Differential Calculus

Single Correct Answer Type

1. Let $f(x)=4 x+8 \cos x-\ln \{\cos x(1+\sin x)\}+\tan x-2 \sec -6$. If $f(x)>0 \forall x \in(0, a)$ then
a) $a=\frac{\pi}{6}$
b) $a=\frac{\pi}{3}$
c) $a=\frac{\pi}{2}$
d) none of these

Ans. a
Sol. $f^{\prime}(x)=4-8 \sin x-\frac{\left(-\sin x+\cos ^{2} x-\sin ^{2} x\right)}{\cos x(1+\sin x)}+\sec ^{2} x-\sec x \tan x$
$=4(1-2 \sin x)+\sec ^{2} x(1-2 \sin x)-4 \sec (1-2 \sin x)$
$=f(x)=(\sec x-2)^{2}(1-2 \sin x)$
If $f(x)>0 \forall x \in(0, a)$, then $\mathrm{f}(\mathrm{x})$ is increasing in $(0, \mathrm{a}) \Rightarrow a=\frac{\pi}{6}$
2. If $\mathrm{f}(\mathrm{x})$ is continuous for all real values of x , then $\sum_{r=1}^{n} \int_{0}^{1} f(r-1+x) d x=$
a) $\int_{0}^{n} f(x) d x$
b) $\int_{0}^{1} f(x) d x$
c) $n \int_{0}^{1} f(x) d x$
d) $(n-1) \int_{0}^{1} f(x) d x$

Ans. a
Sol. $\quad \sum_{r=1}^{n} \int_{0}^{1} f(r-1+x) d x=\int_{0}^{1} f(x) d x+\int_{0}^{1} f(1+x) d x+\int_{0}^{1} f(2+x) d x+\ldots \ldots+\int_{0}^{1} f(n-1+x) d x$
$=\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x+\int_{2}^{3} f(x) d x+\ldots \ldots+\int_{n-1}^{n} f(x) d x=\int_{0}^{n} f(x) d x$
3. The coordinates of the point on the curve $x^{3}=y(x-a)^{2}, a>0$ where the ordinate is minimum
a) $(2 a, 8 a)$
b) $\left(-2 a, \frac{-8 a}{9}\right)$ c) $\left(3 a, \frac{27 a}{4}\right)$
d) $\left(-3 a, \frac{-27 a}{16}\right)$

Ans. C
The ordinates of any point on the curve is given by $y=\frac{x^{3}}{(x-a)^{2}}$
Sol. $\quad \frac{d y}{d x}=\frac{x^{2}(x-3 a)}{(x-a)^{3}}$
Now, $\frac{d y}{d x}=0 \Rightarrow x=0$ or $x=3 a$
$\left.\frac{d^{2} y}{d x^{2}}\right|_{x=0}=0$ and $\left.\frac{d^{2} y}{d x^{2}}\right|_{x=3 a}=\frac{72 a^{5}}{(2 a)^{6}}>0$
Hence y is minimum at $\mathrm{x}=3 a$ and is equal to $\frac{27 a}{4}$
4. Let $I_{n}=\int_{0}^{\frac{\pi}{2}} \frac{\sin (2 n-1) x}{\sin x} d x, J_{n}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} n x}{\sin ^{2} x} d x, n \in N$, then
a) $J_{(n+1)}-J_{n}=I_{n}$
b) $J_{(n+1)}-J_{n}=I_{(n+1)}$
c) $J_{n+1}+J_{n}=J_{n}$
d) $J_{n+1}+J_{n+1}=J_{n}$

Ans. b
Sol. $\quad J_{n}-J_{n-1}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} n x-\sin ^{2}(n-1) x}{\sin ^{2} x} d x-\int_{0}^{\frac{\pi}{2}} \frac{\sin (2 n-1) x-\sin x}{\sin ^{2} x} d x=I_{n}$
i.e $\quad J_{n}-J_{n-1}=I_{n} \Rightarrow J_{n+1}-J_{n}=I_{n+1}$
5. A curve whose concavity is directly proportional to the logarithm of its x-coordinates at any of the curve, is given by
a) $c_{1} x^{2}(2 \log x-3)+c_{2} x+c_{3}$
b) $c_{1} x^{2}(2 \log x+3)+c_{2} x+c_{3}$
c) $c_{1} x^{2}(2 \log x)+c_{2}$
d) none of these

Ans. a
Sol. $\frac{d^{2} y}{d x^{2}}=k \log x \Rightarrow \frac{d y}{d x}=k(x \log x-x)+A$
$\Rightarrow y=k\left[\frac{1}{2} x^{2} \log x-\int \frac{1}{2} x^{2} \cdot \frac{1}{x}-\frac{x^{2}}{2} d x\right]+A x+B$
$\Rightarrow y=\frac{k}{4}\left\{2 x^{2} \log x-x^{2}-2 x^{2}\right]+A x+B$
$\Rightarrow y=c_{1}(2 \log x-3) x^{2}+c_{2} x+c_{3}$
6. The domain of the function $f(x)=\sqrt{3-2^{x}-2^{1-x}}+\sqrt{\sin ^{-1} x}$ is
a) $[-1,0]$
b) $[0,1]$
c) $\left[\frac{1}{2}, 1\right]$
d) $[1,2]$

Ans. b
Sol. $\sin ^{-1} x \geq 0 \Rightarrow 0 \leq x \leq 1$

$$
\text { and } 2^{x}+2^{1-x} \leq 3 \Rightarrow 2^{x}+2.2^{-x}-3 \leq 0
$$

Put $2^{x}=t$, then $t^{2}-3 \mathrm{t}+2 \leq 0 \Rightarrow(t-2)(t-1) \leq 0$
$\Rightarrow 1 \leq t \leq 2$ i.e $1 \leq 2^{x} \leq 2$
$\Rightarrow 0 \leq x \leq 1$
7. Area bounded by the curve $\mathrm{y}=\sin \mathrm{x}, \mathrm{y}=\cos \mathrm{x}, x=-\frac{\pi}{3}, x=2 \pi$
a) $4 \sqrt{2}-\left(\frac{\sqrt{3}+1}{2}\right)$
b) $\sqrt{2}+\left(\frac{\sqrt{3}+1}{2}\right)$
c) $\sqrt{2}-\left(\frac{\sqrt{3}+2}{2}\right)$
d) $4 \sqrt{2}+\left(\frac{\sqrt{3}+1}{2}\right)$

Ans. d
Sol. $\quad A=\int_{-\pi / 3}^{2 \pi}|\sin x-\cos x| d x \Rightarrow 4 \sqrt{2}+\frac{\sqrt{3}+1}{2}$
8. Let $\mathrm{f}(1)=1$ and $f(n)=2 \sum_{r=1}^{n-1} f(r)$, then $\sum_{n=1}^{m} f(n)$ is equal to
a) $3^{m-1}-1$
b) 3^{m-1}
c) $3^{m}-1$
d) none of these

Ans. b
Sol. $\quad f(n)=2(f(1)+f(2)+\ldots .+f(n-1))$
$\therefore \mathrm{f}(\mathrm{n}+1)=2(\mathrm{f}(1)+\mathrm{f}(2)+\ldots . .+\mathrm{f}(\mathrm{n}))$
$\Rightarrow \mathrm{f}(\mathrm{n}+1)=3 \mathrm{f}(\mathrm{n})$ for $n \geq 2$
Also $f(2)=2 f(1)=2$
$f(3)=3 f(2)=2 \cdot 3$
$\sum_{n=1}^{m} f(n)=f(1)+f(2)+\ldots+f(m)$
$=1+2+2.3+2.3^{2}+\ldots .+2.3^{m-2}=1+2\left(1+3+3^{2}+\ldots .+3^{m-2}\right)$
9. $I=\int \frac{2+3 \cos \theta}{\sin \theta+2 \cos \theta+3} d \theta$, then
a) $I=\frac{6 \theta}{5}+\frac{3}{5} \log |\sin \theta+2 \cos \theta+3|-\frac{8}{5} \tan ^{-1}\left(\frac{\tan \left(\frac{\theta}{2}\right)+1}{2}\right)+c$
b) $I=\frac{6 \theta}{5}-\frac{3}{5} \log |\sin \theta+2 \cos \theta+3|-\frac{8}{5} \tan ^{-1}\left(\frac{\tan \left(\frac{\theta}{2}\right)+1}{2}\right)+c$
c) $I=\frac{6 \theta}{5}-\frac{3}{5} \log |\sin \theta+2 \cos \theta+3|$
d) none of these

Ans. a
Sol. $2+3 \cos \theta=I(\sin \theta+2 \cos \theta+3)+m(\cos \theta-2 \sin \theta)+n$, then integrate
10. The value of $\lim _{n \rightarrow \infty}\left(\frac{\sqrt{n}}{(3+4 \sqrt{n})^{2}}+\frac{\sqrt{n}}{\sqrt{2}(3 \sqrt{2}+4 \sqrt{n})^{2}}+\ldots . .+\frac{1}{49 n}\right)$ is equal to
a) $\frac{1}{14}$
b) $\frac{2}{7}$
c) $\frac{3}{7}$
d) none of these

Ans. a
Sol. $\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{\sqrt{n}}{\sqrt{r}(3 \sqrt{r}+4 \sqrt{n})^{2}}$
Put $\frac{r}{n}=x \Rightarrow \frac{1}{n}=d x$
$=\int_{0}^{1} \frac{d x}{\sqrt{x}(3 \sqrt{x}+4)^{2}}=\frac{1}{14}$
11. Solution of differential equation $x d y-\left(y+x y^{3}(1+\log x)\right) d x=0$
a) $\frac{-x^{2}}{y^{2}}=\frac{2 x}{3}\left(\frac{2}{3}+\log x\right)+c$
b) $\frac{x^{2}}{y^{2}}=\frac{2 x^{2}}{3}\left(\frac{2}{3}+\log x\right)+c$
c) $\frac{-x^{2}}{y^{2}}=\frac{2 x^{3}}{3}\left(\frac{2}{3}+\log x\right)+c$
d) none of these

Ans. c
Sol. $-d\left(\frac{x}{y}\right)=x y(1+\log x) d x$
$\int-\frac{x}{y} d\left(\frac{x}{y}\right)=\int x^{2}(1+\log x) d x$ gives solution
12. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be twice differentiable function satisfying $f^{\prime \prime}(x)=g^{\prime \prime}(x)$, $2 f^{\prime}(1)=g^{\prime}(1)=4$ and $3 f(2)=g(2)=9$. The value of $f(4)-g(4)$ is equal to
a) -6
b) -16
c) -10
d) -8

Ans. c
Sol. $\quad f^{\prime}(x)=g(x)-2$
$f(x)=g(x)-2 x-2$
$f(u)-g(u)=-10$
13. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be three real numbers such that $\mathrm{a}<\mathrm{b}<\mathrm{c}$. Let $\mathrm{f}(\mathrm{x})$ be continuous $\forall x \in[a, c]$ and differentiable $\forall x \in(a, c)$. If $f^{\prime \prime}(x)>0 \forall x \in(a, c)$ then
a) $(c-b) f(a)+(b-a) f(c)>(c-a) f(b)$
b) $(c-b) f(a)+(a-c) f(b)<(a-b) f(c)$
c) $f($ a $)<f($ b $)<f($ c $)$
d) none of these

Ans. a
Sol. By LMVT
$\frac{f(b)-f(a)}{b-a}>\frac{f(c)-f(b)}{c-b}$
14. The solution of $y^{5} x+y-x \frac{d y}{d x}=0$ is
a) $\frac{x^{4}}{4}+\frac{1}{5}\left(\frac{x}{y}\right)^{5}=c$
b) $\frac{x^{5}}{5}+\frac{1}{4}\left(\frac{x}{y}\right)^{4}=c$
c) $\left(\frac{x}{y}\right)^{5}+\frac{x^{4}}{4}=c$
d) $(x y)^{4}+\frac{x^{5}}{5}=c$

Ans. b
Sol. $\quad y^{5} x d x+y d x-x d y=0$, multiply by x^{3} / y^{5}

$$
\Rightarrow x^{4} d x+\frac{x^{3}}{y^{3}}(d(x / y))=0
$$

$$
\Rightarrow \frac{x^{5}}{5}+\frac{1}{4}\left(\frac{x}{y}\right)^{4}=c
$$

15. A point P lying inside the curve $y=\sqrt{2 a x-x^{2}}$ is moving such that its shortest distance from the curve at any position is greater than its distance from x-axis. The point P enclose a region whose area is equal to
a) $\frac{\pi a^{2}}{2}$
b) $\frac{a^{2}}{3}$
c) $\frac{2 a^{2}}{3}$
d) $\left(\frac{3 \pi-4}{6}\right) a^{2}$

Ans. c
Sol.

$$
y=\sqrt{2 a x-x^{2}} \Rightarrow(x-a)^{2}+y^{2}=a^{2}
$$

Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be a point then $\mathrm{BP}>\mathrm{PN}$
For the boundary condition $\mathrm{BP}=\mathrm{PN}=\mathrm{k}$
Now $A P=a-k=\sqrt{(h-a)^{2}+k^{2}} \Rightarrow k=h-\frac{h^{2}}{2 a}$
\therefore boundary of the region is $y=x-\frac{x^{2}}{2 a}$

Required area $=2 \int_{0}^{a}\left(x-\frac{x^{2}}{2 a}\right) d x=\frac{2 a^{2}}{3}$
16. If $\log _{x}\left(\log _{y} k\right)>0$ where $x, k \in(0,1)$ then $y \in$
a) $(0, x)$
b) $(0, k)$
c) $(k, 1)$
d) R^{+}

Ans. c
Sol. $\log _{y} k<1$
case 1 : if $\mathrm{y}>1 \Rightarrow \mathrm{k}<\mathrm{y}$
for $\log _{y} k>0 \Rightarrow k>1$ which is not possible
case 2 : if $y<1 \Rightarrow k>y$
and for $\log _{y} k>0 \Rightarrow k<1$ which is true
17. Period of $f(x)=x-[x+\lambda]-\mu$ where $\lambda, \mu \in R$ and [] denotes the g.i.f is
a) λ
b) μ
c) $|\lambda-\mu|$
d) 1

Ans. d
Sol. $f(x)=x-[x+\lambda]-\mu=x+\lambda-[x+\lambda]-(\lambda+\mu)$
$=\{x+\lambda\}-(\lambda+\mu)$
\therefore Period of $\mathrm{f}(\mathrm{x})=1$
18. If $f(x)=2 \sin ^{3} x-3 \sin ^{2} x+12 \sin x+5 \forall x \in\left(0, \frac{\pi}{2}\right)$, then
a) f is increasing in $\left(0, \frac{\pi}{2}\right)$
b) f is decreasing in $\left(0, \frac{\pi}{2}\right)$
c) f is increasing $\left(0, \frac{\pi}{4}\right)$ and decreasing in $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
d) f is decreasing is $\left(0, \frac{\pi}{4}\right)$ and increasing in $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

Ans. a
Sol. $f^{\prime}(x)=6 \cos x\left(\sin ^{2} x-\sin x+2\right)>0 \forall \in\left(0, \frac{\pi}{2}\right)$
Thus $f(x)$ is increasing in $\left(0, \frac{\pi}{2}\right)$
19. Total number of points of non-differentiability of $f(x)=[3+4 \sin x]$ in $[\pi, 2 \pi]$ where [.] denote the g.i.f are
a) 5
b) 6
c) 8
d) 9

Ans. c
Sol.
$\mathrm{f}(\mathrm{x})=3+[4 \sin \mathrm{x}]$
$f(x)$ is non-differentiable where $g(x)$ $=[4 \sin x]$ is non differentiable
In $[\pi, 2 \pi], \mathrm{g}(\mathrm{x})$ is clearly non-differentiable at 8 points.

