Quadratic Equations & Theory of Equations

Quadratic Equations & Theory of Equations Single Correct Answer Type

1.	Let α and β be the roots of	$f^{2}x^{2}-6x-2=0$ with $\alpha > \beta$ if $a_{n} = \alpha^{n} - \beta^{n}$ for $n \ge 1$ then
	the value of $\frac{a_{10} - 2a_8}{3a_9} =$	
	1) 1	2) 2
	3) 3	4) 4
Key.	2	
Sol.	$\alpha^2 - 6\alpha - 2 = 0$	$\beta^2 - 6\beta - 2 = 0$
	$\Rightarrow \alpha^{10} - 6\alpha^9 - 2\alpha^8 = 0$	(1)
		$\Rightarrow \beta^{10} - 6\beta^9 - 2\beta^8 = 0 \dots (2)$
	subtract (2) from (1)	
2.	If a,b,c are positive real in	numbers such that $a+b+c=1$ then the least value of
	$\frac{(1+a)(1+b)(1+c)}{1+c}$ is	
	(1-a)(1-b)(1-c)	
	1) 16	2) 8
	3) 4	4) 5
Key.	2	
Sol.	a=1-b-c	
	$\Rightarrow 1 + a = (1 - b) + (1 - c) \ge 2,$	((1-b)(1-c))
	$(1+a)(1+b)(1+c) \ge 8(1-a)(1+c)(1+c)(1+c)(1+c)(1+c)(1+c)(1+c)(1+c$	a)(1-b)(1-c)
3.	The range of values of a' for	which all the roots of the equation
	$(a-1)(1+x+x^2)^2 = (a+1)(a+1)(a+1)(a+1)(a+1)(a+1)(a+1)(a+1)$	$1+x^2+x^4$) are imaginary is
	1) (−∝,−2]	2) (2, ∞)
	3) (-2,2)	4) [2,∞)
Key.	3	- /
Sol.	The given equation can be writ	ten as $(x^2 + x + 1)(x^2 - ax + 1) = 0$
4.	If $lpha,eta$ are the roots of the eq	uation $ax^2 + bx + c = 0$ and $S_n = \alpha^n + \beta^n$ then
~	$aS_{n+1} + bS_n + cS_{n-1} = (n \ge 2)$	
	1) 0	2) $a+b+c$
	3) $(a+b+c)n$	4) $n^2 abc$
Key.	1	
Sol.	$S_{n+1} = \alpha^{n+1} + \beta^{n+1}$	
	$=(\alpha+\beta)(\alpha^n+\beta^n)-lphaeta$	$\left(lpha^{n-1}+eta^{n-1} ight)$
	$\frac{b}{c} S - \frac{c}{c} S$	

Quadratic Equations & Theory of Equations

5.	A group of students decided to buy a Alarm Clock priced between Rs. 170 to Rs 195. But				
	at the last moment, two students backed out of the decision so that the remaining				
	shares the price of the Alarm	Clock is	i. Il the students j	palu equal	
	1) 100	2) 106			
	2) 190	2) 190 4) 171			
Vou	2	4) 1/1			
Key.					
501.	number of students $= n$				
	then $\frac{x}{n-2} = \frac{x}{n} + 1 \Longrightarrow x = \frac{n^2 - 2}{2}$	$\frac{-2n}{2}$		$\sqrt{\mathbf{O}}$	
	$\Rightarrow 170 \le \frac{n^2 - 2n}{2} \le 195$				
6.	If $\tan A$, $\tan B$ are the roots of	f $x^2 - Px + Q = 0$ the value	of $\sin^2(A+B)$ =	=	
	(where $P, Q \in R$)		~ ? ~		
	P^2		P^2		
	1) $\frac{1}{P^2 + (1 - Q)^2}$		$2\int \overline{P^2 + Q^2}$		
	Q^2	$\langle P \rangle$	P^2		
	3) $\frac{2}{P^2 + (1 - Q)^2}$		4) $\overline{\left(P+Q\right)^2}$		
Key.	1				
Sol.	$\tan(A+B) = \frac{P}{1-Q} \text{ then } \sin^2$	$f(A+B) = \frac{\tan^2(A+B)}{1+\tan^2(A+B)}$			
7.	The number of solutions of [x]-2x =4 where $[x]$ is the	e greatest intege	$r \le x$ is	
	1) 2	2	2) 4		
	3) 1		4) Infinite		
Key.	2				
Sol.	If $x = n \in \mathbb{Z}$, $ n-2n = 4 \Longrightarrow$	$n = \pm 4$			
	If $x = n + K$ where $0 < K < 1$	then $\left n-2\left(n+k\right)\right =4$, it is	s possible if $K = \frac{1}{2}$	$\frac{1}{2}$	
	$\Rightarrow -n-1 = 4$				
2	∴ <i>n</i> =3,−5				
8.	Let a, b and c be real numbe	rs such that $a+2b+c=4$	then the maximu	m value of	
	ab+bc+ca is				
	1) 1	2) 2	3) 3	4) 4	
Key.	4 $b + b + a = r$				
501.	$\Rightarrow 2b^2 + 2(c-2)b - 4c + c^2 - 4c + 4c + c^2 - 4c + 4c + c^2 - 4c + 4c$	+x=0			
	Since $b \in R$,				
	$c^{2}-4c+2x-4 < 0$				
	Since $c \in R$				

	$\therefore x \leq 4$		
9.	For the equation $3x^2 + px + 3 = 0$,	p > 0, if one root is th	e square of the other then value
	of P is		
	1) $\frac{1}{-}$		2) 1
	3		<i>2</i>) 1
	3) 3		4) $\frac{2}{2}$
Kev.	3		3
	p		\sim
501.	$\alpha + \alpha = -\frac{1}{3}$		<\).
	$\alpha^3 = 1$		
10.	If the equations $2x^2 + kx - 5 = 0$ a	nd $x^2 - 3x - 4 = 0$ has	ve a common root, then the
	value of k is		
	1) -2		2) -3
	3) $\frac{27}{4}$		$(4) - \frac{1}{4}$
Kou	4		4
Key.	$\frac{2}{16}$ If $\frac{1}{2}$ is the common root then $\frac{2}{3}$	$k^{2} + k\alpha - 5 = 0 \alpha^{2}$	$\alpha = 1 - 0$ solve the equations
11	If α is the common root then 2α	$+\kappa \alpha - 3 = 0, \alpha = 5$	$\alpha - 4 = 0$ solve the equations.
11.	If α and p are the roots of the eq	uation $x - x + 1 = 0$	then $\alpha + \rho =$
	1) 1 3) -1		(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
Key.	1		1) 2
	$1\pm i\sqrt{3}$	\mathbf{c}	
Sol.	$x = \frac{1}{2}$		
	$\therefore \alpha = -\omega, \beta = -\omega^2$		
12.	If $P(Q-r)x^2 + Q(r-P)x + r(P)$	-O = 0 has equal ro	pots then $\frac{2}{-}$ =
12.		\mathfrak{L}) o has equal to	Q
	(where $P, Q, r \in R$)		
	$1)^{1}$		1 1
	P r		$\frac{2}{P} {r}$
	3) $P + r$		4) <i>Pr</i>
Key.	1 Surdiver of the new training 1		
501.	Product of the roots = 1		
13.	If $(1+K)\tan^2 x - 4\tan x - 1 + K =$	0 has real roots tan x	x_1 and $\tan x_2$ then
	1) $k^2 \le 5$		2) $k^2 \ge 6$
	3) $k = 3$		4) $k > 10$
Key.	1		-
Sol.	Discriminate ≥ 0		

 α,β are the roots of $ax^2 + bx + c = 0$ and γ,δ are the roots of $px^2 + qx + r = 0$ and 14. D_1, D_2 be the respective discriminants of these equations. If α, β, γ and δ are in A.P. then $D_1: D_2 = ($ where $\alpha, \beta, \gamma, \delta \in R \& a, b, c, p, q, r \in R)$ 1) $a^2: p^2$ 2) $a^2:b^2$ 3) $c^2:r^2$ 4) $a^2: r^2$ Key. $\beta = \alpha + d, \ \gamma = \alpha + 2d, \ \delta = \alpha + 3d$ Sol. $d^2 = \frac{D_1}{a^2} = \frac{D_2}{p^2}$ If $x^2 + 4y^2 - 8x + 12 = 0$ is satisfied by real values of x and y then 'y' 15. 1) [2,6] 3) [-1,1] Key. $x^2 - 8x + (4y^2 + 12) = 0$ is a quadratic in 'x', 'x' is real then discriminate ≥ 0 Sol. For $x > 0, 0 \le t \le 2\pi, K > \frac{3}{2} + \sqrt{2}$, K being a fixed real number the minimum 16. value of $x^{2} + \frac{K^{2}}{x^{2}} - 2\left\{ (1 + \cos t)x + \frac{K(1 + \sin t)}{x} \right\} + 3 + 2\cos t + 2\sin t$ is b) $\frac{1}{2} \left\{ \sqrt{K} - \left(1 + \frac{1}{\sqrt{2}}\right) \right\}^2$ d) $2 \left\{ \sqrt{K} - \left(1 + \frac{1}{\sqrt{2}}\right) \right\}^2$ a) $\left\{\sqrt{K} - \left(1 + \frac{1}{\sqrt{2}}\right)\right\}^2$ c) $3\left\{\sqrt{K} - \left(1 + \frac{1}{\sqrt{2}}\right)\right\}^2$ Key. Given expansion = $\left\{ x - (1 + \cos t) \right\}^2 + \left\{ \frac{K}{x} - (1 + \sin t) \right\}^2$ Sol. Let $\phi(\mathbf{x}) = \frac{(\mathbf{x}-\mathbf{b})(\mathbf{x}-\mathbf{c})}{(\mathbf{a}-\mathbf{b})(\mathbf{a}-\mathbf{c})}f(\mathbf{a}) + \frac{(\mathbf{x}-\mathbf{c})(\mathbf{x}-\mathbf{a})}{(\mathbf{b}-\mathbf{c})(\mathbf{b}-\mathbf{a})}f(\mathbf{b}) + \frac{(\mathbf{x}-\mathbf{a})(\mathbf{x}-\mathbf{b})}{(\mathbf{c}-\mathbf{a})(\mathbf{c}-\mathbf{b})}f(\mathbf{c}) - f(\mathbf{x})$ 17. Where a < c < b and $f^{11}(x)$ exists at all points in (a,b). Then, there exists a real number $\mu, a < \mu < b$ such that $\frac{f(a)}{(a-b)(a-c)} + \frac{f(b)}{(b-c)(b-a)} + \frac{f(c)}{(c-a)(c-b)} =$ c) $\frac{1}{2}f^{11}(\mu)$ d) $\frac{1}{2}f^{111}(\mu)$ a) $f^{11}(\mu)$ b) $2f^{11}(\mu)$ Key. Apply RT's, twice Sol.

Quadratic Equations & Theory of Equations

If α,β,γ are the roots of the equation $x^3 + px + q = 0$, then the value of the 18. ß α γ determinant $|\beta|$ γ α is β α lγ (A) 4 (C)0 (B)2(D) -2 Key. С Sol. Since α, β, γ are the roots of $x^3 + px + q = 0$ $\alpha + \beta + \gamma = 0$ *.*.. Applying $C_1 \rightarrow C_1 + C_2 + C_3$, then $|\alpha + \beta + \gamma \beta \gamma| |0 \beta \gamma|$ $\alpha + \beta + \gamma \gamma$ $\alpha = |0 \gamma \alpha| = 0$ $\alpha + \beta + \gamma \alpha$ β 0α ß 19. The number of points (p, q) such that $p, q \in \{1, 2, 3, 4\}$ and the equation px +qx+1=0 has real roots is A. 7 B. 8 C. 9 D. None of these Kev. А $px^2 + qx + 1 = 0$ has real roots if $q^2 - 4p \ge 0$ or qSol. Since $p, q \in \{1, 2, 3, 4\}$ The required points are(1,2), (1,3),(1,4), (2,3),(2,4),(3,4),(4,4)So the required number is 7 The value of *b* and *c* for which the identity f(x+1)-f(x)=8x+3 is satisfied. 20. where $f(x) = bx^2 + cx + dare$ (A) b = 2, c = 1(B) b = 4, c = -1(C) b = -1, c = 4(D) b = -1, c = 1Key. В Sol. \therefore f (x + 1) f(x) = 8x + 3 $b(x+1)^{2}+c(x+1)+d - {bx^{2}+cx+d} = 8x+3$ +c=8x+3b!(x+1)b(2x+1)+c=8x+3 on comparing 2b = 8 and b + c = 3Then, b = 4 and c = -1Let $f(x) = ax^2 + bx + c$, $g(x) = ax^2 + px + q$ where a, b, c, q, p, \in R and $b \neq p$. If their 21. discriminants are equal and f(x) = g(x) has a root α , then 1) α will be A.M. of the roots of f(x) = 0, g(x) = 0 2) α will be G.M of all the roots of f(x) = 0, g(x) = 0 3) α will be A.M of the roots of f(x) = 0 or g(x) = 0 4) α will be G.M of the roots of f(x) = 0 or g(x) = 0 Key. 1

 $a\alpha^{2} + b\alpha + c = a\alpha^{2} + p\alpha + q \Longrightarrow \alpha = \frac{q-c}{b-n} \rightarrow (i)$ Sol. And $b^2 - 4ac = p^2 - 4aq$ $\Rightarrow b^2 - p^2 = 4a(c-q)$ $\Rightarrow b + p = \frac{4a(c-q)}{b-n} = -4a\alpha$ (from(i)) $\alpha = \frac{-(b+p)}{4a} = \frac{\frac{-b}{a} - \frac{p}{a}}{4}$ which is A.M of all the roots of f(x) = 0 and g(x) = 0 If the equations $x^2 + 2\lambda x + \lambda^2 + 1 = 0$, $\lambda \in R$ and $ax^2 + bx + c = 0$ where a, b, c are 22. lengths of sides of triangle have a common root, then the possible range of values of λ is 3) $(2\sqrt{2}, 3\sqrt{2})$ 2) $(\sqrt{3},3)$ 1) (0, 2) 4) (0,∞) Key. 1 $(x+\lambda)^2+1=0$ has clearly imaginary roots Sol. So, both roots of the equations are common $\therefore \frac{a}{1} = \frac{b}{2\lambda} = \frac{c}{\lambda^2 + 1} = k(say)$ Then a = k, b = $2\lambda k$, c = $(\lambda^2 + 1)$ k As a, b, c are sides of triangle $a+b>c \Rightarrow 2\lambda+1>\lambda^2+1 \Rightarrow \lambda^2-2\lambda<0$ $\Rightarrow \lambda \in (0,2)$ The other conditions also imply same relation. The number of real or complex solutions of $x^2 - 6|x| + 8 = 0$ is 23. 1) 6 2) 7 3) 8 4) 9 1 Key. If x is real, $x^2 - 6|x| + 8 = 0 \implies |x|^2 - 6|x| + 8 = 0 \implies |x| = 2, 4 \implies x = \pm 2, \pm 4$ Sol. If x is non – real, say $x = \alpha + i\beta$, then $(\alpha + i\beta)^2 - 6\sqrt{\alpha^2 + \beta^2} + 8 = 0$ $(|\alpha + i\beta| = \sqrt{\alpha^2 + \beta^2})$ $\left(\alpha^2 - \beta^2 + 8 - 6\sqrt{\alpha^2 + \beta^2}\right) + 2i\alpha\beta = 0$ Comparing real and imaginary parts, $\alpha\beta = 0 \implies \alpha = 0$ (if $\beta = 0$ then x is real.) $\& -\beta^2 + 8 - 6\sqrt{\beta^2} = 0$ $\beta^2 \pm 6\beta - 8 = 0 \Longrightarrow \beta = \frac{\mp 6 \pm \sqrt{68}}{2}$ ie., $\beta = \pm (3 - \sqrt{17})$ Hence $\pm (3 - \sqrt{17})i$ are non-real roots.

24.	If $x_1, x_2(x_1 > x_2)$ are a	abscissae of points P, Q l	ying on $y = 2x^2 - 4x - 5$	5 such that the
	tangents drawn at thes	e points pass through th	ie point (0, -7), then $3x_1$	$-2x_2$ equals to
	1) 4	2) 5	3) 6	4) 7
Key.	2			
Sol.	Let (α, β) be point or	the curve such that the	tangent drawn at $(lpha,eta)$) passes through (0,
	$y^1 = 4x - 4 \Longrightarrow y^1_{(\alpha,\beta)} =$	$4\alpha - 4$		
	Tangent at (α, β) is y	$\gamma - \beta = (4\alpha - 4)(x - \alpha)$	pass through (0, -	
7)⇒−	$7-\beta = (4\alpha - 4)(0-\alpha)$	· · · · · · · · · · · · · · · · · · ·		
	But $\beta = 2\alpha^2 - 4\alpha - 5$	\therefore It follows that α^2 = 1	L	
	$\Rightarrow \alpha = \pm 1$			
	So, $x_1 = 1$, $x_2 = -1$			
	So, $3x_1 - 2x_2 = 5$.		0	
25.	Let $f(x) = x^2 + 5x + 6$	δ , then the number of re	eal roots of $\left(f(x)\right)^2 + 5$	f(x)+6-x=0 is
Kan	1) 1	2) 2	3) 3	4) 0
Key. Sol	4 Use "f(x) = x has non re	al roots \Rightarrow f(f(x)) = x als	so has non-real roots"	
26.	Sum of the roots of the	equation is $4^x - 3(2^{x+3})$	+128=0	
	1) 5	2) 6	3)7	4) 8
Key.	3	2,0		1,0
Sol.	Put $2^x = y$. Equation b	ecomes		
	$y^2 - 3(8y) + 128 = 0$	$\Rightarrow y^2 - 24y + 128 = 0$		
	$\Rightarrow (y-8)(y-16) = 0$	$0 \Rightarrow y = 16,8$		
	\Rightarrow 2 ^x = 16, 8 \Rightarrow x = 4,	3		
	\therefore Sum of the roots is 7			
27.	The number of solution	is of $\sqrt{3x^2 + x + 5} = x - 3$	3 is	
	1) 0	2) 1	3) 2	4) 4
Key.	1	2^{2} +	2>0 >2	
501.	Note that we must hav	$e 5x + x + 5 \ge 0$ and x	$-3 \ge 0$ or $x \ge 3$.	
	$\sqrt{3x^2 + x + 5} = x - 3 \dots$. (1) (1) we get		
	Squaring both sides of $3r^2 + r + 5 - r^2 - 6r$	(1), we get ⊢O		
	$\Rightarrow 2r^2 + 7r - 4 = 0 \Rightarrow 2r^2 + 7r - 4 = 0 \Rightarrow 3r^2 + 7r - 4 \Rightarrow 3r^2 + 7r - 7r$	(2r-1)(r+4)=0		
	$\Rightarrow \frac{1}{2} x + \frac{1}{2} x = 0$	(2x - 1)(x + 1) = 0		
	$\rightarrow x - 1/2, - 1$ None of these satisfy the	he inequality $x > 3$ Thu	s (1) has no solution	
	None of these subsry ti		s, (1) has no solution.	
28.	The value of a for which	ch one root of the quadra	atic equation.	
	$(a^2-5a+3)x^2+(3a+3)x^2$	(-1)x+2=0 is twice as	large as other, is	
Kov	1) -2/3	2) 1/3	3) -1/3	4) 2/3
кеу. Sol.	$(a^2-5a+3a)x^2+(3a)x^2$	(a-1)x+2=0(1)		
		, ,		

	Let α and 2α be the roots of (1), then $\left(\alpha^{2} - 5\alpha + 3\right)\alpha^{2} + \left(3\alpha - 1\right)\alpha + 2 = 0$ (2)
	$(u - 3u + 3)u + (3u - 1)u + 2 = 0 \qquad \dots \dots (2)$ and $(x^2 - 5x + 2)(4x^2) + (2x - 1)(2x) + 2 = 0 \dots (2)$
	and $(a - 3a + 3)(4a) + (3a - 1)(2a) + 2 = 0$ (3)
	Multiplying (2) by 4 and subtracting it form (3) we get $(3a-1)(2\alpha)+6=0$
	Clearly $a \neq 1/3$. Therefore, $\alpha = -3/(3a-1)$
	$(a^2 - 5a + 3)(9) - (3a - 1)^2(3) + 2(3a - 1)^2 = 0$
	(u - 5u + 5)(5) - (5u - 1)(5) + 2(5u - 1) = 0 $\Rightarrow 0 \pi^{2} - 45\pi + 27 - (0 \pi^{2} - 6\pi + 1) - 0 \Rightarrow -20\pi + 26 = 0$
	$\Rightarrow 9a - 43a + 27 - (9a - 6a + 1) = 0 \Rightarrow -39a + 26 = 0$ $\Rightarrow a - 2/3$
	For $x = 2/3$, the equation becomes $x^2 + 9x + 18 = 0$, whose roots are $-3, -6$.
29.	If $f(x) = x^2 + 2bx + 2c^2$ and $g(x) = -x^2 - 2cx + b^2$ are such that
	$\min f(x) > \max g(x)$, then relation between b and c, is
	1) no relation 2) $0 < c < b/2$ 3) $ c < \frac{ b }{\sqrt{2}}$ 4) $ c > \sqrt{2} b $
Key.	4
Sol.	$f(x) = (x+b)^2 + 2c^2 - b^2$
	$\Rightarrow \min f(x) = 2c^2 - b^2$
	Also $g(x) = -x^2 - 2cx + b^2 = b^2 + c^2 - (x+c)^2$
	$\Rightarrow \max g(x) = b^2 + c^2$
	As $\min f(x) > \max g(x)$, we get $2c^2 - b^2 > b^2 + c^2$
	$\Rightarrow c^2 > 2b^2 \Rightarrow c > \sqrt{2} b $
30.	The equation $(\cos p - 1)x^2 + (\cos p)x + \sin p = 0$ in variable x has real roots, if p belongs to the interval
	1) $(0, 2\pi)$ 2) $(-\pi, 0)$ 3) $(-\pi/2, \pi/2)$ 4) $(0, \pi)$
Key.	4
Sol.	$(\cos p - 1)x^2 + (\cos p)x + \sin p = 0(1)$
	Discriminant of (1) is given by $2^{2} + 4(1 - 1)^{2}$
	$D = \cos^{2} p - 4(\cos p - 1)\sin p = \cos^{2} p + 4(1 - \cos p)\sin p$
	Note that $\cos p \ge 0, 1 - \cos p \ge 0$. Thus, $D \ge 0$ if $\sin p \ge 0$ <i>i.e.</i> if $p \in (0, \pi)$.
31.	If $x^2 + 2ax + 10 - 3a > 0$ for each $x \in R$, then
	1) $a < -5$ 2) $-5 < a < 2$ 3) $a > 5$ 4) $2 < a < 5$
Key.	2
501.	$x + 2ax + 10 - 5a > 0 \forall x \in \mathbf{K}$ $\Rightarrow (x+a)^2 - (a^2 + 10 - 3a) > 0 \forall x \in \mathbf{R}$
	$\rightarrow (x+a) - (a+10-3a) > 0 \forall x \in \mathbb{R}$ $\rightarrow r^2 + 2r = 10 < 0$
	$\Rightarrow a + 5a - 10 < 0$

 $\Rightarrow (a+5)(a-2) < 0$ $\Rightarrow -5 < a < 2$ Sum of all the values of x satisfying the equation $\log_{17} \log_{11} \left(\sqrt{x+11} + \sqrt{x} \right) = 0$ is 32. 1) 25 2) 36 3) 171 4) 0 1 Key. Sol. Equation (1) is defined if $x \ge 0$. We can rewrite (1) as $\log_{11} \left(\sqrt{x+11} + \sqrt{x} \right) = 17^{\circ} = 1$ $\Rightarrow \sqrt{x+11} + \sqrt{x} = 11^1 = 11$ $\Rightarrow \sqrt{x+11} = 11 - \sqrt{x}$ Squaring both sides we get $x+11=121-22\sqrt{x}+x$ $\Rightarrow 22\sqrt{x} = 110 \Rightarrow \sqrt{x} = 5 \text{ or } x = 25$ This clearly satisfies (1). Thus, sum of all the values satisfying (1) is 25. The number of solutions of the equations of the equation $x^2 + [x] - 4x + 3 = 0$ is Where [] 33. denotes G.I.F. 2) 1 4) 3 1) 0 Key. 1 Given equation can be written as $(x^2 - 3x + 3) - f = O$ where f = x - [x] and $O \le f < 1$ Sol. $: O \le x^2 - 3x + 3 < 1$ solving $x^2 - 3x + 3 = 0$; roots are Imaginary $\therefore x^2 - 3x + 3 \ge O \forall x \in R$ solving $x^2 - 3x + 3 < 1 \Longrightarrow 1 < x <$ if 1 < x < 2; [x] = 1. putting [x] = 1 in the given equation and solving we get x = 2. But 1 < x < 2 \therefore the given equation has no solution. The number of values of 'a' for which the equation $(x-1)^2 = |x-a|$ has exactly three 34. solutions is 2) 2 1)1 3) 3 4) 4 Key. 3 $|x-a| = (x-1)^2$ Iff $a = x \pm (x-1)^2$ Sol. No of solutions = no of intersection its between y = a; $f(x) = x^2 - x + 1$ and $g(x) = -x^2 + 3x - 1$. clearly the graphs of f(x), g(x) are tangents to each other at A(1,1). The line y = a intersects the two graphs at three points If fit passes through one of the three pts A,B, C. Here $B = \left(\frac{1}{2}, \frac{3}{4}\right)$ vertex of f and $C = \left(\frac{3}{2}, \frac{5}{4}\right)$ vertex of 'g' i.e if $a \in \left\{\frac{3}{4}, \frac{5}{4}, 1\right\}$

35. If *a*, *b*, *c* are positive numbers such that a>b>c and the equation $(a+b-2c)x^2+(b+c-2a)x+(c+a-2b)=0$ has a root in the interval (-1,0), then

A) b cannot be the G.M. of a. c B) b may be the G.M. of a, c C) b is the G.M. of a, c D) none of these Key. Α Let $f(x) = (a+b-2c)x^2 + (b+c-2a)x + (c+a-2b)$ Sol. According to the given condition, we have f(0)f(-1) < 0(c+a-2b)(2a-b-c)<0i.e. (c+a-2b)(a-b+a-c) < 0i.e. $[a > b > c, given \Rightarrow a - b > 0, a - c > 0]$ c+a-2b<0i.e. $b > \frac{a+c}{2}$ i.e. *b* cannot be the G.M. of *a*, *c*, since G.M < A.M. always. \Rightarrow $ax^2 + bx$ Let α , β (a < b) be the roots of the equation $ax^2 + bx + c = 0$. If $\lim_{x \to m} \frac{ax^2}{ax^2}$ 36. then A) $\frac{|a|}{a} = -1, m < \alpha$ B) $a > 0, \alpha < m < \beta$ D) $a < 0, m > \beta$ Key. According to the given condition, we have Sol. $\left|am^2 + bm + c\right| = am^2 + bm + c$ $am^2+bm+c>0$ i.e. if a < 0, the *m* lies in (α, β) \Rightarrow if a>0, then *m* does not lies in (α, β) and Hence, option (c) is correct, since $\frac{|a|}{a} = 1 \Longrightarrow a > 0$ And in that case *m* does not lie in (α, β) . Let f(x) be a function such that f(x) = x - [x], where [x] is the greatest integer less 37. than or equal to x. Then the number of solutions of the equation $f(x) + f\left(\frac{1}{x}\right) = 1$ is (are) B) 1 D) infinite A) O C) 2 Given, $f(x) = x - [x], x \in R - \{0\}$ Sol. $f(x) + f\left(\frac{1}{r}\right) = 1$ $\therefore \qquad x - [x] + \frac{1}{x} - \left\lceil \frac{1}{x} \right\rceil = 1$ Now $\Rightarrow \left(x + \frac{1}{x}\right) - \left(\left[x\right] + \left|\frac{1}{x}\right|\right) = 1$ $\Rightarrow \left(x + \frac{1}{x}\right) = \left[x\right] + \left[\frac{1}{x}\right] + 1$...(i) Clearly ,R.H.S is an integer ... L. H. S. is also an integer Let $x + \frac{1}{k} = k$ an integer $\Rightarrow x^2 - kx + 1 = 0$

 $\therefore x = \frac{k \pm \sqrt{k^2 - 4}}{2}$ For real values of x, $k^2 - 4 \ge 0 \Longrightarrow k \ge 2$ or $k \le -2$ We also observe that k=2 and -2 does not satisfy equation (i) \therefore The equation (i) will have solutions if k > 2 or k < -2, where $k \in z$. Hence equation (i) has infinite number of solutions. If both the roots of $(2a-4)9^x - (2a-3)3^x + 1 = 0$ are non-negative, then 38. B) $2 < a < \frac{5}{2}$ C) $a < \frac{5}{4}$ A) 0 < a < 2D) a > 3Key. В Sol. Putting $3^x = y$, we have $(2a-4)y^2-(2a-3)y+1=0$ This equation must have real solution $(2a-3)^2 - 4(2a-4) \ge 0$ \Rightarrow $4a^2 - 20a + 25 \ge 0$ \Rightarrow $(2a-5)^2 \ge 0$. This is true. \Rightarrow y=1 satisfies the equation Since 3^x is positive and $3^x \ge 3^0$, $y \ge 1$ Product of the roots $= 1 \times y > 1$ $\frac{1}{2a-4} > 1$ \Rightarrow $2a - 4 < 1 \Rightarrow a$ \Rightarrow Sum of the roots = \Rightarrow $\frac{1}{2a-4} > 0 \Longrightarrow a > 2$ $2 < a < \frac{5}{2}$ If the equation $x^2 + 9y^2 - 4x + 3 = 0$ is satisfied for real values of x and y then 39.

A)
$$x \in [1,3], y \in [1,3]$$
 B) $x \in [1,3], y \in \left[\frac{-1}{3}, \frac{1}{3}\right]$
C) $x \in \left[\frac{-1}{3}, \frac{1}{3}\right], y \in [1,3]$ D) $x \in \left[\frac{-1}{3}, \frac{1}{3}\right], y \in \left[\frac{-1}{3}, \frac{1}{3}\right]$

Key. B

Sol. Given equation is
$$x^2 + 9y^2 - 4x + 3 = 0$$
 ...(i)

Or,
$$x^2 - 4x + 9y^2 + 3 = 0$$
.
Since x is real $\therefore (-4)^2 - 4(9y^2 + 3) \ge 0$
Or, $16 - 4(9y^2 + 3) \ge 0$ or, $4 - 9y^2 - 3 \ge 0$
Or, $9y^2 - 1 \le 0$ or, $9y^2 \le 1$ or, $y^2 \le \frac{1}{9}$
Now $y^2 \le \frac{1}{9} \Leftrightarrow -\frac{1}{3} \le y \le \frac{1}{3}$...(ii)
Equation (i) can also be written as
 $9y^2 + 0y + x^2 - 4x + 3 = 0$...(iii)
Since y is real $\therefore 0^2 - 4.9(x^2 - 4x + 3) \ge 0$
Or, $x^2 - 4x + 3 \le 0$
 $\Rightarrow x \in [1,3]$
40. The equation $a_8x^8 + a_7x^7 + a_9x^6 + ... + a_9 = 0$ has all its roots positive and real
(where $a_8 = 1, a_7 = -4, a_9 = 1/2^8$), then
A) $a_1 = \frac{1}{2^8}$ B) $a_1 = -\frac{1}{2^4}$ C) $a_2 = \frac{7}{2^5}$ D) $a_2 = \frac{7}{2^8}$
Key. B
Sol. Let the roots be $\alpha_1, \alpha_2, ..., \alpha_8$
 $\Rightarrow \alpha_1 + \alpha_2 + ... + \alpha_8 = 4$
 $\alpha_1 \alpha_2, ..., \alpha_8 = \frac{1}{2^8}$
 $\Rightarrow AM = GM \Rightarrow$ all the roots are equal to $\frac{1}{2}$.
 $\Rightarrow AM = GM \Rightarrow$ all the roots are equal to $\frac{1}{2}$.
 $\Rightarrow a_1 = -^8C_5(\frac{1}{2})^5 = -\frac{7}{2^4}$
 $a_3 = -^8C_5(\frac{1}{2})^5$

41. If every root of a polynomial equation (of degree 'n') f(x) = 0 with leading coefficient "1" is real and distinct, then the equation $f''(x)f(x) - \{f'(x)\}^2 = 0$ has.

D. $\frac{1}{5}$

(A) at least one real root (B) no real root

(C) at most one real root $\,$ (D) exactly two real roots

Sol. Let $f(x) = (x-a_1)(x-a_2)\dots(x-a_n)$ where $a_1, a_2, \dots, a_{n \in \mathbb{R}}$ take log both sides and differentiate. Then

$$\frac{f'(x)}{f(x)} = \frac{1}{x - a_1} + \frac{1}{x - a_2} + \dots + \frac{1}{x - a_n}$$
Again diff w.r.t. 'x'

$$\frac{f f'' - (f')^2}{f^2} = -\left[\frac{1}{(x-a_1)^2} + \frac{1}{(x-a_2)^2} + \dots + \frac{1}{(x-a_n)^2}\right] < 0 \,\forall x \in \mathbb{R}$$

$$\Rightarrow f f' - (f')^2 = 0$$
 has no real root

В.

42. If f(x) is a polynomial of least degree such that $f(r) = \frac{1}{r}$, $r = 1, 2, 3, __9$, then $f(10) = __$

Key. D

Sol.
$$xf(x) - 1 = 0$$
 has roots 1,2,3 ____9

$$xf(x) - 1 = A(x-1)(x-2)$$
____x-9

Put $x = 0 \Longrightarrow A = \frac{1}{9!}$

Put
$$x = 10 \Rightarrow 10f(10) - 1 = 1 \Rightarrow f(10) = \frac{1}{5}$$

43. The number of ordered pairs of integers (x, y) satisfying the equation $x^2 + 6x + y^2 = 4$ is A. 2 B. 8 C. 6 D. 10 Key. B Sol. $(x+3)^2 + y^2 = 13$ $x+3=\pm 2, y=\pm 3 \text{ or } x+3=\pm 3, y=\pm 2$

44. The number of non-negative integer solutions of
$$x + y + 2z = 20$$
 is
A. 76 B. 84 C. 112 D. 121
Key. D
Sol. $x + y = 20 - 2Z$, $Z = 0, 1, 2, ... 10$

The number of solutions (non –ve) is $\sum_{7=0}^{10} (20 - 2Z + 1)_{C_1} = 121$

If
$$a+b+c=0$$
 for $a,b,c \in R$, then the equation $3ax^2+2bx+c=0$ has

- At least one root in [0,1]One root in [2,3] and another root in Α. Β. [-2, -1]C.
 - Imaginary roots D. Atleast one root in [1, 2]

Key. А

Let $f(x) = ax^3 + bx^2 + cx$. Then f is continuous and differentiable [0,1], Sol. f(0) = f(1) = 0. Hence by Rolle's theorem there exists $k \in (0,1)$ such that $3ak^2 + 2bk + c = 0$

If a,b,c be the sides of a triangle ABC and if roots of the equation $a(b - c)x^2 + c^2 +$ 46. b(c - a)x + c(a – b) = 0 are equal, then $\sin^2\left(\frac{A}{2}\right), \sin^2\left(\frac{B}{2}\right), \sin^2\left(\frac{C}{2}\right)$ are in (A) AP (B)GP (D) AGP Key. С a(b-c) + b(c-a) + c(a-b) = 0Sol. ÷ x = 1 is a root of the equation • $a(b-c)x^{2} + b(c-a)x + c(a-b) = 0$ Then, other root = 1 (:: roots are equal) $\alpha \times \beta = \frac{c(a-b)}{a(b-c)}$ *.*.. ab - ac = ca - bc $b = \frac{2ac}{a + c}$ \Rightarrow *.*.. a, b, c are in HP *.*.. $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in AP. Then, $\Rightarrow \frac{s}{a}, \frac{s}{b}, \frac{s}{c} \text{ are in AP}$ $\Rightarrow \frac{s}{a} - 1, \frac{s}{b} - 1, \frac{s}{c} - 1 \text{ are in AP}.$ $\Rightarrow \frac{(s-a)}{a}, \frac{(s-b)}{b}, \frac{(s-c)}{c}$ are in AP.
$$\begin{split} \text{Multiplying in each by } & \frac{abc}{(s-a)(s-b)(s-c)} \\ \text{Then} & \frac{bc}{(s-b)(s-c)}, \frac{ca}{(s-c)(s-a)}, \frac{ab}{(s-a)(s-b)} \text{ are in AP.} \end{split}$$
 $\Rightarrow \qquad \frac{(s-b)(s-c)}{bc}, \frac{(s-c)(s-a)}{ca}, \frac{(s-a)(s-b)}{cb} \text{ are in HP.}$

Quadratic Equations & Theory of Equations

Or
$$\sin^2\left(\frac{A}{2}\right), \sin^2\left(\frac{B}{2}\right), \sin^2\left(\frac{C}{2}\right)$$
 are in HP
47. If a, β, γ are the roots of the equation $x^3 + px + q = 0$, then the value of the determinant $\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha & \beta \end{vmatrix}$ is
 $\begin{vmatrix} \alpha & 4 & (B)2 & (C)0 & (D) -2 \end{vmatrix}$
Key. C
Sol. Since α, β, γ are the roots of $x^3 + px + q = 0$
 $\therefore \quad \alpha + \beta + \gamma = 0$
Applying $C_1 \rightarrow C_1 + C_2 + C_3$, then
 $\begin{vmatrix} \alpha + \beta + \gamma & \gamma & \alpha \\ \alpha + \beta + \gamma & \gamma & \alpha \end{vmatrix} = 0 \quad \gamma \quad \alpha = 0$
 $\begin{vmatrix} \alpha + \beta + \gamma & \gamma & \alpha \\ \alpha + \beta + \gamma & \alpha & \beta \end{vmatrix} = 0 \quad \gamma \quad \alpha = 0$
 $\begin{vmatrix} \alpha + \beta + \gamma & \gamma & \alpha \\ \alpha + \beta + \gamma & \alpha & \beta \end{vmatrix} = 0 \quad \gamma \quad \alpha = 0$
 $\begin{vmatrix} \alpha + \beta + \gamma & \alpha & \beta \end{vmatrix} = 0 \quad \gamma \quad \alpha = 0$
 $\begin{vmatrix} \alpha + \beta + \gamma & \alpha & \beta \end{vmatrix} = 0 \quad \alpha \quad \beta \end{vmatrix}$
48. The value of *b* and *c* for which the identity $f(x + 1) - f(x) = 8x + 3$ is satisfied, where $f(x) = bx^2 + cx + d$ are
(A) $b = 2, c = 1$ (B) $b = 4, c = -1$
(C) $b = -1, c = 4$ (D) $b = -1, c = 1$
(B) $b = 4, c = -1$
(C) $b = -1, c = 4$ (D) $b = -1, c = 1$
(B) $b = 4, c = -1$
(C) $b = -1, c = 4$ (D) $b = -1, c = 1$
(B) $b = 4, c = -1$
(C) $b = -1, c = 8x + 3$
 $\Rightarrow \quad b\{(x + 1)^2 - x^2\} + c = 8x + 3$
 $\Rightarrow \quad b\{(x + 1)^2 - x^2\} + c = 8x + 3$
 $\Rightarrow \quad b\{(x + 1)^2 - x^2\} + c = 8x + 3$
 $\Rightarrow \quad b\{(x + 1)^2 - x^2\} + c = 8x + 3$
 $\Rightarrow \quad b\{(x + 1)^2 - x^2\} + c = 8x + 3$
 $\Rightarrow \quad b\{(x + 1)^2 - x^2\} + c = 8x + 3$
 $\Rightarrow \quad b\{(x + 1)^2 - x^2\} + c = 2x + 2x + (c + a - 2b) = 0$ has a root in the interval $(-1,0)$, then A b earnot be the G.M. of a, c
C) b is the G.M. of a, c D) none of these
Key. A
Sof: tet $f(x) = (a + b - 2c)x^2 + (b + c - 2a)x + (c + a - 2b)$
According to the given condition, we have
 $f(0)f(-1) < 0$
i.e. $(c + a - 2b)(2a - b - c) < 0$
i.e. $(c + a - 2b)(2a - b - c) < 0$
i.e. $(c + a - 2b)(2a - b - c) < 0$
i.e. $(c + a - 2b)(a - b + a - c) < 0$
i.e. $b > \frac{a + c}{2}$
 $\Rightarrow b$ cannot be the G.M. of a, c, since G.M < A.M. always.

Quadratic Equations & Theory of Equations

50.	The values of 'a' for which the quadratic expression $ax^2 + (a-2)x - 2$ is negative for exactly		
	two integral values of x, belongs to		
	(A) $[-1,1]$	(B) $[1,2)$	
Kass	(C) [3,4]	(D) $\lfloor -2, -1 \rfloor$	
Key.	B $b = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) $		
501.	Let $f(x) = ax + (a-2)x - 2$		
	f (x) is negative for two integral values of x, so	o graph should be vertically upward parabola	
	i.e., $a > 0$	(a, 2) + (a + 2) -	
	Let two roots of $f(x) = 0$ are α and β then α ,	$\beta = \frac{-(a-2)\pm(a+2)}{2a} \qquad \underbrace{-1}_{\alpha} \qquad \underbrace{-1}_{\beta}$	
	$\Rightarrow \alpha = -1, \beta = \frac{2}{a} \Rightarrow 1 < \beta \le 2 \Rightarrow 1 < \frac{2}{a} \le 2 \Rightarrow$	a ∈ [1,2]	
51.	Let $f(x)$ be a function such that $f(x) = x - [$	x], where $[x]$ is the greatest integer less	
	than or equal to x. Then the number of solution	is of the equation $f(x) + f\left(\frac{1}{x}\right) = 1$ is (are)	
17	A) 0 B) 1	C) 2 D) infinite	
Кеу.	D		
	Sol. Given, $f(x) = x - [x], x \in R - \{0\}$		
	Now $f(x) + f\left(\frac{1}{x}\right) = 1$	$x - \left[x\right] + \frac{1}{x} - \left\lfloor\frac{1}{x}\right\rfloor = 1$	
	$\Rightarrow \left(x + \frac{1}{x}\right) - \left(\left[x\right] + \left[\frac{1}{x}\right]\right) = 1$	$\Rightarrow \left(x + \frac{1}{x}\right) = \left[x\right] + \left[\frac{1}{x}\right] + 1$ (i)	
	Clearly ,R.H.S is an integer	∴ L. H. S. is also an integer	
	Let $x + \frac{1}{k} = k$ an integer	$\Rightarrow x^2 - kx + 1 = 0$	
	$\therefore x = \frac{x}{k \pm \sqrt{k^2 - 4}}$		
	For real values of x, $k^2 - 4 \ge 0 \Longrightarrow k \ge 2$ or $k \le -$ We also observe that $k=2$ and -2 does not satisf	-2 Veguation (i)	
	. The equation (i) will have solutions if $k > 2$	or $k < -2$, where $k \in z$.	
C	Hence equation (i) has infinite number of soluti	ons.	
-			
52.	If both the roots of $(2a-4)9^x - (2a-3)3^x + 5$	l=0 are non-negative, then	
	A) $0 < a < 2$ B) $2 < a < \frac{3}{2}$	C) $a < \frac{3}{4}$ D) $a > 3$	
Key.	В		
Sol.	Putting $3^x = y$, we have		
	$(2a-4)y^2-(2a-3)y+1=0$)	
	This equation must have real solution		

Mathematics

$$\Rightarrow (2a-3)^2 - 4(2a-4) \ge 0$$

$$\Rightarrow 4a^2 - 20a + 25 \ge 0$$

$$\Rightarrow (2a-5)^2 \ge 0. \text{ This is true.} y=1 \text{ satisfies the equation}$$

Since 3^x is positive and $3^x \ge 3^0$, $y \ge 1$
Product of the roots $=1 \times y > 1$

$$\Rightarrow \frac{1}{2a-4} > 1$$

$$\Rightarrow 2a-4 < 1 \Rightarrow a < \frac{5}{2}$$

Sum of the roots $= \frac{2a-3}{2a-4} > 1$

$$\Rightarrow \frac{(2a-3)-(2a-4)}{2a-4} > 0$$

$$\Rightarrow \frac{1}{2a-4} > 0 \Rightarrow a > 2$$

$$\Rightarrow 2 < a < \frac{5}{2}$$

If the equation $x^2 + 9y^2 - 4x + 3 = 0$ is satisfied for real values of x and y then
A) $x \in [1,3], y \in [1,3]$ B) $x \in [1,3], y \in [-\frac{1}{3}, \frac{1}{3}]$
C) $x \in [-\frac{1}{3}, \frac{1}{3}], y \in [1,3]$
B

Key.

