3D-Geometry Single Correct Answer Type

1. In a three dimensional co - ordinate system P, Q and R are images of a point A(a, b, c) in the x y the y - z and the z - x planes respectively. If G is the centroid of triangle PQR then area of triangle AOG is (O is the origin)

a) 0 b)
$$a^2 + b^2 + c^2$$
 c) $\frac{2}{3}(a^2 + b^2 + c^2)$ d) none of

these

Key. A

 \Rightarrow Points P, Q, R are (a, b, -c), (-a, b, c) and (a, -b, c) respectively.

$$\Rightarrow \text{centroid of triangle PQR is} \left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$$

$$\Rightarrow \mathbf{G} \equiv \left(\frac{\mathbf{a}}{3}, \frac{\mathbf{b}}{3}, \frac{\mathbf{c}}{3}\right)$$

 \Rightarrow A, O, G are collinear \Rightarrow area of triangle AOG is zero.

b) $\frac{1}{2}$

2. The four lines drawing from the vertices of any tetrahedron to the centroid of the opposite faces meet in a point whose distance from each vertex is 'k' times the distance from each vertex to the opposite face, where k is

a)
$$\frac{1}{3}$$

Key. C

- Sol. Let A (x_1, y_1, z_1) B (x_2, y_2, z_2) C (x_3, y_3, z_3) D (x_4, y_4, z_4) be the vertices of tetrahydron. If E is the centroid of face BCD and G is the centroid of A B C D the AG=3/4(AE) : K=3/4
- The coordinates of the circumcentre of the triangle formed by the points (3, 2, -5), (-3, 8, -5) (-3. 3, 2, 1) are c) (-1, 4, 3) b) (1, 4, -3) 1, 4, -3

d) (-1, -4, -3)

Key. A

Sol. Triangle formed is an equilateral \Rightarrow Circum centre = centroid = (-1, 4, -3)

The volume of a right triangular prism $ABCA_1B_1C_1$ is equal to 3. Than the co-ordinates of the 4. vertex A_1 , if the co-ordinates of the base vertices of the prism are A(1, 0, 1), B(2, 0, 0) and C(0, 1, 0)

Key. B

Sol. Volume = Area of base \times height

- solving we get position vector of A_1 are (0, –2, 0) or (2, 2, 2)
- 5. If a, b and c are three unit vectors such that a+b+c is also a unit vector and θ₁, θ₂ and θ₃ are angles between the vectors a, b; b, c and c, a, respectively, then among θ₁, θ₂ and θ₃.
 a) all are acute angles b) all are right angles
 c) at least one is obtuse angle
 d) None of these

Key. C

Sol. Since
$$|\vec{a} + \vec{b} + \vec{c}| = 1 \Longrightarrow (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = 1 \Longrightarrow \vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a} = -1$$

 $\Rightarrow \cos \theta_1 + \cos \theta_2 + \cos \theta_3 = -1$
So, at least one of $\cos \theta_1, \cos \theta_2$ and $\cos \theta_3$ must be negative

6. Given that the points A(3,2,-4), B(5,4,-6) and C(9,8,-10) are collinear, the ratio in which B divides \overline{AC} is : 1)1:2 2)2:1 3)3:2 4)2:3 Key. 1 Sol. $\left(\frac{9m+3n}{m+n}, \frac{8m+2n}{m+n}, \frac{-10m-4n}{m+n}\right) = (5,4,-6)$

$$\frac{m}{n} = \frac{1}{2}$$

7. If
$$A(0,1,2), B(2,-1,3)$$
 and $C(1,-3,1)$ are the vertices of a triangle, then its circumcentre and orthocenter are situated at a distance of 1)3 units 2)2 units 3)3/2 units 4) $3/\sqrt{2}$ units Key. 4
Sol. ortho center- $(2,-1,3)$
Circum center- $(\frac{1}{2},-1,\frac{3}{2})$
8. Equation of the plane passing through the origin and perpendicular to the planes $x+2y+z=1, 3x-4y+z=5$ is 1) $x+2y-5z=0$ 2) $x-2y-3z=0$ 3) $x-2y+5z=0$ 4) $3x+y-5z=0$ Key. 4
Sol. $\begin{vmatrix} i & j & k \\ 1 & 2 & 1 \\ 3 & -4 & 1 \end{vmatrix}$
 $A = 3i+j-5k$
 $\Rightarrow 3x+y-5z=0$
9. If θ is the angle between $\frac{x+1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$ and the plane $2x-y+\sqrt{\lambda}z+4=0$
and is such that $\sin \theta = 1/3$, the value of $\lambda =$
 $1)-\frac{4}{3}$ 2) $\frac{4}{3}$ 3) $-\frac{3}{5}$ 4) $\frac{5}{3}$
Key. 4
Sol. $Sin\theta = \left|\frac{2-2+2\sqrt{\lambda}}{3\sqrt{5+\lambda}}\right| = \frac{1}{3}$
 $\lambda = \frac{5}{3}$
10. The image of the point $(-1,3,4)$ in the plane $x-2y=0$ is
 $1)((15,11,4)$ 2) $\left(-\frac{17}{3},-\frac{19}{3},1\right)$ 3) $\left(\frac{9}{5},-\frac{13}{5},4\right)41\left(-\frac{17}{3},-\frac{19}{3},4\right)$
Key. 3
Sol. $\frac{h+1}{1} = \frac{k-3}{-2} = \frac{p-4}{0} = -2\left(-\frac{1-6}{5}\right)$
 $(h,k,p) = \left(\frac{9}{5},-\frac{13}{5},4\right)$

11. The plane passing through the points (-2, -2, 2) and containing the line joining the points (1, 1, 1) and (1, -1, 2) makes intercepts on the coordinates axes, the sum of whose lengths is

Math	ematics			3D-Geometry	
	1.3	2.4	3. 6	4. 12	
Key.	4				
Sol.	Equation of the plane	be $a(x+2)+b(y+$	2)+ $c(z-2)=0$. As it	passes through $(1,1,1)$ and	
(1,-1,	$(a,2), \frac{a}{1} = \frac{b}{-3} = \frac{c}{-6}$. Equa	tion of the plane is -	$\frac{x}{-8} + \frac{y}{8/3} + \frac{z}{8/6} = 1$ and	d the required sum $=12$.	
12.	An equation of the pla	ne containing the lin	$e\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$	and the point $(0,7,-7)$ is	
	1. $x + y + z = 0$		2. $x + 2y - 3z = 3z$	5	
	3. $3x - 2y + 3z + 35 =$	0	4. $3x - 2y - z = 2$	1	
Key.	1				
Sol.	Equation of the plane	is $A(x+1)+B(y-2)$	3) + C(z+2) = 0 where	3A + 2B + 1 = 0 and	
A+B	8(7-3) + C(-7+2) = 0		10		
13.	The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the coordinate axes at A, B, C respectively. D and E are the				
	mid-points of AB and	AC respectively. Co	ordinates of the mid-po	int of DE are	
	1. (<i>a</i> , <i>b</i> /4, <i>c</i> /4)	2. (<i>a</i> /4, <i>b</i> , <i>c</i> /4)	3. (<i>a</i> /4, <i>b</i> /4, <i>c</i>)	4. $(a/2,b/4,c/4)$	
Key.	4	C			
Sol.	A(a,0,0), B(0,b,0), 0	C(0,0,c), D(a/2,b)	(2,0), E(a/2,0,c/2)s	o midpoint of DE is	
(a/2,	<i>,b</i> /4 <i>,c</i> /4).				
14.	The coordinates of a point $(5,0,-6)$ are	point on the line $x =$	4y + 5, z = 3y - 6 at a	distance $3\sqrt{26}$ from the	
	1. (17,3,3)	2. (-7,3,-15)	3. (-17, -3, -3)	4. (7, -3, 15)	
Key.					
Sol. Line is $\frac{x-5}{4/\sqrt{26}} = \frac{y}{1/\sqrt{26}} = \frac{z+6}{3/\sqrt{26}}$. A point on this line at a distance $3\sqrt{26}$ from $(5,0,-6)$ is $(5\pm(3\times4),\pm3,-6\pm9) = (17,3,3)$ or $(-7,-3,-15)$.					
15.	The points $(0,7,10)$, (-1, 6, 6) and $(-4, 9)$, 6) are the vertices of		
	1. A right angled isos	celes triangle	2. Equilateral tria	ingle	
	3. An isosceles triang	gle	4. An obtuse ang	led triangle	
Key.	1				
Sol.	Length of the sides are	e 18, 18 and 36.			

16. Equation of a plane bisecting the angle between the planes 2x - y + 2z + 3 = 0 and

3x-2y+6z+8=0is 1. 5x-y-4z-45=02. 5x-y-4z-3=03. 23x+13y+32z-45=04. 23x-13y+32z+5=0

Key. 2

Sol. Equations of the planes bisecting the angle between the given planes are

$$\frac{2x-y+2z+3}{\sqrt{2^2+(-1)^2+2^2}} = \pm \frac{3x-2y+6z+8}{\sqrt{3^2+(-2)^2+6^2}}$$

$$\Rightarrow 7(2x-y+2z+3) = \pm 3(3x-2y+6z+8)$$

$$\Rightarrow 5x-y-4z-3 = 0 \text{ taking the } +ve \, sign, \text{ and } 23x-13y+32z+45 = 0 \text{ taking the } -ve \, sign.$$
17. If the perpendicular distance of a point *P* other than the origin from the plane $x+y+z=p$ is equal to the distance of the plane from the origin, then the coordinates of *P* are
$$1. (p,2p,0) \qquad 2. (0,2p,-p) \qquad 3. (2p,p,-p) \qquad 4. (2p,-p,2p)$$

Key. 3

Sol. The perpendicular distance of the origin (0,0,0) from the plane x + y + z = p is $\left|\frac{-p}{\sqrt{1+1+1}}\right| = \frac{|p|}{\sqrt{3}}$.

If the coordinates of P are (x, y, z), then we must have

$$\left|\frac{x+y+z-p}{\sqrt{3}}\right| = \frac{|p|}{\sqrt{3}}$$
$$\Rightarrow |x+y+z-p| = |p|$$

Which is satisfied by (c)

18. If p_1, p_2, p_3 denote the distances of the plane 2x-3y+4z+2=0 from the planes 2x-3y+4z+6=0, 4x-6y+8z+3=0 and 2x-3y+4z-6=0 respectively, then

1.
$$p_1 + 8p_2 - p_3 = 0$$

2. $p_3^2 = 16p_2^2$
3. $8p_2^2 = p_1^2$
4. $p_1 + 2p_2 + 3p_3 = \sqrt{29}$

Key. 1 or 4

Sol. Since the planes are all parallel planes, $p_1 = \frac{|2-6|}{\sqrt{2^2 + 3^2 + 4^2}} = \frac{4}{\sqrt{4+9+16}} = \frac{4}{\sqrt{29}}$

Equation of the plane 4x-6y+8z+3=0 can be written as 2x-3y+4z+3/2=0

So
$$p_2 = \frac{|2-3/2|}{\sqrt{2^2+3^2+4^2}} = \frac{1}{2\sqrt{29}}$$
 and $p_3 = \frac{|2+6|}{\sqrt{2^2+3^2+4^2}} = \frac{8}{\sqrt{29}}$

 $\Rightarrow p_1 + 8p_2 - p_3 = 0$

1.2

19. The radius of the circle in which the sphere $x^2 + y^2 + z^2 + 2x - 2y - 4z - 19 = 0$ is cut by the plane x + 2y + 2z + 7 = 0 is

3.4

Key. 2

Sol. Centre of the sphere is (-1, 1, 2) and its radius is $\sqrt{1+1+4+19} = 5$.

2.3

Length of the perpendicular from the centre on the plane is $\left|\frac{-1+2+4+7}{\sqrt{1+4+4}}\right| = 4$

Radius of the required circle is $\sqrt{5^2 - 4^2} = 3$.

20. The shortest distance from the plane 12x + 4y + 3z = 327 to the sphere $x^{2} + y^{2} + z^{2} + 4x - 2y - 6z = 155$ is 1. $11\frac{3}{2}$ 2. 13 3. 39 4. 26

Key. 2

Sol. The centre of the sphere is (-2,1,3) and its radius is $\sqrt{4+1+9+155} = 13$

Length of the perpendicular from the centre of the sphere on the plane is $\left|\frac{-24+4+9-327}{\sqrt{144+16+9}}\right| = \frac{338}{13} = 26$

So the plane is outside the sphere and the required distance is equal to 26-13=13.

21. An equation of the plane passing through the line of intersection of the planes

$$x+y+z=6$$
 and $2x+3y+4z+5=0$ and the point $(1,1,1)$ is
1. $2x+3y+4z=9$ 2. $x+y+z=3$ 3. $x+2y+3z=6$ 4.
 $20x+23y+26z=69$

Key. 4

Sol.Equation of any plane through the line of intersection of the given planes is $2x+3y+4z+5+\lambda(x+y+z-6)=0$ It passes through (1,1,1) if $(2+3+4+5)+\lambda(1+1+1-6)=0 \Rightarrow \lambda = 14/3$ and the requiredequation is therefore, 20x+23y+26z=69.22.The volume of the tetrahedron included between the plane 3x+4y-5z-60=0 and the coordinate planes is1. 602. 6003. 7204. None of these

Key. 2

Sol. Equation of the given plane can be written as $\frac{x}{20} + \frac{y}{15} + \frac{z}{-12} = 1$

Which meets the coordinates axes in points A(20,0,0), B(0,15,0) and C(0,0,-12) and the coordinates of the origin are (0,0,0).

 \therefore the volume of the tetrahedron *OABC* is

	0	0	0	1	
1	20	0	0	1	$\begin{bmatrix} 1 \\ 1 \\ 20 \\ 15 \\ 10 \end{bmatrix} = 600$
6	0	15	0	1	$= \begin{vmatrix} -x & 20 \times 13 \times (-12) \\ 6 \end{vmatrix} = 000.$
	0	0	-12	1	

23. Two lines x = ay + b, z = cy + d and $x = a^1y + b^1$, $z = c^1y + d^1$ will be perpendicular, if and only if

1.
$$aa^{1}+bb^{1}+cc^{1}=0$$
2. $(a+a^{1})(b+b^{1})(c+c^{1})=0$ 3. $aa^{1}+cc^{1}+1=0$ 4. $aa^{1}+bb^{1}+cc^{1}+1=0$

Key.

Sol. Lines can be written as
$$\frac{x-b}{a} = \frac{y}{1} = \frac{z-d}{c}$$
 and $\frac{x-b^1}{a^1} = \frac{y}{1} = \frac{z-d^1}{c^1}$ which will be

perpendicular if and only if $aa^1 + 1 + cc^1 = 0$ 24. A tetrahedron has vertices at O(0,0,0), A(1,2,1), B(2,1,3) and C(-1,1,2). Then the angle

between the faces OAB and ABC will be

1.
$$\cos^{-1}(17/31)$$
 2. 30^{0} **3.** 90^{0} **4.** $\cos^{-1}(19/35)$

Key. 4

Sol. Let the equation of the face OAB be ax+by+cz=0 where

$$a+2b+c=0$$
 and $2a+b+3c=0 \Rightarrow \frac{a}{5} = \frac{b}{-1} = \frac{c}{-3}$

25. If the angle θ between the lines $\frac{x+1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$ and the plane $2x - y + \sqrt{\lambda}z + 4 = 0$ is

such that $\sin\theta = 1/3$, then the value of λ is

1.
$$3/4$$
 2. $-4/3$
 3. $5/3$
 4. $-3/5$

Key.

3

Sol. Since the line makes an angle θ with the plane in makes an angle $\pi/2 - \theta$ with normal to the plane

$$\therefore \cos(\frac{\pi}{2} - \theta) = \frac{2(1) + (-1)(2) + (\sqrt{\lambda})(1)}{\sqrt{1 + 4 + 4} \times \sqrt{4 + 1 + \lambda}}$$
$$\Rightarrow \frac{1}{3} = \frac{2\sqrt{\lambda}}{3\sqrt{\lambda + 5}} \Rightarrow \lambda + 5 = 4\lambda$$
$$\Rightarrow \lambda = 5/3$$

26. The ratio in which the yz plane divides the segment joining the points (-2, 4, 7) and
(3, -5, 8) is1. 2:32. 3:23. 4:54. -7:8

Key.

Sol. Let y_z plane divide the segment joining (-2, 4, 7) and (3, -5, 8) in the ration $\lambda : 1$. Then $\Rightarrow \frac{3\lambda - 2}{\lambda + 1} = 0 \Rightarrow \lambda = \frac{2}{3}$ and the required ratio is 2:3.

27. The coordinates of the point equidistant from the points (a, 0, 0), (0, a, 0), (0, 0, a) and (0, 0, 0) are

1.
$$(a/3, a/3, a/3)$$
 2. $(a/2, a/2, a/2)$ 3. (a, a, a) 4. $(2a, 2a, 2a)$

Key.

2

Sol. Let the coordinates of the required point be (x, y, z) then $x^{2} + y^{2} + z^{2} = (x - a)^{2} + y^{2} + z^{2} = x^{2} + (y - a)^{2} + z^{2} = x^{2} + y^{2} + (z - a)^{2}$ $\Rightarrow x = a/2 = y = z$. Hence the required point is (a/2, a/2, a/2).

maine	ematics			3D-Geomet
28.	Algebraic sum of th	e intercepts made by the	plane $x + 3y - 4z$ -	+6=0 on the axes is
	113/2	2. 19/2	322/3	4. 26/3
Key.	1			
Sol.	Equation of the plane	can be written as $\frac{x}{-6} + \frac{x}{-6}$	$\frac{y}{-2} + \frac{z}{3/2} = 1$	
	So the intercepts on t	ne coordinates axes are	-6, -2, 3/2 and the	required sum is
	-6-2+3/2=-13/	2.		
29.	If a plane meets the co	o-ordinate axes in A, B, C	${\mathbb C}$ such that the centr	oid of the triangle ABC is
	the point $(1, r, r^2)$, the	n equation of the plane i	S	
	1. $x + ry + r^2 z = 3r^2$	$2. r^2 x + ry + z = 3r^2$	3. $x + ry + r^2 z = 3$	4. $r^2 x + ry + z = 3$
Key.	2		S	
Sol.	Let an equation of the	required plane be $\frac{x}{a} + \frac{y}{b}$	$\frac{z}{c} = 1$	
This m	neets the coordinates axe	s in $A(a,0,0), B(0,b,0)$	and $C(0, 0, c)$.	
So that	t the coordinates of the	centroid of the triangle	ABC are	
(<i>a</i> /3,	$b/3, c/3) = (1, r, r^2)(s)$	$given) \Longrightarrow a = 3, b = 3r, 3$	r^2 and the required	equation of the plane is
$\frac{x}{3} + \frac{y}{3}$	$\frac{z}{r} + \frac{z}{3r^2} = 1$ or $r^2 x + ry$	$+z=3p^2$.		
30.	An equation of the pla	ne passing through the p	oint $(1, -1, 2)$ and particular the second	arallel to the plane
	3x + 4y - 5z = 0 is			

1. 3x+4y-5z=11 3. 6x+8y-10z=1 4. 3x+4y-5z=2 3x+4y-5z+11=0

Key.

Equation of any plane parallel to the plane 3x+4y-5z=0 is 3x+4y-5z=KSol.

If it passes through (1, -1, 2), then $3-4-5(2) = K \Longrightarrow K = -11$

So the required equation is 3x+4y-5z+11=0.

Equations of a line passing through (2, -1, 1) and parallel to the line whose equations are 31. $\frac{x-3}{2} = \frac{y+1}{7} = \frac{z-2}{-3}$, is

3D-Geometry

1. $\frac{x-2}{3} = \frac{y+1}{-1} = \frac{z-1}{2}$	2. $\frac{x-2}{2} = \frac{y+1}{7} = \frac{z-1}{-3}$
3. $\frac{x-2}{2} = \frac{y-7}{-1} = \frac{z+3}{1}$	4. $\frac{x-3}{2} = \frac{y+1}{-1} = \frac{z-2}{1}$

Key. 2

Sol. The required line passes through (2, -1, 1) and its direction cosines are proportional to

2,7,-3 so its equation is
$$\frac{x-2}{2} = \frac{y+1}{7} = \frac{z-1}{-3}$$

32.The ratio in which the plane 2x-1=0 divides the line joining (-2, 4, 7) and (3, -5, 8) is1. 2:32. 4:53. 7:84. 1:1

Key. 4

Sol. Let the required ratio be k:1, then the coordinates of the point which divides the join of the points (-2, 4, 7) and (3, -5, 8) in this ratio are given by $(\frac{3k-2}{k+1}, \frac{-5k+4}{k+1}, \frac{8k+7}{k+1})$

As this point lies on the plane 2x - 1 = 0.

$$\Rightarrow \frac{3k-2}{k+1} = \frac{1}{2} \Rightarrow k = 1 \text{ and thus the required ratio as } 1:1$$

33. If l_1 , m_1 , n_1 and l_2 , m_2 , n_2 , are d.c.'s of \overrightarrow{OA} , \overrightarrow{OB} such that $|\underline{AOB} = \theta$ where 'O' is the origin, then the d.c.'s of the internal bisector of the angle $|\underline{AOB}|$ are

(A)
$$\frac{l_1 + l_2}{2\sin\theta/2}, \frac{m_1 + m_2}{2\sin\theta/2}, \frac{n_1 + n_2}{2\sin\theta/2}$$

(B) $\frac{l_1 + l_2}{2\cos\theta/2}, \frac{m_1 + m_2}{2\cos\theta/2}, \frac{n_1 + n_2}{2\cos\theta/2}$
(C) $\frac{l_1 - l_2}{2\sin\theta/2}, \frac{m_1 - m_2}{2\sin\theta/2}, \frac{n_1 - n_2}{2\sin\theta/2}$
(D) $\frac{l_1 - l_2}{2\cos\theta/2}, \frac{m_1 - m_2}{2\cos\theta/2}, \frac{n_1 - n_2}{2\cos\theta/2}$

Key.

Sol. Let OA and OB be two lines with d.c's l_1 , m_1 , n_1 and l_2 , m_2 , n_2 . Let OA = OB = 1. Then, the coordinates of A and B are (l_1, m_1, n_1) and (l_2, m_2, n_2) , respectively. Let OC be the bisector of $\angle AOB$. Then, C is the mid point of AB and so its coordinates are $\left(\frac{l_1+l_2}{2}, \frac{m_1+m_2}{2}, \frac{n_1+n_2}{2}\right)$.

: d.r's of OC are
$$\frac{l_1 + l_2}{2}$$
, $\frac{m_1 + m_2}{2}$, $\frac{n_1 + n_2}{2}$
We have, OC = $\sqrt{\left(\frac{l_1 + l_2}{2}\right)^2 + \left(\frac{m_1 + m_2}{2}\right)^2 + \left(\frac{n_1 + n_2}{2}\right)^2}$

- ^{34.} A line is drawn from the point P(1,1,1) and perpendicular to a line with direction ratios (1,1,1) to intersect the plane x+2y+3z=4 at Q. The locus of point Q is
 - A) $\frac{x}{1} = \frac{y-5}{-2} = \frac{z+2}{1}$ B) $\frac{x}{-2} = \frac{y-5}{1} = \frac{z+2}{1}$ C) x = y = zD) $\frac{x}{2} = \frac{y}{3} = \frac{z}{5}$

Key. A

Sol. Locus of Q' is the line of intersection of the plane x + 2y + 3z = 4 and $\frac{x}{2} = \frac{y-5}{2} = \frac{z+2}{2}$

$$1(x-1)+1(y-1)+1(z-1)=0 \implies_{\text{then the line is } 1} = \frac{1}{-2} = \frac{1}{1}$$

35. A line is drawn from the point P(1, 1, 1) and perpendicular to a line with direction ratios (1,1,1) to intersect the plane x+2y+3z=4 at Q. The locus of point Q is

A)
$$\frac{x}{1} = \frac{y-5}{-2} = \frac{z+2}{1}$$
 B) $\frac{x}{-2} = \frac{y-5}{1} = \frac{z+2}{1}$ C) $x = y = z$ D) $\frac{x}{2} = \frac{y}{3} = \frac{z}{5}$

Key:

А

Hint: Locus of Q is the line of intersection of the plane x+2y+3z=4 and

$$1(x-1)+1(y-1)+1(z-1)=0 \Rightarrow$$
 then line is $\frac{x}{1}=\frac{y-5}{-2}=\frac{z+2}{1}$

If a line with direction ratios 2 : 2: 1 intersects the line $\frac{x-7}{3} = \frac{y-5}{2} = \frac{z-3}{1}$ and 36. $\frac{x-1}{2} = \frac{y+1}{4} = \frac{z+1}{3}$ at A and B then AB=. a) $\sqrt{2}$ c) $\sqrt{3}$ b) 2 d) 3 Key: Hint $A(7+3\alpha,5+2\alpha,3+\alpha), B(1+2\beta,-1+4\beta,-1+3\beta)$ Dr's of AB are 2:2:1 $\frac{6+3\alpha-2\beta}{2} = \frac{3+\alpha-2\beta}{1} = \frac{4+\alpha-3\beta}{1}$ $\alpha = -2.6 = 1$ A(1,1,1)B(3,3,2) AB = 3 A, B, C are the points on x, y and z axes respectively in a three dimensional co-ordinate 37. system with O as origin. Suppose the area of triangles OAB, OBC and OCA are 4, 12 and 6 respectively, then the area of the triangle ABC equals (A) 16 **(B)** 14 (D) 32 (C) 28В Key: $[ABC] = \sqrt{[OAB]^2 + [OBC]^2 + [OCA]^2}$ Hint where [ABC] = area of triangle ABC The area of the figure formed by the points (-1, -1, 1); (1, 1, 1) and their mirror images on the 38. plane 3x+2y+4z+1=0 is (a) $\frac{5\sqrt{33}}{3}$ (c) $\frac{20\sqrt{33}}{27}$ (d) $\frac{20\sqrt{33}}{29}$ (h) Key. D Q(1,1,1)М

Sol.

