AP,GP,HP, Sequences
 Single Correct Answer Type

 n occurs $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$ times in the sequence, equals
(A) 24
(B) 23
(C) 22
(D) 21

Key. C
Sol.

> No. of terms

Group (1)
1
1
Group (2)
2, 2, 2
3
Group (3)
3, 3, ..., 3
6
Group (4)
$4,4, \ldots, 4$
.....
....
Group (r) r, r, .., r

$$
\frac{r^{2}+r}{2}
$$

Let $2008^{\text {th }}$ term falls in $r^{\text {th }}$ group

$$
\begin{aligned}
& \Rightarrow 1+3+6+10+\ldots+\frac{(r-1)^{2}+(r-1)}{2}<2008 \leq 1+3+6+\ldots+\frac{r^{2}+r}{2} \\
& \Rightarrow \frac{(\mathrm{r}-1) \mathrm{r}(\mathrm{r}+1)}{6}<2008 \leq \frac{\mathrm{r}(\mathrm{r}+1)(\mathrm{r}+2)}{6} \\
& \Rightarrow \mathrm{r}^{3}-\mathrm{r}<12048 \leq(\mathrm{r}+1)^{3}-(\mathrm{r}+1) \ldots \text { (i) }
\end{aligned}
$$

$\Rightarrow \mathrm{r}$ will be nearer to cube root of 12048
Note: $22<\sqrt[3]{12048}>23$
for $\mathrm{r}=22$ inequality (i) holds
for $r<22$ RHS of (1) is less than 12048
for $r \geq 23$ LHS of (1) is greater than 12048
$\Rightarrow \mathrm{r}=22$ is the required value $\Rightarrow 2008^{\text {th }}$ term is 22

$$
\text { Ans. (C) } 22 .
$$

1. If $a_{k}=\frac{1}{k(k+1)}$, for $k=1,2,3 \ldots \ldots . n$, then $\left(\sum_{k=1}^{n} a_{k}\right)^{2}=$
1) $\frac{n}{n+1}$
2) $\frac{n^{2}}{(n+1)^{2}}$
3) $\frac{n^{4}}{(n+1)^{4}}$
4) $\frac{n^{6}}{(n+1)^{6}}$

Key. 2
Sol. $\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\ldots \ldots+\frac{1}{n}-\frac{1}{n+n}\right)^{2}$

$$
\frac{n^{2}}{(n+1)^{2}}
$$

2. $\sum_{\mathrm{k}=1}^{\infty} \frac{1}{\mathrm{k}!}\left(\sum_{\mathrm{n}=1}^{\mathrm{k}} 2^{\mathrm{n}-1}\right)=$
1)e
2) $e^{2}+e$
3) e^{2}
4) $e^{2}-e$

Key. 4
Sol. $\quad \sum_{\mathrm{k}=1}^{\infty} \frac{1}{\mathrm{k}!}\left(1+2+2^{2}+\ldots \ldots+2^{\mathrm{k}-1}\right)$
$\sum_{\mathrm{k}=1}^{\infty} \frac{2^{\mathrm{k}}-1}{\mathrm{k}!}=\mathrm{e}^{2}-\mathrm{e}$
3. Coefficient of x^{10} in the expansion of $(2+3 x) e^{-x}$ is

1) $\frac{-26}{(10)!}$
2) $\frac{-28}{(10)!}$
3) $\frac{-30}{(10)!}$
4) $\frac{-32}{(10)!}$

Key. 2
Sol. $\quad(2+3 x)\left(1-\frac{x}{1!}+\frac{x^{2}}{2!}-\frac{x^{3}}{3!} \ldots+\frac{x^{10}}{10!}\right)$

$$
\frac{2}{10!}-\frac{3}{9!}=\frac{2-30}{10!}=\frac{-28}{10!}
$$

4. $\frac{1^{2}}{1!}+\frac{1^{2}+2^{2}}{2!}+\frac{1^{2}+2^{2}+3^{2}}{3!}+$
1) $\frac{17 e}{6}$
B) $\frac{6 e}{17}$
C) $\frac{11 e}{7}$
D) $\frac{7 \mathrm{e}}{11}$

Key. 1
Sol. $\quad \sum_{n=1}^{\infty} \frac{1^{2}+2^{2}+3^{2}+\ldots+n^{2}}{n!}$
$=\frac{1}{6}\left(\sum_{n=1}^{\infty} \frac{2 n^{3}}{n!}+\sum_{n=1}^{\infty} \frac{3 n^{2}}{n!}+\sum_{n=1}^{\infty} \frac{n}{n!}\right)$
$=\frac{1}{6}(2 \times 5 e+3 \times 2 e+e)=\frac{17 e}{6}$
5. $\sum_{n=1}^{\infty} \frac{2 n^{2}+n+1}{n!}=$

1) $2 e-1$
2) $2 e+1$
3) $6 e-1$
4) $6 e+1$

Key. 3
Sol. $\quad \sum_{n=1}^{\infty} \frac{2 n(n-1)+3 n+1}{n!}=\sum_{n=1}^{\infty} \frac{2 n(n-1)}{n!}+\sum_{n=1}^{\infty} \frac{3 n}{n!}+\sum_{n=1}^{\infty} \frac{1}{n!}$
$2 e+3 e+e-1=6 e-1$
6. The sum of the series $1+\frac{1}{4.2!}+\frac{1}{16.4!}+\frac{1}{64.6!}+\ldots . .$.

1) $\frac{e-1}{\sqrt{e}}$
2) $\frac{e+1}{\sqrt{e}}$
3) $\frac{e-1}{\sqrt{e}}$
4) $\frac{e+1}{2 \sqrt{e}}$

Key. 4
Sol. $1+\frac{1}{4.2!}+\frac{1}{16.4!}+\ldots .$.
$=\frac{\mathrm{e}^{1 / 2}+\mathrm{e}^{-1 / 2}}{2}=\frac{\mathrm{e}+1}{2 \sqrt{\mathrm{e}}}$
8. If $|x|<1$ and $y=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots$. then $x=$

1) $y+\frac{y^{2}}{2}+\frac{y^{3}}{3}+\ldots \ldots$
2) $y-\frac{y^{2}}{2}+\frac{y^{3}}{3}-\frac{y^{4}}{4}+$
3) $y+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+\ldots \ldots$
4) $y-\frac{y^{2}}{2!}+\frac{y^{3}}{3!}-\frac{y^{4}}{4!}+$

Key. 3
Sol. $y=x-x^{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots$.
$y=\log _{e}(1+x) \Rightarrow 1+x=e^{y}$
$\Rightarrow x=y+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+\ldots$.
9. In a sequence of $(4 n+1)$ terms, the first $(2 n+1)$ terms are in A.P., whose common difference is 2 , and the last $(2 n+1)$ terms are in G.P whose common ratio is 0.5 if the middle terms of the A.P and G.P are equal then the middle term of the sequence is
A) $n 2^{n-1} / 2^{n}-1$
B) $n .2^{n+1} / 2^{2 n}-1$
C) $n .2^{n}$
D) $n 2^{n+1} / 2^{n}-1$

Key. D
Sol. Let the first term is a , then first ($2 \mathrm{n}+1$) terms are $a, a+2, a+4, \ldots, a+2,2 n$. Clearly the middle term of the sequence of $4 n+1$ term is $(2 n+1)^{\text {th }}$ term, i.e . $a+4 n$ also the middle term of the A.P of $(2 n+1)$ term is $(n+1)^{\text {th }}$ term i.e., $a+2 n$.Again for the last $(2 n+1)$ terms the first term will be $(2 n+1)^{\text {th }}$ term of the A.P i.e. $a+4 n$
\therefore G.P is $(a+4 n),(1+4 n)(0.5)^{n}$
Its middle term is $(a+4 n)(0.5)^{n}$
According to the given condition,
$a+2 n=(1+4 n)(0.5)^{n}$
$\therefore a=\frac{2 n-4 n(0.5)^{n}}{(0.5)^{n}-1}$
\therefore Required middle term $=a+4 n=$

$$
\frac{2 n-4 n(0.5)^{n}}{(0.5)^{n}-1}+4 n=\frac{2 n}{1-\left(\frac{1}{2}\right)^{2}}=\frac{n .2^{n-1}}{2^{n}-1}
$$

10. The sum of the series $\frac{x}{1-x^{2}}+\frac{x^{2}}{1-x^{4}}+\frac{x^{4}}{1-x^{8}}+\ldots . .$. to infinite terms, if $|x|<1$ is
A) $\frac{x}{1-x}$
B) $\frac{1}{1-x}$
C) $\frac{1+x}{1-x}$
D) 1

Key. A
Sol. The general term of the series is $t_{n}=\frac{x^{2^{n-1}}}{1-x^{2^{n}}}$
$=\frac{1+x^{2^{n-1}}-1}{\left(1+x^{2^{n-1}}\right)\left(1-x^{2 n-1}\right)}$
$\therefore 1_{n}=\frac{1}{1-x^{2 n-1}}-\frac{1}{1-x^{2^{n}}}$
Now, $S_{n}=\sum_{n=1}^{n} t_{n}=\left[\left\{\frac{1}{1-x}-\frac{1}{1-x^{2}}\right\}\right]$
$+\left\{\frac{1}{1-x^{2}}-\frac{1}{1-x^{4}}\right\}+\ldots$.
$\left.+\left\{\frac{1}{1-x^{2^{n-1}}}-\frac{1}{1-x^{2^{n}}}\right\}\right]=\frac{1}{1-x}-\frac{1}{1-x^{2^{n}}}$
\therefore The sum to infinite terms
$=\lim _{n \rightarrow \infty} S_{n}=\frac{1}{1-x}-1=\frac{x}{1-x}$
$\left[\mathrm{Q} \operatorname{Lim}_{n \rightarrow \infty}{x^{2^{n}}}^{1}=0\right.$, as $\left.|x|<1\right]$
11. If n arithmetic means are inserted between two sets of numbers $a, 2 b$ and $2 a, b$, where a, b $\in R$. Suppose that $m^{\text {th }}$ arithmetic mean between these two sets of numbers is same, then the ratio a:b equals
A) $n-m+1: m$
B) $n-m+1: n$
C) $m: n-m+1$
D) $n: n-m+1$

Key. C
Sol. Let $A_{1}, A_{2} \ldots . A_{n}$ be airthmetric means between a and 2 b , then $A_{m}=a+m\left(\frac{2 b-a}{n+1}\right)$

Again, let $B_{1}, B_{2} \ldots \ldots . B_{n}$ be arithmetic means
Between 2a and b then $B_{m}=2 a+m\left(\frac{b-2 a}{n+1}\right)$
Now, $A_{m}=B_{m} \Rightarrow a+m\left(\frac{2 b-a}{n+1}\right)=2 a+$
$m\left(\frac{b-2 a}{n+1}\right) \Rightarrow m\left(\frac{b+a}{n+1}\right)=a \Rightarrow \frac{a}{b}=\frac{m}{n-m+1}$
12. The ratio of sum of first three terms of a G.P. to the sum of first six terms is $64: 91$, the common ratio of G.P. is

1. $\frac{1}{4}$
2. $\frac{3}{4}$
3. $\frac{5}{4}$
4. $\frac{7}{4}$

Key. 2
Sol. Given $\frac{S_{3}}{S_{6}}=\frac{64}{91}=\frac{a\left(r^{3}-1\right)}{a\left(r^{6}-1\right)}$

$$
\begin{aligned}
& \Rightarrow \frac{\left(r^{3}-1\right)}{\left(r^{3}+1\right)\left(r^{3}-1\right)}=\frac{64}{91} \\
& \Rightarrow r^{3}=\frac{27}{64} \quad \therefore \quad r=\frac{3}{4}
\end{aligned}
$$

13. Sum of the series $3+5+9+17+33+\ldots$. to n terms is
14. $2^{n+1}-n-2$
15. $2^{n+1}+n-2$
16. $2^{n}+n-2$
17. $2^{n+1}-n+2$

Key. 2
Sol. $\quad S_{n}=3+5+9+17+33+\ldots \ldots$

$$
\begin{aligned}
& =(2+1)+\left(2^{2}+1\right)\left(2^{3}+1\right)+\left(2^{4}+1\right)+\ldots \\
& =\left(2+2^{2}+2^{3}+2^{4}+\ldots \ldots . n \text { terms }\right)+n \\
& =2\left(2^{n}-1\right)+n=2^{n+1}+n-2 \\
& =2^{n+1}+n-2
\end{aligned}
$$

14. If one A.M. A and two G.M.s p and q be inserted between two numbers a and b, then which of the following is hold good
15. $a^{3}+b^{3}=2 A p q$
16. $p^{3}+q^{3}=2 A p q$
17. $a^{3}+b^{3}=2 A a b$
18. None of these.

Key. 2
Sol. Given $a+b=2 A$
And $a, p, q, \quad b \in$ G.P.
$\therefore \quad p^{2}=a q$ and $q^{2}=p b$
$\Rightarrow p^{3}=a p q$ and $q^{3}=b p q$
by adding we get

$$
\begin{aligned}
p^{3} & +q^{3}=a p q+b p q \\
& =p q(a+b)=2 A p q
\end{aligned}
$$

15. If fourth term of a G.P. is 3, the product of the first seven terms is
16. 3^{4}
17. 3^{7}
18. 7^{4}
19. 4^{7}

Key. 2
Sol. As the number of terms are odd (7) let r, be the common ratio
So terms can be taken as $\frac{a}{r^{3}}, \frac{a}{r^{2}}, \frac{a}{r}, a, a r, a r^{2}, a r^{3}$
$\therefore \quad$ Product of the term $=a^{7}$
$=3^{7}$ as $\left(t_{4}=a=3\right)$
16. The number of divisors of $6912,52480,32000$ are in

1. A.P Only
2. G.P. Only
3. A.P. , G.P.\& H.P.
4. None of these

Key. 3
Sol. If n is $a+$ ve number.
$n=P_{1}^{k_{1}} \cdot P_{2}^{k_{2}} \ldots P_{r}^{k_{r}}$
(where $p_{1}, p_{2}, p_{3}, \ldots . p_{r}$ are prime number) then number of divisors of n are
$=\left(k_{1}+1\right)\left(k_{2}+1\right) \ldots\left(k_{r}+1\right)$
\therefore Number of prime factor of 6912 are $=2^{8} .3^{3}$ so no. of divisors $=9 \times 4=36$

Prime factors of 52,400 are $=3^{8} \times 2^{3}$
\therefore No. of divisors $=9 \times 4=36$

Prime factors of 32,000 are $=5^{3} \times 2^{8}$
\therefore No. of divisors $=9 \times 4=36$

Now each number having same number of divisors i.e., $36,36,36$

Each and every term is constant \& constant sequence is always in A.P.\& G.P. both as common difference is 0 and common ratio is 1 .
17. If $1, \log _{81}\left(3^{x}+48\right), \log _{9}\left(3^{x}-\frac{8}{3}\right)$ are in A.P., then the value of x equals

1. 9
2. 6
3.2
3. 4

Key. 3
Sol. Given $1, \log _{9} 2\left(3^{x}+48\right), \log _{9}\left(3^{x}-8 / 3\right), \in$ A.P.

$$
\begin{aligned}
& \Rightarrow \log _{9} 9, \frac{1}{2} \log _{9}\left(3^{x}+48\right), \log _{9}\left(3^{x}-8 / 3\right) \in \text { A.P. } \\
& \Rightarrow 9,\left(3^{x}+48\right)^{1 / 2}, 3^{x}-8 / 3 \in \text { G.P. } \quad \text { (By concept) }
\end{aligned}
$$

$\log a, \log b, \log c \in$ A.P.

$$
\therefore a, b, c \in \text { G.P. } \quad \therefore 3^{x}+48=9\left(3^{x}-8 / 3\right)
$$

$$
8.3^{x}=72
$$

$$
3^{x}=9,3^{x}=3^{2}, \quad x=2
$$

18. If a, b, c are in H.P., then $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in
19. A.P.
20. H.P.
21. G.P.
22. None of these

Key. 2
Sol. Given $a, b, c \in$ H.P.
So, $\frac{1}{a}, \frac{1}{b}, \frac{1}{c} \in \mathrm{~A} . \mathrm{P}$.
$\frac{a+b+c}{a}, \frac{b+c+a}{b}, \frac{c+a+b}{c} \in$ A.P.
By using concept if $a, b, c \in$ A.P.

Then their reciprocals are in H.P.
19. Between the numbers 2 and 20, 8 means are inserted, then their sum is

1. 88
2. 44
3.176
3. None of these

Key. 1
Sol. Let $a, A_{1}, A_{2} \ldots . A_{g}, b \in A . P$

Where $a=2, b=20, n=8$
\therefore sum of the means $=\frac{n}{2}(a+b)=\frac{8}{2}(2+20)=88$
20. In the expansion of $(1+x)^{70}$, the sum of coefficients of odd powers of x is

1. 0
2. 2^{69}
3. 2^{70}
4. 2^{71}

Key.
Sol. Fact. The sum of the coefficients of odd powers in the expansion of $(1+x)^{n}=$ sum of the coefficients of even powers in $(1+x)^{n}$
$=2^{n-1}$
$2^{70-1}=2^{69}$

21 If the arithmetic mean of two positive numbers $a \& b(a>b)$ is twice their G.M., then
$a: b$ is

1. $6+\sqrt{7}: 6-\sqrt{7}$
2. $2+\sqrt{3}: 2-\sqrt{3}$
3. $5+\sqrt{6}: 5-\sqrt{6}$
4. None of these

Key. 2
Sol. $\frac{a+b}{2}=2 \sqrt{a b}$
$a+b-4 \sqrt{a b}=0$
$\frac{a}{b}+1-4 \sqrt{\frac{a}{b}}=0($ Dividing by b)

Or $\left(\sqrt{\frac{a}{b}}\right)^{2}-4 \sqrt{\frac{a}{b}}+1=0$
$\therefore \sqrt{\frac{a}{b}}=\frac{4 \pm 2 \sqrt{3}}{2}=(2 \pm \sqrt{3})$
$\frac{a}{b}=\frac{2+\sqrt{3}}{2-\sqrt{3}}$

22 The number of terms common between the two series $2+5+8+\ldots$ up to 50 terms and the series $3+5+7+9+\ldots$ up to 60 terms.

1. 24
2. 26
3. 25
4. None of these

Key. 4
Sol. Let $m^{\text {th }}$ term of first A.P. be equal to the $n^{\text {th }}$ term of the second A.P. then
$2,5,8, \ldots 50$ terms series 1
$3,5,7, \ldots ., 60$ terms series 2

Common series $5,11,17, \ldots . ., 11$ 119
$40^{\text {th }}$ term of series $1=59^{\text {th }}$ term of series $2=119=$ last term of common series
$\Rightarrow a_{n}=5+(n-1) d \Rightarrow 119+1=6 n \Rightarrow n=20$.
$\therefore \quad$ Number of common terms is 20 .
23 The sum of the series $1+\frac{9}{4}+\frac{36}{9}+\frac{100}{16}+\ldots$. up to n terms if $n=16$ is

1. 446
2. 746
3. 546
4. 846

Key. 1
Sol. The given series can be written as $1^{3}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots$
$t_{n}=\frac{1^{3}+2^{3}+3^{3}+\ldots . n^{3}}{1+3+5+\ldots .+(2 n-1)}$
$t_{n}=\frac{n^{2}(n+1)^{2}}{4 n^{2}}=\frac{(n+1)^{2}}{4}$
$t_{n}=\frac{1}{4}(n+1)(n+1)$
$=\frac{1}{4}\left(n^{2}+2 n+1\right)=\frac{1}{4}\left[\sum_{k=1}^{n} k^{2}+2 \sum_{k=1}^{n} k+n\right]$
$\therefore S_{n}=\frac{1}{4}\left[\frac{n(n+1)(2 n+2)}{6}+n(n+1)+n\right]$
$\therefore S_{16}=\frac{1}{4}\left[\frac{16.17 .33}{6}+16.17+16\right]=\frac{1}{4}[88 \times 17+16 \times 8+16]=446$

24 Sum of n terms of series

$$
a b+(a+1)(b+1)+(a+2)(b+2)+\ldots .+(a+(n-1))(b+(n-1))
$$

if $a b=\frac{1}{6} \operatorname{and}(a+b)=\frac{1}{3}$, is
(A) $\frac{n}{6}(1-2 n)^{2}$
(B) $\frac{n}{6}\left(1+n-2 n^{2}\right)$
(C) $\frac{n}{6}\left(1-2 n+2 n^{2}\right)$
(D) none of these

Key. C
Sol. $\quad s=a b+[a b+(a+b)+1]+\left[a b+2(a+b)+2^{2}\right]+\ldots .\left[a b+(n-1)(a+b)+(n-1)^{2}\right]$
$=n a b+(a+b) \sum_{r=1}^{n-1} r+\sum_{r=1}^{n-1} r^{2}$
$=n a b+(a+b) \frac{n(n-1)}{2}+\frac{(n-1))(n)(2 n-1)}{6}$
$=\frac{n}{6}[1+(n-1)\{1+2 n-1\}]$
$=\frac{n}{6}[1+2 n(n-1)]=\frac{n}{6}\left(1-2 n+2 n^{2}\right)$

25 If $\log (a+c), \log (a+b), \log (b+c)$ are in A.P. and a, c, b are in H.P, then the value of $a+b$ is (given a,b,c>0)
(A) 2 c
(B) 3 c
(C) 4 c
(D) $6 c$

Key. A
$\log (a+c)+\log (b+c)=2 \log (a+b)$
$(a+c)(b+c)=(a+b)^{2}$
Sol. $\quad \Rightarrow a b+c(a+b)+c^{2}=(a+b)^{2}$
also, $c=\frac{2 a b}{a+b} \Rightarrow 2 a b=c(a+b)$
$\Rightarrow 2 a b+2 c(a+b)+2 c^{2}=2(a+b)^{2}$
From (1) and(2),
$c(a+b)+2 c(a+b)+2 c^{2}=2(a+b)^{2}$
$2(a+b)^{2}-3 c(a+b)-2 c^{2}=0$
$\therefore a+b=\frac{3 c \pm \sqrt{9 c^{2}+16 c^{2}}}{4}=\frac{3 c \pm 5 c}{4} \Rightarrow 2 c$ or $-\frac{c}{2}$
$\therefore a+b=2 c \quad(\mathrm{Q} a, b, c>0)$
26 If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are in A.P. with s_{n} as the sum of first ' n ' terms $\left(s_{0}=0\right)$, then $\sum_{k=0}^{n}{ }^{n} C_{k} S_{k}$ is equal to
(A) $2^{n-2}\left[n a_{1}+s_{n}\right]$
(B) $2^{n}\left[a_{1}+s_{n}\right]$
(C) $2\left[n a_{1}+s_{n}\right]$
(D) $2^{n-1}\left[a_{1}+s_{n}\right]$

Kеу.
Sol. $\quad \sum_{k=o}^{n}{ }^{n} c_{k} s_{k}=\sum_{k=0}^{n}{ }^{n} c_{k} \frac{k}{n}[2 a+(k-1) d]$
$=\left[\left(a_{1}-\frac{d}{2}\right) \sum_{k=0}^{n} k^{n} c_{k}+\frac{d}{2} \sum_{k=0}^{n} k^{2} c_{k}\right]$
$=\left(a_{1}-\frac{d}{2}\right) n \cdot 2^{n-1}+\frac{d}{2}\left[n .2^{n-1}+n(n-1) 2^{n-2}\right]$
$=a_{1} \cdot n \cdot 2^{n-1}+d n(n-1) 2^{n-3}$
$=n .2^{n-3}\left[4 a_{1}+a_{n}-a_{1}\right]=n .2^{n-3}\left[3 a_{1}+a_{n}\right]$
$=2^{n-3}\left[2 n a_{1}+2 n\left(\frac{a_{1}+a_{n}}{2}\right)\right]$
$=2^{n-2}\left[n a_{1}+s_{n]}\right.$.
27 The positive integral values of n such that
$1.2^{1}+2.2^{2}+3.2^{3}+4.2^{4}+5.2^{5}+\ldots .+n .2^{n}=2^{(n+10)}+2$ is
(A) 313
(B) 513
(C) 413
(D) 613

Key. B
$2^{1}+2^{2}+2^{3}+\ldots+2^{n}=2^{n+1}-2$
Sol.
$2^{2}+2^{3}+\ldots 2^{n}=2^{n+1}-2^{2}$

$$
2^{3}+\ldots+2^{n}=2^{n+1}-2^{3}
$$

$+2^{n}=2^{n+1}-2$
$=n\left(2^{n+1}\right)-\left(2^{n+1}-2\right)$
$=2^{n+1}(n-1)+2$
Given that $2^{n+1}(n-1)+2=2^{2+10}+2$
$\Rightarrow(n-1) 2^{n+1}=2^{n+10}$
$\Rightarrow n-1=2^{9}$
$\Rightarrow n=2^{9}+1=513$

28 If a,b,c, are in A.P. and p, p^{\prime} are respectively A.M. and G.M. between a and b while q, q^{\prime} are respectively AM. And G.M. between b and c, then
(A) $p^{2}+q^{2}=p^{2}+q^{2}$
(B) $p q=p q$
(C) $p^{2}-q^{2}=p^{2}-q^{\prime 2}$
(D) $p^{2}+p^{\prime 2}=q^{2}+q^{\prime 2}$

