Vectors
Multiple Correct Answer Type1.Let
$$\overline{a}$$
 and \overline{b} be two non collinear unit vectors. If $\overline{u} = \overline{a} - (\overline{a}\overline{b})\overline{b}$ and $\overline{v} = \overline{a} \times \overline{b}$ then $|\overline{v}| =$
a) $|\overline{u}|$
c) $|\overline{u}| + |\overline{u}\overline{b}|$ 1.Let \overline{a} and \overline{b} be two non collinear unit vectors. If $\overline{u} = \overline{a} - (\overline{a}\overline{b})\overline{b}$ and $\overline{v} = \overline{a} \times \overline{b}$ then $|\overline{v}| =$
a) $|\overline{u}|$
c) $|\overline{u}| + |\overline{u}\overline{b}|$ 1.Let \overline{a} and \overline{b} be two non collinear unit vectors. If $\overline{u} = \overline{a} - (\overline{a}\overline{b})\overline{b}$ and $\overline{v} = \overline{a} \times \overline{b}$ then $|\overline{v}| =$
a) $|\overline{u}| + |\overline{u}\overline{a}|$
c) $|\overline{u}| + |\overline{u}\overline{a}|$
d) $|\overline{u}| + |\overline{u}\overline{a}|$
e)
E
Sol. Given $\overline{v} = \overline{a} \times \overline{b} \Rightarrow |\overline{v}| = |\overline{a}|^2 |\overline{b}|^2 \cos^2 \theta - 2\overline{a}\overline{b} \cos \theta$
 $= 1 + \cos^2 \theta - 2\cos^2 \theta$
 $= 1 - \cos^2 \theta$
 $= \sin^2 \theta$
 $\Rightarrow |\overline{u}\overline{b}| = 0$ 2.Three vectors $\overline{a}(|\overline{a}|^1 \ 0)$, \overline{b} and \overline{c} are such that \overline{a}' $\overline{b} = 3\overline{a}'$ \overline{c} . Also $|\overline{a}| = |\overline{b}| = 1$ and
 $|\overline{c}| = \frac{1}{3}$. If the angle between \overline{b} and \overline{c} is 60°^0} , then.
a) $\overline{b} = 3\overline{c} - \overline{a}$
b) $\overline{b} = 3\overline{c} - \overline{a}$
c) $\overline{a} = 6\overline{c} + 2\overline{b}$
d) $\overline{a} = 6\overline{c} - 2\overline{b}$
Key. A.BSol. \overline{a}' ($\overline{b} - 3\overline{c} = 1\overline{a}$
b) $|\overline{b} - 3\overline{c} = 1\overline{a}$
b) $|\overline{b} - 3\overline{c} = 1\overline{a}$ b) $|\overline{b} - 3\overline{c} = 1\overline{a}$
b) $|\overline{b} - 3\overline{c} = \pm \overline{a}$

3. If \vec{a} and \vec{b} are two unit vectors perpendicular to each other and $\vec{c} = \lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b})$, then the following is (are) true 4.

5.

Vectors

Mathematics
a)
$$\lambda_1 = \vec{a}\cdot\vec{c}$$
 b) $\lambda_2 = |\vec{b} \times \vec{a}|$
c) $\lambda_3 = |(\vec{a} \times \vec{b}) \times \vec{c}|$ d) $\lambda_1 + \lambda_2 + \lambda_3 = (\vec{a} + \vec{b} + \vec{a} \times \vec{b}) \cdot\vec{c}$.
Key. A,D
Sol. (a) is proved if we take dot product of both sides with \vec{a} .
(b) If we take dot product with \vec{b} , we get
 $\lambda_2 = \vec{b} \cdot \vec{c}$
 \Rightarrow Choice (b) is not true.
(c) If we take dot product of both sides with $\vec{a} \times \vec{b}$, we get $[\vec{c} \cdot \vec{b} \cdot \vec{a}] = \lambda_3 [\vec{a} \times \vec{b}]^2$
 $\Rightarrow \lambda_3 = [\vec{a} \cdot \vec{b} \cdot \vec{c}] \text{ OR } \vec{c} \cdot (\vec{a} \times \vec{b})$
 \Rightarrow Choice (c) is wrong.
(d) is correct since $\lambda_1 + \lambda_2 + \lambda_3 = \vec{c} \cdot \vec{a} + \vec{b} \cdot \vec{c} + [\vec{a} \cdot \vec{b} \cdot \vec{c}]$.
4. $\vec{a} = (\cos q)\vec{1} - (\sin q)\vec{j}$, $\vec{b} = (\sin q)\vec{1} + (\cos q)\vec{j}$, $\vec{c} = \vec{k}$, $\vec{r} = 7\vec{1} + \vec{j} + 10\vec{k}$
if $\vec{r} = x\vec{a} + y\vec{b} + z\vec{c}$, then
a) min. of $x + y + z = 0$ b) min. of $x + y + z = 5$
c) max. of $x + y + z = 15$ d) max. of $x + y + z = 20$
Key. A,D
Sol. $x = 7\cos q - \sin q$, $y = 7\sin q + \cos q$, $z = 10$
 $x + y + z = 8\cos q + 6\sin q + 10$
min value = $10 - \sqrt{8^2 + 6^2} = 0$, max value = $10 + 10 = 20$
5. If a vector \vec{r} satisfies the equation $\vec{r} \times (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} - \hat{k}$, then \vec{r} is equal to
(A) $\hat{i} + 3\hat{j} + \hat{k}$
(B) $3\hat{i} + 7\hat{j} + 3\hat{k}$

- (C) $\hat{j}+t(\hat{i}+2\hat{j}+\hat{k})$ where t is any scalar (D) $\hat{i}+(t+3)\hat{j}+\hat{k}$ where t is any scalar

Key. A,B,C **Mathematics**

Sol.
$$\vec{r} \times (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} - \hat{k}$$

Let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$
 $\therefore \qquad (x\hat{i} + y\hat{j} + z\hat{k}) \times (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} - \hat{k}$
 $\Rightarrow \qquad \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 1 & 2 & 1 \end{vmatrix} = \hat{i} - \hat{k}$

Put values from options and check.

- 6. If \overline{a} and \overline{b} are unit vectors and \overline{c} is a vector such that $\overline{c} = \overline{a} \ge \overline{c} + \overline{b}$ then
 - (A) $\begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix} = \overline{b} \cdot \overline{c} (\overline{a} \cdot \overline{b})^2$ (C) Maximum value of $\begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix} = \frac{1}{2}$
- (B) $\begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} = 0$ (D) Minimum value of $\begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$ is $\frac{1}{2}$

Key. A,C

Sol.
$$\overline{c}.\overline{a} = ((\overline{a} \ x \overline{c}) + \overline{b}).\overline{a} = \overline{b}.\overline{a}$$

 $\overline{b} \ x \overline{c} = (\overline{b}.\overline{c}) + \overline{a} - (\overline{a} - \overline{b}).\overline{c}$
 $\therefore [\overline{a} \overline{b} \overline{c}] = \overline{b}.\overline{c} - (\overline{a} - \overline{b}).(\overline{a}.\overline{c})$
Also $\overline{c}.\overline{b} = 1 - [\overline{a} \overline{b} \overline{c}]$
 $\therefore 2 [\overline{a} \overline{b} \overline{c}] = 1 - (\overline{a}.\overline{b})^2 \le 1$
 $\therefore [\overline{a} \overline{b} \overline{c}] \le \frac{1}{2}$

7. If a vector \vec{r} satisfies the equation $\vec{r} \times (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} - \hat{k}$, then \vec{r} is equal to

(A)
$$\hat{i} + 3\hat{j} + \hat{k}$$

(B) $3\hat{i} + 7\hat{j} + 3\hat{k}$
(C) $\hat{j} + t(\hat{i} + 2\hat{j} + \hat{k})$ where t is any scalar
(D) $\hat{i} + (t + 3)\hat{j} + \hat{k}$ where t is any scalar
Key. A,B,C
Sol. $\vec{r} \times (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} - \hat{k}$
Let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$
 $\therefore \qquad (x\hat{i} + y\hat{j} + z\hat{k}) \times (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} - \hat{k}$
 $\Rightarrow \qquad \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 1 & 2 & 1 \end{vmatrix} = \hat{i} - \hat{k}$

Put values from options and check.

- 8. In a four-dimensional space where unit vectors along axes are $\hat{i}, \hat{j}, \hat{k}$ and $\hat{\ell}$ and $\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4$ are four non zero vectors such that no vector can be expressed as linear combination of others and $(\lambda 1)(\vec{a}_1 \vec{a}_2) + \mu(\vec{a}_2 + \vec{a}_3) + \gamma(\vec{a}_3 + \vec{a}_4 2\vec{a}_2) + \vec{a}_3 + \delta \vec{a}_4 = \vec{o}$ then
 - (A) $\lambda = 1$ (B) $\mu = -\frac{2}{3}$ (C) $\lambda = \frac{2}{3}$ (D) $\delta = \frac{1}{3}$

Key. A,B,D

Sol. (a, b, d)

- $(\lambda 1)(\vec{a}_1 \vec{a}_2) + \mu(\vec{a}_2 + \vec{a}_3) + \gamma(\vec{a}_3 + \vec{a}_4 2\vec{a}_2) + \vec{a}_3 + \delta\vec{a}_4 = \vec{o}$ i.e $(\lambda - 1)\vec{a}_1 + (1 - \lambda + \mu - 2\gamma)\vec{a}_2 + (\mu + \gamma + 1)\vec{a}_3 + (\gamma + \delta)\vec{a}_4 = 0$
- since $\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4$ are linearly independent

$$\therefore \qquad \lambda - 1 = 0, 1 - \lambda + \mu - 2\gamma = 0, \mu + \lambda + 1 = 0 \qquad \gamma + \delta = 0$$

- i.e. $\lambda = 1, \mu = 2\gamma, \mu + \gamma + 1 = 0, \gamma + \delta = 0$
- i.e. $\lambda = 1, \mu = -\frac{2}{3}, \gamma = -\frac{1}{3}, \delta = \frac{1}{3}$
- 9. A vector (\vec{d}) is equally inclined to three vectors $\vec{a} = \hat{i} \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = 3\hat{j} 2\hat{k}$. Let $\vec{x}, \vec{y}, \vec{z}$ be three vector in the plane of $\vec{a}, \vec{b}; \vec{b}, \vec{c}; \vec{c}, \vec{a}$ respectively then
 - (A) $\vec{x}.\vec{d} = 14$

(C) $\vec{z}.\vec{d} = 0$

C,B

(B) $\vec{y} \cdot \vec{d} = 3$ (D) $\vec{r} \cdot \vec{d} = 0$ where $\vec{r} = \lambda \vec{x} + \mu \vec{y} + \delta \vec{z}$

Key.

Sol.

(c, d) since $[\vec{a}, \vec{b}, \vec{c}] = 0$

 $ec{a},ec{b}$ and $ec{c}$ are complanar vectors

Further since $ec{d}$ is equally inclined to $ec{a},ec{b}$ and $ec{c}$

$$\vec{d}$$
. $\vec{a} = \vec{d}$. $\vec{b} = \vec{d}$. $\vec{c} = 0$

 $\vec{d} \cdot \vec{r} = 0$

10. Identify the statement(s) which is/are incorrect ?

(A) $\vec{a} \times [\vec{a} \times (\vec{a} \times \vec{b})] = (\vec{a} \times \vec{b})(\vec{a}^2)$

(B) If $\vec{a}, \vec{b}, \vec{c}$ are non-zero, non coplanar vector and $\vec{v}.\vec{a} = \vec{v}.\vec{b} = \vec{v}.\vec{c} = 0$ then \vec{v} must be a null vector.

(C) If \vec{a} and \vec{b} lie in a plane normal to the plane containing the vectors \vec{c} and \vec{d} then $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{o}$ (D) If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a}', \vec{b}', \vec{c}'$ are reciprocal system of vectors then $\vec{a}.\vec{b}'+\vec{b}.\vec{c}'+\vec{c}.\vec{a}'=3$ A,C,D Key. Sol. (a, c, d) $\vec{a} \times [\vec{a} \times (\vec{a} \times \vec{b})] = \vec{a} \times [(\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})b] = -(\vec{a} \cdot \vec{a})(\vec{a} \times \vec{b})$ (A) (A) is not correct Let $\vec{a}, \vec{b}, \vec{c}$ ne no coplanar vector (B) then $\vec{v} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$ $\vec{v} \cdot \vec{a} = 0$ now $\alpha(\vec{a}.\vec{a}) + \beta(\vec{b}.\vec{a}) + \gamma(\vec{c}.\vec{a}) = 0$ (1) \Rightarrow and similarly $\alpha(\vec{a}.\vec{b}) + \beta(\vec{b}.\vec{b}) + \gamma(\vec{c}.\vec{b}) = 0$(2) $\alpha(\vec{a}.\vec{c}) + \beta(\vec{b}.\vec{c}) + \gamma(\vec{c}.\vec{c}) = 0$ (3) $\vec{a}.\vec{a}$ $\vec{b}.\vec{a}$ $\vec{c}.\vec{a}$ here $\begin{vmatrix} \vec{a}.\vec{b} & \vec{b}.\vec{b} & \vec{c}.\vec{b} \end{vmatrix} = [\vec{a} \vec{b} \vec{c}] \neq 0$ ā.c $\vec{b}.\vec{c}$ $\vec{c}.\vec{c}$ Equation (1) (2) and (3) will have only one solution i.e. $\alpha = \beta = \gamma = 0$ ∴ (B) is true Let $\vec{a}.\vec{b}$ lie in the plane P₁ (C) $\vec{a} \times \vec{b} \perp P$ *.*.. Let \vec{c}, \vec{d} lie in the plane P₂ $\vec{c} \times \vec{d} \perp P_2$ as $\mathsf{P_1}$ & $\mathsf{P_2}$ are $\perp \perp$ to each other. $(\vec{a} \times \vec{b}).(\vec{c} \times \vec{d}) = 0 \& (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) \neq 0$ $\vec{a}.\vec{b}'+\vec{b}.\vec{c}'+\vec{c}.\vec{a}=0$ (property of reciprocal system) 11. The equation of a plane is 2x - y - 3z = 5 and A(1, 1, 1), B(2, 1, -3), C(1, -2, -2) and D(-3, 1, 2) are four points. Which of the following line segments are intersected by the plane?

(A) AD (B) AB (C) AC (D) BC Key. B,C Sol. For A(1, 2, 3), 2x - y - 3z - 5 = 2 - 1 - 3 - 5 < 0For B(2, 1, -3), 2x - y - 3z - 5 = 4 - 1 + 9 - 5 > 0For C(1, -2, -2), 2x - y - 3z - 5 = 2 + 2 + 6 - 5 > 0

For D(-3, 1, 2), 2x - y - 3z - 5 = -6 - 1 - 6 - 5 < 0AD are on one side of the plane and B. C are on the other side *.*.. the line segments AB, AC, BD, CD intersect the plane. ÷. If \vec{a} , \vec{b} , \vec{c} be three non zero vectors satisfying the condition $\vec{a} \times \vec{b} = \vec{c} \& \vec{b} \times \vec{c} = \vec{a}$ then 12. (B) $\left[\vec{a} \ \vec{b} \ \vec{c} \right] = \left| \vec{a} \right|^2$ (A) \vec{a} , \vec{b} , \vec{c} are orthogonal in pairs (D) $|\vec{b}| = |\vec{c}|$ (C) $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{bmatrix} \vec{c} \end{bmatrix}^2$ Key. B.C Clearly \vec{a} . \vec{c} = 0 & \vec{b} . \vec{c} = 0 Also \vec{a} . \vec{b} = 0 \Rightarrow A Sol. $\operatorname{Again} \frac{\left| \vec{a} \right| \left| \vec{b} \right| = \left| \vec{c} \right|}{\left| \vec{b} \right| \left| \vec{c} \right| = \left| \vec{a} \right|} \Rightarrow \frac{\left| \vec{a} \right|}{\left| \vec{c} \right|} = \frac{\left| \vec{c} \right|}{\left| \vec{a} \right|} \Rightarrow \left| \vec{a} \right| = \left| \vec{c} \right| \& \left| \vec{b} \right| = 1$ $\Rightarrow \vec{a} \times \vec{b} \cdot \vec{c} = |\vec{a}| |\vec{b}| |\vec{c}| = |\vec{a}|^2 = |\vec{c}|^2$ If $\vec{r} = \hat{i} + \hat{j} + \lambda (2\hat{i} + \hat{j} + 4\hat{k})$ and $\vec{r} \cdot (\hat{i} + 2\hat{j} - \hat{k}) = 3$ are the equations of a line and a plane 13. respectively then which of the following is incorrect? (A) line is perpendicular to the plane (B) line lies in the plane (C) line is parallel to the plane but does not lie in the plane (D) line cuts the plane obliguely A,C,D Key. Since $(2\hat{i}+\hat{j}+4\hat{k}).(\hat{i}+2\hat{j}-\hat{k})=0$ and, $(\hat{i}+\hat{j}).(\hat{i}+2\hat{j}-\hat{k})$ 1+2=3 \Rightarrow line lies in the plane Sol. If \overline{r} is a vector satisfying $\overline{r} \times (\hat{i} + j + 2k) = \hat{i} - j$ then $|\overline{r}|$ can be 14. D) $\frac{1}{\sqrt{5}}$ C) $\frac{1}{3}$ B) e A) π A,B Kev Solving the equation we get $\overline{r} = \hat{i} + \hat{j} + \hat{k} + \lambda \left(\hat{i} + \hat{j} + 2\hat{k} \right), \ \lambda \in \mathbb{R}$ Sol If each of a, b, c is orthogonal to the sum of the other two vectors and 15. $|\overline{a}| = 3$, $|\overline{b}| = 4$, $|\overline{c}| = 5$ then which of the following statement(s) is/are true a) if \vec{a} makes angles of equal measures with x,y,z axes, then tangent of this angle is $\pm\sqrt{2}$ b) range of $|\bar{a}-\bar{b}|$ is [1, 7] c) range of $|\bar{b}-\bar{c}|$ is [1, 9] d) $|\bar{a}+\bar{b}+\bar{c}| = 2\sqrt{5}$ Sol: ans: a a)according to the given condition

 $a_1 = \pm \frac{1}{\sqrt{3}}$ $a_1 = a_2 = a_3$ $\cos \alpha = \pm \frac{1}{\sqrt{2}} \Longrightarrow \tan \alpha = \pm \sqrt{2}$ b) $|\bar{a}-\bar{b}|^2 = 1 \text{ or } 49$ c) $|\bar{b}-\bar{c}|^2 = b^2 + c^2 - 2.\bar{b}.\bar{c} = 1 \text{ or } 81$ d) $|\bar{a}+\bar{b}+\bar{c}|^2=50+0 \implies \bar{a}+\bar{b}+\bar{c}=5\sqrt{2}$ The position vector of a point P is $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, when x, y, $z \in N$ and $\vec{a} = \hat{i} + \hat{j} + \hat{k}$. 16. If $\vec{r}.\vec{a} = 10$, the number of possible position of P is 72 (A) 36 (B) ${}^{9}C_{2}$ (C) (D) 66 A, D Key : $\vec{r} \cdot \vec{r} \cdot \vec{a} = 10$ Sol: x + y + z = 10; x > 1, y > 1, z > 1 ·. The required number of positions $=^{10-1}C_{3-1}=^{9}C_{2}=36$ Let \overline{a} and \overline{b} be two non collinear unit vectors. If $\overline{u} = \overline{a} - (\overline{a}.\overline{b})\overline{b}$ and $\overline{v} = \overline{a} \times \overline{b}$ then $\overline{|v|} = \overline{a}$ 17. d) $\overline{|u|} + \overline{u} \cdot (\overline{a} + \overline{b})$ c) $\overline{|u|} + \overline{|u.b|}$ a) $\overline{|u|}$ b) |u| + |u.a|A,C Key. Given $\overline{v} = \overline{a} \times \overline{b} \implies |\overline{v}| = |\overline{a}| |\overline{b}| \sin \theta = \sin \theta$ Sol. $\bar{u} = \bar{a} - (\bar{a}.\bar{b})\bar{b} = \bar{a} - \bar{b}\cos\theta$ $\Rightarrow \left| \overline{u} \right|^2 = \left(\overline{a} - \overline{b} \cos \theta \right)^2 = \left| \overline{a} \right|^2 + \left| \overline{b} \right|^2 \cos^2 \theta - 2\overline{a}\overline{b} \cos \theta$ $= 1 + \cos^2 \theta - 2\cos^2 \theta$ $= 1 - \cos^2 \theta$ $\Rightarrow \left| \overline{u} \right| = \left| \overline{v} \right|$ $\overline{u}.\overline{b} = \overline{a}.\overline{b} - \left(\overline{a}.\overline{b} \right) \left(\overline{b}.\overline{b} \right) = 0$ Again $\Rightarrow \left| \overline{u}.\overline{b} \right| = 0$

18. If the unit vectors \vec{a} and \vec{b} are inclined at an angle 2 θ such that $|\vec{a} - \vec{b}| < 1$ and $0 \le \theta \le \pi$, then θ lies in the interval (A) [0, $\pi/6$) (B) $(5\pi/6, \pi]$

(C) (π/6, π/2]	(D) [π/2, 5π/6)
A,B	

Key. A

Mathematics

Since, \vec{a} and \vec{b} are unit vectors, we have Sol. $\left|\vec{a} - \vec{b}\right| = \sqrt{\left(\vec{a} - \vec{b}\right)^2}$ $\therefore \sqrt{\left(\vec{a}\right)^2 + \left(\vec{b}\right)^2 - 2\vec{a}.\vec{b}} = \sqrt{1 + 1 - 2\cos 2\theta} = 2\left|\sin \theta\right|$ Therefore, $\left| \vec{a} - \vec{b} \right| < 1$ $2|\sin\theta| < 1$ \Rightarrow $|\sin\theta| < \frac{1}{2}$ $\Rightarrow \quad \theta \in \left[0, \frac{\pi}{6}\right]$ or $\left(\frac{5\pi}{6},\pi\right]$ If \vec{a} , \vec{b} , \vec{c} are non-zero, non-collinear vectors such that a vector 19. $\vec{p} = a b \cos \left(2\pi - \left(\vec{a} \wedge \vec{b}\right)\right) \vec{c}$ and a vector $\vec{q} = a c \cos \left(\pi - \left(\vec{a} \wedge \vec{c}\right)\right) \vec{b}$ then $\vec{p} + \vec{q}$ is (B) perpendicular to \vec{a} (A) parallel to \vec{a} (C) coplanar with $\vec{b} \& \vec{c}$ (D) coplanar with \vec{a} and \vec{c} B,C Key. $\vec{p} = a b \cos(2\pi - \theta) \vec{c}$ where θ is the angle between \vec{a} and \vec{b} and Sol. $\vec{q} = a \cos(\pi - \phi) \vec{b}$ where ϕ is the angle between \vec{a} and \vec{c} Now $\vec{p} + \vec{q} = (a b \cos \theta) \vec{c} - a c \cos \phi \vec{b} = (\vec{a}.\vec{b}) \vec{c} - (\vec{a}.\vec{c}) \vec{b} = \vec{a} \times (\vec{c} \times \vec{b}) \Rightarrow B and C$ Given three vectors \vec{a} , \vec{b} , \vec{c} such that they are non – zero, non – coplanar vectors, then 20. which of the following are coplanar. (A) $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ (B) $\vec{a} - \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ (C) $\vec{a} + \vec{b}$, $\vec{b} - \vec{c}$, $\vec{c} + \vec{a}$ (D) $\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} - \vec{a}$ Key. Verify $\vec{v}_1 + \vec{v}_2 = \vec{v}_3$ in order to quickly answer Sol. Let OABC be a tetrahedron whose four faces are equilateral triangles of unit side. Let 21. $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ and $\overrightarrow{OC} = \overrightarrow{c}$, then $\mathbf{V}(\mathbf{A})\,\vec{\mathbf{c}} = \frac{1}{3} \left(\vec{\mathbf{a}} + \vec{\mathbf{b}} \pm 2\sqrt{2}\,\vec{\mathbf{a}} \times \vec{\mathbf{b}} \right)$ (B) $\vec{c} = \frac{1}{2} \left(\vec{a} + \vec{b} \pm 2\sqrt{3} \, \vec{a} \times \vec{b} \right)$ (C) volume of the tetrahedron is $\frac{1}{2\sqrt{3}}$ (D) $\left[\vec{a} \ \vec{b} \ \vec{c}\right] = \frac{1}{\sqrt{2}}$ Key. A,D Let $\vec{C} = x\vec{a} + y\vec{b} + z(\vec{a}\times\vec{b})$. Taking succeeive dots with $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a}\times\vec{b}$ we get Sol. х $y = y = \frac{1}{3}$ and $z = \pm \frac{2\sqrt{2}}{3}$.

