Straight lines

Single Correct Answer Type

1. The line $\mathrm{x}+\mathrm{y}=1$ meets x -axis at A and y -axis at $\mathrm{B} . \mathrm{P}$ is the mid-point of $\mathrm{AB} . P_{1}$ is the foot of the perpendicular from P to $\mathrm{OA} ; M_{1}$ is that from P_{1} to $\mathrm{OP} ; P_{2}$ is that from M_{1} to $\mathrm{OA} ; M_{2}$ is that from P_{2} to OP; P_{3} is that from M_{2} to OA and so on. If P_{n} denotes the nth foot of the perpendicular on OA from M_{n-1}, then $O P_{n}=$
A. $\frac{1}{2}$
B. $\frac{1}{2^{n}}$
C. $\frac{1}{2^{n / 2}}$
D. $\frac{1}{\sqrt{2}}$

Key. B
Sol. $\quad x+y=1$ meets x-axis at $A(1,0)$ and y-axis at $B(0,1)$.

The coordinates of P are $(1 / 2,1 / 2)$ and $P P_{1}$ is perpendicular to OA.
$\Rightarrow O P_{1}=P_{1} P=1 / 2$

Equation of line OP is $y=x$
We have $\left(O M_{n-1}\right)^{2}=\left(O P_{n}\right)^{2}+\left(P_{n} M_{n-1}\right)^{2}=2\left(O P_{n}\right)^{2}=2 P_{n}^{2}$ (say)

Also, $\left(O P_{n-1}\right)^{2}=\left(O M_{n-1}\right)^{2}+\left(P_{n-1} M_{n-1}\right)^{2}$
$\left(O P_{n-1}\right)^{2}=\left(O M_{n-1}\right)^{2}+\left(P_{n-1} M_{n-1}\right)^{2}=2 p_{n}^{2}+\frac{1}{2} p_{n-1}^{2}$
$\Rightarrow p_{n}^{2}=\frac{1}{4} p_{n-1}^{2} \Rightarrow p_{n}=\frac{1}{2} p_{n-1}$
$\therefore O P_{n}=p_{n}=\frac{1}{2} p_{n-1}=\frac{1}{2^{2}} p_{n-2}=\ldots \ldots . .=\frac{1}{2^{n-1}} p_{1}=\frac{1}{2^{n}}$
2. $\quad M$ is the mid point of side $A B$ of equilateral triangle $A B C . P$ is a point on $B C$ such that $A P+P M$ is minimum. If $A B=20$ then $A P+P M$ is
(A) $10 \sqrt{7}$
(B) $10 \sqrt{3}$
(C) $10 \sqrt{5}$
(D) 10

Key. A
Sol. Take the reflection of $\triangle A B C$ in $B C$.

$$
\mathrm{PM}=\mathrm{PM}^{\prime}
$$

$P A+P M=P A+P M^{\prime}$ it is minimum when $M^{\prime} P A$ lies in a line
Now apply cosine rule in triangle ABM'
We will get $\mathrm{AM}^{\prime}=10 \sqrt{7}$
3. The algebraic sum of distances of the line $a x+b y+2=0$ from $(1,2),(2,1)$ and $(3,5)$ is zero and the lines bx -ay $+4=0$ and $3 x+4 y+5=0$ cut the coordinate axes at concyclic points then
(a) $a+b=-\frac{2}{7}$
(b) area of the triangle formed by the line $a x+b y+2=0$ with coordinate axes is $\frac{14}{5}$
(c) line ax + by $+3=0$ always passes through the point $(-1,1)$
(d) $\max \{a, b\}=\frac{5}{7}$

Key. C
Sol. Line always passes through the point $\left(2, \frac{8}{3}\right)$ hence $6 a+8 b+6=0 \Rightarrow 3 a+$ $4 b+3=0$
$b x-a y+4=0$ and $3 x+4 y+5=0$ are concyclic.
So, $\mathrm{m}_{1} \mathrm{~m}_{2}=1$
$\frac{\mathrm{b}}{\mathrm{a}} .-\frac{3}{4}=1 \Rightarrow 4 \mathrm{a}+3 \mathrm{~b}=0$
Solving $\mathrm{a}=9 / 7, \mathrm{~b}=-12 / 7$
4. The algebraic sum of distances of the line ax + by $+2=0$ from (1, 2), (2, 1) and $(3,5)$ is zero and the lines $b x-a y+4=0$ and $3 x+4 y+5=0$ cut the coordinate axes at concyclic points then
(a) $a+b=-\frac{2}{7}$
(b) area of the triangle formed by the line $a x+b y+2=0$ with coordinate axes is $\frac{14}{5}$.
(c) line $a x+b y+3=0$ always passes through the point $(-1,1)$
(d) $\max \{\mathrm{a}, \mathrm{b}\}=\frac{5}{7}$

Key. C
Sol. Line always passes through the point $\left(2, \frac{8}{3}\right)$ hence $6 a+8 b+6=0 \Rightarrow 3 a+$
$4 b+3=0$
$b x-a y+4=0$ and $3 x+4 y+5=0$ are concyclic.
So, $\mathrm{m}_{1} \mathrm{~m}_{2}=1$
$\frac{\mathrm{b}}{\mathrm{a}} .-\frac{3}{4}=1 \Rightarrow 4 \mathrm{a}+3 \mathrm{~b}=0$
Solving $\mathrm{a}=9 / 7, \mathrm{~b}=-12 / 7$
5. The orthocentre of the triangle formed by the lines $x+y=1,2 x+3 y=6$ and $4 x-y+4=0$ lies in
(A) I quadrant
(B) II quadrant
(C) III quadrant
(D) IV quadrant

Key. A
Sol. Coordinates of A and B are $(-3,4)$ and $\left(-\frac{3}{5}, \frac{8}{5}\right)$ if orthocentre $p(h, k)$

Then, $($ slope of $P A) \times($ slope of $B C)=-1$
$\frac{\mathrm{k}-4}{\mathrm{~h}+3} \times 4=-1$
$\Rightarrow \quad 4 \mathrm{k}-16=-\mathrm{h}-3$
$\Rightarrow \quad h+4 k=13$
and slope of $P B \times$ slope of $A C=-1$

$$
\begin{array}{ll}
\Rightarrow & \frac{\mathrm{k}-\frac{8}{5}}{\mathrm{~h}+\frac{3}{5}} \times-\frac{2}{3}=-1 \\
\Rightarrow & \frac{5 \mathrm{k}-8}{5 \mathrm{~h}+3} \times \frac{2}{3}=1 \\
\Rightarrow \quad & 10 \mathrm{k}-16=15 \mathrm{th}+9 \\
& 15 \mathrm{th}-10 \mathrm{k}+25=0 \\
& 3 \mathrm{~h}-2 \mathrm{k}+5=0 \quad . . \text { (ii) }
\end{array}
$$

Solivng Eqs. (i) and (ii), we get $\mathrm{h}=\frac{3}{7}, \mathrm{k}=\frac{22}{7}$
Hence, orthocentre lies in I quadrant.
6. A, B, C are three points on the curve $x y-x-y-3=0$ which are not collinear. \hat{D}, E, F are foot of perpendiculars from vertices A, B, C to the sides $B C, C A$ and $A B$ of $\triangle A B C$ respectively. If (α, α) is incentre of $\triangle D E F$ then ' α ' can be
A) 1
B) 2
C) 3
D) 4

Key. C
Sol. Incentre of $\triangle D E F$ is ortho-centre of $\triangle A B C$. But in a rectangular hyperbola \& orthocentre lies on hyperbola $\Rightarrow \alpha^{2}-2 \alpha-3=0 \Rightarrow(\alpha-3)(\alpha+1)=0 \Rightarrow \alpha=3$
7. The reflection of the curve $x y=1$ in the line $y=2 x$ is the curve $12 x^{2}+r x y+s y^{2}+t=0$ then the value of ' r ' is
A) -7
B) 25
C) -175
D) 90

Key: A

HINT : The reflection of (α, β) in the line $y=2 x$ is

$$
\left(\alpha_{1}, \beta_{1}\right)=\left(\frac{4 \beta-3 \alpha}{5}, \frac{4 \alpha+3 \beta}{5}\right)=\alpha_{1} \beta_{1}=1
$$

$\Rightarrow 12 \alpha^{2}-7 \alpha \beta-12 \beta^{2}+25=0$
8. The line $x+y=1$ meets x-axis at A and y-axis at B. P is the mid-point of $A B . P_{1}$ is the foot of the perpendicular from P to $O A ; M_{1}$ is that from P_{1} to $O P ; P_{2}$ is that from M_{1} to $O A$ and so on. If P_{n} denotes the nth foot of the perpendicular on $O A$ from M_{n-1}, then $O P_{n}=$
(a) $1 / 2$
(b) $1 / 2^{n}$
(c) $1 / 2^{1 / 2}$
(d) $1 / \sqrt{2}$

Key: b
Hint:
$x+y=1$ meets x-axis at $A(1,0)$ and y-axis at $B(0,1)$.
The ordinates of P are $(1 / 2,1 / 2)$ and
PP_{1} is perpendicular to OA .
$\Rightarrow \mathrm{OP}_{1}=\mathrm{P}_{1} \mathrm{P}=1 / 2$
Equation of the line OP is $\mathrm{y}=\mathrm{x}$.
We have
$\left(\mathrm{OM}_{\mathrm{n}-1}\right)^{2}=\left(\mathrm{OP}_{\mathrm{n}}\right)^{2}+\left(\mathrm{P}_{\mathrm{n}} \mathrm{M}_{\mathrm{n}-1}\right)^{2}$

$=2\left(\mathrm{OP}_{\mathrm{n}}\right)^{2}=2 p_{n}^{2}$ (say)
Also, $\left(\mathrm{OP}_{\mathrm{n}-1}\right)^{2}=\left(\mathrm{OM}_{\mathrm{n}-1}\right)^{2}+\left(\mathrm{P}_{\mathrm{n}-1} \mathrm{M}_{\mathrm{n}-1}\right)^{2}=2 \mathrm{p}_{\mathrm{n}}^{2}+2 \mathrm{p}_{\mathrm{n}}^{2}$
$\Rightarrow \mathrm{p}_{\mathrm{n}}^{2}=\frac{1}{4} \mathrm{p}_{\mathrm{n}-1}^{2} \Rightarrow \mathrm{p}_{\mathrm{n}}=\frac{1}{2} \mathrm{p}_{\mathrm{n}-1}$
$\therefore \mathrm{OP}_{\mathrm{n}}=\mathrm{p}_{\mathrm{n}}=\frac{1}{2} \mathrm{p}_{\mathrm{n}-1}=\frac{1}{2^{2}} \mathrm{p}_{\mathrm{n}-2}=\ldots .=\frac{1}{2^{\mathrm{n}-1}} \mathrm{p}_{1}=\frac{1}{2^{\mathrm{n}}}$
9. A line passes through (2, 0). The slope of the line, for which its intercept between $y=x-1$ and $y=-x+1$ subtends a right angle at the origin, is/are
(A) $\sqrt{3}$
(B) $-\sqrt{3}$
(C) $\frac{1}{\sqrt{3}}$
(D) $-\frac{1}{\sqrt{3}}$

Key. C,D
Sol. The joined equation of straight line $y=x-1$ and $y=-x+1$ is

$$
\begin{align*}
& (x-y-1)(x+y-1)=0 \\
\Rightarrow & x^{2}-y^{2}-2 x+1=0 \tag{1}
\end{align*}
$$

Let equation of line passes through $(2,0)$ is

$$
\begin{equation*}
y=m(x-2) \tag{2}
\end{equation*}
$$

By homogenizing equation (1) with help of line (2) is

$$
x^{2}-y^{2}-2 x\left(\frac{m x-y}{2 m}\right)+\left(\frac{m x-y}{2 m}\right)^{2}=0
$$

Q coefficient of $x^{2}+$ coefficient of $y^{2}=0$

$$
\Rightarrow \quad m= \pm \frac{1}{\sqrt{3}}
$$

10. The complete set of values of ' a ' for which the point $\left(a, a^{2}\right), a \in R$ lies inside the triangle formed by the lines $x-y+2=0, x+y=2$ and x-axis is
(A) $(-2,2)$
(B) $(-1,1)$
(C) $(0,2)$
(D) $(-2,0)$

KEY : B
HINT :

$\left(a, a^{2}\right)$ lies of $y=x^{2}$
$a-a^{2}-2=0 \quad a=-1,2$
$a+a^{2}-2=0 \quad a=1,-2$
11. The values of k for which lines $k x+2 y+2=0,2 x+k y+3=0,3 x+3 y+k=0$ are concurrent
a) $\{2,3,5\}$
b) $\{2,3,-5\}$
c) $\{3,-5\}$
d) $\{-5\}$

Key: C
Hint: Three non parallel lines are concurrent if $\Delta=0$
$\left|\begin{array}{lll}k & 2 & 2 \\ 2 & k & 3 \\ 3 & 3 & k\end{array}\right|=0 \Rightarrow k=2,3,-5 \quad$ But for $\mathrm{k}=2$, first two lines are parallel.
12. A straight line passes through the point of intersection $x-2 y-2=0$ and $2 x-b y-6=0$ and the origin then the complete set of values of b for which the acute angle between this line and $y=0$ is less than 45°
(A) $\quad(-\infty, 4) \cup(7, \infty)$
(B) $\quad(-\infty, 5) \cup(7, \infty)$
(C) $\quad(-\infty, 4) \cup(5,7) \cup(7, \infty)$
(D) $(-\infty, 4) \cup(4,5) \cup(7, \infty)$

Key: D
Hint: As line passes through the point of intersection of $x-2 y-2=0$ and $2 x-b y-6=0$
It can be represented as $\lambda(x-2 y-2)+(2 x-b y-6)=0$
As it passes through the origin
$-2 \lambda-6=0$
$\lambda=-3$
\therefore equation of the line is $-x+(6-b) y=0$
Its slope is $\frac{1}{6-b}$
As its angle with $\mathrm{y}=0$ is less than $\frac{\pi}{4}$
$\therefore-1<\frac{1}{6-b}<1$
$\Rightarrow 6-\mathrm{b}>1$ or $<-1 \Rightarrow \mathrm{~b}<5$ or $\mathrm{b}>7$
But $\mathrm{b} \neq 4$ (as the lines intersect)
$\therefore \mathrm{b} \in(-\infty, 4) \cup(4,5) \cup(7, \infty)$
13. Equation of angle bisector of the lines $3 x-4 y+1=0$ and $12 x+5 y-3=0$ containing the point $(1,2)$ is
(A) $3 x+11 y-4=0$
(B) $99 x-27 y-2=0$
(C) $3 x+11 y+4=0$
(D) $99 x+27 y-2=0$

Key: B
Hint: Since $3 \times 1-4 \times 2+1$ and $12 \times 1+5 \times 2-3$ are of the opposite sign, so required angle bisector is given by
$\frac{3 x-4 y+1}{5}=-\left(\frac{12+5 y-3}{13}\right)$
14. Let S be the set of all values of α such that the points $(\alpha, 6),(-5,0)$ and $(5,0)$ form an isosceles triangle. Then the value of $\sum_{\alpha \in S} \alpha^{2}$ is
(A) 356
(B) 18
C) 178
(D) 338

Key: A
Hint $\quad \alpha$ can take 5 values :0,3,-3,13.-13
15. If the orthocenter and circumcentre of a triangle are $(0,0)$ and $(3,6)$ respectively then the centroid of the triangle is
(A) $(1,2)$
(B) $(2,4)$
(C) $\left(\frac{2}{3}, \frac{4}{3}\right)$
(D) $\left(\frac{1}{3}, \frac{2}{3}\right)$

Key: B
Hint In any triangle centroid divides the line joining orthocenter and circumcentre internally in the ratio $2: 1$.
So, centroid is $(2,4)$.
16. The line $L_{1} \equiv 4 x+3 y-12=0$ intersects the x-axis and $y-$ axis at A and B respectively. A variable line perpendicular to L_{1} intersect the x and $y-$ axes at P and Q respectively. The locus of the circumcentre of triangle ABQ is
A) $6 x-8 y+7=0$
B) $6 x+8 y-25=0$
C) $8 x-6 y+7=0$
D) $14 x-12 y+3=0$

Key. A
Sol. clearly circumcentre of triangle $A B Q$ will lie on perpendicular bisector of line $A B$, which is $6 x-8 y+7=0$
17. If the area of the rhombus enclosed by the lines $l x \pm m y \pm n=0$ be 2 square units, then
A) $l, 2 m, n$ are in G.P
B) l, n, m are in G.P
C) $l m=n$
D) $l n=m$

Key. B
Sol. By solving the sides of the rhombus, the vertices are
$\left(0, \frac{-n}{m}\right),\left(\frac{-n}{l}, 0\right)\left(0, \frac{n}{m}\right),\left(\frac{n}{l}, 0\right)$
\therefore The area $=\frac{1}{2}\left(\frac{2 n}{m}\right)\left(\frac{2 n}{l}\right)=2 \Rightarrow n^{2}=l m$
18. If P is a point which moves inside an equilateral triangle of side length ' a ' such that it is nearer to any angular bisector of the triangle than to any of its sides, then the area of the region in which P lies is \qquad sq units
A) $a^{2}\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)$
B) $\frac{\sqrt{3} a^{2}}{2}\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)$
C) $\sqrt{3} a^{2}\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)$
D) a^{2}

Key. B
Sol. Shaded area is the region traced by P , its area $=\triangle A B C-3 \triangle A B D$

$=\frac{\sqrt{3}}{4} a^{2}-\frac{3}{2} a \times \frac{a}{2} \tan 15^{0}$
$==\frac{\sqrt{3}}{2} a^{2}\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)$
19. In $\triangle A B C$ orthocentre is $(6,10)$ circumcentre is $(2,3)$ and equation of side sum $B C$ is $2 \mathrm{x}+\mathrm{y}=17$. Then the radius of the circumcircle of $\triangle A B C$ is
a) 4
b) 5
c) 2
d) 3