Req. area = ΔPQQ^{1} = $2\Delta PQM$ = $2 \cdot \frac{1}{2} \cdot QM \cdot PM$ Q'

39.	If a plane pas	ses through the	point	(1,1,1)	and is	perpendicular	to th	e line
	$\frac{x-1}{3} = \frac{y-1}{0} = \frac{x-1}{3}$	$\frac{z-1}{4}$ then its perpendent	ndicular	⁻ distance	from the	e origin is		
	(A) $\frac{3}{4}$	(B) $\frac{4}{3}$		(C)	$\frac{7}{5}$	(D) 1	
Key:	С							
Hint:	The d.r of the $3x + 0y + 4z + 0$	normal to the μ d = 0 since it passes	olane is s throug	s 3, 0, gh (1, 1, 1	4 . The) so; d =	e equation of =-7	the pl	ane is
	Now distance of	the plane $3x + 4z$ -	-7=0	from (0,0	D,0) is - `	$\frac{7}{\sqrt{3^2+4^2}} = \frac{7}{5}$ ur	vit)`
40.	Three straight line intersects the x-ax fixed point (0, 0, c)	s mutually perpend is and another inte on the z-axis. Then	icular to rsects t the locu	o each otl he y-axis us of P is	her meet , while tl	in a point P and ne third line pas	l one o ses thr	f them ough a
	A) $x^2 + y^2 + z^2 - 2$	2cx = 0		B) <i>x</i>	$x^2 + y^2 + y^2$	$z^2 - 2cy = 0$		
	C) $x^2 + y^2 + z^2 - 2$	2cz = 0		D) x	$x^2 + y^2 + y^2$	$z^2 - 2c(x+y+$	z)=0	
Key:	С				$\langle O \rangle$			
Hint:	Let L_1, L_2, L_3 be	the mutually perpe	ndicula	r lines an	$d P(x_0, y)$	(v_0,z_0ig) be their p	oint of	
	concurrence. If I	$\frac{1}{1}$ cuts the x-axis at A	A(a, 0, 0), <i>L</i> ₂ me	ets the y-	axis at B(0, b, 0)	and C((), 0, c)
	$\in L_3$, then $L_1 11(x_0 - a, y_0, z_0)$, $L_2 11(x_0, y_0 - b, z_0)$ and $L_3 11(x_0, y_0, z_0 - c)$. Hence							
	$x_0(x_0 - a) + y_0(y_0 - b) + z_0^2 = 0$							
	$x_0^2 + (y_0 - b)y_0 + z_0(z_0 - c) = 0$							
	$x_0(x_0-a)+y_0^2+z_0(z_0-c)=0$							
	Eliminating a and b from the equations, we get							
	$x_0^2 + y_0^2 + z_0^2 - 2a$	$z_0 = 0$						
41.	The centroid of the	triangle formed by	(0, 0, 0)	and the	point of i	ntersection of		
	$\frac{x-1}{1} = \frac{y-1}{2} = \frac{z}{1}$	-1 with $x=0$ and	y=0 is	i				
Ċ	(a) (1,1,1) (I	b) $\left(\frac{1}{6}, \frac{-1}{3}, \frac{1}{6}\right)$ (c) $\left(\frac{1}{6}, \frac{-1}{3}, \frac{1}{6}\right)$	$\frac{-1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	$\left(\frac{-1}{6}\right)$	(d) $\left(\frac{1}{3}\right)$	$\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$		
Key.	В							
Sol.	Any point on the gi	ven line $(K+1, 2K)$	+1, K-	+1)				
	but $x=0 \implies A(0)$	0,-1,0)						
	$y=0 \implies B(\frac{1}{2})$	$\frac{1}{2}, 0, \frac{1}{2}); 0(0, 0, 0)$						

42. The plane x-y-z=4 is rotated through 90° about its line of intersection with the plane x+y+2z=4 and equation in new position is Ax+By+Cz+D=0 where A,B,C are least positive integers and D<0 then

3D-Geometry

(a) D = -10(b) ABC = -20(c) A + B + C + D = 0(d) A + B + C = 10Key. D Sol. Given planes are x - y - z = 4 ------ (1) and x + y + 2z = 4 ------ (2) Since required plane passes through the line of intersection (1) & (2) \Rightarrow Its equation is $(x-y-z-4)+\alpha(x+y+2z-4)=0$ $\Rightarrow (1+\alpha)x + (\alpha-1)y + (2\alpha-1)z - (4\alpha+4) = 0$ (3) Since (1) & (3) are perpendicular $\Rightarrow 1(1+\alpha)-1(\alpha-1)-1(2\alpha-1)=0$ $1 + \alpha - \alpha + 1 - 2\alpha + 1 = 0$ $\Rightarrow \alpha = 3/2$ \Rightarrow Its equations is $(x-y-z-4)+\frac{3}{2}(x+y+2z-4)=0$ 5x + y + 4z - 20 = 0Three lines y-z-1=0=x; z+x+1=0=y; x-z-1=0=y intersect the xy plane at A, 43. B, C then orthocenter of triangle ABC is (a) (0,1,0)(b) (-1, 0, 0)(c) (0,0,0)(d) (1,1,1)Key. А Intersection of y-z-1=0=x with xy plane gives A(0,1,0) similarly B(-1,0,0), Sol. C(1,0,0) \therefore orthocentre is (0, 1, 0)The lines $\frac{x-a+d}{d}$ $=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+r}$ are coplanar and the 44. α equation of the plane in which they lie is (c) x-2y+z=0 (d) x+y-2z=0(b) x - y + z = 0(a) x + y + z = 0Key. С Sol. A(b-c,b,b+C(a-d,a,a+d) $\alpha - \delta, \alpha, \alpha + \delta$ $\beta - \gamma, \beta, \beta + \gamma$

45. The reflection of the point P(1, 0, 0) in the line $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$ is (a) (3, -4, -2) (b) (5, -8, -4) (c) (1, -1, -10) (d) (2, -3, 8) Key: b

Coordinates of any point Q on the given line are Hint: (2r + 1, -3r - 1, 8r - 10) for some $r \in \mathbb{R}$ So the direction ratios of PQ are 2r, -3r - 1, 8r - 10Now PQ is perpendicular to the given line if 2(2r) - 3(-3r - 1) + 8(8r - 10) = 0 \Rightarrow 77r - 77 = 0 \Rightarrow r = 1 and the coordinates of Q, the foot of the perpendicular from P on the line are (3, -4, -2). Let R(a, b, c) be the reflection of P in the given lines when Q is the mid-point of PR $\Rightarrow \frac{a+1}{2} = 3, \frac{b}{2} = -4, \frac{c}{2} = -2$ \Rightarrow a = 5, b = -8, c = -4 and the coordinates of the required point are (5, -8, -4). Reflection of plane 2x + 3y + 4z + 1 = 0 in plane x + 2y + 3z - 2 = 0 is 46. 6x + 19y + 32z (A) 6x - 19y + 32z = 47(B) 3x + 19y + 16z = 47 (C) 6x + 19y + 16z = 47 (D) Key. В Sol. 2x + 3y + 4z + 1 = 0.....(i) x + 2y + 3z - 2 = 0.....(ii) (1)• P (2)•L (3)(iii) is reflection of plane reflection of ax + by + cz + d = 0 in a'x + b'y + c'z + d' = 0=(aa'+bb'+cc')(a'x+b'y+c'z+d') $= (a'^{2} + b'^{2} + c'^{2})(ax + by + cz + d)$ $2(2+6+12)(x+2y+3z-2) = (1^{2}+2^{2}+3^{2})(2x+3y+4z+1)$ 4(x+2y+32-2) = 14(2x+3y+4z+1)12x+38y+64z=94 \Rightarrow 6x + 19y + 32z = 47 47. The reciprocal of the distance between two points, one on each of the lines $\frac{x-2}{3} = \frac{y-4}{2} = \frac{z-5}{5}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ (B) having minimum value $5\sqrt{3}$ (A) cannot be less than 9 (D) cannot be $2\sqrt{19}$ (C) cannot be greater than 78

Key. D

3D-Geometry

Mathematics

3D-Geometry

 $-4, -\frac{4}{3}$ (C) (D) (0, 4) Key. B The planes are 2y + z = 0, 5x - 12y = 13 and 3x + 4z = 10Sol. Solving we get $z = \frac{11}{2}$ 51. Number of lattice point (x, y, z all being integers) inside the tetrahedron (not on the surface) having vertices (0, 0, 0), (21, 0, 0), (0, 21, 0), (0, 0, 21) is (A) 1140 (B) 4000 (C) 2024 (D) none of these Key. А Sol. (0, 0, 21)Tetrahedron is bounded by $x \ge 0$, $y \ge 0$, $z \ge 0$ and x + y + z = 21Total no. of lattice point in side the (0, 0, tetrahedron is = 1140 (21, 0, 0)(0, 21, 0)х The equations of hypotenuse of a right angled isosceles triangle are $\frac{x+6}{5} = \frac{y+10}{3} = \frac{z+14}{8}$ 52. $\left(\frac{20}{3}, -1, \frac{16}{3}\right)$. If (α, β, γ) is the circumcentre of the and the centroid of the triangle is triangle then $\gamma =$ B) -A) 6 C) 5 D) 3 Key. А Let $\overline{a} = 5i + 3j + 8k$ (vector parallel to given line) Sol. $P = (5\lambda - 6, 3\lambda - 10, 8\lambda - 14)$ **P** is the circumcentre $\overrightarrow{GP}.\overrightarrow{a}=0$. The distance of the point of intersection of lines $\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$ and 53. $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$ from (7, -4, 7) is B) √24 () $\sqrt{14}$ A) 6 D) 5 Key. C Point of intersection = (5, -7, 6)Sol. Let ABCD be a tetrahedron in which position vectors of A, B, C & D are $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + \hat{j} + 2\hat{k}$, 54. $3\hat{i} + 2\hat{j} + \hat{k}$ and $2\hat{i} + 3\hat{j} + 2\hat{k}$. If ABC be the base of tetrahedron then height of tetrahedron

is

A)
$$\sqrt{\frac{3}{2}}$$
 B) $\sqrt{\frac{3}{5}}$ C) $\frac{2\sqrt{2}}{\sqrt{3}}$ D) $\frac{1}{\sqrt{3}}$
Key. C
Sol. $\overrightarrow{AB} \times \overrightarrow{AC} = -\hat{i} + 2\hat{j} + \hat{k}$

Ke

$$AB \times AC = -i + 2j + k$$

Height = $\frac{\left| \overrightarrow{AD} \cdot (\overrightarrow{AB} \times \overrightarrow{AC}) \right|}{\left| \overrightarrow{AB} \times \overrightarrow{AC} \right|} = \frac{2\sqrt{3}}{\sqrt{3}}$

The plane passing through the point whose position vector is i + j - k and parallel to the lines 55. $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x-1}{-1} = \frac{y+1}{-2} = \frac{z-1}{1}$ has l, m, n as direction cosines of its normal then |l+m+n| =в) 1/√2 C) 1/√5 A) $1/\sqrt{3}$ D) 1/√6 Key. C

Sol. a+2b+3c=0-a-2b+c=0 $\Rightarrow a:b:c=2:-1:0$

If a line with direction ratios 2 : 2 : 1 intersects the lines $\frac{x-7}{3} = \frac{y-5}{2} = \frac{z-3}{1}$ and 56. 1 .1 .1

$$\frac{x-1}{2} = \frac{y+1}{4} = \frac{z+1}{3}$$
 at A and B then AB=
A) $\sqrt{2}$ B) 2 C) $\sqrt{3}$ D) 3

Key. D

Sol. Let
$$A(7+3\alpha, 5+2\alpha, 3+\alpha)$$
, $B(1+2\beta, -1+4\beta, -1+3\beta)$
D.R's of AB are in 2:2:1
 $\therefore \frac{6+3\alpha-2\beta}{2} = \frac{3+\alpha-2\beta}{1} = \frac{4+\alpha-3\beta}{1}$

$$\therefore \alpha = -2, \beta = 1, A(1,1,1), B(3,3,2)$$
The two lines whose direction cosines are co

The two lines whose direction cosines are connected by the relations al + bm + cn = 0 and $ul^2 + vm^2 + wn^2 = 0$ are perpendicular then (a) $a^2(v-w) + b^2(w-u) + c^2(u-v) = 0$ 57.

(b)
$$\frac{a^2}{u} + \frac{b^2}{v} + \frac{c^2}{w} = 0$$

(c) $a(v^2 + w^2) + b(w^2 + u^2) + c(u^2 + v^2) = 0$
(d) $a^2(v + w) + b^2(w + u) + c^2(u + v) = 0$
ey. D
ol. Given relations are

Ke S

Given relations are	
al+bm+cn=0	(1)
$ul^2 + vm^2 + wn^2 = 0$	(2)

Eliminating 'n' between the given relations we get $ul^2 + vm^2 + w\left(\frac{al+bm}{c}\right)^2 = 0$ $c^{2}ul^{2} + c^{2}vm^{2} + wa^{2}l^{2} + wb^{2}m^{2} + 2abwlm = 0$ $(c^{2}u + wa^{2})\frac{l^{2}}{m^{2}} + 2abw\frac{l}{m} + (b^{2}w + c^{2}v) = 0 \rightarrow 1$ The above is quadratic equation in $\frac{l}{m}$, whose roots are $\frac{l_1}{m}, \frac{l_2}{m}$ $\frac{l_1 l_2}{m_1 m_2} = \frac{b^2 w + c^2 v}{c^2 u + w a^2}$ $\frac{l_1 l_2}{b^2 w + c^2 v} = \frac{m_1 m_2}{c^2 u + w a^2} = \frac{n_1 n_2}{a^2 v + b^2 u}$ If the lines are perpendicular, then $l_1l_2 + m_1m_2 + n_1n_2 = 0$ $b^2w + c^2v + c^2u + wa^2 + a^2v + b^2u = 0$ $a^{2}(v+w)+b^{2}(u+w)+c^{2}(u+v)=0$ f(x) be a polynomial in x satisfying the condition f(x)f(x)+f58. and f(2) = 9. Then the direction cosines of the ray joining the origin and point (f(0), f(1), f(-1)) are given by a) $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right)$ b) (1, 2, 0) c) (0, 1, -1)d) $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$ Key. $f(x) = x^{n} + 1$. f(2) = 9 imply $f(x) = x^{3} + 1$ and f(0) = 1 f(1) = 2, f(-1) = 0, Sol. Dc's of ray joining (0,0,0) & (1,2,0) is $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right)$. The plane x-y-z=4 is rotated through 90° about its line of intersection with the plane 59. x+y+2z=4 and equation in new position is Ax+By+Cz+D=0 where A,B,C are least positive integers and D < 0 then c) A + B + C + D = 0a) D = -10b) ABC = -20d) A + B + C = 10Key. D Given planes are x - y - z = 4 ------ (1) and x + y + 2z = 4 ------ (2) Sol. Since required plane passes through the line of intersection (1) & (2) \Rightarrow Its equation is $(x-y-z-4)+\alpha(x+y+2z-4)=0$ $\Rightarrow (1+\alpha)x + (\alpha-1)y + (2\alpha-1)z - (4\alpha+4) = 0$ Since (1) & (3) are perpendicular $\Rightarrow 1(1+\alpha) - 1(\alpha-1) - 1(2\alpha-1) = 0 \Rightarrow 1 + \alpha - \alpha + 1 - 2\alpha + 1 = 0$ $\Rightarrow \alpha = 3/2$ $\Rightarrow \text{ Its equation is } (x-y-z-4) + \frac{3}{2}(x+y+2z-4) = 0 \Rightarrow 5x+y+4z-20 = 0$

60. The equation of motion of a point in space is x = 2t, y = -4t, z = 4t. where it is measured in hour and the coordinates of moving point in kilometers. The distance of the point from the starting point O(0,0,0) in 10 hours is