Key,
Sol.
We have $2 b=a+c$ and $\mathrm{a}, \mathrm{p}, \mathrm{b}, \mathrm{q}, \mathrm{c}$ are in A.P
$\Rightarrow p=\frac{a+b}{2}, q=\frac{b+c}{2}$
Again, $p^{\prime}=\sqrt{a b}$ and $q^{\prime}=\sqrt{b c}$
$\therefore p^{2}-q^{2}=\frac{(a+b)^{2}-(b+c)^{2}}{4}$
$=\frac{(a-c)(a+c+2 b)}{4}=(a-c) b=p^{\prime 2}-q^{\prime 2}$
29. The arithmetic mean of the nine numbers in the given set $\{9,99,999$, 999999999 \} is a 9 digit number N , all whose digits are distinct. The number N does not contain the digit
(A) 0
(B) 2
(C) 5
(D) 9

Key. A
Sol. $\quad N=\frac{1}{9}\{9,99,999$, $999999999\}=1+11+111+\ldots \ldots .+1111111111$

$$
=123456789
$$

(A)
30. The minimum value of the expression $\frac{9 x^{2} \sin ^{2} x+4}{x \sin x}$ for $x \square(0, \square)$ is
(A) $\frac{16}{3}$
(B) 6
(C) 12
(D) $\frac{8}{3}$

Key. C
Sol. $E=9 x \sin x+\frac{4}{x \sin x} \quad[$ note that $x \sin x>0$ in $(0,0)]$
$E=\left(3 \sqrt{x \sin x}-\frac{2}{\sqrt{x \sin x}}\right)^{2}+12$

$$
\left.\mathrm{E}_{\min }=12 \text { which occurs when } 3 \mathrm{x} \sin \mathrm{x}=2 \quad \square \mathrm{x} \sin \mathrm{x}=2 / 3\right]
$$

note that $x \sin x$ is continuous at $x=0$ and attains the value $\square / 2$ which is greater than $2 / 3$ at $x=\square / 2$, hence it must take the $2 / 3$ in $(0, \pi / 2)]$
31. There is a certain sequence of positive real numbers. Beginning from the third term, each term of the sequence is the sum of all the previous terms. The seventh term is equal to 1000 and the first term is equal to 1 . The second term of this sequence is equal to
(A) 246
(B) $\frac{123}{2}$
(C) $\frac{123}{4}$
(D) 124

Key. B
Sol. sequence is $t_{1}+t_{2}+t_{3}+t_{4}+\ldots \ldots .$.
$\mathrm{t}_{3}=\mathrm{t}_{1}+\mathrm{t}_{2} ; \mathrm{t}_{7}=1000$
$\mathrm{t}_{1}=1$
but $t_{7}=t_{1}+t_{2}+t_{3}+t_{4}+t_{5}+t_{6}$
$1000=2\left(t_{1}+t_{2}+t_{3}+t_{4}+t_{5}\right)$
$=4\left(t_{1}+t_{2}+t_{3}+t_{4}\right)$
$=8\left(t_{1}+t_{2}+t_{3}\right)$
$1000=16\left(t_{1}+t_{2}\right)$
$\mathrm{t}_{1}+\mathrm{t}_{2}=\quad \square \quad \mathrm{t}_{2}=-1=-1=$
32. If $\left(1+x+x^{2}\right)^{25}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots . .+a_{50} \cdot x^{50}$ then $a_{0}+a_{2}+a_{4}+\ldots . .+a_{50}$ is :
(A) even
(B) odd \& of the form $3 n$
(C) odd \& of the form ($3 \mathrm{n} \square 1$)
(D) odd \& of the form $(3 n+1)$

Key. A
Sol. putting $\mathrm{x}=1$ and $\square 1$ and adding

$$
\begin{aligned}
& \mathrm{a}_{0}+\mathrm{a}_{2}+\ldots \ldots .+\mathrm{a}_{50}== \\
& = \\
& ==2\left[13+{ }^{25} \mathrm{C}_{2}+\ldots \ldots .+{ }^{25} \mathrm{C}_{25} \cdot 2^{23}\right] \\
& \quad \text { even }
\end{aligned}
$$

33. The sum of the series $\left(1^{2}+1\right) \cdot 1!+\left(2^{2}+1\right) \cdot 2!+\left(3^{2}+1\right) \cdot 3!+\ldots .+\left(n^{2}+1\right) \cdot n!$ is
(A) $(\mathrm{n}+1) .(\mathrm{n}+2)$!
(B) $\mathrm{n} .(\mathrm{n}+1)$!
(C) $(\mathrm{n}+1) \cdot(\mathrm{n}+1)$!
(D) none of these

Key. B
Sol. $\quad T_{n}=[n(n+1) \square(n \square 1)] n!=n .(n+1)!\square(n \square 1) . n!$
Now put $\mathrm{n}=1,2,3, \ldots \ldots, \mathrm{n}$ and add
34. Find the sum of the infinite series $\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+\frac{1}{45}+\frac{1}{63}+\ldots$.
(A) $\frac{1}{3}$
(B) $\frac{1}{4}$
(C) $\frac{1}{5}$
(D) $\frac{2}{3}$

Key. A
Sol. $\mathrm{T}_{\mathrm{n}}==$
hence T_{n} using method of diff; $T_{n}==$

$$
\mathrm{S}_{\mathrm{n}}=\quad=\text { Ans. }
$$

35. The sequence $a_{1}, a_{2}, a_{3}, \ldots$. satisfies $a_{1}=19, a_{9}=99$, and for all $n \square 3$, a_{n} is the arithmetic mean of the first $n-1$ terms. Then a_{2} is equal to
(A) 179
(B) 99
(C) 79
(D) 59

Key. A
Sol. $n \square 3, a_{3}=$
$a_{4}==\quad \square \quad a_{4}=a_{3}$
$a_{5}==a_{4}$
$a_{3}=a_{4}=a_{5}=\ldots \ldots \ldots .=a_{9}=99$
put in equation (1)
$99=\quad \mathrm{a}_{2}=179$ Ans.
36. If a, b, c are in G.P. then $\frac{1}{b-a}, \frac{1}{2 b}, \frac{1}{b-c}$ are in
(A) A.P.
(B) G.P.
(C) H.P.
(D) none

Key. A
Sol. Let $a=x ; b=x r ; c=x r^{2}$
hence the number are , ,
now, =

$$
+==
$$

hence , , are in A.P.
37. Let $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots . ., \mathrm{d}_{\mathrm{k}}$ be all the distinct factors of a positive integer n including 1 and n. Suppose
$d_{1}+d_{2}+\ldots+d_{k}=72$, then the value of $\frac{1}{d_{1}}+\frac{1}{d_{2}}+\ldots \ldots \ldots \frac{1}{d_{k}}$
(A) $\frac{72}{\mathrm{nk}}$
(B) cannot be computed from the given information
(C) $\frac{72}{n}$
(D) None of these

Key. C
Sol. , ,.... are all distinct and each of these represents one of the number d_{1}, $\mathrm{d}_{2}, \ldots \ldots \ldots . \mathrm{d}_{\mathrm{k}}$.
$=$
38. If b is the arithmetic mean between a and $x ; b$ is the geometric mean between ' a ' and y ; ' b ' is the harmonic mean between a and $z,(a, b, x, y, z>0)$ then the value of $x y z$ is
(A) a^{3}
(B) b^{3}
(C) $\frac{\mathrm{b}^{3}(2 \mathrm{a}-\mathrm{b})}{2 \mathrm{~b}-\mathrm{a}}$
(D) $\frac{b^{3}(2 b-a)}{2 a-b}$

Key. D
39. The first term of an infinite geometric series is 2 and its sum be denoted by S. If $|S-2|<$ $1 / 10$ then the true set of the range of common ratio of the series is
(A) $\left(\frac{1}{10}, \frac{1}{5}\right)$
(B) $\left(-\frac{1}{2}, \frac{1}{2}\right)-\{0\}$
(C) $\left(-\frac{1}{19}, \frac{1}{20}\right)-\{0\}$
(D) $\left(-\frac{1}{19}, \frac{1}{21}\right)-\{0\}$

Key. D
40. The number of real values of the parameter ' k ' for which $\left(\log _{16} x\right)^{2}-\log _{16} x+\log _{16} k=0$ will have unique solution
A) 2
B) 1
C) 4
D) 5

Key. B
Sol. For exactly one solution $4 \log _{16} k=1, k>0 \Rightarrow k=2$
41. If $3^{37}=80 \lambda+k$, where $\lambda \in N$, then ' k ' is
A) 78
B) 3
C) 2
D) 9

Key. B
Sol. $\quad 3^{37}=3^{4 \times 9} \cdot 3=3(81)^{9}=3(80+1)^{9}=3\left({ }^{9} C_{0} 80^{9}+{ }^{9} C_{1} 80^{8}+\ldots \ldots+{ }^{9} C_{9}\right)$.
Hence remainder is 3
42. The sum of first ' n ' terms of the series $\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\ldots .$. is
A) 2^{n-1}
B) $1-2^{-n}$
C) $2^{-n}-n+1$
D) $2^{-n}+n-1$

Key. D
Sol. $S=\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\ldots \ldots \ldots$ to ' n 'terms

$$
\begin{aligned}
& S=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+\ldots \ldots . . \text { to ' } n \text { ' terms } \\
& =(1+1+1+\ldots \ldots)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \ldots\right)=n-\frac{1}{2} \frac{1-\left(\frac{1}{2}\right)^{n}}{2-\frac{1}{2}}=n-\left(1-\frac{1}{2^{n}}\right)=2^{-n}+n-1
\end{aligned}
$$

43. The sum to n terms of the series $\frac{1}{\lfloor 1}\left(\frac{1}{2}\right)+\frac{1.3}{\lfloor 2}\left(\frac{1}{2}\right)^{2}+\frac{1.3 .5}{\lfloor 3}\left(\frac{1}{2}\right)^{3}+\ldots .$. upto n terms is
(A) $\frac{1.3 .5 \ldots . .(2 n-1)(2 n+1)}{2^{n}\lfloor n}-1$
(B) $1-\frac{1 \cdot 3 \cdot 5 \ldots \ldots(2 \mathrm{n}-1)}{\underline{\mathrm{n}\lfloor\mathrm{n}}}$
(C) $1-\frac{1 \cdot 3 \cdot 5 \ldots \cdot(2 n-3)}{2^{n-1} n-1}$
(D) $\frac{1.3 .5 \ldots \ldots(2 n-3)}{2^{n-1} n-1}$

Key. A

$$
\begin{aligned}
& \text { Sol. } t_{n+1}=\frac{t_{n} \times(2 n+1)}{(n+1)} \times \frac{1}{2} \\
& (2 n+2) t_{n+1}=(n+1) t_{n} \\
& (2 n+3) t_{n+1}-(2 n+1) t_{n}=t_{n+1}
\end{aligned}
$$

Put $\mathrm{n}=1$
$5 t_{2}-3 \mathrm{t}_{1}=\mathrm{t}_{2}$
$\mathrm{n}=2, \quad 7 \mathrm{t}_{3}-5 \mathrm{t}_{2}=\mathrm{t}_{3}$
$(2 n+1) t_{n}-(2 n-1) t_{n-1}=t_{n}$
$(2 n+1) t_{n}-2 t_{1}=S$

$$
S=\frac{1.3 .5 . \ldots . .(2 n+1)}{\underline{n} \times 2^{n}}-1
$$

44. The sequence $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots, \mathrm{x}_{50}\right\}$ has the property that for each $\mathrm{k}, \mathrm{x}_{\mathrm{k}}$ is k less than the sum of other 49 numbers. The value of $96 x_{20}$ is
a) 300
b) 315
c) 1024 d$) 0$

Key: B

Sol: We have $x_{k}+k=S-x_{k}$ where $x_{1}+x_{2}+\ldots .+x_{k}=s$

$$
\begin{array}{ll}
\Rightarrow & 2 \mathrm{x}_{\mathrm{k}}+\mathrm{k}=\mathrm{S} \\
\Rightarrow & 2(\mathrm{~S})+\frac{50.51}{2}=50 \mathrm{~S} \\
\Rightarrow & 48(\mathrm{~S})=25.51 \\
\Rightarrow & \mathrm{x}_{20}=\left(\frac{25.51}{48}-20\right) \frac{1}{2}=\frac{315}{96} .
\end{array}
$$

45. If the first and $(2 n-1)^{\text {th }}$ terms of an A.P; a G.P. and H.P. are equal and their $n^{\text {th }}$ terms are p, q and s respectively, then which of the following options is/are correct?
a) $p \geq q \geq s$
b) $p+s=q$
c) $\mathrm{ps}=\mathrm{q}^{2}$
d) $\mathrm{p}=\mathrm{q}=\mathrm{s}$

KEY: C
HINT: Let the first term be a and $(2 n-1)^{\text {th }}$ term be b then

$$
\begin{aligned}
& \mathrm{p}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=\mathrm{a}+(\mathrm{n}-1)\left(\frac{\mathrm{b}-\mathrm{a}}{2 \mathrm{n}-2}\right)=\frac{\mathrm{a}+\mathrm{b}}{2} \\
& \mathrm{q}=\mathrm{a} \cdot \mathrm{r}^{\mathrm{n}-1}=\mathrm{a}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)^{\frac{\mathrm{n}-1}{2 \mathrm{n}-2}}=\mathrm{a}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)^{\frac{1}{2}}=\sqrt{\mathrm{ab}} \\
& \frac{1}{\mathrm{~s}}=\frac{1}{\mathrm{a}}+(\mathrm{n}-1)\left(\frac{\frac{1}{\mathrm{~b}}-\frac{1}{\mathrm{a}}}{2 \mathrm{n}-2}\right)=\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}} \\
& 2
\end{aligned}
$$

$\mathrm{p}, \mathrm{q}, \mathrm{r}$ are the A.M, G.M, H.M of a, b.

$$
\mathrm{p} \geq \mathrm{q} \geq \mathrm{r} \text { and } \mathrm{ps}=\mathrm{q}^{2}
$$

46. If $a_{1}, a_{2}, a_{3}, \ldots a_{4001}$ are terms of an AP such that $\frac{1}{a_{1} a_{2}}+\frac{1}{a_{2} a_{3}}+\ldots .+\frac{1}{a_{4000} a_{4001}}=10$ and $\mathrm{a}_{2}+\mathrm{a}_{4000}=50$ then $\left|\mathrm{a}_{1}-\mathrm{a}_{4001}\right|$ is equal to
(A) 20
(B) 30
(C) 40
(D) 10

KEY : B
HINT: $\frac{4000}{\mathrm{a}_{1} \mathrm{a}_{4001}}=10 \Rightarrow \mathrm{a}_{1} \mathrm{a}_{4001}=400$
$a_{1}+a_{4001}=50$
$\left(a_{1}-a_{4001}\right)^{2}=\left(a_{1}+a_{4001}\right)^{2}-4 a_{1} a_{4001}$
$\Rightarrow\left|\mathrm{a}_{1}-\mathrm{a}_{4001}\right|=30$
47. Statement-1: The series for which the sum to n terms $(n \geq 1), S_{n}$ is given by $S_{n}=3 n^{2}+4 n+$ 5 is an arithmetic progression (AP).
Statement-2 : The sum to n terms of an AP having non-zero common difference is a quadratic in n .
KEY : D

HINT: CONCEPTUAL

48. The fourth and fifth term of a sequence $\left\{t_{n}\right\}_{n \geq 1}$ are 4 and 5 respectively and the $\mathrm{n}^{\text {th }}$ term is given as $t_{n}=2 t_{n-1}-t_{n-2}, n \geq 3(n \in N)$. Then the sum to first 2009 terms is
(A) 2019045
(B) 2013021
(C) 2017036
(D) 2018040

KEY : A
HINT: $t_{n}=2 t_{n-1}-t_{n-2}$
$t_{n}-t_{n-1}=t_{n-1}-t_{n-2}$
$a_{n}=t_{n}-t_{n-1}, n \geq 3$
WE HAVE $a_{n}=a_{n-1}$
THUS $\left\{a_{n}\right\}$ IS A CONSTANT SEQUENCE
$a_{5}=t_{5}-t_{4}=1$
NOW $a_{4}=t_{4}-t_{3} \Rightarrow 1=4-t_{3} \Rightarrow t_{3}=3$
SIMILARLY $t_{2}=2, t_{1}=1$
THUS $\left\{t_{n}\right\}$ IS AN A.P WITH $r=1$ AND COMMON DIFFERENCE 1
$\sum_{n=1}^{2009} t_{n}=\frac{2009 \times 2010}{2}=2003 \times 1005=2019045$
49. If $x^{6}=2 x^{3}-1$ and x is not real then $\sum_{r=1}^{50}\left(x^{r}+x^{2 r}\right)^{3}=$
A) 100
B) 256
C) 76
D) 94

KEY: D
HINT : $x^{3}=1 \Rightarrow x=\omega, \omega^{2} \quad x^{r}+x^{2 r}=\left\{\begin{array}{l}2 \text { if } r \text { is a multiple of } 3 \\ -1 \text { if } r \text { is not a multiple of } 3\end{array}\right.$
50. If a, b, c are in A.P. b, c, d are in G.P. and c, d, e are in H.P. then a, c, e are in
(A) AP
(B) GP
(C) HP
(D) none

KEY : B
HINT : $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in $\mathrm{AP} \Rightarrow a+c=2 b$;
$\mathrm{b}, \mathrm{c}, \mathrm{d}$ are in $\mathrm{GP} \Rightarrow c^{2}=b d$
$\mathrm{c}, \mathrm{d}, \mathrm{e}$ are in $\mathrm{HP} \Rightarrow \frac{2 c e}{c+e}=d$
(1) $\times(3) \Rightarrow \frac{(a+c) c e}{c+e}=b d=c^{2}$
$\therefore(a+c) e=c(c+e)$
$a e=c^{2} \Rightarrow a, c, e$ are in G.P
51. If $\mathrm{a}_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \frac{\left(\log _{\mathrm{e}} 10\right)^{\mathrm{n}}}{\mathrm{k}!(\mathrm{n}-\mathrm{k})!}$ for $\mathrm{n} \geq 0$ then $\mathrm{a}_{0}+\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}+\ldots$ upto ∞ equal is
(A) 10
(B) 10^{2}
(C) 10^{3}
(D) 10^{4}

Key: B
Hint: $a_{n}=\frac{\left(\log _{\mathrm{e}} 10\right)^{\mathrm{n}}}{\mathrm{n}!} \sum_{\mathrm{k}=0}^{\mathrm{n}} \frac{\mathrm{n}!}{\mathrm{k}!(\mathrm{n}-\mathrm{k})!}=\frac{\left(\log _{\mathrm{e}} 10\right)^{\mathrm{n}}}{\mathrm{n}!}\left[2^{\mathrm{n}}\right]=\frac{\left(2 \log _{\mathrm{e}} 10\right)^{\mathrm{n}}}{\mathrm{n}!}$
Thus, $a_{0}+a_{1}+a_{2}+\ldots$ upto infinity is
$=\sum_{n=0}^{\infty} \frac{\left(2 \log _{e} 10\right)^{n}}{n!}=e^{2 \log _{e} 10}=100$
\therefore (B) is the correct answer.
52. If a_{1} is the greatest value of $\mathrm{f}(\mathrm{x})$; where $\mathrm{f}(\mathrm{x})=\left(\frac{1}{2+[\sin \mathrm{x}]}\right)$ (where [.] denotes greatest integer function) and $a_{n+1}=\frac{(-1)^{n+2}}{(n+1)}+a_{n}$, then $\lim _{n \rightarrow \infty}\left(a_{n}\right)$ is
(A) 1
(B) e^{2}
(C) $\ln 2$
(D) $\ln 3$

Key: C
Hint: $\quad a_{1}=1$
$\Rightarrow \mathrm{a}_{2}=1-\frac{1}{2}$
$\Rightarrow a_{3}=1-\frac{1}{2}+\frac{1}{3}$
$\mathrm{a}_{\infty}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+$
$=\ln 2$
53. The sequence $\left\{\mathrm{x}_{\mathrm{k}}\right\}$ is defined by $\mathrm{x}_{\mathrm{k}+1}=\mathrm{x}_{\mathrm{k}}^{2}+\mathrm{x}_{\mathrm{k}}$ and $\mathrm{x}_{1}=\frac{1}{2}$. Then $\left[\frac{1}{\mathrm{x}_{1}+1}+\frac{1}{\mathrm{x}_{2}+1}+\ldots+\frac{1}{\mathrm{x}_{100}+1}\right]$ (where [.] denotes the greatest integer function) is equal to
(A) 0
(B) 2
(C) 4
(D) 1

Key: D
Hint: $\quad \frac{1}{\mathrm{x}_{\mathrm{k}+1}}=\frac{1}{\mathrm{x}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{k}}+1\right)}=\frac{1}{\mathrm{x}_{\mathrm{k}}}-\frac{1}{\mathrm{x}_{\mathrm{k}}+1} \Rightarrow \frac{1}{\mathrm{x}_{\mathrm{k}}+1}=\frac{1}{\mathrm{x}_{\mathrm{k}}}-\frac{1}{\mathrm{x}_{\mathrm{k}-1}}$
$\therefore \frac{1}{\mathrm{x}_{1}+1}=\frac{1}{\mathrm{x}_{2}+1}+\ldots+\frac{1}{\mathrm{x}_{100}+1}=\frac{1}{\mathrm{x}_{1}}-\frac{1}{\mathrm{x}_{101}}$
As $0<\frac{1}{x_{101}}<1$
$\therefore\left[\frac{1}{\mathrm{x}_{1}+1}+\frac{1}{\mathrm{x}_{2}+1}+\ldots+\frac{1}{\mathrm{x}_{100}+1}\right]=1$
54. If $\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{r}}=\frac{1}{6} n\left(2 \mathrm{n}^{2}+9 \mathrm{n}+13\right)$, then $\sum_{\mathrm{r}=1}^{\mathrm{n}} \sqrt{\mathrm{t}_{\mathrm{r}}}$ equals
(a) $\frac{1}{2} n(n+1)$
(b) $\frac{1}{2} \mathrm{n}(\mathrm{n}+2)$
(c) $\frac{1}{2} n(\mathrm{n}+3)$
(d) $\frac{1}{2} n(n+5)$

Key: c
Hint: We have $\mathrm{t}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}-1} \quad \forall \mathrm{n} \geq 2$

$$
\begin{aligned}
\therefore & \mathrm{t}_{\mathrm{n}}=\frac{1}{6}\left[2\left(\mathrm{n}^{3}-(\mathrm{n}-1)^{3}\right)+9\left(\mathrm{n}^{2}-(\mathrm{n}-1)^{2}\right)+13(\mathrm{n}-\mathrm{n}+1)\right] \\
& =\frac{1}{6}\left[6 \mathrm{n}^{2}-6 \mathrm{n}+2+9(2 \mathrm{n}-1)+13\right] \\
& =\frac{1}{6}\left(6 \mathrm{n}^{2}+12 \mathrm{n}+6\right)=(\mathrm{n}+1)^{2} \\
\therefore & \sum_{\mathrm{r}=1}^{\mathrm{n}} \sqrt{\mathrm{t}_{\mathrm{r}}}=\sum_{\mathrm{r}=1}^{\mathrm{n}}(\mathrm{r}+1)=\frac{1}{2}(\mathrm{n}+1)(\mathrm{n}+2)-1=\frac{1}{2} \mathrm{n}(\mathrm{n}+3)
\end{aligned}
$$

55. $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be twoo sequences given by $a_{n}=(x)^{1 / 2^{n}}+(y)^{1 / 2^{n}}$ and $b_{n}=(x)^{1 / 2^{n}}-(y)^{1 / 2^{n}}$ for all $n \in N$, then $a_{1} a_{2} a_{3} \ldots a_{n}$ is equal to
(A) $x-y$
(B) $\frac{x+y}{b_{n}}$
(C) $\frac{x-y}{b_{n}}$
(D) $\frac{x y}{b_{n}}$

Key : c
Sol : $a_{1} a_{2} \ldots . A_{n}=b_{n} \frac{a_{1} a_{2} \ldots a_{n}}{b_{n}}$

$$
\begin{aligned}
& =a_{n} b_{n} \frac{\left(a_{1} a_{2} \ldots a_{n-1}\right)}{b_{n}} \\
& =\left(x^{\frac{1}{2^{n-1}}}-y^{\frac{1}{2^{n-1}}}\right) \frac{\left(a_{1} a_{2} \ldots a_{n-1}\right)}{b_{n}}=a_{n-1} b_{n-1} \frac{\left(a_{1} a_{2} \ldots a_{n-2}\right)}{b_{n}} \\
& =\frac{a_{1} b_{1}}{b_{n}}=\frac{(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})}{b_{n}}=\frac{x-y}{b_{n}}
\end{aligned}
$$

56. The sum of the series $\frac{9}{5^{2} \cdot 2 \cdot 1}+\frac{13}{5^{3} \cdot 3 \cdot 2}+\frac{17}{5^{4} \cdot 4 \cdot 3}+---$ upto infinity
(A) 1
(B) $\frac{9}{5}$
(C) $\frac{1}{5}$
(D) $\frac{2}{5}$

