Matrices \& Determents

Single Correct Answer Type

1. A and B are two non singular matrices so that $A^{6}=I$ and $A B^{2}=B A(B \neq I)$. A value of K so that $\mathrm{B}^{\mathrm{K}}=\mathrm{I}$ is
a) 31
b) 32
c) 63
d) 64

Key. C
Sol. $\quad A^{5}\left(A B^{2}\right)=A^{5} B A$.
$\Rightarrow B^{2}=A^{5} B A$
$\Rightarrow B^{4}=\left(A^{5} B A\right)\left(A^{5} B A\right)=A^{5} B^{2} A=A^{5}\left(A^{5} B A\right) A$
$\Rightarrow B^{4}=A^{4} B A^{2}$
$\Rightarrow B^{8}=\left(A^{4} B A^{2}\right)\left(A^{4} B A^{2}\right)=A^{4} B^{2} A^{2}=A^{4}\left(A^{5} B A\right) A^{2}$
$\Rightarrow B^{8}=A^{3} B A^{3}$
$\Rightarrow B^{16}=\left(A^{3} B A^{3}\right)\left(A^{3} B A^{3}\right)=A^{3} B^{2} A^{3}=A^{3}\left(A^{5} B A\right) A^{3}=A^{2} B A^{4}$
$A^{32}=\left(A^{2} B A^{4}\right)\left(A^{2} B A^{4}\right)=A^{2} B^{2} A^{4}=A^{2}\left(A^{5} B A\right) A^{4}=A B A^{5}$
$A^{64}=\left(A B A^{5}\right)\left(A B A^{5}\right)=A B^{2} A^{5}=A\left(A^{5} B A\right) A^{5}=B \Rightarrow A^{63}=I$
2. For each real number x such that $-1<x<1$, let $A(x)$ be the matrix $(1-x)^{-1}\left[\begin{array}{cc}1 & -x \\ -x & 1\end{array}\right]$ and $z=\frac{x+y}{1+x y}$. Then,
(A) $\mathrm{A}(\mathrm{z})=\mathrm{A}(\mathrm{x})+\mathrm{A}(\mathrm{y})$
(B) $\mathrm{A}(\mathrm{z})=\mathrm{A}(\mathrm{x})[\mathrm{A}(\mathrm{y})]^{-1}$
(C) $\mathrm{A}(\mathrm{z})=\mathrm{A}(\mathrm{x}) \mathrm{A}(\mathrm{y})$
(D) $\mathrm{A}(\mathrm{z})=\mathrm{A}(\mathrm{x})-\mathrm{A}(\mathrm{y})$

Key. C
Sol. $\quad A(z)=A\left(\frac{x+y}{1+x y}\right)=\left[\frac{1+x y}{(1-x)(1-y)}\right]\left[\begin{array}{cc}1 & -\left(\frac{x+y}{1+x y}\right) \\ -\left(\frac{x+y}{1+x y}\right) & 1\end{array}\right]$
$\therefore A(x) \cdot A(y)=A(z)$
3. A and B are two non singular matrices so that $A^{6}=I$ and $A B^{2}=B A(B \neq I)$. A value of K so that $\mathrm{B}^{\mathrm{K}}=\mathrm{I}$ is
a) 31
b) 32
c) 63
d) 64

Key. C

Sol. $\quad A^{5}\left(A B^{2}\right)=A^{5} B A$.
$\Rightarrow B^{2}=A^{5} B A$
$\Rightarrow B^{4}=\left(A^{5} B A\right)\left(A^{5} B A\right)=A^{5} B^{2} A=A^{5}\left(A^{5} B A\right) A$
$\Rightarrow B^{4}=A^{4} B A^{2}$
$\Rightarrow B^{8}=\left(A^{4} B A^{2}\right)\left(A^{4} B A^{2}\right)=A^{4} B^{2} A^{2}=A^{4}\left(A^{5} B A\right) A^{2}$
$\Rightarrow B^{8}=A^{3} B A^{3}$
$\Rightarrow B^{16}=\left(A^{3} B A^{3}\right)\left(A^{3} B A^{3}\right)=A^{3} B^{2} A^{3}=A^{3}\left(A^{5} B A\right) A^{3}=A^{2} B A^{4}$
$A^{32}=\left(A^{2} B A^{4}\right)\left(A^{2} B A^{4}\right)=A^{2} B^{2} A^{4}=A^{2}\left(A^{5} B A\right) A^{4}=A B A^{5}$
$A^{64}=\left(A B A^{5}\right)\left(A B A^{5}\right)=A B^{2} A^{5}=A\left(A^{5} B A\right) A^{5}=B \Rightarrow A^{63}=I$
4. If matrix $A=\left[a_{i j}\right]_{3 \times 3}$, matrix $B=\left[b_{i j}\right]_{3 \times 3}$ where $a_{i j}+a_{j i}=0$ and $b_{i j}-b_{j i}=$ 0 , then A^{4}. B^{3} is
(A) skew-symmetric matrix
(B) singular
(C) symmetric
(D) zero matrix

Key. B
Sol. Since matrix A is skew-symmetric,
$\therefore \quad|\mathrm{A}|=0$
$\therefore \quad\left|A^{4} \cdot B^{3}\right|=0$
5. If $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1\end{array}\right]$, then $\operatorname{det}(\operatorname{Adj}(\operatorname{Adj} A))$ is
(A) $(14)^{4}$
(B) $(14)^{6}$
(C) $(14)^{9}$
(D) $(14)^{2}$

Key. A
Sol. $|A|==(1+2)-2(-1-4)-(1-2)$

$$
=3+10+1=14
$$

$\therefore \quad \operatorname{det}(\operatorname{Adj}(\operatorname{Adj} A))=|\operatorname{Adj} A|^{2}=|A|^{4}=(14)^{4}$
6. In the expansion of $\left(\sqrt{\frac{\mathrm{q}}{\mathrm{p}}}+\sqrt[10]{\frac{\mathrm{p}^{7}}{\mathrm{q}^{3}}}\right)^{\mathrm{n}}$, there is a term similar to pq , then that term is equal to
(A) 210 pq
(B) 252 pq
(C) 120 pq
(D) 45 pq

Key. B
7. Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be real numbers such that $3 \mathrm{x}, 4 \mathrm{y}$ and 5 z form a geometric progression while $\mathrm{x}, \mathrm{y}, \mathrm{z}$ form an H.P. Then the value of $\frac{\mathrm{X}}{\mathrm{Z}}+\frac{\mathrm{Z}}{\mathrm{X}}=\frac{\mathrm{m}}{\mathrm{n}}$ where m and n are relatively prime then, $(\mathrm{m}+$ n) is equal to
(A) 29
(B) 39
(C) 49
(D) 59

Key. C
8. If A is a square matrix fo order 3 much that $|A|=2$ then $\left|\left(\operatorname{adj} A^{-1}\right)^{-1}\right|$ is
(A) 1
(B) 2
(C) 4
(D) 8

Key. C
9. Let A and B be square matrices of same order satisfying $A B=A$ and $B A=B$. Then $A^{2} B^{2}$ equals, (O being the zero matrix of the same order as B)
(A) A
(B) B
(C) I
(D) O

Key: A
Hint Conceptual
10. If A and B are square matrices of the same order and A is non-singular, then for a positive integer $n,\left(A^{-1} B A\right)^{n}$ is equal to
A) $A^{-n} B^{n} A^{n}$
B) $A^{n} B^{n} A^{-n}$
C) $A^{-1} B^{n} A$
D) $n\left(\mathrm{~A}^{-1} \mathrm{BA}\right)$

Key: C
Hint: $\quad\left(A^{-1} B A\right)^{2}=\left(A^{-1} B A\right)\left(A^{-1} B A\right)=A^{-1} B\left(A A^{-1}\right) B A=A^{-1} B I B A=A^{-1} B^{2} A$
$\Rightarrow\left(A^{-1} B A\right)^{3}=\left(A^{-1} B^{2} A\right)\left(A^{-1} B A\right)=A^{-1} B^{2}\left(A A^{-1}\right) B A=A^{-1} B^{2} I B A=A^{-1} B^{3} A$ and so on $\Rightarrow\left(A^{-1} B A\right)^{n}=A^{-1} B^{n} A$
11. If A is a skew-symmetric matrix of order 3 , then the matrix A^{4} is
(A) skew symmetric
(B) symmetric
(C) diagonal
(D) none of those

Key: B
Hint: We have $A^{\top}=-A$
$\left(A^{4}\right)^{\top}=(A . A \cdot A \cdot A .)^{\top}=A^{\top} A^{\top} A^{\top} A^{\top}$
$\Rightarrow(-A)(-A)(-A)(-A)$
$=(-1)^{4} A^{4}=A^{4}$
12. If A and B are symmetric matrices of same order and $X=A B+B A$ and $Y=A B-B A$, then $(X Y)^{\mathrm{T}}$ is equal to
(A) XY
(B) $Y X$
(C) $-Y X$
(D) none of these

Key: C
Hint: $\quad X=A B+B A \Rightarrow X^{T}=X$
and $Y=A B-B A \Rightarrow Y^{T}=-Y$
Now, $(X Y)^{\mathrm{T}}=Y^{\mathrm{T}} \times \mathrm{X}^{\mathrm{T}}=-Y X$.
13. If A and B are any two different square matrices of order n with $A-B$ is non-singular $A^{3}=B^{3}$ and $A(A B)=B(B A)$, then
(A)
$\mathrm{A}^{2}+\mathrm{B}^{2}=\mathrm{O}$
(B) $\mathrm{A}^{2}+\mathrm{B}^{2}=\mathrm{I}$
(C) $\mathrm{A}^{2}+\mathrm{B}^{3}=\mathrm{I}$
(D) $\mathrm{A}^{3}+\mathrm{B}^{3}=\mathrm{O}$

Key: A
Hint: $\quad A^{3}=B^{3}$
$A^{2} B=B^{2} A$.
$\left(A^{2}+B^{2}\right)(A-B)=0$
$\because|A-B| \neq 0$
$A^{2}+B^{2}=0$
14. A square matrix A is said to be nilpotent of index m. If $A^{m}=0$, now, if for this A $(1-A)^{n}=1+A+A^{2}+\ldots+A^{m-1}$, then n is equal to
(A) 0
(B) m
(C) -m
(D) -1

Key: D
Hint: Let $B=1+A+A^{2}+\ldots+A^{m-1}$
$\Rightarrow B(I-A)=\left(I+A+A^{2}+\ldots+A^{m-1}\right)(I-A)$
$=I-A^{m}=1$
$\Rightarrow B=(I-A)^{-1} \Rightarrow n=-1$.
15. If $A=\left[\begin{array}{cc}i & -i \\ -i & i\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$, then A^{8} equals
(a) 4 B
(b) 128 B
(c) -128 B
(d) -64 B

Key: b
Hint: We have $A=i B$
$\Rightarrow A^{2}=(i B)^{2}=i^{2} B^{2}=-B^{2}=-\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]=-2 B$
$\Rightarrow A^{4}=(-2 B)^{2}=4 B^{2}=4(2 B)=8 B$
$\Rightarrow\left(A^{4}\right)^{2}=(8 B)^{2} \Rightarrow A^{8}=64 B^{2}=128 B$
16. The number of positive integral solutions of the equation $\left|\begin{array}{ccc}y^{3}+1 & y^{2} z & y^{2} x \\ y z^{2} & z^{3}+1 & z^{2} x \\ y x^{2} & x^{2} z & x^{3}+1\end{array}\right|=11$ is
(A) 1
(B) 2
(C) 3
(D) 4

Key: C

Hint: Multiply by y, z and x in rows 1,2 and 3 respectively and then take common y, z and x from column 1,2 and 3 respectively, then

$$
\begin{aligned}
& \left|\begin{array}{ccc}
y^{3}+1 & y^{3} & y^{3} \\
z^{3} & z^{3}+1 & z^{3} \\
x^{3} & x^{3} & x^{3}+1
\end{array}\right|=11 \\
& \Rightarrow\left|\begin{array}{ccc}
1 & 0 & y^{3} \\
-1 & 1 & z^{3} \\
0 & -1 & x^{3}+1
\end{array}\right|=11 \quad\left(C_{1} \rightarrow C_{1}-C_{2} \text { and } C_{2} \rightarrow C_{2}-C_{3}\right)
\end{aligned}
$$

$\Rightarrow 1\left(\mathrm{x}^{3}+1+\mathrm{z}^{3}\right)+\mathrm{y}^{3}(1)=11 \Rightarrow \mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}=10$
So solution are $(1,1,2),(1,2,1)$ or $(2,1,1)$
17. If $a-2 b+c=1$, then the value of $\left|\begin{array}{lll}x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c\end{array}\right|$ is
(A) x
(B) $-x$
(C) -1
(D) 1

Key. C
Sol. $\left|\begin{array}{ccc}x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c\end{array}\right| \quad \begin{gathered}a-2 b+c=1 \\ (a-b)+(c-b)=1\end{gathered}$
Apply the operation,

$$
\begin{aligned}
& R_{1} \rightarrow R_{1}-2 R_{2}+R_{3} \\
& R_{3} \rightarrow R_{3}-R_{2}, \text { the determinant reduces to }
\end{aligned}
$$

$$
\left|\begin{array}{ccc}
0 & 0 & 1 \\
x+2 & x+3 & x+b \\
1 & 1 & c-b
\end{array}\right|=-1
$$

18. If A is involutary matrix, then which of the following is/are correct?
(A) $\mathrm{I}+\mathrm{A}$ is idempotent
(B)
$\mathrm{I}-\mathrm{A}$ is idempotent
(C) $(\mathrm{I}+\mathrm{A})(\mathrm{I}-\mathrm{A})$ is singular (D)

$$
\frac{\mathrm{I}+\mathrm{A}}{3} \text { is idempotent }
$$

Key. C
Sol. $\quad A^{2}=1$

$$
(1+A)(1-A) \quad=1-A^{2}=1-1=0
$$

19. If $\mathrm{A}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right], \mathrm{C}=\mathrm{ABA}^{\mathrm{T}}$, then $\mathrm{A}^{\mathrm{T}} \mathrm{C}^{\mathrm{n}} \mathrm{A}$ equals to $\left(\mathrm{n} \in \mathrm{I}^{+}\right)$
(A)
$\left[\begin{array}{cc}-n & 1 \\ 1 & 0\end{array}\right]$
(B) $\left[\begin{array}{cc}1 & -n \\ 0 & 1\end{array}\right]$
(C) $\left[\begin{array}{cc}0 & 1 \\ 1 & -n\end{array}\right]$
(D) $\left[\begin{array}{cc}1 & 0 \\ -\mathrm{n} & 1\end{array}\right]$

Key. D
Sol.

$$
\begin{align*}
& A=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right] \\
& \mathrm{AA}^{\mathrm{T}}=\mathrm{I} \tag{i}\\
& \text { Now, } \quad \mathrm{C}=\mathrm{ABA}^{\mathrm{T}} \\
& \Rightarrow \quad A^{T} C=B^{T} \tag{ii}\\
& \text { Now } \quad \mathrm{A}^{\mathrm{T}} \mathrm{C}^{\mathrm{n}} \mathrm{~A}=\mathrm{A}^{\mathrm{T}} \mathrm{C} \cdot \mathrm{C}^{\mathrm{n}-1} \mathrm{~A}=\mathrm{BA}^{\mathrm{T}} \mathrm{C}^{\mathrm{n}-1} \mathrm{~A} \text { (from (ii)) } \\
& =B A^{T} C \cdot C^{n-2} A=B^{2} A^{T} C^{n-2} A= \\
& =B^{n-1} A^{T} C A=B^{n-1} B A^{T} A=B^{n}=\left[\begin{array}{cc}
1 & 0 \\
-n & 1
\end{array}\right]
\end{align*}
$$

20. If $p+q+r=0$ and $\left|\begin{array}{lll}p a & q b & r c \\ q c & r a & p b \\ r b & p c & q a\end{array}\right|=k\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$, then $\mathrm{K}=$
1) 0
2) abc
3) pqr
4) $a+b+c$

Key. 3
Sol. $\quad p+q+r=0 \Rightarrow p^{3}+q^{3}+r^{3}=3 p q r$
$\left|\begin{array}{lll}p a & q b & r c \\ q c & r b & p b \\ r b & p & c \\ q\end{array}\right|=\operatorname{aqr}\left(a^{3}+b^{3}+c^{3}-3 a b c\right)$
$\operatorname{pqr}\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right| \Rightarrow k=p q r$
21. If $a=\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}$, then $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & a & a^{2} \\ 1 & a^{2} & a\end{array}\right|$ is

1) purely real
2) purely imaginary
3) a complex number
4) a

Key. 2 or 3
Sol. $\quad a=\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}=w^{2}$
$\therefore\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & w^{2} & w \\ 1 & w & w^{2}\end{array}\right|=3\left(w-\hat{w}^{2}\right)$ purely imaginary
22. $\left|\begin{array}{lll}{ }^{x} C_{r} & { }^{x} C_{r+1} & { }^{x} C_{r+2} \\ { }^{y} C_{r} & { }^{y} C_{r+1} & { }^{y} C_{r+2} \\ { }^{z} C_{r} & { }^{z} C_{r+1} & { }^{2} C_{r+2}\end{array}\right|-\left|\begin{array}{lll}{ }^{x} C_{r} & { }^{x+1} C_{r+1} & { }^{x+2} C_{r+2} \\ { }^{y} C_{r} & { }^{y+1} C_{r+1} & { }^{y+2} C_{r+2} \\ { }^{z+1} C_{r+1} & { }^{z+2} C_{r+2}\end{array}\right|=$

1) 0
2) 2^{n}
3) ${ }^{x+y+z} C_{r}$
4) ${ }^{x+y+z} C_{r+2}$

Key.
Sol. $\quad\left|\begin{array}{lll}{ }^{x} C_{r} & { }^{x} C_{r+1} & { }^{x} C_{r+2} \\ { }^{y} C_{r} & { }^{y} C_{r+1} & { }^{y} C_{r+2} \\ { }^{z} C_{r} & { }^{z} C_{r+1} & { }^{z} C_{r+2}\end{array}\right|=\left|\begin{array}{lll}{ }^{x} C_{r} & { }^{x+1} C_{r+1} & { }^{x+1} C_{r+2} \\ { }^{y} C_{r} & { }^{y+1} C_{r+1} & { }^{y+1} C_{r+2} \\ { }^{z} C_{r} & { }^{z+1} C_{r+1} & { }^{z+1} C_{r+2}\end{array}\right|$
By applying $C_{2} \rightarrow C_{2}+C_{1}, C_{3} \rightarrow C_{3}+C_{2}$
Now apply $C_{3} \rightarrow C_{3}+C_{2},\left|\begin{array}{lll}{ }^{x} C_{r} & { }^{y+1} C_{r+1} & { }^{x+2} C_{r+2} \\ { }^{2} C_{r} & { }^{y+1} C_{r+1} & { }^{y+2} C_{r+2} \\ { }^{z} C_{r} & { }^{z+1} C_{r+1} & { }^{z+2} C_{r+2}\end{array}\right|$
\therefore Ans $=0$
23. If A is an orthogonal matrix of order n, then the value of $|\operatorname{adj} .(\operatorname{adj} A)|$ is
(A) 0
(B) ± 1
(C) n
(D) $\mathrm{n}-2$

Key. B
Sol. $\quad \mathrm{AA}^{\prime}=\mathrm{I}$
$\Rightarrow \quad|\mathrm{A}|= \pm 1$
$\therefore \quad|\operatorname{adj} .(\operatorname{adj} . \mathrm{A})|$

$$
=|\mathrm{A}|^{(\mathrm{n}-1)^{2}}= \pm 1
$$

24. If $a, b, c, d>0 ; x \in R$ and $\left(a^{2}+b^{2}+c^{2}\right) x^{2}-2(a b+b c+c d) x+b^{2}+c^{2}+d^{2} \leq 0$, then
$\left|\begin{array}{lll}33 & 14 & \log a \\ 65 & 27 & \log b \\ 97 & 40 & \log c\end{array}\right|=$
(A) 1
(B) -1
(C) 0
(D) none of these

Key. C
Sol. We have
$\left(a^{2}+b^{2}+c^{2}\right) x^{2}-2(a b+b c+c d) x+b^{2}+c^{2}+d^{2} \leq 0$
$\Rightarrow \quad(\mathrm{ax}-\mathrm{b})^{2}+(\mathrm{bx}-\mathrm{c})^{2}+(\mathrm{cx}-\mathrm{d})^{2} \leq 0$
$\Rightarrow \quad(\mathrm{ax}-\mathrm{b})^{2}+(\mathrm{bx}-\mathrm{c})^{2}+(\mathrm{cx}-\mathrm{d})^{2}=0$
$\Rightarrow \quad \frac{\mathrm{b}}{\mathrm{a}}=\frac{\mathrm{c}}{\mathrm{b}}=\frac{\mathrm{d}}{\mathrm{c}}=\mathrm{x}$
$\Rightarrow \quad \mathrm{b}^{2}=\mathrm{ac}$ or $2 \log \mathrm{~b}=\log \mathrm{a}+\log \mathrm{c}$,
Now, $\quad\left|\begin{array}{ccc}33 & 14 & \log a \\ 65 & 27 & \log b \\ 97 & 40 & \log c\end{array}\right|=\left|\begin{array}{ccc}130 & 54 & \log a+\log c \\ 65 & 27 & \log b \\ 97 & 40 & \log c\end{array}\right| \quad\left[A p p l y R_{1} \rightarrow R_{1}+R_{3}\right.$]
$\left|\begin{array}{ccc}0 & 0 & 0 \\ 65 & 27 & \log b \\ 97 & 40 & \log c\end{array}\right|=$
25. A square matrix P satisfies $P^{2}=I-P$, where I is an identity matrix of order as order of P. if $P^{n}=5 I-8 P$, then $n=$
(a) 4
(b) 5
(c) 6
(d) 7

Key. C
SOL. \quad SINCE $P^{2}=I-P(G I V E N)--(1)$
$P^{3}=P(I-P)$
$\mathrm{P}^{3}=\mathrm{P}-\mathrm{P}^{2}=\mathrm{P}-(\mathrm{I}-\mathrm{P})(\mathrm{USING})$
$\mathrm{P}^{3}=2 \mathrm{P}-\mathrm{I}$
SIMILARLY $\mathrm{P}^{4}=2 \mathrm{P}^{2}-\mathrm{P}=2 \mathrm{I}-3 \mathrm{P}$ AND $\mathrm{P}^{5}=5 \mathrm{P}-3 \mathrm{I}$
$\mathrm{P}^{6}=5 \mathrm{P}^{2}-3 \mathrm{P}=5 \mathrm{I}-8 \mathrm{P}$
$\therefore \mathrm{n}=6$
26. If $Y=S X, Z=t X$ all the variables being differentiable functions of x and lower suffices denote the derivative with respect to x and $\left|\begin{array}{ccc}X & Y & Z \\ X_{1} & Y_{1} & Z_{1} \\ X_{2} & Y_{2} & Z_{2}\end{array}\right| \div\left|\begin{array}{ll}S_{1} & t_{1} \\ S_{2} & t_{2}\end{array}\right|=X^{n}$, then $n=$
a) 1
b) 2
c) 3
d) 4

Key. C

Sol. $\Delta=\left|\begin{array}{ccc}X & S X & t X \\ X_{1} & S X_{1}+S_{1} X & t X_{1}+t_{1} X \\ X_{2} & S X_{2}+2 S_{1} X_{1}+S_{2} X & t X_{2}+2 t_{1} X_{1}+t_{2} X\end{array}\right|$

$$
\binom{C_{2} \leftarrow C_{2}-S C_{1}}{C_{3} \leftarrow C_{3}-C_{1}}
$$

$=\Delta=\left|\begin{array}{ccc}X & 0 & 0 \\ X_{1} & S_{1} X & t_{1} X \\ X_{2} & 2 S_{1} X_{1}+S_{2} X & 2 t_{1} X_{1}+t_{2} X\end{array}\right|$
$=S^{2}\left|\begin{array}{cc}S_{1} & t_{1} \\ 2 S_{1} X_{1}+S_{2} X & 2 t_{1} X_{1}+t_{2} X\end{array}\right|$
$==X^{3} \leq\left|\begin{array}{ll}S_{1} & t_{1} \\ S_{2} & t_{2}\end{array}\right|\left(R_{2} \leftarrow R_{2}-2 X_{1} R_{1}\right)$
$\therefore n=3$.
27. If A and B are two non singular matrices and both are symmetric and commute each other then
a) Both $A^{-1} B$ and $A^{-1} B^{-1}$ are symmetric.
b) $A^{-1} B$ is symmetric but $A^{-1} B^{-1}$ is not symmetric
c) $A^{-1} B^{-1}$ is symmetric but $A^{-1} B$ is not symmetric
d) Neither $A^{-1} B$ nor $A^{-1} B^{-1}$ are symmetric

Key. A
Sol. $\quad A B=B A$
Previous \& past multiplying both sides by A^{-1}.
$A^{-1}(A B) A^{-1}=A^{-1}(B A) A^{-1}$
$\left(A^{-1} A\right)\left(B A^{-1}\right)=A^{-1} B\left(A A^{-1}\right)$
$\Rightarrow\left(B A^{-1}\right)^{1}=\left(A^{-1} B\right)^{1}=\left(A^{-1}\right)^{1} B^{1}$ (reversal laws)
$=A^{-1} B\left(\right.$ as $\left.\mathrm{B}=\mathrm{B}^{1}\right)$
$\left(A^{-1}\right)^{1}=A^{-1} \Rightarrow A^{-1} B$ is symmetric
Similarly for $A^{-1} B^{-1}$.
28. If $f(x)=a x^{2}+b x+c \quad a, b, c \in R$ and the equation $f(x)-x=0$ has imaginary roots α and β and γ and δ be the roots of $f(f(x))-x=0$, then $\left|\begin{array}{lll}2 & \alpha & \delta \\ \beta & 0 & \alpha \\ \gamma & \beta & 1\end{array}\right|$ is
a) 0
b) purely real these

Key. B
Sol. $\quad f(x)-x>0$ or, $f(x)-x<0 \forall x \in R$
$f(f(x))-f(x)>0$ or $f(f(x))-f(x)<0$
Adding, $f(f(x))-x>0$ or, $\mathrm{f}(f(x))-x<0$
\Rightarrow roots of $f(f(x))-x=0$ are imaginary.