Key: B
Hint Image of orthocenter of $\triangle A B C$ w.r.t. $\stackrel{\text { sur }}{B C}$ lies on the circle.
20. The area of the triangle formed by the line $x+y=3$ and the angular bisectors of pair of straight lines $x^{2}-y^{2}+2 y=1$ is
A. 8 sq.units
B. 6 sq.units
C. 4 sq.units
D. 2 sq.units

Key.
Sol. $\quad x^{2}-(y-1)^{2}=0$ is given pair of lines

Vertices are $(0,1),(0,3),(2,1)$,
Angular bisector is $x(y-1)=0$

Area $=2$ sq.units
21. Let $O(0,0), P(3,4), Q(6,0)$ be the verticals of triangle OPQ . The point R inside the triangle $O P Q$ is such that the triangles $O P R, P Q R, O Q R$ are of equal area. The point S is such that $O S=$ $\mathrm{PS}=\mathrm{QS}$. Then RS =
A. $\frac{13}{16}$
B. $\frac{11}{12}$
c. $\frac{13}{24}$
D. $\frac{11}{24}$

Key. D
Sol. $\quad \mathrm{R}$ is centroid . S is circumcentre. $R=\left(3, \frac{4}{3}\right), S=\left(3, \frac{7}{8}\right)$
$R S=\frac{11}{24}$
22. An equilateral triangle has its centroid at origin and one side is $x+y=1$. The equations of the others sides are
A. $y+1=(2 \pm \sqrt{3})(x+1)$
B. $y+1=(2 \pm \sqrt{3}) x, y+1=(3 \pm \sqrt{3}) x$
C. $y+1=(3 \pm \sqrt{3})(x-1), y+1=\sqrt{3} x$
D.
$y \pm 1=(3 \pm \sqrt{3})(x-1), y+1=\frac{\sqrt{3}-1}{\sqrt{3}+1}(x+1)$
Key. A
Sol. Third vertex ' A ' lies on $x-y=0$ and in III quadrent
Perpendicular distance from $(0,0)$ to $\mathrm{x}+\mathrm{y}=1$ is $\frac{1}{\sqrt{2}}$
$\therefore A O=\sqrt{2} \Rightarrow A(-1,-1)$
If m is the slope of other side,
$\tan 60^{\circ}=\left|\frac{m+1}{1-m}\right|$
$\Rightarrow m=2 \pm \sqrt{3}$
23. Triangle is formed by the lines $x+y=0, x-y=0$ and $1 x+m y=1$. If 1 and m vary subject to the condition $1^{2}+\mathrm{m}^{2}=1$, then the locus of its circumcentre is
(A) $\left(x^{2}-y^{2}\right)^{2}=x^{2}+y^{2}$
(B) $\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)$
(C) $\left(x^{2}+y^{2}\right)^{2}=4 x^{2} y^{2}$
(D) $\left(x^{2}-y^{2}\right)^{2}=\left(x^{2}+y^{2}\right)^{2}$

Key.

Sol. Circumcentre of the triangle formed by the given lines is given by

$$
\left(\frac{1}{1^{2}-\mathrm{m}^{2}}, \frac{\mathrm{~m}}{1^{2}-\mathrm{m}^{2}}\right)
$$

Hence the locus of this point is

$$
\left(x^{2}-y^{2}\right)^{2}=\quad x^{2}+y^{2}
$$

24. A piece of cheese is located at $(12,10)$ in a coordinate plane. A mouse is at $(4,-2)$ and is running up the line $y=-5 x+18$. At the point (a, b), the mouse starts getting farther from the cheese rather than closer to it. The value of $(a+b)$ is
(A) 6
(B) 10
(C) 18
(D) 14

Key. B

Sol.

$$
\begin{aligned}
& a=2, b=8 \\
& a+b=10
\end{aligned}
$$

25. $A\left(3 x_{1}, 3 y_{1}\right), B\left(3 x_{2}, 3 y_{2}\right), C\left(3 x_{3}, 3 y_{3}\right)$ are vertices of a triangle with orthocentre H at $\left(x_{1}+x_{2}+x_{3}, y_{1}+y_{2}+y_{3}\right)$ then the $\angle A B C$
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{4}$

Key. B
SoL. Centroid $G=\left(\frac{3 x_{1}+3 x_{2}+3 x_{3}}{3}, \frac{3 y_{1}+3 y_{2}+3 y_{3}}{3}\right)=\left(x_{1}+x_{2}+x_{3}, y_{1}+y_{2}+y_{3}\right)=H$

$$
\therefore \angle A B C=\pi / 3
$$

26. The area of the triangle with vertices $(a, b),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ where a, x_{1}, x_{2} are in G.P. with common ratio ' r ' and b, y_{1}, y_{2} are in G.P with common ratio ' s ' is
A. $|a b(r-1)(s-1)(s-r)|$
B. $\frac{1}{2}|a b(r+1)(s+1)(s-r)|$
C. $\frac{1}{2}|a b(s-1)(r-1)(s-r)|$
D. $\frac{1}{2} a b r s$

Key. C
SoL. $\quad a, x_{1}, x_{2}$ are in GP with C.R is ' r ' $, b, y_{1}, y_{2}$ are in G.P with C.R is s, $x_{1}=a r, x_{2}=r^{2}$, $y_{1}=b s, x_{2}=b s^{2}$
27. If h denote the A.M, k denote G.M of the intercepts made on axes by the lines passing through $(1,1)$ then (h, k) lies on
A. $y^{2}=2 x$
B. $y^{2}=4 x$
C. $y=2 x$
D. $x+y=2 x y$

Key. A
SoL. $\quad a=x$-intercept, $b=y$-intercept

$$
2 \mathrm{~h}=\mathrm{a}+\mathrm{b}, k^{2}=a b
$$

$$
\frac{x}{a}+\frac{y}{b}=1, \text { substitute }(1,1)
$$

$$
\frac{1}{a}+\frac{1}{b}=1
$$

$$
a+b=a b
$$

$$
2 h=k^{2} \Rightarrow y^{2}=2 x
$$

28. A straight rod of length $3 /$ units slides with its ends A, B always on the x and y axes respectively then the locus of centroid of $\triangle O A B$ is
A. $x^{2}+y^{2}=3 l^{2}$
B. $x^{2}+y^{2}=l^{2}$
C. $x^{2}+y^{2}=4 l^{2}$
D. $x^{2}+y^{2}=2 l^{2}$

Key. B
SoL. Let $O A=a, O B=b, A B=31$

$$
\mathrm{A}=(\mathrm{a}, 0), \mathrm{b}=(0, \mathrm{~b})
$$

$$
\begin{aligned}
& \text { Let } \mathrm{G}(\mathrm{x}, \mathrm{y})=\left(\frac{a}{3}, \frac{b}{3}\right), \mathrm{a}=3 \mathrm{x}, \mathrm{~b}=3 \mathrm{y} \\
& a^{2}+b^{2}=9 l^{2} \Rightarrow x^{2}+y^{2}=l^{2}
\end{aligned}
$$

29. By translation of axes the equation $x y-x+2 y-6=0$ changed as $\mathrm{XY}=\mathrm{c}$ then $\mathrm{c}=$
A. 4
B. 5
C. 6
D. 7

Key. A
SoL. New origin $\left(x_{1}, y_{1}\right)=\left(\frac{-f}{h}, \frac{-g}{h}\right)=(-2,1)$
Transformed equation of $x y-x+2 y+6=0$ is $x y=4$
30. A line has intercepts a, b on axes when the axes are rotated through an angle α, the line makes equal intercepts on axes then $\tan \alpha=$
A. $\frac{a+b}{a-b}$
B. $\frac{a-b}{a+b}$
C. $\frac{a}{b}$
D. $\frac{b}{a}$

Key. B
SoL. Equation of the lime $\frac{x}{a}+\frac{y}{b}=1$

Transformed eqution is $\frac{1}{a}(x \cos \alpha-y \sin \alpha)+\frac{1}{b}(x \sin \alpha+y \cos \alpha)=1$

Intercepts are equal
$\mathrm{x}-$ coefficient $\equiv y$-coefficient
$\therefore \tan \alpha=\frac{a-b}{a+b}$
31. In a $\triangle A B C$, the coordinates of B are $(0,0) \mathrm{AB}=2, \angle A B C=\frac{\pi}{3}$ and the mid point of BC is $(2,0)$. The centroid of triangle is

1) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
2) $\left(\frac{5}{3}, \frac{1}{\sqrt{3}}\right)$
3) $\left(\frac{4+\sqrt{3}}{3}, \frac{1}{\sqrt{3}}\right)$
4) $\left(\frac{4-\sqrt{3}}{3}, \frac{1}{\sqrt{3}}\right)$

Key. 2
Sol. Let $A(h, k)$ then $\cos 60^{\circ}=\frac{h}{2} \Rightarrow h=1$

$$
\sin 60^{\circ}=\frac{k}{2} \Rightarrow k=\sqrt{3}
$$

$\therefore A(1, \sqrt{3})$
\therefore centroid $=\left(\frac{5}{3}, \frac{\sqrt{3}}{3}\right)$
32. A point moves in the XY- plane such that the sum of its distances form two mutually perpendicular lines is always equal to 3 . The area enclosed by the locus of the point is .

1) 18 Sq. Units
2) $9 / 2$ Sq. Units
3) 9 Sq. Units
4) 27 Sq. Units

Key. 1
Sol. Given $|x|+|y|=3$
Required area $=\frac{2 c^{2}}{|a b|}=9 \times 2=18 \mathrm{~S} . \mathrm{U}$
33. If the point (a, a) falls between the lines $|x+y|=2$, then

1) $|a|=2$
2) $|a|=1$
3) $|a|<1$
4) $|a|<\frac{1}{2}$

Key. 3
Sol. Origin and (a, a) lies on the same side of the given lines $\therefore|a|<1$
34. A ray travelling along the line $3 x-4 y=5$ after being reflected from a line ' l ' travels along the line $5 x+12 y=13$. Then the equation of the line ' l ' is

1) $x+8 y=0$
2) $x-8 y=0$
3) $32 x+4 y+65=0$
4)

$32 x-4 y+65=0$
Key. 2
Sol. The line ' l ' can be any one of the bisectors of the angles between the lines $3 x-4 y=5$ and $5 x+12 y=13$
\therefore Angular bisectors, $\frac{3 x-4 y-5}{5}= \pm\left[\frac{5 x+12 y-13}{13}\right]$
$\Rightarrow x-8 y=0,32 x+4 y-65=0$
35. The values of m for which the system of equations $3 x+m y=m$ and $2 x-5 y=20$ has a solution satisfy the conditions $x>0, y>0$ are given by the set

1) $\left\{m: m<\frac{-13}{2}\right\}$
2) $\left\{m: m>\frac{17}{2}\right\}$
3) $\left\{m: m<\frac{-13}{2}\right.$ or $\left.m>\frac{17}{2}\right\}$
4) $\left\{m: m>30\right.$ or $\left.m<\frac{-15}{2}\right\}$

Key. 4
Sol. Solve the equations $x=\frac{25 m}{2 m+15}, y=\frac{2 m-60}{2 m+15}$
But $x>o, y>0 \Leftrightarrow 25 m>0,2 m+15>0,2 m-60>0$
$\Leftrightarrow m>30$ or $m<\frac{-15}{2}$
36. $A_{1}, A_{2} \ldots . . A_{n}$ are points on the line $\mathrm{y}=\mathrm{x}$ lying in the positive quadrant such that $O A_{n}=n O A_{n-1} \quad 0$ being the origin. If $O A_{1}=1$ and the coordinates of A_{n} are $(2520 \sqrt{2}, 2520 \sqrt{2})$, then $\mathrm{n}=$

1) 5
2) 6
3) 7
4) 8

Key. 3
Sol. We have, $O A_{n}=n \cdot O A_{n-1}=n(n-1) \cdot O A_{n-2}=---$
$\therefore O A_{n}=\frac{n!}{\sqrt{2}}$
$\Rightarrow \sqrt{2}(2520 \sqrt{2})=n!\Rightarrow n!=5040$
$\Rightarrow n=7$
37. M is the mid point of side $A B$ of an equilateral triangle $A B C$. P is a point on $B C$ such that $\mathrm{AP}+\mathrm{PM}$ is minimum. If $\mathrm{AB}=20$ then $\mathrm{AP}+\mathrm{PM}$ is
(A) $10 \sqrt{7}$
(B) $10 \sqrt{3}$
(C) $10 \sqrt{5}$
(D) 10

Key. A
Sol. Take the reflection of $\triangle A B C$ in $B C$.

$$
\mathrm{PM}=\mathrm{PM}^{\mathrm{L}}
$$

$\mathrm{PA}+\mathrm{PM}=\mathrm{PA}+\mathrm{PM}^{\prime}$ it is minimum when $\mathrm{M}^{\prime} \mathrm{PA}$ lies in a line
Now apply cosine rule in triangle ABM^{\prime}
We will get $A M^{\prime}=10 \sqrt{7}$

38. All points inside the triangle formed by $\mathrm{A}(1,3), \mathrm{B}(5,6), \mathrm{C}(-1,2)$ will satisfy
(A) $2 x+2 y \leq 0$
(B) $2 x+y+1 \geq 0$
(C) $2 x+3 y-12 \geq 0$
(D) $-2 x+11 \leq 0$

Key. B

Sol. $\quad \mathrm{L}_{1} \equiv 2 \mathrm{x}+2 \mathrm{y}=0$

$$
\begin{aligned}
& \mathrm{L}_{1}(1,3)>0 \text { so } a \text { is wrong } \\
& \mathrm{L}_{2}=2 x+y+1=0 \\
& \mathrm{~L}_{2}(1,3)>0 \\
& \mathrm{~L}_{2}(5,6)>0 \\
& \mathrm{~L}_{3}(-1,2)>0
\end{aligned} \quad \Rightarrow \quad b \text { is ture } \quad \begin{aligned}
& \\
&
\end{aligned}
$$

39. Let $P(1,1), Q(2,4), R(\alpha, \beta)$ be the vertices of the triangle PQR. The point $S(2,2)$ inside the triangle PQR is such that
$\operatorname{Area}(\triangle \mathrm{PQS})=\operatorname{Area}(\triangle \mathrm{PSR})=\operatorname{Area}(\Delta \mathrm{RSQ})$, then $(\alpha, \beta)=$
(A) $(2,3)$
(B) $(2,5 / 2)$
(C) $(3,1)$
(D) $(5 / 2,2)$

Key. C
Sol. Here S must be cenroid of $\triangle P Q R$

$$
\begin{aligned}
& \Rightarrow \frac{1+2+\alpha}{3}=2 \& \frac{1+4+\beta}{3}=2 \\
& \Rightarrow \alpha=3 \& \beta=1 .
\end{aligned}
$$

40. A system of line is given as $y=m_{i} x+c_{i}$, where m_{i} can take any value out of $0,1,-1$ and when m_{i} is positive then c_{i} can be 1 or -1 when m_{i} equal $0, c_{i}$ can be 0 or 1 and when m_{i} equals $-1, c_{i}$ can take 0 or 2 . Then the area enclosed by all these straight line is
(A) $\frac{3}{\sqrt{2}}(\sqrt{2}-1)$ sq. units
(B) $\frac{3}{\sqrt{2}}$ sq. units
(C) $\frac{3}{2}$ sq. untis
(D) $\frac{3}{4}$ sq. units

Key. C
Sol. Lines are $y=1, y=0, y=-x, y=-x+2, y=x+1, y=x-1$
Area of OABCDE
$=$ area of OBGF
$=\frac{3}{2} \times 1=\frac{3}{2}$ units.
41. Point A lies on $\mathrm{y}=\mathrm{x}$ and
 mx so that length $\mathrm{AB}=4$
point B on $\mathrm{y}=$ units then value of m for which locus of mid point of $A B$ represents a circle is
(A) $\mathrm{m}=0$
(B) $\mathrm{m}=-1$
(C) $\mathrm{m}=2$
(D) $\mathrm{m}=-2$

Key. B
SOL. LET CO-ORDINATES OF $\mathrm{A}\left(\mathrm{X}_{1}, \mathrm{X}_{1}\right)$ AND B($\left.\mathrm{X}_{2}, \mathrm{MX}_{2}\right)$.
CLEARLY $\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right)^{2}+\left(\mathrm{X}_{1}-\mathrm{MX}_{2}\right)^{2}=16$
LET MID POINT OF P(H, K)
$\Rightarrow \quad \mathrm{X}_{1}+\mathrm{X}_{2}=2 \mathrm{H}$ AND $\mathrm{X}_{1}+\mathrm{MX}_{2}=2 \mathrm{~K}$
$\Rightarrow \quad\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right)^{2}+4 \mathrm{X}_{1} \mathrm{X}_{2}=4 \mathrm{H}^{2} \mathrm{AND}\left(\mathrm{X}_{1}-\mathrm{MX}_{2}\right)^{2}+4 \mathrm{MX}_{1} \mathrm{X}_{2}=4 \mathrm{~K}^{2}$

$$
\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right)^{2}+\left(\mathrm{X}_{1}-\mathrm{MX}_{2}\right)^{2}=4 \mathrm{H}^{2}+4 \mathrm{~K}^{2}=16
$$

when $m=-1$
42. The joint equation of two altitudes of an equilateral triangle is
$(\sqrt{3} x-y+8-4 \sqrt{3})(\sqrt{3} x+y-12-4 \sqrt{3})=0$. The equation of the third altitude is
a) $\sqrt{3} x=2-4 \sqrt{3}$
b) $y-10=0$
c) $\sqrt{3} x=2+4 \sqrt{3}$
d) $y+10=0$

Key. B
Sol. The required altitude will be the bisector of obtuse angle between the 2 given altitudes
43. A line $x+2 y=4$ is translated by 3 units, away from origin and then rotated by 30° in clock wise sense about the point where shifted line cuts x-axis. If m is the slope of line in new position then [m] where [.] denotes GIF, is
a) -1
b) -2
c) -3
d) -4

Key. A
Sol. The required line is at a distance of 3 units from given line and parallel to it. Hence it is $x+2 y-4-3 \sqrt{5}=0$, cuts x-axis at $C(4+3 \sqrt{5}, 0)$ with slope $\tan \theta=\frac{-1}{2}$.After rotation about C by 30°, slope becomes $m=\tan \left(\theta-30^{\circ}\right)=\frac{-(2+\sqrt{3})}{2 \sqrt{3}-1}=\frac{-(4+3 \sqrt{3})}{11} \Rightarrow[m]=-1$
44. In a triangle $A B C, E$ and F are points on $A C$ and $A B$ respectively. The lines $B E$ and $C F$ intersect at P. If area $(B P F)=5$. area $(P F A E)=22$, and area $(C P E)=8$, then area $(B P C)$ is
(A) 22
(B) 16
(C) 10
(D) not uniquely decidable

Key. C
Sol.

