2f'(x) = 2e^x$ and f'(x) > 0, $\forall x \in R$, then which of the 12. following can be correct. a) $\int_{2}^{3} f(x) dx = 10$ b) $\int_{1}^{4} f(x) dx = -5$ c) f(4) = 5 d) f(-5) = 5Ans. a,c Sol. $\frac{d}{dx}\left(e^{-x}\left(f'(x)-f(x)\right)\right)=2$ $\Rightarrow e^{-x} \left(f'(x) - f(x) \right) = 2x + c_1$ $\Rightarrow f(x) = (x^2 + c_1 x + c_2)e^x \text{ and } f'(x) = (x)$ Given that $f'(x) > 0 \Rightarrow c_1^2 - 4c_2 + 4 < 0$ $+2)x+c_{1}$ $\Rightarrow c_1^2 - 4c_2 < 0 \Rightarrow f(x) > 0, \forall x$

Differential Calculus

Assertion Reasoning Type

1. Statement - I: If $2f(x) + f(-x) = \frac{1}{x} \sin\left(x - \frac{1}{x}\right)$ then value of $I = \int_{1/e}^{e} f(x) dx = 0$ Statement - II: If $f(x) = \int_{1/e}^{e} f(x) dx = 0$

Statement – II : If f(2a-x) = -f(x), then $\int_{0}^{2a} f(x) dx = 0$

a) Statement 1 is true, Statement – 2 is true; Statement 2 is a correct explanation for statement 1

b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1

c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true Ans. b

Sol.
$$2f(x) + f(-x) = 2f(-x) + f(x) \Longrightarrow f(x) = f(-x)$$
$$f(x) = \frac{1}{3x} \sin\left(x - \frac{1}{x}\right)$$
$$I = \int_{1/e}^{e} \frac{1}{3x} \sin\left(x - \frac{1}{x}\right) dx = -\int_{1/e}^{e} \frac{1}{3t} \sin\left(t - \frac{1}{t}\right) dx = -1$$
$$\Longrightarrow I = 0$$

2. Statement - 1: If y is a function of x such that $y(x-y)^2 = x$ then $\int \frac{dx}{x-3y} = \frac{1}{2} \{ \log(x-y)^2 - 1 \} + c$ Statement - 2: $\int \frac{dx}{x-3y} = \log(x-3y) + c$

a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for statement-1

b) Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for statement-1

c) Statement-1 is true, Statement-2 is false d) Statement-1 is false, Statement-2 is true Ans. c

Sol. For statement 1, we will prove that
$$\frac{d}{dx}(R.H.S) = \frac{1}{x-3y}$$

$$R.H.S = \frac{1}{2}\log\left[\frac{x}{y} - 1\right] = \frac{1}{2}\left[\log(x - y) - y\right] = \frac{1}{2}\left\{\frac{\log x - \log y}{2} - \log y\right\} = \frac{1}{4}\left\{\log x - 3\log y\right\}$$

$$\Rightarrow \frac{d}{dx}(R.H.S) = \frac{1}{4} \left[\frac{1}{x} - \frac{3}{y} \frac{dy}{dx} \right] = \frac{1}{4} \left[\frac{1}{x} - \frac{3}{y} \frac{dy}{dx} \right] = \frac{1}{4} \left[\frac{1}{x} - \frac{3}{y} \left(\frac{-y}{x} \right) \frac{x+y}{x-3y} \right] = \frac{1}{x-3y}$$

∴ 1 is true

For statement 2 : $\int \frac{dx}{x-3y} = \log(x-3y) + c$, we are assuming that y is constant.

Statement – I: The function $f(x) = (3x-1)|4x^2 - 12x + 5|\cos \pi x$ is differentiable at 3. $x = \frac{1}{2}, \frac{5}{2}$ Statement – II : $\cos(2n+1)\frac{\pi}{2} = 0 \quad \forall n \in \mathbb{1}$ a) Statement 1 is true, Statement - 2 is true; Statement 2 is a correct explanation for statement 1 b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1 c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true Ans. a Statement 1 is correct as though $|4x^2 - 12x + 5|$ is non differentiable at $x = \frac{1}{2}, \frac{5}{2}$ but Sol. $\cos \pi x = 0$ at those points. So $f'\left(\frac{1}{2}\right)$ and $f'\left(\frac{5}{2}\right)$ exists. Statement – I: For the function $f(x) = \begin{cases} 15-x, & x < 2\\ 2x-3, & x \ge 2 \end{cases}$ 4. x = 2 is neither a maximum, nor a minimum point. Statement – II : f'(x) does not exist at x = 2. a) Statement 1 is true, Statement - 2 is true; Statement 2 is a correct explanation for statement 1 b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1 c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true Ans. d x = 2 is a point of local minima. Sol. Statement – 1: A tangent parallel to x-axis can be drawn for f(x) = (x-1)(x-2)(x-3) in 5. the interval [1, 3] Statement – 2: A horizontal tangent cannot be drawn in [1, 3] a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for statement-1 b) Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for statement-1 c) Statement-1 is true, Statement-2 is false d) Statement-1 is false, Statement-2 is true Ans. С Apply Rolle's Theorem. Sol. Statement – I: Tangent drawn at (0, 1) to the curve $y = x^3 - 3x + 1$ meets the curve thrice at one 6. point only. Statement – II : Tangent drawn at (1, -1) to the curve $y = x^3 - 3x + 1$ meets the curve thrice at one point only a) Statement 1 is true, Statement – 2 is true; Statement 2 is a correct explanation for statement 1 b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1 c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true Ans. С

	$dx \qquad \qquad dx _{at(0,1)}$
	Equation of tangent y = - 3x + 1 meets y = $x^3 - 3x + 1 \implies -3x + 1 = x^3 - 3x + 1$ $\implies x = 0$
	\therefore tangent meets the curve at one point only \Rightarrow statement -1 is true.
	Statement – 2 again $\frac{dy}{dx}\Big _{at(1,-1)} = 0$
	∴ equation of tangent is $y + 1 = 0(x - 1)$ i.e $y = -1$ ⇒ $-1 = x^3 - 3x + 1 \Rightarrow (x - 1) (x^2 + x - 1) = 0 \Rightarrow (x - 1)^2 (x + 2) = 0$ ⇒ the tangent meets the curve at two points.
7.	Statement – I: The equation $3x^2 + 4ax + b = 0$ has atleast one root in (0, 1) if $3 + 4a = 0$ Statement – II : $f(x) = 3x^2 + 4x + b$ is continuous and differentiable in (0, 1) a) Statement 1 is true, Statement – 2 is true; Statement 2 is a correct explanation for statement 1 b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1
٨٣٩	c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true
Sol.	If $b < 0$, then $f(0) = b < 0$, $f(1) = b < 0$ $\therefore 0, 1$ lie between the roots, statement – 1 is false.
8.	Statement – I: If n > 1, then $\overset{\mathbb{Y}}{\underset{0}{\overset{\mathbb{O}}{\overset{\mathbb{O}}{1+x^n}}}} = \overset{1}{\underset{0}{\overset{\mathbb{O}}{\overset{\mathbb{O}}{(1-x^n)^{1/n}}}}}$
	Statement – II: $\underset{a}{\overset{b}{\mathbf{o}}} f(x)dx = \underset{a}{\overset{b}{\mathbf{o}}} f(a+b-x)dx$
	a) Statement 1 is true, Statement – 2 is true; Statement 2 is a correct explanation for statement 1
	b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1
Ans.	 c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true
Sol.	The statement – 1 can be proved by showing that both integrals are equal to a third integral. If we put $x^n = \tan^2\theta$ in the integral on LHS and $x^2 = \sin^2\theta$ in the integral on RHS, then both
•	integrals will be equal to $\frac{2}{n} \int_{0}^{\pi/2} \tan^{(2/n)-1} \phi d\phi$ and $\frac{2}{n} \int_{0}^{\pi/2} \tan^{(2/n)-1} \theta d\theta$ respectively. Since the
C	last two integrals are equal statement -1 is proved but correct statement -2 has no role to play here.
9.	Statement – I: If $n\hat{I} I^+$, then $\left. \begin{array}{c} \sum_{0}^{np} \left \frac{\sin x}{x} \right dx > \frac{2}{p} \frac{\acute{e}}{\acute{e}} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \frac{\dot{v}}{\dot{p}} \right $
	Statement – II : $\frac{\sin x}{x} > \frac{2}{p}$ in $\stackrel{\infty}{\underbrace{co}}, \frac{p \ddot{\underline{o}}}{2\dot{\underline{s}}}$
	a) Statement 1 is true, Statement – 2 is true; Statement 2 is a correct explanation for statement 1
	b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1

c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true Ans. b

Sol.

$$\int_{0}^{n\pi} \left| \frac{\sin x}{x} \right| dx = \int_{0}^{\pi} \left| \frac{\sin x}{x} \right| dx + \int_{0}^{2\pi} \left| \frac{\sin x}{x} \right| dx + \dots + \int_{(n-1)\pi}^{n\pi} \left| \frac{\sin x}{x} \right| dx$$
$$= \int_{0}^{\pi} \frac{\sin x}{x} dx + \int_{0}^{\pi} \left| \frac{\sin (t+\pi)}{t+\pi} \right| dt + \int_{0}^{\pi} \left| \frac{\sin (u+2\pi)}{u+2\pi} \right| du + \dots$$
$$= \sum_{r=1}^{n} \int_{0}^{\pi} \frac{\sin x}{x+(r-1)\pi} dx > \sum_{r=1}^{n} \int_{0}^{\pi} \frac{\sin x}{\pi+(r-1)\pi} dx$$
$$= \sum_{r=1}^{n} \int_{0}^{\pi} \frac{\sin x}{\pi r} dx = \sum_{r=1}^{n} \frac{2}{\pi r} = \frac{2}{\pi} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right)$$

10. Statement - I: Function f(x) = sin(x + 3sinx) is periodic Statement - II : f(g(x)) is periodic if (g(x) is periodic

a) Statement 1 is true, Statement - 2 is true; Statement 2 is a correct explanation for statement 1
b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1
c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true

Ans.