Key. C
Sol. $\operatorname{Tr}=\frac{4 r+1}{5^{r} r(r-1)}, r \geq 2$

$$
\begin{aligned}
& \frac{5 r-(r-1)}{5^{r} r(r-1)}=\frac{1}{5^{r-1}(r-1)}-\frac{1}{5^{r} r} \\
& \sum_{r=2}^{\infty} T_{r}=\left(\left(\frac{1}{5^{1} \cdot 1}-\frac{1}{5^{2} \cdot 2}\right)+\left(\frac{1}{5^{2} \cdot 2}-\frac{1}{5^{3} \cdot 3}\right)+\left(\frac{1}{5^{3} \cdot 3}-\frac{1}{5^{4} \cdot 4}\right)+---\infty\right) \\
& \quad=\frac{1}{5}
\end{aligned}
$$

57. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are distinct integers in AP such that $d=a^{2}+b^{2}+c^{2}$ then $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$ is
(A) 0
(B) 1
(C) 2
(D) None

Key. C
Sol. $d=a^{2}+b^{2}+c^{2} \Rightarrow a+3 t=(a+t)^{2}+a^{2}+(a+2 t)^{2}$
$5 t^{2}+3(2 a-1) t+3 a^{2}-a=0$
$D \geq 0 \Rightarrow 24 a^{2}+16 a-9 \leq 0$
$\Rightarrow-\frac{1}{3}-\frac{\sqrt{70}}{2}<a<-\frac{1}{3}+\frac{\sqrt{70}}{2}$
$\Rightarrow a=-1,0$
$a=0, t=0, \frac{3}{5}$
$a=-1, t=1, \frac{4}{5}$
$\Rightarrow t=1$
$a+b+c+d=2$
58. If $b+c, c+a, a+b$ are in H.P then show that a^{2}, b^{2}, c^{2} are in
(a) A.P
(b) G.P
(c) H.P
(d) A.G.P

Key. A
Sol. $\frac{1}{c+a}-\frac{1}{b+c}=\frac{1}{a+b}-\frac{1}{c+a}$
59. Sum of first n terms of a sequence is given by $3 S_{n}=T_{n}^{2}+3 T_{n}-2,\left(T_{n}>0\right)$ where T_{n} is the nth term of sequence, then the value of T_{2}^{2} is
A) $2-\sqrt{2}$
B) $2+\sqrt{2}$
C) $2+3 \sqrt{2}$
D) $3+2 \sqrt{2}$

Key. C
Sol. $\quad S_{1}=\frac{T_{1}^{2}+3 T_{1}-2}{3}=T_{1} \Rightarrow T_{1}^{2}=2$
$S_{2}-S_{1}=\frac{T_{2}^{2}-T_{1}^{2}+3\left(T_{2}-T_{1}\right)}{3}=T_{2}$
$T_{2}^{2}-T_{1}^{2}+3\left(T_{2}-T_{1}\right)=3 T_{2}$
$\Rightarrow T_{2}^{2}=T_{1}^{2}+3 T_{1}=2+3 \sqrt{2}$
60. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are three distinct numbers such that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. and $\mathrm{b}-\mathrm{a}, \mathrm{c}-\mathrm{b}, \mathrm{a}$ are in G.P., then $\mathrm{a}: \mathrm{b}: \mathrm{c}$ are in
(A) $2: 3: 4$
(B) $3: 4: 5$
(C) $1: 3: 5$
(D) $1: 2: 3$

Key. D
Sol. $\quad \mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. $\quad \Rightarrow 2 \mathrm{~b}=\mathrm{a}+\mathrm{c}$
$(\mathrm{b}-\mathrm{a}),(\mathrm{c}-\mathrm{b}), \mathrm{a}$ are in G.P. $\quad \Rightarrow(\mathrm{c}-\mathrm{b})^{2}=\mathrm{a}(\mathrm{b}-\mathrm{a})$

$$
\Rightarrow \mathrm{c}-\mathrm{a}=\mathrm{a}(\mathrm{~b}-\mathrm{a})
$$

from (1) and (2)

$$
\begin{equation*}
\frac{\mathrm{a}}{1}=\frac{\mathrm{b}}{2}=\frac{\mathrm{c}}{3} \tag{2}
\end{equation*}
$$

61. The sum to n terms of the series
$\frac{1}{\lfloor 1}\left(\frac{1}{2}\right)+\frac{1.3}{\underline{2}}\left(\frac{1}{2}\right)^{2}+\frac{1 \cdot 3 \cdot 5}{\lfloor 3}\left(\frac{1}{2}\right)^{3}+\ldots .$. upto n terms is
(A) $\frac{1.3 \cdot 5 \ldots .(2 n-1)(2 n+1)}{2^{n}\lfloor n}-1$
(B) $1-\frac{1.3 .5 \ldots \ldots(2 \mathrm{n}-1)}{\lfloor\mathrm{n}\lfloor\mathrm{n}}$
(C) $1-\frac{1.3 .5 \ldots . .(2 \mathrm{n}-3)}{2^{\mathrm{n-1}} \mathrm{n}-1}$
(D) $\frac{1.3 .5 \ldots . .(2 \mathrm{n}-3)}{2^{\mathrm{n}-1} \mathrm{n}-1}$

Key. A
Sol. $\quad \mathrm{t}_{\mathrm{n}+1}=\frac{\mathrm{t}_{\mathrm{n}} \times(2 \mathrm{n}+1)}{(\mathrm{n}+1)} \times \frac{1}{2}$
$(2 n+2) \mathrm{t}_{\mathrm{n}+1}=(\mathrm{n}+1) \mathrm{t}_{\mathrm{n}}$
$(2 n+3) t_{n+1}-(2 n+1) t_{n}=t_{n+1}$
Put $\mathrm{n}=1$
$5 \mathrm{t}_{2}-3 \mathrm{t}_{1}=\mathrm{t}_{2}$
$\mathrm{n}=2, \quad 7 \mathrm{t}_{3}-5 \mathrm{t}_{2}=\mathrm{t}_{3}$
$(2 n+1) \mathrm{t}_{\mathrm{n}}-(2 \mathrm{n}-1) \mathrm{t}_{\mathrm{n}-1}=\mathrm{t}_{\mathrm{n}}$
$(2 n+1) t_{n}-2 t_{1}=S$
$\mathrm{S}=\frac{1.3 .5 \ldots \ldots(2 \mathrm{n}+1)}{\underline{\mathrm{n} \times 2^{\mathrm{n}}}-1}$
62. The sum to n terms of the series
$\frac{1}{\underline{1}}\left(\frac{1}{2}\right)+\frac{1.3}{\lfloor 2}\left(\frac{1}{2}\right)^{2}+\frac{1.3 .5}{\underline{3}}\left(\frac{1}{2}\right)^{3}+\ldots .$. upto n terms is
(A) $\frac{1.3 \cdot 5 \ldots . .(2 n-1)(2 n+1)}{2^{n}\lfloor n}-1$
(B) $1-\frac{1.3 \cdot 5 \ldots \ldots(2 \mathrm{n}-1)}{\lfloor\mathrm{n}\lfloor\mathrm{n}}$
(C) $1-\frac{1.3 \cdot 5 \ldots . .(2 n-3)}{2^{n-1} n-1}$
(D) $\frac{1.3 .5 \ldots \ldots .(2 \mathrm{n}-3)}{2^{\mathrm{n-1}}\lfloor\mathrm{n}-1}$

Key. A
Sol. $\quad t_{n+1}=\frac{t_{n} \times(2 n+1)}{(n+1)} \times \frac{1}{2}$
$(2 n+2) \mathrm{t}_{\mathrm{n}+1}=(\mathrm{n}+1) \mathrm{t}_{\mathrm{n}}$
$(2 n+3) t_{n+1}-(2 n+1) t_{n}=t_{n+1}$
Put $\mathrm{n}=1$
$5 \mathrm{t}_{2}-3 \mathrm{t}_{1}=\mathrm{t}_{2}$
$\mathrm{n}=2, \quad 7 \mathrm{t}_{3}-5 \mathrm{t}_{2}=\mathrm{t}_{3}$
$(2 n+1) t_{n}-(2 n-1) t_{n-1}=t_{n}$
$(2 n+1) t_{n}-2 t_{1}=S$
$S=\frac{1.3 .5 \ldots \ldots(2 \mathrm{n}+1)}{\underline{\mathrm{n}} \times 2^{\mathrm{n}}}-1$
63. If the ratio of the sum to ' n ' terms of two A.P's is $(5 n+3):(3 n+4)$, then the ratio of their 17 th terms is
a) $172 ; 99$
b) $168: 103$
c) $175: 99$
d) 171:103

Key. B
Sol. $\frac{\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{1}+(n-1) d_{2}\right]}=\frac{5 n+3}{3 n+4} \Rightarrow \frac{a_{1}+\left(\frac{n-1}{2}\right) d_{1}}{a_{1}+\left(\frac{n-1}{2}\right) d_{2}}=\frac{5 n+3}{3 n+4}$ put $\frac{n-1}{2}=16$
64. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in G..P and $a^{x}=b^{y}=c^{z}$, then
A) $\log _{b} a=\log _{a} c$
b) $\log _{a}^{b}=\log _{a} c$
C) $\log _{b} a=\log _{c} b$
D) None

Key. C
Sol. $\quad a^{n}=b^{y}=c^{z}=k ., y^{2}=x z \Rightarrow\left(\operatorname{lol}_{b} k\right)^{2}=\log _{a} k,=\log _{a} k \Rightarrow(\log b)^{2}=\log a \cdot \log c$
65. If the pth, qth, r th terms of an A.P are in G.P, then common ratio of G..P is
a) $\frac{p r}{q^{2}}$
b) $\frac{r}{p}$
c) $\frac{q+r}{p+q}$
d) $\frac{q-r}{p-q}$

Key. D
Sol. $\quad \begin{aligned} & a+(p-1) d=k \quad \text { Find (2) (1) (2) } \\ & a+(q-1) d=k r \\ & a+(r-1) d=k r^{2}\end{aligned}$
66. If $\mathrm{H}_{1}, \mathrm{H}_{2} \ldots \ldots \ldots ., \mathrm{H}_{20}$ be 20 harmonic means between 2 and 3 , then $\frac{H_{1}+2}{H_{1}-2}+\frac{H_{20}+3}{H_{20}-3}=$
a) 20
b) 21
c) 40
d) 38

Key. C
Sol. $\quad H_{1}=\frac{63}{31}, H_{20}=\frac{126}{43}$
67. If $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+$ \qquad to $\infty=\frac{\pi^{2}}{6}$, then $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+$.

c)

a) $\frac{\pi^{2}}{8}$
b) $\frac{\pi^{2}}{12}$
Sol. $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots . .=\frac{\pi^{2}}{6}-\frac{1}{2^{2}}\left(\frac{\pi^{2}}{6}\right)=\frac{\pi^{2}}{8}$
c) $\frac{\pi^{2}}{3}$
d) $\frac{\pi^{2}}{2}$

Key. A
68. The 20th term of $2,9,20,35,54$, .
a) 819
b) 820
c) 1009
d) 1010

Key. A
Sol. $\quad t_{n}=2+(7+11+15 \ldots \ldots(n-1)$ terms $)$
69. If $x>1, y>1, z>1$ and x, y, z are in G.P. then $\left(\ln x^{2}\right)^{-1},(\ln x y)^{-1},(\ln x z)^{-1}$ are in
(A) A.P.
(B) G.P.
(C) H.P.
(D) none of these

Key. C
Sol. $\quad x>1, y>1, z>1$
$x, y, z \rightarrow$ G.P. $\Rightarrow \ln x, \ln y, \ln z$ are in A.P. $2 \ln x, \ln x y, \ln x z$ are in A.P.
$\left(\ln x^{2}\right)^{-1},(\mathrm{inxy})^{-1},(\ln x z)^{-1}$ are in H.P.
70. If $\mathrm{S}_{\mathrm{n}}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots . .+\frac{1}{\mathrm{n}}$ and $\mathrm{n}>2$, then S_{n} would always be
(A) more than $n(n+1)^{\frac{1}{n}}-n$
(B) less than $n(n+1)^{1 / n}-n$
(C) equal to $n(n+1)^{\frac{1}{n}}-n$
(D) greater than or equal to $\frac{n(n+1)^{\frac{1}{n}}}{(n+5)}$

Key. A
Sol. $\frac{(1+1)+\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+\ldots . .+\left(1+\frac{1}{n}\right)}{n}>\left(2 \times \frac{3}{2} \times \frac{4}{3} \times \frac{5}{4} \times \ldots . \times \frac{n+1}{n}\right)^{1 / n}$

$$
\Rightarrow \frac{\mathrm{n}+\mathrm{S}_{\mathrm{n}}}{\mathrm{n}}>(\mathrm{n}+1)^{1 / \mathrm{n}} \Rightarrow \mathrm{~S}_{\mathrm{n}}>\mathrm{n}(\mathrm{n}+1)^{1 / \mathrm{n}}-\mathrm{n}
$$

71. If a,b,c are in AP, then the sum of the coefficients of $\left\{1+\left(a x^{2}-2 b x+c\right)^{2}\right\}^{1973}$ is
a) -2
b) -1
c) 0
d) 1

Key. D
Sol. Q a, b, c are in A.P.
$\Rightarrow 2 b=a+c$
$\Rightarrow a-2 b+c=0$
Putting $\mathrm{x}=1$
Required sum $=(1+a-2 b+c)^{1973}=(1+0)^{1973}=1$
72. $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences given by $a_{n}=(x)^{1 / 2^{n}}+(y)^{1 / 2^{n}}$ and $b_{n}=(x)^{1 / 2^{n}}-(y)^{1 / 2^{n}}$ for all $n \in N$, then $a_{1} a_{2} a_{3} \ldots a_{n}$ is equal to
(A) $x-y$
(B) $\frac{x+y}{b_{n}}$
(C) $\frac{x-y}{b_{n}}$
(D) $\frac{x y}{b_{n}}$

Key. C
Sol. $\quad a_{1} a_{2} \ldots a_{n}=b_{n} \frac{a_{1} a_{2} \ldots a_{n}}{b_{n}}$

$$
=a_{n} b_{n} \frac{\left(a_{1} a_{2} \ldots a_{n-1}\right)}{b_{n}}
$$

$$
=\left(x^{\frac{1}{2^{n-1}}}-y^{\frac{1}{2^{n-1}}}\right) \frac{\left(a_{1} a_{2} \ldots a_{n-1}\right)}{b_{n}}=a_{n-1} b_{n-1} \frac{\left(a_{1} a_{2} \ldots a_{n-2}\right)}{b_{n}}
$$

$$
=\frac{\mathrm{a}_{1} \mathrm{~b}_{1}}{\mathrm{~b}_{\mathrm{n}}}=\frac{(\sqrt{\mathrm{x}}+\sqrt{\mathrm{y}})(\sqrt{\mathrm{x}}-\sqrt{\mathrm{y}})}{\mathrm{b}_{\mathrm{n}}}=\frac{\mathrm{x}-\mathrm{y}}{\mathrm{~b}_{\mathrm{n}}}
$$

73. $\frac{1}{2}-\frac{1}{2.2^{2}}+\frac{1}{3.2^{3}}-\frac{1}{4.2^{4}}+\ldots \ldots .=$
1) $\frac{1}{4}$
2) $\log _{e}\left(\frac{3}{4}\right)$
3) $\log _{e}\left(\frac{3}{2}\right)$
4) $\log _{e}\left(\frac{2}{3}\right)$

Key. 3
Sol. $\quad \log _{e}\left(1+\frac{1}{2}\right)=\log _{e} \frac{3}{2}$
74. The ratio of sum of first three terms of a G.P. to the sum of first six terms is $64: 91$, the common ratio of G.P. is

1. $\frac{1}{4}$
2. $\frac{3}{4}$
3. $\frac{5}{4}$
4. $\frac{7}{4}$

Key. 2
Sol. Given $\frac{S_{3}}{S_{6}}=\frac{64}{91}=\frac{a\left(r^{3}-1\right)}{a\left(r^{6}-1\right)}$

$$
\begin{aligned}
& \Rightarrow \frac{\left(r^{3}-1\right)}{\left(r^{3}+1\right)\left(r^{3}-1\right)}=\frac{64}{91} \\
& \Rightarrow r^{3}=\frac{27}{64} \quad \therefore \quad r=\frac{3}{4}
\end{aligned}
$$

75. Sum of the series $3+5+9+17+33+\ldots$. .to n terms is
76. $2^{n+1}-n-2$
77. $2^{n+1}+n-2$
78. $2^{n}+n-2$
79. $2^{n+1}-n+2$

Key. 2
Sol. $S_{n}=3+5+9+17+33+\ldots \ldots$.

$$
\begin{aligned}
& =(2+1)+\left(2^{2}+1\right)\left(2^{3}+1\right)+\left(2^{4}+1\right)+\ldots \\
& =\left(2+2^{2}+2^{3}+2^{4}+\ldots . . n \text { terms }\right)+n \\
& =2\left(2^{n}-1\right)+n=2^{n+1}+n-2 \\
& =2^{n+1}+n-2
\end{aligned}
$$

76. If one A.M. A and two G.M.s p and q be inserted between two numbers a and b, then which of the following is hold good
77. $a^{3}+b^{3}=2 A p q$
78. $p^{3}+q^{3}=2 A p q$
79. $a^{3}+b^{3}=2 A a b$
80. None of these.

Key. 2
Sol. Given $a+b=2 A$
And $a, p, q, \quad b \in$ G.P.
$\therefore \quad p^{2}=a q$ and $q^{2}=p b$
$\Rightarrow p^{3}=a p q$ and $q^{3}=b p q$
by adding we get

$$
\begin{aligned}
& p^{3}+q^{3}=a p q+b p q \\
& \quad=p q(a+b)=2 A p q
\end{aligned}
$$

77. If fourth term of a G.P. is 3 , the product of the first seven terms is
78. 3^{4}
79. 3^{7}
80. 7^{4}
81. 4^{7}

Key. 2
Sol. As the number of terms are odd (7) let r, be the common ratio

So terms can be taken as $\frac{a}{r^{3}}, \frac{a}{r^{2}}, \frac{a}{r}, a, a r, a r^{2}, a r^{3}$
$\therefore \quad$ Product of the term $=a^{7}$
$=3^{7}$ as $\left(t_{4}=a=3\right)$
78. The number of divisors of $6912,52480,32000$ are in

1. A.P Only
2. G.P. Only
3. A.P. , G.P.\& H.P.
4. None of these

Key. 3
Sol. If n is a+ ve number.
$n=P_{1}^{k_{1}} \cdot P_{2}^{k_{2}} \ldots P_{r}^{k_{r}}$
(where $p_{1}, p_{2}, p_{3}, \ldots . p_{r}$ are prime number) then number of divisors of n are

$$
=\left(k_{1}+1\right)\left(k_{2}+1\right) \ldots\left(k_{r}+1\right)
$$

\therefore Number of prime factor of 6912 are $=2^{8} .3^{3}$ so no. of divisors $=9 \times 4=36$

Prime factors of 52,400 are $=3^{8} \times 2^{3}$
\therefore No. of divisors $=9 \times 4=36$

Prime factors of 32,000 are $=5^{3} \times 2^{8}$
\therefore No. of divisors $=9 \times 4=36$

Now each number having same number of divisors i.e., $36,36,36$

Each and every term is constant \& constant sequence is always in A.P.\& G.P. both as common difference is 0 and common ratio is 1 .
79. If $1, \log _{81}\left(3^{x}+48\right), \log _{9}\left(3^{x}-\frac{8}{3}\right)$ are in A.P., then the value of x equals

1. 9
2.6
3.2
2. 4

Key. 3
Sol. Given $1, \log _{9} 2\left(3^{x}+48\right), \log _{9}\left(3^{x}-8 / 3\right), \in$ A.P.

$$
\begin{aligned}
& \Rightarrow \log _{9} 9, \frac{1}{2} \log _{9}\left(3^{x}+48\right), \log _{9}\left(3^{x}-8 / 3\right) \in \text { A.P. } \\
& \Rightarrow 9,\left(3^{x}+48\right)^{1 / 2}, 3^{x}-8 / 3 \in \text { G.P. } \quad(\text { By concept }) \\
& \Rightarrow \log a, \log b, \log c \in \text { A.P. }
\end{aligned}
$$

$\therefore a, b, c \in$ G.P. $\quad \therefore 3^{x}+48=9\left(3^{x}-8 / 3\right)$
$8.3^{x}=72$
$3^{x}=9,3^{x}=3^{2}, \quad x=2$.
80. If a, b, c are in H.P., then $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in

1. A.P.
2. H.P.
3. G.P.
4. None of these

Key $\quad 2$
Sol. Given $a, b, c \in$ H.P.
So, $\frac{1}{a}, \frac{1}{b}, \frac{1}{c} \in$ A.P.
$\frac{a+b+c}{a}, \frac{b+c+a}{b}, \frac{c+a+b}{c} \in$ A.P.
By using concept if $a, b, c \in \mathrm{~A} . \mathrm{P}$.
Then their reciprocals are in H.P.
81. Between the numbers 2 and 20, 8 means are inserted, then their sum is

1. 88
2. 44
3. 176
4. None of these

Key. 1
Sol. Let $a, A_{1}, A_{2} \ldots . A_{g}, b \in A . P$

Where $a=2, b=20, n=8$
\therefore sum of the means $=\frac{n}{2}(a+b)=\frac{8}{2}(2+20)=88$

82 If the arithmetic mean of two positive numbers $a \& b(a>b)$ is twice their G.M., then $a: b$ is

1. $6+\sqrt{7}: 6-\sqrt{7}$
2. $2+\sqrt{3}: 2-\sqrt{3}$
3. $5+\sqrt{6}: 5-\sqrt{6}$
4. None of these

Key. 2
Sol. $\frac{a+b}{2}=2 \sqrt{a b}$

$$
\begin{aligned}
& a+b-4 \sqrt{a b}=0 \\
& \frac{a}{b}+1-4 \sqrt{\frac{a}{b}}=0 \text { (Dividing by b) } \\
& \operatorname{Or}\left(\sqrt{\frac{a}{b}}\right)^{2}-4 \sqrt{\frac{a}{b}}+1=0
\end{aligned}
$$

$$
\therefore \sqrt{\frac{a}{b}}=\frac{4 \pm 2 \sqrt{3}}{2}=(2 \pm \sqrt{3})
$$

$$
\frac{a}{b}=\frac{2+\sqrt{3}}{2-\sqrt{3}}
$$

83 The number of terms common between the two series $2+5+8+\ldots$ up to 50 terms and the series $3+5+7+9+\ldots$ up to 60 terms.