Mati	nematics				3D-Geometry
Key.	a) 20 km D	b) 40 km	c) 55 km	d) 60 km	
Sol.	Eliminating 't' from	m the equation we {	get the equation of	the path, $\frac{x}{2} =$	$\frac{y}{1} = \frac{z}{4}$
	Thus the path re	presents a straight	t line through the c	brigin. For $t = 10$ h, v	-4 4 we have x=
	20, y=-40,z=40 a	and $ \vec{r} = O\vec{M} = \sqrt{ \vec{r} }$	$\overline{\left(x^2+y^2+z^2\right)} = \sqrt{2}$	400+1600+1600 =	60 km
61.	A mirror and a sour	ce of light are situat	ed at the origin O a	nd a point on OX resp	pectively.
	A ray of light from t the plane of mirror	the source strikes th are 1,-1,1, then DCs	e mirror and is refle for the reflected ra	ected. If the DRs of no ay are	ormal to
	a) $\frac{1}{2}, \frac{2}{2}, \frac{2}{2}$	b) $-\frac{1}{2}, -\frac{2}{2}, \frac{2}{2}$	c) $-\frac{1}{2}$,	$-\frac{2}{-2}, -\frac{2}{-2}$ d)	122
Kev.	333 B	3 3 3 3	, 3,	3'3	3'3'3
Sol	Σ	cted ray are $-\frac{1}{-}$	22	~	
501.	Des of the felle	3,	3'3		
62.	Through a poin	It $P(a, b, c)$ a plan A B and C If (the is drawn at rig	ht angles to OP to	meet the co-
	p^2ab		$p^{3}c$	p^2c^2	p ⁵
	(A) $\frac{1}{c^2}$	(B)	3ab	(C) $\frac{1}{2ab}$ (D)	2abc
Key.	D	$\frac{1}{1}$			
501.	$\therefore DRs of$	OP are:			
	h	k	1		
	$\sqrt{\mathbf{h}^2 + \mathbf{k}^2 + \mathbf{l}^2}$,	$\sqrt{h^2 + k^2 + l^2}$, $\sqrt{h^2}$	$+k^{2}+l^{2}$		
	or $\frac{h}{n}, \frac{k}{n}, \frac{l}{n}$				
	Since OP is norma	il to the plane, there	efore, equation of p	lane is	
	~	\mathcal{S}			
	XX				
	~~~		O B y		
	h k 1	x A			
C	$\frac{1}{p}x + \frac{1}{p}y + \frac{1}{p}z =$	$p  ext{ or } hx + ky + lz =$	$=\mathbf{p}^2$		
	$\therefore A\left(\frac{p^2}{h}, 0, 0\right),$	$B\left(0,\frac{p^2}{k},0\right), C\left(0,0\right)$	$0, \frac{p^2}{l}$		
	Now, Area of $\Delta \! A$	BC, $\Delta = \sqrt{A_{xy}^2 + A_{zy}^2}$	$\frac{1}{y_z} + A_{zx}^2$		
	Where, $\mathbf{A}_{xy}^2$ is are	ea of projection of Z	$\Delta ABC$ on xy plane	= area of $\Delta AOB$	
	$ \mathbf{p}^2 $	/h 0 1	4		
	Now, $A_{xy} = \frac{1}{2}$	$0 \qquad p^2 / k  1 = \frac{1}{2}$	<u>p</u> 2 hk		
	_	0 0 1	1 1		

Similarly,  $A_{yz} = \frac{p^4}{2 |kl|}$  and  $A_{zx} = \frac{p^4}{2 |lh|}$   $\therefore \Delta^2 = A_{xy}^2 + A_{yz}^2 + A_{zx}^2, \Delta = \frac{p^5}{2hkl}$ 63. If  $l_i^2 + m_i^2 + n_i^2 = 1 \forall i \in \{1, 2, 3\}$  and  $l_i l_j + m_i m_j + n_i n_j = 0 \forall i, j \in \{1, 2, 3\}$   $(i \neq j)$   $\Delta = \begin{vmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{vmatrix}$  then (A)  $|\Delta| = 3$  (B)  $|\Delta| = 2$  (C)  $|\Delta| = 1$  (D)  $\Delta = 0$ Key. C Sol. We have,  $\Delta^2 = \Delta \Delta = \begin{vmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{vmatrix} \begin{vmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{vmatrix} = \begin{vmatrix} l_1^2 + m_1^2 + n_1^2 & l_1 l_2 + m_1 m_2 + n_1 n_2 & l_1 l_3 + m_1 m_3 + n_1 n_3 \\ l_1 l_2 + m_1 m_2 + n_1 n_2 & l_2^2 + m_2^2 + n_2^2 & l_2 l_3 + m_2 m_3 + n_1 n_3 \\ l_1 l_3 + m_1 m_3 + n_1 n_3 & l_2 l_3 + m_2 m_3 + n_2 n_3 & l_3^2 + m_3^2 + m_3^2 \end{vmatrix}$  $= \begin{vmatrix} l & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1 \Rightarrow \Delta = \pm 1 \Rightarrow |\Delta| = 1$ 

64. Equation of the straight line in the plane  $\vec{r} \cdot \vec{n} = d$  which is parallel to  $\vec{r} = \vec{a} + \lambda \vec{b}$  and passes through the foot of perpendicular drawn from the point  $P(\vec{a})$  to the plane  $\vec{r} \cdot \vec{n} = d$ . (where  $\vec{n} \cdot \vec{b} = 0$ ) is

A) 
$$\vec{r} = \vec{a} + \left(\frac{d - \vec{a} \cdot \vec{n}}{n^2}\right)\vec{n} + \lambda\vec{b}$$
  
B)  $\vec{r} = \vec{a} + \left(\frac{d - \vec{a} \cdot \vec{n}}{n}\right)\vec{n} + \lambda\vec{b}$   
C)  $\vec{r} = \vec{a} + \left(\frac{\vec{a} \cdot \vec{n} - d}{n^2}\right)\vec{n} + \lambda\vec{b}$   
D)  $\vec{r} = \vec{a} + \left(\frac{\vec{a} \cdot \vec{n} - d}{n}\right)\vec{n} + \lambda\vec{b}$   
A

Key.

Sol. Foot perpendicular from point A( $\vec{a}$ ) on the plane  $\vec{r} \cdot \vec{n} = d$  is  $\vec{a} + \frac{(d - \vec{a} \cdot \vec{n})}{|\vec{n}|^2}\vec{n}$ 

 $\therefore$  Equation of line parallel to  $\vec{r} = \vec{a} + \lambda \vec{b}$  in the plane  $\vec{r} \cdot \vec{n} = d$  is given by

$$\vec{\mathbf{r}} = \vec{\mathbf{a}} + \frac{\left(\mathbf{d} - \vec{\mathbf{a}} \cdot \vec{\mathbf{n}}\right)}{\left|\vec{\mathbf{n}}\right|^2} \vec{\mathbf{n}} + \lambda \vec{\mathbf{b}}$$

65. If the foot of the perpendicular from the origin to a plane is P(a, b, c), the equation of the plane is

A) 
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 3$$
  
B)  $ax + by + cz = 3$ 

C)  $ax + by + cz = a^2 + b^2 + c^2$ D) ax + bx + cz = a + b + cKey. С Direction ratios of OP are  $\langle a, b, c \rangle$ Sol. equation of the plane is .... e(x-a) + b(y-b) + c(z-c) = 0 $xa + yb + zc = a^{2} + b^{2} + c^{2}$ i.e. Equation of line in the plane  $\pi = 2x - y + z - 4 = 0$  which is perpendicular to the line *l* whose 66. equation is  $\frac{x-2}{1} = \frac{y-2}{1} = \frac{z-3}{2}$  and which passes through the point of intersection of l and  $\pi$  is B)  $\frac{x}{3} = \frac{y-3}{5} = \frac{z-5}{-1}$ A)  $\frac{x-2}{3} = \frac{y-1}{5} = \frac{z-1}{1}$ D)  $\frac{x+2}{2} = \frac{y-1}{-1} = \frac{z-1}{1}$ C)  $\frac{x+2}{2} = \frac{y+1}{-1} = \frac{z+1}{1}$ Key. R Let direction ratios of the line by  $\langle a, b, c \rangle$ , then Sol. 2a - b + c = 0a - b - 2c = 0i.e.  $\frac{a}{3} = \frac{b}{5} = \frac{c}{1}$ direction ratios of the line are (3,5,-1)÷ Any point on the line is  $(2+\lambda, 2-\lambda, 3-2\lambda)$ . It lies on the plane  $\pi$  if  $2(2+\lambda)-(2-\lambda)+(3-2\lambda)=4$  $4+2\lambda-2+\lambda+3-2\lambda=4$ i.e.  $\lambda = -1$ i.e. The point of intersection of the line and the plane is (1, 3, 5)·. equation of the required line is  $\frac{x-1}{3} = \frac{y-3}{5} = \frac{z-5}{-1}$ ÷ 67. Equation of plane which passes through the point of intersection of lines  $\frac{-1}{3} = \frac{y-2}{1} = \frac{z-3}{2}$  and  $\frac{x-3}{1} = \frac{y-1}{2} = \frac{z-2}{3}$  at greatest distance from the point (0, 0, 0) is A) 4x + 3y + 5z = 25B) 4x + 3y + 5z = 50C) 3x + 4y + 5z = 49D) x + 7y - 5z = 2Let a point  $(3\lambda + 1, \lambda + 2, 2\lambda + 3)$  of the first line also lies on the second line Sol. Then  $\frac{3\lambda+1-3}{1} = \frac{\lambda+2-1}{2} = \frac{2\lambda+3-2}{3} \Longrightarrow \lambda = 1$ Hence the point of intersection P of the two lines is (4, 3, 5)Equation of plane perpendicular to OP where O is (0, 0, 0) and passing through P is

4x + 3y + 5z = 50

C)  $\theta = \cos^{-1} \left( \frac{\sin \frac{\alpha}{2}}{\sin \alpha} \right)$ D)  $\theta = \sin^{-1} \left( \frac{\sin \frac{\alpha}{2}}{\sin \alpha} \right)$ 

Key. A

D) (2, - 3, 8)

# **Mathematics**

Sol. Let  $\theta$  be the required angle then  $\theta$  will be the angle between  $\vec{a}$  and  $\vec{b} + \vec{c} (\vec{b} + \vec{c}$  lies along the angular bisector of  $\vec{a}$  and  $\vec{b}$ )

C) (1, - 1, - 10)

$$\cos \theta = \frac{\vec{a} \cdot (\vec{b} + \vec{c})}{\left|\vec{a}\right| \left|\vec{b} + \vec{c}\right|}$$
$$= \frac{2 \cos \alpha}{\sqrt{2 + 2 \cos \alpha}} = \frac{\cos \alpha}{\cos \frac{\alpha}{2}}$$
$$\theta = \cos^{-1} \left(\frac{\cos \alpha}{\cos \alpha/2}\right)$$

72. The reflection of the point P(1, 0, 0) in the line  $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$  is

Key.

Sol. Let reflection of P(1, 0, 0) in the line

$$\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8} \text{ be } (\alpha, \beta, \gamma)$$
  
Then  $\left(\frac{\alpha+1}{2}, \frac{\beta}{2}, \frac{\gamma}{2}\right)$  lies on the line

and  $(\alpha - 1)\hat{i} + \beta\hat{j} + \gamma\hat{k}$  is perpendicular to  $2\hat{i} - 2\hat{j} + 8\hat{k}$ 

$$\therefore \qquad \frac{\alpha+1}{2} = \frac{\beta}{2} + 1 = \frac{\gamma}{2} + 10$$
And
$$2(\alpha-1) - 3(\beta) + \gamma(8) = 0$$

$$\Rightarrow \qquad \alpha = 5, \beta = -8, \gamma = -4$$

73. Let A(1, 1, 1), B (2, 3, 5), C (-1, 0, 2) be three points, then equation of a plane parallel to the plane ABC which is at a distance 2 is

A) 
$$2x - 3y + z + 2\sqrt{14} = 0$$
  
C)  $2x - 3y + z + 2 = 0$   
B)  $2x - 3y + z - \sqrt{14} = 0$   
D)  $2x - 3y + z - 2 = 0$ 

Key.

Α

Sol. A(1, 1, 1), B(2,3,5), C (-1, 0, 2) directions ratios of AB are < 1, 2, 4> direction ratios of AC are < - 2, - 1, 1 >

direction ratios of normal to plane ABC are < 2, -3, 1 >

Equation of the plane ABC is 2x - 3y + z = 0

Let the equation of the required plane be 2x - 3y + z = k, then  $\left|\frac{k}{\sqrt{4+9+1}}\right| = 2$ 

 $k = \pm 2\sqrt{14}$ 

Equation of the required plane is 
$$2x - 3y + z + 2\sqrt{14} = 0$$

74. The points A(2 – x, 2, 2), B(2, 2 – y, 2), C(2, 2, 2 – z) and D(1, 1, 1) are coplanar, then locus of P(x, y, z) is

A) 
$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$$
 B)  $x + y + z = 1$ 

C)  $\frac{1}{1-x} + \frac{1}{1-x} + \frac{1}{1-z} = 1$ D) None of these Key. Α Here  $\overrightarrow{AB} = x\hat{i} - y\hat{j}$ Sol.  $\overrightarrow{AC} = x\hat{i} - z\hat{k}$  $\overrightarrow{AD} = (x-1)\hat{i} - \hat{j} - \hat{k}$ As these vectors are coplanar  $\Rightarrow \begin{vmatrix} x & -y & 0 \\ x & 0 & -z \\ x-1 & -1 & -1 \end{vmatrix} = 0 \Rightarrow \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$ 75. The equation of plane through (1, 2, 3) and at the maximum distance from origin is A) x + 2y + 3z = 14B) x + y + z = 6C) x + 2y + 3z + 14 = 0D) 3x Key. А Direction rations of normal to the plane is (1, 2, 3)Sol. Equation of plane  $(x - 1)1 + (y - 2) \cdot 2 + (z - 3) \cdot 3 = 0$  $\Rightarrow$ x + 2y + 3z = 14 $\Rightarrow$ If  $P(\alpha, \beta, \gamma)$  be a vertex of an equilateral triangle PQR where vertex Q and R are 76. (-1,0,1) and (1, 0, -1) respectively then P will lie on the plane b) 2x + 4y + 3z + 10 = 0 a) x + y + z + 6 = 0d)  $x + y + z + 3\sqrt{2} = 0$ c) x - y + z + 12 = 0Ans.  $OR = 2\sqrt{2} = OP = 6$ The length of the perpendicular from (1, 0, 2) on the line  $\frac{x+1}{3} = \frac{y-2}{-2} = \frac{z+1}{-1}$  is 77. c)  $3\sqrt{2}$  d)  $2\sqrt{3}$ Ans. a  $\int_{-\infty}^{2} + (0-1)^{2} \left(2 + \frac{3}{2}\right)^{2} = \frac{3\sqrt{6}}{2}$ In triangle OAB, B = (3, 4). If  $H \equiv (1,4)$  be the orthocenter of the triangle, then the 78. coordinates of A are (where O is the origin) a)  $\left(0, \frac{15}{4}\right)$  b)  $\left(0, \frac{17}{4}\right)$  c)  $\left(0, \frac{21}{4}\right)$  d)  $\left(0, \frac{19}{4}\right)$ 

Ans. d

Sol. Let A = (h, k), slope of  $AH = \frac{k-4}{h-1}$ , slope of  $OB = \frac{4}{2}$ 

$$\Rightarrow \frac{4(k-4)}{3(h-1)} = -1$$
  

$$\Rightarrow 4k + 3h = 19$$
  
Slope of OA =  $\frac{k}{h}$ , slope of BH = 0 As  $OA \perp BH$   
 $\therefore h = 0$ , put in (1)  
 $k = \frac{19}{4}$ 

79. In an acute angles triangle ABC, AA₁, AA₂ are the median and altitude respectively. Then A₁A₂ is equal to

a) 
$$\frac{|a^2 - c^2|}{2b}$$
 b)  $\frac{|a^2 - b^2|}{2c}$  c)  $\frac{|b^2 - c^2|}{2a}$  d) none of these  
Ans. c  
Sol.  $A_2C = AB\cos B = c\cos B = \frac{a^2 + c^2 - b^2}{2a}$   
Also  $A_1B = \frac{a}{2}$  and  $A_2A_1 = BA_1 - BA_2 = \left|\frac{a}{2} - \frac{a^2 + c^2 - b^2}{2a}\right|$   
 $= \left|\frac{b^2 - c^2}{2a}\right|$ 

80. If a chord of the circle  $x^2 + y^2 - 4x - 2y - c = 0$  is trisected at the points  $\left(\frac{1}{3}, \frac{1}{3}\right)$  and  $\left(\frac{8}{3}, \frac{8}{3}\right)$ , then c = a) 10 b) 20 c) 30 d) 40

Ans.

b

C

Cut A :  $\left(\frac{1}{3}, \frac{1}{3}\right)$  and  $B\left(\frac{8}{3}, \frac{8}{3}\right)$ . Also C(2, 1). Then equation of AB is y = x, and length AB =  $\frac{7\sqrt{2}}{3}$ If PQ be the chord, then Length  $PQ = 7\sqrt{2}$ 

Now 
$$CP^2 = PM^2 + CM^2$$
  
 $\Rightarrow 4 + 1 + c = \left(\frac{7\sqrt{2}}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 = 25 \Rightarrow c = 20$ 



81. From a point on hyperbola  $\frac{x^2}{9} - \frac{y^2}{4} = 1$  tangents are drawn to circle  $x^2 + y^2 = 9$  then locus of midpoint of chord of contact

a)  $9(9x^2 - 4y^2) = 4(x^2 + y^2)^2$ b)  $9(4x^2 - 9y^2) = 4(x^2 + y^2)^2$ c)  $5(9x^2 - 4y^2) = 4(x^2 + y^2)^2$ d)  $9(9x^2 - 5y^2) = 4(x^2 - y^2)^2$ 

Ans. b

3D-Geometry

(1)

Sol. Equation of chord of contact is  $3x \sec \theta + 2y \tan \theta = 9$ _ Let midpoint of chord of contact be (h, k) then  $hx + ky = h^2 + k^2$ (2) _ (1) and (2) are identical ٥h ٩ŀ

$$\sec \theta = \frac{3\pi}{3(h^2 + k^2)}, \tan \theta = \frac{3\pi}{2(h^2 + k^2)}$$
  
Then  $\sec^2 \theta - \tan^2 \theta = 1$ 

82. In figure shown two points A and B are given on x-axis and third point C on y-axis. Then locus of P such that four A, B, P and C lie on a circle

a) 
$$\left(x - \frac{a+b}{2}\right)^2 + \left(y - \frac{c^2 + ab}{2c}\right)^2 = \frac{c^4 + a^2b^2 + b^2c^2 + c^2a^2}{4c^2}$$
  
b)  $\left(x + \frac{a+b}{2}\right)^2 + \left(y - \frac{c^2 + ab}{2c}\right)^2 = \frac{c^4 + a^2b^2 + b^2c^2 + c^2a^2}{4c^2}$   
c)  $\left(x - \frac{a+b}{2}\right)^2 + \left(y + \frac{c^2 + ab}{2c}\right)^2 = \frac{c^4 + a^2b^2 + b^2c^2 + c^2a^2}{4c^2}$   
d) none of these

Ans.

а

Sol. Let equation of circle be 
$$(x-\alpha)^2 + (y-\beta)^2 = r^2$$
  
Since it passes through A, B, C  
 $r^2 = (a-\alpha)^2 + \beta^2$   
 $r^2 = (b-\alpha)^2 + \beta^2$  on solving get equation

$$r^2 = \alpha^2 + (c - \beta)^2$$
  
83. Let A be the fixed point (0, 4) and B be a moving point (2t, 0), M be the midpoint of AB and let the perpendicular bisector of AB meet the y-axis at R. The locus of the midpoint of MR is

3

.0

a) 
$$x^2 = -(y-2)$$
 b)  $x^2 + (y-2)^2 = 1/4$  c)  $x^2 + 1/4 = (y-2)^2$  d) none of these

Ans. a

Sol. M(t, 2) 
$$\Rightarrow$$
 equation of MR is  $y-2 = \frac{t}{2}(x-t)$   
 $\Rightarrow R = (0, 2-t^2/2)$ , let midpoint be (h, k)  
 $\Rightarrow h = t/2, k = 2-t^2/4$ 

If P be a point inside an equilateral  $\triangle ABC$  such that PA = 3, PB = 4 and PC = 5, then the side 84. length of the equilateral  $\triangle ABC$  is

a) 
$$\sqrt{25-12\sqrt{3}}$$
 b) 13 c)  $\sqrt{25+12\sqrt{3}}$  d) 17  
Ans. c

Sol.

#### 3D-Geometry

#### **Mathematics**

Rotate the triangle in clockwise direction through an angle 60°. Let the points A, B, C and P will be A, B', B and P' respectively after the rotation. We have PA = P'A = 3and  $|PAP' = 60^\circ \implies PP' = 3$ . Also CP = BP' = 5. So  $\triangle BPP'$  is right angle triangle which  $|BPP' = 90^\circ$ . Now apply cosine rule in  $\triangle BPA$  because  $|BPA = 90^\circ + 60^\circ = 150^\circ$ , PA = 3 and BP = 4, we can get AB.



85. Consider  $A \equiv (3,4)$ ,  $B \equiv (7,13)$ . If P be a point on the line y = x such that PA + PB is minimum, then the coordinate of P are

a) 
$$\left(\frac{13}{7}, \frac{13}{7}\right)$$
 b)  $\left(\frac{23}{7}, \frac{23}{7}\right)$  c)  $\left(\frac{31}{7}, \frac{31}{7}\right)$ 

Ans. c

Sol. Let A, be the reflection of A in 
$$y = x \Longrightarrow A_1 \equiv (4,3)$$

Now PA + PB =  $A_1P$  + PB, which is minimum when  $A_1$ , P, B are collinear

Equation of A₁B is 
$$(y-3) = \frac{13-3}{7-4}(x-4) \Longrightarrow 3y = 10x - 31$$
 and y = x gives  $P = \left(\frac{31}{7}, \frac{31}{7}\right)$ 

86. In triangle ABC, equation of the side BC is x - y = 0. Circumcentre and orthocenter of the triangle are (2, 3) and (5, 8) respectively. Equation of the circumcircle of the triangle is a)  $x^2 + y^2 - 4x + 6y - 27 = 0$ b)  $x^2 + y^2 - 4x - 6y - 27 = 0$ 

c) 
$$x^2 + y^2 + 4x + 6y - 27 = 0$$
  
b

Ans. Sol.

- Reflection P in BC will lie on BC
- $\therefore$  Equation of circumcircle is

$$(x-2)^{2} + (y-3)^{2} = (8-2)^{2} + (5-3)^{2}$$
 or  
 $x^{2} + y^{2} - 4x - 6y - 27 = 0$ 



87. The locus of the midpoints of the chords of the circle  $x^2 + y^2 + 2gx + 2fy + c = 0$  that pass through the origin is

a) 
$$x^2 + y^2 + 2gx + 2fy = 0$$
  
b)  $x^2 + y^2 + gx + fy + c = 0$   
c)  $x^2 + y^2 + gx + fy = 0$   
d)  $2(x^2 + y^2 + gx + |y| + c = 0)$ 

Ans.

Sol.  $T = S_1 \Longrightarrow xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c$ It passes through (0, 0)  $\therefore x_1^2 + y_1^2 + gx_1 + fy_1 = 0$  $\therefore$  Locus is  $x^2 + y^2 + gx + fy = 0$ 

88. Circles C₁ and C₂ having centres G₁ and G₂ respectively intersect each other at the points A and B, secants L₁ and L₂ are drawn to the circles C₁ and C₂ to intersect them in the points A₁, B₁ and A₂, B₂ respectively. If the secants L₁ and L₂ intersect each other at a point P in the exterior

region of circles  $C_1$  and  $C_2$  and  $PA_1 \times PB_1 = PA_2 \times PB_2$  then which of the following statement is false a) points P, A and B are collinear b) line joining G₁ and G₂ is perpendicular to line joining P and A c)  $PA_1 \times PB_1 = PA \times PB$ d)  $PA = PA_1$ Ans. d Sol. Line joining PAB will be the radical axis of the two circles so a, b and c are correct 89. Distance between centres of circles which pass through A(a, a) and B(2a, 2a) and touch the yaxis is b)  $2\sqrt{2}a$  c)  $4\sqrt{2}a$ d)  $\sqrt{2}a$ a) 4a Ans. c Sol. Let  $(\alpha, 3a - \alpha)$ ,  $(\beta, 3a - \beta)$  be the centres of the circle  $\Rightarrow \alpha, \beta$  are the roots of equation  $(x-a)^2 + (2a-x)^2 = x^2$  $\Rightarrow \alpha + \beta = 6a, \ \alpha\beta = 5a^2$  $\Rightarrow |\alpha - \beta| = 4a$  $\Rightarrow C_1 C_2 = 4a\sqrt{2}$ The locus of the centre of a circle which cuts orthogonally the parabola  $y^2 = 4x$  at (1, 2) will 90. pass through points a) (3, 4) d) (2, 4) b) (4, 3) c) (5, 3) Ans. a Sol. Tangent to parabola  $y^2 = 4x$  at (1, 2) will be the locus i.e  $y \cdot 2 = 2(x+1)$ y = x + 1Let AB be any chord of the circle  $x^2 + y^2 - 4x - 4y + 4 = 0$  which subtends an angle of 90° at the 91. point (2, 3), then the locus of the midpoint of AB is circle whose centre is