Let area of $\triangle P B C=x$
$\frac{x}{5+\lambda}=\frac{8}{22-\lambda}$ and $\frac{x}{30-\lambda}=\frac{5}{\lambda}$

$$
\begin{aligned}
\Rightarrow & \frac{\lambda+5}{30-\lambda}=\frac{(22-\lambda) 5}{8 \lambda} \\
\Rightarrow & 8 \lambda^{2}+40 \lambda=5\left(\lambda^{2}-52 \lambda+\right. \\
& 660) \\
\Rightarrow & \lambda^{2}+100 \lambda-1100=0 \\
\Rightarrow & (\lambda+110)(\lambda-10)=0 \Rightarrow \lambda= \\
& 10
\end{aligned}
$$

$$
\Rightarrow x=\frac{(30-\lambda) 5}{\lambda}=\frac{(30-10) \times 5}{10}=10 \text { square units. }
$$

Ans. (C) 10 square units.
45. The perimeter of a parallelogram is 40 . All the sides of the parallelogram are natural numbers, and at least one of its diagonals is a natural number. The number of noncongruent parallelograms so formed is
(A) 10
(B) 30
(C) 60
(D) 100

Key. D
Sol.
Let $B D$ be integer and $I \geq m$
$2(I+m)=40$
$\Rightarrow I+\mathrm{m}=20$
Possible values of $m=1,2,3, \ldots, 10$

Note in any triplet of $I, m, B D$ if atleast one is different parallelogram will be noncongruent
Now $/-\mathrm{m}<\mathrm{BD}<1+\mathrm{m}$ (triangle inequality)
$\Rightarrow 20-2 \mathrm{~m}<\mathrm{BD}<20$
\Rightarrow No. of possible values of BD for a given ' m ' is $20-(20-2 m)-1=2 m-1$
\Rightarrow Total no. of noncongruent parallelogram $=\sum_{\mathrm{m}=1}^{10}(2 \mathrm{~m}-1)=10^{2}=100$
Ans. (D) 100
46. The orthocentre of the triangle formed by the lines $x+y=1,2 x+3 y=6$ and $4 x-y+4=0$ lies in
(A) I quadrant
(B) II quadrant
(C) III quadrant
(D) IV quadrant

Key. A
Sol. Coordinates of A and B are $(-3,4)$ and $\left(-\frac{3}{5}, \frac{8}{5}\right)$ if orthocentre $p(h, k)$

Then, (slope of PA$) \times($ slope of $B C)=-1$
$\frac{\mathrm{k}-4}{\mathrm{~h}+3} \times 4=-1$
$\Rightarrow \quad 4 \mathrm{k}-16=-\mathrm{h}-3$
$\Rightarrow \quad \mathrm{h}+4 \mathrm{k}=13$
and slope of $\mathrm{PB} \times$ slope of $\mathrm{AC}=-1$

$$
\begin{array}{ll}
\Rightarrow & \frac{\mathrm{k}-\frac{8}{5}}{\mathrm{~h}+\frac{3}{5}} \times-\frac{2}{3}=-1 \\
\Rightarrow \quad & \frac{5 \mathrm{k}-8}{5 \mathrm{~h}+3} \times \frac{2}{3}=1 \\
\Rightarrow \quad 10 \mathrm{k}-16=15 \mathrm{th}+9 \\
& 15 \mathrm{th}-10 \mathrm{k}+25=0 \\
& 3 \mathrm{~h}-2 \mathrm{k}+5=0 \quad . . \text { (ii) }
\end{array}
$$

Solivng Eqs. (i) and (ii), we get $\mathrm{h}=\frac{3}{7}, \mathrm{k}=\frac{22}{7}$
Hence, orthocentre lies in I quadrant.
47. If $f(x+y)=f(x) f(y) \forall x, y \in R$ and $f(1)=2$, then area enclosed by $3|x|+2|y| \leq 8$ is (in sq.units)
A) $f(4)$
B) $\frac{1}{2} f(6)$
C) $\frac{1}{3} f(6)$
D) $\frac{1}{3} f(5)$

Key. C

Sol.

Area $=4 \times \frac{1}{2} \times \frac{8}{3} \times 4=\frac{64}{3}=\frac{2^{6}}{3}$
$f(x)=2^{x}$
48. $9 x^{2}+2 h x y+4 y^{2}+6 x+2 f y-3=0$ represents two parallel lines then
a) $h=6, f=2$
b) $h=-6, f=2$
c) $h=6, f=-2$
d) none

Key. A
Sol. Since the given equation represents a pair of parallel lines, we have $h^{2}=a b \Rightarrow h= \pm 6$
Condition for pair of lines $\left|\begin{array}{ccc}9 & h & 3 \\ h & 4 & f \\ 3 & f & -3\end{array}\right|=0$
$108 \pm 36 f-9 f^{2}-144=0$
$\Rightarrow \mathrm{f}=2 \& \mathrm{~h}=6$
$\Rightarrow \mathrm{f}=-2, \mathrm{~h}=-6$

Straight lines
 Multiple Correct Answer Type

1. The triangle formed by the lines $x+y=0,3 x+y-4=0$ and $x+3 y-4=0$ is
A) isosceles
B) scalene
C) acute angled
D) obtuse angled

Key. A,D
Sol. Conceptual
2. Given pair of lines $2 x^{2}+5 x y+2 y^{2}+4 x+5 y+a=0$ and the line $L: b x+y+5=0$ then
A) $a=2$
B) $a=-2$
C) There exist no circle which touches the pair of lines and the line L if $b=5$
D) There exist no circle which touches the pair of lines and the line L if $b=-5$

Key. A,C
Sol. For the equation to be pair of lines $\Delta=0$ then $a=2$
If the three lines are concurrent, no circle exist then $b=5$
3. If the ortho-centre of an isosceles triangle lies on the in-circle of the triangle then
A) The base angle of the triangle is $\cos ^{-1} \frac{2}{3}$
B) The triangle is acute
C) The base angle of the triangle is $\tan ^{-1} \frac{\sqrt{5}}{2}$
D) If S, I are the circumcentre and in-centre and R is circum-radius then $\frac{S I}{R}=\frac{1}{3}$

Key. $\quad A, B, C, D$
Sol. Let $A B C$ be the triangle in which $A B=A C$. Let $I, P^{\text {respectively be the incentre and the }}$ ortho-centre of the triangle.

$$
\begin{aligned}
& A I=r \operatorname{cosec} \frac{A}{2}, A P=2 R \cos A \\
& r \operatorname{cosec} \frac{A}{2}=2 R \cos A+r
\end{aligned}
$$

4. $\quad \mathrm{P}$ is a point inside a $\triangle \mathrm{ABC}$ of area $\mathrm{K}(\mathrm{K}>0)$. The lengths of perpendiculars drawn to the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ of lengths $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are respectively $P_{1}, P_{2}, P_{3} \cdot \frac{a}{P_{1}}+\frac{b}{P_{2}}+\frac{c}{P_{3}}$ is minimum when
(A) P is incentre of $\triangle \mathrm{ABC}$
(B) P is equidistant to all the 3 sides
(C) $P_{1}=P_{2}=P_{3}=\frac{2 K}{a+b+c}$
(D) P is orthocentre of $\triangle A B C$

KEY : ABCD
HINT : given $\frac{1}{2}\left(a P_{1}+b P_{2}+c P_{3}\right)=K \Rightarrow y=\frac{a}{P_{1}}+\frac{b}{P_{2}}+\frac{c}{P_{3}}$ is minimum.
when $y=\frac{1}{2 K}\left(a P_{1}+b P_{2}+c P_{3}\right)\left(\frac{a}{P_{1}}+\frac{b}{P_{2}}+\frac{c}{P_{3}}\right)$ is minimum.
but , $y=\frac{1}{2 K}\left(a^{2}+b^{2}+c^{2}+a b\left(\frac{P_{1}}{P_{2}}+\frac{P_{2}}{P_{1}}\right)+b c\left(\frac{P_{2}}{P_{3}}+\frac{P_{3}}{P_{2}}\right)+a b\left(\frac{P_{1}}{P_{3}}+\frac{P_{3}}{P_{1}}\right)\right)$
$\geq \frac{1}{2 K}\left(a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 a c\right)$
$\Rightarrow y \geq \frac{(a+b+c)^{2}}{2 K}$ when $\frac{P_{1}}{P_{2}}=\frac{P_{2}}{P_{1}}=\frac{P_{2}}{P_{3}}=\frac{P_{3}}{P_{2}}=\frac{P_{1}}{P_{3}}=\frac{P_{3}}{P_{1}}=1$
\Rightarrow i.e, when $P_{1}=P_{2}=P_{3}$
$\therefore P$ is incentre of $\triangle A B C$
5. In $\triangle A B C, P$ is any point inside a triangle such that area of $\triangle B P C, \triangle A P C, \triangle A P B$ are equal. Line $A P$ cut $B C$ at M, area of $\triangle P M C$ is 5 sq. unit then area of $\triangle A B C$ is
(A) 20 sq.units
(B) 25 sq.units
(C) 30 sq.units
(D) 10 sq.units

Key: A, B, C
Hint: $\quad P$ is centroid of $\triangle A B C$
\therefore area of $\triangle \mathrm{ABC}=6 \times 5=30$ sq.units
6. Equations $(b-c) x+(c-a) y+(a-b)=0$ and $\left(b^{3}-c^{3}\right) x+\left(c^{3}-a^{3}\right) y+\left(a^{3}-b^{3}\right)=0 \quad$ will represent the same line if
(A) $b=c$
(B) $c=a$
(C) $a=b$
(D) $a+b+c=0$

Key. A,B,C,D
Sol. The two lines will be identical if there exists some real number k, such that
$\mathrm{b}^{3}-\mathrm{c}^{3}=\mathrm{k}(\mathrm{b}-\mathrm{c}), \mathrm{c}^{3}-\mathrm{a}^{3}=\mathrm{k}(\mathrm{c}-\mathrm{a})$
and $\quad a^{3}-b^{3}=k(a-b)$
$b-c=0$
or $\quad b^{2}+c^{2}+b c=k$,
$\mathrm{c}-\mathrm{a}=0$
or $\quad c^{2}+a^{2}+c a=k$
and $\quad a-b=0$
or $\quad a^{2}+b^{2}+a b=k$
that is, $b=c$ or $c=a$ or $a=b$
next $b^{2}+c^{2}+b c=c^{2}+a^{2}+c a$
$\Rightarrow \quad b^{2}-a^{2}=c(a-b)$
Hence, $\mathrm{a}=\mathrm{b}$
or $\quad a+b+c=0$
7. Let $u=a x+b y+a \sqrt[3]{b}=0, v=b x-a y+b \sqrt[3]{a}=0, a, b \in R$ be two straight lines. The equation of the bisectors of the angle formed by $L_{1} \equiv\left(\tan \theta_{1}\right) u-\left(\tan \theta_{2}\right) v=0$ and $L_{2} \equiv\left(\tan \theta_{1}\right) u+\left(\tan \theta_{2}\right) v=0$ for $\theta_{1}, \theta_{2} \in\left(0, \frac{\pi}{2}\right)$ is
A) $u=0$
B) $\left(\tan \theta_{2}\right) u+\left(\tan \theta_{1}\right) v=0$
C) $\left(\tan \theta_{2}\right) u-\left(\tan \theta_{1}\right) v=0$
D) $v=0$

Key. A,D
Sol. Note that lines $u=0, v=0$ are perpendicular . Make the co-ordinate axes coincide with $u=0, v=0$. Now the lines $L_{1} \equiv 0, L_{2} \equiv 0$ are equally inclined with $u-v$ axes $\therefore u=0, v=0$ are bisectors.
8. Equations of bisectors of angles between intersecting lines $\frac{x-3}{\cos \theta}=\frac{y+5}{\sin \theta}, \frac{x-3}{\cos \phi}=\frac{y+5}{\sin \phi}$ are $\frac{x-3}{\cos \alpha}=\frac{y+5}{\sin \alpha}$ and $\frac{x-3}{\beta}=\frac{y+5}{\gamma}$ then
A. $\alpha=\frac{\theta+\phi}{2}$
B. $\beta^{2}+\gamma^{2}=1$
C. $\operatorname{Tan} \alpha=\frac{-\beta}{\gamma}$
D. $\operatorname{Tan} \alpha=\frac{\beta}{\gamma}$

Key. A,B,C
Sol. Inclinations of two lines are θ and ϕ
\therefore Inclination of angle bisector is $\frac{\theta+\phi}{2}$
$\alpha=\frac{\theta+\phi}{2}$ and $\operatorname{Tan} \alpha \times \frac{\gamma}{\beta}=-1$
\Rightarrow Tan $\alpha=\frac{-\beta}{\gamma}$
$\therefore \beta=-\sin \alpha, \gamma=\cos \alpha$
$\Rightarrow \beta^{2}+\gamma^{2}=1$
9. The equation of the line passing through $(2,3)$ and making an intercept of 2 units between the lines $y+2 x=5$ and $y+2 x=3$ is
A. $5 x-4 y+2=0$
B. $3 x+4 y=18$
C. $x=2$
D. $y=3$

Key. B,C
Sol. $\tan \theta=\frac{1}{2}$

Slope of required line $=m$

Slope of given lines $=-2$
$\left|\frac{m+2}{1+2 m}\right|=\frac{1}{2} \Rightarrow m=\frac{-5}{4} \quad$ or ∞

The lines are $5 x+4 y-22=0, x-2=0$
10. The equation of the diagonal of the square formed by the pairs of lines $x y+4 x-3 y-12=0$ and $x y-3 x+4 y-12=0$ is
A. $x-y=0$
B. $x+y+1=0$
C. $x+y=0$
D. $x-y+1=0$

Key. A,B
Sol. $\quad(x-3)(y+4)=0,(x+4)(y-3)=0$

The vertices are $A=(-4,-4), B=(-4,3), C=(3,3), D=(-4,3)$

Diagonal AC is $x=y$,Diagonal BD is $x+y+1=0$
11. Under rotation of axes through $\theta, x \cos \alpha+y \sin \alpha=P$ changes to $X \cos \beta+Y \sin \beta=P$ then
A. $\cos \beta=\cos (\alpha-\theta)$
B. $\cos \alpha=\cos (\beta-\theta)$
C. $\sin \beta=\sin (\alpha-\theta)$
D. $\sin \alpha=\sin (\beta-\theta)$

Key. A,C
SOL. $\quad x \cos \alpha+y \sin \alpha=P$

Axis rotated through angle ' θ '

Transformed equation
$\cos \alpha(x \cos \theta-y \sin \theta)+\sin \alpha(x \sin \theta+y \cos \theta)=P$

$$
\begin{aligned}
& x \cos (\alpha-\theta)+y \sin \alpha(\alpha+\theta)=P \Rightarrow x \cos \beta+y \sin \beta=P \\
& \cos \beta=\cos (\alpha-\theta), \sin \beta=\sin (\alpha-\theta)
\end{aligned}
$$

12. $(3,2),(-4,1)$ and $(-5,8)$ are vertices of triangle then
A. orthocentre is $(4,1)$
B. orthocentre is $(-4,1)$
C. circumcentre is $(-1,5)$
D. circumcentre is $(3,2)$

Key. B,C

SoL. $\quad(3,2)(-4,1)(-5,8)$ form a right angle triangle at $(-4,1)$
Orthocnetre is $(-4,1)$, circumcentre is mid point of $(3,2)(-5,2)$. If $(-1,5)$
13. The point A divides the join of $P=(-5,1)$ and $Q=(3,5)$ in the ratio $k: 1$. The values of k for which the area of $\triangle A B C$. Where $\mathrm{B}=(1,5), \mathrm{C}=(7,-2)$ is equal to 2 sq. Units are
A. 7
B. 4
C. $30 / 4$
D. $31 / 9$

Key. A,D
SoL. Dividing point of $P(-5,1), Q(3,5)$ in the ration $k: 1$ is
$A=\left(\frac{3 k-5}{k+1}, \frac{5 k+1}{k+1}\right), \mathrm{B}=(1,5), \mathrm{C}=(7,-2)$

Area of triangle $\mathrm{ABC}=2$
$\therefore 9 k^{2}-94 k+217=0$
$(k-7)(9 k-31)=0$
$k=7, \frac{31}{9}$
14. The angle through which the co-ordinate axes be rotated so that $x y$-term in the equation $5 x^{2}+4 \sqrt{3} x y+9 y^{2}=0$ may be missing is
A. $\frac{\pi}{6}$
B. $\frac{-\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Key. B,D
SOL.