Let $z=\left|\begin{array}{lll}2 & \alpha & \delta \\ \beta & 0 & \alpha \\ \gamma & \beta & 1\end{array}\right|$
$\bar{z}=\left|\begin{array}{ccc}2 & \bar{\alpha} & \bar{\delta} \\ \bar{\beta} & 0 & \bar{\alpha} \\ \bar{\gamma} & \bar{\beta} & 1\end{array}\right|=\left|\begin{array}{ccc}2 & \beta & \gamma \\ \alpha & 0 & \beta \\ \delta & \alpha & 1\end{array}\right|=z$
29. Suppose a Matrix A satisfies $A^{2}-5 A+7 I=0$ If $A^{5}=a A+b I$, then the values of $2 a+b$ is.
a) -87
b) -105
c) 1453
d) 1155

Key. A
Sol. $\quad A^{3}=A A^{2}=A(5 A-7 I)$

$$
\begin{aligned}
& \quad=5 A^{2}-7 A=5(5 A-7 I)-7 A=18 A-35 I \\
& A^{4}=A \cdot A^{3}=A(18 A-35 I)=18(5 A-7 I)-35 A \\
& A^{5}=149 A-385 I \quad=55 A-126 I \\
& A^{5}=149 A-385 I \\
& a=149, b=-385
\end{aligned}
$$

30. The digits A, B, C are such that the three digit numbers $A 88,6 B 8,86 C$ are divisible by 72 ,
then the determinant $\left|\begin{array}{lll}A & 6 & 8 \\ 8 & B & 6 \\ 8 & 8 & C\end{array}\right|$ is divisible by
a) 76
b) 144
c) 216
d) 276

Key. B
Sol. $100 A+80+8=72 \lambda_{1}$
$600+10 B+8=72 \lambda_{2} \lambda_{4}, \lambda_{2}, \lambda_{3} \in I$.
$800+60+C=72 \lambda_{3}$
$\left|\begin{array}{ccc}A & 6 & 8 \\ 8 & B & 6 \\ 8 & 8 & C\end{array}\right|\left(R_{3} \leftarrow R_{3}+10 R_{2}+100 R_{1}\right)$
$=\left|\begin{array}{ccc}A & 6 & 8 \\ 8 & B & 6 \\ 72 \lambda_{1} & 72 \lambda_{2} & 72 \lambda_{3}\end{array}\right|$
A88 is div. by 72
$\Rightarrow \quad$ A88 is div. by 9
$\Rightarrow \quad A+8+8$ is div. by 9
$\therefore A=2$
$6 B 8$ is div. by $9 \Rightarrow B=4$.
31. If the matrix $\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ is invertible, then the planes $a_{11} x+a_{12} y+a_{13} z=0$,
$a_{21} x+a_{22} y+a_{23} z=0$ and $a_{31} x+a_{32} y+a_{33} z=0\left(a_{i j} \in R, \forall i, j\right)$
(A) intersect in a point
(B) intersect in a line
(C) have no common point
(D) are same

Key. A
Sol. Given matrix A is invertible $\Rightarrow \operatorname{det} A \neq 0$

$$
\Rightarrow \text { the given system of equation has only one solution }
$$

i.e., ($0,0,0$). Hence option (A) is correct.
32. If A is a skew-symmetric matrix of order 3 , then the matrix A^{4} is
(A) skew symmetric
(B) symmetric
(C) diagonal
(D) none of those

Key. B
Sol. We have $A^{\top}=-A$
$\left(A^{4}\right)^{\top}=(A . A \cdot A \cdot A .)^{\top}=A^{\top} A^{\top} A^{\top} A^{\top}$
$\Rightarrow(-A)(-A)(-A)(-A)$
$=(-1)^{4} A^{4}=A^{4}$
33. If ' α ' is a root of $x^{4}=1$ with negative principal argument, then the principal argument of $\Delta(\alpha)$ where
$\Delta(\alpha)=\left|\begin{array}{ccc}1 & 1 & 1 \\ \alpha^{n} & \alpha^{n+1} & \alpha^{n+3} \\ \frac{1}{\alpha^{n+1}} & \frac{1}{\alpha^{n}} & 0\end{array}\right|$ is
(A) $\frac{5 \pi}{14}$
(B) $-\frac{3 \pi}{4}$
(C) $\frac{\pi}{4}$
(D) $-\frac{\pi}{4}$

Key. B
Sol. Clearly $\alpha=-i$ where $i^{2}=-1$

So

$$
\Delta(\alpha)=\alpha^{n} \frac{1}{\alpha^{n}}\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & \alpha & \alpha^{3} \\
\frac{1}{\alpha} & 1 & 0
\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & -i & i \\
i & 1 & 0
\end{array}\right|=1(-i)+1\left(i^{2}\right)+\left(1+i^{2}\right)=-1-i
$$

So, principal argument of $\Delta(\alpha)$ is $-\frac{3 \pi}{4}$
34. If z is a complex number and $I_{1}, l_{2}, l_{3}, m_{1}, m_{2}, m_{3}$ are all real, then

$$
\left|\begin{array}{lll}
l_{1} \mathrm{z}+\mathrm{m}_{1} \overline{\mathrm{z}} & \mathrm{~m}_{1} \mathrm{z}+l_{1} \overline{\mathrm{z}} & \mathrm{~m}_{1} \mathrm{z}+l_{1} \\
l_{2} \mathrm{z}+\mathrm{m}_{2} \overline{\mathrm{z}} & \mathrm{~m}_{2} \mathrm{z}+l_{2} \overline{\mathrm{z}} & \mathrm{~m}_{2} \mathrm{z}+l_{2} \\
l_{3} \mathrm{z}+\mathrm{m}_{3} \overline{\mathrm{z}} & \mathrm{~m}_{3} \mathrm{z}+l_{3} \overline{\mathrm{z}} & \mathrm{~m}_{3} \mathrm{z}+l_{3}
\end{array}\right| \text { is equal to }
$$

(A) $|z|^{2}$
(B) 3
(C) $\left(I_{1} l_{2} l_{3}+m_{1} m_{2} m_{3}\right)^{2}|z|^{2}$
(D) 0

Key. D
Sol. $\quad\left|\begin{array}{lll}l_{1} & \mathrm{~m}_{1} & 0 \\ l_{2} & \mathrm{~m}_{2} & 0 \\ l_{3} & \mathrm{~m}_{3} & 0\end{array}\right| \times\left|\begin{array}{ccc}\mathrm{z} & \overline{\mathrm{z}} & 0 \\ \overline{\mathrm{z}} & \mathrm{z} & 0 \\ 1 & \mathrm{z} & 0\end{array}\right|=0$
35. Let A, B be square matrix such that $A B=0$ and B is non singular then
(A) $|A|$ must be zero but A may non zero
(B) A must be zero matrix
(C) nothing can be said in general about A
(D) none of these

Key. B
Sol. $\quad A \cdot B=0 \Rightarrow A \cdot B \cdot B^{-1}=0 \cdot B^{-1}$
$\Rightarrow A . I=0$
$\Rightarrow A=0$
36. The value of $\left|\begin{array}{ccc}\sqrt{6} & 2 \mathrm{i} & 3+\sqrt{6} \\ \sqrt{12} & \sqrt{3}+\sqrt{8} \mathrm{i} & 3 \sqrt{2}+\sqrt{6} \mathrm{i} \\ \sqrt{18} & \sqrt{2}+\sqrt{12} \mathrm{i} & \sqrt{27}+2 \mathrm{i}\end{array}\right|$ is
a) an integer b) a rational number
c) an irrational number
d) an imaginary number

Key. A
Sol. Take $\sqrt{6}$ common from C_{1} and apply $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-3 \mathrm{C}_{1}, \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-2 \mathrm{i} \mathrm{C}_{1}$
37. If $\mathrm{p}+\mathrm{q}+\mathrm{r}=0$ and $\left|\begin{array}{lll}p a & q b & r c \\ q c & r a & p b \\ r b & p c & q a\end{array}\right|=K\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ then the value of K is
a) $p+q-r$
b) $p+q+r$
c) $p q r$
d) - pqr

Key. D
Sol. $\quad \operatorname{pqr}\left(a^{3}+b^{3}+c^{3}\right)-a b c\left(p^{3}+q^{3}+r^{3}\right)$

$$
\begin{aligned}
& \Rightarrow \operatorname{pqr}\left(a^{3}+b^{3}+c^{3}-3 a b c\right)-a b c\left(p^{3}+q^{3}+r^{3}-3 p q r\right) \\
& \Rightarrow \operatorname{pqr}\left(a^{3}+b^{3}+c^{3}-3 a b c\right)-a b c(p+q+r)\left(p^{2}+q^{2}+r^{2}-p q-q r-r p\right) \\
& =\operatorname{pqr}\left(a^{3}+b^{3}+c^{3}-3 a b c\right)
\end{aligned}
$$

38. If $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}), \mathrm{h}(\mathrm{x})$ are polynomials of degree 4 and $\left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ a & b & c \\ p & q & r\end{array}\right|=$
$m x^{4}+n x^{3}+r x^{2}+5 x+t$ be an identity in x, then the value of
$\left|\begin{array}{ccc}f "(0)-f "(0) & g " '(0)-g^{\prime \prime}(0) & h "(0)-h "(0) \\ a & b & c \\ p & q & r\end{array}\right|$ is
a) $(3 n-r)$
b) $2(3 n-r)$
c) $3(3 n-r)$
d) $3 n+r$

Key. B
Sol. LHS $=(24 m x+6 n)-\left(12 m x^{2}+6 n x+2 r\right)$
$x=0 \Rightarrow 6 n-2 r$

$$
\Rightarrow 2(3 n-r)
$$

39. Let $x>0, y>0, z>0$ are respectively the $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$, terms of a G.P and $\Delta=\left|\begin{array}{lll}x^{k} & x^{k+1} & x^{k+2} \\ y^{k} & y^{k+1} & y^{k+2} \\ z^{k} & z^{k+1} & z^{k+2}\end{array}\right|=(r-1)^{2}\left(1-\frac{1}{r^{2}}\right)$ (where r is the common ratio) then
a) $k=-1$
b) $k=1$
c) $k=0$
d) None of these

Key. A
Sol. $\quad x^{k} y^{k} z^{k}\left|\begin{array}{ccc}1 & a r & a^{2} r^{2} \\ 1 & a r^{2} & a^{2} r^{4} \\ 1 & a r^{3} & a^{3} r^{6}\end{array}\right|$
$a^{3(k+1)} \cdot r^{3(2 k+1)}\left[(r-1)\left(r^{4}-1\right)-\left(r^{2}-1\right)^{2}\right] \Rightarrow k=-1$
40. If $f(x)=\left|\begin{array}{ccc}x^{2}-4 x+6 & 2 x^{2}+4 x+10 & 3 x^{2}-2 x+16 \\ x-2 & 2 x+2 & 3 x-1 \\ 1 & 2 & 3\end{array}\right|$. Then the value of $\int_{-3}^{3} \frac{x^{2} \sin x}{1+x^{6}} \cdot f(x) d x$ is
a) 6
b) 3
c) 0
d) $\frac{\pi}{2}$

Key. C
Sol. $\quad f(x)$ is const.
Hence $=0$
41. If A and B are square matrices of order 3 such that $|A|=-1,|B|=3$ then $|3 A B|$ is equals to
A) -9
B) -81
C) -27
D) 81

Key. B
Sol. $\quad|3 A B|=3^{3}|A||B|=27 \times-1 \times 3=-81$
42. $\mathrm{A}=\left[a_{i j}\right]_{n \times n}$ and $a_{i j}=\mathrm{i}^{2}-\mathrm{j}^{2}$ then A is necessarily
a) a unit matrix b) symmetric matrix
c) skew symmetric matrix
d) zero matrix

Key.
Sol. $a_{j i}=j^{2}-i^{2}=\left(i^{2}-j^{2}\right)=-a_{i j}$
43. If $A=\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ x & 2 & y\end{array}\right]$ is an orthogonal matrix then value of $\mathrm{x}+\mathrm{y}$ is equal to
a) -3
b) 0
c) 1
d) 3

Key. A

Sol. $\quad A \cdot A^{T}=I \Rightarrow \frac{1}{9}\left[\begin{array}{ccc}9 & 0 & x+4+2 y \\ 0 & 9 & 2 x+2-2 y \\ x+4+2 y & 2 x+2-2 y & x^{2}+y^{2}+4\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\mathrm{x}+4+2 \mathrm{y}=0,2 \mathrm{x}+2-2 \mathrm{y}=0 \Rightarrow \mathrm{x}=-2, \mathrm{y}=-1$
44. If $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ then $\mathrm{A}^{16}=$
a) $\left[\begin{array}{cc}0 & 256 \\ 256 & 0\end{array}\right]$
b) $\left[\begin{array}{cc}256 & 0 \\ 0 & 256\end{array}\right]$
c) $\left[\begin{array}{cc}-16 & 0 \\ 0 & -16\end{array}\right]$
d) $\left[\begin{array}{cc}0 & 16 \\ 16 & 0\end{array}\right]$

Key. B
Sol. $\quad A^{2}=\left[\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right], A^{4}=\left[\begin{array}{cc}-4 & 0 \\ 0 & -4\end{array}\right] A^{8}=\left[\begin{array}{cc}16 & 0 \\ 0 & 16\end{array}\right], A^{16}=\left[\begin{array}{cc}256 & 0 \\ 0 & 256\end{array}\right]$
45. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be positive real numbers. Then the following system of equations in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1, \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1,-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ has
a) no solution
b) unique solution
c) infinite solution
d) finitely many solution

Key. D
Sol. Let $\frac{x^{2}}{a^{2}}=X, \frac{y^{2}}{b^{2}}=Y, \frac{z^{2}}{c^{2}}=Z$
$X+Y-Z=1, X-Y+Z=1,-X+Y+Z=1$ on solving $X=Y=Z=1$
$\Rightarrow x= \pm a, y= \pm b, z= \pm c \Rightarrow 8$ solution
46. The value of determinant $\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|$ is equal to
a) $\left(1-a^{2}-b^{2}\right)^{3}$
b) $(a+b+1)^{2}(a b+b+a)$
c) $\left(1+a^{2}+b^{2}\right)^{3}$
d) (1-
$\left.a^{2}+b^{2}\right)^{3}$
Key. C
Sol. $\Delta=\frac{1}{a b}\left|\begin{array}{ccc}b\left(1+a^{2}-b^{2}\right) & 2 a b^{2} & -2 b^{2} \\ 2 a^{2} b & a\left(1-a^{2}+b^{2}\right) & 2 a^{2} \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|$ by $\left(R_{1} \times b, R_{2} \times a\right)$
$=\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 b^{2} & -2 b^{2} \\ 2 a^{2} & 1-a^{2}+b^{2} & 2 a^{2} \\ 2 & -2 & 1-a^{2}-b^{2}\end{array}\right|$ by $\left(\frac{C_{1}}{b}, \frac{C_{2}}{a}\right)$
$\left|\begin{array}{ccc}1+a^{2}+b^{2} & 0 & -2 b^{2} \\ 1+a^{2}+b^{2} & 1+a^{2}+b^{2} & 2 a^{2} \\ 0 & -\left(1+a^{2}+b^{2}\right) & 1-a^{2}-b^{2}\end{array}\right|\left(C_{1} \rightarrow C_{1}+C_{2}, C_{2} \rightarrow C_{2}+C_{3}\right)$
$=\left(1+a^{2}+b^{2}\right)^{3}$
47. If $\left|\begin{array}{lll}a^{2}+\lambda^{2} & a b+c \lambda & c a-b \lambda \\ a b-c \lambda & b^{2}+\lambda^{2} & b c+a \lambda \\ a c+b \lambda & b c-a \lambda & c^{2}+\lambda^{2}\end{array}\right|\left|\begin{array}{ccc}\lambda & c & -b \\ -c & \lambda & a \\ b & -a & \lambda\end{array}\right|=\left(1+a^{2}+b^{2}+c^{2}\right)^{3}$ then λ is equal to
a) 0
b) 1
c) -1
d) ± 1

Key. B
Sol. If $\Delta=\left|\begin{array}{ccc}\lambda & c & -b \\ -c & \lambda & a \\ b & -a & \lambda\end{array}\right|$ other determinant (say Δ^{1}) is the cofactor determinant
$\Delta \Delta^{1}=\Delta^{3}$ (for 3 $3^{\text {rd }}$ order det)
$\Delta=\lambda\left(\lambda^{2}+a^{2}+b^{2}+c^{2}\right)$ by comparing $\lambda=1$
48. Constant term in $\mathrm{f}(\mathrm{x})=\left|\begin{array}{ccc}x & (1+\sin x)^{3} & \cos x \\ 1 & \ln (1+x) & 2 \\ x^{2} & (1+x)^{2} & 0\end{array}\right|$ when $\mathrm{f}(\mathrm{x})$ is expressed polynomial in x , is
a) 0
b) -1
c) 1
d) 2

Key. C
Sol. $\quad f(0)=+1$
49. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right], \mathrm{a}, \mathrm{b} \in \mathrm{N}$, then number of matrix ' B ' such that $\mathrm{AB}=\mathrm{BA}$ are
a) 0
b) 1
c) finitely many
d) infinite

Key. D
Sol. $\quad A B=\left[\begin{array}{cc}a & 2 b \\ 3 a & 4 b\end{array}\right], B A=\left[\begin{array}{cc}a & 2 a \\ 3 b & 4 b\end{array}\right]$
$A B=B A \Rightarrow a=b$
50. If $f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$ then $\mathrm{f}(\alpha+\beta)=$
a) $f(\alpha)+f(\beta)$
b) $f(\alpha) \cdot f(\beta)$
c) $f(\alpha)-f(\beta)$
d) 0

Key. B
Sol. $\quad f(\alpha) \cdot f(\beta)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos \beta & -\sin \beta & 0 \\ \sin \beta & \cos \beta & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\cos (\alpha+\beta) & -\sin (\alpha+\beta) & 0 \\ \sin (\alpha+\beta) & \cos (\alpha+\beta) & 0 \\ 0 & 0 & 1\end{array}\right]$
51. The system of equations $\mathrm{x}+\mathrm{ky}+3 \mathrm{z}=0,3 \mathrm{x}+\mathrm{ky}-2 \mathrm{z}=0,2 \mathrm{x}+3 \mathrm{y}-4 \mathrm{z}=0$ possess a nontrivial solution over the set of rationals, then 2 k is an integral element of the interval
A) $[10,20]$
B) $(20,30)$
C) $[30,40]$
D) $(40,50)$

Key. C
Sol. For the given system to have a non-trival solution, we must have
$\left|\begin{array}{ccc}1 & \mathrm{k} & 3 \\ 3 & \mathrm{k} & -2 \\ 2 & 3 & -4\end{array}\right|=0 \quad \Rightarrow \quad\left|\begin{array}{ccc}1 & \mathrm{k} & 3 \\ 0 & -2 \mathrm{k} & -11 \\ 0 & 3-2 \mathrm{k} & -10\end{array}\right|=0$
[Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-3 \mathrm{R}_{1}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-2 \mathrm{R}_{1}$]

$$
\Rightarrow \quad 20 \mathrm{k}+11(3-2 \mathrm{k})=0 \quad \Rightarrow \quad \mathrm{k}=\frac{33}{2}
$$

52. If $\mathrm{p}+\mathrm{q}+\mathrm{r}=0=\mathrm{a}+\mathrm{b}+\mathrm{c}$, then the value of the determinant $\left|\begin{array}{lll}\mathrm{pa} & \mathrm{qb} & \mathrm{rc} \\ \mathrm{qc} & \mathrm{ra} & \mathrm{pb} \\ \mathrm{rb} & \mathrm{pc} & \mathrm{qa}\end{array}\right|$ is
A) 0
B) $p q+q b+r c$
C) 1
D) none of these

Key. A
Sol. $\quad\left|\begin{array}{ccc}\mathrm{pq} & \mathrm{qb} & \mathrm{rc} \\ \mathrm{qc} & \text { ra } & \mathrm{pb} \\ \mathrm{rb} & \mathrm{pc} & \mathrm{qa}\end{array}\right|=\operatorname{pqr}\left(\mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}\right)-\mathrm{abc}\left(\mathrm{p}^{3}+\mathrm{q}^{3}+\mathrm{r}^{3}\right)=\operatorname{pqr}(3 \mathrm{abc})-\operatorname{abc}(3 \mathrm{pqr})=0$
53. Let A and B are two non-singular square matrices, A^{T} and B^{T} are the transpose matrices of A and B respectively, then which of the following is correct
A) $B^{T} A B$ is symmetric matrix if and only if A is symmetric
B) $B^{T} A B$ is symmetric matrix if and only if B is symmetric
C) $B^{T} A B$ is skew symmetric matrix for every matrix A
D) $B^{T} A B$ is skew symmetric matrix if B is skew symmetric

Key. A
Sol. $\quad\left(B^{T} A B\right)^{T}=B^{T} A^{T}\left(B^{T}\right)^{T}=B^{T} A^{T} B$
$=\mathrm{B}^{\mathrm{T}} \mathrm{AB}$ iff A is symmetric
$\therefore \quad B^{T} A B$ is symmetric iff A is symmetric
Also $\left(B^{T} A B\right)^{T}=B^{T} A^{T} B=(-B) A^{T} B$
$\therefore \quad \mathrm{B}^{\mathrm{T}} \mathrm{AB}$ is not skew symmetric if B is skew symmetric
54. If A and B are two square matrices of order 3×3 which satisfy $A B=A$ and $B A=B$ then $(A+B)^{7}$ is
A) $7(A+B)$
B) $7 . \mathrm{I}_{3 \times 3}$
C) $64(A+B)$
D) $128 \mathrm{I}_{3 \times 3}$