22.	If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are unit vectors such that $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 1$ and $\vec{a} \cdot \vec{c} = \frac{1}{2}$ then				
	$(A)\vec{a},\vec{b},\vec{c}$ are non coplanar	(B) \vec{b}, \vec{d} are non parallel			
	(C) $\vec{b}, \vec{c}, \vec{d}$ are coplanar	(D) \vec{a}, \vec{d} are parallel and \vec{b}, \vec{c} are parallel			
Key.	B,C				
Sol.	$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 1 \implies \sin \alpha \sin \beta ((\hat{n}_1 \cdot \hat{n}_2) = 1)$	$\Rightarrow \sin\alpha \sin\beta \cos\theta = 1$			
	\Rightarrow sin α = 1, sin β = 1 and cos θ = 1 $\Rightarrow \alpha$ =	$\beta = \pi/2, \ \theta = 0 \text{ i.e., } \hat{\mathbf{n}}_1 \ \hat{\mathbf{n}}_2$			
	So, \vec{a} , \vec{b} , \vec{c} , \vec{d} are coplanar. Again $\vec{a}.\vec{c} = \frac{1}{2}$	$\Rightarrow \cos \gamma = \frac{1}{2} \Rightarrow \gamma = \pi/3$			
	So, no two of vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are parallel				
23.	ABCDEFGH is a regular octagon. If $\overline{AB} = \overline{a}, \overline{BC} = A$) <i>m</i> , <i>p</i> are irrational B) <i>l</i> , <i>a</i> are rational	$\overline{b}, \overline{CD} = l\overline{a} + m\overline{b}$ and $\overline{DE} = p\overline{a} + q\overline{b}$, then C) $m + p = 0$ D) $l - q = 0$			
Key.	A,B,C				
Sol.	$\frac{\overline{CD}}{\overline{DE}} = -\overline{a} + \sqrt{2}\overline{b}$				
24.	$DE = -\sqrt{2a+b}$. In a triangle ABC, the point D divides BC in the r ratio 4:3.If AD and CE intersects at F, then	atio 3:4 and the point E divides BA in the			
Key.	a) AF:FD = 21 :16 b) AF:FD = 2:1 A,C	c) CF:FE= 28:9 d) CF:FE=9:28			
Sol.	Using Menelau's theorem or by vectors				
	$\frac{\text{AF}}{\text{DF}} = \frac{21}{16}, \frac{\text{CF}}{\text{FE}} = \frac{28}{9}$				
25.	If $A_1 B_1 C_1$ and $A_2 B_2 C_2$ are two coplanar triangles sides $B_2 C_2$, $C_2 A_2$, $A_2 B_2$ of the triangles $A_2 B_2 C_2$ are	such that perpendicular from A_1 , B_1 , C_1 to the concurrent, then			
	(A) $\Sigma \vec{a}_1 (\vec{c}_2 - \vec{b}_2) = 0$	(B) $\Sigma \vec{a}_1 \vec{b}_2 \vec{c}_2 = 0$			
	(C) $\Sigma \vec{a}_1 (\vec{c}_2 + \vec{b}_2) = 0$	(D) $\Sigma \vec{a}_2 (\vec{c}_1 - \vec{b}_1) = 0$			
Key. Sol.	A,D Let H be the point of concurrency				
	$A_1H \perp B_2C_2 \Rightarrow (\vec{h} - \vec{a}_1) \ (\vec{c}_2 - \vec{b}_2) = 0$				
C	$B_1H \perp C_2A_2 \Rightarrow (\vec{h} - \vec{b}_1) \ (\vec{a}_1 - \vec{c}_1) =$				
	$C_{1}H \bot A_{1}B_{1} \Rightarrow (\vec{h} - \vec{c}_{1}) (\vec{b}_{2} - \vec{a}_{2}) = 0$				
	$\Rightarrow \Sigma \vec{a}_1 (\vec{c}_2 - \vec{b}_2) = 0$				
26.	$\overline{a}, \overline{b}, \overline{c}$ are unit vectors which are linearly dependent	dent. $\overline{d}~$ is a unit vector perpendicular to the			
	plane containing $\overline{a}, \overline{b}, \overline{c}$. If $(\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d}) = \frac{1}{6}$	$(i-2j+2k)$ and the angle between $\overline{a},\overline{b}$ is			
	$rac{\pi}{6}$ then \overline{c} can be				

Mathematics

A)
$$\frac{i-2j+2k}{3}$$
 B) $\frac{2i+j-k}{3}$ C) $\frac{-2i-2j+k}{3}$ D) $\frac{-i+2j-2k}{3}$

Vectors

Key. A,D

L

- Sol. Conceptual
- 27. If $\overline{r} = x\overline{a} \times (\overline{a} \times \overline{b}) + y\overline{a} \times \overline{b}$ and \overline{r} satisfies the conditions $\overline{r}.\overline{b} = 1; [\overline{r} \ \overline{a} \ \overline{b}] = 1$ and also $\overline{a}.\overline{b} \neq 0$ then

A)
$$\overline{r}.\overline{a} = 0$$
 B) $x = \frac{-1}{(\overline{a} \times \overline{b})^2}$ C) $x = \frac{\overline{a}.\overline{b}}{(\overline{a} \times \overline{b})^2}$ D) $x + y = 0$

Key. A,B,D

- Sol. Conceptual
- 28. $\vec{u} = \hat{i} \hat{j} + \hat{k}, \vec{v} = \alpha \hat{i} + \alpha \hat{j} + (\beta + 1)\hat{k}$, $\vec{w} = \beta \hat{i} + \beta \hat{j} + (2\alpha + 1)\hat{k}$. If it is possible to construct a parallelo piped using $\vec{u}, \vec{v}, \vec{w}$ as its 3-coterminus sides for any value of α , then which of the following is/are false.

B) $\frac{-1-}{2}$

D)

A)
$$\frac{-1-\sqrt{2}}{2\sqrt{2}} < \beta < \frac{\sqrt{2}-1}{2\sqrt{2}}$$

C) $\frac{-1+\sqrt{2}}{2\sqrt{2}} < \beta < \frac{1+\sqrt{2}}{2\sqrt{2}}$

Key. C,D

Sol. $[\vec{u} \ \vec{v} \ \vec{w}] \neq 0 \Longrightarrow 2\alpha^2 + \alpha - \beta^2 - \beta \neq 0$ $\therefore D < 0$

29. Let $\vec{a} \& \vec{c}$ are unit vectors and $|\vec{b}| = 4$ with $\vec{a} \times \vec{b} = 2\vec{a} \times \vec{c}$. The angle between $\vec{a} \& \vec{c}$ is $\cos^{-1}(1/4)$. If $\vec{b} - 2\vec{c} = \lambda \vec{a}$, then λ equals

Sol.
$$\left| \vec{b} \right| = \left| 2\vec{c} + \lambda\vec{a} \right|$$

30. Unit vectors \vec{a} and \vec{b} are perpendicular and unit vector \vec{c} be inclined at an angle θ to both \vec{a} and \vec{b} . If $\vec{c} = \alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b})$ then

(A)
$$\alpha = \beta$$
 (B) $1 - 2\alpha^2 = \gamma^2$ (C) $\gamma^2 = 1 - 2\cos^2\theta$ (D) $\alpha^2 - \beta^2 = \gamma^2$
Key. A,B,C
Sol. $\vec{c} = \alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b})$
 $\vec{c} \cdot \vec{a} = \alpha \Rightarrow \cos\theta = \alpha \rightarrow (1)$
 $\vec{c} \cdot \vec{b} = \beta \Rightarrow \cos\theta = \beta \rightarrow (2)$
Also $2\cos^2\theta + \cos^2(\vec{c}, \vec{a} \times \vec{b}) = 1$
 $\Rightarrow \gamma^2 = 1 - 2\alpha^2 \rightarrow (3)$
From (1), (2) and (3) it follows

31. If ABCD be a tetrahedron with G as centroid and position vectors of A,B,C,D are $\vec{a},\vec{b},\vec{c},\vec{d}$ respectively then volume of the tetrahedron GABC =

(A)
$$\frac{1}{6} \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix}$$
 (B) $\frac{1}{6} \begin{bmatrix} \vec{b} \vec{c} \vec{d} \end{bmatrix}$ (C) $\frac{1}{3} \begin{bmatrix} \vec{b} \vec{c} \vec{d} \end{bmatrix}$ (D) $\frac{1}{3} \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix}$

Key. A.B Sol. Conceptual If \overline{a} and \overline{c} are unit vectors and $|\overline{b}| = 4$ with $\overline{a} \times \overline{b} = 2\overline{a} \times \overline{c}$. The angle between \overline{a} and \overline{c} is 32. $\cos^{-1}\left(\frac{1}{4}\right), \ \bar{b} - 2\bar{c} = \lambda \bar{a}, \text{ then } \lambda =$ (a) 3 (b) -3 (c) 4 (d) -4 A,D Key. $\left|\overline{a}\right| = \left|\overline{c}\right| = 1, \left|\overline{b}\right| = 4$ Sol. $\overline{a} \times \overline{b} = 2(\overline{a} \times \overline{c}); (\overline{a}, \overline{c}) = \cos^{-1}\left(\frac{1}{4}\right)$ Now $\overline{a.c} = \left| \overline{a} \right| \left| \overline{c} \right| \frac{1}{4} = \frac{1}{4} \Longrightarrow \overline{a.c} = \frac{1}{4} \longrightarrow$ (1)Given $\bar{b} - 2\bar{c} = \lambda \bar{a}$ $\left| \overline{b} - 2\overline{c} \right|^2 = \lambda^2 \left| \overline{a} \right|^2$ $\Rightarrow b^2 + 4c^2 - 4\bar{b}\cdot\bar{c} = \lambda^2$ $\Rightarrow 4\bar{b}\cdot\bar{c}=20-\lambda^2$ $\Rightarrow \bar{b} \cdot \bar{c} = \frac{20 - \lambda^2}{4}$ $\overline{b} \cdot \overline{c} - 2\overline{c} \cdot \overline{c} = \lambda \overline{a} \cdot \overline{c}$ $\frac{20-\lambda^2}{4}-2=\frac{\lambda}{4}$ $\Rightarrow 20 - \lambda^2 - 8 = \lambda$ $\Rightarrow \lambda^2 + \lambda - 12 = 0$ $\Rightarrow (\lambda - 3)(\lambda + 4) = 0$ $\Rightarrow \lambda = 3 \text{ or } -4$ $(x, y, z) \neq (0, 0, 0) \text{ and } (\hat{i} + j + 3\hat{k})x + (3\hat{i} - 3j + \hat{k})y + (-4\hat{i} + 5j)z = \lambda(x\hat{i} + yj + z\hat{k})$ 33. lf where i, j, kare unit vectors along the coordinate axes, then (c) $\lambda = 1$ (d) $\lambda = -1$ (a) $\lambda = 0$ (b) $\lambda = 2$ Key. A,D Here $\left(\hat{i}+\hat{j}+3\hat{k}\right)x+\left(3\hat{i}-3\hat{j}+\hat{k}\right)y+\left(-4\hat{i}+5\hat{j}\right)z=\lambda\left(x\hat{i}+y\hat{j}+z\hat{k}\right)z$ Sol. On equating we obtain $(1-\lambda)x+3y-4z=0$ $x-(3+\lambda)y+5z=0$ $3x+y-\lambda z=0$

Since the equation have non trivial solutions

Hence
$$\begin{vmatrix} 1-\lambda & 3 & -4 \\ 1 & -(3+\lambda) & 5 \\ 3 & 1 & -\lambda \end{vmatrix} = 0 \implies \lambda = 0 \text{ or } -1$$
34. If $\vec{a} = \vec{i} + \vec{j} + \vec{k}$, $\vec{b} = 4\vec{i} + 3\vec{j} + 4\vec{k}$ and $\vec{c} = \vec{i} + \alpha \vec{j} + \beta \vec{k}$ are linearly dependent vectors and $|\vec{c}| = \sqrt{3}$ then
(a) $\beta = \pm 1$ (b) $\beta = 1$ (c) $\alpha = 1$ (d) $\alpha = -1$
Key. B₂C_D
Sol. If $\vec{a}, \vec{b}, \vec{c}$ are linearly independent vectors, then \vec{c} should be a linear combination of
 \vec{a} and \vec{b}
 $\vec{c} = p\vec{a} + q\vec{b}$ for some scalars p and q
i.e., $\vec{i} + \alpha \vec{j} + \beta \vec{k} = p(\vec{i} + \vec{j} + k) + q(4\vec{i} + 3\vec{j} + 4k)$
 $\Rightarrow 1 = p + 4q \quad \alpha = p + 3q \quad \beta = p + 4q$
 $\Rightarrow \beta = 1 \quad \text{Now } |\vec{c}| = \sqrt{3} \qquad \Rightarrow 1 + \alpha^2 + \beta^2 = 3$
 $\Rightarrow 1 + \alpha^2 + 1 = 3$
 $\Rightarrow \alpha^2 = 1 \qquad \Rightarrow \alpha = \pm 1$
35. Let $\vec{a}, \vec{b}, \vec{c}$ be three non coplanar vectors such that $\vec{r}_1 = \vec{a} - \vec{b} + \vec{c}$, $\vec{r}_2 = \vec{b} + \vec{c} - \vec{a}$,
 $\vec{r}_3 = \vec{a} + \vec{b} + \vec{c}$, $\vec{r}_4 = 2\vec{a} - 3\vec{b} + 4\vec{c}$. If $\vec{r}_4 = p_1\vec{r}_1 + p_2\vec{r}_2 + p_3\vec{r}_3$ then
(a) $p_1 = 7$
(b) $p_1 + p_2 = 3$
(c) $p_1 + p_2 + p_3 = 4$
(d) $p_2 + p_3 = 0$
Key. B,C
Sol. $\vec{r}_1 = p_1\vec{r}_1 + p_2\vec{r}_2 + p_3\vec{r}_3$
 $\Rightarrow 2\vec{a} - 3\vec{b} + 4\vec{c} = (p_1 - p_2 + p_3)\vec{a} + (-p_1 + p_2 + p_3)\vec{b} + (p_1 + p_2 + p_3)\vec{c}$
Since $\vec{a}, \vec{b}, \vec{c}$ are non coplanar
 $\Rightarrow p_1 - p_2 + p_3 = 2$, $-p_1 + p_2 + p_3 = -3$, $p_1 + p_2 + p_3 = 4$
Solving $\Rightarrow p_1 = \frac{7}{2}$, $p_2 = 1$, $p_3 = -\frac{1}{2}$
36. P is the point $\vec{i} + x\vec{j} + 3\vec{k}$. The vector \overrightarrow{OP} ('O' is the origin) is rotated about the point
'O' through an angle θ .Q is the point $4\vec{i} + (4x-2)\vec{j} + 2\vec{k}$ on the new support of \overrightarrow{OP}

such that OQ = 2OP. Then x value is

a) 2 b)
$$\frac{2}{3}$$
 c) $\frac{1}{3}$ d) $\frac{-2}{3}$

Key. A,D

Sol.	$\overrightarrow{OP} = \overrightarrow{i} + x\overrightarrow{j} + 3\overrightarrow{k}$
	$\overrightarrow{OQ} = \overrightarrow{4i} + (4x-2)\overrightarrow{j} + 2\overrightarrow{k}$, $OQ = 2OP \Longrightarrow 16 + (4x-2)^2 + 4 = 4(1+x^2+9)$
	$\Rightarrow 12x^2 - 16x - 16 = 0 \Rightarrow 3x^2 - 4x - 4 = 0 \qquad \Rightarrow (3x + 2)(x - 2) = 0$
	$\Rightarrow x = 2, \frac{-2}{3}$
37.	If $\overline{a} \times \overline{b} = \overline{c}$ and $\overline{b} \times \overline{c} = \overline{a}$ then
	a) $\left \overline{a} \right = 1$ b) $\left \overline{b} \right = 1$
	c) $ \overline{a} = \overline{c} $ d) $ \overline{b} = \overline{c} $
Key.	B,C
Sol.	$\overline{a} imes \overline{b} = \overline{c} \Longrightarrow \overline{c}$ is perpendicular to \overline{a} and \overline{b} .
	$\overline{b} \times \overline{c} = \overline{a} \Longrightarrow \overline{a}$ is perpendicular to \overline{b} and \overline{c}
	$\Rightarrow \bar{a}, \bar{b}, \bar{c}$ are mutually perpendicular
	Again $\overline{a} \times \overline{b} = \overline{c} \Rightarrow \overline{a} \times \overline{b} = \overline{c} \Rightarrow \overline{a} \overline{b} = \overline{c} \rightarrow (1)$
	$\overline{b} \times \overline{c} = \overline{a} \Longrightarrow \overline{b} \times \overline{c} = \overline{a} \Longrightarrow \overline{b} \overline{c} = \overline{a} \longrightarrow (2)$
	:. from (1) & (2) $ \bar{c} = \bar{a} \& \bar{b} = 1$
38.	The lines whose vector equations are $\vec{r} = 2\hat{i} - 3j + 7k + \lambda(2\vec{i} + p\vec{j} + 5\vec{k})$ and
	$\vec{r} = \hat{i} + 2j + 3k + \mu \left(3\vec{i} - p\vec{j} + p\vec{k} \right)$ are perpendicular for all values of \Box and \Box , if
Ang	a) $p = -6$ b) $p = -1$ c) $p = 1$ d) $p = 6$
Sol.	Given lines are perpendicular if $2\vec{i} + n\vec{i} + 5\vec{k}$ and $3\vec{i} - n\vec{i} + n\vec{k}$ are perpendicular.
~	$\Rightarrow 2 \cdot 3 + p(-p) + 5p = 0 \Rightarrow p = -1, 6$
39.	The vectors \vec{a} , \vec{b} and \vec{c} are of the same length and taken pair wise they form equal angles. If
	$\vec{a} = \hat{i} + j$ and $\vec{b} = j + k$, the coordinates of \vec{c} can be
	a) (1, 0, 1) b) (-1, 1, 2) c) $\left(-\frac{1}{3}, \frac{4}{3}, -\frac{1}{3}\right)$ d) $\left(\frac{1}{3}, 0, \frac{2}{3}\right)$
Ans.	a,c
Sol.	Let $c = c_1 i + c_2 j + c_3 k$. Then $ c = \sqrt{2} = \sqrt{c_1^2 + c_2^2 + c_3^2}$ (1)
	And $= \frac{\vec{a} \cdot \vec{b}}{\left \vec{a} \right \left \vec{b}\right } = \frac{1}{2} \Longrightarrow \frac{1}{2} = \frac{\vec{a} \cdot \vec{c}}{\left \vec{a} \right \left \vec{c}\right } = \frac{c_1 + c_2}{\sqrt{2} \cdot \sqrt{2}} \Longrightarrow c_1 + c_2 = 1$
	and $\frac{1}{2} = \frac{\vec{b} \cdot \vec{c}}{ \vec{b} \vec{c} } = \frac{c_2 + c_3}{2} \Longrightarrow c_2 + c_3 = 1$
	From (1)
	$2 = (1 - c_2)^2 + c_2^2 + (1 - c_2)^2$
	$\Rightarrow 3c_2^2 - 4c_2 = 0$

$$\Rightarrow c_2 = 0 \text{ or } c_2 = \frac{4}{3}$$

Therefore, the points are (1, 0, 1) and $\left(-\frac{1}{3}, \frac{4}{3}, -\frac{1}{3}\right)$

SMARIACHIEVERSTEAMING DWI. IT

Vectors Assertion Reasoning Type

1.	Statement- 1: If $\vec{a} = 3\hat{i} - 3\hat{j} + \hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{d} = 2\hat{i} - \hat{j}$, then there exist real numbers α, β, γ such that $\vec{a} = \alpha \vec{b} + \beta \vec{c} + \gamma \vec{d}$						
	Statement 2: \vec{a} , \vec{b} , \vec{c} , \vec{d} are four vectors in a 3-dimensional space. If \vec{b} , \vec{c} , \vec{d} are non						
	contains then there exist real numbers α β γ such that $\vec{a} = \alpha \vec{b} + \beta \vec{c} + \gamma \vec{d}$						
Kev	B						
Sol.	Both the statements are ture and statement-2 is the not correct explanation of statement-1						
	Because $\vec{b}, \vec{c}, \vec{d}$ in statement - 1 are coplanar.						
2.	Statement - 1: Let \vec{a} , \vec{b} , $\vec{c} \& \vec{d}$ are position vector four points A, B, C & D and						
	$3\vec{a}-2\vec{b}+5\vec{c}-6\vec{d}=\vec{0}$, then points A, B, C and D are coplaner.						
	Statement -2: Three nonzero, linearly dependent co-initial vectors $(\overrightarrow{PQ}, \overrightarrow{PR} \& \overrightarrow{PS})$ are coplnar.						
Key.	A						
Sol.	$3\vec{a} - 2\vec{b} + 5\vec{c} - 6\vec{d} = (2\vec{a} - 2\vec{b}) + (-5\vec{a} + 5\vec{c}) + (6\vec{a} - 6\vec{d}) = -2\vec{AB} + 5\vec{AC} - 6\vec{AD} = \vec{o}$						
	\therefore $\overrightarrow{AB}, \overrightarrow{AC}$ and \overrightarrow{AD} are linearly dependent, hence by statement-2, the statement -1 is						
	true.						
	c) Statement - 1 is true, Statement - 2 is faise D) Statement - 1 is faise, Statement - 2 is true						
3.	Given 3 vectors						
	$V_1 = ai + bj + ck$, $V_2 = bi + cj + ak$, $V_3 = ci + aj + bk$						
	Where a, b, c are distirict +ve real numbers						
	Statement – 1: V_1 , V_2 and V_3 are linearly dependent vectors.						
	Statement – 2: $\left[\vec{V}_1 \ \vec{V}_2 \ \vec{V}_3\right] \neq 0$						
	Key : D						
Sol.	conceptual question						
4.	Let B ₁ , C ₁ , D ₁ are points on AB, AC, AD of the parallelogram ABCD such that $\overrightarrow{AB_1} = k_1 \overrightarrow{AB}$,						
,	$\overrightarrow{AC_1} = k_2 \overrightarrow{AC}$ and $\overrightarrow{AD_1} = k_3 \overrightarrow{AD}$ where k_1 , k_2 and k_3 are scalars						
	STATEMENT-1 : k_1 , $2k_2$ and k_3 are in harmonic progression if B_1 , C_1 and D_1 are collinear						
	STATEMENT-2: $.\frac{\overrightarrow{AB_1}}{k_1} + \frac{\overrightarrow{AD_1}}{k_3} = \frac{\overrightarrow{AC_1}}{k_2}$						
	KEY-A						
	Sol :						

Equation of line B_1D_1

$$\vec{r} = \overline{AB}_{1} + \lambda \left(B_{1}\overline{D}_{1}\right)$$

$$\Rightarrow \quad \vec{r} = \overline{AB}_{1} + \lambda \left(\overline{AD}_{1} - \overline{AB}_{1}\right)$$
If points B_{1} , C_{1} and D_{1} are collinear, then
$$\overline{AC}_{1} = \overline{AB}_{1} + \lambda \left(\overline{AD}_{1} - \overline{AB}_{1}\right)$$
Since $\frac{\overline{AB}_{1}}{k_{1}} + \frac{\overline{AD}_{1}}{k_{3}} = \frac{\overline{AC}_{1}}{k_{2}}$
($\because \overline{AB} + \overline{AD} = \overline{AC}$)
$$\Rightarrow \quad \frac{k_{2}}{k_{1}}\overline{AB_{1}} + \frac{k_{2}}{k_{3}}\overline{AD_{1}} = (1 - \lambda)\overline{AB}_{1} + \lambda\overline{AD}_{1}$$
Since, AB and AD form linearly independent system of vectors.
$$\Rightarrow \quad 1 - \lambda = \frac{k_{2}}{k_{1}} \text{ and } \lambda = \frac{k_{2}}{k_{3}}$$

$$\Rightarrow \quad 1 - \frac{k_{2}}{k_{3}} = \frac{k_{2}}{k_{1}}$$

$$\Rightarrow \quad \frac{1}{k_{2}} = \frac{1}{k_{1}} + \frac{1}{k_{3}}.$$
5. Statement - 1: If $\overline{a}/\overline{b}$ and $\overline{r} + \overline{r} \times \overline{a} = \overline{b}$ then $|\overline{r}| = \sqrt{\frac{(\overline{a}.\overline{b})^{2} + \overline{b}^{2}}{1 + \overline{a}^{2}}}.$
Statement - 2: If $\overline{a}/\overline{b}$ and $\overline{r} + \overline{r} \times \overline{a} = \overline{b}$ then $\overline{r} = \frac{(\overline{a}.\overline{b})\overline{a} + \overline{b} + \overline{a} \times \overline{b}}{1 + \overline{a}.\overline{a}}$
(given that $\overline{r}, \overline{a}, \overline{b}$ are vectors)
KEY : A
HINT Conceptual Question
6. Statement-I: If $p > q > r > 0$ then
$$\operatorname{cot}^{-1}\left(\frac{1 + pq}{q}\right) + \operatorname{cot}^{-1}\left(\frac{1 + qr}{q}\right) + \operatorname{cot}^{-1}\left(\frac{1 + rp}{q}\right) = \pi$$

Statement-II:
$$\cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \quad \forall x \in R - \{0\}$$

KE١

5.

6.