Ans.

b

- Sol. Clearly we have $f(x + 2\pi) = f(x) \implies 2\pi$ is period Statement 2 is obvious
- 11. Statement I: Sum of LHD and RHD of $f(x) = |x^2 5x + 6|$ at x = 2 is 0

Statement – II : Sum of LHD and RHD of f(x) = (x - a)(x - b) at x = a (a < b) is equal to zero

a) Statement 1 is true, Statement – 2 is true; Statement 2 is a correct explanation for statement 1

b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1

c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true a

Sol. Here
$$f(x) = \begin{cases} x^2 - 5x + 6, & x \le 2 \\ -x^2 + 5x - 6, & 2 < x \le 3 \\ x^2 - 5x + 6, & x \ge 3 \end{cases}$$

$$f'(x) = \begin{cases} 2x - 5, & x < 2 \\ -2x + 5, & 2 < x < 3 \\ 2x - 5, & x > 3 \end{cases}$$

$$f'(2^-) + f'(2^+) = -1 + 1 = 0$$

Similarly in statement 2, $f'(a^-) + f'(a^+) = 0 \Rightarrow$ statement 2 explanations statement 1

12. Statement – I: $\lim_{n \in \mathbb{F}} \frac{x^n}{n!} = 0$ " x > 0

Statement – II : Every sequence whose nth term contains n! in the denominator, converges to zero

a) Statement 1 is true, Statement -2 is true; Statement 2 is a correct explanation for statement 1

	b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1
Ans.	 c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true c
Sol.	The statement – 1 is true for any x > 0, we can choose sufficiently larger n such that $\frac{x^n}{n!}$ is
	small.
	Statement – 2 is false, since $\frac{(n!)^2}{n}$ contains nl in the denominator but diverges to ∞
	n
13.	Statement – I: Minimum number of points of discontinuity of the function $f(x) = (g(x)) [2x - 1]$ " $x\hat{I}$ (- 3,- 1), where [.] denotes the greatest integer function and $g(x) = ax^3 + x^2 + 1$ is zero.
	Statement – II : $f(x)$ can be continuous at a point of discontinuity, say $x = c_1$ of $[2x - 1]$ if $g(c_1) = c_1$
	0
	a) Statement 1 is true, Statement – 2 is true; Statement 2 is a correct explanation for statement 1
	b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1
	c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true
Ans.	d
Sol.	Clearly, $[2x - 1]$ is discontinuous at three points $x = \frac{-5}{2}, \frac{-5}{2}$ and -2
	f(x) may be continuous if g(x) = $ax^3 + x^2 + x + 1 = 0$ at $x = \frac{-5}{2}, \frac{-5}{2}or - 2$
	g(x) can be zero at only one point for a fixed value of a ∴ minimum number of points of discontinuity = 2
14.	Let $(\sin y)^{\sin(\frac{\pi x}{2})} + \frac{\sqrt{3}}{2} \sec^{-1}(2x) + 2^x \tan(x+2) = 0$
	Statement – 1: $\frac{dy}{dx}$ at x = 1 will not exist.
	Statement - 2: $(f(x))^{g(x)}$ is discontinuous if $f(x) < 0$
	a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for statement-
	1
	b) Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for
C	c) Statement-1 is true, Statement-2 is false d) Statement-1 is false, Statement-2 is true
Ans.	a
Sol.	Since y < 0 for x = -1, hence $(\sin y)^{\sin(\frac{\pi x}{2})}$ does not exist in neighbourhood of x = -1
15.	Statement – I: Let $f: R - \{1, 2, 3\} \rightarrow R$ be a function defined by $f(x) = \frac{1}{x-1} + \frac{2}{x-2} + \frac{3}{x-3}$.
	Then f is many-one function.
	Statement – II : If either $f'(x) > 0$ or $f'(x) < 0 \forall x \in \text{domain of } f$, then $y = f(x)$ is one-one function.
	a) Statement 1 is true, Statement -2 is true; Statement 2 is a correct explanation for statement 1

b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1 c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true

Ans. c

Sol. From the graph it is clear that f(x) is not $\forall x \in$ domain of f but the function is not 1 –

Differential Calculus

Comprehension Type

Paragraph – 1

Consider the curve given by parametric equation $x = t - t^3$, $y = 1 - t^4$, $t \in R$ The curve y = f(x) intersect y –axis at 1. a) one point only b) 2 point only c) 3 point only d) 4 point only Ans. b 2. The curve y = f(x) is symmetric about a) x –axis c) y = x d none of these b) y-axis Ans. b 3. The curve forms a loop of area a) 8/35 b) 16/35 c) 31/35 d) none of these Ans. h For x = 0, t = 0, 1, - 1, y = 1, 0 Sol. If $\alpha = t - t^3$ replace t with -t, $\beta = 1 - t^4$ $\Rightarrow \alpha_1 = -t + t^3 = -\alpha, \beta = 1 - t^4 = \beta$ \Rightarrow (α , β) and ($-\alpha$, β) both lie on curve Area = $\Rightarrow \left| 2\int_{0}^{1} x dy \right| = \left| 2\int_{0}^{1} (t - t^{3})(-4t^{3}) dt \right| = \frac{16}{35}$ Paragraph - 2 Let n be non-negative integer, $I_n = \int x^n \sqrt{a^2 - x^2} dx$, a > 0. Relation between I_{n-2}, I_{n-1}, I_n can be obtain by integrating by parts. Clearly $I_1 = \frac{-1}{3} (a^2 - x^2)^{3/2}$ If $I_n = \frac{-x^{n-1}(a^2 - x^2)^{3/2}}{4} + a^2 B I_{n-2}$, where A and B are constants, then A must be equal to 4. b) n – 1 a) n + 1 c) n + 2 d) n Ans. С In the above question, B = 5. c) $\frac{n+2}{n+1}$ b) $\frac{n}{n+2}$ d) $\frac{n-1}{n+2}$ Ans. The value of the integral $\int_{a}^{a} x^{4} \sqrt{a^{2} - x^{2}} dx$ is equal to b) $\frac{\pi a^4}{16}$ c) $\frac{\pi a^4}{64}$ d) $\frac{\pi a^2}{4}$ a) $\frac{\pi a^6}{32}$ Ans. $I_n = -\frac{1}{2} \int x^{n-1} (-2x) \sqrt{a^2 - x^2} dx$ Sol. $= -\frac{1}{2} \left[x^{n-1} \frac{2}{3} \left(a^2 - x^2 \right)^{3/2} - \int (n-1) x^{n-2} \frac{2}{3} \left(a^2 - x^2 \right)^{3/2} dx \right]$

$$= \frac{-x^{n+1}(a^2 - x^2)^{3/2}}{3} + \frac{n-1}{3}a^2I_{n-2} - \frac{n-1}{3}I_n$$

$$\therefore I_n = \frac{-x^{n+1}(a^2 - x^2)^{3/2}}{n+2} + \frac{n-1}{n+2}a^2I_{n-2}$$

$$I_4 = \frac{-x^3(a^2 - x^2)^{3/2}}{6} + \frac{1}{2}a^2I_2 = \frac{-x^3(a^2 - x^2)^{3/2}}{6} + \frac{a^2}{2}\left[\frac{-x(a^2 - x^2)^{3/2}}{4} + \frac{1}{4}a^2\int\sqrt{a^2 - x^2}dx\right]$$

$$= \frac{-x^3(a^2 - x^2)^{3/2}}{6} - \frac{a^2x(a^2 - x^2)^{3/2}}{8} + \frac{a^4}{8}\left[\frac{x\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a}\right]$$

$$\therefore \int_0^a x^4\sqrt{a^2 - x^2}dx = \frac{\pi a^6}{32}$$
Paragraph - 3
An equation of the form $2n\log_a f(x) = \log_a g(x)$, $a > 0, a \neq 1, n \in \mathbb{N}$ is equivalent to the system
$$f(x) > 0 \text{ and } (f(x))^{2^n} = g(x)$$
7. Solution set of the equation $\log(8 - 10x - 12x^2) = 3\log(2x+1)$ is
$$a)(1) \qquad b)(2,3) \qquad c)(5) \qquad d)\phi$$
Ans. d
$$d = 10x - 12x^2 > 0 \text{ and } 8 - 10x - 12x^2 = (2x-1)^3$$

$$\Rightarrow (2x-1)(4x^2 + 2x + 9) = 0$$
No solution
8. Solution set of the equation $\log_1(x-9) + 2\log_1(\sqrt{2x-1}) = 2$ is
$$a)(1) \qquad b)(13) \qquad c)\left\{\frac{1}{2}d\right]d\phi$$
Ans. b
$$d = 30$$
Solution set of the equation $\log_1(x-9) + 2\log_1(\sqrt{2x-1}) = 2$ is
$$a)(1) \qquad b)(13) \qquad c)\left\{\frac{\sqrt{5}+1}{2}\right\} \qquad c)\left\{\frac{1}{2},\frac{1}{3}\right\} \qquad d) \text{ none of these}$$
Ans. a
Sol. $x + 1 > 0, 1 - x > 0, 2x + 3 > 0$

$$\Rightarrow -\frac{3}{2} < x < 1$$

$$\therefore Equation
$$\frac{x + 1 > 0}{1 - x^2} + 3$$$$

Ans. Sol.