a) (1, 5) b)  $\left(1, \frac{5}{2}\right)$  c)  $\left(1, \frac{3}{2}\right)$  d)  $\left(2, \frac{5}{2}\right)$ 

#### Ans. d

Sol. Let midpoint of AB is M(h, k)  
AB subtends 90° at (2, 3)  

$$\Rightarrow AM = MB$$

$$\Rightarrow \sqrt{(h-2)^2 + (k-3)^2}$$
Also, CM² + MB² = CB²  

$$\Rightarrow (h-2)^2 + (k-2)^2 + (h-2)^2 + (k-3)^2 = 4$$

$$\Rightarrow x^2 + y^2 - 4x - 5y + \frac{17}{2} = 0$$



92. If line y = 2x + c neither cuts the circle  $(x - 2)^2 + (y - 3)^2 = 4$  nor the ellipse  $x^2 + 6y^2 = 6$ , then the range of c is a) [-5, 5] b)  $(-\infty, -5) \cup (5, \infty)$  c) (-4, 4) d) none of these

Ans.

h

Sol. Since the given line does not meet the given ellipse and circle.  $c^2 > 6 \times 2^2 + 1$  [From  $c^2 > a^2m^2 + b^2$ ]

∴ e = 2

and  $c^2 > 4(1 + 4)$  $[From c^2 > a^2(1 + m^2)]$  $\Rightarrow c^2 > 25$  $\therefore c \in (-\infty, -5) \cup (5.\infty)$ If the eccentricity of the hyperbola  $x^2 \cos ec^2 \theta - y^2 \sec^2 \theta = 5$  is 5 times the eccentricity of 93. the ellipse  $x^2 \cos ec^2 \theta + y^2 \sec^2 \theta = 25$ , then  $\theta =$ b)  $\frac{\pi}{2}$  c)  $\cot^{-1}\left(\frac{\pm 2}{\sqrt{3}}\right)$  d)  $\tan^{-1}\left(\frac{4}{5}\right)$ a)  $\frac{\pi}{4}$ Ans.  $\frac{x^2}{5\sin^2\theta} - \frac{y^2}{5\cos^2\theta} = 1, \ \frac{x^2}{25\sin^2\theta} + \frac{y^2}{25\cos^2\theta} = 1$ Sol.  $e_{\mu}^2 = 1 + \cot^2 \theta$  $e_{1}^{2} = 1 - \cot^{2} \theta$  $1 + \cot^2 \theta = 5(1 - \cot^2 \theta)$  $= \cot^2 \theta = \frac{2}{3}$  $6 \cot^2 \theta = 4$  $\cot\theta = \pm \sqrt{\frac{2}{3}}$  $\theta = \cot^{-1}\left(\frac{+2}{\sqrt{2}}\right)$ Area enclosed by ellipse  $x^2 + \sin^4 \alpha y^2 = \sin^2 \alpha$ ,  $\alpha \in \left(0, \frac{\pi}{2}\right)$ is 94. a) 2π **b)** π d) none of these Ans. b Area =  $\pi ab - \pi \sin \alpha \csc \alpha = \pi$ . Sol. Find the eccentricity of the conic formed by the locus of the point of intersection of the lines 95.  $\sqrt{3}x - y - 4\sqrt{3}k = 0$  and  $\sqrt{3}kx + ky - 4\sqrt{3} = 0$ b) 1/4 c) 2 a) 4 d) 1/2 Ans. С  $\sqrt{3x} - y - 4\sqrt{3k} = 0$ ,  $\sqrt{3kx} + ky - 4\sqrt{3} = 0$ Sol. In order to find the locus of point of intersection We have to eliminate k  $\frac{\sqrt{3x-y}}{4\sqrt{3}} = k$  put this k in another  $\left(\sqrt{3}x - y\right)\left(\sqrt{3}x + y\right) = \left(4\sqrt{3}\right)^2$ or  $3x^2 - y^2 = 48$  $\frac{x^2}{16} - \frac{y^2}{48} = 1 \qquad \therefore a^2 = 16, b^2 = 48$ Clearly locus form a hyperbola.  $b^2 = a^2(e^2 - 1)$  $48 = 10(e^2 - 1)$ 

If a pair of variable straight lines  $x^2 + 4y^2 + \alpha xy = 0$  (where  $\alpha$  is a real parameter) cut the 96. ellipse  $x^2 + 4y^2 = 4$  at two points A and B, then locus of point of intersection of tangents at A and B is a)  $x^2 - 4y^2 + 8xy = 0$ b) (2x-y)(2x+y)=0c)  $x^2 - 4y^2 + 4xy = 0$ d) (x-2y)(x+2y)=0Ans. d Let the point of intersection of tangents at A and B be P(h, k) then Sol. equation of AB is  $\frac{xh}{4} + \frac{yk}{1} = 1$ (1)Homogenizing the ellipse with (1)  $\frac{x^2}{4} + \frac{y^2}{1} = \left(\frac{xh}{4} + \frac{yk}{1}\right)^2$ 0  $\Rightarrow x^2 \left(\frac{h^2 - 4}{16}\right) + y^2 \left(k^2 - 1\right) + \frac{2hk}{4} xy = 0$ (2)Given, equation of OA and OB is  $x^2 + 4y^2 + \alpha xy = 0$ (2) and (3) are same  $\implies$  (h - 2k) (h + 2k) = 0 Therefore locus is (x - 2y)(x + 2y) = 0

97. A man starts from point P(-3, 4) and reaches the point Q(0, 1) touching x-axis at R, such that PR + RQ is minimum, then the coordinates of point R is

a) 
$$\left(-\frac{3}{5},0\right)$$
 b) (1,0) c) (-1,0)

d) 
$$\left(\frac{3}{5},0\right)$$

#### Ans. a

Sol. Let 
$$P'(-3, -4)$$
 be the image of P with respect to x-axis PR

+ RQ minimum

 $\Rightarrow P'R + RQ$  is minimum

$$\Rightarrow$$
  $P'RQ$  should be collinear



98. Let A, B and C are any three points on the ellipse  $36x^2 + \frac{y^2}{192} = 1$ , then the maximum area of the triangle ABC is

Sol. Area of the triangle inscribed in the ellipse is maximum in difference of the eccentric angles of the point A, B, C is  $\frac{2\pi}{3}$ 

So maximum area of the inscribed triangle is  $\frac{3\sqrt{3}}{4} \cdot \frac{1}{6} \cdot 8\sqrt{3} = 3$  sq.units

99. If  $P(x_1, y_1), Q(x_2, y_2), R(x_3, y_3)$  and  $S(x_4, y_4)$  are four concyclic points on the rectangular hyperbola  $xy = c^2$ , then the coordinates of the orthocenter of  $\Delta PQR$  are a)  $(x_4, -y_4)$  b)  $(x_4, y_4)$  c)  $(-x_4, -y_4)$  d)  $(-x_4, y_4)$ 

Ans. c  
Sol. Orthocentre and 
$$(x_4, y_4)$$
 are the images of each other with respect to the origin.  
100. If two of the lines given by  $3x^3 + 3x^3y - 3xy^3 + dy^3 = 0$  are at right angled, then the slope of the third line is  
 $a_1 - 1$   $b_1 1$   $c_1 3$   $d_1 - 3$   
Ans. a  
Sol. Let the lines be  $y = m_x y = m_x y = m_x x$   
 $\therefore m_m m_m m_3 = -\frac{3}{d}$   
Let  $m_y m_z = -1$  (two of the lines are perpendicular)  
 $\therefore m_3 = \frac{3}{d}$   
 $y = \frac{3}{d} x$  satisfying given equation  
 $\Rightarrow d(\frac{3}{d})^3 - 3(\frac{3}{d})^2 + 3(\frac{3}{d}) + 3 = 0$   
 $\Rightarrow d = -3$   
 $\therefore$  The given equation  $x^3 + x^3y - xy^2 \cdot y^3 = 0$   
 $\Rightarrow (x + y)(x^2 - y^2) = 0$   
 $\therefore$  slopes of other 2 lines are 1, -1  
101. If the angle between tangents drawn to  $x^4 + y^3 - 6x - 8y + 9 = 0$  at the points where it is cut  
by the line  $y = 3x + kis \frac{\pi}{2}$ , then  
 $a) k = -5 \pm 2\sqrt{5} b) k = -5 \pm 3\sqrt{5} c) k = 2\sqrt{5} + \sqrt{2}$  d) none of these  
Ans. a  
Sol. CD = CB cos  $\frac{\pi}{4} = \sqrt{2}$   
 $\sqrt{2} = \frac{|4 - 9 - k|}{\sqrt{1^2 + 3^2}} = \frac{|-5 - k|}{\sqrt{10}}$   
 $20 = (5 + k)^2$   
 $\Rightarrow k = -5 \pm 2\sqrt{5}$   
102. If directions of two sides of a triangle are fixed and length of third side is constant and is  
 $a|dn|g| between these sides, then locus of the orthocenter of the triangle is
 $a|dn|g| between these sides, then locus of the orthocenter of the triangle is
 $a|dn|g| between these side and  $AC = c \cos \theta$ .  
 $\therefore CC = c \sin \theta + 0 C = c \sin \theta$  and  $AC = c \cos \theta$ .  
 $\therefore cC = c \sin \theta - \cot \alpha$   
 $= c \sin \theta - \cot \alpha$   
 $x = c \sin \theta - \cot \alpha$   
 $= c \sin \theta - \cot \theta$ ,  $c \cos \theta - \cot \alpha$   
 $= c \sin \theta - \cot \alpha$$$$ 

d

equation of a circle.

103. The number of triangles having two vertices are (1, 2) and (6, 2) and incentre (4,6) is a) 2 b) 1 c) infinite d) 0

Ans.

Sol. Equation of BC is y = 2, which is parallel to x-axis

$$\therefore \tan \frac{B}{2} = \frac{4}{3} \Longrightarrow B > \frac{\pi}{2} \text{ and } \tan \frac{C}{2} = 2 \Longrightarrow C > \frac{\pi}{2}$$

In a triangle two angles cannot be greater than  $90^{\circ}$  and hence there is no such triangle.

not

# **3D-Geometry**

# Multiple Correct Answer Type

1. Consider the planes  $P_1: 2x + y + z + 4 = 0$ ,  $P_2: y - z + 4 = 0$  and  $P_3: 3x + 2y + z + 8 = 0$ .

Let  $L_1, L_2, L_3$  be the lines of intersection of the planes  $P_2$  and  $P_3$ ,  $P_3$  and  $P_1$ , and  $P_1$  and  $P_2$  respectively. Then,

- A) At least two of the lines  $L_1, L_2$  and  $L_3$  are non-parallel
- B) At least two of the lines  $L_1, L_2$  and  $L_3$  are parallel
- C) The three planes intersect in a line
- D) The three planes form a triangular prism

Key. B,C

Sol. Observe that the lines  $L_1, L_2$  and  $L_3$  are parallel to the vector  $\begin{pmatrix} 1, -1, -1 \end{pmatrix}$ Also,  $\Delta = 0 = \Delta_1$  and  $b_1 c_2 - b_2 c_1 \neq 0$ 

 $\stackrel{\scriptstyle ...}{\scriptstyle \cdot }$  The three planes intersect in a line

2. The plane passing through the point (-2, -2, 2) and containing the line joining points (1, 1, 1) and (1, -1, 2) makes intercepts of lengths a, b, c respectively on the axes of x, y and z then

- Key. A,B,C,D
- Sol. Equation of plane passing through (-2, -2, 2) is l(x+2) + m(y+2) + n(z-2) = 0Where *l*, m, n are dr's of normal to the plane

Since it contains the line joining (1, 1, 1) and (1, -1, 2) these points also lie on the planes

 $\Rightarrow 3l + 3m - n = 0$  and 3l + m = 0

$$\Rightarrow \frac{l}{1} = \frac{m}{-3} = \frac{n}{-6}$$

 $\Rightarrow$  equation of the plane is (x+2) - 3(y+2) - 6(z-2) = 0

= 0

(or) 
$$x - 3y - 6z + 8$$

$$\Rightarrow \frac{x}{-8} = \frac{y}{8/3} = \frac{z}{8/6} = 1$$
$$\Rightarrow a = 8, b = 8/3, c = 8/6$$

3.  $\frac{x}{b} + \frac{y}{c} = 1$  intersects the co-ordinate axes at points A, B and C respectively. If  $\Delta PQR$  has mid-points

A, B and C then

- (A) centroids of  $\Delta ABC$  and  $\Delta PQR$  coincide
- (B) foot of normal to  $\Delta ABC$  from O is circumcentre of  $\Delta PQR$

(C) 
$$\operatorname{ar}(\Delta PQR) = 2\sqrt{a^2b^2 + b^2c^2 + c^2a^2}$$

(D) incentres of  $\Delta ABC$  and  $\Delta PQR$  coincide

# **3D-Geometry**

# Mathematics

# Key: A, B, C Hint: (a), (b), (c)

 $AC \parallel PR$  and 2AC = PRSo, ABPC is a parallelogram comparing the coordinates

of mid-point of diagonals, we get

P(-a,b,c) and Q(a,-b,c) and R(a,b,-c)

Also, AP is median of  $\triangle ABC$  and  $\triangle PQR$  so centroids are Coinciding. The perpendicular bisector of PR is also perpendicular to AC. Therefore circumcentre of  $\triangle PQR$  is orthocenter of  $\triangle ABC$ 

$$ar\Delta PQR = 4 ar\Delta ABC = 4\sqrt{(OAB)^2 + (OBC)^2 + (OAC)^2}$$



Where OAB is the area of the projection of  $\Delta ABC$  on the plane XOZ etc.

4. The projection of line 
$$3x-y+2z-1=0=x+2y-z-2$$
 on the plane  $3x+2y+z=0$  is

(A)	$\frac{x+1}{11} = \frac{y-1}{-9} = \frac{z-1}{-15} $ (B)	3x-8y+7z+4=0=3x+2y+z
(C)	$\frac{x+12}{11} = \frac{y+8}{-9} = \frac{z+14}{15}$	(D) $\frac{x+12}{11} = \frac{y+8}{-9} = \frac{z+14}{-15}$

Key: A,B

Hint: Equation of a plane passing through the line 3x - y + 2z - 1 = 0 = x + 2y - z - 2 is  $3x - y + 2z - 1 + \lambda(x + 2y - z - 2) = 0$ 

Since it is perpendicualr to the given plane

$$\lambda = -\frac{3}{2}$$

∴ Equation of the line of projection is

3x - 8y + 7z + 4 = 0 = 3x + 2y + z

Its direction ratios are < 11, -9, -15 > and the point (-1,1,1) lies on the line

 $\therefore \frac{x+1}{11} = \frac{y-1}{-9} = \frac{z-1}{-15}$  is also the equation of the line of projection.

5. The equation of three planes are x-2y+z=3, 5x-y-z=8, and x+y-z=7 then a) they form a triangular prism

b) all three plane have a common line of intersection

c) line  $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$  is parallel to each plane d) line  $\frac{x}{1} = \frac{y}{3} = \frac{z}{4}$  intersect all three plane A, C

Key:

3D-Geometry
9.	A plane passing through (1, 1, 1) cuts +ve direction of co-ordinate axes at A, B & C, then the volume of retrahedron OABC (V) satisfies			lume of	
	A) $V < \frac{9}{2}$	B) $V = \frac{9}{2}$	C) $V > \frac{9}{2}$	D) $V\!\leq\!rac{9}{2}$	
Key.	B,C				
Sol.	Let plane equation be	$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$			
	$\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1  (\because (1, 1))$	1,1) lies on it)		X	$\mathcal{O}$
	$A.M \ge H.M \Longrightarrow abc$	≥27			
10.	The plane $3x+4y=0$	is rotated through an	angle of $\pi/4$ about it	ts line of intersection with	the xy-plane.
	The equation of the pla	ne in the new position	n is		<i>y</i>
	A) $3x + 4y - z = 0$		B) $3x + 4y + z =$	0	
	C) $3x + 4y + 5z = 0$		D) $3x + 4y - 5z =$	=0	
Key.	C,D			CX	
Sol.	Required plane is $3x + x$	$4y + \lambda(Z) = 0$			
11.	If the median throu	igh A of $\Delta ABC$ hav	ing vertices $A \equiv (2, 3, 3)$	,5), $B \equiv (-1,3,2)$ and $C$	$\equiv$ ( $\lambda, 5, \mu$ ) is
	equally inclined to the	e axes then			
	(a) $\lambda = 7$	(b) $\mu \!=\! 10$	(c) $\lambda = 10$	(d) $\mu = 7$	
Key.	A,B				
Sol.	Mid point of $BC = \left(-\frac{2}{3}\right)^{1}$	$\left(\frac{\lambda-1}{2},4,\frac{\mu+2}{2}\right)$			
	dr's median through A	A are			
	$\left(\frac{\lambda - 1}{2} - 2, 4 - 3, \frac{\mu}{2}\right)$	$\frac{+2}{2}$ -5	2		
	$= \left(\frac{\lambda - 5}{2}, 1, \frac{\mu - 8}{2}\right)$				
	The median is equally	inclined to axis so the	direction ratios must l	he equal: so	
	$\lambda - 5$ $\mu - 8$			50 04441, 50	
	$\frac{\pi}{2} = 1 = \frac{\mu}{2} \Rightarrow$	$\lambda = 7, \mu = 10$			
	A(2,3,5	5)			
	$\sim$	<			
	B(-1,3,2)	С(â,5, µ)			
12.	The equation of the lin	ne $x + y + z - 1 = 0, 4x$	x + y - 2z + 2 = 0 writte	en in the symmetrical form	ı is
	x + 1 - y - 2 - z - z - z - z - z - z - z - z - z	0	B) $\frac{x}{z} - \frac{y}{z} - \frac{z}{z} - 1$		
	$\frac{1}{1} - \frac{1}{-2} - \frac{1}{1}$		$\frac{1}{1} - \frac{1}{-2} - \frac{1}{1}$		
	x + 1/2 - y - 1 z	-1/2	x - 1 + y + 2	z-2	
	-2 = -2	1	$\frac{1}{2} = \frac{1}{-1} = \frac{1}{-1}$	2	

D)  $\frac{x-1}{2} = \frac{y+2}{-1} = \frac{z-2}{2}$ 

Key. A.B.C Sol. x + y + z - 1 = 04x + y - 2z + 2 = 0*.*.. direction ratios of the line are < -3, 6, -3 >i.e. < 1, - 2, 1 > Let z = k, then x = k - 1, y = 2 - 2ki.e. (k-1, 2-2k, k) is any point on the line  $(-1, 2, 0), (0, 0, 1) \text{ and } \left(-\frac{1}{2}, 1, \frac{1}{2}\right)$  are points on the line ċ. (A), (B) and (C) are correct options *.*.. Consider the planes 3x - 6y + 2z + 5 = 0 and 4x - 12y + 3z = 3. The plane 13. 67x - 162y + 47z + 44 = 0 bisects that angle between the given planes which D) none of these B) is acute C) is obtuse A) Contains origin Key. A,B Sol. 3x - 6y + 2z + 5 = 0-4x + 12y - 3z + 3 = 0 $\frac{3x-6y+2z+5}{\sqrt{9+36+4}} = \frac{-4x+12y-3z+3}{\sqrt{16+144+9}}$ Bisects the angle between the planes that contains the origin 13(3x - 6y + 2z + 5) = 7(-4x + 12y - 3z + 3)39x - 78y + 26z + 65 = 028x + 84y - 21z + 2167x - 162y + 47z + 44 = 0...(iii) Further  $3 \ge (-4) + (-6) (12) + 2 \ge (-3) < 0$ origin lies in acute angle *.*.. The plane lx + my = 0 is rotated about its line of intersection with the plane z = 0, through an angle  $\alpha$ , 14. then equation of plane in its new position may be B)  $lx + my - z\sqrt{l^2 + m^2} \tan \alpha = 0$ A)  $lx + my + z\sqrt{l^2 + m^2} \tan \alpha = 0$ C) data is not sufficient D) None of these Key. A,B Equation of required plane is Sol.  $l\mathbf{x} + \mathbf{m}\mathbf{y} + \lambda \mathbf{z} = 0$ angle between (i) & lx + my = 0 is  $\alpha$ .  $\cos \alpha = \frac{l^2 + m^2}{\sqrt{l^2 + m^2 \sqrt{l^2 + m^2 + \lambda^2}}}$  $\cos^2 \alpha = \frac{l^2 + m^2}{l^2 + m^2 + \lambda^2} \implies \lambda = \pm \sqrt{l^2 + m^2} \tan \alpha$ Hence equation of plane is  $lx + my \pm z\sqrt{l^2 + m^2} \tan \alpha = 0$ If  $p_1$ ,  $p_2$ ,  $p_3$  denotes the distance of the plane 2x - 3y + 4z + 2 = 0 from the planes 15. 2x - 3y + 4z + 6 = 0, 4x - 6y + 8z + 3 = 0 and 2x - 3y + 4z - 6 = 0 respectively, then  $a) n_1 + 8n_2 - n_2 = 0$ 

a) 
$$p_1 + 8p_2 - p_3 = 0$$
  
b)  $p_3 = 16p_2$   
c)  $8p_2 = p_1$   
d)  $p_1 + 2p_2 + 3p_3 = \sqrt{29}$ 

Ans. a,b,c,d Since all planes are parallel

$$P_1 = \frac{4}{\sqrt{29}}, P_2 = \frac{1}{2\sqrt{29}}, P_3 = \frac{8}{\sqrt{29}}$$

16. Let PQ be the chord of the parabola  $y^2 = 4x$ . A circle drawn with PQ as a diameter passes through the vertex V of the parabola. If area of triangle PVQ = 20, then the coordinates of P are



$$a^{2} - (a^{2}e^{2}b^{2}) = 0 \Rightarrow b = \frac{1}{e}$$
Also  $a^{2} = \frac{b^{2}}{1 - e^{2}} \Rightarrow a^{2} = \frac{1}{e^{2}(1 - e^{2})} \Rightarrow a = \frac{1}{e\sqrt{1 - e^{2}}}$ 

$$s = \pi ab = \frac{\pi}{e^{2}\sqrt{1 - e^{2}}}$$

$$\frac{ds}{de} = \pi \left(\frac{e(3e^{2} - 2)}{e^{4}(1 - e^{2})^{3/2}}\right) \text{ since } 0 < e < 1$$

$$\Rightarrow \text{ s is least when } e = \sqrt{\frac{2}{3}}$$

$$\therefore \text{ ellipse is } 2x^{2} + 6y^{2} = 9$$
19.  $\sqrt{x} + \sqrt{y} = 1$  is a part of parabola whose  
a) focus is  $\left(\frac{\sqrt{2} + 1}{4}, \frac{\sqrt{2} + 1}{4}\right)$ 
b) directrix is  $x + x = \frac{\sqrt{2} - 1}{2}$ 
c) latus rectum is 2 unit
d) vertex is  $\left(\frac{1}{4}, \frac{1}{4}\right)$ 
Ans. a, b, c,d  
Sol.  $(y - x - 1)^{2} = 4x \Rightarrow x^{2} - 2xy + y^{2} - 2x - 2y + 1 = 0$ 

$$\Rightarrow (x - y + \lambda)^{2} = 2x + 2y - 1 + 2\lambda x - 2\lambda y + \lambda^{2}, \lambda \in R$$
We choose  $\lambda$  such that  
 $x - y + \lambda = 0$  and  $2x + 2y - 1 + 2\lambda x - 2\lambda y + \lambda^{2}$  and  $a = 1 + \sqrt{\frac{5}{2}}$ 
and  $\frac{1 - \sqrt{5}}{2}$ 
d)  $\frac{1 - \sqrt{5}}{2}$ 
d) coinc with evalue of m is equal to a)  $\frac{1 - 1}{\sqrt{5}}$ 
for  $\frac{1}{1 - (-1)} = \frac{xy}{2}$  put  $y = mx$  and solve  $m = \frac{-1 \pm \sqrt{5}}{2}$ 
d) coinc with eccentricity  $\frac{1}{2}$ 
d) coinc with eccentricity  $\frac{1}{2}$ 
d) coinc with eccentricity  $\frac{1}{4}$ 
d) coinc with eccentricity  $2$ 
ans. B, d
Sol. Eliminating m, we get  $3x^{2} - y^{2} = 48$ , which is a hyperbola.  
Its eccentricity  $= \sqrt{1 + \frac{48}{6}} = 2$ 
d). If P is a point inside a convex quadrilateral ABCD such that  $PA^{2} + PB^{2} + PC^{2} + PD^{2}$  is twice the area of the quadrilateral then which of the following statements are correct.  
a) PA, PB, PC, PD are an ellequal

b) ABCD must be a square and P must be its centre

c) ABCD must be a square d) ABCD may be any quadrilateral Ans. a,b,c Sol.  $PA^2 + PB^2 = 2PA \cdot PB$  $\Rightarrow \sum PA^2 \ge 2 \operatorname{area} (PAB + PBC + PCB + PDA)$ 

Key.

# **3-D Geometry** Assertion Reasoning Type

# 1. Statement 1: Consider the planes 3x-6y-2z=15 and 2x+y-2z=5.

The parametric equations of the line of intersection of the given planes are x=3+14t, y=1+2t, z=15t; t being the parameter Statement 2: The vector  $14\hat{i}+2\hat{j}+15\hat{k}$  is parallel to the line of intersection of the given planes. 1)Statement I is True, Statement II is True and Statement II is correct explanation of Statement I 2)Statement I is True, Statement II is True but Statement II is not correct explanation of Statement I 3)Statement I is True, Statement II is False 4)Statement I is False, Statement II is True