HINT:
$$\cot^{-1}(x) = \pi + \tan^{-1}\left(\frac{1}{x}\right)$$
 when x<0
= $\tan^{-1}\left(\frac{1}{x}\right)$ when x>0

Let a plane S be parallel to the line $\overline{r} = \overline{u} + t\overline{v}$, t is a variable parameter and passing 7. through the points P,Q whose position vectors are \overline{p} and \overline{q} where $\overrightarrow{PQ}, \overline{v}$ are non collinear, then

STATEMENT-1: equation of S is $\begin{bmatrix} \overline{r} & \overline{u} & \overline{v} \end{bmatrix} = \begin{bmatrix} \overline{p} & \overline{u} & \overline{v} \end{bmatrix}$

STATEMENT-2: A vector along the normal to S is $(\overline{p} - \overline{q}) \times \overline{v}$ KEY : D HINT: $(\overline{r} - \overline{p}) \cdot ((\overline{p} - \overline{q}) \times \overline{v}) = 0$ STATEMENT-1: Unit vector coplanar with i+2j-k and 2i-j+k and orthogonal to vector 8. i+3j+5k is $\frac{10j-6k}{2\sqrt{34}}$. STATEMENT-2: $\overline{a} \times (\overline{b} \times \overline{c})$ is a vector perpendicular to \overline{a} and coplanar with $\overline{b}, \overline{c}$ KEY: A $\mathsf{HINT}: \, \overline{a} \times (\overline{b} \times \overline{c}) . \overline{a} = \left\lceil \overline{a} \ \overline{b} \times \overline{c} \ \overline{a} \right\rceil = 0$ & $\overline{a} \times (\overline{b} \times \overline{c})$ is a vector coplanar with \overline{b} , \overline{c} and perpendicular to \overline{a} 9. STATEMENT -1: If $\vec{u} \And \vec{v}$ are unit vectors inclined at an angle α and \vec{x} is a unit vector bisecting the angle between them, then $\vec{x} = \frac{\vec{u} + \vec{v}}{\vec{v}}$ $2\cos\frac{\alpha}{2}$ because STATEMENT-2: If \triangle ABC is an isosceles triangle with AB = AC = 1, then vector representing bisector of angle A is given by $\overrightarrow{AD} = \frac{\overrightarrow{AB} + \overrightarrow{AC}}{2}$ KEY : A or B Option (A) is correct HINT : In an isosceles triangle ABC is which AB = AC, the median and bisector from A must be same line \Rightarrow statement 2 is true. Now $\overrightarrow{AD} = \frac{\overrightarrow{u} + \overrightarrow{v}}{2}$ & $|\overrightarrow{AD}|^2 = \frac{1}{2} \cos^2 \frac{\alpha}{2}$, So $|\overrightarrow{AD}| = \cos \frac{\alpha}{2}$ \Rightarrow unit vector along AD i.e. x is given by $\vec{x} = \frac{\vec{AD}}{|\vec{AD}|} = \frac{\vec{u} + \vec{v}}{2\cos\frac{\pi}{2}}$ STATEMENT -1: The value of expression $\hat{i}(\hat{j}\times\hat{k})+\hat{j}(\hat{k}\times\hat{i})+\hat{k}(\hat{i}\times\hat{j})=3$ 10. because STATEMENT-2: $\hat{i}(\hat{j} \times \hat{k}) = [\hat{i}, \hat{j}, \hat{k}] = 1$ KEY : A HINT: $\hat{i}(\hat{j}\times\hat{k})+\hat{j}(\hat{k}\times\hat{i})+\hat{k}(\hat{i}\times\hat{j})$ $=\hat{i}.\hat{i}+\hat{j}.\hat{j}+\hat{k}.\hat{k} = 1+1+1=3.$ STATEMENT 1: $\vec{a} = 2\vec{i} + \vec{j} - \vec{k}$ and $\vec{b} = \vec{i} + 3\vec{k}$ If \vec{c} is a unit vector, then the 11. maximum value of the scalar triple product $[\vec{a} \ \vec{b} \ \vec{c}]$ is $\sqrt{63}$

D

STATEMENT 2: If \vec{u} and \vec{v} and two vectors then the scalar product $\vec{u}.\vec{v} \le |\vec{u}||\vec{v}|$

Key:

Hint $\begin{bmatrix} \bar{a} & \bar{b} & \bar{c} \end{bmatrix} = (\vec{a} \times \vec{b}) \cdot \vec{c} \le |\vec{a} \times \vec{b}| |\vec{c}|$

12. Statement - 1: If \overline{u} and \overline{v} are unit vectors inclined at angle ' α ' and ' \overline{x} ' is a unit vector bisecting the angle between them, then $\overline{x} = \frac{\overline{u} + \overline{v}}{2\sin \alpha/2}$

Statement - 2: If ABC is an isosceles triangle with AB = AC = 1, then the vector representing

bisector of angle 'A' is given by
$$\overline{AD} = \frac{\overline{AB} + \overline{AC}}{2}$$

Key. D

Sol. In an isosceles triangle ABC in which AB=AC, the median and bisector from 'A' must be same line

$$\Rightarrow \text{ Reason 'R' is true}$$
Now $\overline{AD} = \frac{\overline{u} + \overline{v}}{2}$ and $|\overline{AD}|^2 = \frac{1}{4} (|\overline{u}|^2 + |\overline{v}|^2 + 2|\overline{u}||\overline{v}|\cos\alpha)$

$$= \frac{1}{4} (1 + 1 + 2\cos\alpha)$$

$$\Rightarrow |\overline{AD}| = \cos\alpha/2$$

$$\Rightarrow \text{Unit vector along AD is} \quad \overline{x} = \frac{\overline{u} + \overline{v}}{2\cos\alpha/2}$$

13. Assertion (A): Two straightlines in space which are neither parallel nor intersecting are called as skew lines.

Reason (R): If
$$\theta$$
 is angle between $\overline{r} = \overline{a} + \lambda \overline{b}$ and $\overline{r} \cdot \overline{n} = d$ then $\cos \theta = \frac{b \cdot n}{|\overline{b}||\overline{n}|}$

Key. C

- Sol. Conceptual
- 14. Statement-1 : If \vec{u} and \vec{v} are unit vectors inclined at an angle α and \vec{x} is a unit vector bisecting the angle between them then $\vec{x} = \frac{\vec{u} + \vec{v}}{2\cos\frac{\alpha}{2}}$.

Statement-2 : If ABC be an isosceles triangle with AB = AC = 1 then vector representing bisector of angle A is given by $\overrightarrow{AD} = \frac{\overrightarrow{AB} + \overrightarrow{AC}}{2}$.

Key. Sol.	A In an isosceles triangle ABC in which $AB = AC$, the median and bisector from A must be same line.					
	Now $\overrightarrow{AD} = \frac{\overrightarrow{u} + \overrightarrow{v}}{2}$	and				
	$ \overrightarrow{AD} ^2 = \frac{1}{4} \left(\vec{u} ^2 + \vec{v} \right)$	$^{2} + 2\vec{u} \cdot \vec{v} = \frac{1}{4} [1 + 1 + 2\cos\alpha] = \frac{1}{2} \cdot 2\cos^{2}\frac{\alpha}{2} = \cos\frac{\alpha}{2}$				
	\Rightarrow Unit vector along	AD i.e. x is given by $\vec{x} = \frac{\overrightarrow{AD}}{ \overrightarrow{AD} } = \frac{\vec{u} + \vec{v}}{2\cos\frac{\alpha}{2}}$.				
15.	STATEMENT–1 For the real numbers because STATEMENT–2	$\alpha, \beta, \gamma; (\cos \alpha + \cos \beta + \cos \gamma)^2 \le 3(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma)$				
	For two non–zero ve	ctors $\vec{\mathbf{A}}$ and $\vec{\mathbf{B}}$, $\left(\vec{\mathbf{A}}.\vec{\mathbf{B}}\right)^2 \leq \vec{\mathbf{A}} ^2 \vec{\mathbf{B}} ^2$				
Key. Sol	A Consider $\vec{A} = \hat{i} + \hat{i} + \hat{i}$					
501.	$\vec{B} = \cos \alpha \hat{i} + \cos \beta \hat{i}$	$+\cos 2\hat{k}$				
	$(\vec{\mathbf{A}}.\vec{\mathbf{B}})^2 \leq \vec{\mathbf{A}} ^2 \vec{\mathbf{B}} ^2$					
	$\Rightarrow (\cos\alpha + \cos\beta + \cos\beta)$	$(\cos^2\alpha + \cos^2\beta + \cos^2\gamma)$ (3).				
16.	Let $\overline{a}, \overline{b}, \overline{c}$ be non cop	lanar vectors and $\mathbf{r} = (\mathbf{a} \times \mathbf{b}) \times (\mathbf{a} \times \mathbf{c})$				
	Statement - 1:	$\dot{\mathbf{r}}$ and $\dot{\mathbf{a}}$ are linearly dependent				
	Statement - 2:	\bar{r} is perpendicular to each of the three vectors $\bar{a}, \bar{b}, \bar{c}$				
Key.	C					
Sol.	$\bar{\mathbf{r}} = (\bar{\mathbf{a}} \times \bar{\mathbf{b}}) \times (\bar{\mathbf{a}} \times \bar{\mathbf{c}})$	$=$ $abc a \Rightarrow r and a$ are collinear				
17.	Statement - 1:	If $A(\vec{a}), B(\vec{b}), C(\vec{c})$ are the vertices of a triangle with circum centre				
		at the origin, then centre of its nine point circle will be $rac{ec{a}+ec{b}+ec{c}}{2}$.				
	Statement - 2:	If $A(\vec{a}), B(\vec{b}), C(\vec{c})$ are the vertices of a triangle with circum centre				
	1An	at the origin, then centroid of $\triangle ABC$ is $\frac{\vec{a}+\vec{b}+\vec{c}}{3}$.				
Key. Sol.	A Conceptual					
18.	Statement - 1:	$ec{b}\&ec{c}$ are two non-collinear vectors, such that $ec{a}.(ec{b}+ec{c})\!=\!4$ and				
		$\vec{a} \times (\vec{b} \times \vec{c}) = (x^2 - 2x + 6)\vec{b} + (\sin y)\vec{c}$, where $x, y \in R$. The point (x, y) lies on $x = 1$.				
Key.	Statement - 2: C	The vector \vec{a} lies in the plane of $\vec{b} imes \vec{c}$.				

Sol. Conceptual

19.	19. Statement - 1: Let $\vec{a} \& \vec{b}$ are two perpendicular unit vectors. If \vec{c} is another v				
		equally inclined at angle $ heta$ to the vectors $ec{a}\&ec{b}$, then set of			
		exhaustive value of θ in $[0, 2\pi]$ is $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$.			
	Statement - 2:	$\cos 2\theta \le 0.$			
Key.	A				
501.	Conceptual	$\vec{\tau}$ $(\vec{\tau} \vec{\tau} \vec{\tau})$ $\vec{\tau}$ $(\vec{\tau} \vec{\tau} \vec{\tau})$			
20. A	Assertion (A) : The line o	f intersection of planes $r.(i+2j+3k)=0$ and $r.(3i+2j+k)=0$ is			
e R Key.	qually inclined to \vec{i} and eason (R) : The angle be B	\vec{k} tween two planes is angle between their normals			
Sol.	Conceptual				
21. A	Assertion (A) : If \vec{u} and	\vec{y} are unit vectors inclined at an angle α and \vec{x} is a unit vector			
b	isecting the angle betwee	en them then $\vec{x} = \frac{\vec{u} + \vec{v}}{2\cos\frac{\alpha}{2}}$			
R	eason (R) : If triangle AB	C is an isosceles triangle with $AB = AC = 1$ then vector representing			
b	isector of angle A is give	n by $\frac{\overrightarrow{AB} + \overrightarrow{AC}}{2}$			
Key.	А				
Sol.	$\left \vec{u}+\vec{v}\right = 2\cos\frac{\alpha}{2}$,05 ···			
22.	Statement-I: The positio	n vector of the foot of the perpendicular from the point $(4,6,2)$ on			
	the line $\overline{r} = (2\overline{i} + 2\overline{j} + 2\overline{j})$	$(\bar{k}) + t(\bar{3i} + 2\bar{j} + \bar{k})$ is (5,4,3)			
	Statement-II: Position ve	ector of the foot of the perpendicular from the point $\stackrel{-}{c}$ on the line			
	$\bar{r} = \bar{a} + t\bar{b}$ is $\bar{a} - \frac{(\bar{c} - \bar{a})}{ \bar{b} ^2}$	$b \cdot \overline{b} \overline{b}$			
Key.	с				
Sol.	$\overline{a} = 2\overline{i} + 2\overline{j} + 2\overline{k}$				
ć	$\bar{c} - \bar{a} = 2\bar{i} + 4\bar{j}$ $\bar{b} = 3\bar{i} + 2\bar{j} + \bar{k}$				
	Foot of the \perp^{er} from	\bar{c} on $\bar{r} = \bar{a} + t\bar{b}$ is $\bar{a} + \frac{(\bar{c} - \bar{a}) \cdot \bar{b}}{ \bar{b} ^2} \bar{b}$			
	$(2i+2j+2k) + \frac{(2\bar{i}-1)}{2\bar{i}-1}$	$\frac{(+4\overline{j})\cdot(3\overline{i}+2\overline{j}+\overline{k})}{ 3\overline{i}+2\overline{j}+\overline{k} ^2}(3\overline{i}+2\overline{j}+\overline{k})$			

$$\begin{vmatrix} 3i+2j+k \\ = (2i+2j+2\overline{k}) + (3i+2j+k) \\ = 5\overline{i} + 4\overline{j} + 3\overline{k} \end{vmatrix}$$

23. Statement-I: $\overline{a} \times (\overline{b} \times \overline{c})$, $\overline{b} \times (\overline{c} \times \overline{a})$, $\overline{c} \times (\overline{a} \times \overline{b})$ are non coplanar

D

Statement-II: If $\overline{a}, \overline{b}, \overline{c}$ are non coplanar then $\overline{a} \times \overline{b}, \overline{b} \times \overline{c}, \overline{c} \times \overline{a}$ are also non coplanar

- Key.
- Sol. $\overline{a} \times (\overline{b} \times \overline{c}) + \overline{b} \times (\overline{c} \times \overline{a}) + \overline{c} \times (\overline{a} \times \overline{b}) = \overline{O}$ Hence $\overline{a} \times (\overline{b} \times \overline{c}), \overline{b}(\overline{c} \times \overline{a}), \overline{c} \times (\overline{a} \times \overline{b})$ are coplanar.
- 24. Statement 1: The position vectors of A and B are \overline{a} and \overline{b} respectively and the position vector

of C is
$$\frac{3\overline{a}}{4} + \frac{\overline{b}}{2}$$
 then 'C' is inside $\triangle OAB$.

Statement – 2: The position vector of a point which divides $\overline{a}, \overline{b}$ in the ratio m : n internally is

$$\frac{m\overline{b} + n\overline{a}}{m+n}$$

Key. D

Sol.

 $\overline{OC} = \frac{3\overline{a}}{4} + \frac{\overline{b}}{2} = \frac{3\overline{a} + 2\overline{b}}{4} = \frac{5}{4} \left(\frac{3\overline{a} + 2\overline{b}}{5} \right) > \frac{3\overline{a} + 2\overline{b}}{5} = \overline{OP} \text{ so}$ $\therefore \text{ C lies on the extended line OP}$

Where 'P' is a point which divides AB in the ratio 2 : 3

25. Statement – 1: The points $2\overline{a} + \overline{b} - \overline{c}$, $5\overline{a} - \overline{b} + 2\overline{c}$ and $8\overline{a} - 3\overline{b} + 5\overline{c}$ are collinear. Statement – 2: If the points whose position vectors are $\overline{a}, \overline{b}, \overline{c}$ collinear iff \exists scalars $x, y, z \ni x\overline{a} + y\overline{b} + z\overline{c} = \overline{0}$ where x + y + z = 0

Sol. Conceptual

26. Statement – 1: If $A(\bar{a}), B(\bar{b}), C(\bar{c}), D(\bar{d})$ are the vertices of a parallelogram ABCD then $\bar{a} + \bar{c} = \bar{b} + \bar{d}$

Statement – 2: If the vectors $\overline{a}, \overline{b}, \overline{c}, \overline{d}$ be the sides of a parallelogram then $\overline{a} + \overline{c} = \overline{b} + \overline{d} = \overline{0}$

Key. B or C

Sol. Conceptual

27. Statement – 1: Let \bar{a}, \bar{b} are position vectors of two points A and B respectively with respect

to origin 'O'. If the point 'C' is on OA is such that
$$2\overline{AC} = \overline{CO}$$
, \overline{CD} is parallel
to
 \overline{OB} and $|\overline{CD}| = 3|\overline{OB}|$ then $\overline{AD} = 3\overline{b} - \frac{\overline{a}}{3}$
Statement - 2: If $\overline{a}, \overline{b}$ are the position vectors of A and B then $\frac{m\overline{b} + n\overline{a}}{m+n}$ lies on \overline{AB}
Key. B or D
Sol. $\overline{OA} = \overline{a}, \overline{OB} = \overline{b}$
 $2\overline{AC} = \overline{CO} \Rightarrow 2(\overline{CC} - \overline{OA}) = -\overline{OC} \Rightarrow 3\overline{OC} = 2\overline{OA}$ (1)
 $\overline{CD} = 3\overline{OB} \Rightarrow \overline{OD} - \overline{OC} = 3\overline{OB}$ (2)
 $\overline{AD} = \overline{OD} - \overline{OA} = 3\overline{OB} + \overline{OC} - \overline{OA}$
 $= 3\overline{b} - \frac{1}{3}\overline{a}$
Statement - 2 clearly $\frac{m\overline{b} + n\overline{a}}{m+n}$ divides A(a), B(b) in the ratio m : n internally.
28. STATEMENT-1 : Let the vector $\vec{a} = \vec{i} + \vec{j} + \vec{k}$ be vertical. The line of greatest
slope on a plane with normal $\vec{b} = 2\vec{L} - \vec{j} + \vec{k}$ is along the vector $\vec{i} - 4\vec{j} + 2\vec{k}$.
STATEMENT-2 : If \vec{a} is vertical, then the line of greatest slope on a plane with normal \vec{b} is
along the vector $(\vec{a} \times \vec{b}) \times \vec{b}$
Key. D
Sol. $\vec{a} \times \vec{b} = 2\vec{i} + \vec{j} - 3\vec{k}, (\vec{a} \times \vec{b}) \times \vec{b} = -2\vec{i} - 8\vec{j} - 4\vec{k}$
Which is along $\vec{i} + 4\vec{j} + 2\vec{k}$... As is false and R is true
29. STATEMENT-2: The volume of the parallelepiped formed by the vectors $\hat{i} + a\hat{j}; \ a\hat{i} + \hat{j} + k$
and $\hat{j} + ak$ is maximum when $a = -\frac{1}{\sqrt{3}}$
STATEMENT-2. The volume of the parallelepiped having three coterminous edges
 \hat{a}, \hat{b} and $\vec{c} = \begin{bmatrix} \overline{a} \ b \ c \end{bmatrix}$
Key. D
Sol. $V = \begin{bmatrix} 1 & a & 0 \\ a & 1 & 1 \\ 0 & 1 & a \end{bmatrix} = a - 1 - a^3 \qquad \therefore \frac{dV}{da} = 1 - 3a^2 = 0 \qquad \therefore a = \pm \frac{1}{\sqrt{3}}$
 $\Rightarrow \frac{d^2V}{da^2} = -6a, \qquad \left(\frac{d^2V}{da^2}\right)_{a - \frac{1}{\sqrt{3}}} = -\frac{1}{\sqrt{3}} \therefore V$ is maximum at $a = \frac{1}{\sqrt{3}}$
30. Statement - 1: Let $A(\overline{a}), B(\overline{b}) and C(\overline{c})$ be three points such that \vec{a}, \vec{b} and \vec{c} are non-coplanar, then OABC is tetrahedron, Mat $\vec{c} = i + 7j - 5k$ then OABC is a tetrahedron.

a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for statement-1

b) Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for statement-1

c) Statement-1 is true, Statement-2 is false d) Statement-1 is false, Statement-2 is true Ans. d

Sol. Since $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$ \therefore a, b, c are coplanar.

ALACHERRY

Vectors Comprehension Type

Paragraph - 1

Consider the equations of planes $P_1 \equiv \overline{r} \cdot (\overline{i} + 2\overline{j} + \overline{k}) - 3 = 0$ $P_2 \equiv \overline{r} \cdot (2\overline{i} - \overline{j} + \overline{k}) - 5 = 0$ The equation of plane passing through the intersection of $P_1 = 0$, $P_2 = 0$ and through the point 1. A(1,1,1) is a) $\overline{r} \cdot \left(5\overline{i} - 4\overline{j} + 5\overline{k}\right) = 6$ b) $\overline{r}.(5\overline{i}+5\overline{j}-4\overline{k})=6$ c) $\overline{r}.(5\overline{i}+5\overline{j}+4\overline{k})=14$ d) None of these Key. C The line of intersection of planes $P_1 = 0$, $P_2 = 0$ is parallel to a) $3\overline{i} - 5\overline{j} - \overline{k}$ b) $3\overline{i} + \overline{j} - 5\overline{k}$ c) $2\overline{i} - \overline{j} - \overline{k}$ 2. d) None of these Key. B 61. The required plane is x+2y+z-3+k(2x-y+z-5)=0 for some k. since it passes A, k=1/3 Sol. : The equation of plane is 5x+5y+4z-14=0, i.e. $\bar{r}(5\bar{i}+5\bar{j}+4\bar{k})=14$ 62. The line of intersection of planes $\overline{r.n_1} = d_1$ and $\overline{r.n_1} = d_2$ is parallel to $\overline{n_1} \times \overline{n_2}$ Paragraph - 2 Let $\vec{a} = 2\hat{i} + 3\hat{j} - 6\hat{k}$, $\vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$ and $\vec{c} = -2\hat{i} + 3\hat{j} + 6\hat{k}$. let \vec{a}_1 be projection of \vec{a} on \vec{b} and \vec{a}_2 be the projection of \vec{a}_1 on \vec{c} . Then $\vec{a}_2 =$ 3. (A) $\frac{943}{49}(2\hat{i}-3\hat{j}-6\hat{k})$ (B) $\frac{943}{49^2}(2\hat{i}-3\hat{j}-6\hat{k})$ (D) $\frac{943}{49^2}(-2\hat{i}+3\hat{j}+6\hat{k})$ (C) $\frac{943}{49}(-2\hat{i}+3\hat{j}+6\hat{k})$ Key. Sol. $\vec{a}_1 = \left[(2\hat{i} + 3\hat{j} - 6\hat{k}) \cdot \frac{(2\hat{i} - 3\hat{j} + 6\hat{k})}{7} \right] \frac{2\hat{i} - 3\hat{j} + 6\hat{k}}{7} = \frac{-41}{49} (2\hat{i} - 3\hat{j} + 6\hat{k})$ $\vec{a}_2 = \frac{-41}{49} \left((2\hat{i} + 3\hat{j} - 6\hat{k}) \cdot \frac{(2\hat{i} - 3\hat{j} + 6\hat{k})}{7} \right) \frac{(-2\hat{i} + 3\hat{j} + 6\hat{k})}{7}$ $\frac{-41}{(49)^2}(-4-9+36)(-2\hat{i}+3\hat{j}+6\hat{k}) = \frac{943}{49^2}(2\hat{i}-3\hat{j}-6\hat{k})$

4. $\vec{a}_1 \cdot \vec{b}$

(Λ) 11	(P) 41
(A) - 41	(B) $-\frac{1}{7}$

(D) 287 (C) 41

Key. А

Sol.
$$\vec{a}_1 \cdot \vec{b} = \frac{-41}{49} (2\hat{i} - 3\hat{j} + 6\hat{k}) \cdot (2\hat{i} - 3\hat{j} + 6\hat{k}) = -41$$

5. Which of the following is true

(A) \vec{a} and \vec{a}_2	are collinear	(B) a ₁	and \vec{c}	are collinear
		· · ·		

(C) $\vec{a}, \vec{a}, \vec{b}$ are coplanar (D) $\vec{a}, \vec{a}_1, \vec{a}_2$ are coplanar

Key.

 $\vec{a}, \vec{a}_1, \vec{b}$ are coplanar, because \vec{a}_1, \vec{b} are collinear. Sol.

Paragraph – 3

С

Three vector $\hat{\vec{a}}, \hat{\vec{b}}$ and $\hat{\vec{c}}$ are forming a right handed system, if $\vec{a} \times \vec{b} = \vec{c}, \vec{b} \times \vec{c} = \vec{a}$, $\vec{c} \times \vec{a} = \vec{b}$. If vectors \vec{a}, \vec{b} and \vec{c} are forming a right handed system, then answer the following question.

6

If
$$\vec{x} = \hat{\vec{a}} + \vec{b} - \hat{\vec{c}}$$
, $\vec{y} = -\hat{\vec{a}} + \vec{b} - 2\hat{\vec{c}}$, $\vec{z} = -\hat{\vec{a}} + 2\hat{\vec{b}} - \hat{\vec{c}}$, then a unit vector normal to the vector $\vec{x} + \vec{y}$ and $\vec{y} + \vec{z}$ is

(A)
$$\vec{a}$$
 (B) \vec{b}

Key.