1. 24
2. 26
3. 25
4. None of these

Key. 4
Sol. Let $m^{\text {th }}$ term of first A.P. be equal to the $n^{\text {th }}$ term of the second A.P. then
$2,5,8, \ldots .50$ terms series 1
$3,5,7, \ldots, 60$ terms series 2

Common series $5,11,17, \ldots ., 119$
$40^{\text {th }}$ term of series $1=59^{\text {th }}$ term of series $2=119=$ last term of common series
$\Rightarrow a_{n}=5+(n-1) d \Rightarrow 119+1=6 n \Rightarrow n=20$.
$\therefore \quad$ Number of common terms is 20 .
84. If a, b, c are three positive numbers, then the minimum value of the expression $\frac{a b(a+b)+b c(b+c)+c a(c+a)}{b c a}$

1. 3
2. 4
3. 6
4. 1

Key. 3
Sol. Given expression equal to
$\frac{(a+b)}{c}+\frac{(b+c)}{a}+\frac{(c+a)}{b}$
Or $\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}$

Using A.M. \geq G.M.

$$
\frac{\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}}{6} \geq \sqrt{\frac{a}{c} \frac{b}{c} \frac{b}{a} \frac{c}{a} \frac{c}{b} \frac{a}{b}}
$$

Or $\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b} \geq 6$
85. Sum of n terms of series $a b+(a+1)(b+1)+(a+2)(b+2)+\ldots .+(a+(n-1))(b+(n-1))$ if $a b=\frac{1}{6} \operatorname{and}(a+b)=\frac{1}{3}$, is
(A) $\frac{n}{6}(1-2 n)^{2}$
(B) $\frac{n}{6}\left(1+n-2 n^{2}\right)$
(C) $\frac{n}{6}\left(1-2 n+2 n^{2}\right)$
(D) none of these

Key. C

Sol. $s=a b+[a b+(a+b)+1]+\left[a b+2(a+b)+2^{2}\right]+\ldots . .\left[a b+(n-1)(a+b)+(n-1)^{2}\right]$

$$
\begin{aligned}
& =n a b+(a+b) \sum_{r=1}^{n-1} r+\sum_{r=1}^{n-1} r^{2} \\
& =n a b+(a+b) \frac{n(n-1)}{2}+\frac{(n-1))(n)(2 n-1)}{6} \\
& =\frac{n}{6}[1+(n-1)\{1+2 n-1\}] \\
& =\frac{n}{6}[1+2 n(n-1)]=\frac{n}{6}\left(1-2 n+2 n^{2}\right)
\end{aligned}
$$

86. If $\log (a+c), \log (a+b), \log (b+c)$ are in A.P. and a, c, b are in H.P, then the value of $a+b$ is (given a,b,c>0)
(A) 2 c
(B) 3 c
(C) 4 c
(D) 6 c

Key. A
$\log (a+c)+\log (b+c)=2 \log (a+b)$
$(a+c)(b+c)=(a+b)^{2}$
Sol. $\quad \Rightarrow a b+c(a+b)+c^{2}=(a+b)^{2}$
also, $c=\frac{2 a b}{a+b} \Rightarrow 2 a b=c(a+b)$
$\Rightarrow 2 a b+2 c(a+b)+2 c^{2}=2(a+b)^{2}$
From (1) and(2),
$c(a+b)+2 c(a+b)+2 c^{2}=2(a+b)^{2}$
$2(a+b)^{2}-3 c(a+b)-2 c^{2}=0$
$\therefore a+b=\frac{3 c \pm \sqrt{9 c^{2}+16 c^{2}}}{4}=\frac{3 c \pm 5 c}{4}=2 c$ or $-\frac{c}{2}$
$\therefore a+b=2 c \quad(\mathrm{Q} a, b, c>0)$
87. If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are in A.P. with s_{n} as the sum of first ' n ' terms $\left(s_{0}=0\right)$, then

(A) $2^{n-2}\left[n a_{1}+s_{n}\right]$
(B) $2^{n}\left[a_{1}+s_{n}\right]$
(C) $2\left[n a_{1}+s_{n}\right]$
(D) $2^{n-1}\left[a_{1}+s_{n}\right]$

Key. A
Sol. $\quad \sum_{k=o}^{n}{ }^{n} c_{k} s_{k}=\sum_{k=0}^{n}{ }^{n} c_{k} \frac{k}{n}[2 a+(k-1) d]$
$=\left[\left(a_{1}-\frac{d}{2}\right) \sum_{k=0}^{n} k^{n} c_{k}+\frac{d}{2} \sum_{k=0}^{n} k^{2} c_{k}\right]$

$$
\begin{aligned}
& =\left(a_{1}-\frac{d}{2}\right) n \cdot 2^{n-1}+\frac{d}{2}\left[n \cdot 2^{n-1}+n(n-1) 2^{n-2}\right] \\
& =a_{1} \cdot n \cdot 2^{n-1}+d n(n-1) 2^{n-3} \\
& =n \cdot 2^{n-3}\left[4 a_{1}+a_{n}-a_{1}\right]=n \cdot 2^{n-3}\left[3 a_{1}+a_{n}\right] \\
& =2^{n-3}\left[2 n a_{1}+2 n\left(\frac{a_{1}+a_{n}}{2}\right)\right] \\
& =2^{n-2}\left[n a_{1}+s_{n]} .\right.
\end{aligned}
$$

88. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$, are in A.P. and p, p^{\prime} are respectively A.M. and G.M. between a and b while q, q^{\prime} are respectively AM. And G.M. between b and c, then
(A) $p^{2}+q^{2}=p^{\prime 2}+q^{\prime 2}$
(B) $p q=p q$
(C) $p^{2}-q^{2}=p^{2}-q^{\prime 2}$
(D) $p^{2}+p^{\prime 2}=q^{2}+q^{\prime 2}$

Key. C
Sol. We have $2 b=a+c$ and a,p,b,q,c are in A.P
$\Rightarrow p=\frac{a+b}{2}, q=\frac{b+c}{2}$
Again, $p^{\prime}=\sqrt{a b}$ and $q^{\prime}=\sqrt{b c}$
$\therefore p^{2}-q^{2}=\frac{(a+b)^{2}-(b+c)^{2}}{4}$
$=\frac{(a-c)(a+c+2 b)}{4}=(a-c) b=p^{\prime 2}-q^{\prime 2}$
89. Through the centroid of an equilateral triangle a line parallel to the base is drawn. On this line, an arbitrary point p is taken inside the triangle. Let h denote the distance of p from the base of the triangle. Let h_{1} and h_{2} be the distance of p from the other two sides of the triangle, then
(A) h is the H.M. of h_{1}, h_{2}
(B) h is the G.M. of h_{1}, h_{2}
(C) h is the A.M, of h_{1}, h_{2}
(D) None of these

Key. C
Sol. $\quad \triangle A B C=\triangle P B C+\triangle P A C+\triangle P A B$
$\frac{1}{2} \cdot a \cdot 3 h=\frac{1}{2} a \cdot h+\frac{1}{2} a h_{1}+\frac{1}{2} a \cdot h_{2}$

$$
h_{1}+h_{2}=2 h \Rightarrow h=\frac{h_{1}+h_{2}}{2}
$$

90. a, b, c are positive integers forming an increasing G.P. whose common ratio is a natural number, $\mathrm{b}-\mathrm{a}$ is cube of a natural number and $\log _{6} \mathrm{a}+\log _{6} \mathrm{~b}+\log _{6} \mathrm{c}=6$, then $\mathrm{a}+\mathrm{b}+\mathrm{c}=$
A) 100
B) 111
C) 122
D) 189

Key. D
Sol. $\quad \log _{6}(\mathrm{abc})=6 \Rightarrow(\mathrm{abc})=6^{6}$
Let $\mathrm{a}=\frac{\mathrm{b}}{\mathrm{r}}$ and $\mathrm{c}=\mathrm{br}$
$\Rightarrow \quad \mathrm{b}=36$ and $\mathrm{a}=\frac{36}{\mathrm{r}} \Rightarrow \mathrm{r}=2,3,4,6,9,12,18$
Also $\mathrm{b}-\mathrm{a}=36\left(1-\frac{1}{\mathrm{r}}\right)$ is a perfect cube.

$$
\therefore \quad r=4
$$

$\Rightarrow \quad a+b+c=36+9+144=189$
91. If S, P and R are the sum, product and sum of the reciprocals of n terms of an increasing G.P. and $\mathrm{S}^{\mathrm{n}}=\mathrm{R}^{\mathrm{n}} . \mathrm{P}^{\mathrm{k}}$, then k is equal to
A) 1
B) 2
C) 3
D) none of these

Key. B
Sol. $\quad S=\frac{a\left(1-r^{n}\right)}{1-r}, P=a^{n} . r^{\frac{n(n-1)}{2}}$
$R=\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{ar}}+\frac{1}{\mathrm{ar}^{2}} \ldots$. to n terms $=\frac{1-\mathrm{r}^{\mathrm{n}}}{\mathrm{a}(1-\mathrm{r}) \mathrm{r}^{\mathrm{n}-1}}$
$S^{n}=R^{n} P^{k} \quad \Rightarrow \quad\left(\frac{S}{R}\right)^{n}=P^{k}$
$\Rightarrow \quad\left(\mathrm{a}^{2} \mathrm{r}^{\mathrm{n}-1}\right)^{\mathrm{n}}=\mathrm{P}^{\mathrm{k}}$
$\Rightarrow \quad \mathrm{P}^{2}=\mathrm{p}^{\mathrm{k}} \quad \Rightarrow \quad \mathrm{k}=2$
92. Sum of first hundred numbers common to the two A.P.'s $12,15,18, \ldots$ and $17,21,25 \ldots$.
A) 56100
B) 65100
C) 61500
D) none of these

Key. C
Sol. \quad AP $I=12,15,18, \ldots\left(\right.$ common difference $\left.d_{1}=3\right)$
AP II $=17,21,25 \ldots\left(\right.$ common difference $\left.d_{2}=4\right)$
First term of the series of common numbers $=21$

Here $\mathrm{a}=21$, common difference of the series of common numbers $=$ L.C.M of d_{1} and $\mathrm{d}_{2}=12$
\therefore Required sum of first hundred terms
$=\frac{100}{2}[2 \times 21+(100-1) 12]=100[21+594]=61500$
93. If 11 A.M. s are inserted between 28 and 10 , then number of integral A.M's is
A) 5
B) 6
C) 7
D) 8

Key. A
Sol. Since $A_{1}, A_{2}, A_{3}, \ldots, A_{11}$ be 11 A.M. s between 28 and 10 .
$\therefore \quad 28, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots ., \mathrm{A}_{11}, 10$ are in A.P.
Let ' d ' be the common difference of A.P.
Also the number of terms $=13$.
$10=\mathrm{T}_{13}=\mathrm{T}_{1}+12 \mathrm{~d}=28+12 \mathrm{~d}$
$\therefore \quad \mathrm{d}=\frac{10-28}{12}=-\frac{18}{12}=-\frac{3}{2}$
$\therefore \quad$ Number of integral A.M's is 5 .
94. If a, b, c are in HP, then $\frac{1}{b-a}+\frac{1}{b-c}$ is equal to
A) $\frac{2}{b}$
B) $\frac{2}{a+c}$
C) $\frac{1}{a+c}$
D) none of these

Key. A
Sol. Q a,b,c are in H.P.

$$
\begin{aligned}
& \text { Q } \quad \frac{b=\frac{2 a c}{(a+c)}}{} \\
& \therefore \frac{1}{b-a}+\frac{1}{b-c} \\
& \Rightarrow \quad \frac{1}{(a+c)}-a \cdot \frac{1}{2 a c}-c \\
& \Rightarrow(a+c) \\
& \Rightarrow \frac{(a+c)\left\{\frac{1}{a(c-a)}+\frac{1}{c(a-c)}\right\} \Rightarrow \frac{(a+c)}{(a-c)}\left\{-\frac{1}{a}+\frac{1}{c}\right\}}{a c(a-c)} \Rightarrow \quad \frac{(a+c)}{a c}=\frac{2}{b}
\end{aligned}
$$

95. Let a_{n} be the $\mathrm{n}^{\text {th }}$ term of an A.P. If $\sum_{\mathrm{r}=1}^{100} \mathrm{a}_{2 \mathrm{r}}=\alpha$ and $\sum_{\mathrm{r}=1}^{100} \mathrm{a}_{2 \mathrm{r}-1}=\beta$, then the common difference of the A.P. is
A) $\alpha-\beta$
B) $\beta-\alpha$
C) $\frac{\alpha-\beta}{2}$
D) none of these

Key. D
Sol. $\quad \mathrm{a}_{1}+\mathrm{a}_{3}+\mathrm{a}_{5}+\ldots+\mathrm{a}_{199}=\beta$
$\mathrm{a}_{2}+\mathrm{a}_{4}+\mathrm{a}_{6}+\ldots+\mathrm{a}_{200}=\alpha$
$\mathrm{a}_{2}-\mathrm{a}_{1}+\mathrm{a}_{4}-\mathrm{a}_{3}+\mathrm{a}_{6}-\mathrm{a}_{5} \ldots \mathrm{a}_{200}-\mathrm{a}_{199}=\alpha-\beta$
$d+d+d \ldots \ldots \ldots . . d=\alpha-\beta$
$d=\frac{\alpha-\beta}{100}$
96. If a, b, c, d are in G.P., then $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)$ equals to
A) $a b+b c+c d$
B) $(a b+b c+c d)^{2}$
C) $(a b+b c+c d)^{4}$
D) none of these

Key. B
Sol. a,b,c,d are in G.P., let they are a, ar, $\mathrm{ar}^{2}, \mathrm{ar}^{3}$

$$
\begin{aligned}
\left(a^{2}+b^{2}\right. & \left.+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right) \\
& =a^{2} \times a^{2}\left[1+r^{2}+r^{4}\right]\left[r^{2}+r^{4}+r^{6}\right] \\
& =a^{4} r^{2}\left[1+r^{2}+r^{4}\right]^{2} \\
= & {\left[a^{2} r\left[1+r^{2}+r^{4}\right]\right]^{2} } \\
= & (a b+b c+c d)^{2}
\end{aligned}
$$

97. If $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ are in H.P., then $a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{4}+a_{4} a_{5}$ is equal to
A) $2 a_{1} a_{5}$
B) $3 a_{1} a_{5}$
C) $4 a_{1} a_{5}$
D) -4

Key. C
Sol. $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ are in H.P.

$$
\begin{array}{ll}
\Rightarrow & a_{2}=\frac{2 a_{1} a_{2}}{a_{1}+a_{3}} \Rightarrow 2 a_{1} a_{3}=a_{2} a_{1}+a_{3} a_{2} \\
& a_{4}=\frac{2 a_{3} a_{5}}{a_{3}+a_{5}} \Rightarrow 2 a_{3} a_{5}=a_{3} a_{4}+a_{5} a_{4} \\
\Rightarrow & a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{4}+a_{4} a_{5}=2 a_{1} a_{3}+2 a_{3} a_{5} \\
& a_{3}=\frac{2\left(a_{1} a_{5}\right)}{a_{1}+a_{5}} \Rightarrow a_{1} a_{3}+a_{5} a_{3}=2 a_{1} a_{5} \tag{ii}
\end{array}
$$

using (i) \& (ii)

$$
a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{4}+a_{4} a_{5}=2\left(2 a_{1} a_{5}\right)=4 a_{1} a_{5}
$$

98. If the sum to infinity of the series, $1+4 x+7 x^{2}+10 x^{3}+\ldots . .$. , is $\frac{35}{16}$, where $|x|<1$, then ' x ' equals to
A) $19 / 7$
B) $1 / 5$
C) $1 / 4$
D) none of these

Key. B
Sol. $S=1+4 x+7 x^{2}+10 x^{3}+$ \qquad
x. $S=x+4 x^{2}+7 x^{3}+$ \qquad
Subtract
$S(1-x)=1+3 x+3 x^{2}+3 x^{3}+$ \qquad
$S(1-x)=1+3 x\left(\frac{1}{1-x}\right) \quad|x|<1$
$S=\frac{1+2 x}{(1-x)^{2}}$

$$
\begin{aligned}
& \text { Given } \frac{1+2 \mathrm{x}}{(1-\mathrm{x})^{2}}=\frac{35}{16} \\
& \Rightarrow \quad 16+32 \mathrm{x}=35+35 \mathrm{x}^{2}-70 \mathrm{x} \quad \Rightarrow \quad 35 \mathrm{x}^{2}-102 \mathrm{x}+19=0 \\
& \Rightarrow \quad 35 \mathrm{x}^{2}-7 \mathrm{x}-95 \mathrm{x}+19=0 \quad \Rightarrow \quad 7 \mathrm{x}(5 \mathrm{x}-1)-19(5 \mathrm{x}-1)=0 \\
& \Rightarrow \quad(5 x-1)(7 x-19)=0 \quad \Rightarrow \quad x=\frac{1}{5}, \frac{19}{7} \\
& \text { But }|\mathrm{x}|<1 \quad \therefore \quad \mathrm{x}=\frac{1}{5}
\end{aligned}
$$

99. If a, b, c and d are four positive real numbers such that $a b c d=1$, the minimum value of $(1+a)$ $(1+b)(1+c)(1+d)$ is
A) 4
B) 1
C) 16
D) 18

Key. C
Sol. $\quad 1+\mathrm{a} \geq 2 \sqrt{\mathrm{a}} \quad\{\mathrm{AM} \geq \mathrm{GM}\}$
$1+b \geq 2 \sqrt{b}$
$1+\mathrm{c} \geq 2 \sqrt{\mathrm{c}}$
$1+\mathrm{d} \geq 2 \sqrt{\mathrm{~d}}$
$\therefore \quad(1+a)(1+b)(1+c)(1+d) \geq 16 \sqrt{\text { abcd }}=16$
$\therefore \quad$ min. value $=16$ (for $\mathrm{a}=\mathrm{b}=\mathrm{c}=\mathrm{d}=1$)
100. If the length of sides of a right triangle are in A.P., then the sines of the acute angle are
A) $\frac{3}{5}, \frac{4}{5}$
B) $\sqrt{\frac{2}{3}}, \sqrt{\frac{1}{3}}$
C) $\sqrt{\frac{\sqrt{5}-1}{2}}, \sqrt{\frac{\sqrt{5}+1}{2}}$
D) $\sqrt{\frac{\sqrt{3}-1}{2}}, \sqrt{\frac{\sqrt{3}+1}{2}}$

Key. A
Sol. Let the sides be $a-d, a, a+d$
Where $\mathrm{a}>\mathrm{d}>0$
We have
$(a+d)^{2}=(a-d)^{2}+a^{2}$
$\Rightarrow \quad \mathrm{d}=\frac{\mathrm{a}}{4}$ we have $\sin \theta=\frac{\mathrm{a}}{\mathrm{a}+\mathrm{d}} \quad \Rightarrow \quad \cos \theta=\frac{3}{5}, \quad \sin \theta=\frac{4}{5}$
101. If $a_{1}, a_{2}, \ldots a_{n} n$ distinct odd natural numbers not divisible by any prime greater than 5 , then $\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots . \frac{1}{a_{n}}$ is less than
A) $\frac{15}{8}$
B) $\frac{16}{8}$
C) $\frac{8}{15}$
D) $\frac{15}{4}$

Key. A
Sol. Since each a_{1} is an odd number not divisible by a prime greater than 5 , a_{1} can be written as $a_{1}=3^{r} 5^{8}$ where r, s are non-negative integers.
thus for all $\mathrm{n} \in \mathrm{N}$
$\frac{1}{\mathrm{a}_{1}}+\frac{1}{\mathrm{a}_{2}}+\ldots+\frac{1}{\mathrm{a}_{\mathrm{n}}}<\left(1+\frac{1}{3}+\frac{1}{3^{2}}+\ldots+\right)\left(1+\frac{1}{5}+\frac{1}{5^{2}}+\ldots+\right)=\frac{15}{8}$
102. If the $m^{\text {th }}$ term of the sequence defined by $t_{n}=\frac{\sqrt{n}}{n+2008}$ is the greatest term then $m=$
A) 2006
B) 2007
C) 2008
D) 2009

Key. C
Sol. Consider the function $f(x)=\frac{\sqrt{x}}{x+2008}, x \geq 1$
$f^{1}(x)=\frac{(x+2008) \times \frac{1}{2 \sqrt{x}}-\sqrt{x}}{(x+2008)^{2}}$
$=\frac{x+2008-2 x}{2 \sqrt{x}(x+2008)^{2}}=\frac{2008-x}{2 \sqrt{x}(x+2008)^{2}}$
$f^{1}(x)=0 \Rightarrow x=2008$
$x \in(2008-\delta, 2008), f^{1}(x)>0 ; x \in(2008,2008+\delta), f^{1}(x)<0$
103. If $a_{1}, a_{2}, a_{3}, \ldots ., a_{9}$ are in H.P. and $a_{4}=5, a_{5}=4$ then $\left|\begin{array}{lll}a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|=$
A) $31 / 15$
B) $41 / 18$
C) $50 / 21$
D) $61 / 27$

Key. C
Sol. Let $a_{i}=\frac{1}{a+(i-1) d}, \quad i=1,2,3, \ldots, 9$

$$
\begin{aligned}
& a_{4}=\frac{1}{a+3 d}=5 \Rightarrow a+3 d=\frac{1}{5} \\
& a_{5}=\frac{1}{a+4 d}=4 \Rightarrow a+4 d=\frac{1}{4} \\
& \therefore a=d=\frac{1}{20} \Rightarrow a_{i}=\frac{20}{i}
\end{aligned}
$$

$$
\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right|=(20)^{3}\left|\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{7} & \frac{1}{8} & \frac{1}{9}
\end{array}\right|=\frac{50}{21}
$$

104. If $\log _{a x} x, \log _{b x} x \log _{c x} x$ are in H.P. where a, b, c, x belong to $(1, \infty)$, then a, b, c are in
(A) A.P.
(B) G.P.
(C) H.P.
(D) A.G.P.

Key. B
Sol. Since $\log _{a x} x, \log _{b x} x, \log _{c x} x$ are in H.P.
$\therefore \log _{\mathrm{x}} \mathrm{ax}, \log _{\mathrm{x}} \mathrm{bx}, \log _{\mathrm{x}} \mathrm{cx}$ are in A.P.
$\Rightarrow 1+\log _{\mathrm{x}} \mathrm{a}, 1+\log _{\mathrm{x}} \mathrm{b}, 1+\log _{\mathrm{x}} \mathrm{c}$ are in A.P.
$\Rightarrow \frac{\log \mathrm{a}}{\log \mathrm{x}}, \frac{\log \mathrm{b}}{\log \mathrm{x}}, \frac{\log \mathrm{c}}{\log \mathrm{x}}$ are in A.P.
$\Rightarrow \log \mathrm{a}, \log \mathrm{b}, \log \mathrm{c}$ are in A.P.
$\Rightarrow 2 \log \mathrm{~b}=\log \mathrm{a}+\log \mathrm{c}=\log \mathrm{ac}$
$\Rightarrow \log \mathrm{b}^{2}=\log \mathrm{ac} \Rightarrow \mathrm{b}^{2}=\mathrm{ac}$
$\Rightarrow \mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P.
\therefore (b) holds.

AP, GP, HP, Sequences
 Multiple Correct Answer Type

1. If a, b, c, d are four unequal positive number which are in A.P then
A) $\frac{1}{a}+\frac{1}{d}=\frac{1}{b}+\frac{1}{c}$
B) $\frac{1}{a}+\frac{1}{d}<\frac{1}{b}+\frac{1}{c}$
C) $\frac{1}{a}+\frac{1}{d}>\frac{1}{b}+\frac{1}{c}$
D) $\frac{1}{b}+\frac{1}{c}>\frac{4}{a+d}$

Key. C,D
Sol. Let $b=a+p, c=a+2 p, d=a+3 p$
$\frac{\frac{1}{a}+\frac{1}{d}}{\frac{1}{b}+\frac{1}{c}}=\frac{\frac{1}{a}+\frac{1}{a+3 p}}{\frac{1}{a+p}+\frac{1}{a+2 p}}=\frac{(1+p)(1+2 p)}{1(a+3 p)}$
$=\frac{a^{2}+3 a p+2 p^{2}}{a^{2}+3 a p}>1$
$\therefore \frac{1}{a}+\frac{1}{d}>\frac{1}{b}+\frac{1}{c}$
$\left(\frac{1}{b}+\frac{1}{c}\right)(a+d)\left(\frac{1}{a+p}+\frac{1}{a+2 p}\right)(a+a+3 p)$
$=\frac{(2 a+3 p)^{2}}{a^{2}+3 a p+2 p^{2}}=4 \frac{p^{2}}{a^{2}+3 a p+2 p^{2}}>4$
2. If the first and $(2 n-1)^{\text {th }}$ terms of an A.P, G.P and H.P of positive terms are equal and their $n^{\text {th }}$ terms are a,b,c respectively, then
A) $a=b=c$
B) $a \geq b \geq c$
C) $b^{2}=a c$
D) $a+c=2 b$

Key. B,C
Sol. Let A.P be $A, A+d, A+2 d$ \qquad Then
$t_{2 n-1}=A+(2 n-2) d=x($ say $)$, Then
$(n-1) d=\frac{x-A}{2}$
$\therefore a=t_{n}=A+(n-1) d=a+\frac{x-A}{2}=\frac{A+x}{2}$
Let G.P be A, AR, A R^{2}, \qquad Then
$t_{2 n-1}=A R^{2 n-2}=x \Rightarrow R^{n-1}=\left(\frac{x}{A}\right)^{\frac{1}{2}}$
$\therefore b=t_{n}=A R^{n-1}=A\left(\frac{x}{A}\right)^{\frac{1}{2}} \Rightarrow \sqrt{A x}$

Let H.P be $\mathrm{A} \frac{1}{\frac{1}{A}+D}, \frac{1}{\frac{1}{A}+2 D} \ldots . . .$. .then
$t_{2 n-1}=\frac{1}{\frac{1}{A}+(2 n-2)}=x$ then
$(n-1) D=\frac{1}{2}\left(\frac{1}{x}-\frac{1}{A}\right)$
$\therefore c=t_{n}=\frac{1}{\frac{1}{A}+(n-1) D}=\frac{1}{\frac{1}{A}+\frac{1}{2}\left(\frac{1}{x}-\frac{1}{A}\right)}$
$=\frac{1}{\frac{1}{2}\left(\frac{1}{x}+\frac{1}{A}\right)}$
Clearly a, b, and c are A.M ., G.M and H.M between the numbers , x and A respectively
Hence $a \geq b \geq c$ also $b^{2}=a c$
3. In a G.P., the product of first four terms is 4 and the second term is the reciprocal of the fourth term. The sum of infinite terms of the G.P. can be
(A) -8
(B) $-\frac{8}{3}$
(C) $\frac{8}{3}$
(D) 8

Key. A,B,C,D
Sol. Let $\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}, \mathrm{ar}^{3}$ are the first four terms of the G.P

$$
\begin{array}{ll}
\therefore & a^{4} r^{6}=4 \& a^{2} r^{4}=1 \Rightarrow r^{2}=\frac{1}{4} \Rightarrow r= \pm \frac{1}{2} \& a= \pm 4 \\
\therefore & \text { Sum of infinite G.P }=\frac{a}{1-r}=8,-8, \frac{8}{3},-\frac{8}{3}
\end{array}
$$

4. If 3 positive real number a, b, c are in A.P with $a b c=4$ then [b] can be equal to (where [.] represents the integral part)
A) 1
B) 2
C) 3
D) 4

Key. $\quad A, B, C, D$
Sol. $\quad b \geq \sqrt{a c} \Rightarrow b^{3} \geq a b c$
$\Rightarrow b^{3} \geq 4$ or $b \geq(4)^{1 / 3} \Rightarrow[b] \geq 1$
5. If a, b, c are first three terms of a G.P. if the harmonic mean of a and b is 12 and arithmetic mean of $b \& c$ is 3 , then
(A) no term of this G.P. is square of an integer
(B) arithmetic mean of a, b, c is 3
(C) $b= \pm 6$
(D) common ratio of this G.P. is 2