Sol. Equation of the line in statement-1 can be written as  $\frac{x-3}{14} = \frac{y-1}{2} = \frac{z-0}{15} = t$ . This is the line of intersection of the planes, then the point (3,1,0) which lies on the line must be on both the planes which is not true and hence the statement-1 is false. Direction ratios of the line of intersection of the given planes is (-6)(-2) - (-2)(1), (-2)(2) - (-2)(3), 3(1) - (2)i.e. 14, 2, 15; showing that the vector in statement-2 is parallel to the line of intersection of the planes and thus statement-2 is True.

2. Statement 1: 
$$L_1: \frac{x+1}{3} = \frac{y+2}{1} = \frac{z+1}{2}, L_2: \frac{x-2}{1} = \frac{y+2}{2} = \frac{z-3}{3}$$

The unit vector perpendicular to both  $L_1$  and  $L_2$  is  $\frac{-\hat{l} - 7\hat{j} + 5\hat{k}}{5\sqrt{3}}$ . Statement 2: The distance of the point (1,1,1) from the plane passing through the point (-1, -2, -1) and whose normal is perpendicular to both the lines  $L_1$  and  $L_2$  is  $23/5\sqrt{3}$ . 1)Statement I is True, Statement II is True and Statement II is correct explanation of Statement I 2)Statement I is True, Statement II is True but Statement II is not correct explanation of Statement I 3)Statement I is True, Statement II is False 4)Statement I is False, Statement II is True

Sol.  $L_1$  and  $L_2$  are parallel to the vectors a = 3i + j + 2k and b = i + 2j + 3k respectively. The vector perpendicular to both  $L_1$  and  $L_2$  is  $a \times b$  and the required unit vector is  $\frac{-i - 7j + 5k}{\sqrt{1 + 49 + 25}}$ , so

statement-1 is true. In satatement-2, equation of the plane is -(x+1)-7(y+2)+5(z+1)=0whose distance from (1,1,1) is  $13/5\sqrt{3}$ , so the statement-2 is false. Statement 1: If  $x, y, z \in R$  and  $3x + 4y + 5z = 10\sqrt{2}$  then the least value of 3.  $x^2 + v^2 + z^2$  is 4. Statement 2: If  $\pi$  is a given plane and 'P' is a given point then the point on plane which is nearest to 'P' is the foot of the perpendicular from 'P' to the plane. Key. А Sol. Conceptual STATEMENT-1: The lines  $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{3}$  and  $\frac{x-1}{-3} = \frac{y-4}{2}$ 4. lines. STATEMENT-2: Two non-parallel, non-intersecting lines are skew lines Kev: D Since  $\begin{vmatrix} 1 & -1 & -1 \\ 1 & 1 & 3 \\ -3 & 2 & 1 \end{vmatrix} = 0$ Hint: So; the two lines are not skew  $=\frac{z+1}{1}$  and  $\frac{x-2}{1}=\frac{y+1}{2}=\frac{z}{3}$  are coplanar and equation Statement - 1: The lines 5. the plane containing them is 5x + 2y - 3z - 8 = 0. Statement - 2: The line  $\frac{x-2}{1} = \frac{y+1}{2} = \frac{z}{3}$  is perpendicular to the plane 3x+6y +9z-8=0 and parallel to the plane x+y-z=0 Key. B  $\begin{vmatrix} -1 - 0 \\ 1 \\ 2 \end{vmatrix} = 0 \Rightarrow$  given lines are coplanar Sol Equation of the plane is  $\begin{vmatrix} x-1 & y & z+1 \\ 1 & -1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$ i.e., 5x + 2y - 3z - 8 = 0Since  $\frac{1}{3} = \frac{2}{6} = \frac{3}{9} \Longrightarrow \frac{x-2}{1} = \frac{y+1}{2} = \frac{z}{3}$  is perpendicular to the plane And also 1(1) + 2(1) + 3(-1) = 0 $\Rightarrow \frac{x-2}{1} = \frac{y+1}{2} = \frac{z}{3}$  is parallel to x + y - z = 0

Assertion (A): The area of the triangle whose vertices are A(1,2,3); B(-2,1,-4); C(3,4,-2)6.

is 
$$\frac{\sqrt{1218}}{2}$$
 square units.

Reason (R): If A is area of  $\triangle ABC; A_x, A_y, A_z$  are areas of projections of  $\triangle ABC$  on yz, zx, xy

planes respectively then area of 
$$\Delta ABC = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

Key. А

Sol. Conceptual

Statement-1: P is a point (a, b, c). Let A, B, C be the images of P in yz, zx ad xy planes 7. respectively, then equation of the plane passing through the points A, B and C is X V Z

$$\frac{a}{a} + \frac{b}{b} + \frac{b}{c} = 1.$$

Statement-2: The image of a point P in a plane is the foot of the perpendicular drawn from P on the plane.

С Key:

Statement-2 is not true because image of P in a plane is a point M such that PM is Hint: perpendicular to the plane and the mid-point of PM lies on the plane.

The points A, B, C are respectively (-a, b, c), (a, -b, c) and (a, b, -c) which lies on the plane X Y Z 1

$$a + b + c = 1$$
 and thus statement-1 is true

Consider the planes 3x - 6y - 2z = 15 and 2x + y - 2z = 5. 8.

> Statement-1: The parametric equation of the line of intersection of the given planes is x = 3 + 314t, y = 1 + 2t, z = 15t, t being the parameter.

Statement-2: The vector  $14\hat{i}+2\hat{j}+15\hat{k}$  is parallel to line of intersection of the given planes.

Key:

d

d Equation of the line in statement-1 can be written as  $\frac{x-3}{14} = \frac{y-1}{2} = \frac{z-0}{15} = t$ . Hint:

If this represents the line of intersection of the given planes, then the point (3, 1, 0) which lies on the line must be on both the planes which is not true. So statement-1 is false. The direction ratios of the line of intersection of the planes is

$$(-6)(-2)-(-2)(1), (-2)(2)-(-2)(3), (3)(1)-(2)(-6)$$

i.e. 14, 2, 15 showing that the vector  $14\hat{i}+2\hat{j}+15\hat{k}\,$  is parallel to the line of intersection of the given planes and hence the statement-2 is true.

Consider the lines  $L_1: \frac{x-3}{2} = \frac{y+1}{-3} = \frac{z+2}{1}$  and  $L_2: \frac{x-7}{-3} = \frac{y}{1} = \frac{z+7}{2}$ 9. STATEMENT-1 L₁ and L₂ are coplanar because STATEMENT-2 L₁ and L₂ intersect. Key. А Any point on the line  $L_1$  is  $(2r_1 + 3, -3r_1 - 1, r_1 - 2)$ Sol. Any point on the line  $L_2$  is  $(-3r_2 + 7, r_2, 2r_2 - 7)$ Let the lines L1 and L2 intersect at P

 $\therefore 2r_1 + 3 = -3r_2 + 7 \implies 2r_1 + 3r_2 = 4 \dots$  (i) Also  $-3r_1 - 1 = r_2 \implies -3r_1 - r_2 = 1$  ... (ii) and  $r_1 - 2 = 2r_2 - 7 \implies r_1 - 2r_2 = -5 \dots$  (iii) Solving (i) & (iv), we get  $r_1 = -1$ ,  $r_2 = 2$ Clearly  $r_1 = -1$  and  $r_2 = 2$  satisfy equation (iii)  $\therefore$  lines L₁ and L₂ intersect  $\Rightarrow$  L₁ and L₂ are coplanar. 10. Statement - 1: If the planes x = cy + bz, y = az + cx and z = bx + ay pass through a line, then  $a^2 + b^2 + c^2 + 2abc = 1$ . Statement - 2:  $\begin{vmatrix} -c & 1 & -a \\ -b & -a & 1 \end{vmatrix} = 0$ Key. A Conceptual Sol. Let A, B, C be points with position vectors 11. Statement - 1:  $r_1 = 2\hat{i} - \hat{j} + \hat{k}, r_2 = \hat{i} + 2\hat{j} + 3\hat{k}$  and  $r_3 = 3\hat{i} + \hat{j} + 2\hat{k}$  relative to origin 'O'. The shortest distance between the point B and plane OAC is  $\sqrt{5/7}$ .  $(OA \times \overrightarrow{OC}).\overrightarrow{OB}$ Shortest distance = Statement - 2: Key. D Conceptual Sol.  $,\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-2}{3}$  will be coplanar 12. Statement - 1: The lines for more than one value of K. Statement - 2: Two lines in a plane will be either parallel or intersecting. Kev. D = 0Sol. Statement-I: The line  $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$  is parallel to the plane 2x + y - 2z = 013. Statement-II: The normal of the given plane is  $\perp^{er}$  to the given line Kev Sol. dr's of normal to the given plane is (2, 1, -2) Drs of the given line = (3, 4, 5)(2)(3) + 1(4) + (-2)(5) = 0 $\therefore$  line is parallel to the given plane. STATEMENT-1: The distance of the point of intersection of the line  $\frac{x-3}{1} = \frac{y-4}{2} = \frac{z-5}{2}$ 14. and the plane x+y+z = 17 from the point (3,4,5) is 3 STATEMENT-2: The distance from the point  $(x_1, y_1, z_1)$  to the plane ax+by+cz+d=0

•

P is exterior to the sphere *.*..

Statement – 2: is true (standard result)

	$\rightarrow$ $($ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($		
18.	Statement – 1: If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ , then equation $\vec{r} \times (2\hat{i} - \hat{j} + 3\hat{k}) = 3\hat{i} + \hat{k}$ represents a straight		
	line.		
	Statement – 2: If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ , then equation $\vec{r} \times (\hat{i} + 2\hat{j} - 3\hat{k}) = 2\hat{i} - \hat{j}$ represents a st. line		
Key.	D		
Sol.	Statement - 2: $\vec{\mathbf{r}} \times (\hat{\mathbf{i}} - 2\hat{\mathbf{j}} - 3\hat{\mathbf{k}}) = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \mathbf{x} & \mathbf{y} & \mathbf{z} \\ 1 & 2 & -3 \end{vmatrix}$		
	$\hat{i}(-3y-2z)-\hat{j}(-3x-z)+\hat{k}(2x-y)$		
	$\therefore$ $-3y - 2z = 2$ , $3x + z = -1$ , $2x - y = 0$		
	i.e. $-6x - 2z = 2$ , $3x + z = -1$		
	$\therefore \qquad \text{straight lien } 2x - y = 0, \ 3x + z = 1$		
	Statement $-1$ : $\vec{r} \times (2\hat{i} - \hat{i} + 3\hat{k}) - \begin{vmatrix} r & J & K \\ v & v & z \end{vmatrix}$		
	Statement 1. $1 \times (21 \text{ J} + 5 \text{ K})^{-1} \times (2 \text{ -1} \text{ 3})^{-1} \times (2 \text{ -1} \text{ -1} \text{ -1} \text{ -1})^{-1} \times (2  -1$		
	$=\hat{i}(3y+z)-\hat{j}(3x-2z)+\hat{k}(-x-2y)$		
	$\therefore$ 3y + z = 3, 3x - 2z = 0, - x - 2y = 1		
	3x - 2(3 - 3y) = 0		
	$\Rightarrow  3x + 6y = 6  \Rightarrow  x + 2y = 2$		
	Now $x + 2y = -1$ , $x + 2y = 2$ are parallel planes		
	$\therefore \qquad \vec{r} \times \left(2\hat{i} - \hat{j} + 3\hat{k}\right) = 3\hat{i} + \hat{k} \text{ is not a straight line}$		
19.	Statement – 1: Let $\theta$ be the angle between the line $\frac{x-2}{2} = \frac{y-1}{2} = \frac{z+2}{2}$ and the plane $x + y - \frac{z+2}{2}$		
	z = 5.		
	Then $\theta = \sin^{-1} \frac{1}{\sqrt{51}}$		
	Statement $-2$ : Angle between a st. line and a plane is the complement of angle between the		
	line and normal to the plane.		
Key.	D		
Sol.	$\sin \theta \left  \frac{2 - 3 + 2}{\sqrt{4 + 9 + 4}\sqrt{3}} \right  = \frac{1}{\sqrt{51}}$		
	Statement $-1$ is true. Statement $-2$ is true by definition		
20.	Statement – 1: A point on the straight line $2x + 3y - 4z = 5$ and $3x - 2y + 4z = 7$ can be determined by taking $x = k$ and then solving the two equations for y and z, where k is any real		
	number.		

Statement – 2: If  $c' \neq kc$ , then the straight line ax + by + cz + d = 0, kax + kby + c'z + d' = 0, does not intersect the plane  $z = \alpha$ , where  $\alpha$  is any real number.

Sol. Statement – 1

3y - 4z = 5 - 2k- 2y + 4z = 7 - 3k

$$\therefore \qquad x = k, y = 12 - 5k, z = \frac{31 - 13k}{4} \text{ is a point on the line for all real values of k}$$
Statement 12
Statement 2
direction ratios of the straight line are < bc'-kbc, kac - ac', 0>
direction ratios of normal to be plane < 0, 0, 1 >
Now 0×(bc'-kbc)+0×(kac-ac')+1×0=0
$$\therefore \qquad \text{the straight line is parallel to the plane}$$

$$\therefore \qquad \text{statement is true but does not explain statement - 1$$
21.
Statement - 1: If A₀, A₁, A₂ be projection of an area A on yz, zx, xy planes respectively then
$$A_{1}^{2} + A_{2}^{2} + A_{2}^{2} = A^{2}$$
Statement - 1: If I₀, n be direction cosines of normal to the area A then A₁ = 10, A₂ = mA and
A₂ = nA
a)
Statement 1 is true, Statement - 2 is true; Statement 2 is a correct explanation for
statement 1
b) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is rue
Ans. a
Sol. Conceptual
22.
Statement -1: The distance between the lines represented by
$$x^{2} + 2\sqrt{2}xy + 2y^{2} + 4\sqrt{2}x + 4y + 1 = 0$$
is 2
Statement -1: Statement -2 is true; Statement-2 is a correct explanation for
statement-1
b) Statement 1 is true, Statement-2 is true, Statement 2 is a correct explanation for
statement-1: The distance between the lines represented by
$$x^{2} + 2\sqrt{2}xy + 2y^{2} + 4\sqrt{2}x + 4y + 1 = 0$$
is 2
Statement-1: The distance between the lines ax + by + c = 0 and ax + by + c_{1} = 0 is  $\frac{|c-c_{1}|}{\sqrt{a^{2} + b^{2}}}$ 
a) Statement-1 is frue, Statement-2 is true, Statement-2 is not a correct explanation for
statement-1
c) Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for
statement-1
c) Statement-1 is frue, Statement-2 is true, Statement-2 is not a correct explanation for
statement-1
c) Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for
statement-1
c) Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for
statement-1
c) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for
statement-1
c) Statement-1 is true, Statement -2 is true; St

Ans. a

Sol. Above lines are concurrent as  $\frac{a_1}{c_1} = \frac{a_2}{c_2} = \frac{a_3}{c_3}$  implies all the points lie on the line parallel to

y-axis and hence collinear.

24. Statement – I: If the circumference of the circle  $x^2 + y^2 - 2x + 8y - q^2 = 0$  is bisected by the circle  $x^2 + y^2 + 4x + 22y + p^2 = 0$ , then pq can not exceed 25

Statement – II : Common chord of two circles must be equidistant from the centres of both the circles

 a) Statement 1 is true, Statement – 2 is true; Statement 2 is a correct explanation for statement 1

b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1

c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true

Ans. Sol.

bl. Equation of common chord is  $6x + 14y + p^2 + q^2 = 0$ It must pass through the centre of the first circle  $\therefore p^2 + a^2 = 50$ 

Now 
$$\frac{p^2 + q^2}{2} \ge pq \Longrightarrow pq \le 25$$

25. a, b, c are positive numbers and the chord of contact of the tangents drawn from any point on the circle  $x^2 + y^2 = a^2$  to the circle  $x^2 + y^2 = b^2$  touches the circle  $x^2 + y^2 = c^2$ Statement – I: a – 2bk + ck² is non-negative for every  $k \in R$ 

Statement – I:  $a = 2bk + ck^{-1}$  is non-negative for every  $k \in I$ Statement – II : The given circles are concentric

a) Statement 1 is true, Statement – 2 is true; Statement 2 is a correct explanation for

statement 1 b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for

b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1

c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true b

Ans. b Sol. Chord of contact of any point  $(a\cos\theta, a\sin\theta)$  with respect to  $x^2 + y^2 = b^2$  is

 $x\cos\theta + y\sin\theta = \frac{b^2}{a}$  which touches  $x^2 + y^2 = c^2 \Rightarrow b^2 = ac \Rightarrow (2b)^2 = 4ac$ Thus  $cx^2 - 2bx + a \ge 0 \forall x \in R$ 

26. Statement – I: Through ( $\lambda$ ,  $\lambda$  + 1) there cannot be more than one normal to parabola y²= 4x if  $\lambda$  < 2

Statement – II : The points ( $\lambda$ ,  $\lambda$  + 1) lies outside the parabola for all  $\lambda \neq 1$ 

a) Statement 1 is true, Statement – 2 is true; Statement 2 is a correct explanation for statement 1  $\,$ 

b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1

c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true

Ans.

Sol. Any normal to the parabola  $y^2 = 4x$  is  $y + tx = 2t + t^3$ 

If this passes through  $ig( \lambda, \lambda \! + \! 1 ig)$ 

$$\lambda + 1 + t\lambda = 2t + t^{3}$$
  

$$t^{3} + t(2-\lambda) - \lambda - 1 = 0$$
  

$$f(t) = t^{3} + t(2-\lambda) - \lambda - 1$$

If  $\lambda < 2$ ,  $f'(t) = 3t^2 + (2 - \lambda) > 0$ 

f(t) = 0 will have only one real root

 $\Rightarrow$  statement 1 is true

Statement 2 is also true since  $(\lambda + 1)^2 > 4\lambda$  is true for all  $\lambda \neq 1$ .

Statement 1 is true but not follow from statement 2.

Statement – I:  $\frac{5}{3}$  and  $\frac{5}{4}$  are the eccentricities of a hyperbola and its conjugate. 27.

Statement – II : If e and  $e_1$  are the eccentricities then  $ee_1 > 1$ 

a) Statement 1 is true, Statement - 2 is true; Statement 2 is a correct explanation for statement 1

b) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1

false st c) Statement 1 is true; Statement 2 is false d) Statement 1 is false; Statement 2 is true Ans. b

Sol. Use 
$$\frac{1}{e_1^2} + \frac{1}{e_2^2} = 1$$

9

# **3D-Geometry** *Comprehension Type*

# Passage – 1:

Let PQRS be a rectangle of size  $9 \times 3$ , if it is folded along QS such that plane PQS is perpendicular to plane QRS and point R moves to point T.



Shortest distance between the lines $\overline{r}{=}\overline{a}{+}\lambda\overline{lpha}$ and $\overline{r}{=}\overline{b}{+}\mu\overline{eta}$ is							
given by $rac{ (\overline{a}-\overline{b}).(\overline{\alpha} imes\overline{eta}) }{ \overline{\alpha} imes\overline{eta} }$	$\frac{(1)}{10} = 3\sqrt{\frac{10}{19}}$						
ge – 2:							
Let a plane $P_1$ passes thr	ough the point $(1, -2, 3)$ and	is parallel to the plane	$P_{\!_2}$ given by				
2x-2y+z=0.							
The distance of the point	$(-1,2,0)$ from the plane $P_1$	is					
(A) 2 units	(B) 3 units	(C) 5 units	(D) 7 units				
The coordinate of the foo	ot of perpendicular drawn fror	n point $\left( 1,-2,3 ight)$ to th	e plane $P_2$ is				
(A) (0,0,0)	(B) (-1,0,2)	(C) (1,0,-2)	(D) (2,0,-4)				
The distance between pa	rallel planes $P_{\!_1}$ and $P_{\!_2}$ is	c X					
(A) 2 units	(B) 3 units	(C) 5 units	(D) 7 units				
C-B-B	_						
The equation of the pla	tine $P_1$ is $2x - 2y + z = \lambda$						
Since, it passes throug	h (1,–2,3)						
Then $\lambda = 9$							
So, $P_1$ is $2x - 2y + z =$	=9						
Its distance from point (-1,2,0) is $\frac{ 2 \times (-1) - 2 \times (2) + 0 - 9 }{3} = 5$							
Now the line perpend	icular to plane $P_{\!_2}$ and pas	sing through (1,-2,3	3) is given by				
$\frac{x-1}{2} = \frac{y+2}{-2} = \frac{z-3}{1}$							
Any point on this line can be taken as $(2t+1, -2t-2, t+3)$							
If it lies on plane $P_2$ then we have 2(2t+1)-2(-2t-2)+t+3=0							
					$\Rightarrow$ 9t+9=0		
⇒t=–1							
So, the coordinate of the foot of perpendicular drawn from point $(1, -2, 3)$ to the plat $P_2$ is $(-1, 0, 2)$ .							
					Again the distance between the parallel planes $2x - 2y + z - 9 = 0$ and $2x - 2y + z = 0$ is given by $\frac{ 9 - 0 }{\sqrt{2^2 + (-2)^2 + 1}} = \frac{9}{3} = 3$ units		