7.

Ans. Sol.

8.

Ans. Sol.

9.

$$\Rightarrow x = \frac{\sqrt{5} - 1}{2}$$

Paragraph – 4

If
$$\frac{dy}{dx} = f(x) + \int_{0}^{1} f(x) dx$$
, then

10. The equation of the curve y = f(x) passing through (0, 1) is

a)
$$f(x) = \frac{2e^{x} - e + 1}{3 - e}$$

b) $f(x) = \frac{3e^{x} - 2e + 1}{2(2 - e)}$
c) $f(x) = \frac{2e^{x} + e - 1}{e + 1}$
d) none of these
Ans. a
11. The number of points of discontinuity of $y = f(x)$ in (0, 1) are
a) 4 b) 3 c) 2 d) 0
Ans. d
12. The area bounded by the curve $y = f(x), x = 0$ and $x = 1$ is
a) $\frac{e - 1}{e - 3}$ b) $\frac{e - 1}{3 - e}$ c) $-\frac{1}{2}$ d) $\frac{3(e - 1)}{e + 1}$
Ans. b
Sol. $f'(x) = f(x) + \int_{0}^{1} f(x) dx \Rightarrow f''(x) = f'(x) \Rightarrow \frac{f''(x)}{f'(x)} = 1$
 $\Rightarrow \log(f'(x)) = x + \ln c$
 $\Rightarrow \ln\left(\frac{f'(x)}{c}\right) = x \Rightarrow f'(x) = ce^{x} \Rightarrow f(x) = ce^{x} + D$, at $x = 0, y = 1$
So $f(x) = ce^{x} + 1 - c$
 $\Rightarrow ce^{x} = e^{x} + 1 - c + \int_{0}^{1} (ce^{x} + 1 - c) dx$
 $\Rightarrow c - 1 = \{ce^{x} + (1 - c)x\}_{0}^{1} \Rightarrow c = \frac{2}{3 - e}$
 $\therefore f(x) = \frac{2e^{x} - e + 1}{3 - e}, \int_{0}^{1} \frac{2e^{4} - e + 1}{3 - e} dx = \frac{e - 1}{3 - e}$

f(x) is continuous everywhere.

Paragraph – 5

f(x), g(x), h(x) all are continuous and differentiable functions in [a, b] also a < c < b and f(a) = g(a) = h(a). Point of intersection of the tangent at x = c with chord joining x = a and x = b is on the left of c in y = f(x) and on the right in y = h(x). And tangent at x = c is parallel to the chord in case y = g(x). Now answer the following questions.

13. If
$$f'(x) > g'(x) > h'(x)$$
 then
a) f(b) < g(b) < h(b) b) f(b) > g(b) > h(b)

b

с

c) $f(b) \leq g(b) \leq h(b)$

Ans.

14.

If
$$f(b) = g(b) = h(b)$$
 then
a) $f'(c) = g'(c) = h'(c)$
b) $f'(c) > g'(c) > h'(c)$
c) $f'(c) < g'(c) < h'(c)$
d) none of these

Ans.

Sol. According to paragraph
$$\frac{f(b)-f(a)}{b-a} > f'(c), \frac{g(b)-g(a)}{b-a} = g'(c)$$
 and
 $\frac{h(b)-h(a)}{b-a} < h'(c)$
As $f'(x) > g'(x) > h'(x) \Rightarrow \frac{f(b)-f(a)}{b-a} > \frac{g(b)-g(a)}{b-a} > \frac{h(b)-h(a)}{b-a}$
15. If $c = \frac{a+b}{2}$ for each b, then
a) $g(x) = Ax^2 + Bx + C$ b) $g(x) = \log x$ c) $g(x) = \sin x$ d) $g(x) = e^x$
Ans. a
Sol. If $g(x) = Ax^2 + Bx + C$
 $\Rightarrow \frac{g(b)-g(a)}{b-a} = \frac{A(b^2-a^2)+B(b-a)}{b-a} \Rightarrow 2A\frac{(b+a)}{2} + B = g'\left(\frac{b+a}{2}\right)$

d) $f(b) \ge g(b) \ge h(b)$

Paragraph – 6

If $f: R \rightarrow R$ and f(x) = g(x) + h(x) where g(x) is a polynomial and h(x) is a continuous and differentiable bounded function on both sides, then f(x) is onto if g(x) is of odd degree and f(x) is into if g(x) is of even degree. To check whether f(x) is one-one we need to differentiate f(x). If f'(x)changes sign in domain of f then f is many one else one-one.

 $f: R \to R$ and $f(x) = a_1x + a_3x^3 + a_5x^5 + \dots + a_{2n+1}x^{2n+1} - \cot^{-1}x$ where $0 < a_1 < a_3 < \dots < a_{2n+1}$ 16. then the function f(x) is

a) one-one into b) many-one onto c) one-one ontod) many-one into Ans. c

Sol. $f(x) = \text{odd degree polynomial + bounded function } \cot^{-1} x \in (0, \pi)$, also f'(x) > 0

b-a

17.
$$f: R \to R$$
 and $f(x) = \frac{x(x^4+1)(x+1)+x^4+2}{x^2+x+1}$, then f(x) is

b) many-one onto c) one-one ontod) many-one into a) one-one into Ans. d

Sol.
$$f(x) = x^4 + 1 + \frac{1}{x^2 + x + 1}$$
 = even degree polynomial + bounded function $\frac{1}{x^2 + x + 1} \in \left(0, \frac{4}{3}\right)$
, $f'(x) = \frac{4x^3(x^2 + x + 1)^2 - 2x - 1}{(x^2 + x + 1)^2}$

 $\Rightarrow f'(x) = 0$ has at least one root which is repeated odd number of times or it has one root which is not repeated since numerator of f'(x) is a polynomial of degree 7. \Rightarrow f(x) = 0 has a point of extrema.

18.
$$f: R \rightarrow R$$
 and $f(x) = 2ax + sin2x$, then the set of values of a for which $f(x)$ is one-one onto is

a)
$$a \in \left(-\frac{1}{2}, \frac{1}{2}\right)$$
 b) $a \in (-1, 1)$ c) $a \in R - \left(-\frac{1}{2}, \frac{1}{2}\right)$ d) $a \in R - (-1, 1)$

Ans. d

Sol. $f(x) = \text{odd degree polynomial + bounded function } \sin 2x \Rightarrow f(x)$ is onto f(x) is one-one if $f'(x) \ge 0$ or $f'(x) \le 0 \forall x$ $\Rightarrow a \ge 1 \cup a \le -1 \Rightarrow a \in R - (-1, 1)$

Paragraph – 7

We are given the curves $y = \int_{0}^{\infty} f(t) dt$ through the point $\bigotimes_{0}^{\infty} \frac{1\ddot{0}}{2\dot{x}}$ and y = f(x), where f(x) > 0 and f(x)is differentiable " $x \hat{I} R$ through (0, 1). If tangents drawn to both the curves at the points with equal abscissae intersect on the same point on the x-axis, then

Number of solutions f(x) = 2ex is equal to 19. a) 0 b) 1 d) none of these c) 2 b

Ans.

