


 $\frac{n^2}{\left(n+1\right)^2}$ 2.  $\sum_{k=1}^{\infty} \frac{1}{k!} \left( \sum_{k=1}^{k} 2^{n-1} \right) =$ 2)  $e^2 + e$  $(3)e^2$   $(4)e^2 - e^2$ 1)e Key. Sol.  $\sum_{i=1}^{\infty} \frac{1}{k!} \left( 1 + 2 + 2^2 + \dots + 2^{k-1} \right)$  $\sum_{k=1}^{\infty} \frac{2^{k} - 1}{k!} = e^{2} - e$ Coefficient of  $x^{10}$  in the expansion of  $(2+3x)e^{-x}$  is 3.  $1)\frac{-26}{(10)!}$  $(2)\frac{-28}{(10)!}$  $(3)\frac{-30}{(10)!}$ Key.  $(2+3x)\left(1-\frac{x}{1!}+\frac{x^2}{2!}-\frac{x^3}{3!}...+\frac{x^{10}}{10!}\right)$ Sol.  $\frac{2}{10!} - \frac{3}{9!} = \frac{2 - 30}{10!} = \frac{-28}{10!}$  $\frac{1^2}{1!} + \frac{1^2 + 2^2}{2!} + \frac{1^2 + 2^2 + 3^2}{3!} + \frac{1^2 + 2^2}{3!} + \frac{$ 4. B) $\frac{6e}{17}$  $1)\frac{17e}{6}$  $C)\frac{11e}{7}$  $D)\frac{7e}{11}$ Key. Sol.  $\sum_{n=1}^{\infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n!}$  $= \frac{1}{6} \left( \sum_{n=1}^{\infty} \frac{2n^3}{n!} + \sum_{n=1}^{\infty} \frac{3n^2}{n!} + \sum_{n=1}^{\infty} \frac{n}{n!} \right)$  $=\frac{1}{6}(2\times5e+3\times2e+e)=\frac{17e}{6}$  $\sum_{n=1}^{\infty} \frac{2n^2 + n + 1}{n!} =$ 1) 2e - 13)6e-14)6e+12) 2e + 1Key. 3  $\sum_{n=1}^{\infty} \frac{2n(n-1)+3n+1}{n!} = \sum_{n=1}^{\infty} \frac{2n(n-1)}{n!} + \sum_{n=1}^{\infty} \frac{3n}{n!} + \sum_{n=1}^{\infty} \frac{1}{n!}$ Sol. 2e + 3e + e - 1 = 6e - 1The sum of the series  $1 + \frac{1}{4 \cdot 2!} + \frac{1}{16 \cdot 4!} + \frac{1}{64 \cdot 6!} + \dots$ 6.

# Mathematics $2)\frac{e+1}{\sqrt{e}} \qquad 3)\frac{e-1}{\sqrt{e}}$ 4) $\frac{e+1}{2\sqrt{a}}$ 1) $\frac{e-1}{\sqrt{e}}$ Key. $1 + \frac{1}{42!} + \frac{1}{164!} + \dots$ Sol. $=\frac{e^{1/2}+e^{-1/2}}{2}=\frac{e+1}{2\sqrt{e}}$ If |x| < 1 and $y = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$ then x =8. 1) $y + \frac{y^2}{2} + \frac{y^3}{2} + \dots$ 2) $y - \frac{y^2}{2} + \frac{y^3}{3} - \frac{y^4}{4} + \dots$ 3) $y + \frac{y^2}{2!} + \frac{y^3}{2!} + \dots$ 4) $y - \frac{y^2}{2!} + \frac{y^3}{3!} - \frac{y^4}{4!} + \dots$ Key. $y = x - x^{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots$ Sol. $y = \log_e (1 + x) \Longrightarrow 1 + x = e^y$ $\Rightarrow \mathbf{x} = \mathbf{y} + \frac{\mathbf{y}^2}{2\mathbf{I}} + \frac{\mathbf{y}^3}{2\mathbf{I}} + \dots$

9. In a sequence of (4n+1) terms, the first (2n+1) terms are in A.P., whose common difference is 2, and the last (2n+1) terms are in G.P whose common ratio is 0.5 if the middle terms of the A.P and G.P are equal then the middle term of the sequence is

A) 
$$n2^{n-1}/2^n - 1$$
 B)  $n2^{n+1}/2^{2n} - 1$  C)  $n2^n$  D)  $n2^{n+1}/2^n - 1$ 

Key.

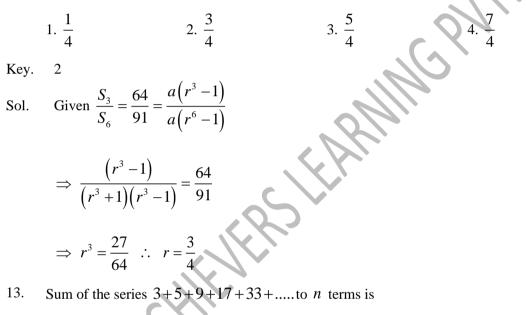
D

Let the first term is a , then first (2n+1) terms are  $a, a+2, a+4, \dots, a+2.2n$ . Clearly Sol. the middle term of the sequence of 4n+1 term is  $(2n+1)^{th}$  term, i.e. a+4n also the middle term of the A.P of (2n+1) term is  $(n+1)^{th}$  term i.e., a+2n. Again for the last (2n+1) terms the first term will be  $(2n+1)^{th}$  term of the A.P i.e. a+4n $\therefore$  G.P is  $(a+4n), (1+4n)(0.5)^n$ Its middle term is  $(a+4n)(0.5)^n$ According to the given condition,  $a+2n=(1+4n)(0.5)^n$  $\therefore a = \frac{2n - 4n(0.5)^n}{(0.5)^n - 1}$ 

 $\therefore$  Required middle term = a + 4n =

$$\frac{2n-4n(0.5)^{n}}{(0.5)^{n}-1} + 4n = \frac{2n}{1-\left(\frac{1}{2}\right)^{2}} = \frac{n \cdot 2^{n-1}}{2^{n}-1}$$
10. The sum of the series  $\frac{x}{1-x^{2}} + \frac{x^{2}}{1-x^{4}} + \frac{x^{4}}{1-x^{8}} + \dots$  to infinite terms, if  $|x| < 1$  is  
A)  $\frac{x}{1-x}$  B)  $\frac{1}{1-x}$  C)  $\frac{1+x}{1-x}$  D) 1  
Key. A  
Sol. The general term of the series is  $t_{n} = \frac{x^{2^{n-1}}}{1-x^{2^{n}}}$   
 $= \frac{1+x^{2^{n-1}}-1}{(1+x^{2^{n+1}})(1-x^{2n-1})}$   
 $\therefore I_{n} = \frac{1}{1-x^{2^{n-1}}} - \frac{1}{1-x^{2^{n}}}$   
Now  $S_{n} = \sum_{n=1}^{n} t_{n} = \left[\left\{\frac{1}{1-x} - \frac{1}{1-x^{2^{n}}}\right\}\right]$   
 $+ \left\{\frac{1}{1-x^{2^{n-1}}} - \frac{1}{1-x^{2^{n}}}\right\} \left] = \frac{1}{1-x} - \frac{1}{1-x^{2^{n}}}$   
 $\sum$  The sum to infinite terms  
 $= \lim_{n \to \infty} S_{n} = \frac{1}{r-x} - 1 = \frac{x}{1-x}$   
 $\left[Q \lim_{n \to \infty} x^{2^{n}} = 0 \, ds \, |x| < 1\right]$ 

11. If n arithmetic means are inserted between two sets of numbers a, 2b and 2a, b, where a,b  $\in R$ . Suppose that  $m^{th}$  arithmetic mean between these two sets of numbers is same, then the ratio a:b equals


A) 
$$n-m+1:m$$
 B)  $n-m+1:n$  C) $m:n-m+1$  D)  $n:n-m+1$ 

Key. C

Sol. Let  $A_1, A_2, \dots, A_n$  be airthmetric means between a and 2b, then  $A_m = a + m \left(\frac{2b - a}{n + 1}\right)$ 

Again, let  $B_1, B_2, \dots, B_n$  be arithmetic means Between 2a and b then  $B_m = 2a + m\left(\frac{b-2a}{n+1}\right)$ Now,  $A_m = B_m \Rightarrow a + m\left(\frac{2b-a}{n+1}\right) = 2a + m\left(\frac{b-2a}{n+1}\right) \Rightarrow m\left(\frac{b+a}{n+1}\right) = a \Rightarrow \frac{a}{b} = \frac{m}{n-m+1}$ 

12. The ratio of sum of first three terms of a G.P. to the sum of first six terms is 64:91,the common ratio of G.P. is



1. 
$$2^{n+1} - n - 2$$
  
2.  $2^{n+1} + n - 2$   
3.  $2^n + n - 2$   
4.  $2^{n+1} - n + 2$   
5.  $3^n = 3 + 5 + 9 + 17 + 33 + \dots$ 

Key. Sol.

$$= (2+1) + (2^{2}+1)(2^{3}+1) + (2^{4}+1) + \dots$$
$$= (2+2^{2}+2^{3}+2^{4}+\dots n \text{ terms}) + n$$
$$= 2(2^{n}-1) + n = 2^{n+1} + n - 2$$

$$=2^{n+1}+n-2$$

14. If one A.M. A and two G.M.s p and q be inserted between two numbers a and b, then which of the following is hold good 1.  $a^3 + b^3 = 2Apq$  2.  $p^3 + q^3 = 2Apq$  3.  $a^3 + b^3 = 2Aab$ 4. None of these. Key. 2 Sol. Given a+b=2AAnd  $a, p, q, b \in G.P.$  $\therefore p^2 = aq$  and  $q^2 = pb$  $\Rightarrow p^3 = apq$  and  $q^3 = bpq$ by adding we get  $p^3 + q^3 = apq + bpq$ = pq(a+b) = 2ApqIf fourth term of a G.P. is 3, the product of the first seven terms is 15. 2. 3<sup>7</sup> 1.  $3^4$ 3. 7<sup>4</sup> 4. 4<sup>7</sup> Key. 2 Sol. As the number of terms are odd (7) let r, be the common ratio So terms can be taken as  $\frac{a}{r^3}, \frac{a}{r^2}, \frac{a}{r}, a, ar, ar^2, ar^3$  $\therefore$  Product of the term =  $a^7$  $=3^7$  as  $(t_4 = a = 3)$ The number of divisors of 6912, 52480,32000 are in 16. 1. A.P Only 3. A.P. , G.P.& H.P. 2. G.P. Only 4. None of these Key. 3 Sol. If n is a + ve number.

 $n = P_1^{k_1} . P_2^{k_2} ... P_r^{k_r}$ 

(where  $p_1, p_2, p_3, \dots, p_r$  are prime number) then number of divisors of *n* are

# **Mathematics** = $(k_1 + 1)(k_2 + 1)....(k_r + 1)$

 $\therefore$  Number of prime factor of 6912 are =  $2^8 \cdot 3^3$  so no. of divisors =  $9 \times 4 = 36$ 

Prime factors of 52,400 are  $= 3^8 \times 2^3$ 

 $\therefore$  No. of divisors = 9 × 4 = 36

Prime factors of 32,000 are  $= 5^3 \times 2^8$ 

 $\therefore$  No. of divisors  $= 9 \times 4 = 36$ 

Now each number having same number of divisors *i.e.*, 36,36,36

Each and every term is constant & constant sequence is always in A.P.& G.P. both as common difference is 0 and common ratio is 1.

17. If 1, 
$$\log_{81}(3^{x} + 48)$$
,  $\log_{9}\left(3^{x} - \frac{8}{3}\right)$  are in A.P., then the value of x equals  
1.9 2.6 3.2 4.4  
Key. 3  
Sol. Given 1,  $\log_{9} 2(3^{x} + 48)$ ,  $\log_{9}(3^{x} - 8/3)$ ,  $\in A.P.$   
 $\Rightarrow \log_{9} 9, \frac{1}{2}\log_{9}(3^{x} + 48)$ ,  $\log_{9}(3^{x} - 8/3) \in A.P.$   
 $\Rightarrow 9, (3^{x} + 48)^{1/2}, 3^{x} - 8/3 \in G.P.$  (By concept)  
 $\Rightarrow \log a, \log b, \log c \in A.P.$   
 $\therefore a, b, c \in G.P. \therefore 3^{x} + 48 = 9(3^{x} - 8/3)$   
 $8.3^{x} = 72$ 

$$3^x = 9, \ 3^x = 3^2, \quad x = 2.$$

If a, b, c are in H.P., then  $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in 18. 1. A.P. 2. H.P. 3. G.P. 4. None of these Key. 2 Sol. Given  $a, b, c \in H.P.$ So,  $\frac{1}{a}, \frac{1}{b}, \frac{1}{c} \in A.P.$  $\frac{a+b+c}{a}, \frac{b+c+a}{b}, \frac{c+a+b}{c} \in A.P.$ By using concept if  $a, b, c \in A.P.$ Then their reciprocals are in H.P. 19. Between the numbers 2 and 20, 8 means are inserted, then their sum is 1.88 2.44 4. None of these 176 Key. 1 Let  $a, A_1, A_2, \dots, A_g, b \in A.P$ Sol. Where a = 2, b = 20, n = 8 $\frac{8}{2}(2+20) = 88$  $\therefore$  sum of the means  $=\frac{n}{2}(a+b)=$ In the expansion of  $(1+x)^{70}$ , the sum of coefficients of odd powers of x is 20. 1.0 3.  $2^{70}$ 4. 2<sup>71</sup> 2.  $2^{69}$ Key. Fact. The sum of the coefficients of odd powers in the expansion of  $(1+x)^n =$  sum of the Sol. coefficients of even powers in  $(1+x)^n$  $=2^{n-1}$  $2^{70-1} = 2^{69}$ 

21 If the arithmetic mean of two positive numbers  $a \& b \ (a > b)$  is twice their G.M., then

a:b is  $1. 6+\sqrt{7}: 6-\sqrt{7} \quad 2. 2+\sqrt{3}: 2-\sqrt{3} \quad 3. 5+\sqrt{6}: 5-\sqrt{6} \quad 4. \text{ None of these}$ Key. 2 Sol.  $\frac{a+b}{2} = 2\sqrt{ab}$   $a+b-4\sqrt{ab} = 0$   $\frac{a}{b}+1-4\sqrt{\frac{a}{b}} = 0 \text{ (Dividing by b)}$ Or  $\left(\sqrt{\frac{a}{b}}\right)^2 - 4\sqrt{\frac{a}{b}} + 1 = 0$   $\therefore \sqrt{\frac{a}{b}} = \frac{4\pm 2\sqrt{3}}{2} = (2\pm\sqrt{3})$   $\frac{a}{b} = \frac{2+\sqrt{3}}{2-\sqrt{3}}$ 

22 The number of terms common between the two series 2+5+8+... up to 50 terms and the series 3+5+7+9+... up to 60 terms.

1. 24 2. 26 3. 25 4. None of these

Key. 4

Sol. Let  $m^{th}$  term of first A.P. be equal to the  $n^{th}$  term of the second A.P. then

2, 5, 8,....50 terms series 1

3, 5, 7, ...., 60 terms series 2

Common series 5, 11, 17, ...., 119

 $40^{th}$  term of series  $1 = 59^{th}$  term of series 2 = 119 = 1 ast term of common series

 $\Rightarrow a_n = 5 + (n-1)d \Rightarrow 119 + 1 = 6n \Rightarrow n = 20.$ 

... Number of common terms is 20. The sum of the series  $1 + \frac{9}{4} + \frac{36}{9} + \frac{100}{16} + ....$  up to n terms if n = 16 is 23 1.446 2.746 3.546 4.846 Key. 1 The given series can be written as  $1^3 + \frac{1^3 + 2^3}{1+3} + \frac{1^3 + 2^3 + 3^3}{1+3+5} + \dots$ Sol.  $t_n = \frac{1^3 + 2^3 + 3^3 + \dots n^3}{1 + 3 + 5 + \dots + (2n - 1)}$  $t_n = \frac{n^2 (n+1)^2}{4\pi^2} = \frac{(n+1)^2}{4\pi^2}$  $t_n = \frac{1}{4} (n+1)(n+1)$  $=\frac{1}{4}\left(n^{2}+2n+1\right)=\frac{1}{4}\left[\sum_{k=1}^{n}k^{2}+2\sum_{k=1}^{n}k+n\right]$ :  $S_n = \frac{1}{4} \left[ \frac{n(n+1)(2n+2)}{6} + n(n+1) + \right]$  $\therefore S_{16} = \frac{1}{4} \left[ \frac{16.17.33}{6} + 16.17 + 16 \right] = \frac{1}{4} \left[ 88 \times 17 + 16 \times 8 + 16 \right] = 446$ 24 Sum of n terms of series  $ab + (a+1)(b+1) + (a+2)(b+2) + \dots + (a+(n-1))(b+(n-1))$ if  $ab = \frac{1}{6}and(a+b) = \frac{1}{3}$ , is (A)  $\frac{n}{6}(1-2n)^2$  (B)  $\frac{n}{6}(1+n-2n^2)$  (C)  $\frac{n}{6}(1-2n+2n^2)$  (D) none of these Key. С  $s = ab + [ab + (a+b) + 1] + [ab + 2(a+b) + 2^{2}] + \dots [ab + (n-1)(a+b) + (n-1)^{2}]$ Sol.  $= nab + (a+b)\sum_{1}^{n-1}r + \sum_{1}^{n-1}r^{2}$ 

$$= nab + (a+b)\frac{n(n-1)}{2} + \frac{(n-1)(n)(2n-1)}{6}$$
$$= \frac{n}{6}[1 + (n-1)\{1 + 2n - 1\}]$$
$$= \frac{n}{6}[1 + 2n(n-1)] = \frac{n}{6}(1 - 2n + 2n^2)$$

25 If log (a+c),log(a+b), log(b+c) are in A.P. and a,c,b are in H.P, then the value of a+b is (given a,b,c >0)

(C) 4c

(A) 2c

А

A  

$$\log(a+c) + \log(b+c) = 2\log(a+b)$$
  
 $(a+c)(b+c) = (a+b)^2$ 

(A) 
$$2c$$
 (B)  $3c$  (C)  $4c$  (D)  $6c$   
A  
 $log(a+c) + log(b+c) = 2log(a+b)$   
 $(a+c)(b+c) = (a+b)^2$   
 $\Rightarrow ab+c(a+b)+c^2 = (a+b)^2$  (1)  
 $also, c = \frac{2ab}{a+b} \Rightarrow 2ab = c(a+b)$   
 $\Rightarrow 2ab+2c(a+b)+2c^2 = 2(a+b)^2$  ..... (2)  
From (1) and(2),  
 $c(a+b)+2c(a+b)+2c^2 = 2(a+b)^2$   
 $2(a+b)^2 - 3c(a+b) - 2c^2 = 0$   
 $\therefore a+b = \frac{3c \pm \sqrt{9c^2 + 16c^2}}{4} = \frac{3c \pm 5c}{4} = 2c \text{ or } -\frac{c}{2}$   
 $\therefore a+b = 2c$  (Q  $a, b, c > 0$ )  
If  $a_1, a_2, a_3, ...., a_n$  are in A.P. with  $s_n$  as the sum of first 'n' terms  $(s_0 = 0)$ , then

(B) 3c

26

$$\sum_{k=0}^{n} {}^{n}C_{k}S_{k} \text{ is equal to}$$
(A)  $2^{n-2}[na_{1}+s_{n}]$  (B)  $2^{n}[a_{1}+s_{n}]$  (C)  $2[na_{1}+s_{n}]$  (D)  $2^{n-1}[a_{1}+s_{n}]$   
Key. A  
Sol.  $\sum_{k=0}^{n} {}^{n}c_{k}s_{k} = \sum_{k=0}^{n} {}^{n}c_{k}\frac{k}{n}[2a+(k-1)d]$ 

$$= [(a_1 - \frac{d}{2})\sum_{k=0}^{n} k^n c_k + \frac{d}{2} \sum_{k=0}^{n} k^2 c_k]$$
  
=  $\left(a_1 - \frac{d}{2}\right)n \cdot 2^{n-1} + \frac{d}{2}[n \cdot 2^{n-1} + n(n-1)2^{n-2}]$   
=  $a_1 \cdot n \cdot 2^{n-1} + dn(n-1)2^{n-3}$ 

 $= n.2^{n-3}[4a_1 + a_n - a_1] = n.2^{n-3}[3a_1 + a_n]$  $=2^{n-3}[2na_1+2n\left(\frac{a_1+a_n}{2}\right)]$  $=2^{n-2}[na_1+s_{n1}]$ The positive integral values of n such that 27  $1.2^{1} + 2.2^{2} + 3.2^{3} + 4.2^{4} + 5.2^{5} + \dots + n.2^{n} = 2^{(n+10)} + 2$  is (B) 513 (A) 313 (C) 413 (D) 613 В Key.  $2^{1} + 2^{2} + 2^{3} + \ldots + 2^{n} = 2^{n+1} - 2$  $2^{2} + 2^{3} + \dots 2^{n} = 2^{n+1} - 2^{2}$ Sol.  $2^3 + \ldots + 2^n = 2^{n+1} - 2^3$ ... ...  $+2^{n} = 2^{n+1} - 2$  $=n(2^{n+1})-(2^{n+1}-2)$  $=2^{n+1}(n-1)+2$ Given that  $2^{n+1}(n-1)+2=2^{2+10}+2$  $\Rightarrow (n-1)2^{n+1} = 2^{n+10}$  $\Rightarrow n-1=2^9$  $\Rightarrow$   $n = 2^9 + 1 = 513$ 

28 If a,b,c, are in A.P. and p, p' are respectively A.M. and G.M. between a and b while q, q' are respectively AM. And G.M. between b and c, then

(A) 
$$p^2 + q^2 = p'^2 + q'^2$$
  
(B)  $pq = p'q'$   
(C)  $p^2 - q^2 = p'^2 - q'^2$   
(D)  $p^2 + p'^2 = q^2 + q'^2$   
Key. C  
Sol. We have  $2b = a + c$  and  $a, p, b, q, c$  are in A.P  
 $\Rightarrow p = \frac{a+b}{2}, q = \frac{b+c}{2}$   
Again,  $p' = \sqrt{ab}$  and  $q' = \sqrt{bc}$   
 $\therefore p^2 - q^2 = \frac{(a+b)^2 - (b+c)^2}{4}$   
 $= \frac{(a-c)(a+c+2b)}{4} = (a-c)b = p'^2 - q'^2$ 

(A) even

29. The arithmetic mean of the nine numbers in the given set [9, 99, 999, ...... 999999999] is a 9 digit number N, all whose digits are distinct. The number N does not contain the digit (A) 0 (B) 2 (C) 5 (D) 9  
Key. A  
Sol. N = 
$$\frac{1}{9}(9, 99, 999, ...... 999999999] = 1 + 11 + 111 + .....+111111111 = 12 3 4 5 6 7 8 9 (A)
30. The minimum value of the expression  $\frac{9x^2 \sin^2 x + 4}{x \sin x}$  for x □ (0, □) is  
(A)  $\frac{16}{3}$  (B) 6 (C) 12 (D)  $\frac{8}{3}$   
Key. C  
Sol. E = 9x sin x +  $\frac{4}{x \sin x}$  [note that x sin x > 0 in (0, □)]  
E =  $\left(3\sqrt{x \sin x} - \frac{2}{\sqrt{x \sin x}}\right)^2 + 12$   
 $\Box$  E<sub>min</sub> = 12 which occurs when 3 x,sin x = 2 □x sin x = 2/3]  
note that x sin x is continuous at x = 0 and attains the value  $\Box/2$  which is greater than 2/3 at  
x =  $\Box/2$ , hence it must take the 2/3 in  $(0, \pi/2)$  1  
31. There is a certain sequence of positive real numbers. Beginning from the third term, each  
term of the sequence is the sum of all the previous terms. The seventh term is equal to 1000  
and the first term is equal to 1. The second term of this sequence is equal to 1. The second term of this sequence is equal to 1. The second term of the sequence is the qual to 1. The second term of the sequence is the qual to 1. The second term of this sequence is equal to 1. The second term of this sequence is the qual to 1. The second term of this sequence is equal to 1. The second term of this sequence is equal to 1. The second term of this sequence is equal to 1. The second term of this sequence is equal to 1. The second term of this sequence is equal to 1. The second term of this sequence is equal to 1. The second term of this sequence is equal to 1. The second term of this sequence is equal to 1. The second term of this sequence is equal to 1. The second term of this sequence is equal to 1. The second term of the sequence is the 1. The second term of this sequence is equal to 1. The second term of this sequence is equal to 1. The second term of the sequence is the 1. The second term of the sequence is the 1. The second term of the sequenc$$

(B) odd & of the form 3n

#### AP,GP,HP, Sequences

(C) odd & of the form  $(3n \Box 1)$ (D) odd & of the form (3n + 1)Key. Α Sol. putting x = 1 and  $\Box 1$  and adding 0  $a_0 + a_2 + \dots + a_{50} = =$  $= 2 \left[ 13 + {}^{25}C_2 + \dots + {}^{25}C_{25} \cdot 2^{23} \right]$ even 33. The sum of the series  $(1^2 + 1) \cdot 1! + (2^2 + 1) \cdot 2! + (3^2 + 1) \cdot 3! + \dots + (n^2 + 1) \cdot n!$  is (A) (n + 1). (n+2)!(B) n.(n+1)! (C) (n + 1). (n+1)!(D) none of these Key. В Sol.  $T_{n} = [n(n+1) \Box (n \Box 1)] n! = n . (n+1)! \Box (n \Box 1). n!$ Now put  $n = 1, 2, 3, \dots, n$  and add Find the sum of the infinite series  $\frac{1}{9} + \frac{1}{18} + \frac{1}{30} + \frac{1}{30}$ 34. (A)  $\frac{1}{2}$ (B)  $\frac{1}{4}$ Key. Α  $T_n =$ Sol. = hence  $T_n$  using method of diff;  $T_n = =$  $S_n = Ans.$ The sequence  $a_1, a_2, a_3, \dots$  satisfies  $a_1 = 19, a_9 = 99$ , and for all  $n \square 3$ ,  $a_n$  is the arithmetic 35. mean of the first n - 1 terms. Then  $a_2$  is equal to (A) 179 (C) 79 (D) 59 (B) 99 Key. Α Sol.  $n \square 3, a_3 =$ ....(1)  $a_4 = =$  $a_5 = =$  $= a_{1}$  $.... = a_0 = 99$  $a_3 = a_4 = a_5 =$ put in equation (1)  $a_2 = 179$  Ans. 99 = If a, b, c are in G.P. then  $\frac{1}{b-a}$ ,  $\frac{1}{2b}$ ,  $\frac{1}{b-c}$  are in 36. (A) A.P. (B) G.P. (D) none (C) H.P. Key. Α  $a = x; b = xr; c = xr^2$ Sol. Let hence the number are , , now, = + = = hence , , are in A.P.