20. If $f(x)+2 f(1-x)=x^{2}+1 \forall x \in R$ and $\int_{0}^{k} f(x) d x=0$, then k equals to
a) 3
b) 2
c) 4
d) none of these

Ans. a
Sol. Putting $(1-\mathrm{x})$ for x and subtracting we get $f(x)=\frac{x^{2}-4 x+3}{3}$
Now $\int_{0}^{k} \frac{x^{2}-4 x+3}{3} d x=0 \Rightarrow \frac{k^{3}}{3}-2 k^{2}+3 k=0$
$\Rightarrow k=3$
21. A point $p(x, y)$ moves is such a way that $[x+y+1]=[x]$ (where [] denotes g.i.f) and $x \in(0,2)$. Then the area representing all the possible positions of P equals
a) $\sqrt{2}$ sq. units b)
b) $2 \sqrt{2}$ sq. units
c) $4 \sqrt{2}$ sq. units
d) none of these

Ans. d
Sol.
If $x \in(0,1)$
Then $-1 \leq x+y<0$
and if $x \in(1,2)$
$0 \leq x+y<1$
Required area $=$
$4\left(\frac{1}{2} \cdot 1 \cdot \sqrt{2} \sin \frac{\pi}{4}\right)=2$ squnits

22. Let $\mathrm{f}(\mathrm{x})$ be a polynomial with real coefficients satisfies $f(x)=f^{\prime}(x) \times f^{\prime \prime \prime}(x)$. If $\mathrm{f}(\mathrm{x})=0$ satisfies $x=1,2,3$ only then the value of $f^{\prime}(1) \times f^{\prime}(2) \times f^{\prime}(3)=$
a) positive
b) negative
c) 0
d) inadequate data

Ans. c
Sol. $\quad f(x)=f^{\prime}(x) \times f^{\prime \prime \prime}(x)$ is satisfied by only the polynomial of degree 4.
Since $f(x)=0$ satisfies $x=1,2,3$ only. It is clear one of the root is twice repeated.
$\Rightarrow f^{\prime}(1) f^{\prime}(2) f^{\prime}(3)=0$
23. The value of $\lim _{n \rightarrow \infty}\left(\frac{n!}{(m n)^{n}}\right)^{1 / n}$ is
a) em
b) $\frac{e}{m}$
c) $\frac{1}{e m}$
d) none of these

Ans. C
Sol. $L=\lim _{n \rightarrow \infty} \frac{1}{m}\left(\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \ldots . \cdot \frac{n}{n}\right)^{1 / n}$
In $L=\lim _{n \rightarrow \infty}\left[\ln \left(\frac{1}{m}\right)+\frac{1}{n}\left(\ln \frac{1}{n}+\ln \frac{2}{n}+\ldots .+\ln \frac{n}{n}\right)\right]$
$=\ln m+\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{n} \ln \left(\frac{r}{n}\right)=-\ln m+\int_{0}^{1} \ln x d x=-\ln m-1=\ln \left(\frac{1}{e m}\right)$
$\therefore L=\frac{1}{e m}$
24. Let $\mathrm{A}=\{1,2,3,4,5\}$ and $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ be an into function such that $f(i) \neq i \forall i \in A$, then number of such functions f are
a) 1024
b) 904
c) 984
d) none of these

Ans. d
Sol. Total number of functions for which $f(i) \neq i=4^{5}$
and number of onto functions in which $f(i) \neq i=44$
\Rightarrow required numbers of functions $=980$
25. The area of the region bounded between the curves $y=e\|x|\ln | x\|$, $x^{2}+y^{2}-2(|x|+|y|)+1 \geq 0$ and x-axis where $|x| \leq 1$, if α is the x-coordinate of the point of intersection of curves is 1st quadrant, is
a) $4\left[\int_{0}^{\alpha} e x \ln x d x+\int_{\alpha}^{1}\left(1-\sqrt{1-(x-1)^{2}}\right) d x\right]$
b) $\left[\int_{0}^{\alpha} e x \ln x d x-\int_{1}^{\alpha}\left(1-\sqrt{1-(x-1)^{2}}\right) d x\right]$
c) $2\left[-\int_{0}^{\alpha} e x \ln x d x+\int_{\alpha}^{1}\left(1-\sqrt{1-(x-1)^{2}}\right) d x\right]$
d) $2\left[\int_{0}^{\alpha} e x \ln x d x+\int_{\alpha}^{1}\left(1-\sqrt{1-(x-1)^{2}}\right) d x\right]$

Ans. c
Sol.
Required area is
$2\left[\int_{0}^{\alpha} e x \ln x d x+\int_{1}^{\alpha}\left(1-\sqrt{1-(x-1)^{2}}\right) d x\right]$

26. The value of $\lim _{n \rightarrow \infty} n\left[\frac{1}{3 n^{2}+8 n+4}+\frac{1}{3 n^{2}+16 n+16}+\ldots . . n\right.$ terms $]$ is
a) $\frac{1}{4} \ln \left(\frac{9}{5}\right)$
b) $\frac{1}{5} \ln \left(\frac{9}{5}\right)$
c) $\frac{1}{4} \ln \left(\frac{8}{5}\right)$
d) $\frac{1}{4} \ln \left(\frac{9}{7}\right)$

Ans. a
Sol. Use definite integral of first principal as a limit of sum

$$
\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{4\left(1+\frac{r}{n}\right)^{2}-1} \cdot \frac{1}{n}
$$

27. The area of the region containing the points satisfying $|y|+\frac{1}{2} \leq e^{-|x|}, \max (|x|,|y|) \leq 2$ is
a) $2 \log \left(\frac{e}{2}\right)$
b) $2 \log \left(\frac{2 e}{3}\right)$
c) $3 \log \left(\frac{e}{2}\right)$
d) $3 \log \left(\frac{2 e}{3}\right)$

Ans. a

28. If $y=2^{\frac{1}{-2^{1-x}}}$; then $\lim _{x \rightarrow 1^{+}} y$ is
a) -1
b) 1
c) 0
d) $\frac{1}{2}$

Ans. b
Sol. $\lim _{h \rightarrow 0} 2^{-2^{\frac{1}{1-(1+h)}}}=2^{-0}=1$
29. If $y=\frac{2 x+5}{3 x+10}$, then $2\left(\frac{d y}{d x}\right)\left(\frac{d^{3} y}{d x^{3}}\right)$ is equal to
а) $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$
b) $3 \frac{d^{2} y}{d x^{2}}$
c) $3\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$
d) $3 \frac{d^{2} x}{d y^{2}}$

Ans. C
Sol. $3 x y+10 y=2 x+5$, now differentiate 3 times.
30. If the number of solutions of $\ln |\sin x|=-x^{2}+2 x$ when $x \in(0, \pi)$ is m and when $x \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]$ is n, then $(m+n)$ is equal to
a) 2
b) 4
c) 6
d) 1

Ans. a
Sol. $m=0, n=2$
31. If $x,\{x\}$ and $2[x]$ represent the segments of a focal chord and length of latus rectum of an ellipse respectively, then length of major axis of ellipse is always greater than (where $x \ddot{\mathrm{I}} \mathrm{Z}$)
a) 7
b) 5
c) 8
d) 2

Ans. d
Sol. Clearly, $\mathrm{x},[\mathrm{x}]$ and $\{\mathrm{x}\}$ are in H.P $=[x]=\frac{2 x\{x\}}{x+\{x\}} \Rightarrow[x]=1$
$\Rightarrow \frac{b^{2}}{a}=1 \Rightarrow a\left(1-e^{2}\right)=1 \Rightarrow 2 a>2 \quad[$ since $0<\mathrm{e}<1]$

a) $6 \sqrt{3}$
b) $4 \sqrt{3}$ c) $12 \sqrt{3}$
d) none of these

Ans. a
Sol. $\quad I=\int_{3}^{6}((\sqrt{x-3}+\sqrt{3})+(\sqrt{3}-\sqrt{x-3})) d x=6 \sqrt{3}$
 $a+b+c$ is equal to
a) -2
b) -4
c) 2
d) none of these

Ans. b
Sol. Clearly,
$I=\int \frac{\sin ^{2} x \cos ^{2} x}{(\sin x+\cos x+1)^{2}} d x=\frac{1}{4} \int \frac{\left((\sin x+\cos x)^{2}-1\right)^{2}}{(\sin x+\cos x+1)} d x=\frac{1}{4} \int(\sin x+\cos x-1)^{2} d x$
On simplifying $a+b+c=-4$
34. If $\left.I_{n}={\underset{\mathrm{O}}{-n}}_{n}^{(\{x+1\}}\left\{x^{2}+2\right\}+\left\{x^{2}+3\right\}\left\{x^{2}+4\right\}\right) d x$, (where $\{$.$\} denotes the fractional part)$ then I_{1} is equal to
a) $-\frac{1}{3}$
b) $-\frac{2}{3}$
c) $\frac{1}{3}$
d) none of these

Ans. b
Sol. $\quad I_{1}=\int_{-1}^{1}\left(\{x\}+\left\{x^{3}\right\}\right)\left\{x^{2}\right\} d x=-2 \int_{0}^{1}\left\{x^{2}\right\} d x=-2 \times\left.\frac{x^{3}}{3}\right|_{0} ^{1}=-\frac{2}{3}$
35. Area bounded by $y=f^{-1}(x)$ and tangent and normal drawn to it at the points with abscissae π and 2π, where $f(x)=\sin x-x$ is
a) $\frac{p^{2}}{2}-1$
b) $\frac{p^{2}}{2}-2$
c) $\frac{p^{2}}{2}-4$
d) $\frac{p^{2}}{2}$

Ans. b
Sol. Required area $\mathrm{A}=\int_{\pi}^{2 \pi}((\sin x-x)+2 \pi) d x=\frac{\pi^{2}}{2}-2$ sq.units
36. Let a curve $\mathrm{y}=\mathrm{f}(\mathrm{x}), f(x)^{3} 0^{\prime \prime} x \hat{\mathrm{I}} R$ has property that for every point P on the curve length of subnormal is equal to abscissa of P. If $f(1)=3$, then $f(4)$ is equal to
a) $-2 \sqrt{6}$
b) $2 \sqrt{6}$
c) $3 \sqrt{5}$
d) none of these

Ans. b
Sol. Given $y \frac{d y}{d x}=x$
$y d y=x d x$
$y^{2}=x^{2}+c$
$f(1)=3 \Rightarrow 9-1+c \Rightarrow c=8$
$\Rightarrow y^{2}=x^{2}+8$
$f(x)=\sqrt{x^{2}+8}$
$f(4)=\sqrt{16+8}=2 \sqrt{6}$
37. Range of $f(x)=\cos ^{-1}\left(\frac{x^{2}+x+1}{x^{4}+1}\right)$ is
a) $\left[0, \frac{\pi}{2}\right]$
b) $\left[0, \frac{\pi}{2}\right)$
c) $\left(0, \frac{\pi}{2}\right]$
d) $[0, \pi]$

Ans. b
Sol. Let $g(x)=\frac{x^{2}+x+1}{x^{4}+1}$
$\Rightarrow 0<g(x) \leq 1$
So range of $f(x)$ is $\left[0, \frac{\pi}{2}\right)$
38. If $\mathrm{f}(\mathrm{x})=0$ is a cubic equation with positive and distinct roots α, β, γ such that β is H.M of the roots of $f^{\prime}(x)=0$, then α, β and γ are in
a) A.P
b) G.P
c) H.P
d) none of these

Ans. b
Sol. $\quad f(x)=(x-\alpha)(x-\beta)(x-\gamma)$
$\Rightarrow f^{\prime}(x)=3 x^{2}-2 x(\alpha+\beta+\gamma)+\alpha \beta+\beta \gamma+\gamma \alpha$
$\Rightarrow \beta=\frac{2 \alpha_{1} \beta_{1}}{\alpha_{1}+\beta_{1}}$ (where α_{1}, β_{1} are the roots of $f^{\prime}(x)=0$)
$\Rightarrow \beta^{2}=\gamma \alpha$
39. Let a curve $\mathrm{y}=\mathrm{f}(\mathrm{x}), f(x) \geq 0 \forall x \in R$ has property that for every point P on the curve, the length of subnormal is equal to abscissa of P. If $f(1)=3$, then $f(4)$ is equal to
a) $-2 \sqrt{6}$
b) $2 \sqrt{6}$
c) $3 \sqrt{5}$
d) none of these

Ans. b
Sol. $y \frac{d y}{d x}=x \Rightarrow y^{2}=x^{2}+c$
$f(x)=\sqrt{x^{2}+8} \Rightarrow f(4)=2 \sqrt{6}$
40. If $\int_{0}^{\pi / 2} \frac{d x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}=\frac{\pi}{2 a b}$, then the value of $\int_{0}^{\pi / 2} \frac{d x}{\left(4 \cos ^{2} x+9 \sin ^{2} x\right)^{2}}$ is equal to
a) $\frac{11 \pi}{864}$
b) $\frac{13 \pi}{864}$ c) $\frac{17 \pi}{864}$
d) none of these

Ans. b
Sol. $I=\int_{0}^{\pi / 2} \frac{d x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}=\frac{\pi}{2 a b}$
$\frac{d I}{d a}=\frac{-\pi}{2 a^{2} b}$
$\Rightarrow \int_{0}^{\pi / 2} \frac{\cos ^{2} x d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)}=\frac{\pi}{4 a^{3} b}$
differentiating with respect to b
$\int_{0}^{\pi / 2} \frac{\sin ^{2} x d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)}=\frac{\pi}{4 a^{3} b}$
$\Rightarrow \int_{0}^{\pi / 2} \frac{d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)}=\frac{\pi}{2 a b}\left[\frac{1}{a^{2}}+\frac{1}{b^{2}}\right]=\frac{\pi}{24}\left[\frac{1}{4}+\frac{1}{9}\right]=\frac{13 \pi}{864}$
41. If $\int \frac{d x}{\cos ^{3} x-\sin ^{3} x}=A \tan ^{-1}(\sin x+\cos x)+B \ln \mathrm{f}(\mathrm{x})+\mathrm{C}$, then A is equal to
a) $\frac{2}{3}$
b) $\frac{2}{5}$
c) $-\frac{2}{3}$
d) none of these