- $\lim (f(x))^{f(-x)}$ is 20. a) 3 b) 6 d) none of these Ans. с
- The function f(x) is 21. b) non-monotonic a) increasing for all x c) decrease for all x d) none of these Ans. а

We have the equations of the tangents to the curve $y = \int f(t) dt$ and y = f(x) at arbitrary Sol.

points on them are

$$Y - \int_{-\infty}^{x} f(t) dt = f(x)(X - x) - (1)$$

and $Y - f(x) = f'(x)(X - x) - (2)$

As (1) and (2), intersect at the same point on x-axis \therefore Putting Y = 0 and equating X-coordinates we have

$$x - \frac{f(x)}{f'(x)} = x - \frac{\int_{-\infty}^{x} f(t) dt}{f(x)}$$

$$\Rightarrow \frac{f(x)}{\int_{-\infty}^{x} f(t) dt} = \frac{f'(x)}{f(x)} \Rightarrow \int_{-\infty}^{x} f(t) dt = cf(x) - (3)$$

Also f(0) = 1 $\Rightarrow \int_{-\infty}^{0} f(t) dt = \frac{1}{2} = c \times 1 \Rightarrow c = \frac{1}{2}$ $\Rightarrow \int f(t) dt = \frac{1}{2} f(x)$; differentiating both sides and on integrating and using boundary condition. We get, $f(x) = e^{2x}$; y = 2ex is tangent to $y = e^{2x} \Rightarrow$ number of solutions = 1 Clearly f(x) is increasing for all x $\lim_{x \to \infty} \left(e^{2x} \right)^{e^{-2x}} = 1$ $\left(\infty^{0} form\right)$ Paragraph - 8 $f(x) = \dot{O}(4t^4 - at^3)dt$ and g(x) is quadratic polynomial satisfying g(0) $g \notin (0) + 2b = 0$. If y = h(x) and y = g(x) intersect in 4 distinct points with abscissae x_i; i = 1, 2, 3, 4 such that $a^{\circ} = B$, a, b, c I R⁺, h(x) = $f \not\in (x)$; then Abscissae of point of intersection are in 22. d) none of these a) A.P b) G.P c) H.P Ans. а 23. a is equal to b) 8 c) 20 d) 12 a) 6 Ans. с 24. c is equal to a) 25 Ans. а We have $g(x) = g(0) + xg'(0) + \frac{x^2}{2}g''(0) = -bx^2 + cx - 6$ Sol. $h(x) = g(x) = 4x^4 - ax^3 + bx^2 - cx + 6 = 0$ has 4 distinct real roots. Using Descartes rule of sign \Rightarrow given biquadratic equation has 4 distinct positive roots. Let x_1 , x_2 , x_3 and x_4 Now, $\frac{\frac{1}{x_1} + \frac{2}{x_2} + \frac{3}{x_3} + \frac{4}{x_4}}{4} \ge \sqrt[4]{\frac{24}{x_1 x_2 x_2 x_4}}$ $\Rightarrow 2 \ge 2 \Rightarrow \frac{1}{x_1} = \frac{2}{x_2} = \frac{3}{x_3} = \frac{4}{x_4} = k$ $\Rightarrow \frac{1}{x_1} \cdot \frac{2}{x_2} \cdot \frac{3}{x_2} \cdot \frac{4}{x_4} = k^4$ $\Rightarrow \frac{24}{3/2} = k^4 \Rightarrow k = 2$ \Rightarrow Roots are $\frac{1}{2}$, 1, $\frac{3}{2}$, 2

a = 20, c = 25

Paragraph – 9

Graph of a function y = f(x) is symmetric about the line x = 2 and it is twice differentiable $\forall x \in R$. Given f'(1/2) = f'(1) = 0, then

d) 8

Minimum number of roots of the equation f''(x) = 0 in (0, 4) is/are 25.

c) 6 a) 2 b) 4 Ans. b

The value of $\int f(2+x)\sin x dx$ is equal to 26. a) 1 b) f (2) c) 2π

Ans. d

If (m , M) be the number of points of minima and maxima respectively of y = f(x) in 27. (0, 4), then m x M is equal to

d) none of these

d) 7 a) 4 b) 5 c) 6

Ans. c

Sol.
$$f(2-x) = f(2+x)$$

$$\Rightarrow f(x) = f(4-x)$$

$$\Rightarrow f'(x) + f'(4-x) = 0$$

$$\Rightarrow f'(1/2) = f'(1) = f'(3) = f'(7/2) = f'(2) = 0$$

Paragraph - 10

Let $f(x) = \frac{1}{1+x^2}$, let m be the slope, a be the x intercept and b be the y intercept of a tangent to y

= f(x)

Abscissa of the point of contact of the tangent for which m is greatest, is 28.

a)
$$\frac{1}{\sqrt{3}}$$
 b) 1 c) -1 d) - $\frac{1}{\sqrt{3}}$

Ans.

Value of b for the tangent drawn to the curve y = f(x) whose slope is greatest, is 29. $\frac{5}{8}$

a)
$$\frac{9}{8}$$
 b) $\frac{3}{8}$ c) $\frac{1}{8}$ d)

Ans. a

Value of a for the tangent drawn to the curve y = f(x) whose slope is greatest, is 30.

a)
$$-\sqrt{3}$$
 b) 1 c) -1 d) $\sqrt{3}$

Ans. а

Sol. Here we have
$$f'(x) = \frac{-2x}{(1+x^2)^2}$$
 and $f''(x) = \frac{6x^2-2}{(1+x^2)^3}$
 $\therefore f'(x)$ is maximum at $x = -\frac{1}{\sqrt{3}}$

If m is greatest then
$$m = \frac{3\sqrt{3}}{8}$$

y coordinate of the point of contact is $\frac{3}{4}$
 \therefore equation of the tangent is $y - \frac{3}{4} = \frac{3\sqrt{3}}{8} \left(x + \frac{1}{\sqrt{3}} \right)$
 $\therefore a = -\sqrt{3}$ and $b = \frac{9}{8}$

_

Paragraph - 11

Consider the function $f(x) = \max \{x^2, (1 - x)^2, 2x(1 - x)\}; x\hat{I} [0, 1]$ The interval in which f(x) is increasing is 31. a) $\frac{\cancel{a}}{\cancel{b}}_{\cancel{a}3}, \frac{2 \ddot{\bigcirc}}{3 \dot{a}}$ b) $\frac{\cancel{a}}{\cancel{b}}_{\cancel{a}3}, \frac{1 \ddot{\bigcirc}}{2 \dot{a}}$ c) $\frac{\underline{a}}{\underline{c}}_{\underline{a}}^{\underline{c}}, \frac{1}{2} \frac{\underline{\ddot{a}}}{\underline{c}} \frac{\underline{a}}{\underline{c}}_{\underline{c}}^{\underline{c}}, \frac{2}{3} \frac{\underline{\ddot{a}}}{\underline{\dot{a}}}$ d) Ans. d Let RMVT is applicable for f(x) on (a, b) then a + b + c (where c is the point such that 32. $f \not\in (c) = 0$ b) $\frac{1}{3}$ c) $\frac{1}{2}$ a) $\frac{2}{3}$ Ans. d The interval in which f(x) is decreasing is 33. c) $\stackrel{\text{ac}}{\underset{3\overline{a}}{\text{c}}}$, $\frac{1\ddot{0}}{3\ddot{a}}$, $\frac{\ddot{\text{c}}}{\overset{\text{ac}}{\underline{s}}}$, $\frac{2\ddot{0}}{3\ddot{a}}$ d) $\stackrel{\text{ac}}{\underset{3\overline{a}}{\text{c}}}$, $\frac{1\ddot{0}}{\overset{\text{ac}}{\underline{s}}}$, $\frac{3\ddot{0}}{\overset{\text{ac}}{\underline{s}}}$, $1\overset{0}{\overset{\text{ac}}{\underline{s}}}$ a) $\frac{\alpha 1}{\alpha 3}, \frac{2\ddot{\Omega}}{3\ddot{\theta}}$ b) $\frac{a}{b}$, $\frac{1}{2}$ Ans. Sol. We draw the graphs of $f_1(x) = x^2$; $f_2(x) = (1 - x)^2$ and $f_3(x) =$ 2x(1 - x)Here f(x) is redefined as $0 \le x < \frac{1}{3}$ $(1-x)^2$, $(x)=(1-x)^{2}$ f(x)=2x(1-x) $(x) = \begin{cases} 2x(1-x), & \frac{1}{3} \le x \le \frac{2}{3} \\ x^2, & \frac{2}{3} < x \le 1 \end{cases}$ Interval of increase of f(x) is $\left(\frac{1}{3}, \frac{1}{2}\right) \cup \left(\frac{2}{3}, 1\right)$ Interval of decrease of f(x) is $\left(0,\frac{1}{3}\right) \cup \left(\frac{1}{2},\frac{2}{3}\right)$ Clearly Rolle's theorem is applicable on $\left|\frac{1}{2}, \frac{2}{3}\right|$, where f(x) = 2x(1 - x)

$$\Rightarrow f'(c) = 2 - 4c = 0 \Rightarrow c = \frac{1}{2}$$
$$\Rightarrow a + b + c = \frac{1}{3} + \frac{2}{3} + \frac{1}{2} = \frac{3}{2}$$

Paragraph – 12

Paragraph - 12
Let y = f(x) and y = g(x) are two function defined as

$$f(x) = \begin{cases} ax^2 + b, & 0 \le x \le 1 \\ 2bx + 2b, & 1 < x \le 3 \text{ and } g(x) = \begin{cases} cx^2 + d, & 0 \le x \le 2 \\ dx + 3 - c, & 2 < x \le 3 \\ x^2 + b + 1, & 3 \le x \le 4 \end{cases}$$

