D) $\frac{R^2}{2}$ tan  $\alpha$ 

# Maxima & Minima Single Correct Answer Type

1. A sector subtends an angle  $2\alpha$  at the centre then the greatest area of the rectangle inscribed in the sector is (R is radius of the circle)

A) 
$$R^2 \tan \frac{\alpha}{2}$$
 B)  $\frac{R^2}{2} \tan \frac{\alpha}{2}$  C)  $R^2 \tan \alpha$ 

Key. A

Sol. Let A be any point on the arc such that  $\angle YOA = \theta$ Where  $0 \le \theta \le \alpha$ 



DA = CB = R sin  $\theta$ , OD = R cos  $\theta$   $\Rightarrow$  CO = CB cot  $\alpha$  = R sin $\theta$  cot  $\alpha$ Now, CD = OD - OC = R cos  $\theta$ -R sin  $\theta$  cot  $\alpha$ = R (cos  $\theta$  - sin  $\theta$  cot  $\alpha$ ) Area of rectangle ABCD, S = 2.CD.CB = 2R (cos  $\theta$  - sin  $\theta$  cot  $\alpha$ ) R sin  $\theta$  = 2R<sup>2</sup>(sin $\theta$  cos  $\theta$  - sin<sup>2</sup>  $\theta$  cot  $\alpha$ ) R<sup>2</sup>(sin2 $\theta$ -(1-cos2 $\theta$ )cot  $\alpha$ ) =  $\frac{R^2}{\sin \alpha} [\cos(2\theta - \alpha) - \cos\alpha]$ S<sub>max</sub> =  $\frac{R^2}{\sin \alpha} (1 - \cos\alpha) (\text{for } \theta = \frac{\alpha}{2})$ Hence, greatest area of the rectangle = R<sup>2</sup> tan $\frac{\alpha}{2}$ 

2. Let  $f(x) = x^2 - bx + c$ , b is a odd positive integer, f(x) = 0 have two prime numbers as roots and

b + c = 35. Then the global minimum value of f(x) is

A) 
$$-\frac{183}{4}$$
 B)  $\frac{173}{16}$  C)  $-\frac{81}{4}$  D) data not sufficient

Key. C

Sol. Let  $\alpha$ ,  $\beta$  be roots of  $x^2 - bx + c = 0$ , Then  $\alpha + \beta = b$   $\Rightarrow$  one of the roots is '2' (Since  $\alpha$ ,  $\beta$  are primes and b is odd positive integer)  $\therefore$  f(2) = 0  $\Rightarrow$  2b - c = 4 and b + c = 35  $\therefore$  b = 13, c = 22

Minimum value =  $f\left(\frac{13}{2}\right) = -\frac{81}{4}$ .

3. Let f(x) be a positive differentiable function on [0,a] such that f(0) = 1 and  $f(a) = 3^{1/4}$  If  $f^1(x) \ge (f(x))^3 + (f(x))^{-1}$ , then, maximum value of a is a)  $\frac{\pi}{12}$ b)  $\frac{\pi}{24}$ c)  $\frac{\pi}{36}$ Key. В  $f^{1}(x)f(x) \ge (f(x))^{4} + 1$ Sol.  $\Rightarrow \frac{2f^{1}(x)f(x)}{\left\{\left(f(x)\right)^{2}\right\}^{2}+1} \ge 2$  $\Rightarrow \int_{0}^{a} \frac{2f^{1}(x)f(x)}{\left(\left(f(x)\right)^{2}\right)^{2}+1} \ge 2\int_{0}^{a} 1dx$  $\Rightarrow \left| \tan^{-1} (f(\mathbf{x}))^2 \right|_a^a \ge 2a \Rightarrow \frac{\pi}{2} - \frac{\pi}{4} \ge 2a$  $\frac{1}{\sin x} = a$  for atleast one The least value of 'a' for which the equation 4. sinx solution on the interval  $\left(0,\frac{\pi}{2}\right)$  is, a) 1 b) 4 c) 8 d) 9 Key. D  $Q = \frac{4}{\sin x} + \frac{1}{1 - \sin x}$ , where a is least Sol.  $\Rightarrow \frac{\mathrm{da}}{\mathrm{dx}} = \left(\frac{-4}{\sin^2 x} + \frac{1}{(1-\sin x)^2}\right)\cos x = 0$  $Q \cos x \neq 0 \Rightarrow \sin x = 2/3$  $\frac{d^2a}{dx^2} = 45 > 0$  for  $\sin x = 2/3 \Rightarrow \frac{4}{2/3} + \frac{1}{1-2/3} = 6+3=9$ 5. Let domain and range of f(x) and g(x) are respectively  $[0,\infty)$ . If f(x) be an increasing function and g(x) be an decreasing function. Also, h(x) = f(g(x)), h(0) = 0 and  $p(x) = h(x^3 - 2x^2 + 2x) - h(4)$  then for every  $x \in (0, 2]$ b)  $p(x) \in [-h(4), 0]$ a)  $p(x) \in (0, -h(4))$ d)  $p(x) \in (h(4), h(4)]$ c)  $p(x) \in (-h(4), h(4))$ Key. А Sol. h(x) = f(g(x)) $h^{1}(x) = f^{1}(g(x))g^{1}(x) < 0 \forall x \in [0,\infty)$  $Q g^{1}(x) < 0 \forall x \in [0,\infty) \text{ and } f^{1}(g(x)) > 0 \forall x \in [0,\infty)$ 

Also, 
$$h(0) = 0$$
 and hence,  $h(x) < 0 \forall x \in [0, \infty)$   
 $p(x) = h(x^3 - 2x^2 + 2x) - h(4)$   
 $p^1(x) = h^1(x^3 - 2x^2 + 2x) \cdot (3x^2 - 4x + 2) < 0 \forall x \in (0, 2)$   
 $Q h^1(x^3 - 2x^2 + 2x) < 0 \forall x \in (0, \infty)$  and  $3x^2 - 4x + 2 > 0 \forall x \in R$   
 $\Rightarrow p(x)$  is an decreasing function  
 $\Rightarrow p(2) < p(x) < p(0) \forall x \in (0, 2)$   
 $\Rightarrow h(4) - h(4) < p(x) < h(0) - h(4)$   
 $\Rightarrow 0 < p(x) < -h(4)$ 

6. If 
$$f(x) = \begin{bmatrix} 3-x^2, x \le 2\\ \sqrt{a+14} - |x-48|, x > 2 \end{bmatrix}$$
 and if  $f(x)$  has a local maxima at  
 $x = 2$ , then, greatest value of a is  
a) 2013 b) 2012 c) 2011 d) 2010  
Key. C  
Sol. Local maximum at  $x = 2 \Rightarrow$   
 $\Rightarrow \lim_{h \to 0} f(2+h) \le f(2)$   
 $\Rightarrow \lim_{h \to 0} (\sqrt{a+14} - |2+h-48|) \le 3-2^2$   
 $\Rightarrow \sqrt{a+14} \le 45 \Rightarrow a \le 2011$ 

7. Two runners A and B start at the origin and run along positive x-axis, with B running three times as fast as A. An observer, standing one unit above the origin, keeps A and B in view. Then the maximum angle of sight ' $\theta$ ' between the observes view of A and B is c) π/3 d) π/4

Key. Sol.

 $\begin{aligned} \theta_1 \end{pmatrix} \Rightarrow \tan \theta &= \frac{3x - x}{1 + 3x \cdot x} = \frac{2x}{1 + 3x^2} \\ \text{let } y &= \frac{2x}{1 + 3x^2} \frac{dy}{dx} = \frac{2(1 - 3x^2)}{(1 + 3x^2)^2} \end{aligned}$  $\tan \theta = \tan(\theta)$ 

b) π/6

$$\frac{dy}{dx} = 0 \Rightarrow x = \frac{1}{\sqrt{3}} \text{ and } \frac{d^2y}{dx^2} = \frac{-24x}{(1+3x^2)^3} < 0 \text{ for } x = 1/\sqrt{3}$$

If the function  $f(x) = ax^3 + bx^2 + 11x - 6$  satisfies conditions of Rolle's theorem in [1, 3] 8. and  $f'\left(2+\frac{1}{\sqrt{3}}\right)=0$ , then value of a and b are respectively (A) 1, -6 (B) -1, 6 (C) -2, 1(D) -1, 1/2 Key. A Sol. Q f(1) = f(3)a + b + 11 - 6 = 27a + 9b + 33 - 6  $\Rightarrow$ 13a + 4b = -11 $\Rightarrow$ 

and 
$$f'(x) = 3ax^2 + 2bx + 11$$
 ... (1)  

$$\Rightarrow f'\left(2 + \frac{1}{\sqrt{3}}\right) = 3a\left(2 + \frac{1}{\sqrt{3}}\right)^2 + 2b\left(2 + \frac{1}{\sqrt{3}}\right) + 11 = 0$$

$$\Rightarrow 3a\left(4 + \frac{1}{3} + \frac{4}{\sqrt{3}}\right) + 2b\left(2 + \frac{1}{\sqrt{3}}\right) + 11 = 0$$
 ... (ii)  
From eqs. (i) and (ii), we get  $a = 1, b = -6$ .  
9. Let  $f(x)$  be a positive differentiable function on  $[0,a]$  such that  
 $f(0) = 1$  and  $f(a) = 3^{1/4}$  If  $f^1(x) \ge (f(x))^3 + (f(x))^{-1}$ , then, maximum value of a  
is  
 $a) \frac{\pi}{12}$  b)  $\frac{\pi}{36}$  c)  $\frac{\pi}{24}$  d)  $\frac{\pi}{48}$   
Key. C  
Sol.  $f^1(x)f(x) \ge (f(x))^4 + 1$   
 $\Rightarrow \frac{2f^1(x)f(x)}{\{(f(x))^2\}^2 + 1} \ge 2$   
 $\Rightarrow \frac{a}{0} \frac{2f^1(x)f(x)}{\{(f(x))^2\}^2 + 1} \ge 2 \frac{a}{0} 1dx$   
 $\Rightarrow |\tan^{-1}(f(x))^2|_0^a \ge 2a \Rightarrow \frac{\pi}{3} - \frac{\pi}{4} \ge 2a$   
Given expansion  $= \{x - (1 + \cos t)\}^2 + \{\frac{K}{x} - (1 + \sin t)\}^2$ 

10. A rectangle is inscribed in an equilateral  $\Delta$  of side length 2a units. Maximum area of this rectangle is

(A) 
$$\sqrt{3}a^2$$
 (B)  $\frac{\sqrt{3}a^2}{4}$  (C)  $a^2$  (D)  $\frac{\sqrt{3}a^2}{2}$   
Key. D  
Sol. Let  $AD = x$   
 $BD = (2a - x)$   
In  $\Delta DBM$   
 $\angle B = \frac{\pi}{3}$   
 $y_1 = (2a - x) \times \frac{\sqrt{3}}{2}$ 

In ΔADP

$$\angle D = \frac{\pi}{3}$$

$$\cos 60^\circ = \frac{x_1}{x}$$
$$x_1 = x \times \frac{1}{2}$$
$$2x_1 = x$$

 $\Delta(\mathbf{x}) = \text{Area of rectangle} = 2\mathbf{x}_1\mathbf{y}$  $\Delta(\mathbf{x}) = \mathbf{x} \times (2\mathbf{a} - \mathbf{x})\frac{\sqrt{3}}{2}$  $\Delta'(\mathbf{x}) = \frac{\sqrt{3}}{2}(2\mathbf{a} - 2\mathbf{x}) = 0 \Longrightarrow \mathbf{x} = \mathbf{a}$ 

$$\Delta$$
"(a) = -ve

x = a point of maxima

maximum area = 
$$a \times \frac{a\sqrt{3}}{2} = \frac{\sqrt{3}a^2}{2}$$

11. The maximum area of a rectangle whose two consecutive vertices lie on the x-axis and another two lie on the curve  $y = e^{-|x|}$  is equal to

(A) 2e sq. Units (B) 
$$\frac{2}{e}$$
 sq. Units (C) e sq. units (D)  $\frac{1}{e}$  sq. units

Key. B



Sol.

Let the rectangle is (ABCD)  

$$A = (t,0), B = (t,e^{-t}), C = (-t,e^{-t}), D = (-t,0)$$

$$ABCD = 2te^{-t} = f(t)$$

$$\frac{df}{dt} = 2(t(-e^{-t}) + e^{-t}) = 2e^{-t}(1-t)$$

$$\frac{df}{dt} > 0 \Rightarrow t \in (0,1)$$

$$\frac{df}{dt} < 0 \Rightarrow t \in (1,\infty)$$

$$t = 1 \text{ is point of maxima}$$
Maximum area =  $f(1) = \frac{2}{e}$ 

12. Let  $f:[0,4] \to R$ , be a differentiable function. Then, there exists real numbers  $a, b \in (0,4)$  such that,  $(f(4))^2 - (f(0))^2 = Kf^1(a)f(b)$  Where K, is

a) 
$$\frac{1}{4}$$
 b) 8 c)  $\frac{1}{12}$  d) 4

Key. B

#### **Mathematics**

Sol. By LMVT, 
$$\exists a \in (0,4) \Rightarrow \frac{f(4) - f(0)}{4 - 0} = f^{1}(a) \Rightarrow f(4) - f(0) = 4f^{1}(a)$$
  
 $Q \frac{f(4) + f(0)}{2}$  lies between  $f(0)$  and  $f(4)$ , by Intermediate value theorem  
 $\exists b \in (0,4) \Rightarrow \frac{f(4) + f(0)}{2} = f(b)$  hence,  $(f(4)^{2}) - (f(0))^{2} = 8 f^{1}(a)f(b)$ 

. . .