$$
\theta=\frac{1}{2} \tan ^{-1}\left(\frac{2 h}{a-b}\right)=\frac{1}{2} \tan ^{-1}\left(\frac{4 \sqrt{3}}{-4}\right)=\tan ^{-1}(-\sqrt{3})
$$

$$
\theta=\frac{1}{2}\left(\pi-\frac{\pi}{3}\right), \frac{1}{2}\left(-\frac{\pi}{3}\right)
$$

$$
\theta=\frac{\pi}{3},-\frac{\pi}{6}
$$

15. Sides of a rhombus are parallel to the lines $x+y-1=0$ and $7 x-y-5=0$. It is given that diagonals of the rhombus intersect at $(1,3)$ and one vertex ' A ' of the rhombus lies on the line $\mathrm{y}=2 \mathrm{x}$. Then the coordinates of the vertex A are
(A) $\left(\frac{8}{5}, \frac{16}{5}\right)$
(B) $\left(\frac{7}{15}, \frac{14}{15}\right)$
(C) $\left(\frac{6}{5}, \frac{12}{5}\right)$
(D) $\left(\frac{4}{15}, \frac{8}{15}\right)$

Key. A,C
Sol. It is clear that diagonals of the rhombus will be parallel to the bisectors of the given lines and will pass through $(1,3)$. Equations of bisectors of the given lines are

$$
\frac{x+y-1}{\sqrt{2}}= \pm\left(\frac{7 x-y-5}{5 \sqrt{2}}\right)
$$

Or, $\quad 2 x-6 y \quad=0,6 x+2 y=5$
Therefore, the equations of diagonals are $x-3 y+8=0$ and $3 x+y-6=0$. Thus the required vertex will be the point where these lines meet the line $y=2 x$. Solving these lines we get possible coordinates as $\left(\frac{8}{5}, \frac{16}{5}\right)$ and $\left(\frac{6}{5}, \frac{12}{5}\right)$.
16. Equations of the diagonals of a rectangle are $y+8 x-17=0$ and $y-8 x+7=0$. If the area of the rectangle is 8 sq. units, then the equation of the sides of the rectangle is/are
(A) $x=1$
(B) $x+y=1$
(C) $y=9$
(D) $x-2 y=3$

Key. A,C
Sol.
The intersection point of the given

Let length of $B C$ be a and that of $C D$
be b
Then $\tan \theta=\frac{a / 2}{b / 2}=\frac{a}{b}=8$.
Also $a b=8$
$\Rightarrow a=8, b=1$.
So equations of sides are $y=1, y=9, x=1$ and $x=2$.
17. The lines $(m-2) x+(2 m-5) y=0$;
$(m-1) x+\left(m^{2}-7\right) y-5=0$ and $x+y-1=0$ are
a) concurrent for three value of ' m '
b) concurrent for one value of ' m '
c) concurrent for no value of ' m '
d) are parallel for $m=3$

Key. C,D

$$
=\left|\begin{array}{ccc}
m-2 & 2 m-5 & 0 \\
m-1 & m^{2}-7 & -5 \\
1 & 1 & -1
\end{array}\right|=0
$$

$$
\Rightarrow(m-3)\left(m^{2}-m+2\right)=0
$$

For $m=3$, the lines become parallel
18. If the points $(-2,1),(3,4),\left(a^{2}, a\right)$ lie on the same side of the straight line $6 x-7 y-3=0$ then a can lie in
A) $(0,1)$
B) $\left(\frac{6}{5}, \frac{7}{5}\right)$
C) $(2,4)$
D) $(-1,1)$

Key. A,B
Sol. $\quad 6 a^{2}-7 a-3<0 \Rightarrow a \in\left(-\frac{1}{3}, \frac{3}{2}\right)$
19. If the straight line $3 x+4 y=24$ intersect the axes at A and B and the straight line $4 x+3 y=24$ intersect the axes at C and D then points A, B, C, D lie on
(a) the circle
(b) the parabola(c) an ellipse
(d) the hyperbola

Key. A,B,C,D
Sol. Equation of the curve passing through all four points A, B, C, D can be written as $(3 x+4 y-24)(4 x+3 y+-24)+\lambda x y=0$

Now for different values of λ we will get different curves.
20. If $x^{2}+2 h x y+y^{2}=0(h \neq 1)$ represents the equations of the straight lines through the origin which make an angle α with the straight line $y+x=0$ then
a) $\sec 2 \alpha=h$
b) $\cos \alpha=\sqrt{\frac{l+h}{2 h}}$
c) $m_{1}+m_{2}=-2 \sec 2 \alpha$ d) $\cot \alpha=\sqrt{\frac{h+1}{h-1}}$

Key. A,B,C,D
Sol. Let $x^{2}+2 h x y+y^{2}=0$ be given by
$y=m_{1} x$ \& $y=m_{2} x$
$m_{1}+m_{2}=-2 h$
slope of $y+x=-1$
$\tan \alpha=\left|\frac{m_{1}+1}{1-m_{1}}\right|, \tan \alpha=\left|\frac{m_{2}+1}{1-m_{2}}\right|$
$\tan \alpha=\frac{m_{1}+1}{1-m_{1}} \& \tan \alpha=-\left(\frac{m_{2}+1}{1-m_{2}}\right)$
(for + ve signs, in both gives the same value but $m_{1} \neq m_{2}$).
$\Rightarrow m_{1}=\frac{\tan \alpha-1}{\tan \alpha+1}, m_{2}=\frac{\tan \alpha+1}{\tan \alpha-1}$
$m_{1}+m_{2}=-2 \sec 2 \alpha$

$$
\Rightarrow h=\sec 2 \alpha
$$

$\cos 2 \alpha=\frac{1}{h}$
$2 \cos ^{2} \alpha-1=\frac{1}{h}$

$$
\Rightarrow \cos \alpha=\left(\frac{1+h}{2 h}\right)^{\frac{1}{2}} \Rightarrow \cot \alpha=\sqrt{\frac{h+1}{h-1}}
$$

21. If $6 a^{2}-3 b^{2}-c^{2}+7 a b-a c+4 b c=0$ then the family of lines $a x+b y+c=0,|a|+|b| \neq 0$ is concurrent at
a) $(-2,-3)$
b) $(3,-1)$
c) $(2,3)$
d) $(-3,1)$

Key. A,B
Sol. $\quad(2 a+3 b-c)(3 a-b+c)=0$
$\Rightarrow-2 a-3 b+c=0$ or $3 a-b+c=0$

Straight lines

Assertion Reasoning Type
A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct Explanation for Statement-1
B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement1
C) Statement-1 is True, Statement-2 is False
D) Statement-1 is False, Statement-2 is True

1. Statement 1: Consider the point $A(0,1)$ and $B(2,0)$ and ' P ' be a point on the line $4 x+3 y+9=0$, then coordinates of ' P ' such that $|P A-P B|$ is maximum is $\left(\frac{-12}{5}, \frac{17}{5}\right)$
Statement 2: $|P A-P B| \leq|A B|$

Key. D
Sol. Equation of $A B$ is $y-1=\frac{0-1}{2-0}(x-0) \Rightarrow x+2 y-2=0$

$$
|P A-P B| \leq|A B|
$$

Thus $|P A-P B|_{\text {is maximum when }} A, B$ and P are collinear.
2. Statement-1:The points $(-17,21),(15,-11),(71,-67)$ are collinear.

Statement-2: Given three points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$, if
the value of the determinant $\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$ equals zero, then the points are collinear.

KEY: A
HINT: CONCEPTUAL
3. Statement-1: A chord $y=m x+c$ of the curve $3 x^{2}-y^{2}-2 x+4 y=0$, which passes through the point (1, -2), subtend a right angle at the origin.
Statement-2: Lines represented by the equation
$(3 c+2 m) x^{2}-2(1+2 m) x y+(4-c) y^{2}=0$ are perpendicular if $c+m+2=0$.
Key: a

Hint: Statement-2 is true as the sum of the coefficients of x^{2} and $y^{2}=3 c+2 m+4-c=0 \Rightarrow c+m+$ $2=0$ so the lines are perpendicular if $c+m+2=0$.
In statement-1, let the equation of the chord be $y=m x+c$, then equation of the pair of lines joining the origin to the points of intersection of the chord and the curve is

$$
\begin{aligned}
& 3 x^{2}-y^{2}-2 x\left(\frac{y-m x}{c}\right)+4 y\left(\frac{y-m x}{c}\right)=0 \\
\Rightarrow \quad & (3 c+2 m) x^{2}-2(1+2 m) x y+(4-c) y^{2}=0
\end{aligned}
$$

which are at right angles if $c+m+2=0$ (using statement-2) and since the line $y=m x+c$ passes through $(1,-2), c+m+2=0$. So statement- 1 is also true.
4. Statement 1: The image of the line $2 x-y-1=0$ with respect to $3 x-2 y+4=0$ is $22 x-19 y+77=0$
Statement 2: The image of the line $l x+m y+n=0$ with respect to the line $a x+b y+c=0$
is $\left(a^{2}+b^{2}\right)(l x+m y+n)-2(l a+m b)(a x+b y+c)=0$

1) Statement -1 is true, statement - 2 is true, statement -2 is a correct explanation for statement-1
2) Statement -1 is true, statement -2 is true, statement - 2 is not a correct explanation for statement-1
3) Statement - 1 is true , statement -2 is false
4) Statement - 1 is false, statement -2 is true

Key. 1
Sol. Conceptual
5. Statement -1 : If algebraic sum of perpendicular distances from $(-2,0),(3,1)$ and $(4,2)$ to the line $a x+b y+c=0$ is zero then line must pass through $\left(\frac{5}{3}, 1\right)$

Because

Statement - 2 : If algebraic sum of perpendicular distances from $A_{i}\left(x_{i}, y_{i}\right) i=1,2,3, \ldots . n$ to $a x+b y+c=0$ is zero then line must pass through centroid of polygon having vertices at ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$).
Key. A
Sol. $\sum_{i=1}^{n} \frac{a_{0} x_{i}+b y_{i}+c}{\sqrt{a^{2}+b^{2}}}=0$

$$
\mathrm{a}\left(\sum \mathrm{x}_{\mathrm{i}}\right)+\mathrm{b}\left(\sum \mathrm{y}_{\mathrm{i}}\right)+\mathrm{nc}=0
$$

$$
a \frac{\sum_{i=0}^{n} x_{i}}{n}+b \frac{\sum_{i=0}^{n} y_{i}}{n}+c=0
$$

6. Statement I : The point of intersection of the lines joining $A(2,3), B(-1,2)$ and $C(-2,1), D(3,4)$ is an
internal point of $\overline{A B}$
Statement II: $A(2,3), B(-1,2)$ are on opposite sides of the line through $C(-2,1)$ and $D(3,4)$

Key. A
Sol. The line through C,D is $3 x-5 y+11=0 . L_{A}=2>0, L_{B}=-3<0$.
7. Statement-1: The image of the curve $x^{2}=4 y$ in the line $x+y=2$ is

$$
(y-2)^{2}+4(x-2)=0
$$

Statement $-2: x^{2}=4 y$ is symmetric with respect to the line $x+y=2$.
Key. C
Sol. $\quad P\left(2 t, t^{2}\right)$. Find locus of image of P w.r.t the line $x+y=2$.
8. STATEMENT-1: The vertices of a triangle are $A\left(x_{1}, x_{1} \tan \theta_{1}\right), B\left(x_{2}, x_{2} \tan \theta_{2}\right)$ and $C\left(x_{3}, x_{3} \tan \theta_{3}\right)$. If the circumcentre of the triangle $A B C$ coincides with origin and orthocentre $H\left(x^{1}, y^{1}\right)$ then $\frac{y^{\mid}}{x^{\prime}}=\frac{\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}}{\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}}$

STATEMENT-2: In a triangle circumcentre, centroid and orthocentre are collinear.
Key. A
Sol. since circumcentre is origin and $O A=O B=O C=r$
$\mathrm{OA}=x_{1}^{2}+x_{1}^{2} \sin ^{2} \theta_{1}=x_{1} \sec \theta_{1}$
$\therefore x_{1}=r \cos \theta_{1}$
similarly, $A\left(r \cos \theta_{1}, r \sin \theta_{1}\right), B\left(r \cos \theta_{2}, r \sin \theta_{2}\right), C\left(r \cos \theta_{3}, r \sin \theta_{3}\right)$
cicumcentre (o), centroid (G), and orthocentre (H) are collinear
\Rightarrow slope $\mathrm{OH}=$ slope GO
$\Rightarrow \frac{y^{2}-0}{x^{2}-0}=\frac{(y \text { coordinate of } G)-0}{(x \text { coordinate of } G)-0}$
$\Rightarrow \frac{y^{1}}{x^{1}}=\frac{\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{2}}{\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}}$

Straight lines

Comprehension Type

Passage - 1:

In a $\triangle P Q R$, with $P Q=r, Q R=p, P R=q$ the cosine values of the angles are given by $\cos P=\frac{q^{2}+r^{2}-p^{2}}{2 q r} ; \cos Q=\frac{p^{2}+r^{2}-q^{2}}{2 p r} ; \cos R=\frac{p^{2}+q^{2}-r^{2}}{2 p q}$, and the area of $\triangle P Q R$ is
$\Delta=\frac{1}{2} p q \sin R=\frac{1}{2} q r \sin P=\frac{1}{2} p r \sin Q$. Let ABCD be a parallelogram whose diagonal equations are $A C \equiv x+2 y-3=0 ; B D \equiv 2 x+y-3=0$. If $A C=4$ units, and area of ABCD $=8 \mathrm{sq}$
units, and $\angle B P C$ is acute where P is point of intersection of diagonals AC, BD, then

1. The length of other diagonal BD is
A) $\frac{10}{3}$
B) 2
C) $\frac{20}{3}$
D) $\frac{11 \sqrt{2}}{3}$

Key. C
2. The length of side AB is equal to
A) $\frac{2 \sqrt{58}}{3}$
B) $\frac{4 \sqrt{58}}{3}$
C) $\frac{\sqrt{58}}{3}$
D) $\frac{4}{3} \sqrt{58}$

Key. A
3. The length of BC is equal to
A) $\frac{4 \sqrt{10}}{3}$
B) $\frac{2 \sqrt{10}}{3}$
C) $\frac{8 \sqrt{10}}{3}$
D) $\frac{\sqrt{10}}{3}$

Key. B
Sol. $1,2 \& 3$
Let P be the point of inter section

area of $\triangle C P B=\frac{1}{2} P C P B \sin \theta=2 \rightarrow P B=\frac{10}{3}$
$\Rightarrow B D=\frac{20}{3}$

$$
\begin{aligned}
& \cos (\pi-\theta)=\frac{-4}{5}=\frac{4+\frac{100}{9}-A B^{2}}{2 \times 2 \times \frac{10}{3}} \Rightarrow A B=\frac{2 \sqrt{58}}{3} \\
& \text { again from } \triangle C P B, \quad B C=\frac{2 \sqrt{10}}{3}
\end{aligned}
$$

Passage - 2:

Let the equations of two straight lines L_{1}, L_{2} be respectively be $x-5=\frac{y-3}{5}=\frac{z-15}{2}$ and $\frac{x}{2}=\frac{y+1}{5}=\frac{z+6}{3}$. A, B are two distinct points on the $\mathrm{x}-$ axis such that two straight lines l_{1}, l_{2} both perpendicular to the x - axis (l_{1} through A, l_{2} through B) are drawn so as to intersect both L_{1}, L_{2}.
4. Direction ratios of one of the lines l_{1}, l_{2} are
A) $(0,3,1)$
B) $(0,4,-3)$
C) $(0,5,-2)$
D) $(0,2,3)$
5. If θ is the acute angle between the lines l_{1}, l_{2} and $\cos \theta=\frac{\lambda}{5 \sqrt{794}}$ then $\lambda=$
A) 42
B) 53
C) 61
D) 64
6. The shortest distance between the lines l_{1}, l_{2} is
A) $\frac{105}{4}$
B) $\frac{127}{5}$
C) $\frac{119}{6}$
D) $\frac{128}{7}$

Sol. 4,5,6. (B,C,B)
Let $(t, 0,0)$ be a point on the x axis through which a straight line L is drawn perpendicular to the x axis and intersecting both the lines L_{1}, L_{2}. D.R' s of L may be taken as $(0,1, \lambda)$

$$
\begin{aligned}
& L_{\text {and }} L_{1} \text { are coplanar } \Rightarrow\left|\begin{array}{ccc}
5-t & 3 & 15 \\
1 & 5 & 2 \\
0 & 1 & \lambda
\end{array}\right|=0 \\
& L_{\text {and }} L_{1} \text { are coplanar } \Rightarrow\left|\begin{array}{ccc}
t & 1 & 6 \\
2 & 5 & 3 \\
0 & 1 & \lambda
\end{array}\right|=0
\end{aligned}
$$

Solving we get $(\lambda, t)=\left(\frac{-3}{4}, 2\right)$ or $\left(\frac{13}{25}, \frac{137}{5}\right)$

Passage - 3:

$A B C$ is a triangle right angled at A with vertices A, B, C in the anti-clockwise sense in that order. $A=(1,2), B=(-3,1)$ and vertex C lies on the X - axis. BCEF is a square with vertices $\mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{F}$ in the clockwise sense in that order. ACD is an equilateral triangle with vertices A, C, D in the anti-clockwise sense in that order.
7. Slope of AF is
A) $\frac{7}{10}$
B) $\frac{7}{9}$
C) $\frac{9}{10}$
D) $\frac{11}{10}$
8. The abscissa of centroid of $\triangle B C E$ is
A) -1
B) $\frac{-1}{2}$
C) $\frac{-1}{3}$
D) $\frac{-2}{3}$
9. If $D=(\alpha, \beta)$ then $(4 \beta-4)^{2}=$
A) 2
B) 3
C) 4
D) 5