34. f(x) is continuous at x = 1 but not differentiable at x = 1, if
a) a = 1, b = 0 b) a = 1, b = 2 c) a = 3, b = 1 d) none of these
Ans. c
Sol. $\lim_{x \to 1} f(x) = a + b$
 $\lim_{x \to 1} f(x) = a + b$
 $\lim_{x \to 1} f(x) = a + b$
 $\lim_{x \to 1} f(x) = 4b$
 $a + b = 4b \Rightarrow a = 3b$
 $f'(1') \neq f'(1')$
 $\Rightarrow 2b \neq 2a \Rightarrow a \neq b$
35. g(x) is continuous at x = 2, if
a) c = 1, d = 2 b) c = 2, d = 3 c) c = 1, d = -1 d) c = 1, d = 4
Ans. a
Sol. $\lim_{x \to 2} g(x) = \lim_{x \to 3} g(x)$
 $\Rightarrow 4c + d = 2d + 3 - c$
 $\Rightarrow d = 5c - 3$
36. If f is continuous and differentiable at x = 3, then
a) $a = -\frac{1}{3}, b = \frac{2}{3}$ b) $a = \frac{2}{3}, b = -\frac{1}{3}$ c) $a = \frac{1}{3}, b = -\frac{2}{3}$ d) $a = 2, b = \frac{1}{2}$
Ans. d
Sol. $\lim_{x \to 3} f(x) = \lim_{x \to 3'} f(x)$
 $\Rightarrow 8b = 5a - 6$
 $f'(3') = 2b$
 $f'(3') = \lim_{x \to 3'} \frac{(a - 1)(3 + h) + 2a - 3 - 8b}{h} = 2b$
 $\Rightarrow 5a - 8b - 6 = 0$
 $\Rightarrow f'(3') = a - 1$
 $\Rightarrow a - 1 = 2b \Rightarrow a = 2, b = \frac{1}{2}$

Paragraph - 13 Let $y = \int_{-\infty}^{v(x)} f(t) dt$, let us define $\frac{dy}{dx}$ as $\frac{dy}{dx} = v'(x) f^2(v(x)) - u'(x) f^2(u(x))$ and the equation of the tangent at (a, b) as $y-b = \left(\frac{dy}{dx}\right)_{(-1)} (x-a)$ If $y = \int_{0}^{x} t^{2} dt$, then equation of tangent at x = 1 is 37. a) x + y = 1 b) y = x – 1 c) y = x d) y = x + 1Ans. At x = 1, y = 0Sol. $\frac{dy}{dx} = 2x \cdot \left(x^4\right)^2 - \left(x^2\right)^2 = 1$ Equation of tangent is y = x - 1If $y = \int_{x^2}^{x^4} (\ln t) dt$, then $\lim_{x \to 0^+} \frac{dy}{dx}$ is a) 0 b) 1 c) 38. c) 2 Ans. $\frac{dy}{dx} = 4x^3 \left(\ln x^4 \right)^2 - 3x^2 \left(\ln x^3 \right)^2$ Sol. $= 64x^{3} (\ln x)^{2} - 27x^{2} (\ln x)^{2}$ $\lim_{x \to 0^+} \frac{dy}{dx} = 64 \lim_{x \to 0^+} x^3 (\ln x)^2 - 27 \lim_{x \to 0^+} x^2 (\ln x)^2 = 0$ If $f(x) = \int_{1}^{x} e^{t^{2}/2} (1-t^{2}) dt$, then $\frac{d}{dx} f(x)$ at x = 1 is 39. c) 2 a) 0 a b) 1 d) – 1 Ans. $f(x) = \int e^{-\frac{1}{2}e^{-\frac{1}{2}}} e^{-\frac{1}{2}e^{-\frac{1}{2}}}$ Sol. $e^{x^2/2}(1-x^2)\Big|^2$

Differential Calculus
Integer Answer Type
1. If the least value of the area bounded by the line
$$y = mx + 1$$
 and the parabola $y = x^2 + 2x - 3$ is α where m is a parameter then the value of $\frac{6\alpha}{32}$ is
Ans. 2

$$A = \int_{a}^{a} (y_1 - y_2) dx \text{ where } \alpha, \beta \text{ are the roots of} \\ x^2 + 2x - 3 = mx + 1, \text{ on solving we will get} \\ \frac{1}{6} (m^2 - 5m + 20)^{3/2}. \text{ Hence } \alpha = \frac{32}{3} \\ \Rightarrow \frac{6\alpha}{32} = 2$$

2. The value of constant c such that the straight line joining the points (0, 3) and (5, -2) is transmetred to the curve $y = \frac{c}{x+1}$
Ans. 4
Equation of line joining (0, 3) and (5, -2) is $x + y = 3$
Now it touches the curve $y = \frac{c}{x+1}$ at (x_1, y_1)
Hence $\left(\frac{dy}{dx}\right)_{(x, y_1)} = 1 \Rightarrow (x_1 + 1)^2 = c, (x_1y_1)$ lie on the line. Substituting we get $\pm \sqrt{c} = 2 \Rightarrow c = 4$
3. Let $f(x) = x^2 + 3x - 3x = 3x \Rightarrow 0$ if n points x_1, x_2, \dots, x_n are so chosen on the x-axis such that i) $\frac{1}{n} \sum_{i=1}^{n} f^{-1}(x_i) = f\left(\frac{1}{2} \sum_{i=1}^{n} (x_i)\right)$ ii) $\sum_{i=1}^{n} f^{-1}(x_i) = \sum_{i=1}^{n} (x_i)$
where f^{-1} denote inverse of f. Find A.M. of x_i is
Ans. 1
 $f(x) = x$
 $x^2 + 3x = 3 = x \Rightarrow x = 1$
4. Whow many points in the interval $(0, 2), f(x) = x^2 [2x] - x[x^2]$ is discontinuous (where $[:]$ denotes the greatest integer function)
Ans. 4
Sol. Conceptual
5. $f(x) = \lim_{m \to \infty} \frac{\alpha^m |x_i x_i| + |\cos x|\alpha^{-n}}{\alpha^n + \alpha^{-n}}}$ then $f\left(\frac{\pi}{2}\right)$ is
Ans. 1
 $f(x) = |\sin x|$
 $f\left(\frac{\pi}{2}\right) = 1$

6. If
$$\lim_{x\to 0} \frac{x^n - \sin x^n}{x - \sin^n x}$$
 exists and has a non-zero value, then n =
Ans. 1
By putting n = 1, the result can easily be obtained.
7. If
$$\int \frac{1 - x^7}{x(1 + x^7)} dx = a \ln |x| + b \ln |x^7 + 1| + c$$
, then $|a + 7b| =$
Ans. 1
Differentiating both sides, we get

$$\frac{1 - x^7}{x(1 + x^7)} = \frac{a}{x} + b \cdot \frac{7x^6}{1 + x^7} \Rightarrow a = 1, a + 7b = -1$$
8. If
$$\int_0^{\pi} [2e^{-x}] dx = \ln k ([.] dentoe the g.i.f) \text{ then } k =$$

Ans. 2

$$\int_0^{\pi} [2e^{-x}] dx = \ln k ([.] dentoe the g.i.f) \text{ then } k =$$

Ans. 2

$$\int_0^{\pi} [2e^{-x}] dx = \int_0^{\ln^2} [2e^{-x}] dx + \int_{\ln^2}^{\pi} [2e^{-x}] dx = \int_0^{\ln^2} [2e^{-x}] dx + 0 = \ln 2$$

9. The shortest distance between $(1 - x)^2 + (x - y)^2 + (y - z)^2 + z^2 = \frac{1}{4}$ and
Ans. 2
Let $a = 1 - x$
 $b = x - y$
 $c = y - z$
 $d = z$
then $a + b + c + d = 1$ and $a^2 + b^2 + c^2 + d^2 = \frac{1}{4}$
 $\Rightarrow (a - b)^2 + (a - c)^3 + (a - d)^2 + (b - c)^2 + (b - d)^2 + (c - d)^2 = 0$
 $\Rightarrow a = b = a = d$
 $\therefore x = \frac{3}{4} y = \frac{1}{2}, z = \frac{1}{4}$
So the distance from the point $(\frac{3}{4}, \frac{1}{2}, \frac{1}{4})$ from the plane $4x + 2y + 4z + 7 = 0$ is
 $\frac{3+1+1+7}{6} = 2$