13. A window is in the shape of a rectangle surmounted by a semi circle. If the perimeter of the window is of fixed length 'l' then the maximum area of the window is

1) 
$$\frac{l^2}{2\pi + 4}$$
 2)  $\frac{l^2}{\pi + 8}$  3)  $\frac{l^2}{2\pi + 8}$  4)  $\frac{l^2}{8\pi + 4}$   
Key. 3  
 $l = 2x + 2r + \pi r$ 

 $A = 2rx + \frac{1}{2}\pi r^2$ Sol.

$$\frac{dA}{dV} = 0 \Longrightarrow r = \frac{l}{4+\pi}$$

14. If the petrol burnt per hour in driving a motor boat varies as the cube of its velocity when going against a current of 'C' kmph, the most economical speed Is (in kmph)

1) 
$$\frac{C}{2}$$
 2)  $\frac{3C}{2}$  3)  $\frac{\sqrt{3}C}{2}$  4) C

Key. 2

y be the petrol burnt hour  $y = kv^3$  'S' be the distance traveled by boat the petrol burnt =  $\frac{S}{V-C} \times kv^3$ Sol.

$$f'(v) = 0 \Longrightarrow v = \frac{3c}{2}$$

15.

A point 'P' is given on the circumference of a Circle of radius 'r' . The chord 'QR' is parallel to the tangent line at 'P' the maximum area of the triangle PQR is

1) 
$$\frac{3\sqrt{2}}{4}r^2$$
 2)  $\frac{3\sqrt{3}}{4}r^2$  3)  $\frac{3}{8}r^2$  4)  $\frac{3\sqrt{2}}{4}r$ 

Key.

2

Sol. The area maximum when the triangle is equilateral

16. The minimum value of 
$$f(x) = x^2 + \frac{250}{x}$$
 is  
1) 15 2) 25 3) 45 4) 75

| Key. | 4                                                                                   |                                    |                            |                                   |  |  |  |
|------|-------------------------------------------------------------------------------------|------------------------------------|----------------------------|-----------------------------------|--|--|--|
| Sol. | f'(x) = 0 and $f''(5) > 0$ minimum value = $f(5)$                                   |                                    |                            |                                   |  |  |  |
| 17.  | The sum of two numbers is '6'. The minimum value of the sum of their reciprocals is |                                    |                            |                                   |  |  |  |
|      | 1) $\frac{3}{4}$                                                                    | 2) $\frac{6}{5}$                   | 3) $\frac{2}{3}$           | 4) $\frac{2}{5}$                  |  |  |  |
| Key. | 3                                                                                   |                                    |                            |                                   |  |  |  |
| Sol. | $x = y = \frac{6}{2} = 3, \ \frac{1}{x} + \frac{1}{y} = \frac{2}{3}$                |                                    |                            |                                   |  |  |  |
| 18.  | Minimum value of $\frac{(6+x)(11+x)}{2+x}$ is                                       |                                    |                            |                                   |  |  |  |
|      | 1) 5                                                                                | 2) 15                              | 3) 45                      | 4) 25                             |  |  |  |
| Key. | 4                                                                                   |                                    |                            |                                   |  |  |  |
| Sol. | f'(x) = 0 when put $x = 4$                                                          |                                    |                            |                                   |  |  |  |
| 19.  | The maximum area of                                                                 | a rectangle inscribed in           | a circle of radius 5 cm is |                                   |  |  |  |
|      | 1) 25 sq.cm                                                                         | 2) 50 sq.cm                        | 3) 100 sq.cm               | 4) $\frac{25}{2}$ sq.cm           |  |  |  |
| Key. | 2                                                                                   |                                    |                            |                                   |  |  |  |
| Sol. | $Area = 2r^2 = 50 \ sq.cm$                                                          |                                    |                            |                                   |  |  |  |
| 20.  | The diagonal of the re                                                              | ctangle of maximum are             | a having perimeter 100 c   | m is                              |  |  |  |
|      | 1) 10√2                                                                             | 2) 10                              | 3) $25\sqrt{2}$            | 4) 15                             |  |  |  |
| Key. | 3                                                                                   |                                    |                            |                                   |  |  |  |
| Sol. | The maximum perime                                                                  | eter of the rectangle that         | can be inscribed in a cir  | cle is a square .Here the lengths |  |  |  |
|      | are $x = \sqrt{2} r$ , $y = \sqrt{2}$                                               | $\overline{2} r$                   |                            |                                   |  |  |  |
| 21.  | The maximum value of $x^{-x}$ , $(x > 0)$ is                                        |                                    |                            |                                   |  |  |  |
|      | 1) $e^e$                                                                            | 2) $e^{1 \setminus e}$             | 3) $e^{-e}$                | 4) 1\ <i>e</i>                    |  |  |  |
| Key. | 2                                                                                   |                                    |                            |                                   |  |  |  |
|      | $f(x) = x^{-x}, f'(x) = 0 \Longrightarrow x = e^{-1}$                               |                                    |                            |                                   |  |  |  |
| Sol. | f''(e-1) < 0                                                                        |                                    |                            |                                   |  |  |  |
| 22.  | Which fraction exceeds its $p^{th}$ power by the greatest number possible is?       |                                    |                            |                                   |  |  |  |
|      | 1                                                                                   |                                    |                            |                                   |  |  |  |
|      | 1) $p^{p}$                                                                          | $2)\left(\frac{1}{P}\right)^{P-1}$ | 3) $p^{\overline{1-p}}$    | 4) $\frac{1}{p^{p}}$              |  |  |  |
| Key. | 3                                                                                   |                                    |                            |                                   |  |  |  |
|      |                                                                                     |                                    |                            |                                   |  |  |  |

4) 2

## **Mathematics**

 $y = x - x^p$ 

Sol. 
$$\frac{dy}{dx} = 0 \Longrightarrow x =$$

23. In 
$$(0, 2\pi)$$
,  $f(x) = x + \sin 2x$  is

1

1) Minimum at 
$$x = \frac{2\pi}{3}$$
  
2) Maximum at  $x = \frac{2\pi}{3}$   
3) Maximum at  $x = \frac{\pi}{4}$   
4) Minimum at  $x = \frac{\pi}{6}$ 

Key.

1

Sol. 
$$f'(x) = 0 \Rightarrow f''(x) > 0$$
 when  $x = \frac{2\pi}{3}$ 

24. The Value of 'a' for which 
$$f(x) = a \sin x + \frac{1}{3} \sin 3x$$
 has an extremum at  $x = \frac{\pi}{3}$  is

Key. 4

Sol.  $\frac{d^2 y}{dx^2} = 0$  then find 'x' and substitute in  $\frac{dy}{dx}$ 

2) -1

25. A person wishes to lay a straight fence across a triangular field ABC, with  $|\underline{A} < |\underline{B} < |\underline{C}|$  so as to divide it into two equal areas. The length of the fence with minimum expense, is

3) 0

a) 
$$\sqrt{2\Delta \cot \frac{B}{2}}$$
  
b)  $\sqrt{2\Delta \tan \frac{C}{3}}$   
c)  $\sqrt{\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}}$   
d)  $\sqrt{2\Delta \tan \frac{A}{2}}$ 

(where ' $\Delta$ ' represents, area of triangle ABC)

Key. Sol.



$$\frac{1}{2} \operatorname{xy} \sin A = \frac{1}{2} \left( \frac{1}{2} \operatorname{bc} \sin A \right)$$

$$\Rightarrow \operatorname{xy} = \frac{1}{2} \operatorname{bc}$$

$$z_{A}^{2} = (\operatorname{PQ})^{2} = x^{2} + y^{2} - 2\operatorname{xy} \cos A$$

$$= x^{2} + \frac{b^{2}c^{2}}{4x^{2}} - \operatorname{bc} \cos A$$

$$\Rightarrow 2Z_{A} \left( \frac{dZ_{A}}{dx} \right) = 2x - \frac{b^{2}c^{2}}{2x^{3}}$$

$$\frac{dZ_{A}}{dx} = 0 \Rightarrow x = \sqrt{\frac{bc}{2}}, \text{ and } \frac{d^{2}Z_{A}}{dx^{2}} > 0$$
Hence  $Z_{A}$  is minimum if  $x = \sqrt{\frac{bc}{2}}$  and the minimum value of  $Z_{a}$ , is
$$\sqrt{\frac{bc}{2}} + \frac{bc}{2} - bc\cos A = \sqrt{2} \operatorname{Aun} \frac{A}{2}$$
26. The number of critical point of  $f(x) = \frac{|x-1|}{x^{2}}$  is
$$1) \ 1 \qquad 2) \ 2 \qquad 3) \ 3 \qquad 4) \ 0$$
Key. 2
2
50.
$$f(x) = \left| \frac{x-1}{x^{2}} \right|, f(x) = 0 \text{ for } x = \pm 2$$
Sol.
$$f(x) = \frac{1}{x^{2}} \left| \cdot, f(x) = 0 \text{ for } x = \pm 2$$
Sol.
$$f(x) = \frac{1}{x} \left| \cdot, f(x) = 0 \text{ for } x = \pm 2$$
Sol.
$$f(x) = \frac{1}{x} \left| \cdot, f(x) = 0 \text{ for } x = \pm 2$$
Sol.
$$10 \ 10 \qquad 2) \ 5 \qquad 3) \ 15 \qquad 4) \ 20$$
Key. 1
Sol.
If daily out put is x sets and p be the total point then
$$p = x(50 - \frac{1}{2}x) - \left(\frac{1}{4}x^{2} + 35x - 25\right)$$

$$\frac{dp}{dx} = 0 \Rightarrow x = 10 \ and \left(\frac{d^{2}p}{dx^{2}}\right)_{(x=0)} = -\frac{3}{2} \le 0$$

28. If  $f(x) = a \log |x| + bx^2 + x$  has extreme values at x = -1, x = 2 then a = --- b = --

1) 
$$2, \frac{-1}{2}$$
 2)  $\frac{-1}{2}, 2$  3)  $\frac{1}{2}, 2$  4)  $2, \frac{1}{2}$ 

4)  $x^2 + 4x +$ 

Key.

$$f'(-1) = 0 \Longrightarrow -a - 2b + 1 = 0$$

Sol.

 $f'(2) = 0 \Longrightarrow -\frac{a}{2} + 4b + 1 = 0$ 

1)  $2x^2 + 3x + 5$ 

29. A quadratic function in 'x' has the values '10' when x = 1 and has minimum value '1' when x = -2 the function is

2)  $3x^2 + 2x + 5$  3)  $x^2 + 3x + 6$ 

Key. 4  $f(x) = ax^2 + bx + c$ Sol. a+b+c=10, f'(-2)=0, f(-2)=1The equation of a line passing through the point (3,4) and which forms a triangle of minimum area with 30. the coordinate axes in the first quadrant 4) 3x + 2y - 24 = 03) 2x + 3y - 12 = 01) 4x + 3y - 24 = 02) 3x + 4y - 12 = 0Key. 1 (3,4) is the mid point of the line segment Sol. The maximum of  $f(x) = 2x^3 - 9x^2 + 12x + 4$  occurs at x =31. 1)1 3) -1 4) -2 2) 2 Key. 1  $f'(x) = 0 \Longrightarrow 6x^2 - 18x + 12 = 0$ Sol. f''(x) = 12x - 18 $f(x) = 4 + 5x^2 + 6x^4$  has 32. 1) Only one minimum 2) Neither maximum n or minimum 3) Only one maximum 4) No minimum. Key. f(x) is minimum at x = 0Sol.

33. At 
$$x = 0$$
,  $f(x) = (3-x)e^{2x} - 4xe^{x} - x$ 

1) Has a minimum 2) Has a maximum 3) Has no extremum 4) Is not defined Key. 3

|      | $At \ x = 0, \ f'(x) = 0$                                                                                                                       |                                    |                   |                                   |               |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------|-----------------------------------|---------------|--|--|--|
| Sol. | $At \ x = 0, \ f''(x) = 0$                                                                                                                      |                                    |                   |                                   |               |  |  |  |
|      | At $x = 0$ , $f'''(x) \neq 0$                                                                                                                   |                                    |                   |                                   |               |  |  |  |
|      | $\therefore f(x)$ is neither max imum nor min imum                                                                                              |                                    |                   |                                   |               |  |  |  |
|      |                                                                                                                                                 |                                    |                   |                                   |               |  |  |  |
|      |                                                                                                                                                 | x-1                                |                   |                                   |               |  |  |  |
| 34.  | The number of critical points of $f(x) = \frac{ x ^2}{x^2}$ is                                                                                  |                                    |                   |                                   |               |  |  |  |
|      | (A) 1 (I                                                                                                                                        | 3) 2                               | (C) 3             | (D) None of                       | these         |  |  |  |
| Key. | С                                                                                                                                               |                                    |                   |                                   |               |  |  |  |
| Sol. | f(x) is not differentiable at x = 0 and x = 1.<br>f'(x) = 0 at $x = 2$                                                                          |                                    |                   |                                   |               |  |  |  |
| 35.  | A differentiable function $f(x)$ has a relative minimum at $x = 0$ , then the function $y = f(x) + ax + b$ has a                                |                                    |                   |                                   |               |  |  |  |
|      | relative minimum at $x = 0$                                                                                                                     | for                                |                   | $\langle \langle \rangle \rangle$ |               |  |  |  |
|      | (A) all a and all b                                                                                                                             | (B) all $b > 0$                    | (C) all           | b, if a = 0                       | (D) all a > 0 |  |  |  |
| Key. | С                                                                                                                                               |                                    |                   |                                   |               |  |  |  |
| Sol. | f'(0) = 0 and $f''(0) > 0$                                                                                                                      |                                    |                   |                                   |               |  |  |  |
|      | y = f(x) + ax + b has a relative minimum at $x = 0$ .                                                                                           |                                    |                   |                                   |               |  |  |  |
|      | Then $\frac{dy}{dx} = 0$ at x = 0                                                                                                               |                                    |                   |                                   |               |  |  |  |
|      | $f'(x) + a = 0 \Longrightarrow a$                                                                                                               | u = 0                              |                   |                                   |               |  |  |  |
|      | $f''(x) > 0 \Longrightarrow f$                                                                                                                  | $f'(x) > 0 \Rightarrow f''(0) > 0$ |                   |                                   |               |  |  |  |
|      | Hence y has relative minimum at $x = 0$ if $a = 0$ and $b \in R$ .                                                                              |                                    |                   |                                   |               |  |  |  |
| 0.6  |                                                                                                                                                 |                                    | C                 | 1                                 |               |  |  |  |
| 36.  | Let $I:[0,4] \rightarrow R$ , be a differentiable function. Then, there exists real numbers                                                     |                                    |                   |                                   |               |  |  |  |
|      | $a, b \in (0, 4)$ such that, $(f(4))^2 - (f(0))^2 = Kf^1(a)f(b)$ Where K, is                                                                    |                                    |                   |                                   |               |  |  |  |
|      | a) $\frac{1}{4}$                                                                                                                                | b) 8                               | c) $\frac{1}{10}$ |                                   | d) 4          |  |  |  |
| Kev  | B                                                                                                                                               |                                    | 14                |                                   |               |  |  |  |
| KCy. |                                                                                                                                                 | f(A) = f(O)                        |                   |                                   |               |  |  |  |
| Sol. | By LMVT, $\exists a \in (0,4) \ni \frac{f(4) - f(0)}{4 - 0} = f^1(a) \Longrightarrow f(4) - f(0) = 4f^1(a)$                                     |                                    |                   |                                   |               |  |  |  |
|      | $Q \frac{f(4) + f(0)}{2}$ lies between $f(0)$ and $f(4)$ , by Intermediate value theorem                                                        |                                    |                   |                                   |               |  |  |  |
|      | $\exists b \in (0,4) \ \mathfrak{s} \ \frac{f(4) + f(0)}{2} = f(b) \ \text{hence,} \ \left(f(4)^2\right) - \left(f(0)\right)^2 = 8  f^1(a)f(b)$ |                                    |                   |                                   |               |  |  |  |
|      |                                                                                                                                                 |                                    |                   |                                   |               |  |  |  |
|      |                                                                                                                                                 |                                    |                   |                                   |               |  |  |  |