Sol. 21,22,23(D,C,B)

$$
C=\left(\frac{3}{2}, 0\right), F=\left(-4, \frac{-7}{2}\right), E=\left(\frac{1}{2}, \frac{-9}{2}\right), D=\left(\frac{5+4 \sqrt{3}}{4}, \frac{4+\sqrt{3}}{4}\right)
$$

Passage - 4:

ABCD is a parallelogram whose side lengths are $a \& b(a \neq b)$. The angular bisectors of interior angles are drawn to intersect one another to form quadrilateral. Let ' α ' be one angle of parallelogram.
10. The area of the quadrilateral formed by the angular bisectors is
A) $\quad \frac{1}{2}(a-b)^{2} \sin \frac{\alpha}{2}$
B) $\quad \frac{1}{2}(a-b)^{2} \sin \alpha$
C) $\quad \frac{1}{2}(a-b)^{2} \cos \frac{\alpha}{2}$
D) $\quad \frac{1}{2}(a-b)^{2} \cos \alpha$

Key. B

Sol. The quadrilateral formed by angular bisectors is a rectangle. Whose sides are

$$
\begin{aligned}
& |(a-b)| \sin \frac{\alpha}{2},|(a-b)| \cos \frac{\alpha}{2} \\
& S=a b \sin \alpha \\
& Q=\frac{1}{2}(a-b)^{2} \sin \alpha \\
& \frac{S}{Q}=\frac{2 a b}{(a-b)^{2}} \Rightarrow \frac{a}{b}=\frac{S+Q+\sqrt{Q^{2}+2 Q S}}{S}
\end{aligned}
$$

11. If ' S ' is the area of the given parallelogram and Q is the area of the quadrilateral formed by the angular bisectors then ratio of the larger side to smaller side of the parallelogram is
A) $\frac{(S+Q)}{S}$
B) $\frac{S+Q+\sqrt{2 Q S}}{S}$
C) $\frac{S+Q+\sqrt{Q^{2}+2 Q S}}{S}$
D) $\frac{S+Q+\sqrt{Q^{2}-2 Q S}}{S}$

Key. C
12. The sides of the quadrilateral formed by the angular bisectors where $(a>b)$
A) $(a-b) \sin \frac{\alpha}{2},(a-b) \cos \frac{\alpha}{2}$
B) $(a+b) \sin \frac{\alpha}{2},(a+b) \cos \frac{\alpha}{2}$
C) $(a-b) \sin \alpha,(a-b) \cos \alpha$
D) $(a+b) \sin \alpha,(a+b) \cos \alpha$

Key. A

Passage - 5:

The sides of a triangle $A B C$ satisfy the relations $a+b-c=2$ and $2 a b-c^{2}=4$ and $f(x)=a x^{2}+b x+c$.
13. Area of the triangle $A B C$ in square units, is
a) $\sqrt{3}$
b) $\frac{\sqrt{3}}{4}$
c) $\frac{9 \sqrt{3}}{4}$
d) $4 \sqrt{3}$
14. If $x \in[0,1]$ then maximum value of $f(x)$ is
a) $3 / 2$
b) 2
c) 3
d) 6
15. The radius of the circle escribed opposite to the angle A is
a) 1
b) $\sqrt{3}$
c) $\frac{\sqrt{3}}{2}$
d) $\frac{1}{\sqrt{3}}$

Sol. 22. Ans. (a)
23. Ans. (d)
24. Ans. (b)
$a+b-c=2$ and $2 a b-c^{2}=4$

$$
\therefore a=b=c
$$

Passage - 6:

A man at the crossing of two roads $x-2 y-4=0,2 x-y-4=0$ starts walking along the bisector of the acute angle between the roads and after covering a distance $\sqrt{2}$ units reaches the bank of a straight river at right angles to his path L.
16. Find the equation of bank
(a) $x+y=0$
(b) $x-y=0$
(c) $x+y+2=0$
(d) $3 x-4 y+5=0$
17. origin lies in
(a) acute angle bisector
(b) obtuse angle bisector
(c) cannot be said
(d) None
18. Find the co-ordinates of the point where his path meets the bank
(a) $\left(\frac{4}{3}, \frac{2}{3}\right)$
(b) $\left(\frac{4}{3}, \frac{-4}{3}\right)$
(c) $\left(\frac{1}{2}, \frac{-1}{2}\right)$
(d) $\left(\frac{1}{3}, \frac{-7}{3}\right)$

Sol. 16. (C) Writing the equations of the roads such that constant terms are positive

$$
-x+2 y+4=0,-2 x+y+4=0
$$

$\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}=4>0$. Origin lies in the obtuse angle
17. (B) Bisectors of acute angle is $\frac{-x+2 y+4}{\sqrt{(-1)^{2}+4}}=-\frac{-2 x+y+4}{\sqrt{(-2)^{2}+1}}$
$3 x-3 y-8=0$.
18. (D) Solving $x+y+2=0$

$$
3 x-3 y-8=0
$$

$$
\mathrm{P}\left(\frac{1}{3}, \frac{-7}{3}\right)
$$

Passage - 7:

The vertex A of triangle $A B C$ is $(3,-1)$. The equation of median $B E$ and angular
bisector CF are $6 x+10 y-59=0 \quad x-4 y+10=0$ and. Then
19. The equation of AB must be
a) $x+y=2$
b) $18 x+13 y=41$
c) $23 x+y=70$
d) $x+4 y=0$
20. Slope of the side BC must be
a) $\frac{1}{7}$
b) $\frac{1}{9}$
c) $\frac{-2}{9}$
d) None of
these
21. The length of the side AC must be
a) $\sqrt{83}$
b) $\sqrt{85}$
c) $\sqrt{71}$
d) None of these
18,19,20 (B,C,A)

Image of A with respective $C F$ lies an $B C$
Let C $=(4 \mathrm{~K}-10, \mathrm{~K})$
Mid point of $A C$ lies on $B E$ find K.

Passage - 8:

A straight line ' L ' is drawn through the origin and parallel to the tangent to the curve $f(x, y)=0$ at an arbitrary point ' M ' on the curve. ' P ' is the point of intersection of the line ' L ' and the straight line parallel to the Y-axis and passing through the point ' M '.
22. If $f(x, y) \equiv y-\log _{b} x$ then the locus of ' P ' is a
A) Straight line
B) Parabola
C) Circle
D) Central conic

Key. A
Sol. Let $M=(x, y)$. Then equation of ' L ' is $Y=\left(\frac{d y}{d x}\right) X$
\therefore Coordinates of 'P'are $\left(x, x \frac{d y}{d x}\right)$
23. If $f(x, y) \equiv y^{2}-4 a x$ then the locus of ' P ' is a
A) Straight line
B) Parabola
C) Circle
D) Central conic

Key. B
24. If $f(x, y) \equiv y-\sqrt{a^{2}-x^{2}}+a \ln \left(\frac{a+\sqrt{a^{2}-x^{2}}}{x}\right)$ then the locus of ' P ' is a
A) $\begin{aligned} & \text { Straight } \\ & \text { line }\end{aligned}$
B) Parabola
C) Circle
D) $\begin{aligned} & \text { Central } \\ & \text { conic }\end{aligned}$

Key. C

Passage - 9:

A straight line L is drawn through the origin and parallel to the tangent to the curve $f(x, y)=0$ at an arbitrary point M on the curve. P is the point of intersection of the line L and the straight line parallel to the Y-axis and passing through the point M.
25. If $f(x, y) \equiv y-\log _{b} x$ then the locus of P is a
A) straight line
B) parabola
C) circle
D) central conic
26. If $f(x, y) \equiv y^{2}-4 a x$ then the locus of P is a
A) straight line
B) parabola
C) circle
D) central conic
27. If $f(x, y) \equiv y-\sqrt{a^{2}-x^{2}}+a \ln \frac{a+\sqrt{a^{2}-x^{2}}}{x}$ then the locus of P is a
A) straight line
B) parabola
C) circle
D) central conic

KEY : A-B-C
HINT

Question nos: 25-27

Let $M=(x, y)$. Then equation of L is $Y=\left(\frac{d y}{d x}\right) X$
\therefore coordinates of P are $\left(\mathrm{x}, \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}\right)$

Passage - 10:

Let $A\left(\frac{1}{2}, 0\right), B\left(\frac{3}{2}, 0\right), C\left(\frac{5}{2}, 0\right)$ be the given points and P be a point satisfying $\max (P A+P B, P B+P C)<2$.
28. P lies inside
(A) A circle and an ellipse
(B) A circle and a hyperbola
(C) A parabola and an ellipse
(D) None of these

Key: D
Hint: Passage-1 (33 to 35)
Equation of ellipse satisfying $P A+P B=2$ with major
axis $=2$ is $\frac{(x-1)^{2}}{1}+\frac{y^{2}}{3 / 4}=1$
Similarly the equation of the ellipse satisfying $P B+P C=2$ is $\frac{(x-2)^{2}}{1}+\frac{y^{2}}{3 / 4}=1$

Required region is DQERD $y=\frac{\sqrt{3}}{2} \sqrt{1-(x-2)^{2}}$
Required area $=4 \int_{1}^{3 / 2} y d x=2 \sqrt{3} \int_{1}^{3 / 2} \sqrt{1-(x-2)^{2}} d x$
$=\sqrt{3}\left(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right)$
29. The locus of P is symmetric about
(A) Origin
(B) The line $y=x$
(C) The line $2 x-3=0$
(D) None of these

Key: C
30. The area of the region of the point P is
(A) $\sqrt{2}\left(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right)$
(B) $\sqrt{3}\left(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right)$
(C) $2\left(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right)$
(D) None of these

Key: B

Passage - 31:

Let $A B C$ be a triangle in which $A D$ is the angular bisector of $\angle A$.
Then D divides $B C$ in the ratio of sides containing the angle i.e., $A B$: $A C$
If length of $B C$ is x, then
$B D=\left(\frac{A B}{A B+A C}\right) x$ and $D C=\left(\frac{A C}{A B+A C}\right) x$ and
(i) if $P A=P B$ then P lies on perpendicular bisector of the line joining points A and B.
(ii) if P is equidistant from two non-parallel lines $\Rightarrow P$ lies on angular bisector of given two lines.
For a square $A B C D$ having vertices at $A(0,0), B(2,0), C(0,2)$ and $D(2,2)$.

Answer the following questions :
31. Let $d(P, A B)$ represent the distance of point P from side $A B$. Then the area of region R consisting of all points P inside the square satisfying d $(\mathrm{P}, \mathrm{AB}) \leq \min \{\mathrm{d}(\mathrm{P}, \mathrm{BC}), \mathrm{d}(\mathrm{P}, \mathrm{CD}), \mathrm{d}(\mathrm{P}, \mathrm{DA})\}$ is
(A) $\frac{1}{2}$ sq units.
(B) 1 sq units.
(C) 2 sq units.
(D) 4 sq units.

KEY : B
SOL: $A=\frac{1}{4} \times 4=1$

32. Let the centre of the square of F. Then area of region R consisting of all points P inside the square satisfying $P F \leq \min \{P A, P B, P C, P D\}$ is
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) $\frac{1}{4}$ sq. units

KEY: C
SOL:

33. The area of the region R consisting of all points P inside the square such that distance of P from nearest diagonal is less than distance of P from any of the sides is
(A) $2 \sqrt{2}$ sq. units
(B) $2(2 \sqrt{2})$ sq. units
(C) $4(2-\sqrt{2})$ sq. units
(D) $\frac{2-\sqrt{2}}{2}$ sq. units

KEY:C)

SOL: (C)
According to the given situation, region
R is shown in figure.
$\mathrm{AF}=\sqrt{2}, \quad \mathrm{AQ}=1$
Since AH is the angle bisector,

$\therefore \mathrm{FH}: \mathrm{HQ}=\sqrt{2}: 1$
$\therefore \mathrm{HQ}=\frac{1}{1+\sqrt{2}}$
\therefore Area of $A H B=\frac{1}{2} \times 2 \times \frac{1}{1+\sqrt{2}}=\sqrt{2}-1$

Passage - 32:

A curve C which is not a straight line lies in the first quadrant. The tangent at any point on C meets the positive directions of the coordinate axes at the points A, B. Let ' d ' be the minimum distance of the curve C from the origin O .
34. If $O A+O B=1$ then $d=$
A) $\frac{1}{2 \sqrt{2}}$
B) $\frac{1}{2}$
C) $\frac{1}{\sqrt{2}}$
D) $\sqrt{2}$
35. If $O A \cdot O B=4$ then $d=$
A) $\frac{1}{2 \sqrt{2}}$
B) $\frac{1}{2}$
C) $\frac{1}{\sqrt{2}}$
D) $\sqrt{2}$
36. If $A B=1$ then $d=$
A) $\frac{1}{2 \sqrt{2}}$
B) $\frac{1}{2}$
C) $\frac{1}{\sqrt{2}}$
D) $\sqrt{2}$

Key. A, D, B
Sol.
34. (A) Equation of tangent at (x, y) is $Y-y=p(X-x)$

Where $p=\frac{d y}{d x}$. Then $O A=x-\frac{y}{p}$ and $O B=y-p x \quad O A+O B=1 \Rightarrow y=p x+\frac{p}{p-1}$
35. (D) $O A . O B=4 \Rightarrow y=p x+2 \sqrt{-p}$
36. (B)

$$
A B=1 \Rightarrow y=p x-\frac{p}{\sqrt{1+p^{2}}}
$$

Passage - 33:

The equations of two equal sides $A B$ and $A C$ of an isosceles triangle $A B C$ are $x+y=5$ and $7 x-y=3$. If the area of triangle $A B C$ is 5 units then answer the following
37. Which of the following cannot represent $B C$
A. $3 y-x=21$
B. $y+3 x=7$
C. $3 y-x=1$
D. $y+3 x=2$

Key. B
38. If $\left(\frac{1}{2}, \frac{1}{2}\right)$ is one of the possible positions of C then which of the following cannot be possible position of B
A. $\left(\frac{3}{2}, \frac{15}{2}\right)$
B. $\left(\frac{-3}{2}, \frac{13}{2}\right)$
C. $\left(\frac{7}{2}, \frac{3}{2}\right)$
D. None

Key. A
Sol. 37. equation AB is $x+y=5, \mathrm{AC}$ is $7 x-y=3$
$A=(1,4), \sin A=\frac{4}{5}$, Area $=\frac{1}{2} A B^{2} \sin A=5$
$\therefore A B=A C=\frac{5}{\sqrt{2}}=r$

If α, β are inclintations of AB, AC
$\sin \alpha=\frac{1}{\sqrt{2}}, \cos \alpha=\frac{-1}{\sqrt{2}}, \sin \beta=\frac{7}{5 \sqrt{2}}, \cos \beta=\frac{1}{5 \sqrt{2}}$
$B=\left(1 \pm \frac{5}{\sqrt{2}} \cos \alpha, 4 \pm \frac{5}{\sqrt{2}} \sin \alpha\right) ; C=\left(1 \pm \frac{5}{\sqrt{2}} \cos \beta, 4 \pm \frac{5}{\sqrt{2}} \sin \beta\right)$
$B=\left(\frac{7}{2}, \frac{3}{2}\right)$ or $\left(\frac{-3}{2}, \frac{13}{2}\right) ; C=\left(\frac{1}{2}, \frac{1}{2}\right)$ or $\left(\frac{3}{2}, \frac{15}{2}\right)$
$\therefore B \neq\left(\frac{3}{2}, \frac{15}{2}\right)$
$y+3 x=7$ can not be the equal of BC
38. equation AB is $x+y=5, \mathrm{AC}$ is $7 x-y=3$
$A=(1,4), \sin A=\frac{4}{5}$, Area $=\frac{1}{2} A B^{2} \sin A=5$
$\therefore A B=A C=\frac{5}{\sqrt{2}}=r$
If α, β are inclintations of AB, AC
$\sin \alpha=\frac{1}{\sqrt{2}}, \cos \alpha=\frac{-1}{\sqrt{2}}, \sin \beta=\frac{7}{5 \sqrt{2}}, \cos \beta=\frac{1}{5 \sqrt{2}}$
$B=\left(1 \pm \frac{5}{\sqrt{2}} \cos \alpha, 4 \pm \frac{5}{\sqrt{2}} \sin \alpha\right) ; C=\left(1 \pm \frac{5}{\sqrt{2}} \cos \beta, 4 \pm \frac{5}{\sqrt{2}} \sin \beta\right)$
$B=\left(\frac{7}{2}, \frac{3}{2}\right)$ or $\left(\frac{-3}{2}, \frac{13}{2}\right) ; C=\left(\frac{1}{2}, \frac{1}{2}\right)$ or $\left(\frac{3}{2}, \frac{15}{2}\right)$
$\therefore B \neq\left(\frac{3}{2}, \frac{15}{2}\right)$
$y+3 x=7$ can not be the equal of BC

Passage - 34:

: Consider a triangle PQR with co-ordinates of its vertices as $\mathrm{P}(-8,5), \mathrm{Q}(-15,-19)$,
and $R(1,-7)$.
39. The distance between the orthocenter and circumcentre of the triangle PQR
A. $25 / 2$
B. 29 / 2
C. 37 / 2
D. $51 / 2$

KEy. A
SoL. $\quad P, Q, R$ are vertices of a right angle triangle $P(-8,5) Q(-15,-19)$ and $R(1,-7)$
$\angle P R Q=90^{\circ}$
Orthocentre $=\mathrm{R}(1,-7)$
Circumcentre $=$ mid point PQ
$S=\left(\frac{-23}{2},-7\right), R S=\left|1+\frac{23}{2}\right|=25 / 2$
Circum diameter $=P Q=25$
Circum radius $=25 / 2$