Key. A,B
6. Suppose ' f ' and ' g ' are functions having second derivatives f " and g " everywhere, if $f(x) . g(x)=1$ for all ' x ' and f^{\prime} and g^{\prime} are never zero, then $\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}-\frac{g^{\prime \prime}(x)}{g^{\prime}(x)}$ equals
A) $\frac{-2 f^{\prime}(x)}{f(x)}$
B) $\frac{-2 g^{\prime}(x)}{g(x)}$
C) $\frac{-f^{\prime}(x)}{f(x)}$
D) $\frac{2 f^{\prime}(x)}{f(x)}$

Key. B,D

Sol.

$$
g=\frac{1}{f} \Rightarrow g^{\prime}=\frac{-1}{f^{2}} f^{\prime}
$$

$$
\Rightarrow g^{\prime \prime}=-\left[\frac{-2}{f^{3}} f^{\prime 2}+\frac{1}{f^{2}} f^{\prime \prime}\right]=\frac{2}{f^{3}} f^{\prime 2}-\frac{f^{\prime \prime}}{f^{2}}
$$

$$
\Rightarrow \frac{f^{\prime \prime}}{f^{\prime}}-\frac{g^{\prime \prime}}{g}=\frac{f^{\prime \prime}}{f^{\prime}}-\frac{\frac{2}{f^{3}} f^{\prime 2}-\frac{f^{\prime \prime}}{f^{2}}}{\frac{-1}{f^{2}} f^{\prime}}=\frac{f^{\prime \prime}}{f^{\prime}}-\left(\frac{-2 f^{\prime}}{f^{\prime}}+\frac{f^{\prime \prime}}{f}\right)=\frac{2 f^{\prime}}{f}
$$

In a similar manner, we can show that the same is equal to $\frac{2 g^{\prime}}{g}$.
7. For a positive integer n, let $S(n)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots . .+\frac{1}{2^{n}-1}$.Then,
a) $S_{n} \leq n$
b) $S_{n}>n$
C) $S_{2 n} \leq n$
d) $S_{2 n}>n$

KEY: A,D
HINT : $\quad S(n)=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\ldots+\left(\frac{1}{2^{n-1}}+\frac{1}{2^{n-1}+1}+\ldots+\frac{1}{2^{n}-1}\right)$

$$
\leq 1+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\right)+\ldots+\left(\frac{1}{2^{n-1}}+\frac{1}{2^{n-1}}+\ldots+\frac{1}{2^{n-1}}\right)
$$

$=1+1+1+\ldots+1(n$ terms $)=n$
Also $S(n) \geq 1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\ldots+\left(\frac{1}{2^{n-2}+1}+\frac{1}{2^{n-2}+2}+\ldots+\frac{1}{2^{n-1}}\right)$
$>1+\frac{1}{2}+\frac{1}{2}+\ldots+\frac{1}{2}=1+\left(\frac{n-1}{2}\right)=\frac{n+1}{2}$
$\therefore S(2 n)>\frac{2 n+1}{2}=n+\frac{1}{2}>n$
8. If $a_{1}, a_{2}, a_{3} \ldots . a_{n}$ is sequence of +Ve numbers which are in AP with common difference ' d ' \& $a_{1}+a_{4}+a_{7}+\ldots \ldots+a_{16}=147$ then.
A) $a_{1}+a_{6}+a_{11}+a_{16}=98$
B) $a_{1}+a_{16}=49$
C) $a_{1}+a_{4}+a_{7}+\ldots . a_{16}=6 a_{1}+45 \mathrm{~d}$
D) Maximum value of $a_{1} a_{2} \ldots \ldots a_{16}$ is $\left(\frac{49}{2}\right)^{16}$

KEY : A,B,C,D
SOL : $a_{1}+a_{4}+a_{7}+\ldots \ldots+a_{16}=147$
$\Rightarrow 3\left(a_{1}+a_{16}\right)=147 \Rightarrow a_{1}+a_{16}=49$.
Again $a_{1}+a_{4}+a_{7}+a_{10}+\ldots+a_{16}$

$$
\begin{aligned}
& =a_{1}+a_{1}+3 d+a_{1}+6 d+\ldots+a_{1}+15 d \\
& =6 a_{1}+45 d=147 \\
& \Rightarrow 2 a_{1}+15 d=49 \\
a_{1}+a_{6}+ & a_{11}+a_{16}=a_{1}+a_{1}+5 d+a_{1}+10 d+a_{1}+15 d \\
& =4 a_{1}+30 d \\
& =2\left(2 a_{1}+15 d\right) \\
& =2(49)=98
\end{aligned}
$$

Now using $A M \geq G M$
$\frac{a_{1}+a_{2}+\ldots+a_{16}}{16} \geq\left(a_{1} a_{2} a_{3} \ldots a_{16}\right)^{\frac{1}{16}}$
$\frac{8\left(a_{1}+a_{16}\right)}{16} \geq\left(a_{1} a_{2} a_{3} \ldots a_{16}\right)^{\frac{1}{16}}$
$\left(\frac{49}{2}\right)^{16} \geq a_{1} a_{2} a_{3} \ldots a_{16}$
9. $\mathrm{T}_{\mathrm{r}}=\frac{1}{\mathrm{r} \sqrt{\mathrm{r}+1}+(\mathrm{r}+1) \sqrt{\mathrm{r}}}$, then (here $\mathrm{r} \in \mathrm{N}$)
(A) $\mathrm{T}_{\mathrm{r}}>\mathrm{T}_{\mathrm{r}+1}$
(B) $\mathrm{T}_{\mathrm{r}}<\mathrm{T}_{\mathrm{r}+1}$
(C) $\sum_{\mathrm{r}=1}^{99} \mathrm{~T}_{\mathrm{r}}=\frac{9}{10}$
(D) $\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}<1$

Key: A, C, D
Hint: $\quad T_{r}=\frac{r(\sqrt{r+1})-(r+1) \sqrt{r}}{r^{2}(r+1)-(r+1)^{2} r}=\frac{r \sqrt{r+1}-(r+1) \sqrt{r}}{-r^{2}-r}=\frac{(r+1) \sqrt{r}}{r(r+1)}-\frac{r \sqrt{r+1}}{r(r+1)}=\frac{1}{\sqrt{r}}-\frac{1}{\sqrt{r+1}}$
$\Rightarrow \sum_{\mathrm{r}=1}^{99} \mathrm{~T}_{\mathrm{r}}=\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \ldots . .-\frac{1}{\sqrt{100}}=1-\frac{1}{\sqrt{100}}=\frac{9}{10}$

Hence (a), (c) and (d) are correct.
10. If $\mathrm{S}_{(\mathrm{n})}=1+\frac{1}{2}+\frac{1}{3}+\ldots . .+\frac{1}{\mathrm{n}},(\mathrm{n} \in \mathrm{N})$, then $\mathrm{S}_{(1)}+\mathrm{S}_{(2)}+\ldots \ldots . .+\mathrm{S}_{(\mathrm{n}-1)}$ is equal to
(A) $\mathrm{nS}_{(\mathrm{n})}-\mathrm{n}$
(B) $\mathrm{nS}_{(\mathrm{n})}-1$
(C) $(\mathrm{n}-1) \mathrm{S}_{(\mathrm{n}-1)}-\mathrm{n}$
(D) $\mathrm{nS}_{(\mathrm{n}-1)}-\mathrm{n}+1$

Key: A, D
Hint: $\quad \mathrm{S}_{(1)}+\mathrm{S}_{(2)}+\ldots . .+\mathrm{S}_{(\mathrm{n}-1)}$
S : 1
(1)
$\mathrm{S}_{(2)}: 1+\frac{1}{2}$
$S_{(3)}: 1+\frac{1}{2}+\frac{1}{3}$
\qquad
$\mathrm{S}_{(\mathrm{n}-1)}: 1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots \cdot \frac{1}{\mathrm{n}-1}$
Adding vertically :

$$
\begin{aligned}
& =(\mathrm{n}-1)+\frac{(\mathrm{n}-2)}{2}+\frac{(\mathrm{n}-3)}{3}+\ldots \cdot\left(\frac{\mathrm{n}-(\mathrm{n}-1)}{(\mathrm{n}-1)}\right) \\
& =\mathrm{n}\left[1+\frac{1}{2}+\frac{1}{3}+\ldots \cdot \frac{1}{\mathrm{n}-1}\right]-[1+1+1+\ldots . .1]=\mathrm{nS}_{(\mathrm{n}-1)}-(\mathrm{n}-1)=\mathrm{nS}_{\mathrm{n}}-\mathrm{n}
\end{aligned}
$$

11. If $a_{1}>0$ for $i=1,2, \ldots, n$ and $a_{1} a_{2} \ldots . a_{n}=1$, then $\left(2+a_{1}\right)\left(2+a_{2}\right) \ldots . .\left(2+a_{n}\right)$ is greater than
(a) $2^{n / 2}$
(b) $2^{3 n / 2}$
(c) $2^{2 n}$
(d) none of these

Key: a or b
Hint: We have

$$
\begin{aligned}
& \frac{1}{2}\left(2+a_{1}\right) \geq \sqrt{2 a_{1}} \\
& \frac{1}{2}\left(2+a_{2}\right) \geq \sqrt{2 a_{2}}
\end{aligned}
$$

$\frac{1}{2}\left(2+\mathrm{a}_{\mathrm{n}}\right) \geq \sqrt{2 \mathrm{a}_{\mathrm{n}}}$
Multiplying above inequalities, we get
$\frac{1}{2^{n}}\left(2+a_{1}\right)\left(2+a_{2}\right) \ldots . .\left(2+a_{n}\right)$
$\geq 2^{\mathrm{n} / 2} \sqrt{\mathrm{a}_{1} \mathrm{a}_{2} \ldots . . \mathrm{a}_{\mathrm{n}}}=2^{\mathrm{n} / 2}$
$\Rightarrow\left(2+a_{1}\right)\left(2+a_{2}\right) \ldots\left(2+a_{n}\right) \geq 2^{3 n / 2}$
As all $\mathrm{a}_{\mathrm{i}} \neq 2$, thus we have strict inequality in the above inequality.
12. The pth term T_{p} of HP is $\mathrm{q}(\mathrm{p}+\mathrm{q})$ and q th term T_{q} is $\mathrm{p}(\mathrm{p}+\mathrm{q})$ when $\mathrm{p}>1, \mathrm{q}>1,(\mathrm{p} \neq \mathrm{q})$ then
(A) $\mathrm{T}_{\mathrm{p}+\mathrm{q}}=\mathrm{pq}$
(B) $\mathrm{T}_{\mathrm{pq}}=\mathrm{p}+\mathrm{q}$
(C) $\mathrm{T}_{\mathrm{p}+\mathrm{q}}>\mathrm{T}_{\mathrm{pq}}$
(D) $\mathrm{T}_{\mathrm{pq}}>\mathrm{T}_{\mathrm{p}+\mathrm{q}}$

Key: A, B, C
Sol : $\quad T_{p}$ of $A P=\frac{1}{q(p+q)}=A+(p-1) D$
T_{q} of $A P=\frac{1}{P(p+q)}=A+(q-1) D$

$$
\frac{1}{\mathrm{~T}_{\mathrm{p}+\mathrm{q}}}=\mathrm{A}+(\mathrm{p}+\mathrm{q}-1) \mathrm{D}
$$

and

$$
\frac{1}{\mathrm{~T}_{\mathrm{pq}}}=\mathrm{A}+(\mathrm{pq}-1) \mathrm{D}
$$

Now, solving Eqs. (i) and (ii), we get
$\mathrm{A}=\mathrm{D}=\frac{1}{\mathrm{pq}(\mathrm{p}+\mathrm{q})}$
$\therefore \frac{1}{T_{p+q}}=A+(p+q-1) D=(p+q) D=\frac{1}{p q}$
and $\frac{1}{\mathrm{~T}_{\mathrm{pq}}}=\mathrm{A}+\mathrm{f}(\mathrm{p}+\mathrm{q}-1) \mathrm{D}=\mathrm{pqD}=\frac{1}{\mathrm{p}+\mathrm{q}}$
$\Rightarrow \mathrm{T}_{\mathrm{p}+\mathrm{q}}=\mathrm{pq}$ and $\mathrm{T}_{\mathrm{pq}}=\mathrm{p}+\mathrm{q}$
Also, Q pq $>\mathrm{p}+\mathrm{q}$
i.e, $T_{p+q}>T_{p q}$
13. If the arithmetic mean of two positive numbers a and $\mathrm{b}(a>b)$ is twice their geometrical mean then $a: b$ is
(A) $2+\sqrt{3}: 2-\sqrt{3}$
(B) $7+4 \sqrt{3}: 1$
(C) $1: 7-4 \sqrt{3}$
(D) $2: \sqrt{3}$

Key. A,B,C
Sol. $\quad \frac{a+b}{2}=2 \sqrt{a b} \Rightarrow \sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}=4 \sqrt{\frac{a}{b}}=2 \pm \sqrt{3}$

$$
\begin{aligned}
& \frac{\sqrt{\frac{a}{b}}}{\sqrt{\frac{b}{a}}}=\frac{2+\sqrt{3}}{2-\sqrt{3}} \Rightarrow \frac{a}{b}=\frac{2+\sqrt{3}}{2-\sqrt{3}} \\
& \frac{a}{b}=7+4 \sqrt{3} \Rightarrow a: b=(7+4 \sqrt{3}): 1
\end{aligned}
$$

$$
\sqrt{\frac{b}{a}}=2-\sqrt{3} \Rightarrow a: b=1: 7-4 \sqrt{3}
$$

14. If $b_{1}, b_{2}, b_{3}\left(b_{1}>0\right)$ are three successive terms of a G.P. with common ratio r, the value of r for which the inequality $b_{3}>4 b_{2}-3 b_{1}$ holds is given by
(A) $r>3$
(B) $1<r<\frac{3}{2}$
(C) $r<1$
(D) None of these

Key. A, C
Sol. $\quad b_{2}=b_{1} r, b_{3}=b_{1} r^{2}$
$b_{1} r^{2}>4 b_{1} r-3 b_{1}$
$\Rightarrow \quad r^{2}>4 r-3$
$\Rightarrow \quad r^{2}-4 r+3>0$
$\Rightarrow \quad(r-1)(r-3)>0$

$$
r>3 \text { or } r<1
$$

15. If a, b, c, d are four unequal positive numbers which are in $A . P$. , then
(A) $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~d}}=\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}$
(B) $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~d}}<\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}$
(C) $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~d}}>\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}$
(D) $\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}>\frac{4}{\mathrm{a}+\mathrm{d}}$

Key. C,D
Sol. Conceptual
16. If a, b, c are in H.P., then
(A) $\frac{a}{b+c-a}, \frac{b}{c+a-b}, \frac{c}{a+b-c}$ are in H.P.
(B) $\frac{2}{b}=\frac{1}{b-a}+\frac{1}{b-c}$
(C) $a-\frac{b}{2}, \frac{b}{2}, c-\frac{b}{2}$ are in G.P.
(D) $\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}, \frac{\mathrm{b}}{\mathrm{c}+\mathrm{a}}, \frac{\mathrm{c}}{\mathrm{a}+\mathrm{b}}$ are in H.P.

Key. $\quad \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$
Sol. $\quad a, b, c$ are in H.P.
$\Rightarrow \frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}, \frac{1}{\mathrm{c}}$ are in A.P.
$\Rightarrow \frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{a}}, \frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{b}}, \frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{c}}$ are in A.P.
$\Rightarrow \frac{\mathrm{b}+\mathrm{c}}{\mathrm{a}}, \frac{\mathrm{c}+\mathrm{a}}{\mathrm{b}}, \frac{\mathrm{a}+\mathrm{b}}{\mathrm{c}}$ are in A.P. \quad [subtracting 1 from each term]
$\Rightarrow \frac{\mathrm{b}+\mathrm{c}}{\mathrm{a}}-1, \frac{\mathrm{c}+\mathrm{a}}{\mathrm{b}}, \frac{\mathrm{a}+\mathrm{b}-\mathrm{c}}{\mathrm{c}}$ are in A.P.
Thus $\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}, \frac{\mathrm{b}}{\mathrm{c}+\mathrm{a}}, \frac{\mathrm{c}}{\mathrm{a}+\mathrm{b}}$ are in H.P.
And $\frac{a}{b+c-a}, \frac{b}{c+a-b}, \frac{c}{a+b-c}$ are also in H.P.
Also $\mathrm{b}=2 \mathrm{ac} /(\mathrm{a}+\mathrm{c})$, so $\frac{1}{\mathrm{~b}-\mathrm{a}}+\frac{1}{\mathrm{~b}-\mathrm{c}}=\frac{2 \mathrm{~b}-(\mathrm{a}+\mathrm{c})}{(\mathrm{b}-\mathrm{a})(\mathrm{b}-\mathrm{c})}$
$=\frac{2 b-(a+c)}{b^{2}-b(a+c)+a c}$
$=\frac{2 b-2 a c / b}{b^{2}-b(a+c)+a c}$
$=\frac{2}{\mathrm{~b}} \cdot \frac{\mathrm{~b}^{2}-\mathrm{ac}}{\mathrm{b}^{2}-\mathrm{ac}}=\frac{2}{\mathrm{~b}}$
Lastly, $\left(\mathrm{a}-\frac{\mathrm{b}}{2}\right)\left(\mathrm{c}-\frac{\mathrm{b}}{2}\right)=\mathrm{ac}-\frac{\mathrm{b}}{2}(\mathrm{a}+\mathrm{c})+\frac{\mathrm{b}^{2}}{4}$
$=\mathrm{ac}-\frac{\mathrm{b}}{2} \cdot \frac{2 \mathrm{ac}}{\mathrm{b}}+\frac{\mathrm{b}^{2}}{4}=\frac{\mathrm{b}^{2}}{4}$
$\mathrm{a}-\frac{\mathrm{b}}{2}, \frac{\mathrm{~b}}{2}, \mathrm{c}-\frac{\mathrm{b}}{2}$ are in G.P.
17. If in a $\triangle \mathrm{ABC}, \mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. then it is necessary that
(A) $\frac{2}{3}<\frac{b}{c}<2$
(B) $\frac{1}{3}<\frac{\mathrm{b}}{\mathrm{c}}<\frac{2}{3}$
(C) $\frac{2}{3}<\frac{b}{\mathrm{a}}<2$
(D) $\frac{1}{3}<\frac{\mathrm{b}}{\mathrm{a}}<\frac{2}{3}$

Key. A,C
Sol. $\quad a+c=2 b$

$$
a+b>c
$$

$$
\begin{aligned}
& b+c>a \\
& a+b>c
\end{aligned}
$$

$$
\begin{aligned}
& a+b>c \\
& 3 b>2 c
\end{aligned}
$$

$$
b+c>a
$$

$$
2 c>b
$$

$$
\frac{2}{3}<\frac{b}{c}<2
$$

Similarly for $\frac{b}{a}$
18. Let $S_{1}, S_{2},-----, S_{n}$ be the sums of geometric series .Whose $1^{\text {st }}$ terms are $1,2,3,----, \mathrm{n}$ and common ratios are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4},----, \frac{1}{n+1}$ respectively. Then
a) $S_{1}+S_{2}+---+S_{n}=\frac{n(n+3)}{2}$
b) $S_{1} \cdot S_{2}----S_{n}=\lfloor n+1$
c) $\frac{1}{S_{1} S_{2}}+\frac{1}{S_{2} S_{3}}+---\frac{1}{S_{n-1} S_{n}}=\frac{n-1}{2(n+1)}$
d) $S_{1}^{2} \cdot S_{2}^{3} \cdot S_{3}^{4}-----S_{n}^{n+1}=1024 / 3$

Key. A,B,C
Sol. $\quad S_{r}=r+r\left(\frac{1}{r+1}\right)+r\left(\frac{1}{r+1}\right)+---\infty=\frac{r}{1-\frac{1}{r+1}}=r+1$ verify $\mathrm{a}, \mathrm{b}, \mathrm{c}$ an correct and d is
false.
19. If $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{c}+\frac{y}{d}=1$ intersect the axes at four concyclic points and $a^{2}+c^{2}=b^{2}+d^{2}$ then these lines can intersect at ($a, b, c, d>0$)
(A) $(1,1)$
(B) $(1,-1)$
(C $(2,-2)$
(D) $(3,3)$

Key. A,B,C,D
Sol. $\quad a+c=2 b$

$$
\begin{aligned}
& \\
& \\
& \\
& \\
& b+b>c>a \\
& \\
& a+b>c \\
& \\
& 3 b>2 c \\
& \\
& b+c>a \\
& \\
& 2 c>b \\
& \Rightarrow \quad \\
& \frac{2}{3}<\frac{b}{c}<2
\end{aligned}
$$

Similarly for $\frac{b}{a}$
20. Three numbers in A.P. with common difference ' d ' are removed from first n natural numbers and average of remaining number is found to be $\frac{43}{4}$ then ordered pair (n, d) can be
(A) $(19,5)$
(B) $(19,2)$
(C) $(23,5)$
(D) $(19,8)$

Key. A,B
SOL. LET REMOVED NUMBERS ARE A - D, A, A + D SUM OF REMOVED NUMBERS = 3A
$\Rightarrow \quad 6 \leq 3 \mathrm{~A} \leq 3 \mathrm{~N}-3$
$2 \mathrm{~A} \leq \mathrm{A} \leq \mathrm{N}-1$
ALSO $3 \mathrm{a}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}-\frac{43}{4}(\mathrm{n}-3)$
$\mathrm{a}=\frac{2 \mathrm{n}^{2}-41 \mathrm{n}+129}{12}$
FROM (I) AND (II)

$$
17.5 \leq \mathrm{N} \leq 23.5 \mathrm{~N} \in \mathrm{~N}
$$

$\mathrm{N}=18,19,20,21,22,23$
FOR A $\in \mathrm{N}, \mathrm{N}$ MUST BE ODD
$\Rightarrow \quad$ N MAY BE 19, 21, 23
WHEN $\mathrm{N}=19, \mathrm{~A}=6$, D CAN BE 2 OR 5
WHEN $\mathrm{N}=21 \quad \mathrm{~A} \notin \mathrm{~N}$ NOT POSSIBLE
when $n=23 \quad a \notin N$ not possible.

AP,GP,HP, Sequences

Assertion Reasoning Type

1. Statement $1: 1,2,4,8, \ldots \ldots$ is a G.P., $4,8,16,32$ is a G.P. and $1+4,2+8,4+16,8+32, \ldots \ldots$. is also a G.P.

Statement 2 : Let general term of a G.P. with common ratio r be T_{k+1} and general term of another
G.P. with common ratio r be $T^{\prime}{ }_{k+1}$ then the series whose general term $T^{\prime \prime}{ }_{k+1}=T_{k+1}+T_{k+1}^{\prime}$ is also a G.P. with common ratio r .
Key. A
2. Let S_{k} where $k \in N$ denotes sum of first 'K 'terms of A.P. If the sum of first '3n' terms of it is twice the sum of next ' n ' terms then
Statement I : The ratio of sum of first ' $2 n$ ' terms and the sum of next ' $2 n$ ' terms is $7: 11$
Statement II : $S_{n}, S_{2 n}, S_{3 n}$ are in A.P.
KEY: C
HINT : $S_{3 n}=2\left(S_{4 n}-S_{3 n}\right) \Rightarrow 3 S_{3 n}=2 S_{4 n}$
3. STATEMENT- 1

If $a, b, c, d \in R^{+}$and $(a+b+c+d+3)^{5}=9375 a b c d$, then $a+b+c+d=12$
STATEMENT 2
If for +ve real numbers A.M. = G.M., then number are equal.
Key: A
4. Statement 1: One side of an equilateral triangle 24. The mid points of the sides are joined to form another triangle whose midpoints are in tern joined to form another triangle and continue the process infinite number times. Then sum of perimeters of all such triangles formed is 144.