If  $f(x) = (1-x)^{5/2}$  satisfies the relation,  $f(x) = f(0) + xf^{1}(0) + \frac{x^{2}}{2}f^{11}(\theta x)$  then, as  $x \to 1$ , 37. the value of  $\theta_{i}$  is b)  $\frac{25}{4}$ c)  $\frac{25}{2}$ d)  $\frac{9}{25}$ a)  $\frac{4}{25}$ Key. D  $f^{1}(x) = \frac{-5}{2}(1-x)^{3/2}$  and  $f^{11}(x) = \frac{15}{4}(1-x)^{1/2}$  and  $f(0) = 1, f^{1}(0) = \frac{-5}{2}$ , Sol.  $f^{11}(\theta x) = \frac{15}{4}(1-\theta x)^{1/2}$ Hence,  $(1-x)^{5/2} = \frac{2-5x}{2} + \frac{x^2}{2} (1-\theta x)^{1/2} \times \frac{15}{4}$  as  $x \to 1, 0 = 1 - \frac{5}{2} + \frac{15}{8} (1 - \theta)^{1/2} \Longrightarrow \theta = 9/25$ A(1,0),B(e,1) are two points on the curve  $y = \log_e x$ . If P is a point on the curve at 38.

which the tangent to the curve is parallel to the chord AB, then, abscissa of P, is  $e^{-1}$ 

a) 
$$\frac{e-1}{2}$$
 b)  $\frac{e+1}{2}$  c)  $e-1$  d)  $e+1$ 

Key. C

Sol. By LMVT, applied to  $f(x) = \log x on[1,e], \exists an x_0 \in (1,e) \Rightarrow f^1(x_0) = \frac{f(e) - f(1)}{e - 1}$ 

 $\Rightarrow \mathbf{x}_0 = \mathbf{e} - \mathbf{1}$ 

39. Consider the following statements
Statement - I: If f and g are continuous and monotonic on R, then, f + g is also a monotonic function.
Statement- II: If f(x) is a continuous decreasing function ∀x > 0, and f(1) is

positive, then, f(x) = 0 happens exactly at one value of x. Then,

- a) Both I and II are true b) I is true, II is false
- c) I is false, II is true d) both I and II are false

Key. D

Sol. I: f(x) = x and  $g(x) = -x^2$  on R

II: 
$$f(x) = \frac{1}{x}, x > 0$$

40. The number of values of x at which the function,  $f(x) = (x-1)x^{2/3}$  has extreme values, is a) 4 b) 3 c) 2 d) 1 Key. C Sol.  $f^1(x) = \frac{5x-2}{3x^{1/3}}$ Let  $x < 0, f^1(x) > 0$  and for  $x > 0, f^1(x) < 0 \Rightarrow f$  has maximum at x = 0 $x < \frac{2}{5}, f^1(x) < 0$  and  $x > \frac{2}{5}, f^1(x) > 0 \Rightarrow f$  has minimum at  $X = \frac{2}{5}$ 

41. A person wishes to lay a straight fence across a triangular field ABC, with  $|\underline{A} < |\underline{B} < |\underline{C}|$  so as to divide it into two equal areas. The length of the fence with minimum expense, is

a) 
$$\sqrt{2\Delta \cot \frac{B}{2}}$$
  
b)  $\sqrt{2\Delta \tan \frac{C}{3}}$   
c)  $\sqrt{\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}}$   
d)  $\sqrt{2\Delta \tan \frac{A}{2}}$ 

(where ' $\Delta$ ' represents, area of triangle ABC)

C

Key. D

× P⁄

в

A

Sol.

$$\frac{1}{2} xy \sin A = \frac{1}{2} \left( \frac{1}{2} bc \sin A \right)$$
$$\Rightarrow xy = \frac{1}{2} bc$$
$$z_A^2 = \left( PQ \right)^2 = x^2 + y^2 - 2xy \cos A$$
$$= x^2 + \frac{b^2 c^2}{4x^2} - bc \cos A$$
$$\Rightarrow 2Z_A \left( \frac{dZ_A}{dx} \right) = 2x - \frac{b^2 c^2}{2x^3}$$

$$\frac{dZ_A}{dx} = 0 \Rightarrow x = \sqrt{\frac{bc}{2}}, \text{ and } \frac{d^2Z_A}{dx^2} > 0$$
Hence  $Z_A$  is minimum if  $x = \sqrt{\frac{bc}{2}}$  and the minimum value of  $Z_A$ , is
$$\sqrt{\frac{bc}{2} + \frac{bc}{2} - bc \cos A} = \sqrt{2\Delta \tan \frac{A}{2}}$$
42. If the function  $f(x) = ax^3 + bx^2 + 11x - 6$  satisfies conditions of Rolle's theorem in [1, 3] and  $f'\left(2 + \frac{1}{\sqrt{3}}\right) = 0$ , then value of a and b are respectively
(A) 1,  $-6$  (B)  $-1$ ,  $6$  (C)  $-2$ , 1(D)  $-1$ , 1/2
Key. A
Sol. Q  $f(1) = f(3)$ 

$$\Rightarrow a + b + 11 - 6 = 27a + 9b + 33 - 6$$

$$\Rightarrow 13a + 4b = -11$$
and  $f'(x) = 3ax^2 + 2bx + 11$  ... (i)
$$\Rightarrow f'\left(2 + \frac{1}{\sqrt{3}}\right) = 3a\left(2 + \frac{1}{\sqrt{3}}\right)^2 + 2b\left(2 + \frac{1}{\sqrt{3}}\right) + 11 = 0$$

$$\Rightarrow 3a\left(4 + \frac{1}{3} + \frac{4}{\sqrt{3}}\right) + 2b\left(2 + \frac{1}{\sqrt{3}}\right) + 11 = 0$$
From eqs. (i) and (ii), we get  $a = 1, b = -6$ .
43. Let  $f(x)$  be a positive differentiable function on  $[0, a]$  such that  $f(0) = 1$  and  $f'(a) = 3^{1/4}$  If  $f^1(x) \ge (f(x))^3 + (f(x))^{-1}$ , then, maximum value of a is

a) 
$$\frac{\pi}{12}$$
 b)  $\frac{\pi}{36}$  c)  $\frac{\pi}{24}$  d)  $\frac{\pi}{48}$ 

Key. C

43.

Sol. 
$$f^{1}(x)f(x) \ge (f(x))^{4} + 1$$
  

$$\Rightarrow \frac{2f^{1}(x)f(x)}{\left\{\left(f(x)\right)^{2}\right\}^{2} + 1} \ge 2$$
  

$$\Rightarrow \int_{0}^{a} \frac{2f^{1}(x)f(x)}{\left\{\left(f(x)\right)^{2}\right\}^{2} + 1} \ge 2\int_{0}^{a} 1dx$$
  

$$\Rightarrow \left|\tan^{-1}(f(x))^{2}\right|_{0}^{a} \ge 2a \Rightarrow \frac{\pi}{3} - \frac{\pi}{4} \ge 2a$$

Given expansion =  $\left\{ x - (1 + \cos t) \right\}^2 + \left\{ \frac{K}{x} - (1 + \sin t) \right\}^2$ 

44. For 
$$x > 0, 0 \le t \le 2\pi, K > \frac{3}{2} + \sqrt{2}$$
, K being a fixed real number the minimum value of  $x^2 + \frac{K^2}{x^2} - 2\left\{(1 + \cot t)x + \frac{K(1 + \sin t)}{x}\right\} + 3 + 2\cot t + 2\sin t$  is  
a)  $\left\{\sqrt{K} - \left(1 + \frac{1}{\sqrt{2}}\right)\right\}^2$  b)  $\frac{1}{2}\left\{\sqrt{K} - \left(1 + \frac{1}{\sqrt{2}}\right)\right\}^2$   
c)  $3\left\{\sqrt{K} - \left(1 + \frac{1}{\sqrt{2}}\right)\right\}^2$  d)  $2\left\{\sqrt{K} - \left(1 + \frac{1}{\sqrt{2}}\right)\right\}^2$   
Key. D  
Sol. Given expansion =  $\left\{x - (1 + \cot t)\right\}^2 + \left\{\frac{K}{x} - (1 + \sin t)\right\}^2$   
45. The maximum area of a rectangle whose two conscentive vertices lie on the x-axis and another two lie on the curve  $y = e^{-14}$  is equal to  
(A) 2e sq. Units (B)  $\frac{2}{e}$  sq. Units (C) e sq. units (D)  $\frac{1}{e}$  sq. units  
Key. B  
Sol.  $4 = (t, 0), B = (t, e^{-1}), C = (-t, e^{-1}), D = (-t, 0)$   
A =  $(t, 0), B = (t, e^{-1}) + e^{-1} = 2e^{1/(1-1)}$   
 $\frac{dt}{dt} = 2(t(-e^{-1}) + e^{-1}) = 2e^{1/(1-1)}$   
 $\frac{dt}{dt} > 0 \Rightarrow t = (0, t)$   
 $\frac{dt}{dt} < 0 \Rightarrow t = (0, t)$   
 $\frac{dt}{dt} < 0 \Rightarrow t = (0, t)$   
 $\frac{dt}{dt} < 0 \Rightarrow t = (0, t)$   
(A) 1 (B) 2 (C) 3 (D) None of these  
Key. C  
Sol.  $f(x)$  is not differentiable at  $x = 0$  and  $x = 1$ .  
 $f(x) = 0$  at  $x = 2$ 

Maxima & Minima

| 47.   | A differentiable function $f(x)$ has a relative minimum at x =0, then the function $y = f(x) + ax + b$ has a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |                                                                                    |                                                                   |  |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|
|       | relative minimum at $x = 0$ for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                    |                                                                   |  |  |  |  |  |
|       | (A) all a and all b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B) all $b > 0$                                                               | (C) all b, if a = 0                                                                | (D) all a > 0                                                     |  |  |  |  |  |
| Key.  | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                                    |                                                                   |  |  |  |  |  |
| Sol.  | f'(0) = 0 and $f''(0) > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |                                                                                    |                                                                   |  |  |  |  |  |
|       | y = f(x) + ax + b has a relative minimum at $x = 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |                                                                                    |                                                                   |  |  |  |  |  |
|       | Then $\frac{dy}{dt} = 0$ at x = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                                    |                                                                   |  |  |  |  |  |
|       | $dx f'(x) + a = 0 \implies a = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                                    |                                                                   |  |  |  |  |  |
|       | $f''(x) > 0 \Longrightarrow f''(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >0                                                                            |                                                                                    |                                                                   |  |  |  |  |  |
|       | Hence y has relative minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | h at x = 0 if a = 0 and b $\in$                                               | R.                                                                                 |                                                                   |  |  |  |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                    |                                                                   |  |  |  |  |  |
| 48.   | Let A(1, 2), B(3, 4) be two point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s and C(x, y) be a point s                                                    | uch that area of $\Delta AB$                                                       | C is 3 sq.units                                                   |  |  |  |  |  |
|       | and $(x-1)(x-3)+(y-2)($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y-4)=0 . Then maxim                                                           | num number of position                                                             | ns of C, in the xy plane                                          |  |  |  |  |  |
|       | is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                               |                                                                                    | •                                                                 |  |  |  |  |  |
|       | a) 2 b) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c)8                                                                           | d) n                                                                               | one of these                                                      |  |  |  |  |  |
| Key:  | D (x y) lies on the circle with AP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | as a diamotor Aroa                                                            |                                                                                    |                                                                   |  |  |  |  |  |
| пш.   | (x,y) lies on the circle , with AB as a diameter . Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |                                                                                    |                                                                   |  |  |  |  |  |
|       | $(\Delta ABC) = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                               |                                                                                    |                                                                   |  |  |  |  |  |
|       | $\Rightarrow \left(\frac{1}{2}\right) (AB) (altitude) = 3.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |                                                                                    |                                                                   |  |  |  |  |  |
|       | $\Rightarrow$ altitude $=\frac{3}{\sqrt{2}}$ $\Rightarrow$ no such                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "C" exists                                                                    |                                                                                    |                                                                   |  |  |  |  |  |
| 49.   | If $y, z > 0$ and $y + z = C$ , the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | en minimum value of $$                                                        | $\overline{\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)}$ is equ           | al to                                                             |  |  |  |  |  |
|       | A) $\frac{C}{2} + 1$ B) $\frac{2}{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + 3 C) 1+                                                                     | $-\frac{2}{C}$ D) $-\frac{1}{C}$                                                   | $\frac{C}{2}$                                                     |  |  |  |  |  |
| Key:  | с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                                    |                                                                   |  |  |  |  |  |
| Hint: | $\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right) = 1 + \frac{1}{y} + \frac{1}{z} + \frac{1}{z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-\frac{1}{yz}$                                                               |                                                                                    |                                                                   |  |  |  |  |  |
| C     | $= 1 + \frac{1}{y} + \frac{1}{z} + \frac{1}{yz} \ge 1 + \frac{2}{\sqrt{yz}} + \frac{1}{\sqrt{yz}} + \frac{1}{yz} \ge 1 + \frac{1}{\sqrt{yz}} + \frac{1}{\sqrt{yz}} + \frac{1}{\sqrt{yz}} = \frac{1}{\sqrt{yz}} + $ | $\frac{1}{yz} = \left(1 + \frac{1}{\sqrt{yz}}\right)^2 = \frac{1}{\sqrt{yz}}$ | $\frac{1}{y_z} \ge \frac{2}{y+z} \ge \frac{2}{C} = \left(1 + \frac{1}{y+z}\right)$ | $\frac{1}{\sqrt{yz}}\right)^2 \ge \left(1 + \frac{2}{C}\right)^2$ |  |  |  |  |  |
| 50.   | Let a, b, c, d, e, f, g, h be distir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nct elements in the set {                                                     | -7, -5, -3, -2, 2, 4, 6, 2                                                         | 13}. The minimum value of                                         |  |  |  |  |  |
|       | $(a + b + c + d)^2 + (e + f + g + h)^2$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |                                                                                    |                                                                   |  |  |  |  |  |
|       | a) 30 b) 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c) 34                                                                         | d) 4                                                                               | 0                                                                 |  |  |  |  |  |
| Key:  | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                                    |                                                                   |  |  |  |  |  |
| Hint: | Note that sum of the elements is 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                               |                                                                                    |                                                                   |  |  |  |  |  |
|       | Let $a + b + c + d = x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |                                                                                    |                                                                   |  |  |  |  |  |
|       | e + t + g + h =8 – x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               |                                                                                    |                                                                   |  |  |  |  |  |