Radius of nine point circle $=\frac{25 / 2}{2}=\frac{25}{4}$ ($1 / 2$ circum radius)
40. Radius of nine point circle is
A. 25
B. 25 / 2
C. 25 / 4
D. 25 / 8

Key. C
SoL. $\quad P, Q, R$ are vertices of a right angle triangle $P(-8,5) Q(-15,-19)$ and $R(1,-7)$

$$
\angle P R Q=90^{\circ}
$$

$$
\text { Orthocentre }=\mathrm{R}(1,-7)
$$

Circumcentre $=$ mid point $P Q$
$S=\left(\frac{-23}{2},-7\right), R S=\left|1+\frac{23}{2}\right|=25 / 2$
Circum diameter $=P Q=25$
Circum radius $=25 / 2$
Radius of nine point circle $=\frac{25 / 2}{2}=\frac{25}{4}$ ($1 / 2$ circum radius)

Passage - 35:

$A(4,0), B(-4,0)$ are two points then the locus of P such that
41. $\mathrm{PA}+\mathrm{PB}=10$ is
A. $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
B. $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
c. $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
D. $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$

KEy. B
42.
$P A=P B$ is
A. $x=0$
B. $y=0$
C. $x-y=0$
C. $x-y=0$
D. $x+y=0$
D. $x+y=0$

Key. A
43. Area of triangle $P A B$ is $4 s q$ units is
A. $x+y-1=0$
B. $x-1=0$
C. $y-1=0$
D. $x-y+1=0$

Key. C
Sol. \quad 41. $\mathrm{A}(4,0), \mathrm{B}(-4,0)$ are two point t
Let $\mathrm{P}=(\mathrm{x}, \mathrm{y})$
$\mathrm{PA}+\mathrm{PB}=10=2 \mathrm{a}$

$$
a=5
$$

$$
(\mathrm{h}, \mathrm{k})=(4,0),(-\mathrm{h}, \mathrm{k})=(-4,0)
$$

Equation of locus is

$$
\frac{x^{2}}{a^{2}}+\frac{(y-k)^{2}}{a^{2}-h^{2}}=1
$$

$$
\begin{aligned}
& \frac{x^{2}}{25}+\frac{y^{2}}{25-16}=1, \frac{x^{2}}{25}+\frac{y^{2}}{9}=1 \\
& \mathrm{PA}=\mathrm{PB} \Rightarrow P A^{2}=P B^{2}
\end{aligned}
$$

42.

$$
(x-y)^{2}+y^{2}=(x+y)^{2}+y^{2}
$$

$$
x=0
$$

43. Area of triangle $\mathrm{PAB}=4$

$$
\begin{aligned}
& \frac{1}{2}|x(0)+4(0-y)-4(y-0)|=4 \\
& |-4 y-4 y|=8 \\
& 8 y=8 \\
& y=1, y-1=0
\end{aligned}
$$

Passage - 36:

Let $A B C D$ is a square with sides of unit length. Points E and F are taken on sides $A B$ and $A D$ respectively so that $A E=A F$. Let P be a point inside the square $A B C D$.
44. The maximum possible area of quadrilateral CDFE is
(A) $\frac{1}{8}$
(B) $\frac{1}{4}$
(C) $\frac{5}{8}$
(D) $\frac{3}{8}$

Key. \quad C
45. \quad The value of $(P A)^{2}-(P B)^{2}+(P C)^{2}-(P D)^{2}$ is equal to
(A) 3
(B) 2
(C) 1
(D) 0

Key. D
46. Let a line passing through point A divides the square $A B C D$ into two parts so that area of one portion is double the other, then the length of portion of line inside the square is
(A) $\frac{\sqrt{10}}{3}$
(B) $\frac{\sqrt{13}}{3}$
(C) $\frac{\sqrt{11}}{3}$
(D) $\frac{2}{\sqrt{3}}$

Key. B
Sol. 44.
(C)

Area of CDFE, $\quad \mathrm{A}=1-\frac{1}{2} \mathrm{x}^{2}-\frac{1}{2}(1-\mathrm{x})$

$$
=\frac{2-\mathrm{x}^{2}-1+\mathrm{x}}{2}=\frac{1+\mathrm{x}-\mathrm{x}^{2}}{2}
$$

$$
A_{\max }=\frac{1+\frac{1}{2}-\frac{1}{4}}{2}=\frac{5}{8} \text { at } x=\frac{1}{2}
$$

45.

> (D)

$(\mathrm{PA})^{2}-(\mathrm{PB})^{2}+(\mathrm{PC})^{2}-(\mathrm{PD})^{2}=\left(\alpha^{2}+\gamma^{2}\right)-\left(\alpha^{2}+\delta^{2}\right)+\left(\delta^{2}+\beta^{2}\right)-\left(\gamma^{2}+\beta^{2}\right)$
46. (B)

$$
\begin{aligned}
& \frac{1}{2} y(1)=\frac{1}{3}(1) \\
& y=\frac{2}{3} \\
& \text { LAQ }= \\
& \sqrt{(1)^{2}+\left(\frac{2}{3}\right)^{2}}=\frac{\sqrt{13}}{3}
\end{aligned}
$$

Passage - 37:

ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}=5$ and $\mathrm{BC}=6$. Let P be a point inside the triangle $A B C$ such that the distance from P to the base $B C$ equals the geometric mean of the distance to the sides $A B$ and $A C$.
47. The locus of the point P is
(A) a semi circle
(B) a minor arc of a circle
(C) a major arc of circle
(D) a complete circle

Key. B
48. The minimum distance of the point A from the locus of the point P is
(A) $\frac{5}{2}$
(B) $\frac{3}{2}$
(C) 2
(D) none of these

Key. A
49. If the tangents to the locus at B and C intersect at point P , then the area of the triangle PBC is
(A) 10
(B) 12
(C) 14
(D) 18

Key. B
Sol. 47. (B)
Let the triangle ABC has vertices $\mathrm{A}(0,4), \mathrm{B}(-3,0)$ and $\mathrm{C}(3,0)$.
Let the point P be (α, β).
Equation of line $A C$ is $4 ; x+3 y-12=0$ and the equation of line $A B$ is $4 x-3 y+12=0$
$\Rightarrow|\beta|=\sqrt{\frac{|(4 \alpha+3 \beta-12)(-4 \alpha+3 \beta-12)|}{\sqrt{25} \times \sqrt{25}}}$
$\Rightarrow 2\left(\alpha^{2}+\beta^{2}\right)+9 \beta-18=0$
Since point P lies inside triangle ABC its locus is the minor arc of circle.
48. (A)

The circle (1) cuts the y-axis at

$$
\mathrm{R}\left(0, \frac{3}{2}\right) \text { and } \mathrm{S}(0,-6)
$$

Hence, minimum distance of A from the locus OS

$$
\mathrm{AR}=4-\frac{3}{2}=\frac{5}{2}
$$

49. (B)

Equation of the tangents to (1) at C is obtained by

$$
T=0
$$

\Rightarrow The tangent is $2(3 x+0 y)+\frac{9}{2} y-18=0$
$\Rightarrow 4 x+3 y-12=0$
which is same as line AC. Hence tangents at B and C intersect at A.
\Rightarrow Area of the triangle PBC is $\frac{1}{2} \cdot 6.4=12$.

Passage - 38:

Let $O(0,0), A(2,0)$ and $B\left(1, \frac{1}{\sqrt{3}}\right)$ be the vertices of a triangle. Let R be the region consisting of all these points P inside triangle OAB which satisfy $d(P, O A) \leq \min \{d(P, O B), d(P, A B)\}$ where d denotes the perpendicular distance from the point to the corresponding line.
50. For any point P the maximum value of $d(P, O B)=$
(a) 2
(b) 1
(c) $\frac{1}{\sqrt{3}}$
(d) $\sqrt{3}$

Key. B
51.
(a) $2+\sqrt{3}$
(b) $\frac{1}{\sqrt{3}}$
(c) $4-\sqrt{3}$
(d) $2-\sqrt{3}$

Area of the region R is

Key. D
52.
(a) $\frac{2(2-\sqrt{3})}{\sqrt{3}}$
(b) $\frac{2(2+\sqrt{3})}{\sqrt{3}}$
(c) $2 \sqrt{3}$
(d) $\frac{2}{\sqrt{3}}$

Area of the region inside the triangle $O A B$ except the region R is

Key. A
Sol. 50-52.

$d(P, O A) \leq d(P, O B)$ when $d(P, O B) \leq d(P, A B)$
$d(P, O A) \leq d(P, A B)$ when $d(P, O B) \geq d(P, A B)$
Use angular bisector concept
$R=$ area of triangle OPD + Area of triangle APD

Passage - 39:

Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be the given continous function let $\left(x_{1}, y_{1}\right)$ be any point on it. As $\left(x_{1}, y_{1}\right)$ is moving on the curve corresponding to each position of $\left(x_{1}, y_{1}\right)$. There is a image point with respect to the straight line $a x+b y+c=0(a, b, c \in R)$ then the locus of image points is called image of the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ with respect to the given line $a x+b y+c=0$. Then attempt the following questions.
53. Image of the curve $y=1+\frac{1}{x^{2}}$ w.r.t the line $x+y+2=0$ is
a) $(x-2)^{2}(y+3)+1=0$
b) $(x+3)(y+2)^{2}+1=0$
c) $(x-3)(y-3)^{2}+1=0$
d) none

Key. B
54. Image of the line $2 x+3 y=1$ w.r.t the line $3 x+2 y+1=0$ is
a) $46 x+9 y+37=0$
b) $46 x-9 y+37=0$
c) $46 x-9 y-37=0$
d)
$46 x+9 y-37=0$
Key. A
55. Image of the curve $x^{2}+2 x y+2 y^{2}=1$ w.r.t to the line $x+y-2=0$ is
a) $2 x^{2}+2 x y-y^{2}-12 x-8 y-19=0$
b) $2 x^{2}-2 x y+y^{2}-12 x-8 y-19=0$
c) $2 x^{2}+2 x y+y^{2}-12 x-8 y+19=0$
d) $2 x^{2}-2 x y-y^{2}-12 x+8 y-19=0$

Key. C
Sol. 53. $\frac{x-x_{1}}{1}=\frac{y-y_{1}}{1}=\frac{-2\left(x_{1}+y_{1}+2\right)}{2}$

$$
\begin{aligned}
& x=x_{1}+\frac{-2\left(x_{1}+y_{1}+2\right)}{2} \\
& y=y_{1}+\frac{-2\left(x_{1}+y_{1}+2\right)}{2} \\
& \therefore y-\frac{2\left(x_{1}+y_{1}+2\right)}{2}=1+\frac{1}{\left(x-\frac{2\left(x_{1}+y_{1}+2\right)}{2}\right)^{2}}
\end{aligned}
$$

$$
\Rightarrow(x+3)(y+2)^{2}+1=0
$$

54. $\frac{x-x_{1}}{3}=\frac{y-y_{1}}{2}=\frac{-2\left(3 x_{1}+2 y_{1}+1\right)}{13}$

$$
\begin{aligned}
& x=x_{1}+\frac{-6\left(3 x_{1}+2 y_{1}+1\right)}{13} \\
& y=y_{1}+\frac{-4\left(3 x_{1}+2 y_{1}+1\right)}{13}
\end{aligned}
$$

$$
\therefore 2\left\{x-6\left(\frac{3 x+2 y+1}{13}\right)\right\}+3\left\{y-4\left(\frac{3 x+2 y+1}{13}\right)\right\}=1
$$

$$
\Rightarrow 46 x+9 y+37=0
$$

55. $\frac{x-x_{1}}{1}=\frac{y-y_{1}}{1}=\frac{-2\left(x_{1}+y_{1}-2\right)}{2}$
$x=x_{1}+\frac{-2\left(x_{1}+y_{1}-2\right)}{2}$
$y=y_{1}+\frac{-2\left(x_{1}+y_{1}-2\right)}{2}$

$$
\begin{aligned}
\therefore & \left\{x-2 \frac{(x+y-2)}{2}\right\}^{2}+2\left\{x-\frac{2(x+y-2)}{2}\right\}\left\{y-\frac{2(x+y-2) 2}{2}\right\}+2\left\{y-\frac{2(x+y-2)}{2}\right\}^{2}=1 \\
& \Rightarrow 2 x^{2}+2 x y+y^{2}-12 x-8 y+19=0
\end{aligned}
$$

Passage - 40:

Let us consider the situation when axes are inclined at an angle ' w '. If co-ordinates of a point P are $\left(x_{1}, y_{1}\right)$ then $\mathrm{PN}=x_{1}, \mathrm{PM}=y_{1}$ where PM is parallel to y -axis and PN is parallel to x -axis equation of straight line, through P and makes an angle θ with x -axis is
$y-y_{1}=\frac{\sin \theta}{\sin (w-\theta)}\left(x-x_{1}\right)$,
because $R \theta=y-y_{1}, P \theta=x-x_{1} \& \frac{P \theta}{\sin (w-\theta)}=\frac{R \theta}{\sin \theta}$
This can be written
$y-y_{1}=m\left(x-x_{1}\right)$
Where $m=\frac{\sin \theta}{\sin (w-\theta)}$
If slope of line is m, then angle of inclination of line with x-axis is given by $\tan \theta=\frac{m \sin w}{1+m \cos w}$.
56. The axes being inclined at an angle of 60°, then inclination of the line $y=2 x+5$ with the x axis is
a) 30°
b) $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
c) $\tan ^{-1}(2)$
d) 60°

Key. B
57. The axes being inclined at an angle of 60°, then angle between the two straight lines $y=2 x+$

5 and $2 y+x+7=0$
a) 90°
b) $\tan \left(\frac{5}{3}\right)$
c) $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
d) $\tan ^{-1}\left(\frac{5}{\sqrt{3}}\right)$

Key. D
58. The axes being inclined at an angle of 30° then equation of straight line which makes an angle of 60° with the positive direction of x-axis and having x-intercept equal to 2 , is
a) $y-\sqrt{3} x=2 \sqrt{3}$
b) $\sqrt{3} y=x$
c) $y+\sqrt{3} x=2 \sqrt{3}$
d) $y+2 x=0$

Key. C
Sol. 56. $w=60^{\circ}, m=2$
$\tan \theta=\frac{m \sin w}{1+m \cos w}=\frac{\sqrt{3}}{2}$
$\theta=\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
57. $w=60^{\circ}, m_{1}=2, m_{2}=\frac{-1}{2}$

$$
\tan \theta_{1}=\frac{m_{1} \sin w}{1+\cos w}=\frac{\sqrt{3}}{2}
$$

$\tan \theta_{2}=-\frac{1}{\sqrt{3}}$
angle between the lines $\tan \phi=\left|\frac{\tan \theta_{1}-\tan \theta_{2}}{1+\tan \theta_{1}+\tan \theta_{2}}\right|$

$$
=\tan ^{-1}\left(\frac{5}{\sqrt{3}}\right)
$$

58. $m=\frac{\sin 60^{\circ}}{\sin \left(30^{\circ}-60^{\circ}\right)}=-\sqrt{3}$
\therefore equation of the line

$$
y-0=-\sqrt{3}(x-2)
$$

$$
y+\sqrt{3} x=2 \sqrt{3}
$$

Passage - 41:

$A B C$ is a triangle right angled at A with vertices A, B, C in the anti clockwise sense in that order. $A=(1,2), B=(-3,1)$ and vertex C lies on the X-axis. $B C E F$ is a square with vertices B, C, E, F in the clock wise sense in that order. $A C D$ is an equilateral triangle with vertices A, C, D in the anti clockwise sense in that order.
59. Slope of AF is
A) $\frac{7}{10}$
B) $\frac{7}{9}$
C) $\frac{9}{10}$
D) $\frac{11}{10}$

Key. D
60. The abscissa of centroid of $\triangle B C E$ is
A) -1
B) $\frac{-1}{2}$
C) $\frac{-1}{3}$
D) $\frac{-2}{3}$

Key. C
61. If $D=(\alpha, \beta)$ then $(4 \beta-4)^{2}=$
A) 2
B) 3
C) 4
D) 5

Key. B
Sol. (59-61)

$$
C=\left(\frac{3}{2}, 0\right), F=\left(-4, \frac{-7}{2}\right), E=\left(\frac{1}{2}, \frac{-9}{2}\right), D=\left(\frac{5+4 \sqrt{3}}{4}, \frac{4+\sqrt{3}}{4}\right)
$$

Straight lines

Integer Answer Type

1. A point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ moves is such a way that $[\mathrm{x}+\mathrm{y}+1]=[\mathrm{x}]$ (where [.] greatest integer function) and $x \in(0,2)$. Then the area representing all the possible positions of P equals
Key. 2
Sol.
If $x \in(0,1)$
Then $-1 \leq x+y<0$
And if $x \in[1,2)$
$0 \leq x+y<1$
Required area
$=4\left(\frac{1}{2} \cdot 1 \cdot \sqrt{2} \sin \frac{\pi}{4}\right)=2$ sq. units

2. $\quad A B C D$ is a square of side length 1 unit. P and Q are points on $A B$ and $B C$ such that $\angle \mathrm{PDQ}=45^{\circ}$. Find the perimeter of $\triangle \mathrm{PBQ}$.

Key. 2

Sol.

$\tan \theta_{1}=x$ and $\tan \theta_{2}=1-\mathrm{y}$
Since, $\quad \theta_{1}+\theta_{2}=45^{\circ}$
$\Rightarrow \quad \frac{\tan \theta_{1}+\tan \theta_{2}}{1-\tan \theta_{1} \tan \theta_{2}}=1$
$\Rightarrow \quad \frac{x+(1-y)}{1-x(1-y)}=1 \quad \Rightarrow \quad y=\frac{2 x}{1+x}$
Now, Perimeter $=1-x+y+\sqrt{(1-x)^{2}+y^{2}}$
By using (i), we get
Perimeter=2
3. Given a point $(2,1)$. If the minimum perimeter of a triangle with one vertex at $(2,1)$, one on the x-axis, and one on the line $y=x$, is k, then [k] is equal to (where [] denotes the greatest integer function)
Key. 3
Sol.