	Shortest distance between given by $\frac{ (\overline{a} - \overline{b}).(\overline{a} \times \overline{\beta}) }{ \overline{a} \times \overline{\beta} }$ ge - 2: Let a plane P ₁ passes that 2x - 2y + z = 0. The distance of the point (A) 2 units The coordinate of the food (A) (0,0,0) The distance between particles (A) 2 units C-B-B The equation of the plant Since, it passes throug Then $\lambda = 9$ So, P ₁ is $2x - 2y + z = 1$ Its distance from point Now the line perpend $\frac{x-1}{2} = \frac{y+2}{-2} = \frac{z-3}{1}$ Any point on this line coll If it lies on plane P ₂ the 2(2t+1)-2(-2t-2) + 3 = 1 So, the coordinate of the P ₂ is $(-1,0,2)$ . Again the distance between 2x - 2y + z = 0 is given	Shortest distance between the lines $\overline{r} = \overline{a} + \lambda \overline{a}$ and $\overline{r}$ given by $\frac{ (\overline{a} - \overline{b}).(\overline{a} \times \overline{\beta}) }{ \overline{a} \times \overline{\beta} } = 3\sqrt{\frac{10}{19}}$ ge - 2: Let a plane P ₁ passes through the point (1,-2,3) and $2x - 2y + z = 0$ . The distance of the point (-1,2,0) from the plane P ₁ (A) 2 units (B) 3 units The coordinate of the foot of perpendicular drawn from (A) (0,0,0) (B) (-1,0,2) The distance between parallel planes P ₁ and P ₂ is (A) 2 units (B) 3 units C-B-B The equation of the plane P ₁ is $2x - 2y + z = \lambda$ Since, it passes through (1,-2,3) Then $\lambda = 9$ So, P ₁ is $2x - 2y + z = 9$ Its distance from point (-1,2,0) is $ 2\times(-1)-2\times(2\times (2\times (2\times (2\times (2\times (2\times (2\times (2\times (2\times (2$	Shortest distance between the lines $\overline{r} = \overline{a} + \lambda \overline{a}$ and $\overline{r} = \overline{b} + \mu \overline{\beta}$ is given by $\frac{ (\overline{a} - \overline{b}).(\overline{a} \times \overline{\beta}) }{ \overline{a} \times \overline{\beta} } = 3\sqrt{\frac{10}{19}}$ ge - 2: Let a plane P ₁ passes through the point (1,-2,3) and is parallel to the plane $2x - 2y + z = 0$ . The distance of the point (-1,2,0) from the plane P ₁ is (A) 2 units (B) 3 units (C) 5 units The coordinate of the foot of perpendicular drawn from point (1,-2,3) to th (A) (0,0,0) (B) (-1,0,2) (C) (1,0,-2) The distance between parallel planes P ₁ and P ₂ is (A) 2 units (B) 3 units (C) 5 units C-B-B The equation of the plane P ₁ is $2x - 2y + z = \lambda$ Since, it passes through (1,-2,3) Then $\lambda = 9$ So, P ₁ is $2x - 2y + z = 9$ Its distance from point (-1,2,0) is $\frac{ 2\times(-1)-2\times(2)+0-9 }{3} = 5$ Now the line perpendicular to plane P ₂ and passing through (1,-2,5) $\frac{x-1}{2} = \frac{y+2}{-2} = \frac{z-3}{1}$ Any point on this line can be taken as $(2t+1, -2t-2, t+3)$ If it lies on plane P ₂ then we have 2(2t+1)-2(-2t-2)+t+3=0 $\Rightarrow 9t+9=0$ $\Rightarrow t = -1$ So, the coordinate of the foot of perpendicular drawn from point (1,-2,5) $P_2$ is (-1,0,2). Again the distance between the parallel planes $2x - 2y + z - 9 = 0$ and $2x - 2y + z = 0$ is given by $\frac{ 9-0 }{\sqrt{2^2 + (-2)^2 + 1}} = \frac{9}{3} = 3$ units				

## Passage - 3:

Consider the planes  $S_1: 2x - y + z = 5$ ,  $S_2: x + 2y - z = 4$  having normals  $N_1$  and  $N_2$  respectively. P(2, -1, 0) and Q(1, 1, -1) are points on  $S_1$  and  $S_2$  respectively.

7. A vector of magnitude  $\sqrt{140}$  units and lies along the line of intersection of  $S_1$  and  $S_2$  is

A) 
$$2(5i+3j-k)$$
 B)  $2(i+3j+5k)$  C)  $2i-6j-10k$  D)  
 $i = i+5k$ 

2(3i-j+5k)

8. The distance of the origin from the plane passing through the point (1, 1, 1) and whose normal is perpendicular to  $N_1$  and  $N_2$  is

A) 
$$\frac{9}{\sqrt{61}}$$
 B)  $\frac{11}{\sqrt{35}}$  C)  $\frac{10}{\sqrt{61}}$  D)  $\frac{7}{\sqrt{35}}$ 

9. Let  $L_1$  be the line passing through P and parallel to  $N_1$ ,  $L_2$  be the line passing through Q and parallel to  $N_2$ . The shortest distance between  $L_1$  and  $L_2$  is

A) 
$$\frac{2}{\sqrt{35}}$$
 B)  $\frac{8}{\sqrt{35}}$  C)  $\frac{14}{\sqrt{35}}$  D)  $\frac{17}{\sqrt{35}}$ 

Key: C-D-A

Hint: Q7, 8, 9

Unit vector along line of intersection of  $S_{\rm L}$  and

$$S_{2} = \pm \frac{(2i - j + k) \times (i + 2j - k)}{|(2i - j + k) \times (i + 2j - k)|} = \pm \frac{(-i + 3j + 5k)}{\sqrt{35}}$$
7.  $\pm 2\sqrt{35} \times \frac{(-i + 3j + 5k)}{\sqrt{35}} = \pm 2(-i + 3j + 5k)$ 

8. Equation of plane is 
$$-1(x-1)+3(y-1)+5(z-1)=0$$

9. 
$$L_1: \frac{x-2}{2} = \frac{y+1}{-1} = \frac{z}{1}, \ L_2: \frac{x-1}{1} = \frac{y-1}{2} = \frac{z+1}{-1}$$
 are skew lines

# Passage - 4

If P = (1, 6, 3) be the given point,  $L = \frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$  be the given line,  $\pi: 2x+3y-z=7$  be the given plane.

10. Equation of the plane passing through 'P' and perpendicular to the plane  $\pi$  is a) x+y+5z=1 b) 5x+3z=39 c) 3x-2y=15 d) 3x+y+9z=36Key. D Sol. Conceptual

11.	If $ heta$ is the angle between the plane $\pi$ and the line L is given by				
	a) $\cos\theta = \frac{5}{14}$	b) $\sin\theta = \frac{5}{14}$	c) $\cos\theta = \frac{1}{14}$	d) $\sin\theta = \frac{1}{14}$	
Key.	В				
Sol.	Conceptual				
12.	Length of perpendicular from 'p' on the 'L' is:				
	a) $\sqrt{13}$	b) $\sqrt{14}$	c) $\sqrt{46}$	$(1) \frac{10}{\sqrt{14}}$	
Key.	A			×/).	
Sol.	Conceptual				
Passa	ge – 5:				
(a ₁ a ₂ +	$b_1b_2 + c_1c_2)^2 \le (a_1^2 + b_1^2 + b_1^2)^2$	$+c_1^2)(a_2^2+b_2^2+c_2^2)$ and	equality holds wh	hen $\frac{\mathbf{a}_1}{\mathbf{a}_2} = \frac{\mathbf{b}_1}{\mathbf{b}_2} = \frac{\mathbf{c}_1}{\mathbf{c}_2}$ .	
13.	If (I, m, n) are direction	cosines of a line then the	e range of values of	of '3l + 4m – 5n' is	
	(A) $[-5\sqrt{2}, 5\sqrt{2}]$		(B) $[-6\sqrt{2}, 6\sqrt{2}]$	2]	
	(C) $[-7\sqrt{2}, 7\sqrt{2}]$		(D) $[-8\sqrt{2}, 8\sqrt{2}]$	2]	
Key.	A If (2) I Am En' takes it	s maximum value, then t	havalua of llm i	mn i nll is aqualta	
14.	(A) $0.12$	s maximum value, then t	(B) 0.46	min + mij is equal to	
	(C) 1.08	<u> </u>	(D) 1.72		
Key.	В				
15.	If ax + by + cz = $\sqrt{a+b+c}$ (a, b, c are fixed +ve real nos.) then the minimum value of ax ² +				
	(A) 1		(B) a+b+c		
	(C) $a^2 + b^2 + c^2$		(D) $(a + b + c)^2$		
Key.	A				
Sol.	13. $(3\ell + 4m - 5n)^2 \le (3^2 + 4^2 + (-5)^2)(\ell^2 + m^2 + n^2) = 50 \times 1$				
		- Ann 5 - 5 - 5	1		
14. $\frac{\ell}{3} = \frac{m}{4} = \frac{n}{-5} = \frac{3\ell + 4m - 5n}{3^2 + 4^2 + (-5)^2} = \frac{5\sqrt{2}}{50} = \frac{1}{5\sqrt{2}}$					
					C
	$\Rightarrow a+b+c \leq (a+b+)$	c) $(ax^2 + by^2 + cz^2) \Rightarrow$	$ax^2 + by^2 + cz^2$	≥1	
		· · · · · · · · ·	2		

# Passage – 6:

*L* is the line of intersection of two non-parallel planes  $\pi_1, \pi_2$ .  $L_1$  is a straight line which is perpendicular to *L* and points on  $L_1$  are equidistant from the planes  $\pi_1, \pi_2$ . Equation of  $\pi_1$  is 2x+3y+z=1 and equations of  $L_1$  are 6x=3y=2z

16. The direction ratios of L are<br/>A) (6, -3, 0)B) (7, -5, 1)C) (5, -1, -1)D) (11, -1, -3)

Key. В 17. The direction ratios of normal to the plane containing  $L, L_1$  are A) (12, -3, 4)B) (17, 20, -19) C) (13, -2, -3)D) (14, -5, 2) Key. B The X-intercept of plane  $\pi_2$  is 18. A) -7/3B) 5 / 2 C) 2 D) 8 / 3 Key. A Sol. 16 - 18 Vector parallel to L is  $\begin{vmatrix} i & j & k \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{vmatrix}$ Equations of plane containing  $L, L_1$  is  $\begin{vmatrix} x & y & z \\ 1 & 2 & 3 \\ 7 & -5 & 1 \end{vmatrix} = 0$ . i.e., 17x + 20y - 19z = 017x + 20y - 19z = 0 bisects an angle between  $\pi_1, \pi_2$ Passage - 7: Two lines whose equations are  $\frac{x-3}{2} = \frac{y-2}{3} = \frac{z-1}{\lambda}$  and  $\frac{x-2}{3} = \frac{y-3}{2} = \frac{z-2}{3}$  lie in the same plane, then The value of  $\sin^{-1}(\sin \lambda)$  is equal to 19. A) 3 B) *π*−3 C) 4 D)  $\pi - 4$ Key. D Point of intersection of the lines lies on 20. A) 3x + y + z = 20B) 3x + y + z = 25C) 3x + 2y + z = 24D) 3x + 2y + z = 25Key. B Equation of plane containing both lines is 21. A) x + 5y - 3z = 10B) x + 6y + 5z = 20C) x + 6y - 5z = 10D) x + 6y + 5z = 10Key. C Sol. 19.  $\begin{vmatrix} 2 & 3 & \lambda \\ 3 & 2 & 3 \\ 1 & -1 & -1 \end{vmatrix} = 0 \Longrightarrow \lambda = 4$ 20. Let  $\frac{x-3}{2} = \frac{y-2}{3} = \frac{z-1}{4} = r_1$  $(3+2r_1, 2+3r_1, 1+4r_1)$  lies on  $\frac{x-2}{3} = \frac{y-3}{2} = \frac{z-2}{3}$ 

D) 1

D) 1/2

**Mathematics** 

	x-3	y-2	z-1	
21.	2	3	4	=0
	3	2	3	

# Passage - 8:

*T* is the region of the plane x+y+z=1 with x, y, z>0. *S* is the set of points (a,b,c) in *T* such that just two of the following three inequalities hold:

$$a \le \frac{1}{2}, b \le \frac{1}{3}, c \le \frac{1}{6}$$

22. Area of region *T* is A)  $\sqrt{3}/4$  B)  $\sqrt{3}/2$  C)  $\sqrt{3}$ 

Key. B

23. Area of region *S* is A)  $\sqrt{3}/72$  B)  $7\sqrt{3}/36$ 

Key. B

- 24. The difference of region *T* and region *S* consists of
  A) Three parallelograms B) Three equilateral triangles
  C) Three rectangles
  D) Three squares
- Key. B
- Sol. 23 24:

T is an equilateral triangle with vertices at (1, 0, 0), (0, 1, 0) and (0, 0, 1).

 $S = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{4} (a^2 + b^2 + c^2) \text{ where } a, b, c \text{ are sides of 3 small equilateral triangle.}$ 

# Passage – 9:

Let  $L_1: \overline{r} = (i-j) + t_1(2i+3j+k)$ ,  $L_2: \overline{r} = (-i+2j+2k) + t_2(5i+j)$ , then

25. The unit vector perpendicular to both the lines  $L_1$  and  $L_2$  is

A) 
$$\frac{3i+4j}{5}$$
 B)  $\frac{5i+j-13k}{\sqrt{195}}$  C)  $\frac{-i+5j-13k}{\sqrt{195}}$  D)  $\frac{4i-3k}{5}$ 

Key. C

26. The shortest distance between 
$$L_1$$
 and  $L_2$  is  
A)  $4/\sqrt{195}$  B) 17/5 C)  $9/\sqrt{195}$  D) 7/5



Passage - 10:

Let  $S_1$  be the plane which contains the lines  $\frac{x-1}{3} = \frac{y-1}{-1} = \frac{z+1}{0}, \frac{x-4}{2} = \frac{y}{0} = \frac{z+1}{3}$ . Let  $S_2$ be the plane which bisects perpendicularly the line joining the points (2, 1, -1) and (2, -1, 3)at P.  $S_1$  and  $S_2$  intersects at P. Answer the following questions

The equation of the plane  $\,S_1^{}\,$  is 28. A)  $(\overline{r} - (2i+k)) \cdot (3i-j+4k) = 0$ C)  $(\overline{r} - (2i - j + 3k)) \cdot (2i + 2j - k) = 0$ D)  $(\overline{r} - (3i + 2j - k)) \cdot (4i - j + k) = 0$ 

B)  $\overline{r}.(3i+9i-2k) = 4$ 

Key. B

A vector along the line of intersection of  $S_1$  and  $S_2$  is 29. B) 4i - 14i + 7kC) -5i+12i+6kD) 16i - 6i - 3kA) 12i - j + 4kKey. D The distance of origin to the plane  $S_2$  measured along the line  $\frac{x}{2} = \frac{y}{2} = \frac{z}{-1}$  is 30. A) 4 B) 5 C) 3\2 D) 10 Key. C 28 - 30Sol. D.R's of normal to  $S_1 = \begin{vmatrix} i & j & k \\ 3 & -1 & 0 \\ 2 & 0 & 3 \end{vmatrix} = -3i - 9j + 2k$  and it passes through P(2, 0, 1)D.R's of line of intersection of  $S_1$  and  $S_2 = \begin{vmatrix} i & j & k \\ -3 & -9 & 2 \\ 0 & -2 & 4 \end{vmatrix} = -2(16i - 6j - 3k)$ Point on plane  $S_2$  is  $\left(\frac{2r}{3}, \frac{2r}{3}, -\frac{r}{3}\right)$  it lies on  $S_2$ . Find r. Passage - 11: Two lines whose equations are  $\frac{x-3}{2} = \frac{y-2}{3} = \frac{z-1}{\lambda}$  and  $\frac{x-2}{3} = \frac{y-3}{2} = \frac{z-2}{3}$  lie in the same plane then The value of  $\sin^{-1}(\sin \lambda)$  is 31. (c)  $\pi - 3$ (a) 3 (b) 4 (d)  $\pi - 4$ D Key. Point of intersection of the given lines lie on 32. (c) 3x + 2y + z = 24(a) 3x + y + z = 20 (b) 3x + y + z = 25(d) 3x + 2y + z = 14Key. В Equation of the plane containing both the lines is 33. (a) x+5y-3z=10 (b) x+6y+5z=20 (c) x+6y-5z=10 (d) x+2y+3z=4Key. С Both the lines are coplanar  $\Rightarrow \begin{vmatrix} 2 & 3 & \lambda \\ 3 & 2 & 3 \\ 1 & -1 & -1 \end{vmatrix} = 0$ 31. Sol.  $\Rightarrow 2(-2+3) - 3(-3-3) + \lambda(-3-2) = 0$  $2+18-5\lambda = 0$  $\lambda = 4$  $\sin^{-1}(\sin 4) = \sin^{-1}(\sin(\pi - 4)) = \pi - 4$ let  $\frac{x-3}{2} = \frac{y-2}{3} = \frac{z-1}{\lambda} = t$ 32.  $\Rightarrow x = 2t+3, y = 3t+2, z = \lambda t+1$ 

$$(x, y, z) \text{ lies on } \frac{x-2}{3} = \frac{y-3}{2} = \frac{z-2}{3}$$
  

$$\Rightarrow \frac{2t+3-2}{3} = \frac{3t+2-3}{2} = \frac{\lambda t+1-2}{3}$$
  

$$\Rightarrow \frac{2t+1}{3} = \frac{3t-1}{2} = \frac{\lambda t-1}{3}$$
  

$$\Rightarrow t = 1$$
  

$$\Rightarrow \text{ Point of intersection is (5, 5, 5)}$$
  

$$\begin{vmatrix} x-3 & y-2 & z-1 \\ 2 & 3 & 4 \\ 3 & 2 & 3 \end{vmatrix} = 0$$
  

$$(x-3)(9-8) - (y-2)(6-12) + (z-1)(4-9) = 0$$
  

$$(x-3)(1) - (y-2)(-6) + (z-1)(-5) = 0$$
  

$$x-3+6y-12-5z+5=0$$
  

$$x+6y-5z-10=0$$

#### Passage – 12:

**e** – **12:** If the direction ratios of two lines are given by  $(a_1, b_1, c_1)$  and  $(a_2, b_2, c_2)$ 

then the acute angle between the lines is Cos

$$\frac{|a_1a_2+b_1b_2+c_1c_2|}{\sqrt{a_1^2+b_1^2+c_1^2}\sqrt{a_2^2+b_2^2+c_2^2}}$$

34. If the direction ratios of two non parallel lines are connected by the relation 3a + b + 5c = 0 and 5ab + 6bc - 2ca = 0, then the angle between the lines is

a) 
$$Cos^{-1}\left(\frac{1}{6}\right)$$
 b)  $Cos^{-1}\left(\frac{2}{6}\right)$  c)  $Cos^{-1}\left(\frac{3}{6}\right)$  d)  $Cos^{-1}\left(\frac{4}{6}\right)$ 

Key.

35. If the direction ratios of two non parallel lines are connected by the relation 2a + b + 2c = 0 and  $3a^2 + 5b^2 - 11c^2 = 0$ , then the angle between the lines is

a) 
$$Cos^{-1}\left(\frac{1}{6}\right)$$
 b)  $\frac{\pi}{3}$  c)  $\frac{\pi}{6}$  d)  $\frac{\pi}{2}$ 

Key. D

36. If the direction ratios of two non parallel lines are connected by the relation a+b+c=0 and 2ab-bc+2ca=0, then the angle between the lines is

a) 
$$Cos^{-1}\left(\frac{1}{6}\right)$$
 b)  $\frac{\pi}{3}$  c)  $\frac{\pi}{6}$  d)  $\frac{\pi}{2}$ 

Key. B

Sol. 34. put 
$$b = -3a - 5c$$
 in  $5ab + 6bc - 2ca = 0$   
35. put  $b = -2a - 2c$  in  $3a^2 + 5b^2 - 11c^2 = 0$   
36. put  $c = -a - b$  in  $2ab - bc + 2ca = 0$ 

### Passage – 13:

Intersection of a sphere by a plane is called circular section.

- If the plane intersects the sphere in more than one different points, then the section is called a (i) circle.
- (ii) If the circle of section is of greatest, possible radius, then the circle is called great circle.
- If the radius of circular section is zero, then the section is a point circle. (iii)
- If the plane does not meet the sphere at all, then the section is an imaginary circle. (iv)
- Sphere  $x^2 + y^2 + z^2 = 4$  is intersected by the plane 2x + 3y + 6z + 7 = 0 in 37. A) a great circle B) a real circle but not great C) a point circle D) an imaginary circle В

Key.

- Distance of the centre (0, 0, 0) from the plane is  $=\frac{7}{\sqrt{4+9+36}}=1<2$ Sol.
- Sphere  $x^{2} + y^{2} + z^{2} 2x + 4y + 6z 17 = 0$  is interected by the plane 3x 4y + 2z 5 = 0 in 38. A) a great circle B) a real circle but not great C) a point circle D) an imaginary circle

#### Key.

Α

- Centre is (1, -2, -3). Clearly it lies on Sol.  $3x - 4y + 2z - 5 = 0 \{3 + 8 - 6 - 5 = 0\}$ Great circle
- The sphere  $x^2 + y^2 + z^2 + 2x + 6y 8z 1 = 0$  is intersected by the plane x + 2y 3z 7 = 039. in
  - A) a great circle C) a point circle

B) a real circle but not great D) an imaginary circle

Key.

Distance of the centre (-1, -3, 4) from the plane is Sol. -1 - 6 - 12 - 7

 $=\frac{26}{\sqrt{14}} > 5$  (radius)

The section is an imaginary circle ÷.

# Passage – 14:

Let  $a_1x + b_1y + c_1z + d_1 = 0$  and  $a_2x + b_2y + c_2z + d_2 = 0$  be two planes, where  $d_1, d_2 > 0$ . Then origin lies in acute angle if  $a_1a_2 + b_1b_2 + c_1c_2 < 0$  and origin lies in obtuse angle if  $a_1a_2 + b_1b_2 + c_1c_2 > 0.$ Further point  $(x_1, y_1, z_1)$  and origin both lie either in acute angle or in obtuse angle, if  $(a_1x_1 + b_1y_1 + c_1z_1 + d_1)(a_2x_1 + b_2y_1 + c_2z_1 + d_2) > 0$ . One of  $(x_1, y_1, z_1)$  and origin lie in acute angle and the other in obtuse angle, if  $(a_1x_1 + b_1y_1 + c_1z_1 + d_1)(a_2x_1 + b_2y_1 + c_2z_1 + d_2) < 0$ Given the planes 2x = 3y - 4z + 7 = 0 and x - 2y + 3z - 5 = 0, if a point P is (1, -2, 3), then 40. A) O and P both lie in acute angle between the planes B) O and P both lie in obtuse angle C) O lies in acute angle, P lies in obtuse angle D) O lies in obtus angle, P lies an acute angle. Key. В Sol. Equation of the second plane is -x + 2y - 3z + 5 = 0

- 2(-1) + 3.2 + (-4)(-3) > 0
- Origin lies in obtue angle *.*..

$$(2 \times 1 + 3(-2) - 4 \times 3 + 7)(-1 + 2(-2) - 3 \times 3 + 5)$$
  
= (2 - 6 - 12 + 7) (-1 - 4 - 9 + 5) > 0  
P lice in alterna angle

.... P lies in obtuse angle

41. Given the planes x + 2y - 3z + 5 = 0 and 2x + y + 3z + 1 = 0. If a point P is (2, -1, 2), then A) O and P both lie in acute angle between the planes B) O and P both lie in obtuse angle C) O lies in acute angle, P lies in obtuse angle D) O lies in obtus angle, P lies an acute angle. C

Key. Sol.

 $1 + 2 + 2 \times 1 - 3 \times 3 < 0$ 

Origin lies in acute angle *.*..  $(2+2(-1)-3(2)+5)(2 \times 2 - 1 + 3 \times 2 + 1)$ Also = (-1)(10) < 0

P lies in obtuse angle ....

42. Given the planes 
$$x + 2y - 3z + 2 = 0$$
 and  $x - 2y + 3z + 7 = 0$ , if the point P is (1, 2, 2), then

A) O and P both lie in acute angle between the planes

B) O and P both lie in obtuse angle

C) O lies in acute angle, P lies in obtuse angle

D) O lies in obtus angle, P lies an acute angle.

Key. Sol.

1 - 4 - 9 < 0

Origin lies in acute angle ...

Further

А

(1+4-6+2)(1-4+6+7) > 0

The point P lies in acute angle

# Passage - 15:

а

b

с

...

If  $P_1 = 0$  and  $P_2 = 0$  are the equations of two planes, then the equation  $P_1 + \lambda P_2 = 0$  will represent the equation of family of planes passes through the line of intersection of planes  $P_1 = 0$  and  $P_2 = 0$ for different values of  $\lambda$ .

If the planes ax + y - z = 0, -x + by + z = 0, x - y + cz = 0 passes through the same straight 43. line, then value of a+b+c+abc is b) 1 c) -1 d) 3 a) 0

Ans.