(C) **c**

D

Sol.
$$\vec{x} + \vec{y} = 2\vec{b} - \vec{c}$$
 and $\vec{y} + \vec{z} = -2\vec{a} + 3\vec{b} - 3\vec{c}$
 $\therefore \quad (\vec{x} + \vec{y}) \times (\vec{y} + \vec{z}) = \begin{vmatrix} \vec{a} & \vec{b} & \vec{c} \\ 0 & 2 & -3 \\ -2 & 3 & -3 \end{vmatrix} = 3\vec{a} + 6\vec{b} + 4\vec{c}$

required unit vector =
$$\frac{3\vec{a} + 6\vec{b} + 4\vec{c}}{\sqrt{61}}$$

Vector $2\hat{\vec{a}} - 3\hat{\vec{b}} + 4\hat{\vec{c}}$, $\hat{\vec{a}} + 2\hat{\vec{b}} - \hat{\vec{c}}$ and $x\hat{\vec{a}} - \hat{\vec{b}} + 2\hat{\vec{c}}$ are coplanar, then x = 7. (A) (B) (C) 0(D) None of these

Key. А

. .

Sol.
$$\begin{vmatrix} 2 & -3 & 4 \\ 1 & 2 & -1 \\ x & -1 & 2 \end{vmatrix} = 0 \qquad \Rightarrow 2(4-1) + 3(2+x) + 4(-1-2x) = 0 \Rightarrow x = \frac{8}{5}$$

Let $\overline{\mathbf{x}} = \hat{\vec{a}} + \hat{\vec{b}}$, $\overline{\mathbf{y}} = 2\hat{\vec{a}} - \hat{\vec{b}}$, then the point of intersection of straight lines 8. $\vec{r} \times \vec{x} = \vec{y} \times \vec{x}, \vec{r} \times \vec{y} = \vec{x} \times \vec{y}$ is

(A)
$$\frac{8}{5}$$
 (B) $\frac{5}{8}$
(C) $3\vec{a}$ (D) None of these
Key. C
Sol. $\vec{r} \times \vec{x} = \vec{y} \times \vec{x} \implies (\vec{r} - \vec{y}) \times \vec{x} = 0 \implies \vec{r} = \vec{y} + \lambda \vec{x}$
 $\vec{r} \times \vec{y} = \vec{x} \times \vec{y} \implies (\vec{r} - \vec{x}) \times \vec{y} = 0 \implies \vec{r} = \vec{x} + \mu \vec{y}$
 $\vec{y} + \lambda \vec{x} = \vec{x} + \mu \vec{y}$
 $(2\hat{a} - \hat{b}) + +\lambda(\hat{a} + \hat{b}) = (\hat{a} + \hat{b}) + \mu(2\hat{a} - \hat{b})$
 $\implies 2 + \lambda = 1 + 2\mu, -1 + \lambda = 1 - \mu \implies \mu = 1, \lambda = 1$
The point of intersection is $3\vec{a}$.
9. $\hat{a}.(\hat{b} \times \hat{c}) + \hat{b}.(\hat{c} \times \hat{a}) + \hat{c}.(\hat{a} \times \hat{b})$ is equal to
(A) 1 (B) 3
(C) 0 (D) None of these
Key. B
Sol. Sol. $\hat{a} \times \hat{b} = \hat{c} \implies \hat{c}.\hat{a} \times \hat{b} = \hat{c}.\hat{c} = 1 \implies [\hat{a}.\hat{b}.\hat{c}] = 1$
 $\hat{a}.(\hat{b} \times \hat{c}) + \hat{b}.(\hat{c} \times \hat{a}) + \hat{c}.(\hat{a} \times \hat{b}) = 3$

The vertices of a triangle ABC are A =(2, 0, 2), B = (-1,1,1) and C = (1, -2, 4). the points D and E divide the side AB and CA in the ratio 1: 2 respectively. Another point F is taken in space such that perpendicular drawn from F on $\triangle ABC$, meets the triangle at the point of intersection of the line segment CD and BE, say P. if the distance of F from the plane of the

 \triangle ABC is units $\sqrt{2}$, then

10.

The position vector of P, is (B) $\hat{i} - \hat{j} + 3 \hat{k}$ (C) $2\hat{i} - \hat{j} - 3\hat{k}$ (D) none (A) $\hat{i} + \hat{j} 3\hat{k}$ В

Key.

11. The vector, is:
(A)
$$7\hat{j} + 7\hat{k}$$
 (B) $\frac{7}{\sqrt{2}}(\hat{j} + \hat{k})$ (C) $(\hat{j} + \hat{k})$ (D) none
Key. C

12.	The volume of the tetrahedron ABCF, is :						
	(A) 7 cubic units	(B) 3/5 cubic units	(C) 7/3 cubic units	(D) none			
Key.	С						

13. The equation of the line AF, is :

Vectors

(A)
$$\vec{r} = (2\hat{i} + 2k) + \lambda(\hat{i} + 2k)$$

(B) $\vec{r} = (2\hat{i} + 2k) + \lambda(\hat{i} - 2k)$
(C) $\vec{r} = (\hat{i} + k) + \lambda(\hat{i} + 2k)$
(D) $\vec{r} = (2\hat{i} + 2k) + \lambda(-\hat{i} + 2k)$

Key.

Sol. 10 to 13

D

The position vectors of D and E are marked in figure. The vector equation of CD and BE are

$$\vec{r} = (\hat{i} - 2j + 4k) + \frac{\lambda}{3} (7j - k) \qquad \dots (i)$$

and $\vec{r} = (-\hat{i} + j + k) + \frac{\mu}{3} (7\hat{i} - 7j + 7k) \qquad \dots (ii)$

respectively.

CD and BE intersect at point P. At their point of intersection, we must have

$$(\hat{i}-2j+4k) + \frac{\lambda}{3} (7j-7k) = (-\hat{i}+j+k) + \frac{\mu}{3} (7i-7j+7k)$$

$$\Rightarrow 1 = -1 + \frac{7\mu}{3}, -2 + \frac{7\lambda}{3} = 1 - \frac{7\mu}{3}$$
and $4 - \frac{7\lambda}{3} = 1 + 7\frac{\mu}{3}$

$$\Rightarrow \mu = 6/7 \text{ and } \lambda = 3/7$$

Substituting the value of λ in (i) or that of μ in (ii), we obtain the position vector $\vec{r_1}$ of point P as, $\vec{r_1} = \hat{i} - j + 3k$

Now,
$$\Delta = \text{area of } \Delta ABC = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right|$$

$$=\frac{1}{2}\left|\left(-3\hat{i}+j-k\right)\times-\hat{i}-2j+2k\right| \qquad \qquad =\frac{7\sqrt{2}}{2} \text{ sq unit.}$$

... Volume of the tetrahedron ABCF

.

$$= \frac{1}{3} \text{ (area of the base) height}$$
$$= \frac{1}{3} \cdot \frac{7\sqrt{2}}{2} \cdot \sqrt{2} = \frac{7}{3} \text{ cubic units}$$
$$= \frac{1}{3} \cdot \frac{7\sqrt{2}}{2} \cdot \sqrt{2} = \frac{7}{3} \text{ cubic units}$$

We have, $\overrightarrow{AB} \times \overrightarrow{AC} = 7j + 7k$ Since, \overrightarrow{PF} is parallel to $\overrightarrow{AB} \times \overrightarrow{AC}$ and $PF = \sqrt{2}$ units.

$$\therefore \overrightarrow{PF} = \sqrt{2} \frac{\left(7 j + 7k\right)}{\sqrt{49 + 49}} = j + k$$

$$\Rightarrow P.V \text{ of } \overrightarrow{F} = j + k$$

$$\Rightarrow P.V \text{ of } \overrightarrow{F} = \left(j + k\right) + \left(\hat{i} - j + 3k\right) = \hat{i} + 4k$$

$$\therefore \text{ Vector equation of AF is,}$$

$$\overrightarrow{r} = \left(2\hat{i} = 2k\right) + \lambda\left(\hat{i} + 4k - 2\hat{i} - 2k\right)$$

$$\vec{r} = \left(2\hat{i} + 2k\right) + \lambda\left(-\hat{i} + 2k\right).$$

Let \vec{r} be the variable point satisfying $\vec{r} - \vec{n}_2 = d_1$, $\vec{r} - \vec{n}_2 = d_2$, $\vec{r} - \vec{n}_2$, = d_3 , where \vec{n}_1, \vec{n}_2 and \vec{n}_3 are non-coplanar vectors. Then

14. The position vector of the point of intersection of three planes, is :

(A)
$$\frac{1}{\left[\vec{n}_{1}\vec{n}_{2}\vec{n}_{3}\right]}\left[d_{3}\left(\vec{n}_{1}\times\vec{n}_{2}\right)+d_{1}\left(\vec{n}_{2}\times\vec{n}_{3}\right)+d_{2}\left(\vec{n}_{1}\times\vec{n}_{3}\right)\right]$$

(B)
$$\frac{4}{\left[\vec{n}_{1}\vec{n}_{2}\vec{n}_{3}\right]}\left[d_{3}\left(\vec{n}_{1}\times\vec{n}_{2}\right)+d_{1}\left(\vec{n}_{2}\times\vec{n}_{3}\right)+d_{2}\left(\vec{n}_{1}\times\vec{n}_{3}\right)\right]$$

(C)
$$\frac{-4}{\left[\vec{n}_{1}\vec{n}_{2}\vec{n}_{3}\right]}\left[d_{3}\left(\vec{n}_{1}\times\vec{n}_{2}\right)+d_{1}\left(\vec{n}_{2}\times\vec{n}_{3}\right)+d_{2}\left(\vec{n}_{1}\times\vec{n}_{3}\right)\right]$$

(D) none of these

Key.

А

15. If the planes
$$\vec{r}.\vec{n}.=d_1$$
, $\vec{r}.\vec{n}_2=d_2$ and $\vec{r}.\vec{n}_3$, d_3 , have a common lien of intersection, then
is $d_1(\vec{n}_2 \times \vec{n}_3) + d_2(\vec{n}_3 \times \vec{n}_1) + d_3(\vec{n}_1 \times \vec{n}_2)$
(A) $\begin{bmatrix} \vec{n}_1 \vec{n}_2 \vec{n}_3 \end{bmatrix}$ (B) $4 \begin{bmatrix} \vec{n}_1 \vec{n}_2 \vec{n}_3 \end{bmatrix}$ (C) $2 \begin{bmatrix} \vec{n}_1 \vec{n}_2 \vec{n}_3 \end{bmatrix}$ (D) none
Key. D

Key.

Sol. 14 and 15

> $\vec{n}_1, \vec{n}_2, \vec{n}_3$ are non-coplaner vectors. Therefore vectors $\vec{n}_2 \times \vec{n}_2, \vec{n}_2 \times \vec{n}_3$ and $\vec{n}_3 \times \vec{n}_1$ are also non-coplaner

Let $\vec{\alpha}$ be the position vector of the mid point of intersection of the given planes. Then,

 $\vec{\alpha}\cdot\vec{n}_1=d_1, \vec{\alpha}\cdot\vec{n}_2=d_2$ and $\vec{\alpha}\cdot\vec{n}_3=d_3$

We know that any vector in space can be written as the linear combination of three noncoplaner

vectors. So, let

$$\Rightarrow \vec{\alpha} = x(\vec{n}_1 \times \vec{n}_2) + y(\vec{n}_2 \times \vec{n}_3) + z(\vec{n}_3 \times \vec{n}_1) \qquad \dots (i)$$
Now,

$$\vec{\alpha} \cdot \vec{n}_1 = d_1$$

$$\Rightarrow \left\{ x(\vec{n}_1 \times \vec{n}_2) + y(\vec{n}_2 \times \vec{n}_3) + z(\vec{n}_3 \times \vec{n}_1) \right\} \cdot \vec{n} = d_1$$

$$\Rightarrow y\{(\vec{n}_2 \times \vec{n}_3) \cdot \vec{n}_1\} = d_1 \qquad \Rightarrow y = \frac{d_1}{[n_1 n_2 n_3]}$$

Similarly, we have

$$\vec{\alpha} \cdot \vec{n}_2 = d_2$$
 and $\vec{\alpha} \cdot \vec{n}_3 = d_3$

$$\Rightarrow z = \frac{d_2}{\left[\vec{n}_1 \vec{n}_2 \vec{n}_3\right]} \text{ and } x = \frac{d_3}{\left[\vec{n}_1 \vec{n}_2 \vec{n}_3\right]}$$

... Positive vector of the point of intersection of three planes, is

$$\Rightarrow \frac{1}{\left[\vec{n}_{1}\vec{n}_{2}\vec{n}_{3}\right]} \left\{ d_{1}\left(\vec{n}_{2}\times\vec{n}_{3}\right) + d_{2}\left(\vec{n}_{1}\times\vec{n}_{3}\right) + d_{3}\left(\vec{n}_{1}\times\vec{n}_{2}\right) \right\}$$

Also, the equation fo a plane pasing through the line of intersection of the planes

$$\vec{r} \cdot \vec{n}_1 = d_1$$
 and $\vec{r} \cdot \vec{n}_2 = d_2$ is

_

 $\vec{r} \cdot (\vec{n_1} + \vec{n_2}\lambda) = d_1 + \lambda d_2$, where λ uis parameter since, three palnes have a common line of intersection.

... The above equation should be identical to for some value of Thus for some value of λ , we have

$$\vec{n}_{1} + \lambda \vec{n}_{2} = \mu \vec{n}_{3} \qquad \dots (ii)$$
and $\vec{d}_{1} + \lambda \vec{d}_{2} = \mu d_{3} \qquad \dots (iii)$
Now, $\vec{n}_{1} + \lambda \vec{n}_{2} = \mu \vec{n}_{3}$

$$\Rightarrow (\vec{n}_{1} + \lambda \vec{n}_{2}) \times \vec{n}_{3} = \mu (\vec{n}_{3} \times \vec{n}_{3})$$

$$\Rightarrow \vec{n}_{1} + \vec{n}_{3} + \lambda (\vec{n}_{2} \times \vec{n}_{3}) = 0 \qquad \dots (iv)$$

$$\Rightarrow \lambda = -\frac{(\vec{n}_{1} \times \vec{n}_{3})}{(\vec{n}_{3} \times \vec{n}_{3})}$$
Again, $\vec{n}_{1} + \lambda \vec{n}_{2} = \mu \vec{n}_{3}$

$$\Rightarrow (\vec{n}_{1} + \lambda \vec{n}_{2}) \times \vec{n}_{2} = \mu (\vec{n}_{3} \times \vec{n}_{2})$$

$$\mu (\vec{n}_{2} \times \vec{n}_{3}) = -(\vec{n}_{1} \times \vec{n}_{2}) \qquad \dots (v)$$
Now, $d_{1} + \lambda d_{2} = \mu d_{3}$

$$\Rightarrow (d_{1} + \lambda d_{2}) (\vec{n}_{2} \times \vec{n}_{3}) = d_{3} \{\mu (\vec{n}_{2} \times \vec{n}_{3})\}$$

$$\Rightarrow d_{1} (\vec{n}_{2} \times \vec{n}_{3}) + d_{2} (\vec{n}_{3} \times \vec{n}_{1}) + d_{3} (\vec{n}_{1} \times \vec{n}_{2}) = 0$$
{using (iv) and (v)}

Paragraph - 6

If $\vec{a},\vec{b},\vec{c}\,$ are three given non – coplanar vectors and any arbitrary vectors $\vec{r}\,$ is space,

		r.ā	i.ā	ċ.ā	ā.ā	ŕ.ā	c.ā
where	Δ ₁ =	r.ī	$\vec{b}.\vec{b}$	ċ.b	$\Delta_2 = \vec{a}.\vec{b}$	r.b	ī.ī
		r.c	i.c	ċ.ċ	a.c	r.c	ī.ī

	ā.ā	īb.ā	r.ā	,	ā.ā	īb.ā	č.ā
Δ ₃ =	ā.b	$\vec{b}.\vec{b}$	ī.ī	$\Delta =$	ā.b	$\vec{b}.\vec{b}$	ī.
	r.c	i.c	r.c		ā.c	i.c	ċ.ċ

16. The vector is expressible in the form :

(A)
$$\vec{r} = \frac{\Delta_1}{\Delta} \vec{a} + \frac{\Delta_2}{\Delta} \vec{b} + \frac{\Delta_3}{\Delta} \vec{c}$$

(C) $\vec{r} = \frac{\Delta}{\Delta_1} \vec{a} + \frac{\Delta}{\Delta_2} \vec{b} + \frac{\Delta}{\Delta_3} \vec{c}$
D

(B)
$$\vec{r} = \frac{2\Delta_1}{\Delta}\vec{a} + \frac{2\Delta_2}{\Delta}\vec{b} + \frac{2\Delta_3}{\Delta}\vec{c}$$

(D) $\vec{r} = \frac{\Delta_1}{\Delta}\vec{a} + \frac{\Delta_2}{\Delta}\vec{b} + \frac{\Delta_3}{\Delta}\vec{c}$

Key.

17. the vector is expressible as :

the vector is expressible as :
(A)
$$\vec{r} = \frac{\left[\vec{r} \, \vec{b} \, \vec{c}\right]}{2\left[\vec{a} \, \vec{b} \, \vec{c}\right]} \vec{a} + \frac{\left[\vec{r} \, \vec{c} \, \vec{a}\right]}{2\left[\vec{a} \, \vec{b} \, \vec{c}\right]} \vec{b} + \frac{\left[\vec{r} \, \vec{a} \, \vec{b}\right]}{2\left[\vec{a} \, \vec{b} \, \vec{c}\right]} \vec{c}$$

(B) $\vec{r} \frac{2\left[\vec{r} \, \vec{b} \, \vec{c}\right]}{\left[\vec{a} \, \vec{b} \, \vec{c}\right]} = \vec{a} + \frac{2\left[\vec{r} \, \vec{c} \, \vec{a}\right]}{\left[\vec{a} \, \vec{b} \, \vec{c}\right]} \vec{b} + \frac{2\left[\vec{r} \, \vec{a} \, \vec{b}\right]}{\left[\vec{a} \, \vec{b} \, \vec{c}\right]} \vec{c}$
(C) $\vec{r} = \left[\vec{a} \, \vec{b} \, \vec{c}\right] \left(\frac{\vec{a}}{\left[\vec{r} \, \vec{b} \, \vec{c}\right]} + \frac{\vec{b}}{\left[\vec{r} \, \vec{c} \, \vec{a}\right]} + \frac{\vec{c}}{\left[\vec{r} \, \vec{a} \, \vec{b}\right]}\right)$
(D) none

Key.

D

If vector is expressible as, $\vec{r} = x \vec{a} + y \vec{b} + z \vec{c}$ then 18. (A) $\vec{a} = \frac{\vec{a} \cdot \vec{a}}{\left\lceil \vec{a} \ \vec{b} \ \vec{c} \right\rceil} \left(\vec{b} \times \vec{c} \right) + \frac{\vec{a} \cdot \vec{a}}{\left\lceil \vec{a} \ \vec{b} \ \vec{c} \right\rceil} \left(\vec{c} \times \vec{a} \right) + \frac{\vec{c} \cdot \vec{a}}{\left\lceil \vec{a} \ \vec{b} \ \vec{c} \right\rceil} \left(\vec{a} \times \vec{b} \right)$ (B) $\vec{a} = \vec{a} \cdot \vec{a} \left(\vec{b} \times \vec{c} \right) + \vec{a} \cdot \vec{b} \left(\vec{c} \times \vec{a} \right) + \vec{c} \cdot \vec{a} \left(\vec{a} \times \vec{b} \right)$ (C) $\vec{a} = \left[\vec{a} \ \vec{b} \ \vec{c}\right] \left(\vec{b} \times \vec{c}\right) + \left[\vec{a} \ \vec{b} \ \vec{c}\right] \left(\vec{c} \times \vec{a}\right) + \left[\vec{a} \ \vec{b} \ \vec{c}\right] \left(\vec{a} \times \vec{b}\right)$ (D) none Key. The value for $\begin{vmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a}.\vec{p} & \vec{b}.\vec{p} & \vec{c}\cdot\vec{p} \\ \vec{a}\cdot\vec{q} & \vec{b}\cdot\vec{q} & \vec{c}.\vec{q} \end{vmatrix}$, is : 19. (A) $(\vec{p} \times \vec{q}) \left[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a} \right]$ (B) $2(\vec{p} \times \vec{q}) \left[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a} \right]$ (C) $4(\vec{p} \times \vec{q}) [\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}]$ (D) $(\vec{p} \times \vec{q}) \sqrt{[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}]}$ Key. D

Sol. 16 to 19 Since $\vec{a}, \vec{b}, \vec{c}$ are three non-coplaner vectors. ... There exists scalars x,y,z such that $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ and $\vec{a} \times \vec{b}$(i) Taking dot product with $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ and $\vec{a} \times \vec{b}$ successively, we get $\vec{r} \cdot \left(\vec{b} \times \vec{c}\right) = \left(x\vec{a} + y\vec{b} + z\vec{c}\right) \cdot \left(\vec{b} \times \vec{c}\right)$ $\vec{r} \cdot (\vec{c} \times \vec{a}) = (x\vec{a} + y\vec{b} + z\vec{c}) \cdot (\vec{c} \times \vec{a})$ $\vec{r} \cdot \left(\vec{a} \times \vec{b}\right) = \left(x\vec{a} + y\vec{b} + z\vec{c}\right) \cdot \left(\vec{a} \times \vec{b}\right)$ $\Rightarrow \qquad \left[\vec{r} \, \vec{b} \, \vec{c} \, \right] = x \left[\vec{a} \, \vec{b} \, \vec{c} \, \right]$ $\left[\vec{r}\,\vec{c}\,\vec{a}\right] = y\left[\vec{b}\,\vec{c}\,\vec{a}\right]$ $\left[\vec{r}\,\vec{a}\,\vec{b}\right] = z\left[\vec{c}\,\vec{a}\,\vec{b}\right]$ and $x = \frac{\left[\vec{r}\,\vec{b}\,\vec{c}\right]}{\left[\vec{a}\,\vec{b}\,\vec{c}\right]}, y \frac{\left[\vec{r}\,\vec{c}\,\vec{a}\right]}{\left[\vec{b}\,\vec{c}\,\vec{a}\right]}, z = \frac{\left[\vec{r}\,\vec{a}\,\vec{b}\right]}{\left[\vec{c}\,\vec{a}\,\vec{b}\right]}$ substituting the values fo x,y,z in (i), we get $\vec{r} = \left\{ \frac{\left[\vec{r}\,\vec{b}\,\vec{c}\,\right]}{\left[\vec{a}\,\vec{b}\,\vec{c}\,\right]} \right\} \vec{a} + \left\{ \frac{\left[\vec{r}\,\vec{c}\,\vec{a}\,\right]}{\left[\vec{b}\,\vec{c}\,\vec{a}\,\right]} \right\} \vec{b} + \left\{ \frac{\left[\vec{r}\,\vec{a}\,\vec{b}\,\right]}{\left[\vec{c}\,\vec{a}\,\vec{b}\,\right]} \right\} \vec{b}$ Again, since \vec{a}, b, \vec{c} are non-coplaner vectors, $\therefore \left[\vec{a} \, \vec{b} \, \vec{c} \right] \neq 0$ $\Rightarrow \left[\vec{a}\,\vec{b}\,\vec{c}\,\right]^2 \neq 0$ $\Rightarrow \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{c} \cdot \vec{a} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{c} \cdot \vec{b} \end{vmatrix} = \left[\vec{a} \, \vec{b} \, \vec{c} \,\right]^2 \neq 0$ $\vec{a} \cdot \vec{c} \quad \vec{b} \cdot \vec{c} \quad \vec{c} \cdot \vec{c}$ Since any vector \vec{r} in space can be expressed as a liner combination of three non-coplaner vectors. So, let

 $\vec{r} = l\vec{a} + m\vec{b} + n\vec{c}$

Taking dot products on both sides successively by $\vec{a}, \vec{b}, \vec{c}$ we get

$\vec{r} \cdot \vec{a} = l\vec{a} \cdot \vec{a}$	$m\vec{b}\cdot\vec{a}$	$n\vec{c}\cdot\vec{a}$	(<i>ii</i>)
$\vec{r}\cdot\vec{b} = l\vec{a}\cdot\vec{b}$	$m\vec{b}\cdot\vec{b}$	$n\vec{c}\cdot\vec{b}$	>(<i>iii</i>)
$\vec{r}\cdot\vec{c}=l\vec{a}\cdot\vec{c}$	$m\vec{b}\cdot\vec{c}$	$n\vec{c}\cdot\vec{c}$	(<i>iv</i>)

On eliminating I,m,n from above four relation, we get

$$\begin{vmatrix} \vec{r} & \vec{a} & \vec{b} & \vec{c} \\ \vec{r} \cdot \vec{a} & \vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{c} \cdot \vec{a} \\ \vec{r} \cdot \vec{b} & \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{c} \cdot \vec{b} \\ \vec{r} \cdot \vec{c} & \vec{a} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{c} \cdot \vec{c} \end{vmatrix} = 0$$

On expanding this determinant along first row, we obtain

$$r = \left(\frac{\Delta_1}{\Delta}\right)\vec{a} + \left(\frac{\Delta_2}{\Delta}\right)\vec{b} + \left(\frac{\Delta_3}{\Delta}\right)\vec{c}$$

we know that,

$$\begin{bmatrix} \vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2$$
$$\Leftrightarrow \begin{bmatrix} \vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a} \end{bmatrix} \neq 0 \qquad \left\{ as \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} \neq 0 \right\}$$