Differential Calculus

Matrix-Match Type

Column - 1 A) The area of the figure bounded by $y = x^2$ and $y = \sqrt{x}$ is P) 4/3 B) $\int_{0}^{4} {\sqrt{x}} dx$ has the value ({x} denotes fractional part of x} Q) 5/3 C) The area of the region for which $0 < y < 3 - 2x - x^2$ and $x > 0$ is R) 7/3 D) $\int_{-\pi/2}^{\pi/2} \sqrt{\cos x - \cos^3 x} dx$ equals Ans. $A - S$; $B - R$; $C - Q$; $D - P$ Sol. A) Required area $= \int_{0}^{1} (\sqrt{x} - x^2) dx = 1/3$ B) $\int_{0}^{4} {\sqrt{x}} dx = \int_{0}^{4} (\sqrt{x} - [\sqrt{x}]) dx$ $\int_{0}^{4} \sqrt{x} dx = \int_{0}^{1} [\sqrt{x}] dx - \int_{0}^{4} [\sqrt{x}] dx = 7/3$ C) Area $= \int_{0}^{1} (3 - 2x - x^2) dx$	
A) The area of the figure bounded by $y = x^2$ and $y = \sqrt{x}$ is P) 4/3 B) $\int_{0}^{4} {\sqrt{x}} dx$ has the value ({x} denotes fractional part of x} Q) 5/3 C) The area of the region for which $0 < y < 3 - 2x - x^2$ and $x > 0$ is R) 7/3 D) $\int_{-\pi/2}^{\pi/2} \sqrt{\cos x - \cos^3 x} dx$ equals Ans. $A - S$; $B - R$; $C - Q$; $D - P$ Sol. A) Required area $= \int_{0}^{1} (\sqrt{x} - x^2) dx = 1/3$ B) $\int_{0}^{4} {\sqrt{x}} dx = \int_{0}^{4} (\sqrt{x} - [\sqrt{x}]) dx$ $\int_{0}^{4} \sqrt{x} dx = \int_{0}^{1} [\sqrt{x}] dx - \int_{0}^{4} [\sqrt{x}] dx = 7/3$ C) Area $= \int_{0}^{1} (3 - 2x - x^2) dx$	•
B) $\int_{0}^{4} {\sqrt{x}} dx$ has the value ({x} denotes fractional part of x} C) The area of the region for which $0 < y < 3 - 2x - x^{2}$ and $x > 0$ is D) $\int_{-\pi/2}^{\pi/2} \sqrt{\cos x - \cos^{3} x} dx$ equals Ans. $A - S$; $B - R$; $C - Q$; $D - P$ Sol. A) Required area $= \int_{0}^{1} {\sqrt{x} - x^{2}} dx = 1/3$ B) $\int_{0}^{4} {\sqrt{x}} dx = \int_{0}^{4} {\sqrt{x} - [\sqrt{x}]} dx$ $\int_{0}^{4} {\sqrt{x}} dx = \int_{0}^{1} {\sqrt{x} - [\sqrt{x}]} dx = 7/3$ C) Area $= \int_{0}^{1} {(3 - 2x - x^{2})} dx$	•
C) The area of the region for which $0 < y < 3 - 2x - x^2$ and $x > 0$ is D) $\int_{-\pi/2}^{\pi/2} \sqrt{\cos x - \cos^3 x} dx$ equals Ans. $A - S$; $B - R$; $C - Q$; $D - P$ Sol. A) Required area $= \int_{0}^{1} (\sqrt{x} - x^2) dx = 1/3$ B) $\int_{0}^{4} {\sqrt{x}} dx = \int_{0}^{4} (\sqrt{x} - [\sqrt{x}]) dx$ $\int_{0}^{4} \sqrt{x} dx = \int_{0}^{1} [\sqrt{x}] dx - \int_{0}^{4} [\sqrt{x}] dx = 7/3$ C) Area $= \int_{0}^{1} (3 - 2x - x^2) dx$	•
$D = \int_{-\pi/2}^{\pi/2} \sqrt{\cos x - \cos^3 x} dx \text{ equals}$ Ans. $A - S; B - R; C - Q; D - P$ Sol. A) Required area $= \int_{0}^{1} (\sqrt{x} - x^2) dx = 1/3$ B) $\int_{0}^{4} {\sqrt{x}} dx = \int_{0}^{4} (\sqrt{x} - [\sqrt{x}]) dx$ $\int_{0}^{4} \sqrt{x} dx = \int_{0}^{1} [\sqrt{x}] dx - \int_{0}^{4} [\sqrt{x}] dx = 7/3$ C) Area $= \int_{0}^{1} (3 - 2x - x^2) dx$	•
Ans. $A-S; B-R; C-Q; D-P$ Sol. A) Required area = $\int_{0}^{1} (\sqrt{x} - x^{2}) dx = 1/3$ B) $\int_{0}^{4} {\sqrt{x}} dx = \int_{0}^{4} (\sqrt{x} - [\sqrt{x}]) dx$ $\int_{0}^{4} \sqrt{x} dx = \int_{0}^{1} [\sqrt{x}] dx - \int_{0}^{4} [\sqrt{x}] dx = 7/3$ C) Area = $\int_{0}^{1} (3-2x-x^{2}) dx$	
Sol. A) Required area = $\int_{0}^{1} (\sqrt{x} - x^{2}) dx = 1/3$ B) $\int_{0}^{4} {\sqrt{x}} dx = \int_{0}^{4} (\sqrt{x} - [\sqrt{x}]) dx$ $\int_{0}^{4} \sqrt{x} dx = \int_{0}^{1} [\sqrt{x}] dx - \int_{0}^{4} [\sqrt{x}] dx = 7/3$ C) Area = $\int_{0}^{1} (3 - 2x - x^{2}) dx$	
B) $\int_{0}^{4} \{\sqrt{x}\} dx = \int_{0}^{4} (\sqrt{x} - [\sqrt{x}]) dx$ $\int_{0}^{4} \sqrt{x} dx = \int_{0}^{1} [\sqrt{x}] dx - \int_{0}^{4} [\sqrt{x}] dx = 7/3$ C) Area = $\int_{0}^{1} (3 - 2x - x^{2}) dx$	
$\int_{0}^{4} \sqrt{x} dx = \int_{0}^{1} \left[\sqrt{x} \right] dx - \int_{0}^{4} \left[\sqrt{x} \right] dx = 7/3$ C) Area = $\int_{0}^{1} (3 - 2x - x^{2}) dx$	
C) Area = $\int_{0}^{1} (3 - 2x - x^2) dx$	
$= \left[3x - x^2 - \frac{x^3}{3} \right]_0^{-1} = 5/3$	
D) $2\int_{0}^{\pi/2} \sqrt{\cos x} \sin x dx = 4/3$	
2. Match the following	

Column – I	Column – II
A) Number of points discontinuity of $f(x) = tan^2x - sec^2x$ in $(0, 2\pi)$	P) 1
is	
B) Number of points at which f(x) = sin ⁻¹ x + tan ⁻¹ x + cot ⁻¹ x is non-	Q) 2
differentiable in (-1, 1) is	
C) The number of points of discontinuity of y = [sinx]; $x \hat{\mathrm{I}} \left[0,2p ight)$	R) 0
(where [.] denotes the greatest integer function) is	
D) Number of points where $y = (x-1)^3 + (x-2)^5 + x-3 $ is	S) 3
non differentiable	

Ans.
$$A - Q$$
; $B - R$; $C - Q$; $D - P$

Sol. A)
$$\tan^2 x$$
 and $\sec^2 x$ are discontinuous at $x = \frac{\pi}{2}$ and $\frac{3\pi}{2}$

 \therefore number of discontinuities = 2

B) Since
$$f(x) = \sin^{-1} x + \tan^{-1} x + \cot^{-1} x = \sin^{-1} + \frac{\pi}{2}$$

 \therefore f(x) is differentiable in (-1, 1) \Rightarrow number of points of non-differentiability = 0

C)
$$y = [\sin x]$$
 is discontinuous at $x = \frac{\pi}{2}$ and π

 $y = |(x-1)|^3 + |(x-2)^5| + |x-3|$ is non differentiable at x = 3 only D)

Match the following 3.

Column -1
A) The maximum value attained by
$$y = 10$$
- $|x - 10|$, P) 3
 $-1 \pounds x \pounds 3$ is
B) If P(t², 2t) ; $t \hat{1} [0,2]$ is an arbitrary point on
parabola y² = 4x, Q is foot of perpendicular from focus
S on the tangent at P, then maximum area of ΔPQS is
C) If $a + b = 1$, $a, b > 0$ then minimum value of
 $\sqrt{e} + \frac{1}{a \overleftarrow{c}} + \frac{1}{b} \overleftarrow{b}}$ is
D) For real values of x, the greatest and least value of
expression $\frac{x+2}{2x^2+3x+6}$ is
Ans. $A - P$; $B - R$; $C - P$; $D - Q$, S
Sol. A) If $y = 10 - |x - 10|$, $x \in [-1,3]$
 $-11 \le x - 10 \le -7 \Rightarrow 7 \le |x - 10| \le 11 \Rightarrow y \in [-1,3]$
 $\therefore y = 10 - (10 - x) = x$
 \therefore maximum value of $y = 3$
B) Equation of tangent at P is ty = x + t², it intersects the line x = 0 at Q.
 \therefore Coordinates of Q are (0, t)
 $1 = \frac{|0 - t - 1|}{|0 - t - 1|} = 1$

$$\therefore \text{ area of } \Delta PQS = \frac{1}{2} \begin{vmatrix} 0 & t & 1 \\ 1 & 0 & 1 \\ t^2 & 2t & 1 \end{vmatrix} = \frac{1}{2} (t+t^3)$$
$$\Rightarrow \frac{dA}{dt} = \frac{1}{2} (3t^2+1) > 0 \quad \forall t \in [0,2]$$
$$\therefore \text{ area is maximum for } t = 2$$
$$\therefore \text{ maximum area} = 5$$