Ans. a
Sol. $\quad I=\int \frac{d x}{(\cos x-\sin x)\left(1+\frac{\sin 2 x}{2}\right)}=\int \frac{\cos x-\sin x}{(\cos x-\sin x)^{2}\left(1+\frac{\sin 2 x}{2}\right)} d x$
Put $\cos x+\sin x=t$ $I=\frac{2}{3} \tan ^{-1}(\sin x+\cos x)-\frac{2}{3 \sqrt{2}} \ln f(x)+c$
42. Solution of the differential equation $y\left(2 x^{4}+y\right) \frac{d y}{d x}=\left(1-4 x y^{2}\right) x^{2}$ is given by
a) $3\left(x^{2} y\right)^{2}+y^{3}-x^{3}=c$
b) $x y^{2}+\frac{y^{3}}{3}-\frac{x^{3}}{3}+c=0$
c) $\frac{2}{5} y x^{5}+\frac{y^{3}}{3}=\frac{x^{3}}{3}-\frac{4 x y^{3}}{3}+c$
d) none of these

Ans. a
Sol. Given equation can be written as

$$
\begin{aligned}
& 2 x^{2} y\left(x^{2} d y+2 x y d x\right)+y^{2} d y-x^{2} d x=0 \\
& \text { or } 2 x^{2} y d\left(x^{2} y\right)+y^{2} d y-x^{2} d x=0 \\
& \text { Integrating, we get } \\
& 3\left(x^{2} y\right)^{2}+y^{3}-x^{3}=c
\end{aligned}
$$

43. If $I=\int_{0}^{\pi} \frac{\cos x}{(x+2)^{2}} d x$, then $\int_{0}^{\pi} \frac{\sin x}{x+1} d x$ is equal to
a) 21
b) $\frac{1}{\pi+2}-\frac{1}{2}-1$
c) 0
d) $\frac{1}{\pi+2}+\frac{1}{2}-1$

Ans. d
Sol. $\quad I=\int_{0}^{\pi} \cos x d\left(-\frac{1}{x+2}\right)=\left[\frac{-\cos x}{x+2}\right]_{0}^{\pi}-\int_{0}^{\pi} \frac{\sin x}{x+2} d x$

$$
=\frac{1}{\pi+2}+\frac{1}{2}-\int_{0}^{\pi / 2} \frac{\sin 2 x}{x+1} d x
$$

44. The number of solutions of $\sin \pi x=|\log | x| |$ is
a) infinite
b) 8
c) 6
d) 0

Ans. c

45. If $f(x)=\left|x^{2}+(k-1)\right| x|-k|$ is non differentiable at five real points, then k will lie in
a) $(-\infty, 0)$
b) $(0, \infty)$
c) $(-\infty, 0)-\{-1\}$
d) $(0, \infty)-\{1\}$

Ans. c
Sol. $\quad f(x)=\left|x^{2}+(k-1)\right| x|-k|=|(|x|-1)(|x|+k)|$
Both roots of $(x-1)(x+k)=0$ should be positive and distinct
$\Rightarrow k \in(-\infty, 0)-\{-1\}$
46. Let $g(x)=\int_{a}^{x} f(t) d t$ and $f(x)$ satisfies the following condition $f(x+y)=f(x)+f(y)+2 x y-1, \forall x, y \in R$ and $f^{\prime}(0)=\sqrt{3+a-a^{2}}$, then the exhaustive set of values of x where $g(x)$ increases is
a) $\left(-\infty,-\frac{3}{2}\right)$
b) $\left(-\frac{3}{2}, 0\right)$
c) $(0, \infty)$
d) $(-\infty, \infty)$

Ans. d
Sol. $\quad f(x)=x^{2}+\left(\sqrt{3+a-a^{2}}\right) x+1$
$g^{\prime}(x)=f(x)>0, \forall x \in R$
47. Number of positive continuous function $f(x)$ defined in $[0,1]$ for which
$\int_{0}^{1} f(x) d x=1, \int_{0}^{1} x f(x) d x=2, \int_{0}^{1} x^{2} f(x) d x=4$, is
a) 1
b) 4
c) infinite
d) none of these

Ans. d
Sol. Multiplying these three integral by 4, -4, 1 and adding we get $\int_{0}^{1} f(x)(x-2)^{2} d x=0$.
Hence there does not exist any function satisfying these conditions.
48. Tangents are drawn at the point of intersection P of ellipse $x^{2}+2 y^{2}=50$ and hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$, in the first quadrant. The area of the circle passing through the point P which cuts the intercept of 2 unit length each from these tangents, is
a) 2π
b) $\sqrt{2} \pi$ c) 4π
d) 6π

Ans. a
Sol. Given conic are confocal so they cut orthogonally.
49. Let $f(x)=x^{3}+\frac{1}{x^{3}}, x^{1} 0$. If the intervals in which $f(x)$ increases are $(-\nexists, a]$ and $[b, ¥)$ then $\min (b-a)$ is equal to
a) 0
b) 2
c) 3
d) 4

Ans. b
Sol. Here $f^{\prime}(x)=3 x^{2}-\frac{3}{x^{4}} \geq 0 \Rightarrow x^{6}-1 \geq 0 \Rightarrow x \in(-\infty .1] \cup[1, \infty)$
$\therefore \min (b-a)=\min (b)-\max (a)=1-(-1)=2$
50. Let $\mathrm{y}=\mathrm{f}(\mathrm{x}), \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be an odd differentiable function such that $f(x)>0$ and $\mathrm{g}(\alpha, \beta)=\sin ^{8} \alpha+\cos ^{8} \beta+2-4 \sin ^{2} \alpha \cos ^{2} \beta$. If $f(g(a, b))=0$, then $\sin ^{2} a+\sin ^{2} b$ is equal to
a) 0
b) 1
c) 2
d) 3

Ans. b
Sol. $\quad f^{\prime \prime}(x)$ is odd function $\Rightarrow g(\alpha, \beta)=0$
$\Rightarrow\left(\sin ^{4} \alpha-1\right)^{2}+\left(\cos ^{4} \beta-1\right)^{2}+2\left(\sin ^{2} \alpha-\cos ^{2} \beta\right)^{2}=0$
$\Rightarrow \sin ^{2} \alpha+\sin ^{2} \beta=1$
51. If $f(x)=\underset{0}{x}(f(t))^{2} d t, f: R ® R^{+}$be differentiable function and $f(g(x))$ is differentiable function at $x=a$, then
a) $g(x)$ must be differentiable at $x=a$
b) $g(x)$ may be non-differentiable at $x=a$
c) $g(x)$ may be discontinuous at $x=a$
d) none of these

Ans. a
Sol. Here, $f^{\prime}(x)=(f(x))^{2}>0 ;\left.\frac{d}{d x} f(g(x))\right|_{x=a}=f^{\prime}(g(x)) \lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}$
As $f^{\prime}(g(x)) \neq 0$
$\mathrm{g}(\mathrm{x})$ must be differentiable at $\mathrm{x}=\mathrm{a}$.
52. A polynomial of $6^{\text {th }}$ degree $f(x)$ satisfies $f(x)=f(2-x)$ " $x \hat{\mathrm{I}} R$, if $\mathrm{f}(\mathrm{x})=0$ has 4 distinct and two equal roots, then sum of roots of $f(x)=0$ is
a) 4
b) 5
c) 6
d) 7

Ans. c
Sol. Let α be the root of $\mathrm{f}(\mathrm{x})=0 \Rightarrow f(\alpha)=f(2-\alpha)=0$
$f(x)$ has 4 distinct and two equal roots.
\therefore sum of roots $=6$

a) 0
b) 1
c) 2
d) 3

Ans. c
Sol. We have on putting $t=\frac{x^{2}}{2}$ and solving
$\int_{0}^{\infty} \frac{\ln x}{x^{2}+t^{2}} d t=\frac{2 \pi \ln x}{x} \Rightarrow \frac{\ln x}{x}=\frac{\ln 2}{2}$
$\Rightarrow \mathrm{x}=2$ and 4 ; two solutions.
54. If $f(x)=\begin{array}{cl}e^{x-1}, & 0 £ x £ 1 \\ x+1-\{x\}, & 1<x<3\end{array}$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}-\mathrm{ax}+\mathrm{b}$, such that $\mathrm{f}(\mathrm{x}) . \mathrm{g}(\mathrm{x})$ is continuous in $[0,3)$ then the values of a and b is
a) 2,3
b) 3,2
co $\frac{3}{2}, 1$
d) none of these

Ans. b
Sol. Clearly $f(x)$ is discontinuous at $x=1$ and 2 , for $f(x) g(x)$ to be continuous at $x=1$ and 2 ; $g(1)$ and $\mathrm{g}(2)=0 \Rightarrow \mathrm{a}=3$ and $\mathrm{b}=2$

a) 0
b) 1
c) 2
d) 3

Ans. a
Sol. Let $\frac{x \pi}{n}=t \Rightarrow \int_{0}^{\frac{16 n^{2}}{\pi}} \cos \frac{\pi}{2}\left[\frac{\pi x}{n}\right] d x=\frac{n}{\pi} \int_{0}^{16 n} \cos \frac{\pi}{2}[t] d t=\frac{4 n^{2}}{\pi} \int_{0}^{4} \cos \frac{\pi}{2}[t] d t=0$
56. If ${ }_{2}^{-1}\left(a x^{2}-5\right) d x=0$ and $5+\underset{1}{\mathbf{O}_{1}^{2}}(b x+c) d x=0$ then
a) $a x^{2}-b x+c=0$ has atleast one root in $(1,2)$
b) $a x^{2}-b x+c=0$ has atleast one root in $(-2,-1)$
c) $a x^{2}+b x+c=0$ has atleast one root in $(-2,-1)$
d) none of these

Ans.
Sol. We have $\int_{-2}^{-1}\left(a x^{2}-5\right) d x+\int_{1}^{2}(b x+c) d x+5=\int_{-2}^{-1}\left(a x^{2}-5-b x+c+5\right) d x=0$
$\Rightarrow a x^{2}-b x+c=0$ has atleast one root in $(-2,-1)$

Differential Calculus

Multiple Correct Answer Type

1. If $f(x)=\left[\sin ^{-1}(\sin 2 x)\right]([\cdot]$ denote g.i.f $)$, then
a) $\int_{0}^{\frac{\pi}{2}} f(x) d x=\frac{\pi}{2}-\sin ^{-1}(\sin 1)$
b) $f(x)$ is periodic with period π
c) $\lim _{x \rightarrow \frac{\pi}{2}} f(x)=-1$
d) none of these

Ans. a,b,c
Sol.

2. The equation $(x-n)^{m}+\left(x-n^{2}\right)^{m}+\left(x-n^{3}\right)^{m}+\ldots . .+\left(x-n^{m}\right)^{m}=0$, where m is odd integer has
a) all real roots
b) both complex and real roots
c) one real and $(m-1)$ complex roots
d) $(m-1)$ real and 01 complex roots

Ans. b, c
Sol. $\quad f^{\prime}(x)=m\left((x-n)^{m-1}+\left(x-n^{2}\right)^{m-1}+\ldots . .+\left(x-m^{m}\right)^{m-1}\right)>0$
$\Rightarrow f^{\prime}(x) \neq 0$
$\Rightarrow f(x)=0$ has exactly one real root.
3. Let $f(x)=\int_{0}^{x}|\sin t| d t$, then
a) f is continuous everywhere
b) $f^{\prime}(x)$ is differentiable at $\mathrm{x}=\pi$
c) $f(\pi)=2$
d) $f(x) \geq 0$ for all real x

Ans. a,c,d
Sol. $\quad f^{\prime}(x)=|\sin x|$. Now draw the graphs
4. Let $f(x)=\left\{\begin{array}{cc}x+2, & 0 \leq x<2 \\ 6-x, & x \geq 2\end{array}, g(x)= \begin{cases}1+\tan x, & 0 \leq x<\frac{\pi}{4} \\ 3-\cot x, & \frac{\pi}{4} \leq x<\pi\end{cases}\right.$
a) $f g(x)$ is continuous in $[0, \pi)$
b) $f g(x)$ is not continuous in $[0, \pi)$
c) $f g(x)$ is differentiable in $[0, \pi)$
d) $\mathrm{fg}(\mathrm{x})$ is not differentiable in $[0, \pi)$

Ans. a,d
Sol. $\quad f g(x)= \begin{cases}3+\tan x, & 0 \leq x<\frac{\pi}{4} \\ 3+\cot x, & \frac{\pi}{4} \leq x<\pi\end{cases}$
$\mathrm{fg}(\mathrm{x})$ is continuous in $[0, \pi)$
but $\mathrm{fg}(\mathrm{x})$ is not differentiable at $x=\frac{\pi}{4}$
5. If $f(x)=\int_{x^{n}}^{x^{n}} \frac{d t}{\ln t}, x>0$ and $\mathrm{n}>\mathrm{m}$, then
a) $f^{\prime}(x)=\frac{x^{m-1}(x-1)}{\ln x}$
b) $f(x)$ is decreasing for $x>1$
c) $f(x)$ is increasing in $(0,1)$
d) $f(x)$ is increasing for $x>1$

Ans. c,d
Sol. $\quad f^{\prime}(x)=\frac{1 \cdot x^{n-1}}{\left(\ln x^{n}\right)}-\frac{1 \cdot m x^{m-1}}{\left(\ln x^{m}\right)}$, clearly c and d are the answers.
6. The triangle formed by the normal to the curve $f(x)=x^{2}-a x+2 a$ at the point $(2,4)$ and the co-ordinate axes lies in second quadrant if its area is 2 sq. units then a can be
a) 2
b) $\frac{17}{4}$
c) 5
d) $\frac{19}{4}$

Ans. b, c
Sol. $\quad f^{\prime}(x)=2 x-a$
At $(2,4)$
$f^{\prime}(x)=4-a$
Equation of normal at $(2,4)$ is
$(y-4)=\frac{1}{(4-a)}(x-2)$
Let point of intersection with x and y - axis be A and B respectively then
$A=(-4 a+18,0), B \equiv\left(0, \frac{4 a-18}{a-4}\right)$
Hence $a>\frac{9}{2}$ as
\therefore area of triangle $=\frac{1}{2}(4 a-18) \frac{(4 a-18)}{(a-4)}=2$
$\Rightarrow(4 a-17)(a-5)=0$
$\Rightarrow a=5$ or $\frac{17}{4}$
7. Let $I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x, n \in N$, then
a) $I_{n-2}>I_{n}$
b) $n\left(I_{n-2}-I_{n}\right)=I_{n-2}$
c) $I_{n}-I_{n-1}=\frac{n}{n+1}$
d) none of these

Ans. a,b
Sol. $\quad I_{n}=\frac{n-1}{n} I_{n-2}$ and $I_{n}, I_{n-1}>0$ as $\cos ^{n} x \geq 0$ in $\left[0, \frac{\pi}{2}\right]$
$\therefore I_{n-1}>I_{n}$
Also $I_{n}=\left(\frac{n-1}{n}\right) I_{n-2}$
8. If $\mathrm{f}(\mathrm{x})$ be such that $f(x)=\max \left\{|2-x|, 2-x^{3}\right\}$ then
a) $\mathrm{f}(\mathrm{x})$ is continuous $\forall x \in R$
b) $\mathrm{f}(\mathrm{x})$ is differentiable $\forall x \in R$
c) $f(x)$ is non-differentiable at one point only
d) $f(x)$ is non-differentiable at 4 points only

Ans. a,d
Sol. Clearly from the graph, $\mathrm{f}(\mathrm{x})$ is continuous $\forall x \in R$ but not differentiable at $-1,0,1,2$, (4 points).