d)  $\frac{R^2}{2} \tan \alpha$ 

Again, let  $y = x^2 + (8 - x)^2$  $\therefore$  v = 2x<sup>2</sup> - 16 x + 64  $= 2[x^2 - 8x + 32]$  $=2(x-4)^{2}+16$  $\therefore$  min = 32 when x = 4

A sector subtends an angle  $2\alpha$  at the centre then the greatest area of the rectangle inscribed in the 51. sector is (R is radius of the circle)

 $\tan \alpha$ 

a) 
$$R^2 tan \frac{\alpha}{2}$$
 b)  $\frac{R^2}{2} tan \frac{\alpha}{2}$  c)  $R^2$ 

Key:

А

Let A be any point on the arc such that  $\angle YOA = \theta$ Hint: Where  $0 \le \theta \le \alpha$ 



DA = CB = R sin  $\theta$ , OD = R cos  $\theta$  $\Rightarrow$  CO = CB cot  $\alpha$  = R sin  $\theta$  cot  $\alpha$ Now, CD = OD - OC = R cos  $\theta$  - R sin  $\theta$  cot  $\alpha$ = R (cos  $\theta$  – sin  $\theta$  cot  $\alpha$  ) Area of rectangle ABCD, S = CD.CB  $R = (\cos\theta - \sin\theta \cot\alpha) R \sin\theta = R^{2}(\sin\theta\cos\theta - \sin^{2}\theta \cot\alpha)$  $\frac{R^2}{2} (\sin 2\theta - (1 - \cos 2\theta) \cot \alpha) \frac{R^2}{2 \sin \alpha} [\cos (2\theta - \alpha)]$  $S_{man} = \frac{R^2}{\sin \alpha} (1 - \cos \alpha) \left( \text{for } \theta = \frac{\alpha}{2} \right)$ Hence, greatest area of the rectangle =  $R^2 tan \frac{\alpha}{2}$ Let  $f:(0,\infty) \to R$  be a (strictly) decreasing function. If 52.  $f(2a^2+a+1) < f(3a^2-4a+1)$ , then the range of  $a \in \mathbb{R}$  is (A)  $\left(-\infty, \frac{1}{3}\right) \cup \left(1, \infty\right)$  (B) (0, 5) (C)  $\left(0, \frac{1}{3}\right) \cup \left(1, 5\right)$  (D) [0, 5] С

x

Key:

Hint: we have 
$$2a^2 + a + 1 > 3a^2 - 4a + 1 \Rightarrow a^2 - 5a < 0 \Rightarrow 0 < a < 5$$
 .....(A)  
ALSO  $3a^2 - 4a + 1 > (3a - 1)(a - 1) > 0 \Rightarrow a \in (-\infty, 1/3) \cup (1, \infty)$ .....(B)

INTERSECTION OF (A) AND (B) YIELDS  $a \in (0, 1/3) \cup (1,5)$ The greatest possible value of the expression  $\tan\left(x+\frac{2\pi}{3}\right) - \tan\left(x+\frac{\pi}{6}\right) + \cos\left(x+\frac{\pi}{6}\right)$  on 53. the interval  $\left[-5\pi/12, -\pi/3\right]$  is (A)  $\frac{12}{5}\sqrt{2}$  (B)  $\frac{11}{6}\sqrt{2}$  (C)  $\frac{12}{5}\sqrt{3}$  (D)  $\frac{11}{6}\sqrt{3}$ Kev: Let  $u = -x - \pi/6$  then  $u \in [\pi/6, \pi/4]$  and then  $2u \in [\pi/3, \pi/2]$ Hint:  $\tan(x+2\pi/3) = -\cot(x+\pi/6) = \cot u$ NOW  $\tan(x+2\pi/3) - \tan(x+\pi/6) + \cos(x+\pi/6)$  $= \cot u + \tan u + \cos u$  $=\frac{2}{\sin 2u}+\cos u$ BOTH  $\frac{2}{\sin 2u}$  AND  $\cos u$  MONOTONIC DECREASING ON  $[\pi/6, \pi/4]$  AND THUS THE GREATEST VALUE OCCURS AT  $u = \pi/6$ I.E  $\frac{2}{\sin \pi/3} + \cos \pi/6 = \frac{4}{\sqrt{3}} + \frac{\sqrt{3}}{2} = \frac{11}{2\sqrt{3}} = \frac{11\sqrt{3}}{6}$ Let the smallest positive value of x for which the function  $f(x) = \sin \frac{x}{3} + \sin \frac{x}{11}$ , 54.  $(x \in R)$  achieves its maximum value be  $x_0$ . Express  $x_0$  in degrees i.e.,  $x_0 = \alpha^0$ . Then the sum of the digits in  $\alpha$  is (A) 15 (B) 17 (D) 18 (C) 16 Key: D The maximum possible values is 2 Hint sin(x/3) TAKES THE VALUES 1 WHEN  $x/3 = 2n\pi + \pi/2$ I.E x/3 = 90 + 360 msin(x/11) TAKES THE VALUE 1 WHEN  $x/11 = 2n\pi + \pi/2$ I.E x/11 = 90 + 360nWE ARE LOOKING FOR A COMMON SOLUTION WE HAVE 3m-11n = 2. THEN SMALLEST POSITIVE SOLUTION TO THIS IS m = 8, n = 2, THUS  $x_0 = 8910^\circ$ , GIVING  $\alpha = 8910$ Let  $f(x) = \begin{cases} (x+1)^3 & -2 < x \le -1 \\ x^{2/3} - 1 & -1 < x \le 1 \\ -(x-1)^2 & 1 < x < 2 \end{cases}$ 55.

The total number of maxima and minima of f(x) is

(A) 4 (B) 3 (C) 2 (D) 1  
KEY : B  
HINT: 
$$f'(x) = \begin{cases} 3(x+1)^2 - 2 < x < -1 \\ \frac{2}{3} < x^{-1/3} - 1 < x < 1 - \{0\} \\ -2(x-1) - 1 < x < 2 \end{cases}$$
  
 $f'(x) DNE at x = -1, 0, 1$   
 $\overline{\phantom{(-2(x-1) - -2(x-1) - 0} + 1 - 2}$   
Sign of  $f'(x)$   
56. Let  $f(x) = x^2 - bx + c$ , b is a odd positive integer,  $f(x) = 0$  have two prime numbers as roots and  $b + c = 35$ . Then the global minimum value of  $f(x)$  is  
(A)  $-\frac{183}{4}$  (B)  $\frac{173}{16}$   
(C)  $-\frac{81}{4}$  (D) data not sufficient  
KEY : C  
SOL : Let  $\alpha, \beta$  be roots of  $x^2 - bx + c = 0$ ,  
Then  $\alpha + \beta = b$   
 $\Rightarrow$  one of the roots is '2' (Since  $\alpha, \beta$  are primes and b is odd positive integer)  
 $\therefore f(2) = 0 \Rightarrow 2b - c = 4$  and  $b + c = 35$   
 $\therefore b = 13, c = 22$   
Minimum value of  $\log_5(3x + 4y)$ , if  $x^2 + y^2 = 25$  is  
(A) 2 (B) 3 (C) 4 (D) 5  
Key : A  
Hint: Since  $x^2 + y^2 = 25 \Rightarrow x = 5 \cos \theta$  and  $y = 5 \sin \theta$   
So, therefore,  $\log_5(3x + 4y) = \log_5(15 \cos \theta + 20 \sin \theta)$   
 $\Rightarrow \{\log_5(3x + 4y)\}_{max} = 2$   
58. The greatest area of the rectangular plot which can be laid out within a triangle of base 36 ft. & altitude 12f cquals (Assume that one side of the rectangle lies on the base of the triangle)  
(A)  $= 90$  (B) 1026  
Key: B  
Hint: Area of rectangle  $A = xy$ ......(1)

Also 
$$\frac{36}{x} = \frac{12}{12 - y} \Rightarrow 3y = (36 - x) \dots (ii)$$
  
 $\therefore A = \frac{4}{3}(36 - x) = \frac{1}{3}(36x - x^2)$   
Now A'(x) = 0  $\Rightarrow$  36 - 2x = 0  $\Rightarrow$  x = 18  
A"(x) =  $\frac{1}{3}(-2) < 0$   
Also  $y = \frac{36 - x}{3} - \frac{36 - 18}{3} = 6$   
 $\therefore A_{max} 18 \times 6 = 108 \text{sq.fect}$   
59. Let f(x) =  $\begin{cases} 3x + |a^2 - 4|, x < 1 \\ -x^2 + 2x + 7, x \ge 1 \end{cases}$ . Then set of values of a for which f(x) has maximum value at x = 1 is  
(A) (3,  $\infty$ ) (B) [-3, 3]  
(C) ( $\neg c, 3$ ) (D) none of these  
Hint: Since  $x^2 + 2x + 7$  takes maximum value 8 at x = 1, so f(x) take maximum value at x = 1, if f(x) \le f(1)  
 $\Rightarrow |a^2 - 4| \le 5 \Rightarrow a \in [-3, 3]$   
60. Let f(x) =  $(\sin \theta) (x^2 - 2) ((\sin \theta) x + \cos \theta), (\theta \neq m\pi, m \in 1)$  Then f(x) has  
(A) local maxima at certain x = R<sup>+</sup>  
(C) a local minima at certain x = 0  
(D) a local minima at certain x = R  
Hint: f(x) =  $(\sin^2 \theta)x^2 + \frac{1}{2}\sin^2 0x^2 \sqrt{2}\sin^2 \theta$ . Then  $x \in \mathbb{R}$   
Key: B  
Hint: f(x) =  $(\sin^2 \theta)x^2 + \frac{1}{2}\sin^2 0x^2 \sqrt{2}\sin^2 \theta$   
Then  $D > 0$  and product of roots < 0  
So f(x) has local maxima at sere R<sup>+</sup>  
61. Let  $g(x) = \frac{1}{4}f(2x^2 - 1) + \frac{1}{2}f(1 - x^2) \forall x \in \mathbb{R}$ , where  $f''(x) > 0 \forall x \in \mathbb{R}$ ,  $g(x)$  is necessarily increasing in the interval  
(A)  $\left(-\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}\right)$  (B)  $\left(-\sqrt{\frac{2}{3}}, 0\right) \cup \left(\sqrt{\frac{2}{3}}, \infty\right)$   
(C)  $(-1,1)$  (D) None of these  
Key: B  
Hint:  $f'(x) = (3x)^{-1} \frac{1}{4}(2x^2 - 1) + \frac{1}{2}f(1 - x^2) \forall x \in \mathbb{R}$ , where  $f''(x) > 0 \forall x \in \mathbb{R}$ ,  $g(x)$  is necessarily increasing in the interval  
(A)  $\left(-\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}\right)$  (B)  $\left(-\sqrt{\frac{2}{3}}, 0\right) \cup \left(\sqrt{\frac{2}{3}}, \infty\right)$   
(C)  $(-1,1)$  (D) None of these  
Key: B  
Hint:  $f'(x) = (3x)^{-1} \frac{1}{4}(2x^2 - 1) + \frac{1}{4}(1 - x^2) \forall x \in \mathbb{R}$ , where  $f''(x) > 0 \forall x \in \mathbb{R}$ ,  $g(x)$  is necessarily increasing in the interval  
(A)  $\left(-\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}\right)$  (B)  $\left(-\sqrt{\frac{2}{3}}, 0\right) \cup \left(\sqrt{\frac{2}{3}}, \infty\right)$   
(C)  $(-1,1)$  (D) None of these

 $\Rightarrow$  f ' is inc. fn To find : where g is nec. Inc g is inc  $\Rightarrow$  g'>0  $\Rightarrow \frac{1}{4} f'(2x^2 - 1)(4x) + \frac{1}{2}P(1 - x^2)(-2x) > 0$  $\Rightarrow x \left\{ f'(2x^2 - 1) - f'(1 - x^2) \right\} > 0$ Case 1 :  $x > 0 \rightarrow (1) f'(2x^2 - 1) > f'(1 - x^2)$  $\Rightarrow 2x^2 - 1 > 1 - x^2$  $\Rightarrow \mathbf{x} \in \left(-\infty, \sqrt{\frac{2}{3}}\right) \cup \left(\sqrt{\frac{2}{3}}, \infty\right) \to (2)$  $(1) \cap (2) \Rightarrow x \in \left(\sqrt{\frac{2}{3}}, \infty\right)$ .....(3) Case II:  $x < 0 \rightarrow (3) f'(2x^2 - 1) < f'(1 - x^2)$  $\Rightarrow 2x^2 - 1 < 1 - x^2$  $\Rightarrow \mathbf{x} \in \left(-\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}\right) \to (4)$  $(3) \cap (4) \Longrightarrow \in \left(-\sqrt{\frac{2}{3}}, 0\right) \to (6)$  $\therefore$  g is inc in  $x \in (5) \cup (6)$  $\Rightarrow$  x  $\in \left(-\sqrt{\frac{2}{3}}, 0\right) \cup \left(\sqrt{\frac{2}{3}}, \infty\right)$ 

62. A variable line through A(6,8) meets the curve  $x^2 + y^2 = 2$  at B and C. P is a point on BC such that AB, AP, AC are in HP. The minimum distance of the origin from the locus of P is

a) 1 b)  $\frac{1}{2}$  c)  $\frac{1}{3}$  d)  $\frac{1}{5}$ 

Key:

Hint: Locus of P is the chord of contact of tangent, from A is 3x + 4y - 1 = 0Distance of (0,0) is  $\frac{1}{5}$ 

63. A rectangle is inscribed in an equilateral  $\Delta$  of side length 2a units. Maximum area of this rectangle is

(A) 
$$\sqrt{3}a^2$$
 (B)  $\frac{\sqrt{3}a^2}{4}$  (C)  $a^2$  (D)  $\frac{\sqrt{3}a}{2}$   
. D

Key.