**Mathematics** 

Let  $d_1, d_2, \dots, d_k$  be all the distinct factors of a positive integer n including 1 37. and n. Suppose  $d_1 + d_2 + ... + d_k = 72$ , then the value of  $\frac{1}{d_1} + \frac{1}{d_2} + ... + \frac{1}{d_k}$ (A)  $\frac{72}{1}$ (B) cannot be computed from the given information (C)  $\frac{72}{n}$ (D) None of these Key. С , ,.... are all distinct and each of these represents one of the number  $d_1$ , Sol.  $d_2,\ldots,d_k$ = If b is the arithmetic mean between a and x; b is the geometric mean between 'a' and y; 'b' is 38. the harmonic mean between a and z, (a, b, x, y, z > 0) then the value of xyz is (C)  $\frac{b^3(2a-b)}{2b-a}$  (D)  $\frac{b^3(2b-a)}{2a-b}$  $(A) a^3$ (B)  $b^{3}$ Key. D The first term of an infinite geometric series is 2 and its sum be denoted by S. If |S - 2| < |S - 2| <39. 1/10 then the true set of the range of common ratio of the series is (B)  $\left(-\frac{1}{2},\frac{1}{2}\right) - \{0\}$ (A)  $\left(\frac{1}{10}, \frac{1}{5}\right)$ (D)  $\left(-\frac{1}{19}, \frac{1}{21}\right) - \{0\}$  $(C)\left(-\frac{1}{19},\frac{1}{20}\right)$ Key. 40. The number of real values of the parameter 'k' for which  $-\log_{16} x + \log_{16} k = 0$  will have unique solution  $(\log_{16})$ A) B) 1 C) 4 D) 5 В Key. For exactly one solution  $4\log_{16} k = 1, k > 0 \implies k = 2$ Sol. 41. If  $3^{37} = 80\lambda + k$ , where  $\lambda \in N$ , then 'k' is

| ,                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                                               | , _                                                                                                           | ,                                       |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Key.                                                                                                                       | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                                                                                                               |                                         |
| Sol.                                                                                                                       | 3 <sup>37</sup> = 3 <sup>4×9</sup> .3 = 3(8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $31)^9 = 3(80+1)^9 = 3(9)^{10}$                                                 | $C_0 80^9 + {}^9C_1 80^8 + \dots$                                                                             | + <sup>9</sup> C <sub>9</sub> )         |
| 501.                                                                                                                       | Hence remainder i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s 3                                                                             |                                                                                                               | · .                                     |
|                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |                                                                                                               |                                         |
| 42. The sum of first ' <i>n</i> ' terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$ is |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |                                                                                                               |                                         |
| A                                                                                                                          | $2^{n-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B) $1 - 2^{-n}$                                                                 | C) $2^{-n} - n + 1$                                                                                           | D) $2^{-n} + n - 1$                     |
| Key.                                                                                                                       | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                                                                                                               |                                         |
| Sol.                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{5}{6}$ +to ' <i>n</i> ' terms                                            |                                                                                                               | <i>2</i> /.                             |
|                                                                                                                            | $S = \left(1 - \frac{1}{2}\right) + \left(1 - $ | $\left(\frac{1}{4}\right) + \left(1 - \frac{1}{8}\right) + \dots + tc$          | o' <sup>n</sup> ' terms                                                                                       |                                         |
|                                                                                                                            | =(1+1+1+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $-\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots\right) = 3$             | $n - \frac{1}{2} \frac{1 - \left(\frac{1}{2}\right)^n}{2 - \frac{1}{2}} = n - \left(1 - \frac{1}{2}\right)^n$ | $-\frac{1}{2^n}\bigg) = 2^{-n} + n - 1$ |
| 43.                                                                                                                        | The sum to n term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s of the series                                                                 |                                                                                                               |                                         |
|                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{1}{2} + \frac{1.3.5}{3} \left(\frac{1}{2}\right)^3 + \dots \text{ upto}$ | o n terms is                                                                                                  |                                         |
|                                                                                                                            | (A) $\frac{1.3.5(2n+1)}{2^{n} \lfloor \frac{1}{2} \rfloor}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{-1)(2n+1)}{\underline{n}} - 1$                                           | (B) $1 - \frac{1.3.5(n_{1})}{ n_{1} }$                                                                        | $\frac{2n-1}{n}$                        |
|                                                                                                                            | (C) $1 - \frac{1.3.5(2)}{2^{n-1}   \underline{n} }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{2n-3)}{-1}$                                                              | (D) $\frac{1.3.5(2n)}{2^{n-1} n-1 }$                                                                          | $\frac{-3)}{1}$                         |
| Key.                                                                                                                       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                                                                                                               |                                         |
| Sol.                                                                                                                       | $t_{n+1} = \frac{t_n \times (2n+1)}{(n+1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{1}{2} \times \frac{1}{2}$                                                |                                                                                                               |                                         |
|                                                                                                                            | $(2n+2)t_{n+1} = (n+1)t_{n+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $+1)t_n$                                                                        |                                                                                                               |                                         |
|                                                                                                                            | $(2n+3)t_{n+1} - (2n+3)t_{n+1} - (2n+3)t_{n+1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(1+1)t_{n} = t_{n+1}$                                                          |                                                                                                               |                                         |
|                                                                                                                            | Put $n = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |                                                                                                               |                                         |
|                                                                                                                            | $5t_2 - 3t_1 = t_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 |                                                                                                               |                                         |
|                                                                                                                            | $n = 2$ , $7t_3 - 5t_2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =t <sub>3</sub>                                                                 |                                                                                                               |                                         |
|                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 \ .                                                                           |                                                                                                               |                                         |

C) 2

AP,GP,HP, Sequences

D) 9

 $(2n+1)t_n - (2n-1)t_{n-1} = t_n$  $(2n+1)t_n - 2t_1 = S$ 

Mathematics

A) 78

B) 3

$$S = \frac{1.3.5....(2n+1)}{|\underline{n} \times 2^{n}} - 1$$

The sequence  $\{x_1, x_2, ..., x_{50}\}$  has the property that for each k,  $x_k$  is k less than the sum of 44. other 49 numbers. The value of  $96x_{20}$  is

a) 300 b) 315 c) 1024 d) 0

Key : B

We have  $\mathbf{x}_k + \mathbf{k} = \mathbf{S} - \mathbf{x}_k$  where  $\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_k = \mathbf{s}$ Sol :  $2\mathbf{x}_{k} + \mathbf{k} = \mathbf{S}$  $\Rightarrow$  $2(S) + \frac{50.51}{2} = 50S$  $\Rightarrow$ 48(S) = 25.51 $\Rightarrow$  $\mathbf{x}_{20} = \left(\frac{25.51}{48} - 20\right) \frac{1}{2} = \frac{315}{96}.$  $\Rightarrow$ 

If the first and  $(2n-1)^{th}$  terms of an A.P; a G.P. and H.P. are equal and their  $n^{th}$  terms are 45. p,q and s respectively, then which of the following options is/are correct?

a)  $p \ge q \ge s$ b) p + s = qd) p = q = sc) ps

KEY : C

46.

 $a_1 + a_{4001} = 50$ 

HINT: Let the first term be a and  $(2n-1)^{th}$  term be b then

$$p = a + (n-1)d = a + (n-1)\left(\frac{b-a}{2n-2}\right) = \frac{a+b}{2}$$

$$q = a \cdot r^{n-1} = a\left(\frac{b}{a}\right)^{\frac{n-1}{2n-2}} = a\left(\frac{b}{a}\right)^{\frac{1}{2}} = \sqrt{ab}$$

$$\frac{1}{s} = \frac{1}{a} + (n-1)\left(\frac{1-1}{b-a}{2n-2}\right) = \frac{1}{a} + \frac{1}{b}$$

$$p, q, r \text{ are the A.M, G.M, H.M of a, b.}$$

$$p \ge q \ge r \text{ and } ps = q^{2}$$
46. If  $a_{1}, a_{2}, a_{3}, \dots a_{4001}$  are terms of an AP such that  $\frac{1}{a_{1}a_{2}} + \frac{1}{a_{2}a_{3}} + \dots + \frac{1}{a_{4000}a_{4001}} = 10$  and  $a_{2} + a_{4000} = 50$  then  $|a_{1} - a_{4001}|$  is equal to
(A) 20
(C) 40
(B) 30
(C) 40
(D) 10
KEY : B
HINT:  $\frac{4000}{a_{1}a_{4001}} = 10 \implies a_{1}a_{4001} = 400$ 

 $(a_1 - a_{4001})^2 = (a_1 + a_{4001})^2 - 4a_1 a_{4001}$  $\Rightarrow |a_1 - a_{4001}| = 30$ 

47. Statement-1 : The series for which the sum to n terms ( $n \ge 1$ ),  $S_n$  is given by  $S_n = 3n^2 + 4n + 5$  is an arithmetic progression (AP). Statement-2 : The sum to n terms of an AP having non-zero common difference is a quadratic in n.

KEY : D

HINT: CONCEPTUAL

48. The fourth and fifth term of a sequence  $\{t_n\}_{n\geq 1}$  are 4 and 5 respectively and the n<sup>th</sup> term is given as  $t_n = 2t_{n-1} - t_{n-2}$ ,  $n \geq 3$   $(n \in N)$ . Then the sum to first 2009 terms is

(A) 2019045(B) 2013021(C) 2017036(D) 2018040

KEY : A

HINT:  $t_n = 2 t_{n-1} - t_{n-2}$ 

$$t_n - t_{n-1} = t_{n-1} - t_{n-2}$$

 $a_n = t_n - t_{n-1}, n \ge 3$ 

WE HAVE  $a_n = a_{n-1}$ 

THUS  $\{a_n\}$  IS A CONSTANT SEQUENCE

 $a_5 = t_5 - t_4 = 1$ 

NOW 
$$a_4 = t_4 - t_3 \Longrightarrow 1 = 4 - t_3 \Longrightarrow t_3 = 3$$

SIMILARLY  $t_2 = 2, t_1 = 1$ 

THUS  $\{t_n\}$  IS AN A.P WITH r = 1 AND COMMON DIFFERENCE 1

$$\sum_{n=1}^{2009} t_n = \frac{2009 \times 2010}{2} = 2003 \times 1005 = 2019045$$

49. If 
$$x^6 = 2x^3 - 1$$
 and  $x$  is not real then  $\sum_{r=1}^{50} (x^r + x^{2r})^3 =$   
A) 100 B) 256 C) 76

D) 94

CP'

HINT: 
$$x^3 = 1 \Rightarrow x = \omega, \omega^2$$
  $x^r + x^{2r} = \begin{cases} 2 & \text{if } r \text{ is a multiple of } 3 \\ -1 & \text{if } r \text{ is not a multiple of } 3 \end{cases}$ 

KEY : B

KEY

HINT : a, b, c are in AP 
$$\Rightarrow a + c = 2b;$$
 (1)

b, c, d are in GP  $\Rightarrow$   $c^2 = bd$  (2)

c. d. e are in HP 
$$\Rightarrow \frac{2ce}{c+e} = d$$
 (3)  
(1)×(3)  $\Rightarrow \frac{(a+c)e}{c+e} = bd = c^{2}$   
 $\therefore (a+c)e = c(c+e)$   
 $ae = c^{2} \Rightarrow a, c, e$  are in G.P  
51. If  $a_{n} = \sum_{k=0}^{n} \frac{(\log_{e} 10)^{n}}{k!(n-k)!}$  for  $n \ge 0$  then  $a_{0} + a_{1} + a_{2} + a_{1} + \dots$  upto  $\infty$  equal is  
(A) 10 (B) 10<sup>2</sup> (C) 10<sup>3</sup> (D) 10<sup>3</sup>  
Key: B  
Hint:  $a_{n} = \frac{(\log_{e} 10)^{n}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} = \frac{(\log_{e} 10)^{n}}{n!} [2^{n}] = \frac{(2\log_{e} 10)^{n}}{n!}$   
Thus,  $a_{0} + a_{1} + a_{2} + \dots$  upto infinity is  
 $= \sum_{n=0}^{\infty} \frac{(2\log_{e} 10)^{n}}{n!} = e^{2\log_{e} 10} = 100$   
 $\therefore$  (B) is the correct answer.  
52. If  $a_{1}$  is the greatest value of  $f(x)$ ; where  $f(x) = \left(\frac{1}{2+[\sin x]}\right)$  (where [.] denotes greatest  
integer function) and  $a_{n+1} = \frac{(-1)^{n+2}}{(n+4)} + a_{n}$ , then  $\lim_{n\to\infty} (a_{n})$  is  
(A) 1 (B)  $c^{2}$   
(C) In2 (D) In3  
Key: C  
Hint:  $a_{1} = 1$   
 $\Rightarrow a_{2} = 1 - \frac{1}{2}$   
 $\Rightarrow a_{3} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$   
 $= \ln 2$   
53. The sequence  $\{x_{k}\}$  is defined by  $x_{k+1} = x_{k}^{2} + x_{k}$  and  $x_{1} = \frac{1}{2}$ . Then  
 $\left[\frac{1}{x_{1} + 1} + \frac{1}{x_{2} + 1} + \dots + \frac{1}{x_{100} + 1}\right]$  (where [.] denotes the greatest integer function) is equal to  
(A) 0 (B) 2

| _Mathematics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AP,GP,HP, Sequences                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| (C) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (D) 1                                                                      |
| Key: D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            |
| Hint: $\frac{1}{x_{k+1}} = \frac{1}{x_k(x_k+1)} = \frac{1}{x_k} - \frac{1}{x_k+1} \Longrightarrow \frac{1}{x_k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 - 1 - 1                                                                  |
| $\frac{1}{x_{k+1}} - \frac{1}{x_k(x_k+1)} - \frac{1}{x_k} - \frac{1}{x_k+1} - \frac{1}{x_k} - 1$ | $+1$ $\overline{x_k}$ $\overline{x_{k-1}}$                                 |
| . 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                          |
| $\therefore \frac{1}{x_1 + 1} = \frac{1}{x_2 + 1} + \dots + \frac{1}{x_{100} + 1} = \frac{1}{x_1} - \frac{1}{x_1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101                                                                        |
| As $0 < \frac{1}{x_{101}} < 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |
| $\left[\frac{1}{x_{1}+1}+\frac{1}{x_{2}+1}+\ldots+\frac{1}{x_{100}+1}\right]=1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>(</u> ).                                                                |
| 54. If $S_n = \sum_{r=1}^n t_r = \frac{1}{6}n(2n^2 + 9n + 13)$ , then $\sum_{r=1}^n t_r = \frac{1}{6}n(2n^2 + 9n + 13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1                                                                         |
| (a) $\frac{1}{2}n(n+1)$ (b) $\frac{1}{2}n(n+2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) $\frac{1}{2}n(n+3)$ (d) $\frac{1}{2}n(n+5)$                            |
| Key: c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            |
| Hint: We have $t_n = S_n - S_{n-1}  \forall n \ge 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            |
| : $t_n = \frac{1}{6} \left[ 2 \left( n^3 - (n-1)^3 \right) + 9 \left( n^2 - (n-1)^3 \right) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(-1)^2 + 13(n-n+1)$                                                       |
| $= \frac{1}{6} \Big[ 6n^2 - 6n + 2 + 9(2n - 1) + 13 \Big]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                            |
| $=\frac{1}{6}(6n^{2}+12n+6)=(n+1)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            |
| :. $\sum_{r=1}^{n} \sqrt{t_r} = \sum_{r=1}^{n} (r+1) = \frac{1}{2} (n+1) (n+2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |
| 55. $\{a_n\}$ and $\{b_n\}$ be two sequences given by $a_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $=(x)^{1/2^{n}}+(y)^{1/2^{n}}$ and $b_{n}=(x)^{1/2^{n}}-(y)^{1/2^{n}}$ for |
| all $n \in \mathbb{N}$ , then $a_1 a_2 a_3 \dots a_n$ is equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |
| (A) $x - y$ (B) $\frac{x + y}{b_n}$<br>(C) $\frac{x - y}{b_n}$ (D) $\frac{xy}{b_n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |
| (x-y) (D) $xy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |
| (C) $\overline{b_n}$ (D) $\overline{b_n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |
| Key : c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |
| Sol: $a_1 a_2 \dots A_n = b_n \frac{a_1 a_2 \dots a_n}{b_n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            |
| $= a_n b_n \frac{(a_1 a_2 \dots a_{n-1})}{b_n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |
| $= \left( x^{\frac{1}{2^{n-1}}} - y^{\frac{1}{2^{n-1}}} \right) \frac{(a_1 a_2 \dots a_{n-1})}{b_n} = a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $a_{n-1} b_{n-1} \frac{(a_1 a_2 \dots a_{n-2})}{b_n}$                      |

56. The sum of the series 
$$\frac{9}{5^{2}2.1} + \frac{13}{5^{3}.3.2} + \frac{17}{5^{4}.4.3} + \dots$$
 upto infinity  
(A) 1 (B)  $\frac{9}{5}$   
(C)  $\frac{1}{5}$  (D)  $\frac{2}{5}$   
Key. C  
Sol.  $Tr = \frac{4r+1}{5^{r}r(r-1)}, r \ge 2$   
 $\frac{5r-(r-1)}{5^{r}r(r-1)} = \frac{1}{5^{r-1}(r-1)} - \frac{1}{5^{r}r}$   
 $\sum_{r=2}^{\infty} T_{r} = \left( \left( \frac{1}{5!.1} - \frac{1}{5^{2}.2} \right) + \left( \frac{1}{5^{2}.2} - \frac{1}{5^{3}.3} \right) + \left( \frac{1}{5^{3}.3} - \frac{1}{5^{4}.4} \right) + \dots -\infty \right)$   
 $= \frac{1}{5}$   
57. If a, b, c, d are distinct integers in AP such that  $d = a^{2} + b^{2} + c^{2}$  then  $a + b + c + d$  is  
(A) 0 (B) 1  
(C) 2 (D) None  
Key. C  
Sol.  $d = a^{2} + b^{2} + c^{2} \Rightarrow a + 3t = (a + t)^{2} + a^{2} + (a + 2t)^{3}$   
 $5t^{2} + 3(2a - 1)t + 3a^{2} - a = 0$   
 $D \ge 0 \Rightarrow 24a^{2} + 16a - 9 \le 0$   
 $\Rightarrow -\frac{1}{3} - \frac{\sqrt{70}}{2} < a < -\frac{1}{3} - \sqrt{70}$   
 $\Rightarrow a = -1.0$   
 $a = 0, t = 0, \frac{3}{5}$   
 $a = -4t + 1 + \frac{4}{5}$   
 $\Rightarrow k = 1$   
 $a + b + c + d = 2$   
58. If  $b + c, c + a, a + b$  are in H.P then show that  $a^{2}, b^{2}, c^{2}$  are in  
(a) A.P (b) G.P (c) H.P (d) A.G.P  
Key. A  
Sol.  $\frac{1}{c + a} - \frac{1}{b + c} = \frac{1}{a + b} - \frac{1}{c + a}$ 

| Math | ematics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                                                 | AP,GP,HP, Sequer             |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|------------------------------|
| 59.  | Sum of first n terms of a sequence is given by $3 S_n = T_n^2 + 3T_n - 2$ , $(T_n > 0)$ where $T_n$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                                                 |                              |
|      | the nth term of sequence, then the value of $T_2^2$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                                                 |                              |
|      | A) $2 - \sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B) $2 + \sqrt{2}$                                            | C) $2 + 3\sqrt{2}$                              | D) $3 + 2\sqrt{2}$           |
| Key. | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                                                 |                              |
| Sol. | $S_1 = \frac{T_1^2 + 3T_1 - 2}{3} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $T_1 \Rightarrow T_1^2 = 2$                                  |                                                 |                              |
|      | $S_2 - S_1 = \frac{T_2^2 - T_1^2 + T_1^2}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{3(T_2-T_1)}{3}=T_2$                                   |                                                 |                              |
|      | $T_2^2 - T_1^2 + 3(T_2 - T_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $=3T_{2}$                                                    |                                                 |                              |
|      | $\Rightarrow T_2^2 = T_1^2 + 3T_1 = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2 + 3\sqrt{2}$                                              | Ś                                               | <i>Y</i> .                   |
| 60.  | If a, b, c are three dist<br>then a : b : c are in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | inct numbers such that                                       | a, b, c are in A.P. and b                       | p - a, c - b, a are in G.P., |
|      | (A) 2 : 3 : 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | (B) 3:4:5                                       |                              |
|      | (C) 1 : 3 : 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | (D) 1:2:3                                       |                              |
| Key. | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              | $\mathcal{N}$                                   |                              |
| Sol. | a, b, c are in A.P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Rightarrow 2b = a +$<br>n G.P. $\Rightarrow (c - b)^2 =$   | c                                               | (1)                          |
|      | (b - a), $(c - b)$ , a are i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n G.P. $\Rightarrow (c-b)^2 =$                               | = a(b-a)                                        |                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\Rightarrow$ c – a = a                                      | (b-a)                                           | (2)                          |
|      | from (1) and (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |                                                 |                              |
|      | $\frac{a}{1} = \frac{b}{2} = \frac{c}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                                                 |                              |
|      | 1 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                                                 |                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |                                                 |                              |
| 61.  | The sum to n terms of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                                                 |                              |
|      | $\frac{1}{ 1 }\left(\frac{1}{2}\right) + \frac{1.3}{ 2 }\left(\frac{1}{2}\right) + \frac{1}{ 2 }\left(\frac{1}{2}$ | $\frac{1.3.5}{3} \left(\frac{1}{2}\right)^3 + \dots$ up to 1 | n terms is                                      |                              |
|      | (A) $\frac{1.3.5(2n-1)}{2^n n }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{(2n+1)}{-1}$                                          | (B) $1 - \frac{1.3.5(2)}{1}$                    | 2n-1)                        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              | (B) $1 - \frac{1.3.5(2)}{ \underline{n}  _{1}}$ | <u>n</u>                     |
| C    | (C) $1 - \frac{1.3.5(2n-1)}{2^{n-1} n-1 }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -3)                                                          | (D) $\frac{1.3.5(2n-1)}{2^{n-1} n-1 }$          | -3)                          |
| Key. | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                                                 |                              |
| Sol. | $t_{n+1} = \frac{t_n \times (2n+1)}{(n+1)} \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                            |                                                 |                              |
| 501. | $r_{n+1} = (n+1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                            |                                                 |                              |
|      | $(2n+2)t_{n+1} = (n+1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t <sub>n</sub>                                               |                                                 |                              |
|      | $(2n+3)t_{n+1} - (2n+1)t_{n+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $t_n = t_{n+1}$                                              |                                                 |                              |
|      | Put $n = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                 |                              |
|      | $5t_2 - 3t_1 = t_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                 |                              |
|      | $n = 2$ , $7t_3 - 5t_2 = t_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                            |                                                 |                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |                                                 |                              |