```
If the plane x + y = 1 is rotated about the line of intersection with the plane z = 0 through an
44.
```

angle of  $\frac{\pi}{4}$ , then the equation of new plane is

a) 
$$x + y - 2\sqrt{2}z = 1$$
 b)  $x + y + 2\sqrt{2}z = 1$  c)  $x + y + 3\sqrt{2}z = 1$  d)  $x + y + 2z = 1$ 

Ans.

45. The line of intersection of planes x+2y+3z=0 and 3x+2y+z=1 is equally inclined with vectors

a) 
$$\hat{i}$$
 and  $j$  b)  $\hat{i}+j$  and  $\hat{i}-j$  c)  $\hat{i}$  and  $k$  d)  $\hat{i}-k$  and  $j-k$ 

Ans.

Equation of the plane passing through the line of intersection of planes ax + y - z=0 and -x + y - z=0by + z = 0 is  $(ax + y - z) + \lambda(-x + by + z) = 0$  $\Rightarrow x(a-\lambda)+y(1+b\lambda)+z(-1+\lambda)=0$ _ (1)

Equation of third plane is x - y + cz = 0

Since 1 and 2 represents same plane hence a + b + c + abc = 0

Since the line of intersection of two planes will be perpendicular to the normal vector of plane. Hence it is parallel to the vector  $(\hat{i}+2j+3k) \times (3\hat{i}+2j+k)$  or  $-4\hat{i}+8j-4k$ Passage - 16: Common tangent from K are drawn to the parabola  $y^2 = 4x$  and the ellipse  $3x^2 + 8y^2 = 48$  touching the parabola at A and B and the ellipse at C and D. 46. The point of intersection of tangent is a) (-3, 0) b) (-4, 0) c) (-4, 1) b Ans. 47. The area of the quadrilateral ABCD is equal to a)  $55\sqrt{2}$ b)  $50\sqrt{2}$ c) 57√2 d) 62₂ Ans. а 48. Area of the triangle KAB is equal to b)  $55\sqrt{2}$ a)  $50\sqrt{2}$ d) none of these c) 48 Ans. С Sol. Let  $y = mx + \frac{1}{m}$  be a tangent to the parabola it touches the  $=16m^2+6$ ellipse if  $(8m^2-1)(2m^2+1)=0 \Longrightarrow m$ Point of contacts A and B are  $(8, 4\sqrt{2})$  and  $(8, -4\sqrt{2})$ Points of contact C, D are  $a^2m$  $-2\pm\frac{3}{\sqrt{2}}$ and equation of tangents  $y = \frac{1}{2\sqrt{2}}x + 2\sqrt{2}$ and  $\frac{1}{\sqrt{2}}x-2\sqrt{2}$ • Point of intersection K(-4, 0) Area of quad ABCD =  $\frac{1}{2}(AB+CD) \times PQ = 55\sqrt{2}$ Area of  $\triangle KAB = 12 \times 4\sqrt{2} = 48\sqrt{2}$ 

(2)

## Passage – 17:

 $P_1$ ,  $P_2$ ,  $P_3$ ,  $P_4$  are the feet of perpendiculars draw from A to the internal and external angle bisectors of angle B and C respectively.

Line joining P ₂ P ₄ is			
a) parallel to AB	b) perpendicular to AC		
c) parallel to BC	d) perpendicular to AB		
	Line joining P ₂ P ₄ is a) parallel to AB c) parallel to BC		



# Passage – 18:

A rectangle ABCD of dimensions r and 2r is folded along the diagonal BD such that planes ABD and CBD are perpendicular to each other. Let the position of the vertex A remains unchanged and  $C_1$  is the new position of C.

52. The distance of C₁ from A is equal to  
a) 
$$\frac{2\sqrt{5} r}{5}$$
 b)  $\frac{2\sqrt{10} r}{5}$  c)  $\frac{\sqrt{85} r}{5}$  d)  $\frac{4r}{5}$   
Ans. c  
53. If  $|ABC_1 = \theta$ , then  $\cos \theta$  is equal to  
a)  $\frac{1}{5}$  b)  $\frac{2}{5}$  c)  $\frac{2}{\sqrt{5}}$  d)  $\frac{4}{5}$   
Ans. b  
54. The shortest distance between the edges AB and C₁D is equal to  
a)  $\frac{\sqrt{5} r}{3}$  b) 2r c) r d)  $\frac{4r}{\sqrt{5}}$ 

Ans. a



is x + y = 255. Equation of side BC is a) 4x + 3y - 4 = 0 b) 4x + 3y + 4 = 0 c) 7x - 3y + 4 = 0 d) 7x - 3y - 4 = 0Ans. b



- Ans.
- С Sol. Equation of the tangent at point P of the parabola  $y^2 = 8x$  is  $yt = x + 2t^2$ (1) Equation of the chord of contact of the circle  $x^2 + y^2 = 4$  is  $x\alpha + y\beta = 4$  -(2)  $\therefore(\alpha,\beta)$  lies on (1) Hence  $\beta t = \alpha + 2t^2$ (3)  $x \alpha \pm y \left( \frac{\alpha}{2} + 2t \right) - 4 = 0$  from (2) and (3)

$$2(ty-2) + \alpha \left(x + \frac{y}{y}\right) = 0$$
  
For point of concurrency

2

$$x = -\frac{y}{t}$$
 and  $y = \frac{z}{t}$   
 $\therefore$  locus is  $y^2 + 2x = 0$ 

59. The points from which perpendicular tangents can be drawn both to the given circle and the parabola is/are

a) 
$$\left(4,\pm\sqrt{3}\right)$$

b)  $(-1, \sqrt{2})$  c)  $(-\sqrt{2}, -\sqrt{2})$  d)  $(-2, \pm\sqrt{2})$ 

Ans. d

Required point will lie on the director circle of the given circle as well as on the directrix of Sol. parabola.

 $\Rightarrow x_1^2 + y_1^2 = 8$  and  $x_1 + 2 = 0$ 

 $\Rightarrow 4 + y_1^2 = 8$  $\Rightarrow y_1 = \pm \sqrt{2}$  $\therefore \text{ Points are } \left(-2 \pm \sqrt{2}\right)$ 

60. The locus of circumcentre of △AQB if t = 2 is  
a) 
$$x - 2y + 4 = 0$$
 b)  $x + 2y - 4 = 0$  c)  $x - 2y - 4 = 0$  d)  $x + 2y + 4 = 0$ 

Ans.

С

**Sol.** Equation of circumcircle of  $\triangle AQB$  is  $x^2 + y^2 - 4 + \lambda (x\alpha + y\beta - 4) = 0$ 

: It passes through (0,0) i.e centre of circle  $\Rightarrow \lambda = -1$ Let circumcentre be (h, k)

 $\therefore h = \frac{\alpha}{2}, k = \frac{\beta}{2}$   $\Rightarrow \alpha = 2h, \beta = 2k$ Also  $\beta t = \alpha + 2t^2$  or  $\alpha - 2\beta + 8 = 0$   $\therefore$  t = 2 Substituting  $\alpha = 2h$  and  $\beta = 2k$  we get h - 2k + 4 = 0  $\therefore$  locus is x - 2y + 4 = 0

# Passage – 21:

To the circle  $x^2 + y^2 = 4$  two tangents are drawn from P(-4, 0) which touches the circle at T₁ and T₂ and a rhombus PT₁  $P'T_2$  is completed

61. Circumcentre of the triangle  $PT_1T_2$  is at

b) (2, 0)

a) (-2*,* 0)

d) none of these

Ans. a

Sol. 
$$PT_2 = PT_1 = \sqrt{(-4)^2 + 0^2 - 4} = 2\sqrt{3}$$
  
Circumcentre of triangle  $PT_1T_2$  is midpoint of  
PO as  $|PT_1O| = |PT_2O| = 90^{\circ}$   
So,  $(-4+0, 0+0)/2 = (-2,0)$   
62. Ratio of the area of triangle  $PT_1P'$  to that the  $P' T_1T_2$  is  
a) 2: 1 b) 1: 2 c)  $\sqrt{3}: 2$  d) none of these  
Ans. d

63. If P is taken to be at (h, 0) such that P' lies on the circle, the area of the rhombus is a)  $6\sqrt{3}$  b)  $2\sqrt{3}$  c)  $3\sqrt{3}$  d) none of these Ans. A



## Passage – 22:

The vertices of a  $\triangle ABC$  lies on a rectangular hyperbola such that the orthocenter of the triangle is (3, 2) and the asymptotes of the rectangular hyperbola are parallel to the coordinate axes. If the two perpendicular tangents of the hyperbola intersect at the point (1,1), then

64. The equation of the asymptotes is

d) none of these a) xy - 1 = x - yb) xy + 1 = x + y c) 2xy = x + yb

- Ans.
- Perpendicular tangents intersect on the director circle of hyperbola and director circle of Sol. rectangular hyperbola is a point circle. Hence centre of hyperbola is (1, 1) and equation of asymptotes are (x - 1) = 0 and y - 1 = 0

65. Equation of the rectangular hyperbola is  
a) 
$$xy = 2x + y - 2$$
 b)  $2xy = x + 2y + 5$  c)  $xy = x + y + 1$  d) none of these

Ans.

С

- Equation of hyperbola is  $xy x y + 1 + \lambda$ Sol. It passes through (3, 2) hence  $\lambda = -2$ Equation of hyperbola is xy = x + y + 1
- 66. Number of real normals that can drawn from the point (1, 1) to the rectangular hyperbola is a) 4 b) 0 c) 3 d) 2

Ans. d

From the centre of hyperbola we can draw two real normals to the rectangular hyperbola. Sol.

# Passage - 23:

 $+ y^2 = \alpha$  (where,  $\alpha$  is parameter > 0) and a parabola  $y^2 = 8x$ . If a common Consider and ellipse

tangent to the ellipse and the parabola meets the coordinate axes at A and B respectively, then 67. Locus of midpoints of AB is

(a) 
$$y^2 = -2x$$
 (b)  $y^2 = -x$  (c)  $y^2 = -\frac{x}{2}$  (d)  $\frac{x^2}{4} + \frac{y^2}{2} = 1$ 

c) 26

Ans. b

If the eccentric angle of a point on the ellipse where the common tangents meets is  $\frac{2\pi}{2}$ , then 68.

d) 36

 $\alpha$  is equal to a) 4 b) 5

Ans. d

If two of the three normals are drawn from (h, 0) on the ellipse to the parabola  $y^2 = 8x$  are 69. perpendicular, then

a) h = 2 c) h = 4 d h = 6b) h = 3

Ans. d

Sol. Equation of tangent to 
$$y^2 = 8x$$
 is  
 $yt - x - 2t^2 = 0$  - (1)  
Equation of tangent to ellipse is  $\frac{x\cos\theta}{2\sqrt{\alpha}} + \frac{y\sin\theta}{\sqrt{\alpha}} = 1$  - (2)  
Comparing (1) and (2)  
 $\frac{\sqrt{\alpha}}{\cos\theta} = -t^2, \frac{\sqrt{\alpha}}{\sin\theta} = 2t$  - (3)  
Let midpoint of AB is (h, k)  
 $h = \frac{\sqrt{\alpha}}{2\cos\theta}, k = \frac{\sqrt{\alpha}}{2\sin\theta}$   
From (3)  
 $\frac{\alpha}{\sin^2\theta} = \frac{-4\sqrt{\alpha}}{\cos\theta} = \sqrt{\alpha} = \frac{-4\sin^2\theta}{\cos\theta} = 6$   
Any normal is  $y = \sin x - \cos x - 2m^2 \Rightarrow h = 6$   
**Passage - 24:**  
Let P, Q are two points on the curve  $y = \log_{1/2}\left(x - \frac{1}{2}\right) + \log_2\sqrt{4x^2 - 4x + 1}$  and P is also on the  
circle  $x^2 + y^2 = 10, \theta$  lies inside the given circle such that its abscissa is an integer.  
70. The coordinates of P are given by  
 $a)(1,2)$   $b)(2,4)$   $c)(3,1)$   $d)(3,5)$   
Ans. c  
 $y = \log_{1/2}\left(x - \frac{1}{2}\right) + \log_2\sqrt{(2x - 1)^2}$   
 $P = (3,1)$   
71.  $\overline{OP} \cdot \overline{OQ}$ , O being the origin is  
 $a) 4 \text{ or } 7$   $b) 4 \text{ or } 2$   $c) 2 \text{ or } 3$   $d) 7 \text{ or } 8$   
Ans. a  
 $\overline{OP} = 3i + j, \overline{OQ} i + j \text{ and } 2i + j$   
 $\overline{OP} \cdot \overline{OQ} = 4 \text{ or } 7$   
72. Maximum of  $\{|\overline{PQ}|\}$  is  
 $a)5$   $b) 4$   $c) 0$   $d) 2$   
Ans. d  
Sol.  $\overline{PQ} = \overline{OQ} - \overline{OP} = -2i \text{ or } -i$   
 $|\overline{PQ}| = 2 \text{ or } 1$ 

# Passage – 25:

In a triangle ABC, the equation of side BC is 2x - y = 3 and its circumcentre and orthocenter are at (2, 4) and (1, 2) respectively.

73. Circumradius of triangle ABC is  
a) 
$$\sqrt{\frac{61}{5}}$$
 b)  $\sqrt{\frac{51}{5}}$  c)  $\sqrt{\frac{41}{5}}$  d)  $\sqrt{\frac{43}{5}}$   
Ans. a  
Sol.  $P(2, 4)$  and  $O(1, 2)$   
 $OP^2 = R^2(1 - 8\cos 4\cos 6\cos 8\cos C)$   
 $PE = R\cos A = \frac{3}{\sqrt{5}}$   
 $DD = 2R\cos B\cos C = \frac{3}{\sqrt{5}}$   
 $DD = \frac{2}{\sqrt{61}}$   
Ans. a  
Sol.  $R\cos A = \frac{3}{\sqrt{5}} \Rightarrow -R\cos B\cos C + R\sin B\sin C = \frac{3}{\sqrt{5}}$  and  $2R\cos B\cos C = \frac{3}{\sqrt{5}}$   
 $\Rightarrow \sin B\sin C = \frac{9}{2\sqrt{61}}$   
75. The distance of orthocenter to vertex A is equal to  
a)  $\frac{1}{\sqrt{5}}$  b)  $\frac{6}{\sqrt{5}}$  c)  $\frac{3}{\sqrt{5}}$  d)  $\frac{3}{\sqrt{5}}$   
Ans. b  
Sol. Distance of orthocenter from vertex =  $2R\cos A = \frac{6}{\sqrt{5}}$   
**Passage - 26:**  
Two lines whose equations are  $\frac{x-3}{2} = \frac{y-2}{3} = \frac{z-1}{\lambda}$  and  $\frac{x-2}{3} = \frac{y-3}{2} = \frac{z-2}{3}$  lie in the same plane, then  
76. The value of  $\sin^{-1}(\sin \lambda)$  is equal to  
a)  $3$  b)  $\pi - 3$  c)  $4$  d)  $\pi - 4$   
Ans. d  
Sol. Both lines are coplanar  
 $= \begin{bmatrix} 2 & 3 & \lambda \\ 3 & 2 & 3 \\ 1 & -1 & -1 \end{bmatrix}$   
 $\sin^{-1}\sin x = \pi - x$   
77. Point of intersection of the lines lies on  
a)  $3x + y + z = 20$  b)  $3x + y + z = 25$  c)  $3x + 2y + z = 24$  d) none of these  
Ans. b  
Sol. Point of intersection is (5, 5, 5)

78.	Equation of plane containing both lines is a) $x + 5y - 3z = 10$ b) $x + 6y + 5z = 20$ c) $x + 6y - 5z = 10$ d) none of these				
Ans.	C	S7X · OY · 32 20	67 X · 67 52 10	ay none of these	
Sol.	Equation of plane containing both the lines				
	x-3  y-2  z-1				
	2 3 4	= 0			
	3 2 3				
	$\Rightarrow x + 6y - 5z = 10$				
Passage – 27:					
Let A, B	3, C be the three points	on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} =$	1 being eccentric angles	s $\alpha$ , $\beta$ , $\gamma$ respectively	
79.	Area of triangle PQR formed by corresponding points on auxiliary circle is				
	a) $\frac{a}{b}(area \ of \ \Delta ABC)$ b) $\frac{b}{a}(area \ of \ \Delta ABC)$				
	c) $\frac{2a}{b}$ (area of $\Delta AB$	C) d) ( <i>ar</i>	ea of $\Delta ABC$ )		
Ans.	а				
	$a\cos\alpha$	$b\sin\beta$ 1			
	$\frac{1}{2}a\cos\beta$	$b\sin\beta$ 1			
Sol	$\frac{\Delta ABC}{\Delta BC} = \frac{2 a\cos\gamma }{a\cos\gamma}$	$\frac{b\sin\gamma}{2} = \frac{b}{b}$			
501.	$\Delta PQR \left[ a\cos\alpha \right]$	$a\sin\beta$ 1 $a$			
	$\frac{1}{2} \left  a \cos \beta \right $	$a\sin\beta$ 1			
	$\frac{2}{a\cos\gamma}$	$a\sin\gamma$ 1			

80. The centroid of triangle formed by points on the auxiliary circle when area of the  $\triangle$ ABC is maximum is

a) (a, b) ( $\frac{a}{3}, \frac{b}{3}$ ) c)  $\left(0, \frac{b}{3}\right)$  d) (0, 0)

Ans. d

**Sol.** For the maximum area of  $\triangle$ PQR it must be an equilateral triangle so circumcentre and centroid will coincides.

81. The eccentric angles of the vertices of triangle of maximum area inscribed in an ellipse differ by

a) 
$$\frac{\pi}{3}$$
 b)  $\frac{\pi}{2}$  c)  $\frac{2\pi}{3}$  d)  $\pi$ 

**Sol.**  $\triangle$  PQR will be equilateral if his segment PQ, PR and QR should subtend  $\frac{2\pi}{3}$  at centre

circumcentre i.e  $(\alpha - \beta) = (\beta - \gamma) = (\gamma - \alpha) = \frac{2\pi}{3}$ 

Passage - 28: Given a hyperbola  $H: x^2 - y^2 = 0$ A parabola  $P: 4(x-5) = y^2$ and line L: x = 9If L is the chord of contact of hyperbola H, then the equation of corresponding pair of 82. tangents is a)  $9x^2 - 8y^2 + 18x - 9 = 0$ b)  $9x^2 - 8y^2 - 18x + 9 = 0$ d)  $9x^2 - 8y^2 + 18x + 9 = 0$ c)  $9x^2 - 8y^2 - 18x - 9 = 0$ Ans. b Let  $R(x_1, y_1)$  be the point of intersection of tangents to H at the ends of the chords x=9, then Sol. the equation of L is  $xx_1 - yy_1 = 9$ . Comparing we get  $x_1 = 1$ ,  $y_1 = 0$   $\therefore R = (1,0)$  $(x^2-y^2-9)(1-0-9)=(x-9)^2$  $\Rightarrow -8x^2 + 8y^2 + 72 = x^2 + 81 - 18x$  $\Rightarrow 9x^2 - 8y^2 - 18x + 9 = 0$ 83. If R is the point of intersection of the tangents to H at the extremities of the chord L. Then the equation of chord of contact of R with respect to P is a) x = 7 b) x = 9c) y = 7d) v = 9 Ans. b Equation of the parabola is  $y^2 = 4x - 20$ Sol. Equation of the chord of contact of the parabola w.r.t R(1, 0) is  $yy_1 = 2(x+1) - 20 \Longrightarrow 2(x+1) - 20 \Longrightarrow x = 9$ If the chord of contact of P with respect to R meets the parabola at T and T', S is the focus 84. of the parabola, then the area of the triangle STT' is equal to a) 8 sq units b) 9 sq. units c) 12 sq. units d) 16 sq. units Ans. С V(5, 0), S(6, 0), LR = 2LS = 4Sol. TT is the chord of contact whose equation is x = 9 $y^2 = 4(x-5), x = 9 \implies y = \pm 4$ ν  $\Rightarrow$   $T \equiv (9,4), T' = 4(3) = 12$  sq.units

## **3D-Geometry** Integer Answer Type 1. The foot of the perpendicular from (1,2,3) to the join of (6,7,7), (9,9,5) is (3,5, $\lambda$ ) then $\lambda =$ Key. 9 Sol. Any point of the line joing the given points can be taken as (6+3t, 7+2t, 7-2t) if it is the required foot of the $\perp$ of (1,2,3) we get 3 (5+3t)+2 (5+2t)-2(4-2t) =0 $\implies$ t = -12. The plane 2x-2y+z=3 is rotated about the line where it cuts the xy plane by an acute angle $\alpha$ . If the new position of plane contains the point (3, 1, 1) then $9\cos \alpha$ equal to .... B (a, b) C (c. b) 7 Kev: Let equation of new plane $2x-2y+z-3+\lambda z=0$ Hint: (2, 1) Point (3, 1, 1) lie on $it \Longrightarrow \lambda = -2$ Hence equation of new plane 2x - 2y - z = 3 $\cos \alpha = \frac{4+4-1}{3} = \frac{7}{9}$ A (a, b) Shortest distance between the z-axis and the line x + y + 2z--3=0=2x+3y+4z-4 is 3. Ans: 2. Hint : Equation of any plane ; continuing the general plane is $x + y + 2z - 3 + \lambda (2x + 3y + 4z - 4) = 0 - - - (1)$ if plane (1) is parallel to z-axis $\Rightarrow \lambda = -$ Therefore plane, parallel to z-axis is y+2=0-----(2) Now, shortest distance between any point on z-axis (0, 0, 0) (say) from plane (2) is 2 4. The point P (1,2,3) is reflected in the xy – plane, then its image Q is rotated by 180° about the x - axis to produce R, and finally R is translated in the direction of the positive y - axisthrough a distance d to produce S (1,3,3). The value of d is ANS : 3 Reflecting the point (1,2,3) in the xy – plane produces (1,2,-3). A half turn about the x – axis Hint vields (1,-2,3). Finally translation 5 units will produce (1,3,3) Let A, B, C be three non-collinear points. Then n be the no. of lines lying in plane 5. containing the points A, B, C which are equidistant from all three points then n+5=Key: 8 The equation of the plane passing through the intersection of the planes 2x-5y+z=3 and 6. x+y+4z=5 and parallel to the plane x+3y+6z=1 is x+3y+6z=k, where k is Key : 7 Equation of plane passing through the intersection of the planes 2x-5y+z=3 and Sol: x+v+4z=5 is

$$(2x-5y+z-3)+\lambda(x+y+4z-5)=0$$
3D-Geometry

....(i)

matics 3D-Geome  
⇒(2+λ)x+(-5+λ)y+(1+4λ)-3-5λ=0 ....(i)  
which is parallel to the plane x + 3y + 6z = 1.  
Then 
$$\frac{2+\lambda}{1} = \frac{-5+\lambda}{3} = \frac{1+4\lambda}{6}$$
  
Then,  $\frac{2+\lambda}{1} = \frac{-5+\lambda}{3} = \frac{1+4\lambda}{6}$   
 $\therefore \lambda = \frac{-11}{2}$   
from eq. (i),  
 $-\frac{7}{2}x - \frac{21}{2}y - 21z + \frac{49}{2} = 0$   
 $\therefore x + 3y + 6z = 7$   
Hence, k = 7  
If the distance of a point lying on the plane 2x + 3y + 6z = p from the point (3, 0, 1) is unity  
then the total number of possible values of p, where p is a prime number, is  
6

Sol.

Key.

7.

 $\frac{|2(3)+3+6(1)-p|}{\sqrt{2^2+3^2+6^2}} \le 1$  $\Rightarrow |12 - p| \le 7 \Rightarrow -7 \le p - 12 \le 7$  $\Rightarrow 5 \le p \le 19 \Rightarrow 5, 7, 11, 13, 17, 19$ i.e. six possible values of p.

8. A line from the origin meets the lines 
$$\frac{x-2}{1} = \frac{y-1}{-2} = \frac{z+1}{1}$$
 and

 $\frac{x-8/3}{2} = \frac{y+3}{-1} = \frac{z-1}{1}$  at P and Q respectively. If the distance PQ = *l* then the value of [*l*] (where [.] represents the greatest integer function), is 2

Key.

From the given conditions, we have, Sol.

$$\frac{2\mu + 8/3}{\lambda + 2} = \frac{\mu + 3}{2\lambda - 1} = \frac{\mu + 1}{\lambda - 1}$$
  

$$\Rightarrow \lambda = 3, \mu = \frac{1}{3}$$
  

$$\Rightarrow P \equiv (5, -5, 2) Q \equiv \left(\frac{10}{3}, -\frac{10}{3}, \frac{4}{3}\right)$$
  

$$\Rightarrow l = PQ = \sqrt{6} \Rightarrow [l] = 2$$
  

$$\frac{x - 2}{1} = \frac{y - 1}{-2} = \frac{z + 1}{1}$$
  

$$(\lambda + 2, 1 - 2\lambda, \lambda - 1) / \frac{x - 8/3}{2} = \frac{y + 3}{-1} = \frac{z - 1}{1}$$
  

$$Q(2\mu + 8/3, -\mu - 3, \mu + 1)$$
  

$$(0, 0, 0)$$

9. The shortest distance between the z-axis and the line, x + y + 2z - 3 = 0, 2x + 3y + 4z - 4 = 0 is : Key. 2 Sol. The equation of any plane containing the given line is  $(x + y + 2z - 3) + \lambda(2x + 3y + 4z - 4) = 0$   $\Rightarrow (1 + 2\lambda)x + (1 + 3\lambda)y + (2 + 4\lambda)z - (3 + 4\lambda) = 0$  ....(1) If the elevel is equivalent to a size of a size

If the plane is parallel to z-axis whose direction cosines are 0, 0, 1; then the normal to the plane will be perpendicular to z-axis

$$\therefore \qquad (1+2\lambda)(0)+(1+3\lambda)(0)+(2+4\lambda)(1)=0$$
$$\Rightarrow \qquad \lambda=-\frac{1}{2}$$

Put in eq. (1), the required plane is

$$(x+y+2z-3)-\frac{1}{2}(2x+3y+4z-4)=0 \Rightarrow y+2=0...(2)$$
  
 $\therefore$  S.D. = distance of any point say (0, 0, 0) on z-axis from plane (2)

$$=\frac{2}{\sqrt{\left(1\right)^2}}=2$$

10. If equation of the plane through the straight line  $\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z}{5}$  and perpendicular to the plane x - y + z + 2 = 0 is ax - by + cz + 4 = 0, then find the value of  $10^3 a + 10^2 b + 10c$ 

Ans. 1710

Sol. Let equation of a plane containing the line be l(x - 1) + m(y + 2) + nz = 0then 2l - 3m + 5n = 0 and l - m + n = 0

- $\begin{array}{ll} \therefore & \frac{l}{2} = \frac{m}{3} = \frac{n}{1} \\ \therefore & \text{the plane is } 2(x-1) + 3(y+2) + z = 0 \\ \text{i.e.} & 2x + 3y + z + 6 = 0 \\ \therefore & a = 2, b = -3, c = 1 \\ \therefore & 10^3 a + 10^2 b + 10c = 2000 300 + 10 = 1710 \text{ Ans.} \end{array}$
- 11. Find the equation to the line which intersects the lines

$$x + y + z = 1, 2x - y - z = 2$$

$$+ y - z = 3, 2x + 4y - z = 4$$

and passes through the point (1, 1, 1)

Sol. The line intersecting the given lines is

$$\begin{array}{c} (x + y + z - 1) + \lambda (2x - y - z - 2) = 0 \\ (x - y - z - 3) + \mu (2x + 4y - z - 4) = 0 \end{array}$$
...(i)

If it passes through (1, 1, 1), then we get from (1)

 $\lambda = 1$  and  $\mu = 4$ 

Hence the required equations to the intersecting line are x - 1 = 0 = 9x + 15y - 5z + 19. Ans

12.	Find the shortest distance and the vector equation of the line of shortest distance between the lines given by $\vec{r} = 3\vec{i} + 8\vec{j} + 3\vec{k} + \lambda(3\vec{i} - \vec{j} + \vec{k})$ and $\vec{r} = -3\vec{i} - 7\vec{j} + 6\vec{k} + \mu(-3\vec{i} + 2\vec{j} + 4\vec{k})$ .
Ans.	$\vec{r} = 3\vec{i} + 8\vec{j} + 3\vec{k} + \lambda \left(-6\vec{i} - 15\vec{j} + 3\vec{k}\right)$
Sol.	$\vec{\mathbf{r}} = 3\vec{\mathbf{i}} + 8\vec{\mathbf{j}} + 3\vec{\mathbf{k}} + \lambda\left(3\vec{\mathbf{i}} - \vec{\mathbf{j}} + \vec{\mathbf{k}}\right) \qquad \dots (\mathbf{i})$
	$\vec{r} = -\vec{3i} - \vec{7j} + \vec{6k} + \mu \left( -\vec{3i} + 2\vec{j} + 4\vec{k} \right)$ (ii)
	Let L and M be points on the line (i) and (ii) respectively So that LM is perpendicular to both the lines
	Let position vector of L be $3\vec{i} + 8\vec{j} + 3\vec{k} + \lambda_0 (3\vec{i} - \vec{j} + \vec{k})$
	and the position vector of M be $-3\vec{i} - 7\vec{j} + 6\vec{k} + \mu_0 \left(-3\vec{i} + 2\vec{j} + 4\vec{k}\right)$
	then $\vec{LM} = -6\vec{i} - 15\vec{j} + 3\vec{k} - \lambda_0 (3\vec{i} - \vec{j} + \vec{k}) + \mu_0 (-3\vec{i} + 2\vec{j} + 4\vec{k})$
	since $\overrightarrow{LM}$ is perpendicular to both the lines (i) and (ii) $\overrightarrow{LM}(2\vec{i}, \vec{i} + \vec{k}) = 0$ and $\overrightarrow{LM}(2\vec{i}, 2\vec{i} + 4\vec{k}) = 0$
	$Lv_{1}(31 - j + k) = 0 \text{ and } Lv_{1}(-51 + 2j + 4k) = 0$ Thus = 18 + 15 + 3 - $\lambda$ (9 + 1 + 1) + $\mu$ (-9 - 2 + 4) = 0
	i.e. $-11 \lambda_0 - 7\mu_0 = 0$ (iii)
	and $18 - 30 + 12 - \lambda_0 (-9 - 2 + 4) + \mu_0 (9 + 4 + 16) = 0$
	i.e. $7\lambda_0 + 29\mu_0 = 0$ (iv)
	from (iii) and (iv) we get
	$\lambda_0 = \mu_0 = 0$
	$\therefore \qquad LM = -6i - 15j + 3k$
	$\therefore \qquad \left  \overline{\mathrm{LM}} \right  = \sqrt{36 + 225 + 9} = \sqrt{270} = 3\sqrt{30}$
	Position vector of L is $3\vec{i} + 8\vec{j} + 3\vec{k}$
	$\therefore$ equation of the line of shortest distance (LM) is
	$r = 3i + 8j + 3k + \lambda (-6i - 15j + 3k)$
	$\vec{r} = 3\vec{i} + 8\vec{i} + 3\vec{k} + \lambda \left( -6\vec{i} - 15\vec{i} + 3\vec{k} \right)$
10	I = 51+63+5K + K ( OF 153+5K)
13.	if the lengths of external and internal common tangents to two circles $x^2 + y^2 + 14x - 4y + 28 = 0$ and $x^2 + y^2 - 14x + 4y - 28 = 0$ are $\lambda$ and $\mu$ . Then the value of
	$\left\lfloor \frac{\lambda + \mu}{4} \right\rfloor$ is equal to (where [.] denotes greatest integer function)
Ans.	4
Sol.	$c_1 c_2 > r_1 + r_2$
	External = $\sqrt{d^2 - (r_2 - r_1)^2} = 14 = \lambda$
	Internal = $\sqrt{d^2 - (r_1 + r_2)} = 4 = \mu$
	$\lambda + \mu = 18 \qquad \left[\frac{\lambda + \mu}{4}\right] = 4$

3

14. Consider two concentric circle  $C_1 : x^2 + y^2 = 1$  and  $C_2 : x^2 + y^2 - 4 = 0$ . A parabola is drawn through the points where  $C_1$  meet the x-axis and having arbitrary tangent of  $C_2$  as its directrix. Then locus of focus of drawn parabola is  $\frac{3}{4}x^2 + y^2 = k$ , then value of k is

(1)

(2)

Sol. 
$$(h-1)^2 + k^2 = (\cos \theta - 2)^2$$
  
 $(h+1)^2 + k^2 = (\cos \theta + 2)^2$   
 $(2) - (1)$  gives us  $\cos \theta = \frac{h}{2}$   
 $(2) + (1)$   
 $2(h^2 + k^2 + 1) = 2(\cos^2 \theta + 4)$   
 $\frac{3}{4}x^2 + y^2 = 3$ 