Statement: If $\log _{2}(a+b)+\log _{2}(c+d) \geq 4$ then the minimum value of $a+b+c+d$ is 8
Key. B
Sol. I) Sum of perimeters $=3(24+12+6+----)=144$
(II) $\log _{2}(a+b)(c+d) \geq 4$

$$
\begin{aligned}
& \Rightarrow(a+b)(c+d) \geq 2^{4} \\
& \therefore \frac{a+b+c+d}{4} \geq \sqrt[4]{(a+b)(c+d)} \Rightarrow a+b+c+d \geq 8
\end{aligned}
$$

5. STATEMENT 1. : If $p, q, r>0$ and $(p+q)(p+r)(r+q)=8 p^{3}$ then there must be $p=q=r$. because
STATEMENT 2.: If $a_{1}, a_{2}, a_{3} \ldots . . a_{n}>0$ then $\frac{a_{1}+a_{2}+\ldots . a_{n}}{n} \geq\left(a_{1} a_{2} a_{3} \ldots . a_{n}\right)^{1 / n}$.
Key. A
Sol. If $p=q=r$ and $p, q, r>0$
then their A.M. \geq G.M.

$$
\begin{gathered}
\frac{p+q}{2}=p q \\
\frac{q+p}{2}=q r \\
\frac{r+p}{2}=p r \\
\Rightarrow \quad(p+q)(q+r)(r+p)=8 p q r=8 p^{3} .
\end{gathered}
$$

6. Let $3 a_{1}, b_{2}, c_{3} \ldots a_{10} 6$ be in AP and $3, h_{1}, h_{2}, h_{3} . . h_{10}, 6$ be in HP then Statement I: $a_{2} h_{9}+a_{4} h_{7}+a_{6} h_{5}+a_{8} h_{3}=72$.
Statement II: product of the ith AM from left and ith HM from left of n AMS and n HMS inserted between two given numbers is independent of i
Key. C
Sol. Conceptual
7. STATEMENT-1: a, b, c are sides of $\triangle A B C$ such that $b c=\lambda^{2}$ for some positive λ. Then $\mathrm{a} \geq \lambda \sin \frac{\mathrm{A}}{2}$
STATEMENT-2: A.M. of two given positive quantities \geq G.M.
Key. A
Sol. $\quad \frac{b+c}{2} \geq \sqrt{b c}=\lambda$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=\frac{b+c}{\sin B+\sin C} \geq \frac{2 \lambda}{2 \cos \frac{A}{2} \cos \frac{B-C}{2}}$
$a \geq 2 \lambda \sin \frac{A}{2}$
8. Suppose four distinct positive numbers $a_{1}, a_{2}, a_{3}, a_{4}$ are in G.P. Let $b_{1}=a_{1}, b_{2}=b_{1}+a_{2}$, $b_{3}=b_{2}+a_{3}$ and $b_{4}=b_{3}+a_{4}$.
STATEMENT-1: The numbers $b_{1}, b_{2}, b_{3}, b_{4}$ are neither in AP nor in GP and
because
STATEMENT-2: The numbers $b_{1}, b_{2}, b_{3}, b_{4}$ are in H.P.
Key. C
Sol. Here $b_{1}=a_{1}, b_{2}=a_{1}+a_{2}=a_{1}(1+r), b_{3}=a_{1}(1+r)+a_{1} r^{2}=a_{1}\left(1+r+r^{2}\right)$

$$
b_{4}=a_{1}\left(1+r+r^{2}\right)+a r^{3}=a_{1}\left(1+r+r^{2}+r^{3}\right),
$$

r being the common ratio of the G.P.
Clearly, $b_{1}, b_{2}, b_{3}, b_{4}$ are neither in AP nor in GP nor in HP.
STATEMENT-1 is true but STATEMENT-2 is false.
9. STATEMENT - 1 For $n \in N, 2^{n}>1+n \sqrt{\left(2^{n-1}\right)}, n \neq 1$

STATEMENT -2 For two distinct positive real numbers, $\mathrm{GM}>\mathrm{HM}$ and $(\mathrm{AM})(\mathrm{HM})=$ $(\mathrm{GM})^{2}$
Key. B
Sol. $\mathrm{Q} \frac{(A M)}{(G M)}=\frac{G M}{H M}>1$
$A M>G M$

$$
\begin{gathered}
\frac{1+2+2^{2}+\ldots \ldots+2^{n-1}}{n}>\left(1 \cdot 2 \cdot 2^{2} \ldots \ldots . .2^{n-1}\right)^{1 / n} \\
\Rightarrow \frac{\frac{1 .\left(2^{n}-1\right)}{(2-1)}}{n}>\left\{2^{1+2+3+\ldots \ldots .+(n-1)}\right\}^{1 / n}
\end{gathered}
$$

10. Statement -1 : If a, b, c are non zero real numbers such that
$3\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}+1\right)=2(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{ab}+\mathrm{bc}+\mathrm{ca})$, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. as well as in G.P.
Statement - 2: A series is in A.P. as well as in G.P. if all the terms in the series are equal and non zero.
Key. A
Sol. $\quad 3\left(a^{2}+b^{2}+c^{2}+1\right)-2(a+b+c+a b+b c+c a)=0$
$\Rightarrow \quad(\mathrm{a}-1)^{2}+(\mathrm{b}-1)^{2}+(\mathrm{c}-1)^{2}+(\mathrm{a}-\mathrm{b})^{2}+(\mathrm{b}-\mathrm{c})^{2}+(\mathrm{c}-\mathrm{a})^{2}=0$
$\Rightarrow \quad a=b=c=1$
11. Statement - 1: Equations $x^{2}-4 x+1=0$ and $x^{2}-a x+b=0$, where a, b are rational numbers, have atleast one common root, then $\mathrm{a}=4$ and $\mathrm{b}=1$
Statement -2 ; If two equations $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ and $\mathrm{a}_{1} \mathrm{x}^{2}+\mathrm{b}_{1} \mathrm{x}+\mathrm{c}_{1}=0$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}$ are non-zero rational numbers, have common irrational root, then $\frac{a}{a_{1}}=\frac{b}{b_{1}}=\frac{c}{c_{1}}$
Key. A
Sol. Obviously both the statements are true and statement -2 explains statement - 1 .
12. Statement $-1: 1,2,4,8, \ldots$. is a G.P., $4,8,16,32$ is a G.P. and $1+4,2+8,4+16,8+32, \ldots \ldots$. is also a G.P.
Statement - 2: Let general term of a G.P. with common ratio r be T_{k+1} and general term of another G.P. with common ratio r be $\mathrm{T}_{\mathrm{k}+1}$, then the series whose general term $T_{k+1}^{\prime}=T_{k+1}+T_{k+1}^{\prime}$ is also a G.P. with common ratio r.
Key. C
Sol. Taking 2, 4, 8, 16, ...and $-2,-4,-8,-16$
sum is $0,0,0, \ldots$ it is not in GP
13. Statement - 1: If one A.M. 'A' and two G.M.'s p and q be inserted between any two numbers, then $\mathrm{p}^{3}+\mathrm{q}^{3}=2$ Apq
Statement - 2; If x, y, z are in G.P., then $y^{2}=x z$
Key. B
Sol.
Statement - 1
$\mathrm{a}, \mathrm{A}, \mathrm{b}$ are in A.P. $\quad \Rightarrow \quad 2 \mathrm{~A}=\mathrm{a}+\mathrm{b}$
a, p, q, b are in G.P. $\Rightarrow \quad p q=a b$ and let common ratio of G.P. be r

$$
\begin{array}{ll}
\therefore \quad b=a r^{3} & \Rightarrow \quad r=\left(\frac{b}{a}\right)^{\frac{1}{3}} \\
p=a r & \Rightarrow \quad p=a \cdot\left(\frac{b}{a}\right)^{\frac{1}{3}} \quad \Rightarrow \quad p^{3}=a^{2} b \\
q=a r^{2} \quad \Rightarrow & q=a\left(\frac{b}{a}\right)^{\frac{2}{3}} \quad \Rightarrow \quad q^{3}=a b^{2} \tag{iv}
\end{array}
$$

From (i), (ii), (iii) \& (iv)

$$
\mathrm{p}^{3}+\mathrm{q}^{2}=2 \mathrm{Apq}
$$

Statement - 2 is obviously true

AP,GP,HP, Sequences

Comprehension Type

Paragraph - 1

If $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots . \mathrm{x}_{\mathrm{n}}$ are n positive real numbers, then A.M. \geq G.M.

$$
\frac{x_{1}+x_{2}+\ldots . .+x_{n}}{n} \geq \sqrt[n]{x_{1} x_{2} \ldots . x_{n}}
$$

1. The minimum value of the function $4^{\sin ^{-1} x}+4^{\cos ^{-1} x}(-1 \leq x \leq 1)$ and the value of x, where it is attained is.
(A) $2.2^{\frac{\pi}{2}}$ at $\mathrm{x}=\frac{1}{2}$
(B) $2.2^{\frac{\pi}{4}}$ at $\mathrm{x}=\frac{1}{\sqrt{2}}$
(C) $2.2^{\frac{\pi}{2}}$ at $\mathrm{x}=\frac{1}{\sqrt{2}}$
(D) $1+4^{\frac{\pi}{2}}$ at $\mathrm{x}=0$

Key. C
2. Which of the following inequalities is not true
(A) $\frac{x^{2}+3}{\sqrt{x^{2}+2}} \geq 2 \quad(x \in R)$
(B) $x^{2}+y^{2}+1 \geq x y+x+y \quad(x, y \in R)$
(C) $\frac{x^{3}+x+2}{x} \geq 4(x>0)$
(D) $x^{2}+\frac{1}{x^{2}}+4 \leq 3\left|x+\frac{1}{x}\right|(x \neq 0)$

Key. D
3. If the equation $x^{4}-4 x^{3}+a x^{2}-b x+1=0$ has four positive roots, then $a+b$ is equal to
(A) 0
(B) 4
(C) 6
(D) 10

Key. D
Sol. 1. $4^{\sin ^{-1} x}+4^{\cos ^{-1} x} \geq 2 \sqrt{4^{\sin ^{-1} x+\cos ^{-1} x}}=2.2^{\pi / 2}$
equality holds if and only if $4^{\sin ^{-1} \mathrm{x}}=4^{\cos ^{-1} \mathrm{x}}$
i.e. $\quad x=\frac{1}{\sqrt{2}}$
2. options a, b, c are correct only d option is not correct
i.e.

$$
\mathrm{x}^{2}+\frac{1}{\mathrm{x}^{2}}+4-3\left|\mathrm{x}+\frac{1}{\mathrm{x}}\right|=\mathrm{u}^{2}-3 \mathrm{u}+2=(\mathrm{u}-1)(\mathrm{u}-2) \geq 0
$$

where $\mathrm{u}=\left|\mathrm{x}+\frac{1}{\mathrm{x}}\right|$, Then $\mathrm{u} \geq 2$
3. If $x_{1}, x_{2}, x_{3}, x_{4}$ are denote the roots of the given equation $\sum x_{1}=4, x_{1} x_{2} x_{3} x_{4}=1$
$\Rightarrow \quad \frac{\sum \mathrm{x}_{1}}{4}=\sqrt[4]{\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \mathrm{x}_{4}}$
hence $x_{1}=x_{2}=x_{3}=x_{4}=1$
$\Rightarrow \quad x^{4}-4 x^{3}+a x^{2}-b x+1=(x-1)^{4}=x^{4}-4 x^{3}+6 x^{2}-4 x+1$
Thus $\quad a=6, b=4$.
Then $a+b=10$.

Paragraph - 2

Sometimes we can find the sum of series by use of differentiation. If we know the sum of a series

$$
\text { e.g. if } f(x)=f_{1}(x)+f_{2}(x)+\ldots \ldots \ldots \ldots \ldots
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}_{1}{ }^{\prime}(\mathrm{x})+\mathrm{f}_{2}^{\prime}(\mathrm{x})+\ldots \ldots \ldots \ldots
$$

e.g.
$(1-x)^{-1}=1+x+x^{2}+x^{3}$
< 1
Hence the sum of the AGP

$$
1+2 x+3 x^{2}+\ldots \ldots=(1-x)^{-2} \quad(B y \text { differentiation both }
$$

the sides)
Now answer the question that follows
4. The sum of the series $\frac{2^{2}}{1!}+\frac{3^{2}}{2!}+\frac{4^{2}}{3!}+\ldots \ldots$. upto ∞ is
(A) $4 \mathrm{e}-1$
(B) 5 e
(C) $5 \mathrm{e}-1$
(D) 4 e

Key. C
5. Sum of the series $1-\frac{1}{2}+\frac{2}{3}-\frac{3}{4}+\ldots \ldots$. upto ∞ is
(A) $\frac{1}{2}-\square \mathrm{n} 2$
(B) $1-\square \mathrm{n} 2$
(C) ∞
(D) $\frac{3}{2}-\square \mathrm{n} 2$

Key. D
6. Sum of the series $1+1+\frac{3}{4}+\frac{4}{8}+\frac{5}{16}+\cdots .$. upto infinite terms, is
(A) 4
(B) 2
(C) 1
(D) $\frac{1}{4}$

Key. A
Sol. 4. $\mathrm{t}_{\mathrm{n}}==++$

$$
=++=e+3 e+e-1=5 e-1
$$

5. $=1$
differentiating both sides with respect to x
$=-+-+\ldots$.
put $x=1,-\square$ n $2=-+-+\ldots$.

- n $2=1-+-+\ldots$.

6. We know that, $1+2 x+3 x^{2}+\ldots \ldots=(1-x)^{-2}$
put $x=$,
we get $1+1++++\ldots \ldots==4$

Paragraph - 3

In the adjoining figure, we find two curves PA and PB through P. Clearly in the neighbourhood of P the curve PA is bending more rapidly than the curve PB . In other words curvature of PA is greater than that of PB. If PA and PB are regarded roughly as arcs of circles then clearly radius of PA is less than the radius of PB .

Let P be any point on a given curve and Q any other point on it. Let the normals at P and Q intersect in ' N '. If ' N ' tends to a definite position C as Q tends to $\mathrm{P} \quad$ (from the right or from the left) then ' C^{\prime} is called the centre of curvature of curve at P and distance $C P$ is called the radius of curvature of P and is denoted by Greek letter ρ.
The reciprocal of the distance $C P$ is called the curvature of the curve at P. The circle with its centre at C and radius $C P$ is called the circle of curvature of the curve at P. Radius of curvature can be evaluated with the help of following formula;

$$
\rho=\frac{\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{3 / 2}}{\frac{d^{2} y}{d x^{2}}}
$$

The formula does not hold good when the tangent at P is parallel to y-axis. Since the value of radius of curvature depends only on the curve and not on the axes. Therefore in such cases we interchange the axes of ' x ' and ' y ' and we have

$$
\rho=\frac{\left\{1+\left(\frac{d x}{d y}\right)^{2}\right\}^{3 / 2}}{\frac{d^{2} x}{d y^{2}}}
$$

7. Numerically radius of curvature of parabola $y^{2}=4 a x$ at any point (x, y) is
A) $\frac{2(x+a)^{3 / 2}}{\sqrt{a}}$
B) $\frac{2(y+a)^{3 / 2}}{\sqrt{a}}$
C) $\frac{(x+a)^{3 / 2}}{\sqrt{a}}$
D) $\frac{(x+a)^{2}}{a^{3 / 2}}$

Key. A
Sol. Conceptual
8. Radius of curvature at any point of the curve $x=a(t+\sin t) ; y=a(1-\cos t)$ is given by
A) $a \cos \frac{t}{2}$
B) $4 a \cos \frac{t}{2}$
C) $4 a \cos t$
D) $5 a \cos t$

Key. B
Sol. Conceptual
9. Radius of curvature of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in terms of l, where l is the perpendicular distance from the centre upon the tangent at (x, y) is
A) $\frac{a^{2} b^{2}}{l^{3}}$
B) $\frac{a^{2} b}{l^{2}}$
C) $\frac{a^{2} b^{2}}{l^{2}}$
D) $\frac{a^{3} b^{3}}{l^{3}}$

Key. A
Sol. Conceptual

Paragraph - 4

If a sequence or series is not a direct form of an AP, GP, etc. Then its nth term can not be determined. In such cases, we use the following steps to find the nth term $\left(T_{n}\right)$ of the given sequence.
Step - I: Find the differences between the successive terms of the given sequence. If these differences are in AP, then take $T_{n}=a n^{2}+b n+c$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are constants.
Step - II: If the successive differences found in step I are in GP with common ratio r , then take $T_{n}=a+b n+c r^{n-1}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are constants.
Step - III : If the second successive differences (Differences of the differences) in step I are in AP, then take $T_{n}=a n^{3}+b n^{2}+c n+d$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are constants.
Step - IV : If the second successive differences (Differences of the differences) in step I are in GP, then take $T_{n}=a n^{2}+b n+c+d r^{n-1}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are constants.
Now let sequences :
A : $1,6,18,40,75,126$,
B: $1,1,6,26,91,291$,
C: $\ln 2 \ln 4, \ln 32, \ln 1024 \ldots .$.
10. If the nth term of the sequence A is $T_{n}=a n^{3}+b n^{2}+c n+d$ then the value $6 a+2 b-d$ is
(A) $\ln 2$
(B) 2
(C) $\ln 8$
(D) 4

Key. D
Sol. $\quad T_{n}=a n^{3}+b n^{2}+c n+d$
$T_{1}=a+b+c+d=1$
$T_{2}=8 a+4 b+2 c+d=6$
$6 a+2 b-d=4$
11. For the sequence $1,1,6,26,91,291, \ldots . . .$. . Find the S_{50} where $S_{50}=\sum_{r=1}^{50} T_{r}$
(A) $\frac{5}{8}\left(3^{50}-1\right)-3075$
(B) $\frac{5}{8}\left(3^{50}-1\right)-5075$
(C) $\frac{5}{8}\left(3^{50}-1\right)-1275$
(D) None of these

Key. A
Sol. $\quad T_{n}=\frac{5}{4} 3^{n-1}-\frac{5 n}{2}+\frac{9}{4}$

$$
\begin{aligned}
& S_{50}=\frac{5}{4}\left(1+3+\ldots+3^{49}\right)-\frac{5}{2}(1+2+\ldots+50)+50 \cdot \frac{9}{4} \\
& \quad=\frac{5}{4}\left(\frac{3^{50}-1}{2}\right)-\frac{5}{2} \cdot \frac{50.51}{2}+\frac{450}{4} \\
& \quad=\frac{5}{8}\left(3^{50}-1\right)-\frac{125.51}{2}+\frac{450}{4} \\
& =\frac{5}{8}\left(3^{50}-1\right)-3075
\end{aligned}
$$

12. The sum of the series $1 . n+2 .(n-1)+3 .(n-2)+\ldots .+n .1$
(A) $\frac{n(n+1)(n+2)}{6}$
(B) $\frac{n(n+1)(n+2)}{3}$
(C) $\frac{n(n+1)(2 n+1)}{6}$
(D) $\frac{n(n+1)(2 n+1)}{3}$

Key. A
Sol. $\quad \sum_{r=1}^{n} r(n-r+1)=\sum_{r=1}^{n}(n+1) r-\sum_{r=1}^{n} r^{2}$

$$
\begin{aligned}
& =(n+1) \sum n-\sum n^{2} \\
& =\frac{(n+1)^{2} n}{2}-\frac{n(n+1)(2 n+1)}{6} \\
& =\frac{n(n+1)}{6}(3 n+3-2 n-1)=\frac{n(n+1)(n+2)}{6}
\end{aligned}
$$

Paragraph - 5

In a sequence of $(4 n+1)$ terms the $1^{\text {st }}(2 n+1)$ terms are in A.P. whose common difference is 2 and the last $(2 n+1)$ terms are in G.P. whose common ratio is $\frac{1}{2}$. If the middle terms of the A.P. and G.P. are equal, then
13. Middle term of the sequence is
A) $\frac{n .2^{n+1}}{2^{n}-1}$
B) $\frac{n .2^{n+1}}{2^{2 n}-1}$
C) $n 2^{n}$
D) $(n+1) 2^{n+1}$
14. First term of the sequence is
A) $\frac{4 n+2 n 2^{n}}{2^{n}-1}$
B) $\frac{4 n-2 n 2^{n}}{2^{n}-1}$
C) $\frac{2 n-n 2^{n}}{2^{n}-1}$
D) $\frac{2 n+n 2^{n}}{2^{n}-1}$
15. Middle term of the G.P. is
A) $\frac{2^{n}}{2^{n}-1}$
B) $\frac{n 2^{n}}{2^{n}-1}$
C) $\frac{n}{2^{n}-1}$
D) $\frac{2 n}{2^{n}-1}$

Key : 13-A, 14-B, 15-D

Sol: 13-15

$1^{\text {st }}(2 n+1)$ terms of A.P. are $A, A+2, \ldots ., A+4 n$.
Last $(2 n+1)$ terms of G.P. are $(A+4 n),(A+4 n) \frac{1}{2}, \ldots \ldots .,(A+4 n) \frac{1}{2^{2 n}}$
$=A+2 n=\frac{A+4 n}{2^{n}} \Rightarrow A=\frac{4 n-2 n 2^{n}}{2^{n}-1}$
Middle term of sequence $=T_{2 n+1}=A+4 n=\frac{n 2^{n+1}}{2^{n}-1}$
Middle term of G.P. $=T_{n+1}=\frac{2 n 2^{n}}{2^{n}-1} \times \frac{1}{2^{\chi^{\chi}}}=\frac{2 n}{2^{n}-1}$

Paragraph - 6

Let $A_{1}, A_{2}, A_{3}, \ldots, A_{m}$ be arithmetic means between -2 and 1027 and $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ be geometric means between 1 and 1024. Product of geometric means is 2^{45} and sum of arithmetic means is $1025 \times$ 171.
16. The value of n is
A) 7
B) 9
C) 11
D) none of these

Key. B
Sol. $\quad G_{1} G_{2} \ldots G_{n}=(\sqrt{1 \times 1024})^{n}=2^{5 n}$

$$
\begin{array}{ll}
\therefore & 2^{5 n}=2^{45} \\
\therefore & n=9
\end{array}
$$

17. The value of m is
A) 340
B) 342
C) 344
D) 346

Key. B
Sol. $\quad A_{1}+A_{2}+A_{3}+\ldots+A_{m-1}+A_{m}=1025 \times 171$

$$
\therefore \quad \mathrm{m}\left(\frac{-2+1027}{2}\right)=1025 \times 171
$$

$$
m=342
$$

18. The value of $\mathrm{G}_{1}+\mathrm{G}_{2}+\mathrm{G}_{3}+\ldots \mathrm{G}_{\mathrm{n}}$ is
A) 1022
B) 2044
C) 512
D) none of
these
Key. A
Sol. Since $n=9, \therefore \quad=(1024)^{\frac{1}{9+1}}=2$

$$
\begin{array}{ll}
\therefore \quad & \mathrm{G}_{1}=2, \mathrm{r}=2 \\
& \mathrm{G}_{1}+\mathrm{G}_{2}+\ldots+\mathrm{G}_{\mathrm{n}}=\frac{2 \cdot\left(2^{9}-1\right)}{2-1}=1024-2=1022
\end{array}
$$

19. The common difference of the progression $A_{1}, A_{3}, A_{5}, \ldots, A_{m-1}$ is
A) 6
B) 3
C) 2
D) 1

Key. A
Sol. Common difference of sequence $A_{1}, A_{2}, \ldots, A_{m}$ is $\frac{1027+2}{342+1}=3$
$\therefore \quad$ common difference of sequence $A_{1}, A_{3}, A_{5}, \ldots, A_{m-1}$ is 6
20. The numbers $2 \mathrm{~A}_{171}, \mathrm{G}_{5}^{2}+1,2 \mathrm{~A}_{172}$ are in
A) A.P.
B) G.P.
C) H.P.
D) A.G.P.

Key. A
Sol. we have $A_{171}+A_{172}=-2+1027=1025$

$$
\therefore \quad \frac{2 \mathrm{~A}_{171}+2 \mathrm{~A}_{172}}{2}=1025
$$

Also $\mathrm{G}_{5}=1 \times 2^{5}=32$

$$
\begin{array}{ll}
\therefore & \mathrm{G}_{5}^{2}=1024 \quad \text { i.e. } \mathrm{G}_{5}^{2}+1=1025 \\
\therefore & 2 \mathrm{a}_{171} \mathrm{G}_{5}^{2}+1,2 \mathrm{~A}_{172} \text { are in A.P. }
\end{array}
$$

Paragraph - 7

There are two sets A and B each of which consists of three numbers in A.P. whose sum is 15 and where D and d are the common differences such that $D-d=1$. If $\frac{p}{q}=\frac{7}{8}$ where p and q are the product of the numbers respectively and $d>0$, in the two sets
21. Value of p is
A) 100
B) 120
C) 105
D) 110

Key. C
22. Value of q is
A) 100
B) 120
C) 105
D) 110

Key. B
23. Value of $D+d$ is
A) 1
B) 2
C) 3
D) 4

Key. C
Sol. Let numbers in set A be $a-D, a, a+D, a, a+D$ and in set B be $b-d, b, b+d$
$3 \mathrm{a}=3 \mathrm{~b}=15 \Rightarrow \mathrm{a}=\mathrm{b}=5$
Set $A=\{5-D, 5,5+D\}$
Set $B=\{5-d, 5,5+d\}$
Where $D=d+1$

$$
\frac{\mathrm{p}}{\mathrm{q}}=\frac{5\left(25-\mathrm{D}^{2}\right)}{5\left(25-\mathrm{d}^{2}\right)}=\frac{7}{8}
$$

$25(8-7)=8(d+1)^{2}-7 d^{2}$
$\Rightarrow \quad \mathrm{d}=-17,1 \quad$ but $\mathrm{d}>0 \Rightarrow \mathrm{~d}=1$
So numbers in Set A are 3, 5, 7
Number in Set B are 4, 5, 6
Now $p=3 \times 5 \times 7=105$
$\mathrm{q}=4 \times 5 \times 6=120$
value of $D+d=3$

Paragraph - 8

Four different integers form an increasing A.P. One of these numbers is equal to the sum of the squares of the other three numbers. Then
24. The smallest number is
A) -2
B) 0
C) -1
D) 2

Key. C
25. The common difference of the four numbers is
A) 2
B) 1
C) 3
D) 4

Key. B
26. The sum of all the four numbers is
A) 10
B) 8
C) 2
D) 6

Key. C
Sol. Let four integers be $a-d, a, a+d$ and $a+2 d$
Where a and d are integers and $d>0$.

$$
\begin{array}{ll}
\because & a+2 d=(a-d)^{2}+a^{2}+(a+d)^{2} \\
\Rightarrow & 2 d^{2}-2 d+3 a^{2}-a=0 \\
\therefore & d=\frac{1}{2}\left[1 \pm \sqrt{1+2 a-6 a^{2}}\right] \tag{ii}
\end{array}
$$

Since d is positive integer

$$
\begin{array}{ll}
\therefore & 1+2 a-6 a^{2}>0 \\
& 6 a^{2}-2 a-1<0 \\
\Rightarrow & \frac{1-\sqrt{7}}{6}<a<\frac{1+\sqrt{7}}{6} \\
\therefore & a=0 \text { Put in (ii) } \\
\therefore & d=1 \text { or } 0 \text { but } \\
\therefore & d=1 \\
\therefore & \text { The four numbers are }:-1,0,1,2
\end{array}
$$

Paragraph - 9

Let $n \in N$. The A.M, G.M, H.M respectively of the ' n ' numbers $n+1, n+2, n+3, \ldots .$. ,
$n+n$ are A_{n}, G_{n}, H_{n}
27.