Sol.

$$(2n+1)t_{n} - (2n-1)t_{n-1} = t_{n}$$
$$(2n+1)t_{n} - 2t_{1} = S$$
$$S = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+1)}{|n \times 2^{n}} - 1$$

62. The sum to n terms of the series

$$\begin{aligned} \frac{1}{|\underline{l}|} \left(\frac{1}{2}\right) + \frac{1.3}{|\underline{2}|} \left(\frac{1}{2}\right)^2 + \frac{1.3.5}{|\underline{3}|} \left(\frac{1}{2}\right)^3 + \dots \text{ upto n terms is} \\ \text{(A)} \quad \frac{1.3.5....(2n-1)(2n+1)}{2^n |\underline{n}|} - 1 \qquad \text{(B)} \quad 1 - \frac{1.3.5....(2n-1)}{|\underline{n}||\underline{n}|} \\ \text{(C)} \quad 1 - \frac{1.3.5....(2n-3)}{2^{n-1} |\underline{n}-\underline{1}|} \qquad \text{(D)} \quad \frac{1.3.5....(2n-3)}{2^{n-1} |\underline{n}-\underline{1}|} \\ \text{Key. A} \\ \text{Key. A} \\ \text{Sol.} \quad t_{n+1} = \frac{t_n \times (2n+1)}{(n+1)} \times \frac{1}{2} \\ (2n+2)t_{n+1} = (n+1)t_n \\ (2n+3)t_{n+1} - (2n+1)t_n = t_{n+1} \\ \text{Put } n = 1 \\ 5t_2 - 3t_1 = t_2 \\ n = 2, \quad 7t_3 - 5t_2 = t_3 \\ (2n+1)t_n - (2n-1)t_{n-1} = t_n \\ (2n+1)t_n - 2t_1 = S \\ S = \frac{1.3.5....(2n+1)}{|\underline{n} \times 2^n} - 1 \end{aligned}$$

If the ratio of the sum to 'n' terms of two A.P's is (5n+3):(3n+4), then the ratio of their 17th 63. terms is

(key. B)  
Sol. 
$$\frac{n}{2} \frac{[2a_1 + (n-1)d_1]}{n} = \frac{5n+3}{3n+4} \Rightarrow \frac{a_1 + \left(\frac{n-1}{2}\right)d_1}{a_1 + \left(\frac{n-1}{2}\right)d_2} = \frac{5n+3}{3n+4} \text{ put } \frac{n-1}{2} = 16$$

64. If x,y,z are in G..P and 
$$a^x = b^y = c^z$$
, then  
A)  $log_b a = log_a c$  b)  $log_a^b = log_a c$  C)  $log_b a = log_c b$  D) None  
Key. C

Sol. 
$$a^n = b^y = c^z = k$$
,  $y^2 = xz \Longrightarrow (\log b)^2 = \log_a k$ ,  $= \log_a k \Longrightarrow (\log b)^2 = \log a \log c$ 

65. If the pth, qth, r th terms of an A.P are in G.P, then common ratio of G.P is

|                                                            | a) $\frac{pr}{q^2}$                                                                                                  | b) $\frac{r}{p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c) $\frac{q+r}{p+q}$                                     | d) $\frac{q-r}{p-q}$                                        |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|--|
| Key.                                                       | D                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                                                             |  |
|                                                            | $a + (p-1)d = k  F_k$                                                                                                | $\frac{2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |                                                             |  |
| Sol.                                                       | a + (q-1)d = kr                                                                                                      | 3-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |                                                             |  |
|                                                            | $a + (r - 1)d - kr^2$                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                                                             |  |
| 66.                                                        | If H <sub>1</sub> , H <sub>2</sub> , H <sub>20</sub>                                                                 | be 20 harmonic means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | between 2 and 3, then $\frac{H}{H}$                      | $\frac{H_1 + 2}{H_1 - 2} + \frac{H_{20} + 3}{H_{20} - 3} =$ |  |
|                                                            | a) 20                                                                                                                | b) 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c) 40                                                    | d) 38                                                       |  |
| Key.                                                       | C (2 12)                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                                                             |  |
|                                                            | $H_1 = \frac{63}{31}, H_{20} = \frac{126}{43}$                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                        |                                                             |  |
| 67.                                                        | If $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$                                                           | to $\infty = \frac{\pi^2}{6}$ , then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $n\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ | =                                                           |  |
|                                                            | a) $\frac{\pi^2}{8}$                                                                                                 | b) $\frac{\pi^2}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c) $\frac{\pi^2}{3}$                                     | d) $\frac{\pi^2}{2}$                                        |  |
| Key.                                                       | А                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                                                             |  |
| Sol.                                                       | $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots =$                                                            | $=\frac{\pi^2}{6}-\frac{1}{2^2}\left(\frac{\pi^2}{6}\right)=\frac{\pi^2}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                                             |  |
| 68.                                                        | The 20th term of 2,9,2                                                                                               | 0,35,54,is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |                                                             |  |
|                                                            | a) 819                                                                                                               | b) 820 c) 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 09 d) 1010                                               |                                                             |  |
| Key.<br>Sol.                                               | A<br>$t_n = 2 + (7 + 11 + 15)$                                                                                       | (n, 1) torms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |                                                             |  |
| 69.                                                        |                                                                                                                      | (m-1) therms for $(m-1)$ and $(m-1)$ and $(m-1)$ then $(m-1)$ and $(m-1)$ then $(m-1)$ and $(m-1)$ | $(\ln x^2)^{-1}$ , $(\ln x y)^{-1}$ , $(\ln x z)^{-1}$   | $)^{-1}$ are in                                             |  |
|                                                            | (A) A.P.<br>(C) H.P.                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul><li>(B) G.P.</li><li>(D) none of these</li></ul>     |                                                             |  |
| Key.                                                       | C                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (D) none of these                                        |                                                             |  |
| Sol.                                                       | x > 1, y > 1, z > 1<br>$x, y, z \rightarrow G.P. \Rightarrow lnx, lny, lnz are in A.P. 2lnx, lnxy, lnxz are in A.P.$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                                                             |  |
| $(lnx^2)^{-1}$ , $(inxy)^{-1}$ , $(lnxz)^{-1}$ are in H.P. |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                                                             |  |
| 70.                                                        | If $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{4}$                                                 | ++ $\frac{1}{n}$ and $n > 2$ , then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $S_n$ would always be                                    |                                                             |  |
|                                                            | (A) more than $n(n+1)$                                                                                               | $\int_{n}^{\frac{1}{n}} - n$ (B) less than n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(n + 1)^{1/n} - n$                                      |                                                             |  |
|                                                            | (C) equal to $n(n+1)^{\frac{1}{n}}$                                                                                  | -n (D) greater that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | an or equal to $\frac{n(n+1)^{\frac{1}{n}}}{(n+5)}$      |                                                             |  |

**Mathematics** Key. Α  $\frac{(1+1) + \left(1 + \frac{1}{2}\right) + \left(1 + \frac{1}{3}\right) + \left(1 + \frac{1}{4}\right) + \dots + \left(1 + \frac{1}{n}\right)}{2 \times \frac{3}{2} \times \frac{4}{3} \times \frac{5}{4} \times \dots \times \frac{n+1}{n}\right)^{1/n}}$ Sol.  $\Rightarrow \frac{n+S_n}{n} > (n+1)^{1/n} \Rightarrow S_n > n(n+1)^{1/n} - n$ If a,b,c are in AP, then the sum of the coefficients of  $\left\{1 + \left(ax^2 - 2bx + c\right)^2\right\}$ 71. d) 1 a) -2 b) -1 c) 0 Key. D O a, b, c are in A.P. Sol.  $\Rightarrow 2b = a + c$  $\Rightarrow a - 2b + c = 0$ Putting x=1 Required sum =  $(1+a-2b+c)^{1973} = (1+0)^{1973}$  $\{a_n\}$  and  $\{b_n\}$  be two sequences given by  $a_n = (x)^{1/2^n}$ and  $b_n = (x)^{1/2^n} - (y)^{1/2^n}$  for 72. all  $n \in N$ , then  $a_1 a_2 a_3 \dots a_n$  is equal to (A) x - yb<sub>n</sub> (D)  $\frac{xy}{b}$ (C)  $\frac{x-y}{b_n}$ С Key.  $a_1 a_2 \ldots a_n = b_n$ Sol.  $=a_n b_n \frac{(a_1 a_2 \dots a_{n-1})}{(a_n a_2 \dots a_{n-1})}$  $\frac{(a_1 a_2 \dots a_{n-1})}{b_n} = a_{n-1} b_{n-1} \frac{(a_1 a_2 \dots a_{n-2})}{b_n}$  $\frac{(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})}{b_n} = \frac{x - y}{b_n}$  $\frac{1}{3.2^3} - \frac{1}{4.2^4} + \dots =$ 73  $2.2^{2}$ 2)  $\log_e\left(\frac{3}{4}\right)$  3)  $\log_e\left(\frac{3}{2}\right)$ 1)  $\frac{1}{4}$ 4)  $\log_e \left(\frac{2}{2}\right)$ Key.  $\log_e\left(1+\frac{1}{2}\right) = \log_e\frac{3}{2}$ Sol.

74. The ratio of sum of first three terms of a G.P. to the sum of first six terms is 64:91, the common ratio of G.P. is

4. None of these.

4.  $\frac{7}{4}$ 1.  $\frac{1}{4}$ 3.  $\frac{5}{4}$ 2.  $\frac{3}{4}$ Key. 2 Given  $\frac{S_3}{S_6} = \frac{64}{91} = \frac{a(r^3 - 1)}{a(r^6 - 1)}$ Sol.  $\Rightarrow \frac{\left(r^{3}-1\right)}{\left(r^{3}+1\right)\left(r^{3}-1\right)} = \frac{64}{91}$  $\Rightarrow r^3 = \frac{27}{64} \therefore r = \frac{3}{4}$ Sum of the series  $3+5+9+17+33+\dots$  to *n* terms is 75. 1.  $2^{n+1} - n - 2$  2.  $2^{n+1} + n - 2$ 3.  $2^{n}$  +  $\begin{array}{c}
2\\
S_n = 3 + 5 + 9 + 17 + 33 + \dots \\
\end{array}$ Key. Sol.  $= (2+1) + (2^{2}+1)(2^{3}+1) + (2^{4}+1) +$  $= (2 + 2^{2} + 2^{3} + 2^{4} + \dots n \text{ terms}) + n$  $= 2(2^{n} - 1) + n = 2^{n+1} + n - 2$  $=2^{n+1}+n-2$ 

76. If one A.M. A and two G.M.s p and q be inserted between two numbers a and b, then which of the following is hold good

1. 
$$a^{3} + b^{3} = 2Apq$$
 2.  $p^{3} + q^{3} = 2Apq$  3.  $a^{3} + b^{3} = 2Aab$   
Key. 2  
Sol. Given  $a + b = 2A$ 

And  $a, p, q, b \in G.P.$ 

 $\therefore p^2 = aq \text{ and } q^2 = pb$  $\Rightarrow p^3 = apq \text{ and } q^3 = bpq$ 

by adding we get

$$p^{3} + q^{3} = apq + bpq$$
  
=  $pq(a+b) = 2Apq$ 

77. If fourth term of a G.P. is 3, the product of the first seven terms is

1.  $3^4$  2.  $3^7$  3.  $7^4$  4.  $4^7$ Key. 2 Sol. As the number of terms are odd (7) let r, be the common ratio So terms can be taken as  $\frac{a}{r^3}, \frac{a}{r^2}, \frac{a}{r}, a, ar, ar^2, ar^3$   $\therefore$  Product of the term =  $a^7$ =  $3^7$  as  $(t_4 = a = 3)$ 

78. The number of divisors of 6912, 52480,32000 are in

1. A.P Only

3. A.P., G.P.& H.P. 4. None of these

Key. 3

Sol. If n is a + ve number.

$$n = P_1^{k_1} . P_2^{k_2} ... P_r^{k_r}$$

(where  $p_1, p_2, p_3, \dots, p_r$  are prime number) then number of divisors of *n* are

2. G.P. Only

$$=(k_1+1)(k_2+1)....(k_r+1)$$

:. Number of prime factor of 6912 are  $= 2^8 \cdot 3^3$  so no. of divisors  $= 9 \times 4 = 36$ 

Prime factors of 52,400 are  $= 3^8 \times 2^3$ 

 $\therefore$  No. of divisors = 9 × 4 = 36

Prime factors of 32,000 are  $= 5^3 \times 2^8$ 

 $\therefore$  No. of divisors  $= 9 \times 4 = 36$ 

Now each number having same number of divisors *i.e.*, 36,36,36

Each and every term is constant & constant sequence is always in A.P.& G.P. both as common difference is 0 and common ratio is 1.

79. If 1, 
$$\log_{81}(3^x + 48)$$
,  $\log_9\left(3^x - \frac{8}{3}\right)$  are in A.P., then the value of x equals  
1.9 2.6 3.2 4.4  
Key. 3  
Sol. Given 1,  $\log_9 2(3^x + 48)$ ,  $\log_9(3^x - 8/3)$ ,  $\in A.P.$   
 $\Rightarrow \log_9 9, \frac{1}{2}\log_9(3^z + 48)$ ,  $\log_9(3^z - 8/3) \in A.P.$   
 $\Rightarrow 9, (3^x + 48)^{1/2}, 3^x - 8/3 \in G.P.$  (By concept)  
 $\Rightarrow \log a, \log b, \log c \in A.P.$   
 $\therefore a, b, c \in G.P.$   $\therefore 3^x + 48 = 9(3^x - 8/3)$   
 $8.3^z = 72$   
 $3^z = 9, 3^z = 3^3, x = 2.$   
80. If  $a, b, c$  are in H.P., then  $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$  are in  
1. A.P. 2. H.P. 3. G.P. 4. None of these  
Keys  
Sol. Given  $a, b, c \in H.P.$   
So,  $\frac{1}{a}, \frac{1}{b}, \frac{1}{c} \in A.P.$   
 $\frac{a+b+c}{a}, \frac{b+c+a}{c}, \frac{c+a+b}{c} \in A.P.$ 

By using concept if  $a, b, c \in A.P.$ 

Then their reciprocals are in H.P.

81. Between the numbers 2 and 20, 8 means are inserted, then their sum is

1.88 2.44 3.176 4. None of these  
Key. 1  
Sol. Let 
$$a, A, A_2, ..., A_g, b \in A.P$$
  
Where  $a = 2, b = 20, n = 8$   
 $\therefore$  sum of the means  $= \frac{n}{2}(a+b) = \frac{8}{2}(2+20) = 88$   
82 If the arithmetic mean of two positive numbers  $a \& b$   $(a > b)$  is twice their G.M., then  
 $a:b$  is  
1.  $6 + \sqrt{7}: 6 - \sqrt{7}$  2.  $2 + \sqrt{3}: 2 - \sqrt{3}$  3.  $5 + \sqrt{6}: 5 - \sqrt{6}$  4. None of these  
Key. 2  
Sol.  $\frac{a+b}{2} = 2\sqrt{ab}$   
 $a+b-4\sqrt{ab} = 0$   
 $\frac{a}{b}+1-4\sqrt{\frac{a}{b}} = 0$  (Dividing by b)  
 $Or\left(\sqrt{\frac{a}{b}}\right)^2 - 4\sqrt{\frac{a}{b}} + 1 = 0$   
 $\therefore \sqrt{\frac{a}{b}} = \frac{4 \pm 2\sqrt{3}}{2} = (2 \pm \sqrt{3})$   
 $\frac{a}{b} = \frac{2+\sqrt{3}}{2-\sqrt{3}}$ 

83 The number of terms common between the two series 2+5+8+... up to 50 terms and the series 3+5+7+9+... up to 60 terms.

1. 24 2. 26 3. 25 4. None of these

Key. 4

Sol. Let  $m^{th}$  term of first A.P. be equal to the  $n^{th}$  term of the second A.P. then

2, 5, 8,....50 terms series 1

3, 5, 7, ...., 60 terms series 2

Common series 5, 11, 17, ...., 119

 $40^{th}$  term of series  $1 = 59^{th}$  term of series 2 = 119 = 1 ast term of common series

 $\Rightarrow a_n = 5 + (n-1)d \Rightarrow 119 + 1 = 6n \Rightarrow n = 20.$ 

- $\therefore$  Number of common terms is 20.
- 84. If a, b, c are three positive numbers, then the minimum value of the expression  $\frac{ab(a+b)+bc(b+c)+ca(c+a)}{bca}$

3.6

4.1

Key. 3 Sol. Given expression equal to

$$\frac{(a+b)}{c} + \frac{(b+c)}{a} + \frac{(c+a)}{b}$$
Or  $\frac{a}{c} + \frac{b}{c} + \frac{b}{a} + \frac{c}{a} + \frac{c}{b} + \frac{a}{b}$ 
Using A.M.  $\geq$  G.M.  $\frac{\frac{a}{c} + \frac{b}{c} + \frac{b}{a} + \frac{c}{a} + \frac{c}{b} + \frac{a}{b}}{6} \geq \sqrt{\frac{a}{c} \frac{b}{c} \frac{b}{c} \frac{c}{c} \frac{c}{a}}{\frac{a}{b} \frac{b}{b}}{\frac{b}{c}}$ 
Or  $\frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b} \geq 6$ 

2.4

85. Sum of n terms of series  $ab + (a+1)(b+1) + (a+2)(b+2) + \dots + (a+(n-1))(b+(n-1))$ if  $ab = \frac{1}{6}and(a+b) = \frac{1}{3}$ , is (A)  $\frac{n}{6}(1-2n)^2$  (B)  $\frac{n}{6}(1+n-2n^2)$  (C)  $\frac{n}{6}(1-2n+2n^2)$  (D) none of these

Key. C

C

## AP,GP,HP, Sequences

### Mathematics

Sol. 
$$s = ab + [ab + (a + b) + 1] + [ab + 2(a + b) + 2^{2}] + ....[ab + (n - 1)(a + b) + (n - 1)^{2}]$$
  
 $= nab + (a + b) \sum_{r=1}^{n-1} r + \sum_{r=1}^{n-1} r^{2}$   
 $= nab + (a + b) \frac{n(n-1)}{2} + \frac{(n-1)(n)(2n-1)}{6}$   
 $= \frac{n}{6} [1 + (n - 1)[1 + 2n - 1]]$   
 $= \frac{n}{6} [1 + 2n(n - 1)] = \frac{n}{6} (1 - 2n + 2n^{2})$   
86. If log (a+c).log(a+b), log(b+c) are in A.P. and a,c,b are in H.P, then the value of a+b is (given  
 $a,b,c > 0$ )  
(A) 2c (B) 3c (C) 4c (D) 6c  
Key. A  
 $log(a + c) + log(b + c) = 2log(a + b)$   
 $(a + c)(b + c) = (a + b)^{2}$   
Sol.  $\Rightarrow ab + c(a + b) + c^{2} = (a + b)^{2}$  (1)  
 $also,c = \frac{2ab}{a+b} \Rightarrow 2ab = c(a + b)$   
 $\Rightarrow 2ab + 2c(a + b) + 2c^{2} = 2(a + b)^{2}$  .... (2)  
From (1) and(2),  
 $c(a + b) + 2c(a + b) - 2c^{2} = 0$   
 $\therefore a + b = \frac{3c \pm \sqrt{9c^{2} + 16c^{2}}}{4} = \frac{3c \pm 5c}{4} = 2c \text{ or } -\frac{c}{2}$   
 $\therefore a + b = 2c$  (Q a, b, c > 0)

87. If  $a_1, a_2, a_3, \dots, a_n$  are in A.P. with  $s_n$  as the sum of first 'n' terms  $(s_0 = 0)$ , then

$$\sum_{k=0}^{n} {}^{n}C_{k}s_{k}$$
 is equal to  
(A)  $2^{n-2}[na_{1}+s_{n}]$  (B)  $2^{n}[a_{1}+s_{n}]$  (C)  $2[na_{1}+s_{n}]$  (D)  $2^{n-1}[a_{1}+s_{n}]$ 

Key. A

Sol. 
$$\sum_{k=0}^{n} c_k s_k = \sum_{k=0}^{n} c_k \frac{k}{n} [2a + (k-1)d]$$

= 
$$[(a_1 - \frac{d}{2})\sum_{k=0}^{n} k^n c_k + \frac{d}{2}\sum_{k=0}^{n} k^2 c_k]$$

$$= \left(a_{1} - \frac{d}{2}\right)n \cdot 2^{n-1} + \frac{d}{2}[n \cdot 2^{n-1} + n(n-1)2^{n-2}]$$
  
$$= a_{1} \cdot n \cdot 2^{n-1} + dn(n-1)2^{n-3}$$
  
$$= n \cdot 2^{n-3}[4a_{1} + a_{n} - a_{1}] = n \cdot 2^{n-3}[3a_{1} + a_{n}]$$
  
$$= 2^{n-3}[2na_{1} + 2n\left(\frac{a_{1} + a_{n}}{2}\right)]$$
  
$$= 2^{n-2}[na_{1} + s_{n}].$$

If a,b,c, are in A.P. and p, p' are respectively A.M. and G.M. between a and b while q, q'88. are respectively AM. And G.M. between b and c, then

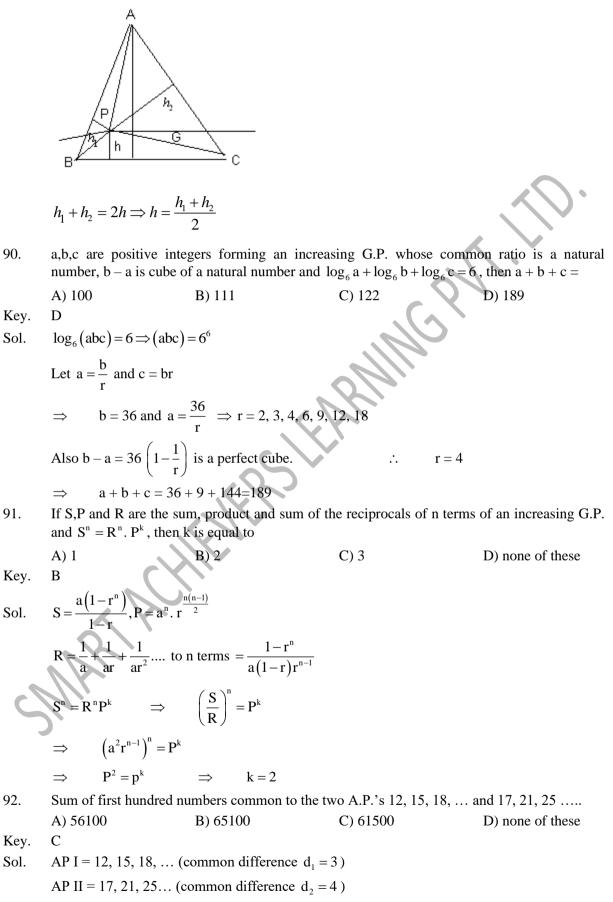
(A) 
$$p^{2} + q^{2} = p'^{2} + q'^{2}$$
  
(B)  $pq = p'q'$   
(C)  $p^{2} - q^{2} = p'^{2} - q'^{2}$  (D)  $p^{2} + p'^{2} = q^{2} + q'^{2}$ 

Key. С

Sol.