53.

Sol. Given equation is
$$x^2 + 9y^2 - 4x + 3 = 0$$
 ...(i)
Or, $x^2 - 4x + 9y^2 + 3 = 0$.
Since x is real $\therefore (-4)^2 - 4(9y^2 + 3) \ge 0$
Or, $16 - 4(9y^2 + 3) \ge 0$ or, $4 - 9y^2 - 3 \ge 0$
Or, $9y^2 - 1 \le 0$ or, $9y^2 \le 1$ or, $y^2 \le \frac{1}{9}$
 $y^2 = 1 = 1$ or, $y^2 \le \frac{1}{9}$ (iii)

Now
$$y^2 \le \frac{1}{9} \Leftrightarrow -\frac{1}{3} \le y \le \frac{1}{3}$$
 ...(ii)
Equation (i) can also be written as
 $9y^2 + 0y + x^2 - 4x + 3 = 0$...(iii)
Since y is real $\therefore 0^2 - 4.9(x^2 - 4x + 3) \ge 0$
Or, $x^2 - 4x + 3 \le 0$
 $\Rightarrow x \in [1,3]$

The equation $a_8x^8 + a_7x^7 + a_6x^6 + ... + a_0 = 0$ has all its roots positive and real 54. $(where a_8 = 1, a_7 = -4, a_0 = 1/2^8)$, then B) $a_1 = -\frac{1}{2^4}$ C) $a_2 = \frac{7}{2^5}$ A) $a_1 = \frac{1}{2^8}$ D) $a_2 = \frac{7}{28}$ Key. Sol. Let the roots be $\alpha_1, \alpha_2, ..., \alpha_8$ $\alpha_1 + \alpha_2 + \dots + \alpha_8 = 4$ \Rightarrow $\alpha_1 \alpha_2 \dots \alpha_8 = \frac{1}{2^8}$ $(\alpha_1 \alpha_2 \dots \alpha_8)^{1/8} = \frac{1}{2} = \frac{\alpha_1 + \alpha_2 + \dots + \alpha_8}{8}$ \Rightarrow AM=GM \Rightarrow all the roots are equal to $\frac{1}{2}$. \Rightarrow $a_1 = -{}^8C_7 \left(\frac{1}{2}\right)' = -\frac{1}{2^4}$ \Rightarrow $a_2 = {}^{8}C_6 \left(\frac{1}{2}\right)^6 = -\frac{7}{2^4}$ $a_3 = -{}^8C_5 \left(\frac{1}{2}\right)$ If f(x) = $\prod_{i=1}^{n} (x - a_i) + \sum_{i=1}^{n} a_i - 3x$, where $a_i < a_{i+1}$, then f(x) = 0 has 55. (A) only one real root (B) three real roots of which two of them are equal (C) three distinct real roots (D) three equal roots KEY : C SOL : $f(x) = (x - a_1)(x - a_2)(x - a_3) + (a_1 - x) + (a_2 - x) + (a_3 - x)$ Now $f(x) \rightarrow -\infty$ as $x \rightarrow -\infty$ and $f(x) \rightarrow \infty$ are $x \rightarrow \infty$. Again $f(a_1) = (a_2 - a_1) + (a_3 - a_1) > 0$ $[:: a_1 < a_2 < a_3]$ \Rightarrow One root belongs to $(-\infty, a_1)$ Also, $f(a_3) = (a_1 - a_3) + (a_2 - a_3) < 0$ \Rightarrow One root belongs to (a_1, a_3) So f(x) = 0 has three distinct real roots.

 $\frac{x^2 + 10x - 36}{x(x-3)^2} = \frac{a}{x} + \frac{b}{x-3} + \frac{c}{(x-3)^2}$ is an If a, b and c are numbers for which the equation 56. identity, then a + b + c equals (A) 2 (B) 3 (C) 10 (D) 8 Key. Α Sol. = hence $x^{2} + 10x - 36 = a(x - 3)^{2} + b(x - 3)x + cx$ put x = 0; $-36 = 9a \implies a = -4$ $x^{2} + 10x - 36 = x^{2}(-4 + b) + x(24 - 3b + c) + (-36)$ comparing coefficients also, $-4 + b = 1 \implies b = 5$ $24 - 15 + c = 10 \implies 9 + c = 10 \implies c = 10$ a = -4; b = 5; c = 1 i.e. a + b + c = 257. If one root of equation $x^2 - 4ax + a + f(a) = 0$ is three times of the other then minimum value of f(a) is A) $\frac{-1}{6}$ B) $\frac{-1}{10}$ D) $\frac{-1}{12}$ Key. D Let roots are α and 3α , then $4\alpha = 4a \Rightarrow$ $\alpha = \alpha$ and Sol. $a^2 - 4a^2 + f(a) = 0 \implies f(a) = 3a^2 - a$ f'(a) = 6a - 1, f''(a) = 6, then minimum value of f'(a) = 6a - 1, f''(a) = 6The number of real roots of $\left(\frac{5}{13}\right)^x + \frac{21}{13} = 2^x$ is 58. (A) Two (B) Infinitely many (D) zero (C) only one Key. Sol. (0, 34/13) (0, 1)Both graphs cut at only one point For a non zero polynomial P, the equation $|P(x)| = e^x$ has 59. (A) At least one solution (B) No solution

(D) Exactly 1 solution

(C) Exactly 2 solution

Key. A

Sol. $\lim_{x\to\infty} e^{-x} |P(x)| = 0$

and $\lim_{x \to -\infty} e^{-x} | P(x) | = \infty$

consequently there is an $x_0 \in \mathbb{R}$ such that $e^{-x_0} | \mathbb{P}(x_0) | = 1$

60. A continuous function y = f(x) is defined in a closed interval [-7,5].

A(-7,-4), B(-2,6), C(0,0), D(1,6), E(5,-6) are consecutive points on the graph of 'f' and AB, BC, CD, DE are line segments. The minimum number of real roots of the equation f[f(x)]=6 is

A) 6

C) 2

D) ()

Key. A

Sol.
$$f[f(x)] = 6 \Rightarrow f(x) = -2$$
 (or) $f(x) = 1$

B) 4

$$f(x) = -2$$
, has two roots and $f(x) = 1$ has four roots

61. If
$$f(x) = -3x + \prod_{i=1}^{3} (x - a_i) + \sum_{i=1}^{3} a_i$$
, where $a_i < a_{i+1}$, then $f(x) = 0$ has

- A) Only one real root
- B) Three real roots of which two of them are equal
- C) Three distinct real roots
- D) Three equal roots

Key.

Sol.

С

$$f(x) = (x - a_1)(x - a_2)(x - a_3) + (a_1 - x) + (a_2 - x) + (a_3 - x)$$

Now, $f(x) \rightarrow -\infty_{as} x \rightarrow -\infty_{and} f(x) \rightarrow \infty_{are} x \rightarrow \infty$
Again $f(a_1) = (a_2 - a_1) + (a_3 - a_1) > 0 [\because a_1 < a_2 < a_3]$

$$\Rightarrow_{One root belongs to} (-\infty, a_1)$$

Also,
$$f(a_3) = (a_1 - a_3) + (a_2 - a_3) < 0$$

$$\Rightarrow$$
 One root belongs to (a_1, a_3)

So, f(x) = 0 has three distinct real roots.

62. The number of real values of m' from for which the equation $z^{3}+(3+i)z^{2}-3z-(m+i)=0$ has at least one real root is B) 3 A) 1 C) Infinite D) 2 Key. D $z^{3} + (3+i)z^{2} - 3z - (m+i) = 0$ Sol. $(z^3 + 3z^2 - 3z - m) + i(z^2 - 1) = 0$ If 'z' is a real root, then $z^3 + 3z^2 - 3z - m = 0$ and $z^2 - 1 = 0$ $\therefore z = \pm 1$ $z = 1 \implies m = 1$ $z = -1 \implies m = 5$ Number of all integral values of x, so that $x^2 + 19x + 89$ is a perfect square is 63. a) 0 b) 1 c) 2 d) 3 Key : C Let $x^2 + 19x + 89 = \lambda^2$ Sol. \Rightarrow x²+19x+(89- λ^2)=0 should have integral roots : D should be a perfect square. $(19)^2 - 4(89 - \lambda^2) =$ Perfect square \Rightarrow $(19)^2 - 4(89 - \lambda^2) =$ Perfect square \Rightarrow $(m^2-4\lambda^2)=5 \Rightarrow (m-2\lambda)(m+2\lambda)=5$ \Rightarrow $(m-2\lambda=5, m+2\lambda=1)$ *.*.. $(m-2\lambda = -5, m+2\lambda = -1)$ or $(m-2\lambda = -5, m+2\lambda = -1)$ \Rightarrow $m = 3, -3, \lambda = 1, -1$ For $\lambda = \pm 1$ equation becomes $x^2 + 19x + 88 = 0$ (x+11)(x+8) = 0x = -8, -11.

Thus, required values of x are -8, -11.

64. Let $f(x) = x^2 + bx + c$, b is negative odd integer, f(x) = 0 has two distinct prime number as roots, and b + c = 15, then least value of f(x) is

(A) $\frac{-233}{4}$	(B) $\frac{233}{4}$
(C) $-\frac{225}{4}$	(D) none of these

Mat	hemo	itics

Key:	С				
Hint:	$f(x) = (sin^2\theta)$	$(x^3 + \frac{1}{2} \sin 2\theta x^2 - 2\sin \theta)$	$^{2}\theta$. x - sin2 θ		
	f'(x) = (3si	$n^2\theta$) x^2 + sin 2θ x - 2sin ²	θ		
	Then D > 0	and product of roots	< 0		
	So f(x) has l	local maxima at some	x∈R⁻		
	and local m	ninima at some x∈R⁺			
65.	Let $f(x)$ =	$=x^2 + \lambda x + \mu \cos x$,	λ being an in	teger and μ a real num	ber. The number of
	ordered pairs (λ, μ) for which the equations $f(r) = 0$ and $f(f(r)) = 0$ have the same				
	(non empty	(μ, μ) for which μ	ne equations	f(x) = 0 and $f(f(x))$	j = 0 have the same
	(A) 4		(B) 6		
	(C) 8		(=) = (D) in	finite	
Key:	A				$\langle \cdot \rangle$
				O	
Hint:	Let $lpha$ be a	root of $f(x) = 0$, so	o we have $f($	$(lpha)\!=\!0$ and thus $fig(f$	$(\alpha))=0$,
	$\Rightarrow f(0) =$	$=0 \Longrightarrow \mu = 0.$			
	We then ha	ave $f(x) = x(x+\lambda)$	and thus $lpha$	$=0,-\lambda.$	
	f(f(x))	$= x(x+\lambda)(x^2+\lambda x)$	$+\lambda$		
	We want λ that $0 \leq \lambda$	λ such that $x^2 + \lambda x + \langle 4 \rangle$.	$\cdot \lambda$ has no rea	I roots besides 0 and -	- λ . We can easily find
66.	If $ax^2 + bx +$	- c; $a,b,c\!\in\!R$ has no	real zeroes, a	and if c < 0, then	
	(a) a < 0	(b) a + b	+ c > 0	(c) 4a + 2b + c > 0	(d) $a - b + c > 0$
Key:	а				
Hint:	Let f(x) = ax since f(0) = open down	x^2 + bx + c. Since f(x) h c < 0, we get f(x) < 0 f ward. Obviously f(1),	as no real zer \overline{f} or all $\ x \in R$. f(-1) and f(2)	oes, either f(x) > 0 or f Therefore, a < 0 as the < 0.	(x) < 0 for all $x \in R$. parabola y = f(x) must
67.	The quadratic equation $(4 + \cos \theta) x^2 - (2\sin \theta) x + (3 - \cos \theta) = 0$ has				
	(A) Real and	d distinct roots for all	θ		
	(B) Real or	complex roots for dep	pending upon	θ	
	(C) Equal ro	bots for all θ			
C	(D) Comple	ex roots for all θ			
Key :	D				
Sol :	Discriminar	$ht = 4sin^2\theta - 4(4 + cos)$	sθ) (3 – cosθ)		
		$= 4[\sin^2\theta - (12 - \cos^2\theta)]$	$(\theta - \cos^2 \theta)$]		
		$= 4[-11 + \cos\theta] < 0$	$\forall \theta \in \mathbf{R}.$		
68.	If α_1 , α_2 , ($\alpha_1 - \alpha_n$) is	α_n are roots of the equal to	equation x ⁿ +	- ax + b = 0, then $(\alpha_1 - \alpha_2)$	$(\alpha_{1} - \alpha_{3}) (\alpha_{1} - \alpha_{4}) \dots$
	(A) n			(B) n $lpha_1^{\mathrm{n-1}}$	
	(C) nα ₁ + b			(D) n α_1^{n-1} + a	
	., .				

KEY : D SOL : $x^{n} + ax + b = (x - \alpha_{1}) (x - \alpha_{2}) \dots (x - \alpha_{n})$ differentiate both sides w.r.t. x $nx^{n-1} + a = (x - \alpha_2) \dots (x - \alpha_n) + (x - \alpha_1) (\frac{d}{dx} (x - \alpha_2) \dots (x - \alpha_n))$ $n \alpha_1^{n-1} + a = (\alpha_1 - \alpha_2) (\alpha_1 - \alpha_3) \dots (\alpha_1 - \alpha_n)$ put x = α_1 The equation $|2ax-3|+|ax+1|+|5-ax|=\frac{1}{2}$ possesses 69. (A) infinite number of real solution for some $a \in \mathbb{R}$ (B) finite number of real solutions for some $a \in \mathbf{R}$ no real solution for some $a \in \mathbf{R}$ (C) (D) no real solution for all $a \in \mathbf{R}$ Key: D Hint: The equation |2ax - 3| + |ax + 1| + |5 - ax|..... $|2ax-3|+|ax+1|+|5-ax| \ge |2ax-3+(-ax-1)+5-ax|$ So no solution for $\frac{1}{2}$ Let P(x) be a polynomial with degree 2009 and leading co-efficient unity such that 70. P(0)=2008, P(1)=2007, P(2)=2006,....P(2008)=0 then the value of P(2009)= (|n) - a where n and a are natural number then value of (n+a)(B) 2009 (A) 2010 (C) 2011 (D) 2008 Key: А P(x) - 2008 + x = x(x-1)(x-2)(x-3)....(x-2008)Hint: Put x = 2009 P(2009)+1=(2009)!71. (L-2)If $f(x) = ax^2 + bx + c = 0$ has real roots and its coefficients are odd positive integers then a) f(x) = 0 always has irrational roots $\left| f\left(\frac{p}{q}\right) \right| \ge \frac{1}{q^2}$ where $p, q \in I$

c) If a.c = 1, then equation must have exactly one root α such that $[\alpha] = -1$, where [.] is greatest integer function

d) equation has rational roots

Key; a, b

Sol: An equation with odd coefficients cannot have rational roots

S/S/

 \therefore f (x) = 0 has irrational roots.

$$f\left(\frac{p}{q}\right) = \frac{ap^2 + bpq + cq^2}{a^2} \ge \frac{1}{a^2} \quad (\therefore a, b, c \text{ are odd integers } p, q \text{ are integers})$$

72. (L-1)Let a, b, c be real numbers with $a \neq 0$ and let α, β be the roots of the equation $ax^{2} + bx + c = 0$. Then one of the roots of the equation $a^{3}x^{2} + abcx + c^{3} = 0$ in terms of α,β are

a)
$$\frac{\alpha^2}{\beta}$$

b) α^3
c) β^3
d) $\alpha\beta^2$

Key:

d

Sol :

We have $\alpha + \beta = -\frac{b}{a}$, $\alpha\beta = \frac{c}{a}$ Let γ , δ be the roots of $a^3x^2 + abcx + c^3 = 0$.

Then
$$\gamma, \delta = \frac{-abc \pm \sqrt{(abc)^2 - 4a^3c^3}}{2a^3} = \frac{ac\left\{-b \pm \sqrt{b^2 - 4ac}\right\}}{2a^3} = \frac{c}{2a}\left\{-\frac{b}{a} \pm \sqrt{\left(\frac{b}{a}\right)^2 - 4\frac{c}{a}}\right\}$$
$$= \frac{1}{2}(\alpha\beta)\left\{(\alpha + \beta) \pm \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}\right\}$$
$$= \frac{1}{2}(\alpha\beta)\left\{(\alpha + \beta) \pm (\alpha - \beta)\right\} = \alpha^2\beta, \alpha\beta^2$$
Thus, roots of $a^3x^2 + abcx + c^3 = 0$ are $\alpha^2\beta$ and $\alpha\beta^2$

73. (L-2) If α,β are the roots of $x^2 - 3x + \lambda = 0(\lambda \in R)$ and $\alpha < 1 < \beta$, then the true set of values

a)
$$\lambda \in \left(2, \frac{9}{4}\right]$$

b) $\lambda \in \left(-\infty, \frac{9}{4}\right]$
c) $\lambda \in (2, \infty)$
d) $\lambda \in (-\infty, 2)$

Key: d

Sol: Let $f(x) = x^2 - 3x + \lambda$ Clearly f(1) < 0

74. (L-1)Let $2^{y-x}(x+y)=1$ and $(x+y)^{x-y}=2$ then ordered pair (x, y) can be

a)	$\left(\frac{3}{2}\right)$	$\left(\frac{1}{2}\right)$
c)	$\left(\frac{3}{2}\right)$	$\left(\frac{3}{4}\right)$

Key: a

Sol : Put x = 3/2, $y = \frac{1}{2}$ in given equations.

75. (L-1)The equation
$$|2ax - 3| + |ax + 1| + |5 - ax| = \frac{1}{2}$$
 possesses

- a) infinite number of real solution for some $a \in R$
- b) finite number of real solutions for some $a \in R$
- c) no real solution for some $a \in R$

d) no real solution for all
$$a \in R$$

Key: d

Sol:
$$|2ax-3|+|ax+1|+|5-ax| \ge |2ax-3-ax-1+5-ax|$$

Hence it has no solution

76. (L-1)If $x^2 + 5 = 2x - 4\cos(a + bx)$ where $a, b \in (0,5)$, is satisfied for at least one real x, then the maximum value of (a + b) is

a) π c) 3π d) none of these

Key: c

Sol:
$$x^2 - 2x + 5 = -4 \cos(a + bx)$$

 \sim

$$-4\cos(a+bx) \ge 4 \to \cos(a+bx) \le -1$$
$$\therefore \cos(a+b) = -1$$
$$\therefore a+b = \pi or 3\pi$$

77. (L-2)If the equation $x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n = 5$, with integral co-efficients, has four distinct integral roots then the number of integral roots of the equation

KEY: a

Sol: Let
$$\alpha_i i = 1, 2, 3, 4ihe4$$
 integral roots of $x^n + a_1 x^{n-1} + ... + a_n = 5$ and let K be an integral root of $x^n + a_1 x^{n-1} + ... + a_n = 7$
 $\Rightarrow (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)(x - \alpha_4) = 2$ has an integral root K.
 $\Rightarrow (K - \alpha_1)(K - \alpha_2)(K - \alpha_3)(K - \alpha_4) = 2$
 $K - \alpha_i$, i = 1,2,3,4 are all integers and are distinct which is impossible
(\because product of 4 district integers cannot be 2).
Hence $x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... + a_n = 7$ has no integral roots.
24. (L-1)The set of values of 'a' for which
 $x^2 + ax + \sin^{-1}(x^2 - 4x + 5) + \cos^{-1}(x^2 - 4x + 5) = 0$ has at least one real solution is
given by
a) $(-\infty, -\sqrt{2}\pi] \cup [\sqrt{2\pi}, \infty)$
b) $\frac{-\pi - 8}{4}$
Key: b
Sol: Charly $x^2 - 4x + 5 = (x - 2)^2 + 1$, *lies b* | $w - 1, 1$. $\Rightarrow x = 2$ is the only point of the domain,
It must be the solution. $\therefore 4 + 2a + \frac{\pi}{2} = 0 \Rightarrow a \Rightarrow -\frac{\pi - 8}{4}$
78. (L-1)If $ax^2 + bx + c = 0$ and $5x^2 + 6x + 12 = 0$ have a common root where a, b and c are sides of a triangle ABC, then
a) ΔABC is not use angled
b) ΔABC is acute angled
c) ΔABC is right angled
b) ΔABC is acute angled
c) ΔABC is right angled
b) ΔABC is acute angled
c) ΔABC is right angled
b) ΔABC is acute angled
c) $5x^2 + 6x + 12 = 0$

sol: $5x^2 + 6x + 12 = 0$ (has complex roots only)

79. (L-1)If 0 < a < 5, 0 < b < 5 and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for atleast one real x, then value of a + b may be equal to

Mat	hematics			Quadratic Equatio	ns & Theory of Equa
	a) π	b) $\frac{\pi}{2}$	c) 3π	d) 4π	
Key	: a				
sol :	cos (a +	$bx) = -1 - \frac{(x-1)}{4}$	$\frac{2}{-}$ exists only wh	en $x = 1$	
	at x = 1	; $a + b = \pi$			
	cos (a +	$bx) = \frac{-(x^2 - 2x - 4)}{4}$	$\frac{x+5}{4} = -1 - \frac{(x-1)}{4}$	$()^{2}$	
	\Rightarrow x =	1			
	\Rightarrow a +	b = 5		2 1	
80. (L-1)Numbe	er of integral values	s of x satisfying 3	$3x^2 + 8x < 2\sin^{-1}\sin 4$	$-\cos^{-1}\cos 4$ is
	a) one			b) two	
	c) three	;		d) infini	te
Key	: a			. (^	< compared with the second sec
Sol :	$3x^2 + 8$	$8x < 2\sin^{-1}\sin 4 -$	$\cos^{-1}\cos 4$		
	$3x^2 + 8$	$8x < 2(\pi - 4) - (2\pi)$	τ-4)	" 6 lan.	
	$< 2\pi -$	$8 - 2\pi + 4$	<		
	< -4				
	$\Rightarrow 3x^2$	$x^{2} + 8x + 4 < 0$ has c	one solution		
81.	The val (a² – 5a	ue of 'a' for which (1 + 3)x² + (3a – 1)x +	one root of the que $2 = 0$ is twice as	uadratic equation large as the other, is	
	(A) $\frac{2}{3}$	(В	$1 - \frac{2}{3}$	(C) $\frac{1}{3}$	(D) $-\frac{1}{3}$
Key.	А				
Sol.	Let the	roots are α and 2α		2	
	⇒	$\alpha + 2\alpha = \frac{1 - 3a}{a^2 - 5a}$	$\frac{1}{+3}$ and $\alpha.2\alpha =$	$\frac{2}{a^2-5a+3}$	
C)⇒,,	$2\left\lfloor\frac{1}{9}\frac{(1-3a)^2}{(a^2-5a+3)}\right\rfloor$	$\frac{1}{2} = \frac{2}{a^2 - 5a + 3}$		
	\Rightarrow	$9a^2 - 6a + 1 = 9a^2 - 6a + $	- 45a + 27		
	\Rightarrow	39a = 26			
	\Rightarrow	$\frac{2}{3}$			

82. (L-1)If a, b and c are each positive, and a + b + c = 6 then the minimum value of

$$\left(a+\frac{1}{b}\right)^{2} + \left(b+\frac{1}{c}\right)^{2} + \left(c+\frac{1}{a}\right)^{2} \text{ is}$$
a) $\frac{75}{2}$
b) $\frac{75}{4}$
c) $\frac{65}{4}$
d) $\frac{65}{2}$

Key: b

Sol: Using the AM ≥ HM of
$$\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$$
 we get, $\frac{\frac{1}{a}, \frac{1}{b}, \frac{1}{c}}{3} \ge \frac{3}{a+b+c} = \frac{3}{6} = \frac{1}{2}$
So, $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{3}{2}$
Now,
 $\frac{\left(a + \frac{1}{b}\right)^2 + \left(b + \frac{1}{c}\right)^2 + \left(c + \frac{1}{a}\right)^2}{3} \ge \left(\frac{a + \frac{1}{b} + b + \frac{1}{c} + c + \frac{1}{a}}{3}\right)^2 \ge \left(\frac{6 + \frac{3}{2}}{3}\right)^2 = \left(\frac{5}{2}\right)^2 = \frac{25}{4}$
 $\therefore \left(a + \frac{1}{b}\right)^2 + \left(b + \frac{1}{c}\right)^2 + \left(c + \frac{1}{a}\right)^2 \ge \frac{75}{4}$

83. (L-2)Given positive real numbers a, b and c such that a + b + c = 1, then maximum value of

$$a^{a}b^{b}c^{c} + a^{b}b^{c}a^{a} + a^{c}b^{a}c^{b}$$
 is
a) 1 b) 2 c) 3 d) 4

Key:

a

Sol: Using the weighted AM – GM in equality we get,

$$\frac{c.a+a.b+b.c}{c+a+b} \ge \left(a^{c}b^{a}c^{b}\right)^{\frac{1}{a+b+c}}$$
$$\frac{b.a+c.b+a.c}{b+c+a} \ge \left(a^{b}.b^{c}.c^{a}\right)^{\frac{1}{a+b+c}}$$
$$\frac{a.a+b.b+c.c}{a+b+c} \ge \left(a^{a}b^{b}c^{c}\right)^{\frac{1}{a+b+c}}$$

Adding these inequalities together we get,

$$\frac{a^{2} + b^{2} + c^{2} + 2(ab + bc + ca)}{a + b + c} \ge (a^{a} \cdot b^{b} \cdot c^{c}) + (a^{c} b^{a} c^{b}) + (a^{b} b^{c} c^{a}) [::a + b + c = 1]$$

$$l = \frac{(a + b + c)^{2}}{a + b + c} \ge (a^{a} \cdot b^{b} \cdot c^{c}) + (a^{c} \cdot b^{a} \cdot c^{b}) + (a^{b} b^{c} c^{a})$$
84. (1.-2)The solution of $\left|\frac{x^{2} - 5x + 4}{x^{2} - 4}\right| \le 1$ is

$$a) \left[0, \frac{8}{5}\right] \cup \left[\frac{5}{2}, +\infty\right) \qquad b) \left[0, \frac{5}{8}\right] \cup \left[\frac{5}{2}, +\infty\right) \qquad c) \left[0, \frac{5}{8}\right] \cup \left[\frac{8}{5}, \infty\right) \qquad d) \text{ None}$$
of these
Key:A
Hint: $-1 \le \frac{x^{2} - 5x + 4}{x^{2} - 4} + 1 \ge 0$

$$\frac{2x^{2} - 5x + 4}{x^{2} - 4} + 1 \ge 0$$

$$\frac{x^{2} - 5x + 4}{x^{2} - 4} - 1 \le 0$$

$$x(x - \pi_{2})(x - 2)(x + 2) \ge 0$$

$$\frac{x^{2} - 5x + 4 - x^{2} + 4}{x^{2} - 4} \le 0$$

$$\frac{8x + 5x}{x^{2} + 4} = 0$$

$$\frac{8x + 5x}{x^{2} + 4} = 0$$

$$(8 - 5x)(x^{2} - 4) \le 0$$

$$(x + 2)(5x - 8)(x - 2) \ge 0$$
85. (L-2)Complete solution set of the inequation $\sqrt{x - 1} \ge 3 - x$ is

a) $2 \le x \le 5$ b) $2 \le x \le 3$ c) $1 \le x \le 3$ d) $x \le 2$

Key: B

86. (L-2) The least value of k such that the equation $(\ln x) + k = e^{x-k}$ has a solution is

a) e b)
$$\frac{1}{e}$$

Key: c

Sol:
$$f(x) = e^{x-k}$$
 then inverse of $f(x)$; $f^{-1}(x) = (\ln x) + k$

and also both functions are increasing, therefore

$$f(x) = f^{-1}(x)$$
 is equivalent to $f(x) = f^{-1}(x) = x$

- $\Rightarrow \ln x + k = x$ should have a solution
- \Rightarrow k = x ln x

Now, let $g(x) = x - \ln x$

has least value 1 as
$$g'(x) = 1 - \frac{1}{x}$$
 has a minimum at $x = 1$

and
$$\lim_{x\to 0^+} g(x)$$
, $\lim_{x\to\infty} g(x)$ both approach to ∞ .

87. (L-2)f(x) be a polynomial of degree n and
$$f(x) = x^n f\left(\frac{1}{x}\right)$$
 then $f(x) = 0$

a) a reciprocal equation of second typeb) not a reciprocal equationc) a reciprocal equation of first typed) nothing can be say.

Key: c

Sol: Let
$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$$

Then $x^n f\left(\frac{1}{x}\right) = x^n \left(\frac{a_0}{x^n} + \frac{a_1}{x^{n-1}} + \dots + a_n\right)$
 $= a_0 + a_1 x + \dots + a_n x^n$

Mathematics
Since,
$$f(x) = x^n f(\frac{1}{x})$$
.
 $\therefore a_0 = a_n \cdot a_1 = a_{n-1} \dots a_n = a_0$
 $\therefore f(x) = 0$ is a reciprocal equation of first type.
88. (1-2)Reduced the equation $3x^6 + x^5 - 27x^4 + 27x^2 - x - 3 = 0$ in standard reciprocal form is
 $a) 3x^4 + x^3 - 24x^2 + x + 3 = 0$ b) $3x^4 + x^3 + 24x^2 + x + 3 = 0$
 $c) 3x^4 - x^3 + 24x^2 - x + 3 = 0$ d) none of these
Key : a
Sol: $\therefore 3x^6 + x^5 - 27x^4 + 27x^2 - x - 3 = 0$
This can be written as,
 $3(x^6 - 1) + x(x^4 - 1) - 27x^2(x^2 - 1) = 0$
 $or, (x^2 - 1) \{3(x^4 + x^2 + 1) + x(x^2 + 1) - 27x^2\} = 0$
 $or, (x^2 - 1) \{3x^4 - 24x^2 + x^3 + x + 3\} = 0$
So, $3x^4 + x^3 - 24x^2 + x + 3x + 3 = 0$
So, $3x^4 + x^3 - 24x^2 + x + 3x = 0$ is a reciprocal equation of even degree (i.e. 4) and first type
Hence it is standard form of reciprocal equation.
89. (L-2)The polynomial $x^3 - 3x^2 - 9x + c$ can be written in the form $(x - \alpha)^2(x - \beta)$ if value of c
is
 $a) 5$ b) $\cdot 7$ c) 25 d) 27
Key: d
Sol: The polynomial $x^3 - 3x^2 - 9x + c$ can be written in the form of $(x - \alpha)^2(x - \beta)$ if the
equation $x^3 - 3x^2 - 9x + c$ can be written in the form of $(x - \alpha)^2(x - \beta)$ if the
equation $x^3 - 3x^2 - 9x + c$ end be true in the form of $(x - \alpha)^2(x - \beta)$ if the
equation $x^3 - 3x^2 - 9x + c$ end be true of the term of $(x - \alpha)^2(x - \beta)$ if the
equation $x^3 - 3x^2 - 9x + c = 0$ has two equal roots. Let these be α, α, β .
We have $\alpha + \alpha + \beta = 3$ or $2\alpha + \beta = 3$ (1)
 $\alpha + \alpha + \alpha + \alpha + \beta = -9$ or $2\alpha + \alpha^2 = -9$ (2)
Putting value of β in (2) we get
 $2\alpha(3 - 2\alpha) + \alpha^2 = -9$

 $\Rightarrow \alpha^2 - 2\alpha - 3 = 0$ $\Rightarrow (\alpha - 3)(\alpha + 1) = 0 \Rightarrow \alpha = -1,3$ When $\alpha = -1, \beta = 5$ and when $\alpha = 3, \beta = -3$. We also have $\alpha^2 \beta = -c$ When $\alpha = -1.\beta = 5.c = -5$ when $\alpha = 3.\beta = -3.c = 27$ 90. (L-1)The smallest positive value of p for which the equation $\cos(p \sin \alpha) = (p \cos \alpha)$ has a solution $\forall \alpha \in [0, 2\pi]$ is c) $\frac{\pi\sqrt{2}}{4}$ a) $\frac{\pi}{\sqrt{2}}$ b) $\pi\sqrt{2}$ Key : с $\sin\left(\pi + \frac{\pi}{4}\right) = 1 \Longrightarrow P$ is minimum Sol: $\Rightarrow P = \frac{\pi}{2\sqrt{2}}$ The number of real roots of $\left(\frac{5}{13}\right)^x + \frac{21}{13} = 2^x$ is 91. (A) Two (B) Infinitely many (D) zero (C) only one Key. С $v = 2^x$ $\left(\frac{5}{3}\right)^{\times}\frac{21}{13}$ (0 34/1)(0, 1)Sol. Both graphs cut at only one point 92. For a non zero polynomial P, the equation $|P(x)| = e^x$ has (A) At least one solution (B) No solution (C) Exactly 2 solution (D) Exactly 1 solution Key. $Lime^{-x} | P(x)| = 0$ Sol. and Lt $e^{-x} |P(x)| = \infty$ consequently there is an $x_0 \in \mathbb{R}$ such that $e^{-x_0} | \mathbb{P}(x_0) | = 1$ Number of rational roots of the equation $\left|x^2 - 2x - 3\right| + 4x = 0$ is 93. a) 0 b) 1 c)2 d) 4 Key. В $x^2 - 2x - 3 \ge 0 \Longrightarrow x^2 - 2x - 3 = 0 \Longrightarrow x = -3$ Sol. $x^2 - 2x - 3 < 0 \Longrightarrow x^2 - 6x - 3 = 0$ no rational root

Mathematics

94.	If the equations $2x^2 - x^2$	$7x+1=0$ and ax^2+bx^2	$x \! + \! 2 \! = \! 0$ have a common root, then
	a) a=2,b=-7	b) $a = \frac{-7}{2}, b = 1$	c) a = 4, b = -14 d) a = -4, b = 1
Key. Sol. 95.	C First equation has irrat If p,q,r I R and the qu	ional roots.:. both roots adratic equation $\ px^2$ +	common $qx + r = 0$ has no real root, then
	a) $p(p+q+r) > 0$		b) $p(p+q+r) < 0$
	c) $q(p+q+r) > 0$		d) $q(p+q+r) < 0$
Key. Sol.	$ p\left(px^2 + qx + r\right) > 0 $	for $x \in R$. Take x=1	
96.	For $x^2 - (\alpha + 2) x + 9 =$ (A) $(-\infty, 4]$ (C) $(-\infty, 7] \cup [11, \infty)$	= 0 to have real solutions	the range of ' α ' is (B) [4, ∞) (D) [-4, ∞)
Key.	B ² O	0	
Sol.	$\alpha = \frac{x^2 + 9}{ x } - 2 = x +$	$\frac{9}{ \mathbf{x} }$ -2	
$\alpha \ge 4.$			
97.	The number of solution (A) 1 and 2 (C) 3 and 2	n(s) of the equations e ^x =	x ² and e ^x = x ³ are respectively (B) 1 and 0 (D) 2 and 1
Key. Sol.	A Let $f(x) = e^{-x} x^k$, $f'(x) = e^{-x}$. For $k = 2$, $f'(x) : -\frac{1}{2}$. So, one solution. For $k = 3$, $f'(x) : -\frac{1}{2}$. $f(x) : -\frac{1}{2}$. $f(x) : -\frac{1}{2}$.	$e^{x} x^{k-1} (k-x)$ $\frac{1}{2}$ $f(2) = \left(\frac{2}{e}\right)^{2} < 1$ $\frac{1}{3}$ $f(3) = \left(\frac{3}{e}\right)^{3} > 1$	
	ہ So, two solutions.		

Mathematics If a,b,c,d are four positive numbers in G.P. then the minimum value of $\frac{c+d}{r}$ is 98. (B) $\frac{3(bc)^{\frac{1}{3}} - 2a^{2/3}}{a^{2/3}}$ (D) $\frac{3b^{\frac{1}{3}}c^{\frac{1}{3}} - a^{2/3}}{a^{2/3}}$ (A) $\frac{3b^{\frac{1}{3}}c^{\frac{1}{3}} + a^{2/3}}{a^{2/3}}$ (C) $\frac{3(bc)^{\frac{1}{3}} + 3a^{2/3}}{a^{2/3}}$ Key. Let b = ar, $c = ar^2$, $d = ar^3$ Sol. $\frac{c+d}{b} = r + r^2$ $\frac{3b^{\frac{1}{3}}c^{\frac{1}{3}}-a^{2/3}}{c^{2/3}}=3r-1$ Since $(r-1)^2 \ge r^2 - 2r + 1 \ge 0 \Longrightarrow r^2 + r \ge 3r - 1 \Longrightarrow \frac{c+d}{b} \ge \frac{3b^3 c}{c}$ Three distinct positive real numbers a, b, c are in H.P. then for the quadratic equation 99. $x^{2} - kx + 2b^{101} - a^{101} - c^{101} = 0, k \in R$ has (a) roots of same sign (b) roots of opposite sign (d) roots are real and equal (c) roots of imaginary Key. В IF α , β ARE ROOTS SOL. THEN $\alpha\beta = 2B^{101} - A^{101} - C^{101}$ NOW $\frac{a^{101} + c^{101}}{2} \ge (\sqrt{ac})^{101} \ge b^{101}$ $2B^{101} - A^{101} - C^{101} <$ $\Rightarrow \alpha\beta < 0$ roots are opposite in sign. 100. If α and β , α and γ , α and δ are the roots of the equations $ax^2 + 2bx + c = 0$, $2bx^2 + cx + a = 0$ and $cx^2 + ax + 2b = 0$ respectively where a, b, c are positive real numbers, then $\alpha + \alpha^2 =$ a) -1 b) 1 c) 0 d) abc Key. $a\alpha^2 + 2b\alpha + c = 0$ Sol. $a+2b\alpha^2+c\alpha=0$ then $(a+2b+c)(1+\alpha+\alpha^2)=0$ $a\alpha + 2b + c\alpha^2 = 0$ \therefore a, b, c $\in R^+$ then $\alpha + \alpha^2 = -1$ 101. If a, b, c are in geometric progression and the roots of the equations $ax^2 + 2bx + c = 0$ are α and β and those of $cx^2 + 2bx + a = 0$ are γ and δ then a) $\alpha \neq \beta \neq \gamma \neq \delta$ b) $\alpha \neq \beta$ and $\gamma \neq \delta$ c) $a\alpha = a\beta = c\gamma = c\delta$ d) $\alpha = \beta; \gamma \neq \delta$ Key. С

 $\therefore b^2 = ac$; the roots of both the equations are equal. Sol.