Sol.



If the equation  $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x = 0$  ( $a_1 \neq 0, n \ge 2$ ) has a+ve root  $x = \alpha$ , then the equation 64  $na_n x^{n-1} + (n-1)a_{n-1}x^{n-2} + \dots + a_1 = 0$  has a positive root, which is : 1. equal to  $\alpha$  2.  $\geq \alpha$  3.  $< \alpha$ 

4. >  $\alpha$ Key. 3

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x = 0$  has a+ve root  $x = \alpha$ ; by observation x = 0 is also a root Sol.

$$f(\alpha) = f(0) = 0$$

f(x) is continuous on  $[0, \alpha]$  and differentiable on  $(0, \alpha)$  by Rolle's Theorem

 $\Rightarrow \exists$  at least one root  $c \in (0, \alpha)$ 

Such that f'(c) = 0

$$\therefore 0 < c < \alpha$$

The minimum & maximum value of  $f(x) = \sin(\cos x) + \cos(\sin x) \forall -\frac{\pi}{2} \le x \le \frac{\pi}{2}$  are respectively. 65

1. 
$$\cos 1$$
 and  $1 + \sin 1$   
3.  $\cos 1 \& \cos\left(\frac{1}{\sqrt{2}}\right) + \sin\left(\frac{1}{\sqrt{2}}\right)$   
4.  $1$ 

2. sin 1 and  $1 + \cos 1$ 

4.2

Key.

Sol. Given  $f(x) = \sin(\cos x) + \cos(\sin x)$ 

Fact when a function is even & defined in negative as well as positive interval for maxima & minima, we check the maxima/minimum in the positive internal only so it suffices to find the maximum & minimum values of f in

$$0 \le x \le \frac{\pi}{2} \, .$$

Now  $x \in [0, \frac{\pi}{2}]$ ,  $\sin(\cos x) \& \cos(\sin x)$  are decreasing functions so maximum of f(x) is f(0) & minimum of f(x) is  $f(\pi/2)$ 

$$\therefore f(\pi/2) = \sin(\cos \pi/2) + \cos(\sin \pi/2) = \cos 1$$

And 
$$f(0) = \sin(\cos 0^{\circ}) + \cos(\sin 0^{\circ}) = \sin 1 + \cos 0^{\circ} = 1 + \sin 1$$

66 Let 
$$f(x) = \begin{cases} \frac{\cos(\pi x)}{2} & \forall 0 \le x < 1\\ 3+5x & \forall x \ge 1 \end{cases}$$

- 1. f(x) has local minimum at x=1
- 2. f(x) has local maximum at x=1
- 3. f(x) does not have any local maximum or local minimum at x = 1
- 4. f(x) has a global minimum at x = 1

Key.

1

Sol. 
$$f(x) = \begin{cases} \cos\frac{\pi}{2}x & \forall 0 \le x < 1\\ 5x+3 & \forall x \ge 1 \end{cases}$$

$$f'(x) = \begin{cases} -\frac{\pi}{2}\sin\frac{\pi}{2}x & \forall 0 \le x < 1\\ 5 & \forall x \ge 1 \end{cases}$$

 $\Rightarrow$  f'(x) changes its sign from –ve to +ve in the immediate neighbourhood of

x=1

 $\Rightarrow$  f(x) changes from decreasing function to increasing function

 $\Rightarrow f(x) \text{ has a local minimum value at } x = 1$ 67 The minimum value of  $x^2 - x + 1 + \sin x$  is given by
1.  $\frac{1}{4}$ 2.  $\frac{3}{4}$ 3.  $-\frac{1}{4}$ 4.  $-\frac{7}{4}$ Key. 3
Sol. Let  $f(x) = x^2 - x + 1 + \sin x$ 

$$= (x-1/2)^{2} + (\frac{3}{4} + \sin x)$$

$$\geq \frac{3}{4} + \sin x \qquad (Q(x-\frac{1}{2})^{2} \ge 0)$$

$$\geq \frac{3}{4} - 1 = -1/4 \quad (Q \text{ minimum value of sinx = -1})$$
68. If  $f(x)$  is a differentiable function  $\forall x \in \mathbb{R}$  so that,  $f(2) = 4, f^{1}(x) \ge 5 \forall x \in [2,6]$ , then,  $f(6)$  is  
a)  $\ge 24 \qquad b) \le 24 \qquad c) \ge 9 \qquad d) \le 9$ 
Key. A  
Sol. By mean value theorem,  $f(6) - f(2) = (6-2)f^{1}(c)$  where  $c \in (2,6)$   
 $\Rightarrow f(6) = f(2) + 4f^{1}(c) = 4 + 4f^{1}(1) > 4 + 4(5)$   
 $(: f^{1}(x) \ge 5) \quad f(6) \ge 24$ 
69. The values of parameter 'a' for which the point of minimum of the function  
 $f(x) = 1 + a^{2}x - x^{3}$  satisfies the inequality  $\frac{x^{2} + x + 2}{x^{2} + 5x + 6} < 0$  are,  
a)  $(-3\sqrt{3}, -2\sqrt{3}) \cup (2\sqrt{3}, 3\sqrt{3}) \qquad b) (-5\sqrt{3}, -3\sqrt{3}) \cup (3\sqrt{3}, 5\sqrt{3})$   
c)  $(-7\sqrt{3}, -5\sqrt{3}) \cup (5\sqrt{3}, 7\sqrt{3}) \qquad d) (-9\sqrt{3}, -6\sqrt{3}) \cup (6\sqrt{3}, 9\sqrt{3})$ 
Key. A  
Sol.  $\frac{x^{2} + x + 2}{x^{2} + 5x + 6} < 0 \Rightarrow x \in (-3, -2)$   
Let  $f(x) = 1 + a^{2}x - x^{3}$  for maximum (or) minimum,  
 $f^{1}(x) = 0 \Rightarrow a^{2} - 3x^{2} = 0 \Rightarrow x = \pm \frac{a}{\sqrt{3}}$   
And  $f^{1}(x) = -6x$  is positive when x is negative if a > 0 then point of minimum is  $\frac{-a}{\sqrt{3}}$   
 $\Rightarrow -3 < \frac{-a}{\sqrt{5}} < -2$ 

 $\Rightarrow 2\sqrt{3} < a < 3\sqrt{3}$ If a < 0, the point of minimum is a  $\left|\sqrt{3}\right|$ 

$$\Rightarrow -3 < \frac{a}{\sqrt{3}} < -2 \Rightarrow -3\sqrt{3} < a < -2\sqrt{3}$$
$$\Rightarrow a \in \left(-3\sqrt{3}, -2\sqrt{3}\right) \cup \left(2\sqrt{3}, 3\sqrt{3}\right)$$

Maxima & Minima

Let domain and range of f(x) and g(x) are respectively  $[0,\infty)$ . If f(x) be an 73. increasing function and g(x) be an decreasing function. Also, h(x) = f(g(x)), h(0) = 0 and  $p(x) = h(x^3 - 2x^2 + 2x) - h(4)$  then for every  $x \in (0,2]$ b)  $p(x) \in [-h(4), 0]$ a)  $p(x) \in (0, -h(4))$ c)  $p(x) \in (-h(4), h(4))$ d)  $p(x) \in (h(4), h(4)]$ Key. А Sol. h(x) = f(g(x)) $h^{1}(x) = f^{1}(g(x))g^{1}(x) < 0 \forall x \in [0,\infty)$  $Q g^{1}(x) < 0 \forall x \in [0,\infty) \text{ and } f^{1}(g(x)) > 0 \forall x \in [0,\infty)$ Also, h(0) = 0 and hence,  $h(x) < 0 \forall x \in [0, \infty)$  $p(x) = h(x^3 - 2x^2 + 2x) - h(4)$  $p^{1}(x) = h^{1}(x^{3} - 2x^{2} + 2x).(3x^{2} - 4x + 2) < 0 \forall x \in (0,2)$  $Q h^{1}(x^{3}-2x^{2}+2x) < 0 \forall x \in (0,\infty) \text{ and } 3x^{2}-4x+2 > 0 \forall x \in \mathbb{R}$  $\Rightarrow$  p(x) is an decreasing function  $\Rightarrow$  p(2) < p(x) < p(0)  $\forall x \in (0,2)$  $\Rightarrow h(4) - h(4) < p(x) < h(0) - h(4)$  $\Rightarrow 0 < p(x) < -h(4)$ Let f(x) be a positive differentiable function on [0,a] such that 74. f(0) = 1 and  $f(a) = 3^{1/4}$  If  $f^{1}(x) \ge (f(x))^{3} + (f(x))^{-1}$ , then, maximum value of a is c)  $\frac{\pi}{36}$ d)  $\frac{\pi}{48}$ a)  $\frac{\pi}{12}$ Key. В  $f^{1}(x)f(x) \ge (f(x))^{4} + 1$ Sol.  $\Rightarrow \frac{2f^{1}(\mathbf{x})f(\mathbf{x})}{\left\{\left(f(\mathbf{x})\right)^{2}\right\}^{2}+1}$  $\frac{1}{2} \frac{2f^{1}(x)f(x)}{\left(\left(f(x)\right)^{2}\right)^{2}+1} \ge 2\int_{0}^{a} 1dx$  $\Rightarrow \left| \tan^{-1} (f(\mathbf{x}))^2 \right|_0^a \ge 2\mathbf{a} \Rightarrow \frac{\pi}{3} - \frac{\pi}{4} \ge 2\mathbf{a}$ The least value of 'a' for which the equation  $\frac{4}{\sin x} + \frac{1}{1 - \sin x} = a$  for atleast one 75. solution on the interval  $\left(0,\frac{\pi}{2}\right)$  is, d) 9 a) 1 b) 4 c) 8 Key. D

 $Qa = \frac{4}{\sin x} + \frac{1}{1 - \sin x}$ , where a is least Sol.  $\Rightarrow \frac{\mathrm{da}}{\mathrm{dx}} = \left(\frac{-4}{\sin^2 x} + \frac{1}{\left(1 - \sin x\right)^2}\right) \cos x = 0$  $Q \cos x \neq 0 \Rightarrow \sin x = 0$  $\frac{d^2a}{dx^2} = 45 > 0$  for  $\sin x = 2/3 \Rightarrow \frac{4}{2/3} + \frac{1}{1-2/3} = 6+3=9$  $f(x) = x^4 - 10x^3 + 35x^2 - 50x + c$ . where c is a constant. the number of real roots of f'(x) = 076. f''(x) = 0 are respectively (1) 1, 0(2) 3, 2(3) 1, 2 4) 3, 0 Key. 2 g(x) = (x-1)(x-2)(x-3)(x-4)Sol.  $f(x) = g(x) + c_0 : c_0 = c - 24$ g(x) = 0 has 4 roots viz. x = 1, 2, 3, 4f'(x) = g'(x) and f''(x) = g''(x)By Rolle's theorem g'(x) = 0 has min. one root in each of the intervals (1, 2); (2, 3); (3, 4) By Rolle's theorem, between two roots of f'(x) = 0, f''(x) = 0 has minimum one root. Let  $h(x) = f(x) - (f(x))^2 + (f(x))^3$  for every real number x. Then 77. (1) h is increasing whenever f is increasing (2) h is increasing whenever f is decreasing (3) h is decreasing whenever f is increasing (4) nothing can be said in general Key.  $h'(x) = f'(x) - 2f(x)f'(x) + 3(f(x))^{2}f'(x)$ Sol.  $= f'(x) \left[ 1 - 2f(x) + 3(f(x))^{2} \right]$ Since,  $1-2f(x)+3(f(x))^2 > 0$  for all f(x) $\Rightarrow$  h'(x)>0 if f'(x)>0  $\Rightarrow$  h is increasing when ever f is increasing and h'(x) < 0 if f'(x) < 0 $\Rightarrow$  h is decreasing when ever f is decreasing. The set of critical points of the function  $f(x) = (x-2)^{\overline{3}} \cdot (2x+1)$  is 78. (2)  $\left\{-\frac{1}{2},1\right\}$  $(3)\{-1,2\}$ (1) {1, 2} (4) {1} Key. 1