We have 2b = a + c and a,p,b,q,c are in A.P Sol.

$$\Rightarrow p = \frac{a+b}{2}, q = \frac{b+c}{2}$$
Again,  $p' = \sqrt{ab}$  and  $q' = \sqrt{bc}$ 


$$\therefore p^2 - q^2 = \frac{(a+b)^2 - (b+c)^2}{4}$$

$$= \frac{(a-c)(a+c+2b)}{4} = (a-c)b = p'^2 - q'^2$$

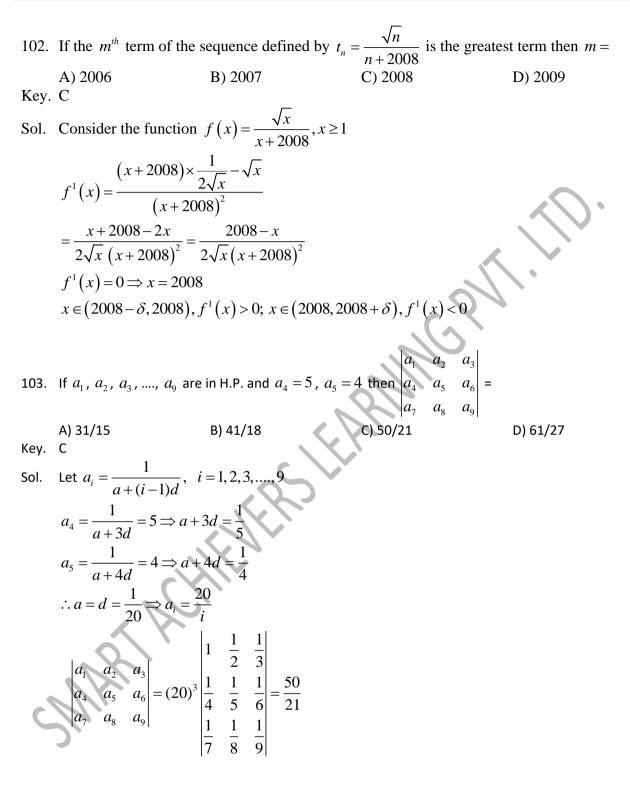
Through the centroid of an equilateral triangle a line parallel to the base is drawn. On this 89. line, an arbitrary point p is taken inside the triangle. Let h denote the distance of p from the base of the triangle. Let  $h_1$  and  $h_2$  be the distance of p from the other two sides of the triangle, then

| (A) h is the H.M. of $h_1, h_2$ | (B) h is the G.M. of $h_1, h_2$ |  |
|---------------------------------|---------------------------------|--|
| (C) h is the A.M, of $h_1, h_2$ | (D) None of these               |  |
| Key. C                          |                                 |  |

 $\Delta ABC = \Delta PBC + \Delta PAC + \Delta PAB$ 



First term of the series of common numbers = 21


Here a = 21, common difference of the series of common numbers = L.C.M of  $d_1$  and  $d_2 = 12$ : Required sum of first hundred terms  $=\frac{100}{2}[2\times 21+(100-1)12]=100[21+594]=61500$ 93. If 11 A.M. s are inserted between 28 and 10, then number of integral A.M's is A) 5 B) 6 C) 7 D) 8 Key. А Since  $A_1, A_2, A_3, \dots, A_{11}$  be 11 A.M. s between 28 and 10. Sol. 28, A<sub>1</sub>, A<sub>2</sub>,..., A<sub>11</sub>, 10 are in A.P. *.*.. Let 'd' be the common difference of A.P. Also the number of terms = 13.  $10 = T_{13} = T_1 + 12d = 28 + 12d$  $d = \frac{10-28}{12} = -\frac{18}{12} = -\frac{3}{2}$ *.*.. Number of integral A.M's is 5. *.*.. If a,b,c are in HP, then  $\frac{1}{b-a} + \frac{1}{b-c}$  is equal to 94. A)  $\frac{2}{b}$ B)  $\frac{2}{a+c}$ D) none of these a Key. А Sol. 0 a,b,c are in H.P.  $b = \frac{2ac}{(a+c)}$ Q *.*.. 2ac -a a+c $\frac{1}{a(c-a)} + \frac{1}{c(a-c)} \Biggr\} \implies \frac{(a+c)}{(a-c)} \Biggl\{ -\frac{1}{a} + \frac{1}{c} \Biggr\}$ (a+c) $\frac{(c+a)(a-c)}{ac(a-c)} \implies \frac{(a+c)}{ac} = \frac{2}{b}$ Let  $a_n$  be the n<sup>th</sup> term of an A.P. If  $\sum_{r=1}^{100} a_{2r} = \alpha$  and  $\sum_{r=1}^{100} a_{2r-1} = \beta$ , then the common difference 95. of the A.P. is C)  $\frac{\alpha - \beta}{2}$ A)  $\alpha - \beta$ B)  $\beta - \alpha$ D) none of these Key. D Sol.  $a_1 + a_3 + a_5 + \dots + a_{199} = \beta$  $a_2 + a_4 + a_6 + \dots + a_{200} = \alpha$ 

$$a_2 - a_1 + a_4 - a_3 + a_6 - a_5 \dots a_{200} - a_{199} = \alpha - \beta$$

34

 $d + d + d \dots d = \alpha - \beta$  $d = \frac{\alpha - \beta}{100}$ If a,b,c,d are in G.P., then  $(a^2 + b^2 + c^2)(b^2 + c^2 + d^2)$  equals to 96. A) a b + b c + c d B)  $(a b + b c + c d)^2$  C)  $(a b + b c + c d)^4$ D) none of these Key. В a,b,c,d are in G.P., let they are a, ar,  $ar^2$ ,  $ar^3$ Sol.  $(a^{2}+b^{2}+c^{2})(b^{2}+c^{2}+d^{2})$  $=a^{2}\times a^{2}\left\lceil 1+r^{2}+r^{4}\right\rceil\left\lceil r^{2}+r^{4}+r^{6}\right\rceil$  $=a^{4}r^{2}\left[1+r^{2}+r^{4}\right]^{2}$  $= \left\lceil a^2 r \left\lceil 1 + r^2 + r^4 \right\rceil \right\rceil^2$  $=(ab+bc+cd)^2$ If  $a_1, a_2, a_3, a_4, a_5$  are in H.P., then  $a_1a_2 + a_2a_3 + a_3a_4 + a_4a_5$  is equal to 97. B)  $3a_1a_5$ D) – 4 A)  $2a_1a_5$ C)  $4a_1a_5$ Key. С  $a_1, a_2, a_3, a_4, a_5$  are in H.P. Sol.  $\Rightarrow \qquad a_2 = \frac{2a_1a_2}{a_1 + a_2} \Rightarrow 2a_1a_3 = a_2a_1 + a_3a_2$  $a_4 = \frac{2a_3a_5}{a_2 + a_5} \Longrightarrow 2a_3a_5 = a_3a_4 + a_5a_4$  $a_1a_2 + a_2a_3 + a_3a_4 + a_4a_5 = 2a_1a_3 + 2a_3a_5$  $\Rightarrow$ ...(i)  $a_3 = \frac{2(a_1a_5)}{a_1 + a_5} \Longrightarrow a_1a_3 + a_5a_3 = 2a_1a_5$ ...(ii) using (i) & (ii)  $a_1a_2 + a_2a_3 + a_3a_4 + a_4a_5 = 2(2a_1a_5) = 4a_1a_5$ If the sum to infinity of the series,  $1+4x+7x^2+10x^3+\ldots$ , is  $\frac{35}{16}$ , where |x| < 1, then 'x' 98. equals to A) 19/7 B) 1/5 C) 1/4 D) none of these Key. В  $S = 1 + 4x + 7x^2 + 10x^3 + \dots$ Sol.  $x.S = x + 4x^2 + 7x^3 + \dots$ Subtract  $S(1-x) = 1 + 3x + 3x^2 + 3x^3 + \dots$  $S(1-x) = 1 + 3x \left(\frac{1}{1-x}\right)$  |x| < 1 $S = \frac{1+2x}{(1-x)^2}$ 

Given  $\frac{1+2x}{(1-x)^2} = \frac{35}{16}$  $16+32x = 35+35x^{2}-70x \implies 35x^{2}-102x+19=0$   $35x^{2}-7x-95x+19=0 \implies 7x(5x-1)-19(5x-1)=0$   $(5x-1)(7x-19)=0 \implies x=\frac{1}{5},\frac{19}{7}$  $\Rightarrow$  $\Rightarrow$  $\Rightarrow$  $\therefore$   $x = \frac{1}{5}$ But |x| < 199. If a,b,c and d are four positive real numbers such that abcd = 1, the minimum value of (1 + a)(1 + b) (1 + c) (1 + d) is C) 16 A) 4 B) 1 D) 18 Key. С  $1+a \ge 2\sqrt{a}$  {AM  $\ge$  GM} Sol.  $1+b \ge 2\sqrt{b}$  $1+c \ge 2\sqrt{c}$  $1+d \ge 2\sqrt{d}$  $(1 + a) (1 + b) (1 + c) (1 + d) \ge 16\sqrt{abcd} = 16$ min. value = 16 (for a = b = c = d = 1) ·. If the length of sides of a right triangle are in A.P., then the sines of the acute angle are 100. A)  $\frac{3}{5}, \frac{4}{5}$ C)  $\sqrt{\frac{\sqrt{5}-1}{2}}, \sqrt{\frac{\sqrt{5}+1}{2}}$ D)  $\sqrt{\frac{\sqrt{3}-1}{2}}, \sqrt{\frac{\sqrt{3}+1}{2}}$ Key. А Let the sides be a - d, a, a + d. Sol. Where a > d > 0We have  $(a+d)^{2} = (a-d)^{2} + a^{2}$  $\Rightarrow d = \frac{a}{4} \text{ we have } \sin \theta = \frac{a}{a+d} \Rightarrow \cos \theta = \frac{3}{5}, \qquad \sin \theta = \frac{4}{5}$ If  $a_1, a_2, \dots, a_n$  n distinct odd natural numbers not divisible by any prime greater than 5, then 101.  $\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$  is less than A)  $\frac{15}{8}$ B)  $\frac{16}{8}$ D)  $\frac{15}{4}$ C)  $\frac{8}{15}$ Key. Sol. Since each  $a_1$  is an odd number not divisible by a prime greater than 5,  $a_1$  can be written as  $a_1 = 3^r 5^8$  where r, s are non-negative integers. thus for all  $n \in N$  $\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} < \left(1 + \frac{1}{3} + \frac{1}{3^2} + \dots +\right) \left(1 + \frac{1}{5} + \frac{1}{5^2} + \dots +\right) = \frac{15}{8}$ 



If  $\log_{ax} x$ ,  $\log_{bx} x \log_{cx} x$  are in H.P. where a, b, c, x belong to (1,  $\infty$ ), then a, b, c are in 104. (A) A.P. (B) G.P. (C) H.P. (D) A.G.P. B

Key.

- Sol. Since log<sub>ax</sub>x, log<sub>bx</sub>x, log<sub>cx</sub>x are in H.P.
  - $\therefore \log_x ax, \log_x bx, \log_x cx$  are in A.P.

- $\Rightarrow 1 + \log_x a, 1 + \log_x b, 1 + \log_x c$  are in A.P.
- $\Rightarrow \frac{\log a}{\log x}, \frac{\log b}{\log x}, \frac{\log c}{\log x}$  are in A.P.
- $\Rightarrow \log a, \log b, \log c$  are in A.P.
- $\Rightarrow 2 \log b = \log a + \log c = \log ac$
- $\Rightarrow \log b^2 = \log ac \Rightarrow b^2 = ac$ SMARIACHER HAMMERY
  - $\Rightarrow$  a, b, c are in G.P.

## AP, GP, HP, Sequences Multiple Correct Answer Type

1. If a,b,c,d are four unequal positive number which are in A.P then

A) 
$$\frac{1}{a} + \frac{1}{d} = \frac{1}{b} + \frac{1}{c}$$
 B)  $\frac{1}{a} + \frac{1}{d} < \frac{1}{b} + \frac{1}{c}$  C)  $\frac{1}{a} + \frac{1}{d} > \frac{1}{b} + \frac{1}{c}$  D)  $\frac{1}{b} + \frac{1}{c} > \frac{4}{a+d}$ 

Key. C,D

Sol. Let 
$$b = a + p, c = a + 2p, d = a + 3p$$

$$\frac{\frac{1}{a} + \frac{1}{d}}{\frac{1}{b} + \frac{1}{c}} = \frac{\frac{1}{a} + \frac{1}{a+3p}}{\frac{1}{a+p} + \frac{1}{a+2p}} = \frac{(1+p)(1+2p)}{1(a+3p)}$$

$$= \frac{a^2 + 3ap + 2p^2}{a^2 + 3ap} > 1$$

$$\therefore \frac{1}{a} + \frac{1}{d} > \frac{1}{b} + \frac{1}{c}$$

$$\left(\frac{1}{b} + \frac{1}{c}\right)(a+d)\left(\frac{1}{a+p} + \frac{1}{a+2p}\right)(a+a+3p)$$

$$= \frac{(2a+3p)^2}{a^2 + 3ap + 2p^2} = 4\frac{p^2}{a^2 + 3ap + 2p^2} > 4$$

2. If the first and  $(2n-1)^{th}$  terms of an A.P., G.P and H.P of positive terms are equal and their  $n^{th}$  terms are a,b,c respectively, then

A) 
$$a=b=c$$
 B)  $a \ge b \ge c$  C)  $b^2 = ac$  D)  $a+c=2b$ 

Key. B,C

Sol. Let A.P be 
$$A, A+d$$
,  $A+2d$ ,..... Then  
 $t_{2n-1} = A + (2n-2)d = x(say)$ , Then  
 $(n-1)d = \frac{x-A}{2}$   
 $\therefore a = t_n = A + (n-1)d = a + \frac{x-A}{2} = \frac{A+x}{2}$   
Let G.P be A, AR, A  $R^2$ , ..... Then  
 $t_{2n-1} = A R^{2n-2} = x \Rightarrow R^{n-1} = \left(\frac{x}{A}\right)^{\frac{1}{2}}$   
 $\therefore b = t_n = A R^{n-1} = A \left(\frac{x}{A}\right)^{\frac{1}{2}} \Rightarrow \sqrt{Ax}$ 

Let H.P be A 
$$\frac{1}{\frac{1}{A} + D}$$
,  $\frac{1}{\frac{1}{A} + 2D}$ ......then  
 $t_{2n-1} = \frac{1}{\frac{1}{\frac{1}{A} + (2n-2)}} = x$  then  
 $(n-1)D = \frac{1}{2}\left(\frac{1}{x} - \frac{1}{A}\right)$   
 $\therefore c = t_n = \frac{1}{\frac{1}{\frac{1}{A} + (n-1)D}} = \frac{1}{\frac{1}{\frac{1}{A} + \frac{1}{2}\left(\frac{1}{x} - \frac{1}{A}\right)}}$   
 $= \frac{1}{\frac{1}{\frac{1}{2}\left(\frac{1}{x} + \frac{1}{A}\right)}}$ 

Clearly a,b, and c are A.M., G.M and H.M between the numbers, x and A respectively Hence  $a \ge b \ge c$  also  $b^2 = ac$ 

3. In a G.P., the product of first four terms is 4 and the second term is the reciprocal of the fourth term. The sum of infinite terms of the G.P. can be

(A)-8 (B) 
$$-\frac{8}{3}$$
 (C)  $\frac{8}{3}$  (D) 8

Sol. Let 
$$a, ar, ar^2, ar^3$$
 are the first four terms of the G.P

ar, ar<sup>2</sup>, ar<sup>3</sup> are the first four terms of the G.P  $a^4r^6 = 4 \& a^2r^4 = 1 \Longrightarrow r^2 = \frac{1}{4} \Longrightarrow r = \pm \frac{1}{2} \& a = \pm 4$ Sum of infinite G.P =  $\frac{a}{1-r} = 8, -8, \frac{8}{3}, -\frac{8}{3}$ ÷. :.

B) 2

If 3 positive real number a,b,c are in A.P with abc=4 then [b] can be equal to (where [.] 4.

C) 3

D) 4

represents the integral part)

A,B,C,D Key.

A) 1

- $b \ge \sqrt{ac} \Longrightarrow b^3 \ge abc$ Sol.  $\Rightarrow b^3 \ge 4 \text{ or } b \ge (4)^{1/3} \Rightarrow [b] \ge 1$
- 5. If a, b, c are first three terms of a G.P. if the harmonic mean of a and b is 12 and arithmetic mean of b & c is 3, then (A) no term of this G.P. is square of an integer (B) arithmetic mean of a, b, c is 3 (C)  $b = \pm 6$ (D) common ratio of this G.P. is 2

Key. A,B

6. Suppose 'f' and 'g' are functions having second derivatives f " and g " everywhere, if  $f(x) \cdot g(x) = 1$  for all 'x' and f' and g' are never zero, then  $\frac{f''(x)}{f'(x)} - \frac{g''(x)}{g'(x)}$  equals

| A) | $\frac{-2f'(x)}{f(x)}$ | $B)  \frac{-2g'(x)}{g(x)}$ | C) $\frac{-f'(x)}{f(x)}$ | D) $\frac{2f'(x)}{f(x)}$ |
|----|------------------------|----------------------------|--------------------------|--------------------------|
|----|------------------------|----------------------------|--------------------------|--------------------------|

Key. B,D

Sol.

$$g = \frac{1}{f} \Rightarrow g' = \frac{-1}{f^2} f'$$
  

$$\Rightarrow g'' = -\left[\frac{-2}{f^3} f'^2 + \frac{1}{f^2} f''\right] = \frac{2}{f^3} f'^2 - \frac{f''}{f^2}$$
  

$$\Rightarrow \frac{f''}{f'} - \frac{g''}{g} = \frac{f''}{f'} - \frac{\frac{2}{f^3} f'^2 - \frac{f''}{f^2}}{\frac{-1}{f^2} f'} = \frac{f''}{f'} - \left(\frac{-2f' + f''}{f} + \frac{2f'}{f}\right) = \frac{2f'}{f}$$
  

$$\frac{2g'}{f'}$$

C

In a similar manner, we can show that the same is equal to g

7. For a positive integer n, let 
$$S(n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2^n - 1}$$
. Then,  
a)  $S_n \le n$   
b)  $S_n > n$   
c)  $S_{2n} \le n$   
d)  $S_{2n} > n$ 

c) 
$$S_{2n} \leq n$$

$$\begin{aligned} \text{HINT}: \quad S\left(n\right) = 1 + \left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}\right) + \ldots + \left(\frac{1}{2^{n-1}} + \frac{1}{2^{n-1} + 1} + \ldots + \frac{1}{2^n - 1}\right) \\ &\leq 1 + \left(\frac{1}{2} + \frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}\right) + \ldots + \left(\frac{1}{2^{n-1}} + \frac{1}{2^{n-1}} + \ldots + \frac{1}{2^{n-1}}\right) \\ &= 1 + 1 + 1 + \ldots + 1 \text{ (n terms)} = n \\ \text{Also } S\left(n\right) \geq 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \ldots + \left(\frac{1}{2^{n-2} + 1} + \frac{1}{2^{n-2} + 2} + \ldots + \frac{1}{2^{n-1}}\right) \\ &> 1 + \frac{1}{2} + \frac{1}{2} + \ldots + \frac{1}{2} = 1 + \left(\frac{n-1}{2}\right) = \frac{n+1}{2} \\ &\therefore S\left(2n\right) > \frac{2n+1}{2} = n + \frac{1}{2} > n \end{aligned}$$

If  $a_1, a_2, a_3, \dots, a_n$  is sequence of +Ve numbers which are in AP with common difference 'd' & 8.  $a_1 + a_4 + a_7 + \dots + a_{16} = 147$  then. A)  $a_1 + a_6 + a_{11} + a_{16} = 98$ B)  $a_1 + a_{16} = 49$ C)  $a_1 + a_4 + a_7 + \dots + a_{16} = 6a_1 + 45 \,\mathrm{d}$ D) Maximum value of  $a_1 a_2 \dots a_{16}$  is  $\left(\frac{49}{2}\right)^{10}$ KEY : A,B,C,D SOL:  $a_1 + a_4 + a_7 + \dots + a_{16} = 147$  $\Rightarrow$  3( $a_1 + a_{16}$ ) = 147  $\Rightarrow$   $a_1 + a_{16}$  = 49. CPN Again  $a_1 + a_4 + a_7 + a_{10} + \ldots + a_{16}$  $= a_1 + a_1 + 3d + a_1 + 6d + \dots + a_1 + 15d$  $= 6a_1 + 45d = 147$  $\Rightarrow 2a_1 + 15d = 49$  $a_1 + a_6 + a_{11} + a_{16} = a_1 + a_1 + 5d + a_1 + 10d + a_1 + 15d$  $=4a_{1}+30d$  $=2(2a_1+15d)$ = 2(49) = 98Now using  $AM \ge GM$  $\frac{a_1 + a_2 + \dots + a_{16}}{16} \ge (a_1 a_2 a_3 \dots a_{16})$  $\frac{8(a_1+a_{16})}{16} \ge (a_1a_2a_3...a_{16})^{\frac{1}{16}}$  $\left(\frac{49}{2}\right)^{16} \ge a_1 a_2 a_3 \dots a_{16}$  $rac{1}{\sqrt{r+1}+(r+1)\sqrt{r}}$  , then (here  $\,r\in N$  ) 9. (A)  $T_r > T_{r+1}$ (B)  $T_r < T_{r+1}$ (C)  $\sum_{r=1}^{99} T_r = \frac{9}{10}$ (D)  $\sum_{r=1}^{n} T_{r} < 1$ Key: A, C, D  $T_{r} = \frac{r(\sqrt{r+1}) - (r+1)\sqrt{r}}{r^{2}(r+1) - (r+1)^{2}r} = \frac{r\sqrt{r+1} - (r+1)\sqrt{r}}{-r^{2} - r} = \frac{(r+1)\sqrt{r}}{r(r+1)} - \frac{r\sqrt{r+1}}{r(r+1)} = \frac{1}{\sqrt{r}} - \frac{1}{\sqrt{r+1}}$ Hint:  $\Rightarrow \sum_{r=1}^{99} T_r = \frac{1}{1} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \dots - \frac{1}{\sqrt{100}} = 1 - \frac{1}{\sqrt{100}} = \frac{9}{10}$ 

Hence (a), (c) and (d) are correct.

10. If 
$$S_{(n)} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
,  $(n \in N)$ , then  $S_{(1)} + S_{(2)} + \dots + S_{(n-1)}$  is equal to  
(A)  $nS_{(n)} - n$  (B)  $nS_{(n)} - 1$   
(C)  $(n-1)S_{(n-1)} - n$  (D)  $nS_{(n-1)} - n + 1$   
Key: A, D  
Hint:  $S_{(1)} + S_{(2)} + \dots + S_{(n-1)}$   
 $S_{(1)} : 1$   
 $S_{(2)} : 1 + \frac{1}{2}$   
 $S_{(3)} : 1 + \frac{1}{2} + \frac{1}{3}$   
......  
 $S_{(n-1)} : 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1}$   
Adding vertically :  
 $= (n-1) + \frac{(n-2)}{2} + \frac{(n-3)}{3} + \dots + \frac{(n-(n-1))}{(n-1)}$   
 $= n \left[ 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} \right] - [1+1+1+\dots + 1] = nS_{(n-1)} - (n-1) = nS_n - n$ 

If  $a_1 > 0$  for i = 1, 2, ..., n and  $a_1a_2....a_n = 1$ , then  $(2 + a_1)(2 + a_2)....(2 + a_n)$  is greater than (a)  $2^{n/2}$  (b)  $2^{3n/2}$  (c)  $2^{2n}$  (d) none of the a or b 11. (d) none of these

Key: Hint: We have

$$\frac{\frac{1}{2}(2+a_{1}) \ge \sqrt{2a_{1}}}{\frac{1}{2}(2+a_{2}) \ge \sqrt{2a_{2}}}$$

.....