 $\therefore \alpha = \beta$; and $\gamma = \delta$. But $\gamma = \frac{1}{\alpha}$: $\delta = \frac{1}{\beta}$ as the given equations are reciprocal to each

other

$$\begin{array}{ll} \therefore y \vartheta = \frac{a}{c} \text{ then } cy = a\beta \\ a\alpha = a\beta = c\gamma = c\delta \\ \end{array}$$
102. If $f(x) = (x^2 + 3x + 2)(x^2 - 7x + a)$ and $g(x) = (x^2 - x - 12)(x^2 + 5x + b)$ then the values of a and b, If $(x + 1)(x - 4)$ is HCF of $f(x)$ and $g(x)$
a) $a = 10; b = 5$ b) $a = 4; b = 12$
c) $a = 12; b = 4$ d) $a = 6; b = 10$
Key. C
Sol. $x^2 - 7x + a$ is divisible by $x - 4\& x^2 + 5x + b$ is divisible by $x + 1$
 $\therefore a = 12; b = 4$
103. The equation $(x^2 + 3x + 4)^2 + 3(x^2 + 3x + 4) + 4 = x$ has
a) all its solutions real but not all positive b) only two of its solutions real
c) two of its solutions positive and two negative d) none of solutions real.
Key. D
Sol. $f(x) = ax^2 + bx + c:$ If $f(x) = x$ has no real solution then $f(f(x)) = x$ also has no real
solution:
104. Let A be a square Matrix all of whose entries are integers. Then which of the following is
True?
a) If det $A = \pm 1$, then A^{-1} exists and all it entries are non integers.
b) If det $A = \pm 1$, then A^{-1} exists and all it entries are non integers.
c) If det $A = \pm 1$, then A^{-1} exists and all it entries are non integers.
b) If det $A = \pm 1$, A^{-1} need not exist.
Key. C
Sol. Conceptual
105. The values of a for which the roots of the equation $(a + 1)x^2 - 3ax + 4a = 0(a \neq -1)$ are
real and greater than T
a) $\left[-\frac{10}{-7}, 1\right]$ b) $\left[-\frac{12}{-7}, 0\right]$ c) $\left[-\frac{16}{-7}, -1\right]$ d) $\left(-\frac{16}{-7}, 0\right)$
Key. C
Sol. $D = 9a^2 - 16a(a + 1) \ge 0, x_1 > 1, x_2 > 1$
Where $x_1 + x_2 = \frac{3a}{a+1}, x_1x_2 = \frac{4a}{a+1} \Rightarrow x_1 + x_2 - 1 > 0 \& (x_1 - 1)(x_2 - 1) > 0$
 $\Rightarrow a(7a + 16) \le 0$ (1)
 $\frac{a - 2}{a + 1} > 0$ (2)
 $\frac{2a + 1}{a + 1} > 0$ (2)
 $\frac{2a + 1}{a + 1} > 0$ (3)
Solving $-\frac{16}{-7} \le a < -1.$
106. If the equation $x^4 - 4x^3 + ax^2 + bx + 1 = 0$ has four positive roots then (a, b) is given by
(A) $(4, 6)$ (B) $(6, -4)$

Mathematics		Quadratic Equations & Theory of Equations					
	(C) (-4, -6)	(C) (2, 3)					
Key. Sol.	B Let the roots of the equation be x_1 , x_2 , x_3 , x_4 then $x_1 + x_2 + x_3 + x_4 = 4$ and $x_1 x_2 x_3 x_4 = 1$ As A.M \ge G.M and equality sign holds only when numbers are equal.						
	We have $1 = \frac{x_1 + x_2 + x_3 + x_4}{4} \ge (x_1 x_2 x_3 x_4)$ $\Rightarrow x_1 = x_2 = x_3 = x_4 = 1$ $\Rightarrow x_4^4 - 4x_3^3 + 3x_4^2 + bx_4 + 1 = (x_4 - 1)^4 \Rightarrow x_4 = 1$	$(x_4)^{\frac{1}{4}} = 1$					
107.	If roots of the equation $ax^2 + bx + c = 0$; a unit circle, centered at origin, then (A) $b > 0$	$a, b, c \in R^+$ be non-real numbers, lying inside the (B) $b < a$					
Vari	(C) $c < a$	(D) none of these					
Key. Sol	C Let z_1 be one of the root then the other ro	ot is 7					
501.	$ z_1 ^2 = \frac{c}{a} \Rightarrow \frac{c}{a} < 1 \Rightarrow c < a$						
108.	If both the roots of the equation $x^2 + 2bx + \log_3 (b^2 - 4b + 4) = 0$ are of opposite sign then 'b'						
	belongs to						
	(A) (1, 3)	(B) $(-\infty, 1) \cup (3, \infty)$					
Kev	(C) [1, 3] D	$(D)(1,2) \cup (2,3)$					
Sol.	Let $f(x) = x^2 + 2bx + \log_3 (b^2 - 4b + 4)$						
	For both roots to be of opposite sign						
	$f(0) < 0 \Longrightarrow \log_3 (b^2 - 4b + 4) < 0$						
	$\Rightarrow b^2 - 4b + 4 < 1$ $\Rightarrow b^2 - 4b + 2 < 0$						
	$\Rightarrow b^{-} - 4b + 3 < 0$ $\Rightarrow (b - 1) (b - 3) < 0 \Rightarrow 1 < b < 3$						
	But $b \neq 2$						
	∴ b∈ (1, 2) ∪ (2, 3).						
109.	Let $f(x) = x^3 + ax^2 + bx + c$ and x ₁ , x ₂ b	e the roots of $f'(x){=}0$, if $x_{\!_1}{<}x_{\!_2}$ then					
	f(x) = 0 will have						
	a) No real root if $f(x_1) < 0$ or $f(x_2) > 0$						
b) Only one real root if $f(x_1) < 0$ or $f(x_2) > 0$							
	c) Three real roots if $f(x_1) < 0 \ or \ f(x_2)$	>0					
	d) cannot say any thing						
Key.	В						
Sol	Since coefficient of x^3 is Positive						
\therefore local maximum is at x ₁ and local minimum is at x ₂ . case (i) : If $f(x_1) < 0$ then							
$f(x_2) < f(x_1) < 0$ then the only real root will be in (x_2, ∞) case (ii) : If $f(x_2) > 0$ then							
$f(x_1) > f(x_2) > 0$ then equation will have only one real root in the interval $(-\infty, x)$.							
110.	Let $f_1(x)$ and $f_2(x)$ be continuous and differentiable functions. If						
------	--	--	---	--	-----------------------------	--	--
	$f_1(0) = f_1(2) = f_1(4), f_1(1) + f_1(3) = f_2(0) = f_2(2) = f_2(4) = 0 \text{ and if } f_1(x) = 0 \text{ and }$						
	$f_2^1(x)$) = 0 do not have c	ommon root, then th	ne minimum num	ber of zeros of,		
	$f_{1}^{1}(x)$	$f_{2}^{1}(x)+f_{1}(x)f_{2}^{11}$	$\left(x ight)$ in $\left[0,4 ight]$, is				
	a) 2	b)	4	c) 5	d) 3		
Key.	D						
Sol.	$f_1(x)$	$f_1(x) = 0$ has mini two sols in $[0, 4]$					
	$f_2(x)$	$f_2(x) = 0$ has mini 3 sols in [0,4]					
	$f_2^1(x)$	$)\!=\!0$ has mini 2 sol	in [0,4]				
	$f_1(x)$	$f_2^1(x)\!=\!0$ has min	imum 4 sols in [0,4]				
	$\frac{d}{dx}(f)$	$f_1(x)f_2^1(x)) = 0$ ha	s mini 3 sols in [0.4]	. (<i>X</i> ~		
111.	For x ²	$-(\alpha + 2) x + 9 = 0$ t	o have real solutions	s, the range of ' $lpha$	' is		
	(A) [−⊂	o, 4]		(B) $[4, \infty)$			
Key.	(C) (—0 B	0, 7]∪[11, ∞)		(D) [−4, ∞)			
Sol.	$\alpha = \frac{x}{2}$	$\frac{x^2+9}{ x } - 2 = x + \frac{9}{ x }$					
	\Rightarrow	$\alpha \geq 4.$					
112.	0 < c <	$< b < a$ and α , β are	roots of equation cx ²	$+bx + a = 0$ if α	, β are non real then		
	(A) $\frac{ c }{ c }$	$\frac{\alpha + \beta }{2} = \alpha \beta $		(B) $\frac{2}{ \alpha } = \frac{1}{ \beta }$			
	(C) $\frac{1}{10}$	$\frac{1}{\alpha} + \frac{1}{ \beta } < 2$		(D) $ \alpha + \frac{1}{ \beta }$	<2		
Key.	C			11-1			
SOL.	$\alpha\beta =$	$\frac{a}{2} > 1$					
	. 6	$ \alpha \beta > 1$					
	⇒	$ \alpha ^2 > 1$					
6	\rightarrow	$ \alpha > 1$ $ \beta > 1$					
	⇒	$\frac{1}{\mid \alpha \mid} + \frac{1}{\mid \beta \mid} < 2$					
			$(- \cdot) (-2)$	λ^2	4 2		

113. If two roots of the equation $(P-1)(x^2 + x + 1)^2 - (p+1)(x^4 + x^2 + 1) = 0$ are real and distinct and $f(x) = \frac{1-x}{1+x}$ then $f(f(x)) + f\left(f\left(\frac{1}{x}\right)\right)$ is equal to _____ a) P b) -P c) 2P d) -2P

Key. A

Sol.
$$\frac{p+1}{p-1} = \frac{x^2 + x + 1}{x^2 - x + 1} \implies \frac{2p}{2} = \frac{2(x^2 + 1)}{2x} \implies p = x + \frac{1}{x}$$
As $f(x) = \frac{1-x}{1+x} \implies f(f(x)) + f\left(f\left(\frac{1}{x}\right)\right) = x + \frac{1}{x}$

$$\implies f\left(f(x)\right) + f\left(f\left(\frac{1}{x}\right)\right) = p$$
114. If $\alpha_{1,r} \alpha_{2,r} \dots \alpha_n$ are roots of the equation $x^n + ax + b = 0$, then $(\alpha_1 - \alpha_2) (\alpha_1 - \alpha_3) (\alpha_3 - \alpha_4) \dots$
 $(\alpha_1 - \alpha_n)$ is equal to
(A) n
(B) $n \alpha_1^{n-1}$
(C) $n\alpha_1 + b$
(D) $n \alpha_1^{n-1} + a$
Key. D
Sol. $x^n + ax + b = (x - \alpha_1) (x - \alpha_2) \dots (x - \alpha_n)$
differentiate both sides w.r.t. x
 $nx^{n-1} + a = (x - \alpha_2) \dots (x - \alpha_n) + (x - \alpha_1) (\frac{d}{dx} (x - \alpha_2) \dots (x - \alpha_n))$
put $x = \alpha_1$
 $n \alpha_1^{n-1} + a = (\alpha_1 - \alpha_2) (\alpha_1 - \alpha_3) \dots (\alpha_1 - \alpha_n)$
115. ω is a non real complex cube root of unity and $a, b \in R$. If ω, ω^2 are roots of
 $\frac{1}{a+x} + \frac{1}{b+x} = \frac{3}{x}$ then a, b are roots of
(a) $3x^2 - 6x + 2 = 0$
(b) $6x^2 - 3x + 2 = 0$
(c) $2x^2 - 3x + 6 = 0$

Key. B

Sol. The given equation simplifies $x^2 + 2x(a+b) + 3ab = 0$, whose roots are given table ω, ω^2

Hence
$$a+b = \frac{1}{2}$$
, $ab = \frac{1}{3}$. So a, b are roots of $x^2 - x(\frac{1}{2}) + \frac{1}{3} = 0$

If the function $f(x) = x^3 + 3(a-7)x^2 + 3(a^2-9)x - 1$ has a point of maximum at positive 116. values of x then

(a)
$$a \in \left(-\infty, \frac{29}{7}\right)$$

(b) $a \in \left(-\infty, 7\right)$
(c) $a \in \left(-\infty, -3\right) \cup \left(3, \frac{29}{7}\right)$
(d) $a \in \left(3, \infty\right) \cup \left(-\infty, -3\right)$
ey. C

Key.

Sol.
$$f(x) = x^3 + 3(a-7)x^2 + 3(a^2-9)x - 1$$

 $f'(x) = 3x^2 + 6(a-7)x + 3(a^2-7)$
The roots of $f'(x) = 0$ positive and distinct which is possible if
(i) $b^2 - 4ac > 0 \Longrightarrow 6(a-7)^2 - 4(3)(3)(a^2-9) > 0$

 $\Rightarrow a < \frac{29}{7}$ (ii) Product of Roots > 0 $a^2 - 9 > 0$ (iii) Sum of Roots > 0 a - 7 < 0*a* < 7 \Rightarrow From i, ii, iii $a \in (-\infty, -3) \cup (3, \frac{29}{7})$ 117. If α, β are the roots of $x^2 - px + q = 0$ then value of $\frac{\alpha^2 + \beta^2}{\alpha^{-2} + \beta^{-2}} =$ (A) p (C) p^2 (B) q Key. D $\alpha^2 \beta^2 = a^2$ Sol. For p > 0 and $3x^2 + px + 3 = 0$ one root of above equation is square of the other 118. then p is (A) – 6 (C) 2 (B) 10 (D) 3 Key. D $\alpha + \alpha^2 = \frac{-1}{3}; \alpha^3 = 1$ Sol. $\alpha = 1, \omega, \omega^2$ If $\alpha = 1$ P=-6 as P>0 neglected if $\alpha = \omega; P = 3$ 2x+k=0 is 1+2i and $k\in R$ then the value of k is If one root or the equation x^2 119. (A) -3 (B) (C) 5 (D) 3 Key. C $b^2 = 4ac \Longrightarrow 4m^2 = 4(8m-15)$ Sol. $m^2 - 8m + 15 = 0; m = +3,$ $\left|\frac{12x}{4x^2+9}\right| \le 1 \text{ then}$ 120. (A) $x \in R$ (B) $x \in \phi$ (C) $x \in \{1\}$ (D) $x \in C$ where C is set of complex numbers Key. A $12|x| \le 4x^2 + 9$ Sol. $(2x-3)^2 \ge 0$; $x \in R$

121. If α, β are roots of $3x^2 + 2bx + c = 0$ whose descriminant is $\Delta_1; \alpha + \delta, \beta + \delta$ are roots of $9x^2 + 2Bx + C = 0$ whose descriminant is Δ_2 then $\frac{\Delta_1}{\Delta_2}$ is (A) $\frac{1}{9}$ (B) 9 (C) 3 (D) $\frac{1}{3}$

Key. A Sol. $\alpha - \beta = \frac{\sqrt{\Delta_1}}{2}$ $(\alpha + \delta) - (\beta + \delta) = \frac{\sqrt{\Delta_2}}{\Omega}$ $\frac{\Delta_1}{9} = \frac{\Delta_2}{81}; \frac{\Delta_1}{\Lambda_2} = \frac{1}{9}$ If the sum of the roots of the equation $5x^2 - 4x + 2 + k(4x^2 - 2x - 1) = 0$ is 6, then k = 122. (B) 17/13 (A) 13/17 (C) -17/13(D) -13/11 D Key. sum of the roots =6 Sol. $\frac{2k+4}{5+4k} = 6 \Longrightarrow k = \frac{-13}{11}$ If $\tan \alpha$, $\tan \beta$, $\tan \gamma$ are the roots of the equation $x^3 - px^2 - r = 0$ then the value of 123. $(1+\tan^2 \alpha)(1+\tan^2 \beta)(1+\tan^2 \gamma)$ is equal to b) $1 + (p - r)^2$ c) 1–(*p* a) $(p-r)^2$ d) none Key. Sol. $(1 + \tan^2 \alpha)(1 + \tan^2 \beta)(1 + \tan^2 \gamma)$ $=1+\left(\tan^{2}\alpha+\tan^{2}\beta+\tan^{2}\gamma\right)+\left(\tan^{2}\alpha\tan^{2}\beta+\tan^{2}\beta\tan^{2}\gamma+\tan^{2}\gamma\tan^{2}\alpha\right)+\tan^{2}\alpha\tan^{2}\beta\tan^{2}\gamma$ $\therefore x^2y^2 + y^2z^2 + z^2x^2$ $=1-(p-r)^{2}$ $= (xy + yz + zx)^2 - 2xyz(x + y + z)$ If the equation $x^2 + 9y^2 - 4x + 3 = 0$ is satisfied for real values of x and y then 124. A) $x \in [1,3], y \in [1,3]$ B) $x \in [1,3], y \in \left|\frac{-1}{3}, \frac{1}{3}\right|$ D) $x \in \left| \frac{-1}{3}, \frac{1}{3} \right|, y \in \left| \frac{-1}{3}, \frac{1}{3} \right|$ $\frac{-1}{3}, \frac{1}{3}$, $y \in [1,3]$ C) $x \in [$ Key. (B)Given equation is $x^2 + 9y^2 - 4x + 3 = 0$ Sol. ...(i) $x^{2} - 4x + 9y^{2} + 3 = 0.$ Or. Since x is real $\therefore (-4)^2 - 4(9y^2 + 3) \ge 0$ $16-4(9y^2+3) \ge 0$ or, $4-9y^2-3 \ge 0$ Or, $9y^2 - 1 \le 0$ or, $9y^2 \le 1$ or, $y^2 \le \frac{1}{2}$ Or, Now $y^2 \leq \frac{1}{9} \Leftrightarrow -\frac{1}{3} \leq y \leq \frac{1}{3}$...(ii)

Equation (i) can also be written as $9v^2 + 0v + x^2 - 4x + 3 = 0$...(iii) Since y is real : $0^2 - 4.9(x^2 - 4x + 3) \ge 0$ $x^2 - 4x + 3 \le 0$ Or, $\Rightarrow x \in [1,3]$

The equation $a_8x^8 + a_7x^7 + a_6x^6 + ... + a_0 = 0$ has all its roots positive and real 125. (where $a_8 = 1, a_7 = -4, a_0 = 1/2^8$), then A) $a_1 = \frac{1}{2^8}$ B) $a_1 = -\frac{1}{2^4}$ C) $a_2 = \frac{7}{2^5}$ L

Key. В

Sol. (B) Let the roots be
$$\alpha_1, \alpha_2, ..., \alpha_8$$

$$\Rightarrow \qquad \alpha_1 + \alpha_2 + \dots + \alpha_8 = 4$$
$$\alpha_1 \alpha_2 \dots \alpha_8 = \frac{1}{2^8}$$

$$\Rightarrow \qquad \left(\alpha_1\alpha_2\ldots\alpha_8\right)^{1/8} = \frac{1}{2} = \frac{\alpha_1 + \alpha_2 + \ldots + \alpha_8}{8}$$

 $AM=GM \Longrightarrow$ all the roots are equal to \Rightarrow

$$\Rightarrow \qquad a_1 = -{}^8 C_7 \left(\frac{1}{2}\right)^7 = -\frac{1}{2^4}$$
$$a_2 = {}^8 C_6 \left(\frac{1}{2}\right)^6 = -\frac{7}{2^4}$$
$$a_3 = -{}^8 C_5 \left(\frac{1}{2}\right)^5$$

126. If *a*, *b*, *c* are positive numbers such that a>b>c and the equation $(a+b-2c)x^2+(b+c-2a)x+(c+a-2b)=0$ has a root in the interval (-1,0), then A) b cannot be the G.M. of a, c B) b may be the G.M. of a, c C) b is the G.M. of a, c D) none of these Key. A $f(x) = (a+b-2c)x^{2} + (b+c-2a)x + (c+a-2b)$ Let Sol. According to the given condition, we have

$$f(0) f(-1) < 0$$

i.e. $(c+a-2b)(2a-b-c) < 0$
i.e. $(c+a-2b)(a-b+a-c) < 0$
i.e. $c+a-2b < 0$ $[a > b > c, given \Rightarrow a-b > 0, a-c > 0]$
i.e. $b > \frac{a+c}{2}$
 \Rightarrow b cannot be the G.M. of a, c , since G.M < A.M. always.

127.	Let α , β (a < b) be the roots of the equation	$ax^2 + bx + c = 0$. If lin	$m\frac{\left ax^{2}+bx+c\right }{2}=1,$
	then	$x \rightarrow$	$ax^2 + bx + c$
	A) $\frac{ a }{a} = -1, m < \alpha$ B) $a > 0, \alpha < m < \beta$	C) $\frac{ a }{a} = 1, m > \beta$	D) $a < 0, m > \beta$
Key. Sol.	C According to the given condition, we have $ am^2 + bm + c = am^2 + bm + c$		
	i.e. $am^2 + bm + c > 0$ \Rightarrow if $a < 0$, the <i>m</i> lies in (α, β)		<u> </u>
	and if <i>a>0</i> , then <i>m</i> does not lies in (α, β) Hence, option (c) is correct, since $\frac{ a }{a} = 1 \Longrightarrow a > 0$	0	
	And in that case m does not lie in $(lpha,eta)$.		
128.	Let $f(x)$ be a function such that $f(x) = x - x$	$[x], ext{ where } [x] ext{ is the given by the set of the set $	reatest integer less
	than or equal to x. Then the number of solution	ns of the equation $f(x)$	$+f\left(\frac{1}{x}\right)=1$ is (are)
Key.	A) 0 B) 1 D	C) 2	D) infinite
Sol.	Given, $f(x) = x - [x], x \in R - \{0\}$		
	Now $f(x) + f\left(\frac{1}{x}\right) = 1$	$x - [x] + \frac{1}{x} - \left\lfloor \frac{1}{x} \right\rfloor = 1$	
	$\Rightarrow \left(x + \frac{1}{x}\right) - \left(\left[x\right] + \left[\frac{1}{x}\right]\right) = 1$	$\Rightarrow \left(x + \frac{1}{x}\right) = \left[x\right] + \left[\frac{1}{x}\right]$	
	Clearly ,R.H.S is an integer	∴ L. H. S. is also an int	eger
	Let $x + \frac{1}{x} = k$ an integer $x = \frac{k \pm \sqrt{k^2 - 4}}{k \pm \sqrt{k^2 - 4}}$	$\Rightarrow x^2 - kx + 1 = 0$	
S	For real values of x, $k^2 - 4 \ge 0 \Longrightarrow k \ge 2$ or $k \le -4$ We also observe that $k=2$ and -2 does not satis \therefore The equation (i) will have solutions if $k > 2$ Hence equation (i) has infinite number of solut	-2 fy equation (i) or $k < -2$,where $k \in z$ ions.	
129.	If both the roots of $(2a-4)9^x - (2a-3)3^x + $	1 = 0 are non-negative,	then
	A) $0 < a < 2$ B) $2 < a < \frac{5}{2}$	C) $a < \frac{5}{4}$	D) $a > 3$
Key.	В		
Sol.	Putting $3^x = y$, we have		
	$(2a-4)y^2-(2a-3)y+1=$	0	

This equation must have real solution

$$\Rightarrow (2a-3)^{2}-4(2a-4) \ge 0$$

$$\Rightarrow 4a^{2}-20a+25 \ge 0$$

$$\Rightarrow (2a-5)^{2} \ge 0. \text{ This is true.} \\ y=1 \text{ satisfies the equation}$$
Since 3' is positive and 3' \ge 3'', y \ge 1
Product of the roots = 1 × y > 1

$$\Rightarrow \frac{1}{2a-4} > 1$$

$$\Rightarrow 2a-4 < 1 \Rightarrow a < \frac{5}{2}$$
Sum of the roots $= \frac{2a-3}{2a-4} > 1$

$$\Rightarrow \frac{(2a-3)-(2a-4)}{2a-4} > 0$$

$$\Rightarrow \frac{1}{2a-4} > 0 \Rightarrow a > 2$$

$$\Rightarrow 2 < a < \frac{5}{2}$$
130. Let α and β be the roots of $x^{2}-6x-2=0$ with $\alpha > \beta$ if $a_{n} = \alpha^{n} - \beta^{n}$ for $n \ge 1$ then the value of $\frac{a_{10}-2a_{8}}{3a_{9}} =$

$$1) 1 2 2 3) 3 4) 4$$
Key. 2
Sol. $\alpha^{2}-6\alpha-2=0$
 $\beta^{2}-6\beta-2=0$
 $\beta^{2}-6\beta-2=0$
 $\Rightarrow \alpha^{10}-6\alpha^{2}-2\alpha^{8}=0$(1)
 $\Rightarrow \beta^{10}-6\beta^{2}-2\beta^{8}=0$(2)
subtract (2) from (4)
131. If a,b,c are positive real numbers such that $a+b+c=1$ then the least value of $\frac{(1+a)(1+b)(1+c)}{(1-a)(1-b)(1-c)}$
 $\therefore (1+a)(1+b)(1+c) \ge 2\sqrt{(1-b)(1-c)}$
 $\therefore (1+a)(1+b)(1+c) \ge 8(1-a)(1-b)(1-c)$

132. The range of values of '*a*' for which all the roots of the equation $(a-1)(1+x+x^2)^2 = (a+1)(1+x^2+x^4)$ are imaginary is

Mathematics		Quadratic E	Equations & Theory of Equations
	1) (−∝,−2]	2) (2,∞)	
	3) (-2,2)	4) [2,∞)	
Key.	3		
Sol.	The given equation can be wri	tten as $(x^2+x+1)(x^2-ax)$	(+1) = 0
133.	If $lpha,eta$ are the roots of the e	quation $ax^2 + bx + c = 0$ ar	nd $S_n = \alpha^n + \beta^n$ then
	$aS_{n+1} + bS_n + cS_{n-1} = (n \ge 2)$)	
	1) 0	2) $a+b+c$	
	3) $(a+b+c)n$	4) $n^2 abc$	×0.
Key.	1		
Sol.	$S_{n+1} = \alpha^{n+1} + \beta^{n+1}$		\sim
	$=(\alpha+\beta)(\alpha^n+\beta^n)-\alpha\mu$	$etaig(lpha^{n-1}+eta^{n-1}ig)$	
	$= -\frac{b}{a}.S_n - \frac{c}{a}.S_{n-1}$		
134.	A group of students decided	to buy a Alarm Clock priced	l between Rs. 170 to Rs 195. But
	at the last moment, two stude	ents backed out of the decis	sion so that the remaining
	shares, the price of the Alarm	n Clock is	a. If the students paid equal
	1) 190	2) 196	
V	3) 180	4) 171	
кеу. Sol.	$\frac{3}{1000}$ Let cost of clock = x	SV.	
	number of students $= n$		
	then $\frac{x}{n-2} = \frac{x}{n} + 1 \Longrightarrow x = \frac{n^2}{n}$	$\frac{-2n}{2}$	
	$\Rightarrow 170 \le \frac{n^2 - 2n}{2} \le 195$	_	
	2		
135.	If $\tan A$, $\tan B$ are the roots of	of $x^2 - Px + Q = 0$ the valu	e of $\sin^2(A+B) =$
	(where $P, Q \in R$)		
	1) P^{2}		2) P^{2}
	$P^{2} + (1-Q)^{2}$		$P^{2} + Q^{2}$
	Q^2		4) $\frac{P^2}{2}$
	$P^2 + (1-Q)^2$		$\left(P+Q\right)^2$

Key. 1

Sol.
$$\tan(A+B) = \frac{P}{1-Q}$$
 then $\sin^2(A+B) = \frac{\tan^2(A+B)}{1+\tan^2(A+B)}$

136. The number of solutions of |[x]-2x|=4 where [x] is the greatest integer $\leq x$ is 1) 2 2) 4 3) 1 4) Infinite

Key. 2 If $x = n \in \mathbb{Z}$, $|n-2n| = 4 \Longrightarrow n = \pm 4$ Sol. If x = n + K where 0 < K < 1 then |n - 2(n + k)| = 4, it is possible if $K = \frac{1}{2}$ $\Rightarrow |-n-1| = 4$ $\therefore n = 3, -5$ Let *a*, *b* and *c* be real numbers such that a+2b+c=4 then the maximum value of 137. ab+bc+ca is 1)1 2) 2 3) 3 4 Kev. Let ab+bc+ca=xSol. $\Rightarrow 2b^2 + 2(c-2)b - 4c + c^2 + x = 0$ Since $b \in R$, $\therefore c^2 - 4c + 2x - 4 \le 0$ Since $c \in R$ $\therefore x \leq 4$ For the equation $3x^2 + px + 3 = 0$, p > 0, if one root is the square of the other then value 138. of P is 1) $\frac{1}{3}$ 3) 3 4) $\frac{2}{3}$ Kev. Sol. $\alpha + \alpha^2$ $\alpha^3 =$ If the equations $2x^2 + kx - 5 = 0$ and $x^2 - 3x - 4 = 0$ have a common root, then the 139. value of k is 1) -2 2) - 33) $\frac{27}{4}$ 4) $-\frac{1}{4}$ Key. 2 If ' α ' is the common root then $2\alpha^2 + k\alpha - 5 = 0$, $\alpha^2 - 3\alpha - 4 = 0$ solve the equations. Sol. If α and β are the roots of the equation $x^2 - x + 1 = 0$ then $\alpha^{2009} + \beta^{2009} =$ 140. 1)1 2) 2 3) -1 (4) - 2Key. 1

Math	ematics	Quadratic Equations & Theory of Equat
Sol.	$x = \frac{1 \pm i\sqrt{3}}{2}$	
	$\therefore \alpha = -\omega, \ \beta = -\omega^2$	
141.	If $P(Q-r)x^2 + Q(r-P)x +$	$r(P-Q) = 0$ has equal roots then $\frac{2}{Q} =$
	(where $P, Q, r \in R$)	
	1) $\frac{1}{P} + \frac{1}{r}$	$2) \frac{1}{P} - \frac{1}{r}$
Kev.	3) <i>P</i> + <i>r</i>	4) <i>Pr</i>
Sol.	Product of the roots $=1$	
142.	The solution of the differentia	al equation $y_1 y_3 = 3y_2^2$ is
	1) $x = A_1 y^2 + A_2 y + A_3$	2) $x = A_1 y + A_2$
	3) $x = A_1 y^2 + A_2 y$	4)none of these
Key.	1	
Sol.	$y_1 y_3 = 3y_2^2$	
	$\frac{y_3}{y_2} = 3\frac{y_2}{y_1} \Longrightarrow \ln y_2 = 3\ln y_1 +$	ln c
	$y_2 = c y_1^3$	
	$\frac{y_2}{y_1^2} = cy_1$	
	$-\frac{1}{y} = cy + c_2$	
	$\frac{dx}{dx}$	
	$\frac{dy}{dy} = -cy - c_2$	
	$x = -\frac{cy^2}{2} - c_2 y + c_3$	
	$\therefore x = A_1 y^2 + A_2 y + A_3$	
143.	If $(1+K)\tan^2 x - 4\tan x - 1 +$	$-K = 0$ has real roots $\tan x_1$ and $\tan x_2$ then
	1) $k^2 \le 5$	2) $k^2 \ge 6$
17	3) $k = 3$	4) <i>k</i> >10
Key. Sol	1 Discriminate > 0	
144.	Let $f(x)$ be a real valued function	nction satisfying $a.f(x)+bf(-x) = px^2 + ax + r$. $\forall x \in R$

Where $p,q,r \in R - \{0\}$ and $a,b \in R$ such that $|a| \neq |b|$. Then the condition that f(x) = 0 will have real roots is

Quadratic Equations & Theory of Equations

	A) $\left(\frac{a+b}{a-b}\right)^2 \le \frac{q^2}{4pr}$	$\mathbf{B})\left(\frac{a+b}{a-b}\right)^2 \le \frac{4pr}{q^2}$	
	$\mathbf{C}\left(\frac{a+b}{a-b}\right)^2 \ge \frac{q^2}{4pr}$	D) $\left(\frac{a+b}{a-b}\right)^2 \ge \frac{4pr}{q^2}$	
Key.	D		
Sol.	Using hypothesis we get $f(x) - f(-x) = \frac{2qx}{a-b}$		
145.	The number of solutions of the equations $n^{- x }$	m- x = 1 (where m, n	>1&n>m) is
Key.	A) 0 B) 1 C	C) 2	D)4
	$ \xrightarrow{\qquad n^{ x }}_{-m 0 m \rightarrow x} $	ol la	
Sol.	$\bullet + \bullet = two solutions$	O _{la}	
146.	The values of 'a' for which the equation $x^3 + a$ common root	$ax+1=0$ and $x^4 + ax^2 + ax$	1=0 have a
Key. Sol.	A) 2 B) -2 B Let α be a common root Then $\alpha^3 + a\alpha + 1 = 0 - (1)$ And $\alpha^4 = a\alpha^2 + 1 = 0 - (2)$ $\alpha \times (1) - (2) \Rightarrow \alpha - 1 = 0 \Rightarrow \alpha = 1$ So, from $x^3 + ax + 1 = 0 \Rightarrow 1 + a + 1 = 0 \Rightarrow a = -1$	-2 -2	D) 1
147.	If the roots of the equation $ax^2 + bx + c = 0$ are value of $(a+b+c)^2$ is	e of the form $\frac{\alpha}{\alpha - 1}$ and	$\frac{\alpha+1}{\alpha}$, then
Key.	A) $2b^2 - ac$ B) $b^2 - 2ac$ C	D) $b^2 - 4ac$	D) $4b^2 - 2ac$
Sol.	By hypothesis $\frac{\alpha}{\alpha - 1} + \frac{\alpha + 1}{\alpha} = -\frac{b}{a}$ and $\frac{\alpha}{\alpha - 1} \cdot \frac{\alpha}{\alpha}$	$\frac{\alpha+1}{\alpha} = \frac{c}{a}$	
C	$\Rightarrow \frac{2\alpha^2 - 1}{\alpha^2 - \alpha} = -\frac{b}{a} \text{ and } \alpha = \frac{c + a}{c - a}$ $\Rightarrow (c + a)^2 + 2b(c + a) + b^2 = b^2 - 4ac \Rightarrow (a + b)^2 = b^2 = b^2 - 4ac \Rightarrow (a + b)^2 = b^2 $	$(+c)^2 = b^2 - 4ac$	
148.	The value of a , for which one root of the equa	tion $(a-5)x^2-2ax+(a-5)x^2-2a$	(a-4) = 0 is
	smaller than 1 and the other greater than 2 is $_$		
	A) $a \in (5, 24)$ B) $a \in \left(\frac{20}{3}, \infty\right)$	C) $a \in (5,\infty)$	D) $a \in (-\infty, \infty)$
Key. Sol.	A (i) $D > 0$ $4a^2 - 4(a-5)(a-4) > 0$		

$$9a - 20 > 0 \Rightarrow a > \frac{20}{9} \Rightarrow a \in \left(\frac{20}{9}, \infty\right) \longrightarrow (1)$$
(ii) $(a - 5)f(1) < 0; (a - 5)f(2) < 0$
 $\Rightarrow (a - 5)(a - 5 - 2a + a - 4) < 0$
 $\Rightarrow a > 5 \Rightarrow a \in (5, \infty) \longrightarrow (2)$
and $(a - 5)\{(a - 5).4 - 4a + a - 4\} < 0$
 $\Rightarrow (a - 5)(a - 24) < 0 \Rightarrow 5 < a < 24$
 $\Rightarrow a \in (5, 24) \longrightarrow (3)$
Using (1), (2) & (3)
The common condition is $a \in (5, 24)$
149. If the equations $ax^2 - 2bx + c = 0, bx^2 - 2cx + a = 0$ and $cx^2 - 2ax + b = 0$ have only
positive roots then
A) $a > b > c$ B) $a < b < c$ C) $a = b = c$ D) $a > b; b < c$
Key. C
Sol. Roots of equation $ax^2 - 2bx + c = 0$ are +ve then discriminent $\ge 0 \Rightarrow b^2 \ge ac$
Sum of roots $= \frac{b}{a} > 0$, product of roots $= \frac{c}{a} > 0$
Similarly for other two equations, we get $c^2 \ge ab \Rightarrow \frac{c}{b} > 0, \frac{a}{b} > 0$ and
 $a^2 \ge bc \Rightarrow \frac{a}{c} > 0 \& \frac{b}{c} > 0$
Using above conditions a, b, c are all +ve (or) all are -ve.
Multiplying we get $c^2a^2 \ge ab^2c$
 $\Rightarrow ac(b^2 - ac) \le 0 \& c^2 - ab \le 0$
And all, we get $a^2 + bx^2 + c^2 - ab - bc - ca \le 0$
 $\Rightarrow \frac{1}{2} [(a - b)^2 + (b - c)^2 + (c - a)^2] = 0$
 $3i^2 + pi^{-1} = 0p^{-1} (c)$ (or) $=$
 $a + cx - \frac{f_a}{3}$
150. If ax is a root of $ax^2 + bx + c = 0$; β is a root fo $-ax^2 + bx + c = 0$ and γ is a root of $ax^2 + 2bx + 2c = 0$ then
A) $\gamma < \alpha < \beta$ B) $\alpha < \beta < \gamma$ C) $\alpha < \gamma < \beta$ D) $\frac{\alpha}{\beta} < \gamma < \frac{\beta}{\alpha}$
Key. C
Sol. Let $f(x) = ax^2 + 2bx + 2c$

Then, we have $f(\alpha) = a\alpha^2 + 2b\alpha + 2c = -a\alpha^2 + 2(a\alpha^2 + b\alpha + c)$ $= -a\alpha^2 [\because \alpha \text{ is a root of } ax^2 + bx + c = 0. \because a\alpha^2 + b\alpha + c = 0]$ Also we have, $f(\beta) = a\beta^2 + 2b\beta + 2c = 3a\beta^2 + 2(-a\beta^2 + b\beta + c)$ $= 3a\beta^2 [\because \beta \text{ is a root of } -ax^2 + bx + c = 0. \because a^2\beta - b\beta - c = 0]$

Quadratic Equations & Theory of Equations

Now. $f(\alpha)f(\beta) = -3a^2\alpha^2\beta^2 < 0$ which implies that $f(\alpha)$, $f(\beta)$ are of opposite signs and hence, proves that the curve represented by y = f(x) cuts the X-axis somewhere between α and β .

In other words f(x) = 0 has a root lying between α and β .

 $D \le 0 \Longrightarrow (n+6)^2 - 40 \le 0 \Longrightarrow -\sqrt{40} - 6 \le n \le \sqrt{40} - 6 - (1)$ Similarly $\frac{x^2 + nx - 2}{x^2 - 3x + 4} + 1 \ge 0 \Longrightarrow 2x^2 + (x-3)x + 2 \ge 0$

 $\Rightarrow D \le 0 \Rightarrow (n-3)^2 - 16 \le 0 \Rightarrow -1 \le n \le 7 \quad \dots \quad (2)$ Combined (1) & (2) we get $n \in \left[-1, \sqrt{40} - 6\right]$

RACHIN

151. If for any real
$$x$$
, we have $-1 \le \frac{x^2 + nx - 2}{x^2 - 3x + 4} \le 2$ then the value of n is
A) $n \in [-1, \sqrt{40} - 6]$ B) $n \in [-1, 3)$ C) $n \in [-\sqrt{40} - 6, -1]$ D)
 $n \in [1, \sqrt{40} + 6]$
Key. A
Sol. $\frac{x^2 + nx - 2}{x^2 - 3x + 4} - 2 \le 0$
 $\Rightarrow x^2 - (n+6)x = 10 \ge 0$, true $\forall x \in R$ then

SMART ACHIER STRAMMERTING

Quadratic Equations & Theory of Equations

Multiple Correct Answer Type

Consider the fraction $\frac{x^3 - ax^2 + 19x - a - 4}{x^3 - (a+1)x^2 + 23x - a - 7}$ 1. a) The value of 'a' at which the above fraction admits of reduction is 8 b) The value of 'a' at which the above fraction admits of reduction is 4 c) The lowest admitted reduction form of the fraction is $\frac{x-4}{x-5}$ d) The lowest admitted reduction form of the fraction is $\frac{x-3}{x-4}$ Key. A.C subtracting numerator from denominator, we get Sol. $x^{2}-4x+3$ i.e (x-1)(x-3). Thus it is concluded that numerator and denominator must be completely divisible by (x-1)or (x-3) in other words both must vanish when x=1 or when x=3, if x=3 we get, a=8And fraction becomes $\frac{x^3 - 8x^2 + 19x - 12}{x^3 - 9x^2 + 23x - 15} = \frac{x^2 - 7x + 12}{x^2 - 8x + 15}$ If we put x = 1, we get also that a = 8Two numbers are such that their sum multiplied by the sum of their squares is 5500 and 2. their difference multiplied by the difference of the squares is 352. Then the numbers are a) Prime numbers only b) odd positive integers c) prime but not odd d) d) odd but not prime

Key.

B

and

Sol. Let the two number be x,y then

$$(x+y)(x^2+y^2) = 5500$$
 ---(i)

$$(x-y)(x^2-y^2) = 352$$
 --(ii)

After solving these two equations

$$x = 9 or 13$$

$$y = 13 or 9$$

3. If by eliminating x between the equations $x^2 + ax + b = 0$ and xy + l(x + y) + m = 0, a quadratic equation in y is formed whose roots are the same as those original quadratic in x, then

a) a = 2l b) b = m c) b + m = al d) a + b = l

Key. A,B,C Sol. Given equation are $x^2 + ax + b = 0$ --(1) xy + l(x + y) + m = 0--(2) From (2), we get, x(y+1) = -(m+ly) $\therefore x = -\left(\frac{m+ly}{v+l}\right)$ Substituting this value in (1), we have $\left(\frac{m+ly}{y+l}\right)^2 - a\left(\frac{m+ly}{y+l}\right) + b = 0$ or $(m+ly)^2 - a(m+ly)(y+l) + b(y+l)^2 = 0$ or $(y^2l^2 + b - al) + y(2lm + 2bl - al^2 - am) + m^2 - alm + b$ Since this equation is equivalent to (1) $\therefore \frac{l^2 - al + b}{l} = \frac{2lm - al^2 - am + 2bl}{a} = \frac{m^2 - alm + bl^2}{b}$ From 1st and third fraction $b(l^2-al+b) = m^2 - alm + bl^2$ *i.e* $al(b-m)-(b^2-m^2)=0$ or (b-m)(al-b-m) = 0 \therefore either b = m or b + m = alFrom 1^{st} and second fraction, putting b = m $al^2 - a^2l + am = 4lm - al^2 - am$ or $2al^2 - a^2l - 4lm - 2am = 0$ or $a^2 l - 2a(l^2 + m) + 4lm = 0$ or (a - 2l)(al - 2m) = 0 $\therefore a = 2l \text{ or } al = 2m$ b = m and a = 2lThus either b = m and al = 2mIf α and β are the roots of the equation $x^2 + px + q = 0$ and α^4 and β^4 are the 4.

roots of $x^2 - rx + s = 0$, the roots of $x^2 - 4qx + 2q^2 - r = 0$ are always a) both real b) both positive

c) both negative d) one positive & one negative Key. A,D
Sol. We have
$$\alpha + \beta = -p, \alpha\beta = q, \alpha^4 + \beta^4 = r$$
 and $\alpha^4\beta^4 = s$
Therefore, $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = p^2 - 2q$, so that $r = \alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2 = (p^2 - 2q)^2 - 2q^2$
i.e., $(p^2)^2 - 4q(p^2) + 2q^2 - r = 0$
This shows that p^2 is one root of $x^2 - 4qx + 2q^2 - r = 0$. If its other root is γ , we have $\gamma + p^2 = 4q$, i.e., $\gamma = 4q - p^2$. Further the discriminant of this quadratic equation is $(4q)^2 - 4(2q^2 - r) = 8q^2 + 4[(p^2 - 2q)^2 - 2q^2] = 4(p^2 - 2q)^2 \ge 0$
So that both roots, p^2 and $-p^2 + 4q$ are real. Since α and β are real $p^2 - 4q \ge 0$,
i.e., $-p^2 + 4q \le 0$. Thus the roots of $x^2 - 4qx + 2q^2 - r = 0$ are positive and negative
5. Let $|a| < |b|$ and a, b are the roots of the equation $x^2 - a|x = |\beta| = 0$. If $|\alpha| < b - 1$, then
the equation $\log_{|a|} \left(\frac{x}{b}\right)^2 - 1 = 0$ has at least one
A) root lying between $(-\infty, a)$ (b) positive root
Key. A,B,C,D
Sol. $|a| = \text{sum of roots } = b + a$
 $-|\beta| = \text{product of root } = ab$
Because $|a| < |b|$ so a negative and b is positive.
Now, $|a| < b - 1 \Rightarrow a + b < b - 1 = a < -1$.
Because a is negative to magnitude of 'a' is greater than one and magnitude of b is greater
than $1 + |a|$ or say greater than 'a' as well as greater than (b, ∞) .
6. The value of 'x' satisfying the equation $x^4 - 2\left(x \sin\left(\frac{\pi}{2}x\right)\right)^2 + 1 = 0$
A) 1 B) -1 C 0 D) No value of 'x'.
Key. A,B
Sol. $x^4 - 2\left(x \sin\left(\frac{\pi}{2}x\right)\right)^2 + 1 = 0$

$$\Rightarrow x^{4} + 1 = 2x^{2} \sin^{2}\left(\frac{\pi}{2}x\right)$$

$$\Rightarrow x^{2} + \frac{1}{x^{2}} = 2 \sin^{2}\left(\frac{\pi}{2}x\right)$$
Now, LHS ≥ 2 where as RHS ≤ 2
So, equality holds when
$$x^{2} + \frac{1}{x^{2}} = 2 \text{ and } 2\sin^{2}\left(\frac{\pi}{2}x\right) = 2 \Rightarrow x = \pm 1$$
7. In a $\triangle ABC$, tan A and tan B satisfy the inequation $\sqrt{3}x^{2} - 4x + \sqrt{3} < 0$. Then
(A) $a^{2} + b^{2} - ab < c^{2}$ (B) $a^{2} + b^{2} > c^{2}$ (C) $a^{2} + b^{2} + ab > c^{2}$ (D) All of the above
Key. A.C
Sol. $(x - \sqrt{3})(x\sqrt{3} - 1) < 0$
 $\Rightarrow x \text{ lies between } \frac{1}{\sqrt{3}} \text{ and } \sqrt{3} \Rightarrow \text{ Both } \tan A \text{ and } \tan B \text{ lee}$
between $\frac{1}{\sqrt{3}}$ and $\sqrt{3}$
Both A and B lie between 30° and 60°.
 $\Rightarrow 60^{\circ} < c120^{\circ}$
 $\Rightarrow -\frac{1}{2} < \frac{a^{2} + b^{2} - c^{2}}{2ab} < \frac{1}{2}$
8. Let $f(x) = \frac{3}{x-2} + \frac{4}{x-3} + \frac{5}{x-4}$, then $f(x) = 0$ has
A) exactly one real root in (2,3)
(C) at least one real root in (2,3)
(C) at least one real root in (2,3)
 $\Rightarrow f(x) = 0$ has exactly one root in (3,4)
(C) at least one real root in (2,3)
 $\Rightarrow f(x) = 0$ has exactly one root in (2,3)
 $\Rightarrow f(x) = 0$ has exactly one root in (2,3)
 $\Rightarrow f(x) = 0$ has exactly one root in (2,3)
 $\Rightarrow f(x) = 0$ has exactly one root in (2,3)
 $\Rightarrow f(x) = 0$ has exactly one root in (3,4)
9. If $x_{1} > x_{2} > x_{3}$ and $x_{1} x_{2} , x_{3}$ are roots of $\frac{x - a}{b} + \frac{x - b}{a} = \frac{b}{x - a} + \frac{a}{x - b}; (a, b, > 0)$ and $x_{1} - x_{2} - x_{3} = c$, then a, c, b are in.