Sol. 
$$f'(x) = (x-2)^{\frac{2}{2}} \cdot 2 + (2x+1) \cdot \frac{2}{3} \frac{1}{(x-2)^{\frac{1}{3}}}$$
  

$$= 2 \left[ \frac{3(x-2)+2x+1}{3(x-2)^{\frac{1}{3}}} \right]$$

$$= \frac{2}{3} \frac{(5x-5)}{(x-2)^{\frac{1}{3}}} = \frac{10}{3} \frac{(x-1)}{(x-2)^{\frac{1}{3}}}$$
Critical points are  $x = 1$  and  $x = 2$   
79. For  $x \in (0,1)$  which of the following is true?  
(1)  $e^{x} < 1 + x$  (2)  $\log_{x} (1 + X) < X$  (3)  $\sin x > x$  (4)  $\log_{x} x > x$   
Key. 2  
Sol. Let  $f(x) = e^{x} - 1 - x, g(x) = \log(1 + x) - x$   
 $h(x) = \sin x - x, p(x) = \log x - x$   
for  $g(x) = \log(1 + x) - x$   
 $g'(x) = \frac{1}{1 + x} - 1 = \frac{-x}{1 + x} < 0 \quad \forall x \in (0, 1)$   
 $g(x)$  is decreasing when  $0 < x < 1$ .  
 $g(0) > g(X) = b \log(1 + x) < x$   
Similarly it can be done for other functions.  
80.  $f(x) = |x| \ln x|$ :  $x \in (0, 1)$ , then  $f(x)$  has maximum value=  
(1) e (2)  $\frac{1}{e}$  (3) 1 (4) None of these  
Key. 2  
Sol.  $f(x) = -x \ln x$   
 $\lim_{x \to 0^{-1}} f(x) = 0$   
 $f'(x) = -(1 + \ln x) \begin{cases} > 0 \quad \text{if } 0 < x < \frac{1}{e} \\ = 0 \quad \text{if } x = \frac{1}{e} \\ < 0 \quad \text{if } \frac{1}{e} < x < 1 \end{cases}$   
Fhas maximum value at  $x = \frac{1}{e} \text{ and } f(\frac{1}{e}) = \frac{1}{e}$   
81. Let  $f(x) = \begin{cases} (x+1)^{3} - 2 < x \le -1 \\ x^{2/3} - 1 - 1 < x \le 1 \\ -(x-1)^{2} - 1 < x > 2 \end{cases}$ 

2

The total number of maxima and minima of f(x) is

Key. Sol.

$$f'(x) = \begin{cases} 3(x+1)^2 & -2 < x < -1\\ \frac{2}{3} \times x^{-1/3} & -1 < x < 1 - \{0\}\\ -2(x-1) & 1 < x < 2 \end{cases}$$
  
$$f'(x)DNE \ at \ x = -1, 0, 1$$
  
$$\hline -2 + -1 & -0 & + 1 - 1$$
  
Sign of  $f'(x)$ 

Given  $f(x) = \begin{cases} x^2 e^{2(x-1)} & 0 \le x \le 1\\ a \cos(2x-2) + bx^2 & 1 < x \le 2 \end{cases}$ f(x) is differentiable at x=1 provided 82. (2) a = 1, b = -2(4) a = 3, b = -4(1) a = -1, b = 2(3) a = -3, b = 4

2

Key. 1  
Sol. 
$$f(1+0) = f(1-0) \Rightarrow a+b=1$$
  
 $f^{1}(1-0) = f^{1}(1+0) \Rightarrow 4 = 2b$   
 $\Rightarrow b = 2, a = -1$   
83. Define  $f:[0,\pi] \rightarrow R$  by is continuous at  $x = \frac{\pi}{2}$ , then k=  
(1)  $\frac{1}{12}$  (2)  $\frac{1}{6}$  (3)  $\frac{1}{24}$  (4)  $\frac{1}{32}$   
Key. 1  
Sol. Let  $\sin x = t$  and evaluate  $\lim_{t \to 1} \frac{t^{2}}{1-t^{2}} \left[ \sqrt{2t^{2}+3t+4} - \sqrt{t^{2}+6t+2} \right]$  by rationalization  
84. If  $f(x) = \frac{1}{(x-1)(x-2)}$  and  $g(x) = \frac{1}{x^{2}}$ , then the number of discontinuities of the composite  
function  $f(g(x))$  is  
(1) 2 (2) 3 (3) 4 (4)  $\geq 5$   
Key. 4  
Sol. Conceptual

85. Find which function does not obey lagrange's mean value theorem in [0, 1] (1)  $f(x) = \begin{cases} \frac{1}{2} - x : x < \frac{1}{2} \\ \left(\frac{1}{2} - x\right)^2 : x \ge \frac{1}{2} \end{cases}$ (2)  $f(x) = \begin{cases} \frac{\sin x}{x} : x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$ (4) f(x) = |x|(3) f(x) = x|x|Key. 1 In (a),  $f'\left(\frac{1}{2}-\right) = -1$  while  $f'\left(\frac{1}{2}+\right) = 0$ Sol. f is not differentiable at  $x = \frac{1}{2}$ . Rolle's theorem holds in [1, 2] for the function  $f(x) = x^3 + bx^2 + cx$  at the point  $\frac{4}{3}$ . The values of b, c 86. are respectively (1) 8, -5 (3) 5. – (2) -5, 8 (4) -5, -8 Key. 2 f(1) = f(2) and f'(4/3) = 0Sol. 3b + c = -7 and 8b + 3c = -16b = -5; c = 8 $\log x$ , If f(x) =and Rolle's theorem is applicable to f(x) for  $x \in [0, 1]$  then  $\alpha$  is equal to 87. 3.0 4. 1/2 1.-2 Key. 4 for Rolle's theorem in [a, b] Sol.  $f(a) = f(b) \Longrightarrow f(0) = f(1) = 0$ Since the function has to be continuous in [0, 1] $\mathop{Lt}_{x\to 0^+} f(x) = f(0)$  $\Rightarrow \underbrace{Lt}_{x \to 0^+} x^{\alpha} \log x = 0$  $\Rightarrow Lt \frac{\log x}{x^{-\alpha}} = 0$ 

Mathematics Applying L – H rule

$$Lt_{x\to 0} \frac{1/x}{-\alpha x^{-\alpha-1}} = 0$$

$$\Rightarrow Lt_{x\to 0} \frac{-x^{\alpha}}{\alpha} = 0$$

This is true for 
$$\alpha > 0$$

88. Let  $f:(0,\infty) \to R$  be a (strictly) decreasing function.

If 
$$f(2a^2 + a + 1) < f(3a^2 - 4a + 1)$$
, then the range of  $a \in \mathbb{R}$  is  
a)  $\left(-\infty, \frac{1}{3}\right) \cup (1, \infty)$  b) (0, 5) c)  $\left(0, \frac{1}{3}\right) \cup (1, 5)$  d) [0, 5]

Key. 3

Sol. we have 
$$2a^2 + a + 1 > 3a^2 - 4a + 1 \Rightarrow a^2 - 5a < 0 \Rightarrow 0 < a < 5$$
 ......(A)  
Also  $3a^2 - 4a + 1 > (3a - 1)(a - 1) > 0 \Rightarrow a \in (-\infty, 1/3) \cup (1, \infty)$ .....(B)  
Intersection of (A) and (B) yields  $a \in (0, 1/3) \cup (1, 5)$ 

89. Suppose 
$$f:[1,2] \to R$$
 is such that  $f(x) = x^3 + bx^2 + cx$ . If  $f$  satisfies the hypothesis of Rolle's

theorem on [1,2] and the conclusion of Rolle's theorem holds for f on [1,2] at the point  $\frac{4}{3}$ , then

a) 
$$b = -5$$
 b)  $b = 5$  c)  $c = -8$  d)  $c = 9$ 

Key.

1

Sol. 
$$f(1) = f(2) \Rightarrow 1+b+c = 8+4b+2c \Rightarrow 3b+c = -7 \rightarrow (1)$$
.

Now, 
$$f'(x) = 3x^2 + 2bx + c$$
;  $\therefore f'\left(\frac{4}{3}\right) = 0$  (given)  $\Rightarrow 3.\frac{16}{9} + 2b.\frac{4}{3} + c = 0 \Rightarrow 8b + 3c = -16 \Rightarrow$   
(2). From (1),(2) we get  $b = -5$  and  $c = 8$ .

90. Given a function  $f:[0,4] \rightarrow R$  is differentiable, then for some  $a, b \in (0,4)$   $[f(4)]^2 - [f(0)]^2 = (f(4))^2 - [f(4)]^2 - [f($ 

a) 
$$8f'(b)f(a)$$
 b)  $4f'(b)f(a)$  c)  $2f'(b)f(a)$  d)  $f'(b)f(a)$ 

Key. 1

Sol. Since f(x) is differentiable in [0, 4], using Lagrange's Mean Value Theorem.

$$f'(b) = \frac{f(4) - f(0)}{4}, \ b \in (0, 4)$$

$$(1)$$
Now,  $\{f(4)\}^2 - \{f(0)\}^2 = \frac{4\{f(4) - f(0)\}}{4}\{f(4) + f(0)\} = 4f'(b)\{f(4) + f(0)\}$ 

$$(2)$$

Also, from Intermediate Mean Value Theorem,

$$\frac{f(4) + f(0)}{2} = f(a) \text{ for } a \in (0, 4)$$
Hence, from (2)  $[f(4)]^2 - [f(0)]^2 = 8f'(b)f(a)$ 
91. Suppose  $a, \beta$  and  $\theta$  are angles satisfying  $0 < \alpha < \theta < \beta < \frac{\pi}{2}$ , then  $\frac{\sin \alpha - \sin \beta}{\cos \beta - \cos \alpha} =$ 
a)  $\tan \theta$  b)  $-\tan \theta$  c)  $\cot \theta$  d)  $-\cot \theta$ 
Key. 3
Sol. Let  $f(x) = \sin x$  and  $g(x) = \cos x$ , then f and g are continuous and derivable. Also,  $\sin x \neq 0$  for any  $x \in \left(0, \frac{\pi}{2}\right)$  so by Cauchy's MVT,  $\frac{f(\beta) - f(\alpha)}{g(\beta) - g(\alpha)} = \frac{f'(\theta)}{g'(\theta)} \Rightarrow \frac{\sin \beta - \sin \alpha}{\cos \beta - \cos \alpha} - \frac{\cos \theta}{-\sin \theta}$ 
92. If  $f''(x) > 0, \forall x \in R$ ,  $f'(3) = 0$  and  $g(x) = f(\tan^2 x - 2\tan x + 4), 0 < x < \frac{\pi}{2}$ , then  $g(x)$  is increasing in
a)  $\left(0, \frac{\pi}{4}\right)$  b)  $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$  c)  $\left(0, \frac{\pi}{3}\right)$  d)  $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ 
Key. 4
Sol.  $g'(x) = (f'((\tan x - 1)^2 + 3))2(\tan x - 1)\sec^2 x$  since  $f''(x) > 0 \Rightarrow f'(x)$  is increasing
So,  $f'((\tan x - 1)^2 + 3) > f'(3) = 0 \quad \forall x \in \left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ 
Also,  $(\tan x - 1) > 0$  for  $x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ . So,  $g(x)$  in increasing in  $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ 
93. Let  $f(x) = 2x^3 + ax^2 + bx - 3\cos^2 x$  is an increasing function for all  $a, b, x \in \mathbb{R}$ . Then
a)  $a^2 - 6b - 18 > 0$  b)  $a^2 - 6b + 18 < 0$  c)  $a^2 - 3b - 6 < 0$  d)  $a > 0, b > 0$ 
Key. 2
Sol.  $f'(x) = 2x^3 + ax^2 + bx - 3\cos^2 x$ 
 $\therefore f'(x) = 6x^2 + 2ax + b + 3\sin 2x$ 
 $\therefore f'(x)$  is increasing for all  $x \Rightarrow 6x^2 + 2ax + b - 3$  as  $\sin 2x \ge -1$ 
Hence  $6x^2 + 2ax + b - 3 > 0$ 
 $\therefore 4a^2 - 4$ .  $6(b-3) < 0 \Rightarrow a^2 - 6b + 18 < 0$ 

94.  $f: R \to R$  be differentiable function. Study following graph of  $f'(x) = \frac{dy}{dx}$ . Find sum of total no. of points of inflexion and extrema of y = f(x).



Key. 9 Sol. No. of points of inflexion = 6, no. of extrema = 3 The minimum value of  $(8x^2 + y^2 + z^2) \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)^2$ , (x, y, z > 0), is 95. (A) 8 (B) 27 (C) 64 (D) 125 Key. С  $\frac{2(2x)^2 + y^2 + z^2}{2 + 1 + 1} \ge \left(\frac{2(2x) + y + z}{2 + 1 + 1}\right)^2 \ge \left(\frac{2 + 1 + 1}{\frac{2}{2x} + \frac{1}{y} + \frac{1}{z}}\right)$  $\Rightarrow (8x^2 + y^2 + z^2) \left(\frac{1}{z} + \frac{1}{z}\right)$ Sol. Let  $f(x) = \begin{cases} (3 - \sin(1/x)) |x|, \\ 0 \end{cases}$  $x \neq 0$ x = 0. Then at x = 0 f has a 96. (B) minima (A) maxima (D) point of discontinuity (C) neither maxima nor minima Key. В Sol. f is continuous at x = 0Further f(0 + h) > f(0) and f(0 - h) > f(0), for positive 'h'. Hence f has minimum value at x = 0.97. A car is to be driven 200kms on a highway at an uniform speed of x km/hrs (speed Rules of the high way require  $40 \le x \le 70$ ). The cost of diesel is Rs 30/litre and is consumed at the rate of litres per hour. If the wage of the driver is Rs 200 per hour then the most economical speed to drive the car is b) 70 a) 55.5 c) 40 d) 80 Key. В Let cost incurred to travel 200 kms be Sol. C(x).Then  $C(x) = \left(100 + \frac{x^2}{60}\right) \frac{200}{x} \times 30 + 200 \times \frac{200}{x}$  $=\frac{640000}{x}+100x$  $\Rightarrow$  C'(x) < 0 for x \in [40,70]  $\Rightarrow C(x)$  is minimum for x = 70 in  $x \in [40, 70]$ .