 $\geq$ 

 $\frac{1}{2}(2+a_n) \ge \sqrt{2a_n}$ Multiplying above inequalities, we get  $\frac{1}{2^{n}}(2+a_{1})(2+a_{2})....(2+a_{n})$ 

$$2^{n/2}\sqrt{a_1a_2....a_n} = 2^{n/2}$$

 $\Rightarrow$  (2 + a<sub>1</sub>)(2 + a<sub>2</sub>) ... (2 + a<sub>n</sub>)  $\ge 2^{3n/2}$ As all  $a_i \neq 2$ , thus we have strict inequality in the above inequality. 12. The pth term  $T_p$  of HP is q(p + q) and qth term  $T_q$  is p(p + q) when p > 1, q > 1,  $(p \neq q)$  then (A)  $T_{p+q} = pq$ (B)  $T_{pq} = p + q$ (C)  $T_{p+q} > T_{pq}$ (D)  $T_{pq} > T_{p+q}$ Key: A, B, C  $T_{p} \text{ of } AP = \frac{1}{q(p+q)} = A + (p-1)D$ Sol :  $T_{q} \text{ of } AP = \frac{1}{P(p+q)} = A + (q-1)D$ ... (ii) RAMACP  $\frac{1}{T_{p+q}} = A + (p+q-1)D$  $\frac{1}{T_{m}} = A + (pq-1)D.$ and Now, solving Eqs. (i) and (ii), we get  $A = D = \frac{1}{pq(p+q)}$  $\therefore \frac{1}{T_{p+q}} = A + (p+q-1)D = (p+q)D =$ and  $\frac{1}{T_{pq}} = A + f(p+q-1)D = pqD$  $\Rightarrow T_{_{p+q}} = pq \text{ and } T_{_{pq}} = p+q$ Also, Q pq > p+qi.e,  $T_{p+q} > T_{pq}$ 

13. If the arithmetic mean of two positive numbers a and b (a > b) is twice their geometrical mean then a : b is

(A) 
$$2+\sqrt{3}:2-\sqrt{3}$$
  
(B)  $7+4\sqrt{3}:1$   
(C)  $1:7-4\sqrt{3}$   
(D)  $2:\sqrt{3}$ 

Key. A,B,C

Sol. 
$$\frac{a+b}{2} = 2\sqrt{ab} \Rightarrow \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} = 4 \quad \sqrt{\frac{a}{b}} = 2 \pm \sqrt{3}$$
$$\frac{\sqrt{\frac{a}{b}}}{\sqrt{\frac{b}{a}}} = \frac{2+\sqrt{3}}{2-\sqrt{3}} \Rightarrow \frac{a}{b} = \frac{2+\sqrt{3}}{2-\sqrt{3}}$$
$$\frac{a}{b} = 7 + 4\sqrt{3} \Rightarrow a: b = (7+4\sqrt{3}):1$$

$$\sqrt{\frac{b}{a}} = 2 - \sqrt{3} \Longrightarrow a: b = 1:7 - 4\sqrt{3}$$

14. If  $b_1, b_2, b_3(b_1 > 0)$  are three successive terms of a G.P. with common ratio r, the value of r for which the inequality  $b_3 > 4b_2 - 3b_1$  holds is given by

(B)  $1 < r < \frac{3}{2}$ (A) r > 3(C) r < 1(D) None of these A,C Key.  $b_2 = b_1 r, b_3 = b_1 r^2$ Sol.  $b_1 r^2 > 4b_1 r - 3b_1$  $\Rightarrow$   $r^2 > 4r - 3$  $\Rightarrow$   $r^2 - 4r + 3 > 0$  $\Rightarrow$  (r-1)(r-3) > 0r > 3 or r < 1If a, b, c, d are four unequal positive numbers which are in A.P., then 15. (B)  $\frac{1}{a} + \frac{1}{d} < \frac{1}{b} + \frac{1}{c}$ (A)  $\frac{1}{a} + \frac{1}{d} = \frac{1}{b} + \frac{1}{c}$ (D)  $\frac{1}{b} + \frac{1}{c} > \frac{4}{a+d}$ (C)  $\frac{1}{a} + \frac{1}{d} > \frac{1}{b} + \frac{1}{c}$ Key. C,D Conceptual Sol. If a, b, c are in H.P., then 16. (A)  $\frac{a}{b+c-a}$ ,  $\frac{b}{c+a-b}$ ,  $\frac{c}{a+b-c}$  are in H.P. (B)  $\frac{2}{b} = \frac{1}{b-a} + \frac{1}{b-c}$ (C)  $a - \frac{b}{2}, \frac{b}{2}, c - \frac{b}{2}$  are in G.P. (D)  $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$  are in H.P. Key. A,B,C,D a, b, c are in H.P. Sol.  $\Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c}$  are in A.P.  $\Rightarrow \frac{a+b+c}{a}, \frac{a+b+c}{b}, \frac{a+b+c}{c}$  are in A.P.

17.

Sol.

$$\Rightarrow \frac{b+c}{a}, \frac{c+a}{c}, \frac{a+b}{c}, \frac{a+b-c}{c} \text{ are in A.P.} \qquad \text{[subtracting 1 from each term]}$$

$$\Rightarrow \frac{b+c}{a}, -1, \frac{c+a}{c}, \frac{a+b-c}{c} \text{ are in A.P.}$$
Thus  $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$  are in H.P.  
And  $\frac{a}{b+c-a}, \frac{b}{c+a-b}, \frac{c}{a+b-c}$  are also in H.P.  
Also  $b = 2ac/(a+c), \text{ so } \frac{1}{b-a} + \frac{1}{b-c} = \frac{2b-(a+c)}{(b-a)(b-c)}$ 

$$= \frac{2b-(a+c)}{b^2-b(a+c)+ac}$$

$$= \frac{2b-2ac/b}{b^2-b(a+c)+ac}$$

$$= \frac{2b-2ac/b}{b^2-ac} = \frac{2}{b}$$
Lastly,  $\left(a-\frac{b}{2}\right)\left(c-\frac{b}{2}\right) = ac-\frac{b}{2}(a+c) + \frac{b^2}{4}$ 

$$= ac-\frac{b}{2}, \frac{2a}{b} + \frac{b^2}{4} = \frac{b^2}{4}$$

$$a - \frac{b}{2}, \frac{b}{2}, c - \frac{b}{2} \text{ are in G.P.}$$
17. If in a AABC, a, b, c are in A.P. then it is necessary that  
(A)  $\frac{2}{3} < \frac{b}{c} < 2$ 
(B)  $\frac{1}{3} < \frac{b}{c} < \frac{2}{3}$ 
(C)  $\frac{2}{3} < \frac{b}{a} < 2$ 
(D)  $\frac{1}{3} < \frac{b}{a} < \frac{2}{3}$ 
Key. A.C  
Sol.  $a+c=2b$ 
 $\frac{b+b>c}{b+c>a}$ 
 $\frac{2}{3} < \frac{b}{c} < 2$ 
Similarly for  $\frac{b}{a}$ 

Let  $S_1, S_2, ----, S_n$  be the sums of geometric series . Whose 1<sup>st</sup> terms are 1, 2, 3, ----, n 18. and common ratios are  $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ---, \frac{1}{n+1}$  respectively. Then a)  $S_1 + S_2 + \dots + S_n = \frac{n(n+3)}{2}$ b)  $S_1.S_2 - - - S_n = \lfloor n + 1 \rfloor$ 

AP,GP,HP, Sequences

**Mathematics** 

c) 
$$\frac{1}{S_1S_2} + \frac{1}{S_2S_3} + \dots + \frac{1}{S_{n-1}S_n} = \frac{n-1}{2(n+1)}$$
 d)  $S_1^2 \cdot S_2^3 \cdot S_3^4 - \dots - S_n^{n+1} = 1024/3$ 

Key. A,B,C

Sol. 
$$S_r = r + r\left(\frac{1}{r+1}\right) + r\left(\frac{1}{r+1}\right) + \dots = \frac{r}{1 - \frac{1}{r+1}} = r+1$$
 verify a, b, c an correct and d is

false.

| 19.  | If $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{c} + \frac{y}{d} = 1$ | intersect the axes at four conc | yclic points and $a^2 + c^2 = b^2 + d^2$ |
|------|------------------------------------------------------------------------|---------------------------------|------------------------------------------|
|      | then these lines can interse                                           | ct at (a, b, c, d > 0)          |                                          |
|      | (A) (1, 1)                                                             | (B) (1 <i>,</i> -1)             |                                          |
|      | (C (2, -2)                                                             | (D) (3, 3)                      |                                          |
| Key. | A,B,C,D                                                                |                                 |                                          |
| Sol. | a + c = 2b                                                             |                                 | $\mathcal{O}\mathcal{A}$                 |
|      | a + b > c                                                              |                                 | C.X                                      |
|      | b + c > a                                                              |                                 |                                          |
|      | a + b > c                                                              |                                 |                                          |
|      | 3b > 2c                                                                |                                 |                                          |
|      | b + c > a                                                              |                                 |                                          |
|      | 2c > b                                                                 |                                 |                                          |
|      | $\Rightarrow \frac{2}{3} < \frac{b}{c} < 2$                            |                                 |                                          |
|      |                                                                        |                                 |                                          |
|      | Similarly for $\frac{b}{a}$                                            |                                 |                                          |
|      | a                                                                      |                                 |                                          |
|      |                                                                        |                                 |                                          |

20. Three numbers in A.P. with common difference 'd' are removed from first n natural numbers and average of remaining number is found to be  $\frac{43}{4}$  then ordered pair (n, d) can be

| (A) (19, 5)<br>(C) (23, 5) | (B) (19, 2)<br>(D) (19, 8) |
|----------------------------|----------------------------|
| A,B                        |                            |

Key.

C

SOL. LET REMOVED NUMBERS ARE A – D, A, A + D SUM OF REMOVED NUMBERS = 3A

$$\Rightarrow 6 \le 3A \le 3N - 3$$
  

$$\Rightarrow 2A \le A \le N - 1$$
 .....(I)  
ALSO  $3a = \frac{n(n+1)}{2} - \frac{43}{4}(n-3)$   
 $a = \frac{2n^2 - 41n + 129}{12}$  .....(II)  
FROM (I) AND (II)  
 $17.5 \le N \le 23.5 N \in N$   
 $N = 18, 19, 20, 21, 22, 23$   
FOR  $A \in N, N$  MUST BE ODD  
 $\Rightarrow N$  MAY BE 19, 21, 23  
WHEN  $N = 19, A = 6, D$  CAN BE 2 OR 5  
WHEN  $N = 21$   $A \notin N$  NOT POSSIBLE  
when  $n = 23$   $a \notin N$  not possible.

# AP,GP,HP, Sequences

Assertion Reasoning Type

1. Statement 1 : 1,2,4,8,..... is a G.P., 4,8,16,32 is a G.P. and 1+4,2+8,4+16,8+32,..... is also a G.P.

Statement 2 : Let general term of a G.P. with common ratio r be  $T_{k+1}$  and general term of another

G.P. with common ratio r be  $T'_{k+1}$  then the series whose general term  $T''_{k+1} = T_{k+1} + T'_{k+1}$  is also a G.P. with common ratio r.

Key. A

2. Let  $S_k$  where  $k \in N$  denotes sum of first 'K ' terms of A.P. If the sum of first '3n' terms of it is twice the sum of next ' n ' terms then Statement I : The ratio of sum of first '2n' terms and the sum of next '2n' terms is 7 : 11 Statement II :  $S_n$ ,  $S_{2n}$ ,  $S_{3n}$  are in A.P.

KEY : C

- HINT:  $S_{3n} = 2(S_{4n} S_{3n}) \Longrightarrow 3S_{3n} = 2S_{4n}$
- 3. STATEMENT- 1 If a, b, c,  $d \in \mathbb{R}^+$  and  $(a + b + c + d + 3)^5 = 9375$  abcd, then a + b + c + d = 12STATEMENT 2 If for +ve real numbers A.M. = G.M., then number are equal.

Key:

А

4. <u>Statement 1:</u> One side of an equilateral triangle 24. The mid points of the sides are joined to form another triangle whose midpoints are in tern joined to form another triangle and continue the process infinite number times. Then sum of perimeters of all such triangles formed is 144.

<u>Statement</u>: If  $\log_2(a+b) + \log_2(c+d) \ge 4$  then the minimum value of a+b+c+d is 8

Key. B  
Sol. I) Sum of perimeters = 
$$3(24+12+6+---)=144$$
  
II)  $\log_2(a+b)(c+d) \ge 4$   
 $\Rightarrow (a+b)(c+d) \ge 2^4$   
 $\therefore \frac{a+b+c+d}{4} \ge \sqrt[4]{(a+b)(c+d)} \Rightarrow a+b+c+d \ge 8$   
5. STATEMENT 1. : If p, q, r > 0 and (p + q) (p + r) (r + q) = 8p<sup>3</sup> then there must be p = q = r. because

STATEMENT 2.: If a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub> ..... a<sub>n</sub> > 0 then  $\frac{a_1 + a_2 + \dots + a_n}{n} \ge (a_1 a_2 a_3 \dots + a_n)^{1/n}$ .

Key. A

Sol. If p = q = r and p, q, r > 0then their A.M.  $\ge$  G.M.

$$\frac{p+q}{2} = pq$$
$$\frac{q+p}{2} = qr$$
$$\frac{r+p}{2} = pr$$

 $\Rightarrow$  (p + q) (q + r) (r + p) = 8pqr = 8p<sup>3</sup>.

6. Let 3 a<sub>1</sub>,b<sub>2</sub>,c<sub>3</sub>...a<sub>10</sub> 6 be in AP and 3, h<sub>1</sub>,h<sub>2</sub>,h<sub>3</sub>...h<sub>10</sub>,6 be in HP then Statement I:  $a_2 h_9 + a_4 h_7 + a_6 h_5 + a_8 h_3 = 72$ . Statement II: product of the ith AM from left and ith HM from left of n AMS and n HMS inserted between two given numbers is independent of i

Key.

С Sol. Conceptual

Α

STATEMENT-1: a, b, c are sides of  $\triangle ABC$  such that bc =  $\lambda^2$  for some positive  $\lambda$ . Then 7.  $a > \lambda \sin^{A}$ 

$$1 \ge \lambda \sin \frac{1}{2}$$

 $\frac{b+c}{2} \ge \sqrt{bc} = \lambda$ 

STATEMENT-2: A.M. of two given positive quantities  $\geq$  G.M

Key.

Sol.

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = \frac{b+c}{\sin B + \sin C} \ge \frac{2\lambda}{2\cos\frac{A}{2}\cos\frac{B}{2}}$$

 $a \ge 2\lambda \sin \frac{A}{2}$ 

Suppose four distinct positive numbers  $a_1$ ,  $a_2$ ,  $a_3$ ,  $a_4$  are in G.P. Let  $b_1 = a_1$ ,  $b_2 = b_1 + a_2$ , 8.  $b_3 = b_2 + a_3$  and  $b_4 = b_3 + a_4$ . STATEMENT-1: The numbers  $b_1$ ,  $b_2$ ,  $b_3$ ,  $b_4$  are neither in AP nor in GP and

because

STATEMENT-2: The numbers  $b_1$ ,  $b_2$ ,  $b_3$ ,  $b_4$  are in H.P.

Key.

С

Sol. Here 
$$b_1 = a_1, b_2 = a_1 + a_2 = a_1(1 + r), b_3 = a_1(1 + r) + a_1r^2 = a_1(1 + r + r^2)$$
  
 $b_4 = a_1(1 + r + r^2) + ar^3 = a_1(1 + r + r^2 + r^3),$ 

r being the common ratio of the G.P.

Clearly,  $b_1$ ,  $b_2$ ,  $b_3$ ,  $b_4$  are neither in AP nor in GP nor in HP.

STATEMENT-1 is true but STATEMENT-2 is false.

9. STATEMENT – 1 For 
$$n \in N, 2^n > 1 + n\sqrt{2^{n-1}}$$
,  $n \neq 1$ 

STATEMENT - 2 For two distinct positive real numbers, GM > HM and (AM)(HM) = $(GM)^2$ 

Key. B Sol.  $Q \frac{(AM)}{(GM)} = \frac{GM}{HM} > 1$ AM > GM

$$\frac{1+2+2^{2}+\ldots+2^{n-1}}{n} > \left(1.2.2^{2}\ldots.2^{n-1}\right)^{1/n}$$
$$\Rightarrow \frac{1\cdot\left(2^{n}-1\right)}{(2-1)} > \left\{2^{1+2+3+\ldots+(n-1)}\right\}^{1/n}$$

10. Statement – 1: If a,b,c are non zero real numbers such that  $3(a^2 + b^2 + c^2 + 1) = 2(a + b + c + ab + bc + ca)$ , then a,b,c are in A.P. as well as in G.P.

Statement – 2: A series is in A.P. as well as in G.P. if all the terms in the series are equal and non zero. A

Sol.

$$3(a^{2} + b^{2} + c^{2} + 1) - 2(a + b + c + ab + bc + ca) = 0$$
  

$$\Rightarrow (a-1)^{2} + (b-1)^{2} + (c-1)^{2} + (a-b)^{2} + (b-c)^{2} + (c-a)^{2} = 0$$
  

$$\Rightarrow a = b = c = 1$$

11. Statement – 1: Equations  $x^2 - 4x + 1 = 0$  and  $x^2 - ax + b = 0$ , where a,b are rational numbers, have atleast one common root, then a = 4 and b = 1Statement – 2; If two equations  $ax^2 + bx + c = 0$  and  $a_1x^2 + b_1x + c_1 = 0$ , where a,b,c,  $a_1, b_1, c_1$ 

are non-zero rational numbers, have common irrational root, then  $\frac{a}{a_1} = \frac{b}{b_1} = \frac{c}{c_1}$ 

Key. A

- Sol. Obviously both the statements are true and statement -2 explains statement -1.
- 12. Statement 1: 1,2,4,8,.... is a G.P., 4, 8, 16, 32 is a G.P. and 1 + 4, 2 + 8, 4 + 16, 8 + 32,... is also a G.P. Statement – 2: Let general term of a G.P. with common ratio r be  $T_{k+1}$  and general term of another G.P. with common ratio r be  $T'_{k+1}$ , then the series whose general term  $T'_{k+1} = T_{k+1} + T'_{k+1}$  is also a G.P. with common ratio r.

С

13. Statement – 1: If one A.M. 'A' and two G.M.'s p and q be inserted between any two numbers, then  $p^3 + q^3 = 2Apq$ 

Statement – 2: If x,y,z are in G.P., then  $y^2 = xz$ 

Key. B

Sol. Statement – 1  

$$a,A, b are in A.P. \Rightarrow 2A = a + b$$
 ...(i)  
 $a,p,q,b are in G.P. \Rightarrow pq = ab$  ...(ii)  
and let common ratio of G.P. be r

$$\therefore \qquad \mathbf{b} = \mathbf{ar}^3 \qquad \Rightarrow \qquad \mathbf{r} = \left(\frac{\mathbf{b}}{\mathbf{a}}\right)^3$$
$$\mathbf{p} = \mathbf{ar} \qquad \Rightarrow \qquad \mathbf{p} = \mathbf{a} \cdot \left(\frac{\mathbf{b}}{\mathbf{a}}\right)^{\frac{1}{3}} \qquad \Rightarrow \qquad \mathbf{p}^3 = \mathbf{a}^2 \mathbf{b} \qquad \dots (\mathbf{iii})$$

$$q = ar^2$$
  $\Rightarrow$   $q = a\left(\frac{b}{a}\right)^{\overline{3}}$   $\Rightarrow$   $q^3 = ab^2$  ...(iv)

From (i), (ii), (iii) & (iv)

 $p^{3} + q^{2} = 2A pq$ Statement – 2 is obviously true

MARIACHIERSLEARMINGPUT.E

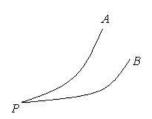
## AP,GP,HP, Sequences Comprehension Type

Paragraph – 1

If  $x_1, x_2, x_3, \dots, x_n$  are n positive real numbers, then A.M.  $\ge$  G.M.

$$\frac{\mathbf{x}_{1} + \mathbf{x}_{2} + \dots + \mathbf{x}_{n}}{n} \ge \sqrt[n]{\mathbf{x}_{1}\mathbf{x}_{2} \dots + \mathbf{x}_{n}}$$

1. The minimum value of the function  $4^{\sin^{-1}x} + 4^{\cos^{-1}x}$  (-1  $\le$  x  $\le$  1) and the value of x, where it is attained is.


(A) 
$$2.2^{\frac{\pi}{2}}$$
 at  $x = \frac{1}{2}$   
(B)  $2.2^{\frac{\pi}{4}}$  at  $x = \frac{1}{\sqrt{2}}$   
(C)  $2.2^{\frac{\pi}{2}}$  at  $x = \frac{1}{\sqrt{2}}$   
(D)  $1 + 4^{\frac{\pi}{2}}$  at  $x = 0$   
Key. C  
2. Which of the following inequalities is not true  
(A)  $\frac{x^2 + 3}{\sqrt{x^2 + 2}} \ge 2$  ( $x \in \mathbb{R}$ )  
(B)  $x^2 + y^2 + 1 \ge xy + x + y$  ( $x, y \in \mathbb{R}$ )  
(C)  $\frac{x^3 + x + 2}{x} \ge 4$  ( $x > 0$ )  
(D)  $x^2 + \frac{1}{x^2} + 4 \le 3 \left| x + \frac{1}{x} \right|$  ( $x \ne 0$ )  
Key. D  
3. If the equation  $x^4 - 4x^3 + ax^2 - bx + 1 = 0$  has four positive roots, then  $a + b$  is equal to  
(A) 0  
(C) 6  
(D) 10  
Sol. 1.  $4^{\sin^{-1}x} + 4^{\cos^{-1}x} \ge 2\sqrt{4^{\sin^{-1}x + \cos^{-1}x}} = 2.2^{\frac{\pi}{2}}$   
equality holds if and only if  $4^{\sin^{-1}x} = 4^{\cos^{-1}x}$   
i.e.  $x = \frac{1}{\sqrt{2}}$   
2. options a, b, c are correct only d option is not correct  
i.e.  $x^2 + \frac{1}{x^2} + 4 - 3 \left| x + \frac{1}{x} \right| = u^2 - 3u + 2 = (u - 1)(u - 2) \ge 0$   
where  $u = \left| x + \frac{1}{x} \right|$ , Then  $u \ge 2$   
3. If  $x_1, x_2, x_3, x_4$  are denote the roots of the given equation  $\sum x_1 = 4, x_1 x_2 x_3 x_4 = 1$   
 $\Rightarrow \frac{\sum x_1}{4} = \sqrt[4]{x_1 x_2 x_3 x_4}$   
hence  $x_1 = x_2 = x_3 = x_4 = 1$   
 $\Rightarrow \frac{x^4 - 4x^3 + ax^2 - bx + 1 = (x - 1)^4 = x^4 - 4x^3 + 6x^2 - 4x + 1$   
Thus  $a = 6, b = 4$ .

Then a + b = 10.

Paragraph – 2 Sometimes we can find the sum of series by use of differentiation. If we know e.g. if  $f(x) = f_1(x) + f_2(x) + \dots$ the sum of a series  $f'(x) = f_1'(x) + f_2'(x) + \dots$  $(1 - x)^{-1} = 1 + x + x^2 + x^3$  ..... e.g. X < 1 Hence the sum of the AGP  $1 + 2x + 3x^2 + \dots = (1 - x)^{-2}$ (By differentiation both the sides) Now answer the question that follows The sum of the series  $\frac{2^2}{1!} + \frac{3^2}{2!} + \frac{4^2}{3!} + \dots$  upto  $\infty$  is 4. (C) 5e – 1 (D) 4e (B) 5e (A) 4e - 1Key. С Sum of the series  $1 - \frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \dots$  upto  $\infty$  is 5. (A)  $\frac{1}{2} - \Box n2$  (B)  $1 - \Box n2$ (D)  $\frac{3}{2} - \Box n2$ (C) ∞ Key. Sum of the series  $1 + 1 + \frac{3}{4} + \frac{4}{8} + \frac{4}{8}$ ..... upto infinite terms, is 6. (D)  $\frac{1}{4}$ (A) 4 (B) 2 (C) 1 Key. Sol. 4.  $t_n =$ = e + 3e + e – 1 = 5e – 1 5. = 1 -+ ..... differentiating both sides with respect to x - □ n 2 = - + - + ..... = 1 - + - + ..... put x = 1, - □n 2 = 1 – We know that ,  $1 + 2x + 3x^2 + \dots = (1 - x)^{-2}$ put x =, we get 1 + 1 + + + + ..... = = 4

### Paragraph – 3

In the adjoining figure, we find two curves PA and PB through P. Clearly in the neighbourhood of P the curve PA is bending more rapidly than the curve PB. In other words curvature of PA is greater than that of PB. If PA and PB are regarded roughly as arcs of circles then clearly radius of PA is less than the radius of PB.



Let P be any point on a given curve and Q any other point on it. Let the normals at P and Q intersect in 'N'. If 'N' tends to a definite position C as Q tends to P (from the right or from the left) then 'C' is called the centre of curvature of curve at P and distance CP is called the radius of curvature of P and is denoted by Greek letter  $\rho$ .

The reciprocal of the distance CP is called the curvature of the curve at P. The circle with its centre at C and radius CP is called the circle of curvature of the curve at P. Radius of curvature can be evaluated with the help of following formula;

0

x

$$\rho = \frac{\left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^{3/2}}{\frac{d^2y}{dx^2}}$$

The formula does not hold good when the tangent at P is parallel to y - axis. Since the value of radius of curvature depends only on the curve and not on the axes. Therefore in such cases we interchange the axes of 'x' and 'y' and we have

$$\rho = \frac{\left\{1 + \left(\frac{dx}{dy}\right)^2\right\}^{3/2}}{\frac{d^2x}{dy^2}}$$

7. Numerically radius of curvature of parabola  $y^2 = 4ax$  at any point (x, y) is

A) 
$$\frac{2(x+a)^{3/2}}{\sqrt{a}}$$
 B)  $\frac{2(y+a)^{3/2}}{\sqrt{a}}$  C)  $\frac{(x+a)^{3/2}}{\sqrt{a}}$  D)  $\frac{(x+a)^2}{a^{3/2}}$ 

Key. A Sol. Conceptual

8. Radius of curvature at any point of the curve  $x = a(t + \sin t)$ ;  $y = a(1 - \cos t)$  is given by

A) 
$$a\cos\frac{t}{2}$$
 B)  $4a\cos\frac{t}{2}$  C)  $4a\cos t$  D)  $5a\cos t$ 

Key. B

Sol. Conceptual

9.