C) As
$$a + b = 1$$
 and $\sqrt{\left(1 + \frac{1}{a}\right)\left(1 + \frac{1}{b}\right)} = \sqrt{1 + \frac{2}{ab}}$
Again $\sqrt{ab} < \frac{a+b}{2} = \frac{1}{2} \Rightarrow \frac{1}{ab} > 4$
 $\therefore \sqrt{\left(1 + \frac{1}{a}\right)\left(1 + \frac{1}{b}\right)} \ge \sqrt{1 + 8} = 3$

D) Let
$$y = \frac{x+2}{2x^2+3x+6} \Rightarrow 2yx^2+3xy+6y = x+2$$

 $\Rightarrow 2yx^2+x(3y-1)+6y-2=0$
 $\Rightarrow D \ge 0 \Rightarrow (3y-1)^2 - 8y(6y-2) \ge 0$
 $\Rightarrow y \in \left[-\frac{1}{13}, \frac{1}{3}\right]$

4. Match the following:-

Column -1
Column -1
A) If
$$f(x) = \overset{s(x)}{0} \frac{dt}{\sqrt{1+t^3}}$$
, where $g(x) = \overset{conx}{0} (1 + \sin t^2) dt$, $\overset{P}{P} - 2$
then value of $f \overset{QP}{\underline{b}} \overset{D}{\underline{c}} \overset{D}{\underline{b}}$ is
B) If $f(x)$ is a non-zero differentiable function such that $\overset{Q}{\underline{b}} 2$
 $\overset{D}{\underline{c}} f(t) dt = \{f(x)\}^2$ " $x\hat{1}$ R then $f(2)$ is equal to
 $\overset{D}{\underline{b}} (2 + x - x^2) dx$ is maximum, then $a + b$ is equal to
 $\overset{D}{\underline{c}} (1 + \hat{b} (2 + x - x^2) dx$ is maximum, then $a + b$ is equal to
 $\overset{D}{\underline{c}} (1 + \hat{b} (2 + x - x^2) dx$ is maximum, then $a + b$ is equal to
 $\overset{D}{\underline{c}} (1 + \hat{b} (2 + x - x^2) dx$ is maximum, then $a + b$ is equal to
 $\overset{D}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (2 + x - x^2) dx$ is maximum, then $a + b$ is equal to
 $\overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (2 + x - x^2) dx$ is maximum, then $a + b$ is equal to
 $\overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (2 + x - x^2) dx$ is maximum, then $a + b$ is equal to
 $\overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (2 + x - x^2) dx$ is maximum, then $a + b$ is equal to
 $\overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (2 + x - x^2) dx$ is maximum, then $a + b$ is equal to
 $\overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (2 + x - x^2) dx$ is maximum, then $a + b$ is equal to
 $\overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (2 + x - x^2) dx$ is maximum, then $a + b$ is equal to
 $\overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (2 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (2 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (2 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (2 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (2 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (2 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (2 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}} (2 + x) \overset{Q}{\underline{c}} (1 + x) \overset{Q}{\underline{c}$

5.	Match the following	
	Column – I	Column – II
	A) The equation x logx = $3 - x$ has atleast one root in	P) (0, 1)
	B) If $27a + 9b + 3c + d = 0$, then the equation $4ax^2 + 3bx^2 + 2cx + d = 0$ has	Q) (1, 3)
	atleast one root in	
	C) If $c = \sqrt{3}$ and $f(x) = x + \frac{1}{x}$, then interval of x in which LMVT is	R) (0,3)
	applicable for f(x) is	
	D) If $c = \frac{1}{2}$ and $f(x) = 2x - x^2$, then interval of x in which LMVT is	S) (-1, 1)
	applicable for f(x) is	
Ans.	A - Q; B - R; C - Q; D - P	
Sol.	A) $f'(x) = \log x - \frac{3}{x} + 1 \Longrightarrow f(x) = (x-3)\log x + c$	
	$\therefore f(1) = f(3)$	
	B) $f'(x) = 4ax^3 + 3bx^2 + 2cx + d$	
	$\therefore f(x) = ax^4 + bx^3 + cx^2 + dx + e$	
	$\therefore f(0) = f(3) \Longrightarrow 27a + 9b + 3c + d = 0$	
	C) $\frac{f(b)-f(a)}{b-a} = f'(\sqrt{3}) = \frac{2}{3} \Longrightarrow \frac{ab-1}{ab} = \frac{2}{3}$	
	D) $\frac{f(b) - f(a)}{b - a} = f'\left(\frac{1}{2}\right) \Rightarrow a + b = 1$	
6.	Match the following	
	Column – I	Column – II
	A) $f(x) = \grave{O}\frac{x + \sin x}{1 + \cos x} dx$ and $f(0) = 0$, then $f \overset{\text{ap}}{\underbrace{\overleftarrow{O}}} \frac{\ddot{O}}{\dot{\overleftarrow{O}}} \frac{\ddot{O}}{\dot{\overrightarrow{O}}}$ is	P) $\frac{p}{2}$
	B) Let $f(x) = \mathbf{\check{O}} e^{\sin^{-1}x} \mathbf{\check{E}}^{2} - \frac{x \mathbf{\check{O}}}{\sqrt{1 - x^{2}} \mathbf{\check{e}}^{2}} dx$ and $f(0) = 1$ if $f \mathbf{\check{E}}^{2} \frac{\mathbf{\check{O}}}{2\mathbf{\check{e}}^{2}} = \frac{k\sqrt{3}e^{p/6}}{p}$	Q) $\frac{p}{3}$
	then k =	
	C) Let $f(x) = \dot{O} \frac{dx}{(x^2 + 1)(x^2 + 9)}$ and $f(0) = 0$ if $f(\sqrt{3}) = \frac{5}{36}k$, then k is	R) $\frac{p}{4}$
C	D) Let $f(x) = \grave{O} \frac{\sqrt{\tan x}}{\sin x \cos x} dx$ and $f(0) = 0$ if $f \underbrace{\overset{\partial p}{\partial} \overset{O}{\frac{1}{2}}}_{4\overline{a}} = \frac{2k}{p}$, then k is	S) π
Ans.	A – P; B – P; C – R; D – S	
Sol.	A) $f(x) = \int \frac{x + \sin x}{1 + \cos x} dx = \int \left(x \times \frac{1}{2} \sec^2 \frac{x}{2} + \tan \frac{x}{2}\right) dx = x \tan \frac{x}{2} + c$	
	Since f(0) = 0 \Rightarrow c = 0 and $f\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$	

B)
$$f(x) = \int e^{\sin^{-1}x} \left(1 - \frac{x}{\sqrt{1 - x^2}} \right) dx = \int e^{\sin^{-1}x} \left(\frac{1}{\sqrt{1 - x^2}} \cdot \sqrt{1 - x^2} - \frac{x}{\sqrt{1 - x^2}} \right) dx$$
$$\Rightarrow f(x) = e^{\sin^{-1}x} \sqrt{1 - x^2} + c$$

7.

Sol.

C

$$\Rightarrow f(0) = 1 + c \Rightarrow c = 0$$

$$f\left(\frac{1}{2}\right) = e^{x/6} \cdot \frac{\sqrt{3}}{2} = \frac{k\sqrt{3}}{\pi} e^{x/6}$$

$$\therefore k = \pi/2$$

$$() \qquad f(x) = \frac{1}{8} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 9}\right) dx = \frac{1}{8} \left(\tan^{-1}x - \frac{1}{3}\tan^{-1}\frac{x}{3}\right) + c$$

$$f(0) = 0 = c \Rightarrow c = 0$$

$$\therefore \frac{1}{8} \left(\frac{\pi}{3} - \frac{1}{3}\frac{\pi}{6}\right) = \frac{5\pi}{144} = \frac{5k}{36} \Rightarrow k = \frac{\pi}{4}$$

$$() \qquad f(x) = \int \frac{\sqrt{\tan x}}{\sin x \cos x} dx = \int (\tan x)^{-1/2} \sec^2 x dx = 2\sqrt{\tan x} + c$$

$$f(0) = 0 = c \Rightarrow c = 0$$

$$\therefore f\left(\frac{\pi}{4}\right) = 2 = \frac{2k}{\pi} \Rightarrow k = \pi$$

$$7. \quad \text{Let } f(x) = \frac{\frac{1}{8} \left[x\right], \quad x \hat{1} \left[0, 2\right]; \quad g(x) = \sec x; \quad x \hat{1} \cdot \hat{R} - (2n+1)\frac{p}{2} \text{. In the interval}$$

$$\frac{\frac{k}{8}}{\frac{3p}{2}} \cdot \frac{3p}{2\frac{3}{2}} \frac{3p}{\pi} \text{ match the following}$$

$$\frac{1}{(1 + 1)^{1/2}} \frac{1}{(1 + 1$$

Points of discontinuity of fog are – π , π

Points of differentiability of fog are – 1, $\frac{5\pi}{6}$

$$gof = \begin{cases} \sec(-2), & x \in [-2, -1) - \left\{ -\frac{\pi}{2} \right\} \\ \sec(-1), & x \in [-1, 0) \\ \sec x, & x \in [0, 2] - \left\{ \frac{\pi}{2} \right\} \end{cases}$$

Limit of gof does not exist at x = -1

8. Consider an expression $f(x) = x^n + x^{n+1}$, $n \in N$ f(x) is differentiated successively an aribitrary number of times then multiplied by (x + 1) and again differentiated successively till it attains the form of Ax + B. It is found that A – B is always divisible by a proper integer λ which depends on n. Now in column I different values of n are given and in column II different values of n and λ .