98. Let a,  $n \in N$  such that  $a \ge n^3$  then  $\sqrt[3]{a+1} - \sqrt[3]{a}$  is always

(A) less than 
$$\frac{1}{3n^2}$$
 (B) less than  $\frac{1}{2n^3}$ 

(C) more than 
$$\frac{1}{n^3}$$
 (D) more than  $\frac{1}{4n^2}$ 

Key. A  
Sol. Let 
$$f(x) = x^{1/3} \Rightarrow f'(x) = \frac{1}{3x^{2/3}}$$
, applying LMVT in [a, a + 1], we get one  $c \in (a, a + 1)$   
 $f'(c) = \frac{f(a+1) - f(a)}{a+1-a} \Rightarrow \sqrt[3]{a+1} - \sqrt[3]{a} = \frac{1}{3c^{2/3}} < \frac{1}{3a^{2/3}} \leq \frac{1}{3n^2} \Rightarrow \sqrt[3]{a+1} - \sqrt[3]{a} < \frac{1}{3n^2} \forall a \ge n^3$   
99. If  $x^2 + 9y^2 = 1$ , then minimum and maximum value of  $3x^2 - 27y^2 + 24xy$  is  
(A) 0, 5 (B) - 5, 5 (C) - 5, 10 (D) 0, 10  
Key. B  
Sol. Put  $x = \cos \theta$ ,  $y = \frac{1}{3} \sin \theta$   
Let  $u = 3x^2 - 27y^2 + 24xy$   
 $u = 3 \cos 2\theta + 4 \sin 2\theta$   
 $-5 \le u \le 5$ .  
100. Let the function  $g: (-\infty, \infty) \rightarrow (-\frac{\pi}{2}, \frac{\pi}{2})$  be given by  $g(u) = 2 \tan^{-1}(e^u) - \frac{\pi}{2}$ . Then g is  
(A) even and is strictly increasing in  $(0, \infty)$   
(B) odd and is strictly increasing in  $(-\infty, \infty)$   
(C) odd and is strictly increasing in  $(-\infty, \infty)$   
(D) neither even nor odd but is strictly increasing in  $(-\infty, \infty)$   
Key. C  
Sol.  $g(-u) = 2 \tan^{-1} e^{-u} - \frac{\pi}{2} = 2 \cot^{-1} e^{u} - \frac{\pi}{2} = 2(\frac{\pi}{2} - \tan^{-1} e^{u}) - \frac{\pi}{2}$ 

$$g'(u) = 2. \frac{1}{1 + e^{2u}} \cdot e^{u} > 0.$$

So, g(u) is odd and strictly increasing.

101. Let f(x) be a differentiable function in the interval (0,2), then the value of  $\int_{0}^{2} f(x) dx$  is\_\_\_\_\_ a) f(c) where  $c \in (0,2)$ b)  $2f\left(c
ight)$  where  $c\in\left(0,2
ight)$ 

Maxima & Minima

c) f'(c) where  $c \in (0,2)$ d) f''(0)Key. B Sol. Consider  $g(t) = \int_{0}^{t} f(x) dx$ Applying LMVT in (0,2)  $\frac{g(2) - g(0)}{2 - 0} = g'(c); c \in (0, 2) \qquad \qquad \Rightarrow \int_0^2 f(x) dx = 2f(c) \text{ for } c \in (0, 2)$ Let  $g(x) = \int_{0}^{1+x} t |f'(t)| dt$ , where f(x) does not behave like a constant function in any interval (a, b) 102. and the graph of y = f'(x) is symmetric about the line x = 1. Then (A) g(x) is increasing  $\forall x \in R$ (B) g(x) is increasing only if x < 1(D) g(x) is decreasing  $\forall x \in R$ (C) g(x) is increasing if f is increasing Key. Δ g'(x) = (1+x) |f'(x+1)| + (1-x) |f'(1-x)|Sol.  $=|f'(1+x)|(1+x+1-x)>0 \quad \forall x \in \mathbb{R}$ 103. The equation  $2x^3 - 3x^2 - 12x + 1 = 0$  has in the interval (-2.1) B) exactly one real root A) no real root C) exactly two real roots D) all three real roots Key. C Sol. Let  $f(x) = 2x^3 - 3x^2 - 12x + 1$ f(-2) < 0; f(0) > 0; f(1) < 0 $\therefore f(x) = 0$  has at least two roots in the interval (-2, 1). Suppose all the real roots of  $f(x) \in (-2,1)$ . Then by Rolle's theorm, both the roots of the equation  $f^{1}(x) = 0$  should belong to (-2, 1) $f^{1}(x) = 6x^{2} - 6x - 12 = 0 \implies x^{2} - x - 2 = 0$  $\Rightarrow (x-2)(x+1) = 0 \Rightarrow x = 2, -1$ 104. If f:  $[1, 5] \rightarrow R$  is defined by  $f(x) = (x-1)^{10} + (5-x)^{10}$  then the range of f is B)  $[0, 2^{11}]$  C)  $[2^{11}, 2^{20}]$ A)  $[0, 2^{20}]$ D)  $R^{+}$ Key. C Conceptual Sol. 105. If  $3(a+2c) = 4(b+3d) \neq 0$  then the equation  $ax^3 + bx^2 + cx + d = 0$  will have (A) no real solution (B) at least one real root in (-1,0)(C) at least one real root in (0,1)(D) none of these Key. R Consider  $f(x) = \frac{ax^4}{4} + \frac{bx^3}{2} + \frac{cx^2}{2} + dx$  and apply Rolle's theorem Sol. 106. The function in which Rolle's theorem is verified is (A)  $f(x) = \log\left(\frac{x^2 + ab}{(a+b)x}\right)$  in [a,b] (where 0 < a < b) (B) f(x) = (x-1)(2x-3) in [1,3]

•

(C)  $f(x) = 2 + (x-1)^{2/3}$  in [0, 2]Key. A Sol.  $f(x) = \log\left(\frac{x^2 + ab}{(a+b)x}\right)$  is continuous in [a,b] and differentiable in (a,b) and f(a) = f(b)

107. If  $f(x) = x^{\alpha} \log x$  and f(0) = 0 then the value of  $\alpha$  for which Rolle's theorem can be applied in [0,1] is

(D)  $\frac{1}{2}$ 

Key. D

A,B,D

Let  $f(x) = \log_e x - (x-1)$ 

 $\Rightarrow f'(x) = \frac{1}{r} - 1 = \frac{1 - x}{r} < 0$ 

Key.

Sol.

Sol. for the function  $f(x) = x^{\alpha} \log x$  Rolle's theorem is applicable for  $\alpha > 0$  in [0,1]

108. Let 
$$f(x) = 2x^2 - \ln |x|, x \neq 0$$
, then  $f(x)$  is  
a) monotonically increasing in  $\left(-\frac{1}{2}, 0\right) \cup \left(\frac{1}{2}, \infty\right)$   
b) monotonically decreasing in  $\left(-\frac{1}{2}, 0\right) \cup \left(\frac{1}{2}, \infty\right)$   
c) monotonically increasing in  $\left(-\infty, -\frac{1}{2}\right) \cup \left(0, \frac{1}{2}\right)$   
d) monotonically decreasing in  $\left(-\infty, -\frac{1}{2}\right) \cup \left(0, \frac{1}{2}\right)$   
Key. A,D  
Sol.  $Q f(x) = 2x^2 - \ln |x|$   
 $\therefore f'(x) = 4x - \frac{1}{x}$   
 $= \frac{(2x+1)(2x-1)}{x}$   
For increasing,  $f'(x) > 0$   
 $\therefore x \in \left(-\frac{1}{2}, 0\right) \cup \left(\frac{1}{2}, \infty\right)$   
And for decreasing,  $f'(x) < 0$   
 $\therefore x \in \left(-\infty, -\frac{1}{2}\right) \cup \left(0, \frac{1}{2}\right)$   
109. For  $x > 1, y = \log_e x$  satisfies the inequality  
a)  $x - 1 > y$  b)  $x^2 - 1 > y$  c)  $y > x - 1$  d)  $\frac{x - 1}{x} < y$
Q f(x) is decreasing function (Q x > 1)  $x > 1 \Longrightarrow f(x) < f(1)$  $\log_{e} x - (x - 1) < 0$  $\Rightarrow$  $(x-1) > \log_e x$  $\Rightarrow$ Or (x-1) > vNow, let  $g(x) = \log_e x - (x^2 - 1)$ .  $\Rightarrow g'(x) = \frac{1}{x} - 2x = \left(\frac{1 - 2x^2}{x}\right) < 0 \text{ (for } x > 1\text{)}$  $\therefore g(x)$  is decreasing function  $x > 1 \Longrightarrow g(x) < g(1)$ Q  $\log_{x} x - (x^{2} - 1) < 0$  $\Rightarrow$ ÷.  $(x^2 - 1) > y$ Or Again, let  $h(x) = \frac{x-1}{x} - \log_e x$  $h'(x) = 0 + \frac{1}{x^2} - \frac{1}{x} = \frac{1-x}{x^2} < 0$ Ŀ. (for x > 1 $\therefore h(x)$  is decreasing function  $x > 1 \Longrightarrow h(x) < h(1)$ O  $\frac{x-1}{x} - \log_e x < 0$  $\Rightarrow$  $\frac{x-1}{x} < y \, .$  $\Rightarrow$ 

110. Let 'a' (a < 0, a  $\notin$  I) be a fixed constant and 't' be a parameter then the set of values of 't' for the function  $f(x) = \left(\frac{|[t]+1|+a}{|[t]+1|+1-a}\right)x$  to be a non increasing function of x,

([ $\cdot$ ] denotes the greatest integer function) is

a) 
$$[[a], [-a + 1])$$
 b)  $[[a], [-a])$  c)  $[[a + 1], [-a + 1])$  d)  $[[a - 1], [-a + 1])$ 

Key. B

Sol. 
$$f'(x) \le 0 \Rightarrow \frac{|[t]+1|+a}{|[t]+1|+1-a} \le 0$$
, but as  $a < 0, 1-a > 0$ .  
So  $|[t]+1| \le -a \Rightarrow a \le [t]+1 \le -a \Rightarrow a-1 \le [t] \le -a-1$   
 $\Rightarrow [a] \le [t] \le [-a]-1$  (as  $a \notin I$ )  $\Rightarrow [a] \le t < [-a]$ 

111. The number of critical values of 
$$f(x) = \frac{|x-1|}{x^2}$$
 is  
a) 0 b) 1 c) 2 d) 3  
Key. D

 $f'(x) = \frac{|x-1| \left\{ \frac{x^2}{x-1} - 2x \right\}}{4} \implies f'(x) = 0 \quad at \ x = 2$ Sol.  $\Rightarrow$  f'(x) does not exist at x = 0,1 112. The absolute minimum value of  $x^2 - 4x - 10|x-2| + 29$  occurs at a) one value of  $x \in R$  b) at two values of  $x \in R$ c) x=7.3 d) no value of  $x \in R$ Kev. Given function is  $(|x-2|-5)^2$  which has global minimum value equal to 0, when Sol. |x-2| = 5113. The function f(x) = x(x-1)(x-2)(x-3) - (x-50) in (0,50) has *m* local maxima and *n* local minimum then c) *m=n=26* b) *m=26* , *n=25* d) *m=n=25* a) m=25 , n=26 Kev. D From the given conditions, it follows that  $f(x) = x^3 + 1 \Rightarrow f^1(2) = 3(2)^2 = 12$ Sol. 114. The value of *c* in the Lagrange's mean value theorem applied to the function f(x) = x(x+1)(x+2) for  $0 \le x \le 1$  is b)  $\frac{\sqrt{21}-3}{2}$ d)  $\frac{\sqrt{21}+3}{8}$ Key.  $f^{1}(c) = 3c^{2} + 6c + 2 = \frac{f(1) - f(0)}{1} = 6 \Longrightarrow 3c^{2} + 6c - 4 = 0 \Longrightarrow c = -1 + \frac{\sqrt{21}}{2} \in (0,1)$ Sol. 115. A twice differentiable function f(x) on (a,b) and continuous on [a,b] is such that  $f^{11}(x) < 0$  for all  $x \in (a,b)$  then for any  $c \in (a,b), \frac{f(c)-f(a)}{f(b)-f(c)} >$ c) (b-c)(c-a) d)  $\frac{1}{(b-c)(c-a)}$ a)  $\frac{b-c}{c-a}$ Key. Let  $u \in (a,c), v \in (c,b)$  then by LMVT on (a,c), (c,b) it follows Sol.  $f^{1}(u) = \frac{f(c) - f(a)}{c - a}, f^{1}(v) = \frac{f(b) - f(c)}{b - c}.$ But u<v and  $f^{11}(x) < 0$  for all  $x \in (a,b) \Rightarrow f^1(x) \downarrow \Rightarrow f^1(u) > f^1(v) \Rightarrow \frac{f(c) - f(a)}{f(b) - f(c)} > \frac{c - a}{b - c}$ . The number of roots of  $x^5 - 5x + 1 = 0$  in (-1,1) is 116. a) 0 c) 2 d) 3 b) 1 Key. Let  $f(x) = x^5 - 5x + 1$ . Q  $f(1)f(-1) < 0 \exists$  at least one root say  $\alpha$  of f(x) = 0 in (-1,1). Sol. If  $\exists$  another root  $\beta$  ( $\alpha < \beta$ ) in (-1,1) then by RT applied to  $[\alpha, \beta]$ , it follows that there exist  $\gamma \in (\alpha, \beta)$  such that  $f^{1}(\gamma) = 5\gamma^{4} - 5 = 0$  *i.e*  $\gamma = 1, -1$  but  $\gamma \in (\alpha, \beta) \subset (-1, 1)$ :  $\gamma \neq 1, -1$ , *a contradiction*. Hence number of roots of f(x) = 0 in (-1,1) is **1**.