A) 1
B) $\frac{1}{2}$
C) $\frac{3}{2}$
D) 2

Key.
28. $\underset{n \rightarrow \infty}{\operatorname{Lt}} \frac{G_{n}}{n}=$
A) $\frac{1}{e}$
B) $\frac{2}{e}$
C) $\frac{3}{e}$
D) $\frac{4}{e}$

Key. D
29. $\underset{n \rightarrow \infty}{\operatorname{Lt}} \frac{H_{n}}{n}=$
A) $\frac{1}{e}$
B) $\log _{2} e$
C) $\frac{2}{e}$
D) $\log _{4} e$

Key. B
Sol. (27-29)

$$
\begin{aligned}
& A_{n}=\frac{(n+1)(n+2)+\ldots .+(n+n)}{n}=\frac{n^{2}+\frac{n(n+1)}{2}}{n}=n+\frac{n+1}{2} \\
& =\frac{3 n+1}{2} \\
& G_{n}=[(n+1)(n+2)(n+3) \ldots \ldots(n+n)]^{\frac{1}{n}} \\
& \frac{1}{H_{n}}=\frac{1}{n}\left[\frac{1}{n+1}+\frac{1}{n+2}+\ldots .+\frac{1}{n+n}\right] \\
& \underset{n \rightarrow \infty}{\operatorname{Lt}} \frac{A_{n}}{n}=\frac{3}{2} \text { Let } L=\underset{n \rightarrow \infty}{\operatorname{Lt}} \frac{G_{n}}{n} \\
& \log _{e} L=\underset{n \rightarrow \infty}{L t} \frac{1}{n} \sum_{r=1}^{n} \log \left(1+\frac{r}{n}\right)=\int_{0}^{1} \log (1+x) d x \\
& =[x \log (1+x)]_{0}^{1}-\int_{0}^{1} \frac{(1+x)-1}{1+x} d x=\ln 2-[1-\ln (1+x)]_{0}^{1} \\
& \underset{n \rightarrow \infty}{\operatorname{Lt}} \frac{n}{H_{n}}=\underset{n \rightarrow \infty}{L t} \frac{1}{n} \sum_{r=1}^{n} \frac{1}{1+\frac{r}{n}}=\int_{0}^{1} \frac{1}{1+x} d x=\log _{e} 2 \\
& \therefore \underset{n \rightarrow \infty}{L t} \frac{H_{n}}{n}=\log _{2} e
\end{aligned}
$$

Paragraph - 10

$$
\begin{aligned}
& \sum \mathrm{n}=\frac{\mathrm{n}(\mathrm{n}+1)}{2} \\
& \sum \mathrm{n}^{2}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}, \sum \mathrm{n}^{3}=\left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right]^{2}
\end{aligned}
$$

if $T_{n}=n(n+1)$, then

$$
\mathrm{S}_{\mathrm{n}}=[\mathrm{n}(\mathrm{n}+1)] \frac{(\mathrm{n}+2)}{3}
$$

if $T_{n}=n(n+1)(n+2)$, then
$\mathrm{S}_{\mathrm{n}}=[\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)] \frac{(\mathrm{n}+3)}{4}$.
Answer the following questions based upon above passage :
30. Sum of the series
$\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots$ to 16 terms is
(A) 346
(B) 446
(C) 546
(D) 444

Key. B
31. $1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\ldots$.to ∞ is
(A) $\frac{16}{35}$
(B) $\frac{11}{8}$
(C) $\frac{35}{16}$
(D) $\frac{7}{16}$

Key. C
32. The sum of the series

$$
\frac{1}{3 \times 7}+\frac{1}{7 \times 11}+\frac{1}{11 \times 15}+\ldots . \text { to } \infty \text { is }
$$

(A) $\frac{1}{3}$
(B) $\frac{1}{6}$
(C) $\frac{1}{9}$
(D) $\frac{1}{12}$

Key. D
Sol. 30. Ans. (b)
$\mathrm{T}_{\mathrm{n}}=\frac{\sum \mathrm{n}^{3}}{\frac{\mathrm{n}}{2}[2.1+(\mathrm{n}-1) \cdot 2]}$
$=\frac{1}{4} \cdot \frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}{\mathrm{n}^{2}}=\frac{1}{4}\left(\mathrm{n}^{2}+2 \mathrm{n}+1\right)$
$\mathrm{S}_{\mathrm{n}}=\frac{1}{4}\left[\sum \mathrm{n}^{2}+2 \sum \mathrm{n}+\sum 1\right]$
$=\frac{1}{4}\left[\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}+2 \cdot \frac{(\mathrm{n}+1) \mathrm{n}}{2}+\mathrm{n}\right]$
Putting $n=16$, we get
$S_{16}=446$
31. Ans. (c)
$S=1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\ldots \infty$
Then $\frac{1}{5} S=\frac{1}{5}+\frac{4}{5^{2}}+\frac{7}{5^{3}}+\ldots .$.
$S\left(1-\frac{1}{5}\right)=1+3\left[\frac{1}{5}+\frac{1}{5^{2}}+\frac{1}{5^{3}}+\ldots \infty\right]$
$\frac{4}{5} \mathrm{~S}=1+3\left[\frac{1 / 5}{1-1 / 5}\right]=1+\frac{3}{4}=\frac{7}{4}$
$\therefore \quad S=\frac{35}{16}$
Note: Your many use the formula
i.e. $S_{\infty}=\frac{a b}{1-r}+\frac{d b r}{(1-r)^{2}}$
where $a=1, d=3, b=1, r=1 / 5$
32. And. (d)

$$
\begin{aligned}
& \mathrm{S}=\frac{1}{4}\left[\left(\frac{1}{3}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{11}\right)+\left(\frac{1}{11}-\frac{1}{15}\right)+\ldots . \infty\right] \\
& \mathrm{S}_{\infty}=\frac{1}{4} \cdot \frac{1}{3}=\frac{1}{12}
\end{aligned}
$$

AP,GP,HP, Sequences

Integer Answer Type

1. The value of $x . y . z=55$ or $\frac{343}{55}$ according as the series $\mathrm{a}, \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{b}$ form an A.P or H.P respectively, where a and b are positive natural numbers. Find the sum a+b
Key. 8
Sol. If $\mathrm{a}, \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{b}$ to are in A.P then the common difference d of the AP is given by
$b=a+4 d \Rightarrow d=\frac{b-a}{4}$
$\therefore x=a+d=\frac{a+b-a}{4}=\frac{b+3 a}{4}$
$y=a+2 d=\frac{a+b-a}{2}=\frac{a+b}{2}$
$z=a+3 d=a+3\left(\frac{b-a}{4}\right)=\frac{a+3 b}{4}$
$\therefore x y z=\frac{b+3 a}{4} \times \frac{a+b}{2} \times \frac{a+3 b}{4}$
$\Rightarrow 55=\frac{(3 a+b)(a+b)(a+3 b)}{32}$
$\Rightarrow(3 a+b)(a+b)(a+3 b)=55 \times 32$
When $\mathrm{a}, \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{b}$ are in H.P. Then
$\frac{1}{a}, \frac{1}{x}, \frac{1}{y}, \frac{1}{b}$ are in AP
Let D be the common different of this A.P. Then
$\frac{1}{b}=\frac{1}{a}+4 D \Rightarrow D=\frac{a-b}{4 a b}$
$\therefore \frac{1}{x}=\frac{1}{a}+D=\frac{1}{a}+\frac{a-b}{4 a b}=\frac{3 b+a}{4 a b}$
$\frac{1}{y}=\frac{1}{a}+2 D=\frac{1}{a}=\frac{a-b}{2 a b}=\frac{a+b}{2 a b}$
$\frac{1}{z}=\frac{1}{a}+3 D=\frac{1}{a}=\frac{3(a-b)}{4 a b}=\frac{3 a+b}{4 a b}$
$\therefore \frac{1}{x} \cdot \frac{1}{y} \cdot \frac{1}{z}=\frac{(3 a+b)(a+b)(3 a+b)}{32 a^{3} b^{3}}$
$\Rightarrow \frac{1}{x y z}=\frac{(3 a+b)(a+b(a+3 b))}{32 a^{3} b^{3}}$
$\Rightarrow \frac{55}{343}=\frac{55 \times 32}{32 a^{3} b^{3}}$
$\Rightarrow(a b)^{3}=7^{3}$
$\Rightarrow a b=7$
$\Rightarrow a=a, b=7$, or $a=7, b=1$
2. The largest positive term of the H.P whose $1^{\text {st }}$ two terms are $\frac{2}{5}$ and $\frac{12}{23}$ is \qquad
Key. 6
Sol. First two terms of the corresponding A.P are $\frac{5}{2}$ and $\frac{23}{12}$
Let d be the common difference of the corresponding A.P , Then
$d=\frac{23}{12}-\frac{5}{2}=\frac{-7}{12}$
Let a_{n} be the nth term of the given H.P. Then,
$a_{n}=\frac{1}{\frac{5}{2}+(n-1)\left(\frac{-7}{12}\right)}=\frac{12}{30-7 n+7}=\frac{12}{37-7 n}$
Cleary, a_{n} will be greatest, if $37-7 \mathrm{n}$ is least
$37-7 n$ is least for $\mathrm{n}=5$
Hence, $a_{5}=\frac{12}{37-35}=6$ is the largest positive term
3. If the sum of the n terms of the series $1^{3}+3.2^{2}+3^{3}+3.4^{2}+5^{3}+3.6^{2}+\ldots .$. , where n is an even number, is given by $\frac{n}{k}\left(n^{3}+a n^{2}+b n+c\right)$ then $b-a+c-k$ is

Key. 6
Sol. We have
$S=1^{3}+3.2^{2}+3^{3}+3.4^{2}+5^{3}+3.6^{2}+\ldots$
$S=\left(1^{3}+3^{3}+5^{3}+\ldots.\right)+3 .\left(2^{2}+4^{2}+6^{2}+\ldots\right)$
$S=\left(1^{3}+3^{3}+5^{3}+\ldots.\right)+12\left(1^{2}+2^{2}+3^{2}+\ldots\right)$
Where $S_{1}=1^{3}+3^{3}+5^{3}+\ldots$. and $S_{2}=1^{2}+2^{2}+3^{2}+\ldots$
Now case arise
When n is, say even, say $\mathrm{n}=2 \mathrm{~m} m \in N$
In this case S_{1}, and S_{2} both contain m terms
$\therefore S_{1}=1^{3}+3^{3}+5^{3}+\ldots+(2 m-1)^{3}$
$\sum_{r=1}^{M}(2 r-1)^{3}$
$\sum_{r=1}^{m}\left(8 r^{3}-12 r^{2}+6 r-1\right)$
$=8 \sum_{r=1}^{m} r^{3}-12 \sum_{r=1}^{m} r^{2}+6 \sum_{r=1}^{m} r-\sum_{r=1}^{m} 1$
$=8\left\{\frac{m(m+1)}{2}\right\}^{2}-12\left\{\frac{m(m+1)(2 m+1)}{6}\right\}+\frac{6 m(m+1)}{2}-m$
$=8\left\{\frac{n(n+2)}{8}\right\}^{2}-\frac{12}{6}\left\{\frac{n}{2}\left(\frac{n+2}{2}\right)+(n+1)\right\}+3 \frac{n}{2}\left(\frac{n+2}{3}\right)-\frac{n}{2}$
$=\frac{n^{2}(n+2)^{2}}{8}-\frac{n(n+1)(n+2)}{2}+3 \frac{n(n+2)}{4}-\frac{n}{2}$
$S_{2}=1^{2}+2^{2}+3^{2}+\ldots .+m^{2}$
$=\frac{m(m+1)(2 m+1)}{6}$
$=\frac{n(n+2)(n+1)}{24}$
$\therefore S=S_{1}+12 S_{2}$
$=\frac{n^{2}(n+2)^{2}}{8}-\frac{n(n+1)(n+2)}{2}+\frac{3}{4} n(n+2)-\frac{n}{2}+\frac{n(n+1)(n+2)}{2}$
$=\frac{n^{2}(n+2)^{2}}{8}+\frac{3}{4} n(n+2)-\frac{n}{2}$
$=\frac{n}{8}\left(n^{3}+4 n^{2}+10 n-\right)$
4. Find the natural number ' a ' for which $\sum_{k=1}^{n} f(a+k)=16\left(2^{n}-1\right)$ where $f(x)=2^{x}$

Key. 3
Sol. $\quad f(x)=2^{x}$ for all $x \in N$

$$
\begin{aligned}
& \therefore \sum_{k=1}^{n} f(a+k)=16\left(2^{n}-1\right) \\
& \Rightarrow \sum_{K=1}^{n} 2^{a+k}=16\left(2^{n}-1\right) \\
& \Rightarrow \sum_{k=1}^{n} 2^{a} \cdot 2^{k}=16\left(2^{n}-1\right) \\
& \Rightarrow 2^{a}\left(\sum_{k=1}^{n} 2^{k}\right)=16\left(2^{n}-1\right) \\
& \Rightarrow 2^{a}\left(2+2^{2}+\ldots .+2^{n}\right)=16\left(2^{n}-1\right) \\
& \Rightarrow 2^{a}\left\{2\left(\frac{2^{n}-1}{2-1}\right)\right\}=16\left(2^{n}-1\right) \\
& \Rightarrow 2^{a+1}\left(2^{n}-1\right)=16\left(2^{n}-1\right)
\end{aligned}
$$

$\Rightarrow 2^{a+1}=2^{4}$
$\Rightarrow a+1=4 \Rightarrow a=3$
5. Let $\mathrm{S}=\sqrt{1+\frac{1}{1^{2}}+\frac{1}{2^{2}}}+\sqrt{1+\frac{1}{2^{2}}+\frac{1}{3^{2}}}+\ldots . .+\sqrt{1+\frac{1}{1999^{2}}+\frac{1}{2000^{2}}}$, then find |2000(S-2000)|.

ANS : 1
HINT: $\mathrm{t}_{\mathrm{r}}=\sqrt{1+\frac{1}{\mathrm{r}^{2}}+\frac{1}{(\mathrm{r}+1)^{2}}}$
$=\sqrt{\frac{\mathrm{r}^{2}+(\mathrm{r}+1)^{2}+\mathrm{r}^{2}(\mathrm{r}+1)^{2}}{\mathrm{r}^{2}(\mathrm{r}+1)^{2}}}$
$=\sqrt{\frac{2 \mathrm{r}^{2}+2 \mathrm{r}+1+\mathrm{r}^{2}\left(\mathrm{r}^{2}+2 \mathrm{r}+1\right)}{\mathrm{r}^{2}(\mathrm{r}+1)^{2}}}$
$=\sqrt{\frac{\mathrm{r}^{4}+2 \mathrm{r}^{3}+3 \mathrm{r}^{2}+2 \mathrm{r}+1}{\mathrm{r}^{2}(\mathrm{r}+1)^{2}}}$
$=\frac{r^{2}+r+1}{r(r+1)}=\frac{1}{r(r+1)}+1$
$=1+\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{r}+1}$,
$S=2000-\frac{1}{2000},|2000(S-2000)|=1$.
6. A sequence is obtained by deleting all perfect squares from set of natural numbers. The remainder when the $2003^{\text {rd }}$ term of new sequence is divided by 2048 , is
Key: $\quad 0$
Hint: Since $[\sqrt{2046}]=[\sqrt{2047}]=[\sqrt{2048}]=[\sqrt{2049}]=45$
$\therefore 2003^{\text {rd }}$ term is $2003+45=2048$

Hence remainder is 0

7. If a and b are positive integers and $a+11 b$ is divisible by 13 and $a+13 b$ is divisible by 11 .

Then minimum value of $a+b-20$ is
Key. 8
Sol. $\quad a+11 b=13 I_{1}$
$a+13 b=11 I_{2}$
and proceed
8. Three numbers, the third of which is 4 from a decreasing G.P. If the last term is replaced by 3 , the three numbers form an A.P, then the first number of the G.P. is
Key. 9
Sol. a, ar, ar^{2}
$2 \mathrm{ar}=\mathrm{a}+3 \Rightarrow \mathrm{a}=\frac{3}{2 r-1}$
$\mathrm{ar}^{2}=4$
Solve, $\mathrm{r}=2 / 3, \quad \mathrm{a}=9$
9. Find the greatest integer less than the number $\left(\frac{2011}{2010}\right)^{2010}$

Key. 2
Sol. $2<\left(1+\frac{1}{\mathrm{n}}\right)^{\mathrm{n}}<3 \quad \forall \mathrm{n} \geq 2, \mathrm{n} \in \mathrm{N}$
10. Find the natural number ' a ' for which $\sum_{k=1}^{n} f(a+k)=16\left(2^{n}-1\right)$ where $f(x)=2^{x}$

Key. 3
Sol. $\quad f(x)=2^{x}$ for all $x \in N$
$\therefore \sum_{k=1}^{n} f(a+k)=16\left(2^{n}-1\right)$
$\Rightarrow \sum_{K=1}^{n} 2^{a+k}=16\left(2^{n}-1\right)$
$\Rightarrow \sum_{k=1}^{n} 2^{a} .2^{k}=16\left(2^{n}-1\right)$
$\Rightarrow 2^{a}\left(\sum_{k=1}^{n} 2^{k}\right)=16\left(2^{n}-1\right)$
$\Rightarrow 2^{a}\left(2+2^{2}+\ldots .+2^{n}\right)=16\left(2^{n}-1\right)$
$\Rightarrow 2^{a}\left\{2\left(\frac{2^{n}-1}{2-1}\right)\right\}=16\left(2^{n}-1\right)$
$\Rightarrow 2^{a+1}\left(2^{n}-1\right)=16\left(2^{n}-1\right)$
$\Rightarrow 2^{a+1}=2^{4}$
$\Rightarrow a+1=4 \Rightarrow a=3$
11. Given a, b, c are positive integers forming an increasing G.P., $\mathrm{b}-\mathrm{a}$ is a prefect square of a natural number, and $\log _{6} a+\log _{6} b+\log _{6} c=6$. Find the value of $a+b+c$
Ans. 111
Sol. a,b,c are in A.P.
$\mathrm{b}^{2}=\mathrm{ac}$

$$
\begin{gathered}
\log _{6} a+\log _{6} b+\log _{6} c=6 \\
a b c=6^{6} \\
b^{3}=6^{6} \\
b=6^{2}=36
\end{gathered}
$$

ac $=36 \times 36=2^{4} \times 3^{4}$
$\mathrm{b}-\mathrm{a}=\mathrm{N}^{2}$
$36-\mathrm{a}=\mathrm{N}^{2}$
a is factor of $2^{4} 3^{4}$
$\mathrm{a}=27$ is possible value
$36-27=9=(3)^{2}$
$\Rightarrow \quad a=27, b=36, c=48$

$$
\mathrm{A}+\mathrm{b}+\mathrm{c}=111 \text { Ans. }
$$

12. Find the sum to infinity of a decreasing G.P. with the common ratio x such that $|\mathrm{x}|<1 ; \mathrm{x} \neq 0$.

The ratio of the fourth term to the second term is $\frac{1}{16}$ and the ratio of third term to the square of the second term is $\frac{1}{9}$.
Ans. 12
Sol. Let the series be $a, a x, \mathrm{ax}^{2}, \mathrm{ax}^{3} \ldots$ given that $|\mathrm{x}|<1$ and $\mathrm{x} \neq 0$

$$
\begin{aligned}
& \text { Also, } \frac{T_{4}}{T_{2}}=\frac{\mathrm{ax}^{3}}{\mathrm{ax}}=\frac{1}{16} \Rightarrow \mathrm{x}^{2}=\frac{1}{16} \\
& \Rightarrow \quad \mathrm{x}= \pm \frac{1}{4}
\end{aligned}
$$

But since it is a decreasing G.P. $\Rightarrow \quad \mathrm{x}=\frac{1}{4}$
Also, $\frac{\mathrm{T}_{3}}{\mathrm{~T}_{2}^{2}}=\frac{\mathrm{ax}^{2}}{(\mathrm{ax})^{2}}=\frac{1}{9} \quad \Rightarrow \quad \frac{1}{\mathrm{a}}=\frac{1}{9} \Rightarrow \mathrm{a}=9$
$\mathrm{S}_{\infty}=\frac{\mathrm{a}}{1-\mathrm{r}}=\frac{9}{1-\frac{1}{4}}=\frac{9 \times 4}{3}=12$ Ans.
13. If $\sum_{\alpha=4}^{n+3} 4(\alpha-3)=\mathrm{An}^{2}+\mathrm{Bn}+\mathrm{C}$, then find the value of $\mathrm{A}+\mathrm{B}-\mathrm{C}$

Ans. 4
Sol. $\quad \sum_{\alpha=4}^{n+3} 4(\alpha-3)=A n^{2}+B n+C \quad \Rightarrow \quad \sum_{\alpha=1}^{n} 4 \alpha=A n^{2}+B n+C$
$\Rightarrow \quad 2 \mathrm{n}(\mathrm{n}+1)=\mathrm{An}^{2}+\mathrm{Bn}+\mathrm{C} \quad \Rightarrow \quad \mathrm{A}=2, \mathrm{~B}=2, \mathrm{C}=0$
$\Rightarrow \quad A+B+C=4$ Ans.
14. If $(1-P)\left(1+3 x+9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}\right)=1-P^{6}, P \neq 1$, then find the value of $\frac{P}{x}$

Ans. 3
Sol. $(1-P)\left(1+3 x+9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}\right)=1-P^{5}$
$\Rightarrow \quad(1-P) \frac{1-(3 x)^{6}}{1-3 x}=1-P^{6} \quad$ which is possible only. If $P=3 x$
$\therefore \quad \frac{\mathrm{P}}{\mathrm{x}}=3$ ans.
15. If $\left(1^{2}-\mathrm{a}\right)+\left(2^{2}-\mathrm{a}_{2}\right)+\left(3^{2}-\mathrm{a}_{3}\right)+\ldots+\left(\mathrm{n}^{2}-\mathrm{a}_{\mathrm{n}}\right)=\frac{1}{3} n\left(n^{2}-1\right)$, then find the value of a_{7}.

Ans. 7
Sol. $\left(1^{2}+2^{2}+\ldots+n^{2}\right)-\left(a_{1}+a_{2}+\ldots+a_{n}\right)=\frac{1}{3} n\left(n^{2}-1\right)$

Replacing n by $(n-1)$, then

$$
\begin{equation*}
\left(1^{2}+2^{2}+\ldots+(n-1)^{2}\right)-\left(a_{1}+a_{2}+\ldots+a_{n-1}\right)=\frac{1}{3}(n-1)\left((n-1)^{2}-1\right) \tag{ii}
\end{equation*}
$$

Subtracting (ii) from (i)
$\mathrm{n}^{2}-\mathrm{a}_{\mathrm{n}}=\mathrm{n}^{2}-\mathrm{n}$
$\Rightarrow \quad a_{n}=n \Rightarrow \quad a_{7}=7$ Ans.
16. The sum of the terms of an infinitely decreasing GP is equal to the greatest value of the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}-9$ on the interval $[-4,3]$ and the difference between the first and second terms is $\mathrm{f}^{\prime}(0)$. Then find the value of 27 r where is common ratio.

Ans. 18
Sol. f is increasing
so its greatest value is $\mathrm{f}(3)=27$.
Let the GP be a,ar, $a r^{2} \ldots$ with, $-\mid<r<1$
$\frac{\mathrm{a}}{1-\mathrm{r}}=27 \quad$ and $\quad \mathrm{a}-\mathrm{ar}=3 \quad \Rightarrow \quad \mathrm{r}=\frac{4}{3} \quad$ or $\quad \mathrm{r}=\frac{2}{3}$
but $-1<\mathrm{r}<1$ so $\mathrm{r}=\frac{2}{3}$
$\Rightarrow \quad 27 \mathrm{r}=18$ Ans.
17. Find the $n^{\text {th }}$ term and the sum of n terms of the series $2,5,12,31,86, \ldots$.