9. Let $I_{n}=\int_{0}^{\pi} \frac{\sin ^{2} n \theta}{\sin ^{2} \theta} d \theta, n \in N$, then
a) $I_{4}=4 \pi$
b) $I_{5}=5 \pi$
c) $I_{4}=5 \pi$
d) $I_{5}=4 \pi$

Ans. a, b
Sol. $\quad I_{n+1}-I_{n}=\int_{0}^{\pi} \frac{\sin (2 n+1) \theta}{\sin \theta} d \theta=\pi \forall n \in N$
$I_{1}, I_{2}, I_{3} \ldots \ldots$ form an AP with common difference π
$I_{n}=\pi+(n-1) \pi \Rightarrow I_{n}=n \pi$
10. Let $f(x)=a b \sin x+b \sqrt{1-a^{2}} \cos x+c$, where $|a|<1, b>0$, then
a) maximum value of $f(x)$ is b if $c=0$
b) difference of maximum and minimum value of $f(x)$ is $2 b$
c) $f(x)=c$ if $x=-\cos ^{-1} a$
d) $f(x)=c$ if $x=\cos ^{-1} a$

Ans. a, b, c
Sol. $f(x)=\sqrt{a^{2} b^{2}+b^{2}-b^{2} a^{2}} \sin (x+\alpha)+c=b \sin (x+\alpha)+c$ where $\tan \alpha=\frac{\sqrt{1-a^{2}}}{a}$
$(f(x))_{\max }-(f(x))_{\min }=2 b$

Also, at $x=-\cos ^{-1} a, f(x)=c$
11. $\lim _{x \rightarrow 0}\left(\left[n \frac{\sin x}{x}\right]+\left[m \frac{\tan x}{x}\right]\right)$, (where $[\cdot]$ represent greatest integer function) is
a) $m+n-1$ if $n, m \in N$
b) $m+n-2$ if $m \in I^{-}, n \in N$
c) $m+n$ if $m \in N, n \in I^{-}$
d) $m+n-1$ if $m, n \in 1^{-}$

Ans. a,b,c,d
Sol. If $m, n \in N$, and $\mathrm{L}=\mathrm{n}-1+\mathrm{m}$
If $m \in I^{-}, n \in N$, then $\mathrm{L}=\mathrm{m}-1+\mathrm{n}=\mathrm{m}+\mathrm{n}-2$
If $m \in N, n \in I^{-}$, then $\mathrm{L}=\mathrm{n}+\mathrm{m}$
$m, n \in I^{-}$then $\mathrm{L}=\mathrm{n}+\mathrm{m}-1$
12. Let $f: R \rightarrow R$, such that $f^{\prime \prime}(x)-2 f^{\prime}(x)=2 e^{x}$ and $f^{\prime}(x)>0, \forall x \in R$, then which of the following can be correct.
a) $\int_{2}^{3} f(x) d x=10$
b) $\int_{1}^{4} f(x) d x=-5$
c) $f(4)=5 \quad$ d) $f(-5)=-4$

Ans. a,c
Sol. $\frac{d}{d x}\left(e^{-x}\left(f^{\prime}(x)-f(x)\right)\right)=2$
$\Rightarrow e^{-x}\left(f^{\prime}(x)-f(x)\right)=2 x+c_{1}$
$\Rightarrow f(x)=\left(x^{2}+c_{1} x+c_{2}\right) e^{x}$ and $f^{\prime}(x)=\left(x^{2}+\left(c_{1}+2\right) x+c_{1}+c_{2}\right) e^{x}$
Given that $f^{\prime}(x)>0 \quad \Rightarrow c_{1}^{2}-4 c_{2}+4<0$
$\Rightarrow c_{1}^{2}-4 c_{2}<0 \Rightarrow f(x)>0, \forall x$

Differential Calculus

Assertion Reasoning Type

1. Statement - I: If $2 f(x)+f(-x)=\frac{1}{x} \sin \left(x-\frac{1}{x}\right)$ then value of $I=\int_{1 / e}^{e} f(x) d x=0$

Statement - II : If $f(2 a-x)=-f(x)$, then $\int_{0}^{2 a} f(x) d x=0$
a) Statement 1 is true, Statement -2 is true; Statement 2 is a correct explanation for statement 1
b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1
c) Statement 1 is true; Statement 2 is false
d) Statement 1 is false; Statement 2 is true

Ans. b
Sol. $\quad 2 f(x)+f(-x)=2 f(-x)+f(x) \Rightarrow f(x)=f(-x)$
$f(x)=\frac{1}{3 x} \sin \left(x-\frac{1}{x}\right)$
$I=\int_{1 / e}^{e} \frac{1}{3 x} \sin \left(x-\frac{1}{x}\right) d x=-\int_{1 / e}^{e} \frac{1}{3 t} \sin \left(t-\frac{1}{t}\right) d x=-1$
$\Rightarrow I=0$
2. Statement - 1: If y is a function of x such that $y(x-y)^{2}=x$ then $\int \frac{d x}{x-3 y}=\frac{1}{2}\left\{\log (x-y)^{2}-1\right\}+c$
Statement - 2: $\int \frac{d x}{x-3 y}=\log (x-3 y)+c$
a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for statement1
b) Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for statement-1
c) Statement- 1 is true, Statement- 2 is false
d) Statement-1 is false, Statement-2 is true

Ans. c
Sol. For statement 1, we will prove that $\frac{d}{d x}($ R.H.S $)=\frac{1}{x-3 y}$
R.H.S $=\frac{1}{2} \log \left[\frac{x}{y}-1\right]=\frac{1}{2}[\log (x-y)-y]=\frac{1}{2}\left\{\frac{\log x-\log y}{2}-\log y\right\}=\frac{1}{4}\{\log x-3 \log y\}$
$\Rightarrow \frac{d}{d x}($ R.H.S $)=\frac{1}{4}\left[\frac{1}{x}-\frac{3}{y} \frac{d y}{d x}\right]=\frac{1}{4}\left[\frac{1}{x}-\frac{3}{y} \frac{d y}{d x}\right]=\frac{1}{4}\left[\frac{1}{x}-\frac{3}{y}\left(\frac{-y}{x}\right) \frac{x+y}{x-3 y}\right]=\frac{1}{x-3 y}$
$\therefore 1$ is true
For statement $2: \int \frac{d x}{x-3 y}=\log (x-3 y)+c$, we are assuming that y is constant.
3. Statement - I: The function $f(x)=(3 x-1)\left|4 x^{2}-12 x+5\right| \cos \pi x$ is differentiable at $x=\frac{1}{2}, \frac{5}{2}$
Statement - II: $\cos (2 n+1) \frac{\pi}{2}=0 \forall n \in 1$
a) Statement 1 is true, Statement -2 is true; Statement 2 is a correct explanation for statement 1
b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1
c) Statement 1 is true; Statement 2 is false
d) Statement 1 is false; Statement 2 is true

Ans. a
Sol. Statement 1 is correct as though $\left|4 x^{2}-12 x+5\right|$ is non differentiable at $x=\frac{1}{2}, \frac{5}{2}$ but $\cos \pi x=0$ at those points. So $f^{\prime}\left(\frac{1}{2}\right)$ and $f^{\prime}\left(\frac{5}{2}\right)$ exists.
4. Statement - I: For the function $f(x)= \begin{cases}15-x, & x<2 \\ 2 x-3, & x \geq 2\end{cases}$ $\mathrm{x}=2$ is neither a maximum, nor a minimum point.
Statement-II: $f^{\prime}(x)$ does not exist at $\mathrm{x}=2$.
a) Statement 1 is true, Statement -2 is true; Statement 2 is a correct explanation for statement 1
b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1
c) Statement 1 is true; Statement 2 is false
d) Statement 1 is false; Statement 2 is true

Ans. d
Sol. $x=2$ is a point of local minima.
5. Statement - 1: A tangent parallel to x-axis can be drawn for $f(x)=(x-1)(x-2)(x-3)$ in the interval [1, 3]
Statement - 2: A horizontal tangent cannot be drawn in [1, 3]
a) Statement- 1 is true, Statement-2 is true, Statement-2 is a correct explanation for statement1
b) Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for statement-1
c) Statement- 1 is true, Statement- 2 is false d) Statement- 1 is false, Statement- 2 is true

Ans. c
Sol. Apply Rolle's Theorem.
6. Statement -I : Tangent drawn at $(0,1)$ to the curve $y=x^{3}-3 x+1$ meets the curve thrice at one point only.
Statement - II : Tangent drawn at $(1,-1)$ to the curve $y=x^{3}-3 x+1$ meets the curve thrice at one point only
a) Statement 1 is true, Statement -2 is true; Statement 2 is a correct explanation for statement 1
b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1
c) Statement 1 is true; Statement 2 is false
d) Statement 1 is false; Statement 2 is true

Ans. c

Sol. Here $\frac{d y}{d x}=3 x^{2}-3$, statement $-\left.1 \frac{d y}{d x}\right|_{a t(0,1)}=-3$
Equation of tangent $y=-3 x+1$ meets $y=x^{3}-3 x+1 \Rightarrow-3 x+1=x^{3}-3 x+1$
$\Rightarrow x=0$
\therefore tangent meets the curve at one point only \Rightarrow statement -1 is true.
Statement -2 again $\left.\frac{d y}{d x}\right|_{a t(1,-1)}=0$
\therefore equation of tangent is $y+1=0(x-1)$ i.e $y=-1$
$\Rightarrow-1=x^{3}-3 x+1 \Rightarrow(x-1)\left(x^{2}+x-1\right)=0 \Rightarrow(x-1)^{2}(x+2)=0$
\Rightarrow the tangent meets the curve at two points.
7. Statement -I : The equation $3 x^{2}+4 a x+b=0$ has atleast one root in $(0,1)$ if $3+4 a=0$ Statement $-I I: f(x)=3 x^{2}+4 x+b$ is continuous and differentiable in $(0,1)$
a) Statement 1 is true, Statement -2 is true; Statement 2 is a correct explanation for statement 1
b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1
c) Statement 1 is true; Statement 2 is false
d) Statement 1 is false; Statement 2 is true

Ans. d
Sol. If $b<0$, then $f(0)=b<0, f(1)=b<0$
$\therefore 0,1$ lie between the roots, statement -1 is false.
8. Statement - I: If $\mathrm{n}>1$, then $\stackrel{\mathrm{O}}{\mathrm{O}}_{\frac{\mathrm{O}}{}}^{\frac{d x}{1+x^{n}}=\dot{\mathrm{O}}} \frac{1}{\left(1-x^{n}\right)^{1 / n}}$

Statement-II: $\underset{a}{b}$ Ò $_{a} f(x) d x=\stackrel{b}{\text { Ò }} f(a+b-x) d x$
a) Statement 1 is true, Statement -2 is true; Statement 2 is a correct explanation for statement 1
b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1
c) Statement 1 is true; Statement 2 is false
d) Statement 1 is false; Statement 2 is true

Ans. b
Sol. The statement - 1 can be proved by showing that both integrals are equal to a third integral. If we put $x^{n}=\tan ^{2} \theta$ in the integral on LHS and $x^{2}=\sin ^{2} \theta$ in the integral on RHS, then both integrals will be equal to $\frac{2}{n} \int_{0}^{\pi / 2} \tan ^{(2 / n)-1} \phi d \phi$ and $\frac{2}{n} \int_{0}^{\pi / 2} \tan ^{(2 / n)-1} \theta d \theta$ respectively. Since the last two integrals are equal statement -1 is proved but correct statement -2 has no role to play here.

a) Statement 1 is true, Statement -2 is true; Statement 2 is a correct explanation for statement 1
b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1
c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true

Ans. b
Sol. $\quad \int_{0}^{n \pi}\left|\frac{\sin x}{x}\right| d x=\int_{0}^{\pi}\left|\frac{\sin x}{x}\right| d x+\int_{0}^{2 \pi}\left|\frac{\sin x}{x}\right| d x+\ldots .+\int_{(n-1) \pi}^{n \pi}\left|\frac{\sin x}{x}\right| d x$
$=\int_{0}^{\pi} \frac{\sin x}{x} d x+\int_{0}^{\pi}\left|\frac{\sin (t+\pi)}{t+\pi}\right| d t+\int_{0}^{\pi}\left|\frac{\sin (u+2 \pi)}{u+2 \pi}\right| d u+\ldots .$.
$=\sum_{r=1}^{n} \int_{0}^{\pi} \frac{\sin x}{x+(r-1) \pi} d x>\sum_{r=1}^{n} \int_{0}^{\pi} \frac{\sin x}{\pi+(r-1) \pi} d x$
$=\sum_{r=1}^{n} \int_{0}^{\pi} \frac{\sin x}{\pi r} d x=\sum_{r=1}^{n} \frac{2}{\pi r}=\frac{2}{\pi}\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)$
10. Statement $-I$: Function $f(x)=\sin (x+3 \sin x)$ is periodic

Statement - II: $f(g(x))$ is periodic if $(g(x)$ is periodic
a) Statement 1 is true, Statement -2 is true; Statement 2 is a correct explanation for statement 1
b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1
c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true

Ans. b
Sol. Clearly we have $f(x+2 \pi)=f(x) \Rightarrow 2 \pi$ is period
Statement 2 is obvious
11. Statement - I: Sum of LHD and RHD of $f(x)=\left|x^{2}-5 x+6\right|$ at $x=2$ is 0

Statement - II: Sum of LHD and RHD of $\mathrm{f}(\mathrm{x})=|(x-a)(x-b)|$ at $\mathrm{x}=\mathrm{a}(\mathrm{a}<\mathrm{b})$ is equal to zero
a) Statement 1 is true, Statement -2 is true; Statement 2 is a correct explanation for statement 1
b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1
c) Statement 1 is true; Statement 2 is false
d) Statement 1 is false; Statement 2 is true

Ans. a
Sol. Here $f(x)=\left\{\begin{array}{cc}x^{2}-5 x+6, & x \leq 2 \\ -x^{2}+5 x-6, & 2<x \leq 3 \\ x^{2}-5 x+6, & x \geq 3\end{array}\right.$

$$
f^{\prime}(x)=\left\{\begin{array}{cc}
2 x-5, & x<2 \\
-2 x+5, & 2<x<3 \\
2 x-5, & x>3
\end{array}\right.
$$

$$
f^{\prime}\left(2^{-}\right)+f^{\prime}\left(2^{+}\right)=-1+1=0
$$

Similarly in statement $2, f^{\prime}\left(a^{-}\right)+f^{\prime}\left(a^{+}\right)=0 \Rightarrow$ statement 2 explanations statement 1
12. Statement-I: $\lim _{n ® ¥} \frac{x^{n}}{n!}=0 \quad " x>0$