Key. C
Sol. $\quad \mathrm{AB}=\mathrm{A}, \mathrm{BA}=\mathrm{B} \quad \Rightarrow \quad \mathrm{A}^{2}=\mathrm{A}$ and $\mathrm{B}^{2}=\mathrm{B}$

$$
\begin{aligned}
(A+B)^{2} \quad & =A^{2}+B^{2}+A B+B A \\
& =A+B+A+B=2(A+B) \\
(A+B)^{3} & =(A+B)^{2}(A+B)=2(A+B)^{2}=2^{2}(A+B) \\
(A+B)^{7} & =2^{6}(A+B)=64(A+B)
\end{aligned}
$$

55. $\left|\mathrm{A}_{3 \times 3}\right|=3,\left|\mathrm{~B}_{3 \times 3}\right|=-1$ and $\left|\mathrm{C}_{2 \times 2}\right|=+2$ then $|2 \mathrm{ABC}|=$
A) $2^{3}(6)$
B) $2^{3}(-6)$
C) $2(-6)$
D) none of these

Key. D
Sol. 2 ABC is not defined
$\therefore \quad$ there is no solution
56. If A is a non-diagonal involutory matrix, then
A) $\mathrm{A}-\mathrm{I}=0$
B) $\mathrm{A}+\mathrm{I}=0$
C) $\mathrm{A}-\mathrm{I}$ is non zero singular
D) none of these

Key. C

Sol. $\quad A^{2}=I \Rightarrow A^{2}-I=O$
$\Rightarrow \quad(\mathrm{A}+\mathrm{I})(\mathrm{A}-\mathrm{I})=\mathrm{O}$
$\therefore \quad$ either $|\mathrm{A}+\mathrm{I}|=0$ or
$|\mathrm{A}-\mathrm{I}|=0$
If $|\mathrm{A}-\mathrm{I}| \neq 0$, then $(\mathrm{A}+\mathrm{I})(\mathrm{A}-\mathrm{I})=\mathrm{O} \Rightarrow \mathrm{A}+\mathrm{I}=\mathrm{O}$ which is not so
$\therefore \quad|\mathrm{A}-\mathrm{I}|=0$ and $\mathrm{A}-\mathrm{I} \neq \mathrm{O}$.
57. If $\mathrm{A}^{3}=\mathrm{O}$, then $\mathrm{I}+\mathrm{A}+\mathrm{A}^{2}$ equals
A) $\mathrm{I}-\mathrm{A}$
B) $(\mathrm{I}-\mathrm{A})^{-1}$
C) $(I+A)^{-1}$
D) none of these

Key. B
Sol. $\quad \mathrm{A}^{3}=0$
$\left(\mathrm{I}+\mathrm{A}+\mathrm{A}^{2}\right)(\mathrm{I}-\mathrm{A})=\mathrm{I}-\mathrm{A}^{3}=\mathrm{I}$
$\therefore \quad \mathrm{I}+\mathrm{A}+\mathrm{A}^{2}=(\mathrm{I}-\mathrm{A})^{-1}$
58. If a determinant of order 3×3 is formed by using the numbers 1 or -1 then minimum value of determinant is
A) -2
B) -4
C) 0
D) -8

Key. B
Sol. Let $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$\mathrm{c}_{2} \rightarrow \mathrm{c}_{2}-\frac{\mathrm{a}_{12}}{\mathrm{a}_{11}} \mathrm{C}_{1} \quad \mathrm{C}_{3} \rightarrow \quad \mathrm{C}_{3}-\frac{\mathrm{a}_{13}}{\mathrm{a}_{11}} \mathrm{C}_{1}$
$\left.\left|\begin{array}{ccc}a_{11} & 0 & 0 \\ a_{21} & \left(a_{22}-\frac{a_{12}}{a_{11}} \times a_{21}\right) & \left(\begin{array}{c}\left.a_{23}-\frac{a_{13}}{a_{11}} a_{21}\right) \\ a_{31} \\ \left(a_{32}-\frac{a_{12}}{a_{11}} \times a_{31}\right)\end{array}\right)\end{array}\right| \begin{array}{l}\left.a_{32}-\frac{a_{13}}{a_{11}} \times a_{31}\right)\end{array}\right)$ so minimum value $=-4$
59. If A is a diagonal matrix of order 3×3 is commutative with every square matrix of order $3 \times$ 3 under multiplication and trace $(\mathrm{A})=12$, then
(A) $|A|=64$
B) $|\mathrm{A}|=16$
C) $|\mathrm{A}|=12$
D) $|\mathrm{A}|=0$

Key. A
Sol. A diagonal matrix is commutative with every square matrix if it is scalar matrix so every diagonal element is 4 .

$$
\therefore \quad|A|=64
$$

60. If A is a square matrix of order 3 such that $|A|=2$ then $\left|\left(\operatorname{adj} A^{-1}\right)^{-1}\right|$ is
A) 1
B) 2
C) 4
D) 8

Key. C
Sol. $\quad\left|\operatorname{adj} \mathrm{A}^{-1}\right|=\left|\mathrm{A}^{-1}\right|^{2}=\frac{1}{|\mathrm{~A}|^{2}}$
$\left|\left(\operatorname{adj} \mathrm{A}^{-1}\right)^{-1}\right|=\frac{1}{\left|\operatorname{adj} \mathrm{~A}^{-1}\right|}=|\mathrm{A}|^{2}=2^{2}=4$
61. If A and B are two matrices such that $\mathrm{AB}=\mathrm{B}$ and $\mathrm{BA}=\mathrm{A}$, then
A) $\left(\mathrm{A}^{6}-\mathrm{B}^{5}\right)^{3}=\mathrm{A}-\mathrm{B}$
B) $\left(\mathrm{A}^{5}-\mathrm{B}^{5}\right)^{3}=\mathrm{A}^{3}-\mathrm{B}^{3}$
C) $\mathrm{A}-\mathrm{B}$ is idempotent
D) $A-B$ is nilpotent

Key. D
Sol. Since $A B=B$ and $B A=A$
$\therefore \quad A$ and B both are idempotent
$(A-B)^{2}=A^{2}-A B-B A+B^{2}=A-B-A+B=0$
$\therefore \quad \mathrm{A}-\mathrm{B}$ is nilpotent
62. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ are two matrices such that $A B=B A$ and $c \neq 0$, then value of $\frac{a-d}{3 b-c}$ is:
A) 0
B) 2
C) -2
D) -1

Key. D
Sol. $\quad A B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}a+2 c & b+2 d \\ 3 a+4 c & 3 b+4 d\end{array}\right]$
$B A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}a+3 b & 2 a+4 b \\ c+3 d & 2 c+4 d\end{array}\right]$
If $A B=B A$, then $a+2 c=a+3 b$

$$
\Rightarrow \quad 2 c=3 b \quad \Rightarrow b \neq 0
$$

$$
\mathrm{b}+2 \mathrm{~d}=2 \mathrm{a}+4 \mathrm{~b}
$$

$$
\Rightarrow \quad 2 a-2 d=-3 b
$$

$\frac{a-d}{3 b-c}=\frac{-\frac{3}{2} b}{3 b-\frac{3}{2} b}=-1$
63. Let $f(\alpha)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$, then $(f(\alpha))^{-1}$ is equal to
A) $f(\alpha)$
B) $f(-\alpha)$
C) $\mathrm{f}(\alpha-1)$
D) none

Key. B
Sol. $(f(\alpha))^{-1}=\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]=f(-\alpha)$
64. A and B are square matrices and A is non-singular matrix, $\left(A^{-1} B A\right)^{n}, n \in I^{+}$, is equal to
A) $A^{-n} B^{n} A^{n}$
B) $A^{n} B^{n} A^{-n}$
C) $A^{-1} B^{n} A$
D) $\mathrm{A}^{-\mathrm{n}} \mathrm{BA}^{\mathrm{n}}$

Key. C
Sol. For $n=2 \Rightarrow \quad\left(A^{-1} B A\right)\left(A^{-1} B A\right)=A^{-1} B^{2} A$
$\left(\mathrm{A}^{-1} \mathrm{~B}^{3} \mathrm{~A}\right) \quad$ and soon
Thus $\left(A^{-1} B A\right)^{n}=A^{-1} B^{n} A$
65. If $\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] \mathrm{A}\left[\begin{array}{cc}-3 & 2 \\ 5 & -1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then $\mathrm{A}=$
A) $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
В) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
C) $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
D) $-\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$

Key. A
Sol. $\quad\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] \mathrm{A}\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$A=\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}-3 & -2 \\ -5 & -3\end{array}\right](-1)$
$=\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]\left[\begin{array}{ll}3 & 2 \\ 5 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
23. If $\mathrm{A}=\left[\begin{array}{ll}5 & -6 \\ 1 & -1\end{array}\right]$ then determinant of $\mathrm{A}^{1003}-5 \mathrm{~A}^{1002}$ is
(A) 1
(B) 2
(C) 4
(D) 6

Key. D
Sol. $\quad\left|A^{1003}-5 A^{1002}\right|=\left|A^{1002}(\mathrm{~A}-5 \mathrm{I})\right|$
$=\left|\mathrm{A}^{1002}\right||\mathrm{A}-5 \mathrm{I}|$
$=|\mathrm{A}|^{1002}|\mathrm{~A}-5 \mathrm{I}|$
$=1 \times\left|\begin{array}{ll}0 & -6 \\ 1 & -6\end{array}\right|=6$

Matrices \& Determents

Multiple Correct Answer Type

1. If $\Delta=\left|\begin{array}{cccc}a & c & c-a & a+c \\ c & b & b-c & b+c \\ a-b & b-c & 0 & a-c \\ x & y & z & 1+x+y\end{array}\right|=0$, then
a) a,b,c are in A.P
b) b,a,c are in A.P
c) a,c,b are in G.P
d) a, c, b are in H.P

Key. A, C
Sol. $\quad c_{3} \rightarrow c_{3}-\left(c_{2}-c_{1}\right)$
$c_{4} \rightarrow c_{4}-\left(c_{1}+c_{2}\right)$
$\left|\begin{array}{cccc}a & c & 0 & 0 \\ c & b & 0 & 0 \\ a-b & b-c & a+c-2 b & 0 \\ x & y & z+x-y & 1\end{array}\right|=(a+c-2 b)\left(a b-c^{2}\right)$
2. If ' A ' is a matrix of size $n \times n$ such that $A^{2}+A+2 I=0$, then
a) A is non-singular
b) A is symmetric
c) $|A| \neq 0$
d) $A^{-1}=\frac{-1}{2}(A+I)$

Key. A,C,D
Sol. $\quad A(A+I)=-2 I$
$|A(A+I)|=|-2 I|$
$|A||A+I|=(-2)^{n} \neq 0$
3. If A and B are two invertible matrices of the same order, then $\operatorname{adj}(A B)$ is equal to
a) $\operatorname{adj}(B) \operatorname{adj}(A)$
b) $|B||A| B^{-1} A^{-1}$
c) $|B||A| \cdot A^{-1} B^{-1}$
d) $|A||B|(A B)^{-1}$

Key. A,B,D
Sol. $\quad \operatorname{adj}(A B)=|A B|(A B)^{-1}$
$=|A||B|\left(B^{-1} A^{-1}\right)$
4. If the sum of two idempotent matrices is idempotent then
a) $A B+B A=0$
b) $A B=B A=I$
c) $A B \neq B A$
d) $A B=B A=0$

Key. A,D
Sol. $\quad(A+B)^{2}=A^{2}+A B+B A+B^{2}=A+B$
$\Rightarrow A B+B A=0$
$A^{2} B+A B A=0 \Rightarrow A^{2} B+(-B A) A=0$
$\Rightarrow A B-B A=0$
5. If a square matrix $A=\left[a_{i j}\right], a_{i j}=i^{2}-j^{2}$ is of even order, then
(A) A is a skew symmetric matrix
(B) $|\mathrm{A}|$ is a perfect square
(C) A is a symmetric and $|A|=0$
(D) A is neither symmetric nor skew symmetric

Key. A,B
Sol. Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=\left[\begin{array}{cc}0 & -3 \\ 3 & 0\end{array}\right]$
$A^{\prime}\left[\begin{array}{cc}0 & 3 \\ -3 & 0\end{array}\right]=-\left[\begin{array}{cc}0 & -3 \\ 3 & 0\end{array}\right]=-A$
\therefore A is skew-symmetric and $|\mathrm{A}|=\left|\begin{array}{cc}0 & -3 \\ 3 & 0\end{array}\right|=9$ is a perfect square.
6. If the sum of two idempotent matrices is idempotent then
a) $A B+B A=0$
b) $A B=B A=I$
c) $A B \neq B A$
d) $A B=B A=0$

Key. A, D
Sol. $\quad(A+B)^{2}=A^{2}+A B+B A+B^{2}=A+B$

$$
\begin{aligned}
& \Rightarrow A B+B A=0 \\
& A^{2} B+A B A=0 \Rightarrow A^{2} B+(-B A) A=0 \\
& \quad \Rightarrow A B-B A=0
\end{aligned}
$$

7. If matrix $A=\left\{a_{i j}\right\}_{n \times n}$, where $a_{i j}=i^{2}-j^{2}$, then
(A) A is skew symmetric matrix
(B) trace $(A)=0$
(C) A is singular if n is odd
(D) A is singular " n î N

Key. A, B, C
Sol. $\quad a_{i j}=i^{2}-j^{2}$
$\mathrm{a}_{\mathrm{ji}}=\mathrm{j}^{2}-\mathrm{i}^{2}=-\left(\mathrm{i}^{2}-\mathrm{j}^{2}\right)=-\mathrm{a}_{\mathrm{ij}}$
$\therefore \quad A$ is skew symmetric, trace of $A=0$ and singular if n is odd
8. A square matrix A with elements from the set of real numbers is said to be orthogonal if
$A^{\top}=A^{-1}$. If A is an orthogonal matrix, then
(A) A^{\top} is orthogonal
(B) A^{-1} is orthogonal
(C) Adj A = A'
(D) $\left|A^{-1}\right|=1$

Key. A,B
Sol. $A^{\top}=A^{-1} \quad A A^{\prime}=I=A^{\prime} A$ since A is orthogonal
$A^{\prime}\left(A^{\prime}\right)^{\prime}=A^{\prime} A=1$ from above
hence A^{\prime} is orthogonal
$A^{-1}=A^{\prime} \quad \therefore \quad A^{-1}$ is also orthogonal
9. Let then
(A^{*})
(C) is not invertible
(B)
(D*) is invertible

Sol Also, is invertible is invertible.
10. If $\left(a^{\log _{b} x}\right)^{2}-5 \mathrm{x}^{\log _{b} a}+6=0$, where $\mathrm{a}>0, \mathrm{~b}>0 \& \mathrm{ab}^{1} 1$, then the value of x can be equal to
(A) $2^{\log _{b} a}$
(B) $3^{\log _{a} b}$
(C) $b^{\log _{a} 2}$
(D) $a^{\log _{b} 3}$

Key. B,C
11. If $A=\left\lvert\, \begin{array}{lll}2 & -3 & 4\end{array}\right.$, then
(A) $\operatorname{adj}(\operatorname{adj} \mathrm{A})=\mathrm{A}$
(B) $|\operatorname{adj}(\operatorname{adj} A)|=1$
(C) $|\operatorname{adj} \mathrm{A}|=1$
(D) non of these

Key. A,B,C
12. P is a non singular matrix and A, B are two matrices such that $B=P^{-1} A P$ then the true statements among the following are
A) A is invertible iff B is invertible
B) $\quad B^{n}=P^{-1} A^{n} P \forall n \in N$
C) $\forall \lambda \in R, B-\lambda I=P^{-1}(A-\lambda I) P$ (I is the identity matrix)
D) A, B are both singular matrices

Key. A,B,C
Sol. Conceptual
13. If $x, y, z, w \in R$ satisfy the following system of equations
$x+y+z+w=1 ; x+2 y+4 z+8 w=16 ; x+3 y+9 z+27 w=81$ and $x+4 y+16 z+64 w=256$, then the pairs which has H.C.F. as 2 is
A) $(|w|,|z|)$
B) $(|z|,|y|)$
C) $(|y|,|x|)$
D) $(|z|,|x|)$

Key. C
Sol. Observe that $1,2,3,4$ are roots of

$$
\begin{aligned}
& n^{4}-w n^{3}-z n^{2}-y n-x=0 \\
& w=10, z=-35, y=50, x=-24
\end{aligned}
$$

14. Which of the following functions will not have absolute minimum value?
A) $\quad \cot (\sin x)$
B) $\tan (\log x)$
C) $x^{2005}-x^{1947}+1$
D) $x^{2006}+x^{1947}+1$

Key. A,B,C
Sol. Even degree polynomial with leading coefficient positive will have absolute minimum.
15. Let A_{n} is a $n \times n$ matrix in which diagonal elements are $1,2,3, \ldots ., n$ (i.e., $a_{11}=1, a_{22}=2, a_{33}=3, \ldots ., a_{i i}=i, \ldots \ldots a_{n n}=n$) and all other elements are equal to ' n ' then
A) A_{n} is singular for all ' n '
B) $\quad A_{n}$ is nonsingular for all ' n '
C) det. $A_{5}=120$
D) $\operatorname{det} . A_{n}=0$

Key. B,C

Sol.

$$
A_{n}=\left(\begin{array}{cccc}
1 & n & n \ldots & n \\
n & 2 & n \ldots & n \\
n & n & 3 \ldots & n \\
n & n & n \ldots & n
\end{array}\right)
$$

$\therefore A_{n}$ is nonsingular for all ' n '

$$
\left|A_{n}\right|=(-1)^{n+1} n!
$$

16. If $A=\left[a_{i j}\right]$ is a square matrix such that $a_{i j}=i^{2}-j^{2}$, then
a) $|A|$ is a perfect square if A is of even order
b) $|A|=0$ if A is of odd order
c) A is singular for any square matrix
d) we cannot say any thing about $|A|$

Key: A,B
Hint $\quad a_{i j}=i^{2}-j^{2} \Rightarrow a_{i j}=j^{2}-i^{2}=-\left(i^{2}-j^{2}\right)=-a_{i j}$
$\therefore \mathrm{a}_{\mathrm{ij}}=-\mathrm{a}_{\mathrm{ji}}$
A is skew symentic
17. If $\Delta(x)=\left|\begin{array}{ccc}x^{2}+4 x-3 & 2 x+4 & 13 \\ 2 x^{2}+5 x-9 & 4 x+5 & 26 \\ 8 x^{2}-6 x+1 & 16 x-6 & 104\end{array}\right|=a x^{3}+b x^{2}+c x+d$, then
(A) $a=3$
(B) $a=0$
(C) $c=0$
(D) $b=2$

Key: B, C
Hint: $\quad \Delta^{\prime}(\mathrm{x})=\left|\begin{array}{ccc}2 \mathrm{x}+4 & 2 \mathrm{x}+4 & 13 \\ 4 \mathrm{x}+5 & 4 \mathrm{x}+5 & 26 \\ 16 \mathrm{x}-6 & 16 \mathrm{x}-6 & 104\end{array}\right|+\left|\begin{array}{ccc}\mathrm{x}^{2}+4 \mathrm{x}-3 & 2 & 13 \\ 2 \mathrm{x}^{2}+5 \mathrm{x}-9 & 4 & 26 \\ 8 \mathrm{x}^{2}-6 \mathrm{x}+1 & 16 & 104\end{array}\right|$
$=0+2 \times 13 \times(0)=0$
$\Rightarrow \Delta(\mathrm{x})=\mathrm{constant}$
$\Rightarrow \quad a=0, b=0, c=0$
18. Let $a_{1}, a_{2}, a_{3} \ldots \ldots$. be real numbers which are in arithmetic progression with common difference $d \neq 0$. Then
A) $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{5} & a_{6} & a_{7}\end{array}\right]$ is singular
B) $B=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{2} & a_{3} & a_{4} \\ a_{2} & a_{4} & a_{6}\end{array}\right]$ is non-singular
C) The system of equations $a_{1} x+a_{2} y+a_{3} z=0$
$a_{3} x+a_{1} y+a_{2} z=0$
$a_{4} x+a_{5} y+a_{6} z=0$ has unique solution
D) The system of equations $a_{1} x+a_{2} y+a_{3} z=0$

$$
\begin{aligned}
& a_{4} x+a_{5} y+a_{6} z=0 \\
& a_{7} x+a_{8} y+a_{9} z=0 \text { has infinitely many solutions }
\end{aligned}
$$

Key: A, C, D
Hint: Determinants in (A), (B) and (D) are zero, and in (C) the determinant is non zero.
19. Let $A=\left\{1^{2}, 3^{2}, 5^{2}, \ldots\right\}$.If 9 elements selected from set A to make a 3×3 matrix then det (A) will be divisible by
(A) 9
(B) 36
(C) 8
(D) 64

Key: C,D
Hints: $\quad(2 \mathrm{n}+1)^{2}-(2 \mathrm{~m}+1)^{2}=4(\mathrm{~m}+\mathrm{n}+1)(\mathrm{n}-\mathrm{m})=$ multiple of 8
20. If $\mathrm{A}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$ and $\mathrm{A}^{2012}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]$, then which of the following is/are correct?
(A) $\mathrm{a}=\mathrm{d}$
(B) $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=4026$
(C) $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{d}^{2}=2$
(D) $\mathrm{b}=2012$

Key. A,B,C
Sol. $\quad A^{2}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 4 & 1\end{array}\right]$
Hence, $\mathrm{A}^{\mathrm{n}}=\left[\begin{array}{cc}1 & 0 \\ 2 \mathrm{n} & 1\end{array}\right]$
21. Which of the following statements are FALSE?
(A) If A and B are square matrices of the same order such that $A B A B=0$, it follows that $B A B A=0$.
(B) Let A and B be different $n \times n$ matrices with real numbers. If $A^{3}=B^{3}$ and
$A^{2} B=B^{2} A$, then $A^{2}+B^{2}$ is invertible.
(C) If A is a square, non-singular and symmetric matrix, then $\left(\left(\mathrm{A}^{-1}\right)^{-1}\right)^{-1}$ is skew symmetric.
(D) The matrix of the product of two invertible square matrices of the same order is also invertible.
Key. A,B,C

Sol.

is a counter example. Therefore, (A) is wrong.
(B) We have $\left(A^{2}+B^{2}\right)(A-B)=A^{3}-B^{3}-A^{2} B+B^{2} A=0$
and $A-B \neq 0 \Rightarrow A^{2}+B^{2}$ is not invertible. Therefore (B) is also wrong.
(C) $A^{T}=A$
$\left(\left(A^{-1}\right)^{-1}\right)^{-1}=A^{-1}$
$\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}=A^{-1}$
So, $\left(\left(\mathrm{A}^{-1}\right)^{-1}\right)^{-1}$ is also symmetric. Therefore (C) is also wrong.
(D) $|\mathrm{A}| \neq 0,|\mathrm{~B}| \neq 0 \Rightarrow|\mathrm{AB}| \neq 0$

So, AB is invertible. Therefore (D) is correct.
22. If $f(x)=\left|\begin{array}{ccc}(1+x)^{a} & (1+2 x)^{b} & 1 \\ 1 & (1+x)^{a} & (1+2 x)^{b} \\ (1+2 x)^{b} & 1 & (1+x)^{a}\end{array}\right|, \quad$ where a, b being positive integers, then
(A) constant term of $f(x)$ is 0
(B) coefficient of x in $f(x)$ is 0
(C) constant term in $f(x)$ is $(a-b)$
(D) coefficient of x in $f(x)$ is (a-b)