Mathe	ematics		Quadratic Eq	uations & Theory of Equations
	A) A.P.	B) G.P.	C) H.P.	D) None
Key.	С			
Sol.	Given equ	ation can be written as		
	$\frac{x-a}{a}$	$\frac{b}{a} + \frac{x-b}{a} - \frac{a}{a} = 0$		
	b .	x-a a $x-b$		
	$=\frac{(x-a)}{b(x)}$	$\frac{b^2 - b^2}{-a} + \frac{(x-b)^2 - a^2}{a(x-b)} = 0$		
	$\Rightarrow (x-a)$	$(a-b)\left[\frac{x-a+b}{b(x-a)}+\frac{x-b+a}{a(x-b)}\right]$	=0	<u> </u>
	$\Rightarrow (x-a)$	$-b\bigg)\bigg\{\frac{a\bigg[x^2-bx-ax+ab+bx-ab\big]}{ab\big(ab\big)}\bigg\}$	$\frac{b^2}{x-a} + b \left[\frac{x^2 - ax}{x-a} - \frac{ax}{x-a} \right]$	$\frac{-bx+ab+ax-a^2}{2} = 0$
	$\Rightarrow (x - a)$	$-b)(ax^2-a^2x+a^2b-ab^2+bx^2)$	$-b^2x+ab^2-a^2b$	
	$\Rightarrow x(x -$	$(a-b){x(a+b)-(a^2+b^2)}$	=0	
	∴ roots w	vill be x=0, $a+b, \frac{a^2+b^2}{a+b}$		
	Let $x_1 = a$	$a+b, x^2 = \frac{a^2+b^2}{a+b}$ and $x_3 = 0$		
	$\therefore x_1 - x_2$	$-x_3 = c$ (given)		
	(a+b)	$-\frac{a^2+b^2}{a+b}-0=c$		
	$\Rightarrow \frac{(a+b)}{a+b}$	$\frac{b^{2}-(a^{2}+b^{2})}{a+b} = c \Rightarrow \frac{2ab}{a+b} = c$	C C	
	i.e <i>a,c,b</i>	are in H. P		
	, , ,	PCU.		

10. If the equation whose roots are the squares of the roots of the cubic $x^3 - ax^2 + bx - 1 = 0$ is identical with the given cubic equation, then

A) *a,b* are roots of $x^2 + x + 2 = 0$ C) *a* = *b* = 3 Key. A,B,C B) *a* = *b* = 0 D) *a* = 0, *b* = 3

Sol. If roots of the equation be α, β, γ then

$$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha) = a^{2} - 2b$$

$$\alpha^{2}\beta^{2} + \beta^{2}\gamma^{2} + \gamma^{2}\alpha^{2} = (\alpha\beta + \beta\gamma + \gamma\alpha)^{2} - 2\alpha\beta\gamma(\alpha + \beta + \gamma)$$

$$= b^{2} - 2a$$

$$\alpha^{2}\beta^{2}\gamma^{2} = 1.$$
So, the equation whose roots are $\alpha^{2}, \beta^{2}, \gamma^{2}$ is
$$a^{2} - (\alpha^{2} - \alpha^{2}) = 2a - (\alpha^{2} - \alpha^{2}) = 1$$

It is identical to $x^3 - ax^2 + bx - 1 = 0$ $\therefore a^2 - 2b = a$ and $b^2 - 2a = b$, eliminating b, we get $\frac{(a^2-a)^2}{4}-2a=\frac{a^2-a}{2}$ $a\left\{a(a-1)^2-8-2(a-1)\right\}=0$ \Rightarrow $a(a^3-2a^2-a-6)=0$ \Rightarrow $a(a-3)(a^2+a+2)=0$ or $a = 0 \text{ or } a = 3 \text{ or } a^2 + a + 2 = 0$ *.*.. Which give $b=0 or b=3 or b^2+b+2=0$ a=b=0 or a=b=3So. Or *a*, *b* are roots of $x^2 + x + 2 = 0$ $\frac{\pi^{e}}{x-e} + \frac{e^{\pi}}{x-\pi} + \frac{\pi^{\pi}+e^{e}}{x-\pi-e} = 0$ has 11. A) One real root in (e,π) and other in $(\pi\!-\!e,\!e)$ B) One real root in (e,π) and other in $(\pi,\pi,+e)$ C) Two real roots in $(\pi - e, \pi + e)$ D) No real roots Key. B.C Given equation can be expressed as Sol. $\pi^{e}(x-\pi)(x-\pi-e) + e^{\pi}(x-e)(x-\pi-e) + (\pi^{\pi}+e^{e})$ $(x-e)(x-\pi) = 0$ Let $f(x) = \pi^{e}(x-\pi)(x-\pi-e) + e^{\pi}(x-e)(x-\pi-e) + (\pi^{\pi}+e^{e})(x-e)(x-\pi)$ $f(e) = \pi^{e}(e - \pi)(-\pi) > 0$ and $f(\pi) = e^{\pi}(\pi - e)(-e) < 0$ hence given equation has a real root in (e, π) again $f(\pi + e) = (\pi^{\pi} + e^{e})\pi \cdot e > 0$ $\therefore \pi + e > \pi$, it concludes it has a real root in $(\pi, \pi + e)$ Also $\therefore \pi - e < e$ hence f(x) has two real roots in $(\pi - e, \pi + e)$ Consider the fraction $\frac{x^3 - ax^2 + 19x - a - 4}{x^3 - (a+1)x^2 + 23x - a - 7}$ 12. a) The value of 'a' at which the above fraction admits of reduction is 8 b) The value of 'a' at which the above fraction admits of reduction is 4

c) The lowest admitted reduction form of the fraction is $\frac{x-4}{x-5}$

--(ii)

d) The lowest admitted reduction form of the fraction is $\frac{x-3}{x-4}$

Key. A,C

Sol. subtracting numerator from denominator, we get

 $x^2 - 4x + 3$ i.e (x - 1)(x - 3).

Thus it is concluded that numerator and denominator must be completely divisible by (x-1)

or (x-3) in other words both must vanish when x=1 or when x=3, if x=3 we get,

$$a = 8$$

And fraction becomes

$$\frac{x^3 - 8x^2 + 19x - 12}{x^3 - 9x^2 + 23x - 15} = \frac{x^2 - 7x + 12}{x^2 - 8x + 15} = \frac{x - 4}{x - 5}$$

If we put x = 1, we get also that a = 8.

- 13. Two numbers are such that their sum multiplied by the sum of their squares is 5500 and their difference multiplied by the difference of the squares is 352. Then the numbers are
 - a) Prime numbers onlyb) odd positive integersc) prime but not oddd) odd but not prime
- Key. B,D
- Sol. Let the two number be x,y then

$$(x+y)(x^2+y^2) = 5500$$
 ---(i)

and

After solving these two equations

$$x = 9 or 13$$

$$y = 13 or 9$$

14. If by eliminating x between the equations $x^2 + ax + b = 0$ and xy + l(x + y) + m = 0, a quadratic equation in y is formed whose roots are the same as those original quadratic in x, then

 $(-v)(x^2 - v^2) = 352$

a)
$$a = 2l$$
 b) $b = m$ c) $b + m = al$ d) $a + b = l$

Key. A,B,C

Sol. Given equation are

$$x^2 + ax + b = 0 \qquad \qquad --(1)$$

$$xy + l(x + y) + m = 0$$
 --(2)

From (2), we get, x(y+1) = -(m+ly)

$$\therefore x = -\left(\frac{m+ly}{y+l}\right)$$

Substituting this value in (1), we have

$$\left(\frac{m+ly}{y+l}\right)^2 - a\left(\frac{m+ly}{y+l}\right) + b = 0$$

or $(m+ly)^2 - a(m+ly)(y+l) + b(y+l)^2 = 0$
or $(y^2l^2 + b - al) + y(2lm + 2bl - al^2 - am) + m^2 - alm + bl^2 = 0$
Since this equation is equivalent to (1)
 $\therefore \frac{l^2 - al + b}{l} = \frac{2lm - al^2 - am + 2bl}{a} = \frac{m^2 - alm + bl^2}{b}$
From 1s⁴ and third fraction
 $b(l^2 - al + b) = m^2 - alm + bl^2$
i.e $al(b-m) - (b^2 - m^2) = 0$
or $(b-m)(al - b - m) = 0$
 \therefore either $b = m$ or $b + m = al$
From 1s⁴ and second fraction, putting $b = m$
 $al^2 - a^2l + am = 4lm - al^2 - am$
or $2al^2 - a^2l - 4lm - 2am = 0$
or $(a - 2l)(al + 2m) = 0$
Thus either $b = m$ and $a = 2l$
 $b = m$ and $al = 2m$
If α and β are the roots of the equation $x^2 + px + q = 0$ and α^4 and β^4 are the roots of $x^2 - rx + s = 0$, the roots of $x^2 - 4qx + 2q^2 - r = 0$ are always

15. If α and β are the roots of the equation $x^2 + px + q = 0$ and α^4 and β^4 are the roots of $x^2 - rx + s = 0$, the roots of $x^2 - 4qx + 2q^2 - r = 0$ are always a) both real b) both positive c) both negative d) one positive & one negative Key. A,D

Sol. We have $\alpha + \beta = -p, \alpha\beta = q, \alpha^4 + \beta^4 = r$ and $\alpha^4\beta^4 = s$ Therefore, $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = p^2 - 2q$, so that

Quadratic Equations & Theory of Equations

$$r = \alpha^{4} + \beta^{4} = (\alpha^{2} + \beta^{2})^{2} - 2\alpha^{2}\beta^{2} = (p^{2} - 2q)^{2} - 2q^{2}$$
i.e., $(p^{2})^{2} - 4q(p^{2}) + 2q^{2} - r = 0$
This shows that p^{2} is one root of $x^{2} - 4qx + 2q^{2} - r = 0$. If its other root is γ , we have $\gamma + p^{2} = 4q$, i.e., $\gamma = 4q - p^{2}$. Further the discriminant of this quadratic equation is $(4q)^{2} - 4(2q^{2} - r) = 8q^{2} + 4[(p^{2} - 2q)^{2} - 2q^{2}] = 4(p^{2} - 2q)^{2} \ge 0$
So that both roots, p^{2} and $-p^{2} + 4q$ are real. Since α and β are real $p^{2} - 4q \ge 0$, i.e., $-p^{2} + 4q \le 0$. Thus the roots of $x^{2} - 4qx + 2q^{2} - r = 0$ are positive and megative
16. Let $|a| < |b|$ and a, b are the roots of the equation $x^{2} - |\alpha| |x - |\beta| = 0$. If $|\alpha| < b - 1$, then the equation $\log_{|a|}(\frac{x}{b})^{2} - 1 = 0$ has at least one
A) root lying between $(-\infty, a)$
B) roots lying between (b, ∞)
C) negative root
D) positive noot
Key. A.B.C.D
Sol. $|\alpha| = \text{sum of roots } = b + a$
 $-|\beta| = \text{product of root } = ab$
Because $|a| < |b|$ so a is negative and b is positive.
Now, $|a| < b - 1 \Rightarrow a + b < b - 1 = a < -1$.
Because a is negative so magnitude of a^{2} is greater than one and magnitude of b is greater than $1 + |\alpha|$ or say greater than 2 .
Now, $\log_{|a|}(\frac{x}{b})^{2} + 1 = 0 \Rightarrow \frac{x}{b}\sqrt{|a|}$
Magnitude of x is greater than $a^{2} - 2\left(x\sin\left(\frac{\pi}{2}x\right)\right)^{2} + 1 = 0$
A) 1
B) -1
C) 0
D) No value of x^{2}
sol.
 $x^{4} - 2\left(x\sin\left(\frac{\pi}{2}x\right)\right)^{2} + 1 = 0$
 $\Rightarrow x^{4} + 1 = 2x^{2}\sin^{2}\left(\frac{\pi}{2}x\right)$
 $\Rightarrow x^{2} + \frac{1}{x^{2}} = 2\sin^{2}\left(\frac{\pi}{2}x\right)$

Now, LHS ≥ 2 where as RHS ≤ 2 So, equality holds when $x^2 + \frac{1}{x^2} = 2$ and $2\sin^2\left(\frac{\pi}{2}x\right) = 2 \Longrightarrow x = \pm 1$ In a $\triangle ABC$, $\tan A$ and $\tan B$ satisfy the inequation $\sqrt{3}x^2 - 4x + \sqrt{3} < 0$. Then 18. A) $a^2 + b^2 - ab < c^2$ B) $a^2 + b^2 > c^2$ C) $a^2 + b^2 + ab > c^2$ D) All of the above Key. A.C $\left(x-\sqrt{3}\right)\left(x\sqrt{3}-1\right)<0$ Sol. \Rightarrow x lies between $\frac{1}{\sqrt{3}}$ and $\sqrt{3}$ \Rightarrow Both tan A and tan B lie between $\frac{1}{\sqrt{3}}$ and $\sqrt{3}$ Both A and B lie between 30° and 60°. 60°<C<120° \Rightarrow $-\frac{1}{2} < \frac{a^2 + b^2 - c^2}{2ab} < \frac{1}{2}$ \Rightarrow Let $f(x) = \frac{3}{x-2} + \frac{4}{x-3} + \frac{5}{x-4}$, then f(x) = 0 has 19. B) exactly one real root in (3,4)A) exactly one real root in (2,3)C) at least one real root in (2,3)D) None of these Key. A,B,C $f(x) = \frac{3}{x-x}$ Sol. and $f(3^{-}) \rightarrow$ $\Rightarrow f(x) = 0$ has exactly one root in (2,3) $\left. \begin{array}{c} f(3^+) \to \infty \\ f(x) = 0 \end{array} \right\} \Rightarrow f(x) = 0$ and Has exactly one root in (3,4) If $b^2 \ge 4ac$ for the equation $ax^4 + bx^2 + c = 0$, then all the roots of the equation will be real 20. if (A) b > 0, a < 0, c > 0(B) b < 0, a > 0, c > 0(C) b < 0, a > 0, c < 0(D) b > 0, a < 0, c < 0Key. B.D $x^2 = t$, $t \ge 0$ Sol. $at^{2} + bt + c = 0, t \ge 0$

$-\frac{b}{a} > 0$	 (1)
$\frac{c}{a} > 0$	 (2)

21. Let x, y, z be positive reals. Then

A)
$$\frac{4}{x} + \frac{9}{y} + \frac{16}{z} \ge 81$$
 if $x + y + z = 1$

B)
$$\frac{x}{y+z} + \frac{y}{z+x} + \frac{z}{x+y} \ge \frac{3}{2}$$

C) If
$$x y z = 1$$
, then $(1+x)(1+y)(1+z) < 8$

D) If
$$x+y+z=1$$
, then $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge 9$

Key. A,B,D

Sol.

$$\frac{4}{x} + \frac{9}{y} + \frac{10}{z} \ge 81 \text{ if } x + y + z = 1$$

$$\frac{x}{y+z} + \frac{y}{z+x} + \frac{z}{x+y} \ge \frac{3}{2}$$

$$\frac{x}{y+z} + \frac{y}{z+x} + \frac{z}{x+y} \ge \frac{3}{2}$$

$$\frac{x}{y+z} + \frac{y}{z+x} + \frac{z}{x+y} \ge \frac{3}{2}$$

$$\frac{y}{y+z} + \frac{y}{z+x} + \frac{z}{x+y} \ge \frac{3}{2}$$

$$\frac{y}{y+z} + \frac{y}{z+x} + \frac{z}{x+y} \ge \frac{3}{2}$$

$$\frac{y}{z+z} + \frac{y}{z+x} + \frac{z}{x+y} \ge \frac{3}{2}$$

$$\frac{y}{z+z} + \frac{y}{z+x} + \frac{z}{x+y} \ge \frac{3}{2}$$

$$\frac{y}{z+z} + \frac{1}{z+x} + \frac{1}{x+y} \ge \frac{1}{2}$$

$$\frac{y}{z+z} + \frac{1}{z+x} + \frac{1}{z+y} \ge \frac{1}{2}$$

$$\frac{y}{z+z} + \frac{1}{z+z} + \frac{1}{z+z} + \frac{1}{z+z} = \frac{1}{z+z} + \frac{1}{z+z} + \frac{1}{z+z} + \frac{1}{z+z} = \frac{1}{z+z} + \frac{1}{z$$

 $\frac{1}{3} \ge \lfloor (y+z)(z+x)(x+y) \rfloor^{\overline{3}}$(2) Similarly, On multiplication of (1) & (2) and expanding, we get the desired result.

$$(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \ge 3^2$$

22. Given

 $|ax^{2}+bx+c| \le |Ax^{2}+Bx+C|, \forall x \in \mathbb{R}, a,b,c A,B,C \in \mathbb{R} and d=b^{2}-4ac > 0 and$ $D\!\!=\!\!B^2\!-\!4A\!C\!>\!0$. Then which of the following statements are true b) $|d| \leq D|$ c) $|a| \ge |A|$ a) | a |≤| A | d) if D,d are not necessarily positive then roots of $ax^2 + bx + c = 0$ and $Ax^2 + Bx + C = 0$

may not be equal Sol: ans: a,b,d Let $\alpha \& \beta$ are the roots of $Ax^2 + Bx + c = 0$ \therefore | ax² + bx + c | \leq | Ax² + Bx + c | $\forall \in \mathbb{R}$ \Rightarrow ax² + bx + c = 0 also has α , β as roots $\Rightarrow |ax^2 + bx + c| = |a| |x - \alpha||x - \beta| = |A|||x - \alpha||x - \beta|$ $\Rightarrow |a| \leq |A|$ & $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta \Longrightarrow \frac{b^2 - 4ac}{a^2} = \frac{B^2 - 4AC}{\Lambda^2} \Longrightarrow |d| \le |D|$ A continuous function y = f(x) is defined in a closed interval [-7, 5]. A(-7, -4), B(-2, 6), 23. C(0,0), D(1,6), E(5,-6) are consecutive points on the graph of f and AB, BC, CD, DE are line segments. The number of real roots of the equation f[f(x)] = 6 is A) 6 B) 4 D) 0 KEY : A HINT $f[f(x)] = 6 \Longrightarrow f(x) = -2 \text{ or } f(x) = 1$ f(x) = -2 has two roots and f(x) = 1 has four roots. If both the roots of the equation $x^2 + 2ax + a^2 + a - 3 = 0$ in the variable x are less than 3 24. then a can be c) √3 B) 5/2 A) 2 D) -7 KEY : C,D HINT: disc ≥ 0 , a < 3 and f(3) > 0 where f(x) = x² - 2ax + a² + a - 3 The equation $x^7 + 3x^3 + 4x - 9 = 0$ has 25. a) no real root b) all its roots real c) a unique rational root d) a unique irrational root KEY : D HINT: Let $f(x) = x^7 + 3x^3 + 4x - 9$ $f'(x) = 7x^6 + 9x^2 + 4 > 0$ \therefore f is increasing in R. Hence there exists only one real root. Observe that f(1).f(2) < 0. That is a root should lie in (1, 2). If that root is a rational number then coefficient of x^7 can not be 1. Hence only one irrational root exists.

26. The coefficient of x^{30} in the polynomial $(x - 1)(x^2 - 2)(x^3 - 3)(x^4 - 4)(x^5 - 5)(x^6 - 6)(x^7 - 7)(x^8 - 8)$ is a) -1 b) 1 c) 0 d) 4

KEY : B HINT: Coefficient of x^{30} is (-6) + (-1)(-5) + (-2)(-4) + (-1)(-2)(-3)= -6 + 5 + 8 - 6 = 1 If the equation $ax^2 + bx + c = 0$ and $bx^2 + cx + a = 0$ (a, b, c are unequal non zero real) have a 27. common root then $f(x) = bx^3 + cx^2 + ax - 5$ always passes through fixed point (A) (1, −5) (B) (0, -5) (C) (−1, −5) (D) (0, 5) KEY: A,B and $bx^2 + cx + a = 0$ have a common root $\Rightarrow a^3 + b^3 + c^3 - abc = 0$ HINT: $\frac{1}{2}(a+b+c) [(a-b)^2 + (b-c)^2 (c-a)^2] = 0 \implies a+b+c=0$ $f(x) = bx^3 + cx^2 + ax - 5$ f(0) = -5f(A) = a + b + c - 5 = 5 \Rightarrow f(x) will always pass through (0, -5) and (1, -5) Hence (a, b) Let $f(x) = x^2 + \lambda x + \mu \cos x$, λ being an integer and μ a real number. The number of 28. ordered pairs (λ, μ) for which the equations f(x) = 0 and f(f(x)) = 0 have the same (non empty) set of real roots is (C) 8 (A) 4 (B) 6(D) Infinite KEY : A HINT: Let α be a root of f(x) = 0, so we have $f(\alpha) = 0$ and thus $f(f(\alpha)) = 0$, $\Rightarrow f(0) = 0 \Rightarrow \mu = 0.$ We then have $f(x) = x(x+\lambda)$ and thus $\alpha = 0, -\lambda$. $f(f(x)) = x(x+\lambda)(x^2+\lambda x+\lambda)$ We want λ such that $x^2 + \lambda x + \lambda$ has no real roots besides 0 and $-\lambda$. We can easily find that $0 \le \lambda < 4$. If α, β, γ are the roots of the equation $9x^3 - 7x + 6 = 0$ then the equation $x^3 + Ax^2 + Bx + C = 0$ has roots $3\alpha + 2$, $3\beta + 2$, $3\gamma + 2$, where (A) A = 6(B) B = -5(C) C = 24(D) A + B + C = 23KEY : C, D HINT : Let $P = 3\alpha + 2$ $\Rightarrow \alpha = \frac{P-2}{3}$ Since $9\alpha^3 - 7\alpha + 6 = 0$

$$\Rightarrow \frac{9(P-2)^3}{27} - \frac{7}{3}(P-2) + 6 = 0$$

$$\Rightarrow \frac{1}{3}(P^3 - 8 - 6P^2 + 12P) - \frac{7}{3}P + \frac{14}{3} + 6 = 0$$

$$\Rightarrow P^3 - 6P^2 + 12P - 8 - 7P + 14 + 18 = 0$$

$$\Rightarrow P^3 - 6P^2 + 5P + 24 = 0$$

So, the equation $x^3 - 6x^2 + 5x + 24 = 0$ has roots $3\alpha + 2$, $3\beta + 2$, $3\gamma + 2$
30. If α , β are the roots of the equation $x^2 + \alpha x + 1 = 0$ then the equation whose roots are

$$-\left(\alpha + \frac{1}{\beta}\right), -\left(\frac{1}{\alpha} + \beta\right)$$

(A) $x^2 = 0$
(B) $x^2 + 2\alpha x + 4 = 0$
(C) $x^2 - 2\alpha x + 4 = 0$
(D) $x^2 - \alpha x + 1 = 0$
KEY : C
31. If $0 < c < b < a$ and the roots α , β of the equation $cx^2 + bx + q = 0$ are imaginary, then
(A) $\frac{|\alpha| + |\beta|}{2} = |\alpha||\beta|$
(B) $\frac{1}{|\alpha|} = \frac{1}{|\beta|}$
(C) $\frac{1}{|\alpha|} + \frac{1}{|\beta|} < 2$
KEY : C, B
HINT : Since roots are imaginary.
So, discriminant < 0
 $\alpha = \frac{-b + i\sqrt{4ac - b^2}}{2c}, |\alpha||\beta| = \sqrt{\frac{b^2}{4c^2} + \frac{4ac - b^2}{4c^2}} = \sqrt{\frac{a}{c}} > 1$
32. Suppose $a, b > 0$ and $x_1, x_2, x_3 (x_1 > x_2 > x_3)$ are roots of $\frac{x - b}{a} + \frac{x - a}{b} = \frac{b}{x - a} + \frac{a}{x - b}$ and $x_3 - x_5 - c$, then
(A) a, c, b are in H.P. and $x_1 = a + b$
(B) a, c, b are in A.P. and $x_3 = 0$
KEY : A, D
HINT : $\frac{x - b}{a} - \frac{b}{x - a} = \frac{a}{x - b} - \frac{x - a}{b}$
 $(x^2 - (a + bx))((b + a)x - (a^2 + b^2)] = 0$
 $x = 0, a + b, \frac{a^2 + b^2}{a + b}$
 $x_3 = 0, x_2 = \frac{a^2 + b^2}{a + b}$, $x_1 = a + b$

$$(a+b)-(a+b) + \frac{2ab}{a+b} - 0 = c$$

$$c = \frac{2ab}{a+b}$$
A, C B ARE IN H.P.
33. The values of a for which $\frac{x^3 - 6x^2 + 11x - 6}{x^3 + x^2 - 10x + 8} + \frac{a}{30} = 0$ does not have a real solution is
1) -10 2) 12 3) 5 (4) 30
KEY : 2,3,4
SOL: $\frac{x^3 - 6x^2 + 11x - 6}{x^2 + x^2 - 10x + 8} = \frac{(x-1)(x-2)(x-3)}{(x-1)(x-2)(x+4)}$
 $\therefore x \neq 1, 2 - 4$ then $f(x) = \frac{x-3}{x+4}$
Range of $f(x) = R - \left\{ 1, -\frac{2}{5}, -\frac{1}{6} \right\}$
So Equation does not have a solution if $\frac{a}{30} = -\frac{1}{5} + \frac{2}{5} + \frac{1}{5} + \frac{1}{5}$

 $f'(\alpha) = 0 \Longrightarrow 3a\alpha^2 + 2b\alpha + c = 0$ Thus, $3ax^2 + 2bx + c = 0$ has at leas one root in [0,1]. Also, $[0,1] \subseteq [-1,1]$ and $[0,1] \subseteq [0,2]$ $\cos \alpha$ is a root of the equation $169x^2 - 26x - 35 = 0$, -1 < x < 0, then $\sin 2\alpha$ is 36. a) $\frac{144}{169}$ b) $-\frac{144}{169}$ c) $\frac{144}{169}$ d) $-\frac{120}{169}$ c, d Key: $169x^2 - 26x - 35 = 0 \Longrightarrow (13x - 7)(13x + 5) = 0$ Sol: $\Rightarrow x = \frac{7}{13} \text{ or } x = \frac{-5}{13}$ $\therefore \cos \alpha = \frac{-5}{13} \Longrightarrow \sin 2\alpha = 2 \times \frac{5}{13} \times \pm \frac{12}{13} = \pm \frac{120}{169}$ The values of a, for which $\frac{x^3 - 6x^2 + 11x - 6}{x^3 + x^2 - 10x + 8} + \frac{a}{30}$ =0 doesn't have a real solution, are 37. a) -10 c) 5 d) -30 Key: b, c, d Sol: Let $f(x) + \frac{a}{30} = 0$ Where $f(x) = \frac{x^3 - 6x^2 + 11x - 6}{x^3 + x^2 - 10x + 8} = \frac{(x-1)(x-2)(x-3)}{(x-1)(x-2)(x+4)} = \frac{x-3}{x+4}$ Range of $f(x) = R - \left\{1, \frac{-2}{5}, \frac{-1}{6}\right\}$ $\therefore \frac{a}{30} \neq -1, \frac{2}{5}, \frac{1}{6}$ \Rightarrow a \neq -30,12,5

38. The value of $\frac{\sin x \cos 3x}{\cos x \sin 3x}$, when ever defined never lies between

a) 0 and 1 b) -1 and 1

c)
$$\frac{1}{3}$$
 and 3 d) $\frac{1}{2}$ and 2
Key: c.d
Sol: $y = \frac{\sin x \cos 3x}{\cos x \sin 3x} = \frac{\tan x}{\tan 3x}$
Let $\tan x = t$
 $\therefore y = \frac{t(1-3t^2)}{3t-t^3} = \frac{1-3t^2}{3-t^2}$ as $t \neq 0$ (\because $t = 0$ will make by indeterminate)
 $\therefore y(3-t^2) = 1-3t^2$
or $t^2 = \frac{3y-1}{y-3} = +ve = \frac{(3y-1)(y-3)}{(y-3)^2} = \frac{3(y-\frac{1}{3})(y-3)}{(y-3)^2}$
Above will be +ve if $y < \frac{1}{3}$ or $y > 3$
 \therefore y cannot lie between $\frac{1}{3}$ and 3
39. Complete set of real values of a for the equation $9^x + a.3^x + 1 = 0$ has
a) two real solutions, is $(-\infty, -2)$ b) no real solution, is $(-\infty, -2]$
Key: a, c, d
Sol: $t^2 + at + 4 = 0 \Rightarrow 3^x = \frac{-a \pm \sqrt{a^2 - 4}}{2}$
has 2 solutions a < 0 and a < -2 or a > 2
two solutions if $a\varepsilon(-\infty, -2)$
no solutions if $a\varepsilon(-\infty, -2)$
40. If $x^2 + 2x - \lambda > 0$ for all real values of x , then value of λ may be:
a) -1 b) 1 c) -3 d) -5
Key: C, D

Hint: $b^2 - 4ac\lambda D$

22. (L-1)The equation $(x+1)^4 = a(x^4+1)$ is a reciprocal equation for a) a = 1 b) a ≠1 c) a = -2 d) all values of a Key : b, c $f(x) = (x+1)^4 - a(x^4+1)$ Sol: when a = 1, f(0) = 0 and therefore f(x) = 0 is not a reciprocal equation. If $a_1 < a_2 < a_3 < a_4 < a_5 < a_6$, then the equation 41. $(x-a_1)(x-a_3)(x-a_5)+3(x-a_2)(x-a_4)(x-a_6)=0$ has b) a root in (a) three reals roots $-\infty, a_1$ c) a root in (a_1, a_2) d) a root in (a_5, a_6) Key: a, c, d Let $f(x) = (x - a_1)(x - a_3)(x - a_5) + 3(x - a_5)$ $a_2(x-a_4)(x-a_6)$ Sol: Note that, $f(x) \rightarrow -\infty$ as $x \rightarrow -\infty$ $f(a_1) = 3(a_1 - a_2)(a_1 - a_4)(a_1 - a_6)(a_1 - a_6$ Similarly, $f(a_2) > 0, f(a_3) > 0, f(a_4) < 0, f(a_5) < 0, f(a_6) < 0$ Thus, f(x) = 0 has a root in each of the following intervals $(a_1, a_2), (a_3, a_4) \& (a_5, a_6)$. Thus f(x) = 0 has three real roots. If $b^2 \ge 4ac$ for the equation $ax^4 + bx^2 + c = 0$, then all the roots of the equation will be real 42. b > 0, a < 0, c > 0(B) b < 0, a > 0, c > 0C) b < 0, a > 0, c < 0(D) b > 0, a < 0, c < 0Key. B.D $x^2 = t$, $t \ge 0$ Sol. $at^{2} + bt + c = 0, t \ge 0$ $-\frac{b}{a} > 0$ (1)

 $\frac{c}{a} > 0 \qquad \dots \qquad (2)$

43. If 0 < c < b < a and the roots α , β of the equation $cx^2 + bx + a = 0$ are imaginary, then

	(A) $\frac{ \alpha + \beta }{2} = \alpha \beta $ (B) $\frac{1}{ \alpha } =$	$\frac{1}{ \beta }$
	(C) $\frac{1}{ \alpha } + \frac{1}{ \beta } < 2$ (D) $\frac{1}{ \alpha } + \frac{1}{ \alpha }$	$\frac{1}{\beta} > 2$
Key. Sol.	 y. B,C l. Since roots are imaginary. So_discriminant < 0 	
	$\alpha = \frac{-b + i\sqrt{4ac - b^2}}{2c}$	
	$\beta = \frac{-b - i\sqrt{4ac - b^2}}{2c}, \ \alpha = \beta = \sqrt{\frac{b^2}{4c^2} + \frac{4ac - b^2}{4c^2}} = \sqrt{\frac{a}{c}} > \frac{1}{2c}$	
44.	The equation $x^3 - 3x + 1 = 0$ has (a) three real roots (b) three in	rational roots
Key. Sol.	(c) one rational and two irrational roots (d) atleast (y. A,B,D . $f(x) = x^3 - 3x + 1$	one negative root
	$f'(x) = 3x^2 - 3$	
	$f'(x) = 0 \implies x = \pm 1$: $f(-1) = f(-1) < 0$,
	Hence (a), (b), (d) are correct answer.	
4 -	If a b a are paritive integers, such that as he and the guad	$ratio aquation (a) + 2a) x^2 + (b)$

45. If a,b,c are positive integers such that a>b>c and the quadratic equation (a+b-2c) $x^2 + (b+c-2a)x+(c+a-2b) = 0$ has a root in the interval (-1,0) then

a) b+c>a

c) both roots of the given equation are rational

d) the equation $ax^2+2bx+c = 0$ has both negative real roots.

b) c+a <2b

Key. B,C,D

Sol. Clearly 1 is a root of the given equation . Given that 2^{nd} root lies in (-1,0) \Rightarrow Product of roots <0

Is
$$\frac{c+a-2b}{a+b-2c} < 0 \Longrightarrow c+a-zb < 0(\because a+b-2c > 0)$$

The roots of the equation are both rational for the equation $ax^2 + zbx + c = 0$ we have f(0) = C > 0

F(-1) = c+a-2b< 0. hence one root is -ve

Also for an equation with +ve real coefficients all roots are -ve hence 2 nd root is also -ve.
Which of the following is/are correct

- (A) between any two roots of $e^x \cos x = 1$ there exists at least one root of $\tan x = 1$
- (B) between any two roots of $e^x \sin x = 1$ there exists at least one root of $\tan x = -1$
- (C) between any two roots of $e^x \cos x = 1$ there exists at least one root of $e^x \sin x = 1$
- (D) between any two roots of $e^x \sin x = 1$ there exists at least one root of $e^x \cos x = 1$

Key. A,B,C,D Sol. (a) Let $f(x) = e^x \cos x - 1$ $f'(x) = e^{x} (\cos x - \sin x) = 0$ \Rightarrow tan x = 1 between two roots of f(x) (Rolle's theorem) (b) $g(x) = e^x \sin x - 1$, $g'(x) = e^x (\sin x + \cos x) = 0 \implies \tan x = -1$ between two roots of g(x). (c) $h(x) = e^{-x} - \cos x$, $h'(x) = -e^{-x} + \sin x = 0 \implies e^{-x} = \sin x$ between two roots of h(x). 47. If 0 < c < b < a and the roots α , β of the equation $cx^2 + bx + a = 0$ are imaginary, then (A) $\frac{|\alpha|+|\beta|}{2} = |\alpha||\beta|$ (B) $\frac{1}{|\alpha|} = \frac{1}{|\beta|}$ (D) $\frac{1}{|\alpha|} + \frac{1}{|\beta|} > 2$ (C) $\frac{1}{|\alpha|} + \frac{1}{|\beta|} < 2$ Key. A,B,C Since roots are imaginary. Sol. So, discriminant < 0 $\alpha = \frac{-b + i\sqrt{4ac - b^2}}{2a}$ $|\alpha| = |\beta| = \sqrt{\frac{b^2}{4c^2} + \frac{4ac - b^2}{4c^2}} = \sqrt{\frac{a}{c}} > 1$ Suppose a, b > 0 and x₁, x₂, x₃ (x₁ > x₂ > x₃) are roots of $\frac{x-b}{2} + \frac{x-a}{b} = \frac{b}{x-a} + \frac{a}{x-b}$ and 48. $x_1 - x_2 - x_3 = c$, then (A) a, c, b are in H.P. and $x_1 = a + b$ (B) a, c, b are in A.P. and $x_2 = a + b$ (C) a, c, b are in A.P. and $x_3 = 0$ (D) a, c, b are in H.P. and $x_3 = 0$ Key. A.D $\frac{x-b}{a} - \frac{b}{x-a} = \frac{a}{x-b} \frac{x-a}{b}$ $(X^{2} - (A+B)X)[(B+A)X - (A^{2}+B^{2})] = 0$ $x = 0, a+b, \frac{a^{2}+b^{2}}{a+b} \quad (a+b) - \frac{ab}{a+b}$ $x_{3} = 0, x_{2} = \frac{a^{2}+b^{2}}{a+b}, \quad x_{1} = a+b$ SOL. $(a+b)-(a+b)+\frac{2ab}{a+b}-0=c$ $c=\frac{2ab}{a+b}$ a, c b are in H.P.

49. If a, b, c are +Ve and a = 2b + 3c, then roots of the equation $ax^2 + bx + c = 0$ are real for a) $\left|\frac{a}{c} - 11\right| \ge 4\sqrt{7}$ b) $\left|\frac{c}{a} - 11\right| \ge 4\sqrt{7}$ c) $\left|\frac{b}{c} - 4\right| \ge 2\sqrt{7}$ d) $\left|\frac{c}{b} - 4\right| \ge 2\sqrt{7}$

Key. A,C
Sol.
$$\Delta \ge 0 \Rightarrow \left(\frac{a-3c}{2}\right)^2 - 4ac \ge 0$$

 $\left(\frac{a}{c}\right)^2 - 22\left(\frac{a}{c}\right) + 9 \ge 0 \Rightarrow \left|\frac{a}{c} - 11\right| \ge 4\sqrt{7}$
50. If $(a,0)$ is a point on a diameter of the circle $x^2 + y^2 = 4$ then $x^2 - 4x - a^2 = 0$ has
(a) Exactly one real root in $(-1, 0)$ (b) Exactly one real root in $[2, 5]$
(c) Distinct roots greater than -1 (d) Distinct roots less than '5'
Key. A,B,C,D
Sol. Since $(a, 0)$ is a point on the diameter of the circle $x^2 + y^2 = 4$
Maximum value of a^2 is 4
Let $f(x) = x^2 - 4x - a^2$
 $= -(a^2 + 4) < 0$
and $f(5) = 5 - a^2 > 0$
51. For $y = ax^3 + bx^2 + cx + d(a \ne 0)$ (c,b,c,d $\in R$ which of the following is true?
a) For $b^2 < 3ac$ y has no critical points
b) If y has two distinct critical points
b) If y has no points of inflexion.
(c) If y has one critical points.
(d) y has no points of inflexion.
Key. A,B,C
Sol. $y' = 3ax^2 + 2bx + cx, x'' = 6ax + 2b = 0 \Rightarrow x = -\frac{b}{3a}$. If $b^3 < 3ac$ then $y^1 = 0$ has no real
roots hence y has no real roots hence y has no critical points.
If $b^2 = 3ac$ then $y^1 = 0$ and the or value of $x = -\frac{b}{3a}$.
If $b^2 = 3ac$ then $y^1 = 0$ only for one value of $x = -\frac{b}{3a}$.
If $b^2 = 3ac$ then $y^1 = 0$ only for one value of $x = -\frac{b}{3a}$.
If $b^2 = 3ac$ then $y^1 = 0$ only for one value of $x = -\frac{b}{3a}$.
If $b^2 = 3ac$ then $y^1 = 0$ only for one value of $x = -\frac{b}{3a}$.
If $b^2 = 3ac$ then $y^1 = 0$ only for one value of $x = -\frac{b}{3a}$.
If $b^2 = 3ac$ then $y^1 = 0$ only for one value of $x = -\frac{b}{3a}$.
If $b^2 + 2x - 8| + x - 2 = 0$ then
(A) Number of roots is 30 (D) Number of roots is - 6
(C) Product of roots is 30 (D) Number of roots are 4
Key. A,B,C
Sol. $|x^2 + 2x - 8| + x - 2 = 0$
 $x^2 + 4x - 8| + x - 2 = 0$
 $x^2 + 4x - 10 = 0$ if $x \in (-\infty, -4) \cup (2,\infty)$
 $(x + 5)(x - 2) = 0$
 $x = -5 \& 2$

x = -5is one root $-x^2-2x+8+x-2=0$ $x^2 + x - 6 = 0$ (x+3)(x-2)=0x = -3 or 2x = -3 is other root \therefore x = 2 is also a root No. of roots is 3 Sum of roots is -6 Product of roots is 30 Let $f(x) = A \cdot x^2 + B \cdot x + C$ when A,B, $C \in R$ If x is an integer then f(x) is an integer then 53. (B) A+B is an integer (A) C is an integer (C) B is an integer (D) 2A is an integer Key. A,B,D f(0) = CSol. As f(x) is an integer for $x \in Z$ $\therefore C \in Z$ f(1) = A + B + Cf(-1) = A - B + Cf(1) + f(-1) = 2(A+C) $\therefore 2A$ is an integer A + B is also an integer +b(c-a)x+c(a-b)=0 are The roots of the equation a(b)54. (A) $\frac{c(a-b)}{a(b-c)}$ (B) 1 (D) $a; \frac{c(a-b)}{a(b-c)}$ (C) $\frac{c(a)}{a(b)}$ Key. A,B Roots of $Ax^2 + Bx + C = 0$ are 1 and C/A Sol. \therefore roots=1, $\frac{c(a-b)}{a(b-c)}$ If A+B+C=0 If the equation whose roots are the squares of the roots of the cubic 55. $x^{3}-ax^{2}+bx-1=0$ is identical with the given cubic equation, then A) *a*,*b* are roots of $x^2 + x + 2 = 0$ B) a = b = 0C) a = b = 3D) a = 0, b = 3A,B,C Key. (ABC) If roots of the equation be α, β, γ then Sol. $\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha) = a^{2} - 2b$
$\alpha^{2}\beta^{2} + \beta^{2}\gamma^{2} + \gamma^{2}\alpha^{2} = (\alpha\beta + \beta\gamma + \gamma\alpha)^{2} - 2\alpha\beta\gamma(\alpha + \beta + \gamma)$ $=b^{2}-2a$ $\alpha^2 \beta^2 \gamma^2 = 1.$ So, the equation whose roots are $\alpha^2, \beta^2, \gamma^2$ is $x^{3} - (a^{2} - 2b)x^{2} + (b^{2} - 2a)x - 1 = 0$ It is identical to $x^3 - ax^2 + bx - 1 = 0$ $\therefore a^2 - 2b = a$ and $b^2 - 2a = b$, eliminating b, we get $\frac{\left(a^2-a\right)^2}{4}-2a=\frac{a^2-a}{2}$ $a\{a(a-1)^2-8-2(a-1)\}=0$ \Rightarrow $a(a^3-2a^2-a-6)=0$ 60 \Rightarrow $a(a-3)(a^2+a+2)=0$ or $a = 0 \text{ or } a = 3 \text{ or } a^2 + a + 2 = 0$ ÷. Which give $b=0 or b=3 or b^2+b+2=0$ a=b=0 or a=b=3So, Or *a*, *b* are roots of $x^2 + x + 2 = 0$ $\frac{\pi^{e}}{r-e} + \frac{e^{\pi}}{r-\pi} + \frac{\pi^{\pi} + e^{e}}{r-\pi-e} = 0$ has 56. A) One real root in (e,π) and other in $(\pi-e,e)$ B) One real root in (e, π) and other in $(\pi, \pi, +e)$ C) Two real roots in $(\pi - e, \pi + e)$ D) No real roots B,C Key. Given equation can be expressed as Sol. $\pi^{e}(x-\pi)(x-\pi-e)+e^{\pi}(x-e)(x-\pi-e)+(\pi^{\pi}+e^{e})$ $(x-e)(x-\pi)=0$ $f(x) = \pi^{e}(x-\pi)(x-\pi-e) + e^{\pi}(x-e)(x-\pi-e) + (\pi^{\pi}+e^{e})(x-e)(x-\pi)$ $f(e) = \pi^{e}(e - \pi)(-\pi) > 0$ and $f(\pi) = e^{\pi}(\pi - e)(-e) < 0$ hence given equation has a real root in (e, π) again $f(\pi + e) = (\pi^{\pi} + e^{e})\pi \cdot e > 0$ $\therefore \pi + e > \pi$, it concludes it has a real root in $(\pi, \pi + e)$ Also :: $\pi - e < e$

hence f(x) has two real roots in $(\pi - e, \pi + e)$ Let |a| < |b| and a, b are the roots of the equation $x^2 - |\alpha|x - |\beta| = 0$. If $|\alpha| < b-1$, then 57. the equation $\log_{|a|}\left(\frac{x}{b}\right)^2 - 1 = 0$ has at least one A) root lying between $(-\infty, a)$ B) roots lying between (b,∞) C) negative root D) positive root Key. A,B,C,D $|\alpha| = \text{sum of roots} = b + a$ Sol. $-|\beta| = \text{product of root} = ab$ Because |a| < |b| so *a* is negative and *b* is positive. Now, $|\alpha| < b-1 \Longrightarrow a+b < b-1 = a < -1$. Because a is negative so magnitude of 'a' is greater than one and magnitude of b is greater than $1+|\alpha|$ or say greater than 2. $\log_{|a|}\left(\frac{x}{b}\right)^2 - 1 = 0 \Longrightarrow \left(\frac{x}{b}\right)^2 = |a|$ Now, $x = \pm b \sqrt{|a|}$ \Rightarrow Magnitude of x is greater than a' as well as greater than b'one root lies in $\Rightarrow (-\infty, a)$ and other root lies in (b, ∞) . \Rightarrow The value of 'x' satisfying the equation $x^4 - 2\left(x\sin\left(\frac{\pi}{2}x\right)\right)^2 + 1 = 0$ 58. A) 1 C) 0 D) No value of 'x' Key. A.B $2 \sin\left(\frac{\pi}{2}\right)$ $x^{4} -$ Sol. $x^4 + 1 = 2x^2 \sin^2 \left(\frac{\pi}{2}x\right)$ $x^{2} + \frac{1}{x^{2}} = 2\sin^{2}\left(\frac{\pi}{2}x\right)$ Now, LHS ≥ 2 where as RHS ≤ 2 So, equality holds when $x^2 + \frac{1}{r^2} = 2$ and $2\sin^2\left(\frac{\pi}{2}x\right) = 2 \Longrightarrow x = \pm 1$ In a $\triangle ABC$, tan A and tan B satisfy the inequation $\sqrt{3}x^2 - 4x + \sqrt{3} < 0$. Then 59. A) $a^2 + b^2 - ab < c^2$ B) $a^2 + b^2 > c^2$ C) $a^2 + b^2 + ab > c^2$ D) All of the above Key. $\left(x-\sqrt{3}\right)\left(x\sqrt{3}-1\right)<0$ Sol.