Statement - II : Every sequence whose nth term contains n ! in the denominator, converges to zero
a) Statement 1 is true, Statement - 2 is true; Statement 2 is a correct explanation for statement 1
b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1
c) Statement 1 is true; Statement 2 is false
d) Statement 1 is false; Statement 2 is true

Ans. C
Sol. The statement - 1 is true for any $\mathrm{x}>0$, we can choose sufficiently larger n such that $\frac{x^{n}}{n!}$ is small.
Statement -2 is false, since $\frac{(n!)^{2}}{n}$ contains $n!$ in the denominator but diverges to ∞
13. Statement - I: Minimum number of points of discontinuity of the function $f(x)=(g(x))[2 x-1]$ " $x \hat{\mathrm{I}}(-3,-1)$, where [.] denotes the greatest integer function and $g(x)=a x^{3}+x^{2}+1$ is zero
Statement - II : $f(x)$ can be continuous at a point of discontinuity, say $x=c_{1}$ of $[2 x-1]$ if $g\left(c_{1}\right)=$ 0
a) Statement 1 is true, Statement -2 is true; Statement 2 is a correct explanation for statement 1
b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1
c) Statement 1 is true; Statement 2 is false
d) Statement 1 is false; Statement 2 is true

Ans. d
Sol. Clearly, $[2 x-1]$ is discontinuous at three points $x=\frac{-5}{2}, \frac{-3}{2}$ and -2
$f(x)$ may be continuous if $g(x)=a x^{3}+x^{2}+x+1=0$ at $x=\frac{-5}{2}, \frac{-3}{2}$ or -2
$g(x)$ can be zero at only one point for a fixed value of a
\therefore minimum number of points of discontinuity $=2$
14. Let $(\sin y)^{\sin \left(\frac{\pi x}{2}\right)}+\frac{\sqrt{3}}{2} \sec ^{-1}(2 x)+2^{x} \tan (x+2)=0$

Statement - 1: $\frac{d y}{d x}$ at $\mathrm{x}=1$ will not exist.
Statement - 2: $(f(x))^{g(x)}$ is discontinuous if $\mathrm{f}(\mathrm{x})<0$
a) Statement- 1 is true, Statement- 2 is true, Statement- 2 is a correct explanation for statement1
b) Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for statement-1
c) Statement-1 is true, Statement-2 is false
d) Statement-1 is false, Statement-2 is true

Ans. a
Sol. Since $\mathrm{y}<0$ for $\mathrm{x}=-1$, hence $(\sin y)^{\sin \left(\frac{\pi x}{2}\right)}$ does not exist in neighbourhood of $\mathrm{x}=-1$
15. Statement-I: Let $f: R-\{1,2,3\} \rightarrow R$ be a function defined by $f(x)=\frac{1}{x-1}+\frac{2}{x-2}+\frac{3}{x-3}$. Then f is many-one function.
Statement - II : If either $f^{\prime}(x)>0$ or $f^{\prime}(x)<0 \forall x \in$ domain of f , then $y=f(x)$ is one-one function.
a) Statement 1 is true, Statement -2 is true; Statement 2 is a correct explanation for statement 1
b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1
c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true

Ans. C
Sol. From the graph it is clear that $f(x)$ is not one-one statement 1 is true. Also $f^{\prime}(x)<0$, $\forall x \in$ domain of f but the function is not $1-$ 1 so statement -2 is false.

Differential Calculus

Comprehension Type

Paragraph - 1

Consider the curve given by parametric equation $\mathrm{x}=\mathrm{t}-\mathrm{t}^{3}, \mathrm{y}=1-\mathrm{t}^{4}, t \in R$

1. The curve $y=f(x)$ intersect y-axis at
a) one point only
b) 2 point only
c) 3 point only
d) 4 point only

Ans. b
2. The curve $y=f(x)$ is symmetric about
a) x-axis
b) y-axis
c) $y=x$ d) none of these

Ans. b
3. The curve forms a loop of area
a) $8 / 35$
b) $16 / 35$
c) $31 / 35$
d) none of these

Ans. b
Sol. For $\mathrm{x}=0, \mathrm{t}=0,1,-1, \mathrm{y}=1,0$
If $\alpha=t-t^{3}$ replace t with $-\mathrm{t}, \beta=1-t^{4}$
$\Rightarrow \alpha_{1}=-t+t^{3}=-\alpha, \beta=1-t^{4}=\beta$
$\Rightarrow(\alpha, \beta)$ and $(-\alpha, \beta)$ both lie on curve
Area $=\Rightarrow\left|2 \int_{0}^{1} x d y\right|=\left|2 \int_{0}^{1}\left(t-t^{3}\right)\left(-4 t^{3}\right) d t\right|=\frac{16}{35}$

Paragraph - 2

Let n be non-negative integer, $I_{n}=\int x^{n} \sqrt{a^{2}-x^{2}} d x, a>0$. Relation between I_{n-2}, I_{n-1}, I_{n} can be obtain by integrating by parts. Clearly $I_{1}=\frac{-1}{3}\left(a^{2}-x^{2}\right)^{3 / 2}$
4. If $I_{n}=\frac{-x^{n-1}\left(a^{2}-x^{2}\right)^{3 / 2}}{A}+a^{2} B I_{n-2}$, where A and B are constants, then A must be equal to
a) $n+1$
b) $n-1$
c) $n+2$
d) n

Ans. c
5. In the above question, $\mathrm{B}=$
a) $\frac{n+1}{n+2}$
b) $\frac{n}{n+2}$
c) $\frac{n+2}{n+1}$
d) $\frac{n-1}{n+2}$

Ans. d
6. The value of the integral $\int_{0}^{a} x^{4} \sqrt{a^{2}-x^{2}} d x$ is equal to
a) $\frac{\pi a^{6}}{32}$
b) $\frac{\pi a^{4}}{16}$
c) $\frac{\pi a^{4}}{64}$
d) $\frac{\pi a^{2}}{4}$

Ans. a
Sol. $\quad I_{n}=-\frac{1}{2} \int x^{n-1}(-2 x) \sqrt{a^{2}-x^{2}} d x$
$=-\frac{1}{2}\left[x^{n-1} \frac{2}{3}\left(a^{2}-x^{2}\right)^{3 / 2}-\int(n-1) x^{n-2} \frac{2}{3}\left(a^{2}-x^{2}\right)^{3 / 2} d x\right]$

$$
\begin{aligned}
& =\frac{-x^{n-1}\left(a^{2}-x^{2}\right)^{3 / 2}}{3}+\frac{n-1}{3} a^{2} I_{n-2}-\frac{n-1}{3} I_{n} \\
& \therefore I_{n}=\frac{-x^{n-1}\left(a^{2}-x^{2}\right)^{3 / 2}}{n+2}+\frac{n-1}{n+2} a^{2} I_{n-2} \\
& I_{4}=\frac{-x^{3}\left(a^{2}-x^{2}\right)^{3 / 2}}{6}+\frac{1}{2} a^{2} I_{2}=\frac{-x^{3}\left(a^{2}-x^{2}\right)^{3 / 2}}{6}+\frac{a^{2}}{2}\left[\frac{-x\left(a^{2}-x^{2}\right)^{3 / 2}}{4}+\frac{1}{4} a^{2} \int \sqrt{a^{2}-x^{2}} d x\right] \\
& =\frac{-x^{3}\left(a^{2}-x^{2}\right)^{3 / 2}}{6}-\frac{a^{2} x\left(a^{2}-x^{2}\right)^{3 / 2}}{8}+\frac{a^{4}}{8}\left[\frac{x \sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right] \\
& \therefore \int_{0}^{a} x^{4} \sqrt{a^{2}-x^{2}} d x=\frac{\pi a^{6}}{32}
\end{aligned}
$$

Paragraph - 3

An equation of the form $2 n \log _{a} f(x)=\log _{a} g(x)$, a>0, $a \neq 1, n \in N$ is equivalent to the system $f(x)>0$ and $(f(x))^{2 n}=g(x)$
7. Solution set of the equation $\log \left(8-10 x-12 x^{2}\right)=3 \log (2 x+1)$ is
a) $\{1\}$
b) $\{2,3\}$
c) $\{5\}$
d) ϕ

Ans. d
Sol. $2 x-1>0,8-10 x-12 x^{2}>0$ and $8-10 x-12 x^{2}=(2 x-1)^{3}$
$\Rightarrow(2 x-1)\left(4 x^{2}+2 x+9\right)=0$
No solution
8. Solution set of the equation $\log _{10}(x-9)+2 \log _{10} \sqrt{2 x-1}=2$ is
a) $\{1\}$
b) $\{13\}$
c) $\left\{\frac{1}{2}\right\}$ d) ϕ

Ans. b
Sol. $\quad x-9>0,2 x-1>0$ and $(x-9)(2 x-1)=100$
$\Rightarrow x=13$
9. Solution set of $\frac{1}{2} \log _{3}(x+1)-\log _{9}(1-x)=\log _{9}(2 x+3)$ is
a) $\left\{\frac{1}{2}(\sqrt{5}-1)\right\}$
b) $\left\{\frac{\sqrt{5}+1}{2}\right\}$
c) $\left\{\frac{1}{2}, \frac{1}{3}\right\}$
d) none of these

Ans. a
Sol. $\quad x+1>0,1-x>0,2 x+3>0$
$\Rightarrow-\frac{3}{2}<x<1$
\therefore Equation
$\frac{x+1}{1-x}=2 x+3$

$$
\Rightarrow x=\frac{\sqrt{5}-1}{2}
$$

Paragraph - 4

If $\frac{d y}{d x}=f(x)+\int_{0}^{1} f(x) d x$, then
10. The equation of the curve $y=f(x)$ passing through $(0,1)$ is
a) $f(x)=\frac{2 e^{x}-e+1}{3-e}$
b) $f(x)=\frac{3 e^{x}-2 e+1}{2(2-e)}$
c) $f(x)=\frac{2 e^{x}+e-1}{e+1}$
d) none of these

Ans. a
11. The number of points of discontinuity of $y=f(x)$ in $(0,1)$ are
a) 4
b) 3
c) 2
d) 0

Ans. d
12. The area bounded by the curve $y=f(x), x=0$ and $x=1$ is
a) $\frac{e-1}{e-3}$
b) $\frac{e-1}{3-e}$
c) $-\frac{1}{2}$
d) $\frac{3(e-1)}{e+1}$

Ans. b
Sol. $f^{\prime}(x)=f(x)+\int_{0}^{1} f(x) d x \Rightarrow f^{\prime \prime}(x)=f^{\prime}(x) \Rightarrow \frac{f^{\prime \prime}(x)}{f^{\prime}(x)}=1$
$\Rightarrow \log \left(f^{\prime}(x)\right)=x+\ln c$
$\Rightarrow \ln \left(\frac{f^{\prime}(x)}{c}\right)=x \Rightarrow f^{\prime}(x)=c e^{x} \Rightarrow f(x)=c e^{x}+D$, at $\mathrm{x}=0, \mathrm{y}=1$
So $f(x)=c e^{x}+1-c$
$\Rightarrow c e^{x}=e^{x}+1-c+\int_{0}^{1}\left(c e^{x}+1-c\right) d x$
$\Rightarrow c-1=\left\{c e^{x}+(1-c) x\right\}_{0}^{1} \Rightarrow c=\frac{2}{3-e}$
$\therefore f(x)=\frac{2 e^{x}-e+1}{3-e}, \int_{0}^{1} \frac{2 e^{4}-e+1}{3-e} d x=\frac{e-1}{3-e}$
$f(x)$ is continuous everywhere.

Paragraph - 5

$f(x), g(x), h(x)$ all are continuous and differentiable functions in [a, b] also $a<c<b$ and $f(a)=g(a)=$ $h(a)$. Point of intersection of the tangent at $x=c$ with chord joining $x=a$ and $x=b$ is on the left of c in $y=f(x)$ and on the right in $y=h(x)$. And tangent at $x=c$ is parallel to the chord in case $y=g(x)$. Now answer the following questions.
13. If $f^{\prime}(x)>g^{\prime}(x)>h^{\prime}(x)$ then
a) $\mathrm{f}(\mathrm{b})<\mathrm{g}(\mathrm{b})<\mathrm{h}(\mathrm{b})$
b) f(b) $>$ g(b) $>$ h(b)
c) $\mathrm{f}(\mathrm{b}) \leq \mathrm{g}(\mathrm{b}) \leq \mathrm{h}(\mathrm{b})$
d) $f(b) \geq g(b) \geq h(b)$

Ans. b
14. If $f(b)=g(b)=h(b)$ then
a) $f^{\prime}(c)=g^{\prime}(c)=h^{\prime}(c)$
b) $f^{\prime}(c)>g^{\prime}(c)>h^{\prime}(c)$
c) $f^{\prime}(c)<g^{\prime}(c)<h^{\prime}(c)$
d) none of these

Ans. c
Sol. According to paragraph $\frac{f(b)-f(a)}{b-a}>f^{\prime}(c), \frac{g(b)-g(a)}{b-a}=g^{\prime}(c)$ and
$\frac{h(b)-h(a)}{b-a}<h^{\prime}(c)$
As $f^{\prime}(x)>g^{\prime}(x)>h^{\prime}(x) \Rightarrow \frac{f(b)-f(a)}{b-a}>\frac{g(b)-g(a)}{b-a}>\frac{h(b)-h(a)}{b-a}$
15. If $c=\frac{a+b}{2}$ for each b , then
a) $g(x)=A x^{2}+B x+C$
b) $g(x)=\log x$
c) $g(x)=\sin x$
d) $g(x)=e^{x}$

Ans. a
Sol. If $g(x)=A x^{2}+B x+C$

$$
\Rightarrow \frac{g(b)-g(a)}{b-a}=\frac{A\left(b^{2}-a^{2}\right)+B(b-a)}{b-a} \Rightarrow 2 A \frac{(b+a)}{2}+B=g^{\prime}\left(\frac{b+a}{2}\right)
$$

Paragraph - 6

If $f: R \rightarrow R$ and $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})+\mathrm{h}(\mathrm{x})$ where $\mathrm{g}(\mathrm{x})$ is a polynomial and $\mathrm{h}(\mathrm{x})$ is a continuous and differentiable bounded function on both sides, then $f(x)$ is onto if $g(x)$ is of odd degree and $f(x)$ is into if $g(x)$ is of even degree. To check whether $f(x)$ is one-one we need to differentiate $f(x)$. If $f^{\prime}(x)$ changes sign in domain of f then f is many one else one-one.
16. $f: R \rightarrow R$ and $\mathrm{f}(\mathrm{x})=\mathrm{a}_{1} \mathrm{x}+\mathrm{a}_{3} \mathrm{x}^{3}+\mathrm{a}_{5} \mathrm{x}^{5}+\ldots .+\mathrm{a}_{2 \mathrm{n}+1} \mathrm{x}^{2 \mathrm{n}+1}-\cot ^{-1} \mathrm{x}$ where $0<\mathrm{a}_{1}<\mathrm{a}_{3}<\ldots \ldots .<\mathrm{a}_{2 \mathrm{n}+1}$, then the function $f(x)$ is
a) one-one into
b) many-one onto
c) one-one ontod) many-one into