Key. A,B
Sol. Let $\left|\begin{array}{ccc}(1+x)^{a} & (1+2 x)^{b} & 1 \\ 1 & (1+x)^{a} & (1+2 x)^{b} \\ (1+2 x)^{b} & 1 & (1+x)^{a}\end{array}\right|=A+B x+C x^{2}+\ldots$
putting $x=0$, we get $A=\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right|=0$
Now differentiating both sides w.r.t. x and putting $x=0$, we get
$B=\left|\begin{array}{ccc}a & 2 b & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right|+\left|\begin{array}{ccc}1 & 1 & 1 \\ 0 & a & 2 b \\ 1 & 1 & 1\end{array}\right|+\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ 2 b & 0 & a\end{array}\right|=0$
Hence coefficient of x is 0 .
23. The value of the determinant $\left|\begin{array}{ccc}\cos (\theta+\alpha) & -\sin (\theta+\alpha) & \cos 2 \alpha \\ \sin \theta & \cos \theta & \sin \alpha \\ -\cos \theta & \sin \theta & \lambda \cos \alpha\end{array}\right|$ is
(A) independent of θ for all $\lambda \in \mathrm{R}$
(B) independent of θ and α when $\lambda=1$
(C) independent of θ and α when $\lambda=-1$
(D) independent of λ for all θ

Key. A,C

Sol. We have, $\sin \theta \quad \cos \theta \quad \sin \alpha$
$-\cos \theta \quad \sin \theta \quad \lambda \cos \alpha$

$$
=\frac{1}{\sin \alpha \cos \alpha}\left|\begin{array}{ccc}
\cos (\theta+\alpha) & -\sin (\theta+\alpha) & \cos 2 \alpha \\
\sin \theta \sin \alpha & \cos \theta \sin \alpha & \sin ^{2} \alpha \\
-\cos \theta \cos \alpha & \sin \theta \cos \alpha & \lambda \cos ^{2} \alpha
\end{array}\right|
$$

[Multiplying R_{2} and R_{3} by $\sin \alpha$ and $\cos \alpha$, respectively]

$$
=\frac{1}{\sin \alpha \cos \alpha}\left|\begin{array}{ccc}
0 & 0 & \cos 2 \alpha+\sin ^{2} \alpha+\lambda \cos ^{2} \alpha \\
\sin \theta \sin \alpha & \cos \theta \sin \alpha & \sin ^{2} \alpha \\
-\cos \theta \cos \alpha & \sin \theta \cos \alpha & \lambda \cos ^{2} \alpha
\end{array}\right|
$$

[Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$]

$$
=\frac{\cos 2 \alpha+\sin ^{2} \alpha+\lambda \cos ^{2} \alpha}{\sin \alpha \cdot \cos \alpha}\left|\begin{array}{cc}
\sin \theta \sin \alpha & \cos \theta \sin \alpha \\
-\cos \theta \cos \alpha & \sin \theta \cos \alpha
\end{array}\right|
$$

$$
=\left(\cos ^{2} \alpha+\lambda \cos ^{2} \alpha\right)\left|\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right|=(1+\lambda) \cos ^{2} \alpha
$$

Therefore, the given determinant is independent of θ for all real values of λ. Also, $\lambda=-1$, then it is independent of θ and α.
24. Suppose that a, b, c are real numbers such that $a+b+c=1$. If the matrix $A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]$ be an orthogonal matrix, then
(A) A is an involutory matrix
(B) $|\mathrm{A}|$ is negative
(C) $a^{3}+b^{3}+c^{3}-3 a b c=1$
(D) atleast one of a, b, c is negative

Key. A,B,C,D
Sol. $\quad A A^{T}=A^{T} A=I$. Also $A^{T}=A$, so $A^{2}=I \Rightarrow A$ is involutory matrix.
$\Rightarrow \quad\left|\mathrm{A}^{2}\right|=|\mathrm{A}|^{2}=1$ or, $|\mathrm{A}|= \pm 1$.
But $\quad|A|=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=(a+b+c)\left|\begin{array}{lll}1 & b & c \\ 1 & c & a \\ 1 & a & b\end{array}\right|=(a+b+c)\left(a b+b c+c a-a^{2}-b^{2}-c^{2}\right)$

$$
|\mathrm{A}|=\mathrm{ab}+\mathrm{bc}+\mathrm{ca}-\mathrm{a}^{2}-\mathrm{b}^{2}-\mathrm{c}^{2} \quad(\because \mathrm{a}+\mathrm{b}+\mathrm{c}=1)
$$

$\therefore \quad a^{2}+b^{2}+c^{2}-a b-b c-c a \geq 0$
So $\quad|A|=-1$. Hence $a^{3}+b^{3}+c^{3}-3 a b c=1$. Again $a^{2}+b^{2}+c^{2}-a b-b c-c a=1$
$\Rightarrow \quad 1-3(\mathrm{ab}+\mathrm{bc}+\mathrm{ca})=1$, so $\mathrm{ab}+\mathrm{bc}+\mathrm{ca}=0, \Rightarrow$ atleast one of a, b, and c is negative.
25. The determinant $\left|\begin{array}{ccc}1 & a & a^{2} \\ \cos (n-1) x & \cos n x & \cos (n+1) x \\ \sin (n-1) x & \sin n x & \sin (n+1) x\end{array}\right|=0$, if
(A) $\mathrm{a}=0$
(B) $\cos x=0$
(C) $\sin x=0$
(D) $\cos \mathrm{x}=\frac{1+\mathrm{a}^{2}}{2 \mathrm{a}}$

Key. C,D
Sol. $\quad \sin x\left(1-2 a \cos x+a^{2}\right)=0$
$\Rightarrow \quad \sin x=0 \cos x=\frac{1+a^{2}}{2 a}$
26. A, B are any two square matrices of same order such that $A B=A \& B A=B$ then $(A+B)^{5}=$ \qquad
(A) $32(A+B)$
(B) $16(\mathrm{~A}+\mathrm{B})$
(C) $64(A+B)$
(D) $1024(A+B)$

Key. B
Sol. $\quad A B=A, B A=B \Rightarrow A^{2}=A \& B^{2}=B$
Now $(A+B)^{2}=2(A+B)$
Similarly $(A+B)^{5}=16(A+B)$
27. If A is a square Matrix such that $A \cdot(\operatorname{Adj} A)=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]$ then
a) $|A|=4$
b) $|\operatorname{adj} A|=16$
c) $\frac{|\operatorname{adj}(\operatorname{adj} A)|}{|\operatorname{adj} A|}=16$
d) $|\operatorname{adj} 2 A|=128$

Key. A,B,C
Sol. $\quad A(\operatorname{adj} A)=|A| I \quad \therefore|A|=4$
$|\operatorname{adj} A|=|A|^{n-1}=16 ;|\operatorname{adj}(\operatorname{adj} A)|=|A|^{(n-1)^{2}}=|A|^{4}=256$
$\operatorname{adj} K A=K^{n-1} \operatorname{adj} A$
$\therefore|\operatorname{adjKA}|=\left(K^{n-1}\right)^{n}|\operatorname{adj} A|$
$\therefore|\operatorname{adj} 2 A|=2^{6} .16$.
28. If $\Delta(x)=\left|\begin{array}{ccc}x^{2}+4 x-3 & 2 x+4 & 13 \\ 2 x^{2}+5 x-9 & 4 x+5 & 26 \\ 8 x^{2}-6 x+1 & 16 x-6 & 104\end{array}\right|=a x^{3}+b x^{2}+c x+d$, then
(A) $a=3$
(B) $\mathrm{a}=0$
(C) $\mathrm{c}=0$
(D) none of these

Key. B,C
Sol. $\quad \Delta^{\prime}(x)=\left|\begin{array}{ccc}2 \mathrm{x}+4 & 2 \mathrm{x}+4 & 13 \\ 4 \mathrm{x}+5 & 4 \mathrm{x}+5 & 26 \\ 16 \mathrm{x}-6 & 16 \mathrm{x}-6 & 104\end{array}\right|+\left|\begin{array}{ccc}\mathrm{x}^{2}+4 \mathrm{x}-3 & 2 & 13 \\ 2 \mathrm{x}^{2}+5 \mathrm{x}-9 & 4 & 26 \\ 8 \mathrm{x}^{2}-6 \mathrm{x}+1 & 16 & 104\end{array}\right|$

$$
=0+2 \times 13 \times(0)=0
$$

$\Rightarrow \Delta(\mathrm{x})=\mathrm{constant}$
$\Rightarrow \mathrm{a}=0, \mathrm{~b}=0, \mathrm{c}=0$
29. The system of equation is $x-y \cos \theta+z \cos 2 \theta=0, x \cos 2 \theta-y+z \cos \theta=0$ $x \cos 2 \theta-y \cos \theta+z=0$ has non-trivial solution for θ equals to
(A) $\frac{8 \pi}{3}$
(B) $\frac{\pi}{6}$
(C) $\frac{2 \pi}{3}$
(D) $\frac{\pi}{12}$

Key. A,C

Sol.

30. If a, b, c are real numbers such that $a+b+c=1$. If the matrix $A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]$ be an orthogonal matrix, then
(A) A is an involutory matrix
(B) $|A|$ is negative
(C) $a^{3}+b^{3}+c^{3}-3 a b c=1$
(D) atleast one of a, b, c is negative

Key. A,B,C,D
Sol. $\quad A A^{\top}=A^{\top} A=I$. Also $A^{\top}=A$, so $A^{2}=I \Rightarrow A$ is involutory matrix.
$\Rightarrow\left|A^{2}\right|=|A|^{2}=1$ or, $|A|= \pm 1$.
But $\quad|A|=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=(a+b+c)\left|\begin{array}{lll}1 & b & c \\ 1 & c & a \\ 1 & a & b\end{array}\right|=(a+b+c)\left(a b+b c+c a-a^{2}-b^{2}-c^{2}\right)$

$$
|A|=a b+b c+c a-a^{2}-b^{2}-c^{2} \quad(\because a+b+c=1)
$$

$\therefore \quad a^{2}+b^{2}+c^{2}-a b-b c-c a \geq 0$
So $\quad|A|=-1$. Hence $a^{3}+b^{3}+c^{3}-3 a b c=1$. Again $a^{2}+b^{2}+c^{2}-a b-b c-c a=1$
$\Rightarrow 1-3(a b+b c+c a)=1$, so $a b+b c+c a=0 \Rightarrow$ atleast one of a, b, and c is negative.
31. Consider the homogeneous system of linear equations in x, y and $z:(\sin 3 \theta) x-y+z=0$, $(\cos 2 \theta) x+4 y+3 z=0,2 x+7 y+7 z=0$. The values of ' θ ' for which the system of equations has a non-trivial solution are
a) $\{n \pi: n \in I\}$
b) $\left\{m \pi+(-1)^{\mathrm{m}} \frac{\pi}{6}: \mathrm{m} \in \mathrm{I}\right\}$ c) $\left\{\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{3}: \mathrm{n} \in \mathrm{I}\right\}$ d) none

Key. A,B
Sol. $\Delta=0$
$\left|\begin{array}{ccc}\sin 3 \theta & -1 & 1 \\ \cos 2 \theta & 4 & 3 \\ 2 & 7 & 7\end{array}\right|=0 \Rightarrow 7 \sin 3 \theta+14 \cos 2 \theta-14=0$
$\Rightarrow \sin 3 \theta+2 \cos 2 \theta-2=0 \Rightarrow \sin \theta\left(4 \sin ^{2} \theta+4 \sin \theta-3\right)=0$
$\sin \theta=0$ or $\sin \theta=\frac{1}{2}$
32. If $A=\left[\begin{array}{ccc}a & b & c \\ x & y & z \\ p & q & r\end{array}\right]$ and $B=\left[\begin{array}{ccc}q & -b & y \\ -p & a & -x \\ r & -c & z\end{array}\right]$, then
a) $|\mathrm{A}|=|\mathrm{B}|$
b) $|\mathrm{A}|=-|\mathrm{B}|$
c) $|\mathrm{A}|=2|\mathrm{~B}|$
d) A is invertible if and only if B is invertible

Key. B,D
Sol. $|B|=\left|\begin{array}{ccc}q & -b & y \\ -p & a & -x \\ r & -c & z\end{array}\right|=-\left|\begin{array}{ccc}q & b & y \\ -p & -a & -x \\ r & c & z\end{array}\right| \quad$ (operateC C_{2})

$$
\begin{aligned}
& =\left|\begin{array}{lll}
q & b & y \\
p & a & x \\
r & c & z
\end{array}\right|=-\left|\begin{array}{lll}
p & a & x \\
q & b & y \\
r & c & z
\end{array}\right| \\
& \left(\text { on }_{2}\right) \quad\left(o n R_{1} \leftrightarrow R_{2}\right) \\
& \Rightarrow|B|=-|A|
\end{aligned}
$$

33. If $\Delta=\left|\begin{array}{cccc}a & c & c-a & a+c \\ c & b & b-c & b+c \\ a-b & b-c & 0 & a-c \\ x & y & z & 1+x+y\end{array}\right|=0$, then
a) a,b,c are in A.P
b) b,a,c are in A.P
c) a, c, b are in G.P
d) a, c, b are in H.P

Key. A,C
Sol. $\quad c_{3} \rightarrow c_{3}-\left(c_{2}-c_{1}\right)$
$c_{4} \rightarrow c_{4}-\left(c_{1}+c_{2}\right)$
$\left|\begin{array}{cccc}a & c & 0 & 0 \\ c & b & 0 & 0 \\ a-b & b-c & a+c-2 b & 0 \\ x & y & z+x-y & 1\end{array}\right|=(a+c-2 b)\left(a b-c^{2}\right)$
34. If ' A ' is a matrix of size $n \times n$ such that $A^{2}+A+2 I=0$, then
a) A is non-singular
b) A is symmetric
c) $|A| \neq 0$
d) $A^{-1}=\frac{-1}{2}(A+I)$

Key. A,C,D
Sol. $\quad A(A+I)=-2 I$
$|A(A+I)|=|-2 I|$
$|A||A+I|=(-2)^{n} \neq 0$
35. If A and B are two invertible matrices of the same order, then $\operatorname{adj}(A B)$ is equal to
a) $\operatorname{adj}(B) \operatorname{adj}(A)$
b) $|B||A| B^{-1} A^{-1}$
c) $|B||A| \cdot A^{-1} B^{-1}$
d) $|A||B|(A B)^{-1}$

Key. A,B,D
Sol. $\quad \operatorname{adj}(A B)=|A B|(A B)^{-1}$
$=|A||B|\left(B^{-1} A^{-1}\right)$
36. Let $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, then
A) $\mathrm{A}^{2}-4 \mathrm{~A}-5 \mathrm{I}_{3}=0$
B) $\mathrm{A}^{-1}=\frac{1}{5}\left(\mathrm{~A}-4 \mathrm{I}_{3}\right)$
C) A^{3} is not invertible
D) A^{2} is invertible

Key. A,B,D
Sol. $\quad A^{2}-4 A-5 I_{3}=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$
$-4\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]-5\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{lll}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9\end{array}\right]+\left[\begin{array}{lll}-4 & -8 & -8 \\ -8 & -4 & -8 \\ -8 & -8 & -4\end{array}\right]+\left[\begin{array}{ccc}-5 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -5\end{array}\right]$
$=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=0$
$\therefore \quad \mathrm{A}^{2}-4 \mathrm{~A}-5 \mathrm{I}_{3}=0$
or $\quad A^{-1} A^{2}-4 A^{-1} A-5 A^{-1} I_{3}=0$
or $\quad\left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{A}-4 \mathrm{I}_{3}-5 \mathrm{~A}^{-1}=0$
or $\quad \mathrm{IA}-4 \mathrm{I}_{3}-5 \mathrm{~A}^{-1}=0$
$\therefore \quad \mathrm{A}^{-1}=\frac{1}{5}\left(\mathrm{~A}-4 \mathrm{I}_{3}\right)$
Also, $\left|\mathrm{A}^{2}\right|=\left[\begin{array}{lll}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9\end{array}\right]=9(81-64)-8(72-64)+8(64-72)$

$$
=9 \times 17-8 \times 8+8 \times(-8)
$$

$$
=133-128=5 \neq 0
$$

$\therefore \quad \mathrm{A}^{2}$ is invertible
and $\quad A^{3}=A \cdot A^{2}=A .\left(4 \mathrm{~A}-5 \mathrm{I}_{3}\right)=4 \mathrm{~A}^{2}-5 \mathrm{~A}$
$=\left[\begin{array}{lll}36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 32 & 36\end{array}\right]+\left[\begin{array}{ccc}-5 & -10 & -10 \\ -10 & -5 & -10 \\ -10 & -10 & -5\end{array}\right]=\left[\begin{array}{lll}31 & 22 & 22 \\ 22 & 31 & 22 \\ 22 & 22 & 31\end{array}\right]$
$\therefore \quad\left|\mathrm{A}^{3}\right| \neq 0$
$\therefore \quad \mathrm{A}^{3}$ is invertible
37. If A and B are invertible square matrices of the same order, then which of the following is correct?
A) $\operatorname{adj}(A B)=(\operatorname{adjB})(\operatorname{adj} A)$
B) $(\operatorname{adj} A)^{\prime}=\left(\operatorname{adj} A^{\prime}\right)$
C) $\operatorname{adj} \mathrm{A}\left|=|\mathrm{A}|^{\mathrm{n}-1}\right.$, where n is the order of matrix A
D) $\operatorname{adj}(\operatorname{adj} B)=|B|^{n-2} B$, where n is the order of matrix B

Key. A,B,C,D
Sol. Here, (a), (b), (c), (d) are the properties of adjoint.
38. If $\mathrm{A}=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, then
A) $\operatorname{adj}(\operatorname{adj} \mathrm{A})=\mathrm{A}$
B) $|\operatorname{adj}(\operatorname{adj} \mathrm{A})|=1$
C) $|\operatorname{adj} \mathrm{A}|=1$
D) None of these

Key. A,B,C

Sol. $\quad \because \quad|\mathrm{A}|=\left|\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right|=3(-3+4)-2(-3+4)+0=1$
$\because \quad \operatorname{adj}(\operatorname{adj} \mathrm{A})=|\mathrm{A}|^{3-2} \mathrm{~A}=\mathrm{A}$ and $|\operatorname{adj}(\operatorname{adj} \mathrm{A})|=|\mathrm{A}|=1$
Also, $\quad|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{3-1}=|\mathrm{A}|^{2}=1^{2}=1$
39. System of equation $x+3 y+2 z=6$

$$
x+\lambda y+2 z=7
$$

$$
x+3 y+2 z=\mu \text { has }
$$

A) Unique solution if $\lambda=2, \mu \neq 6$
B) infinitely many solution if $\lambda=4, \mu=6$
C) no solution if $\lambda=5, \mu=7$
D) no solution if $\lambda=3, \mu=5$

Key. B,C,D
Sol.

$$
\begin{align*}
x+3 y+2 z & =6 \tag{i}\\
x+\lambda y+2 z & =7 \tag{ii}\\
x+3 y+2 z & =\mu \tag{iii}
\end{align*}
$$

(A) If $\lambda=2$, then $\mathrm{D}=0$, therefore unique solution is not possible
(B) If $\lambda=4, \mu=6$

$$
\begin{array}{ll}
& x+3 y=6-2 z \\
& x+4 y+7-2 z \\
\therefore \quad & y=1 \text { and } x=3-2 z
\end{array}
$$

Substituting in equation (iii)
$3-2 z+3+2 z=6$ is satisfied
$\therefore \quad$ Infinite solutions
(C) $\lambda=5, \mu=7$

Consider equation (ii) and (iii)

$$
\begin{array}{ll}
& x+5 y=7-2 z \\
& x+3 y=7-2 z \\
\therefore \quad & y=0 x=7-2 z \text { are solution }
\end{array}
$$

Sub. In (i)
$7-2 z+2 z=6$ does not satisfy

$$
\therefore \quad \text { no solution }
$$

(D) if $\quad \lambda=3, \quad \mu=5$
then equation (i) and (ii) have no solution
no solution
40. Which of the following statement is always true
A) Adjoint of a symmetric matrix is a symmetric matrix
B) Adjoint of a unit matrix is unit matrix
C) $A(\operatorname{adj} A)=(\operatorname{adj} A) A$
D) Adjoint of a diagonal matrix is diagonal matrix

Key. A,B,C,D
Sol. Obvious (using properties)
41. If $\mathrm{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$, then
A) $\mathrm{A}^{3}=9 \mathrm{~A}$
B) $\mathrm{A}^{3}=27 \mathrm{~A}$
C) $\mathrm{A}+\mathrm{A}=\mathrm{A}^{2}$
D) A^{-1} does not
exist
Key. A,D

```
Sol. \(\quad A^{2}=\left[\begin{array}{lll}3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3\end{array}\right]=3 A\)
\(\mathrm{A}^{3}=\mathrm{A}^{2} \mathrm{~A}=3 \mathrm{~A} \cdot \mathrm{~A}=3 \mathrm{~A}^{2}=3 .(3 \mathrm{~A})=9 \mathrm{~A}\) and \(|\mathrm{A}|=0\)
\(\therefore \quad \mathrm{A}^{-1}\) does not exist
```


Matrices \& Determents

Assertion Reasoning Type

1. Statement 1 : The determinants of a metrix $A=\left[a_{i j}\right]_{5 \times 5}$ where $a_{i j}+a_{j i}=0$ for all i and j is zero

Statement 2 : The determinants of a skew symmetric of odd order is zero
Key. A
Sol. Conceptual
2. Statement 1: For a singular square matrix A, if $A B=A C \quad B=C$

Statement 2 : If $|A|=0$ then A^{-1} dose not exist
Key. A
Sol. exist only for non-singular matrix
$A B=A C \quad B=C$ if exist, If exist.
3. Consider the system of equations $2 x-3 y+5 z=12 ; 3 x+y+k_{1} z=k_{2} ; x-7 y+8 z=17$ STATEMENT-1: The system of equations will have infinite solutions if $k_{1}=2 ; k_{2}=7$.
STATEMENT-2: Let $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 1 & k_{1} \\ 1 & -7 & 8\end{array}\right], \quad B=\left[\begin{array}{c}12 \\ k_{2} \\ 17\end{array}\right]$ then $|A|=0$ and $(\operatorname{adj} A) B=0$ for
$k_{1}=2$ and $k_{2} \in R$.
Key: C
Hint: Conceptual
4. STATEMENT-1 : If A is skew symmetric of order 3 then its determinant should be zero STATEMENT-2 : If A is square matrix, then
Key: B
Hint: The Reson R is false since
$\operatorname{det} A^{\prime}=\operatorname{det}\left(-A^{\prime}\right)$ is not true A^{\prime}
Indeed, $\operatorname{det}\left(-A^{\prime}\right)=\operatorname{det}(-1)^{3} \operatorname{det} A^{\prime}$
Now as $A=-A^{\prime}$ (A is skew symmetric)
$\operatorname{det} A=\operatorname{det}\left(-A^{\prime}\right)$
$=-A^{\prime} \operatorname{det}\left(A^{\prime}\right)=-A^{\prime} \operatorname{det} A$
$\operatorname{det} A=0$
Thus Assertion if true.
5. Statement-1: If $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ then $\mathrm{A}^{5}=\left[\begin{array}{ll}1069 & 1558 \\ 2337 & 3406\end{array}\right]$.