 \Rightarrow x lies between $\frac{1}{\sqrt{3}}$ and $\sqrt{3}$ \Rightarrow Both tan A and tan B lie between $\frac{1}{\sqrt{3}}$ and $\sqrt{3}$ Both A and B lie between 30° and 60°. 60°<C<120° \Rightarrow $-\frac{1}{2} < \frac{a^2 + b^2 - c^2}{2ab} < \frac{1}{2}$ \Rightarrow Let $f(x) = \frac{3}{x-2} + \frac{4}{x-3} + \frac{5}{x-4}$, then f(x) = 0 has 60. B) exactly one real root in (3, 4)A) exactly one real root in (2,3)MCPVI C) at least one real root in (2,3)D) None of these Key. A,B,C $f(x) = \frac{3}{x-2} + \frac{4}{x-3} + \frac{5}{x-4}$ Sol. $\begin{array}{cc} : & f(2^+) \to \infty \\ and & f(3^-) \to -\infty \end{array}$ $\Rightarrow f(x) = 0 \text{ has exactly one root in (2,3)}$ $\Rightarrow f(x) = 0 \text{ has exactly one root in (2,3)}$ $\Rightarrow f(x) = and \quad f(4^-) \to -\infty$ Has exactly one root in (3,4) If $x_1 > x_2 > x_3$ and x_1, x_2, x_3 are roots of $\frac{x-a}{b} + \frac{x-b}{a} = \frac{b}{x-a} + \frac{a}{x-b}$; (a, b, >0) and 61. $x_1 - x_2 - x_3 = c$, then a, c, b are in. A) A.P. B) G.P. C C) H.P. D) None Key. Given equation can be written as Sol. $x - a = b + \frac{x - b}{a} - \frac{a}{x - b} = 0$ $= \frac{(x - a)^2 - b^2}{b(x - a)} + \frac{(x - b)^2 - a^2}{a(x - b)} = 0$ $\Rightarrow (x-a-b) \left| \frac{x-a+b}{b(x-a)} + \frac{x-b+a}{a(x-b)} \right| = 0$ $\Rightarrow (x-a-b) \left\{ \frac{a \left[x^2 - bx - ax + ab + bx - b^2 \right] + b \left[x^2 - ax - bx + ab + ax - a^2 \right]}{ab(x-a)(x-b)} \right\} = 0$ $\Rightarrow (x-a-b)(ax^2-a^2x+a^2b-ab^2+bx^2-b^2x+ab^2-a^2b)$ $\Rightarrow x(x-a-b)\{x(a+b)-(a^2+b^2)\}=0$

 \therefore roots will be x=0, $a+b, \frac{a^2+b^2}{a+b}$ Let $x_1 = a + b$, $x^2 = \frac{a^2 + b^2}{a + b}$ and $x_3 = 0$ $\therefore x_1 - x_2 - x_3 = c \text{ (given)}$ $\therefore (a+b) - \frac{a^2+b^2}{a+b} - 0 = c$ $\Rightarrow \frac{(a+b)^2 - (a^2 + b^2)}{a+b} = c \Rightarrow \frac{2ab}{a+b} = c$ i.e a,c,b are in H. P Two numbers such that their sum is 9 and the sum of their fourth powers is 2417. Then the 62. numbers are a) even positive integers b) odd positive integers c) one is even & another is odd d) both are prime Key. C,D Let the two number be x and y Sol. Then x + y = 9 and $x^4 + y^4 = 2417$ Now $(x+y)^4 = 9^4$ or $x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4 = 6561$ or $4x^3y + 6x^2y^2 + 4xy^3 = 6561 - 2417$ $(:: x^4 + y^4 = 2417)$ or $4xy(x^2 + y^2) + 6x^2y^2 = 4144$ or $4xy[(x+y)^2 - 2xy] + 6x^2y^2 = 4144$ or $4xy[81-2xy]+6x^2y^2 = 4144$ or $324xy - 8x^2y^2 + 6x^2y^2 = 4144$ or $2x^2y^2 - 324xy + 4144 = 0$ or $(xy)^2 - 162xy + 2072 = 0$ or (xy - 148)(xy - 14) = 0 $\therefore xy = 148 \text{ or } xy = 14$ When xy = 14, and x + y = 9Then x = 7, y = 2 the other solution is inadmissible. Hence the numbers are 7 and 2

63. The equation $|x+1||x-1| = a^2 - 2a - 3$ can have real solutions for x, if a belongs x to A) $(-\infty, -1] \cup [3, \infty)$ B) $\left[1 - \sqrt{5}, 1 + \sqrt{5}\right]$ C) $\left[1 - \sqrt{5}, -1\right] \cup \left[3, 1 + \sqrt{5}\right]$ D) $\left[-1, 3\right]$ Key. A,D Sol. $|x+1||x-1| = a^2 - 2a - 3 \Rightarrow |x^2 - 1| = a^2 - 2a - 3$ $\therefore a^2 - 2a - 3 \ge 0$ $\Rightarrow (a+1)(a-3) \ge 0$ $\therefore a \in (-\infty, -1) \cup [3, \infty)$ Let $a,b,c \in R$. If $ax^2 + bx + c = 0$ has two real roots A and B where A < -1 and B > 1, 64. then A) $1 + \left| \frac{b}{a} \right| + \frac{c}{a} < 0$ B) $1 - \left| \frac{b}{a} \right| + \frac{c}{a} < 0$ C) |c| < |a|D) |c| < |a| - |b|Key. A,B Sol. a > 0, f(-1) < 0 and f(1) < 0(~ $\Rightarrow a-b+c < 0$ and a+b+c < 0 $\Rightarrow 1 - \frac{b}{a} + \frac{c}{a} < 0 \text{ and } 1 + \frac{b}{a} + \frac{c}{a} < 0$ $\Rightarrow 1 \pm \left| \frac{b}{a} \right| + \frac{c}{a} < 0$ a < 0, f(-1) > 0 and f(1) > 0 $\Rightarrow a \pm b + c > 0$ $\Rightarrow 1 \pm \frac{b}{a} + \frac{c}{a} < 0 (\because a < 0)$ $\Rightarrow 1 \pm \left| \frac{b}{a} \right| + \frac{c}{a} < 0$ Let $f(x) = ax^2 + bx + c; a, b, c \in R$ and $a \neq 0$. Suppose f(x) > 0 for all $x \in R$. Let 65. g(x) = f(x) + f'(x) + f''(x). Then A) $g(x) > 0 \forall x \in R$ B) $g(x) < 0 \forall x \in R$ C) g(x) = 0 has non real complex roots D) g(x) = 0 has real roots Key. A,C Sol. Since, f(x) > 0, $\forall x \in R$, a > 0 and $b^2 - 4ac < 0$ We have, f'(x) = 2ax + b and f''(x) = aThus, $g(x) = ax^2 + bx + c + 2ax + b + 2a = ax^2 + (2a+b)x + (2a+b+c)$ We have a > 0 and $D = (2a+b)^2 - 4a(2a+b+c)$ $=b^2-4ac-4a^2<0$, since $b^2-4ac<0$ Thus, g(x) > 0, $\forall x \in R$. Therefore, g(x) = 0 has non real complex roots. 66. If every pair from among the equations $x^2 + px + qr = 0$, $x^2 + qx + rp = 0$ and $x^{2} + rx + pq = 0$ have a common root, then $\left(\frac{\text{sum of roots}}{\text{product of roots}}\right)$ is

ations

MathematicsQuadratic Equations & Theory of EquationA)
$$\sum p \\ pqr$$
B) $\sum \frac{1}{pq}$ C) $(p+q+r)^2$ D) $\frac{p}{q} + \frac{q}{r} + \frac{r}{p}$ Key. A.B.CSol. The given equations are $x^2 + px + qr = 0 - (1)$ $x^2 + qx + pq = 0 - (2)$ $x^2 + rx + pq = 0 - (2)$ $x^2 + rx + pq = 0 - (3)$ Let a, β be roots of (1); β, γ or (2), γ, α of (3)Since β is a common root of (1), (2) $\therefore \beta^2 + p\beta + qr = 0$ and $\beta^2 + q\beta + rp = 0$ $\Rightarrow (p-q)\beta + r(q-p) = 0 \Rightarrow \beta = r$ Now $a\beta = qr \Rightarrow \alpha = qr \Rightarrow \alpha = q$ Similarly from equation (2) and (3), we get $\gamma = p$ $\therefore a + \beta + \gamma = p + q + r$ $(a\beta).(\beta\gamma).(\gamma\alpha) = (qr).(rp).(pq) \Rightarrow (a\beta\gamma)^2 = (pqr)^2 \Rightarrow a\beta\gamma = pqr$ $\therefore sum of roots = \frac{\alpha + \beta + \gamma}{a\beta\gamma} = \frac{p + q + r}{pqr} = \sum p / pqr = \sum p / pqr$ 67. If $a + 3b + 9c = 0, ac < 0$ and one root of the equation $ax^2 + bx + c = 0$ is square of the other, thenA) a and b have same signB) b and c have opposite signC) Let $f(x) = ax^2 + bx + c$ $f\left(\frac{1}{3}\right) = \frac{a}{9} + \frac{b}{3} + c = \frac{1}{9}(a + 3b + 9c) = 0$ $\therefore \frac{1}{3}$ is the root of the given equation.Also, product of the roots $= \frac{ac}{a^2} < 0$ Therefore, another root must be negative, hence it will be $-1/\sqrt{5}$ and required equation is $(x + \frac{1}{3}) \left(x + \frac{1}{\sqrt{3}}\right) = 0$ or $3\sqrt{3}x^2 + (3-\sqrt{3})x - 1 = 0$ 68. If roots of $ax^2 + 2bx + c = 0$ are non real complex and $a + c < 2b$, thenA) > 0 B) $c < 0$ C) $(a + c < 4b)$ Not of $(-1) = a - 2b + c < 0$ Sol. Roots of $ax^2 + 2bx + c > 0$ or <0 for all x But $f(-1) = a - 2b + c < 0$ Sol. Roots of ax^2

 $5^x + (2\sqrt{3})^{2x} - 169 \le 0$ is true in the interval 69. A) $(-\infty, 2)$ B) (0,2) C) $(2,\infty)$ D) (0,4)Key. A,B Sol. $(25)^{x/2} + (144)^{x/2} \le 169$ Equality holds if x = 2 \therefore Eq.(i) is true if x < 2. If the equation $ax^2 + bx + c = 0$ (a > 0) has two roots α and β such that $\alpha < -2$ and 70. $\beta > 2$. then A) $b^2 - 4ac > 0$ B) c < 0 D) 4a + 2|b| + c < 0C) a + |b| + c < 0Key. A,B,C,D Sol. Since, the equation has two distinct roots α and β , the discriminant $b^2 - 4ac > 0$, we must have $f(x) = ax^2 + bx + c < 0$ for $\alpha < x < \beta$ Since, $\alpha < 0 < \beta$ we must have f(0) = c < 0Also, as $\alpha < -1, 1 < \beta$ we get f(-1) = a - b + c < 0And f(1) = a + b + c < 0, i.e., a + |b| + c < 0Since, $\alpha < -2, 2 < \beta$ f(-2) = 4a - 2b + c < 0 and f(2) = 4a + 2b + c < 0 i.e., 4a + 2|b| + c < 071. If $c \neq 0$ and the equation $\frac{p}{2x} = \frac{a}{x+c} + \frac{b}{x-c}$ has two equal roots, then p can be A) $\left(\sqrt{a} - \sqrt{b}\right)^2$ B) $\left(\sqrt{a} + \sqrt{b}\right)^2$ Key. A,B Sol. $\frac{p}{2x} = \frac{(a+b)x + c(b-a)}{x^2 - c^2}$ C) a+bD) a-bor $p(x^2 - c^2) = 2(a+b)x^2 - 2c(a-b)x$ or $(2a+2b-p)x^2-2c(a-b)x$ or $(2a+2b-p)x^2-2c(a-b)x+pc^2=0$ Now, $c^{2}(a-b)^{2} - pc^{2}(2a+2b-p) = 0$ (:: equal roots) $\Rightarrow (a-b)^2 - 2p(a+b) + p^2 = 0 (\because c^2 \neq 0)$ $\Rightarrow \left[p - (a+b)\right]^2 = (a+b)^2 - (a-b)^2$ $\Rightarrow p = a + b \pm 2\sqrt{ab} = \left(\sqrt{a} \pm \sqrt{b}\right)^2$ If $\frac{|x|-1}{|x|-2} \ge 0, x \in \mathbb{R}, x \ne \pm 2$, then x belongs to 72. (B) [-1, 1] (A) (−∞, −2) (C) (2, ∞) (D) (1, 2) Kev. A,B,C Sol. Conceptual If $\frac{(x-2)^2(1-x)(x-3)^3(x-4)^2}{x+1} \le 0$, then x belongs to 73. (A) (-1, 1] (B) [3, ∞) (C) (1, 2) (D) (2, 3)

Key. Sol.	A,B Conceptual		
74.	$x^2 - 9 < 0$ is valid if x belongs to (A) $(-\infty, -3)$	(B) (-3, 0)	
	(C) (0, 3)	(D) [3, ∞)	
Key.	B,C		
501.	2x - 6		
75.	If $\log_7 \frac{2x-6}{2x-2} > 0$ then $x \in C$		
	(A) (−∞, 0]	(B) [1, 2]	
	(C) (2, ∞)	(D) $\left\lfloor 0, \frac{1}{2} \right\rfloor$	
Key.	A,D		
Sol.	Conceptual		
20	Let $f(y)$ be a polynomial over real if $2 + 2i$ is a re-	at af f(y) = 0 then	
30.	(A) $2 - 3i$ is its other root	ot of f(x) = 0 then	
	(B) $f(x)$ is divisible by $x^2 - 4x + 13$		
	(C) 2 –3i may not be and its other root		
	(D) the sum of the roots of $f(x) = 0$ is certainly a	real number.	
Key.	A,B,D		
Sol.	Obviously $2 - 13$ is also its root.		
	\therefore f(x) is divisible by $\{x - (2+i3)\}$ $\{x - (2-i3)\}$)}	
	i.e. $x^2 - 4x + 13$. Sum of the roots = 4 = a real r	number	
	.:. (a), (b), (d) are correct.		
31.	If $b^2 \ge 4ac$ for the equation $ax^4 + bx^2 + c = 0$), then all roots of the equation will be non	
	zero real if		
	(A) $b > 0, a > 0, c > 0$	(B) $b < 0, a > 0, c > 0$	
Kov	(c) $b > 0, a > 0, c < 0$	(D) $b > 0, a < 0, c < 0$	
кеу.			
Sol.	ol. All roots of equation $ax^4 + bx^2 + c = 0$ will be real if both roots of $ay^2 + by + c$ will be		
	positive (replace $x = y$)		
(i.e. sum of roots = $-\frac{b}{-} > 0$		
1	a		
\subseteq	Product of roots $=\frac{c}{c} > 0$		
	Hence, a and b are of opposite sign, while a and	c of same sign.	
27	If α is one root of the equation $4x^2 + 2x - 1 - 6$) then its other reat is given by	
32.	In α is one root of the equation $4x^2 + 2x - 1 - 0$	$(P) 4\alpha^3 + 3\alpha$	
	$\frac{1}{1}$	(b) 4a + 5a	
	(C) $\alpha - \frac{1}{2}$	(D) $-\alpha - \frac{1}{2}$	
Key.	A,D		
Sol.	If other root is $\beta \Longrightarrow \alpha + \beta = -2/4$		

$$\Rightarrow \beta = -\frac{1}{2} - \alpha \text{ and } 4\alpha^{2} + 2\alpha - 1 = 0$$

$$\Rightarrow 4\alpha^{2} = 1 - 2\alpha$$

$$\Rightarrow 4\alpha^{3} = \alpha(4\alpha^{2})$$

$$= \alpha(1 - 2\alpha) = \alpha - 2\alpha^{2}$$

$$= \alpha - 2\left[\frac{1 - 2\alpha}{4}\right] = 2\alpha - \frac{1}{2}$$

$$= 4\alpha^{3} - 3\alpha = -\alpha - \frac{1}{2} = \beta$$

24. If a, b, c \in Q then which of the following equations has rational roots
(A) $ax^{2} + bx + c = 0$ where if $a + b + c = 0$
(B) $(a + c - b)x^{2} + 2cx + (b + c - a) = 0$
(C) $abc^{2}x^{2} + 3a^{2}cx + b^{2}cx - 6a^{2} - 4ab - 2b^{2} = 0$
(D) $(a + b - c)x^{2} + (a + c - b)x + (b + c - a) = 0$
(C) $abc^{2}x^{2} + 3a^{2}cx + b^{2}cx - 6a^{2} - 4ab - 2b^{2} = 0$
(D) $(a + b - c)x^{2} + (a + c - b)x + (b + c - a) = 0$
Key. A,B,C
Sol. (B) $(a + c - b)x^{2} + 2c(1) + (b + c - a) = 0$
(C) $x = \frac{2}{c}$ satisfies given equation which is rational. 2nd must also be rational
(C) $x = \frac{2}{c}$ satisfies given equation which is rational. 2nd must also be rational
(C) $x = \frac{2}{c}$ satisfies given equation which is rational.
25. Which of the following statements are true
(A) If a^{2}, b^{2}, c^{2} are in A.P. then $b + c, c + a$ and $a + b$ are in H.P.
(B) If $p^{th}, q^{th}, r^{th}, s^{th}$ terms of an A.P. are in G.P. then $p - q, -q, -q, -r, r - s$ are in G.P.
(C) If b is HM of a & c then $\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{a} + \frac{1}{c}$
(D) If b the HM of a & c then $\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{a} - \frac{1}{c}$
Key. A, B, C
Sol. Ib the crea, a+ b are in H.P.
(A) $\frac{1}{c+a} - \frac{1}{b+c} = \frac{1}{a+b} - \frac{1}{c+a} \Rightarrow b^{2} - a^{2} = c^{2} - b^{2}$
 $\Rightarrow a^{2}, b^{2}, c^{2}$ are in A.P.
(B) Let $A + (p-1)d, A + (q-1)d, A + (r-1)d, A + (s-1)d$
 $p^{th}, q^{th}, r^{th}, s^{th}$ terms of A.P. it satisfies the given condition
(C) $a, b, c, are in H.P$
 $= \frac{1}{a+c} - \frac{1}{a+c} - \frac{1}{a+c} - \frac{1}{ac-c} = \frac{a+c}{ac-c^{2}} = \frac{1}{a} + \frac{1}{c}$

Quadratic Equations & Theory of Equations

Math	ematics	Quadratic Equations & Theory of Equati
26.	The real values of λ for which the equation roots, if $\lambda\in$	h $x^3\!-\!3x^2\!-\!9x\!+\!\lambda\!=\!0$ has three distinct real
	(A) (-2,0)	(B) [0,1]
	(C) [1, 2]	(D) (– ∞ , ∞)
Key.	A,B,C	
Sol.	$f'(x) = 3x^2 - 6x - 9 = 0 \Longrightarrow x = +3, -1$	
	equation has three distinct real rots if f(3) f(-1	L) < 0
	$\Rightarrow \lambda \in (-5, 27)$	
27.	Few identical balls are arranged in a form wh of the base triangle contains n balls then	ose base is an equilateral triangle and one side
	(A) Number of balls in base triangle are $n^2 + n^2$	
	(B) Number of balls in base triangle are $rac{1}{2}ig(n^2$	+ n)
	(C) Total number of balls in pyramid are $rac{\mathrm{n}(\mathrm{n})}{\mathrm{n}}$	$\frac{(n+1)(n+2)}{6}$
	(D) Total number of balls in pyramid are $rac{\mathrm{n}\left(\mathrm{n} ight)}{\mathrm{n}}$	$\frac{(n+3)}{8}$
Key.	B,C	0/1
Sol.	Total no. of balls in base triangle = $\sum n = \frac{1}{2}$	$n^2 + n$)
	total no of balls in pyramid = $\frac{1}{2}\left(\sum n^2 + \sum n^2\right)$	$=\frac{n(n+1)(n+2)}{6}$
28.	Which of the following is/are true ?	
	(A) $a^{\log_a x} = x$ if a > 2 and x > 0	(B) $a^{\log_b c} = c^{\log_b a}$ if $a > 0, b > 0 \& c > 0$
	(C) $\log_a b = \frac{\log_m b}{\log_m a}$ if $a > 0, b > 0 \& m > 0$	(D) $\log_a b = \frac{\log_m a}{\log_m b}$ if a > 0, b > 0 & m > 0
Key. Sol.	A Basic properties of log.	
<u> </u>	AR .	
	<i>)</i> / <i>,</i>	

Quadratic Equations & Theory of Equations Assertion Reasoning Type

1. Statement-I : The greatest integral value of λ for which $(2\lambda - 1)x^2 - 4x + (2\lambda - 1) = 0$ has real roots is 2

Statement-II : For real root of $ax^2 + bx + c = 0, D \ge 0$

Key. D

Sol. For real roots

$$\Rightarrow (-4)^2 - 4(2\lambda - 1)(2\lambda - 1) \ge 0$$
$$\Rightarrow (2\lambda - 1)^2 \le 4$$
$$\Rightarrow -2 \le 2\lambda - 1 \le 2$$
$$\Rightarrow -\frac{1}{2} \le \lambda \le \frac{3}{2}$$

 \therefore Integral values of λ are 0 and 1

Hence, the greatest integer value of $\lambda = 1$

2. Statement-I : Let f(x) be a quadratic expression such that f(0) + f(1) = 0. If -2 is one of the roots of f(x) = 0. Then the Sum of roots is 3/5

Statement-II : If α and β are the zeros of $f(x) = ax^2 + bx + c$, then the sum of zeros = -b/a and the product of zeros = c/a

Sol. Since x = -2 is a root of f(x)

:.
$$f(x)=(x+2)(ax+b)$$

But $f(0) + f(1) = 0$

$$2b+3a+3b=0 \Longrightarrow -\frac{b}{a}=\frac{3}{5}$$

3. Consider the equation x³-3x+k=0, k∈R.
Statement I There is no value of K for which the given equation has two distinct roots in (0,1).
Statement II Between two consecutive roots of f'(x)=0, (f(x) is a polynomial).
f(x)=0 must have one root.

Key. C

Sol. By Rolle's Theorem between the roots of f'(x)=0. If there exists a root of f(x)=0, $\lceil f(x) is \ polynomial \rceil$, then it must be unique.

4. Statement I All the real roots of the equation $x^4 - 3x^3 - 2x^2 - 3x + 1 = 0$ lie in the interval [0,3]

Statement II The equation reduces to quadratic equation in the variable t, by substituting

$$x + \frac{1}{x} = t.$$

D

Key.

Sol. Dividing by x^2 , we get 3 1

$$x^{2} - 3x - 2 - \frac{3}{x} + \frac{1}{x^{2}} = 0$$

$$x^{2} + \frac{1}{x^{2}} - 3\left(x + \frac{1}{x}\right) - 2 = 0$$

$$\Rightarrow t^{2} - 3t - 4 = 0 \Rightarrow t = -1, 4$$

$$x + \frac{1}{x} = -1 \Rightarrow x^{2} + x + 1 = 0$$

 $\therefore x = \omega, \omega^2$, the complex cube roots of unity

$$x + \frac{1}{x} = 4 \Longrightarrow x = 2 \pm \sqrt{3}$$

5. Let a, b, c, p, q be real numbers, suppose α, β are the roots of equation $x^2 + 2px + q = 0$ and $\alpha, \frac{1}{\beta}$ are roots of equation $ax^2 + 2bx + c = 0$ where $\beta^2 \notin \{-1, 0, 1\}$ Statement I $(p^2 - q)(b^2 - ac) \ge 0$ Statement II $b \ne pa$ or $c \ne qa$

Key. B

Sol. If the roots are imaginary, then $\beta = \overline{\alpha}, \frac{1}{\beta} = \overline{\alpha} \Longrightarrow \beta^2 = 1$, contradiction

The roots are real

$$\Rightarrow (p^2 - q)$$
 and $(b^2 - ac) \ge 0$

suppose b = pa and c = qa then the second equation becomes identical with the first equation.

$$\therefore \beta = \frac{1}{\beta} \Longrightarrow \beta^2 = 1, \text{ contradiction}$$

$$\therefore$$
 Either $b \neq pa$ or $c \neq qa$.

6. Statement-I: The equation $-x^2 + x - 1 = \sin^4 x$ has only one solution

Statement-II : If the curves y = f(x) and y = g(x) cut at one point, the number of solution

is 1

Key. D

Sol. Let $f(x) = -x^2 + x - 1$

Here a < 0 and $D = (1)^2 - 4(1) < 0$, then f(x) < 0

But $\sin^4 x \ge 0$

$$\therefore -x^2 + x - 1 \neq \sin^4 x$$

Hence the number of solutions is 0

7. Consider the equation x³-3x+k=0, k∈R.
Statement I There is no value of K for which the given equation has two distinct roots in (0,1).
Statement II Between two consecutive roots of f'(x)=0, (f(x) is a polynomial).
f(x)=0 must have one root.

Key.

С

Sol. By Rolle's Theorem between the roots of f'(x) = 0. If there exists a root of f(x) = 0,

 $\lceil f(x)$ is polynomial, then it must be unique.

8. STATEMENT-I: The differential equation of all circles in a plane must be of order 3.

because

STATEMENT-II: If three points are non collinear, then only one circle always passes through these points.

Key. A

- Sol. Conceptual
- 9. Statement I All the real roots of the equation $x^4 3x^3 2x^2 3x + 1 = 0$ lie in the interval [0,3]

Statement II The equation reduces to quadratic equation in the variable t, by substituting

$$x + \frac{1}{x} = t.$$

Key.

Sol.

Dividing by x^2 , we get $x^2 - 3x - 2 - \frac{3}{x} + \frac{1}{x^2} = 0$ $x^2 + \frac{1}{x^2} - 3\left(x + \frac{1}{x}\right) - 2 = 0$ $\Rightarrow t^2 - 3t - 4 = 0 \Rightarrow t = -1, 4$ $x + \frac{1}{x} = -1 \Rightarrow x^2 + x + 1 = 0$ $\therefore x = \omega, \omega^2$, the complex cube roots of unity $x + \frac{1}{x} = 4 \Rightarrow x = 2 \pm \sqrt{3}$ \therefore one root is outside [0,3]

- 10. Let a, b, c, p, q be real numbers, suppose α, β are the roots of equation $x^2 + 2px + q = 0$ and $\alpha, \frac{1}{\beta}$ are roots of equation $ax^2 + 2bx + c = 0$ where $\beta^2 \notin \{-1, 0, 1\}$ Statement I $(p^2 - q)(b^2 - ac) \ge 0$ Statement II $b \neq pa$ or $c \neq qa$ Key. B
- Sol. If the roots are imaginary, then $\beta = \overline{\alpha}, \frac{1}{\beta} = \overline{\alpha} \Longrightarrow \beta^2 = 1$, contradiction

 $\therefore \text{ The roots are real} \Rightarrow (p^2 - q) \text{ and } (b^2 - ac) \ge 0$ suppose b = pa and c= qa then the second equation becomes identical with the first equation. $\therefore \beta = \frac{1}{\beta} \Rightarrow \beta^2 = 1, \text{ contradiction}$ $\therefore \text{ Either } b \neq pa \text{ or } c \neq qa.$

STATEMENT-1: The equation ax² + bx + c = 0 cannot have rational roots, if a, b, c are odd integers.
STATEMENT-2: If an odd number does not leave remainder 1 when divided by 8, then it cannot be a perfect square.

Key: A

Hint : The reason R is true since the square of an odd number 2l + 1 is given by $(2l + 1)^2 = 4l^2 + 4l + 1 = 4l(l + 1) + 1 = 8k + 1$ (since l(l + 1) is a multiple of 2) ⇒ Square of odd number leaves remainder 1 when divided by 8. The assertion A is true, if all the coefficients are odd Let a = 2l + 1, b = 2m + 1, c = 2n + 1 Then b² - 4ac = (2m + 1)² - 4(2l + 1)(2n + 1) = 4m² + 4m - 16ln - 8l - 8n - 3 = 8 $\left[\frac{m(m+1)}{2} - 2ln - l - n\right] - 3 = 8k - 3$ ($\because \frac{m(m+1)}{2}$ is an integer) ⇒ b² - 4ac is an odd number which cannot be a perfect square. ⇒ roots = $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{rational + irrational}{rational} = irrational$ ⇒ Assertion is true.

12. (L-1)Statement-1 : If f(x) = 3(x - 2) (x - 6) + 4(x - 3) (x - 7), then f(x) = 0 has two different and real roots

Statement-2 : If f(x) = 3(x - a) (x - c) + 4(x - b) (x - d) and 0 < a < b < c < d, then f(x) = 0 has two different and real roots.

Sol: f(2) > 0, f(3) > 0; f(6) < 0, f(7) > 0

Hence f(x) has two different real roots.
∴ statement – I is true
Statement – II is also true and is correct explanation of I

13. (L-1)Statement-1 : If one of root of $x^4 - 4x^3 + 4x - \lambda = 0$ is $2 + \sqrt{3}$, where $\lambda \in Q$, then the value of λ is 1

Statement-2 : nth degree polynomial has even number of irrational zeros

```
Key: C
```

- Sol: 2^{ND} root must be $2-\sqrt{3}$ hence x^2-4x+1 is a factor of $x^4-4x^3+4x-d=0 \Longrightarrow \lambda=1$ Statement I is true Statement – 2 is false because n degree polynomial to have even number of irrational zero of should Have rational coefficients.
- 14. (L-1)Statement-1 : Given a real quadratic, $(ax^2 + bx + c, a, b, c \in R)$ if the sum and the product of the roots are both positive, then its roots must be positive real numbers.

Statement-2 : If the product of real roots of a real quadratic is positive the roots must be of like sign and if their sum is also positive, each of them must be positive.

Key: D

Sol: $\alpha\beta > 0 \Longrightarrow \alpha > 0, \beta > 0 \text{ or } \alpha < 0, \beta < 0 \text{ and } \alpha + \beta > 0 \Longrightarrow \alpha, \beta \text{ are +ve.}$

15. (L-1)In a triangle ABC if $\Delta = r$, then

Statement-1 : $a^2 + b^2 + c^2 + 2abc < 2$ and Statement-2 : As $s = 1 \Rightarrow 1 - a, 1 - b, 1 - c > 0$

Key: B

Sol:
$$\frac{(1-a)+(1-b)+(1-c)}{3} \ge ((1-a)(1-b)(1-c))^{1/3}$$

16. Let the equation $4ax^2 - 2bx - 4c = 0$ where $a, b, c \in R$ and $a \neq 0$ does not possess real roots and c > 4a - b then Statement I : 2c > 2a + b

Statement II : Graph of y = $4ax^2 - 2bx - 4c$ lies completely below the x-axis.

HINT:
$$16a - 4b - 4c < 0 \Rightarrow f(2) < 0 \Rightarrow f(x) < 0 \forall x \in R$$

 $f(-1) < 0 \Rightarrow 4a + 2b - 4c < 0 \Rightarrow 2c > 2a + b$

17. STATEMENT-1: All the real roots of the equation $x^4 - 3x^3 - 2x^2 - 3x + 1 = 0$ lie the interval [0,3].

STATEMENT-2: The equation $x^4 - 3x^3 - 2x^2 - 3x + 1 = 0$ is reciprocal equation.

KEY : D

HINT : The given equation is a reciprocal equation

$$\therefore x + \frac{1}{x} = t \Rightarrow t^2 - 3t - 4 = 0 \Rightarrow (t - 4)(t + 1) = 0$$
Let $x + \frac{1}{x} = t \Rightarrow t^2 - 3t - 4 = 0 \Rightarrow (t - 4)(t + 1) = 0$
 $x + \frac{1}{x} = 4 \text{ or } x + \frac{1}{x} = -1$
 $\Rightarrow x = 2 \pm \sqrt{3}$.
 $x \in \mathbb{Z} \text{ and } a, b, c, d \in \mathbb{Z}(a < b \le c < d)$

18.

STATEMENT-1: If (x-a)(x-b)(x-c)(x-d) = 2009 has 4 integer roots of which exactly two are equal then sum of other two roots is ± 42 STATEMENT-2: 2009 is a prime number

KEY : C

19. (L-1)Statement – 1 :
$$\tan\left(\frac{\pi}{4}\left(\frac{1+\sin^2 x}{1+\sin^2 y}\right)\right) + \tan\left(\frac{\pi}{4}\left(\frac{1+\cos^2 x}{1+\cos^2 y}\right)\right) > 1$$
 for $x, y \in \left(0, \frac{\pi}{2}\right)$

Statement - 2:

If
$$f(x, y) = \left(\frac{1+\sin^2 x}{1+\sin^2 y}-1\right)$$
, then $f(x, y) \cdot f\left(\frac{\pi}{2}-x, \frac{\pi}{2}-y\right) \le 0 \forall x, y \in \left(0, \frac{\pi}{2}\right)$

Key: C

Sol: Let
$$x > y$$
 $\frac{1 + \sin^2 x}{1 + \sin^2 y} - 1 = \frac{\sin^2 x - \sin^2 y}{1 + \sin^2 y} > 0$
 $\therefore \frac{1 + \sin^2 x}{1 + \sin^2 y} > 1$ parallely $\frac{1 + \cos^2 x}{1 + \cos^2 y} - 1 < 0$
 \therefore A is false R is true
20. Assertion: Let $(a_1, a_2, a_3, a_4, a_5)$ denote a re-arrangement of $(1, -4, 6, 7, -10)$. Then the equation $a_1x^4 + a_2x^3 + a_3x^2 + a_4x + a_5 = 0$ has at least two real roots
Reason: If $ax^2 + bx + c = 0$ and $a + b + c = 0$, then $x = 1$ is root of $ax^2 + bx + c = 0$
Key. A
Sol. $\sum a_1 = 0$
 $\Rightarrow x = 1$ is a root of $a_1x^4 + a_2x^3 + a_3x^2 + a_4x + a_5 = 0$ max. root=4. & complex roots are in pair form. Hence the given equation has at least two real roots.
21. Statement-1 : 31 is a multiple root of order 2 of the equation $x^3 - 5x^2 + 3x + 9 = 0$.
Statement-2 : If $f(x) = x^3 - 5x^2 + 3x + 9$, then $f^*(3) = 0$
Key. C
Sol. $f(x) = (x - 3)^2(x + 1) \Rightarrow 3$ is a multiple root of order 2 of order 2 of $x^2 + 3x + 9 = 0$.
Statement-1 : if $f(x) = ax^2 - bx + 2; a + b + 2 < 0$, then exactly one root lies between -1 and 0.
Statement-2 : $ab < 0$.
Key. C
Sol. $f(x) = ax^2 - bx + 2$
 $f(0) = 2$
 $f(-1) < a + b + 2 < 0$ (:: $a + b + c < 0$)
 $\therefore f(0) f(-1) < 0$
 \therefore one roots lie between (-1, 0)
Nothing can be said about ab.
23. Let $a, b, c \in \mathbb{R}$
Statement-1 : The equation $a^2x^3 - 3abx^2 + 3b^2x + c = 0$ has only one real root.
Statement-2 : Any cube function $f(x)$ has exactly one real root if the product of the maximum and minimum values of the function $f(x)$ is positive.
Key. B
Sol. Let $f(x) = a^2x^3 - 3abx^2 + 3b^2x + c = 0$

 $f'(x) = 3a^2x^2 - 6abx + 3b^2 = 3(ax - b)^2 \ge 0, \forall x \in \mathbb{R}$

 \Rightarrow f(X) is an increasing function so y = f(x) will cut the x-axis at once or we can say f(x) = 0 has only one real root.

Statement -1: Let f(x) be a polynomial with real co- efficients such that 24. f(x) = f'(x) f'''(x), f(x) = 0 is satisfied by x = 1, 2, 3, only then the value of $f'(1) \times f'(2) \times f'(3)$ is o. Because Statement - 2: If $f(x^2-6x+6)+f(x^2-4x+4)=2x \forall x \in R$ then f(-3)+f(9) is 14. Key. В f(x) is a polynomial of degree so either x=1 or x=2 or, x=3 is a repeating root of Sol. f(x) $\therefore f'(1).f'(2).f'(3) = 0$ Statement – 1 and (2) not related in any sence but both are correct Statement – 1: The values of 'a' for which the point of local minima of 25. $f(x) = x^3 - 3ax^2 + 3(a^2 - 1)x + 1$ is less than 4 and point of local maxima is greater then -2 belongs to (-1,3). Because Statement – 2 : The roots of f'(x) = 0 are real and different and lie in the internal (-2, 4)Key. А $f'(x) = 3(x^2 - 2ax + a^2 - 1)$ Sol. The roots of the equation f'(x) = 0 must be real distinct and lie in the interval (-2, 4). $\therefore D > 0 \Longrightarrow a \in R - (i),$ $f'(-2) > 0 \Rightarrow a < -3 \text{ or } a > -1 - (ii)$ $f'(4) > 0 \Rightarrow a > 5 \text{ or } a < 3 - (iii)$ And $-2 < -\frac{B}{2A} < 4 \implies -2 < a < 4 - (iv)$ From (i), (ii), (iii) and $(iv) \Rightarrow -1 < a < 3$. Statement – 1 : The equation $x^2 + bx + ca = 0$ and $x^2 + cx + ab = 0$ have a common root, 26. then their other roots are given by $x^2 + ax + bc = 0$ Because Statement – 2 : If 'S' be the sum and 'P' be the product of the roots of a quadratic equation then $x^2 - Sx + P = 0$ Key. А $\frac{x^2}{a(b^2 - c^2)} = \frac{x}{a(c-b)} = \frac{1}{c-b}$ Sol.

$$a = -(b+c)$$

27. STATEMENT-1: If a, b, c, $d \in R$ such that a < b < c < d, then the equation (x - a) (x - c) + 2(x - b) (x - d) = 0 are real and distinct. STATEMENT-2: If f(x) = 0 is a polynomial equation and a, b are two real numbers such that f(a) f(b) < 0 has at least one real root. Key. А Sol. Let f(x) = (x - a) (x - c) + 2 (x - b) (x - d)Then f(a) = 2 (a - b) (a - d) > 0f(b) = (b - a) (b - c) < 0f(d) = (d - a) (d - b) > 0Hence a root of f(x) = 0 lies between a & b and another root lies between (b & d). Hence the roots of the given equation are real and distinct. If both roots of the equation $4x^2 - 2x + a = 0, a \in R$, lie in the interval (-1, 28. Assertion (A): 1), then $-2 < a \le 1/4$. If $f(x) = 4x^2 - 2x + a$, then $D \ge 0, f(-1) > 0, f(1) > 0 \Longrightarrow -2 < a \le 1/4$. Reason (R): Key. A Sol. Conceptual Statement - 1: If $ax^2 + bx + c = 0$ and $x^2 + 2x + 3 = 0$ have a common root then other root 29. is also common Statement - 2: If $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ are having a common root then $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ Key. C Roots of $x^2 + 2x + 3 = 0$ are imaginary then both roots are common Sol. Statement - 1: The number of solutions of $\sin e^x = 5^x + 5^{-x}$ are zero 30. Statement - 2: $x + \frac{1}{x}$ is always greater then or equal to two if x is positive Key. A $\sin e^x = 5^x + \frac{1}{5^x}$ Sol. $=\left(\sqrt{5^x}-\frac{1}{\sqrt{5^x}}\right)^2+2$ ≥ 2 Which is impossible. Statement - 1: If α, β are roots of $ax^2 + bx + c = 0$ then $\left(\frac{\alpha}{\alpha\beta + b}\right)^3 - \left(\frac{\beta}{\alpha\alpha + b}\right)^3 = 0$ 31.

Statement - 2: If α , β are roots of $ax^2 + bx + c = 0$ then $a\alpha^2 + b\alpha + c = 0$ and $a\beta^2 + b\beta + c = 0$

Key. D

Sol.
$$a\alpha^2 + b\alpha + c = 0$$

 $\alpha(a\alpha + b) = -c$
 $a\alpha + b = \frac{-c}{\alpha}$
 $a\beta + b = -\frac{c}{\beta}$
 $\frac{\alpha}{a\beta + b} = \frac{\alpha}{-\frac{c}{\beta}} = \frac{-\alpha\beta}{c}$

32. Statement - 1: If $a,b,c \in C$, $a \neq 0$ and $ax^2 + bx + c = 0$ then the roots of above equation are always conjugate complex numbers

Statement - 2: If $a, b, c \in R$ and $a \neq 0$ then roots of $ax^2 + bx + c = 0$ are always conjugate complex numbers if $b^2 - 4ac < 0$

Key. D

Sol. $a, b, c \in C; a \neq 0$

Roots of $ax^2 + bx + c = 0$ Need not be conjugate complex numbers.

33. Consider the equation $x^3 - 3x + k = 0$, $k \in R$.

Statement I There is no value of K for which the given equation has two distinct roots in (0,1).

Statement II Between two consecutive roots of f'(x) = 0, (f(x)) is a polynomial). f(x) = 0 must have one root.

Key.

С

- Sol. By Rolle's Theorem between the roots of f'(x)=0. If there exists a root of f(x)=0, $\lceil f(x) is \ polynomial \rceil$, then it must be unique.
- 34. Statement I All the real roots of the equation $x^4 3x^3 2x^2 3x + 1 = 0$ lie in the interval [0,3]

Statement II The equation reduces to quadratic equation in the variable *t*, by substituting $x + \frac{1}{x} = t$.