 $\Leftrightarrow \vec{a} \times \vec{b} \, \vec{b} \times \vec{c} \, \vec{c} \times \vec{a}$ re non-coplaner

we also know that any vector in space can be expressed as a liner combination of any three non-

coplaner vectors. So, let

$$\vec{a} = l\left(\vec{b} \times \vec{c}\right) + m\left(\vec{c} \times \vec{a}\right) + n\left(\vec{a} \times \vec{b}\right)$$

Taking dot product on both sides seccessively by $\vec{a}, \vec{b}, \vec{c}$, we get

$$\vec{a} \cdot \vec{a} = l \left\{ \vec{a} \cdot (b \times \vec{c}) \right\}$$
$$\vec{a} \cdot \vec{b} = m \left\{ (\vec{c} \times \vec{a}) \cdot \vec{b} \right\}$$
$$\vec{c} \cdot \vec{a} = n \left\{ \vec{c} \cdot (\vec{a} \times \vec{b}) \right\}$$

and

$$\Rightarrow l = \frac{\vec{a} \cdot \vec{a}}{\left[\vec{a} \, \vec{b} \, \vec{c}\right]}, m = \frac{\vec{a} \cdot \vec{b}}{\left[\vec{a} \, \vec{b} \, \vec{c}\right]}, n = \frac{\vec{c} \cdot \vec{a}}{\left[\vec{a} \, \vec{b} \, \vec{c}\right]},$$

Again let,

$$\vec{a} = a_1\hat{i} + a_2 j + a_3 k, \qquad \vec{b} = b_1\hat{i} + b_2 j + b_3 k,$$

$$\vec{c} = c_1\hat{i} + c_2 j + c_3 k, \qquad \vec{p} = p_1\hat{i} + p_2 j + p_3 k,$$

and

$$\vec{q} = q_1\hat{i} + q_2 j + q_3 k,$$

$$\vec{a} = \vec{b} = \vec{c} + \vec{c}$$

$$=\begin{vmatrix} a_1\hat{i}+a_2j+a_3k & b_1\hat{i}+b_2j+b_3k & c_1\hat{i}+c_2j+c_3k \\ a_1p_1+a_2p_2+a_3p_3 & b_1p_1+b_2p_2+b_3p_3 & c_1p_1+c_2p_2+c_3p_3 \\ a_1q_1+a_2q_2+a_3q_3 & b_1q_1+b_2q_2+b_3q_3 & c_1q_1+c_2q_2+c_3q_3 \end{vmatrix}$$

$$= \begin{vmatrix} \hat{i} & j & k \\ p_1 & p_2 & p_3 \\ q_1 & q_2 & q_3 \end{vmatrix} \cdot \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
$$= (\vec{p} \times \vec{q}) \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix}$$
$$= \sqrt{\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix}^2} (\vec{p} \times \vec{q}) \quad .$$
$$= \sqrt{\begin{bmatrix} \vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a} \end{bmatrix}} (\vec{p} \times \vec{q})$$

Let \vec{x} , \vec{y} , \vec{z} be the vector, such that $|\vec{x}| = |\vec{y}| = |\vec{z}| = \sqrt{2}$ and $\vec{x}, \vec{y}, \vec{z}$ make angles of 60° with each other also, $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}$ $\vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$ and $\vec{x} \times \vec{y} = \vec{c}$. Then The value of \vec{x} is :

(A)
$$\left\{ \left(\vec{a} + \vec{b} \right) \times \vec{c} - \left(\vec{a} + \vec{b} \right) \right\}$$

(C) $\frac{1}{2} \left\{ \left(\vec{a} + \vec{b} \right) \times \vec{c} - \left(\vec{a} + \vec{b} \right) \right\}$

(B)
$$\left\{ \left(\vec{a} + \vec{b} \right) - \left(\vec{a} + \vec{b} \right) \times \vec{c} \right\}$$

(D) none of these

(B) $2\left[\left(\vec{a}+\vec{b}\right)+\left(\vec{a}+\vec{b}\right)\times\vec{c}\right]$

(C) none of these

Key.

20.

Key.

21.

С

А

22. The value of z is (A) $\frac{1}{2} \left[\left(\vec{b} - \vec{a} \right) \times \vec{c} + \left(\vec{a} + \vec{b} \right) \right]$ (C) $\left[\left(\vec{b} - \vec{a} \right) \times \vec{c} + \left(\vec{a} + \vec{b} \right) \right]$

The value of y is

(A) $\frac{1}{2} \left[\left(\vec{a} + \vec{b} \right) + \left(\vec{a} + \vec{b} \right) \right]$

(C) $4\left[\left(\vec{a}+\vec{b}\right)+\left(\vec{a}+\vec{a}+\vec{b}\right)\right]$

(B)
$$\frac{1}{2} \left[\left(\vec{b} - \vec{a} \right) + \left(\vec{a} + \vec{b} \right) \times \vec{c} \right]$$

(D) none of these

Key. 🛛 B

Sol. 20 to 22

We have
$$|\vec{x}| = |\vec{y}| = |\vec{z}| = \sqrt{2}$$
 and $\vec{x}, \vec{y}, \vec{z}$ make angle of 60° with each other.

$$\therefore \vec{x} \cdot \vec{y} = |\vec{x}| |\vec{y}| \cos 60^\circ = \sqrt{2} \left(\sqrt{2}\right) \cdot \frac{1}{2} = 1$$

$$\vec{y} \cdot \vec{z} = |\vec{y}| |\vec{z}| \cos 60^\circ = \sqrt{2} \left(\sqrt{2}\right) \left(\frac{1}{2}\right) = 1 \text{ and } \vec{x} \cdot \vec{z} = |\vec{x}| |\vec{z}| \cos 60^\circ = \sqrt{2} \left(\sqrt{2}\right) \left(\frac{1}{2}\right) = 1$$

$$\vec{x} \cdot \vec{x} = |\vec{x}|^2 = 2$$

 $\vec{\mathbf{y}} \cdot \vec{\mathbf{y}} = \left| \vec{\mathbf{y}} \right|^2 = 2$ $\vec{z} \cdot \vec{z} = \left| \vec{z} \right|^2 = 2$ and Now, $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}$ and $\vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$ {given} $\Rightarrow (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} = \vec{a} \text{ and } (\vec{y} \cdot \vec{x}) \vec{z} - (\vec{y} \cdot \vec{z}) \vec{x} = \vec{b}$ $\Rightarrow \vec{v} - \vec{z} = \vec{a} \text{ and } \vec{z} - \vec{x} = \vec{b}$ $\Rightarrow \vec{v} - \vec{x} = \vec{a} + \vec{b}$ Thuse, we have $\vec{v} - \vec{z} = \vec{a}$(i) $\vec{7} - \vec{x} = \vec{b}$...(ii) $\vec{v} - \vec{x} = \vec{a} + \vec{b}$...(iii) Now, $\vec{x} \times \vec{v} = \vec{c}$ {given} $\Rightarrow \vec{x} \times (\vec{x} \times \vec{y}) = \vec{x} \times \vec{c}$ {taking cross-product with \vec{x} } $\Rightarrow (\vec{x} \cdot \vec{y}) \times \vec{x} - (\vec{x} \cdot \vec{x}) \vec{y} = \vec{x} \times \vec{c}$ $\Rightarrow \vec{x} - 2\vec{y} = \vec{x} \times \vec{c}$(iv) Again, $\vec{x} \times \vec{y} = \vec{c}$ $\Rightarrow \vec{y} \times (\vec{x} \times \vec{y}) = \vec{y} \times \vec{c}$ {taking cross product with \vec{y} } $\Rightarrow (\vec{y} \cdot \vec{y}) \vec{x} - (\vec{y} \cdot \vec{x}) \vec{y} = \vec{y} \times \vec{c}$ $\Rightarrow 2\vec{x} - \vec{y} = \vec{y} \times \vec{c}$(v) On subtracting (iv) and (v), we get $\vec{x} - \vec{y} = (\vec{y} \times \vec{c}) - (\vec{x} \times \vec{c})$ $\Rightarrow \vec{x} + \vec{y} = (\vec{y} - \vec{x}) \times \vec{c}$ $\Rightarrow \vec{x} + \vec{y} = (\vec{a} + \vec{b}) \times \vec{c}$(vi) Adding (iii) and (vi), we get $2\vec{y} = \left(\vec{a} + \vec{b}\right) + \left(\vec{a} + \vec{b}\right) \times \vec{c} , \ \vec{y} = \frac{1}{2} \left[\left(\vec{a} + \vec{b}\right) \left(\vec{a} + \vec{b}\right) \times \vec{c} \right]$ Substituting the value of \vec{y} in (iii) in (i), we get $\vec{x} = \frac{1}{2} \Big[\Big(\vec{a} + \vec{b} \Big) + \Big(\vec{a} + \vec{b} \Big) \times \vec{c} \Big] - \Big(\vec{a} + \vec{b} \Big) \qquad \Rightarrow \vec{x} = \frac{1}{2} \Big[\Big(\vec{a} + \vec{b} \Big) \times \vec{c} - \Big(\vec{a} + \vec{b} \Big) \Big]$ $\vec{z} = \frac{1}{2} \left[\left(\vec{a} + \vec{b} \right) + \left(\vec{a} + \vec{b} \right) \times \vec{c} \right] - \vec{a}$

Paragraph – 8

If \overline{a} , \overline{b} , \overline{c} are the three given non coplanar vectors and any vector \overline{r} in the space where

Vectors

$$\Delta_{1} = \begin{vmatrix} \vec{r}.\vec{a} & \vec{b}.\vec{a} & \vec{c}.\vec{a} \\ \vec{r}.\vec{b} & \vec{b}.\vec{b} & \vec{c}.\vec{b} \\ \vec{r}.\vec{c} & \vec{b}.\vec{c} & \vec{c}.\vec{c} \end{vmatrix} , \quad \Delta_{2} = \begin{vmatrix} \vec{a}.\vec{a} & \vec{r}.\vec{a} & \vec{c}.\vec{a} \\ \vec{a}.\vec{b} & \vec{r}.\vec{b} & \vec{c}.\vec{b} \\ \vec{a}.\vec{c} & \vec{r}.\vec{c} & \vec{c}.\vec{c} \end{vmatrix} , \quad \Delta_{3} = \begin{vmatrix} \vec{a}.\vec{a} & \vec{b}.\vec{a} & \vec{r}.\vec{a} \\ \vec{a}.\vec{b} & \vec{b}.\vec{b} & \vec{r}.\vec{b} \\ \vec{a}.\vec{c} & \vec{b}.\vec{c} & \vec{r}.\vec{c} \end{vmatrix}$$
 and
$$\Delta_{4} = \begin{vmatrix} \vec{a}.\vec{a} & \vec{b}.\vec{a} & \vec{c}.\vec{a} \\ \vec{a}.\vec{b} & \vec{b}.\vec{b} & \vec{c}.\vec{b} \\ \vec{a}.\vec{c} & \vec{b}.\vec{c} & \vec{c}.\vec{c} \end{vmatrix}$$
 then

b) $\bar{r} = \frac{2\Delta_1}{\Delta}\bar{a} + \frac{2\Delta_2}{\Delta}\bar{b} + \frac{2\Delta_3}{\Delta}\bar{c}$ d) $\bar{r} = \frac{\Delta}{\Delta_1}\bar{a} + \frac{\Delta}{\Delta_2}\bar{b} + \frac{\Delta}{\Delta_3}\bar{c}$

23. The vector \overline{r} is expressible in the form

a)
$$\bar{r} = \frac{\Delta_1}{2\Delta}\bar{a} + \frac{\Delta_2}{2\Delta}\bar{b} + \frac{\Delta_3}{2\Delta}\bar{c}$$

c) $\bar{r} = \frac{\Delta_1}{\Delta}\bar{a} + \frac{\Delta_2}{\Delta}\bar{b} + \frac{\Delta_3}{\Delta}\bar{c}$

Key. C

Sol. Since
$$\overline{a}, \overline{b}, \overline{c}$$
 are 3 non coplanar vectors
 \exists scalars x, y, z such that $\overline{r} = x\overline{a} + y\overline{b} + z\overline{c}$ (1)
Taking dot product with $\overline{b} \times \overline{c}$, $\overline{c} \times \overline{a}$ and $\overline{a} \times \overline{b}$ successively. We get
 $\overline{r}.(\overline{b} \times \overline{c}) = (x\overline{a} + y\overline{b} + z\overline{c}).(\overline{b} \times \overline{c}) = x[\overline{a}\overline{b}\overline{c}]$
 $\Rightarrow [\overline{r}\overline{b}\overline{c}] = x[\overline{a}\overline{b}\overline{c}]$ Similarly $[\overline{r}\overline{c}\overline{a}] = y[\overline{b}\overline{c}\overline{a}]$ and $[\overline{r}\overline{a}\overline{b}] = z[\overline{c}\overline{a}\overline{b}]$
 $\Rightarrow x = [\overline{r}\overline{b}\overline{c}], y = [\overline{r}\overline{c}\overline{a}], z = [\overline{r}\overline{a}\overline{b}]$
Substitute x, y, z in (1) we get $\overline{r} = \frac{\Delta_1}{\Delta}\overline{a} + \frac{\Delta_2}{\Delta}\overline{b} + \frac{\Delta_3}{\Delta}\overline{c}$

24. If vector
$$\overline{r}$$
 is expressible as $\overline{r} = x\overline{a} + y\overline{b} + z\overline{c}$ then
a) $\overline{a} = \frac{\overline{a}\overline{a}}{[\overline{a}\overline{b}\overline{c}]}(\overline{b}\times\overline{c}) + \frac{\overline{a}\overline{b}}{[\overline{a}\overline{b}\overline{c}]}(\overline{c}\times\overline{a}) + \frac{\overline{c}\overline{a}}{[\overline{a}\overline{b}\overline{c}]}(\overline{a}\times\overline{b})$
b) $\overline{a} = (\overline{a}\overline{a})(\overline{b}\times\overline{c}) + (\overline{a}\overline{b})(\overline{c}\times\overline{a}) + (\overline{c}\overline{a})(\overline{a}\times\overline{b})$
c) $\overline{a} = [\overline{a}\overline{b}\overline{c}](\overline{b}\times\overline{c}) + [\overline{a}\overline{b}\overline{c}](\overline{c}\times\overline{a}) + [\overline{a}\overline{b}\overline{c}](\overline{a}\times\overline{b})$
d) $\overline{a} = [\overline{a}\overline{b}\overline{c}]\overline{a} + [\overline{a}\overline{b}\overline{c}]\overline{b} + [\overline{a}\overline{b}\overline{c}]\overline{c}$

Key. A

Sol. W.K.T any vector in the space can be expressed as linear combination of any three non coplanar vectors

So let
$$\overline{a} = l(\overline{b} \times \overline{c}) + m(\overline{c} \times \overline{a}) + n(\overline{a} \times \overline{b})$$
(1)

Taking dot product on both sides successively by $\bar{a}, \bar{b}, \bar{c}$ we get

Mathematics

$$l = \begin{bmatrix} \overline{a}, \overline{a} \\ \overline{a} \overline{b} \overline{c} \end{bmatrix}, m = \begin{bmatrix} \overline{a}, \overline{b} \\ \overline{a} \overline{b} \overline{c} \end{bmatrix}, n = \begin{bmatrix} \overline{a}, \overline{c} \\ \overline{a} \overline{b} \overline{c} \end{bmatrix}$$
Substitution of l, m, n in (1) we get
$$\overline{a} = \begin{bmatrix} \overline{a}, \overline{a} \\ \overline{a} \overline{b} \overline{c} \end{bmatrix} (\overline{b} \times \overline{c}) + \begin{bmatrix} \overline{a}, \overline{b} \\ \overline{a} \overline{b} \overline{c} \end{bmatrix} (\overline{c} \times \overline{a}) + \begin{bmatrix} \overline{c}, \overline{a} \\ \overline{a} \overline{b} \overline{b} \overline{c} \end{bmatrix} (\overline{a} \times \overline{b})$$
25. The value of
$$\begin{vmatrix} \overline{a}, \overline{p}, \overline{b}, \overline{p}, \overline{c}, \overline{c} \\ \overline{a}, \overline{q}, \overline{b}, \overline{q}, \overline{c}, \overline{c} \end{vmatrix}$$
is
$$a) (\overline{p} \times \overline{q}) [\overline{a} \times \overline{b}, \overline{b} \times \overline{c}, \overline{c} \times \overline{a}]$$

$$b) 2 (\overline{p} \times \overline{q}) [\overline{a} \times \overline{b}, \overline{b} \times \overline{c}, \overline{c} \times \overline{a}]$$

$$c) 4 (\overline{p} \times \overline{q}) [\overline{a} \times \overline{b}, \overline{b} \times \overline{c}, \overline{c} \times \overline{a}]$$

$$d) (\overline{p} \times \overline{q}) \sqrt{[\overline{a} \times \overline{b}, \overline{b} \times \overline{c}, \overline{c} \times \overline{a}]}$$
Key. D
Sol. Let $\overline{a} = a_1 \overline{i} + a_2 \overline{j} + a_3 \overline{k}$

$$\therefore \begin{vmatrix} \overline{a}, \overline{b}, \overline{b}, \overline{c}, \overline{c}, \overline{c} \end{vmatrix} = \begin{vmatrix} a_1 \overline{i} + a_2 \overline{j} + a_3 \overline{k}, \quad \overline{b} = b_1 \overline{i} + b_2 \overline{j} + b_3 \overline{k}, \quad c_1 \overline{i} + c_2 \overline{j} + c_3 \overline{k} \\ \overline{q} = q_1 \overline{i} + q_2 \overline{j} + q_3 \overline{k}$$

$$\therefore \begin{vmatrix} \overline{a}, \overline{b}, \overline{b}, \overline{c}, \overline{c}, \overline{c} \end{vmatrix} = \begin{vmatrix} a_1 \overline{a}, a_1 + a_2 \overline{j} + a_3 \overline{k}, \quad b_1 \overline{i} + b_2 \overline{j} + b_3 \overline{k}, \quad c_1 \overline{i} + c_2 \overline{j} + c_3 \overline{k} \\ \overline{a}, \overline{a}, \overline{b}, \overline{c}, \overline{c}, \overline{c} \end{vmatrix}$$

$$= \begin{vmatrix} i, j, k \\ p_1, p_2, p_3 \end{vmatrix} \begin{vmatrix} a_1, a_1 + a_2, a_3 \\ b_1, b_2, a_3 \end{vmatrix} - \begin{vmatrix} a_1, a_1 - a_2, a_3 \\ b_1, a_2, a_3 \end{vmatrix} \end{vmatrix}$$

$$= \begin{vmatrix} i, j, k \\ p_1, p_2, p_3 \\ q_1, q_2, q_3 \end{vmatrix} \begin{vmatrix} a_1, a_2, a_3 \\ b_1, b_2, b_3 \\ c_1, c_2, c_3 \end{vmatrix}$$

$$= (\overline{p} \times \overline{q}) [\overline{a} \ \overline{b} \ \overline{c}]$$

Passage – 9

If $\overline{a}, \overline{b}, \overline{c}$ are any three vectors then

$$\overline{a} \times (\overline{b} \times \overline{c}) = (\overline{a} \cdot \overline{c}) \overline{b} - (\overline{a} \cdot \overline{b}) \overline{c}; (\overline{a} \times \overline{b}) \cdot (\overline{c} \times \overline{d}) = \begin{vmatrix} \overline{a} \cdot \overline{c} & \overline{b} \cdot \overline{c} \\ \overline{a} \cdot \overline{d} & \overline{b} \cdot \overline{d} \end{vmatrix}$$

26. The value of 'a' so that the volume of the parallelepiped formed by vectors i+aj+k; j+ak; ai+k becomes minimum is

Mathematics

Vectors

(a)
$$\frac{1}{\sqrt{3}}$$
 (b) $\frac{-1}{\sqrt{3}}$ (c) 1 (d) $\pm \frac{1}{\sqrt{3}}$
Key. A
Sol. $V = \begin{vmatrix} 1 & a & 1 \\ 0 & 1 & a \\ a & 0 & 1 \end{vmatrix} = 1 + a^3 - a = 0; V \text{ is Minimum; } \frac{dv}{da} = 0$
 $a = \pm \frac{1}{\sqrt{3}}$
27. Let $\bar{a} = 2i + 3j + 4k; \bar{b} = i + 5j + 2k; \bar{c} = 3i + 15j + 6k$ then the value of $\begin{vmatrix} \bar{a} \cdot \bar{a} & \bar{a} \cdot \bar{b} & \bar{b} \cdot \bar{c} \\ \bar{b} \cdot \bar{a} & \bar{b} \cdot \bar{b} & \bar{b} \cdot \bar{c} \\ \bar{c} \cdot \bar{a} & \bar{c} \cdot \bar{b} & \bar{c} \cdot \bar{c} \end{vmatrix}$ (a) 429 (b) 0 (c) 1 (d) -5
Key. B
Sol. $\begin{vmatrix} \bar{a} \cdot \bar{a} & \bar{a} \cdot \bar{b} & \bar{a} \cdot \bar{c} \\ \bar{b} \cdot \bar{a} & \bar{c} \cdot \bar{b} & \bar{c} \cdot \bar{c} \end{vmatrix} = [\bar{a}\bar{b}\bar{c}]^2$
28. If $\bar{a} = i + j + k; \bar{b} = 4i + 3j + 4k; \bar{c} = i + \alpha j + \beta k$ are linearly dependent vectors; $|\bar{c}| = \sqrt{3}$
then
(a) $\beta = -1; \alpha = 1$ (b) $\alpha = 1; \beta = \pm 1$ (c) $\alpha = -1; \beta = \pm 1$ (d) $\alpha = \pm 1; \beta = 1$
Key. D
Sol. $\begin{vmatrix} 1 & 1 & 1 \\ 4 & 3 & 4 \\ | & \alpha & \beta \end{vmatrix} = 0; \sqrt{1 + \alpha^2 + \beta^2} = \sqrt{3}$
 $\alpha^2 + \beta^2 = 2$
 $1 - \alpha(0) + \beta(-1) = 0$
 $\beta = 1$

Paragraph – 10

The vertices of a \triangle ABC are A(1, 0, 2), B (-2, 1, 3) and C (2, -1, 1) If D is the foot of the perpendicular drawn from A and BC, then

29. The equation of medium of $\triangle ABD$ passing through the vertex A, is

(A)
$$\vec{r} = (\hat{i} + 2\hat{k}) + \frac{\lambda}{3} (-5\hat{i} + \hat{j} + \tilde{k})$$
 (B) $\vec{r} = (\hat{i} - 2\hat{k}) + \frac{\lambda}{3} (-5\hat{i} + \hat{j} + \tilde{k})$

A

(C)
$$\vec{r} = (\hat{i} + 2\hat{k}) + \frac{\lambda}{3} (5\hat{i} - \hat{j} + \tilde{k})$$
 (D) none

Key. А

The vector equation of the bisector of $\angle A$, is given by : 30.

(A)
$$\vec{r} - (\hat{i} + 2\hat{j}) + \lambda \left(\frac{-3\hat{i} + \hat{j} + \hat{k}}{\sqrt{11}} + \frac{-\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} \right)$$

(B) $\vec{r} - (\hat{i} + 2\hat{k}) + \lambda \left(\frac{-3\hat{i} + \hat{j} + \hat{k}}{\sqrt{11}} + \frac{-\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} \right)$
(C) $\vec{r} - (\hat{i} + 2\hat{j}) + \lambda \left(\frac{3\hat{i} + \hat{j} + \hat{k}}{\sqrt{11}} + \frac{-\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} \right)$

(D) none

Key.

В Sol. 29 and 30

Here,
$$\overrightarrow{BD}$$
 = Projection of \overrightarrow{BA} and \overrightarrow{BC}

$$= \left(\overrightarrow{BA} \cdot BC \right) BC$$

$$= \left\{ \left(\overrightarrow{a} - \overrightarrow{b} \right) \cdot \frac{\left(\overrightarrow{c} - \overrightarrow{b} \right)}{\left| \overrightarrow{c} - \overrightarrow{b} \right|} \right\} \frac{\overrightarrow{c} - \overrightarrow{b}}{\left| \overrightarrow{c} - \overrightarrow{b} \right|}$$

$$\Rightarrow \overrightarrow{BD} = \frac{4}{3} \left(2\widehat{i} - j - k \right)$$

$$\Rightarrow P.V \text{ of } \overrightarrow{D} - P.V \text{ of } \overrightarrow{B} = \frac{4}{3} \left(2\widehat{i} - j - k \right)$$

$$\Rightarrow P.V \text{ of } \overrightarrow{D} = \frac{4}{3} \left(2\widehat{i} - j - k \right) + \left(-2\widehat{i} + j - 3k \right)$$

$$= \frac{1}{3} \left(2\widehat{i} - j + 5k \right)$$

Since E is the mid-point of BD.