Radius of curvature of ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  in terms of l, where l is the

perpendicular distance from the centre upon the tangent at (x, y) is

A) 
$$\frac{a^2 b^2}{l^3}$$
 B)  $\frac{a^2 b}{l^2}$  C)  $\frac{a^2 b^2}{l^2}$  D)  $\frac{a^3 b^3}{l^3}$ 

Key. A

Sol. Conceptual

#### Paragraph – 4

If a sequence or series is not a direct form of an AP, GP, etc. Then its nth term can not be determined. In such cases, we use the following steps to find the nth term  $(T_n)$  of the given sequence.

Step – I : Find the differences between the successive terms of the given sequence. If these differences are in AP, then take  $T_n = an^2 + bn + c$ , where a,b,c are constants.

Step – II : If the successive differences found in step I are in GP with common ratio r, then take  $T_n = a + bn + cr^{n-1}$ , where a, b, c are constants.

Step – III : If the second successive differences (Differences of the differences) in step I are in AP, then take  $T_n = an^3 + bn^2 + cn + d$ , where a, b, c, d are constants.

Step – IV : If the second successive differences (Differences of the differences) in step I are in GP, then take  $T_n = an^2 + bn + c + dr^{n-1}$ , where a, b, c, d are constants.

Now let sequences :

A : 1, 6, 18, 40, 75, 126, .... B : 1, 1, 6, 26, 91, 291, .... C : ln 2 ln 4, ln 32, ln 1024 .....

10. If the nth term of the sequence A is  $T_n = an^3 + bn^2 + cn + d$  then the value 6a + 2b - d is (A) ln 2 (B) 2 (C) ln 8 (D) 4 Key. D Sol.  $T_n = an^3 + bn^2 + cn + d$  $T_1 = a + b + c + d = 1$ 

$$T_2 = 8a + 4b + 2c + d = 6a + 2b - d = 4$$

11. For the sequence 1, 1, 6, 26, 91, 291, ...... Find the  $S_{50}$  where  $S_{50} = \sum_{r=1}^{50} T_r$ 

6

(A) 
$$\frac{5}{8} (3^{50} - 1) - 3075$$
 (B)  $\frac{5}{8} (3^{50} - 1) - 5075$ 

(c) 
$$\frac{5}{8}(3^{50}-1)-1275$$
 (D) None of these  
Key. A  
Sol.  $T_n = \frac{5}{4}3^{n-1} - \frac{5n}{2} + \frac{9}{4}$   
 $S_{50} = \frac{5}{4}(1+3+...+3^{49}) - \frac{5}{2}(1+2+...+50)+50.\frac{9}{4}$   
 $= \frac{5}{4}(\frac{3^{50}-1}{2}) - \frac{5}{2} \cdot \frac{50.51}{2} + \frac{450}{4}$   
 $= \frac{5}{8}(3^{50}-1) - \frac{125.51}{2} + \frac{450}{4}$   
 $= \frac{5}{8}(3^{50}-1) - 3075$   
12. The sum of the series  $1.n+2.(n-1)+3.(n-2)+....+n.1$   
(A)  $\frac{n(n+1)(n+2)}{6}$  (B)  $\frac{n(n+1)(n+2)}{3}$   
(C)  $\frac{n(n+1)(2n+1)}{6}$  (D)  $\frac{n(n+1)(2n+1)}{3}$   
Key. A  
Sol.  $\sum_{r=1}^{n}r(n-r+1) = \sum_{r=1}^{n}(n+1)r - \sum_{r=1}^{n}r^{2}$   
 $= (n+1)\sum n - \sum n^{2}$   
 $= \frac{(n+1)^{2}n}{2} - \frac{n(n+1)(2n+1)}{6}$   
 $= \frac{n(n+1)}{6}(3n+3-2n-1) = \frac{n(n+1)(n+2)}{6}$ 

1

**Paragraph** – 5 In a sequence of (4n+1) terms the 1<sup>st</sup> (2n+1) terms are in A.P. whose common difference is 2 and the last (2n+1) terms are in G.P. whose common ratio is  $\frac{1}{2}$ . If the middle terms of the A.P. and G.P. are equal, then

Middle term of the sequence is 13.

A) 
$$\frac{n \cdot 2^{n+1}}{2^n - 1}$$
 B)  $\frac{n \cdot 2^{n+1}}{2^{2n} - 1}$  C)  $n \cdot 2^n$  D)  $(n+1) \cdot 2^{n+1}$ 

14. First term of the sequence is

A) 
$$\frac{4n+2n \ 2^n}{2^n-1}$$
 B)  $\frac{4n-2n \ 2^n}{2^n-1}$  C)  $\frac{2n-n \ 2^n}{2^n-1}$  D)  $\frac{2n+n \ 2^n}{2^n-1}$ 

15. Middle term of the G.P. is

A) 
$$\frac{2^n}{2^n - 1}$$
 B)  $\frac{n2^n}{2^n - 1}$  C)  $\frac{n}{2^n - 1}$  D)  $\frac{2n}{2^n - 1}$ 

Key : 13-A, 14-B, 15-D Sol: 13 – 15

> 1<sup>st</sup> (2*n*+1) terms of A.P. are *A*, *A*+2, ...., *A*+4*n*. Last (2*n*+1) terms of G.P. are (*A*+4*n*), (*A*+4*n*) $\frac{1}{2}$ , ....., (*A*+4*n*) $\frac{1}{2^{2n}}$ =  $A + 2n = \frac{A + 4n}{2^n} \Rightarrow A = \frac{4n - 2n 2^n}{2^n - 1}$ Middle term of sequence =  $T_{2n+1} = A + 4n = \frac{n2^{n+1}}{2^n - 1}$ Middle term of G.P. =  $T_{n+1} = \frac{2n 2^{n}}{2^n - 1} \times \frac{1}{2^2} = \frac{2n}{2^n - 1}$

## Paragraph – 6

Let  $A_1, A_2, A_3, ..., A_m$  be arithmetic means between – 2 and 1027 and  $G_1, G_2, G_3, ..., G_n$  be geometric means between 1 and 1024. Product of geometric means is  $2^{45}$  and sum of arithmetic means is  $1025 \times 171$ .

16. The value of n is  
A) 7 B) 9 C) 11 D) none of these  
Key. B  
Sol. 
$$G_1G_2...G_n = (\sqrt{1 \times 1024})^n = 2^{5n}$$
  
 $\therefore 2^{5n} = 2^{45}$   
 $\therefore n = 9$   
17. The value of m is  
A) 340 B) 342 C) 344 D) 346  
Key. B  
Sol.  $A_1 + A_2 + A_3 + ... + A_{m-1} + A_m = 1025 \times 171$   
 $\therefore m(\frac{-2 + 1027}{2}) = 1025 \times 171$   
 $\therefore m(\frac{-2 + 1027}{2}) = 1025 \times 171$   
The value of  $G_1 + G_2 + G_3 + ...G_n$  is  
A) 1022 B) 2044 C) 512 D) none of these  
Key. A  
Sol. Since  $n = 9, \therefore = (1024)^{\frac{1}{9+1}} = 2$   
 $\therefore G_1 = 2, r = 2$   
 $G_1 + G_2 + ... + G_n = \frac{2.(2^9 - 1)}{2 - 1} = 1024 - 2 = 1022$   
19. The common difference of the progression  $A_1, A_3, A_5, ..., A_{m-1}$  is  
A) 6 B) 3 C) 2 D) 1

| macht       | entatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                | 111 ,01 ,111 , Dequette            |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------|------------------------------------|
| Key.        | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                                |                                    |
| Sol.        | Common difference of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f sequence $A_1, A_2, \dots, A$            | m is $\frac{1027+2}{342+1} = 3$                |                                    |
|             | ∴ common diffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rence of sequence $A_1, A_2$               | $A_3, A_5,, A_{m-1}$ is 6                      |                                    |
| 20.         | The numbers 2A <sub>171</sub> ,G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                                                |                                    |
|             | A) A.P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B) G.P.                                    | C) H.P.                                        | D) A.G.P.                          |
| Key.        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                          | ,                                              |                                    |
| Sol.        | we have $A_{171} + A_{172} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |                                                |                                    |
|             | $\therefore \qquad \frac{2A_{171} + 2A_{172}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -=1025                                     |                                                | $\sim$                             |
|             | Also $G_5 = 1 \times 2^5 = 32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |                                                |                                    |
|             | $\therefore$ $G_5^2 = 1024$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i.e. $G_5^2 + 1 = 1025$                    |                                                | <                                  |
|             | $\therefore$ $2a_{171}G_5^2 + 1, 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $A_{172}$ are in A.P.                      | 0                                              |                                    |
| Darag       | rank 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            | c.X                                            |                                    |
| r arag      | raph – 7<br>There are two sets A :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and B each of which co                     | nsists of three numbers in                     | h A P whose sum is 15              |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |                                                |                                    |
| and w       | nere D and d are the co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mmon differences such                      | that D – d = 1. If $\frac{p}{q} = \frac{7}{8}$ | where p and q are the              |
| -           | et of the numbers respec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tively and $d > 0$ , in the                | two sets                                       |                                    |
| 21.         | Value of p is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |                                                | D) 110                             |
| Vari        | A) 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B) 120                                     | C) 105                                         | D) 110                             |
| Key.<br>22. | C<br>Value of q is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |                                                |                                    |
| 22.         | A) 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B) 120                                     | C) 105                                         | D) 110                             |
| Key.        | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | -,                                             | , -                                |
| 23.         | Value of D + d is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                                |                                    |
|             | A) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>B</b> ) 2                               | C) 3                                           | D) 4                               |
| Key.        | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                                |                                    |
| Sol.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            | D and in set B be $b - d$ ,                    | $\mathbf{b},\mathbf{b}+\mathbf{d}$ |
|             | $3a = 3b = 15 \implies a$<br>Set A = {5 - D, 5, 5 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                                                |                                    |
|             | Set $A = \{5 - D, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5 + Set B = \{5 - d, 5, 5$ |                                            |                                                |                                    |
|             | Where $D = d + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | u j                                        |                                                |                                    |
| 6           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(25 - D^2) = 7$                           |                                                |                                    |
|             | $\frac{p}{q} = \frac{3}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{(25-D^2)}{5(25-d^2)} = \frac{7}{8}$ |                                                |                                    |
|             | $25(8-7) = 8 (d+1)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-7d^2$                                    |                                                |                                    |
|             | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | but $d > 0 \implies d = 1$                 |                                                |                                    |
|             | So numbers in Set A a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                                                |                                    |
|             | Number in Set B are 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                                                |                                    |
|             | Now $p = 3 \times 5 \times 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |                                                |                                    |
|             | $q = 4 \times 5 \times 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 120                                      |                                                |                                    |
|             | value of $D + d = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                                |                                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |                                                |                                    |

| Parag      | raph – 8                                                                                                    |                    |                                |
|------------|-------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------|
|            | Four different integers form an increasing A                                                                | .P. One of these   | numbers is equal to the sum of |
| <b>.</b> . | the squares of the other three numbers. Then                                                                |                    |                                |
| 24.        | The smallest number is                                                                                      |                    |                                |
| 17         | A) – 2 B) 0                                                                                                 | C) – 1             | D) 2                           |
| Key.       | C<br>The common difference of the four numbers :                                                            |                    |                                |
| 25.        | A) 2 B) 1                                                                                                   | C) 3               | D) 4                           |
| Key.       | B                                                                                                           | C) 3               | D) 4                           |
| 26.        | The sum of all the four numbers is                                                                          |                    |                                |
| 20.        | A) 10 B) 8                                                                                                  | C) 2               | D) 6                           |
| Key.       | C                                                                                                           | -) -               |                                |
| Sol.       | Let four integers be $a - d$ , $a$ , $a + d$ and $a + 2d$                                                   |                    |                                |
|            | Where a and d are integers and $d > 0$ .                                                                    |                    |                                |
|            | : $a+2d = (a-d)^2 + a^2 + (a+d)^2$                                                                          |                    |                                |
|            | $\Rightarrow \qquad 2d^2 - 2d + 3a^2 - a = 0$                                                               | (i)                |                                |
|            | $\therefore \qquad d = \frac{1}{2} \left[ 1 \pm \sqrt{1 + 2a - 6a^2} \right]$                               | (ii                |                                |
|            | Since d is positive integer                                                                                 |                    |                                |
|            | $\therefore \qquad 1+2a-6a^2>0$                                                                             | 0/2                |                                |
|            | $6a^2 - 2a - 1 < 0$                                                                                         |                    |                                |
|            | $\Rightarrow \qquad \frac{1-\sqrt{7}}{6} < a < \frac{1+\sqrt{7}}{6} \qquad \because \qquad a \text{ is } s$ | an integer         |                                |
|            | $\therefore$ a = 0 Put in (ii)                                                                              |                    |                                |
|            | $\therefore \qquad d = 1 \text{ or } 0 \text{ but} \qquad \therefore \qquad d > 0$                          | 0                  |                                |
|            | $\therefore$ d = 1                                                                                          |                    |                                |
|            | $\therefore$ The four numbers are : - 1, 0, 1, 2                                                            |                    |                                |
| Parag      | raph – 9                                                                                                    |                    |                                |
|            | Let $n \in N$ . The A.M, G.M, H.M respectively of                                                           | the ' $n$ ' number | $n+1, n+2, n+3, \dots,$        |
|            | $n+n$ are $A_n$ , $G_n$ , $H_n$                                                                             |                    |                                |
| 27.        | $Lt \stackrel{A_n}{=}$                                                                                      |                    |                                |
| 27.        | $\stackrel{Li}{n \to \infty} n$                                                                             |                    |                                |
|            | A) 1 B) $\frac{1}{2}$                                                                                       | C) $\frac{3}{2}$   | D) 2                           |
| Kov        | 2                                                                                                           | 2                  | 0, -                           |
| Key.       | G                                                                                                           |                    |                                |
| 28.        | $Lt_{n\to\infty}\frac{G_n}{n} =$                                                                            |                    |                                |
|            | A) $\frac{1}{e}$ B) $\frac{2}{e}$                                                                           | C) $\frac{3}{e}$   | D) $\frac{4}{e}$               |
|            | D                                                                                                           | C                  | c                              |
| 29.        | $\lim_{n \to \infty} \frac{H_n}{n} =$                                                                       |                    |                                |
|            |                                                                                                             |                    |                                |

8

AP,GP,HP, Sequences

|      | A) <u>1</u>                                   | в) log <sub>2</sub> <i>е</i>                                                                                                  | c) <u>2</u>                            | D) $\log_4 e$ |
|------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------|
| Key. | ~,<br>е<br>В                                  | $b_1 b_{22} c$                                                                                                                | e<br>e                                 | DJ 1054 C     |
| Sol. | (27 – 29)                                     |                                                                                                                               |                                        |               |
|      | $A_n = \frac{(n+1)}{2}$ $= \frac{3n+1}{2}$    | $\frac{1)(n+2) + \dots + (n+n)}{n} = \frac{n^2 + \frac{n^2}{n}}{n}$                                                           | $\frac{n(n+1)}{2} = n + \frac{n+1}{2}$ | <u>I</u>      |
|      |                                               | $[-1)(n+2)(n+3)(n+n)]^{\frac{1}{n}}$<br>$\frac{1}{n+1} + \frac{1}{n+2} + + \frac{1}{n+n}$                                     |                                        |               |
|      | n L                                           | L                                                                                                                             |                                        |               |
|      | n                                             | $\frac{3}{2} \text{ Let } L = \underset{n \to \infty}{Lt} \frac{G_n}{n}$                                                      |                                        | 01            |
|      | $\log_e L = \prod_n$                          | $Lt \prod_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \log\left(1 + \frac{r}{n}\right) = \int_{0}^{1} \log(1 + \frac{r}{n}) dr$ | x)dx                                   |               |
|      | $= [x \log(1)]$                               | $(+x)\Big]_{0}^{1} - \int_{0}^{1} \frac{(1+x)-1}{1+x} dx = \ln 2 - \frac{1}{2} \ln 2 dx$                                      | $[1 - \ln(1 + x)]_0^1$                 |               |
|      | $\lim_{n \to \infty} \frac{n}{H_n} =$         | $Lt_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \frac{1}{1 + \frac{r}{n}} = \int_{0}^{1} \frac{1}{1 + x} dx = 10$               |                                        |               |
|      | $\therefore  Lt_{n\to\infty} \frac{H_n}{n} =$ | $= \log_2 e$                                                                                                                  |                                        |               |
| Para | graph – 10                                    |                                                                                                                               |                                        |               |
|      | $\sum n = \frac{n(n+1)}{n}$                   | $\frac{(n+1)}{2}$                                                                                                             |                                        |               |
|      |                                               | $\frac{(n+1)(2n+1)}{6}, \sum n^3 = \left[\frac{n(n+1)(2n+1)}{2}, \sum n^3 \right]$                                            | $\left(\frac{1}{2}\right)^{2}$         |               |
| Ċ    | $\mathbf{n} \mathbf{n}_{n} = \mathbf{n}$      | (n+1), then<br>$= \left[n(n+1)\right] \frac{(n+2)}{3}$                                                                        |                                        |               |
|      | if $T_n = n(t)$                               | (n+1)(n+2), then                                                                                                              |                                        |               |
|      | $S_n = [n(n)]$                                | $(n+1)(n+2)]\frac{(n+3)}{4}.$                                                                                                 |                                        |               |
| Answ | er the followi                                | ng questions based upon above                                                                                                 | e passage :                            |               |

30. Sum of the series  $\frac{1^{3}}{1} + \frac{1^{3} + 2^{3}}{1 + 3} + \frac{1^{3} + 2^{3} + 3^{3}}{1 + 3 + 5} + \dots \text{ to } 16 \text{ terms is}$ (A) 346 (B) 446

|              |                                                                                                               | -                                        |                               |
|--------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------|
|              | (C) 546                                                                                                       | (D) 444                                  |                               |
| Key.         | B<br>4 7 10                                                                                                   |                                          |                               |
| 31.          | $1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots \text{to } \infty \text{ is}$                       |                                          |                               |
|              | (A) $\frac{16}{35}$                                                                                           | (B) <u>11</u>                            |                               |
|              |                                                                                                               | 8                                        |                               |
|              | (C) $\frac{35}{16}$                                                                                           | (B) $\frac{11}{8}$<br>(D) $\frac{7}{16}$ |                               |
| Key.         | C                                                                                                             | 10                                       |                               |
| 32.          | The sum of the series                                                                                         |                                          |                               |
|              | $\frac{1}{3 \times 7} + \frac{1}{7 \times 11} + \frac{1}{11 \times 15} + \dots \text{ to } \infty \text{ is}$ |                                          | $\langle \mathcal{O} \rangle$ |
|              | (A) $\frac{1}{3}$                                                                                             | (B) $\frac{1}{6}$                        |                               |
|              | (C) $\frac{1}{9}$                                                                                             |                                          |                               |
|              | (C) $\frac{1}{9}$                                                                                             | (D) $\frac{1}{12}$                       |                               |
| Key.<br>Sol. | D<br>20 Apr (b)                                                                                               |                                          |                               |
| 501.         | 30. Ans. (b) $\sum n^3$                                                                                       |                                          |                               |
|              | $T_{n} = \frac{\sum n^{3}}{\frac{n}{2} [2.1 + (n-1).2]}$                                                      | 0/11.                                    |                               |
|              | 2                                                                                                             |                                          |                               |
|              | $=\frac{1}{4} \cdot \frac{n^2 (n+1)^2}{n^2} = \frac{1}{4} (n^2 + 2n + 1)$                                     |                                          |                               |
|              | $S_n = \frac{1}{4} \left[ \sum n^2 + 2 \sum n + \sum 1 \right]$                                               |                                          |                               |
|              | $=\frac{1}{4}\left[\frac{n(n+1)(2n+1)}{6}+2.\frac{(n+1)n}{2}+n\right]$                                        |                                          |                               |
|              | Putting n = 16, we get                                                                                        |                                          |                               |
|              | $S_{16} = 446$                                                                                                |                                          |                               |
|              | 31. Ans. (c)                                                                                                  |                                          |                               |
|              | $S = 1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots \infty$                                         |                                          |                               |
|              | Then $\frac{1}{5}S = \frac{1}{5} + \frac{4}{5^2} + \frac{7}{5^3} + \dots$                                     |                                          |                               |
|              |                                                                                                               |                                          |                               |
| 5            | $\mathbf{S}\left(1-\frac{1}{5}\right) = 1+3\left[\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+\dots\infty\right]$  |                                          |                               |
|              | $\frac{4}{5}S = 1 + 3\left[\frac{1/5}{1-1/5}\right] = 1 + \frac{3}{4} = \frac{7}{4}$                          |                                          |                               |
|              | $\therefore S = \frac{35}{16}$                                                                                |                                          |                               |
|              | -                                                                                                             |                                          |                               |
|              | Note : Your many use the formula<br>ab dbr                                                                    |                                          |                               |
|              | i.e. $S_{\infty} = \frac{ab}{1-r} + \frac{dbr}{(1-r)^2}$                                                      |                                          |                               |
|              | where a = 1, d= 3, b = 1, r = 1/5                                                                             |                                          |                               |
|              |                                                                                                               |                                          |                               |

32. And. (d)  

$$S = \frac{1}{4} \left[ \left( \frac{1}{3} - \frac{1}{7} \right) + \left( \frac{1}{7} - \frac{1}{11} \right) + \left( \frac{1}{11} - \frac{1}{15} \right) + \dots \infty \right]$$

$$S_{\infty} = \frac{1}{4} \cdot \frac{1}{3} = \frac{1}{12}$$

MARIACHERSLEAMMONT

## AP,GP,HP, Sequences Integer Answer Type

1. The value of x.y.z = 55 or  $\frac{343}{55}$  according as the series a,x,y,z,b form an A.P or H.P respectively, where a and b are positive natural numbers. Find the sum a+b

 $\Rightarrow (ab)^3 = 7^3$ 

Sol. If a,x, y,z, b to are in A.P then the common difference d of the AP is given by  

$$b = a + 4d \Rightarrow d = \frac{b-a}{4}$$

$$\therefore x = a + d = \frac{a+b-a}{4} = \frac{b+3a}{4}$$

$$y = a + 2d = \frac{a+b-a}{2} = \frac{a+b}{2}$$

$$z = a + 3d = a + 3\left(\frac{b-a}{4}\right) = \frac{a+3b}{4}$$

$$\therefore xyz = \frac{b+3a}{4} \times \frac{a+b}{2} \times \frac{a+3b}{4}$$

$$\Rightarrow 55 = \frac{(3a+b)(a+b)(a+3b)}{32}$$

$$\Rightarrow (3a+b)(a+b)(a+3b) = 55 \times 32$$
When a,x,y,z,b are in H.P. Then  

$$\frac{1}{a}, \frac{1}{x}, \frac{1}{y}, \frac{1}{b}$$
 are in AP  
Let D be the common different of this A.P. Then  

$$\frac{1}{b} = \frac{1}{a} + 4D \Rightarrow D = \frac{a-b}{4ab}$$

$$\therefore \frac{1}{x} = \frac{1}{a} + 2D = \frac{1}{a} = \frac{a-b}{2ab} = \frac{3b+a}{4ab}$$

$$\frac{1}{y} = \frac{1}{a} + 2D = \frac{1}{a} = \frac{a-b}{2ab} = \frac{3a+b}{4ab}$$

$$\frac{1}{x}, \frac{1}{y}, \frac{1}{z} = \frac{(3a+b)(a+b)(3a+b)}{32a^3b^3}$$

$$\Rightarrow \frac{1}{xyz} = \frac{(3a+b)(a+b)(3a+b)}{32a^3b^3}$$

$$\Rightarrow \frac{1}{xyz} = \frac{(3a+b)(a+b)(3a+b)}{32a^3b^3}$$

 $\Rightarrow ab = 7$  $\Rightarrow a = a, b = 7, or a = 7, b = 1$ 

2. The largest positive term of the H.P whose 1<sup>st</sup> two terms are  $\frac{2}{5}$  and  $\frac{12}{23}$  is \_\_\_\_\_