Key. D

Sol. Dividing by x^2 , we get $x^2 - 3x - 2 - \frac{3}{x} + \frac{1}{x^2} = 0$ $x^2 + \frac{1}{x^2} - 3\left(x + \frac{1}{x}\right) - 2 = 0$ $\Rightarrow t^2 - 3t - 4 = 0 \Rightarrow t = -1, 4$

$$x + \frac{1}{x} = -1 \Longrightarrow x^2 + x + 1 = 0$$

$$\therefore x = \omega, \omega^2, \text{ the complex cube roots of unity}$$

$$x + \frac{1}{x} = 4 \Longrightarrow x = 2 \pm \sqrt{3}$$

$$\therefore \text{ one root is outside [0,3]}$$

35. Let a, b, c, p, q be real numbers, suppose α, β are the roots of equation $x^2 + 2px + q = 0$ and $\alpha, \frac{1}{\beta}$ are roots of equation $ax^2 + 2bx + c = 0$ where $\beta^2 \notin \{-1, 0, 1\}$ Statement I $(p^2 - q)(b^2 - ac) \ge 0$ Statement II $b \ne pa$ or $c \ne qa$

Key. B

Sol. If the roots are imaginary, then $\beta = \overline{\alpha}, \frac{1}{\beta} = \overline{\alpha} \Longrightarrow \beta^2 = 1$, contradiction

∴ The roots are real ⇒ $(p^2 - q)$ and $(b^2 - ac) \ge 0$ suppose b = pa and c= qa then the second equation becomes identical with the first equation. ∴ $\beta = \frac{1}{\beta} \Rightarrow \beta^2 = 1$, contradiction ∴ Either $b \ne pa$ or $c \ne qa$.

36. Statement-I : The greatest integral value of λ for which $(2\lambda - 1)x^2 - 4x + (2\lambda - 1) = 0$ has real roots is 2

Statement-II : For real root of $ax^2 + bx + c = 0, D \ge 0$

Key. D

Sol. For real roots

$$\Rightarrow (-4)^2 - 4(2\lambda - 1)(2\lambda - 1) \ge 0$$
$$\Rightarrow (2\lambda - 1)^2 \le 4$$
$$\Rightarrow -2 \le 2\lambda - 1 \le 2$$
$$\Rightarrow -\frac{1}{2} \le \lambda \le \frac{3}{2}$$

 \therefore Integral values of λ are 0 and 1

Hence, the greatest integer value of $\lambda = 1$

37. Statement-I : Let f(x) be a quadratic expression such that f(0) + f(1) = 0. If -2 is one of the roots of f(x) = 0. Then the Sum of roots is 3/5

Statement-II : If α and β are the zeros of $f(x) = ax^2 + bx + c$, then the sum of zeros =

-b/a and the product of zeros = c/a

Sol. Since x = -2 is a root of f(x) $\therefore f(x)=(x+2)(ax+b)$ But f(0) + f(1) = 0 $\therefore 2b + 3a + 3b = 0 \implies -\frac{b}{a} = \frac{3}{5}$

11. Statement - 1:
$$1 \le x \le 2$$
, then $\sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}} = 2$
Statement - 2: If $1 \le x \le 2$, then $(x - 1) > 1$

Key. Sol.

С

Since
$$1 \le x \le 2$$

 $\therefore 0 \le x - 1 \le 1$
 $\sqrt{x + x\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}}$
 $= \sqrt{(\sqrt{1} + \sqrt{x - 1})^2} + \sqrt{(\sqrt{1} - \sqrt{x - 1})^2}$
 $= 1 + \sqrt{x - 1} + 1 - \sqrt{x - 1} = 2$

12. Statement -1: For all $x \in \mathbb{R}$, $x^2 + 3|x| + 2 = 0$ has no real root. Statement -2: For all $x \in \mathbb{R}$, $|x| \ge 0$.

Key.

Sol. Since $x^2 \ge 0$, $|x| \ge 0$ $\therefore x^2 + 3|x| + 2 \ne 0$.

А

А

13. Statement – 1 : The set of all real numbers 'a' such that $a^2 + 6a$, $a^2 + 2a + 3$ and $3a^2 + 2a + 11$ are the sides of a triangle is (2, 4).

Statement -2: In a triangle the sum of any two sides is greater than the third side and also the sides are always positive.

```
Key.
```

Sol. In a triangle sum of two sides greater than the other. $\Rightarrow a^{2} - 6a + a^{2} + 2a + 3 > 3a^{2} + 2a + 11$ $\Rightarrow a^{2} + 6a + 8 < 0$ $\Rightarrow 2 < a < 4$ $\therefore \text{ (for positive 'a', 3a^{2} + 2a + 11 is the greatest side).}$ 14. STATEMENT -1: $(x-1)^{3}(x+2)^{5}(x-3)^{4} \ge 0$ is true for $[1,\infty) \cup (-\infty,-2]$ STATEMENT-2: Statement 1 is evident from wavy Curve method Key. A Sol. Conceptual

Quadratic Equations & Theory of Equations Comprehension Type

Passage - 1: Let x_1, x_2, x_3, x_4 be the roots (real or complex) of the equation $x^4 + ax^3 + bx^2 + cx + d = 0$ If $x_1 + x_2 = x_3 + x_4$ and $a, b, c, d \in R$, then If a = 2, then the value of b - c is 1. A) -1 B) 1 D) 2 C) -2 Key. В If b < 0 then how many different real values of 'a' we may have? 2. A) 3 D) 0 B) 2 C) 1 С Key. If b + c = 1 and $a \neq -2$, then for real values of 'a' the value of 3. A) $\left(-\infty,\frac{1}{4}\right)$ D) (-∞,4) B) $(-\infty,3)$ C) (−∞,1) Key. Let $x^4 + ax^3 + bx^2 + cx + d$ Sol. $= (x - x_1)(x - x_2)(x - x_3)(x - x_4)$ Let $(x-x_1)(x-x_2) = x^2 + px + q$ and $(x - x_3)(x - x_4) = x^2 + px + r$ $\therefore q = x_1 x_2$ and $r = x_3 x_4$ $\therefore x^4 + ax^3 + bx^2 + cx + d$ $= x^{4} + 2px^{3} + (p^{2} + q + r)x^{2} + p(q + r)x + qr$ $\therefore a = 2p, b = p^2 + q + r, c = p(q+r), d = qr$ Clearly, $a^3 - 4ab + 8c = 0$ (B)If $a=2 \Rightarrow b-c=1$ 1. (C) Investigating the nature of the cubic equation of a'. 2. $f(a) = a^3 - 4ab + 8c$ Let $f'(a) = 3a^2 - 4b$ $b < 0 \Rightarrow f'(a) > 0$ lf \therefore The equation $a^3 - 4ab + 8c = 0$ hence only one real root. (A) Substituting c=1-b in Eq. (i) we have 3. $(a+2)\left[\left(a-1\right)^2+3-4b\right]=0 \Longrightarrow 4b-3>0$ $\Rightarrow b > \frac{3}{4} \Rightarrow c < \frac{1}{4}$

Passage – 2:					
	If roots of the equation	If roots of the equation $x^4 - 12x^3 + bx^2 + cx + 81 = 0$ are positive, then			
4.	Value of b is				
	A) -54	B) 54	C) 27	D) -27	
Key.	В				
5.	Value of c is				
	A) 108	B) -108	C) 54	D) -54	
Key.	В				
6.	Root of equation $2bx$ +	Root of equation $2bx + c = 0$ is			
	A) $-\frac{1}{2}$	B) $\frac{1}{2}$	C) 1	D) -1	
Key.	С				
Sol.	Let $lpha,eta,\gamma,\delta$ be root	s of the given equation			
	$\alpha + \beta + \gamma + \delta = 12$	(1)			
	$\Sigma \alpha \beta = b$	(2)			
	$\Sigma \alpha \beta \gamma = -c$	(3)			
	$\alpha\beta\gamma\delta = 81$	(4)			
	As $AM \ge GM$				
	$\alpha + \beta + \gamma + \delta$	$a = 2^{1/4}$			
	$\frac{1}{4} = \frac{1}{4}$	$(\alpha\beta\gamma\delta)^{n+1}$			
	$\frac{12}{4} \ge (81)^{1/4}$				
	But as $AM = GM$				
	$\therefore \alpha = \beta = \gamma = \delta = \beta$				
4.	(B) $b = \Sigma \alpha \beta = 6 \times 9$	=54			
5.	(B) $c = \sum \alpha \beta \gamma = 4 \times -$	-27 = -108			
6.	(C) 2bx + c = 0				
	108x - 108 = 0				
	$\Rightarrow x=1$				
-					
Passa	ge – 3:				
	Consider the equation $\sin^2 x + a \sin x + b = 0$, $x \hat{I}(0, p)$				
7.	The above equation has e	exactly two roots and bo	th are equal then		
	(a) a = 1		(b) a = - 1		
Kev	(c) $b = 1$		(d) b = - 1		
Q	The above has exactly the	rea distinct solutions the	n		
0.	(a) bÎ (- 1,0)	(b) $b\hat{I}$ (0,1)			
	(c) bÎ [- 1,0]	(d) bÎ [0,1]			
Key.	В				

9. The above equation has four solutons then which of the following are not true (a) aÎ (- 2,0) (b) bÎ (0,1) (c) $a^2 - 4b > 0$ (d) bÎ (- 1,0) Key. D Sol. 7. Ans: c Sol : If the given equation should have two equal roots, both should be equal to $\frac{p}{2}$ \setminus product of roots = $\frac{b}{1} = 1$ $\setminus sin x = 1$ ₽ b = 1 8. Ans : b Sol : If the given equation should have three solutions, one root should infinitely be $\ \ \sin x_1 = 1$ Now, we should get two more roots and thus $sin x \hat{I}$ (0,1) \land product of roots = b = sinx₁.sinx = 1.sinx = sinx ∖ bÎ (0,1) 9. Ans : d Sol : If the above equation has four roots, $sin x \hat{I}$ (0,1) $\int sum = -a\hat{I}(0,2)$ $= a\hat{I} (-2,0)$ product = $b\hat{I}$ (0,1) discriminant = $a^2 - 4b > 0$ h bÎ (- 1,0) is the wrong option. Passage – 4: If $f : R \sim \{-1\} \rightarrow R$ and f is differentiable function that satisfies the equation $f(x + f(y) + xf(y)) = y + f(x) + y f(x), \forall x, y \in R - \{-1\} \text{ and } f(x) \neq x, \text{ then}$ 10. f(x) equals, (C) $\frac{-1}{1+x}$ (B) -(D) none of these Key dx equals f(x)+f11 (A) 2 (B) – 2 (C) - 1 (D) 1 Key. С 12. The number of solutions of the equation f(x) = c is (A) one if $c \neq -1$ (B) one if c = -1(C) more than one if $c \neq -1$ (D) more than one if c = -1Key. А

SOL.	10 TO 12. DIFFERENTIATING BOTH SIDE WITH RESPECT TO X AND THEN W.R.T. TO Y AND THEN DIVIDING THE RESULT OBTAINED IN BOTH CASES.			
	WE GET $f'(x) = \pm \frac{(1+x)^2}{1}$	$\frac{-f(x)}{+x}$		
	$\Rightarrow \qquad \frac{1\!+\!f(x)}{c}\!=\!(1\!+\!$	$(+x)^{\pm 1}$		
	NOW, PUTTING $X = 0$,	Y = 0, WE GET		
	F(C-1) = (C-1)	1)		
	$\therefore \qquad f(x) = -\frac{x}{1+x}$	- K		<u>(</u>).
Passage	e – 5:			<
	P(x) be polynomial of	degree at most 5 which	n leaves remainders -1 a	nd 1 upon division by
	$(x-1)^3$ and $(x+1)^3$	respectively.	c X	
13.	Numbers of real roots	of $P(x) = 0$. ().	
	a) 1	b) 3	c) 5	d) 2
14.	The maximum value o	f $y = P^n(x)$ can be ob	otained at x =	
	a) $-\frac{1}{\sqrt{3}}$	b) 0	c) $\frac{1}{\sqrt{3}}$	d) 1
15.	The sum of pairwise p	roduct of all roots (real	and complex) of $P(x) = 0$	is
	a) $-\frac{5}{3}$	b) $-\frac{10}{3}$	c) 2	d) -5
13 – 15	. (A,C,B)			
	P(x) + 1 = 0 has a thric similarly, $P'(x)$ has a tv	e repeated root at x = 1 vice repeated root at <i>x</i>	LP'(x) ans a twice repeate $z = -1$.	ed root at x = 1
	$\Rightarrow P'(x)$ is divisible t	by $(x-1)^2 (x+1)^2$		
	$\therefore P'(x) = K(x-1)^2$	$ig(x\!+\!1ig)^2$ where 'K' is ar	ny constant	
	$\therefore P(x) = K\left(\frac{x^5}{5} - \frac{2}{3}\right)$	$x^3 + x + c$		
6	Now, $P(1)\!=\!-1$ and	P(-1)=1		
	$\therefore K = \frac{-15}{8} \text{ and } e = 0$)		
	$\therefore P(x) = \frac{-3}{8}x^5 + \frac{5}{4}x^5$	$x^3 - \frac{15}{8}x$		
Passage	e — 6:			

Let $f(x) = x^4 + ax^3 + bx^2 + ax + 1$ be a polynomial where a and b are real numbers, then 16. If f(x) = 0 has two different pairs of equal roots, then the value of a + b is a) 0 b) -4 c) -2 d) 4 Key : d

Let $x^4 + ax^3 + bx^2 + ax + 1 = (x^2 + kx + 1)^2$ Sol: comparing 2k = a; $b = k^2 + 2 \implies a + b = (k + 1)^2 + 1$ it can be 4 If f(x) = 0 has two different negative roots and two equal positive roots, then the least integral 17. value of a is a) 1 b) 2 c) 3 d) 4 Key : a The two equal +ve roots must be 1, 1, and let the -ve roots be α , $\frac{1}{\alpha}$ ($\alpha \neq 1$) Sol: Now $-a = 2 + \alpha + \frac{1}{\alpha} \Longrightarrow a = -\alpha - \frac{1}{\alpha} - 2 > 0$... The least integral value is '1' 18. If all the roots are imaginary and b = -1 then number of all possible integral values of a is a) 0 b) 1 c) 2 d) 4 Key : b Given equation is $t^2 + at - 3 = 0$ where $t = x + \frac{1}{x}$ both roots must lie between -2, 2 Sol:

$$\Rightarrow \frac{-1}{2} < a < \frac{1}{2}$$
$$\Rightarrow a = 0$$

Passage – 7:

Key. Sol.

 $y = ax^2 + bx + c = 0$, $\forall a, b, c \in R$ with $a \neq 0$ is a quadratic equation which has real roots if and only if $b^2 - 4ac \ge 0$. If F(x, y) = 0 is a second degree equation, then using above fact we can get the range of x and y by treating it as quadratic equation in y or x. Similarly $ax^2 + bx + c \ge 0 \forall x \in R$ if a > 0 and $b^2 - 4ac \le 0$.

19. If $0 < \alpha, \beta < 2\pi$, then the number of ordered pairs (α, β) satisfying $\sin^2(\alpha + \beta) - 2\sin\alpha \sin(\alpha + \beta) + \sin^2\alpha + \cos^2\beta = 0$ is (A) 2 (B) 0 (C) 4 (D) 6 Key. C

Sol. Solving it, we get $\sin(\alpha + \beta) = \sin \alpha \pm \sqrt{-\cos^2 \beta}$

$$\Rightarrow \cos \beta = 0 \Rightarrow \beta = \frac{\pi}{2}, \frac{3\pi}{2}$$
(i) If $\beta = \frac{\pi}{2} \Rightarrow \tan \alpha = 1, \ \alpha \in \left\{\frac{\pi}{4}, \frac{5\pi}{4}\right\}$
(ii) If $\beta = \frac{3\pi}{2} \Rightarrow \tan \alpha = -1, \ \alpha \in \left\{\frac{3\pi}{4}, \frac{7\pi}{4}\right\}$

20. Let x, y, z be real variables satisfying the equations x + y + z = 6 and xy + yz + zx = 7, then the range of x is

(A) $\left\lfloor \frac{6-\sqrt{5}}{3}, \frac{6+\sqrt{15}}{3} \right\rfloor$	$(B)\left\lfloor\frac{6-2\sqrt{15}}{3},\frac{6+2\sqrt{15}}{3}\right\rfloor$
$(C)\left[\frac{6-\sqrt{15}}{2},\frac{6+\sqrt{15}}{2}\right]$	$(D)\left[\frac{6-\sqrt{15}}{7},\frac{6+2\sqrt{15}}{7}\right]$
B We have $x + y + z = 6$	(i)

$$xy + yz + zx = 7$$
(ii)

From (i), z = 6 - x - y & putting it in (ii), we get xy + y(6 - x - y) + x(6 - x - y) = 7or $y^2 + (x - 6)y + (x^2 - 6x + 7) = 0$ Since y is real, $(x-6)^2 - 4(x^2 - 6x + 7) \ge 0$ $3x^2 - 12x - 8 \le 0$ \Rightarrow $\frac{6\!-\!2\sqrt{15}}{3}\!\leq\!x\!\leq\!\frac{6\!+\!2\sqrt{15}}{3}$ If $9^{x+1} + (a^2 - 4a - 2)3^x + 1 > 0 \ \forall \ x \in \mathbb{R}$, then 21. (B) $a \in R^+$ (C) $a \in [1, \infty)$ (A) $a \in R$ (D) $a \in R - \{2\}$ Key. D $3^{x}\left(9.3^{x}+\frac{1}{3^{x}}+(a^{2}-4a-2)\right)>0$ Sol. $\Rightarrow \qquad 3^{x} \left(\left(3.3^{x/2} - \frac{1}{3^{x/2}} \right)^{2} + (a-2)^{2} \right) > 0$ $a \in R - \{2\}$ Passage – 8: Consider the inequation $9^x - a \cdot 3^x - a + 3 \le 0$ where 'a' is a real parameter. The given inequation has 22. At least one negative solution if c) $a \in (-\infty, 2)$ d) $a \in (-\infty, 3)$ c) $a \in (-\infty, -6)$ d) $a \in (2, \infty)$ a) $a \in (2,3)$ b) $a \in (2,\infty)$ Key. Α At least one positive solutions if 23. a) $a \in (-\infty, 2)$ b) $a \in (0, 2)$ D Key. At least one solution in (1, 2) if 24.

a)
$$a \in (3,\infty)$$
 b) $a \in \left(3,\frac{84}{10}\right)$ c) $a \in \left(\frac{84}{10},\infty\right)$ d) $a \in R$

Sol. 22,23,24. Let
$$3^{x} = t \Longrightarrow t^{2} - ta - a + 3 \le 0: t > 0$$

Let $f(t) = t^{2} - at + 3 - a$
Discriminate of $f(t) = 0$ is $a^{2} - 4(3 - a)a$
i.e., $a^{2} + 4a - 12$.
 $D \ge 0 \Longrightarrow a \le -6$ or $a \ge 2$.

22.
$$f(t) \le 0$$
. Has at least one positive solution.
If $x < 0$ then at least one t of $f(t) = 0$ lies in .
Case I: exactly one $t \in (0,1)$ then $D \ge 0$ and $f(0)f(1) < 0$ then $a \in (2,3)$

Case II: both rots lines in (0,1) then $(1)D \ge 0(2)f(0) > 0(3)f(1) > 0$ $(4)0 < \frac{a}{2} < 1$ Then $a \in \phi$ $\therefore a \in (2,3)$ $f(t) \leq 0$. has at least one positive solution 23. i.e., $x > 0 \Longrightarrow t > 1$ Case I: exactly one root is greater than 1 (1)D > 0(2)f(1) < 0 then a > 2Case II: both roots greater than 1 $(1)D \ge 0(2)f(1) > 0(3)\frac{a}{2} > 1$ Then $a \in \phi$ $\therefore a \in (2,\infty)$ 24. Similarly $x \in (1,2)$ then $t \in (3,9)$ Similar to the above the question $f(q) = (a^2 + b^2 + c^2)\cos^2 q$ $f^{1}(q) = (a^{2} + b^{2} + c^{2})^{3}$ ' (- $\sin 2q$ Passage – 9: If abc = m and det P = cb $a \mid b \mid$, where P is an orthogonal matrix. The value of a + b + c is 25. b) ±1 a) ±*m* c) 0 d) m² Key. В The cubic equation whose roots are a^{-1}, b^{-1} and c^{-1} can be 26. a) $mt^3 + t - 1 = 0$ b) $mt^3 - t + 1 = 0$ c) $mt^3 + m^2t^2 + t + 1 = 0$ d) $mt^3 + m^2t^2 + m + 1 = 0$ Key. The value of $a^{-10}b^{-12}c^{-12} + a^{-12}b^{-10}c^{-12} + a^{-12}b^{-12}c^{-10}$ can be a) 1 b) m⁻¹² c) m⁻¹² 27. c) m⁻¹⁰ d) m¹⁰ В Key. $PP^{T} = \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix} \begin{bmatrix} a & c & b \\ b & a & c \\ c & b & a \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 25. Sol. $\Rightarrow \begin{bmatrix} a^{2} + b^{2} + c^{2} & ab + bc + ca & ab + bc + ca \\ ab + bc + ca & a^{2} + b^{2} + c^{2} & ab + bc + ca \\ ab + bc + ca & ab + bc + ca & a^{2} + b^{2} + c^{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

26. We know the cubic equation whose roots are
$$\alpha, \beta, \gamma$$

 $t^{2} - (\alpha + \beta + \gamma)t^{2} + (\alpha\beta + \beta\gamma + \alpha\gamma) + \alpha\beta\gamma = 0$, where t is origin. The equation whose roots are a^{-1}, b^{-1}, c^{-1} is
 $t^{3} - (\frac{1}{a} + \frac{1}{b} + \frac{1}{c})t^{2} + (\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ab})t + \frac{1}{abc} = 0$
 $\Rightarrow t^{3} - (0)t^{2} + (\frac{\pm 1}{n})t + \frac{1}{m} = 0 \Rightarrow mt^{3} \pm t + 1 = 0$
27. $\frac{a^{2} + b^{2} + c^{2}}{a^{12}b^{12}c^{12}} = \frac{a^{2} + b^{2} + c^{2}}{(abc)^{12}} = \frac{1}{m^{12}} = m^{-12}$.
Passage - 10
Let $(a + \sqrt{b})^{O(s)} + (a - \sqrt{b})^{O(s) - 2A} = A$ Where $\lambda \in N, A \in R$ and $a^{2} - b = 1$
 $\therefore (a + \sqrt{b})(a - \sqrt{b}) = 1 \Rightarrow (a + \sqrt{b}) = (a - \sqrt{b})^{-1}$ and $(a - \sqrt{b}) = (a + \sqrt{b})^{-1}$
i.e., $(a \pm \sqrt{b}) = (a + \sqrt{b})^{11}$ or $(a - \sqrt{b})^{11}$
28. If α, β are the roots of the equation $1! + 2! + 3! + s_{crit} + s_{crit} + (x - 1)! + x! = k^{2}$ and $k \hat{1} I$, where $a < \beta$ and if $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ are the roots of the equation
 $(a + \sqrt{b})^{s^{2} - [1 + 2a + 3a^{2} + 4a^{2} + 5a^{2}]} + (a - \sqrt{b})^{s^{3} + (s + 3)^{2}} = 2a$.
Where $a^{2} - b = 1$ and [] denotes G.E.F., then the value of $|\alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4} - \alpha_{4}\alpha_{2}\alpha_{3}\alpha_{4}|$ is
a) 216 b) 221 c) 224 d) 209
Key. C
29. If $(\sqrt{(49 + 20\sqrt{6})})^{\sqrt{b\sqrt{b}\sqrt{b}}} + (5 - 2\sqrt{6})^{s^{2} + s^{-2} - 4} = 10$ where $a = x^{2} - 3$, then
x is
a) $-\sqrt{2}$ b) $\sqrt{2}$ c) -2 d) 2
Key. D
30. If α, β are the roots of the equation $x^{2} - 4x + 1 = 0$, where $\alpha > \beta$, then the number of real
solutions of the equation $\alpha^{s^{2} - 2y - 1} = \frac{101}{10\beta}$ are
 $a = 1, \beta = 3$
 $(a + \sqrt{b})^{s^{2} - 15} + 1$ and $x = 3, K = \pm 3$
 $\alpha = 1, \beta = 3$
 $(a + \sqrt{b})^{s^{2} - 15} = \pm 1 \Rightarrow x = \pm 4, \pm \sqrt{14}$

 $\alpha_1 = -4, \alpha_2 = 4, \alpha_3 = -\sqrt{14}, \alpha_4 = \sqrt{14}.$

29

$$\therefore |\alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4} - \alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}| = |0 - 16 \times 14| = 224$$
29. $a^{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots} = a$
 $\sqrt{x\sqrt{x\sqrt{x\sqrt{x.....\infty}}}} = x \text{ and } \sqrt{49 + 20\sqrt{6}} = 5 + 2\sqrt{6}$
 $x^{2} - 3 > 0 \text{ and } x > 0$
 $\Rightarrow x > \sqrt{3}$
 $(5 + 2\sqrt{6})^{\sqrt{a\sqrt{a\sqrt{a....\infty}}}} + (5 - 2\sqrt{6})^{x^{2} + x - 3 - \sqrt{x\sqrt{x\sqrt{x...\infty}}}} = 10$
 $\Rightarrow (5 + 2\sqrt{6})^{x^{2} - 3} + (5 - 2\sqrt{6})^{x^{2} - 3} = 10$
 $\therefore x^{2} - 3 = 1 \Rightarrow x = 2(\because x > \sqrt{3})$
30. $x = 2 \pm \sqrt{3}$
 $(2 + \sqrt{3})^{y^{2} - 2y + 1} + (2 - \sqrt{3})^{y^{2} - 2y + 1} = \frac{101}{10(2 - \sqrt{3})}$
 $\Rightarrow (2 + \sqrt{3})^{y^{2} - 2y} + (2 - \sqrt{3})^{y^{2} - 2y} = \frac{101}{10}$

Passage – 11

 $ax^2 + bx + c = 0$(i) Let consider quadratic equation Where $a, b, c \in R$ and $a \neq 0$. If Eq. (i) has roots, α, β $\begin{aligned} \alpha+\beta &= -\frac{b}{a}, \alpha\beta = \frac{c}{a} \text{ and Eq. (i) can be written as } ax^2 + bx + c = a(x-\alpha)(x-\beta) \\ \text{Also, if } a_1, a_2, a_3, a_4, \dots \text{ are in AP, then } a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = \dots \neq 0 \text{ and if } b_1, b_2, b_3, b_4, \dots \text{ are in } \end{aligned}$

$$b_1, b_2, b_3, b_4, \dots$$
 are in

GP, then
$$\frac{b_2}{b_1} = \frac{b_3}{b_2} = \frac{b_4}{b_3} = \dots \neq 1$$
 Now, if $c_1, c_2, c_3, c_4, \dots$ are in HP, then
 $\frac{1}{c_2} = \frac{1}{c_1} = \frac{1}{c_3} - \frac{1}{c_2} = \frac{1}{c_4} - \frac{1}{c_3} = \dots \neq 0$

Let p and q be roots of the equation $x^2 - 2x + A = 0$ and let r and s be the roots of the 31. equation $x^2 - 18x + B = 0$. If p < q < r < s are in arithmetic progression. Then the values of A and B respectively are.

$$(A) -5,67 (B) -3,77$$

Key.

В

Let α_1, α_2 be the roots of $x^2 - x + p = 0$ and α_3, α_4 be the roots of $x^2 - 4x + q = 0$. If 32. $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ are in GP, then the integral values, of p and q respectively are (A) -2, -32(B) -2,3

Circles

(C) -6,3
Key. A
33. Given that
$$\beta_1, \beta_3$$
 be roots of the equation $Ax^2 - 4x + 1 = 0$ and β_2, β_4 the roots of the
equation $Bx^2 - 6x + 1 = 0$.
If $\beta_1, \beta_2, \beta_3, \beta_4$ are in HP; then the integral value of A and B respectively are
(A) -3,8
(B) -3,16
(C) 3,8
(D) 3,16
Key. C
Sol. 31. p+q=2, pq=A and
r+s = 18, rs = B
p,q,r,s are in AP.
Then q= p+D, r=p+2D and s= p+3D
32. $\alpha_1 + \alpha_2 = 1, \alpha_1 \alpha_2 = p$ (i) and $\alpha_3 + \alpha_4 = 4, \alpha_3 \alpha_4 = q$ (ii)
 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ are in GP
 $\alpha_2 = \alpha_1 R, \alpha_3 = \alpha_1 R^2, \alpha_4 = \alpha_1 R^3$
33. $\beta_1 + \beta_3 = \frac{4}{A}, \beta_1 \beta_3 = \frac{1}{A}$ (ii)
 $\beta_2 + \beta_4 = \frac{6}{B}, \beta_2 \beta_4 = \frac{1}{B}$ (iii)
From eq. (i), $\frac{\beta_1 \beta_3}{(\beta_1 + \beta_3)} = \frac{1}{4}$ (iii)
And eq. (ii), $\frac{\beta_2 \beta_4}{(\beta_2 + \beta_4)} = \frac{1}{6}$

Passage – 12

If x_1, x_2 be the roots of the equation $x^2 - 3x + A = 0$ and x_3, x_4 be the roots of $x^2 - 12x + B = 0$ and x_1, x_2, x_3, x_4 be an increasing G.P, also $x^2 - 8x + C = 0$ where the product of the roots is half the sum of the roots, on the basis of above information answer the following

33. The equation of the plane through intersection of the planes x - Ay + 3z + C = 0 and Ax-3y+Cz-7=0 and the point (1,-1,1) is (a) 9x - 13y + 17z = B + 7(b) Ax - By + Cz = 7(d) 9x - 13y + 17z = A + B + C - 1(c) 2Ax - 13y + 17z = BKey. А Equation of the plane perpendicular to x+2y+Cz+B=0, Ax+2y-3z+2009=0 and 34. passing through (A, B, C) is (b) 14x - 11y + 2z + 316 = 0(a) 14x + 11y + 2z - 316 = 0(d) 14x - 11y + 2z - 316 = 0(c) 14x + 11y - 2z + 316 = 0В

Key.

The image of the plane $\pi_1 = Ax - 3y + Cz + 9 = 0$ in the plane mirror 35.

 $\pi_2 = Cx - Ay + z - 5 = 0$ is

(a) 34x - 3y - 16z - 123 = 0(b) 3x - 34y + 16z + 123 = 0(c) 2x - 3y + 4z + 17 = 0(d) 4x - 11y + 17z - 39 = 0Key. А Sol. 33. Clearly A=2, B=32, C=4 $\pi_1 + \lambda \pi_2 = 0$ 34. dr's of normal to the required plane is (14, -11, 2) Equation of regd plane is 14(x-2)-11(y-32)+2(z-4)=014x - 11y + 2z - 316 = 0Passage – 13 $Max\{f(x),g(x)\} = \frac{f(x) + g(x)}{2} + \left|\frac{f(x) - g(x)}{2}\right|$ $Min\{f(x),g(x)\} = \frac{f(x) + g(x)}{2} - \left|\frac{f(x) - g(x)}{2}\right|$ Let $f(x) = f_1(x) - 2f_2(x)$. Where $f_1(x) = min\{x^2, |x|\}$, for $-1 \le x \le 1$ $=\!max\!\left\{x^2,\!\left|x\right|\right\}$, for $\left|x\right|\!>\!1$ $f_2(x) = max \left\{ x^2, |x| \right\}$, for $-1 \le x \le 1$ = min $\left\{ x^2, \left| x \right| \right\}$, for $\left| x \right| \! > \! 1$ And $g(x) = \begin{cases} \min\{f(t): -3 \le t \le x, -3 \le x < 0\} \\ \max\{f(t): 0 \le t \le x, 0 \le x \le 3\} \end{cases}$ For $-3 \le x \le -1$, range of g(x) is 35. b) [-1,-15] c) [-1,10] a) [-1,3] d) None of these Key. A

For
$$x \in (-1,0)$$
, $f(x) - g(x)$ is
a) $x^2 - 2x + 1$
b) $x^2 + 2x - 1$
c) $x^2 + 2x + 1$
d) $x^2 - 2x - 1$

Key. C

37. The range of a for which the equation f(x) = |x| + a has 4 solutions is

a)
$$\begin{bmatrix} -\frac{9}{4}, 1 \end{bmatrix}$$

b) $\begin{pmatrix} -\frac{9}{4}, 0 \end{pmatrix}$
c) $\begin{pmatrix} -\frac{9}{4}, 2 \end{pmatrix}$
d) $\begin{bmatrix} -\frac{9}{4}, 1 \end{bmatrix}$

Key. B

Sol. 35. $f_1(x) = x^2$ 37. $f_2(x) = |x|$ Draw graph.

Passage – 14

The general form of quadratic equation is given by $ax^2 + bx + c = 0$ where $a \neq 0$ and $a, b, c \in C$

38. The number of real solutions of the equation
$$x^2 - 7|x| + 12 = 0$$
 is
(A)-7 (B) 8 (C) 5 (D) 4
Key. D
39. If sum of roots of $ax^2 + bx + c = 0$ is same as that of their squares then
(A) $b^2 + ab = 2ac$ (B) $b^2 + ac = 2ab$
(C) $c^2 + ab = 2bc$ (D) $a^2 + b^2 + c^2 = ab + bc + ca$
Key. A
40. If $(1-P)$ is a root of $x^2 + Px + (1-P) = 0$ then roots are
(A) 0,1 (B) - 1, 1 (C) 0, -1 (D) - 1, 2
Key. C
Sol. 38. $(|x|-3)(|x|-4) = 0$
39. $\alpha + \beta = \alpha^2 + \beta^2$
 $\alpha + \beta = (\alpha + \beta)^2 - 2\alpha\beta$
40. Let other root is α
 $(1-P)\alpha = (1-P)$
 $\alpha \neq 1$
 $\therefore P = 1$
 $x^2 - x = 0; x = 0, -1$

Passage - 15
if
$$\alpha, \beta$$
 are roots of $ax^2 + bx + c = 0$ then $ax^2 + bx + c = a(x-a)(x-\beta)$
41. If the difference of the roots of the equation $x^2 - bx + c = 0$ is equal to the difference of the roots of the equation $x^2 - cx + b = 0$ and $b \neq c$, then $bxc = (A) = (D) - 4$
Key. D
42. If each root of the equation $3x^2 - 7x + 4 = 0$ is increased by 2, then the resulting equation is
(A) $3x^2 - 19x + 30 = 0$ (B) $3x^2 + 5x + 2 = 0$ (C) $3x^2 - 19x + 2 = 0$ (D)
 $3x^2 - 19x + 20 = 0$
Key. A
43. If fixin θ , $\cos\theta$ are the roots of the equation $ax^2 + bx + c = 0$ then
(A) $a^2 - b^2 + 2ac = 0$ (B) $a^2 + b^2 + 2ac = 0$ (C) $a - b + 2ac = 0$ (D)
 $a + b + 2c = 0$
Key. A
50. 41.
 $\frac{\Delta}{A_1} = \frac{a^2}{p^2} = \frac{b^2 - 4ax}{c^2 - 4b} = 1$
 $b^2 - c^2 = 4c - 4b; b + c = -4$
42.
 $3(x-2)^2 - 7(x-2) + 4 = 0$
 $3x^2 - 19x + 3 = 0$
43. $sin\theta + \cos\theta = -b/a; sin \theta \cos\theta = c/a$
Passage - 16
If the quadratic equation $ax^2 + bx + c = 0$ is satisfied by more than two values of x then it must be an identity for which $a = b = c = 0$.
44. If $b, q, are the roots of $x^2 + px + q = 0$ then
(A) $0 = 1$ (B) $p = 1$ or zero(C) $p = -2$ (D) $p = -2$ or zero
Key. B
45. The solution of $\left|3 + \frac{1}{x}\right| = 2$ is
 $(A) 0, -1, -\frac{1}{5}$ (B) $2, -1$ (C) $0, -1$ (D) $-1, -\frac{1}{5}$
Key. D
46. If a, β are roots of $x^2 - (1 + n^2)x + \frac{1 + n^2 + n^4}{2} = 0$ then $a^2 + \beta^2$ is$

Circles

(A)
$$n^2 + 2$$
 (B) $-n^2$ (C) n^2 (D) $2n^2$
Key. C
Sol. 44. $p + q = -p; pq = q$
 $q = 0; p = 1$
 $q = 0; p = 0$
 $p = 1 \Rightarrow q = -2$
45. $3 + \frac{1}{x} = 2; \frac{1}{x} = -1; x = -1$
 $3 + \frac{1}{x} = -2; \frac{1}{x} = -5; x = -\frac{1}{5}$
46. $\alpha + \beta = 1 + n^3$
 $\alpha\beta = \frac{1 + n^2 + n^4}{2}$
 $\alpha^2 + \beta^2 = (1 + n^2)^2 - (\frac{1 + n^2 + n^4}{2})$
 $= n^2$
Passage -17
Let x_1, x_2, x_3, x_4 be the roots (real or complex) of the equation
 $x^4 + ax^3 + bx^2 + cx + d = 0$
If $x_1 + x_2 = x_3 + x_4$ and $a, b, c, d \in R$, then
47. If $a = 2$, then the value of $b - c$ is
A) -1 B) 1 C) -2 D) 2
Key. B
48. If $b < 0$ then how many different real values of 'a' we may have?
A) 3 B) 2 C) 1 D) 0
Key. C
49. If $b + c = 1$ and $a \neq -2$, then for real values of 'a' the value of $C \in$
A) $\left(-\alpha \frac{1}{4} \right)$ B) $(-\infty, 3)$ C) $(-\infty, 1)$ D) $(-\infty, 4)$
Key: A
Sol: $h_{1,24} x^4 + ax^3 + bx^2 + cx + d$
 $= (x - x_1)(x - x_2)(x - x_3)(x - x_4)$
 $Let $(x - x_1)(x - x_2) = x^2 + px + r$
 $\therefore q = x_1x_2$ and $r = x_3x_4$
 $\therefore x^4 + ax^3 + bx^2 + cx + d$
 $= x^4 + 2px^3 + (p^2 + q + r)x^2 + p(q + r)x + qr$
 $\therefore a = 2p, b = p^2 + q + r, c = p(q + r), d = qr$$
Clearly,
$$a^3 - 4ab + 8c = 0$$

47. (B)If $a = 2 \implies b - c = 1$
48. (C) Investigating the nature of the cubic equation of 'a'.
Let $f(a) = a^3 - 4ab + 8c$
 $f'(a) = 3a^2 - 4b$
If $b < 0 \Rightarrow f'(a) > 0$
 \therefore The equation $a^3 - 4ab + 8c = 0$ hence only one real root.
49. (A) Substituting $c = 1 - b$ in Eq. (i) we have
 $(a + 2)[(a - 1)^2 + 3 - 4b] = 0 \Rightarrow 4b - 3 > 0$
 $\Rightarrow b > \frac{3}{4} \Rightarrow c < \frac{1}{4}$
Passage - 18
If roots of the equation $x^4 - 12x^3 + bx^2 + cx + 81 = 0$ are positive, then
50. Value of b is
A) -54 B) 54 C) 27 D) -27
Key. B
51. Value of c is
A) 108 B) -108 C) 54 D) -54
Key. B
52. Root of equation $2bx + c = 0.18$
 $A) -\frac{1}{2}$ b) $\frac{1}{2}$ C) 1 D) -1
Key. C
Sol. Let $\alpha, \beta, \gamma, \delta$ be roots of the given equation
 $\alpha + \beta + \gamma + \delta = 12$ ---(1)
 $\sum \alpha \beta = b$ ---(2)
 $\sum \alpha \beta \gamma = c$ ---(3)
 $a\beta \gamma = 81$ ----(4)
As $AM \ge GM$
 $\therefore \frac{\alpha + \beta + \gamma + \delta}{4} \ge (\alpha \beta \gamma \delta)^{1/4}$
 $\frac{12}{4} \ge (81)^{1/4}$
But as $AM = GM$
 $\therefore \alpha = \beta = \gamma = \delta = 3$
50. (B) $b = \sum \alpha \beta = 68 = 54$
51. (B) $c = \sum \alpha \beta \beta = 48 - 27 = -108$

52. (C)
$$2bx + c = 0$$

 $108x - 108 = 0$

 $\Rightarrow x=1$

Passage – 19

Let consider the quadratic equation $(1+m)x^2 - 2(1+3m)x + (1+8m) = 0$, where $m \in R \square \{-1\}$

On the basis of above information answer the following:

- 53. The number of integral values of *m* such that given quadratic equation has imaginary roots areA) 0B) 1C) 2D) 3
- Key. C
- 54. The set of values of m such that the given quadratic equation has at least one root is negative is

A)
$$m \in (-\infty, -1)$$
 B) $m \in \left(-\frac{1}{8}, \infty\right)$ C) $m \in \left(-1, -\frac{1}{8}\right)$ D) $m \in \mathbb{R}$

Key. C

55. The set of values of m such that the given quadratic equation has both roots are positive is

A)
$$m \in R$$

 $(-\infty, -1) \cup [3, \infty)$
B) $m \in (-1, 3)$
C) $m \in [3, \infty)$
D)

Key. D

- Sol. Q.Nos (53 55)
 - If α , β are the roots and D be the discriminant of the given quadratic equation, then $\alpha + \beta = \frac{2(1+3m)}{(1+m)}, \alpha\beta = \frac{(1+8m)}{(1+m)} - (1)$ and $D = 4(1+3m)^2 - 4(1+m)(1+8m) = 4(m^2 - 3m) = 4m(m-3)$ If roots are real, then $D \ge 0$ $\therefore m \in (-\infty, 0] \cup [3, \infty) - (2)$ If roots are real, then $D \ge 0$
- 53. D < 0 $\Rightarrow 4m(m-3) < 0 \Rightarrow 0 < m < 3$ $\therefore m = 1, 2$
- 54. At least one root is negative ie, one root is negative or both roots are negative, then $\{(\alpha\beta < 0) \cup (\alpha + \beta < 0)\} \cap (D \ge 0)$

$$\Rightarrow \left\{ \left(\frac{(1+8m)}{(1+m)} < 0 \right) \cup \left(\frac{2(1+3m)}{(1+m)} < 0 \right) \right\} \cap m \in (-\infty, 0] \cup [3, \infty)$$
$$\Rightarrow \left\{ m \in \left(-1, -\frac{1}{8} \right) \right\} \cap \left\{ m \in (-\infty, 0] \cup [3, \infty) \right\}$$
ie. $m \in \left(-1, -\frac{1}{8} \right)$

 $\alpha + \beta > 0$ and $\alpha \beta > 0$ 55. $\Rightarrow (\alpha + \beta > 0) \cap (\alpha \beta > 0) \cap (D \le 0)$ $\Rightarrow \left(\frac{2(1+3m)}{1+m} > 0\right) \cap \left(\frac{1+8m}{1+m} > 0\right) \cap \left\{4m(m-3) \ge 0\right\}$ $\therefore m \in \left\{ (-\infty, -1) \cup \left(-\frac{1}{3}, \infty \right) \right\} \cap \left\{ (-\infty, -1) \cup \left(-\frac{1}{8}, \infty \right) \right\} \cap \left\{ m \in (-\infty, 0] \cup [3, \infty) \right\}$ $\Rightarrow m \in (-\infty, -1) \cup [3, \infty)$ Passage - 20 Consider the quadratic equation $ax^2 - bx + c = 0$, $a, b, c \in N$. If the given equation has two real & distinct roots α and β belonging to the interval (1,2) then 56. The value of $(\alpha - 1)(\beta - 1)(2 - \alpha)(2 - \beta) \in$ $B)\left(0,\frac{1}{16}\right) \qquad \qquad C)\left[0,\frac{1}{16}\right]$ D) $(-\infty, 0)$ A) *R* Key. C The minimum value of (a-b+c)(4a-2b+c) is 57. A) 1 B) 2 C) 4 D) 5 Key. A The minimum value of 'a' is 58. A) 2 C) 4 D) 5 B) 3 Key. D Sol. Given $0 < \alpha < 2$; $0 < \beta < 2$ $\Rightarrow 0 < \alpha - 1 < 1 \& 0 < (\beta - 1) < 1$ similarly $-2 < -\alpha < -1 \& 0 < 2 - \alpha < 1$ $0 < 2 - \beta < 1$ Apply $AM \ge GM$ for $\alpha - 1 \& 2 \frac{\alpha - 1 + 2 - \alpha}{2} \ge \sqrt{(ga - 1)(2 - \alpha)}$ $\Rightarrow (\alpha - 1)(2 - \alpha) \le \frac{1}{4} \text{ similarly } (\beta - 1)(2 - \beta) \le \frac{1}{4}$ $\therefore 0 \le (\alpha - 1)(\beta - 1)(2 - \alpha)(2 - \beta) \le \frac{1}{16}$ $\Rightarrow (\alpha - 1)(\beta - 1)(2 - \alpha)(2 - \beta) \in \left[0, \frac{1}{16}\right]$

Paragraph for Questions Nos. 18 to 20

For $x \in R$, f(x) is defined as

- $f(x) = \begin{cases} x+2, & 0 \le x < 2 \\ x-4, & x \ge 2 \end{cases}$ For $x \in R$, $|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$
- 18. For $0 \le x \le 1$, the solution set of |x| f(x) > 2 is (A) ϕ (B) (0, 1)

 $\frac{1}{2},2$ (C) (D) none of these Key. А The number of real solutions of |x| + |x-1| = 5 is 19. (A) 2 (B) 3 (C) 1 (D) none of these Key. А 20. For $x \ge 3$, the solution set of $(f(x) + |x - 2|) f(x) \le 0$ lies in (A) (4, ∞) (B) (*−*∞, 3) (C) [3, 4] (D) none of these Key. С **18.** For $0 \le x \le 1$ Sol. |x|f(x) > 2 $\Rightarrow x(x+2) > 2$ $\Rightarrow x^2 + x - 2 > 0$ $\Rightarrow (x+2)(x-1) > 0$ $x \in (-\infty, -2) \cup (1, \infty)$: there is no solution 19. |x| + |x-1| = 5Case I: x < 0, -x+1-x=5 $\Rightarrow -2x = 4$ x = -2Case II : $0 \le x < 1$, x+1-x=5 (not possible) Case III : $x \ge 1$, x + x - 1 = 5 $\Rightarrow 2x = 6$ $\Rightarrow x = 3$... there are two real solutions 20. $(f(x) + |x - 2|) f(x) \le 0$ -4 + x - 2 (x - 4) ≤ 0 $2(x-3)(x-4) \le 0$ \Rightarrow 3 \leq x \leq 4.