:. P.V of
$$\vec{E} = \frac{\frac{1}{3}(2\hat{i} - j + 5k) + (-2\hat{i} - j + 3k)}{2}$$

= $\frac{1}{3}(-2\hat{i} + j + 7k)$

Equation of line AE is,

$$\vec{r} = (\hat{i} + 2k) + \lambda \left\{ \frac{1}{3} \left(-2\hat{i} + j + 7k \right) - \left(\hat{i} + 2k \right) \right\} \text{ or } \vec{r} = (\hat{i} + 2k) + \frac{\lambda}{3} \left\{ -5\hat{i} + j + k \right\}$$

we, $\overrightarrow{AB} = -3\hat{i} + j + k$ and $\overrightarrow{AD} = \frac{1}{3} \left(-\hat{i} - j - k \right)$

we hav 31

Vector equation of the bisector of $\angle A$ is given by

d) $\frac{\sqrt{3}}{2}$

$$\vec{r} = \left(\hat{i} + 2k\right) + \lambda \left\{\frac{3\hat{i} + j + k}{\sqrt{11}} + \frac{-\hat{i} - j - k}{\sqrt{3}}\right\}$$

b) $\frac{1}{23}$

Paragraph – 11

Let a point P where position vector is $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is called Lattice point if $x, y, z \in N$. If atleast two of x,y,z are equal then this Lattice point is called isosceles Lattice point. If al x,y,z are equal then this Lattice point is called equilateral Lattice point.

31. If a Lattice point is called at random from Lattice points which satisfy $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) \le 11$, then the probability that the selected Lattice point is equilateral given that it is isosceles Lattice point is

a)
$$\frac{1}{22}$$

Key. B

- Sol. Conceptual
- 32. Area of triangle formed by the isosceles Lattice points lying on the plane $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 4$ is:

c) $\frac{3}{2}\sqrt{2}$

a) $2\sqrt{2}$

Key. D

Sol. Conceptual

Paragraph – 12

In tetrahedron ABCD the face ABC is a regular (Equilateral triangle) and the face BCD is perpendicular to it. $\angle DAC = \frac{\pi}{3}$, |AD| = 6 units Angle between the lines \overline{AD} and \overline{BC} is $\cos^{-1}\frac{1}{4}$ and if 'A' origin, $\overline{AD} = \overline{d}$, $\overline{AB} = \overline{b}$, $\overline{AC} = \overline{c}$ $D(\overline{d})$ $A(\overline{0})$ $B(\overline{b})$ $C(\overline{c})$

33. Angle between d, b is

Mathematics

Vectors

	A) $\cos^{-1}\frac{1}{4}$	B) $\cos^{-1}\frac{1}{2}$	C) $\cos^{-1} \frac{1}{\sqrt{2}}$	D) $\cos^{-1}\frac{3}{4}$
Key.	A		v –	
34.	$\left \overline{b}\right + \left \overline{c}\right =$			
Kev.	A) 4 B	B) 6	C) 8	D) 14
35.	Volume of tetrahedron ABC	CD (Cu. units)		
	A) 27	в) 27	c) $\frac{9}{-}$	<u>8</u>
	8	4	4	D) 3
Key.	В	-		\sim
Sol.	33. $\alpha = \left(\overline{AD}, \overline{BC}\right) = \cos \alpha$	$^{-1}\frac{1}{4} \Longrightarrow \cos \alpha = \frac{1}{4} = \frac{1}{ \overline{A} }$	$\frac{AD.BC}{\overline{AD} \overline{BC} } = \frac{d.(c-b)}{ \overline{d} \overline{c}-\overline{b} }$	
	$\Rightarrow 4\overline{d}.(\overline{c}-\overline{b}) = \overline{d} \overline{c}-\overline{b}$	$\left =\left \overline{b}\right \left \overline{d}\right $		
	Since $\left \overline{b} - \overline{c} \right = \left \overline{b} \right = \left \overline{c} \right $, L	et $\left(\overline{d},\overline{b}\right) = \theta, \left(\overline{d},\overline{c}\right) =$	$\frac{\pi}{3}$	
	$\Rightarrow 4 \left(\left \overline{d} \right \left \overline{c} \right \frac{1}{2} - \left \overline{d} \right \left \overline{b} \right \cos \theta \right)$	$\Theta = \left \overline{d} \right \left \overline{b} \right $		
	$\Rightarrow 4\left(\frac{1}{2} - \cos\theta\right) = 1 \Rightarrow 0$	$\cos\theta = \frac{1}{4}$		
	34. $\overline{ABC} \perp^{lr} \overline{DBC} \Rightarrow (\overline{ABC})$	$\overline{AB} \times \overline{AC}$). $(\overline{BD} \times \overline{DC})$) = 0	
	$\Rightarrow \left(\bar{b} \times \bar{c}\right) \cdot \left(\left(\bar{b} - \bar{d}\right) \times \left(\bar{c} - \bar{d}\right)\right)$	$-\overline{d}))=0$	·	
	$\Rightarrow (\bar{b} \times \bar{c}) \cdot (\bar{b} \times \bar{c} - \bar{b} \times \bar{d})$	$-\vec{d} \times \vec{c} = 0$		
	$\Rightarrow \left \bar{b} \times \bar{c} \right ^2 - \left(\bar{b} \times \bar{c} \right) \cdot $	\overline{d}) $-(\overline{b} \times \overline{c}).(\overline{d} \times \overline{c}) =$	0	
	$\Rightarrow \left \overline{b} \right ^2 \left \overline{c} \right ^2 \frac{3}{4} - \frac{\overline{b} \overline{b}}{\overline{c} \overline{b}} \overline{b} \overline{d}}{\overline{c} \overline{b}} \overline{c} \overline{d}$	$-\begin{vmatrix} \overline{b}.\overline{d} & \overline{b}.\overline{c} \\ \overline{c}.\overline{d} & \overline{c}.\overline{c} \end{vmatrix} = 0$		
	$\Rightarrow \frac{3 \overline{b} }{4} - 6\left(\frac{1}{2} - \frac{1}{8}\right) - 6\left(\frac{1}{8} - \frac{1}{8}\right) - 6$	$\left(\frac{1}{4} - \frac{1}{4}\right) = 0$		
5	$\Rightarrow \left \overline{b} \right = 3 \text{ and } \left \overline{c} \right = 3 \Rightarrow \left \overline{c} \right =$	$\overline{b} + \overline{c} =6.$		
	$35. \left[\overline{d} \overline{b} \overline{c} \right]^2 = \begin{vmatrix} d.d & d.b \\ \overline{b}.\overline{d} & \overline{b}.\overline{b} \\ \overline{c}.\overline{d} & \overline{c}.\overline{b} \end{vmatrix}$	$\begin{vmatrix} d.c \\ \overline{b}.\overline{c} \\ \overline{c}.\overline{c} \end{vmatrix} = \left \overline{d}\right ^2 \left \overline{b}\right ^2 \left \overline{c}\right ^2 \left 1/1\right ^2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Volume of tetrahedron = $\frac{1}{6}$	$\left[\overline{d}\overline{b}\overline{c}\right] = \frac{27}{4}$ Cu.units		

In the	adjacent figure	А
Lot	$CE _ AF _ \lambda$	\wedge
Lei	$\overline{\text{EA}} = \overline{\text{FB}} = \overline{1}$	E
	LB _ µ	F
	$\overline{\text{BC}} = \overline{1}$	
and	$\overrightarrow{FL} = v \overrightarrow{FE}$ then answer following questions.	
36.	\overrightarrow{AB} must be equal to	
	(A) $\frac{\mu AC + AL}{\mu + 1}$	(B) $\frac{\mu AL + AC}{\mu + 1}$
	(C) $\frac{AC+AL}{2}$	(D) $\frac{AC-AL}{2}$
Key.	A	
37.	$\overrightarrow{\mathrm{AL}}$ must be equal to	
	(A) $\frac{v(1-\lambda)}{v+1} \overrightarrow{AB} + \frac{x}{v+1} \overrightarrow{AC}$	(B) $\frac{\lambda(1-\nu)}{\lambda+1}\overline{AB} + \frac{\nu}{\lambda+1}\overline{AC}$
	(C) $\frac{v(1+\lambda)}{v+1} \overrightarrow{AB} + \frac{\lambda}{v+1} \overrightarrow{AC}$	(D) $\frac{\lambda(1+\nu)}{\lambda+1} \overrightarrow{AB} - \frac{\nu}{\nu+1} \overrightarrow{AC}$
Key.	В	
38.	μ must be equal to	
	(A) $\frac{1}{\lambda^2 + 1}$	(B) $\frac{1}{\lambda^2 - 1}$
	(C) $\frac{\lambda}{\lambda+1}$	(D) $\frac{\lambda}{\lambda-1}$
Kev	B	$\lambda - 1$
Sol.	36. a be the origin and	
	let position vector of b, c & 1 are $\overline{b}, \overline{c}$ and \overline{l}	
	$\overline{I} + \overline{uc}$	$\lambda / \lambda_{\rm r}$
	$\Rightarrow \frac{v + \mu c}{u + 1} = b$	v F l h
	$- \mu\Delta\bar{C} + \Delta\bar{L}$	
	$\Rightarrow A\bar{B} = \frac{\mu RC + RL}{\mu + 1}$	μ B(b) 1 C(r)
37.	p.v. of e and f are	
	\overline{c} $\lambda \overline{b}$	
	$\frac{1}{\lambda+1}, \frac{1}{\lambda+1}$ respectively	
	$\frac{-\nu \overline{c}}{\overline{c}} + \overline{l}$ –	
	also p.v. of $F = \frac{\lambda + 1}{1 - \nu} = \frac{\lambda b}{\lambda + 1}$	
	$\Rightarrow \qquad \overline{l} = \frac{\lambda(1-\nu)}{\lambda+1}\overline{b} + \frac{\nu}{\lambda+1}\overline{c}$	
	$\frac{1}{\Delta I} = \lambda (1-\nu) \frac{1}{\Delta P} + \nu \frac{1}{\Delta C}$	
	$AL - \frac{\lambda+1}{\lambda+1}AD + \frac{\lambda+1}{\lambda+1}AC$	

38. p.v. of E and F are

$$\frac{\overline{c}}{\lambda+1} \text{ and } \frac{\lambda \overline{b}}{\lambda+1} \text{ respectively}$$
p.v. of $L = \frac{(-\nu+1)}{\lambda+1} + \frac{\nu \overline{c}}{\lambda+1} = (\mu+1)\overline{b} - \mu \overline{c}$
as \overline{b} and \overline{c} are non-collinear vectors

$$\Rightarrow \frac{(-\nu+1)\lambda}{\lambda+1} = \mu + 1 \qquad \dots (i)$$

$$\frac{-\nu}{\lambda+1} = \mu \qquad \dots (ii)$$
from (i) and (ii)

$$\mu = \frac{1}{\lambda^2 - 1}$$

Let three intersecting lines form a triangle ABC and separate the plane into 7 disjoint regions. Let the region in which the excentres I_1 , I_2 , I_3 lie be termed as excentral region opposite to angles A,B,C respectively. D be any point in the plane of ABC and O be the origin outside the plane of $\triangle ABC$, G is centroid of $\triangle ABC$.

Now let the position vectors of A,B,C,D be $\vec{\alpha},\vec{\beta},\vec{\gamma},\vec{\delta}$ respectively. There exist real

numbers, p,q,r such that
$$\vec{\delta} = p\vec{\alpha} + q\vec{\beta} + r\vec{\gamma}$$
 and $p + q + r = 1$

39. If $9\vec{\delta} = 2\vec{\alpha} + 3\vec{\beta} + 4\vec{\gamma}$ then (a) D is outside the triangle ABC (b) D is nearer to AB than the centroid G of triangle ABC (c) D and centroid G are at equal distance from AC (d) G is nearer than D from BC Key. C 40. If $3\vec{\delta} = \vec{\alpha} + 3\vec{\beta} - \vec{\gamma}$ then D is (a) inside the plane ABC (b) on the side BC of ΔABC (c) in the excentral region opposite to C (d) in the excentral region opposite to B

Key.

41

С

39

$$\vec{\delta} = \frac{1}{6}\vec{\alpha} + \frac{1}{3}\vec{\beta} + \frac{1}{2}\vec{\gamma} \text{ and } D \text{ is the orthocentre of triangle ABC, then tan B} =$$

(c) $\frac{1}{2}$ (d) 2

Key.

Sol.

 $2\overline{\alpha} + 3\overline{\beta} + 4\overline{\gamma}$

Inside as well as D and G are at equidistant from AC

angle C

(b) $\frac{1}{3}$

40.
$$\vec{\delta} = \frac{\vec{\alpha} + 3\vec{\beta} - \vec{\gamma}}{1 + 3 - 1}$$

Excentral region opposite to

δ

41. Orthocentre of triangle ABC is

$$\overrightarrow{OH} = \frac{\tan A\vec{a} + \tan B\vec{b} + \tan C\vec{c}}{\tan A + \tan B + \tan C}$$
$$\Rightarrow \tan B = 2$$

Let $\overline{\mathbf{r}}$ is position vector of a point in Cartesian OXY plane such that $\overline{\mathbf{r}}.(10\hat{\mathbf{j}}-8\hat{\mathbf{i}}-\overline{\mathbf{r}})=40$, max $\{|\overline{\mathbf{r}}+2\hat{\mathbf{i}}-3\hat{\mathbf{j}}|^2\}=l$ and min $\{|\overline{\mathbf{r}}+2\hat{\mathbf{i}}-3\hat{\mathbf{j}}|^2\}=m$. A tangent line is drawn to the curve $\mathbf{y}=\frac{8}{\mathbf{x}^2}$ at the point A with abscissa 2. The drawn tangent cuts the x-axis at B then

```
42.
           Value of m is
                                                                                (B) 2\sqrt{2}-1
           (A) 9
                                                                                (D) 9-4
           (C) 6\sqrt{2}+3
Key.
           D
43.
           I + m is equal to
           (A) 2
                                                                                (B) 10
                                                                                (D) 5
           (C) 18
Key.
           С
           The value of AB.OB (O is origin) is
44.
                                                                                 (B) 2
           (A) 1
           (C) 3
                                                                                (D) 4
Key.
           С
Sol.
           42.
                      Let
                                                                                 \overline{\mathbf{r}} = \mathbf{x}\mathbf{i} + \mathbf{y}\mathbf{j}
                       \overline{r}.(10j-8i-\overline{r})=40
                      x^2 + y^2 + 8x - 10y + 40 = 0
           \Rightarrow
                       \overline{r} lie on a circle in XOY plane.
           \Rightarrow
                      l = (\min. \text{ distance of } \overline{r} \text{ from } -2i + 3j)^2
                       =9+4\sqrt{2}
                       m = (min distance of \overline{r} from -2i + 3j)^2
                         9 - 4 \sqrt{2}
43.
            m
                      18
             + m =
           Clearly point A(2, 2)
           Equation of tangent at A(2, 2) is
           2x + y - 6 = 0 co-ordinates of B(3, 0)
           \overline{AB} = \hat{i} - 2\hat{j}
           \overline{OB} = 3\hat{i}
                                                    \overline{AB}.\overline{OB} = 3
```

Paragraph - 16

The maximum value of modulus of dot product of two vectors is the product of moduli of the two vectors and this situation occurs when the two vectors are parallel.

If the projection of the vector $12\hat{i} - 4\hat{j} + 3\hat{k}$ on a vector \vec{a} is maximum, then the unit vector 45. along a is

(A)
$$\pm \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$$

(B) $\pm \frac{\hat{i} - 2\hat{j} + 3\hat{k}}{\sqrt{14}}$
(C) $\pm \frac{3\hat{i} + 4\hat{j} - 5\hat{k}}{5\sqrt{2}}$
(D) $\pm \frac{12\hat{i} - 4\hat{j} + 3\hat{k}}{13}$

Key.

D If 'a' is real constant and A, B, C are variable angles and 46. $\sqrt{a^2-4} \tan A + a \tan B + \sqrt{a^2+4} \tan C = 6a$, then the least value of $\tan^2 A + \tan^2 B + \tan^2 C$ is (B) 12 (C) 24 (D) 36 (A) 6 Key. R In a $\triangle ABC$, cos 2A + cos 2B + cos 2C must be 47. (B) $< -\frac{3}{2}$ $(\mathbf{A}) \ge -\frac{3}{2}$ (C) < $(D) \ge -1$ Key. Sol. 45. The projection = $|(12\hat{i}-4\hat{j}+3\hat{k}).\hat{a}|$ = $|12\hat{i} - 4\hat{j} + 3\hat{k}| |\hat{a}| |\cos\theta| = 13 |\cos\theta|$ is maximum where $\theta = 0, \pi$ So, $\hat{a} = \frac{12\hat{i} - 4\hat{j} + 3\hat{k}}{12}$ 46. Then given relation can be written as $\left(\sqrt{a^2-4}\hat{i}+\hat{aj}+\sqrt{a^2+4}\hat{k}\right)$. $\left(\tan A\hat{i}+\tan B\hat{j}+\tan C\hat{k}\right)=6a$ $\Rightarrow \sqrt{(a^2-4)+a^2+(a^2+4)} \cdot \sqrt{\tan^2 A + \tan^2 B + \tan^2 C} \cdot \cos \theta = 6a \text{ (as, } a.b = |a| |b| \cos \theta)$ $\Rightarrow \sqrt{3}a.\sqrt{\tan^2 A + \tan^2 B + \tan^2 C}\cos\theta = 6a$ $\Rightarrow \tan^2 A + \tan^2 B + \tan^2 C = 12 \sec^2 \theta$ (1) $12 \sec^2 \theta \ge 12$ (as $\sec^2\theta \ge 1$) (2)From (1) and (2), $\tan^2 A + \tan^2 B + \tan^2 C \ge 12$. least value of $\tan^2 A + \tan^2 B + \tan^2 C = 12$

Paragraph - 17

Let A, B, C, D, E represent vertices of a regular pentagon ABCDE. Given the position vectors of these vertices be $\vec{a}, \vec{a} + \vec{b}, \vec{b}, \lambda \vec{a}$ and $\lambda \vec{b}$ respectively with respect origin O where O is the point of intersection of line AD and EC.

48. The ratio
$$\frac{AD}{BC}$$
 is equal to
A) $1 - \cos \frac{3\pi}{5}$ B) $1 + 2\cos \frac{2\pi}{5}$ C) $\cos \frac{2\pi}{5}$ D) $1 - 2\cos \frac{2\pi}{5}$

Key. B
49. AD divides EC in the ratio
A)
$$\cos \frac{2\pi}{5}:1$$
 B) $\cos \frac{3\pi}{5}:1$ C) $2\cos \frac{2\pi}{5}:1$ D) 1:2
Key. C
Sol. 48-49
 $A = 49$
 $A = \frac{2\pi/5}{5}C$
 $OA = BC \& OC = AB$
 $\lfloor AOC = \lfloor ABC = \frac{3\pi}{5}$
 $\Rightarrow OABC$ is a rhombus
Hence $\lfloor OAB = \lfloor OCB = \frac{2\pi}{5}$
 $\lfloor DOC = \frac{2\pi}{5}, \lfloor EOD = \frac{3\pi}{5}$
Let $OD = \lambda \overline{a}, OE = \lambda \overline{b}$
 $|\lambda \overline{a}| = 2|\overline{a}| \cos \frac{2\pi}{5} \Rightarrow \lambda = -2\cos \frac{2\pi}{5}$
 $AD: BC = |\lambda - 1| = 1 + 2\cos \frac{2\pi}{5}$
 $EO: OC = |\lambda| = 2\cos \frac{2\pi}{5}$
Paragraph - 18

Let \vec{r} is a position vector of a variable point in a Cartesian OXY plane such that $\vec{r}.(10\vec{j}-8\vec{i}-\vec{r})=40$ and $P_1 = \max\left\{\left|\vec{r}+2\vec{i}-3\vec{j}\right|^2\right\}, P_2 = \min\left\{\left|\vec{r}+2\vec{i}-3\vec{j}\right|^2\right\}$. A tangent line is drawn to the curve $y = \frac{8}{x^2}$ at the point A with abscissa 2. The drawn line cuts x-axis at a point B. 50. P_1 is equal to

(A) 9 (B) $2\sqrt{2}-1$ (C) $6\sqrt{2}+3$ (D) $9+4\sqrt{2}$ Key. D

51. $P_1 + P_2$ is equal to (A) 2 (B) 10 (C) 18 (D) 5 Key. C 52. $\overrightarrow{AB}.\overrightarrow{OB}$ is (A) 1 (B) 2 (C) 3 (D) 4 Key. C Sol. Conceptual

Necessary and sufficient condition for three non-zero vectors $\bar{a}, \bar{b}, \bar{c}$ to be coplanar is that there exists scalars I, m, n not all zero simultaneously such that $l\bar{a} + m\bar{b} + n\bar{c} = \bar{o}$, then

Let α, β, γ be distinct non-negative numbers. If the vectors $\alpha i + \alpha j + \gamma k i + k$ and 53. $\gamma i + \gamma j + \beta k$ lie in the same plane, then γ is (a) A.M of α and β (b) G.M of α and β (c) H.M of α and β (d) Equals to zero В

Key.

Let $\bar{a} = 2\bar{i} + \bar{j} + \bar{k}$, $\bar{b} = \bar{i} + 2\bar{j} - \bar{k}$ and a unit vector \bar{c} be coplanar. If \bar{c} is perpendicular to 54. a then c =

(a)
$$\pm \frac{1}{\sqrt{2}} (-\bar{j} + \bar{k})$$

(b) $\pm \frac{1}{\sqrt{2}} (-\bar{j} - \bar{k})$
(c) $\pm \frac{1}{\sqrt{2}} (\bar{i} - 2\bar{j})$
(d) $\pm \frac{1}{\sqrt{3}} (\bar{i} - \bar{j} - \bar{k})$

Key.

А

 $\overline{a, b, c}$ are three non-zero coplanar vectors. If a is not parallel to b, then \overline{c} = 55.