Statement - 2: If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ then $A^{2}-5 A=2 I$.
Key: A
Hint: Conceptual Question
6. STATEMENT-1

If $A=\left[\begin{array}{rr}1 & -1 \\ 2 & 1\end{array}\right], \quad B=\left[\begin{array}{rr}a & 1 \\ b & -1\end{array}\right] \quad$ and $\quad(A+B)^{2}=A^{2}+B^{2}+2 A B \quad$ then
$(a, b)=(-1,-2)$
STATEMENT-2
If A and B are two square matrices of same order then $(A+B)^{2}=A^{2}+B^{2}+2 A B$.
Key: C
Hint: If $(A+B)^{2}=A^{2}+B^{2}+2 A B$ then $A B=B A$
$A B=\left[\begin{array}{ll}a-b & 2 \\ 2 a+b & 1\end{array}\right]$
$B A=\left[\begin{array}{ll}a+2 & -a+1 \\ b-2 & -b-1\end{array}\right]$
So; $a+2=a-b \Rightarrow b=-2$
And $-a+1=2 \Rightarrow a=-1$
$(a, b)=(-1,-2)$
7. Statement-1 : If the orthogonal square matrices A and B of same size satisfy $\operatorname{det} A+\operatorname{det} B=0$ then $\operatorname{det}(A+B)=0$.
Statement-2 : $\operatorname{det}(X+Y)=\operatorname{det} X+\operatorname{det} Y$, for orthogonal square matrices X and Y of same size.
Key: C
Hint $\operatorname{det} A=-1$, $\operatorname{det} B=1$, or the otherway round
Now $A^{T}(A+B) B^{T}=(A+B)^{T}$
We have on taking determinants on both sides
$(\operatorname{det} A) \operatorname{det}(A+B) \operatorname{det} B=\operatorname{det}(A+B)$
$\Rightarrow-\operatorname{det}(A+B)=\operatorname{det}(A+B) \therefore \operatorname{det}(A+B)=0$
8. \quad Statement I Let A be a $n \times n$ matrix such that $A^{n}=\alpha A$ where α is a real number $(\neq \pm 1)$ then $A+I_{n}$ is Inveritable.
Statement I: A square Matrix possess inverse iff it is non-singular.
Key.
Sol. Let $B=A+I_{n} \therefore A=B-I_{n}$

$$
\begin{aligned}
& \because A^{n}=\alpha A \Rightarrow\left(B-I_{n}\right)^{2}=\alpha\left(B-I_{n}\right) \\
& \Rightarrow B^{n}-{ }^{n} C_{1} B^{n-1}+{ }^{n} C_{2} B^{n-2}+\ldots+(-1)^{n-1} B+(-1)^{n} I_{n}=\alpha B-\alpha I_{n} \\
& \Rightarrow B^{n}-{ }^{n} C_{1} B^{n-1}+{ }^{n} C_{2} B^{n-2}+\ldots+(-1)^{n-1} B-\alpha B=-(-1)^{n} I_{n}-\alpha I_{n} \\
& \Rightarrow B\left(B^{n-1}-{ }^{n} C_{1} B^{n-2}+\ldots .+(-1)^{n-1} I_{n}-\alpha I_{n}\right)=I_{n}\left[(-1)^{n+1}-\alpha\right]
\end{aligned}
$$

$\because \alpha \neq \pm 1$ Determinant of $I_{n}\left((-1)^{n+1}-\alpha\right) \neq 0$
$\because|B| \neq 0 \Rightarrow A+I_{n}$ is inveritable.
9. Let A and B be two matrices such that $A B=O$ then

STATEMENT-1

If one of them is non singular matrix then the other must be a null matrix
because
STATEMENT-2
At least one of the two matrices must be singular
Key. B
Sol. $\quad \operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)=O$. So, II is true
Let $\operatorname{det}(A) \neq 0$, So A^{-1} is defined.
So, $A^{-1}(A B)=A^{-1} O \Rightarrow B=0$.
Statement-1: The matrix $3 \mathrm{~A}=\left[\begin{array}{ccc}1 & -2 & 2 \\ -2 & 1 & 2 \\ -2 & -2 & -1\end{array}\right]$ is an orthogonal matrix
Statement-2:
If A and B are orthogonal, then $A B$ is also orthogonal
Key. D
Sol. for orthogonal matrix
$\mathrm{AA}^{\mathrm{T}}=\mathrm{I}_{\mathrm{n}}$
$\Rightarrow(3 \mathrm{~A})\left(3 \mathrm{~A}^{\mathrm{T}}\right)=9 \mathrm{I}_{\mathrm{n}}$
$\Rightarrow\left[\begin{array}{ccc}1 & -2 & 2 \\ -2 & 1 & 2 \\ -2 & -2 & -1\end{array}\right]\left[\begin{array}{ccc}1 & -2 & -2 \\ -2 & 1 & -2 \\ 2 & 2 & -1\end{array}\right]=\left[\begin{array}{ccc}9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9\end{array}\right]$
Hence statement (1) is true
Now if A and B are orthogonal, then
$\mathrm{AA}^{\mathrm{T}}=\mathrm{I}_{\mathrm{n}}$ and $\mathrm{BB}^{\mathrm{T}}=\mathrm{I}_{\mathrm{n}}$
$\Rightarrow(A B)(A B)^{T}=A B B^{T} A^{T} \Rightarrow A\left(B B^{T}\right) A^{T}=A I_{n} A^{T} \quad \Rightarrow A A^{T}=I_{n}$
\therefore Statement 2 is also true but do not explain statement 1.
11. Statement-1 : If A is a skew-symmetric matrix of order 3×3, then matrix A^{3} is also skew-

symmetric

Because
Statement - 2 : All positive odd integral powers of a skew-symmetric matrix are skewsymmetric
Key. A
Sol. $\quad\left(A^{3}\right)^{T}=(A A A)^{T}=A^{T} A^{T} A^{T}=(-A)(-A)(-A)=-A^{3}$
12. Statement-1: The system of equations $x+y+z=6, x+2 y+3 z=14, x+4 y+7 z=30$
has infinitely many solutions
Because
Statement - 2 : For a system of n-equations in n-unknowns if determinant value of the coefficient matrix be zero, then the system of equations has infinitely many solutions.

Key. C
Sol. Conceptual
13. Statement-1 : For the given system of non-homogeneous linear equations of the form $\mathrm{Ax}=\mathrm{B}$, if $|A|=0$, then the system of equations have either no solution or infinite number of solutions

Because
Statement - 2 : For the given system of non-homogeneous linear equations of the form $\mathrm{A} \mathrm{x}=\mathrm{B}$, if $|A|=0 \&(\operatorname{Adj} \mathrm{~A}) \mathrm{B}=0$, then it will have no solution

Key. C
Sol. If $|A|=0 \&(\operatorname{Adj} A) B \neq 0$, no solution

$$
\text { If }|A|=0 \&(A d j A) B=0 \text {, infinite solution }
$$

14. Assertion (A): $\left.\quad f(x)=\left\lvert\, \begin{array}{ccc}(1+x)^{21} & (1+x)^{22} & (1+x)^{23} \\ (1+x)^{31} & (1+x)^{32} & (1+x)^{33} \\ (1+x)^{41} & (1+x)^{42} & (1+x)^{43}\end{array}\right.\right]$, then coefficient of x in $f(x)$ is zero.
Reason (R) : If $F(x)=A_{0}+A_{1} x+A_{2} x^{2}+\ldots+A_{n} x^{n}$, then $A_{1}=F^{1}(0)$ when dash denotes the differential coefficient.

Key. A
Sol. Conceptual
15. Consider the system of equations. $x-2 y+3 z=-1,-x+y-2 z=k, x-3 y+4 z=1$

Statement - : The system of equation has no solution for $k \neq 3$.
Statement - II : $\left|\begin{array}{ccc}1 & 3 & -1 \\ -1 & -2 & k \\ 1 & 4 & 1\end{array}\right| \neq 0$ for $k \neq 3$
Key. A
Sol. $\Delta=0, \Delta y \neq 0$ for $k \neq 3$
16. Consider $\left\{D_{1}, D_{2}, D_{3} \ldots . . . D_{n}\right\}$ be the complete set of third order determinant that can be made with the distinct non-zero real number $a_{1}, a_{2} a_{9}$, then
Statement-1: $\sum_{i=1}^{n} D_{i}=0$
Statement - II: $D_{i}=D_{j} \quad \forall i, j \in n$
Key. C
Sol. If one of the determinant of the given set is type $\left\lvert\, \begin{array}{lll}C_{1} & C_{2} & C_{3} \mid\end{array}\right.$ then this set will also have the determinant of the type $\left|\begin{array}{lll}C_{1} & C_{3} & C_{2}\end{array}\right|,\left|\begin{array}{lll}C_{2} & C_{3} & C_{1}\end{array}\right|$,
$\left|\begin{array}{lll}C_{2} & C_{1} & C_{3}\end{array}\right|,\left|\begin{array}{lll}C_{3} & C_{1} & C_{2}\end{array}\right|,\left|\begin{array}{lll}C_{3} & C_{2} & C_{1}\end{array}\right|$
If $\left|C_{1} \quad C_{2} \quad C_{3}\right|=\lambda$ then $\left|C_{1} \quad C_{3} \quad C_{2}\right|=-\lambda$, and so on so by symmetry $\sum D_{i}=0$
17. Statement $-\mathrm{I}: \mathrm{M}$ is third order matrix such that $M^{T} M=I$ and $\operatorname{det} \mathrm{M}=1$, then $\operatorname{det}(\mathrm{M}-\mathrm{I})=0$ Statement - II : If $M \& I$ are third order matrix then $\operatorname{det}(M-I)=\operatorname{det} \mathrm{M}-\operatorname{det} \mathrm{I}$.

Key. C
Sol. $\quad \operatorname{det}(M-I)=\operatorname{det}(M-I)^{T}=\operatorname{det}\left(M^{T}-I^{T}\right)$

$$
\begin{aligned}
&=\operatorname{det}\left(M^{T}-I\right)=\operatorname{det}\left(M^{T}-M^{T} M\right) \\
&=\operatorname{det}\left(M^{T}\right)(I-M)=\operatorname{det} M^{T} \cdot \operatorname{det}(I-M) \\
&=-\operatorname{det}(M-I) \\
& \Rightarrow 2 \operatorname{det}(M-I)=0
\end{aligned}
$$

18. Statement - 1: The determinants of a matrix $A=\left[a_{i j}\right]_{5 \times 5}$ where $a_{i j}+a_{j i}=0$ for I and j is zero Statement - 2: The determinant of a skew symmetric matrix of odd order is zero.
Key. A
Sol. $\quad A=-A^{T} \quad \Rightarrow \quad|A|=-\left|A^{T}\right|=-|A|$
$\Rightarrow \quad 2|\mathrm{~A}|=0 \quad \Rightarrow \quad|\mathrm{~A}|=0$
19. Statement - 1: The inverse of the matrix $A=\left[a_{i j}\right]_{n \times n}$ where $a_{i \mathrm{ij}}=0,1 \geq j$ is $B=\left[a_{i j}^{-1}\right]_{n \times n}$ Statement - 2: The inverse of singular matrix does not exist.
Key. D
Sol. Statement - 1 is false
$\because \quad A=\left[a_{i j}\right]_{n \times n}$ where $\mathrm{a}_{\mathrm{ij}}=0, \mathrm{i} \geq \mathrm{j}$
$\therefore \quad|A|=0$ hence A is singular inverse of A is not defined
Statement $-2|\mathrm{~A}|=0 \quad \therefore \quad$ inverse of A is not defined
20. Statement - 1: If $f_{1}(x), f_{2}(x), \ldots, f_{9}(x)$ are polynomials whose degree ≥ 1, where

$$
f_{1}(\alpha)=f_{2}(\alpha)=f_{2}(\alpha) \ldots=f_{9}(\alpha)=0 \quad \text { and } \quad A(x)=\left[\begin{array}{lll}
f_{1}(x) & f_{2}(x) & f_{3}(x) \\
f_{4}(x) & f_{5}(x) & f_{6}(x) \\
f_{7}(x) & f_{8}(x) & f_{9}(x)
\end{array}\right]
$$

and $\frac{A(x)}{x-\alpha}$ is
Also a matrix of 3×3 whose entries are also polynomials

$$
\text { Statement }-2: x-\alpha \text { is a factor of polynomial } f(x) \text { if } f(\alpha)=0
$$

Key. A
Sol. $A(\alpha)=\left[\begin{array}{lll}f_{1}(\alpha) & f_{2}(\alpha) & f_{3}(\alpha) \\ f_{4}(\alpha) & f_{5}(\alpha) & f_{6}(\alpha) \\ f_{7}(\alpha) & f_{8}(\alpha) & f_{9}(\alpha)\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
${ }_{x-\alpha}$ is a factor of $f_{1}(x), f_{2}(x) \ldots f_{9}(x)$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=(\mathrm{x}-\alpha) \phi(\mathrm{x}) \\
& \mathrm{f}(\alpha)=0 \quad \Rightarrow \quad \mathrm{x}-\alpha \text { is a factor of } \mathrm{f}(\mathrm{x})
\end{aligned}
$$

21. Statement - 1: For a singular square matrix A, if $A B=A C \Rightarrow B=C$

Statement - 2: If $|\mathrm{A}|=0$ then A^{-1} does not exist
Key. D
Sol. $\quad A^{-1}$ exist only for non-singular matrix
$\mathrm{AB}=\mathrm{AC}$
\Rightarrow
$\mathrm{B}=\mathrm{C}$ if A^{-1} exist

If A^{-1} exist
22. Statement - 1: $\left(\mathrm{a}_{11}, \mathrm{a}_{22}, \ldots, \mathrm{a}_{\mathrm{nn}}\right)$ is a diagonal matrix then $\mathrm{A}^{-1}=\operatorname{dia}\left(\mathrm{a}_{11}{ }^{-1}, \mathrm{a}_{22}{ }^{-1}, \ldots \mathrm{a}_{\mathrm{nn}}{ }^{-1}\right)$

Statement -2 : If $\mathrm{A}=\operatorname{dia}(2,1,-3)$ and $\mathrm{B}=\operatorname{dia}(1,1,2)$ then $\operatorname{det}\left(\mathrm{AB}^{-1}\right)=3$
Key. C
Sol. $\quad \operatorname{det}\left(\mathrm{AB}^{-1}\right)=\operatorname{det} \mathrm{A} \cdot \operatorname{det} \mathrm{B}^{-1}=\frac{\operatorname{det} \mathrm{A}}{\operatorname{det} \mathrm{B}}=\frac{-6}{2}=-3$

Matrices \& Determents

Comprehension Type

Paragraph - 1

Let A be a $m \times n$ matrix. If there exists a matrix L of type $n \times m$ such that $L A=$ I_{n}, then L is called left
inverse of A. Similarly, if there exists a matrix R of type $n \times m$ such that $A R=$ I_{m}, then R is called right
inverse of A . For example to find right inverse of matrix
$A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 2 & 3\end{array}\right]$ we take $R=\left[\begin{array}{ccc}\mathrm{x} & \mathrm{y} & \mathrm{z} \\ \mathrm{u} & \mathrm{v} & \mathrm{w}\end{array}\right]$
and solve $A R=I_{3}$ i.e.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & -1 \\
1 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{x} & \mathrm{y} & \mathrm{z} \\
\mathrm{u} & \mathrm{v} & \mathrm{w}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& \Rightarrow \quad \mathrm{x}-\mathrm{u}=1 \\
& \\
& \quad \mathrm{x}+\mathrm{u}=0
\end{aligned} \quad \begin{array}{ll}
\mathrm{y}-\mathrm{v}=0 & z-w=0 \\
2 \mathrm{x}+3 \mathrm{u}=0 & \\
& 2 \mathrm{y}+\mathrm{v}=1
\end{array}
$$

As this system of equations is inconsistent, we say there is no right inverse for matrix A.

1. Which of the following matrices is NOT left inverse of matrix $\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 2 & 3\end{array}\right]$
(A) $\left[\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$
(B) $\left[\begin{array}{ccc}2 & -7 & 3 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$
(C) $\left[\begin{array}{rrr}-\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$
(D)

Key. ${ }^{\text {C }}$
2. Which of the following matrices is the right inverse of the matrix $\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & -1 & 1\end{array}\right]$
(A) $\left[\begin{array}{cc}1 & 3 \\ 1 & -1 \\ 1 & 2\end{array}\right]$
(B) $\left[\begin{array}{cc}7 & 3 \\ 2 & 2 \\ -5 & 1\end{array}\right]$
(C) $\left[\begin{array}{ccc}1 & 5 & 7 \\ -2 & 4 & 9\end{array}\right]$
(D) $\left[\begin{array}{ll}2 & 1 \\ 7 & 1 \\ 3 & 0\end{array}\right]$

Key. D
3. The number of left inverses for the matrix $\left[\begin{array}{cc}1 & 1 \\ -2 & -2 \\ 1 & 1\end{array}\right]$ are
(A) 0
(B) 2
(C) 1
(D) infinite

Key. A

Paragraph - 2

Consider the determinant, $\Delta=\left|\begin{array}{ccc}p & q & r \\ x & y & z \\ \ell & m & n\end{array}\right|$
$M_{i j}$ denotes the minor of an element in row and column
$C_{i j}$ denotes the cofactor of an element in row and column
4. The value of $p \cdot C_{21}+q \cdot C_{22}+r \cdot C_{23}$ is
(A) 0
(B) $-\Delta$
(C) Δ
(D) Δ^{2}

Key. A
5. The value of $x \cdot C_{21}+y \cdot C_{22}+z \cdot C_{23}$ is
(A) 0
(B) $-\Delta$
(C) \triangle
(D) Δ^{2}

Key. C
6. The vlaue fo is $q \cdot M_{12}-y \cdot M_{22}+m \cdot M_{32}$
(A) 0
(B) $+\Delta^{2}$
(C) Δ
(D) None of these

Key. D

Paragraph - 3

A Pythagorean triple is triplet of positive integers (a, b, c) such that $a^{2}+b^{2}=$ C^{2}. Define the matrices P, Q and R by
$P=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 2 \\ 2 & 2 & 3\end{array}\right], Q=\left[\begin{array}{ccc}1 & 2 & 2 \\ -2 & -1 & -2 \\ 2 & 2 & 3\end{array}\right]$ and $R=\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 1 & 2 \\ 2 & 2 & 3\end{array}\right]$
7. If we write Pythagorean triples (a, b, c) in matrix form as $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ then which of the following matrix product is not a Pythagorean triplet ?
A) $\mathrm{Q}\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$
В) $\mathrm{P}\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$
C) $R\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$
these
8. Which one of the following does not hold good ?
A) $\mathrm{P}^{-1}=$ adj. P
B) $(P Q)^{-1}=\operatorname{adj} .(P Q)$
C) $(\mathrm{QR})^{-1}=\operatorname{adj} .(\mathrm{QR})$
D) $(\mathrm{PQR})^{-1} \neq \operatorname{adj} .(\mathrm{PQR})$
9. $T_{r}\left(P+Q^{T}+2 R\right)$ equals
A) 17
B) 15
C) 14
D) 18

Sol. 7. Ans. (b)
$\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 2 \\ 2 & 2 & 3\end{array}\right]\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]=\left[\begin{array}{l}26 \\ 20 \\ 29\end{array}\right] \Rightarrow 29^{2} \neq 20^{2}+26^{2}$
Similarly, $Q\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]=\left[\begin{array}{c}5 \\ 12 \\ 13\end{array}\right]$, and $R\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]=\left[\begin{array}{c}15 \\ 8 \\ 17\end{array}\right]$
8. Ans. (d)
$\operatorname{det} P=1, \operatorname{det} Q=1, \operatorname{det} R=1$
$\operatorname{det}(\mathrm{PQ})=1, \operatorname{det}(\mathrm{QR})=1, \operatorname{det}(\mathrm{RP})=1$
$\operatorname{det}(\mathrm{PQR})=1$
9 .Ans. (c)
$\mathrm{T}_{\mathrm{r}}\left(\mathrm{P}+\mathrm{Q}^{\mathrm{T}}+2 \mathrm{R}\right)=14$

Paragraph - 4

A and B are two matrices of same order 3×3, where

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
5 & 6 & 8
\end{array}\right) \text { and } B=\left(\begin{array}{lll}
3 & 2 & 5 \\
2 & 3 & 8 \\
7 & 2 & 9
\end{array}\right)
$$

10. The value of $|\operatorname{adj}(\operatorname{adj}, A)|$ is equal to
a) 9
b) 16
c) 25
d) 81
11. The value of $|\operatorname{adj}(\mathrm{AB})|$ is equal to
a) 24
b) 24^{2}
c) 24^{3}
d) 65

The value of $|(\operatorname{adj}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))))|$ is equal to
a) 2^{4}
b) 2^{9}
c) 2^{13}
d) 2^{19}

Sol. 10. (B) $|\operatorname{adj}(\operatorname{adj} A)|=|A|^{(n-1)^{2}}=|A|^{4}=2^{4}=16$
11. (B) $A B=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 5 & 6 & 8\end{array}\right)\left(\begin{array}{lll}3 & 2 & 5 \\ 2 & 3 & 8 \\ 7 & 2 & 9\end{array}\right)$

$$
=\left(\begin{array}{ccc}
28 & 14 & 48 \\
40 & 21 & 70 \\
83 & 44 & 145
\end{array}\right)
$$

$\therefore \quad|\mathrm{AB}|=\left|\begin{array}{ccc}28 & 14 & 48 \\ 40 & 21 & 70 \\ 83 & 44 & 145\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}-2 C_{2}, C_{3} \rightarrow C_{3}-3 C_{3}$
Then, $|A B|=\left|\begin{array}{ccc}0 & 14 & 6 \\ -2 & 21 & 7 \\ -5 & 44 & 13\end{array}\right|$
$=\left|\begin{array}{ccc}0 & -4 & 6 \\ -2 & 0 & 7 \\ -5 & 5 & 13\end{array}\right| C_{2} \rightarrow C_{2}-3 C_{3}$
$=0+2(-52-30)-5(-28)$
$=-164+140=-24$
$|\operatorname{adj} A B|=|A B|^{n-1}=|A B|^{2}=(24)^{2}$
60. (C) $|(\operatorname{adj}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))))|=|\operatorname{adj}(\operatorname{adj}(2 A))|$

$$
\begin{aligned}
& =|2 A|^{(n-1)^{2}}=|2 A|^{4} \\
& =\left(2^{3}|A|\right)^{4}=2^{12}|A|=2^{13}
\end{aligned}
$$

Paragraph - 5

If A is 3×3 matrix then a non trivial solution $X=\left(\begin{array}{lll}x & y & z\end{array}\right)^{T}$ such that $A X=\lambda X(\lambda \in R)$ yields 3 values of λ say $\lambda_{1}, \lambda_{2}, \lambda_{3}$.For any such matrix A, λ 's are called eigen values and corresponding X 's are called eigen vectors. It is known that, for any 3×3 matrix

$$
\operatorname{Tr}(A)=\lambda_{1}+\lambda_{2}+\lambda_{3}
$$

$\operatorname{det} A=\lambda_{1} \lambda_{2} \lambda_{3}$.Answer the following questions for matrix $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2\end{array}\right]$
13. $\operatorname{Tr}\left(A^{-1}\right)=$
(A) $\frac{1}{3}$
(B) $\frac{1}{2}$
(C) $-\frac{1}{2}$
(D) $-\frac{1}{3}$
14. $\operatorname{Tr}\left(A^{3}\right)=$
(A) 149
(B) 101
(C) 128
(D) 133
15. Which of the following is false?
(A) \exists a nontrivial solution X such that $A X=(2+\sqrt{7}) X$
(B) \exists a nontrivial solution X such that $A X=X$
(C) \exists a nontrivial solution X such that $A^{-1} X=(2-\sqrt{7}) X$
(D) The total number of nontrivial solutions X such that $A X=\lambda X$ is 3 .