Key. 6

Sol. First two terms of the corresponding A.P are  $\frac{5}{2}$  and  $\frac{23}{12}$ Let d be the common difference of the corresponding A.P , Then

$$d = \frac{23}{12} - \frac{5}{2} = \frac{-7}{12}$$

Let  $a_n$  be the nth term of the given H.P. Then ,

$$a_n = \frac{1}{\frac{5}{2} + (n-1)\left(\frac{-7}{12}\right)} = \frac{12}{30 - 7n + 7} = \frac{12}{37 - 7n}$$

Cleary,  $a_n$  will be greatest, if 37-7 n is least 37-7*n* is least for n=5 Hence,  $a_5 = \frac{12}{37-35} = 6$  is the largest positive term

3. If the sum of the n terms of the series  $1^3 + 3.2^2 + 3^3 + 3.4^2 + 5^3 + 3.6^2 + \dots$ , where n is an even number, is given by  $\frac{n}{k}(n^3 + an^2 + bn + c)$  then b - a + c - k

is

Key. 6

Sol. We have  

$$S = 1^{3} + 3.2^{2} + 3^{3} + 3.4^{2} + 5^{3} + 3.6^{2} + \dots$$

$$S = (1^{3} + 3^{3} + 5^{3} + \dots) + 3.(2^{2} + 4^{2} + 6^{2} + \dots)$$

$$S = (1^{3} + 3^{3} + 5^{3} + \dots) + 12(1^{2} + 2^{2} + 3^{2} + \dots)$$
Where  $S_{1} = 1^{3} + 3^{3} + 5^{3} + \dots$  and  $S_{2} = 1^{2} + 2^{2} + 3^{2} + \dots$ 
Now case arise  
When n is , say even , say n=2m  $m \in N$ 

In this case  $S_1$ , and  $S_2$  both contain m terms

$$\therefore S_1 = 1^3 + 3^3 + 5^3 + \dots + (2m-1)^3$$
$$\sum_{r=1}^{m} (2r-1)^3$$
$$\sum_{r=1}^{m} (8r^3 - 12r^2 + 6r - 1)$$

$$=8\sum_{r=1}^{m}r^{3}-12\sum_{r=1}^{m}r^{2}+6\sum_{r=1}^{m}r-\sum_{r=1}^{m}1$$

$$=8\left\{\frac{m(m+1)}{2}\right\}^{2}-12\left\{\frac{m(m+1)(2m+1)}{6}\right\}+\frac{6m(m+1)}{2}-m$$

$$=8\left\{\frac{n(n+2)}{8}\right\}^{2}-\frac{12}{6}\left\{\frac{n}{2}\left(\frac{n+2}{2}\right)+(n+1)\right\}+3\frac{n}{2}\left(\frac{n+2}{3}\right)-\frac{n}{2}$$

$$=\frac{n^{2}(n+2)^{2}}{8}-\frac{n(n+1)(n+2)}{2}+3\frac{n(n+2)}{4}-\frac{n}{2}$$

$$S_{2}=1^{2}+2^{2}+3^{2}+...+m^{2}$$

$$=\frac{m(m+1)(2m+1)}{6}$$

$$=\frac{n(n+2)(n+1)}{24}$$

$$\therefore S=S_{1}+12S_{2}$$

$$=\frac{n^{2}(n+2)^{2}}{8}-\frac{n(n+1)(n+2)}{2}+\frac{3}{4}n(n+2)-\frac{n}{2}+\frac{n(n+1)(n+2)}{2}$$

$$=\frac{n^{2}(n+2)^{2}}{8}+\frac{3}{4}n(n+2)-\frac{n}{2}$$

$$=\frac{n}{8}(n^{3}+4n^{2}+10n-)$$

Find the natural number 'a' for which  $\sum_{k=1}^{n} f(a+k) = 16(2^{n}-1)$  where  $f(x) = 2^{x}$ 4.

Key.

3

Sol. 
$$f(x) = 2^{x}$$
 for all  $x \in N$   
 $\therefore \sum_{k=1}^{n} f(a+k) = 16(2^{n}-1)$   
 $\Rightarrow \sum_{k=1}^{n} 2^{a+k} = 16(2^{n}-1)$   
 $\Rightarrow \sum_{k=1}^{n} 2^{a} \cdot 2^{k} = 16(2^{n}-1)$   
 $\Rightarrow 2^{a} \left(\sum_{k=1}^{n} 2^{k}\right) = 16(2^{n}-1)$   
 $\Rightarrow 2^{a} \left(2+2^{2}+\ldots+2^{n}\right) = 16(2^{n}-1)$   
 $\Rightarrow 2^{a} \left\{2\left(\frac{2^{n}-1}{2-1}\right)\right\} = 16(2^{n}-1)$   
 $\Rightarrow 2^{a+1}(2^{n}-1) = 16(2^{n}-1)$ 

$$\Rightarrow 2^{n+1} = 2^{4} \Rightarrow a+1 = 4 \Rightarrow a = 3$$
5. Let  $S = \sqrt{1 + \frac{1}{1^{2}} + \frac{1}{2^{2}}} + \sqrt{1 + \frac{1}{2^{2}} + \frac{1}{3^{2}}} + \dots + \sqrt{1 + \frac{1}{1999^{2}} + \frac{1}{2000^{2}}}$ , then find |2000(S-2000)|.  
ANS : 1  
HINT:  $t_{r} = \sqrt{\frac{1 + \frac{1}{r^{2}} + \frac{1}{(r+1)^{2}}}{r^{2}(r+1)^{2}}} = \sqrt{\frac{2r^{2} + (r+1)^{2} + r^{2}(r+1)^{2}}{r^{2}(r+1)^{2}}} = \sqrt{\frac{2r^{2} + 2r + 1 + r^{2}(r^{2} + 2r + 1)}{r^{2}(r+1)^{2}}} = \sqrt{\frac{2r^{2} + 2r + 1 + r^{2}(r^{2} + 2r + 1)}{r^{2}(r+1)^{2}}} = \sqrt{\frac{1}{r} + \frac{1}{r(r+1)}} = \frac{1}{r(r+1)} + 1 = \frac{1}{r(r+1)} + 1 = \frac{1}{r(r+1)} = \frac{1}{r(r+1)} + 1 = \frac{1}{r(r+1)} = \frac{1}{r(r+1)} + 1 = \frac{1}{r(r+1)} = \frac{1}{2000}, |2000(S - 2000)| = 1.$ 
6. A sequence is obtained by deleting all perfect squares from set of natural numbers. The remainder when the  $2003^{rd}$  term of new sequence is divided by 2048, is Key: 0 Hint: Since  $\left[\sqrt{2040}\right] = \left[\sqrt{2047}\right] = \left[\sqrt{2048}\right] = \left[\sqrt{2049}\right] = 45$   
 $\therefore 2003^{rd}$  term is 2003 + 45 = 2048 Hence remainder is 0   
7. If a and b are positive integers and a + 11b is divisible by 13 and a + 13b is divisible by 11. Then minimum value of a + b - 20 is Key. 8   
Sol.  $a + 11b = 131$ ,  $a + 12b = 111$ ,  $and proceed$ 
8. Three numbers, the third of which is 4 from a decreasing G.P. If the last term is replaced by 3, the set of the last term is replaced by 3, the set of the set of the last term is replaced by 3, the set of the last term is replaced by 3, the set of the last term is replaced by 3, the set of the last term is replaced by 3, the set of the last term is replaced by 3, the set of the last term is replaced by 3, the set of the last term is replaced by 3, the set of the last term is replaced by 3, the replaced by 4, the replaced by 3, the replace

the three numbers form an A.P, then the first number of the G.P. is

Key. Sol. 9 a, ar, ar<sup>2</sup>  $2ar = a + 3 \implies a = \frac{3}{2r - 1}$  **Mathematics**  $ar^2 = 4$ a = 9 Solve, r = 2/3, Find the greatest integer less than the number  $\left(\frac{2011}{2010}\right)^{2010}$ 9. Key. 2  $2 < \left(1 + \frac{1}{n}\right)^n < 3 \forall n \ge 2, n \in \mathbb{N}$ Sol. Find the natural number 'a' for which  $\sum_{k=1}^{n} f(a+k) = 16(2^{n}-1)$  where  $f(x) = 2^{x}$ 10. Key. 3  $f(x) = 2^x$  for all  $x \in N$ Sol. MCQ  $\therefore \sum_{k=1}^{n} f(a+k) = 16(2^n-1)$  $\Rightarrow \sum_{i=1}^{n} 2^{a+k} = 16(2^n - 1)$  $\Rightarrow \sum_{i=1}^{n} 2^{a} \cdot 2^{k} = 16(2^{n} - 1)$  $\Rightarrow 2^{a} \left( \sum_{i=1}^{n} 2^{k} \right) = 16 \left( 2^{n} - 1 \right)$  $\Rightarrow 2^a \left(2+2^2+\ldots+2^n\right) = 16 \left(2^n-1\right)$  $\Rightarrow 2^{a} \left\{ 2 \left( \frac{2^{n} - 1}{2 - 1} \right) \right\} = 16 \left( 2^{n} - 1 \right)$  $\Rightarrow 2^{a+1} (2^n - 1) = 16(2^n - 1)$  $\Rightarrow 2^{a+1} = 2^4$  $\Rightarrow a+1 = 4 \Rightarrow a = 3$ 

11. Given a, b, c are positive integers forming an increasing G.P., b - a is a prefect square of a natural number, and  $\log_6 a + \log_6 b + \log_6 c = 6$ . Find the value of a + b + c

Ans. 111  
Sol. a,b,c are in A.P.  
$$b^2 = ac$$
  
 $\log_6 a + \log_6 b + \log_6 c = 6$   
 $a \ b \ c = 6^6$   
 $b^3 = 6^6$   
 $b = 6^2 = 36$   
 $ac = 36 \times 36 = 2^4 \times 3^4$   
 $b - a = N^2$   
 $36 - a = N^2$ 

a is factor of  $2^43^4$ a = 27 is possible value  $36 - 27 = 9 = (3)^2$ a = 27, b = 36, c = 48 $\Rightarrow$ A + b + c = 111 Ans. 12. Find the sum to infinity of a decreasing G.P. with the common ratio x such that |x| < 1;  $x \neq 0$ . The ratio of the fourth term to the second term is  $\frac{1}{16}$  and the ratio of third term to the square of the second term is  $\frac{1}{9}$ . 12 Ans. Let the series be a, ax,  $ax^2, ax^3...$  given that |x| < 1 and  $x \neq 0$ Sol. Also,  $\frac{T_4}{T_2} = \frac{ax^3}{ax} = \frac{1}{16} \implies x^2 = \frac{1}{16}$  $\Rightarrow x = \pm \frac{1}{4}$ But since it is a decreasing G.P.  $\Rightarrow$ Also,  $\frac{T_3}{T_2^2} = \frac{ax^2}{(ax)^2} = \frac{1}{9} \implies \frac{1}{a} = \frac{1}{9} \implies$  $S_{\infty} = \frac{a}{1-r} = \frac{9}{1-\frac{1}{r}} = \frac{9 \times 4}{3} = 12$  Ans. If  $\sum_{\alpha=4}^{n+3} 4(\alpha-3) = An^2 + Bn + C$ , then find the value of A + B - C4  $\sum_{\alpha=4}^{n+3} 4(\alpha-3) = An^2 + Bn + C \implies \sum_{\alpha=1}^{n} 4\alpha = An^2 + Bn + C$   $\Rightarrow 2n(n+1) = An^2 + Bn + C \implies A = 2, B = 2, C = 0$   $\Rightarrow A + B + C = 4$  Ans. 13. Ans. Sol. If  $(1-P)(1+3x+9x^2+27x^3+81x^4+243x^5)=1-P^6$ ,  $P \neq 1$ , then find the value of  $\frac{P}{x}$ 14. Ans. Ans. 3 Sol.  $(1-P)(1+3x+9x^2+27x^3+81x^4+243x^5)=1-P^5$  $\Rightarrow \qquad (1-P)\frac{1-(3x)^6}{1-3x} = 1-P^6 \qquad \text{which is possible only. If } P = 3x$  $\therefore \qquad \frac{P}{n} = 3 \text{ ans.}$ If  $(1^2 - a) + (2^2 - a_2) + (3^2 - a_3) + ... + (n^2 - a_n) = \frac{1}{3}n(n^2 - 1)$ , then find the value of  $a_7$ . 15. Ans.  $(1^2 + 2^2 + ... + n^2) - (a_1 + a_2 + ... + a_n) = \frac{1}{3}n(n^2 - 1)$ Sol. ...(i)

Replacing n by (n - 1), then  $(1^{2}+2^{2}+...+(n-1)^{2})-(a_{1}+a_{2}+...+a_{n-1})=\frac{1}{2}(n-1)((n-1)^{2}-1)$ ...(ii) Subtracting (ii) from (i)  $n^2 - a_n = n^2 - n$  $a_n = n \Longrightarrow a_7 = 7$  Ans.  $\Rightarrow$ The sum of the terms of an infinitely decreasing GP is equal to the greatest value of the 16. function  $f(x) = x^3 + 3x - 9$  on the interval [-4, 3] and the difference between the first and second terms is f'(0). Then find the value of 27r where is common ratio. 18 Ans. Sol. f is increasing so its greatest value is f(3) = 27. Let the GP be a,ar,  $ar^2 \dots with, -|< r < |$  $\frac{a}{1-r} = 27$ a - ar = 3and but -1 < r < 1 so  $r = \frac{2}{3}$ 27r = 18 Ans.  $\Rightarrow$ Find the n<sup>th</sup> term and the sum of n terms of the series 2, 5, 12, 31, 86,..... 17.  $t_n = 3^{n-1} + n, S_n = \frac{3^n - 1 + n^2 + n}{2}$ Ans.  $S = 2 + 5 + 12 + 31 + 86 + \dots + t_n$   $S = 2 + 5 + 12 + 31 + \dots + t_{n-1} + t_n$ Sol.  $0 = 2 + 3 + 7 + 19 + 55 + \dots$  n terms  $-t_n$  $t_n = 2 + 3 + 7 + 19 + 55 + \dots + t_n$  $\begin{aligned} \mathbf{t}_{n} &= 2 + 3 + 7 + 19 + 55 + \dots + t_{n} \\ \mathbf{t}_{n} &= 2 + 3 + 7 + 19 + \dots + t'_{n-1} + t'_{n} \\ & \text{Subtract} \\ 0 &= 2 + 1 + 4 + 12 + 36 + \dots \text{ n terms } -t'_{n} \\ \mathbf{t}'_{n} &= 3 + [4 + 12 + 36 + \dots \text{ (n - 2) terms}] \\ \mathbf{t}'_{n} &= 3 + \frac{4(3^{n-2} - 1)}{3 - 1} \\ \mathbf{t}'_{n} &= 2 \cdot 3^{n-2} + 1, \ (n \geq 2) \end{aligned}$  $\Rightarrow$ Now  $t_n = \Sigma t'_n = 2\sum_{n=2}^n 3^{n-2} + \sum_{n=2}^n 1 + 2$  $t_n = 3^{n-1} + n$  $S_n = \Sigma t_n$ Now  $=\Sigma 3^{n-1} + \Sigma n$  $=\frac{3^{n}-1+n^{2}+n}{2}$ Ans.  $t_n = 3^{n-1} + n$ ,  $S_n = \frac{3^n - 1 + n^2 + n}{2}$ 

18. If  $S_n = 1.n + 2.(n-1) + 3.(n-2) + .... + n.1$  and  $S_{25} = 325\lambda$  then  $\lambda$  is

Kev. 9  $T_r = r(n-r+1)$ Sol.  $\mathbf{T}_{\mathbf{r}} = \mathbf{n}\mathbf{r} - \mathbf{r}^2 + \mathbf{r}$  $S_n = \sum_{r=1}^n T_r = n \sum_{r=1}^n r - \sum_{r=1}^n r^2 + \sum r = \frac{n \times n(n+1)}{2} - \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)(2n+1)}{2} - \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)(2n+1)}{2} - \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)(2n+1)}{2} - \frac{n(n+1)(2n+1)(2n+1)}{6} + \frac{n(n+1)(2n+1)(2n+1)}{2} - \frac{n(n+1)(2n+1)(2n+1)}{6} + \frac{n(n+1)(2n+1)(2n+1)(2n+1)}{2} - \frac{n(n+1)(2n+1)(2n+1)(2n+1)}{6} + \frac{n(n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)}{2} - \frac{n(n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)($ 2) SMARTING HERRICH  $=\frac{n(n+1)}{2}\left[n-\frac{(2n+1)}{3}+1\right]=\frac{n(n+1)}{2}\left[\frac{3n-2n-1+3}{3}\right]=\frac{n(n+1)(n+2)}{6}$ 

# AP,GP,HP, Sequences Matrix-Match Type

| 1.   | <u>Column-I</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>Column-II</u>        |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|      | A) If $p^{th}, q^{th}, r^{th}$ and $S^{th}$ terms of an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | p) are all equal        |
|      | A.P are in G.P then $p-q, q-r, r-s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |
|      | B) If lnx, lny,lnz (x,y,z>1) are in G.P then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | q) are in A.P           |
|      | $2x+\ln(\ln x), 3x+\ln(\ln y), 4x+\ln(\ln z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                |
|      | C) If $n!, 3 \times n!$ and $(n+1)!$ are in G.P then r) are in G.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
|      | $n!, 5 \times n!$ and $(n+1)!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\langle \cdot \rangle$ |
|      | D) If the arithmetic mean of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s) are in H.P           |
|      | $(b-c)^2, (c-a)^2$ and $(a-b)^2$ is same as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
|      | that of $(b+c-2a)^2$ , $(c+a-2b)^2$ , $(a+b-2c)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
|      | then a,b,c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| Key. | A-R;B-Q;C-Q;D-P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| Sol. | A) $A_p = a + (p-1)d$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|      | $A_q = a + (q-1)d$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
|      | $A_r = a + (r-1)d$ (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
|      | $A_s = a + (s - 1)d \dots (4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
|      | $A_q = kA_p$ $A_r = k^2 A_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |
|      | $A_r = k^3 A_p \left( \mathbf{Q} \ A_p, A_q, A_r, A_s \ in \ G.P \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|      | $A_{p} - A_{q} - A_{q$ |                         |
|      | $(p-q) = \frac{r}{d} = A_p \frac{d}{d}$ from (1) and (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |
| C    | $(p-q) = \frac{A_p - A_q}{d} = A_p \frac{(1-k)}{d} \text{ from (1) and (2)}$ $(q-r) = A_p K \frac{(1-k)}{d} \text{ from (2) and (3)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
|      | $(r-s) = A_p k^2 \frac{(1-k)}{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
|      | $\Rightarrow p-q, q-r, r-s$ are in A.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
| B)   | In x in y ln z are in G.P<br>$\Rightarrow \ln(\ln x), \ln(\ln y), \ln(\ln z)$ are in A.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |
|      | $\Rightarrow 2x + \ln(\ln x), 3x + \ln(\ln y), 4x + \ln(\ln z) \text{ are in A.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| C)   | $n!3 \times n!$ and $(n+1)!$ are in G.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |

| 11141714 | mutic                  | 5                                                         | , <u>, , , , , , , , , , , , , , , , , , </u> | , ocyac           | mees |
|----------|------------------------|-----------------------------------------------------------|-----------------------------------------------|-------------------|------|
|          | $\Rightarrow 9($       | $(n!)^2 = n!(n+1)!$                                       |                                               |                   |      |
|          | ```                    | $(+1) = 9 \Longrightarrow n = 8$                          |                                               |                   |      |
|          | $\therefore n! =$      | ,                                                         |                                               |                   |      |
|          |                        | =5×8!                                                     |                                               |                   |      |
|          | (n+1)                  | )!=9!                                                     |                                               |                   |      |
|          | 9!+8!                  | $=5 \times 9!$                                            |                                               |                   |      |
|          | $\Rightarrow n!,$      | $5 \times n1$ and $(n+1)!$ are in A.P                     |                                               |                   |      |
| D)       | (b-c)                  | $(b)^{2} + (a-b)^{2} + (c-a)^{2}$                         |                                               |                   |      |
| U)       |                        | 5                                                         |                                               | $\langle \rangle$ |      |
|          | $=\frac{(b-b)}{(b-b)}$ | $\frac{(-c-2a)^{2} + (c+a-2b)^{2} + (a+b-2c)^{2}}{3}$     |                                               |                   |      |
|          |                        | 5                                                         |                                               |                   |      |
|          | $\Rightarrow (b$       | $(+c-2a)^{2} - (b-c)^{2} + (c+a-2b)^{2} - (c-a^{2})$      | $\gamma/$ .                                   |                   |      |
|          | +(a +                  | $(b-2c)^2 - (a-b)^2 = 0$                                  | ~ ~                                           |                   |      |
|          | $\Rightarrow a =$      | = b = c                                                   |                                               |                   |      |
|          |                        |                                                           |                                               |                   |      |
| 2.       |                        | Column-I                                                  |                                               |                   |      |
| ۷.       |                        | Column-II                                                 |                                               |                   |      |
|          | (A)                    | The sequence a, b, 10, c, d is an arithmetic progression. |                                               | (P)               | 10   |
|          |                        | The value of a + b + c + d                                |                                               |                   |      |
|          |                        |                                                           |                                               |                   |      |
|          | (B)                    | The sides of right triangle form a three term geometric   |                                               | (Q)               | 20   |
|          |                        | sequence. The shortest side has length 2. The length      |                                               | (D)               | 26   |
|          |                        | of the hypotenuse is of the form where $a \in N$          |                                               | (R)               | 26   |
|          |                        | and is a surd, then $a^2 + b^2$ equals                    |                                               |                   |      |
|          | $(\mathbf{C})$         | The sum of first three consecutive numbers of an          |                                               | (5)               | 40   |
|          | (C)                    | infinite GP. is 70, if the two extremes be multipled      |                                               | (S)               | 40   |
|          |                        | each by 4, and the mean by 5, the products are in A.P.    |                                               |                   |      |
|          |                        | The first term of the G.P. is                             |                                               |                   |      |
|          | N                      |                                                           |                                               |                   |      |
| 6        | (D)                    | The diagonals of a parallelogram have a measure of        |                                               |                   |      |
|          |                        | 4 and 6 metres. They cut off forming an angle of 60°.     |                                               |                   |      |
|          |                        | If the perimeter of the parallelogram is                  |                                               |                   |      |
|          |                        | where a, $b \in N$ then (a + b) equals                    |                                               |                   |      |
|          |                        | 3) R; (C) S; (D) R]                                       |                                               |                   |      |
| [Hint:   | (A)                    | $b + c = a + d = 2 \cdot 10$                              |                                               |                   |      |
|          |                        | $\Rightarrow a+b+c+d=40$                                  |                                               |                   |      |
|          | (B)                    | $(ar^2)^2 = a^2 + a^2r^2$ where $a = 2$                   |                                               |                   |      |
|          |                        | $\therefore r^4 = 1 + r^2$                                |                                               |                   |      |
|          |                        | I – 1 + I                                                 |                                               |                   |      |

 $r^4 - r^2 - 1 = 0$  $r^{2} = t$ let  $t^2 - t - 1 = 0$ t = ⇒ (reject)  $r^{2} =$ hypotenuse is  $2 \times = 1 +$ *.*.. comparing with a = 1, b = 5 $a^2 + b^2 = 1 + 25 = 26$  Ans. ÷ a, ar, ar<sup>2</sup>  $\rightarrow$  G.P. (C) | r | < 1  $a + ar + ar^2 = 70$  $10ar = 4a + 4ar^2$ *.*.. 5  $10r = 4 + 4r^2$  $2r^2 - 5r + 2 = 0$  $2r^2 - 4r - r + 2 = 0$ (2r-1)(r-2) = 0r = 2 (reject) *.*.. or for r = 1/2a + + = 70 a + = 70 = 70  $\Rightarrow$ a = 40  $\Rightarrow$ series is 40, 20, 10 *.*.. first term of G.P. is 40 Ans. *.*.. Using cosine rule (D)  $a^2 = 9 + 4 - 2 \cdot 2 \cdot 3 \cdot = 13 + 6 = 19$ = 19 a =  $\Rightarrow$  $b^2 = 9 + 4 - 2 \cdot 2 \cdot 3 \cdot$  $\Rightarrow$ b = a + b = 26 Ans. ]