Ans. $\mathrm{t}_{\mathrm{n}}=3^{\mathrm{n}-1}+\mathrm{n}, \mathrm{S}_{\mathrm{n}}=\frac{3^{\mathrm{n}}-1+\mathrm{n}^{2}+\mathrm{n}}{2}$
Sol. $\quad S=2+5+12+31+86+\ldots+t_{n}$
$\mathrm{S}=2+5+12+31+\ldots+\mathrm{t}_{\mathrm{n}-1}+\mathrm{t}_{\mathrm{n}}$
$0=2+3+7+19+55+\ldots n$ terms $-\mathrm{t}_{\mathrm{n}}$
$\Rightarrow \quad \mathrm{t}_{\mathrm{n}}=2+3+7+19+55+\ldots+\mathrm{t}_{\mathrm{n}}$
$\Rightarrow \quad \mathrm{t}_{\mathrm{n}}=2+3+7+19+\ldots+\mathrm{t}^{\prime}{ }_{\mathrm{n}-1}+\mathrm{t}^{\prime}{ }_{\mathrm{n}}$
Subtract
$\begin{aligned} & 0=2+1+4+12+36+\ldots \mathrm{n} \text { terms }-\mathrm{t}^{\prime}{ }_{\mathrm{n}} \\ \Rightarrow \quad & \mathrm{t}_{\mathrm{n}}^{\prime}=3+[4+12+36+\ldots(\mathrm{n}-2) \text { terms }]\end{aligned}$
$\mathrm{t}_{\mathrm{n}}^{\prime}=3+\frac{4\left(3^{\mathrm{n}-2}-1\right)}{3-1}$
$\Rightarrow \quad \mathrm{t}_{\mathrm{n}}^{\prime}=2.3^{\mathrm{n}-2}+1,(\mathrm{n} \geq 2)$
Now $\quad t_{n}=\Sigma t^{\prime}{ }_{n}=2 \sum_{n=2}^{n} 3^{n-2}+\sum_{n=2}^{n} 1+2$
$\mathrm{t}_{\mathrm{n}}=3^{\mathrm{n}-1}+\mathrm{n}$
Now $\quad S_{n}=\Sigma \mathrm{t}_{\mathrm{n}}$
$=\Sigma 3^{\mathrm{n}-1}+\Sigma \mathrm{n}$
$=\frac{3^{\mathrm{n}}-1+\mathrm{n}^{2}+\mathrm{n}}{2}$
Ans. $\mathrm{t}_{\mathrm{n}}=3^{\mathrm{n}-1}+\mathrm{n}, \mathrm{S}_{\mathrm{n}}=\frac{3^{\mathrm{n}}-1+\mathrm{n}^{2}+\mathrm{n}}{2}$
18. If $\mathrm{S}_{\mathrm{n}}=1 . \mathrm{n}+2 .(\mathrm{n}-1)+3 .(\mathrm{n}-2)+$ \qquad + n. 1 and $S_{25}=325 \lambda$ then λ is

Key. 9
Sol. $\quad T_{r}=r(n-r+1)$
$\mathrm{T}_{\mathrm{r}}=\mathrm{nr}-\mathrm{r}^{2}+\mathrm{r}$
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}=\mathrm{n} \sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}-\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^{2}+\sum \mathrm{r}=\frac{\mathrm{n} \times \mathrm{n}(\mathrm{n}+1)}{2}-\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}+\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$=\frac{\mathrm{n}(\mathrm{n}+1)}{2}\left[\mathrm{n}-\frac{(2 \mathrm{n}+1)}{3}+1\right]=\frac{\mathrm{n}(\mathrm{n}+1)}{2}\left[\frac{3 \mathrm{n}-2 \mathrm{n}-1+3}{3}\right]=\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}{6}$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}{6}, \mathrm{~S}_{25}=\frac{25 \times 26 \times 27}{6}=25 \times 13 \times 9$
$\mathrm{S}_{25}=325 \lambda \Rightarrow \lambda=9$

AP,GP,HP, Sequences

Matrix-Match Type

1. Column-I
A) If $p^{\text {th }}, q^{\text {th }}, r^{\text {th }}$ and $S^{\text {th }}$ terms of an
A.P are in G.P then $p-q, q-r, r-s$
B) If $\ln x, \ln y, \ln z(x, y, z>1)$ are in G.P then

$$
2 \mathrm{x}+\ln (\ln \mathrm{x}), 3 x+\ln (\ln y), 4 x+\ln (\ln z)
$$

C) If $n!, 3 \times n!$ and $(n+1)$! are in G.P then r$)$ are in G.P

$$
n!, 5 \times n!\text { and }(n+1)!
$$

D) If the arithmetic mean of

Column-II

p) are all equal
q) are in A.P
s) are in H.P
$(b-c)^{2},(c-a)^{2}$ and $(a-b)^{2}$ is same as that of $(b+c-2 a)^{2},(c+a-2 b)^{2},(a+b-2 c)^{2}$
then a, b, c
Key. A-R;B-Q;C-Q;D-P
Sol. A) $\quad A_{p}=a+(p-1) d$
$A_{q}=a+(q-1) d$
$A_{r}=a+(r-1) d$
$A_{s}=a+(s-1) d \ldots \ldots . .(4)$
$A_{q}=k A_{p}$
$A_{r}=k^{2} A_{p}$
$A_{s}=k^{3} A_{p}\left(\mathrm{Q} A_{p}, A_{q}, A_{r}, A_{s}\right.$ in $\left.G . P\right)$
$(p-q)=\frac{A_{p}-A_{q}}{d}=A_{p} \frac{(1-k)}{d}$ from (1) and (2)
$\int(q-r)=A_{p} K \frac{(1-k)}{d}$ from (2) and (3)
$(r-s)=A_{p} k^{2} \frac{(1-k)}{d}$
$\Rightarrow p-q, q-r, r-s$ are in A.P
B) $\quad \ln x$ in $y \ln z$ are in G.P
$\Rightarrow \ln (\ln x), \ln (\ln y), \ln (\ln z)$ are in A.P
$\Rightarrow 2 x+\ln (\ln x), 3 x+\ln (\ln y), 4 x+\ln (\ln z)$ are in A.
C) $n!3 \times n!$ and $(n+1)!$ are in G.P
$\Rightarrow 9(n!)^{2}=n!(n+1)!$
$\Rightarrow(n+1)=9 \Rightarrow n=8$
$\therefore n!=8$!
$5 \times n!=5 \times 8$!
$(n+1)!=9$!
$9!+8!=5 \times 9$!
$\Rightarrow n!, 5 \times n 1$ and $(n+1)!$ are in A.P
D) $\frac{(b-c)^{2}+(a-b)^{2}+(c-a)^{2}}{3}$
$=\frac{(b-c-2 a)^{2}+(c+a-2 b)^{2}+(a+b-2 c)^{2}}{3}$
$\Rightarrow(b+c-2 a)^{2}-(b-c)^{2}+(c+a-2 b)^{2}-\left(c-a^{2}\right)$
$+(a+b-2 c)^{2}-(a-b)^{2}=0$
$\Rightarrow a=b=c$
2. Column-I

Column-II
(A) The sequence $\mathrm{a}, \mathrm{b}, 10, \mathrm{c}, \mathrm{d}$ is an arithmetic progression.

The value of $a+b+c+d$
(B) The sides of right triangle form a three term geometric sequence. The shortest side bas length 2 . The length of the hypotenuse is of the form where $a \in N$
(P) 10
and is a surd, then $\mathrm{a}^{2}+\mathrm{b}^{2}$ equals
(C) The sum of first three consecutive numbers of an
(S) 40
infinite G..P. is 70 , if the two extremes be multipled
each by 4 , and the mean by 5 , the products are in A.P.
The first term of the G.P. is
(D) The diagonals of a parallelogram have a measure of 4 and 6 metres. They cut off forming an angle of 60°.
If the perimeter of the parallelogram is
where $a, b \in N$ then $(a+b)$ equals
[Ans. (A) S; (B) R; (C) S; (D) R]
[Hint: (A) $\quad b+c=a+d=2 \cdot 10$

$$
\Rightarrow \quad a+b+c+d=40
$$

(B)

$$
\begin{aligned}
& \left(a r^{2}\right)^{2}=a^{2}+a^{2} r^{2} \quad \text { where } a=2 \\
\therefore \quad & r^{4}=1+r^{2}
\end{aligned}
$$

$$
r^{4}-r^{2}-1=0
$$

let $\quad r^{2}=t$

$$
t^{2}-t-1=0
$$

$$
t=\quad \Rightarrow \quad(\text { reject })
$$

$$
r^{2}=
$$

$\therefore \quad$ hypotenuse is $2 \times=1+$
comparing with

$$
\begin{aligned}
& a=1, b=5 \\
\therefore \quad & a^{2}+b^{2}=1+25=26 \text { Ans. }
\end{aligned}
$$

(C)

$$
\begin{array}{lll}
& a, a r, a r^{2} \rightarrow \text { G.P. } \quad|r|<1 \\
& a+a r+a r^{2}=70 \\
\therefore \quad & 10 a r=4 a+4 a r^{2} \\
& 10 r=4+4 r^{2} \\
& 2 r^{2}-5 r+2=0 \\
& 2 r^{2}-4 r-r+2=0 \\
& (2 r-1)(r-2)=0 \\
& r=2(r e j e c t) \quad \text { or } \\
& \text { for } r=1 / 2 \\
& a++=70 \\
& a+=70 \\
& \Rightarrow \\
& \Rightarrow \\
\therefore \quad & \text { series is } 40,20,10 \\
\therefore \quad & \text { first term of G.P. is } 40 \text { Ans. }
\end{array}
$$

(D) Using cosine rule
$a^{2}=9+4-2 \cdot 2 \cdot 3 \cdot=13+6=19$
$a^{2}=19 \quad \Rightarrow \quad a=$
Hly $b^{2}=9+4-2 \cdot 2 \cdot 3$.
$b^{2}=7 \quad \Rightarrow \quad b=$
$P=\quad \Rightarrow \quad a+b=26$ Ans.]
3. Match the following:-

	Column I		Column II
A	The largest positive term of the H.P., whose first two terms are $\frac{2}{5}$ and $\frac{12}{23}$ is	P	2
B	If a, b, c are positive real number such that $\mathrm{a}+\mathrm{b}+\mathrm{c}=1$, then minimum value of $\frac{(1+a)(1+b)(1+c)}{(1-a)(1-b)(1-c)}$ is	Q	4
C	The integers which belongs to the range of $f(x)=\frac{2 x^{2}+2 x+5}{x^{2}+x+1}$ can be	R	6
D	The values of x for which $\left(\frac{1}{3}\right)^{\frac{\|x+6\|}{1-x \mid}}>9$ can be	S	7
		T	8

Key: A-R; B-T;
$\mathrm{C}-\mathrm{Q}, \mathrm{R} ; \mathrm{D}-\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$
Hint:
(a) Let the H.P.be $\frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2 d}+\ldots .$.
$\frac{1}{a}=\frac{2}{5}, \frac{1}{a+d}=\frac{12}{23} \Rightarrow a=\frac{5}{2}, d=\frac{-7}{12} \Rightarrow T_{n}=\frac{1}{a+(n-1) d}=\frac{12}{37-7 n}$, for $n=5, T_{n}$ is $l \arg$ est, $T_{5}=6$
(b) $1+a=2-b-c=(1-b)+(1-c) \geq 2 \sqrt{(1-b)(1-c)}$
$1+b \geq 2 \sqrt{(1-a)(1-c)}, \quad(1+c) \geq 2 \sqrt{(1-a)(1-b)} \Rightarrow(1+a)(1+b)(1+c) \geq 8(1-a)(1-b)(1-c)$
(c) $y=\frac{2 x^{2}+2 x+5}{x^{2}+x+1} \Rightarrow(2-y) x^{2}+(2-y) x+(5-y)=0$
$y=2$ does not satisify the eq.
if $y \neq 2, x \in R \Rightarrow D \geq 0 \Rightarrow(2-y)^{2}-4(2-y)(5-y) \geq 0 \Rightarrow(2-y)(3 y-18) \geq 0$
$\Rightarrow(y-2)(y-6) \leq 0, y \neq 2 \Rightarrow y \in(2,6]$
$(d)\left(\frac{1}{3}\right)^{\frac{|x+6|}{1-x \mid}}>9 \quad$ In options all values are positive hence if $\mathrm{x}>0$
$\left(\frac{1}{3}\right)^{\frac{x+6}{1-x}}>3^{2} \Rightarrow 3^{-\left(\frac{x+6}{1-x}\right)}>3^{2} \Rightarrow-\left(\frac{x+6}{1-x}\right)>2 \Rightarrow \frac{x+6}{x-1}>2$
For $x>1, x+6>2 x-2, x<8$.
4. Match the following:-

	Column I		Column II
a	Number of divisor of $N=2^{3} 3^{2} 5^{5} 7^{4}$ which leaves remainder 1 when divided by 4 is	p	16
b	If $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots \mathrm{a}_{100}$ are in H.P. then the value of $\sum_{i=1}^{99} \frac{a_{i} a_{i+1}}{a_{1} a_{100}}$ is	q	48
c	The remainder when 3^{33} is divided by 75 is	r	126
d	The number of four digit number in which every digits exceeds the immediate preceding digit	s	36
		t	99

Key: $\quad \mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{T} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{R}$
Hint: a) Let $X=2^{0} \cdot 3^{a} \cdot 5^{b} \cdot 7^{c}$ is a divisor $=(4-1)^{a}(4+1)^{b}(8-1)^{c}$
$0 \leq a \leq 2 \quad 0 \leq b \leq 5 \quad 0 \leq c \leq 4$
$4 I+(-1)^{a} 1^{b}(-1)^{c}$
a, c both odd, b takes any value OR a, c both even, b take any value
\Rightarrow If $a=0, b a n y, c=0,2,4 \Rightarrow 6 \times 3=18$
if $a=1, b$ any $, c=1,3 \Rightarrow 6 \times 2=12$
if $a=2, b$ any $, c=0,2,4=6 \times 3=18$
B.
$a_{2}-a_{1}=a_{1} a_{2} d$
$a_{3}-a_{2}=a_{2} a_{3} d$

$$
a_{100}-a_{99}=a_{99} a_{100} d
$$

$$
a_{100}-a_{1}=d \sum_{i=1}^{99} a_{i} a_{i+1}=99 a_{1} a_{100} d
$$

C.

$$
\begin{aligned}
3.3^{32}=3(10-1)^{16} & =3\left[100 I-16_{C_{15}} \cdot 10+1\right] \\
& =3(100 I-160+1)=3\left(100 I^{1}+41\right) \\
& =300 I^{1}+123=75 I^{11}+48
\end{aligned}
$$

D.

Let four digits no is $x_{1} x_{2} x_{3} x_{4}$
$x_{1}>x_{2}>x_{3}>x_{4}$
0 can not use at any place

Required no. $=$ no. of ways of selecting 4 digit out of $9=9_{C_{4}}=16$
5. Observe the following lists :
List - I
(A) If three unequal number a, b, c are A.P. and

List - II
p) 4
q) 1
r) 2
in A.P and
$a_{1}^{2}-a_{2}^{2}+a_{3}^{2}------a_{50}^{2}=\left(\frac{5}{7}\right)^{n}\left(a_{1}^{2}-a_{50}^{2}\right)$,
$(n \in N)$ then $\mathrm{n}=$
(D) $\lim _{n \rightarrow \infty} \tan \left\{\sum_{r=1}^{n} \tan ^{-1}\left(\frac{1}{2 r^{2}}\right)\right\}$ is equal to

Key. $A-r, B-r, C-r, D-q$
Sol. (A) $(b-a)=(c-b)$ and $(c-b)^{2}=a(b-a)$
$\Rightarrow(b-a)^{2}=a(b-a) \Rightarrow b=2 a, c=3 a$
$\therefore a: b: c=1: 2: 3$
(B) $x=\frac{a+b}{2}, b=a r^{3} \Rightarrow r=\left(\frac{b}{a}\right)^{\frac{1}{3}}$

$$
\frac{y^{3}+z^{3}}{m y z}=\frac{a+b}{\frac{a+b}{2}}=2
$$

(C)

$$
\begin{aligned}
a_{1}^{2}-a_{2}^{2}+a_{3}^{2}----a_{50}^{2} & =\left(a_{1}+a_{2}\right)\left(a_{1}-a_{2}\right)+\left(a_{3}+a_{4}\right)\left(a_{3}-a_{4}\right)+-----+\left(a_{49}+a_{50}\right)\left(a_{49}-a_{50}\right) \\
=-d\left[a_{1}+a_{2}+---+a_{50}\right] & =-\frac{25}{49}\left(a_{50}-a_{1}\right)\left(a_{50}+a_{1}\right) \\
& =\left(\frac{25}{49}\right)\left(a_{1}^{2}-a_{50}^{2}\right)
\end{aligned}
$$

(D) $\tan ^{-1}\left(\frac{1}{2 r^{2}}\right)=\tan ^{-1}\left(\frac{2}{4 r^{2}}\right)=\tan ^{-1}\left(\frac{2 r+1-(2 r-1)}{1+(2 r+1)(2 r-1)}\right)$

$$
=\tan ^{-1}(2 r+1)-\tan ^{-1}(2 r-1)
$$

6. Match the following

(A)	If $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . \mathrm{a}_{100}$ are in HP, then the value of $\sum_{\mathrm{i}=1}^{99} \frac{\mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}+1}}{\mathrm{a}_{1} \mathrm{a}_{100}}$ is	(p)	5
(B)	Largest positive term of HP whose first two terms are $\frac{2}{5}$ and $\frac{12}{13}$ is	(q)	7
(C)	If x be probability that first row of 3×3 order matrix obtained by using elements $\{1,2, \ldots, 9\}$ without repetition, have number in decreasing order, then $36 x$ equals	(r)	6
(D)	If x be probability that a randomly chosen 3 digit number has exactly 3 factors, then $900 x$ equals	(s)	-99
		(t)	3

Key. (A-s), (B-r), (C-r), (D-q)
Sol. (A) Let d be C.D of AP $\frac{1}{a_{1}}, \frac{1}{a_{2}}, \frac{1}{a_{3}} \ldots \frac{1}{a_{n}}$
$a_{2}-a_{1}=a_{1} a_{2} d$
$\mathrm{a}_{3}-\mathrm{a}_{2}=\mathrm{a}_{3} \mathrm{a}_{2} \mathrm{~d}$
$a_{100}-a_{99}=a_{99} a_{100} d$
Adding all these, we get
$a_{100}-a_{1}=d \sum_{i=1}^{99} a_{i} a_{i+1}$
(B) $\frac{1}{\mathrm{a}}=\frac{2}{5}, \frac{1}{\mathrm{a}+\mathrm{d}}=\frac{12}{23}$
$\mathrm{a}=\frac{5}{2}, \mathrm{~d}=-\frac{7}{12}, \mathrm{~T}_{\mathrm{n}}=\frac{12}{37-7 \mathrm{n}}$ for $\mathrm{n}=5$
T_{n} is largest positive
$T_{5}=6$
(C) Total no. of case 9!
no. of favourable cases ${ }^{9} \mathrm{C}_{3} .6$!
(D) A number has exactly 3 factors if the number is square of a prime number. Squares of $11,13,17,19,23,29,31$ are 3 digit number.
So required probability.
7. Match the following: -

Column - I		Column - II	
(A)	Suppose that $\mathrm{F}(\mathrm{n}+1)=\frac{2 \mathrm{~F}(\mathrm{n})+1}{2}$ $=1,2,3, \ldots$ and $\mathrm{F}(1)=2$. Then $\mathrm{F}(101)$ equals	(p)	42
(B)	If $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots . \mathrm{a}_{21}$ are in A.P. and $\mathrm{a}_{3}+\mathrm{a}_{5}+\mathrm{a}_{11}+\mathrm{a}_{17}+\mathrm{a}_{19}=10$ then the	(q)	1620

	value of $\sum_{\mathrm{i}=1}^{21} \mathrm{a}_{\mathrm{i}}$ is		
(C)	$10^{\text {th }}$ term of the sequence $\mathrm{S}=1+5+13$ $+29+\ldots$, is	(r)	52
(D)	The sum of all two digit numbers which are not divisible by 2 or 3 is	(s)	2045
		(t)	$2+4+6+\ldots+12$

Key. $\mathrm{A} \rightarrow \mathrm{r} ; \mathrm{B} \rightarrow \mathrm{p}, \mathrm{t} ; \mathrm{C} \rightarrow \mathrm{s} ; \mathrm{D} \rightarrow \mathrm{q}$
Sol.
(A) $\mathrm{F}(\mathrm{n}+1)=\frac{2 \mathrm{~F}(\mathrm{n})+1}{2}=\mathrm{F}(\mathrm{n})+\frac{1}{2}$
$\therefore \quad \mathrm{F}(1), \mathrm{F}(2), \mathrm{F}(3), \ldots$ is an AP with common difference $\frac{1}{2}$
(B) $\mathrm{a}_{1}+2 \mathrm{~d}+\mathrm{a}_{1}+4 \mathrm{~d}+\mathrm{a}_{1}+10 \mathrm{~d}+\mathrm{a}_{1}+16 \mathrm{~d}+\mathrm{a}_{1}+18 \mathrm{~d}=5 \mathrm{a}_{1}+50 \mathrm{~d}$
$=5\left(a_{1}+10 d\right)=10 \quad$ i.e. $\quad a_{1}+10 d=2$
Now, $\quad \sum_{i=1}^{21} a_{i}=\frac{21}{2}\left[2 a_{1}+20 d\right]=21\left(a_{1}+10 d\right)=42$
(C) $\mathrm{S}=1+5+13+29+\ldots+\mathrm{t}_{10}$
$\mathrm{S}=1+5+13+\ldots+\mathrm{t}_{9}+\mathrm{t}_{10}$
Subtrating
$\mathrm{t}_{10}=1+4+8+16+$ \qquad up to 10 terms
$=1+(4+8+16+$ \qquad $=2045$
(D) Sum of all two digit numbers $=\frac{90}{2}(10+99)=(45)(109)$

Sum of all two digit numbers is divisible by $2=\frac{45}{2}(10+98)=(45)(54)$
Sum of all two digit numbers is divisible by $3=\frac{30}{2}(12+99)=15(54)$
Sum of all two digit numbers divisible by $6=\frac{15}{2}(12+96)=15(54)$
The required sum is $45(109)+15(54)-(45)(54)-15(111)=1620$
8. Match the following: -

Column - I		Column - II	
(A)	The arithmetic mean of two positive numbers is 6 and their geometric mean G and harmonic mean H satisfy the relation $\mathrm{G}^{2}+3 \mathrm{H}=48$, then product of the two number is	(p)	$\frac{240}{77}$
(B)	The sum of the series $\frac{5}{1^{2} 4^{2}}+\frac{11}{4^{2} 7^{2}}+\frac{17}{7^{2} \cdot 10^{2}}+\ldots$ is	(q)	32
(C)	If the first two terms of a Harmonic Progression be $\frac{1}{2}$	(r)	$\frac{1}{3}$

	and $\frac{1}{3}$, then the Harmonic Mean of the first four terms is		
(D)	Geometric mean of -4 and -9	(s)	6
		(t)	-6

Key. $\quad \mathrm{A} \rightarrow \mathrm{q} ; \mathrm{B} \rightarrow \mathrm{r} ; \mathrm{C} \rightarrow \mathrm{p} ; \mathrm{D} \rightarrow \mathrm{t}$
Sol. (A) $a+b=12$

$$
\begin{aligned}
& a b+\frac{6 a b}{a+b}=48 \\
& a b+\frac{a b}{2}=48 \quad \therefore \quad a b=32
\end{aligned}
$$

(B) $\mathrm{S}=\frac{5}{1^{2}}+\frac{11}{4^{2} \cdot 7^{2}}+\frac{11}{7^{2} \cdot 10^{2}}+$
$\Rightarrow \quad 3 \mathrm{~S}=\frac{3.5}{1^{2} \cdot 4^{2}}+\frac{3.11}{4^{2} .7^{2}}+\frac{3.17}{7^{2} \cdot 10^{2}}+$.
$\Rightarrow \quad 3 S=\frac{(4-1) \cdot(4+1)}{1^{2} \cdot 4^{2}}+\frac{(7-4)(7+4)}{4^{2} \cdot 7^{2}}+\frac{(10-7)(10+7)}{7^{2} \cdot 10^{2}}+\ldots \ldots \ldots \ldots$
$\Rightarrow \quad 3 \mathrm{~S}=\frac{4^{2}-1^{2}}{1^{2} \cdot 4^{2}}+\frac{7^{2}-4^{2}}{4^{2} \cdot 7^{2}}+\frac{10^{2}-7^{2}}{7^{2} \cdot 10^{2}}+$
$\Rightarrow \quad 3 \mathrm{~S}=1-\frac{1}{4^{2}}+\frac{1}{4^{2}}-\frac{1}{7^{2}}+\frac{1}{7^{2}}-\frac{1}{10^{2}}+$
$\Rightarrow \quad 3 \mathrm{~S}=1 \quad \mathrm{~S}=\frac{1}{3}$
(C) H.M of $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$ is $\frac{4}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}}=\frac{240}{77}$
(D) Since G.M. lies between the numbers $\mathrm{GM}=-\sqrt{(-4) \times(-9)}=-6$