Key: D-B-C
Hint: For the matrix $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2\end{array}\right],|A-\lambda I|=0 \Rightarrow \lambda^{3}-5 \lambda^{2}+\lambda+3=0 \rightarrow(1)$, whose roots are $\lambda_{1}, \lambda_{2}, \lambda_{3}$
$\lambda_{1}+\lambda_{2}+\lambda_{3}=5, \lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{1}=1, \lambda_{1} \lambda_{2} \lambda_{3}=-3$
$\Rightarrow \operatorname{Tr}(A)=5, \operatorname{det}(A)=-3$
Also $A X=\lambda X \Rightarrow A^{-1} X=\frac{1}{\lambda} X \Rightarrow \operatorname{Tr}\left(A^{-1}\right)=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}=\frac{\sum_{1} \lambda_{1} \lambda_{2}}{\lambda_{1} \lambda_{2} \lambda_{3}}=-\frac{1}{3}$
$A X=\lambda X \Rightarrow A^{3} X=\lambda^{3} X \Rightarrow \operatorname{Tr}\left(A^{3}\right)=\lambda_{1}^{3}+\lambda_{2}^{3}+\lambda_{3}^{3}$
$=\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)\left(\lambda_{1}{ }^{2}+\lambda_{2}{ }^{2}+\lambda_{3}{ }^{2}-\lambda_{1} \lambda_{2}-\lambda_{2} \lambda_{3}-\lambda_{3} \lambda_{1}\right)+3 \lambda_{1} \lambda_{2} \lambda_{3}$
$=5(25-3(1))-9=101$
Solving (1) gives $\lambda_{1}=1, \lambda_{2}=2+\sqrt{7}, \lambda_{3}=2-\sqrt{7}$, which by theory yield nontrivial solutions .In particular for A^{-1}, the values of λ yieldings nontrivial solutions are $1, \frac{1}{2+\sqrt{7}}, \frac{1}{2-\sqrt{7}}$ i.e $1, \frac{2+\sqrt{7}}{-3}, \frac{2-\sqrt{7}}{-3}$.Hence (c) is false

Paragraph - 6

Let $\Delta \neq 0$ and Δ^{c} denotes the determinant of cofactors, then $\Delta^{c}=\Delta^{n-1}$, where $n(>0)$ is the order of Δ.
On the basis of above information, answer the following questions:
16. If a, b, c are the roots of the
equation $x^{3}-p x^{2}+r=0$, then the value of

$$
\left|\begin{array}{lll}
b c-a^{2} & c a-b^{2} & a b-c^{2} \\
c a-b^{2} & a b-c^{2} & b c-a^{2} \\
a b-c^{2} & b c-a^{2} & c a-b^{2}
\end{array}\right|
$$

(A)
(B) p^{4}
(C) p^{6}
(D) p^{9}
17. If a, b, c are the roots of the equation $x^{3}-3 x^{2}+3 x+7=0$, then the value of

$$
\left|\begin{array}{ccc}
2 b c-a^{2} & c^{2} & b^{2} \\
c^{2} & 2 a c-b^{2} & a^{2} \\
b^{2} & a^{2} & 2 a b-c^{2}
\end{array}\right|
$$

(A) 9
(B) 27
(C) 81
(D) 0
18. Suppose $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}, \mathrm{a}+\mathrm{b}+\mathrm{c}>0, \mathrm{~A}=\mathrm{bc}-\mathrm{a}^{2}, \mathrm{~B}=\mathrm{ca}-\mathrm{b}^{2}$ and $\mathrm{C}=\mathrm{ab}-\mathrm{c}^{2}$ and
$\left|\begin{array}{lll}A & B & C \\ B & C & A \\ C & A & B\end{array}\right|=49$, then $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ equals
$\begin{array}{lll}\text { (A) } & -7 & \text { (B) } 7\end{array}$
(C) $\quad-2401$ (D) 2401

Key: C-D-A
Sol :
16. $a+b+c=p, a b+b c+c a=0$
$\therefore a^{2}+b^{2}+c^{2}=(a+b+c)^{2}-2(a b+b c+c a)$
$=p^{2}-0$
$=p^{2}$
If $\Delta=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$
$\therefore \Delta^{c}=\left|\begin{array}{lll}b c-a^{2} & c a-b^{2} & a b-c^{2} \\ c a-b^{2} & a b-c^{2} & b c-a^{2} \\ a b-c^{2} & b c-a^{2} & c a-b^{2}\end{array}\right|=\Delta^{3-1}$
$=\Delta^{2}=\left|\begin{array}{lll}a & \mathrm{~b} & \mathrm{c} \\ \mathrm{b} & \mathrm{c} & \mathrm{a} \\ \mathrm{c} & \mathrm{a} & \mathrm{b}\end{array}\right|^{2}=\left|\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{b} & \mathrm{c} & \mathrm{a} \\ \mathrm{c} & \mathrm{a} & \mathrm{b}\end{array}\right| \times\left|\begin{array}{ccc}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{b} & \mathrm{c} & \mathrm{b} \\ \mathrm{c} & \mathrm{a} & \mathrm{a}\end{array}\right|$
$=\left|\begin{array}{lll}a^{2}+b^{2}+c^{2} & a b+b c+c a & a b+b c+c a \\ a b+b c+c a & a^{2}+b^{2}+c^{2} & a b+b c+c a \\ a b+b c+c a & a b+b c+c a & a^{2}+b^{2}+c^{2}\end{array}\right|$
$=\left|\begin{array}{ccc}\mathrm{p}^{2} & 0 & 0 \\ 0 & \mathrm{p}^{2} & 0 \\ 0 & 0 & \mathrm{p}^{2}\end{array}\right|=\mathrm{p}^{6}$
17. $\because x^{3}-3 x^{2}+3 x+7=0$
$\Rightarrow \quad(x-1)^{3}+8=0$
$\Rightarrow \quad(x-1)^{3}=(-2)^{3}$
$\Rightarrow \quad\left(\frac{x-1}{-2}\right)^{3}=1$
$\Rightarrow \quad \frac{\mathrm{x}-1}{-2}=(1)^{1 / 3}=1, \omega, \omega^{2}$
$\Rightarrow \quad \mathrm{x}-1=-2,-2 \omega,-2 \omega^{2}$
or $\quad x=-1,1-2 \omega, 1-2 \omega^{2}$
$\therefore \quad a=-1, b=1-2 \omega, c=1-2 \omega^{2}$
18. $\left|\begin{array}{lll}A & B & C \\ B & C & A \\ C & A & B\end{array}\right|$

$$
=\left|\begin{array}{lll}
\mathrm{bc}-\mathrm{a}^{2} & \mathrm{ca}-\mathrm{b}^{2} & \mathrm{ab}-\mathrm{c}^{2} \\
\mathrm{ca}-\mathrm{b}^{2} & \mathrm{ab}-\mathrm{c}^{2} & \mathrm{bc}-\mathrm{a}^{2} \\
\mathrm{ab}-\mathrm{c}^{2} & \mathrm{bc}-\mathrm{a}^{2} & \mathrm{ca}-\mathrm{b}^{2}
\end{array}\right|
$$

$$
=\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|^{2}=49
$$

$$
\therefore \quad\left|\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~b} & \mathrm{c} & \mathrm{a} \\
\mathrm{c} & \mathrm{a} & \mathrm{~b}
\end{array}\right|=7
$$

Paragraph - 7

$A_{0}=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ and $B_{0}=\left[\begin{array}{ccc}-4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{array}\right]$

$$
\begin{aligned}
& \because \quad\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|=\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right| \times\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right| \\
& \left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right| \times\left|\begin{array}{ccc}
-a & c & b \\
-b & a & c \\
-c & b & a
\end{array}\right| \\
& \text { (row by row) } \\
& =\left|\begin{array}{ccc}
2 b c-a^{2} & c^{2} & b^{2} \\
c^{2} & 2 a c-b^{2} & a^{2} \\
b^{2} & a^{2} & c^{2}
\end{array}\right| \\
& =\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|^{2} \\
& =\left(a^{3}+b^{3}+c^{3}-3 a b c\right)^{2} \\
& =\left\{(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)\right\}^{2} \\
& =\frac{1}{4}(a+b+c)^{2}\left\{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right\} \\
& =\frac{9}{4}\left\{-12\left(1+\omega+\omega^{2}\right)\right\}=0
\end{aligned}
$$

If $\mathrm{B}_{\mathrm{n}}=\operatorname{adj}\left(\mathrm{B}_{\mathrm{n}-1}\right), \mathrm{n} \in \mathrm{N}$ and I is an identity matrix of order 3 , then answer the following question
19. Det. $\left(A_{0}+A_{0}^{2} B_{0}^{2}+A_{0}^{3}+A_{0}^{4} B_{0}^{4}+\ldots .10\right.$ terms $)$ is equal to
(A) 1000
(B) -800
(C) 0
(D) -8000

Key. C
20. $\mathrm{B}_{1}+\mathrm{B}_{2}+\ldots .+\mathrm{B}_{49}$ is equal to
(A) B_{0}
(B) $7 B_{0}$
(C) 49 I
(D) $49 B_{0}$

Key. D
Sol. $\quad 19$ to 20
19. (C)

Use $|A B|=|A||B|$ and $\left|A_{0}\right|=0$.
20. (D)
$\mathrm{B}_{1}=\mathrm{B}_{2}=\mathrm{B}_{3} \ldots . . \mathrm{B}_{49}=\mathrm{B}_{0}$

Paragraph - 8

Two $n \times n$ square matrices A and B are said to be similar if their exists a non-singular matrix P such that $P^{-1} B P=A$
21. If $A \& B$ are similar matrices such that $|A|=|\operatorname{adj}(\operatorname{adj}(Q))|$, then where, $Q=\left[\begin{array}{ccc}1 & 1 & 0 \\ -2 & 1 & -1 \\ 1 & 2 & 3\end{array}\right]$
a) $|B|=10^{-4}$
b) $|\mathrm{A}|+|\mathrm{B}|=2 \times 10^{4}$
c) $|\mathrm{B}|=10^{3}$
d) None

Key. B
22. If A and B are similar and B and C are similar, then
a) $A B$ and $B C$ are similar b) A and C are similar
c) $A+C$ and B are similar
d) None

Key. B
23. If A and B are two non-singular matrices, then
a) A is similar to B
b) $A B$ is similar to $B A$
c) $A B$ is similar to $A^{-1} B$ d) None

Key.
Sol. 21. $|\mathrm{Q}|=10 \Rightarrow|\operatorname{adj}(\operatorname{adjQ})|=|\mathrm{Q}|^{(3-1)^{2}}=10^{4}=|\mathrm{A}|$
$\mathrm{P}^{-1} \mathrm{BP}=\mathrm{A}$
$\Rightarrow|\mathrm{B}|=|\mathrm{A}| \Rightarrow|\mathrm{A}|+|\mathrm{B}|=2 \times 10^{4}$
22. $\quad \mathrm{P}^{-1} \mathrm{BP}=\mathrm{A} \quad(\because \mathrm{A} \& \mathrm{~B}$ are similar $)$
$\mathrm{R}^{-1} \mathrm{CR}=\mathrm{B}(\because \mathrm{B} \& \mathrm{C}$ are similar $)$
$\Rightarrow \mathrm{P}^{-1}\left(\mathrm{R}^{-1} \mathrm{CR}\right) \mathrm{P}=\mathrm{A}$

$$
\begin{aligned}
& \Rightarrow\left(\mathrm{P}^{-1} \mathrm{R}^{-1}\right) \mathrm{C}(\mathrm{RP})=\mathrm{A} \\
& \Rightarrow(\mathrm{RP})^{-1} \mathrm{C}(\mathrm{RP})=\mathrm{A} \\
& \Rightarrow \mathrm{~A} \text { and } \mathrm{C} \text { are similar }
\end{aligned}
$$

23. $\mathrm{A}^{-1}(\mathrm{AB}) \mathrm{A}=\mathrm{BA}$

$A B$ and $B A$ are similar

Paragraph - 9

If A is a square matrix of order n , we can form the matrix $A-\lambda I$, where λ is a scalar and I is the unit matrix of order n . The determinant of this matrix equated to zero (i.e., $|A-\lambda I|=0$) is called as characteristic equation of A. On expanding the determinant, the characteristic equation can be written as a polynomial equation of degree n in λ of the form.
$(-1)^{n} \lambda^{n}+k_{1} \lambda^{n-1}+k_{2} \lambda^{n-2}+\ldots . . . k_{n}=0$. The roots of this equation are called the characteristic roots (or) Eigen values of A. The sum of the Eigen values of matrix A is equal to trace of A. Every square matrix ' A ' satisfies its own characteristic equation. (i.e., $(-1)^{n} A^{n}+k_{1} A^{n-1}+k_{2} A^{n-2}+\ldots \ldots . k_{n} I=0$) on multiplying the above equation by A^{-1} we can easily obtain the value of A^{-1}. This is the other way of finding A^{-1}.
24. The Eigen values of the matrix $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
a) $3,-3,5$
b) $3,-3,-5$
c) $-3,-3,5$
d) $-2,4,-3$

Key. C
25. If $A=-1 \quad 2 \quad-1$ then $A^{-1}=$
a) $\frac{1}{4}\left[A^{2}+6 A-9 I\right]$
b) $\frac{1}{4}\left[A^{2}+6 A+9 I\right]$
c) $\frac{-1}{4}\left[A^{2}-6 A+9 I\right]$
d) $\frac{1}{4}\left[A^{2}-6 A+9 I\right]$

Key. D
26. If $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$, find the matrix represented by
$A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I$
а) $\left[\begin{array}{lll}8 & 5 & 5 \\ 0 & 3 & 0 \\ 5 & 5 & 8\end{array}\right]$
b) $\left[\begin{array}{lll}8 & 5 & 5 \\ 0 & 0 & 3 \\ 5 & 8 & 5\end{array}\right]$
c) $\left[\begin{array}{lll}5 & 8 & 5 \\ 3 & 0 & 0 \\ 5 & 5 & 8\end{array}\right]$
d) $\left[\begin{array}{ccc}8 & -5 & 5 \\ 0 & 0 & -3 \\ 5 & -8 & 5\end{array}\right]$

Key. A
Sol. 24. $\lambda^{3}+\lambda^{2}-21 \lambda-45=0$
$\lambda=-3,-3,5$
25. $\lambda^{3}-6 \lambda^{2}+9 \lambda-4=0$
$\Rightarrow A^{2}-6 A+9 I-4 A^{-1}=0$
$\Rightarrow A^{-1}=\frac{1}{4}\left(A^{2}-6 A+9 I\right)$
26. $A^{3}-5 A^{2}+7 A-3 I=0$
$=A^{5}\left(A^{3}-5 A^{2}+7 A-3 I\right)+\left(A^{3}-5 A^{2}+7 A-3 I\right)$
$+A^{2}+A+I=A^{2}+A+I$

Paragraph - 10

The values of p and q such that the system of equations
$2 x+p y+6 z=8$
$x+2 y+q z=5$
$x+y+3 z=4$, has
27. unique solution if
a) $p \in R, q \in R$ b) $p \in R-\{2\}, q \in R-\{3\}$
c) $p \in R-\{2\}, q \in R$
d) none of these

Key. B
28. No solution if
a) $p \in R, q \in R$
b) $p \in R-\{2\}, q \in\{3\}$
c) $p \in R-\{2\}, q \in R-\{2\}$
d) $p \in R-\{2\} \quad q \in R$

Key. B
29. Infinite solution then
a) $p=2$ or $q=3$
b) $p=2, q=3$
c) $p=2, q \in R$
d) $p \in R-\{2\}, q \in R-\{2\}$

кеу.

Sol.
Conceptual

Paragraph - 11

A square matrix A such that $A^{\theta}=A$ is called Hermitian matrix i.e. $a_{i j}=\overline{a_{j i}}$ for all values of i and j and a square matrix A such that $A^{\theta}=-A$ is called skew -Hermitian matrix i.e. $a_{i j}=-\overline{a_{j i}}$ for all values of i and j . where A^{θ} is conjugate transpose matrix.

Let $f: M \rightarrow\{1,-1\}, \mathrm{M}$ is set of all hermitian or Skew-hermitian matrixes, be a function defined as
$f(A)=\left\{\begin{array}{rc}1 & \text { A is hermitian } \\ -1 & \text { A is skewhermitian }\end{array}\right.$
30. $f\left(A-A^{\theta}\right)=$
a) +1
b) -1
c) +1 any when $f(A)>0$ d) -1 any when $f(A)>0$

Key. B
31. Let $Y=A^{n}$
a) if $f(Y)=1$ then $f(A)=1$
b) if $f(Y)=-1$ then $f(A)=-1$
c) $f(Y) . f(A)=1$ if n is odd
d) $f(Y) . f(A)=1$ if n is even

Key. B or C
32. Let $A=\left[a_{i j}\right]_{4 \times 4}$ be a matrix such that $\arg \left(a_{i j}\right) \in\left[0, \frac{\pi}{2}\right]$ and $f(A)=-1$, and $\mathrm{if}\left[b_{i j}\right]_{2 \times 2}$ be a matrix defined by $b_{i j}=a_{i i}+a_{j j} \forall i, j$ then
a) B is a unit matrix
b) Trace (B) $=0$
c) B is a null matrix
d) Det (B) ≥ 0

Key. D
Sol. 30. $X=A-A^{\theta}$ is a skew hermitian

$$
\left(\because X^{\theta}=\left(A-A^{\theta}\right)^{\theta}=A^{\theta}-A=-X\right)
$$

$f(X)=-1$
31. $\quad Y^{\theta}=\left(A^{n}\right)^{\theta}=\left(A^{\theta}\right)^{n}=\left\{\begin{array}{c}A^{n}=Y \quad \text { if } A \text { is hermitian } \\ (-A)^{n}=\left\{\begin{array}{r}\text { if } A \text { is skew hermitian and } n \text { is even } \\ -Y \text { If } A \text { is skew hermitian and } n \text { is odd }\end{array}\right.\end{array}\right.$
32. A is skew hermitian \Rightarrow diagonal elements are purely imaginary or zero

Also arg $a_{i j} \in\left[0, \frac{\pi}{2}\right] \Rightarrow \operatorname{Im} a_{i j} \geq 0$
$a_{i j}=i y_{i i} \Rightarrow a_{11}=i y_{11}, a_{22}=i y_{22}, a_{33}=i y_{33}, a_{44}=i y_{44}$ (where $y_{11}, y_{22}, y_{33}, y_{44} \geq 0$)
$B=\left[\begin{array}{cc}2 i y_{11} & i y_{11}+i y_{22} \\ i y_{11}+i y_{22} & 2 i y_{22}\end{array}\right] \Rightarrow|B|=\left(y_{11}-y_{22}\right)^{2} \geq 0$

Paragraph - 12

Consider a system of linear equations in three variables x, y, z

$$
\begin{aligned}
& \mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1} \mathrm{z}=\mathrm{d}_{1} ; \\
& \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z}=\mathrm{d}_{2} ; \\
& \mathrm{a}_{3} \mathrm{x}+\mathrm{b}_{3} \mathrm{y}+\mathrm{c}_{3} \mathrm{z}=\mathrm{d}_{3}
\end{aligned}
$$

The system can be expressed by matrix equation

$$
\left[\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{~b}_{1} & \mathrm{c}_{1} \\
\mathrm{a}_{2} & \mathrm{~b}_{2} & c_{2} \\
\mathrm{a}_{3} & \mathrm{~b}_{3} & c_{3}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{d}_{1} \\
\mathrm{~d}_{2} \\
d_{3}
\end{array}\right] \text { or } A X=\mathrm{B}
$$

If A is non-singular matrix then the solution of above system can be found by $X=A^{-1} B$. The solution in this case is unique. If A is a singular matrix i.e.
$|A|=0$, then the system will have no unique solution if $(\operatorname{Adj} A) B=0$ and the system has no solution (i.e. it is inconsistent) if (Adj A) $B \neq 0$
Where Adj A is the adjoint of the matrix A, which is obtained by taking transpose of the matrix obtained by replacing each element of matrix A with corresponding copactors.
Now consider the following matrices
$A\left[\begin{array}{lll}\mathrm{a} & 1 & 0 \\ 1 & b & d \\ 1 & b & c\end{array}\right], B=\left[\begin{array}{lll}a & 1 & 1 \\ 0 & d & c \\ f & g & h\end{array}\right] U=\left[\begin{array}{l}f \\ g \\ h\end{array}\right] V=\left[\begin{array}{c}a^{2} \\ 0 \\ 0\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
33. If the system $A X=U$ has infinitely many solutions then
(A) $c=d, a b=1$
(B) $\mathrm{c}=\mathrm{d}, \mathrm{h}=\mathrm{g}$
(C) $\mathrm{ab}=1, \mathrm{~h}=\mathrm{g}$
(D) $\mathrm{a}=\mathrm{b}, \mathrm{c}=\mathrm{d}, \mathrm{g}=\mathrm{h}$

Key. B
34. If $A X=U$ has infinitely many solutions then the equation $B X=V$ has
(A) Unique solution
(B) Infinitely many solution
(C) No solution
(D) Either infinitely many solutions or no solution.

Key. D
35. If $A X=U$ has infinitely many solutions the the equation $B X=V$ is consistent if
(A) $a b c=0$
(B) $b c d=0$
(C) $\operatorname{adf}=0$
(D) $\mathrm{fgh}=0$

Key. C
Sol. 33. (B) For infinite solutions or no solution

$$
\begin{aligned}
& |\mathrm{A}|=0 \Rightarrow\left|\begin{array}{lll}
\mathrm{a} & 1 & 0 \\
1 & \mathrm{~b} & \mathrm{~d} \\
1 & \mathrm{~b} & \mathrm{c}
\end{array}\right|=0 \\
& \Rightarrow(\mathrm{ab}-1)(\mathrm{c}-\mathrm{d})=0 \Rightarrow \mathrm{ab}=1 \text { or } \mathrm{c}=\mathrm{d}
\end{aligned}
$$

Now cofactors of elements of A in order are $b c-b d, d-c, 0 ;-c, a c, 1-a b ; d,-a d, a b-1$, so cofactor matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cc}
b c-b d & d-c \\
-c & 0 \\
d & a c \\
-a d & a b-1
\end{array}\right]} \\
& \therefore \operatorname{Adj} A=\left[\begin{array}{ccc}
b c-b d & -c & d \\
d-c & a c & -a d \\
0 & 1-a b & a b-1
\end{array}\right] \\
& \therefore(\operatorname{Adj} A) U=\left[\begin{array}{c}
b f(c-d)-c g+d h \\
f(d-c)+g a c-h a d \\
g(1-a b)+h(a b-1)
\end{array}\right]
\end{aligned}
$$

Now for infinite solution $(\operatorname{AdjA}) \mathrm{U}=0$
$\Rightarrow \mathrm{bf}(\mathrm{c}-\mathrm{d})-\mathrm{cg}+\mathrm{dh}=0, \mathrm{f}(\mathrm{d}-\mathrm{c})+\mathrm{a}(\mathrm{cg}-\mathrm{dh})=0$ and $(\mathrm{ab}-1)(\mathrm{h}-\mathrm{g})=0$

All the above holds good if $d=c$ and $g=h$, whether $a b=1$ or $a b \neq 1$
34. We have $|B|=\left|\begin{array}{lll}a & 1 & 1 \\ 0 & d & c \\ f & g & h\end{array}\right|$
[In view of $c=d$ and $g=h, C_{1}$ and C_{2} are identical]
\therefore The equation has no unique solution. It is either inconsistent or has infinitely many solutions.
35. The cofactors of elements of B in order are $\mathrm{dh}-\mathrm{cg}=0$,
$\mathrm{cf},-\mathrm{df}, \mathrm{g}-\mathrm{h}=0$, ah $-\mathrm{f},-\mathrm{ag}+\mathrm{f} ; \mathrm{c}-\mathrm{d}=0,-\mathrm{ac}, \mathrm{ad}$
\therefore cofactor matrix is $\left[\begin{array}{ccc}0 & \mathrm{cf} & -\mathrm{df} \\ 0 & \text { ad-f } & \mathrm{f}-\mathrm{ag} \\ 0 & -\mathrm{ac} & \mathrm{ad}\end{array}\right]$
$\therefore \operatorname{adjB}=\left[\begin{array}{ccc}0 & 0 & 0 \\ \text { cf } & \text { ad-f } & -\mathrm{ac} \\ -\mathrm{df} & \mathrm{f}-\mathrm{ag} & \mathrm{ad}\end{array}\right]$
$\therefore(\operatorname{AdjB}) V=\left[\begin{array}{c}0 \\ a^{2} c f \\ -a^{2} d f\end{array}\right]$
$\therefore|B|=0$, so for consistent system $(\operatorname{AdjB}) V=0$
$\Leftrightarrow a^{2} c f=0$ and $-a^{2} d f=0 \Leftrightarrow a d f=0 \Leftrightarrow a=0$ or $d=0$ or $f=0(\because c=d)$

Paragraph - 13

Consider the determinant

$$
\Delta=\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
d_{1} & d_{2} & d_{3}
\end{array}\right|
$$

$\mathrm{M}_{\mathrm{ij}}=$ Minor of the element of $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column
$C_{i j}=$ Cofactor of the element of $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column
36. Value of $b_{1} \cdot C_{31}+b_{2} \cdot C_{32}+b_{3} . C_{33}$ IS
A) 0
B) Δ
C) 2Δ
D) Δ^{2}

Key. A A_{1}
Sol. $\quad b_{1} \cdot C_{31}+b_{2} \cdot C_{32}+b_{3} \cdot C_{33}=$
$b_{1}\left|\begin{array}{ll}a_{2} & a_{3} \\ b_{2} & b_{3}\end{array}\right|-b_{2}\left|\begin{array}{ll}a_{1} & a_{3} \\ b_{1} & b_{3}\end{array}\right|+b_{3}\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right|=0$
37. If all the elements of the determinant are multiplied by 2 , then the value of new determinant is
A) 0
B) 8Δ
C) 2Δ
D) $2^{9} \Delta$

Key. B
Sol. Value of new determinant $=2^{3} \Delta=8 \Delta$
38. $\quad a_{2} M_{13}-b_{3} \cdot M_{23}+d_{3} . M_{33}$ is equal to
A) 0
B) 4Δ
C) 2Δ
D) Δ

Key. D
Sol. $a_{3} M_{13}-b_{3} \cdot M_{23}+d_{3} \cdot M_{33}=a_{3} C_{13}+b_{3} \cdot C_{23}+d_{3} \cdot C_{33}=\Delta \quad$ by definition

Paragraph - 14

Let A be a $m \times n$ matrix. If there exists a matrix L of type $n \times m$ such that $L A=I_{n}$, then L is called left inverse of A. Similarly, if there exists a matrix R of type $n \times m$ such that $A R=I_{m}$, then R is called right inverse of A.