3. Match the following:-

\_\_\_\_

| Math                                                                                                                                                                                | ematics                                                                                                                                                                                          |                 | AP,GP,HP, Sequences                           |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------|--|--|--|
|                                                                                                                                                                                     | Column I                                                                                                                                                                                         |                 | Column II                                     |  |  |  |
| А                                                                                                                                                                                   | The largest positive term of the H.P., whose first two                                                                                                                                           | Р               | 2                                             |  |  |  |
|                                                                                                                                                                                     | terms are $\frac{2}{5}$ and $\frac{12}{23}$ is                                                                                                                                                   |                 |                                               |  |  |  |
|                                                                                                                                                                                     | 5 25                                                                                                                                                                                             |                 |                                               |  |  |  |
| В                                                                                                                                                                                   | If a, b, c are positive real number such that $a+b+c=1$ , then<br>(1+b)(1+b)(1+c)                                                                                                                | Q               | 4                                             |  |  |  |
|                                                                                                                                                                                     | minimum value of $\frac{(1+a)(1+b)(1+c)}{(1-a)(1-b)(1-c)}$ is                                                                                                                                    |                 |                                               |  |  |  |
|                                                                                                                                                                                     |                                                                                                                                                                                                  |                 |                                               |  |  |  |
| С                                                                                                                                                                                   | The integers which belongs to the range of $2^{2} + 2^{2} + 5^{2}$                                                                                                                               | R               | 6                                             |  |  |  |
|                                                                                                                                                                                     | $f(x) = \frac{2x^2 + 2x + 5}{x^2 + x + 1}$ can be                                                                                                                                                |                 |                                               |  |  |  |
| D                                                                                                                                                                                   |                                                                                                                                                                                                  | S               | 7                                             |  |  |  |
| D                                                                                                                                                                                   | The values of x for which $\left(\frac{1}{3}\right)^{\frac{ x+o }{1- x }} > 9$ can be                                                                                                            | 3               |                                               |  |  |  |
|                                                                                                                                                                                     | The values of x for which $\left(\frac{3}{3}\right)$ > 7 can be                                                                                                                                  |                 |                                               |  |  |  |
|                                                                                                                                                                                     |                                                                                                                                                                                                  | Т               | 8                                             |  |  |  |
| •                                                                                                                                                                                   | A-R; B-T;                                                                                                                                                                                        |                 |                                               |  |  |  |
|                                                                                                                                                                                     | C-Q, R; D-P, Q, R, S                                                                                                                                                                             |                 |                                               |  |  |  |
| Hint:                                                                                                                                                                               |                                                                                                                                                                                                  |                 |                                               |  |  |  |
| (a)I                                                                                                                                                                                | <i>et the H.P.be</i> $\frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2d} + \dots$                                                                                                                        |                 |                                               |  |  |  |
| (a)L                                                                                                                                                                                | er me 11. r. $be = \overline{a}, \overline{a+d}, \overline{a+2d}^+ \dots$                                                                                                                        |                 |                                               |  |  |  |
| $\frac{1}{-}=\frac{2}{-}$                                                                                                                                                           | $\frac{a}{2}, \frac{a}{a+d} = \frac{12}{23} \Rightarrow a = \frac{5}{2}, d = \frac{-7}{12} \Rightarrow T_n = \frac{1}{a+(n-1)d} = \frac{12}{37-74}$                                              | -, for          | $r_n = 5$ , $T_n is \ l \arg est$ , $T_5 = 6$ |  |  |  |
| a 5                                                                                                                                                                                 | a + d = 23 2 12 $a + (n-1)d = 37 - 7a$                                                                                                                                                           | n               | <i>n</i> - 0                                  |  |  |  |
| (1)                                                                                                                                                                                 | $+a = 2-b-c = (1-b)+(1-c) \ge 2\sqrt{(1-b)(1-c)}$                                                                                                                                                |                 |                                               |  |  |  |
| $(b)^{1-}$                                                                                                                                                                          | $+a = 2-b-c = (1-b)+(1-c) \ge 2\sqrt{(1-b)(1-c)}$                                                                                                                                                |                 |                                               |  |  |  |
| 1+b2                                                                                                                                                                                | $\geq 2\sqrt{(1-a)(1-c)},  (1+c) \geq 2\sqrt{(1-a)(1-b)} \Rightarrow (1+a)(1-b)$                                                                                                                 | +b)(1)          | $(+c) \ge 8(1-a)(1-b)(1-c)$                   |  |  |  |
|                                                                                                                                                                                     | $2x^2 + 2x + 5$                                                                                                                                                                                  |                 |                                               |  |  |  |
|                                                                                                                                                                                     | $(c) y = \frac{2x^2 + 2x + 5}{x^2 + x + 1} \Longrightarrow (2 - y) x^2 + (2 - y) x + (5 - y) =$                                                                                                  | 0               |                                               |  |  |  |
|                                                                                                                                                                                     | y = 2 does not satisify the eq.                                                                                                                                                                  |                 |                                               |  |  |  |
|                                                                                                                                                                                     | if $y \neq 2, x \in R \Longrightarrow D \ge 0 \Longrightarrow (2-y)^2 - 4(2-y)(5-y) \ge 0$                                                                                                       | $0 \Rightarrow$ | $(2-y)(3y-18) \ge 0$                          |  |  |  |
|                                                                                                                                                                                     | $\Rightarrow (y-2)(y-6) \le 0, y \ne 2 \Rightarrow y \in (2,6]$                                                                                                                                  |                 |                                               |  |  |  |
| C                                                                                                                                                                                   | x+6                                                                                                                                                                                              |                 |                                               |  |  |  |
| $\Rightarrow (y-2)(y-6) \le 0, y \ne 2 \Rightarrow y \in (2,6]$ $(d) \left(\frac{1}{3}\right)^{\frac{ x+6 }{1- x }} > 9  \text{In options all values are positive hence if } x > 0$ |                                                                                                                                                                                                  |                 |                                               |  |  |  |
|                                                                                                                                                                                     | $\left(\frac{1}{3}\right)^{\frac{x+6}{1-x}} > 3^2 \Longrightarrow 3^{-\left(\frac{x+6}{1-x}\right)} > 3^2 \Longrightarrow -\left(\frac{x+6}{1-x}\right) > 2 \Longrightarrow \frac{x+6}{x-1} > 2$ | 2               |                                               |  |  |  |
|                                                                                                                                                                                     | For x>1, x+6 > 2 x – 2, x < 8.                                                                                                                                                                   |                 |                                               |  |  |  |
|                                                                                                                                                                                     |                                                                                                                                                                                                  |                 |                                               |  |  |  |
|                                                                                                                                                                                     |                                                                                                                                                                                                  |                 |                                               |  |  |  |

4. Match the following:-

|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Column I                                                                                                                |                 | Column II |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|
|       | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number of divisor of $N = 2^3 3^2 5^5 7^4$ which<br>leaves remainder 1 when divided by 4 is                             | р               | 16        |
|       | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | If $a_1, a_2, \dots, a_{100}$ are in H.P. then the value of<br>$\sum_{i=1}^{99} \frac{a_i \ a_{i+1}}{a_1 \ a_{100}}$ is | q               | 48        |
|       | с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The remainder when 3 <sup>33</sup> is divided by 75 is                                                                  | r               | 126       |
|       | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The number of four digit number in which<br>every digits exceeds the immediate preceding<br>digit                       | S               | 36        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         | t               | 99        |
| Key:  | A→(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $Q; B \rightarrow T; C \rightarrow Q; D \rightarrow R$                                                                  |                 |           |
| Hint: | a) Let >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $x = 2^{0}$ . $3^{a}$ . $5^{b}$ . $7^{c}$ is a divisor = $(4 - 1)^{a} (4 + 1)^{b} (8 - 1)^{a} (4 + 1)^{b}$              | 1) <sup>c</sup> |           |
|       | $0 \le a \le$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\leq 2  0 \leq b \leq 5  0 \leq c \leq 4$                                                                              | .(              |           |
|       | 4I + (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(-1)^{a} 1^{b} (-1)^{c}$                                                                                               | $\leftarrow$    | 9         |
|       | ```                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | h odd, b takes any value OR a, c both even, b tak                                                                       | e anv           | value     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $a = 0, b any, c = 0, 2, 4 \Rightarrow 6 \times 3 = 18$                                                                 |                 |           |
|       | if $a = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1, $b any, c = 1,3 \Rightarrow 6 \times 2 = 12$                                                                         |                 |           |
|       | if $a = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2, b any, $c = 0, 2, 4 = 6 \times 3 = 18$                                                                               |                 |           |
|       | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                 |           |
|       | В.<br>а — а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $=a_1a_2d$                                                                                                              |                 |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $= a_1 a_2 a_3 d$                                                                                                       |                 |           |
|       | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                         |                 |           |
|       | $a_{100} - a_{100} - a_{1$ | $a_{99} = a_{99}a_{100}d$                                                                                               |                 |           |
| C     | $a_{100} - c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $a_1 = d \sum_{i=1}^{99} a_i a_{i+1} = 99a_1 a_{100} d$                                                                 |                 |           |
| С.    | <b>3</b> .3 <sup>32</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $=3(10-1)^{16}=3[100I-16_{C_{15}}.10+1]$                                                                                |                 |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $=3(100I-160+1)=3(100I^{1}+41)$                                                                                         | )               |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $=300I^{1}+123=75I^{11}+48$                                                                                             |                 |           |
| D.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |                 |           |
|       | Let four                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r digits no is $x_1 x_2 x_3 x_4$                                                                                        |                 |           |

Let four digits no is  $x_1 x_2 x_3 x_4$  $x_1 > x_2 > x_3 > x_4$ 0 can not use at any place

Required no. = no. of ways of selecting 4 digit out of  $9 = 9_{C_{L}} = 16$ 5. Observe the following lists : List – I List – II (A) If three unequal number a, b, c are A.P. and p) 4 b-c, c-b, a are in GP., then  $\frac{a^3+b^3+c^3}{3abc}$  is equal to (B) Let x be the arithmetic mean and y, z be two q) 1 geometric means between any two positive numbers, then  $\frac{y^3 + z^3}{z^3}$  is equal to (C) If  $a_1, a_2, a_3 - - - - a_{50}$  are 50 distinct numbers r) 2 in A.P and  $a_1^2 - a_2^2 + a_3^2 - \dots - a_{50}^2 = \left(\frac{5}{7}\right)^n \left(a_1^2 - a_{50}^2\right),$  $(n \in N)$  then n = (D)  $\lim_{n \to \infty} \tan \left\{ \sum_{n=1}^{n} \tan^{-1} \left( \frac{1}{2r^2} \right) \right\}$  is equal to s) 3 Key. A – r , B – r , C – r , D – q Sol. (A) (b-a) = (c-b) and  $(c-b)^2 = a(b-a)$  $\Rightarrow (b-a)^2 = a(b-a) \Rightarrow b = 2a, c = 3a$ :a:b:c=1:2:3(B)  $x = \frac{a+b}{2}, b = ar^3 \Rightarrow r$  $\frac{y^3 + z^3}{myz} = \frac{a+b}{a+b}$  $- - -a_{50}^{2} = (a_{1} + a_{2})(a_{1} - a_{2}) + (a_{3} + a_{4})(a_{3} - a_{4}) + - - - - + (a_{49} + a_{50})(a_{49} - a_{50})$  $= -d[a_{1} + a_{2} + - - + a_{50}] = -\frac{25}{49}(a_{50} - a_{1})(a_{50} + a_{1})$  $=\left(\frac{25}{49}\right)\left(a_{1}^{2}-a_{50}^{2}\right)$ (D)  $\tan^{-1}\left(\frac{1}{2r^2}\right) = \tan^{-1}\left(\frac{2}{4r^2}\right) = \tan^{-1}\left(\frac{2r+1-(2r-1)}{1+(2r+1)(2r-1)}\right)$  $= \tan^{-1}(2r+1) - \tan^{-1}(2r-1)$ 

| 6.   | Matcl                                                                                                                                   | h the following                                                      |                                                      |            |              |              |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|------------|--------------|--------------|
|      | (A)                                                                                                                                     | If $a_1$ , $a_2$ , $a_{100}$ are in HP, then th                      | e value of                                           | (p)        | 5            |              |
|      |                                                                                                                                         | $\sum_{i=1}^{39} \frac{a_i a_{i+1}}{a_i a_{i+1}}$ is                 |                                                      |            |              |              |
|      |                                                                                                                                         | $\sum_{i=1}^{2} a_1 a_{100}$                                         |                                                      |            |              |              |
|      | (B)                                                                                                                                     | Largest positive term of HP whose                                    | se first two terms are                               | e (q)      | 7            |              |
|      |                                                                                                                                         | $\frac{2}{5}$ and $\frac{12}{13}$ is                                 |                                                      |            |              |              |
|      | (C)                                                                                                                                     | If x be probability that first row c                                 |                                                      | (r)        | 6            |              |
|      |                                                                                                                                         | obtained by using elements {1, 2<br>repetition, have number in decre |                                                      |            |              |              |
|      |                                                                                                                                         | 36x equals                                                           | easing order, then                                   |            |              | $\frown$     |
|      | (D)                                                                                                                                     | If x be probability that a random                                    | ly chosen 3 digit                                    | (s)        | - 99         | $\mathbf{N}$ |
|      |                                                                                                                                         | number has exactly 3 factors, the                                    |                                                      | . ,        |              |              |
|      |                                                                                                                                         |                                                                      |                                                      | (t)        | 3            |              |
| Key. | (A-s),                                                                                                                                  | (B-r), (C-r), (D-q)                                                  |                                                      | 6          |              |              |
|      | Sol.                                                                                                                                    | (A) Let d be C.D of AP $\frac{1}{a_1}$ ,                             | $\frac{1}{a_2}, \frac{1}{a_3}, \dots, \frac{1}{a_n}$ | $\sim$     |              |              |
|      |                                                                                                                                         | $a_2 - a_1 = a_1 a_2 d$                                              |                                                      |            |              |              |
|      |                                                                                                                                         | $a_3 - a_2 = a_3 a_2 d$                                              |                                                      |            |              |              |
|      |                                                                                                                                         |                                                                      | 01/1                                                 |            |              |              |
|      |                                                                                                                                         | $a_{100} - a_{99} = a_{99} a_{100} d$                                |                                                      |            |              |              |
|      |                                                                                                                                         | Adding all these, we get                                             |                                                      |            |              |              |
|      |                                                                                                                                         | $a_{100} - a_1 = d \sum_{i=1}^{99} a_i a_{i+1}$                      |                                                      |            |              |              |
|      |                                                                                                                                         | 1-1                                                                  |                                                      |            |              |              |
|      | (B)                                                                                                                                     | $\frac{1}{a} = \frac{2}{5}, \frac{1}{a+d} = \frac{12}{23}$           |                                                      |            |              |              |
|      |                                                                                                                                         | 5 . 7 . 12                                                           | _                                                    |            |              |              |
|      |                                                                                                                                         | $a = \frac{5}{2}, d = -\frac{7}{12}, T_n = \frac{12}{37 - 7n}$ for   | or n = 5                                             |            |              |              |
|      |                                                                                                                                         | T <sub>n</sub> is largest positive                                   |                                                      |            |              |              |
|      |                                                                                                                                         | $T_5 = 6$                                                            |                                                      |            |              |              |
|      | (C)                                                                                                                                     | Total no. of case 9!<br>no. of favourable cases <sup>9</sup> C₃ . 6! |                                                      |            |              |              |
|      | (D)                                                                                                                                     |                                                                      | f the number is sau                                  | are of a r | orime number | Squares      |
|      | (D) A number has exactly 3 factors if the number is square of a prime number. Squares of 11, 13, 17, 19, 23, 29, 31 are 3 digit number. |                                                                      |                                                      |            |              |              |
|      | So required probability.                                                                                                                |                                                                      |                                                      |            |              |              |
| C    | H,                                                                                                                                      | •                                                                    |                                                      |            |              |              |
| 7.   | Match                                                                                                                                   | n the following: -                                                   |                                                      |            |              |              |
|      |                                                                                                                                         | Column – I                                                           | Colun                                                | ın – II    |              |              |
| (A)  |                                                                                                                                         | that $F(n+1) = 2F(n) + 1$ for n                                      | (p) 42                                               |            |              |              |
|      | Suppose                                                                                                                                 | e that $F(n+1) = \frac{2F(n)+1}{2}$ for n                            |                                                      |            |              |              |

| (11) | Suppose that $F(n+1) = \frac{2F(n)+1}{2}$ for n<br>= 1, 2, 3, and $F(1) = 2$ . Then $F(101)$ equals |     | 72   |
|------|-----------------------------------------------------------------------------------------------------|-----|------|
| (B)  | If $a_1, a_2, a_3, \dots, a_{21}$ are in A.P. and                                                   | (q) | 1620 |
|      | $a_3 + a_5 + a_{11} + a_{17} + a_{19} = 10$ then the                                                |     |      |

|                                                                    | value of                                                                     | $\sum_{i=1}^{21} a_i is$                                                          |     |           |  |  |  |
|--------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----|-----------|--|--|--|
| (C)                                                                | $10^{\text{th}} \text{ term} + 29 + \dots$                                   | of the sequence $S = 1 + 5 + 13$ , is                                             | (r) | 52        |  |  |  |
| (D)                                                                |                                                                              | of all two digit numbers which<br>ivisible by 2 or 3 is                           | (s) | 2045      |  |  |  |
|                                                                    |                                                                              |                                                                                   | (t) | 2+4+6++12 |  |  |  |
| Key.                                                               | $A \rightarrow r; B \rightarrow p,t; C \rightarrow s; D \rightarrow q$       |                                                                                   |     |           |  |  |  |
| Sol.                                                               | (A)                                                                          | (A) $F(n+1) = \frac{2F(n)+1}{2} = F(n) + \frac{1}{2}$                             |     |           |  |  |  |
|                                                                    | <i>.</i>                                                                     | $\therefore$ F(1), F(2), F(3), is an AP with common difference $\frac{1}{2}$      |     |           |  |  |  |
|                                                                    | (B)                                                                          | (B) $a_1 + 2d + a_1 + 4d + a_1 + 10d + a_1 + 16d + a_1 + 18d = 5a_1 + 50d$        |     |           |  |  |  |
|                                                                    | $=5(a_1+10d)=10$ i.e. $a_1+10d=2$                                            |                                                                                   |     |           |  |  |  |
|                                                                    | Now,                                                                         | pw, $\sum_{i=1}^{21} a_i = \frac{21}{2} [2a_1 + 20d] = 21(a_1 + 10d) = 42$        |     |           |  |  |  |
|                                                                    | (C)                                                                          | $S = 1 + 5 + 13 + 29 + \ldots + t_{10}$                                           |     |           |  |  |  |
|                                                                    |                                                                              | $S = 1 + 5 + 13 + \ldots + t_9 + t_{10}$                                          |     |           |  |  |  |
|                                                                    |                                                                              | Subtrating                                                                        |     |           |  |  |  |
|                                                                    |                                                                              | $t_{10} = 1 + 4 + 8 + 16 + \dots$ up to 10 terms                                  |     |           |  |  |  |
|                                                                    |                                                                              | $= 1 + (4 + 8 + 16 + \dots \text{ up to } 9 \text{ terms})$<br>= 2045             |     |           |  |  |  |
|                                                                    | = 2045                                                                       |                                                                                   |     |           |  |  |  |
|                                                                    | (D) Sum of all two digit numbers $=\frac{90}{2}(10+99)=(45)(109)$            |                                                                                   |     |           |  |  |  |
|                                                                    |                                                                              | Sum of all two digit numbers is divisible by $2 = \frac{45}{2}(10+98) = (45)(54)$ |     |           |  |  |  |
|                                                                    |                                                                              | Sum of all two digit numbers is divisible by $3 = \frac{30}{2}(12+99) = 15(54)$   |     |           |  |  |  |
|                                                                    | Sum of all two digit numbers divisible by $6 = \frac{15}{2}(12+96) = 15(54)$ |                                                                                   |     |           |  |  |  |
| The required sum is $45(109) + 15(54) - (45)(54) - 15(111) = 1620$ |                                                                              |                                                                                   |     |           |  |  |  |

8. Match the following: -

| Column – I |                                                                                                                                                                          |     | Column – II      |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|--|--|
| (A)        | The arithmetic mean of two positive numbers is 6 and their geometric mean G and harmonic mean H satisfy the relation $G^2 + 3H = 48$ , then product of the two number is | (p) | $\frac{240}{77}$ |  |  |
| (B)        | The sum of the series $\frac{5}{1^2 4^2} + \frac{11}{4^2 7^2} + \frac{17}{7^2 \cdot 10^2} + \dots$ is                                                                    | (q) | 32               |  |  |
| (C)        | If the first two terms of a Harmonic Progression be $\frac{1}{2}$                                                                                                        | (r) | $\frac{1}{3}$    |  |  |

|                                                                              | and $\frac{1}{3}$ , then the Harmonic Mean of the first four terms                                                                               |                                                                                                                                                   |                         |  |  |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|
|                                                                              | is                                                                                                                                               |                                                                                                                                                   |                         |  |  |
| (D)                                                                          | Geometric mean of $-4$ and $-9$                                                                                                                  | (s)                                                                                                                                               | 6                       |  |  |
|                                                                              |                                                                                                                                                  | (t)                                                                                                                                               | - 6                     |  |  |
| Key.                                                                         | $A \rightarrow q; B \rightarrow r; C \rightarrow p; D \rightarrow t$                                                                             |                                                                                                                                                   |                         |  |  |
| Sol.                                                                         | (A) $a + b = 12$                                                                                                                                 |                                                                                                                                                   |                         |  |  |
|                                                                              | $ab + \frac{6ab}{a+b} = 48$                                                                                                                      |                                                                                                                                                   | $\sim$                  |  |  |
|                                                                              | $ab + \frac{ab}{2} = 48$ $\therefore$ $ab = 32$                                                                                                  |                                                                                                                                                   | $\langle \rangle$ .     |  |  |
|                                                                              | (B) $S = \frac{5}{1^2} + \frac{11}{4^2 \cdot 7^2} + \frac{11}{7^2 \cdot 10^2} + \dots$                                                           |                                                                                                                                                   |                         |  |  |
|                                                                              | $\Rightarrow \qquad 3S = \frac{3.5}{1^2.4^2} + \frac{3.11}{4^2.7^2} + \frac{3.17}{7^2.10^2} + \dots$                                             |                                                                                                                                                   | 01,                     |  |  |
|                                                                              | $\Rightarrow 3\mathbf{S} = \frac{(4-1).(4+1)}{1^2.4^2} + \frac{(7-4)(7+4)}{4^2.7^2} + \frac{(10-7)}{7^2.2}$                                      | $3S = \frac{(4-1).(4+1)}{1^2.4^2} + \frac{(7-4)(7+4)}{4^2.7^2} + \frac{(10-7)(10+7)}{7^2.10^2} + \dots$                                           |                         |  |  |
|                                                                              | $\Rightarrow \qquad 3\mathbf{S} = \frac{4^2 - 1^2}{1^2 \cdot 4^2} + \frac{7^2 - 4^2}{4^2 \cdot 7^2} + \frac{10^2 - 7^2}{7^2 \cdot 10^2} + \dots$ | $3S = \frac{4^2 - 1^2}{1^2 \cdot 4^2} + \frac{7^2 - 4^2}{4^2 \cdot 7^2} + \frac{10^2 - 7^2}{7^2 \cdot 10^2} + \dots$                              |                         |  |  |
|                                                                              | $\Rightarrow \qquad 3\mathbf{S} = 1 - \frac{1}{4^2} + \frac{1}{4^2} - \frac{1}{7^2} + \frac{1}{7^2} - \frac{1}{10^2} + \dots$                    | $3S = 1 - \frac{1}{4^2} + \frac{1}{4^2} - \frac{1}{7^2} + \frac{1}{7^2} - \frac{1}{10^2} + \dots$                                                 |                         |  |  |
|                                                                              | $\Rightarrow$ 3S=1 S= $\frac{1}{3}$                                                                                                              | $3S = 1 \qquad S = \frac{1}{3}$                                                                                                                   |                         |  |  |
|                                                                              | (C) H.M of $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$ is $\frac{4}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}} = \frac{240}{77}$  | H.M of $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$ is $\frac{4}{\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}} = \frac{240}{77}$ |                         |  |  |
|                                                                              | (D) Since G.M. lies between the numbers $GM = -$                                                                                                 | -√(-4                                                                                                                                             | $(-9) \times (-9) = -6$ |  |  |
|                                                                              |                                                                                                                                                  |                                                                                                                                                   |                         |  |  |
| (D) Since G.M. lies between the numbers $GM = -\sqrt{(-4) \times (-9)} = -6$ |                                                                                                                                                  |                                                                                                                                                   |                         |  |  |