Column – I	Column – II
A) 5	P) 15
В) 7	Q) 81
C) 9	R) 49
D) 13	S) 91

s.
$$A - P$$
; $B - P$, R ; $C - P$, Q ; $D - P$, Q , S
l. $f(x) = x^n + x^{n+1}$

$$f^{k}(x) = \frac{n!}{(n-k)!} x^{n-k} + \frac{(n+1)!}{(n+1-k)!} x^{n+1-k}$$

$$(1+x) f^{k}(x) = \left(\frac{n!}{(n-k)!} x^{n-k} + \frac{(n+1)!}{(n+1-k)!} x^{n+1-k}\right) (1+x) = g(x) \quad \text{(say)}$$

$$g^{(n+1-k)}(x) = \left(\frac{(n+1)!}{(n+1-k)!} (n+2-k)!\right) x + \left(\frac{n!}{(n-k)!} + \frac{(n+1)!}{(n+1-k)!}\right) (n+1-k)!$$

$$\therefore A - B = \frac{(n+1)!}{(n+1-k)!} (n+2-k)! - \left(\frac{n!}{(n-k)!} + \frac{(n+1)!}{(n+1-k)!}\right) (n+1-k)!$$

$$= (n!)n(n+1-k)$$

9.	Match the following		
	Column – I	Column – II	
	A) $g(x) = 2 - x^{1/3}$ and $f(g(x)) = -x + 5x^{1/3} - x^{2/3}$, the local maximum value of $f(x)$ is	f P) O	
	B) No. of points of intersection of the curves $\arg\left(\frac{z-3}{z-1}\right) = \frac{\pi}{4}$ and $z(1-i) + \overline{z}(1+i) - 4 = 0$	nd Q) 1	
	C) If $f(x) = ax^3 + bx^2 + cx + d$, (a, b, c, $d \in Q$) and two roots of $f(x)=0$ are eccentricities of a parabola and a rectangular hyperbola, then $a + b + c - d = d$	- R) 2	
	D) Number of solution of equation $1^x + 2^x + 3^x \dots + n^x = (n + 1)^x$ are	S) 3	
Ans. Sol.	A – S ; B – Q ; C – P ; D – Q		
	$x^{1/3} = 2 - g(x)$		
	$\Rightarrow f(x) = 5(2-x) - (2-x)^2 - (2-x)^3$	$\arg\left(\frac{z-3}{z-1}\right) = \frac{\pi}{4}$	
	$\Rightarrow x^3 - 7x^2 + 11x - 2 \Rightarrow f_{\max} = 3$		
	Clearly 1 is the root \Rightarrow a + b + c + = 0)	
	$\left(\frac{1}{n+1}\right)^{x} + \left(\frac{2}{n+1}\right)^{x} + \dots \left(\frac{n}{n+1}\right)^{x} = 1$ (1,0) (2,0) (3,0))) , , , , , , , , , , , , , , , , , ,	
	z(1-i) +	z(1+i) - 4 = 0	
	(0,1) (0,1)	×	
10.	If $I_a = \int_{0}^{\pi/2} \frac{dx}{2\cos x + \sin x + a}$, then the value of I_a for		
	Column – I Colu	mn – II	
	A) a = 1 P) log 3		
Ĉ	B) a = 3 Q) $\frac{1}{2}\log 3$		
	C) a = 2 R) $\frac{1}{\sqrt{11}} \left(\tan^{-1} \frac{3}{\sqrt{11}} \right)$	$\frac{1}{1} - \tan^{-1}\frac{1}{\sqrt{11}}$	
	D) a = 4 S) $\tan^{-1}\left(\frac{1}{3}\right)$		
Ans.	A - Q; B - S; C - P; D - R		
Sol.	If $t = \tan \frac{x}{2}$, then $dx = \frac{2dt}{1+t^2}$		

A)
$$a = 1, I_1 = \int_0^1 \frac{dt}{2(1-t^2) + 2t - (1+t^2)}$$

 $I_1 = -2\int_0^1 \frac{dt}{t^2 - 2t - 3} = 2\int_0^1 \frac{dt}{4 - (t-1)^2} = \frac{1}{2}\log 3$

Similarly for others

Match the following 11.

Column – I	Column – II
A) $\lim_{x \to 0} \frac{\cos(\tan x) - \cos x}{x^4} =$	P) 1
B) $\lim_{x \to 0} \frac{1 - \cos(1 - \cos x)}{x^4} =$	Q) $\frac{1}{8}$
C) $\lim_{x \to \infty} \frac{\sin^4 x - \sin^2 x + 1}{\cos^4 x - \cos^2 x + 1} =$	R) 0
D) Tangents PA and PB are drawn to $y = x^2 - x + 1$ from	
$P\left(\frac{1}{2},h\right)$. If area of \triangle PAB is maximum, then h =	$(5)\frac{1}{3}$
0/2.	

Ans.
$$A-S; B-Q; C-P; D-R$$

Sol. A)
$$\lim_{x\to 0} \frac{\cos(\tan x) - \cos x}{x^4} = \lim_{x\to 0} \frac{2\sin(\frac{x+\tan x}{2})\sin(\frac{x-\tan x}{2})}{x^4}$$

$$= \frac{1}{2}\lim_{x\to 0} \frac{x^2 - \tan^2 x}{x^4} = \lim_{x\to 0} \frac{x^2 - (x + \frac{x^3}{3} + \frac{2}{15}x^5 + ...)^2}{x^4} = \frac{1}{3}$$
B)
$$\lim_{x\to 0} \frac{1 - \cos(1 - \cos x)}{x^4} = \lim_{x\to 0} \frac{2\sin^2(\sin^2 \frac{x}{2})}{x^4} = \frac{1}{8}$$
C) $\sin^4 x - \sin^2 x + 1 = (1 - \cos^2 x)^2 - (1 - \cos^2 x) + 1 = 1 + \cos^4 x - \cos^2 x$
D) Vertex $(\frac{1}{2}, \frac{3}{4})$, equation of the line AB is $\frac{1}{2}(y+h) = x \cdot \frac{1}{2} \cdot \frac{1}{2}(x + \frac{1}{2}) + 1$
 $\Rightarrow y = \frac{3}{2} - h$
 $\therefore (x - \frac{1}{2})^2 = (\frac{3}{2} - h)$
 $\Rightarrow x = \frac{1}{2} \pm \sqrt{\frac{3}{4}} - h$
 $\Delta APB = \sqrt{\frac{3}{4}} - h(\frac{3}{4} - 2h) = 2(\frac{3}{4} - h)^{3/2}$

So h = 0

12.	Match the following	
	Column – I	Column – II
	A) If $f(x) = x^{101} - 2x^{11} + 2x + 1$ and g be inverse of then $g'(1)$ is equal to	P) 0
	B) $\lim_{x\to 0} x(x-1) ^{[\cos 2x]}$ (where $[\cdot]$ denotes the greatest integer function)	Q) 2
	C) If the equation $x^4 - 4x^3 + ax^2 + bx + 1 = 0$ has four positive integer roots then a + b	R) $\frac{1}{2}$
	D) $f: R \rightarrow R$ is defined by $f(x) = x^3 + ax^2 + bx + ce^x$ (c > 0) a, b, c are	
	variable real number be an increasing function, then minimum value of b + c	S) 1
Ans.	A – R ; B – S ; C – Q ; D – P	
Sol.	A) $g f(x) = x$	
	$g'(f(x)) = \frac{1}{f'(x)}$	
	for $g'(1) \Rightarrow f(x) = 1$ at point (0, 1)	
	$g'(f(x)) = \frac{1}{2}$	
	C) $x_1 + x_2 + x_3 + x_4 = 4$	
	$x_1x_2x_3x_4 = 1$	
	\Rightarrow A.M of roots = G.M of roots	
	$\therefore x_1 = x_2 = x_3 = x_4 = 1$	
	D) $f'(x) = 3x^2 + 2ax + b + ce^x \ge 0$	
	$= 3\left(x^{2} + \frac{2a}{3}x + \frac{b}{3} + \frac{a^{2}}{9} - \frac{a^{2}}{9}\right) + ce^{x}$	
	$= 3\left[\left(x + \frac{a}{3} \right)^2 + \left(\frac{3b - a^2}{9} + \frac{ce^x}{3} \right) \right] \ge 0$	
	$\Rightarrow b + ce^x \ge \frac{a^2}{3}$	
	at $x = 0$. a^2	
C	$b+c \ge \frac{1}{3}$	
	$b+c \ge 0$	