For example to find right inverse of matrix

$$
\mathrm{A}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1 \\
2 & 3
\end{array}\right] \text { we take } \mathrm{R}=\left[\begin{array}{ccc}
\mathrm{x} & \mathrm{y} & \mathrm{z} \\
\mathrm{u} & \mathrm{v} & \mathrm{w}
\end{array}\right]
$$

and solve $\mathrm{AR}=\mathrm{I}_{3}$ i.e.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & -1 \\
1 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{lll}
\mathrm{x} & \mathrm{y} & \mathrm{z} \\
\mathrm{u} & \mathrm{v} & \mathrm{w}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& \Rightarrow \quad \mathrm{x}-\mathrm{u}=1 \quad \mathrm{y}-\mathrm{v}=0 \quad \mathrm{z}-\mathrm{w}=0 \\
& x+u=0 \quad y+v=1 \quad z+w=0 \\
& 2 x+3 u=0 \quad 2 y+3 v=0 \\
& 2 z+3 w=1
\end{aligned}
$$

As this system of equations is inconsistent, we say there is no right inverse for matrix A .
39. Which of the following matrices is NOT left inverse of matrix $\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 2 & 3\end{array}\right]$
А) $\left[\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$
В) $\left[\begin{array}{ccc}2 & -7 & 3 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$
C) $\left[\begin{array}{rrr}-\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$
D) $\left[\begin{array}{ccc}0 & 3 & -1 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$

Key. C
Sol. As $2^{\text {nd }}$ row of all the options is same, we are to look at the elements of the first row.
Let left inverse be $\left[\begin{array}{lll}a & b & c \\ \text { d) } & \text { e } & f\end{array}\right]$, then

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
& a+b+2 c=1 \\
& -a+b+3 c=0 \quad \text { i.e. } \quad b=\frac{1-5 c}{2}, a=\frac{1+c}{2}
\end{aligned}
$$

Thus matrices in the options A, B and D are the inverses and matrix in option C is not the left inverse.
40. The num ber of right inverse for the matrix $\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & -1 & 1\end{array}\right]$
A) 0
B) 1
C) 2
D) infinite

Key. D
Sol. Let right inverse is

$$
\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d} \\
\mathrm{e} & \mathrm{f}
\end{array}\right]
$$

Now

$$
\begin{aligned}
& a-c+2 e=1 \\
& b-d+2 f=0 \\
& 2 a-c+e=0 \\
& 2 b-d+f=1
\end{aligned}
$$

Infinite solution
so answer is (D)
41. For which of the following matrices number of left inverses is greater than the number of right inverses
A) $\left[\begin{array}{ccc}1 & 2 & 4 \\ -3 & 2 & 1\end{array}\right]$
B) $\left[\begin{array}{lll}3 & 2 & 1 \\ 3 & 2 & 1\end{array}\right]$
C) $\left[\begin{array}{cc}1 & 4 \\ 2 & -3 \\ 5 & 4\end{array}\right]$
D)

Key. C
Sol. By observation there can't be any left inverse for (B) \& (D) so we will cheak for (A) \& (C) only.
For (A) let left inverse be $\left[\begin{array}{ll}a & b \\ c & d \\ e & f\end{array}\right]$, then

$$
\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d} \\
\mathrm{e} & \mathrm{f}
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 4 \\
-3 & 2 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Now $\mathrm{a}-3 \mathrm{~b}=1,2 \mathrm{a}+2 \mathrm{~b}=0$ and $4 \mathrm{a}+\mathrm{b}=0$ which is not possible.
For (C) $\left[\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{d} & \mathrm{e} & \mathrm{f}\end{array}\right]\left[\begin{array}{cc}1 & 4 \\ 2 & -3 \\ 5 & 4\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow \quad a+2 b+5 c=1,2 a-3 b=0$ and $5 a+4 d=0$
which is not possible
$\therefore \quad$ There is no right inverse.

Paragraph - 15

Consider the determinant, $\Delta\left|\begin{array}{ccc}\mathrm{p} & \mathrm{q} & \mathrm{r} \\ \mathrm{x} & \mathrm{y} & \mathrm{z} \\ l & \mathrm{~m} & \mathrm{n}\end{array}\right|$
M_{ij} denotes the minor of an element in $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column
C_{ij} denotes the cofactor of an element in $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column
42. The value of $\mathrm{p} \cdot \mathrm{C}_{21}+\mathrm{q} \cdot \mathrm{C}_{22}+\mathrm{r} \cdot \mathrm{C}_{23}=$
A) 0
B) $-\Delta$
C) Δ
D) Δ^{2}

Key. A
Sol. p,q,r are the entries of first row and $\mathrm{C}_{21}, \mathrm{C}_{22}, \mathrm{C}_{23}$ are cofactors of second row
$\therefore \quad$ p. $\mathrm{C}_{21}+$ q. $\mathrm{C}_{22}+$ r. $\mathrm{C}_{23}=0$
43. The value of $\mathrm{x} \cdot \mathrm{C}_{21}+\mathrm{y} \cdot \mathrm{C}_{22}+\mathrm{z} \cdot \mathrm{C}_{23}=$
A) 0
B) $-\Delta$
C) Δ
D) Δ^{2}

Key. C
Sol. x, y, z are the entries of second row and C_{21}, C_{22}, C_{23} are cofactors of second row
$\therefore \quad$ x. $C_{21}+y . C_{22}+z . C_{23}=\Delta$
44. The value of $\mathrm{q} \cdot \mathrm{M}_{12}-\mathrm{y} \cdot \mathrm{M}_{22}+\mathrm{m} \cdot \mathrm{M}_{32}=$
A) 0
B) $-\Delta$
C) Δ
D) Δ^{2}

Key. B
Sol. q. $\mathrm{M}_{12}-$ y. $\mathrm{M}_{22}+\mathrm{m} \cdot \mathrm{M}_{32}=-\mathrm{q} \cdot \mathrm{C}_{12}-\mathrm{y} \cdot \mathrm{C}_{22}-\mathrm{m} \cdot \mathrm{C}_{32}$
$=-\left(\mathrm{q} \cdot \mathrm{C}_{12}+\mathrm{y} \cdot \mathrm{C}_{22}+\mathrm{m} \cdot \mathrm{C}_{32}\right)=-\Delta$
$\left\{\because \mathrm{q}, \mathrm{y}, \mathrm{m}\right.$ are entries of second column and $\mathrm{C}_{12}, \mathrm{C}_{22}, \mathrm{C}_{32}$ are cofactor of second column $\}$

Matrices \& Determents

Integer Answer Type

1. If the integers a, b, c inorder are in A.P., lying between 1 and 9 and a23, b53, and c83 are
three-digit numbers, then the value of the determinant $\left|\begin{array}{ccc}2 & 5 & 8 \\ \mathrm{a} 23 & \mathrm{~b} 53 & \mathrm{c} 83 \\ \mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right|$ is...

Key. 0
Sol. We have,
$\left|\begin{array}{ccc}2 & 5 & 8 \\ a 23 & b 53 & c 83 \\ \mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right|=\left|\begin{array}{ccc}2 & 5 & 6 \\ 100 a+20+3 & 100 \mathrm{~b}+50+3 & 100 \mathrm{c}+80+3 \\ \mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right|$
$=\left|\begin{array}{ccc}2 & 5 & 8 \\ 100 \mathrm{a} & 100 \mathrm{~b} & 100 \mathrm{c} \\ \mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right|+\left|\begin{array}{ccc}2 & 5 & 8 \\ 20 & 50 & 80 \\ \mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right|+\left|\begin{array}{ccc}2 & 5 & 8 \\ 3 & 3 & 3 \\ \mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right|$
$=100\left|\begin{array}{lll}2 & 5 & 8 \\ a & b & c \\ a & b & c\end{array}\right|+10\left|\begin{array}{lll}2 & 5 & 8 \\ 2 & 5 & 8 \\ a & b & c\end{array}\right|+3\left|\begin{array}{lll}2 & 5 & 8 \\ 1 & 1 & 1 \\ a & b & c\end{array}\right|$
$=0+0+3\left|\begin{array}{ccc}2 & 3 & 6 \\ 1 & 0 & 0 \\ a & b-a & c-a\end{array}\right|$
(Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}, \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$)
$=-3[3(\mathrm{c}-\mathrm{a})-6(\mathrm{~b}-\mathrm{a})]=-9[\mathrm{c}-\mathrm{a}-2 \mathrm{~b}+2 \mathrm{a}]$
$=-9(a-2 b+c)=0 \quad[Q$ a,b,c are in A.P., $\therefore 2 b=a+c]$
2. A be set of 3×3 matrices formed by entries $0,-1$, and 1 only. Also each of $1,-1,0$ occurs exactly three times in each matrix. The number of symmetric matrices with trace $(A)=0$ is k, then $\frac{k}{6}=$ \qquad
Key. 6
Sol. For non-diagonal entries, we required even no. of 1, even no. of -1 and even no. of 0 , for diagonal three entries are remained, $-1,0,1$. So no. of cases in which trace $=0$ are 3 ! And no. of symmetric matrices for each arrangement of $1,-1,0$ in diagonal $=3$!
Total such matrices $=3!\times 3!=36$
3. Let $A_{n},(n \in N)$ be a matrix of order $(2 n-1) \times(2 n-1)$, such that $a_{i j}=0 \forall i \neq j$ and $a_{i j}=n^{2}+i+1-2 n \forall i=j$ where $a_{i j}$ denotes the element of $j^{\text {th }}$ row and $j^{\text {th }}$ column of A_{n}.

Let $T_{n}=(-1)^{n} \times$ (sum of all the elements of $\left.A_{n}\right)$. Find the value of $\left[\frac{\sum_{n=1}^{102} T_{n}}{520200}\right]$, where [.] represents the greatest integer function.
Ans: 2
Hint $\quad a_{i j}=0 \forall i \neq j$ and $a_{i j}=(n-1)^{2}+\mathrm{i} \forall \mathrm{i}=\mathrm{j}$
Sum of all the element of $A_{n}=\sum_{i=1}^{2 n-1}\left[(n-1)^{2}+i\right]$
$=(2 n-1)(n-1)^{2}+(2 n-1) n=2 n^{3}-3 n^{2}+3 n-1=n^{3}+(n-1)^{3}$
So, $T_{n}=(-1)^{n}\left[n^{3}+(n-1)^{3}\right]=(-1)^{n} n^{3}-(-1)^{n-1}(n-1)^{3}=V_{n}-V_{n-1}$
$\Rightarrow \sum_{\mathrm{n}=1}^{102} \mathrm{~T}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{102}\left(\mathrm{~V}_{\mathrm{n}}-\mathrm{V}_{\mathrm{n}-1}\right)=\mathrm{V}_{102}-\mathrm{V}_{0}=(102)^{3}$
$\left[\frac{\sum_{\mathrm{n}=1}^{102} \mathrm{~T}_{\mathrm{n}}}{520200}\right]=2$.
4. Find the value of $f\left(\frac{\pi}{6}\right)$, where $f(\theta)=\left|\begin{array}{ccc}\cos ^{2} \theta & \cos \theta \sin \theta & -\sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta & \cos \theta \\ \sin \theta & -\cos \theta & 0\end{array}\right|$

Key. 1
Sol. Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\sin \theta \mathrm{C}_{3}$ and $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+\cos \theta \mathrm{C}_{3}$, we get

$$
\mathrm{f}(\theta)=\left|\begin{array}{ccc}
1 & 0 & -\sin \theta \\
0 & 1 & \cos \theta \\
\sin \theta & -\cos \theta & 0
\end{array}\right|
$$

Applying $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\sin \theta \mathrm{R}_{1}+\cos \theta \mathrm{R}_{2}$, we get

$$
\mathrm{f}(\theta)=\left|\begin{array}{ccc}
1 & 0 & -\sin \theta \\
0 & 1 & \cos \theta \\
\sin \theta & 0 & \sin ^{2} \theta+\cos ^{2} \theta
\end{array}\right|=1
$$

Thus, $\mathrm{f}\left(\frac{\pi}{6}\right)=1$
5.
$\operatorname{det} P=\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$, where ' P ' is an orthogonal matrix. Then the value of $|a+b+c|$ is
Key. 1

Sol.

$$
P P^{T}=\left[\begin{array}{lll}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right]\left[\begin{array}{lll}
a & c & b \\
b & a & c \\
c & b & a
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{lll}
a^{2}+b^{2}+c^{2} & a b+b c+c a & a b+b c+c a \\
a b+b c+c a & a^{2}+b^{2}+c^{2} & a b+b c+c a \\
a b+b c+c a & a b+b c+c a & a^{2}+b^{2}+c^{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

6. If the adjoint of a 3×3 matrix P is $\left[\begin{array}{lll}1 & 2 & 1 \\ 4 & 1 & 1 \\ 4 & 7 & 3\end{array}\right]$, then the sum of squares of possible values of determinant of P is

Key. 8

Sol. Adj. $P=\left[\begin{array}{lll}1 & 2 & 1 \\ 4 & 1 & 1 \\ 4 & 7 & 3\end{array}\right]$
$|\operatorname{adj} . \mathrm{P}|=4$
$\Rightarrow|P|^{2}=\quad 4 \Rightarrow|P|= \pm 2$
7. If $\mathrm{A}=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$, then $\operatorname{det}\left(\mathrm{A}^{2005}\right)$ equals to

Key. 1
Sol. $\quad A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$

$$
A^{2}=\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
5 & -8 \\
2 & -3
\end{array}\right]
$$

$$
A^{3}=A^{2} A=\left[\begin{array}{ll}
5 & -8 \\
2 & -3
\end{array}\right]\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
7 & -12 \\
3 & -5
\end{array}\right]
$$

Observing A, A^{2}, A^{3} we can conclude that $A^{n}=\left[\begin{array}{cc}1+2 n & -4 n \\ n & 1-2 n\end{array}\right]$

$$
\operatorname{det}\left(A^{n}\right)=\left|\begin{array}{cc}
1+2 n & -4 n \\
n & 1-2 n
\end{array}\right|=1-4 n^{2}+4 n^{2}=1
$$

$$
\operatorname{det}\left(A^{2005}\right)=1
$$

8. If x, y, z are cube roots of unity and
$D=\left|\begin{array}{ccc}x^{2}+y^{2} & z^{2} & z^{2} \\ x^{2} & y^{2}+z^{2} & x^{2} \\ y^{2} & y^{2} & z^{2}+x^{2}\end{array}\right|$, then the real part of D is
Key. 4

Sol. An applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}-\mathrm{R}_{3}$
$D=\left|\begin{array}{ccc}0 & -2 y^{2} & -2 x^{2} \\ x^{2} & y^{2}+z^{2} & x^{2} \\ y^{2} & y^{2} & z^{2}+x^{2}\end{array}\right|$
$=-2\left|\begin{array}{ccc}0 & y^{2} & x^{2} \\ x^{2} & z^{2} & 0 \\ y^{2} & 0 & z^{2}\end{array}\right|$
$\left.=4 x^{2} y^{2} z^{2}=4(1 . \text { w.w. })^{2}\right)^{2}=4$
9. Find the coefficient of x in the determinant $\left|\begin{array}{lll}(1+x)^{a_{1} b_{1}} & (1+x)^{a_{1} b_{2}} & (1+x)^{a_{1} b_{2}} \\ (1+x)^{a_{2} b_{1}} & (1+x)^{a_{2} b_{2}} & (1+x)^{a_{2} b_{3}} \\ (1+x)^{a_{3} b_{1}} & (1+x)^{a_{3} b_{2}} & (1+x)^{a_{3} b_{3}}\end{array}\right|$, whee
$a_{1}, b_{1} \in N$
Ans. $\quad \lambda_{1}=0$
Sol. Let $\left|\begin{array}{lll}(1+x)^{a_{2} b_{1}} & (1+x)^{a_{1} b_{2}} & (1+x)^{a_{1} b_{2}} \\ (1+x)^{a_{2} b_{1}} & (1+x)^{a_{2} b_{2}} & (1+x)^{a_{2} b_{2}} \\ (1+x)^{a_{2} b_{2}} & (1+x)^{a_{2} b_{2}} & (1+x)^{a_{2} b_{2}}\end{array}\right|=\lambda_{0}+\lambda_{1} x+\lambda_{2} x^{2}+\lambda_{3} x^{3}+\ldots$
For λ_{1} differentiate w.r.t. x and put $\mathrm{x}=0$
so

$$
\lambda_{1}=0
$$

10. If if $(x)=\left|\begin{array}{lll}\cos (x+\alpha) & \cos (x+\beta) & \cos (x+\gamma) \\ \sin (x+\alpha) & \sin (x+\beta) & \sin (x+\gamma) \\ \sin (\beta-\gamma) & \sin (\gamma-\alpha) & \sin (\alpha-\beta)\end{array}\right|$ and $f(2)=6$, then find $\sum_{r=1}^{25} f(r)$

Ans. 150
Sol. Clearly $\mathrm{f}^{\prime}(\mathrm{x})=0$
$\therefore \quad f(x)=c=5$
$\therefore \quad \sum_{\mathrm{r}=1}^{25} \mathrm{f}(\mathrm{r})=\sum_{\mathrm{r}=1}^{25} 6=150$ Ans.
11. Let $f(x)=\left|\begin{array}{ccc}x & 1 & 1 \\ \sin 2 \pi x & 2 x^{2} & 1 \\ x^{3} & 3 x^{4} & 1\end{array}\right|$. If $f(x)$ be an odd function and its odd values is equal $g(x)$, then find the value of λ. If $\lambda f(1) g(1)=4$
Ans. $\quad \lambda=1$
Sol. $\mathrm{f}(-\mathrm{x})=-\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$
$\therefore \quad \mathrm{f}(\mathrm{x}) . \mathrm{g}(\mathrm{x})=-(\mathrm{f}(\mathrm{x}))^{2}$
or $f(1) g(1)=-(f(1))^{2}=-\left|\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 3 & 1\end{array}\right|=-4 \Rightarrow \quad \lambda=1 \mathrm{Ans}$.
12. If $\mathrm{f}(\mathrm{x})$ satisfies the equation $\left|\begin{array}{ccc}\mathrm{f}(\mathrm{x}+1) & \mathrm{f}(\mathrm{x}+8) & \mathrm{f}(\mathrm{x}+1) \\ 1 & 2 & -5 \\ 2 & 3 & \lambda\end{array}\right|=0$ for all real x . If f is periodic with period 7 , then find the value of $|\lambda|$
Ans. 4
Sol. On solving we get

$$
\begin{aligned}
& (2 \lambda+15) f(x+1)-(\lambda+10) f(x+8)-f(x+1)=0 \\
& (2 \lambda+14) f(x+1)=(\lambda+10) f(x+8)
\end{aligned}
$$

Since f is periodic with period 7

$$
\begin{array}{llll}
\therefore & \mathrm{f}(\mathrm{x}+1) & =\mathrm{f}(\mathrm{x}+8) \\
\Rightarrow & 2 \lambda+14 & =\lambda+10
\end{array} \quad \Rightarrow \quad|\lambda|=4 \text { Ans. }
$$

13. If $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0\end{array}\right]$ and $B=(\operatorname{adj} A)$ and $C=5 A$, then find the value of $\frac{|\operatorname{adj} B|}{|C|}$.

Ans. 1
Sol. $\quad \frac{|\operatorname{adj} B|}{|\mathrm{C}|}=\frac{|\operatorname{adj}(\operatorname{adj} \mathrm{A})|}{|5 \mathrm{~A}|}=\frac{|\mathrm{A}|^{(3-1)^{2}}}{5^{3}|\mathrm{~A}|}=\frac{|\mathrm{A}|^{3}}{125}$
Now $|A|=5$
$\therefore \quad \frac{|\operatorname{adj} B|}{|C|}=1$ Ans.
14. If $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$ and $\phi(\mathrm{x})=(1+\mathrm{x})(1-\mathrm{x})^{-1}$, then prove that $\phi(\mathrm{A})=-\mathrm{A}$

Ans. $\quad \phi(A)=(I+A)(I-A)^{-1}=\left(\begin{array}{ll}2 & 2 \\ 1 & 2\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ -\frac{1}{2} & 0\end{array}\right)=\left(\begin{array}{ll}-1 & -2 \\ -1 & -1\end{array}\right)=-\mathrm{A}$
Sol. $\quad I+A\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 2 \\ 1 & 2\end{array}\right)$ and $I-A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)=\left(\begin{array}{cc}0 & -2 \\ -1 & 0\end{array}\right)$

$$
\text { Now, }|\mathrm{I}-\mathrm{A}|=\left|\begin{array}{cc}
0 & -2 \\
-1 & 0
\end{array}\right|=0-2=-2
$$

$\operatorname{adj}(I-A)=\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)$
$(I-A)^{-1}=\left(\begin{array}{cc}0 & -1 \\ -\frac{1}{2} & 0\end{array}\right)$
$\therefore \quad \phi(\mathrm{A})=(\mathrm{I}+\mathrm{A})(\mathrm{I}-\mathrm{A})^{-1}=\left(\begin{array}{ll}2 & 2 \\ 1 & 2\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ -\frac{1}{2} & 0\end{array}\right)=\left(\begin{array}{ll}-1 & -2 \\ -1 & -1\end{array}\right)=-\mathrm{A}$
15. If $\mathrm{A}\left(\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{b} & \mathrm{c} & \mathrm{a} \\ \mathrm{c} & \mathrm{a} & \mathrm{b}\end{array}\right), \mathrm{abc}=1, \mathrm{~A}^{\prime} \mathrm{A}=1$, then find the value of $\mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}$

Ans.