(a)
$$\frac{\begin{vmatrix} a \cdot c & a \cdot b \\ \overline{c} \cdot \overline{b} & \overline{b} \cdot \overline{b} \end{vmatrix}^{\overline{a}} + \begin{vmatrix} a \cdot a & c \cdot a \\ \overline{a} \cdot \overline{b} & \overline{c} \cdot \overline{b} \end{vmatrix}^{\overline{b}}}{\begin{vmatrix} \overline{a} \cdot \overline{a} & \overline{a} \cdot \overline{b} \\ \overline{a} \cdot \overline{b} & \overline{b} \cdot \overline{b} \end{vmatrix}}$$
(b)
$$\begin{vmatrix} \overline{c} \cdot \overline{a} & \overline{a} \cdot \overline{b} \\ \overline{c} \cdot \overline{b} & \overline{b} \cdot \overline{b} \end{vmatrix}^{\overline{a}} + \begin{vmatrix} \overline{a} \cdot \overline{a} & \overline{c} \cdot \overline{a} \\ \overline{a} \cdot \overline{b} & \overline{b} \cdot \overline{b} \end{vmatrix}^{\overline{b}}}$$
(c)
$$\begin{vmatrix} \overline{a} \cdot \overline{a} & \overline{a} \cdot \overline{b} \\ \overline{a} \cdot \overline{b} & \overline{b} \cdot \overline{b} \end{vmatrix}^{\overline{a}} + \begin{vmatrix} \overline{c} \cdot \overline{a} & \overline{a} \cdot \overline{b} \\ \overline{c} \cdot \overline{b} & \overline{b} \cdot \overline{b} \end{vmatrix}^{\overline{a}} + \begin{vmatrix} \overline{c} \cdot \overline{a} & \overline{a} \cdot \overline{b} \\ \overline{c} \cdot \overline{b} & \overline{b} \cdot \overline{b} \end{vmatrix}^{\overline{a}} + \begin{vmatrix} \overline{c} \cdot \overline{a} & \overline{a} \cdot \overline{b} \\ \overline{c} \cdot \overline{c} & \overline{b} \cdot \overline{b} \end{vmatrix}^{\overline{b}} = + \begin{vmatrix} \overline{c} \cdot \overline{a} & \overline{a} \cdot \overline{b} \\ \overline{c} \cdot \overline{c} & \overline{b} \cdot \overline{b} \end{vmatrix}^{\overline{b}}$$
Key. A
Sol. 53.
$$\begin{vmatrix} \alpha & \alpha & \gamma \\ 1 & 0 & 1 \\ \gamma & \gamma & \beta \end{vmatrix} = 0$$

$$-\alpha\gamma - \alpha\beta + \alpha\gamma + \gamma^{2} = 0$$

$$\gamma^{2} = \alpha\beta$$

54. let
$$\overline{c} = x\overline{a} + y\overline{b}$$

 $\overline{c} \cdot \overline{a} = x\overline{a} \cdot \overline{a} + y\overline{a} \cdot \overline{b}$
 $\overline{c} \cdot \overline{b} = x\overline{a} \cdot \overline{b} + y\overline{b} \cdot \overline{b}$

Solving
$$x(\overline{a} \cdot \overline{a})(\overline{a} \cdot \overline{b}) + y(\overline{a} \cdot \overline{b})^2 = (\overline{a} \cdot \overline{b})(\overline{c} \cdot \overline{a})$$

 $x(\overline{a} \cdot \overline{a})(\overline{a} \cdot \overline{b}) + y(\overline{a} \cdot \overline{b})(\overline{a} \cdot \overline{a}) = (\overline{c} \cdot \overline{b})(\overline{a} \cdot \overline{a})$
 $y((\overline{a} \cdot \overline{b})^2 - (\overline{a} \cdot \overline{b})(\overline{a} \cdot \overline{a})) = (\overline{a} \cdot \overline{b})(\overline{c} \cdot \overline{a}) - (\overline{c} \cdot \overline{b})(\overline{a} \cdot \overline{a})$
 $y = \frac{(\overline{a} \cdot \overline{b})(\overline{c} \cdot \overline{a}) - (\overline{c} \cdot \overline{b})(\overline{a} \cdot \overline{a})}{(\overline{a} \cdot \overline{b})^2 - (\overline{a} \cdot \overline{b})(\overline{a} \cdot \overline{a})}$

Let 'S' be the circum centre, 'O' be the orthocentre and N be the centre of nine point circle of triangle ABC, then

Paragraph – 21

A particle is in equilibrium is subjected to four forces $\overline{F_1} = -10\overline{k}$, $\overline{F_2} = u\left(\frac{4}{13}\overline{i} - \frac{12}{13}\overline{j} + \frac{3}{13}\overline{k}\right)$, $\left(\frac{3}{3}\overline{k}\right)$, $\overline{F_4} = w\left(\cos\theta\overline{i} + \sin\theta\overline{j}\right)$ then $\overline{\mathbf{F}_3} = \mathbf{v}$

59

u = (b) $\frac{65}{3} + 65 \cot \theta$ (c) $\frac{65}{3} - 65 \cot \theta$ (d) 65 cot θ $\cot \theta$ Kev

(a)
$$\frac{65}{3} + \cot \theta$$
 (b) $\frac{65}{3} + 65 \cot \theta$ (c) $\frac{65}{3} - 65 \cot \theta$ (d) $65 \cot \theta$

(c) $40 \csc 2\theta$

(d) $-40 \csc \theta$

Key. B 60.

$$w =$$

(a) $\csc \theta$ (b) $40 \csc \theta$

Key. B
Sol. 58 to 60
Since the particle is in equilibrium
$$\Rightarrow \overline{F}_1 + \overline{F}_2 + \overline{F}_3 + \overline{F}_4 = 0$$

$$\Rightarrow -10\mathbf{k} + \mathbf{u} \left(\frac{4}{13} \mathbf{i} - \frac{12}{13} \mathbf{j} + \frac{3}{13} \mathbf{k} \right) + \mathbf{v} \left(\frac{-4}{13} \mathbf{i} - \frac{12}{13} \mathbf{j} + \frac{3}{13} \mathbf{k} \right) + \mathbf{w} \left(\cos \theta \mathbf{i} + \sin \theta \mathbf{j} \right) = \mathbf{0}$$

$$\Rightarrow \left(\frac{4u}{13} - \frac{4v}{13} + w \cos \theta \right) \mathbf{i} + \left(\frac{-12}{13} \mathbf{u} - \frac{12}{13} \mathbf{v} + w \sin \theta \right) \mathbf{j} + \left(-10 + \frac{3}{13} \mathbf{u} + \frac{3}{13} \mathbf{v} \right) \mathbf{k} = \mathbf{0}$$

$$\Rightarrow \frac{4u}{13} - \frac{4v}{13} + w \cos \theta = 0 \qquad (1)$$

$$\Rightarrow \frac{-12}{13} \mathbf{u} - \frac{12}{13} \mathbf{v} + w \sin \theta = 0 \qquad (2)$$

$$\Rightarrow -10 + \frac{3}{13} \mathbf{u} + \frac{3}{13} \mathbf{v} = 0 \qquad (3)$$
From (3) $\mathbf{u} + \mathbf{v} = \frac{130}{3} \qquad (4)$
From (2) $\Rightarrow \frac{12}{13} (\mathbf{u} + \mathbf{v}) = \mathbf{w} \sin \theta$

$$\Rightarrow \mathbf{w} = 40 \csc \theta$$
Substitute (w) in (1) & (2)

$$\Rightarrow \frac{4}{13} (\mathbf{u} - \mathbf{v}) + 40 \cot \theta = 0$$

$$\Rightarrow \frac{4}{13} (\mathbf{u} - \mathbf{v}) = -40 \cot \theta$$

$$\Rightarrow \mathbf{u} - \mathbf{v} = -130 \cot \theta$$

$$\Rightarrow \mathbf{u} + \mathbf{v} = \frac{130}{3} \Rightarrow \mathbf{u} = \frac{65}{3} - 65 \cot \theta$$
Paragraph - 22
Let $\vec{a}, \vec{b}, \vec{c}$ be three non-coplanar vectors. Define $\vec{a}' = \frac{\vec{b} \times \vec{c}}{(\vec{a} \cdot \vec{b} \cdot \vec{c}]}, \vec{b}' = \frac{\vec{c} \times \vec{a}}{(\vec{a} \cdot \vec{b} \cdot \vec{c}]}, \vec{c}' = \frac{\vec{a} \times \vec{b}}{(\vec{a} \cdot \vec{b} \cdot \vec{c}]^2}$
Key. A
61. $\left[\vec{u} \cdot \vec{b} \cdot \vec{c}' \right] =$

$$a) 1$$

$$b) 2 \left[\vec{a} \cdot \vec{b} \cdot \vec{c} \right]$$

$$c) 2$$

$$d) \quad \left[\vec{a} \cdot \vec{b} \cdot \vec{c} \right]^2$$
Key. A
62. If $\vec{a} = x\vec{a}' + y\vec{b}' + z\vec{c}'$
(x, y, z are scalars), then $x + y + z$ is equal to
$$a) 3$$

$$c) \left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 + \left| \vec{c} \right|^2$$

63. $\vec{a'} \times \vec{b'} + \vec{b'} \times \vec{c'} + \vec{c'} \times \vec{a'}$ equals

61.

Key.

Key.

62.

a)
$$\vec{0}$$
 b) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ c) $\frac{\vec{a} + \vec{b} + \vec{c}}{\left[\vec{a} \ \vec{b} \ \vec{c}\right]}$ d) $\frac{\vec{a} + \vec{b} + \vec{c}}{\left[\vec{a} \ \vec{b} \ \vec{c}\right]^2}$

Key. C

Sol. 61). Observe that $\vec{a} \cdot \vec{a'} = \vec{b} \cdot \vec{b'} = \vec{c} \cdot \vec{c'} \cdot \vec{c'} = 1$ and the rest of the dot product will be zero

$$\begin{bmatrix} \vec{a'} \ \vec{b'} \ \vec{c'} \end{bmatrix} = \frac{1}{\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^3} \{ (\vec{b'} \times \vec{c}) \times (\vec{c} \times \vec{a}) . (\vec{a} \times \vec{b}) \}$$
$$= \frac{1}{\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^3} \{ \begin{bmatrix} \vec{b} \ \vec{c} \ \vec{a} \end{bmatrix} \vec{c} . (\vec{a} \times \vec{b}) \}$$
$$\therefore \frac{\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2}{\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^3} = \frac{1}{\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}}$$

62). $x = \vec{a} . \vec{a}, y = \vec{a} . \vec{b}, z = \vec{a} . \vec{c}$
63). $x = \vec{a'} \times \vec{b'} = \frac{(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})}{\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2} = \frac{\begin{bmatrix} \vec{b} \ \vec{c} \ \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2}{\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2}$

Paragraph - 23

The vertices of a $\triangle ABC$ are A(2,0,2), B(-1,1,1) and C(1,-2,4). The points D and E divide the sides AB and AC in the ratio 1 : 2 respectively. Another point F is taken in space such that perpendicular drawn from F on $\triangle ABC$ meet the \triangle at the point of intersection of line segment CD and BE at P. If distance of F from plane of $\triangle ABC$ is $\sqrt{2}$ units, then

64. The volume of tetrahedron ABCF is
(A)
$$\frac{7}{2}$$
 cubic units (B) $\frac{7}{2}$ cubic units

(c)
$$\frac{3}{5}$$
 cubic units
(c) $\frac{3}{5}$ cubic units
(b) 7 cubic units
(c) $7\hat{i}$ cubic units
(c) $7\hat{i} + 7\hat{k}$
(c) $7\hat{i} + 7\hat{k}$
(c) $7\hat{i} + 7\hat{k}$
(c) $\vec{r} = (\hat{i} + \hat{k}) + \lambda(\hat{i} + \hat{j})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + \hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + \hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + \hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + \hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + \hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + 2\hat{k})$
(c) $\vec{r} = (2\hat{i} + 2\hat{j}) + \lambda(-\hat{i} + 2\hat{j} + 2\hat{k})$

 $= \frac{1}{2} |7\hat{j} + 7\hat{k}| = \frac{7\sqrt{2}}{2} \text{ sq. units}$ Volume of tetrahedron ABCF $= \frac{1}{3} \times \text{ area of base} \times \text{height} = \frac{7}{3} \text{ cubic units.}$ 65. \overrightarrow{PF} is parallel to $\overrightarrow{AB} \times \overrightarrow{AC}$ $PF = \sqrt{2}$ units $\overrightarrow{PF} = \sqrt{2} \frac{(7\hat{j} + 7\hat{k})}{\sqrt{49 + 49}} = \hat{j} + \hat{k}$ 66. $\overrightarrow{PF} = \hat{j} + \hat{k}$ Position vector of $\overrightarrow{F} = (\hat{j} + \hat{k}) + (\hat{i} - \hat{j} + 3\hat{k}) = \hat{i} + 4\hat{k}$ Vector equation of AF is $\vec{r} = (2\hat{i} + 2\hat{k}) + \lambda(-\hat{i} + 2\hat{k})$

Paragraph – 24

For two vectors \vec{x}, \vec{y} , we defined $\vec{x} \cdot \vec{y} = |\vec{x}| |\vec{y}| \cos \theta$, $\vec{x} \times \vec{y} = |\vec{x}| \cdot |\vec{y}| \cos \theta n$. Let * is a operation defined by $\vec{x} * \vec{y} = |\vec{x}| |\vec{y}| \tan \frac{\theta}{2}$, where θ is angle between \vec{x} and \vec{y} .

67. Projection of \vec{x} on \vec{y} will be

a)
$$\frac{\vec{x} * \vec{y}}{|\vec{y}|}$$
 b) $\frac{\vec{x} * \vec{y}}{|\vec{x}|}$ c) $|\vec{x}| \frac{|\vec{x}|^2 |\vec{y}|^2 - (\vec{x} * \vec{y})^2}{|\vec{x}| |\vec{y}|^2 + (\vec{x} * \vec{y})^2}$ d) $\left(\frac{|\vec{x}|^2 |\vec{y}|^2 - (\vec{x} * \vec{y})^2}{|\vec{x}|^2 |\vec{y}|^2 + (\vec{x} * \vec{y})^2}\right)$

Ans.

Sol. Projection of
$$\overline{x}$$
 on \overline{y} is $\frac{\overline{x \cdot y}}{|\overline{y}|} = |\overline{x}| \cos \theta = |\overline{x}| \left(\frac{1 - \tan^2 \theta/2}{1 + \tan^2 \theta/2} \right)$
But $\overline{x \ast y} = |\overline{x}| \cdot |\overline{y}| \tan \frac{\theta}{2}$, so projection of \overline{x} on \overline{y} is $|\overline{x}| \left(\frac{|\overline{x}|^2 |\overline{y}|^2 - (\overline{x} \ast \overline{y})^2}{|\overline{x}|^2 |\overline{y}|^2 + (\overline{x} \ast \overline{y})^2} \right)$

68. If \vec{x} and \vec{y} represent the adjacent sides of a parallelogram, then its area is given by

a)
$$|\vec{x} * \vec{y}|$$
 b) $\frac{2(\vec{x} * \vec{y})|\vec{x}|^2 |\vec{y}|^2}{|\vec{x} * \vec{y}|^2 + |\vec{x}|^2 |\vec{y}|^2}$ c) $\frac{\vec{x} * \vec{y}}{1 + (\vec{x} * \vec{y})^2}$ d) none of these

Ans. b

Sol. Area of parallelogram =
$$|\vec{x}| |\vec{y}| \sin \theta = |\vec{x}| |\vec{y}| \left(\frac{2 \tan \theta/2}{1 + \tan^2 \theta/2}\right)$$

69. If \vec{x} and \vec{y} two non-zero linearly independent vectors vectors such that $|\vec{x} \times \vec{y}| = |\vec{x} * \vec{y}|$, then a) \vec{x} and \vec{y} are parallel b) \vec{x} and \vec{y} are perpendicular c) angle between \vec{x} and \vec{y} is $\frac{\pi}{4}$ d) none of these Ans. b

Mathematics

Sol.
$$|\vec{x} \times \vec{y}| = |\vec{x} \ast \vec{y}|$$

 $\Rightarrow |\vec{x}| |\vec{y}| \sin \theta = |\vec{x}| |\vec{y}| \tan \frac{\theta}{2} \Rightarrow \theta = \frac{\pi}{2}$

SWARIACHERRERE

Vectors Integer Answer Type

1. If \vec{a} , \vec{b} and \vec{c} are non-coplanar vectors and

$$\left[\left(\vec{a} + \vec{b} \right) \times \left(\vec{b} - \vec{c} \right) \quad \left(\vec{b} + \vec{c} \right) \times \left(\vec{c} + \vec{a} \right) \quad \left(\vec{c} - \vec{a} \right) \times \left(\vec{a} + \vec{b} \right) \right] = \mathbf{K} \left[\vec{a} \ \vec{b} \ \vec{c} \right]^2 \text{ then value of K is } ?$$

Key. 4

Sol. $[(\vec{a} + \vec{b}) \times (\vec{b} - \vec{c}) \ (\vec{b} + \vec{c}) \times (\vec{c} + \vec{a}) \ (\vec{c} - \vec{a}) \times (\vec{a} + \vec{b})]$ = $[\vec{a} \times \vec{b} - \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \ - \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \ - \vec{a} \times \vec{b} - \vec{b} \times \vec{c} + \vec{c} \times \vec{a}]$ = $[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] \begin{vmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ -1 & -1 & 1 \end{vmatrix}$ = $4 [\vec{a} \ \vec{b} \ \vec{c}]^2$

2. OABC is regular tetrahedron of unit edge length with volume V then $12\sqrt{2V} =$

Key. 2

Sol.
$$\begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}^2 = \begin{vmatrix} \overline{a} \cdot \overline{a} & \overline{a} \cdot \overline{b} & \overline{a} \cdot \overline{c} \\ \overline{b} \cdot \overline{a} & \overline{b} \cdot \overline{b} & \overline{b} \cdot \overline{c} \\ \overline{c} \cdot \overline{a} & \overline{c} \cdot \overline{b} & \overline{c} \cdot \overline{c} \end{vmatrix} = \begin{vmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 \end{vmatrix} = \frac{1}{2}$$
$$\Rightarrow \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} = \frac{1}{\sqrt{2}} \text{ volume} = \frac{1}{6} \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} = \frac{1}{6\sqrt{2}}$$
$$12 \sqrt{2} V = 2$$

3. Two points P and Q are given in the rectangular cartesian co-ordinate system on the curve $y = 2^{x + 2}$, such that $OP.\hat{i} = -1$ and $OQ.\hat{i} = 2$. The magnitude of the vector OQ-4OP is 10*l* where l = (where O is origin)

Key. 1

Sol. Let
$$P(x_1, y_1)$$
 and $Q(x_2, y_2)$ then $y_1 = 2^{x_1+2}$ and $y_2 = 2^{x_2+2}$ and $\overrightarrow{OP}.\hat{i} = -1$
 $P(x_1\hat{i} + y_1\hat{i}).\hat{i} = -1P(x_1 = -1)$

and correspondingly $y_1 = 2^{-1+2}$, ie. $y_1 = 2$.

4. ABC is any triangle and O is any point in the plane of the same. If AO, BO and CO meet the sides BC, CA and AB in D,E,F respectively, then $\frac{OD}{AD} + \frac{OE}{BE} + \frac{OF}{CF} =$ _____.

Sol. $OD = x OA \mathbf{p}$ $\mathbf{r} = -x \mathbf{a}^{\mathbf{r}}$ $Q \overline{a}, \overline{b}, \overline{c}$ are coplanor $l \mathbf{x}^{\mathbf{r}} + m\mathbf{b}^{\mathbf{l}} + n\mathbf{c}^{\mathbf{r}} = 0$

Vectors

Mathematics

5.

$$\Rightarrow \overline{a} + \overline{b} = \lambda c, b + c = ma$$

$$\Rightarrow \overline{a} + \overline{b} + \overline{c} = \overline{0}$$

$$\Rightarrow \left| \overline{a} \cdot \overline{b} + \overline{b} \cdot \overline{c} + \overline{c} \cdot \overline{a} \right| = \left| -\frac{\left(\left| \overline{a} \right|^2 + \left| \overline{b} \right|^2 + \left| \overline{c} \right|^2 \right)}{2} \right| = 3$$

- The equation of conic section can also be given by two dimensional vectors. The vector 6. equation of conic must be a relation satisfied by position vectors of all the points on the conic. The position vector of a general point may be taken as \vec{r} . The eccentricity of the conic $\left|\vec{r} - \hat{i} - \hat{j}\right| + \left|\vec{r} + \hat{i} + \hat{j}\right| = 3$ is "e" then $\left[\sqrt{2}e^{-1}\right]$ where [.] denotes greatest integer function Key. 1 Sol. e =
- Find the distance of the point $\hat{i} + 2\hat{j} + 3k$ from the plane $\vec{r} \cdot (\hat{i} + \hat{j} + k) = 5$ 7. measured parallel to the vector $2\hat{i}+3\hat{j}-6k$.

Key. 7

The distance of the point 'a' from the plane $\vec{r.n}=q\,$ measured in the direction of the unit Sol. vector b is = $\frac{q-a.n}{r}$

→

Here
$$\vec{a} = \hat{i} + 2\hat{j} + 3k$$
, $\vec{n} = \hat{i} + \hat{j} + k$ and $q = 5$
Also $b = \frac{2\hat{i} + 3\hat{j} - 6k}{\sqrt{(2)^2 + (3)^2 + (-6)^2}} = \frac{2\hat{i} + 3\hat{j} - 6k}{7}$
 \therefore The required distance
 $= \frac{5 - (\hat{i} + 2\hat{j} + 3k) \cdot (\hat{i} + \hat{j} + k)}{\frac{1}{7}(2\hat{i} + 3\hat{j} - 6k) \cdot (\hat{i} + \hat{j} + k)} = \frac{5 - (1 + 2 + 3)}{\frac{1}{7}(2 + 3 - 6)} = 7$

8.

If $\vec{a}, \vec{b}, \vec{c}$ be non-coplanar unit vectors equally inclined to one another at an acute angle θ , and

if
$$a \times b + b \times c = pa + qb + rc$$
 then $p - r =$ _____ (p,q,r $\in \mathbb{R}$

ans: 0.

Sol. taking dot product with
$$\vec{a} = \left[\overline{abc}\right] = p + q\cos\theta + r\cos\theta - --(1)$$

taking dot product with $\vec{c} = \left[\overline{abc}\right] = p\cos\theta + q\cos\theta + r - --(2)$
From (1) and (2) $p = r$.

9. Let A be a point on the line
$$\bar{r} = (-3\hat{i} + 6j + 3k) + t(2\hat{i} + 3j - 2k)$$
 and B be a point on the line $\bar{r} = 6j + s(2\hat{i} + 2j - k)$. The least value of the distance AB is

ANS : 5

HINT Let
$$A_o = (-3, 6, 3), B_o = (0, 6, 0); \overline{c} = (2, 3, -2) \& \overline{d} = (2, 2, -1)$$

Then $AB_{min} = |proj of \overline{A_o B_o} on \overline{c} \times \overline{d}| = \frac{|(3, 0, -3).(1, -2, -2)|}{3} = 3$

10. If
$$\overline{a}, \overline{b}, \overline{c}$$
 are unit vectors such that \overline{a} is perpendicular to plane of \overline{b} and \overline{c} and the angle between $\overline{b} \& \overline{c}$ is $\frac{\pi}{3}$ the $|\overline{a} + \overline{b} + \overline{c}|$ is

KEY:2
SOL:
$$|\overline{a}| = |\overline{b}| = |\overline{c}| = 1 \& \overline{a}.\overline{b} = 0 \& \overline{a}.\overline{c} = 0$$

 $\overline{b}.\overline{c} = |\overline{b}| |\overline{c}| \cos \frac{\pi}{3} = \frac{1}{2}.$
 $\therefore |\overline{a} + \overline{b} + \overline{c}|^2 = 3 + 2.0 + 2.0 + 1 = 4$
 $\therefore |\overline{a} + \overline{b} + \overline{c}| = 2$

Find the distance of the point $\hat{i} + 2\hat{j} + 3k$ from the plane $\vec{r} \cdot (\hat{i} + \hat{j} + k) = 5$ measured parallel 11. to the vector $\,2\hat{i}\!+\!3\hat{j}\!-\!6k$.

Mathematics 7

Sol. The distance of the point 'a' from the plane
$$\vec{r}.\vec{n} = q$$
 measured in the direction of the unit vector b is $= \frac{q-\vec{a}.\vec{n}}{b.\vec{n}}$
Here $\vec{a}=\hat{i}+2\hat{j}+3k, \vec{n}=\hat{i}+\hat{j}+k$ and $q=5$
Also $b=\frac{2\hat{i}+3\hat{j}-6k}{\sqrt{2(2^2+(3)^2+(-6)^2}}=\frac{2\hat{i}+3\hat{j}-6k}{7}$
 \therefore The required distance
 $=\frac{5-(\hat{i}+2\hat{j}+3k)(\hat{i}+\hat{j}+k)}{\frac{1}{7}(2\hat{i}+3\hat{j}-6k)(\hat{i}+\hat{j}+k)}=\frac{5-(\hat{i}+2\hat{j}+3k)(\hat{i}+\hat{j}+k)}{\frac{1}{7}(2\hat{i}+3\hat{j}-6k)(\hat{i}+\hat{j}+k)}=7$
12. The projection length of a variable vector $x\hat{i}+y\hat{j}+z\hat{k}$ on the vector $\vec{p}=\hat{i}+2\hat{j}+3\hat{k}$ is 6. Let ℓ be the minimum projection length of the vector $x^2\hat{i}+y^2\hat{j}+z^2\hat{k}$ on the vector \vec{p} , then the value of $\sqrt[3]{l^2+15^2}$ is
Key. 9
Sol. Projection length = $|\vec{a}.\vec{p}|$
So, $\frac{|x+2y+3z|}{\sqrt{14}}=6$
 $\Rightarrow |x+2y+3z|=6\sqrt{14}$
 $\Rightarrow (x\hat{i}+\sqrt{2}y\hat{j}+\sqrt{3}\hat{z}\hat{k}).(\hat{i}+\sqrt{2}\hat{j}+\sqrt{3}\hat{k})|=6\sqrt{14}$
 $\Rightarrow (x\hat{i}+\sqrt{2}y\hat{j}+\sqrt{3}\hat{z}\hat{k}).(\hat{i}+\sqrt{2}\hat{j}+\sqrt{3}\hat{k})|=6\sqrt{14}$
 $\Rightarrow (x\hat{i}+2y^2+3z^2)(\hat{i}+2+3)\cos^2\theta=(6\sqrt{14})^2$
 $\Rightarrow \frac{x^2+2y^2+3z^2}{\sqrt{14}} < 6\sqrt{14} \Rightarrow l=6\sqrt{14}$
So, $(l^2+15^2)^{1/3} = (604+225)^{1/3} = (729)^{1/3} = 9.$
13. Non-zero vectors $\vec{a}, \vec{b}, \vec{c}$ satisfy $\vec{a}, \vec{b} = 0, (\vec{b}-\vec{a}).(\vec{b}+\vec{c}) = 0$ and $2|\vec{b}+\vec{c}|=|\vec{b}-\vec{a}|$. If $\vec{a}=\mu\vec{b}+4\vec{c}$ then the value of μ is
Key. 0
Sol. $\vec{e}=\frac{\vec{a}+\mu\vec{b}}{4}$ and $\vec{a}.\vec{b}=0$
Now, $(\vec{b}-\vec{a}).(\vec{b}+\vec{c})=0 \Rightarrow (\vec{b}-\vec{a}).(\vec{b}+\vec{a}-\vec{b})=0$
 $\Rightarrow (4-\mu)b^2=a^2(...,\mu<4)...(1)$
Again $4|\vec{b}+\vec{c}|^2=|\vec{b}-\vec{a}|^2 \Rightarrow 4\left|\frac{(4-\mu)\vec{b}+\vec{a}}{4}\right|^2=|\vec{b}-\vec{a}|^2$
 $\Rightarrow 4\left(\frac{(4-\mu)}{4}\right)^2b^2+\frac{a^2}{4}=b^2+a^2 \Rightarrow ((4-\mu)^2-4)b^2=3a^2...(ii)$

(i) & (ii) we get
$$\frac{(4-\mu)^2-4}{4-\mu} = \frac{3}{1} \Rightarrow \mu^2 - 5\mu = 0$$

 $\Rightarrow \mu = 0 \text{ or } 5 \text{ but as } \mu < 4, \text{ so, } \mu = 0.$

14. Angle
$$\theta$$
 is made by line of intersection of planes $\vec{r} \cdot (\hat{i} + 2j + 3k) = 0$ and $\vec{r} \cdot (\hat{3}\hat{i} + 3j + k) = 0$ with j , where $\cos \theta = \sqrt{\frac{k}{3}}$, then λ is
Ans. 2
Sol. Conceptual

$$\vec{r} \cdot (3\hat{i} + 3j + k) = 0$$
 with j , where $\cos \theta = \sqrt{\frac{\lambda}{3}}$, then λ is

1.