Circles

Paragraph for Questions Nos. 21 to 23

In a $\triangle ABC$, with vertex A (a, -5), x-coordinates of two points B and C are the roots of $x^2 - bx + 3 = 0$ and their y-coordinates are the roots of the equation $x^2 - x - 6 = 0$. x-coordinate of B is less than the y-coordinate of C and y-coordinate of B is greater than y-coordinate of C, where a is the least positive integer of the inequality $x^2 - 2x - 3 \ge 0$ and b is the

greatest negative integer of the inequality $|x - 2| \ge 6$. The slope of any line joining two points A(x₁, y₁) and B(x₂, y₂) is = $\frac{y_2 - y_1}{x_2 - x_1}$. 21. The value of ab (a + b) is (A) 12 (B) - 12 (C) 6 (D) none of these Key. А 22. The slope of BC is (A) $-\frac{5}{2}$ (B) $\frac{2}{5}$ (C) $-\frac{3}{4}$ (D) $\frac{4}{3}$ Key. А 23. The slope of CA is (A) $\frac{3}{4}$ (B) (C) $\frac{1}{2}$ (D) none of these Key. В Sol. 21. $x^2 - 2x - 3 \ge 0$ $\Rightarrow (x-3)(x+1) \ge 0$ $\Rightarrow x \leq -1, x \geq 3$ $x \in (-\infty, -1] \cup [3, \infty)$ $\therefore a = 3$ $|x-2| \ge 6 \Longrightarrow x-2 \ge 6$ and x $x \ge 8$ and $x \le -4$ $x \in (-\infty, -4] \cup [8, \infty)$ $\therefore b = -4$ $x^2 - bx + 3 = 0$ $\Rightarrow x^2 + 4x + 3 = 0$ $\Rightarrow x = -3, -1$ $x^2 - x - 6 = 0$ $x \equiv$ A(3,-5), B(-3,3), C(-1,-2).ab(a+b) = -12(-4+3) = 1222. Slope of BC = $\frac{-2-3}{-1+3} = \frac{-5}{2}$ 23. Slope of CA = $\frac{-2+5}{-1-3} = \frac{-3}{4}$ Paragraph for Questions Nos. 17 to 19 If $f(x)=|x-1|+|x-3|+|5-x| \ \forall \ x \in R$ 17) The set of all values of x for which f increases is c) (5,∞) d) (1,3) a) (1,∞) b) (3,∞)

Key. B

Circles

P-2

The roots of the quadratic equation $ax^2 + bx + c = 0$ are real, equal and imaginary (A) according as $\Delta\!=\!b^2\!-\!4ac$ is $>\!0,\!=\!0,\!<\!0$

If Δ is positive and perfect square of a rational number then roots are rational.

- If Δ is positive but not perfect square of a rational number then roots are irrational.
- If a < b, then (x-a)(x-b) is positive if x < a or x > b i.e., x does not lie between a and b. (B) It is –ive if a < x < b, i.e., lies between a and b.

Answer the following questions based upon above passage

If the equation $ax^2 + bx + c = 0$ (a > 0) has two roots α and β such that $\alpha < -2$ and 36. $\beta > 2$ then

(A) $b^2 - 4ac < 0$	(B) $4a - 2b - c < 0$
(C) $a + b + c < 0$	(D) c > 0
С	

The range of values of m for which the equation $(m-5)x^2+2(m-10)x+m+10=0$ has 37. real roots of the same sign, is given by (_ \

(A) m > 10	(B) –5 < m < 5
(C) m < −10, 5 < m ≤ 6	(D) –10 < m < 10
С	

Key.

Key.

If α and β ($\alpha < \beta$), are the roots of the equation $x^2 + bx + c = 0$ where c < 0 < b, then 38. (A) $0 < \alpha < \beta$ (B) $\alpha < 0 < \beta < |\alpha|$ (D) $\alpha < 0 < |\alpha| < \beta$ (C) $\alpha < \beta < 0$

Key.

В

Sol. 36. Ans. (c) $f(x) = a(x-\alpha)(x-\beta)$ where f(x) = 0 at both α and β which are real $\therefore b^2 - 4ac > 0$ for any number lying between α and β say $\pm 2, \pm 1$ and 0 we know that f(x) will be -ive (a > 0) \therefore f(±2), f(±1) and f(0) all are – ive $\therefore 4a \pm 2b + c < 0$ or 4a + 2|b| + c < 0 $a\pm b+c<0$ $\therefore a + |b| + c < 0$ $f(0) < 0 \Longrightarrow c < 0$ 37. Ans (c) $\Delta \ge 0 \Longrightarrow -25m + 150 \ge 0 \therefore m \le 6$ $P = \frac{m+10}{m-5} = +ive$, as roots are of same sign. or $\frac{(m+10)(m-5)}{(m-5)^2} > 0 \therefore m < -10 \text{ or } m > 5$ \therefore m < -10 and 5 < m ≤ 6 38. Ans (b) Given $\alpha < \beta, c$ is – ive and b = + ive $\alpha + \beta = -b = -ive, \alpha\beta = c = -ive$ $\alpha\beta = -ive \Longrightarrow$ one is +ive and other -ive. Since $\alpha < \beta$, we must have α is –ive and β +ive. Again $\alpha + \beta < 0 \Longrightarrow \beta < -\alpha \Longrightarrow \beta < |\alpha|$.

Quadratic Equations & Theory of Equations *Integer Answer Type*

1. If λ is the minimum value of the expression |x-p|+|x-15|+|x-p-15| for x in the range $p \le x \le 15$ where $0 . Then <math>\frac{\lambda}{z} =$ Key. 3 |x-p| = x-p (Since $x \ge p$) Sol. |x-15|=15-x (Since $x \le 15$) |x-(p+15)| = (p+15) - x (as 15 + p > x)MC P :.expression reduces to E = x - p + 15 - x + p + 15 - xE = 30 - x $\therefore E_{\min}$ occurs when x = 15 $\lambda = 15$ Let $P(x) = x^2 + bx + c$, where b and c are integer. If P(x) is a factor of both $x^4 + 6x^2 + 25$ 2. and $3x^4 + 4x^2 + 28x + 5$, find the value of P(1). Key. 4 Since P(x) divides into both of them Sol. Hence P(x) also divides $(3x^4 + 4x^2 + 28x + 5) - 3(x^4 + 6x^2 + 25)$ $= -14x^2 + 28x - 70 = -14(x^2 - 2x + 5)$ Which is a quadratic, Hence $P(x) = x^2 - 2x + 5$ P(1) = 4Largest integral value of m for which the quadratic expression $y = x^2 + (2m+6)x + 4m + 12$ is always positive, $\forall x \in R$, is Key. 0 Sol. $D < 0 \Longrightarrow -3 < m < 1 \Longrightarrow m = 0$ The number of solution of the equation $e^{2x} + e^x + e^{-2x} + e^{-x} = 3(e^{-2x} + e^x)$ is 4. Key. 1

Sol. x = l n 2

Quadratic Equations & Theory of Equations

Let a,b,c be the three roots of the equation $x^3 + x^2 - 333x - 1002 = 0$. If $P = a^3 + b^3 + c^3$ 5. then the value of $\frac{P}{2006}$ =____ Key. 1 Sol. Let α be the root of the given cubic where α can take values a, b, c Hence $\alpha^3 + \alpha^2 - 333\alpha - 1002 = 0$ or $\alpha^3 = 1002 + 333\alpha - \alpha^2$ $\therefore \Sigma \alpha^3 = \Sigma 1002 + 333\Sigma \alpha - \Sigma \alpha^2 = 3006 + 333\Sigma \alpha - \left[(\Sigma \alpha)^2 - 2\Sigma \alpha_1 \alpha_2 \right]$ But $\Sigma \alpha = -1; \Sigma \alpha_1 \alpha_2 = -333$ $\therefore a^3 + b^3 + c^3 = 3006 - 333 - [1 + 666] = 3006 - 333 - 667 = 3006 - 100 = 2006 = P$ The number of the distinct real roots of the equation $(x+1)^5 = 2(x+1)^5 =$ 6. Key. $(x+1)^5 = 2(x^5+1)$ Sol. Let $f(x) = \frac{(x+1)^5}{(x^5+1)}$ $\Rightarrow f'(x) = \frac{5(x+1)^4 (1-1)^2}{(x^5+1)^2}$ \Rightarrow x=1 is maximum f(0) = 1 and f(1) = 16As. And $\lim_{x \to \infty} f(x) = 1 \Rightarrow f(x) = 2$ has two solutions but given equation has three solutions. because x = -1 included. The equation $2(\log_3 x)^2 - |\log_3 x| + a = 0$ has exactly four real solutions if $a \in (0, \frac{1}{\kappa})$, 7. then the value of K is ____ Key on putting $\log_3 x = t$, we get Sol $2t^2 - |t| + a = 0$...(i) If t > 0, then $2t^2 - t + a = 0$...(ii) $2t^2 + t + a = 0$ If t < 0, then ...(iii) If Eq. (i) has four roots then Eq. (ii) must have both roots positive and Eq. (iii) has both roots negative. Now, Eq. (ii) has both roots positive, if $D\!>\!0$ a/2 > 0 \Rightarrow 1 - 8a > 0.a > 0

$$\Rightarrow \qquad a \in \left(0, \frac{1}{8}\right) \text{ on taking intersection.}$$
Again, Eq. (iii) has both roots negative, if $D > 0, a/2 > 0$.
We again get $a \in \left(0, \frac{1}{8}\right) \Rightarrow K = 8$
8. Let α, β be the roots of $x^2 - x + p = 0$ and λ, δ be the roots of $x^2 - 4x + q = 0$ such that $\alpha, \beta, \gamma, \delta$ are in G.P and $p \ge 2$. If $a, b, c \in \{1, 2, 3, 4, 5\}$, let the number of equation of the form $ax^2 + bx + c = 0$ which have real roots be r , then the minimum value of $\frac{pqr}{1536}$
Key. 1
Sol. $(\alpha + \beta) = 1, \alpha\beta = p, \gamma + \delta = 4, \gamma\delta = q$
Since $\alpha, \beta, \gamma, \delta$ are in G.P
 $\therefore \frac{\beta}{\alpha} = \frac{\delta}{\gamma} \Rightarrow \frac{\beta + \alpha}{\beta - \alpha} = \frac{\delta + \gamma}{\delta - \gamma} \Rightarrow \frac{(\beta + \alpha)^2}{(\beta + \alpha)^2 - 4\alpha\beta} = \frac{(\delta + \gamma)^2}{(\delta + \gamma)^2 - 4\delta\gamma}$
 $\Rightarrow \frac{1}{1 - 4p} = \frac{16}{16 - 4q} = \frac{4}{4 - q}$
 $\Rightarrow 4 - q = 4 - 16p$
Now, $p \ge 2 \therefore q \ge 32$
For the given equation $ax^2 + bx + c = 0$ to have real roots $b^2 - 4ac \ge 0$
 $\therefore ac \le \frac{b^2}{4}$

b	b^2	Possible values of ac b^2	No. of possible pairs (a, c)		Value of ac	Possible pairs (a,c)
4	4	such that $ac \leq \frac{1}{4}$	pairs (<i>a</i> , <i>c</i>)		1	(1,1)
2	1	1	1		2	(1,2), (2,1)
3	2.25	1,2	3		3	(1,3). (3,1)
4	4	1,2,3,4	8		4	(1,4),(4,1),(2,3)
5	6.25	1,2,3,4,5,6	12		5	(1,5),(5,1)
	5	Total	24		6	(2,3),(3,2)

Hence number of quadratic equation with real roots, r = 24

Now from (i) and (ii) the minimum value of pqr = 2.32.24 = 1536

9. Let α, β and γ be the roots of equation f(x) = 0, where $f(x) = x^3 + x^2 - 5x - 1$. Then the value of $|[\alpha] + [\beta] + [\gamma]|$, where [.] denotes the greatest integer function, is equal to

Key. 3

Sol. Given $f(x) = x^3 + x^2 - 5x - 1$

10.

Sol.

$$\therefore f'(x) = 3x^2 + 2x - 5. \text{ The roots of } f'(x) = 0 \text{ are } -\frac{5}{3} \text{ and } 1$$
Writing the sign scheme for $f'(x)$,

$$\xrightarrow{\text{max}} \qquad \min_{\substack{+\text{Ve} = -5/3 \\ -5/3 \\ -\infty < 0, f(\infty) = -\infty < 0, f(\infty) = \infty > 0$$

$$f(1) = -4, f\left(-\frac{5}{3}\right) = \frac{148}{27}$$
Now, graph of $y = f(x)$ is as follows

$$\overbrace{-2}^{0} + 2\frac{-5}{3} = \frac{148}{27}$$
Now, graph of $y = f(x)$ is as follows

$$f(-3) = -27 + 9 + 15 - 1 = -4 < 0$$

$$f(-2) = -8 + 4 + 10 - 1>0$$

$$f(-1) = 4 > 0, f(0) = -1 < 0$$

$$f(2) = 1>0$$

$$\therefore -3 < \alpha < -2, -1 < \beta < 0, 1 < \gamma < 2$$

$$||\alpha| + ||\beta| + ||\gamma|| = 3 = 1 + 1| = 3$$

10. The set of real parameter 'a' for which the equation $x^4 - 2\alpha x^2 + x + a^2 - a = 0$ has all real solutions, is given by $\left[\frac{m}{n}, \infty\right]$ where m and n are relatively prime positive integers, then the value of $(m+n)$ is
Key.
Sol: We have $a^2 - (2x^2 + 1)a + x^4 + x = 0$

$$\therefore a = \frac{(2x^2 + 1) \pm \sqrt{(2x^2 + 1)^2 - 4(x^4 + x)}}{2}$$

$$2a = (2x^2 + 1) \pm (2x - 1)$$
On solving +ve & ve sign we got
 $a \ge \frac{3}{4}$

$$\therefore m + n = 7$$

Number of positive integer n for which $n^2 + 96$ is a perfect square is 11. 4 Key. Suppose m is positive integer such that $n^2 + 96 = m^2$ then Sol. (m-n)(m+n) = 96As m-n < m+n and m-n, m+n both must be even So, the only possibilities are m-n=2, m+n=48: m-n=4, m+n=24m-n=6, m+n=16; m-n=8, m+n=12So, the solutions of (m, n) are (25, 23), (14, 10), (11, 5), (10, 2)If α, β be the roots of $x^2 + px - q = 0$ and γ, δ are the roots of $x^2 + px + q = 0$ 12. $q+r \neq 0$, then $\frac{(\alpha-\gamma)(\alpha-\delta)}{(\beta-\gamma)(\beta-\delta)}$ is equal to Key. Here, $\alpha + \beta = -p = \gamma + \delta$ Sol. $(\alpha - \gamma)(\alpha - \delta) = \alpha^2 - \alpha(\gamma + \delta) + \gamma \delta = \alpha^2 - \alpha(\alpha + \delta)$ $= -\alpha\beta + r = q + r$ Similarly $(\beta - \gamma)(\beta - \delta) = q + r$ So, ratio is 1 Number of real roots of $2x^{99} + 3x^{98} + 2x^{97} + 3x^{96} + \dots + 2x + 3 = 0$ is 13. Key. 1 Given equation can be written as $(2x+3)(x^{98}+x^{96}+....+1) = (2x+3)\frac{(x^{100}-1)}{x^2-1}$ Sol. So, the real roots are $x = \pm 1, \frac{-3}{2}$, out of which ± 1 are not roots of given equation. If λ is the minimum value of the expression |x-p|+|x-15|+|x-p-15| for x in the 14. range $p \le x \le 15$ where $0 . Then <math>\frac{\lambda}{5} =$ Key. $-p \models x - p \quad (Since x \ge p)$ Sol. |x-15|=15-x (Since $x \le 15$) |x-(p+15)| = (p+15) - x (as 15 + p > x):.expression reduces to E = x - p + 15 - x + p + 15 - xE = 30 - x

 $\therefore E_{\min} occurs when x = 15$ $\therefore \lambda = 15$

15. Let $P(x) = x^2 + bx + c$, where b and c are integer. If P(x) is a factor of both $x^4 + 6x^2 + 25$ and $3x^4 + 4x^2 + 28x + 5$, find the value of P(1).

Key.

4

Sol. Since P(x) divides into both of them

Hence P(x) also divides

 $(3x^4 + 4x^2 + 28x + 5) - 3(x^4 + 6x^2 + 25)$

 $=-14x^{2}+28x-70=-14(x^{2}-2x+5)$

Which is a quadratic, Hence $P(x) = x^2 - 2x + 5$

 $\therefore P(1) = 4$

16. Largest integral value of m for which the quadratic expression

$$y = x^2 + (2m+6)x + 4m + 12$$
 is always positive, $\forall x \in R$, is

Key. 0

Sol.
$$D < 0 \Rightarrow -3 < m < 1 \Rightarrow m = 0$$

17. For a twice differentiable function f(x), g(x) is defined as

 $g(x) = f'(x)^2 + f''(x)f(x)$ on [a,e]. If for a < b < c < d < e, f(a) = 0, f(b) = 2, f(c) = -1, f(d) = 2, f(e) = 0 then find the minimum number of zeros of g(x).

Key. 6

Sol.

$$g x \Box f' x^{2} \Box f'' x f x \Box \frac{d}{dx} f x f' x$$

Let
$$h \ x \ \Box \ f \ x \ f' \ x$$

Then, $f \ x \ \Box \ 0$ has four roots namely a, \Box, \Box, e
where $b \ \Box \ \Box \ c \ and \ c \ \Box \ \Box \ d$.
And $f' \ x \ \Box \ 0$ at three points k_1, k_2, k_3 where

 $a \square k_1 \square \square, \square \square k_2 \square \square, \square \square k_3 \square e$ [:: Between any two roots of a polynomial function $f \ x \ \Box \ 0$ there lies atleast one root of $f' x \square 0$] There are atleast 7 roots of $\begin{array}{c} f & x \ .f' & \Box \end{array} 0$ There are at least 6 roots of $\frac{d}{dx} f x f' x \Box 0$ i.e. of $g x \Box 0$ 18. f(x) is a polynomial of 6th degree and $f(x) = f(2-x) \forall x \in R$. If f(x) = 0 has 4 distinct real roots and two real and equal roots then sum of roots of f(x) = 0Key. 6 $f(\alpha) = f(2-\alpha) = 0$ sum of roots = 4 Sol. When $\alpha \neq 2 - \alpha$ Where $\alpha = 2 - \alpha_{i.e.}$, $\alpha = 1_{sum of roots} = 2$ \therefore Total sum = 6 $(1+x)(1+x+x^2)(1+x+x^2+x^3)\dots(1+x+x^2+\dots+x^{100})$ 19. When written in the ascending power of x then (the highest exponent of x) -5045 is 5 Key. Highest exponent of $x = 1 + 2 + 3 + \dots + 100 = \frac{100(101)}{2} : 5050$ Sol. If the roots of the equation $x^3 - ax^2 + 14x - 8 = 0$ are all real and positive, then the minimum 20. value of [a] (where [a] is the greatest integer of a) is Key. $-ax^{2}+14x-8=0$ f(x)Sol. $\geq (\alpha.\beta\gamma)^{1/3}$ \geq (8)^{1/3} a≥6 21. The remainder when $2 + [1! + 2(2!) + 3(3!) + \ldots + 10(10!)]$ is divided by 11! is Key. 1

Sol. n(n!) = (n+1)!-n!and proceed

Mathematics

22. The quadratic expression $ax^2 + |2a - 3|x - 6$ is positive for exactly two integral values of x then 2 + [a] (where [.] denotes the greatest integer function) is

Mathe	ematics		Quadrati	ic Equation	is & Theory of Equations
Key.	1				
Sol.	Conceptual				
	L.				
23	If the roots of the equation $x^3 +$	$\mathbf{p}\mathbf{v}^2 \pm \mathbf{q}\mathbf{v} \pm \mathbf{v}$	r = 0 are in	G D such th	at geometric mean among
23.	if the foots of the equation x		1 = 0, are m		
	the three roots satisfy the equ	ation px +	$K_1 q = 0$ and	other two r	oots satisfy the equation
	$pqx^2 - k_2(q-p^2)qx + p^2r = 0$ th	en the valu	the of $\mathbf{k}_1 + \mathbf{k}_2$	is	
Key.	5				
Sol.	We have $x_1 + x_2 + x_3 = -p$			(1)	
2011				(-)	
	$x_1x_2 + x_1x_3 + x_2x_3 = q$			(2)	
	12 15 25 1				<\).
	$x_1 x_2 x_3 = -r$			(3)	
	$x_1^2 = x_2 x_3$		•••	(4)	
	(<u>)</u>				
	from (2)				
	$\mathbf{x} \mathbf{x} + \mathbf{x} \mathbf{x} + \mathbf{x}^2 = \mathbf{a}$			C	
	$\mathbf{A}_1\mathbf{A}_2 + \mathbf{A}_1\mathbf{A}_3 + \mathbf{A}_1 + \mathbf{q}$			\sim	
	$x_1(x_1 + x_2 + x_3) = q$				
	1 1 2 3/ 1				
	v _ q		0		
	$x_1 - \frac{p}{p}$				
	-				
	$\Rightarrow px_1 + q = 0 \Rightarrow K_1 = 1$	(5			
	france (1)	()			
	from (1)	\sim	-		
	$q-p^2$				
	$x_2 + x_3 = \frac{1}{n}$	(6)		
	Р				
	rp	, 	、 、		
	$\mathbf{x}_2 \mathbf{x}_3 = \frac{1}{\mathbf{q}}$	(7)		
	4				
		2	2	2 0	
	Hence, x_2, x_3 satisfy the equation	on pqx ² – ($(q-p^2)qx+p$	r = 0	
		(8)		
	- 11 <u>2</u> - 1	(0	/		
6	From (5) and (8)				
	$K_1 + K_2 = 2$				
24			2) - 2 + 12		$0 \forall a = \mathbf{R}$
24.	The least integral value of 'a' suc	ch that (a	$-5)x^{2}+12x^{2}$	x + (a + 6) >	$\nabla \nabla \nabla x \in K$ is
Key:	7				

.

Hint:

$$ax^{2}+bx+c > 0 \forall x \in R \Longrightarrow a > 0, D < 0$$
$$\Rightarrow (i)a-3 > 0(ii)(a+9)(a-6), a > 6$$

Least integral value of a = 7

25. Let
$$p(x) = x^5 + x^2 + 1$$
 have roots x_1, x_2, x_3, x_4 and $x_5, g(x) = x^2 - 2$, then the value of $g(x_1)g(x_2)g(x_3)g(x_4)g(x_5) - 30g(x_1x_2x_3x_4x_5)$, is
Key: 7
Hint: Given $g(x_1)g(x_2)g(x_3)g(x_4) = A$
 $=(x_1^2 - 2)(x_3^2 - 2)(x_4^2 - 2)(x_5^2 - 2)$
 $= -(2 - x_1^2)(2 - x_2^2)(2 - x_3^2)(2 - x_4^2)(2 - x_5^2)$
 $= 2^5 - (\sum x_1^2)2^4 + \sum x_1^2 - x_2^2 2^3 - \sum x_1^2 x_2^2 x_3^2 x_4^2 x_3^2]$
 $p(x) = x^5 + x^2 + 1 = 0$ has roots x_1, x_2, \dots, x_5 , then that equation $q(x)$ whose roots are
square of the roots of $p(x)$ is $q(x) = (\sqrt{y})^5 + (\sqrt{y})^2 + 1 = 0$; $\alpha = x$ and $y = \alpha^2$
 $\Rightarrow (y+1)^2 = (-\sqrt{y})^{5x2}$
 $\Rightarrow y^2 + 2y + 1 = y^5 \Rightarrow q(x) = y^5 - y^2 - 2y - 1 = 0$
Then $\sum x_1^2 x_2^2 x_3^2 x_4^2 x_5^2 = \sum y_1 y_2 y_3 y_4 = -2$
 $\sum x_1^2 x_2^2 x_3^2 x_4^2 x_5^2 = \sum y_1 y_2 y_3 y_4 y_5 = 1$, then
 $A = [2^5 - 0 + 0 - 2^2 - 2 - 1] = -[32 - 4 - 4 - 1] = -[32 - 9]$
 $= -23$
 $x_1 x_2 x_3 x_4 x_5 = -1 \Rightarrow g(x_1 x_2 ... x_3) = -1$
 $\Rightarrow g(x_1)g(x_2).....g(x_3) - 30g(x_1 x_2 ... x_3) = 7$

Alternative

Let us form that equation having roots $y = g(x_i)i.e., y = x^2 - 2$

$$x = \sqrt{y+2}$$

Mathematics

$$= \frac{\sqrt{y+2}}{(\sqrt{y+2})^5 + (\sqrt{y+2})^2 + 1 = 0}$$

$$\Rightarrow y^5 + 20y^4 + 40y^3 + 79y^2 + 74y + 23 = 0$$

$$\therefore g(x_1)....g(x_2) = \text{Product of roots}$$

$$= -23$$

$$x_1x_2x_3x_4x_5 = -1 \Rightarrow g(x_1x_2....x_5) = -1$$

$$\Rightarrow g(x_1)g(x_2).....g(x_5) - 30g(x_1x_2....x_5) = 7$$
26. (L-2)If x, y, z > 0 and x(1-y) > $\frac{1}{4}$, y(1-z) > $\frac{1}{4}$, z(1-x) > $\frac{1}{4}$, then the number of ordered triplets (x, y, z) satisfying the above inequalities is/are
Key: 0
Hint: Multiplying we get

$$xyz(1-x)(1-y)(1-z) > \frac{1}{64}(1)$$
Now t(1-t) = t - t² = $\frac{1}{4} - (\frac{1}{2} - t)^2 \le \frac{1}{4}$
So x(1-x)y(1-y)z(1-z) ≤ $\frac{1}{64}(2)$
(1) and (2) are contradictory
27. (L-3)Find the least integral value of a such that $\sqrt{9-a^2 + 2ax - x^2} > \sqrt{16-x^2}$ for at least one positive x.
Key: 6
Sol: $y = \sqrt{9-a^2 + 2ax - x^2}$

=9 $\sqrt{9-a^2+2ax-x^2}$ $\sqrt{16-x^2}$ (a +3) (a - 3) a 4 • •

For given inequality to hold for positive x.

a - 3 < 4 $\Rightarrow a < 7 \Rightarrow a = 6$

28. (L-3)Let $f(x) = 30 - 2x - x^3$, then find the number of positive integral values of x which satisfies f(f(f(x))) > f(f(-x)).

Key: 2

Sol:
$$f'(x) = -2 - 3x^2 < 0 \Rightarrow f(x)$$
 is decreasing
 $\therefore f(f(x)) < f(x) \Rightarrow f(x) > -x$
 $\Rightarrow 30 - x - x^3 > 0$
 $\Rightarrow x^3 + x - 30 < 0$
 $\Rightarrow (x+3)(x^2 + 3x + 16) < 0$
 $\Rightarrow x < 3$
 \therefore No. of values = 2
29. (L-3)Let $p(x) = x^5 + x^2 + 1$ have roots x_1, x_2, x_3, x_4 and $x_5, g(x) = x^2 - 2$, then find the

value of $g(x_1)g(x_2)g(x_3)g(x_4)g(x_5)-30g(x_1x_2x_3x_4x_5)$

Key: 7

Sol: Given
$$g(x_1)g(x_2)g(x_3)g(x_4)g(x_5) = A$$

$$= (x_1^2 - 2)(x_2^2 - 2)(x_3^2 - 2)(x_4^2 - 2)(x_5^2 - 2)$$

$$= -(2 - x_1^2)(2 - x_2^2)(2 - x_3^2)(2 - x_4^2)(2 - x_5^2) \qquad \dots (i)$$

$$= -\left[2^5 - (\sum x_1^2)2^4 + \sum x_1^2 \cdot x_2^2 \cdot 2^3 - \sum x_1^2 \cdot x_2^2 \cdot x_3^2 \cdot 2^2 + \sum x_1^2 \cdot x_2^2 \cdot x_3^2 \cdot x_4^2 \cdot 2 - x_1^2 \cdot x_2^2 \cdot x_3^2 \cdot x_4^2 \cdot x_5^2\right]$$

$$p(x) = x^5 + x^2 + 1 = 0 \text{ has roots } x_1, x_2, \dots, x_5, \text{ then that equation } q(x) \text{ whose roots are square of the roots of } p(x) \text{ is } q(x) = (\sqrt{y})^5 + (\sqrt{y})^2 + 1 = 0; \alpha = x \text{ and } y = \alpha^2$$

$$\Rightarrow (y+1)^2 = (-\sqrt{y})^{5 \times 2}$$

$$\Rightarrow y^2 + 2y + 1 = y^5 \Rightarrow q(x) = y^5 - y^2 - 2y - 1 = 0,$$

then $\sum x_1^2 = \sum y_1 = 0$

$$\sum x_{1}^{2} \cdot x_{2}^{2} = \sum y_{1} \cdot y_{2} = 0$$

$$\sum x_{1}^{2} \cdot x_{2}^{2} \cdot x_{3}^{2} = \sum y_{1} \cdot y_{2} \cdot y_{3} = 1$$

$$\sum x_{1}^{2} \cdot x_{2}^{2} \cdot x_{3}^{2} \cdot x_{4}^{2} = \sum y_{1} \cdot y_{2} \cdot y_{3} \cdot y_{4} = -2$$

$$\sum x_{1}^{2} \cdot x_{2}^{2} \cdot x_{3}^{2} \cdot x_{4}^{2} \cdot x_{5}^{2} = \sum y_{1} \cdot y_{2} \cdot y_{3} \cdot y_{4} \cdot y_{5} = 1, \text{ then }$$

$$A = -\left[2^{5} - 0 + 0 - 2^{2} - 2 \cdot 2 - 1\right] = -\left[32 - 4 - 4 - 1\right] = -\left[32 - 9\right] = -23$$

$$x_{1}x_{2}x_{3}x_{4}x_{5} = -1 \Rightarrow g(x_{1}x_{2} \dots x_{5}) = -1$$

$$\Rightarrow g(x_{1})g(x_{2}) \dots g(x_{5}) - 30g(x_{1}x_{2} \dots x_{5}) = 7$$
Alternative :
Let us form that equation having roots $y = g(x_{1})$ i.e., $y = x^{2} - 2$

$$x = \sqrt{y + 2}$$

$$\Rightarrow \left(\sqrt{y + 2}\right)^{5} + \left(\sqrt{y + 2}\right)^{2} + 1 = 0$$

$$\Rightarrow y^{5} + 20y^{4} + 40y^{3} + 79y^{2} + 74y + 23 = 0$$

$$\therefore g(x_{1}) \dots g(x_{5}) = \text{Product of roots} = -23$$

$$x_{1}x_{2}x_{3}x_{4}x_{5} = -1 \Rightarrow g(x_{1}x_{2} \dots x_{5}) = -1$$

$$\Rightarrow g(x_{1})g(x_{2}) \dots g(x_{5}) - 30g(x_{1}x_{2} \dots x_{5}) = 7$$

30. (L-3)A polynomial equation is said to be a reciprocal equation if the reciprocal of each of its roots is also a root of it.

Therefore a necessary condition for f(x) = 0 to be a reciprocal equation is that 0 is not a root of it i.e. $f(0) \neq 0$.

Let f(x) = 0 be a reciprocal equation of degree n having roots $\alpha_1, \alpha_2, \dots, \alpha_n$, none of these zero.

Let $\psi(x) = 0$ be the equation whose roots are $\frac{1}{\alpha_1}, \frac{1}{\alpha_2}, \dots, \frac{1}{\alpha_n}$. Then the equations f(x) = 0

and ψ (x) = 0 are identical.

Let $a_0x^n + a_1x^{n-1} + \dots + a_n = 0$, $a_n \neq 0$ be a reciprocal equation. Then it is identical with the equation.

MathematicsQuadratic Equations & Theory of Equation
$$a_n x^n + a_{n-1} x^{n-1} + ... + a_0 = 0$$
Let $a_0 \neq 0$ $(a_0, a_1, ..., a_n) = K(a_n, a_{n-1}, ..., a_0)$ for some $K \neq 0$ $:a_0 = K a_n, a_1 = K a_{n-1}, ..., a_n = K a_0$ This implies $K = \pm 1$ If $K = 1$ then $a_0 = a_n, a_1 = a_{n-1}, ..., a_n = a_0$ This equation is said to be a reciprocal equation of the First type.If $K = -1$ then $a_0 = -a_n, a_1 = -a_{n-1}, ..., a_n = -a_0$ This equation is said to be a reciprocal equation of the second typeA reciprocal equation is said to be of the standard form if ir is of the first type and of even
degree. Then31.If the roots of the equation $x^3 - ax^2 + 14x - 8 = 0$ are alread and positive, then the minimum
value of $[a]$ (where $[a]$ is the greatest integer of at isKey.6Sol. $f(x) = x^3 - ax^2 + 14x - 8 = 0$
 $\frac{\alpha + \beta + \gamma}{3} \ge (\alpha, \beta \gamma)^{1/3}$
 $\frac{a}{3} \ge (8)^{1/3}$
 $a \ge 6$ 32.If the roots of the equation $x^3 + px^4 + qx + r = 0$, are in G.P. such that geometric mean among
the three roots satisfy the equation $px + k_q = 0$ and other two roots satisfy the equation
 $px^2 - k_2(q = p) ax + p^2 r = 0$ then the value of $k_1 + k_2$ isKey.2Sol.We have $x_1 + x_2 + x_3 = q$
 $x_1 - x_2 - x_3$
 $x_1 = x_2 - q$
 $x_1(x_1 + x_2 + x_3) = q$
 $x_1 = -g^2$
 $x_2 = x_1 + q = 0 \Rightarrow K_1 = 1$

$$x_2 + x_3 = \frac{q - p^2}{p}$$
 (6)

 $x_2x_3 = \frac{rp}{r}$ (7)Hence, x_2, x_3 satisfy the equation $pqx^2 - (q-p^2)qx + p^2r = 0$ \Rightarrow K₂ =1 (8) From (5) and (8) $K_1 + K_2 = 2$ If product of two roots of the equation $x^4 - 18x^3 + kx^2 + 200x - 1984 = 0$ is -32 then the 33. value of 90 - k is Key. 4 Sol. Let α , β , γ , δ be four roots $\alpha\beta = -32$ $\alpha\beta\gamma\delta = -1984 \Longrightarrow \gamma\delta = 62$ $x^{4} - 18x^{3} + kx^{2} + 200x - 1984 = (x - \alpha) (x - \beta) (x - \gamma) (x - \delta)$ $\equiv (x^{2} - (\alpha + \beta)x - 32)(x^{2} - (\gamma + \delta)x + 62)$ $\alpha + \beta = p \equiv (x^2 - px - 32) (x^2 - qx + 62)$ $\gamma + \delta = q$ equaling co-eff. of x^3 , x^2 , x p + q = 18....(i) -62p + 32q = 200..(ii` k = 62 + pq - 32.(iii from (i) and (ii) p = 4, q = 14from (iii) k = 86. If the equation $x^4 + px^3 + qx^2 + rx + 5 = 0$ has four positive real roots, then the minimum 34. value of pr/10 is Key. 8 Let α , β , γ , δ be four positive real roots of given equation. Sol. Then $\alpha + \beta + \gamma + \delta = -p$ $\Sigma \alpha \beta = q$ $\Sigma \alpha \beta \gamma = -r$ $\alpha\beta\gamma\delta = 5$ using $A.M. \ge G.M$ $(\Sigma \alpha).(\Sigma \alpha)$

35. The set of real parameter 'a' for which the equation $x^4 - 2ax^2 + x + a^2 - a = 0$ has all real solutions, is given by $\left[\frac{m}{n}, \infty\right]$ where *m* and *n* are relatively prime positive integers, then the value of (m+n) is

Key. 7

16

 $pr \ge 80$

We have $a^2 - (2x^2 + 1)a + x^4 + x = 0$ Sol. $\therefore a = \frac{(2x^2 + 1) \pm \sqrt{(2x^2 + 1)^2 - 4(x^4 + x)}}{2}$ $2a = (2x^2 + 1) + (2x - 1)$ On solving +ve & -ve sign we got $a \ge \frac{3}{4}$ $\therefore m+n=7$ Number of positive integer n for which $n^2 + 96$ is a perfect square is 36. 4 Key. Suppose m is positive integer such that $n^2 + 96 = m^2$ then Sol. (m-n)(m+n) = 96As m-n < m+n and m-n, m+n both must be even So, the only possibilities are m-n=2, m+n=48; m-n=4, m+n=24m-n=6, m+n=16: m-n=8, m+n=12So, the solutions of (m, n) are (25, 23), (14, 10), (11, 5), (10, 2)If lpha,eta be the roots of $x^2+px-q=0$ and γ,δ are the roots of $x^2+px+r=0$, 37. $q+r \neq 0$, then $\frac{(\alpha-\gamma)(\alpha-\delta)}{(\beta-\gamma)(\beta-\delta)}$ is equal to Here, $\alpha + \beta = -p = \gamma + \delta$ Key. Sol. $(\alpha - \gamma)(\alpha - \delta) = \alpha^2 - \alpha(\gamma + \delta) + \gamma \delta = \alpha^2 - \alpha(\alpha + \beta) + r$ $= -\alpha\beta + r = q + r$ Similarly $(\beta - \gamma)(\beta - \delta) = q + r$ So, ratio is 1 Number of real roots of $2x^{99} + 3x^{98} + 2x^{97} + 3x^{96} + \dots + 2x + 3 = 0$ is 38. Key. Given equation can be written as $(2x+3)(x^{98}+x^{96}+\dots+1)=(2x+3)\frac{(x^{100}-1)}{x^2-1}$ Sol. So, the real roots are $x = \pm 1, \frac{-3}{2}$, out of which ± 1 are not roots of given equation. The number of the distinct real roots of the equation $(x+1)^5 = 2(x^5+1)$ is 39. Key. $(x+1)^5 = 2(x^5+1)$ Sol.

Mathematics

Quadratic Equations & Theory of Equations

Let
$$f(x) = \frac{(x+1)^3}{(x^3+1)}$$
 $(x \neq -1)$
 $\Rightarrow f'(x) = \frac{5(x+1)^4(1-x^4)}{(x^3+1)^2}$
 $\Rightarrow x=1$ is maximum
As, $f(0) = 1$ and $f(1) = 16$
And $\lim_{x \to x^3} f(x) = 1 \Rightarrow f(x) = 2$ has two solutions but given equation has three
solutions.
because $x = -1$ included.
40. The equation $2(\log_3 x)^2 - |\log_3 x| + a = 0$ has exactly four real solutions if $a = \left(0, \frac{1}{K}\right)$,
then the value of K is _
Key. 8
Sol. on putting $\log_3 x = t$, we get
 $2t^2 - |t| + a = 0$...(i)
if $t > 0$, then $2t^2 - t + a = 0$...(ii)
if $t < 0$, then $2t^2 - t + a = 0$...(iii)
if $t < 0$, then $2t^2 + t + a = 0$...(iii)
if $t < 0$, then $2t^2 + t + a = 0$...(iii)
if $t < 0$, then $2t^2 + t + a = 0$...(iii)
if $t < 0$, then $2t^2 + t + a = 0$...(iii)
if $t < 0$, then $2t^2 + t + a = 0$...(iii)
if $t < 0$, then $2t^2 + t + a = 0$...(iii)
if $t < 0$, then $2t^2 + t + a = 0$...(iii)
if $t < 0$, then $2t^2 + t + a = 0$...(iii)
if $t < 0$, then $2t^2 + t + a = 0$...(iii)
if $t < 0$, then $2t^2 + t + a = 0$...(iii)
if $t < 0$, then $2t^2 + t + a = 0$...(iii)
if $t < 0$, then $2t^2 + t + a = 0$...(iii)
if $t < 0$, then $2t^2 + t + a = 0$...(iii) must have both roots positive and Eq. (iii) has
both roots negative. Now, Eq. (iii) has both roots positive, if $D > 0$
 $\Rightarrow a = \left(0, \frac{1}{8}\right)$ on taking intersection.
Again, Eq. (iii) has both roots negative, if $D > 0, a / 2 > 0$.
We again get $x \in \left(0, \frac{1}{8}\right) \Rightarrow K = 8$
41. Let a, b be the roots of $x^2 - x + p = 0$ and λ, δ be the roots of $x^2 - 4x + q = 0$ such that
 a, b, y, δ are in G.P and $p \ge 2$. If $a, b, c \in \{1, 2, 3, 4, 5\}$, let the number of equation of the
form $at^2 + bx + c = 0$ which have real roots be r , then the minimum value of $\frac{pqr}{1536} =$
Key. 1
Sol. $(\alpha + \beta) = 1, \alpha\beta = p, \gamma + \delta = 4, \gamma\delta = q$
Since $\alpha, \beta, \gamma, \delta$ are in G.P
 $\therefore \frac{\beta}{\alpha} = \frac{\beta}{\gamma} \Rightarrow \frac{\beta + \alpha}{\beta - \alpha} = \frac{\delta + \gamma}{\delta - \gamma} \Rightarrow \frac{(\beta + \alpha)^2}{(\beta + \alpha)^2 - 4\alpha\beta} = \frac{(\delta + \gamma)^2}{(\delta + \gamma)^2 - 4\delta\gamma}$
 $\Rightarrow \frac{1}{1 - 4p} = \frac{16}{16 - 4q} = \frac{4}{4 - q}$

 $\Rightarrow 4 - q = 4 - 16p$ Now, $p \ge 2$: $q \ge 32$ For the given equation $ax^2 + bx + c = 0$ to have real roots $b^2 - 4ac \ge 0$ $\therefore ac \leq \frac{b^2}{4}$

b	b^2	Possible values of ac b^2	No. of possible	Value of ac	Possible pairs (a,c)
4	4	such that $ac \leq \frac{1}{4}$	pairs (<i>u</i> , <i>c</i>)	1	(1,1)
2	1	1	1	2	(1,2), (2,1)
3	2.25	1,2	3	3	(1,3). (3,1)
4	4	1,2,3,4	8	4	(1,4),(4,1),(2,3)
5	6.25	1,2,3,4,5,6	12	5	(1,5),(5,1)
		Total	24	6	(2,3),(3,2)

Hence number of quadratic equation with real roots, r = 24Now from (i) and (ii) the minimum value of $\ pqr=2.32.24=1536$

42. Let
$$\alpha, \beta$$
 and γ be the roots of equation $f(x) = 0$, where $f(x) = x^3 + x^2 - 5x - 1$. Then
the value of $[\alpha] + [\beta] + [\gamma]$, where [.] denotes the greatest integer function, is equal to

Key.