- 15. All chords of the curve  $3x^2 y^2 2x + 4y = 0$  that subtend a right angle at the origin, pass through a fixed point (h, k) then h k is equal to
- Ans.

3

Sol. Let the equation of the chord to y = mx + c Combined equation of the line joining the point of intersection with origin is

$$3x^{2} - y^{2} - 2(x - 2y)\left(\frac{y - mx}{c}\right) = 0$$
  
$$\Rightarrow x^{2}(3c + 2m) - y^{2}(c - 4) - 2xy(1 + 2m)$$

From the condition of perpendicularity, we get 3c + 2m - c + 4 = 0

 $\Rightarrow m + c = -2$ 

i.e the line y = mx + c, passes through (1, -2)

# **3D-Geometry** *Matrix-Match Type*

1. Match the following:

Column -I			Column -II		
(A)	The vector equation of the plane perpendicular to the line $\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z+1}{2}$ and passing through the point (3,6,2) is	(p)	$\bar{r}.(\hat{i}-3j-2k)=3$		
(B)	The vector equation of the plane through the point $(5, -2, 4)$ and parallel to the plane $4x-12y-8z=7$	(q)	$\overline{r}.(\hat{i}-j-k)=2$		
(C)	The vector equation of the plane containing the line $\bar{r} = 2\hat{i} + \lambda(j-k)$ and perpendicular to the plane $\bar{r} \cdot (\hat{i} + k) = 3$ is	(r)	$\bar{r}.(\hat{i}-j-k)=0$		
(D)	The vector equation of the plane containing the lines $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z}{-1}; \frac{x-1}{-1} = \frac{y-1}{1} = \frac{z}{-2}$ is	(5)	$\overline{r}.(\hat{i}-\overline{j+2k})=1$		
		(t)	$\overline{r}.(\hat{i}-j-k)=1$		

Key. A - s; B - p; C - q; DSol. Conceptual

2. Match the following

	Colu	<u>mn – I</u>	<u>(</u>	Column – II
	a)	If the plane $ax - by + cz = d$ contains the line $\frac{x-a}{a} = \frac{y-2d}{b} = \frac{z-c}{c} \text{ then } \frac{b}{d} \text{ is equal to}$	p)	1
S	b)	The distance of the point $(1, -2, 3)$ from the plane x-y+z-5=0 measured parallel to $\frac{x}{2} = \frac{y}{3} = \frac{z-1}{-6}$ is equal to	q)	2
	c)	If the straight lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{4-z}{k}$ and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ intersect then k is equal to	r)	0
	d)	If a line makes an angle $\theta$ with x and y axis then $\cot \theta$ can be equal to	s)	-3

Key: Hint :	a) q	b) p	c) r, s	d	l) p, r
	a) $a^2 - 2bd + c^2 = d$	$\Rightarrow a^2 - b^2 + c$	$c^2 = 0 \Longrightarrow b^2 = a^2 + c^2 \Longrightarrow b^2$	=2bd+d	
	b) $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-1}{2}$	$\frac{-3}{-6} = r$			
	(2r+1, 3r-2, 3-6r)	·)			
	2r+1-3r+2+3-6	$6r-5=0 \Longrightarrow -$	$-7r+1=0 \Longrightarrow r=1/7$		
	c) $\frac{x-2}{1} = \frac{y-3}{1} = \frac{4}{1}$	$\frac{-z}{K} = r_1, \frac{x-1}{k} =$	$=\frac{y-4}{2}=\frac{z-5}{1}=r_2$		<i>N</i> .
	$(r_1 + 2, r_1 + 3, 4 - Kr_1)$	(1+ $Kr_2$ , 4	$(4+2r_2,5+r_2)$		
	$r_1 + 2 = 1 + Kr_2, r_1 + Kr_2, r_1 + Kr_2, r_1 + Kr_2, r_2 + Kr$	$3=4+2r_2, 4-$	$-Kr_1 = 5 + r_2$ . Eliminate K.		
	d) $\cos^2\theta + \cos^2\theta + c$	$\cos^2 \gamma = 1 \Longrightarrow \cos^2 \gamma$	$\cos^2 \gamma = -\cos 2\theta \ge 0 \Longrightarrow \cos^2 \theta$	$2\theta \leq 0$	
2	Match the follow	wing	. C	X	
5.	Column-I	wing			Column-II
A)	The distance of the	e point (1,-2	,3) from the plane	p)	0
	x-y+z-5=0 measur	red parallel t	to $\frac{x}{2} = \frac{y}{3} = \frac{z-1}{-6}$		
B)	If the straight lines	$5 \frac{x-2}{1} = \frac{y-3}{1}$	$\frac{3}{K} = \frac{4-z}{K}$ and	q)	1
	$\frac{x-1}{K} = \frac{y-4}{2} = \frac{z-5}{1}$	intersect the	en K is equal to		
C)	The shortest distar	ice between	any two opposite	r)	-3
	edges of the tetrah	edron form	ed by the planes		
	y + z = 0, z + x = 0, x + z = 0, x =	y=0 and $y$	$x+y+z=\sqrt{6}$ is		
D)	If $ heta$ is the angle be	tween line ×	x=y=z and the	s)	2
C	plane x+y+z=4 the	en $\tan\frac{\theta}{2}$ is			
	Key. A) q	B) p,r	C) s	D	)) q
Sol.	A) point on the lin B) $\begin{vmatrix} 1 & -1 & -1 \\ 1 & 1 & -K \\ K & 2 & 1 \end{vmatrix} = 0$	ne is $(1+2\lambda)$	,-2+3λ,3-6λ)		

1.

C) Vertices of a tetrahedron are O(0,0,0), A( $\sqrt{6}, \sqrt{6}, -\sqrt{6}$ ), B( $\sqrt{6}, -\sqrt{6}, \sqrt{6}$ ),
$C(-\sqrt{6},\sqrt{6},\sqrt{6})$ find the shortest distance between the lines $\overrightarrow{AO} \& \overrightarrow{BC}$
А

ie is perpendicular to the plane 
$$\theta = \frac{\pi}{2}$$

D) lin

4.	Match the following:-
----	-----------------------

mau						
	Column –I		Column –II			
(A)	If in a cube, $\theta$ is the angle between any two body-	$(\mathbf{n})$				
	diagonals then the value of $\cos\theta$ is	(p)	1			
(B)	If in a cube, $\theta$ is the angle between a body-diagonal		1			
	and a face-diagonal which is skew to it, then the	(q)	$\sqrt{2}$			
	value of sinθ is					
(C)	If in a cube, $\theta$ is the angle between diagonals of		1			
	two faces through a vertex, then the value of $\cot \theta$	(r)	$\overline{\sqrt{3}}$			
	is					
(D)	If in a cube, $\theta$ is the angle between a body-diagonal		1			
	and a face-diagonal interesting it then the value of	(s)	$\overline{2}$			
	tan0 is					
		(t)	1/3			

Key. 
$$(A-t), (B-p), (C-r), (D-q)$$

Considering the cube as shown in the figure Sol.

$$(A) \ \overrightarrow{OR}.\overrightarrow{BP} = (\hat{i} + \hat{j} + \hat{k}).(-\hat{i} - \hat{j} + \hat{k})$$

$$\Rightarrow \cos\theta = \left|\frac{-1 - 1 + 1}{\sqrt{3}.\sqrt{3}}\right| = \frac{1}{3}$$

$$(B) \ \overrightarrow{OR}.\overrightarrow{AC} = (\hat{i} + \hat{j} + \hat{k}).(\hat{i} - \hat{j}) = 0$$

$$\Rightarrow \theta = 90^{\circ} \Rightarrow \sin\theta = 1$$

$$(C) \ \overrightarrow{OB}.\overrightarrow{OQ} = (\hat{i} + \hat{j}).(\hat{j} + \hat{k}) \Rightarrow \cos\theta = \frac{1}{\sqrt{2}\sqrt{2}} = \frac{1}{2} \Rightarrow \cot\theta = \frac{1}{\sqrt{3}}$$

(D) 
$$\overrightarrow{OB}.\overrightarrow{OR} = (\hat{i} + \hat{j}).(\hat{i} + \hat{j} + \hat{k}) \Rightarrow \cos\theta = \frac{1+1}{\sqrt{2}\sqrt{3}} = \frac{\sqrt{2}}{\sqrt{3}} \Rightarrow \tan\theta = \frac{1}{\sqrt{2}}$$

#### Match the following: -5.

	Column – I	Column – II		
(A)	$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-1}{3} = \frac{y-3}{4} = \frac{z-5}{5}$ are	(p)	Coincident	
(B)	$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-3}{2} = \frac{y-5}{3} = \frac{z-7}{4}$ are	(q)	Parallel and different	
(C)	$\frac{x-2}{5} = \frac{y+3}{4} = \frac{5-z}{2}$ and $\frac{x-7}{5} = \frac{y-1}{4} = \frac{z-2}{-2}$ are	(r)	Skew	
(D)	$\frac{x-3}{2} = \frac{y+2}{3} = \frac{z-7}{5}$ and $\frac{x-3}{3} = \frac{y-2}{2} = \frac{z-7}{5}$ are	(s)	Intersecting in a point	
		(t)	coplanar	
A —	$\Rightarrow$ s,t; B $\rightarrow$ p,t; C $\rightarrow$ q; D $\rightarrow$ r			

Key.  $A \rightarrow s,t; B \rightarrow p,t; C \rightarrow q; D \rightarrow r$ 

Sol. (A) Both the lines pass through the point (7, 11, 15)  
(B) < 2, 3, 4 > are direction ratios of both the lines. Also the point (1, 2, 3) is common to both  

$$\therefore$$
 The lines are coincident.  
(C) < 5, 4 - 2 > are direction ratios of both the lines  
 $\therefore$  The lines are parallel.  
Also  $x = 2 + 5\lambda$ ,  $y = -3 + 4\lambda$ ,  $z = 5 - 2\lambda$ .  
 $\therefore \frac{2+5\lambda-7}{5} = \frac{-3+4\lambda-1}{4} = \frac{5-2\lambda-2}{2}$   
i.e.  $\lambda - 1 = \lambda - 1 = \frac{3-2\lambda}{-2}$   
 $\therefore$  no value of  $\lambda$   
Thus the lines are parallel and different.  
(D) < 2, 3, 5> and < 3, 2, 5 > are direction ratios of first and 2nd line respectively.  
 $\therefore$  The lines are not parallel  
 $x = 3+2\lambda$ ,  $y = -2+3\lambda$ ,  $z = 4+5\lambda$   
 $x = 3+3\mu$ ,  $y = -2+2\mu$ ,  $z = 7+5\mu$   
Are parametric equations of the lines.  
Solving  $3+2\lambda = 3+3\mu$  and  $-2+3\lambda = 2+2\mu$ 

We get 
$$\lambda = \frac{12}{5}, \mu = \frac{8}{5}$$

Now substituting these values in  $4+5\lambda = 7+5\mu$ 

We get

4 + 12 = 7 + 8i.e. 16 = 15 which is not true.

... The lines do not intersect

Hence the lines are skew.

6.

Column – I			Column – II
(A)	Foot of perp. Drawn for point (1, 2, 3) to the line $\frac{x-2}{2} = \frac{y-1}{3} = \frac{z-2}{4}$ is	(p)	$\left(\frac{107}{29}, \frac{30}{29}, \frac{69}{29}\right)$
(B)	Image of line point (1, 2, 3) in the line $\frac{x-2}{2} = \frac{y-1}{3} = \frac{z-2}{4}$ is	(q)	$\left(\frac{88}{29}, \frac{125}{29}, \frac{69}{29}\right)$
(C)	Foot of perpendicular from the point (2, 3, 5) to the plane $2x + 3y - 4z + 17 = 0$ is	(r)	$\left(\frac{107}{29}, \frac{125}{29}, \frac{185}{29}\right)$
(D)	Image of the point (2, 5, 1) in the plane 3x - 2y + 4z - 5 = 0 is	(s)	$\left(\frac{68}{29}, \frac{44}{29}, \frac{78}{29}\right)$
		(t)	$\left(\frac{38}{29}, \frac{57}{29}, \frac{185}{29}\right)$

 $\text{Key.} \quad A \rightarrow s, t; B \rightarrow p, t; C \rightarrow q; D \rightarrow r$ 

Sol. (A) Let the foot Q of perpendicular be 
$$(2+2\lambda,1+3\lambda,2+4\lambda)$$

$$\therefore \qquad 2(2\lambda+1)+3(3\lambda-1)+4(4\lambda-1)=0$$

 $29\lambda = 5 \qquad \qquad \lambda = \frac{5}{29}$ 

:. Foot = 
$$\left(\frac{68}{29}, \frac{44}{29}, \frac{8}{29}\right)$$

(B) Let the image be the point (a, b, c), then  $\frac{1+a}{2} = \frac{68}{29}, \frac{2+b}{2} = \frac{44}{29} \text{ and } \frac{3+c}{2} = \frac{78}{29}$ 

i.e. 
$$a = \frac{107}{29}, b = \frac{30}{29} \text{ and } c = \frac{68}{29}$$

(C) 
$$\frac{x-2}{2} = \frac{y-3}{3} = \frac{z-5}{-4} = -\frac{4+9-20+17}{4+9+16} = \frac{-10}{29}$$
  
 $\therefore a = \frac{38}{29}, b = \frac{57}{29} \text{ and } c = \frac{185}{29}$   
(D)  $\frac{x-2}{3} = \frac{y-5}{-2} = \frac{z-1}{4} = -2\frac{6-10+4-5}{29} = \frac{10}{29}$   
 $x = 2 + \frac{30}{29} = \frac{88}{29}, y = 5 - \frac{20}{29} = \frac{125}{29}, z = 1 + \frac{40}{29} = \frac{69}{29}$ 

7. Match the following pair of planes with their lines of intersection

Column – I	Column – II
A) $x + y = 0 = y + z$	P) $\frac{x-2}{0} = \frac{y-2007}{-1} = z + 2004$
B) $x - 2 = 0 = y - 3$	Q) $\frac{x-2}{0} = -y = z - 1$
C) x - 2 = 0 = y + z - 3	R) $x = -y = z$

**3D-Geometry** 

_		
	D) $x - 2 = 0 = x + y + z - 3$	s) $\frac{x-2}{0} = \frac{y-3}{0} = z$

Ans. A - R; B - S; C - P; D - Q

Sol. Conceptual

8. Match the following.

Column – I	Column – II
A) The volume of the tetrahedron whose vertices are A(3, 7, 4), B(5, -	D) 1
2, 3), C(-4,5,6) and D(1, 2, 3)	
B) The perpendicular distance between $2x + 2y - z + 1 = 0$ and	
$x + y - \frac{z}{2} + 2 = 0$	Q) 0.74
C) A plane passes through (1, 2, -1) and is perpendicular to two	
planes $2x - 2y + z = 0$ and $x - y + 2z = 4$ . The distance of the plane	R) 15.33
from the point (1, 2, 2) is	
D) A line is perpendicular to $x + 2y + 2z = 0$ and passes through (0, 1, 0). The perpendicular distance of this line from (0, 0, 0) is	S) 2.82

Ans. A-R; B-P; C-S; D-Q

A) Volume of tetrahedron = 
$$\frac{1}{6} \begin{vmatrix} 3 & 7 & 4 & 1 \\ 5 & -2 & 3 & 1 \\ -4 & 5 & 6 & 1 \\ 1 & 2 & 3 & 1 \end{vmatrix} = 1$$

B) Distance = 
$$\frac{|4-1|}{\sqrt{2^2+2^2+1}} = 1$$

C) Direction ratios of the required plane will be (1, 1, 0). Equation of plane :  $x + y = \lambda$  this plane passes through (1, -2, 1)  $\Rightarrow \lambda = -1$  $\Rightarrow x + y + 1 = 0$ 

Distance of (1, 2, 2) from the plane = 
$$\frac{|4|}{\sqrt{1+1}} = 2\sqrt{2}$$

9. A variable plane cuts the x-axis, y-axis and z-axis at the points A, B and C respectively such that the volume of the tetrahedron OABC remains constant equal to 32 cubic unit and O is the origin of the coordinate system.

Column – I	Column – II
A) The locus of the centroid of the tetrahedron is	P) xyz = 24
B) the locus of the point equidistant from O, A, B and C is	Q) $(x^2 + y^2 + z^2)^3 = 192xyz$
C) the length of the foot of perpendicular from origin to the plane is	R) xyz = 3
D) If PA, PB and PC are mutually perpendicular then the locus of P is	S) $(x^2 + y^2 + z^2)^3 = 1536 xyz$

Ans. A - R; B - P; C - Q; D - S

Given 
$$\frac{abc}{6} = 32$$
, where A, B, C are respectively (a, 0, 0), (0, b, 0), (0, 0, c)

Centroid of tetrahedron  $(\alpha, \beta, \gamma) \equiv \left(\frac{a}{4}, \frac{b}{4}, \frac{c}{4}\right) \Longrightarrow a = 4\alpha, b = 4\beta, c = 4\gamma$ A)  $\therefore 64\alpha\beta\gamma = 32 \times 6 \Longrightarrow \alpha\beta\gamma = 3$ Equidistant point  $(\alpha, \beta, \gamma) \equiv \left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right) \Rightarrow a = 2\alpha, b = 2\beta, c = 2\gamma$ B)  $\therefore 8\alpha\beta\gamma = 32 \times 6 \Longrightarrow \alpha\beta\gamma = 24$ The equation of the plane is  $\frac{x}{a} + \frac{y}{b} + \frac{z}{a} = 1$ C)  $\therefore \text{ foot of perpendicular from the origin} \equiv \left(\alpha, \beta, \gamma\right) \equiv \left(\frac{1/a}{\sum \frac{1}{a^2}}, \frac{1/b}{\sum \frac{1}{a^2}}, \frac{1/c}{\sum \frac{1}{a^2}}\right)$  $\Rightarrow \frac{1}{a\alpha} = \frac{1}{b\beta} = \frac{1}{c\gamma} = t \text{, where } t = \frac{1}{\alpha^2} + \frac{1}{b^2} + \frac{1}{c^2} = \sum \frac{1}{\alpha^2}$ or  $t = (\alpha^2 + \beta^2 + \gamma^2)t^2 \Longrightarrow t = \frac{1}{\alpha^2 + \beta^2 + \gamma^2}$  and  $\alpha^{2} + \overline{\beta^{2} + \gamma^{2}} \text{ and}$   $a = \frac{\alpha^{2} + \beta^{2} + \gamma^{2}}{\alpha}, b = \frac{\alpha^{2} + \beta^{2} + \gamma^{2}}{\beta}, c = \frac{\alpha^{2} + \beta^{2} + \gamma^{2}}{\gamma}$ Now abc = 6 x 32  $\Rightarrow (\alpha^{2} + \beta^{2} + \gamma^{2})^{3} = 192\alpha\beta\gamma$ Let P be  $(\alpha, \beta, \gamma)$  then D)  $PA \perp PB \Longrightarrow \alpha(\alpha - a) + \beta(\beta - b) + \gamma \gamma = 0 \Longrightarrow a\alpha + b\beta = \alpha^{2} + \beta^{2} + \gamma^{2}$  $PB \perp PC \Longrightarrow \alpha \alpha + \beta (\beta - b) + \gamma (\gamma - c) = 0 \Longrightarrow b\beta + c\gamma = \alpha^{2} + \beta^{2} + \gamma^{2}$  $\therefore \frac{a}{1/\alpha} = \frac{b}{1/\beta} = \frac{c}{1/\gamma} \Longrightarrow a = \frac{\alpha^2 + \beta^2 + \gamma^2}{2\alpha}, b = \frac{\alpha^2 + \beta^2 + \gamma^2}{2\beta}, = \frac{\alpha^2 + \beta^2 + \gamma^2}{2\gamma}$  $\therefore abc = 6 \times 32 \Longrightarrow \left(\alpha^2 + \beta^2 + \gamma^2\right)^3 = 192 \times 8\alpha\beta\gamma = 1536\alpha\beta\gamma$ 

### 10. Match the following

Column – I	Column – II
A) Equation of normal to the curve $x = y^2 - 6y + 6$ which is	
parallel to the line joining origin to the vertex of parabola is	P) $x + y = 4\sqrt{2}$
B) Equation of the line of latus rectum of the curve $xy = 4$ is	Q) $y = 3x - 1$
C) A ray of light emanating from the point (4, 3) after getting	_
reflected from the line $x + y - 3 = 0$ passes through the point (3,	R) $\sqrt{2y} = 2(x-y)$
8). The equation of reflected ray is	× ,
D) If the normal at $(t_1)$ on the parabola $y^2 = 4x$ having positive	<b>S</b> ) $4x + 4x - 2 = 0$
slope subtend right angle at the origin, then the equation is	3) 4x + 4y - 5 = 0

Ans. A - S; B - P; C - Q; D - R  
Sol. A) 
$$x = y^2 - 6y + 6 \implies (y - 3)^2 = x + 3$$
. vertex (-3, 3)  
 $-\frac{dx}{dy} = -(2y_1 - 6)$ 

Slope of line joining vertex to the origin is -1 $(2y_1-6)=1 \Longrightarrow y_1=\frac{7}{2}$  $\Rightarrow x = \left(\frac{7}{2}\right)^2 - \frac{6.7}{2} + 6 = -\frac{11}{4}$  $\therefore$  Equation of normal is  $y - \frac{7}{2} = -\left(x + \frac{11}{4}\right)$  $\Rightarrow 4x + 4y - 3 = 0$ xy = 4B) Coordinates of foci are  $(\pm\sqrt{2}c,\pm\sqrt{2}c)$  or  $(\pm2\sqrt{2},\pm2\sqrt{2})=2$ Slope of line of latus rectum is – 1  $\therefore$  Equation is  $y - 2\sqrt{2} = -(x - 2\sqrt{2})$  $x + y = 4\sqrt{2}$ Reflection of (4, 3) w.r.t x + y = 3 is (0, -1)C) : Equation of reflected ray is  $y+1=\frac{8+1}{3-0}(x-0)$  $\Rightarrow y = 3x - 1$ Equation of normal at  $(t_1)$  is  $y = -t_1x + 2t_1 + t_1^3$ D)  $\therefore$  it passes through (t₂)  $\Rightarrow t_1 + t_2 = -\frac{2}{t_1}$ Also the normal standard right angle at origin  $\Rightarrow t_1 t_2 = -1$  $t_1^2 + t_1 t_2 = -2$  $t_1^2 = 2$  $\Rightarrow t_1 = -\sqrt{2}$  : slope of normal has to be positive  $\therefore$  equation is  $y = \sqrt{2}x - 2\sqrt{2} - 2\sqrt{2}$  $\sqrt{2}y = 2(x - y)$ or

11. A hyperbola has one focus at (1, 2), its corresponding directrix is x + y = 1 and eccentricity is 2. Then

Column – I	Column – II	
A) centre of hyperboal	$P)\left(-\frac{5}{3},-\frac{2}{3}\right)$	
B) co-ordinate of other focus	$Q)\left(-\frac{1}{3},\frac{2}{3}\right)$	
C) Equation of conjugate axis	R) $3x + 3y = 1$	
D) Equation of other directrix	S) $3x + 3y + 1 = 0$	

Ans. A - Q; B - P; C - R; D - S

C

Sol. Equation of transverse axis is x - y = -1A = (0, 1)

3D-Geometry

Also, 
$$\left(ae - \frac{a}{e}\right) = \left|\frac{1+2-1}{\sqrt{2}}\right| = \sqrt{2} \Rightarrow a = \frac{2\sqrt{2}}{3}$$
 equation of transverse axis in parametric  
form  $\frac{x-1}{1/\sqrt{2}} = \frac{y-2}{1/\sqrt{2}} = r$  (1)  
A) Here  $r = -ae = -\frac{2\sqrt{2}}{3} \times 2 = -\frac{4\sqrt{2}}{3}$   
Centre  $= \left(1 - \frac{4}{3}, 2 - \frac{4}{3}\right)$   
 $= \left(-\frac{1}{3}, \frac{2}{3}\right)$   
B) Here  $r = -(2ae) = -\frac{8\sqrt{2}}{3}$   
Other focus  $= \left(1 - \frac{8}{3}, 2 - \frac{8}{3}\right) = \left(-\frac{5}{3}, -\frac{2}{3}\right)$   
C)  $x + y = \lambda$  passes through  $\left(-\frac{1}{3}, \frac{2}{3}\right)$   
 $-\frac{1}{3} + \frac{2}{3} = \lambda \Rightarrow \lambda = \frac{1}{3}$   
 $x + y = \frac{1}{3} \Rightarrow 3x + 3y = 1$   
D) Here  $r = -\left(ae + \frac{a}{e}\right) = -\left(\frac{4\sqrt{2}}{3}, \frac{\sqrt{2}}{3}\right) = -\frac{5\sqrt{2}}{3}$   
 $A' = \left(1 - \frac{5}{3}, 2 - \frac{5}{3}\right)$   
 $= \left(-\frac{2}{3}, \frac{1}{3}\right)$   
Other directrix  
 $x + y = \lambda$   
 $-\frac{2}{3} + \frac{1}{3} = \lambda$   
 $\lambda = \frac{1}{3}$   
 $\beta x + 3y + 1 = 0$   
12. Let  $C_1, C_2, C_3$  are three circles  
with radius  $r_1, r_2, r_1(r_1 < r_1 < r_2)$   
 $x = \frac{1}{3}$   
 $\beta x + 3y + 1 = 0$   
12. Let  $C_1, C_2, C_3$  are three circles  
with radius  $r_1, r_2, r_1(r_1 < r_1 < r_2)$   
 $h = \frac{1}{2}$   $\frac{1}{3} = \frac{1}{3}$   
 $\beta x + 3y + 1 = 0$   
13. Let  $C_1, C_2, C_3$  are three circles  
with radius  $r_1, r_2, r_1(r_1 < r_1 < r_2)$   
 $h = \frac{1}{2} = \frac{1}{2}$ 

9

	Column – I	Column – II
	A) $r_3$ equals	$p) \\ 2\sqrt{r_2}\left(\sqrt{r_1} + \sqrt{r_3}\right)$
	B) The distance DE is equal to	q) $\frac{2r_1^{3/2} \cdot r_2^{1/2}}{r_2r_1}$
	C) The distance PD can be given as	r) $\frac{r_2^2}{r_1}$
	D) The distance DF is equal to	s) $2\sqrt{r_1r_2}$
		t) $\frac{r_2^2 - r_1^2}{r_1}$
Ans.	A – R ; B – S ; C – Q ; D – P	
Sol.	DI. $DE = AK = \sqrt{(r_1 + r_2)^2 - (r_2 - r_1)^2} = 2\sqrt{r_1 r_2}$	
	C1 C2	L1
	P B A B K	
	D E	
	$EF = 2\sqrt{r_2 r_3}$	
	Let PD = x, $ APD  = \theta$	
	$\Rightarrow \tan \theta = \frac{AD}{PD} = \frac{BE}{PE} = \frac{CF}{PF} \Rightarrow \frac{r_1}{r_1} = \frac{r_2}{r_2 + 2\sqrt{r_1r_2}} = \frac{r_3}{r_1 + 2\sqrt{r_1r_2}} = \frac{r_3}{r_1 + 2\sqrt{r_1r_2}} = \frac{r_2}{r_2 + 2\sqrt{r_1r_2}} = \frac{r_3}{r_1 + 2\sqrt{r_1r_2}} = \frac{r_3}{r_2 + 2\sqrt{r_1r_2}} = \frac{r_3}{r_1 + 2\sqrt{r_1r_2}} = \frac{r_3}{r_1 + 2\sqrt{r_1r_2}} = \frac{r_3}{r_2 + 2\sqrt{r_1r_2}} = \frac{r_3}{r_1 + 2\sqrt$	$-2\sqrt{r_2r_3}$
	$\Rightarrow \frac{r_2 - r_1}{2\sqrt{r_1r_2}} = \frac{r_3 - r_2}{2\sqrt{r_2r_3}} \Rightarrow \sqrt{r_3} (r_2 - r_1) = \sqrt{r_1} (r_3 - r_2)$	
	$\Rightarrow r_2\left(\sqrt{r_3} + \sqrt{r_1}\right) = \sqrt{r_1r_3}\left(\sqrt{r_1} + \sqrt{r_3}\right)  \Rightarrow r_2 = \sqrt{r_1r_3}$	
	also $x = \frac{r_1 \cdot 2\sqrt{r_1 r_2}}{r_2 - r_1}$	
	also DF = DE + EF	
C	$\Rightarrow 2\sqrt{r_1r_2} + 2\sqrt{r_2r_3} = 2\sqrt{r_2}\left(\sqrt{r_1} + \sqrt{r_3}\right)$	

13.

## For the ellipse $9(x-4)^2 + 4(y-3)^2 - 36 = 0$ match list I with list II

Column – I	Column – II
A) Equation of the directrix	P) y = 3
B) Equation of the major axis	Q) x = 4
C) Equation of the minor axis	R) $y = 3 + \sqrt{5}$
D) Equation of the latus rectum whose distance from the x-axis is more	S) $x = 4 + \sqrt{5}$
	T) $y = 3 + \frac{9}{\sqrt{5}}$

Ans. A - T; B - Q; C - P; D - R

Sol. The ellipse is 
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$
  
 $a^2 = 4, b^2 = 9$   $e = \frac{\sqrt{5}}{3}$   
Equation of the major axis x = 4  
Equation of the directrix  $y = 3 + \frac{9}{\sqrt{5}}$   
Equation of the required latus rectum  $y = 3 + \sqrt{5}$   
14. Match the following  
Column -1  
A) The product of length of perpendicular from any point of the product of length of perpendicular from any point of the product of length of perpendicular from any point of the product of length of perpendicular from any point of the product of length of perpendicular from any point of the product of length of perpendicular from any point of the product of length of perpendicular from any point of the product of length of perpendicular from any point of the product of length of perpendicular tangents are be drawn to the hyperbola  $\frac{x^2}{4} - \frac{y^2}{1} = 1$  is/are  
C) The distance between the directrices of the ellipse  $(4x - 8)^2 + 16y^2 = (x + \sqrt{3}y + 10)^2$  is  
Ans.  $A - 0; B - 5; C - R; D - P$   
Sol. A)  $x^2 - y^2 = 10$   
Equation of asymptotes are  $y = \pm x$   
Let P₁ and P₂ be length of perpendicular from any point on the asymptotes  
 $P_1 = \left| \frac{\sqrt{10} \tan \theta - \sqrt{10} \sec \theta}{\sqrt{2}} \right|, P_2 = \left| \frac{\sqrt{10} \tan \theta + \sqrt{10} \sec \theta}{\sqrt{2}} \right|$   
 $P_1P_2 = \frac{40}{2} (\sec^2 \theta - \tan^2 \theta) = 5$   
B) Director circle of hyperbola  $\frac{x^2}{4} - \frac{y^2}{1} = 1$  is  $x^2 + y^2 = 3$   
Solving this with  $\frac{x^2}{4} + \frac{y^2}{3} = 1$  gives  $3x^2 + 4(3 - x^2) = 12$   
 $\Rightarrow x = 0 \quad \therefore y = \pm\sqrt{3} \quad \therefore$  number of points are 2  
()  $(4x - 8)^2 + 16y^2 = (x + \sqrt{3}y + 10)^2$   
 $(x - 2)^2 + y^2 = \frac{1}{4} (\frac{x + \sqrt{3}y + 10}{2})^2 \Rightarrow e = \frac{1}{2}$   
One of the focus is (2, 0) and directrix is  $x + \sqrt{3}y + 10 = 0$ 

D)

Distance between one of the focus and its corresponding directrix is

$$\frac{a}{e} - ae = a\left(2 - \frac{1}{2}\right) = \frac{12}{2} = 6 = a = \frac{6 \times 2}{4} = 4$$
  
Distance between directrices is  $\frac{2a}{e} = \frac{2 \times 4}{1/2} = 16$   
Any point on line y - x + 2 = 0 is  $(\lambda, \lambda - 2)$  equation of chord of contact by y² = 4x is  
 $y(\lambda - 2) = 2(x + \lambda)$   
 $= (x + y) - \lambda(y - 2) = 0 \implies y = 2$  and  $x + y = 0$ 

Let the circle  $(x - 1)^2 + (y - 2)^2 = 25$  cuts the rectangular hyperbola with transverse axis along 15. y = x at four different points A, B, C, D with coordinates (x_i, y_i), i = 1, 2, 3,4 respectively. O being the centre of the hyperbola. 

Column – I	Column – II
A) $x_1 + x_2 + x_3 + x_4 =$	P) 2
B) $x_1^2 + x_2^2 + x_3^2 + x_4^2 =$	Q) 56
C) $y_1^2 + y_2^2 + y_3^2 + y_4^2 = =$	R) 44
D) $x_1x_2 + x_2x_3 + x_1 + x_4x_1 + x_2x_4 + x_3x_4$	S) – 20

Ans. 
$$A-P; B-R; C-Q; D-S$$

Ans. 
$$A - P$$
;  $B - R$ ;  $C - Q$ ;  $D - S$   
Sol. The circle is  $x^2 + y^2 - 2x - 4y - 20 = 0$  let the hyperbola  $xy = c^2$  if  $\left(ct, \frac{c}{t}\right)$  be the points of intersection, then

2

intersection, then

$$c^{2}t^{2} + \frac{c^{2}}{t^{2}} - 2ct - \frac{4c}{t} - 20 = 0$$
  
$$\Rightarrow c^{2}t^{4} - 2ct^{3} - 20t^{2} - 4ct + c^{2} = 0$$
  
If t₁, t₂, t₃, t₄ be the roots, then

A) 
$$\sum x_1 = ct_1 + ct_2 + ct_3 + ct_4 = c \cdot \frac{2}{c} =$$

B) 
$$\sum x_1 x_2 = c^2 \sum t_1 t_2 = -20 = \sum x_1^2 = (\sum x_1)^2 - 2 \sum x_1 x_2 = 44$$

C) 
$$\sum y_1 = \sum \frac{c}{t_1} = c \frac{\sum t_1 t_2 t_3}{t_1 t_2 t_3 t_4} = 4$$
$$\sum y_1 y_2 = c^2 \sum \frac{1}{t_1 t_2} = -20 \qquad = \sum y_1^2 = \left(\sum y_1\right)^2 - 2\sum y_1 y_2 = 56$$