Key.

2.

(A)

(B)

Vectors Matrix-Match Type Column I Column II (A) The area of the triangle whose vertices are the (P) 0 points, with ractangular cartesian coordinates (1, 2, 3), (-2, 1, 4), (3, 4, -2) is The value of (B) (Q) 1 $(\vec{a} \times \vec{b}).(\vec{c} \times \vec{d}) + (\vec{b} \times \vec{c}).(\vec{a} \times \vec{d}) + (\vec{c} \times \vec{a}).(\vec{b} \times \vec{d})$ is (C) A square PQRS is side length P is folded along the diagonal PR so that planes PRQ and PRS are perpendicular to one another, the shortest distance between PQ and RS is , $\frac{P}{k\sqrt{2}}$ then k = $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}, \vec{b} = -\hat{i} + 2\hat{j} - 4\hat{k}, \vec{c} = \hat{i} + \hat{j} + \hat{k}$ and (D) (S) 21 $\vec{d} = 3\hat{i} + 2\hat{j} + \hat{k}$ then $(\vec{a} \times \vec{b}).(\vec{c} \times \vec{d}) =$ (A - R), (B - P), (C - Q), (D - S) $\overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k}, \overrightarrow{OB} = -2\hat{i} + \hat{j} - 4\hat{k}, \overrightarrow{OC} = 3\hat{i} + 4\hat{j} - 2\hat{k}$ (A) Sol. area = $\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{\sqrt{1218}}{2}$ $((\vec{a}\times\vec{b})\times\vec{c})+((\vec{b}\times\vec{c})\times\vec{a}).\vec{d}+((\vec{c}+\vec{a})\times\vec{b}).\vec{d}=0$ (B) Taking P as origin position vector of Q ' R and S are $P\hat{i}+P\hat{j},~P\hat{k}$ equations of PQ ' (C) and RS $\vec{r} = t P\hat{i}$ are, $\vec{r} = P\hat{i} + P\hat{j}$ $\vec{r} = P\hat{i} + P\hat{j} + \lambda(P\hat{i} + P\hat{j} - P\hat{k})$ shortest distance = $\frac{P}{\sqrt{2}}$. $(\overline{a}.\overline{c})(\overline{b}.\overline{d}) - (\overline{b}.\overline{c})(\overline{a}.\overline{d}) = 21$ (D) Match the following Column - I Column - II $\vec{a}, \vec{b}, \vec{c}$ are any three vectors then $\vec{a} \cdot \left(\left(\vec{b} + \vec{c} \right) \times \left(\vec{a} + \vec{b} + \vec{c} \right) \right)$ is (p) 2 egual to If $\vec{a} = \hat{i} + \hat{j} + k$, $\vec{b} = 4\hat{i} - 3\hat{j} + 4k$, $\vec{c} = \hat{i} + \alpha\hat{j} + \beta k$ are linearly (q) -1 dependent and $\left| \vec{c} \right| = \sqrt{3}$ then $\alpha + \beta$ is equal to 0

(C) If
$$\vec{a} = \vec{i} + \vec{j} + k$$
, $\vec{a} \cdot \vec{b} = 1$ and $\vec{a} \times \vec{b} = \vec{j} - k$ and $\vec{b} = \alpha \vec{i} + b \vec{j} + \gamma k$ (r)
then $\alpha - \beta$ is equal to

$$\text{Key.} \quad (A) \to (r), \ (B) \to (p,r), \qquad (C) \to (q)$$

Sol. (A)
$$\rightarrow$$
 (r), (B) \rightarrow (r,s), (C) \rightarrow (q)
(B) $\alpha = \pm 1, \beta = 1$

	(C)	$\beta - \gamma = 0, \gamma - \alpha = 1, \alpha - \beta = -1$			
3.	If ā	If $ec{a}$ and $ec{b}$ are two unit vectors inclined at angle $lpha$ to each other, then			
	Column I Column			nn II	
	(A)	$ \vec{a}+\vec{b} < 1$ if	(P)	$\frac{2\pi}{3} < \alpha \le \pi$	
	(B)	$ \vec{a} - \vec{b} = \vec{a} + \vec{b} $ if	(Q)	$\frac{\pi}{2} < \alpha \le \pi$	
	(C)	$ \vec{a}+\vec{b} < \sqrt{2}$ if	(R)	$\alpha = \frac{\pi}{2}$	\sim
	(D)	$ \vec{a}-\vec{b} < \sqrt{2}$ if	(S)	$0 \le \alpha < \frac{\pi}{2}$	
Key: Hint:	A – F A – F If ∣ā	P, B – R, C-Q, PD – S P, B – R, C-P,Q, D – S $\vec{x} + \vec{b} < 1$ then $(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) < 1$		5	
	So	$\vec{a} ^2 + \vec{b} ^2 + 2\vec{a}.\vec{b} < 1 \implies \vec{a}.\vec{b} < -\frac{1}{2}$, ,
	\Rightarrow	$\cos \alpha < -\frac{1}{2} \Rightarrow \frac{2\pi}{3} < \alpha < \pi$	N		
	lf ∣ā	$\vec{a} - \vec{b} \models \vec{a} + \vec{b}$ then $\vec{a} \cdot \vec{b} = 0 \implies \alpha = \frac{\pi}{2}$			
	lf ∣ā	$ \vec{a} + \vec{b} < \sqrt{2}$ then $\cos \alpha < 0$ which is true	if $\frac{\pi}{2} <$	$\alpha \leq \pi$	
	lf ā	$ \vec{b} < \sqrt{2}$ then $\cos \alpha > 0$ which is true	if $0 \le$	$\alpha < \pi$.	
4.	Mat	ch the following			
		Column – I			Column – II
A)	lf	a = xi + (x-1)j + k and		p)	1
	Ī	$\overline{b}=(x+1)\overline{i}+\overline{j}+a\overline{k}$ always make	an ac	ute	

	$ar{b}=(x+1)ar{i}+ar{j}+aar{k}$ always make an acute		
	angle with each other for all $x {\in} R$, then number		
	of non positive integral values of 'a' is		
B)	Let $\overline{a}, \overline{b}, \overline{c}$ be unit vectors such that	q)	0
2	$\overline{a} + \overline{b} + \overline{c} = \overline{x}, \ \overline{a}.\overline{x} = 1, \ \overline{b}.\overline{x} = \frac{3}{2}, \ \overline{x} = 2 \text{ and } \theta$		
	' is angle between \bar{c} and \bar{x} then $\left[2\cos{ heta}\!+\!2 ight]$ is (
	□ denotes G.I.F).		
C)	If $\overline{a} = \overline{i} + \overline{j} + \overline{k}$, $\overline{b} = 4\overline{i} + 3\overline{j} + 4\overline{k}$,	r)	2
	$ar{c}=ar{i}+par{j}+qar{k}$ are linearly dependent and		
	\bar{c} = $\sqrt{3}$ then $p^2 - q^2$ =		

Mathematics

Vectors

D)	If $\overline{a}, \overline{b}, \overline{c}$ are non coplanar and $\overline{a} + \overline{b} + \overline{c} = \alpha \overline{d}$,	s)	3
	$\overline{b} + \overline{c} + \overline{d} = \beta \overline{a}$ then $ \overline{a} + \overline{b} + \overline{c} + \overline{d} =$		
Key. A	A-Q, B-S, C-Q, D-Q		
Sol. A	A) $\overline{a}.\overline{b} > 0 \Longrightarrow x^2 + 2x + a - 1 > 0$		
:	$\Rightarrow \Delta < 0 \Rightarrow a > 2$		
E	B) $(\overline{a} + \overline{b} + \overline{c}).\overline{x} = \overline{x}.\overline{x} \Longrightarrow 1 + \frac{3}{2} + \overline{c}.\overline{x} = 4$		
:	$\Rightarrow \overline{c.x} = \frac{3}{2}$		<u> </u>
:	$\Rightarrow \left \bar{c} \right \left \bar{x} \right \cos \theta = \frac{3}{2} \Rightarrow \cos \theta = \frac{3}{4} \Rightarrow \left[2\cos \theta + 2 \right] = 2$		
	$\begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$		$\cdot \cdot \cdot$
(C) $\begin{vmatrix} 4 & 3 & 4 \end{vmatrix} = 0 \Longrightarrow q = 1 \qquad \begin{vmatrix} \overline{c} \end{vmatrix} = \sqrt{3} \Longrightarrow p^2 = 1$	<	<i>SN</i> .
	$\begin{vmatrix} 1 & p & q \end{vmatrix}$		
ł	Hence $p^2 - q^2 = 0$	\sim)
5. (Observe the following columns:		Γ
5. (Dbserve the following columns: Column – I		Column – II
5. ((A) If a	Dbserve the following columns: Column – I $+\vec{b}+\vec{c} = \alpha \vec{d}, \vec{b}+\vec{c}+\vec{d} = \beta \vec{a} \text{ and } \vec{a}, \vec{b}, \vec{c} \text{ are non- coplans}$	ar, then th	$\begin{array}{c c} \hline \textbf{Column - II} \\ \hline \textbf{p.} \ \frac{2\pi}{2} \end{array}$
5. ((A) If \vec{a}	Deserve the following columns: Column – I $\vec{+}\vec{b}+\vec{c} = \alpha \vec{d}, \vec{b}+\vec{c}+\vec{d} = \beta \vec{a} \text{ and } \vec{a}, \vec{b}, \vec{c} \text{ are non- coplant}$ $\vec{-}\vec{b}+\vec{c}+\vec{d} $ is	ar, then th	p. $\frac{2\pi}{3}$
5. ((A) If \vec{a} $ \vec{a}$ (B) If \vec{a}	Deserve the following columns: Column – I $\vec{+}\vec{b}+\vec{c} = \alpha \vec{d}, \vec{b}+\vec{c}+\vec{d} = \beta \vec{a} \text{ and } \vec{a}, \vec{b}, \vec{c} \text{ are non- coplant}$ $\vec{-}\vec{b}+\vec{c}+\vec{d} $ is and \vec{b} are unit vectors inclined at an angle θ to each o	ar, then th	Column – IInep. $\frac{2\pi}{3}$ $ \vec{a} + \vec{b} $ g. $\frac{3\pi}{3}$
5. ((A) If \vec{a} $ \vec{a} + \vec{a} $ (B) If \vec{a} <1, \vec{a}	Deserve the following columns: Column – I $\vec{+}\vec{b}+\vec{c} = \alpha \vec{d}, \vec{b}+\vec{c}+\vec{d} = \beta \vec{a} \text{ and } \vec{a}, \vec{b}, \vec{c} \text{ are non- coplant}$ $\vec{-}\vec{b}+\vec{c}+\vec{d}$ is and \vec{b} are unit vectors inclined at an angle θ to each of then θ can be equal to	ar, then th	Column – IInep. $\frac{2\pi}{3}$ $ \vec{a} + \vec{b} $ q. $\frac{3\pi}{4}$
5. ((A) If \vec{a} $ \vec{a} + \vec{a} $ (B) If \vec{a} <1, \vec{a}	Description Column – I $\vec{+}\vec{b}+\vec{c} = \alpha \vec{d}, \vec{b}+\vec{c}+\vec{d} = \beta \vec{a} \text{ and } \vec{a}, \vec{b}, \vec{c} \text{ are non- coplant}$ $\vec{-}\vec{b}+\vec{c}+\vec{d}$ is and \vec{b} are unit vectors inclined at an angle θ to each of then θ can be equal to is unit vector perpendicular to another unit vector \vec{b} , the formula of the sector \vec{b} and \vec{b} and \vec{b} and \vec{b} and \vec{b} and \vec{b} are unit vector perpendicular to another unit vector \vec{b} and \vec{b} and \vec{b} and \vec{b} and \vec{b} and \vec{b} another unit vector \vec{b} and \vec{b} and \vec{b} and \vec{b} and \vec{b} and \vec{b} are unit vector perpendicular to another unit vector \vec{b} and \vec{b}	ar, then th ther and :hen	Column – IInep. $\frac{2\pi}{3}$ $ \vec{a} + \vec{b} $ q. $\frac{3\pi}{4}$ r. $\frac{5\pi}{4}$
5. ((A) If \vec{a} $ \vec{a} + \vec{a} $ (B) If \vec{a} <1, \vec{a} (C) If \vec{a}	Column – I $\vec{column - I}$ $\vec{column - I}$ colum	ar, then th ther and then	Column – IInep. $\frac{2\pi}{3}$ $ \vec{a} + \vec{b} $ q. $\frac{3\pi}{4}$ r. $\frac{5\pi}{6}$
5. ((A) If \vec{a} $ \vec{a} + \vec{a} $ (B) If \vec{a} <1, \vec{a} (C) If \vec{a}	Column – I $\vec{column - I}$ $\vec{column - I}$ colum	ar, then th ther and :hen	Column – IInep. $\frac{2\pi}{3}$ $ \vec{a} + \vec{b} $ q. $\frac{3\pi}{4}$ r. $\frac{5\pi}{6}$
5. ((A) If \vec{a} $ \vec{a} + \vec{a} $ (B) If \vec{a} <1, \vec{a} (C) If \vec{a} $ \vec{a} > \vec{a}$ (D) Let	Column – I $\vec{column - I}$ $\vec{column - I}$ colum	ar, then th ther and then	Column – IInep. $\frac{2\pi}{3}$ $ \vec{a} + \vec{b} $ q. $\frac{3\pi}{4}$ $r. \frac{5\pi}{6}$ gles. 0
5. ((A) If \vec{a} $ \vec{a} + \vec{a} $ (B) If \vec{a} <1, \vec{a} (C) If \vec{a} $ \vec{a} > \vec{a}$ (D) Let	Column – I Column – I $+\vec{b}+\vec{c} = \alpha \vec{d}, \vec{b}+\vec{c}+\vec{d} = \beta \vec{a} \text{ and } \vec{a}, \vec{b}, \vec{c} \text{ are non- coplant}$ $-\vec{b}+\vec{c}+\vec{d} $ is and \vec{b} are unit vectors inclined at an angle θ to each of then θ can be equal to is unit vector perpendicular to another unit vector \vec{b} , the $\langle [\vec{a} \times \{\vec{a} \times (\vec{a} \times \vec{b})\}] $ is equal to $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\vec{0}$, the vector \vec{a} and \vec{b} is equal to	ar, then th ther and then	Column - IInep. $\frac{2\pi}{3}$ $ \vec{a} + \vec{b} $ q. $\frac{3\pi}{4}$ $r. \frac{5\pi}{6}$ gles. 0
5. ((A) If \vec{a} $ \vec{a} + \vec{a} $ (B) If \vec{a} <1, -1 (C) If \vec{a} $ \vec{a} > \vec{a} $ (D) Let bety	Column – I $\vec{r} + \vec{b} + \vec{c} = \alpha \vec{d}, \vec{b} + \vec{c} + \vec{d} = \beta \vec{a} \text{ and } \vec{a}, \vec{b}, \vec{c} \text{ are non- coplants}$ $\vec{c} - \vec{b} + \vec{c} + \vec{d} \vec{s}$ and \vec{b} are unit vectors inclined at an angle θ to each of then θ can be equal to is unit vector perpendicular to another unit vector \vec{b} , the $\vec{c} [\vec{a} \times \{\vec{a} \times (\vec{a} \times \vec{b})\}] $ is equal to $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, the ween \vec{a} and \vec{b} is equal to	ar, then th ther and then	Column - IInep. $\frac{2\pi}{3}$ $ \vec{a} + \vec{b} $ q. $\frac{3\pi}{4}$ $r. \frac{5\pi}{6}$ gles. 0
5. ((A) If \vec{a} $ \vec{a} + \vec{a} $ (B) If \vec{a} <1, -1 (C) If \vec{a} $ \vec{a} > \vec{a}$ (D) Let bety	Column – I $\vec{+}\vec{b}+\vec{c} = \alpha \vec{d}, \vec{b}+\vec{c}+\vec{d} = \beta \vec{a} \text{ and } \vec{a}, \vec{b}, \vec{c} \text{ are non- coplants}$ $\vec{-}\vec{b}+\vec{c}+\vec{d} $ is and \vec{b} are unit vectors inclined at an angle θ to each of then θ can be equal to is unit vector perpendicular to another unit vector \vec{b} , the $\vec{c}[\vec{a}\times\{\vec{a}\times(\vec{a}\times\vec{b})\}] $ is equal to $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\vec{0}$, the ween \vec{a} and \vec{b} is equal to	ar, then the ther and ther and ther and	Column - IInep. $\frac{2\pi}{3}$ $ \vec{a} + \vec{b} $ q. $\frac{3\pi}{4}$ $r. \frac{5\pi}{6}$ gles. 0t. 1

Key. A-s, B-q, C-t; D-p

Sol. (A)
$$\vec{a} + \vec{b} + \vec{c} + \vec{d} = (\alpha + 1)\vec{d} = (\beta + 1)\vec{a}$$

If $\alpha \neq -1$, then $\vec{d} = \left(\frac{\beta + 1}{\alpha + 1}\right)\vec{a}$

6.

Ans.

Sol.

$$\Rightarrow \overline{a} + \overline{b} + \overline{c} = \alpha \overline{d} = \alpha \left(\frac{\beta + 1}{\alpha + 1}\right) \overline{a}$$

$$\Rightarrow \left\{1 - \alpha \left(\frac{\beta + 1}{\alpha + 1}\right)\right\} \overline{a} + \overline{b} + \overline{c} = 0 \Rightarrow \overline{a}, \overline{b}, \overline{c}$$
are coplanar, which is against the given conditions,
so $\alpha = -1$ and hence $\overline{a} + \overline{b} + \overline{c} + \overline{d} = \overline{0}$
(B) $|\overline{a} + \overline{b}| < 1 \Rightarrow |\overline{a}|^2 + |\overline{b}|^2 + 2|\overline{a}||\overline{b}| \cos \theta < 1$

$$\Rightarrow \cos \theta < -\frac{1}{2}$$
So, $\frac{2\pi}{3} < \theta < \pi$
(C) $\overline{a} \times (\overline{a} \times \overline{b}) = (\overline{a}, \overline{b}) \overline{a} - (\overline{a}, \overline{a}) \overline{b} = -\overline{b}$
a $\times \left[\overline{a} \times (\overline{a} \times \overline{b})\right] = \overline{a} \times -\overline{b} = -\overline{a} \times \overline{b}$
a $\times [\overline{a} \times (\overline{a} \times \overline{b})] = \overline{a} \times -\overline{b} = -\overline{a} \times \overline{b}$

$$= (\overline{a}, \overline{a}) \overline{b} - (\overline{a}, \overline{b}) \overline{a} = \overline{b}$$
(D) $\overline{a} + \overline{b} = -\overline{c} \Rightarrow |\overline{a} + \overline{b}|^2 = |\overline{c}|^2 = 1$

$$\Rightarrow \overline{a}, \overline{b} = -\frac{1}{2} \Rightarrow \theta = \frac{2\pi}{3}$$
Match the following
$$\frac{Column - \Pi}{A) \overline{a} \text{ and } \overline{b} \text{ are unit vectors and } a + 2\overline{b} \text{ is } \pm \text{ to } 5\overline{a} - 4\overline{b}, \text{ then } 2(\overline{a}, \overline{b}) \text{ is equal } p \text{ to }$$
B) The points $(1, 0, 3), (-\pi, 3, 4), (1, 2, 1)$ and $(k, 2, 5)$ are coplanar when k is
equal to
$$\frac{Q}{1} = \frac{Q}{1} + \overline{b} - \overline{c} (-\overline{a}, \overline{c}, \overline{a}) + \overline{c}(\overline{a} \times \overline{b}) \text{ is equal to }$$
D) $\overline{a} \times (\overline{b} - \overline{c}) + \overline{b} - \overline{c}(\overline{a}, \overline{b}) = 0$

$$\Rightarrow \overline{a} + \overline{b} - \overline{c} (-\overline{a}, \overline{b}) = 0$$

$$\Rightarrow \overline{a} + \overline{b} - \overline{c} (-\overline{a}, \overline{b}) = 1$$
B) $\overline{a} = (1 + 3k, \overline{b} = -\hat{i} + 3j + 4k, \overline{c} = \hat{i} + 2j + k, \overline{d} = \hat{i} + 2j + 5k \text{ are coplanar }$

$$\left[\overline{a} + \overline{b} - \overline{c} \right] + \left[\overline{d} - \overline{c} - \overline{a} \right] + \left[\overline{d} - \overline{a} - \overline{b} \right] = \left[\overline{a} - \overline{b} - \overline{c} \right]$$

$$\Rightarrow k = -1$$
C) For no value of m the vectors are coplanar.
D) $\overline{a} \times (\overline{b} \times \overline{c}) = (\overline{a} \cdot \overline{c}) \overline{b} - (\overline{a} \cdot \overline{b}) \overline{c}$

D)
$$a \times (b \times c) = (a \cdot c)b - (a \cdot b)c$$

 $\vec{b} \times (\vec{c} \times \vec{a}) = (\vec{b} \cdot \vec{a})\vec{c} - (\vec{c} \cdot \vec{b})\vec{a}$
 $\vec{c} \times (\vec{a} \times \vec{b}) = (\vec{c} \cdot \vec{b})\vec{a} - (\vec{c} \cdot \vec{a})\vec{b}$

4

Mathematics

Sum is zero.

7. Match the following

Column – I	Column – II
A) Let \vec{a} and \vec{b} unit vectors such that $ \vec{a} + \vec{b} = \sqrt{3}$, then the value of $(2\vec{a} + 5\vec{b}) \cdot (3\vec{a} + \vec{b} + \vec{a} \times \vec{b})$ is equal to	P) √2
B) Let P be any arbitrary point on the circum circle of an equilateral	
triangle of side length 2. Then $\left \overline{PA}\right ^2 + \left \overline{PB}\right ^2 + \left \overline{PC}\right ^2$ is equal to	Q) 5
C) Let $\vec{a} = 3$, $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{c} = \frac{1}{3} \left(p\hat{i} + qj + tk \right)$ then $(p + q - t)$ is	R) 8
equal to	
D) Let $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c} = 0$. If the angle between \vec{b} and \vec{c} is $\frac{\pi}{4}$, then $\vec{a} = \lambda (\vec{b} \times \vec{c})$, where λ is equal to	S) $\frac{39}{2}$
	T) $-\sqrt{2}$

Ans. A-S; B-R; C-Q; D-P, T
Sol. A)
$$(2\vec{a}+5\vec{b})\cdot(3\vec{a}+\vec{b}+\vec{a}\times\vec{b}) = 6\vec{a}\cdot\vec{a}+17\vec{a}\cdot\vec{b}+5\vec{b}\cdot\vec{b}=11+17\vec{a}\cdot\vec{b}$$

 $|\vec{a}+\vec{b}| = \sqrt{3} \Rightarrow |\vec{a}+\vec{b}| = 3 \Rightarrow \vec{a}\cdot\vec{b} = \frac{1}{2}$
B) $|\vec{p}| = |\vec{b}| = |\vec{a}| = |\vec{c}| = \frac{2}{\sqrt{3}}, |\vec{P}\vec{A}|^2 = |\vec{a}-\vec{p}|^2 = |\vec{a}|^2 + |\vec{p}|^2 - 2\vec{p}\cdot\vec{a}$
 $|\vec{P}\vec{B}| = |\vec{b}|^2 + |\vec{p}|^2 - 2\vec{p}\cdot\vec{b}, |\vec{P}\vec{C}| = |\vec{c}|^2 + |\vec{p}|^2 - 2\vec{p}\cdot\vec{c}$
 $\Rightarrow \sum |\vec{P}\vec{A}|^2 = 6 \cdot \frac{4}{3} - 2\vec{p}\cdot(\vec{a}+\vec{b}+\vec{c}) = 8 \text{ as } \frac{\vec{a}+\vec{b}+\vec{c}}{3} = 0$
C) $\vec{a}\times\vec{c} = \vec{b} \Rightarrow \vec{a}\times(\vec{a}\times\vec{c}) = \vec{a}\times\vec{b} \Rightarrow (\vec{a}\cdot\vec{c})\vec{a}-(\vec{a}\cdot\vec{a})\vec{c} = \vec{a}\times\vec{b}$
 $\vec{a}\cdot\vec{a} = 3, \vec{a}\times\vec{b} = -2\hat{i}+j+k \Rightarrow 3\vec{a}-3\vec{c} = \vec{a}\times\vec{b} = -2\hat{i}+j+k$
 $3\vec{c} = 5\hat{i}+2j+2k$
 $\therefore \vec{c} = \frac{1}{3}(5\hat{i}+2j+2k)$
D) $\vec{a} = \lambda(\vec{b}\times\vec{c}) \Rightarrow |\vec{a}| = |\lambda| |\vec{b}\times\vec{c}| = |\lambda| |\vec{b}| |\vec{c}| \sin\frac{\pi}{4} \Rightarrow |\lambda| = \sqrt{2}$
 $\Rightarrow \lambda = \pm \sqrt{2}$

SMARIACHEURSLEAMMERULI