Ans. c
Sol. $\mathrm{f}(\mathrm{x})=$ odd degree polynomial + bounded function $\cot ^{-1} x \in(0, \pi)$, also $f^{\prime}(x)>0$
17. $f: R \rightarrow R$ and $f(x)=\frac{x\left(x^{4}+1\right)(x+1)+x^{4}+2}{x^{2}+x+1}$, then $\mathrm{f}(\mathrm{x})$ is
a) one-one into
b) many-one onto
c) one-one ontod) many-one into

Ans. d
Sol. $f(x)=x^{4}+1+\frac{1}{x^{2}+x+1}=$ even degree polynomial + bounded function $\frac{1}{x^{2}+x+1} \in\left(0, \frac{4}{3}\right)$
$f^{\prime}(x)=\frac{4 x^{3}\left(x^{2}+x+1\right)^{2}-2 x-1}{\left(x^{2}+x+1\right)^{2}}$
$\Rightarrow f^{\prime}(x)=0$ has atleast one root which is repeated odd number of times or it has one root which is not repeated since numerator of $f^{\prime}(x)$ is a polynomial of degree 7 .
$\Rightarrow f(x)=0$ has a point of extrema.
18. $f: R \rightarrow R$ and $\mathrm{f}(\mathrm{x})=2 \mathrm{ax}+\sin 2 \mathrm{x}$, then the set of values of a for which $f(x)$ is one-one onto is
a) $a \in\left(-\frac{1}{2}, \frac{1}{2}\right)$
b) $a \in(-1,1)$
c) $a \in R-\left(-\frac{1}{2}, \frac{1}{2}\right)$
d) $a \in R-(-1,1)$

Ans. d
Sol. $\mathrm{f}(\mathrm{x})=$ odd degree polynomial + bounded function $\sin 2 x \Rightarrow f(x)$ is onto
$\mathrm{f}(\mathrm{x})$ is one-one if $f^{\prime}(x) \geq 0$ or $f^{\prime}(x) \leq 0 \forall x$
$\Rightarrow a \geq 1 \cup a \leq-1 \Rightarrow a \in R-(-1,1)$

Paragraph - 7

 is differentiable " $x \hat{\mathrm{I}} R$ through $(0,1)$. If tangents drawn to both the curves at the points with equal abscissae intersect on the same point on the x -axis, then
19. Number of solutions $f(x)=2 e x$ is equal to
a) 0
b) 1
c) 2
d) none of these

Ans. b
20. $\lim _{x \mathbb{B} ¥}(f(x))^{f(-x)}$ is
a) 3
b) 6
c) 1
d) none of these

Ans. c
21. The function $f(x)$ is
a) increasing for all x
b) non-monotonic
c) decrease for all x
d) none of these

Ans. a
Sol. We have the equations of the tangents to the curve $y=\int_{-\infty}^{x} f(t) d t$ and $\mathrm{y}=\mathrm{f}(\mathrm{x})$ at arbitrary points on them are

$$
\begin{equation*}
Y-\int_{-\infty}^{x} f(t) d t=f(x)(X-x) \tag{1}
\end{equation*}
$$

and $Y-f(x)=f^{\prime}(x)(X-x)$
As (1) and (2), intersect at the same point on x -axis
\therefore Putting $\mathrm{Y}=0$ and equating X -coordinates we have
$x-\frac{f(x)}{f^{\prime}(x)}=x-\frac{\int_{-\infty}^{x} f(t) d t}{f(x)}$
$\Rightarrow \frac{f(x)}{\int_{-\infty}^{x} f(t) d t}=\frac{f^{\prime}(x)}{f(x)} \Rightarrow \int_{-\infty}^{x} f(t) d t=c f(x)$.

Also $f(0)=1 \Rightarrow \int_{-\infty}^{0} f(t) d t=\frac{1}{2}=c \times 1 \Rightarrow c=\frac{1}{2}$
$\Rightarrow \int_{-\infty}^{x} f(t) d t=\frac{1}{2} f(x)$; differentiating both sides and on integrating and using boundary condition.
We get, $f(x)=e^{2 x} ; y=2 e x$ is tangent to $y=e^{2 x} \Rightarrow$ number of solutions $=1$
Clearly $\mathrm{f}(\mathrm{x})$ is increasing for all x
$\lim _{x \rightarrow \infty}\left(e^{2 x}\right)^{-2 x}=1 \quad\left(\infty^{0}\right.$ form $)$

Paragraph - 8

$f(x)=\underset{0}{\mathrm{O}}\left(4 t^{4}-a t^{3}\right) d t$ and $\mathrm{g}(\mathrm{x})$ is quadratic polynomial satisfying $\mathrm{g}(0)+6=g \not \subset(0)-\mathrm{c}=$ $g \not(0)+2 b=0$. If $\mathrm{y}=\mathrm{h}(\mathrm{x})$ and $\mathrm{y}=\mathrm{g}(\mathrm{x})$ intersect in 4 distinct points with abscissae $\mathrm{x}_{\mathrm{i}} ; \mathrm{i}=1,2,3,4$ such that $\mathrm{a} \frac{i}{x_{i}}=B, \mathrm{a}, \mathrm{b}, \mathrm{cI} \mathrm{R}^{+}, \mathrm{h}(\mathrm{x})=f \not \subset(x)$; then
22. Abscissae of point of intersection are in
a) A.P
b) G.P
c) H.P
d) none of these

Ans. a
23. a is equal to
a) 6
b) 8
c) 20
d) 12

Ans. c
24. c is equal to
a) 25
b) $\frac{25}{2}$
c) $\frac{25}{4}$
d) $\frac{25}{8}$

Ans. a
Sol. We have $g(x)=g(0)+x g^{\prime}(0)+\frac{x^{2}}{2} g^{\prime \prime}(0)=-b x^{2}+c x-6$
$h(x)=g(x)=4 x^{4}-a x^{3}+b x^{2}-c x+6=0$ has 4 distinct real roots. Using Descartes rule of sign
\Rightarrow given biquadratic equation has 4 distinct positive roots.
Let x_{1}, x_{2}, x_{3} and x_{4}

$$
\begin{aligned}
& \text { Now, } \frac{1}{x_{1}}+\frac{2}{x_{2}}+\frac{3}{x_{3}}+\frac{4}{x_{4}} \\
& \Rightarrow 2 \geq 2 \Rightarrow \sqrt[4]{\frac{24}{x_{1} x_{2} x_{3} x_{4}}} \\
& \Rightarrow \frac{1}{x_{1}}=\frac{2}{x_{2}}=\frac{3}{x_{3}}=\frac{4}{x_{4}}=k \\
& \Rightarrow \frac{24}{x_{2}} \cdot \frac{3}{x_{3}} \cdot \frac{4}{x_{4}}=k^{4} \\
& \Rightarrow \text { Roots are } \frac{1}{2}, 1, \frac{3}{2}, 2
\end{aligned}
$$

$$
a=20, c=25
$$

Paragraph - 9

Graph of a function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is symmetric about the line $\mathrm{x}=2$ and it is twice differentiable $\forall x \in R$.
Given $f^{\prime}(1 / 2)=f^{\prime}(1)=0$, then
25. Minimum number of roots of the equation $f^{\prime \prime}(x)=0$ in $(0,4)$ is/are
a) 2
b) 4
c) 6
d) 8

Ans. b
26. The value of $\int_{-\pi}^{\pi} f(2+x) \sin x d x$ is equal to
a) 1
b) f (2)
c) 2π
d) none of these

Ans. d
27. If (m, M) be the number of points of minima and maxima respectively of $y=f(x)$ in $(0,4)$, then $m \times M$ is equal to
a) 4
b) 5
c) 6
d) 7

Ans. C
Sol. $f(2-x)=f(2+x)$
$\Rightarrow f(x)=f(4-x)$
$\Rightarrow f^{\prime}(x)+f^{\prime}(4-x)=0$
$\Rightarrow f^{\prime}(1 / 2)=f^{\prime}(1)=f^{\prime}(3)=f^{\prime}(7 / 2)=f^{\prime}(2)=0$

Paragraph - 10

Let $f(x)=\frac{1}{1+x^{2}}$, let m be the slope, a be the x intercept and b be the y intercept of a tangent to y $=f(x)$
28. Abscissa of the point of contact of the tangent for which m is greatest, is
a) $\frac{1}{\sqrt{3}}$
b) 1
c) -1
d) $-\frac{1}{\sqrt{3}}$

Ans. d
29. Value of b for the tangent drawn to the curve $y=f(x)$ whose slope is greatest, is
a) $\frac{9}{8}$
b) $\frac{3}{8}$
c) $\frac{1}{8}$
d) $\frac{5}{8}$

Ans.
s. a
30. Value of a for the tangent drawn to the curve $y=f(x)$ whose slope is greatest, is
a) $-\sqrt{3}$
b) 1
c) -1
d) $\sqrt{3}$

Ans. a
Sol. Here we have $f^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{6 x^{2}-2}{\left(1+x^{2}\right)^{3}}$
$\therefore f^{\prime}(x)$ is maximum at $x=-\frac{1}{\sqrt{3}}$

If m is greatest then $m=\frac{3 \sqrt{3}}{8}$
y coordinate of the point of contact is $\frac{3}{4}$
\therefore equation of the tangent is $y-\frac{3}{4}=\frac{3 \sqrt{3}}{8}\left(x+\frac{1}{\sqrt{3}}\right)$
$\therefore a=-\sqrt{3}$ and $b=\frac{9}{8}$

Paragraph - 11

Consider the function $f(x)=\max \left\{x^{2},(1-x)^{2}, 2 x(1-x)\right\} ; x \hat{\mathrm{I}}[0,1]$
31. The interval in which $\mathrm{f}(\mathrm{x})$ is increasing is

b) $\frac{\mathfrak{a x}}{\mathfrak{e x}} 3, \frac{1 \ddot{\partial}}{2 \dot{\bar{\emptyset}}}$

Ans. d
32. Let RMVT is applicable for $f(x)$ on (a, b) then $a+b+c$ (where c is the point such that $f \phi(c)=0$
a) $\frac{2}{3}$
b) $\frac{1}{3}$
c) $\frac{1}{2}$
d) $\frac{3}{2}$

Ans. d
33. The interval in which $f(x)$ is decreasing is
a) $\begin{aligned} & \text { ă } \\ & \frac{1}{c} \\ & 3\end{aligned}, \frac{2 \ddot{\partial}}{3 \dot{\bar{\emptyset}}}$

Ans. c
Sol.
We draw the graphs of $f_{1}(x)=x^{2} ; f_{2}(x)=(1-x)^{2}$ and $f_{3}(x)=$

$$
2 x(1-x)
$$

Here $f(x)$ is redefined as

$$
f(x)=\left\{\begin{array}{cc}
(1-x)^{2}, & 0 \leq x<\frac{1}{3} \\
2 x(1-x), & \frac{1}{3} \leq x \leq \frac{2}{3} \\
x^{2}, & \frac{2}{3}<x \leq 1
\end{array}\right.
$$

Interval of increase of $f(x)$ is $\left(\frac{1}{3}, \frac{1}{2}\right) \cup\left(\frac{2}{3}, 1\right)$

Interval of decrease of $f(x)$ is $\left(0, \frac{1}{3}\right) \cup\left(\frac{1}{2}, \frac{2}{3}\right)$
Clearly Rolle's theorem is applicable on $\left[\frac{1}{2}, \frac{2}{3}\right]$, where $\mathrm{f}(\mathrm{x})=$

$$
2 x(1-x)
$$

$\Rightarrow f^{\prime}(c)=2-4 c=0 \Rightarrow c=\frac{1}{2}$
$\Rightarrow a+b+c=\frac{1}{3}+\frac{2}{3}+\frac{1}{2}=\frac{3}{2}$

Paragraph - 12

Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and $\mathrm{y}=\mathrm{g}(\mathrm{x})$ are two function defined as
$f(x)=\left\{\begin{array}{ll}a x^{2}+b, & 0 \leq x \leq 1 \\ 2 b x+2 b, & 1<x \leq 3 \\ (a-1) x+2 a-3, & 3<x \leq 4\end{array}\right.$ and $g(x)= \begin{cases}c x^{2}+d, & 0 \leq x \leq 2 \\ d x+3-c, & 2<x \leq 3 \\ x^{2}+b+1, & 3 \leq x \leq 4\end{cases}$
34. $f(x)$ is continuous at $x=1$ but not differentiable at $x=1$, if
a) $a=1, b=0$
b) $a=1, b=2$
c) $a=3, b=1$
d) none of these

Ans. c
Sol. $\quad \lim _{x \rightarrow 1} f(x)=a+b$
$\lim _{h \rightarrow 1^{+}} f(x)=4 b$
$a+b=4 b \Rightarrow a=3 b$
$f^{\prime}\left(1^{+}\right) \neq f^{\prime}\left(1^{-}\right)$
$\Rightarrow 2 b \neq 2 a \Rightarrow a \neq b$
35. $g(x)$ is continuous at $x=2$, if
a) $\mathrm{c}=1, \mathrm{~d}=2$
b) $c=2, d=3$
c) $c=1, d=-1$
d) $c=1, d=4$

Ans. a
Sol. $\quad \lim _{x \rightarrow 2^{-}} g(x)=\lim _{x \rightarrow 2^{+}} g(x)$
$\Rightarrow 4 c+d=2 d+3-c$
$\Rightarrow d=5 c-3$
36. If f is continuous and differentiable at $x=3$, then
a) $a=-\frac{1}{3}, b=\frac{2}{3}$
b) $a=\frac{2}{3}, b=-\frac{1}{3}$
c) $a=\frac{1}{3}, b=-\frac{2}{3}$
d) $a=2, b=\frac{1}{2}$

Ans. d
Sol. $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)$
$\Rightarrow 8 b=5 a-6$
$f^{\prime}\left(3^{-}\right)=2 b$
$f^{\prime}\left(3^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{(a-1)(3+h)+2 a-3-8 b}{h}=2 b$
$\Rightarrow 5 a-8 b-6=0$
$\Rightarrow f^{\prime}\left(3^{+}\right)=a-1$
$\Rightarrow a-1=2 b \Rightarrow a=2, b=1 / 2$

Paragraph - 13

Let $y=\int_{u(x)}^{v(x)} f(t) d t$, let us define $\frac{d y}{d x}$ as $\frac{d y}{d x}=v^{\prime}(x) f^{2}(v(x))-u^{\prime}(x) f^{2}(u(x))$ and the equation of the tangent at (a, b) as $y-b=\left(\frac{d y}{d x}\right)_{(a, b)}(x-a)$
37. If $y=\int_{x}^{x^{2}} t^{2} d t$, then equation of tangent at $\mathrm{x}=1$ is
a) $x+y=1$
b) $y=x-1$
c) $y=x$
d) $y=x+1$

Ans. b
Sol. At $x=1, y=0$
$\frac{d y}{d x}=2 x \cdot\left(x^{4}\right)^{2}-\left(x^{2}\right)^{2}=1$
Equation of tangent is $y=x-1$
38. If $y=\int_{x^{2}}^{x^{4}}(\ln t) d t$, then $\lim _{x \rightarrow 0^{+}} \frac{d y}{d x}$ is
a) 0
b) 1
c) 2
d) -1