Let, $\mathrm{D}=(2,-1)$ be the reflection of A in x-axis, and let $E=(1,2)$ be the reflection in the line $y=x$. Then $A B=B D$ and $A C=C E$, so the perimeter of $A B C$ is
$D B+B C+C E \geq D E=\sqrt{1+9}=\sqrt{10}$

4. ABCD and PQRS are two variable rectangles, such that A, B, C and D lie on $P Q, Q R, R S$ and $S P$ respectively and perimeter ' x ' of $A B C D$ is constant. If the maximum area of $P Q R S$ is 32 , then $\frac{x}{4}=$

Key. 4
Sol.

$$
\begin{aligned}
& 2(a+b)=x(\text { a constant }) \\
& \text { Area of } P Q R S=(b \sin \theta+a \cos \theta)(a \sin \theta+b \cos \theta) \\
& =a b+\frac{a^{2}+b^{2}}{2} \sin 2 \theta \leq \frac{(a+b)^{2}}{2}=\frac{x^{2}}{8} \\
& \therefore \frac{x^{2}}{8}=32 \Rightarrow x=16
\end{aligned}
$$

5.

The no of points on the line $3 x+4 y=5$ which are at a distance of
$\sec ^{2} \theta+2 \operatorname{cosec}^{2} \theta, \theta \in R$ from the point $(1,3)$ is

Key. 2
Sol. $\quad \sec ^{2} \theta+2 \operatorname{cosec}^{2} \theta \geq(\sqrt{2}+1)^{2}$

Perpendicular distance from $(1,3)$ to the line $3 x+4 y=5$ is 2
\therefore No. of lines $=2$
6. The area of the triangular region in the first quadrant bounded on the left by the y-axis, bounded above by the line $7 x+4 y=168$ and bounded below by the line $5 x+3 y=121$ is A, then the value of $3 A / 10$ is

Key. 5
Sol. The given lines $7 x+4 y=168$ and $5 x+3 y=121$ intersect at $P(20,7)$

\therefore Area of shaded region
$A=\frac{1}{2}\left(42-40 \frac{1}{3}\right) 20$
$=\frac{1}{2}\left(\frac{5}{3}\right) 20=\frac{50}{3}$ (square units)
7. Consider a $\triangle O A B$ formed by the point $O(0,0), A(2,0), B(1, \sqrt{3}), P(x, y)$ be any arbitrary interior point of $\triangle O A B$ moving in such way that $d(P, O A)+d(P, A B)+d(P, O B)=\sqrt{3}$ where $d(P, O A), d(P, A B), d(P, O B)$ represents perpendicular distances of P from the sides $O A, A B \& O B$ respectively. If area of the region representing all possible positions of P is ' k ' then $k \sqrt{3}=$

Key. 3

Sol.

$$
\Delta O A B=\triangle O P A+\triangle O P B+\triangle P A B=\frac{\sqrt{3}}{4} \cdot 4
$$

Since, the triangle is an equilateral Δ

$$
\begin{aligned}
& \therefore \sqrt{3}=\frac{1}{2} \cdot 2(d(O A)+d(P, O B)+d(P, A B)) \\
& \therefore \text { For all positions of } P d(P, O A)+d(P, O B)+d(P, A B)=\sqrt{3} \\
& \therefore k=\sqrt{3} \Rightarrow \sqrt{3} k=3
\end{aligned}
$$

8. In a triangle $A B C, A B$ is parallel to $y-a x i s, B C$ is parallel to $x-$ axis, centroid is at $(2,1)$. If median through C is $x-y=1$, then the slope of median through A is \qquad
Key: 4

Hint: Let $\mathrm{B}(\mathrm{a}, \mathrm{b}), \mathrm{C}(\mathrm{c}, \mathrm{b}), \mathrm{A}(\mathrm{a}, \mathrm{d})$
Then $\mathrm{D},($ mid point of BC$)$ is $\left(\frac{a+c}{2}, b\right)$
$\mathrm{E},($ mid point of AB$)$ is $\left(a, \frac{b+d}{2}\right)$
Given slope of $\mathrm{CE}=1 \Rightarrow \frac{b-\frac{b+d}{2}}{c-a}=1 \Rightarrow \frac{(b-d)}{c-a}=2$
Slope of $\mathrm{AD}=\frac{b-d}{\frac{a+c}{2}-a}=2 \frac{(b-d)}{c-a}=4$
9. If the orthocentre of the triangle formed by $2 x+3 y-1=0, x+2 y-1=0, a x+b y-1=0$ is at the origin then $\frac{b-a}{4}=$

Key. 4
Sol. Solving $2 x+3 y=1, x+2 y=1, A=(-1,1)$

Orthocentre $=(0,0) \Rightarrow$ slope if altitude $A D=-1$

Equation of BC is $\mathrm{x}-\mathrm{y}=\mathrm{k}$
Solving $x-y=k, x+2 y=1$
$B=\left(\frac{1+2 k}{3}, \frac{1-k}{3}\right)$
Slope of $\mathrm{OB}=\frac{1-k}{1+2 k}$, slope of $\mathrm{AC}=-2 / 3$
$\therefore \frac{1-k}{1+2 k}=\frac{3}{2} \Rightarrow k=\frac{-1}{8}$
equ of $B C$ is $x-y+\frac{1}{8}=0$
$\Rightarrow-8 x+8 y-1=0$
$\Rightarrow a=-8, b=8$
10. The area of the rhombus $A B C D$ is 24 . The equation of the diagonal $B D$ is $4 x+3 y+2=0$ and $A=(3,2)$. The length of the side of the rhombus is

Key. 5
Sol. Let $A C, B D$ intersect at P
$A P=\frac{12+6+2}{\sqrt{16+9}}=4$
Area if $\triangle A B D=A P \times B P=\frac{24}{2}=12$
$\mathrm{BP}=3$
$A B=\sqrt{A P^{2}+B P^{2}}=5$
11. In triangle ABC the equation of alltitudes AM and BN are $x+5 y-3=0, x+y-k=0$. If the altitude CL is given by $3 x-y-1=0$, then $\mathrm{k}=$

Key. 1
Sol. Solving the altitudes AM,CL
Orthocenter $=\left(\frac{1}{2}, \frac{1}{2}\right)$ lies on $\mathrm{x}+\mathrm{y}-\mathrm{k}=0$

$$
\mathrm{k}=1
$$

12. The co-ordinate axes are rotated through an angle θ about the origin in anticlockwise sense. If the equation $2 x^{2}+3 x y-6 x+2 y-4=0$ change to $a X^{2}+2 h X Y+b Y^{2}+2 g X+2 f Y+c=0$ then (a $+b$) is equal to

KEy. 2
SOL. $x=x \cos \theta-y \sin \theta, y=x \cos \theta+y \sin \theta$
Substitute x and y in the equation

$$
\begin{aligned}
& a=2 \cos ^{2} \theta+\cos \theta \sin \theta, b=2 \sin ^{2} \theta-\cos \theta \sin \theta \\
& \quad a+b=2
\end{aligned}
$$

13. Origin is shifted to $(1,2)$ then the equation $y^{2}-8 x-4 y+12=0$ changes as $y^{2}=4 a x$. Then $a=$

Key. 2
Sol. Transformed Equation is

$$
\begin{aligned}
& (y+2)^{2}-8(x+1)-4(y+2)+12=0 \\
& y^{2}=8 x \Rightarrow y^{2}=4 a x \\
& a=2
\end{aligned}
$$

14. If the sum of the squares of the sides of triangle is 16 then the sum of the squares of the medians is 3 k . Then k is

KEY. 4
SoL. $\quad A B^{2}+B C^{2}+C A^{2}=\frac{4}{3}\left(A D^{2}+B E^{2}+C F^{2}\right)$

$$
16=\frac{4}{3}(3 k), k=4
$$

15. The centroid of the triangle formed by $(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{a})$ is the origin and $a^{3}+b^{3}+c^{3}=k a b c$ then k is

Key. 3
SOL. $\quad G=\left(\frac{a+b+c}{3}, \frac{a+b+c}{3}\right)=(0,0)$

$$
\begin{aligned}
& a+b+c=0 \Rightarrow a^{3}+b^{3}+c^{3}=3 a b c \\
& \mathrm{~K}=3
\end{aligned}
$$

16. If $\mathrm{A}=(0,4), \mathrm{B}=(0,-4)$ and $|P A-P B|=6$ and the locus of P is $7 y^{2}-9 x^{2}=9 k$. Then k is

Key. 7
SoL. $\quad A=(0,4)=(h, k), B=(0,-4)=(h,-k)$

$$
|P A-P B|=6=2 a
$$

$$
a=3
$$

Equation of locus is

$$
\begin{gathered}
\frac{(x-h)^{2}}{\left(a^{2}-k^{2}\right)}+\frac{y^{2}}{a^{2}}=1 \\
\frac{x^{2}}{9-16}+\frac{y^{2}}{9}=1
\end{gathered}
$$

$$
7 y^{2}-9 x^{2}=63,9 k=63, k=7
$$

17. The locus of the point which is collinear with the points $(3,4)$ and $(-4,3)$ is $a x+b y+c=0$ then $a+$ $3 b+c=$

Key. 5
SOL. $\quad P(x, y), A(3,4), B(-4,3)$

Area of triangle $\mathrm{PAB}=0$
$\frac{1}{2}|x(4-3)+3(3-y)-4(y-4)|=0$

$$
\begin{aligned}
& x+9-3 y-4 y+16=0 \\
& x-7 y+25=0 \Rightarrow a x+b y+c=0 \\
& a+3 b+c=1-21+25=5
\end{aligned}
$$

18. When $(0,0)$ is shifted to $(3,-3)$ then the points $P(5,5), Q(-2,4)$ and $R(7,-7)$ are changes as A, B, C and if the area of triangle $A B C$ is k then $\frac{86}{k}$ is

Key. 2
SOL. $\quad P(5,5), Q(-2,4), R(7,-7)$

Area of triangle $\mathrm{PQR}=$ Area of triangle ABC
$k=43, \frac{86}{k}=\frac{86}{43}=2$
19. The intercepts made on the line $x+y=5 \sqrt{2}$ by the lines $y=x \tan \theta ; \theta=0, \frac{\pi}{4}, \alpha, \frac{\pi}{2}$ are in A.P. Then $\tan \alpha=$

Key. 5
Sol.

Since $A C, C D$ and $D B$ are in A.P. and let
their lengths be taken as $a-d, a$ and $a+$ d respectively
$\therefore \quad a-d+a+a+d=A B=10$
$\therefore \quad a=\frac{10}{3}$

In $\triangle O A C$

$$
\begin{aligned}
& O A^{2}=O C^{2}+A C^{2} \\
& 50=O C^{2}+O C^{2}
\end{aligned}
$$

$\therefore O C=5$

In $\triangle O C D$

$$
\begin{aligned}
& \tan (\alpha-45)=\frac{C D}{O C} \\
& \frac{\tan \alpha-1}{\tan \alpha+1}=\frac{2}{3} \Rightarrow \alpha=\tan ^{-1} 5
\end{aligned}
$$

20. Consider a triangle $A B C$ with $B C=3$. Choose a point D on $B C$ such that $B D=2$. Find the value of $A B^{2}+2 A C^{2}-3 A D^{2}$.

Key. 6
Sol.
Drop the perpendicular from A to $B C$ and let F be its foot. Further more,
suppose $B F=x$ and $A F=y$.
Then, by Pythagorean theorem,
$\mathrm{AB}^{2}=\quad \mathrm{AF}^{2}+\mathrm{BF}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}$
$\mathrm{AC}^{2}=\mathrm{CF}^{2}+\mathrm{AF}^{2}=(3-\mathrm{x})^{2}+\mathrm{y}^{2}$

$\mathrm{AD}^{2}=\mathrm{DF}^{2}+\mathrm{AF}^{2}=(2-\mathrm{x})^{2}+\mathrm{y}^{2}$
$\Rightarrow \mathrm{AB}^{2}+2 \mathrm{AC}^{2}-3 \mathrm{AD}^{2}=6$
21. A triangle $A B C$ is given with $A(1,-2), B(-4,3), C(3,2)$. Find sum of all possible coordinates of ' P ' in the plane of the $\triangle \mathrm{ABC}$ such that area of $\triangle \mathrm{PAB}=\triangle \mathrm{PBC}=\triangle \mathrm{PAC}$.
Key. 4
Sol. Centroid is the obvious point, Construct 3 parallograms by taking any two sides of the triangle as adjacent sides.
22. If the lines $a x+b y+p=0, x \cos \alpha+y \sin \alpha-p=0(p \neq 0)$ and $x \sin \alpha-y \cos =0$ are concurrent and the first two lines include an angle $\frac{\pi}{4}$, then $a^{2}+b^{2}$ is equal to
Key. 2
Sol. Since the lines are concurrent
$\Rightarrow\left|\begin{array}{ccc}a & b & p \\ \cos \alpha & \sin \alpha & -P \\ \sin \alpha & -\cos \alpha & 0\end{array}\right|=0 \Rightarrow 1+a \cos \alpha+b \sin \alpha=0$
$\cos \frac{\pi}{4}=\frac{|a \cos \alpha+b \sin \alpha|}{\sqrt{a^{2}+b^{2}}} \Rightarrow \sqrt{a^{2}+b^{2}}=\sqrt{2} \Rightarrow a^{2}+b^{2}=2$

Straight lines

Matrix-Match Type

1. Match the following Column-I with Column-II

Column I

A. The distance between the lines
$(x+7 y)^{2}+4 \sqrt{2}(x+7 y)-42=0$ is
B. If the sum of the distance of a point from two perpendicular lines in a plane is 1 , then its locus is $|x|+$ $|y|=k$, where k is equal to
C. If $6 x+6 y+m=0$ is acute angle bisector of line $x+2 y+4=$ 0 and $4 x+2 y-1=0$, then m is equal to
D. Area of the triangle formed by the lines $y^{2}-9 x y+18 x^{2}=0$ and $y=6$ is

Column II
P. 2
Q. 7
S. 1

Key. A-P; B-S; C-Q; D-R;
Sol. A) $(x+7 y)^{2}+7 \sqrt{2}(x+7 y)-42=0$
$\Rightarrow(x+y)[x+7 y+7 \sqrt{2}]-3 \sqrt{2}(x+y)-42=0$
$\Rightarrow(x+y)[x+7 y+7 \sqrt{2}]-3 \sqrt{2}(x-7 y+7 \sqrt{2})=0$
$\Rightarrow(x+7 y+7 \sqrt{2})(x+7 y-3 \sqrt{2})=0$
$x+7 y+7 \sqrt{2}=0$ and $x+7 y-3 \sqrt{2}=0$
$\Rightarrow d=\left|\frac{7 \sqrt{2}+3 \sqrt{2}}{\sqrt{1+49}}\right|=\frac{10 \sqrt{2}}{\sqrt{50}}=2$
B)

Let two perpendicular lines are coordinate axes.
Then, $\mathrm{PM}+\mathrm{PN}=1$
$\Rightarrow h+k=1$
Hence, the locus is $\mathrm{x}+\mathrm{y}=1$
But if the point lies in other quadrants also, then $|x|+|y|=1$. Hence, value of k is 1 .
C) Angle bisector between the lines $x+2 y+4=0$ and $4 x+2 y-1=0$
$\frac{x+2 y+4}{\sqrt{1+4}}= \pm \frac{(-4 x+2 y+1)}{\sqrt{16+4}}$
$\Rightarrow x+2 y+4= \pm \frac{(-4 x+2 y+1)}{2}$
$\Rightarrow 2(x+2 y+4)= \pm(-4 x-2 y+1)$
Since $A A^{\prime}+B B^{\prime}<0$, so + ve sign gives acute angle bisector. Hence,
$2 x+4 y+8=-4 x-2 y+1$
$\Rightarrow 6 x+6 y+7=0$
$\Rightarrow m=7$
D) We have,

$$
y^{2}-9 x y+18 x^{2}=0
$$

Or $y^{2}-16 x y-3 x y+18 x^{2}=0$

$$
\begin{aligned}
& \Rightarrow y(y-6 x)-3 x(y-6 x)=0 \\
& \Rightarrow(y-3 x)=0 \text { and } y-6 x=0
\end{aligned}
$$

The third line is $y=6$. Therefore, area of the triangle formed by these lines,

$$
\begin{aligned}
& =\frac{1}{2}\left|\begin{array}{lll}
0 & 0 & 1 \\
1 & 6 & 1 \\
2 & 6 & 1
\end{array}\right| \\
& =\frac{1}{2}|6-12|=3 u n i t s^{2}
\end{aligned}
$$

2. Column - I

Column - II
A) The value of k for which
P) 3
$4 x^{2}+8 x y+k y^{2}=9$ is the equation of a pair of straight lines, is
B) If the sum of the slopes of the lines
Q) - 3
given by $x^{2}-2 C x y-7 y^{2}=0$ is four times their product, then the value of C is
C) If the gradient of one of the lines
R) 2 $x^{2}+h x y+2 y^{2}=0$ is twice that of the other, then $\mathrm{h}=$
D) If the lines $a x^{2}+2 h x y+b y^{2}=0$ S) 4 are equally inclined to the lines $a x^{2}+2 h x y+b y^{2}+\lambda\left(x^{2}+y^{2}\right)=0$ then the value of λ can be
Key. $\quad \mathrm{A}-\mathrm{s} ; \mathrm{B}-\mathrm{r}, \mathrm{s} ; \mathrm{C}-\mathrm{q} ; \mathrm{D}-\mathrm{q}$
Sol. A) The equation represents pair of lines if $(4)(k)(-9)-(-9)(4)^{2}=0$
$\Rightarrow k=4$
B) $m_{1}+m_{2}=4 m_{1} m_{2} \Rightarrow \frac{-2 h}{b}=\frac{4 a}{b} \Rightarrow \frac{-2(-c)}{-7}=\frac{4 \times 1}{-7} \Rightarrow C=2$
C) $2 m_{2}+m_{2}=\frac{-h}{2}, 2 m_{2}^{2}=\frac{1}{2} \Rightarrow 2\left(\frac{-h}{6}\right)^{2}=\frac{1}{2} \Rightarrow h^{2}=9 \Rightarrow h= \pm 3$
D) The angular bisectors of $a x^{2}+2 h x y+b y^{2}+\lambda\left(x^{2}+y^{2}\right)=0$ is
$h\left(x^{2}-y^{2}\right)-(a-b) x y=0$
Which are angular bisectors of $a x^{2}+2 h x y+b y^{2}=0$. The two pairs are equally inclined for any λ
3. Match the following:

Let $A B C$ be a isosceles triangle with $A B=A C$. If $A B$ lies along $x+y=10$ and $A C$ lies along $7 x-y=30$ and area of triangle be 20 sq. units.