Sol.

3 Given $f(x) = x^3 + x^2 - 5x - 1$ $\therefore f'(x) = 3x^2 + 2x - 5$. The roots of f'(x) = 0 are $-\frac{5}{3}$ and 1 Writing the sign scheme for f'(x),

$$-\infty \xrightarrow{\text{tree} -5/3} \xrightarrow{\text{tree} 1} +\text{tree} \longrightarrow \infty$$
Also, $f(-\infty) = -\infty < 0, f(\infty) = \infty > 0$

$$f(1) = -4, f\left(-\frac{5}{3}\right) = \frac{148}{27}$$
Now, graph of $y = f(x)$ is as follows
$$y$$

$$-\infty \xrightarrow{-2} -\frac{5}{3} \xrightarrow{-1} 0$$

$$f(-3) = -27 + 9 + 15 - 1 = -4 < 0$$

$$f(-2) = -8 + 4 + 10 - 1 > 0$$

$$f(-1) = 4 > 0, f(0) = -1 < 0$$

$$f(2) = 1 > 0$$

$$\therefore -3 < \alpha < -2, -1 < \beta < 0, 1 < \gamma < 2$$

$$|[\alpha] + [\beta] + [\gamma]| = |-3 - 1 + 1| = 3$$

The number of integral values of k for which $x^2 - 2(4k-1)x + 15k^2 - 2k - 7 \ge 0$ hold for all 43. x is

Sol.
$$D < 0 \Rightarrow k^2 - 6k + 8 < 0 \Rightarrow 2 \le k \le 4$$

 $\Rightarrow k = 2, 3, 4 \Rightarrow 3$ values

44. If roots
$$x_1$$
 and x_2 of $x^2 + 1 = x/a$ satisfy $\left|x_1^2 - x_2^2\right| > \frac{1}{a}$, then $a \in \left(\frac{1}{2}, 0\right) \cup \left(0, \frac{1}{\sqrt{k}}\right)$ the

numerical quantity k must be equal to 5

Key. 5
Sol.
$$|x_1 + x_2| |x_1 - x_2| > \frac{1}{a} \Rightarrow \left| -\frac{1}{a} \right| \left| \sqrt{\frac{1}{a^2} - 4} \right| > \frac{1}{a} . (*)$$

The inequation (*) has meaning if $\frac{1}{a} - 4 > 0$

The inequation (*) has meaning if
$$\frac{1}{a^2} - 4 > 0$$

If
$$a \in \left(-\frac{1}{2}, 0\right)$$
 then (*) is automatically satisfied

If
$$a \in \left(0, \frac{1}{2}\right)$$
 then (*) becomes equivalent to $\sqrt{\frac{1}{a^2} - 4} > 1$ (on canceling $\frac{1}{a} > 0$)
 $\Rightarrow -\frac{1}{a} < a < \frac{1}{a}$

Thus all the values of
$$a$$
 lie in the interval $\left(-\frac{1}{2},0\right) \cup \left(0,\frac{1}{\sqrt{5}}\right) \Longrightarrow k = 5$

45. The integral part of positive value of *a* for which, the least value of $4x^2 - 4ax + a^2 - 2a + 2$ on [0,2] is 3, is

8 Key.

- **Conceptual Question** Sol.
- The least positive integer x such that the three distinct numbers a, b, c are in GP and 46. a+b+c=xb is

Key. 4

Sol.
$$b^2 = ac$$

If $a = 0$, then $b = 0$ a contradiction ($\because a \neq 0$ similarly $b \neq 0$)
If $a \neq 0$, then $c = \frac{b^2}{a}$

Quadratic Equations & Theory of Equations

On putting in the given relation $a+b+\frac{b^2}{a}=xb \Rightarrow x=\frac{a}{b}+\frac{b}{a}+1$ Now $\frac{a}{t} + \frac{b}{2} \ge 2$ or $\le -2 \Longrightarrow x \ge 3$ or ≤ -3 But as x has to be positive, x must be ≥ 3 But x=3 when $a=b(a\neq b \text{ is given})$ $\Rightarrow x$ should be integer greater than 3. $\Rightarrow x = 4$ The sum of all the real roots of the equations $|x-2|^2 + |x-2| - 2 = 0$ is 47. Key. 4 Sol. $|x-2|^2 + |x-2| - 2 = 0$ $\Rightarrow (|x-2|+2)(|x-2|-1) = 0 \Rightarrow |x-2| = -2, 1$ ||x-2|| = 1 or x = 3,1 \Rightarrow sum of the roots = 4 The number of real solutions of the system of equations & 48. Key. 1 $\therefore x + y + z = 1$ and $2xy - z^2 = 1$ Sol. $\therefore AM \ge GM$ $\Rightarrow \frac{x+y}{2} \ge \sqrt{(xy)} \Rightarrow \left(\frac{1-z}{2}\right) \ge$ $>(1-z)^2 \ge 2(1+z^2)$ $\Rightarrow z^2 + 2z + 1 \le 0 \Rightarrow (z+1)^2 \le 0$ $\therefore z + 1 = 0 \Longrightarrow z = -1$ Then x + y = 2 and xy = 1Hence x = y = 1Sum of all roots of the equation $\sqrt{x+2\sqrt{x+2\sqrt{x+....+2\sqrt{x+2\sqrt{3x}}}}} = x$ must be equal to 49. n radical signs Key. 3 Rewrite the given equation $\sqrt{x+2\sqrt{x+2\sqrt{x+2\sqrt{x+....}}}}$ $\dots + 2\sqrt{x+2\sqrt{x+2x}} = x \dots (1)$ Sol. On replacing the last letter x on the LHS of eq.(1) by the value of x expressed by Eq.(1) we obtain $x = \sqrt{x + 2\sqrt{x + 2\sqrt{x + \dots + 2\sqrt{x + 2x}}}}$ (2n radicals) further, let us replace the last letter x by the same expression we can write $x = \sqrt{x + 2\sqrt{x + 2\sqrt{x + \dots}}}$ $=\lim_{x \to \infty} \sqrt{x + 2\sqrt{x + 2\sqrt{x + \dots + 2\sqrt{x + 2x}}}}$ It follows that $x = \sqrt{x + 2\sqrt{x + 2\sqrt{x + \dots}}} = \sqrt{x + 2\left(\sqrt{x + 2\sqrt{x + \dots}}\right)} = \sqrt{x + 2x}$ Hence $x = \sqrt{x+2x} \Rightarrow x^2 = 3x \Rightarrow x(x-3) = 0$

x=0 (or) x=3∴ Sum of roots = 3

- 50. If the roots of $10x^3 cx^2 54x 27 = 0$ are in harmonic progression, then the value of c must be equal to
- Key. 9
- Sol. : Roots of $10x^3 cx^2 54x 27 = 0$ are in HP Replacing x by $\frac{1}{x}$, then we get $\frac{10}{x^3} - \frac{c}{x^2} - \frac{54}{x} - 27 = 0$ Or $27xh3 + 54x^2 + cx - 10 = 0$ --- (i) Now, roots of Eq (i) are in AP Let roots $\alpha - \beta, \alpha, \alpha + \beta$, then $\alpha - \beta + \alpha + \alpha + \beta = -\frac{54}{27} = -2$ or $\alpha = -\frac{2}{3}$: $\alpha = -\frac{2}{3}$ is a root of Eq.(i) then $27\left(-\frac{2}{3}\right)^3 + 54\left(-\frac{2}{3}\right)^2 + c\left(-\frac{2}{3}\right) - 10 = 0$ or $-8 + 24 - \frac{2c}{3} - 10 = 0$: c = 9
- 32. If the equation $ax^2 bx + 12 = 0$ where a and b are +ve integers not exceeding 10, has roots both greater than 2 then the number of ordered pair (a, b) is _____.
- Key. 1
- Sol. Imposing the conditions; $\frac{b}{2a} > 2$, $b^2 \ge 48a$ and f(2) i.e., 2a b + 12 > 0 there is only one solution for (a, b) = (1, 7)
- 31. If α, β are the roots of the equation $\lambda(x^2 x) + x + 5 = 0$ and if $\lambda_1 & \lambda_2$ are two values of λ for which the roots α, β are related by $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{4}{5}$, then the value of $\frac{\lambda_1}{\lambda_2} + \frac{\lambda_2}{\lambda_1} = \frac{1}{2}$

 $\left(255\!-\!k^2
ight)$ then $\left|k\right|$ is

Key.

Sol.

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{4}{5} \implies \lambda^2 - 16\lambda + 1 = 0$$
Now $\frac{\lambda_1}{\lambda_2} + \frac{\lambda_2}{\lambda_1} = \frac{\lambda_1^2 + \lambda_2^2}{\lambda_1\lambda_3} = 254$

32. The sum of squares of all integral values of a > -5 for which the inequality $x^2 - ax + 6a < 0$ is satisfied for all $x \in (-1, 1)$ must be equal to 6k then k is Key. 5

Sol.
$$f(x) = x^2 - ax + 6a$$

D>0, $f(1) < 0, f(-1) < 0$

value of a are -4, -3, -2, -1 $(-4)^{2} + (-3)^{2} + (-2)^{2} + (-1)^{2} = 30$ The solution set of the inequality $\left(\frac{1}{3}\right)^{\log_{\left(\frac{1}{9}\right)}\left(x^2-\frac{10}{3}x+1\right)} \le 1$ is written as $x \in \left[0, \frac{1}{a}\right] \cup \left(a, \frac{10}{a}\right)$ 33. then find a. Key. 3 $0 < x^2 - \frac{10x}{3} + 1 \le 1$ Sol. \Rightarrow x $\in [0, \frac{1}{2}) \cup (3, \frac{10}{2}]$ If α,β,γ are the roots of the equation $x^3+3x+c=0$ then find the value of 34. $\frac{1}{27}\sum(\alpha-\beta)^2(\beta-\gamma)^2.$ Key. З Let $\partial_1 = (\alpha - \beta)(\beta - \gamma)$ Sol. $\partial_{2} = (\beta - \gamma)(\gamma - \alpha)$ $\partial_3 = (\gamma - \alpha)(\alpha - \beta)$ required part is $\frac{\partial_1^2 + \partial_2^2 + \partial_3^2}{27}$ $\partial_1 \partial_2 + \partial_2 \partial_3 + \partial_2 \partial_1 = 0 \& \partial_1 + \partial_2 + \partial_1 = 0 \& \partial_1 + \partial_2 + \partial_2 = 0$ $\frac{\partial_1^2 + \partial_2^2 + \partial_3^2}{27} = \frac{81}{27} = 3$ If a, $b \in R$ and equations $ax^2 + 30x + b = 0$ and $x^2 + 3x + 4 = 0$ have a common root, 35. then 4a – b is Key. x^2 + 3x + 4 = 0 has imaginary roots so both roots are common Sol. $\frac{30}{3} = \frac{b}{4}$ a+b=50If $f(x) = \frac{ax+1}{x^2-1}$ gives all real values, then find sum of square of all integral values of a given 36. that $-2 \le a \le -1$ Key. 4 $yx^2 - y = ax + 1 \Longrightarrow yx^2 - ax - y - 1 = 0$ Sol. $\Rightarrow a^2 + 4(y)(y+1) \ge 0$ $\Rightarrow 4y^2 + 4y + a^2 \ge 0$

 $\Rightarrow 16 - 4 \times 4a^{2} \le 0$ $\Rightarrow 1 - a^{2} \le 0$ $\Rightarrow a^{2} - 1 \ge 0$ $a \in (-\infty, -1] \cup [1, \infty) \text{ but } -1 \ge a \ge -5$ so a = -5, -4, -3, -2, -1

SMARIACHEURSCHAMMERUL

Quadratic Equations & Theory of Equations Matrix-Match Type

1. The function $f(x) = \sqrt{ax^3 + bx^2 + cx + d}$ has its non-zero local minimum and maximum values at

x = -2 and x = 2 respectively if `a' is root of $x^2 - x - 6 = 0$ then

	Column – I		Column – II	
(A)	The value(s) of `a' is (are)	(p)	0	
(B)	Value(s) of 'b' is (are)	(q)	24	$\overline{\mathbf{N}}$
(C)	Value(s) of 'c' is (are)	(r)	> 32	
(D)	Value(s) of 'd' is (are)	(s)	-2	

Key. A-s; B-p; C-q; D-r

Sol. $a < 0 \Rightarrow a = -2$, then $g(x) = -2x^3 + 6x^2 + cx + d$; g'(x) = -6(x+2)(x-2)

 \Rightarrow b = 0, c = 24, also d > 32 which can be evaluated by $f(-2) = \sqrt{-8a + 4b - 2c + d}$

2. For the following questions, match the items in column-I to one or more items in column-ii Column I

		Column II
A) If ${}^{8}C_{k+2} + 2 \cdot {}^{8}C_{k+3} + {}^{8}C_{k+4} > {}^{10}C_{4}$, then the	P)	1
Quadratic equations whose roots are α, β		
and α^k, β^k have <i>m</i> common roots, then <i>m</i> =		
B) If the number of solutions of the equation	Q)	2
$ 2x^2-5x+3 +(x-1)=0$ is (are) <i>n</i> , then <i>n</i> =		
C) If the constant term of the quadratic expression	R)	0
$\sum_{k=1}^{n} \left(x - \frac{1}{k+1} \right) \left(x - \frac{1}{k} \right) \text{ as } n \to \infty \text{ is } p, \text{ then } p =$	S)	-1
D) The equation $x^2 + 4a^2 = 1 - 4ax$ and	T)	-2
$x^2 + 4b^2 = 1 - 4bx$ have only one root in		
common, then the value of $ a-b $ is		
Key. A-q;B-p;C-p;D-p		
Sol. Given ${}^{8}C_{k+2} + 2{}^{8}C_{k+3} + {}^{8}C_{k+4} > {}^{10}C_{4}$		
$\Rightarrow ({}^{8}C_{k+2} + {}^{8}C_{k+3}) + ({}^{8}C_{k+3} + {}^{8}C_{k+4}) > {}^{10}C_{4}$		
$\Longrightarrow {}^9C_{k+3} + {}^9C_{k+4} > {}^{10}C_4$		
$\Rightarrow {}^{10}C_{k+4} > {}^{10}C_4$ only ${}^{10}C_5 > {}^{10}C_4 \not P K+4=5 \not P K=$	= 1	

 $\therefore \alpha^{k} = \alpha \text{ and } \beta^{k} = \beta$

Hence quadratic equation having roots α and β and α^k and β^k are identical and have both roots common.

 $\therefore m=2$

(B) For $1 \le x < \frac{3}{2} or \frac{3}{2} \le x < \infty, x - 1 > 0$ Therefore no solution is possible For $x \le 1$, given equation is $(2x^2 - 5x + 3) + x - 1 = 0$ $\therefore 2x^2 - 4x + 2 = 0 \Longrightarrow x^2 - 2x + 1 = 0 \Longrightarrow x = 1.$... The equation has only one solution $\therefore n=1.$ (C) Constant term $C = \frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)}$ $t_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$ RHINGPUL $C = \sum_{n=1}^{n} t_n = 1 - \frac{1}{n+1}$: p = 1*.*.. D) $\left(x+2a\right)^2=1$ $(x+2b)^2=1$ $x = \pm 1 - 2a, x = \pm 1 - 2b$ $1 - 2a = -1 - 2b \Longrightarrow b - a = -1$ $-1 - 2a = 1 - 2b \Longrightarrow b - a = 1$ |a - b| = 1 \checkmark RHHH \Rightarrow

3.	Match the statements of Column I with values of Column II.		
	Column I		Column II
	A) The least positive integral values of λ for	P)	3
	which $(\lambda - 2)x^2 + 8x + (\lambda + 4) > 0$, for all real x is		
	B) The equation	Q)	5
	$x^{2}+2(a^{2}+1)x+(a^{2}-14a+48)=0$ possesses		
	roots of opposite signs then x value of 'a' can be		\sim
	C) If the equation $ax^2 + 2bx + 4c = 16$ has	R)	7
	no real roots and $a+c>b+4$, then integral	$\langle \rangle$	
	value of <i>c</i> can be equal to	$\mathbf{\cdot}$	
	D) If N be the number of solution of the equation	S)	12
	$ x^2 - x - 6 = x + 2$ then the value of <i>N</i> is	T)	20
Key. Sol. Le	A) A) $\lambda > 2$ $64-4(\lambda-2)(\lambda+4) < 0$ $\Rightarrow (\lambda+6)(\lambda-4) > 0$ $\lambda < -6 \text{ or } \lambda > 4$ \therefore The least positive integral value of λ is 5 (B) Roots are of opposite signs $\Rightarrow a^2 - 14a + 48 < 0$ (a-6)(a-8) < 0, so a can be 7 The equation is $x^2 + 100x - 1 = 0$ \therefore discriminant = D = $100^2 + 4 > 0$ \therefore Roots are real C) t $f(x) = ax^2 + 2bx + 4c - 16$		
c	learly $f(-2) = 4a - 4b + 4c - 16$		
5	=4(a-b+c-4)>0		
	$= f(x) > 0, \forall x \in R$		
=	$\Rightarrow f(0) > 0 \Rightarrow 4c - 16 > 0$		
=	> $c > 4$		

(D)
$$\therefore |x^2 - x - 6| = x + 2$$

 $\Rightarrow |(x - 3)(x + 2)| = x + 2$

$$\Rightarrow |x-3||x+2| = x+2$$

$$\Rightarrow \begin{cases} (x-3)(x+2) = x+2, & x < -2 \\ -(x-3)(x+2) = x+2, & -2 \le x < 3 \\ (x-3)(x+2) = x+2, & x > 3 \end{cases}$$

$$\Rightarrow \begin{cases} x = 4, & x < -2 \\ x = -2, 2 & -2 \le x < 3 \\ x = 4, & x < 3 \end{cases}$$
Hence, $x = -2, 2, 4$
N = 3

Consider the function $f(x) = x^2 + bx + c$, where $D = b^2 - 4c > 0$ 4.

		Column – I	Column – II
		Condition on b and c	Number of points of non-differentiability of
			$\mathbf{g}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) $
	(A)	b < 0, c > 0	(p) 1
	(B)	c = 0, b < 0	(q) 2
	(C)	c = 0, b > 0	(r) 3
	(D)	b = 0, c < 0	(s) 5
Kev	r. (A→ s	s), $(B \rightarrow r)$, $(C \rightarrow p)$, $(D \rightarrow q)$	
, 5 - 1	,		
		RIACHIENE	~
(2		

4

Quadratic Equations & Theory of Equations

	$g(x) = x^2 + bx + c$	$g(x) = x^2 + b x + c$	$f(x) = g(x) = x^2 + b x + c $
	b < 0, c > 0 y $x' \xrightarrow{0}$ y' y'		x'
	$c = 0, b < 0$ $x' \bigvee_{O} \bigvee_{y'} x$	$x \xrightarrow{y}_{y}_{y} \xrightarrow{y}_{y} x$	x' y y y y y y y y y y y y y y y y y y y
	$c = 0, b > 0 y$ $x' \qquad \qquad$	$x' \xrightarrow{V}_{O_{y'}}^{y} x$	$x' \xrightarrow{O_{y'}} y$
	b = 0, c < 0 $x' \xrightarrow{y} 0$ y' y'	$x' \xrightarrow{y} x$	x' y' y' y'
S	MARINE		

5. Match the following:-

Column – I	Column – II					
A) $f(x) = x^2 + 2x + 8$	p) positive integral roots					
B) $f(x) = x^2 + 4x - 1$	q) $\operatorname{Min}(f(x)) = 7$					
C) $x^2 + 6x + 5 = 0$	r) $Max(f(x))=3$					
D) $x^3 - 6x^2 + 11x - 6 = 0$	s) negative integral roots					
Key: $A - q; B - r; c - s; d - p$						
Sol: (a) coefficient x^2 is + ve min $(f(x)) = \frac{4a}{2}$	$\frac{c-b^2}{4a} = 7$					
(b) coefficient x^2 is + ve max $(f(x)) = \frac{4a}{2}$	$\frac{ac-b^2}{4a} = 3$					
(c) roots are ale $-5, -1$						
(d) The roots ale 1,2,3, only +ve into roots.						
6. If $x^4 - 6x^3 + 8x^2 + 4ax - 4a^2 = 0$, $a \in \mathbb{R}$, then match the following					
Column – I	Column – II					
A) Equation will have 4 real and distinct roots	p) (0, 1)					
for $a \in \mathbb{C}$						
B) Equation will have 2 distinct real roots for	q) (3, 4)					
a∈	a∈					
C) Equation will have at least one negative root r (-2,-1)						
for $a \in$						
D) Equation will have 2 equal and 2 distinct real	s) {2}					
roots for $a \in$						
Key: A-p; B – q, r; C – p, q, r, s; D – s						
(2, 2, 3)(2, 3, 3)						

Sol:
$$(x^2 - 2x - 2a)(x^2 - 4x + 2a) = 0$$

now $D_1 = 4(1 + 2a)$

$$D_2 = 8(2-a)$$

7.	Match the statements/exp	pressions in Column	I with the open inte	rvals in Column II
----	--------------------------	---------------------	----------------------	--------------------

		Column I		Column II					
	(A)	If $a, b > 0$ and $a.b = 2a + 3b$ minimum value of ab	(p)	-1					
	(B)	Number of real roots of equation $x^2 - 4x + 6 = 2\sin\left(\frac{\pi x}{4}\right)$ is/are	(q)	0					
	(C)	the equation $x^3 - 6x^2 + 9x + \lambda = 0$ have exactly one root in (1, 3) then $[\lambda + 3]$ is, where [] is GIF	(r)						
	(D)	If $x^2 + 3\lambda x + 2 = 0$ & $(b - c)x^2 + (c - a)x + (a - b) = 0$ have both roots common then $[\lambda + 1]$ is	(s)	2					
			(t)	24					
Key. Sol.	(A - t), (A) A	, (B – r), (C – pqrs), (D - q) A.M. \geq G.M.							
	$\frac{2a+3b}{2} \ge \sqrt{2a.3b}$								
	Or $\frac{ab}{2} \ge \sqrt{6ab}$								
	(B) L.H.S Max = R.H.S. Min when x = 2 (C) $f(x) = x^3 - 6x^2 + 9x + 3$								
	$f'(x) = 3x^2 - 12x + 9 = 3(x-1)(x-3)$								
	$f'(x) \le 0 x in (1,3)$								
	For $f(x) = 0$ to have exactly one root in (1, 3) f(1) f(3) < 0 $\lambda(\lambda+4) < 0 \therefore -4 < \lambda < 0$ (2 + 2) = 1, 0, 1, 2								
	$[\lambda + 3] = -1, 0, 1, 2$								
	(D) $(b-c)x^2 + (c-a)x + a - b = 0$ have 1 as a both root.								
	Therefore, $1+3\lambda+2=0$								
	Therefore, $\lambda = -1$								
•									

8.	Match the following: -
0.	materi tric tonoming.

COLUMN –I			COLUMN – II		
A	If $a^2 - 4a - 3 = 0$, then the value of	Р	3		
	$\frac{a^{3}-a^{2}+a-1}{a^{2}-1}(a^{2}\neq 1) =$				
В	The number of value (s) of x satisfying the	Q	2		
	equation $\sqrt[4]{ x-3 ^{x+1}} = \sqrt[3]{ x-3 ^{x-2}}$ is				
Mathematics

	The number of value (s) of x satisfying the	D	1				
		'\	4				
	equation $3^{*} + 1 - 3^{*} - 1 = 2\log_{5} 6 - x $ is						
6	If the same of the first 2s to see of the A.D.	6	11				
D	If the sum of the first 2h terms of the A.P	5	11				
	2,5,8,						
	terms of the A.P., 57,59,61,, then hequais						
				\sim			
				×/).			
Кеу	. A – R; B – R; C – Q; D – S						
Sol.	(A) Given $a^2 - 4a + 1 = 4 \Longrightarrow a^2 + 1 = 4(2)$	l+a					
	$(a-1)(a^2+1) = a^2+1 = 4(a+1)$						
	$y = \frac{(a + 1)(a + 1)}{2} = \frac{a + 1}{2} = \frac{4(a + 1)}{2} = 4$						
	$a^2 - 1$ $a + 1$ $a + 1$		2				
(B)	$\sqrt[4]{ x-3 ^{x+1}} = \sqrt[3]{ x-3 ^{x-2}}$.taking $\log \frac{x+1}{4} \log \frac{x+1}{4}$	og x-	$ 3 = \frac{x-2}{3}$ lo	$ \mathbf{x}-3 $			
	$\Rightarrow \log x-3 = 0 \text{ or } \frac{x+1}{4} - \frac{x-2}{2} = 0$						
	$\Rightarrow \log x-2 = 0 \text{ or } \frac{x+1}{x+1} + \frac{x-2}{x-2} = 0$		$\partial \rho$	•			
	$\Rightarrow \log x-3 = 0$ or $\frac{-4}{3} = 0$	1	\mathcal{L}				
	\Rightarrow x = 4, 2 or x = 11 and x = 3						
(C)	critical pts $x = 0, 6$						
	Case – I: $x \ge 6 \ 3^x + 1 - (3^x - 1) = 2\log_5(6 - x) \Longrightarrow x = 11$						
	Case – II: $0 \le x \le 6 \ 3^x + 1 - (3^x - 1) = 2\log_5(6 - x) \Longrightarrow x = 1$						
	Case – III: $x < 0 \Rightarrow 3^x + 1 + 3^x - 1 = 2\log_5(6^x)$	-x)	$\Rightarrow 3^{x} = \log_{3}$	$_5(6\!-\!\mathrm{x}) \Rightarrow$ no solution			
(D)	$\frac{2n}{2}(4+(2n-1)3) = \frac{n}{2}(114+(n-1)2)$						
(D)	\Rightarrow n = 11						
	\rightarrow II=II						
~							
9.	Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^3 - 3(k+2)x^2 + 12$	кх — <i>Г</i>	$7, -4 \le K \le 0$	b, k∈l then the exhaustive set of			
	Values of K for f(x)		Colu	mn II			
	(A) to have only one real root		(n)	///// – // /_1\			
6	(B) to have two equal roots		(q)	$\{-1, 2, 3, 4, 5\}$			
	(C) to be invertible		(q) (r)	$\{-4, -3, -2, 6\}$			
	(D) to have three real and distinct roots		(.) (s)	{2}			
Kev	(A - q): (B - p): (C - s): (D - r)		(3)	(-)			
Sol.	$f(x) = 2x^3 - 3(k+2)x^2 + 12kx - 7$						
	$f'(x) = 6 [x^2 - (k + 2)x + 2a] = 6(x - k) (x - 2)$						
	(A) For f(x) to have only one real root k = 2 or f(k) f(2) > 0 \Rightarrow k = 0, 1, 2, 3, 4, 5						
	(B) For f(x) to have two equal roots, $k \neq 2$ and f(k) f(2) = 0 \Rightarrow k = -1.						
	(C) for f(x) to be invertible f'(x) $\ge 0 \forall x \in \mathbb{R} \Rightarrow k = 2$						
	(D) for f(x) to have three real and distinct roots, $k \neq 2$ and f(k) f(2) < 0						
	$(2k^3 - 3(k + 2) k^2 + 12k^2 - 7) (16 - 12 (k + 2) + 24k - 7) < 0$						
	\Rightarrow (k ³ - 6k ² + 7) (4k - 5) > 0 \Rightarrow (k + 1) (k ² -	7k + 7	') (4k – 5) > ().			

 \Rightarrow k = -4, -3, -2, 6

10. Match the following: -
Column - 1
a) If
$$\beta$$
 be a root of the equation $x^5 - 1 = 0$,
then $\beta^{15} + \beta^{16} + \dots + \beta^{50}$ is p) 4
b) If $2f(x^2) + 3f\left(\frac{1}{x^2}\right) = x^2 - 1$ then $f(1)$ is q) 1
c) The no.of solutions of $|x+1| = |x-1|$ is r) 3
d) The least positive integer for which
 $4^x + 8^{\frac{2}{3}(x-2)} - 72 - 4^{x-\frac{3}{2}}$ is non-negative s) 0
Key. a) q b) s c) q d) p
Sol. Conceptual

11. For the following questions, match the items in column-I to one or more items in column-ii Column I

		Column II
A) If ${}^{8}C_{k+2} + 2 \cdot {}^{8}C_{k+3} + {}^{8}C_{k+4} > {}^{10}C_{4}$, then the	P)	1
Quadratic equations whose roots are α, β		
and α^k, β^k have <i>m</i> common roots, then <i>m</i> =		
B) If the number of solutions of the equation	Q)	2
$ 2x^2-5x+3 +(x-1)=0$ is (are) <i>n</i> , then <i>n</i> =		
C) If the constant term of the quadratic expression	R)	0
$\sum_{k=1}^{n} \left(x - \frac{1}{k+1} \right) \left(x - \frac{1}{k} \right) \text{ as } n \to \infty \text{ is } p, \text{ then } p =$	S)	-1
D) The equation $x^2 + 4a^2 = 1 - 4ax$ and	T)	-2
$x^2 + 4b^2 = 1 - 4bx$ have only one root in		
common, then the value of $ a-b $ is		
. A-q;B-p;C-p;D-p		
Given ${}^{8}C_{k+2} + 2{}^{8}C_{k+3} + {}^{8}C_{k+4} > {}^{10}C_{4}$		
$\Longrightarrow \left({}^{8}C_{k+2} + {}^{8}C_{k+3} \right) + \left({}^{8}C_{k+3} + {}^{8}C_{k+4} \right) > {}^{10}C_{4}$		
$\Rightarrow {}^{9}C_{k+3} + {}^{9}C_{k+4} > {}^{10}C_{4}$		
$\Rightarrow^{10}C_{k+4} > {}^{10}C_4$ only ${}^{10}C_5 > {}^{10}C_4$ \flat K+4=5 \flat K=1		
$\therefore \ lpha^k = lpha$ and $eta^k = eta$		

Hence quadratic equation having roots α and β and α^k and β^k are identical and have both roots common.

 $\therefore m=2$

Key Sol.

(B) For $1 \le x < \frac{3}{2} or \frac{3}{2} \le x < \infty, x - 1 > 0$ Therefore no solution is possible For $x \le 1$, given equation is $(2x^2 - 5x + 3) + x - 1 = 0$ $\therefore 2x^2 - 4x + 2 = 0 \Longrightarrow x^2 - 2x + 1 = 0 \Longrightarrow x = 1.$... The equation has only one solution $\therefore n=1.$ (C) Constant term $C = \frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)}$ $t_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$ RMMCPVI $C = \sum_{n=1}^{n} t_n = 1 - \frac{1}{n+1}$: p = 1*.*.. D) $\left(x+2a\right)^2=1$ $(x+2b)^2=1$ $x = \pm 1 - 2a, x = \pm 1 - 2b$ $1 - 2a = -1 - 2b \Longrightarrow b - a = -1$ $-1 - 2a = 1 - 2b \Longrightarrow b - a = 1$ X |a-b|=1 \Rightarrow ACHIEVER

12.	Match the statements of Column I with values of Column II.		
	Column I		Column II
	A) The least positive integral values of λ for	P)	3
	which $(\lambda - 2)x^2 + 8x + (\lambda + 4) > 0$, for all real x is		
	B) The equation	Q)	5
	$x^{2}+2(a^{2}+1)x+(a^{2}-14a+48)=0$ possesses		
	roots of opposite signs then x value of a' can be		
	C) If the equation $ax^2 + 2bx + 4c = 16$ has	R)	7
	no real roots and $a+c>b+4$, then integral		
	value of c can be equal to	\bigcirc	~
	D) If N be the number of solution of the equation	S)	12
	$ x^2 - x - 6 = x + 2$ then the value of <i>N</i> is	T)	20
Key. Sol.	A-q;B-r;C-qrst;D-p A) $\lambda > 2$		
	$64 - 4(\lambda - 2)(\lambda + 4) < 0$		
	$\Rightarrow (\lambda+6)(\lambda-4) > 0$		
	$\lambda < -6 \text{ or } \lambda > 4$		
	\therefore The least positive integral value of λ is 5		
	(B) Roots are of opposite signs $rac{1}{2}$ 14 $rac{1}{4}$ 9 < 0		
	a = -14a + 46 < 0 (a-6)(a-8) < 0, so a can be 7		
	The equation is $x^2 + 100x - 1 = 0$		
	\therefore discriminant = D = $100^2 + 4 > 0$		
	. Roots are real		
	C)		
Le	$f(x) = dx^2 + 2bx + 4c - 16$		
C	learly $f(-2) = 4a - 4b + 4c - 16$		
-	=4(a-b+c-4)>0		
	$= f(x) > 0, \forall x \in \mathbb{R}$		
=	$\Rightarrow \qquad f(0) > 0 \Rightarrow 4c - 16 > 0$		
_	イ し / Ħ		

(D)
$$\therefore |x^2 - x - 6| = x + 2$$

 $\Rightarrow |(x - 3)(x + 2)| = x + 2$

.

$$\Rightarrow |x-3||x+2| = x+2$$

$$\Rightarrow \begin{cases} (x-3)(x+2) = x+2, \quad x < -2 \\ -(x-3)(x+2) = x+2, \quad x < 3 \\ (x-3)(x+2) = x+2, \quad x > 3 \end{cases}$$

$$\Rightarrow \begin{cases} x=4, \quad x < -2 \\ x=-2, 2, -2 \leq x < 3 \\ x=4, \quad x < 3 \end{cases}$$
Hence,
$$x=-2,2,4$$

$$N=3$$
13. Let $y = \frac{x^2 - 12x + 100}{x^2 + 12x + 100}, x \in R$
Match the following
Column -1
a) Greatest value of y
b) Least value of y
c) Greatest value of y
d) Least value value of y
d) Least value of y
d) Least

For $t = 0, x^2 + 5x = 0 \implies x = 0, x = -5$

For t = -10, $x^2 + 5x = -10$ does not have rational roots (d) Put $\log_3 x = t$ to obtain $t^2 + \frac{1-t}{1+t} = 1 \Longrightarrow t^3 + t^2 - 2t = 0$ \Rightarrow t(t+2)(t-1) = 0 \Rightarrow t = 0, 1, -2 This gives x = 1, 3, 1/9Let α , β be roots of $ax^2 + bx + c = 0$. 15. Match the equation on the left with its roots on the right Column - I Column – II a) $(x-b)^{2}+b(x-b)+ac=0$ p) $2\alpha, 2\beta$ b) $ax^2 + 2bx + 4c = 0$ q) $-\alpha/a, -\beta/a$ c) $4a^2x^2 - b^2 + 4ac = 0$ r) $a\alpha + b$, $a\beta + b$ s) $\alpha + \frac{b}{2a}, \beta + \frac{b}{2a}$ d) $a^3x^2 - abx + c = 0$ Key. $A \rightarrow r$; $B \rightarrow p$; $C \rightarrow s$; $D \rightarrow q$ Sol. (a) Write equation as $a\left(\frac{x-b}{a}\right)^2 + b\left(\frac{x-b}{a}\right) + c = 0 \Rightarrow \frac{x-b}{a} = a$ (b) $a\left(\frac{x}{2}\right)^2 + b\left(\frac{x}{2}\right) + c = 0 \Longrightarrow \frac{x}{2} = \alpha, \beta$ (c) $x = \frac{\pm \sqrt{b^2 - 4ac}}{2a} = \alpha + \frac{b}{2a}, \beta + \frac{b}{2a}$ (d) $a(-ax)^2 + b(-ax) + c = 0 \Longrightarrow -ax = \alpha, \beta \Longrightarrow x = -\alpha/a, -\beta/a$ Match the following for the equation $x^2 + a|x| + 1 = 0$ where a is a parameter 16. Column - I Column – II a) No real root p) a < -2b) Two real roots q) a = -2c) Three real roots r) Ø d) Four real roots s) $a \ge 0$ t) a < -5Key. $A \rightarrow s; B \rightarrow q; C \rightarrow r; D \rightarrow p, t$ If x > 0 then $x^2 + ax + 1 = 0 \Rightarrow x = \frac{-a \pm \sqrt{a^2 - 4}}{2}$ --- (A) Sol. If x < 0, then $x^2 + ax + 1 = 0 \Rightarrow x = \frac{a \pm \sqrt{a^2 - 4}}{2}$ --- (B) We must have $a^2 - 4 \ge 0$ for real roots Now both roots in (A) are negative if a > 0 \Rightarrow Original equation does not have roots. Again both rotos in (B) are positive if a > 0 \Rightarrow Original equation does not have roots. If a = -2 then equation is $x^2 - 2|x| + 1 = 0$ or $(|x| - 1)^2 = 0 \Longrightarrow x = 1$ or -1 \Rightarrow Two real roots. Now equation has four real roots if a < -2, since both roots given by (A) or (B) will satisfy the respective assumptions.

40.	40. Match the positive value of x on the left with the value on the right			
		Column-I		Column II
	(A)	$5^2 5^4 5^6 \dots 5^{2x} = (0.04)^{-28}$	(p)	3 log₃5
	(B)	$\mathbf{x}^2 = (0.2)^{\log_{\sqrt{5}} \left(\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots \right)}$	(q)	4
	(C)	$\mathbf{x} = (0.16)^{\log_{205}\left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots\right)}$	(r)	2
	(D)	$3^{x-1} + 3^{x-2} + 3^{x-3} + \dots$	(s)	7
		$= 2\left(5^2 + 5 + 1 + \frac{1}{5} + \frac{1}{5^2} + \dots\right)$	(t)	even integer
Key.	A→s; B	B→r,t; C-q,t; D→p		01.
Sol.	A) 5	$5^{2+4+6+\dots,2x=}(25)^{28}$		
	$\Rightarrow 5$	$x^{(x+1)} = 5^{56}$		
	⇒x	$+x-36=0 \Rightarrow x = /as x > 0$		
B)	2109	$g_5 x = \log_{\sqrt{5}} \left(\frac{1}{1 - 1/2} \right) \log_5(0.2)$	N	
	= log	$g_{\sqrt{5}}\left(\frac{1}{2}\right)\log_5\left(\frac{1}{5}\right)$		
	1 =	$\frac{\log_5\left(\frac{1}{2}\right)}{\log_5\sqrt{5}} = \log_5 4$		
	\Rightarrow x	=2		
C)	log x	$= \log_{2.5}\left(\frac{1/3}{1-1/3}\right)\log(0.16)$		
	=log₅ =log 4	/2(1/2)log(2/5) ² 4		
	$\Rightarrow x$	$=4$ (1/2) $2(5^2)$		
D)	$3^{x} \frac{1}{1}$	$\frac{1}{1}\frac{3}{3} = \frac{2(3)}{1-1/5}$		
C	$\Rightarrow \frac{1}{2}$	$\left(3^{x}\right) = \frac{1}{2}\left(5^{3}\right)$		
	\Rightarrow x	$=3\log_3 5$		
29.		Column I		Column II
	(A)	The number of integral solution of $x + 2 = 1$	(p)	2
		$\frac{x+2}{x^2+1} > \frac{1}{2}$ is		
	(B)	If $x \in Z$ (the set of integers) such	(q)	4
		that $x^2 - 3x < 4$, then the number		
		of possible values x is		

	(C)	The number of integral values of x satisfying $ x-1 -1 \le 1$	(r)	5
	(D)	The number of solutions of $ [x] - 2x = 4$, where [x] is the	(s)	3
		greatest integer $\leq x$, is		
Key.	A→s;∃	$B \rightarrow q; C \rightarrow r; D \rightarrow q$		
Sol.	(A)	$\frac{\mathbf{x}+2}{\mathbf{x}^2+1} > \frac{1}{2}$		
	$\Rightarrow 2z$	$x + 4 > x^{2} + 1$		
	$\Rightarrow -$	$x^2+2x+3>0$:: $x^2+1>0$		
	\Rightarrow -	-1 < x < 3		
	(by si	gn scheme)		
	But x	is an integer ∴ x =0, 1, 2		
	∴ th	ere are 3 values of x		
	∴ A-	- s		C.X
(B)	$) x^2 -$	3x < 4		
	\Rightarrow x ²	$^{2}-3x-4<0$		
	⇒(>	(x-4)(x+1) < 0	~	
	\Rightarrow x	-4 < 0, x+1 > 0	\sim	
	or x-	- 4 < 0, x + 1 > 0		
	\Rightarrow x	>4, x < -1 (not possible)		
	or x <	$x 4, x > -1 \implies -1 < x < 4$		
	But x	is an integer ∴ x = 0, 1, 2, 3.		
	∴ nu	mber of values of x = 4		
	∴В-	- q		
(C)	$\ \mathbf{x}-\mathbf{x}\ $	$1 -1 \leq 1$		
	$\Rightarrow 1 \cdot$	$-1 \le x-1 \le 1+1$		
	$\Rightarrow 0$	$\leq x-1 \leq 2$		
	⇒1-	$2 \le x \le 1 + 2$		
	⇒-1	$\leq x \leq 3$		
C	\Rightarrow x	$\in [-1,3]$ C-p		
(D)	$= n \in \mathbb{Z}, n-2n = 4 : n = \pm 4.$		
	If x =	n+k, n \in Z,0 $<$ k $<$ 1 then $\left $ n -2 (n	+k) = 4	1
	∴ -r	$ \mathbf{n}-2\mathbf{k} = 4$. It is possible if $\mathbf{k} = \frac{1}{2}$		
	then	-n-1 = 4 i.e. n + 1 = ± 4		
	∴ n =	= 3, -5		
	∴ tł	here are 4 values of x.		

30.		Column I		Column II
	(A)	The number real solutions of the equation $x^2 - x - 2 = 0$ is	(p)	0
	(B)	For the equation	(q)	1
		$3x^2 + px + 3 = 0, p > 0$, if one of the		
	(C)	root is square of the other, then p is The number of real values of k for which the system of equations	(r)	2
		(k+1)x+8y=4k kx+(k+3)y=3k-1		$\langle \rangle$.
	(D)	has infinitely many solution is Number of roots of the equation	(s)	3
		$x - \frac{2}{x-1} = 1 - \frac{2}{x-1}$ is		
Key.	$A \rightarrow r;$	$B \rightarrow s; C \rightarrow q; D \rightarrow p$		
Sol.	$A x ^2$	$- x -2=0 \implies (x +1)(x +2)=0 x $	=2	\Rightarrow x = ± 2
В	Let α	, α^2 be toots		
	produ	ct of root $\alpha . \alpha^2 = \frac{3}{3}$	X	
	$\Rightarrow \alpha$	$=1, \omega, \omega^2$		
	If $\alpha =$	1 then p = –6 not acceptable as p > 0		
	if $\alpha =$	$\omega, \alpha^2 = \omega^2$ then p = 3		
C.	$\frac{K+1}{K}$	$=\frac{8}{K+3}=\frac{4K}{3K-1}\Rightarrow K=1$		
D.	$x - \frac{1}{x}$	$\frac{2}{-1} = 1 - \frac{2}{x-1} \Longrightarrow x = 1$ but at x = 1, $\frac{2}{x-1}$	— is n 1	oot defined.
Č				