Ans. a
Sol. $\quad \frac{d y}{d x}=4 x^{3}\left(\ln x^{4}\right)^{2}-3 x^{2}\left(\ln x^{3}\right)^{2}$
$=64 x^{3}(\ln x)^{2}-27 x^{2}(\ln x)^{2}$
$\lim _{x \rightarrow 0^{+}} \frac{d y}{d x}=64 \lim _{x \rightarrow 0^{+}} x^{3}(\ln x)^{2}-27 \lim _{x \rightarrow 0^{+}} x^{2}(\ln x)^{2}=0$
39. If $f(x)=\int_{1}^{x} e^{t^{2} / 2}\left(1-t^{2}\right) d t$, then $\frac{d}{d x} f(x)$ at $\mathrm{x}=1$ is
a) 0
b) 1
c) 2
d) -1

Ans. a
Sol. $f(x)=\int_{1}^{x} e^{t^{2} / 2}\left(1-t^{2}\right) d t$

$$
f^{\prime}(x)=\left[e^{x^{2} / 2}\left(1-x^{2}\right)\right]^{2}
$$

$$
f^{\prime}(1)=e^{1 / 2} \cdot 0=0
$$

Differential Calculus

Integer Answer Type

1. If the least value of the area bounded by the line $y=m x+1$ and the parabola $y=x^{2}+2 x-3$ is α where m is a parameter then the value of $\frac{6 \alpha}{32}$ is
Ans. 2
$A=\int_{\alpha}^{\beta}\left(y_{1}-y_{2}\right) d x$ where α, β are the roots of $\mathrm{x}^{2}+2 \mathrm{x}-3=\mathrm{mx}+1$, on solving we will get $\frac{1}{6}\left(m^{2}-5 m+20\right)^{3 / 2}$. Hence $\alpha=\frac{32}{3}$
$\Rightarrow \frac{6 \alpha}{32}=2$

2. The value of constant c such that the straight line joining the points $(0,3)$ and $(5,-2)$ is tangent to the curve $y=\frac{c}{x+1}$
Ans. 4
Equation of line joining $(0,3)$ and $(5,-2)$ is $x+y=3$
Now it touches the curve $y=\frac{c}{x+1}$ at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
Hence $\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=1 \Rightarrow\left(x_{1}+1\right)^{2}=c,\left(x_{1} y_{1}\right)$ lie on the line. Substituting we get
$\pm \sqrt{c}=2 \Rightarrow c=4$
3. Let $f(x)=x^{2}+3 x-3, x \geq 0$, if n points $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots . \mathrm{X}_{\mathrm{n}}$ are so chosen on the x -axis such that
i) $\frac{1}{n} \sum_{i=1}^{n} f^{-1}\left(x_{i}\right)=f\left(\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}\right)\right)$
ii) $\sum_{i=1}^{n} f^{-1}\left(x_{i}\right)=\sum_{i=1}^{n}\left(x_{i}\right)$
where f^{-1} denote inverse of f . Find A.M. of x_{i} is
Ans. 1
$f(x)=x$
$x^{2}+3 x-3=x \Rightarrow x=1$
4
At how many points in the interval $(0,2), f(x)=x^{2}[2 x]-x\left[x^{2}\right]$ is discontinuous (where denotes the greatest integer function)
Ans. 4
Sol. Conceptual
4. $f(x)=\lim _{n \rightarrow \infty} \lim _{\alpha \rightarrow 1^{+}} \frac{\alpha^{n}|\sin x|+|\cos x| \alpha^{-n}}{\alpha^{n}+\alpha^{-n}}$ then $f\left(\frac{\pi}{2}\right)$ is

Ans. 1
$f(x)=|\sin x|$
$f\left(\frac{\pi}{2}\right)=1$
6. If $\lim _{x \rightarrow 0} \frac{x^{n}-\sin x^{n}}{x-\sin ^{n} x}$ exists and has a non-zero value, then $\mathrm{n}=$

Ans. 1
By putting $\mathrm{n}=1$, the result can easily be obtained.
7. If $\int \frac{1-x^{7}}{x\left(1+x^{7}\right)} d x=a \ln |x|+b \ln \left|x^{7}+1\right|+c$, then $|a+7 b|=$

Ans. 1
Differentiating both sides, we get
$\frac{1-x^{7}}{x\left(1+x^{7}\right)}=\frac{a}{x}+b \cdot \frac{7 x^{6}}{1+x^{7}} \Rightarrow a=1, a+7 b=-1$
8. If $\int_{0}^{\infty}\left[2 e^{-x}\right] d x=\ln k([\cdot]$ dentoe the g.i.f $)$ then $\mathrm{k}=$

Ans. 2

$$
\int_{0}^{\infty}\left[2 e^{-x}\right] d x=\int_{0}^{\ln 2}\left[2 e^{-x}\right] d x+\int_{\ln 2}^{\infty}\left[2 e^{-x}\right] d x=\int_{0}^{\ln 2}\left[2 e^{-x}\right] d x+0=\ln 2
$$

9. The shortest distance between $(1-x)^{2}+(x-y)^{2}+(y-z)^{2}+z^{2}=\frac{1}{4}$ and $4 \mathrm{x}+2 \mathrm{y}+4 \mathrm{z}+7=0$ in 3 - dimensional coordinate system is equal to
Ans. 2
Let $\mathrm{a}=1-\mathrm{x}$
$\mathrm{b}=\mathrm{x}-\mathrm{y}$
$\mathrm{c}=\mathrm{y}-\mathrm{z}$
$\mathrm{d}=\mathrm{z}$
then $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=1$ and $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}+\mathrm{d}^{2}=\frac{1}{4}$
$\Rightarrow(a-b)^{2}+(a-c)^{2}+(a-d)^{2}+(b-c)^{2}+(b-d)^{2}+(c-d)^{2}=0$
$\Rightarrow a=b=c=d$
$\therefore x=\frac{3}{4}, y=\frac{1}{2}, z=\frac{1}{4}$
So the distance from the point $\left(\frac{3}{4}, \frac{1}{2}, \frac{1}{4}\right)$ from the plane $4 x+2 y+4 z+7=0$ is $\frac{3+1+1+7}{6}=2$

Differential Calculus

Matrix-Match Type

1. Match the following:-

Column -1	Column - II
A) The area of the figure bounded by $y=x^{2}$ and $y=\sqrt{x}$ is	P) $4 / 3$
B) $\int_{0}^{4}\{\sqrt{x}\} d x$ has the value $(\{x\}$ denotes fractional part of $x\}$	Q) $5 / 3$
C) The area of the region for which $0<y<3-2 x-x^{2}$ and $x>0$ is	R) $7 / 3$
D) $\int_{-\pi / 2}^{\pi / 2} \sqrt{\cos x-\cos ^{3} x} d x$ equals	S) $1 / 3$

Ans. $\quad A-S ; B-R ; C-Q ; D-P$
Sol. A) Required area $=\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x=1 / 3$
В) $\quad \int_{0}^{4}\{\sqrt{x}\} d x=\int_{0}^{4}(\sqrt{x}-[\sqrt{x}]) d x$
$\int_{0}^{4} \sqrt{x} d x=\int_{0}^{1}[\sqrt{x}] d x-\int_{0}^{4}[\sqrt{x}] d x=7 / 3$
C) Area $=\int_{0}^{1}\left(3-2 x-x^{2}\right) d x$
$=\left[3 x-x^{2}-\frac{x^{3}}{3}\right]_{0}^{1}=5 / 3$

D) $\quad 2 \int_{0}^{\pi / 2} \sqrt{\cos x} \sin x d x=4 / 3$
2. Match the following

Column -I	Column - II
A) Number of points discontinuity of $f(x)=\tan ^{2} x-\sec ^{2} x$ in $(0,2 \pi)$	P) 1
is	B) Number of points at which $f(x)=\sin ^{-1} x+\tan ^{-1} x+\cot ^{-1} x$ is non- differentiable in $(-1,1)$ is
C) The number of points of discontinuity of $y=[\sin x] ; x \hat{I}[0,2 p)$ (where [.] denotes the greatest integer function) is	R) 0
D) Number of points where $y=\left\|(x-1)^{3}\right\|+\left\|(x-2)^{5}\right\|+\|x-3\|$ is	S) 3
non differentiable	

Ans. $\quad A-Q ; B-R ; C-Q ; D-P$
Sol. A) $\tan ^{2} x$ and $\sec ^{2} x$ are discontinuous at $x=\frac{\pi}{2}$ and $\frac{3 \pi}{2}$
\therefore number of discontinuities $=2$
B) Since $f(x)=\sin ^{-1} x+\tan ^{-1} x+\cot ^{-1} x=\sin ^{-1}+\frac{\pi}{2}$
$\therefore \mathrm{f}(\mathrm{x})$ is differentiable in $(-1,1) \Rightarrow$ number of points of non-differentiability $=0$
C) $\mathrm{y}=[\sin \mathrm{x}]$ is discontinuous at $x=\frac{\pi}{2}$ and π
D) $\quad y=|(x-1)|^{3}+\left|(x-2)^{5}\right|+|x-3|$ is non differentiable at $\mathrm{x}=3$ only
3. Match the following

Column-1	Column - II
A) The maximum value attained by $y=10-\|x-10\|$, - $1 £ x £ 3$ is	P) 3
B) If $\mathrm{P}\left(\mathrm{t}^{2}, 2 \mathrm{t}\right) ; t \hat{\mathrm{I}}[0,2]$ is an arbitrary point on parabola $y^{2}=4 x, Q$ is foot of perpendicular from focus S on the tangent at P, then maximum area of $\triangle P Q S$ is	Q) $\frac{1}{3}$
C) If $a+b=1, a, b>0$ then minimum value of 	
D) For real values of x, the greatest and least value of expression $\frac{x+2}{2 x^{2}+3 x+6}$ is	$\text { S) }-\frac{1}{13}$

Ans. $A-P ; B-R ; C-P ; D-Q, S$
Sol. A) If $y=10-|x-10|, x \in[-1,3]$
$-11 \leq x-10 \leq-7 \Rightarrow 7 \leq|x-10| \leq 11 \Rightarrow y \in[-1,3]$
$\therefore y=10-(10-x)=x$
\therefore maximum value of $\mathrm{y}=3$
B) Equation of tangent at P is ty $=\mathrm{x}+\mathrm{t}^{2}$, it intersects the line $\mathrm{x}=0$ at Q .
\therefore Coordinates of Q are $(0, \mathrm{t})$
\therefore area of $\triangle P Q S=\frac{1}{2}\left|\begin{array}{lll}0 & t & 1 \\ 1 & 0 & 1 \\ t^{2} & 2 t & 1\end{array}\right|=\frac{1}{2}\left(t+t^{3}\right)$
$\Rightarrow \frac{d A}{d t}=\frac{1}{2}\left(3 t^{2}+1\right)>0 \quad \forall t \in[0,2]$
\therefore area is maximum for $\mathrm{t}=2$
\therefore maximum area $=5$
C) As $\mathrm{a}+\mathrm{b}=1$ and $\sqrt{\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)}=\sqrt{1+\frac{2}{a b}}$

Again $\sqrt{a b}<\frac{a+b}{2}=\frac{1}{2} \Rightarrow \frac{1}{a b}>4$
$\therefore \sqrt{\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)} \geq \sqrt{1+8}=3$
D) Let $y=\frac{x+2}{2 x^{2}+3 x+6} \Rightarrow 2 y x^{2}+3 x y+6 y=x+2$
$\Rightarrow 2 y x^{2}+x(3 y-1)+6 y-2=0$
$\Rightarrow D \geq 0 \Rightarrow(3 y-1)^{2}-8 y(6 y-2) \geq 0$
$\Rightarrow y \in\left[-\frac{1}{13}, \frac{1}{3}\right]$
4. Match the following:-

Column - 1	Column
 	$\text { P) }-2$
B) If $f(x)$ is a non-zero differentiable function such that Ò $f(t) d t=\{f(x)\}^{2} " x \hat{\mathrm{I}} R$ then $\mathrm{f}(2)$ is equal to	Q)
C) If $\grave{\mathrm{O}}\left(2+x-x^{2}\right) d x$ is maximum, then $\mathrm{a}+\mathrm{b}$ is equal to	R) 1
D) If $\lim _{x \circledast 0} \frac{\sin 2 x}{x^{3}}+a+\frac{b}{x^{2}} \frac{\ddot{\partial}}{\dot{\dot{\varphi}}}=0$, then $3 \mathrm{a}+\mathrm{b}$ has the value	S) - 1

Ans. $A-S ; B-R ; C-R ; D-Q$
Sol. We have $f^{\prime}(x)=\frac{g^{\prime}(x)}{\sqrt{1+g^{3}(x)}}$ and $g^{\prime}(x)=\left(1+\sin \left(\cos ^{2} x\right)\right)(-\sin x)$
Hence $f^{\prime}(x)=\frac{\left(1+\sin \left(\cos ^{2} x\right)\right)(-\sin x)}{\sqrt{1+g^{3}(x)}}, f^{\prime}\left(\frac{\pi}{2}\right)=\frac{1+0}{\sqrt{1+g^{3}\left(\frac{\pi}{2}\right)}}=-1, g\left(\frac{\pi}{2}\right)=0$
$\therefore f^{\prime}\left(\frac{\pi}{2}\right)=-1$
C) Maximum when $\mathrm{a}=-1, \mathrm{~b}=2 \Rightarrow \mathrm{a}+\mathrm{b}=1$
D) If $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x^{3}}+a+\frac{b}{x^{2}}=0 \Rightarrow \lim _{x \rightarrow 0} \frac{\sin 2 x+a x^{3}+b x}{x^{3}}=0$
for limit to exist $2+\mathrm{b}=0 \Rightarrow \mathrm{~b}=-2$
$\therefore \lim _{x \rightarrow 0} \frac{\sin 2 x+a x^{3}-2 x}{x^{3}}=0$
Using L.H rule and solving we get $a=\frac{4}{3}$
$\therefore 3 a+b=2$
5. Match the following

Column -I	Column - II
A) The equation $\mathrm{x} \log \mathrm{x}=3-\mathrm{x}$ has atleast one root in	P) $(0,1)$
B) If $27 \mathrm{a}+9 \mathrm{~b}+3 \mathrm{c}+\mathrm{d}=0$, then the equation $4 \mathrm{ax}^{2}+3 \mathrm{bx}^{2}+2 \mathrm{cx}+\mathrm{d}=0$ has atleast one root in	Q) $(1,3)$
C) If $c=\sqrt{3}$ and $f(x)=x+\frac{1}{x}$, then interval of x in which LMVT is	
applicable for $\mathrm{f}(\mathrm{x})$ is	R) $(0,3)$
D) If $c=\frac{1}{2}$ and $f(x)=2 x-x^{2}$, then interval of x in which LMVT is	
applicable for $\mathrm{f}(\mathrm{x})$ is	S) $(-1,1)$