Column -I

(A) Coordinate of point B cannot be
(B) Coordinate of point C cannot be
(C) Centroid of $\triangle A B C$ cannot be
(D) Circumcentre of $\triangle A B C$ cannot be

Column -II

(p) $(10,0)$
(q) $(4,-2)$
(r) $\left(\frac{-5}{2}, \frac{5}{2}\right)$
(s) $\left(3, \frac{13}{3}\right)$
(t) $(0,10)$

Key. $\quad A \rightarrow_{q, r, s ; ~ B} \rightarrow_{p, r, s, t ; ~} \rightarrow_{p, q, r, t ; D} \rightarrow_{p, q, s, t}$

Sol. $\quad \sin A=\frac{4}{5}, A B=A C=5 \sqrt{2}$
So, point $B_{\text {will be }}(0,10),(10,0)$ and point $C_{\text {will be }}(4,-2),(6,12)$
Centroid will be $\left(3, \frac{13}{3}\right), \ldots$
Circumcentre will be $\left(\frac{-5}{2}, \frac{5}{2}\right)$
4. Match the following :

Column I

Column II
(A) The equation of the straight lines passing through the

$$
\text { (p) } x^{2}-y^{2}-24 x y=0
$$ point $(2,1)$ and parallel to the lines represented by $2 x^{2}-y^{2}-x y+9 x-3 y+10=0$

(B) The equation of the pair of straight lines joining the origin (q) to the points of intersection of the line $3 x+4 y-5=0$ $x^{2}-\frac{x y}{2}-\frac{y^{2}}{2}-\frac{7 x}{2}+2 y+\frac{5}{2}=0$ and the curve $2 x^{2}+3 y^{2}=5$ is
(C) The equation of the ellipse whose one focus is $(2,1)$, the (r) $x^{2}+4 x y+y^{2}-32 x-32 y+154=0$ corresponding directrix is $2 x-y+3=0$ and the eccentricity is $\frac{1}{\sqrt{2}}$ is
(D) The equation of the hyperbola for which the eccentricity is the square of the eccentricity of a rectangular hyperbola, one focus is $(2,2)$ and the corresponding directrix is $x+y=9$ is

Key. (A-q),
($B-p$),
$(C-s)$,
$(D-r)$
$(D-p)$
Sol. (A) Since $2 x^{2}-x y-y^{2}=(2 x+y)(x-y)$
So the lines parallel to $2 x+y=0$ and $x-y=0$ passing through $(2,1)$ is $2 x+y-5=0$ and $x-y-1=0$
Their combined equation is $(2 x+y-5)(x-y-1)=0$
i.e. $2 x^{2}-y^{2}-x y-7 x+4 y+5=0$
i.e. $x^{2}-\frac{y^{2}}{2}-\frac{x y}{2}-\frac{7}{2} x+2 y+\frac{5}{2}=0$
(B) Using the concept of homogenisation we can find the required pair of lines as

$$
\begin{aligned}
& 2 x^{2}+3 y^{2}=5\left(\frac{3 x+4 y}{5}\right)^{2} \\
& \text { i.e } 10 x^{2}+15 y^{2}=9 x^{2}+16 y^{2}+24 x y \\
& \text { i.e } x^{2}-y^{2}-24 x y=0
\end{aligned}
$$

(C) $\mathrm{PS}^{2}=\mathrm{e}^{2} \cdot \mathrm{PM}^{2}$ (using focus-directrix property)

$$
\begin{aligned}
& \Rightarrow(x-2)^{2}+(y-1)^{2}=\frac{1}{2} \times \frac{(2 x-y+3)^{2}}{5} \\
& \Rightarrow 6 x^{2}+9 y^{2}+4 x y-52 x-14 y+41=0
\end{aligned}
$$

(D) $\mathrm{PS}^{2}=\mathrm{e}^{2} \cdot \mathrm{PM}^{2}$ (Using focus-directrix property)

$$
\begin{aligned}
& \Rightarrow(x-2)^{2}+(y-2)^{2}=4 \times \frac{(x+y-9)^{2}}{2}\left(Q e=(\sqrt{2})^{2}=2\right) \\
& \quad \Rightarrow x^{2}+y^{2}+4 x y-32 x-32 y+154=0
\end{aligned}
$$

5. Let $A B C$ be a isosceles triangle with $A B=A C$. If $A B$ lies along $x+y=10$ and $A C$ lies along $7 x-y=30$ and area of triangle be 20 sq. unit

Column I
(A) Coordinate of point B
(B) Coordinate of point C
(C) Centroid of $\triangle \mathrm{ABC}$
(D) Circumcentre of $\triangle A B C$

Column II

(p) $(10,0)$
(q) $(4,-2)$
(r) $\left(\frac{-5}{2}, \frac{5}{2}\right)$
(s) $\quad\left(3, \frac{13}{3}\right)$

Key: $\quad(A-p),(B-q),(C-s),(D-r)$
Hint:
6. If $\mathrm{y}=\mathrm{m}_{\mathrm{i}} \mathrm{x}+\frac{1}{\mathrm{~m}_{\mathrm{i}}}(\mathrm{i}=1,2,3)$ represent three straight lines whose slopes are the roots of the equation $2 m^{3}-3 m^{2}-3 m+2=0$, then

Column I
(A) Algebraic sum of the intercepts made by the lines on x-axis
(B) Algebraic sum of the intercepts made by the lines on y-axis

Column II

(P) $\quad(4 \sqrt{2}+9 \sqrt{5}) / 4$
(Q) $3 / 2$
(C) Sum of the distances of the lines from the origin
(D) Sum of the lengths of the lines intercepted between the
(R) $-21 / 4$
(S) $(5 \sqrt{2}+9 \sqrt{5}) / 10$ coordinate axes

Key: $\quad A-R, B-Q, C-S, D-P$
Hint: A-R, B-Q, C-S, D-P
Solving the equation $2 m^{3}-3 m^{2}-3 m+2=0$ we get, $2\left(m^{3}+1\right)-3 m(m+1)=0$
$\Rightarrow(m+1)\left(2 m^{2}-5 m+2\right)=0$
$\Rightarrow(m+1)(2 m-1)(m-2)=0 \Rightarrow m=-1,1 / 2$ or 2 .
Equation of the given lines can be written as $\mathrm{m}_{\mathrm{i}}^{2} \mathrm{x}-\mathrm{m}_{\mathrm{i}} \mathrm{y}=-1$.
(A) Algebraic sum of the intercepts made by the lines on x-axis

$$
=-\sum \frac{1}{\mathrm{~m}_{\mathrm{i}}^{2}}=-\left[1+\frac{1}{4}+4\right]=-\frac{21}{4}
$$

(B) Algebraic sum of the intercepts made by the lines on y-axis

$$
==\sum \frac{1}{\mathrm{~m}_{\mathrm{i}}}=-1+2+\frac{1}{2}=\frac{3}{2}
$$

(C) Let p_{i} denote the perpendicular distance of the line from the origin
then $\mathrm{p}_{\mathrm{i}}=\left|\frac{-1 / \mathrm{m}_{\mathrm{i}}}{\sqrt{1+\mathrm{m}_{\mathrm{i}}^{2}}}\right| \Rightarrow \sum \mathrm{p}_{\mathrm{i}}=\frac{1}{\sqrt{1+1}}+\frac{2}{\sqrt{1+(1 / 4)}}+\frac{1 / 2}{\sqrt{1+4}}$

$$
=\frac{1}{\sqrt{2}}+\frac{4}{\sqrt{5}}+\frac{1}{2 \sqrt{5}}=\frac{1}{10}(5 \sqrt{2}+9 \sqrt{5})
$$

(D) $I_{i}=$ length of the line intercepted between the coordinates are

$$
\begin{aligned}
& =\sqrt{\left(\frac{1}{\mathrm{~m}_{\mathrm{i}}^{2}}\right)^{2}+\left(\frac{1}{\mathrm{~m}_{\mathrm{i}}}\right)^{2}} \\
& \sum l_{\mathrm{i}}=\sqrt{1+1}+\sqrt{16+4}+\sqrt{\frac{1}{16}+\frac{1}{4}}=\sqrt{2}+2 \sqrt{5}+\frac{\sqrt{5}}{4}=(4 \sqrt{2}+9 \sqrt{5}) / 4
\end{aligned}
$$

Column II
(P)
(Q) origin and the point $(1,1)$ lies on the same side of the st.
line $a^{2} x+a b y+1=0$ for all $a \in R \sim\{0\}$ is
(D) If $\left(\alpha, \alpha^{2}\right)$ lies inside triangle formed by the lines $2 x+3 y-1$
$=0, x+2 y-3=0,5 x-6 y-1=0$, then $[\alpha]$ is (where [.]
denotes the greatest integer function)
Key: $\quad A \rightarrow Q, B \rightarrow P, Q, R ; C \rightarrow R, D \rightarrow P, S$
Sol: (A) $Q \quad \max \{|x|,|y|\}=1 / 2$
$\left\{\begin{array}{lll}|x|=1 / 2 & \text { if } & |y|<1 / 2 \\ |y|=1 / 2 & \text { if } & |x|<1 / 2\end{array}\right.$

\therefore Required area $=1 \times 1=1$ sq unit
(B) The line $y=x$ cuts the lines $|x+y|=6$ i.e,

$$
x+y= \pm 6
$$

at $\quad x= \pm 3, y=$
or $\quad(-3,-3)$ and $(3,3)$
then $\quad-3<a<3$
$\therefore \quad 0 \leq|a|<3$
$\therefore \quad[|a|]=0,1,2$
(C) Since $(0,0)$ and $(1,1)$ lie on the same side.

So, $\quad a^{2}+a b+1>0$
Q Coefficient of a^{2} is >0
$\therefore \quad D<0$

$$
\begin{aligned}
& b^{2}-4<0 \\
& -2<b<2 \\
& b=-1,0,1
\end{aligned}
$$

Number of non-zero values of b are $2(b=-1 \& b=1)$
(D) Let $P\left(\alpha, \alpha^{2}\right)$ first draw the exact diagram of $\triangle A B C$.

The point $P\left(\alpha, \alpha^{2}\right)$ move on the curve $y=x^{2}$ for all α.
Now intersection of $y=x^{2}$ and $2 x+3 y-1=0$

$$
\text { or } \quad 2 x+3 x^{2}-1=0
$$

$$
\therefore \quad \mathrm{x}=-1, \mathrm{x}=\frac{1}{3}
$$

Let intersection points $D \equiv(-1,1)$ and $E \equiv\left(\frac{1}{3}, \frac{1}{9}\right)$
intersection of $y=x^{2}$ and $x+2 y-3=0$
or

$$
x+2 x^{2}-3=0
$$

$\therefore \quad \mathrm{x}=1, \mathrm{x}=-3 / 2$

Let intersection points $F \equiv(1,1)$
and $G \equiv\left(-\frac{3}{2}, \frac{9}{4}\right)$ and intersection of $y=x^{2}$

and

$$
5 x-6 y-1=0
$$

or
$5 x-6 x^{2}-1=0$
$\therefore \quad \mathrm{x}=\frac{1}{3}, \mathrm{x}=\frac{1}{2}$
Let intersection points

$$
\mathrm{H} \equiv\left(\frac{1}{3}, \frac{1}{9}\right) \text { and } \mathrm{I} \equiv\left(\frac{1}{2}, \frac{1}{4}\right)
$$

Thus, the points on the curve $y=x^{2}$ whose x-coordinates lies between $-3 / 2$ and -1 and $\frac{1}{2}$ and 1 lies within the triangle $A B C$.

Hence, $-\frac{3}{2}<\alpha<-1$ and $\frac{1}{2}<\alpha<1$
i.e $\quad \alpha \in\left(-\frac{3}{2},-1\right) \cup\left(\frac{1}{2}, 1\right)$
$\therefore \quad[\alpha]=-2,0$
8. If $y=m_{i} x+\frac{1}{m_{i}},(i=1,2,3)$ represent three Straight lines whose slopes roots of the equation $2 m^{3}-3 m^{2}-3 m+2=0$, then

| | Column I | Column II |
| :--- | :--- | :--- | :--- |

(A)	Algebraic sum of the intercepts made by the lines on x-axis is,	p)	$\frac{4 \sqrt{2}+9 \sqrt{5}}{4}$
(B)	Algebraic sum of the intercepts made by the lines on y-axis is,	(q)	$\frac{3}{2}$
(C)	Sum of the distances of the lines from origin is	(r)	$\frac{-21}{4}$
(D)	Sum of the lengths of the lines intercepted between the coordinate axes is	(s)	$\frac{5 \sqrt{2}+9 \sqrt{5}}{10}$
		(t)	0

$A-r$
$B-q$
Key.
$C-s$
$D-p$
Sol. $M=-1,1 / 2,2$
a) $\quad \sum \frac{-1}{M_{i}^{2}}=\frac{-21}{4}$
b) $\quad \sum \frac{1}{M_{i}}=\frac{3}{2}$
c) $\quad \sum\left|\frac{-1 / M_{i}}{\sqrt{1+M_{i}^{2}}}\right|=\frac{5 \sqrt{2}+9 \sqrt{5}}{10}$
d) $\quad \sum \sqrt{\left(\frac{1}{M_{i}^{2}}\right)^{2}+\left(\frac{1}{M_{i}}\right)^{2}}=\frac{4 \sqrt{2}+9 \sqrt{5}}{10} \quad 40$. B- $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$
$C_{-p, q, r}$
$D-q, r, s, t$
The other vertices of the triangle are $(5,2 \sqrt{5})$ and $(5,-2 \sqrt{5})$
Therefore, the centroid is $\left(\frac{10}{3}, 0\right)$;
the circumcenter is $\left(\frac{9}{2}, 0\right)$
and the incenter is $(3,0)$.
9. Consider the following linear equations in x and y

$$
\begin{aligned}
& a x+b y+c=0 \\
& b x+c y+a=0 \\
& c x+a y+b=0
\end{aligned}
$$

Match the condition in column I with statement in column II

	Column -I		Column - II
(A)	$a+b+c=0$ and $a^{2}+b^{2}+c^{2}=a b+b c+c a$	(P)	Lines are identical
(B)	$a+b+c=0$ and $a^{2}+b^{2}+c^{2} \neq a b+b c+c a$	(Q)	Lines represent the whole of the $x y$ plane
(C)	$a+b+c \neq 0$ and $a^{2}+b^{2}+c^{2}=a b+b c+c a$	(R)	Lines are different and passing through a fixed point
(D)	$a+b+c \neq 0$ and $a^{2}+b^{2}+c^{2} \neq a b+b c+c a$	(S)	Lines are sides of a triangle

Key. $\quad A-q, B-r, C-p, D-s$
Sol. Conceptual
10. The given consistent second degree equation $\left(a_{1} x+b_{1} y+c_{1}\right)\left(a_{2} x+b_{2} y+c_{2}\right)=k$ where $a_{1} b_{1} c_{1} a_{2} b_{2} c_{2} k \neq 0$ represents some member given in column-ll under the condition given in column-I. Match them accordingly
Column - I
(A) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$

Column - II
(p) a parabola
(B) $\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
(q) a hyperbola
(C) $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
(D) $a_{1} a_{2}+b_{1} b_{2}=0$
(r) a pair of lines
(s) a circle

Key. $\quad(A-r) ;(B-r) ;(C-q) ;(D-q)$
Sol. $\quad\left(a_{1} x+b_{1} y+c_{1}\right)\left(a_{2} x+b_{2} y+c_{2}\right)=0$ represents a pair of lines, its $\Delta=0$. Now for $\left(a_{1} x+b_{1} y+c_{1}\right)\left(a_{2} x+b_{2} y+c_{2}\right)-k=0$,
$\Delta^{\prime}=\Delta-a b k+k h^{2}=k\left(h^{2}-a b\right)$
If $\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}$ then $\mathrm{h}^{2}=\mathrm{ab}$, so $\Delta^{\prime}=0$
If $\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}$ then $\mathrm{h}^{2}>\mathrm{ab}$, so, $\Delta^{\prime} \neq 0$.
(A) a pair of parallel lines as $\Delta^{\prime}=0, h^{2}=a b$
(B) a pair of parallel lines as $\Delta^{\prime}=0, h^{2}=a b$
(C) a hyperbola as $\Delta^{\prime} \neq 0, h^{2}>a b$
(D) a rectangular hyperbola as $\Delta^{\prime} \neq 0, \mathrm{a}+\mathrm{b}=0$.