Sol. A'A = I

$$
\begin{aligned}
& \therefore=\left|A^{\prime} \mathrm{A}\right|=|\mathrm{I}| \quad \Rightarrow \quad|\mathrm{A}|= \pm 1 \\
& \left|\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~b} & \mathrm{c} & \mathrm{a} \\
\mathrm{c} & \mathrm{a} & \mathrm{~b}
\end{array}\right|= \pm 1 \\
& \Rightarrow \quad 3 \mathrm{abc}-\mathrm{a}^{3}-\mathrm{b}^{3}-\mathrm{c}^{3}= \pm 1 \quad \Rightarrow \quad \mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}=4 \text { and } 2
\end{aligned}
$$

16. If $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$ and $A^{2}=8 A+\mathrm{KI}_{2}$, then find the value of $|\mathrm{k}|$

Ans. 7
Sol. Here $|\mathrm{A}-\lambda|=0$

$$
\begin{array}{lll}
\left|\begin{array}{cc}
1-\lambda & 0 \\
-1 & 7-\lambda
\end{array}\right|=0 & \\
\Rightarrow & (1-\lambda)(7-\lambda)=0 & \Rightarrow \\
\lambda^{2}-8 \lambda+7=0 \\
\Rightarrow & \mathrm{~A}^{2}-8 \mathrm{~A}+7 \mathrm{I}_{2}=0 & \Rightarrow
\end{array} \mathrm{~A}^{2}=8 \mathrm{~A}-7 \mathrm{I}_{2} .
$$

17. Compute A^{-1} if $\mathrm{A}=\left[\begin{array}{ccc}3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & -3 & 2\end{array}\right]$.

Hence solve the system of equations

$$
\left[\begin{array}{lll}
3 & 0 & 3 \\
2 & 1 & 0 \\
4 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
8 \\
1 \\
4
\end{array}\right]+\left[\begin{array}{c}
2 y \\
z \\
3 y
\end{array}\right]
$$

Ans. $\left[\begin{array}{lll}3 & 0 & 3 \\ 2 & 1 & 0 \\ 4 & 0 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}8 \\ 1 \\ 4\end{array}\right]+\left[\begin{array}{c}2 y \\ z \\ 3 y\end{array}\right]$
Sol. Compute A^{-1}. If $A=\left[\begin{array}{ccc}3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & -3 & 2\end{array}\right]$. Hence solve the system of equations $\left[\begin{array}{lll}3 & 0 & 3 \\ 2 & 1 & 0 \\ 4 & 0 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}8 \\ 1 \\ 4\end{array}\right]+\left[\begin{array}{c}2 y \\ z \\ 3 y\end{array}\right]$

Matrices \& Determents

Matrix-Match Type

1. Let $\left|\begin{array}{ccc}1+x & x & x^{2} \\ x & 1+x & x^{2} \\ x^{2} & x & 1+x\end{array}\right|=a x^{5}+b x^{4}+c x^{3}+d x^{2}+e x+f$

Column - I
Column - II
a) Value of f is
p) 0
b) Value of e is
q) 1
c) Value of $a+c$ is
r) -1
d) Value of $b+d$ is
s) 3

Key: a) q
b) s
c) r
d) q

Hint: a) Put $x=0 \Rightarrow$ find f
b) Diff. both sides and put $x=0$ find e.
$\mathrm{c}, \mathrm{d})$ put $x=1, x=-1$ solve
2. Let $\mathrm{p}(\theta)=\left|\begin{array}{ccc}-\sqrt{2} & \sin \theta & \cos \theta \\ 1 & \cos \theta & \sin \theta \\ -1 & \sin \theta & -\cos \theta\end{array}\right|, \mathrm{q}(\theta)=\left|\begin{array}{ccc}\sin 2 \theta & -1 & 1 \\ \cos 2 \theta & 4 & -3 \\ 2 & 7 & -5\end{array}\right|$,
$r(\theta)=\left|\begin{array}{ccc}\cos \theta & \sin \theta & \cos \theta \\ -\sin \theta & \cos \theta & \sin \theta \\ -\cos \theta & -\sin \theta & \cos \theta\end{array}\right|$ and $s(\theta)=\left|\begin{array}{ccc}\sec ^{2} \theta & 1 & 1 \\ \cos ^{2} \theta & \cos ^{2} \theta & \operatorname{cosec}{ }^{2} \theta \\ 1 & \cos ^{2} \theta & \cot ^{2} \theta\end{array}\right|$
Match the functions on the left with their range on the right.

Column I

(A) $\mathrm{p}(\theta)$

Column II
(B) $\mathrm{q}(\theta)$
(P) $[0,1]$
(C) $r(\theta)$
(D) $s(\theta)$
(Q) $[0,2 \sqrt{2}]$
(R) $[-2,2]$
(S) $[-\sqrt{5}-2, \sqrt{5}-2]$

Key:

A-Q, B-S, C-R, D-P
Hint: (A) Expand along C_{1} to obtain
$\mathrm{p}(\theta)=(-\sqrt{2})(-1)+(-1)(-2 \sin \theta \cos \theta)+(-1)\left(\sin ^{2} \theta-\cos ^{2} \theta\right)$
$=\sqrt{2}+\sin 2 \theta+\cos 2 \theta=\sqrt{2}+\sqrt{2} \sin \left(2 \theta+\frac{\pi}{4}\right)$
\therefore range of $\mathrm{p}(\theta)$ is $[0,2 \sqrt{2}]$.
(B) Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+4 \mathrm{R}_{1}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+7 \mathrm{R}_{1}$, we get

$$
\begin{aligned}
\mathrm{q}(\theta) & =\left|\begin{array}{ccc}
\sin 2 \theta & -1 & 1 \\
\cos 2 \theta+4 \sin 2 \theta & 0 & 1 \\
2+7 \sin 2 \theta & 0 & 2
\end{array}\right|=2 \cos 2 \theta+8 \sin 2 \theta-2-7 \sin 2 \theta \\
& =2 \cos 2 \theta+\sin 2 \theta-2
\end{aligned}
$$

As $2 \cos 2 \theta+\sin 2 \theta$ lies between $-\sqrt{5}$ to $\sqrt{5}$, we get range of $\mathrm{q}(\theta)$ is $[-\sqrt{5}-2, \sqrt{5}-2]$.
(C) Using $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{3}$, we get
$r(\theta)=2 \cos \theta\left|\begin{array}{ccc}1 & \sin \theta & \cos \theta \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta\end{array}\right|=2 \cos \theta$
\therefore range of $r(\theta)$ is $[-2,2]$
(D) Taking $\sec ^{2} \theta$ common from R_{1}, we get
$s(\theta)=\sec ^{2} \theta\left|\begin{array}{ccc}1 & \cos ^{2} \theta & \cos ^{2} \theta \\ \cos ^{2} \theta & \cos ^{2} \theta & \operatorname{cosec}^{2} \theta \\ 1 & \cos ^{2} \theta & \cot ^{2} \theta\end{array}\right|$
$R_{3} \rightarrow R_{3}-R_{1}$, we get
$s(\theta)=\sec ^{2} \theta\left|\begin{array}{ccc}1 & \cos ^{2} \theta & \cos ^{2} \theta \\ \cos ^{2} \theta & \cos ^{2} \theta & \operatorname{cosec}^{2} \theta \\ 0 & 0 & \cot ^{2} \theta-\cos ^{2} \theta\end{array}\right|$
$=\sec ^{2} \theta\left(\cot ^{2} \theta-\cos ^{2} \theta\right)\left(\cos ^{2} \theta-\cos ^{4} \theta\right)$
$=\left(\cot ^{2} \theta-\cos ^{2} \theta\right) \sin ^{2} \theta=\cos ^{2} \theta-\cos ^{2} \theta \sin ^{2} \theta=\cos ^{4} \theta$
\therefore range of $s(\theta)$ is $[0,1]$
3.
(A) A is a matrix such that $A^{2}=A$. If $(I+A)^{8}=I+\lambda A$, then
$\lambda+1$ is equal to
(B) If A is a square matrix of order 3 such that $|A|=2$,
then $\left|\left(\operatorname{adj}^{-1}\right)^{-1}\right|$ is equal to
(C) Let $|\mathrm{A}|=\left|\mathrm{a}_{\mathrm{ij}}\right|_{3 \times 3} \neq 0$. Each element a_{ij} is multiplied
by λ^{i-j}. Let $|B|$ the resulting determinant, where
$|\mathrm{A}|=\lambda|\mathrm{B}|$, then λ is equal to
(D) If A is a diagonal matrix of order 3×3 is commutative with every square matrix of order 3×3 under multiplication and trace $(A)=12$, then $|A|=$
Key. $\quad A-R, B-S, C-Q, D-P$
Sol. (A) $(\mathrm{I}+\mathrm{A})^{8}={ }^{8} \mathrm{C}_{\mathrm{o}} \mathrm{I}+{ }^{8} \mathrm{C}_{1} \mathrm{IA}+{ }^{8} \mathrm{C}_{2} \mathrm{IA}^{2}+$ \qquad $+{ }^{8} \mathrm{C}_{8} \mathrm{IA}^{8}$
$={ }^{8} \mathrm{C}_{0} \mathrm{I}+{ }^{8} \mathrm{C}_{1} \mathrm{~A}+{ }^{8} \mathrm{C}_{2} \mathrm{~A}+\ldots . .+{ }^{8} \mathrm{C}_{8} \mathrm{~A}^{8}$

Column II
(P) 64
(Q) 1
(R) 256
(S) 4
$=\mathrm{I}+\mathrm{A}\left({ }^{8} \mathrm{C}_{1}+{ }^{8} \mathrm{C}_{2}+\ldots \ldots .+{ }^{8} \mathrm{C}_{8}\right)$
$=1+A\left(2^{8}-1\right) \Rightarrow \lambda=2^{8}-1$
(B) $\left|\operatorname{adj}\left(\mathrm{A}^{-1}\right)\right|=\left|\mathrm{A}^{-1}\right|^{2}=\frac{1}{|\mathrm{~A}|^{2}}$
$\left|\left(\operatorname{adj}\left(\mathrm{A}^{-1}\right)\right)^{-1}\right|=\frac{1}{\left|\operatorname{adj}^{-1}\right|}=|\mathrm{A}|^{2}=2^{2}=4$
(C) $|A|=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$\Rightarrow|B|=\left|\begin{array}{ccc}a_{11} & \lambda^{-1} a_{12} & \lambda^{-2} a_{13} \\ \lambda a_{21} & a_{22} & \lambda^{-1} a_{23} \\ \lambda^{2} a_{31} & \lambda a_{32} & a_{33}\end{array}\right|=\frac{1}{\lambda^{3}}\left|\begin{array}{ccc}\lambda^{2} a_{11} & \lambda a_{12} & a_{13} \\ \lambda^{2} a_{21} & \lambda a_{22} & a_{23} \\ \lambda^{2} a_{31} & \lambda a_{32} & a_{33}\end{array}\right|=|A|$
Hence, $|\mathrm{A}|=|\mathrm{B}| \Rightarrow \lambda=1$.
(D) A diagonal matrix is commutative with every square matrix, if it is a scalar matrix. So every diagonal element is 4 .
$\therefore|A|=64$.

Match the following

4. A, B are two matrices of 3×3 order. Such that
a) A is non singular and $A B=0$ then
(p) $A=0$
b) B is non singular and $A B=0$ then
(q) $B=0$
c) $A \& B$ both are non zero matrix and $A B=0$ then
(r) $\operatorname{det} A=0$
d) $A^{n}=0$ for some $n \geq 2$ then
(s) $\operatorname{det} B=0$

Key. $\quad a-q s ; b-p r ; c-r s ; d-r$
Sol. a) $A B=0 \Rightarrow|A| \neq 0 \Rightarrow A^{-1}$ exist. $A^{-1} A B=0 \Rightarrow I B=0 \Rightarrow B=0$
b) $\mathrm{AB}=0,|B| \neq 0 \Rightarrow B^{-1}$ exist

$$
A B B_{0}^{-1}=0 \Rightarrow A I=0 \Rightarrow A=0
$$

(c) $\mathrm{AB}=0 \Rightarrow|A| B \mid=0 \Rightarrow$ three cases
(i) either $|A|=0,|B| \neq 0$ or (ii) $|A| \neq 0,|B|=0$ or (iii) $|A|=0,|B|=0$
(i) $|B| \neq 0, \mathrm{AB}=0 \Rightarrow \mathrm{~A}=0$ but in question $A \neq 0 . \Rightarrow \mathrm{I}^{\text {st }}$ case is not possible similarity
(ii) case is also not possible hence both $|A|,|B|$ should be zero.
d) $A^{n}=0 \Rightarrow\left|A^{n}\right|=0 \Rightarrow|A|=0$
5. A is Non zero matrix
a) If A is Hermitian matrix and $\mathrm{X}=\mathrm{i} \mathrm{A}$ then X is
(p) Hemitian matrix
b) If A is Hermitian matrix and $X=A-A^{T}$ then X is
(q) Skew Hermitian
c) A is symmetric matrix and $X=i A+i A^{\theta}$ then X is
(r) symmetric
d) If A is skew Hermitian and $X=i\left(A+A^{\top}\right)$ then X is
(s) Skew symmetric

Key. $\quad a-q ; \quad b-p s ; c-q, r ; d-p, r$
Sol. (a) A is hermitian then $A^{\theta}=A$

$$
x^{\theta}=(\mathrm{iA})^{\theta}=(\overline{i A})^{T}=(-i \bar{A})^{T}=-i(\bar{A})^{T}=-i A=-X
$$

$\Rightarrow X$ is skew hermition
6. Match the parameter on which the value of the determinant does not depend upon
a) $\quad\left|\begin{array}{ccc}1 & x & x^{2} \\ \cos (a-b) y & \cos a y & \cos (a+b) y \\ \sin (a-b) y & \sin a y & \sin (a+b) y\end{array}\right|$
(p) a
b) $\quad\left|\begin{array}{ccc}x^{2}+y^{2} & a x+b y & x+y \\ a x+b y & a^{2}+b^{2} & a+b \\ x+y & a+b & 2\end{array}\right|$
c) $\quad\left|\begin{array}{lll}1 & a & a^{2}+b \\ 1 & b & b^{2}+a \\ 1 & 1 & 1+a b\end{array}\right|$
(q) $\quad x$
(s) y
d) $\frac{1}{\left(a^{2}+b^{2}+x^{2}\right)^{3}}\left|\begin{array}{ccc}a^{2}+\left(b^{2}+x^{2}\right) \cos y & a b(1-\cos y) & a x(1-\cos y) \\ a b(1-\cos y) & b^{2}+\left(x^{2}+a^{2}\right) \cos y & b x(1-\cos y) \\ a x(1-\cos y) & b x(1-\cos y) & x^{2}+\left(a^{2}+b^{2}\right) \cos y\end{array}\right|$

Key. $\quad a-p ; \quad b-p q r s ; ~ c-r s ; ~ d-p q r ~$

$$
=\left(1+x^{2}+2 x \cos b y\right)(\sin b y)
$$

(ii) $\Delta=\left|\begin{array}{lll}x & y & 0 \\ a & b & 0 \\ 1 & 1 & 0\end{array}\right| \cdot\left|\begin{array}{ccc}x & a & 1 \\ y & b & 1 \\ 0 & 0 & 0\end{array}\right|=0$
(iv) (i) multiply $\mathrm{a}, \mathrm{b}, \mathrm{x}$ in C_{1}, C_{2}, C_{3} respectively and after that take $\mathrm{a}, \mathrm{b}, \mathrm{x}$ common
from R_{1}, R_{2}, R_{3} respectively
(ii) $C_{1} \rightarrow C_{1}+C_{2}+C_{3} \quad$ (iii) $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$
$\Delta_{\Delta}=\frac{\left(a^{2}+b^{2}+x^{2}\right)^{3}}{\left(a^{2}+b^{2}+x^{2}\right)^{3}} \cdot \cos ^{2} y=\cos ^{2} y$
7. Match the following: -

Column - I		Column - II	
(A)	A is a real skew symmetric matrix such that $\mathrm{A}^{2}+\mathrm{I}=0$. Then	(p)	$\mathrm{BA}-\mathrm{AB}$
(B)	A is a matrix such that $\mathrm{A}^{2}=\mathrm{A}$. If $(\mathrm{I}+\mathrm{A})^{\mathrm{n}}=\mathrm{I}+\lambda \mathrm{A}$, then λ equals $(\mathrm{n} \in \mathrm{N})$	(q)	A is of even order
(C)	If for a matrix $\mathrm{A}, \mathrm{A}^{2}=\mathrm{A}$, and $\mathrm{B}=\mathrm{I}-\mathrm{A}$, then $\mathrm{AB}+\mathrm{BA}$	(r)	A

	$+\mathrm{I}-(\mathrm{I}-\mathrm{A})^{2}$ equals		
(D)	A is a matrix with complex entries and A^{*} stands for transpose of complex conjugate of A. If $\mathrm{A}^{*}=\mathrm{A} \& \mathrm{~B}^{*}=\mathrm{B}$, then $(\mathrm{AB}-\mathrm{BA})^{*}$ equals	$2^{\mathrm{n}}-1$	
		(t)	${ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$

Key. $\mathrm{A} \rightarrow \mathrm{q} ; \mathrm{B} \rightarrow \mathrm{s}, \mathrm{t} ; \mathrm{C} \rightarrow \mathrm{r} ; \mathrm{D} \rightarrow \mathrm{p}$
Sol. (A) $\quad \mathrm{A}^{2}=-\mathrm{I} \quad \therefore \quad \mathrm{A}$ is of even order
(B) $\quad(\mathrm{I}+\mathrm{A})^{\mathrm{n}}=\mathrm{C}_{0} \mathrm{I}^{\mathrm{n}}+\mathrm{C}_{1} \mathrm{IA}+\mathrm{C}_{2} \mathrm{IA}^{2}+\ldots+\mathrm{C}_{\mathrm{n}} \mathrm{IA}^{\mathrm{n}}$
$=\mathrm{C}_{0} \mathrm{I}+\mathrm{C}_{1} \mathrm{~A}+\mathrm{C}_{2} \mathrm{~A}+\ldots+\mathrm{C}_{\mathrm{n}} \mathrm{A}$
$\therefore \quad \lambda=2^{n}-1$
(C) $\mathrm{A}^{2}=\mathrm{A}$ AND B $=\mathrm{I}-\mathrm{A}$
$A B+B A+I-\left(I+A^{2}-2 A\right)$
$=\mathrm{AB}+\mathrm{BA}-\mathrm{A}+2 \mathrm{~A}+\mathrm{AB}+\mathrm{BA}+\mathrm{A}$
$=\mathrm{A}(\mathrm{I}-\mathrm{A})+(\mathrm{I}-\mathrm{A}) \mathrm{A}+\mathrm{A}$
$=\mathrm{A}-\mathrm{A}+\mathrm{A}-\mathrm{A}+\mathrm{A}=\mathrm{A}$
(D) $\quad \mathrm{A}^{*}=\mathrm{A}, \mathrm{B}^{*}=\mathrm{B}$
$(\mathrm{AB}-\mathrm{BA})^{*}=\mathrm{B}^{*} \mathrm{~A}^{*}-\mathrm{A}^{*} \mathrm{~B}^{*}=\mathrm{BA}-\mathrm{AB}$
8. Match the following: -

Column-1	Column - II	
(A) Let $\|\mathrm{A}\|=\left\|\mathrm{a}_{\mathrm{ij}}\right\|_{3 \times 3} \neq 0$. Each element a_{ij} is multiplied by $\mathrm{k}^{\mathrm{i}-\mathrm{j}}$. Let $\|\mathrm{B}\|$ the resulting determinant, where $\mathrm{k}_{1}\|\mathrm{~A}\|+\mathrm{k}_{2}\|\mathrm{~B}\|=0$. Then $\mathrm{k}_{1}+\mathrm{k}_{2}=$	(p)	0
(B) $\begin{aligned} & \text { The maximum value of a third order determinant each of its } \\ & \text { entries are } \pm 1 \text { equals }\end{aligned}$	(q)	4
(C) $\left\|\begin{array}{ccc}1 & \cos \alpha & \cos \beta \\ \cos \alpha & 1 & \cos \gamma \\ \cos \beta & \cos \gamma & 1\end{array}\right\|=\left\|\begin{array}{ccc}0 & \cos \alpha & \cos \beta \\ \cos \alpha & 0 & \cos \gamma \\ \cos \beta & \cos \gamma & 0\end{array}\right\|$	(r)	1
(D) $\left\|\begin{array}{ccc}x^{2}+x & x+1 & x-2 \\ 2 x^{2} 3 x-1 & 3 x & 3 x-3 \\ x^{2}+2 x+3 & 2 x-1 & 2 x-1\end{array}\right\|=A x+B$ where A and B	(s)	
	(t)	$\left\|\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right\|$

Key. $\mathrm{A} \rightarrow \mathrm{p}, \mathrm{t} ; \mathrm{B} \rightarrow \mathrm{q} ; \mathrm{C} \rightarrow \mathrm{r} ; \mathrm{D} \rightarrow \mathrm{p}, \mathrm{t}$

Sol.
(A) $\quad|A|=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$

$$
\begin{aligned}
& |B|=\left|\begin{array}{ccc}
a_{11} & k^{-1} a_{12} & k^{-2} a_{13} \\
k a_{21} & a_{22} & k^{-1} a_{23} \\
k^{2} a_{31} & k a_{32} & a_{33}
\end{array}\right|=\frac{1}{k^{3}}\left|\begin{array}{ccc}
k^{2} a_{11} & k a_{12} & a_{13} \\
k^{2} a_{21} & k a_{22} & a_{23} \\
k^{2} a_{31} & k a_{32} & a_{33}
\end{array}\right|=|A| \\
& \mathrm{k}_{1}|\mathrm{~A}|+\mathrm{k}_{2}|\mathrm{~B}|=0 \\
& \mathrm{k}_{1}+\mathrm{k}_{2}=0 \\
& \left|\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & -1 \\
1 & 1 & 1
\end{array}\right|=4 \\
& \left|\begin{array}{ccc}
1 & \cos \alpha & \cos \beta \\
\cos \alpha & 1 & \cos \gamma \\
\cos \beta & \cos \gamma & 1
\end{array}\right|=\left|\begin{array}{ccc}
0 & \cos \alpha & \cos \beta \\
\cos \alpha & 0 & \cos \gamma \\
\cos \beta & \cos \gamma & 0
\end{array}\right| \\
& \Rightarrow \quad \sin ^{2} \gamma-\cos \alpha(\cos \alpha-\cos \beta \cos \gamma)+\cos \gamma(\cos \alpha \cos \gamma-\cos \beta) \\
& =-\cos \alpha(-\cos \beta \cos \gamma)+\cos \beta(\cos \alpha \cos \gamma) \\
& \Rightarrow \quad \sin ^{2} \gamma-\cos ^{2} \alpha+2 \cos \alpha \cos \beta \cos \gamma-\cos ^{2} \beta=2 \cos \alpha \cos \beta \cos \gamma \\
& \Rightarrow \quad \sin ^{2} \gamma=\cos ^{2} \alpha+\cos ^{2} \beta \Rightarrow \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \\
& \text { (D) }\left|\begin{array}{ccc}
x^{2}+x & x+1 & x-2 \\
2 x^{2}+3 x-1 & 3 x & 3 x-3 \\
x^{2}+2 x+3 & 2 x-1 & 2 x-1
\end{array}\right| \\
& \mathrm{R}_{2} \rightarrow \mathrm{R}_{2} \rightarrow\left(\mathrm{R}_{1}+\mathrm{R}_{3}\right) \\
& =\left|\begin{array}{ccc}
x^{2}+x & x+1 & x+2 \\
-4 & 0 & 0 \\
x^{2}+2 x+3 & 2 x-1 & 2 x-1
\end{array}\right|=4\left|\begin{array}{cc}
x+1 & x-2 \\
2 x-1 & 2 x-1
\end{array}\right|=\left|\begin{array}{cc}
x+1 & -3 \\
2 x-1 & 0
\end{array}\right|=(24 x-12) \\
& \therefore \quad \mathrm{A}=24, \mathrm{~B}=-12
\end{aligned}
$$

$$
\therefore \quad A+2 B=0
$$