Ans. $A-Q ; B-R ; C-Q ; D-P$
Sol. A) $f^{\prime}(x)=\log x-\frac{3}{x}+1 \Rightarrow f(x)=(x-3) \log x+c$
$\therefore f(1)=f(3)$
B) $f^{\prime}(x)=4 a x^{3}+3 b x^{2}+2 c x+d$
$\therefore f(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$
$\therefore f(0)=f(3) \Rightarrow 27 a+9 b+3 c+d=0$
C) $\frac{f(b)-f(a)}{b-a}=f^{\prime}(\sqrt{3})=\frac{2}{3} \Rightarrow \frac{a b-1}{a b}=\frac{2}{3}$
D) $\quad \frac{f(b)-f(a)}{b-a}=f^{\prime}\left(\frac{1}{2}\right) \Rightarrow a+b=1$
6. Match the following

Column-1	Column - II
A) $f(x)=$ Ò $\frac{x+\sin x}{1+\cos x} d x$ and $f(0)=0$, then $f \frac{a x}{\frac{a}{2}} \frac{\ddot{\partial}}{\dot{\dot{\varphi}}}$ is	P) $\frac{p}{2}$
then $\mathrm{k}=$	Q) $\frac{p}{3}$
C) Let $f(x)=$ Ò $\frac{d x}{\left(x^{2}+1\right)\left(x^{2}+9\right)}$ and $\mathrm{f}(0)=0$ if $f(\sqrt{3})=\frac{5}{36} k$, then k is	R) $\frac{p}{4}$
	S) π

Ans. $A-P ; B-P ; C-R ; D-S$
Sol. A)

$$
f(x)=\int \frac{x+\sin x}{1+\cos x} d x=\int\left(x \times \frac{1}{2} \sec ^{2} \frac{x}{2}+\tan \frac{x}{2}\right) d x=x \tan \frac{x}{2}+c
$$

Since $\mathrm{f}(0)=0 \Rightarrow c=0$ and $f\left(\frac{\pi}{2}\right)=\frac{\pi}{2}$
B)

$$
f(x)=\int e^{\sin ^{-1} x}\left(1-\frac{x}{\sqrt{1-x^{2}}}\right) d x=\int e^{\sin ^{-1} x}\left(\frac{1}{\sqrt{1-x^{2}}} \cdot \sqrt{1-x^{2}}-\frac{x}{\sqrt{1-x^{2}}}\right) d x
$$

$\Rightarrow f(x)=e^{\sin ^{-1} x} \sqrt{1-x^{2}}+c$

$$
\begin{aligned}
& \Rightarrow f(0)=1+c \Rightarrow c=0 \\
& f\left(\frac{1}{2}\right)=e^{\pi / 6} \cdot \frac{\sqrt{3}}{2}=\frac{k \sqrt{3}}{\pi} e^{\pi / 6} \\
& \therefore k=\pi / 2
\end{aligned}
$$

C) $\quad f(x)=\frac{1}{8} \int\left(\frac{1}{x^{2}+1}-\frac{1}{x^{2}+9}\right) d x=\frac{1}{8}\left(\tan ^{-1} x-\frac{1}{3} \tan ^{-1} \frac{x}{3}\right)+c$
$\mathrm{f}(0)=0=\mathrm{c} \Rightarrow \mathrm{c}=0$
$\therefore \frac{1}{8}\left(\frac{\pi}{3}-\frac{1}{3} \frac{\pi}{6}\right)=\frac{5 \pi}{144}=\frac{5 k}{36} \Rightarrow k=\frac{\pi}{4}$
D) $\quad f(x)=\int \frac{\sqrt{\tan x}}{\sin x \cos x} d x=\int(\tan x)^{-1 / 2} \sec ^{2} x d x=2 \sqrt{\tan x}+c$
$\mathrm{f}(0)=0=\mathrm{c} \Rightarrow \mathrm{c}=0$
$\therefore f\left(\frac{\pi}{4}\right)=2=\frac{2 k}{\pi} \Rightarrow k=\pi$

Column-1	Column - II
A) Limit of fog exist at	P) -1
B) Limit of gof does not exist at	Q) π
C) Points of discontinuity of fog is/are	R) $\frac{5 p}{6}$
D) Points of differentiability of fog is/are	S) $-\pi$

Ans. $\quad A-P, R ; B-P ; C-Q, S ; D-P, R$

Sol. A) After defining we have $f(x)=\left\{\begin{array}{cc}-2, & x \in[-2,-1) \\ -1, & x \in[-1,0) \\ x, & x \in[0,2]\end{array} \quad\right.$ and $g(x)=\sec x, x \in R-(2 n+1) \frac{\pi}{2}$
Clearly we have $f \circ g=\left\{\begin{array}{cc}-2, & x \in\left[-\frac{4}{3},-\frac{2 \pi}{3}\right] \cup\left[\frac{2 \pi}{3}, \frac{4 \pi}{3}\right]-\{-\pi, \pi\} \\ -1, & x=-\pi, \pi \\ \sec x, & x \in\left[-\frac{\pi}{3}, \frac{\pi}{3}\right]\end{array}\right.$
Limit of fog exist at $\mathrm{x}=-1$
Points of discontinuity of fog are $-\pi, \pi$

Points of differentiability of fog are $-1, \frac{5 \pi}{6}$
gof $=\left\{\begin{array}{cc}\sec (-2), & x \in[-2,-1)-\left\{-\frac{\pi}{2}\right\} \\ \sec (-1), & x \in[-1,0) \\ \sec x, & x \in[0,2]-\left\{\frac{\pi}{2}\right\}\end{array}\right.$
Limit of gof does not exist at $\mathrm{x}=-1$
8. Consider an expression $f(x)=x^{n}+x^{n+1}, n \in N \mathrm{f}(\mathrm{x})$ is differentiated successively an aribitrary number of times then multiplied by $(x+1)$ and again differentiated successively till it attains the form of $A x+B$. It is found that $A-B$ is always divisible by a proper integer λ which depends on n. Now in column I different values of n are given and in column II different values of λ are given, Match the corresponding values of n and λ. .

Column-I	Column-11
A) 5	P) 15
B) 7	Q) 81
C) 9	R) 49
D) 13	S) 91

Ans. $\quad \mathrm{A}-\mathrm{P} ; \mathrm{B}-\mathrm{P}, \mathrm{R} ; \mathrm{C}-\mathrm{P}, \mathrm{Q} ; \mathrm{D}-\mathrm{P}, \mathrm{Q}, \mathrm{S}$
Sol. $\quad f(x)=x^{n}+x^{n+1}$
$f^{k}(x)=\frac{n!}{(n-k)!} x^{n-k}+\frac{(n+1)!}{(n+1-k)!} x^{n}$
$(1+x) f^{k}(x)=\left(\frac{n!}{(n-k)!} x^{n-k}+\frac{(n+1)!}{(n+1-k)!} x^{n+1-k}\right)(1+x)=g(x) \quad$ (say)
$g^{(n+1-k)}(x)=\left(\frac{(n+1)!}{(n+1-k)!}(n+2-k)!\right) x+\left(\frac{n!}{(n-k)!}+\frac{(n+1)!}{(n+1-k)!}\right)(n+1-k)!$
$\therefore A-B=\frac{(n+1)!}{(n+1-k)!}(n+2-k)!-\left(\frac{n!}{(n-k)!}+\frac{(n+1)!}{(n+1-k)!}\right)(n+1-k)!$
$=(n!) n(n+1-k)$
9. Match the following

Column - I	Column - II
A) $g(x)=2-x^{1 / 3}$ and $f(g(x))=-x+5 x^{1 / 3}-x^{2 / 3}$, the local maximum value of $f(x)$ is	P) 0
B) No. of points of intersection of the curves $\arg \left(\frac{z-3}{z-1}\right)=\frac{\pi}{4}$ and	Q) 1
$z(1-i)+\bar{z}(1+i)-4=0$	R) 2
C) If $f(x)=a x^{3}+b x^{2}+c x+d,(a, b, c, d \in Q)$ and two roots of $f(x)=0$ are eccentricities of a parabola and a rectangular hyperbola, then $a+b+c+$ $d=$	S) 3
D) Number of solution of equation $1^{x}+2^{x}+3^{x} \ldots .+n^{x}=(n+1)^{x}$ are	

Ans. $\quad \mathrm{A}-\mathrm{S} ; \mathrm{B}-\mathrm{Q} ; \mathrm{C}-\mathrm{P} ; \mathrm{D}-\mathrm{Q}$
Sol.
$x^{1 / 3}=2-g(x)$
$\Rightarrow f(x)=5(2-x)-(2-x)^{2}-(2-x)^{3}$
$\Rightarrow x^{3}-7 x^{2}+11 x-2 \Rightarrow f_{\max }=3$
Clearly 1 is the root $\Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}+=0$
$\left(\frac{1}{n+1}\right)^{x}+\left(\frac{2}{n+1}\right)^{x}+\ldots\left(\frac{n}{n+1}\right)^{x}=1$

10. If $I_{a}=\int_{0}^{\pi / 2} \frac{d x}{2 \cos x+\sin x+a}$, then the value of I_{a} for

Column -I	Column - II
A) $a=1$	P) $\log 3$
B) $a=3$	Q) $\frac{1}{2} \log 3$
C) $a=2$	R) $\frac{1}{\sqrt{11}}\left(\tan ^{-1} \frac{3}{\sqrt{11}}-\tan ^{-1} \frac{1}{\sqrt{11}}\right)$
D) $a=4$	S) $\tan ^{-1}\left(\frac{1}{3}\right)$

Ans. $\quad A-Q ; B-S ; C-P ; D-R$
Sol. If $t=\tan \frac{x}{2}$, then $d x=\frac{2 d t}{1+t^{2}}$

> A) $\quad a=1, I_{1}=\int_{0}^{1} \frac{d t}{2\left(1-t^{2}\right)+2 t-\left(1+t^{2}\right)}$
> $I_{1}=-2 \int_{0}^{1} \frac{d t}{t^{2}-2 t-3}=2 \int_{0}^{1} \frac{d t}{4-(t-1)^{2}}=\frac{1}{2} \log 3$

Similarly for others
11. Match the following

Column-I	Column-II
A) $\lim _{x \rightarrow 0} \frac{\cos (\tan x)-\cos x}{x^{4}}=$	P) 1
B) $\lim _{x \rightarrow 0} \frac{1-\cos (1-\cos x)}{x^{4}}=$	Q) $\frac{1}{8}$
C) $\lim _{x \rightarrow \infty} \frac{\sin ^{4} x-\sin ^{2} x+1}{\cos ^{4} x-\cos ^{2} x+1}=$	R) 0
D) Tangents PA and PB are drawn to $\mathrm{y}=\mathrm{x}^{2}-\mathrm{x}+1$ from	
$P\left(\frac{1}{2}, h\right)$. If area of $\triangle \mathrm{PAB}$ is maximum, then $\mathrm{h}=$	S) $\frac{1}{3}$

Ans. $A-S ; B-Q ; C-P ; D-R$
Sol. A) $\lim _{x \rightarrow 0} \frac{\cos (\tan x)-\cos x}{x^{4}}=\lim _{x \rightarrow 0} \frac{2 \sin \left(\frac{x+\tan x}{2}\right) \sin \left(\frac{x-\tan x}{2}\right)}{x^{4}}$
$=\frac{1}{2} \lim _{x \rightarrow 0} \frac{x^{2}-\tan ^{2} x}{x^{4}}=\lim _{x \rightarrow 0} \frac{x^{2}-\left(x+\frac{x^{3}}{3}+\frac{2}{15} x^{5}+\ldots .\right)^{2}}{x^{4}}=\frac{1}{3}$
B) $\quad \lim _{x \rightarrow 0} \frac{1-\cos (1-\cos x)}{x^{4}}=\lim _{x \rightarrow 0} \frac{2 \sin ^{2}\left(\sin ^{2} \frac{x}{2}\right)}{x^{4}}=\frac{1}{8}$
C) $\sin ^{4} x-\sin ^{2} x+1=\left(1-\cos ^{2} x\right)^{2}-\left(1-\cos ^{2} x\right)+1=1+\cos ^{4} x-\cos ^{2} x$
D) Vertex $\left(\frac{1}{2}, \frac{3}{4}\right)$, equation of the line $A B$ is $\frac{1}{2}(y+h)=x \cdot \frac{1}{2} \cdot \frac{1}{2}\left(x+\frac{1}{2}\right)+1$
$\Rightarrow y=\frac{3}{2}-h$
$\therefore\left(x-\frac{1}{2}\right)^{2}=\left(\frac{3}{2}-h\right)$
$\Rightarrow x=\frac{1}{2} \pm \sqrt{\frac{3}{4}-h}$
$\Delta A P B=\sqrt{\frac{3}{4}-h}\left(\frac{3}{4}-2 h\right)=2\left(\frac{3}{4}-h\right)^{3 / 2}$
So $h=0$
12. Match the following

Column -	Column - II
A) If $f(x)=x^{101}-2 x^{11}+2 x+1$ and g be inverse of then $g^{\prime}(1)$ is equal to	P) 0
B) $\lim _{x \rightarrow 0}\|x(x-1)\|^{[\cos 2 x]} \quad$ (where $[\cdot]$ denotes the greatest integer function)	Q) 2
C) If the equation $x^{4}-4 x^{3}+\mathrm{ax}^{2}+\mathrm{bx}+1=0$ has four positive integer roots then $\mathrm{a}+\mathrm{b}$	R) $\frac{1}{2}$
D) $f: R \rightarrow R$ is defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{ce} \mathrm{x}(\mathrm{c}>0) \mathrm{a}, \mathrm{b}, \mathrm{c}$ are variable real number be an increasing function, then minimum value of $\mathrm{b}+\mathrm{c}$	S) 1

Ans. $\quad A-R ; B-S ; C-Q ; D-P$
Sol. A) $\quad g f(x)=x$
$g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}$
for $g^{\prime}(1) \Rightarrow f(x)=1$ at point $(0,1)$
$g^{\prime}(f(x))=\frac{1}{2}$
C) $\quad x_{1}+x_{2}+x_{3}+x_{4}=4$
$x_{1} x_{2} x_{3} x_{4}=1$
\Rightarrow A.M of roots $=\mathrm{G} . \mathrm{M}$ of roots
$\therefore \mathrm{x}_{1}=\mathrm{x}_{2}=\mathrm{x}_{3}=\mathrm{x}_{4}=1$
D) $\quad f^{\prime}(x)=3 x^{2}+2 a x+b+c e^{x} \geq 0$
$=3\left(x^{2}+\frac{2 a}{3} x+\frac{b}{3}+\frac{a^{2}}{9}-\frac{a^{2}}{9}\right)+c e^{x}$
$=3\left(\left(x+\frac{a}{3}\right)^{2}+\left(\frac{3 b-a^{2}}{9}+\frac{c e^{x}}{3}\right)\right) \geq 0$
$\Rightarrow b+c e^{x} \geq \frac{a^{2}}{3}$
at $x=0$
$b+c \geq \frac{a^{2}}{3}$
$b+c \geq 0$