117. If  $\frac{a_0}{5} + \frac{a_1}{4} + \frac{a_2}{3} + \frac{a_3}{2} + a_4 = 0$  then the equation  $a_0 x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4 = 0$ B) possesses at least one root between 0 and 1 A) does not have root between 0 and 1 C) has exactly one root between 0 and 1 D) has a root between 1 and 2 Key. B Sol. Consider the function  $f(x) = \frac{a_0 x^5}{5} + \frac{a_1 x^4}{4} + \frac{a_2 x^3}{3} + \frac{a_3 x^2}{2} + a_4 x$ f(0) = 0 and f(1) = 0 by hypothesis : f satisfies all conditions of Rolle's theorem  $\therefore f^{1}(x) = 0$  has at least one root in (0,1) 118. The largest area of the rectangle which has one side on the X-axis and two vertices on the curve  $y = e^{-1}$ is C)  $\sqrt{\frac{2}{2}}$ A)  $\frac{1}{\sqrt{2e}}$ B)  $\frac{1}{2\rho^2}$ Key. C Sol. Let  $f(t) = t e^{-t^2}$  $f^{1}(t) = -2t^{2} e^{-t^{2}} + e^{-t^{2}}$  $=e^{-t^2}(1-2t^2)$  $f^{1}(t) = 0 \Longrightarrow t = \frac{1}{\sqrt{2}}$ Max area =  $2 \times \frac{1}{\sqrt{2}} \times e^{\frac{-1}{2}} = \frac{\sqrt{2}}{\sqrt{e}}$ t > 0(0,1)  $-t,e^{-t^2}$  $t,e^{-t^2}$ 0 (-t, 0)(*t*, 0) and  $g(x) = \frac{x}{\tan x}$  where  $0 < x \le 1$ . Then in this interval 119. (a) f(x) and g(x) both are increasing (b) f(x) is decreasing and g(x) is increasing (c) f(x) is increasing and g(x) is decreasing (d) none of the above Key.  $f'(x) = \frac{\sin x - x \cos x}{\sin^2 x}$ Sol. Now  $h(x) = \sin x - x \cos x$  $h'(x) = x \sin x > 0 \quad \forall 0 < x \le 1$ 

h(x) is increasing in (0, 1] $h(0) < h(x) \implies \sin x - x \cos x > 0$  for  $0 < x \le 1$  $\Rightarrow$  f'(x) > 0 Hence f(x) is increasing. Similarly it can be done for g(x). For  $x \in (0,1)$ , which of the following is true? 120. (a)  $e^x < 1 + x$ (b)  $\log_{e}(1+x) < x$ (c)  $\sin x > x$ (d)  $\log_e x > x$ Key. В Let  $f(x) = e^{x} - 1 - x$ ,  $g(x) = \log(1 + x) - x$ Sol.  $h(x) = \sin x - x, \ p(x) = \log x - x$ for  $g(x) = \log(1 + x) - x$  $g'(x) = \frac{1}{1+x} - 1 = \frac{-x}{1+x} < 0 \quad \forall x \in (0, 1)$ g(x) is decreasing when 0 < x < 1.  $g(0) > g(x) \implies \log (1 + x) < x$ Similarly it can be done for other functions. 121.  $f(x) = |x| n x |: x \in (0,1)$  has maximum value (A) *e* **(B)** (D) None of these (C) 1 Key. B Sol.  $f(x) = -x \ln x$  $\lim_{x\to 0^+} f(x) = 0$ if f'(x) = -(1+1nx)=0 if < 0*f* has maximum value at  $x = \frac{1}{e}$  and  $f\left(\frac{1}{e}\right) = \frac{1}{e}$  $x^{a}$ ln x 122. if If Lagrange's theorem applies to f on [0, 1] then 'a' can be (A) - 2(B) - 1(D)  $\frac{1}{2}$ (C) 0 Key. D Sol. f is continuous at x = 0 $\therefore 0 = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^a \ln x$  forces "a > 0" is necessary.

Rolle's theorem holds in [1, 2] for the function  $f(x) = x^3 + bx^2 + cx$  at the point " $\frac{4}{3}$ ". The values 123. of *b*, *c* are respectively (A) 8, -5(B) - 5, 8(C) 5, -8 (D) -5, -8Key. В Sol. f(1) = f(2) and f'(4/3) = 03b + c = -7 and 8b + 3c = -16b = -5; c = 8Point on the curve  $y^2 = 4(x-10)$  which is nearest to the line x + y = 4 may be 124. (B) (10, 0) (A) (11, 2) (C) (11, -2) (D) None of these Key. С Sol.  $P(x_0, y_0)$ : pt on curve nearest to line. Normal at *P* is perpendicular to the line Normal at P has slope " $-\frac{y_0}{2}$ "  $\therefore y_0 = 2$  and  $x_0 = 11$ ; P(11, -2) $f(x) = (\sin^2 x) e^{-2\sin^2 x}; \max f(x) - \min f(x) =$ 125. (B)  $\frac{1}{2e} - \frac{1}{e^2}$ (A)  $\frac{1}{\rho^2}$ (C) 1 Key. D (D) None of these Sol. Let  $t = \sin^2 x; t \in [0,1]$  $f(x) = g(t) = te^{-2t}$  $g'(t) = (1-2t) e^{-2t} \begin{cases} > 0 & if \quad t \in [0, \frac{1}{2}) \\ < 0 & if \quad t \in (\frac{1}{2}, 1] \end{cases}$  $\max f = \max g = g\left(\frac{1}{2}\right) = \frac{1}{2e}$  $\min f = \min g = \min \{g(0), g(1)\} = 0$  $\max f - \min f = \frac{1}{2e}.$  $f(x) = \begin{cases} |x| & if & 0 < |x| \le 2\\ 1 & if & x = 0 \end{cases}$  HAS AT X = 0126.

| Mathematics |  |
|-------------|--|
|-------------|--|

B

-2

<u> Maxima & Minima</u>

| (A) | LOCAL MAXIMA | (B) | LOCAL MINIMA  |
|-----|--------------|-----|---------------|
| (C) | TANGENT      | (D) | NONE OF THESE |

KEY. A

SOL.



O(0, 0) is not a point on the graph

127.  $f(x) = x^4 - 10x^3 + 35x^2 - 50x + c$ . WHERE C IS A CONSTANT. THE NUMBER OF REAL ROOTS OF f'(x) = 0 AND f''(x) = 0 ARE RESPECTIVELY

| (A) $1, 0$ (B) $3, 2$ (C) $1, 2$ (D) $3, 0$ | (A) 1, 0 | (B) 3, 2 | (C) 1, 2 | (D) 3, 0 |
|---------------------------------------------|----------|----------|----------|----------|
|---------------------------------------------|----------|----------|----------|----------|

KEY. B

Sol. 
$$g(x) = (x-1)(x-2)(x-3)(x-4)$$

$$f(x) = g(x) + c_0 : c_0 = c - 24$$

g(x) = 0 has 4 roots viz. x = 1, 2, 3, 4

$$f'(x) = g'(x)$$
 and  $f''(x) = g''(x)$ 

By Rolle's theorem g'(x) = 0 has min. one root in each of the intervals (1, 2); (2, 3); (3, 4) BY ROLLE'S THEOREM, BETWEEN TWO ROOTS OF f'(x) = 0, f''(x) = 0 HAS MINIMUM ONE ROOT.

## 128. THE DIFFERENCE BETWEEN THE GREATEST AND LEAST VALUE OF

$$f(x) = \sin 2x - x : x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
(A) 
$$\frac{\sqrt{3} + \sqrt{2}}{2}$$
(C) 
$$\frac{\sqrt{3}}{2} - \frac{\pi}{3}$$

(B)  $\frac{\sqrt{3}+\sqrt{2}}{2}+\frac{\pi}{6}$ 

(D) NONE OF THESE

KEY. D

Sol. 
$$f'(x) = 2\cos 2x - 1; \ f'(x) = 0 \text{ if } x = -\frac{\pi}{6}, \frac{\pi}{6}$$
  
 $f'(x) > 0 \text{ if } x \in \left(-\frac{\pi}{6}, \frac{\pi}{6}\right)$   
 $f'(x) < 0 \text{ if } x \in \left[-\frac{\pi}{2}, -\frac{\pi}{6}\right) \text{ or } x \in \left(\frac{\pi}{6}, \frac{\pi}{2}\right]$ 

Maxima & Minima

Max 
$$f = \max\{f\left(-\frac{\pi}{2}\right), f\left(\frac{\pi}{6}\right)\} = \max\{\frac{\pi}{2}, \frac{\sqrt{3}}{2}, -\frac{\pi}{6}\right\} = \frac{\pi}{2}$$
  
MIN  $f = -\frac{\pi}{2}$  IS *F* IS AN ODD FUNCTION.  
129.  $f: R \rightarrow R$  IS A FUNCTION SUCH THAT  $f(x) = 2x + \sin x$ ; THEN, *F* IS  
(A) ONE-ONE AND ONTO (B) ONE-ONE BUT NOT ONTO  
(C) ONTO BUT NOT ONE-ONE (D) NEITHER ONE-ONE NOR ONTO  
KEY. A  
Sol.  $f'(x) = 2 + \cos x > 0; \therefore f$  is one-one  
f is continuous;  $\lim_{x \to \infty} f(x) = \infty; \lim_{x \to \infty} f(x) = -\infty$   
 $\therefore f$  IS ONE-ONE AND ONTO  
130. FIND WHICH FUNCTION DOES NOT OBEY LAGRANGE'S MEAN VALUE THEOREM IN [0, 1]  
(A)  $f(x) = \begin{cases} \frac{1}{2} - x & \vdots & x < \frac{1}{2} \\ \left(\frac{1}{2} - x\right)^2 & \vdots & x \ge \frac{1}{2} \end{cases}$  (B)  $f(x) = \begin{cases} \frac{\sin x}{x} & \vdots & x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$   
(C)  $f(x) = x |x|$  (D)  $f(x) = |x|$   
KEY. A  
Sol. In (a),  $f'\left(\frac{1}{2} - \right) = -1$  while  $f'\left(\frac{1}{2} + \frac{1}{2} = 0 \end{cases}$   
F IS NOT DIFFERENTIABLE AT  $x = \frac{1}{2}$ .  
131. IF  $A > 0, B < 0$  AND  $A = \frac{\pi}{2} + B$  THEN MINIMUM VALUE OF TANA TANB IS  
(A)  $-\frac{1}{2}$  (B)  $-1$   
(C)  $-\frac{1}{3}$  (D) NONE OF THESE  
KEY. C  
Sol.  $B_0 = -B > 0; A + B_0 = \frac{\pi}{3}$ .  
By  $A.M. - G.M.$ , max tan  $A \tan B_0$  happens when  
 $A = B_0 = \frac{\pi}{6}$   
 $\therefore$  MIN tan  $A \tan B = -\frac{1}{3}$ .  
132. The point on the curve  $x^2 = 2y$  which is nearest to a (0, 3) may be

|      | (A) (2, 2)                                                                                                     | (B)        | $\left(1,\frac{1}{2}\right)$  |
|------|----------------------------------------------------------------------------------------------------------------|------------|-------------------------------|
|      | (C) (0, 0)                                                                                                     | (D)        | $\left(-3,\frac{9}{2}\right)$ |
| KEY. | А                                                                                                              |            |                               |
| Sol. | Let $P(x_0, y_0)$ be the nearest point                                                                         |            |                               |
|      | $PA^2 = (y_0 - 3)^2 + (x_0 - 0)^2$                                                                             |            |                               |
|      | $= y_0^2 - 4y_0 + 9$ as $x_0^2 = 2y_0$                                                                         |            |                               |
|      | $=(y_0-2)^2+5$                                                                                                 |            |                               |
|      | $PA^{2}$ is minimum if $y_{0} = 2; x_{0} = \pm 2$<br>$P(\pm 2, 2).$                                            |            | - 01/.                        |
|      | Aliter : A lies on normal to curve at P.                                                                       |            |                               |
| 133. | POINT ON THE LINE $x - y = 3$ WHICH IS NEARE                                                                   | EST TO T   | THE CURVE $x^2 = 4y$ IS       |
|      | (A) $(0, -3)$                                                                                                  | (B)        | (3,0)                         |
|      | (C) $(2,-1)$                                                                                                   | 5          | (D) NONE OF THESE             |
| KEY. | В                                                                                                              |            |                               |
| Sol. | $P(x_0, y_0)$ is the nearest point; $y_0 = x_0 - 3$                                                            |            |                               |
|      | Line through <i>P</i> , perpendicular to $x - y = 3$ is normal to                                              | to given c | curve at, say, $Q(x_1, y_1)$  |
|      | $\therefore -\frac{2}{x_1} = -1; \ x_1 = 2; \ y_1 = 1.$                                                        |            |                               |
|      | Normal is $y-1 = -(x-2)$ ; This cuts $x - y = 3$ at <i>P</i> .<br>$\therefore P(3, 0)$ .                       |            |                               |
| 134. | $f(x) = \begin{cases} \frac{ x-1 }{x^2} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$ INCREASES IN |            |                               |
|      | (A) (0, 2)                                                                                                     | (B)        | [0, 2]                        |
|      | (C) $[0,\infty)$                                                                                               | (D)        | NONE OF THESE                 |
| KEY. | D                                                                                                              |            |                               |
|      | $\begin{cases} \frac{x-1}{x^2} & \text{if } x > 1 \end{cases}$                                                 |            |                               |
| Sol. | $f(x) = \begin{cases} \frac{1-x}{x^2} & \text{if } x < 1 : x \neq 0\\ 0 & \text{if } x = 0, 1 \end{cases}$     |            |                               |
|      | ζ.                                                                                                             |            |                               |

$$f'(x) = \begin{cases} \frac{2-x}{x^3} & \text{if } x > 1\\ \frac{x-2}{x^3} & \text{if } x \in (0,1) \text{ or } x \in (-\infty,0) \end{cases}$$

*f* is not differentiable at *x* = 0, 1 f'(x) > 0 IF  $x \in (1,2)$  OR  $x \in (-\infty,0)$ 

## Maxima & Minima Multiple Correct Answer Type



$$\Rightarrow$$
 (-  $\ddagger$  - 3)È(1  $\ddagger$  )

3. If  $f^{11}(x) > 0 \forall x \in R, f^{1}(3) = 0$  and  $g(x) = f(\tan^{2} x - 2\tan x + 4), 0 < x < \pi/2$ , then, g(x) is increasing in a)  $(0, \pi/4)$  b)  $(\pi/6, \pi/3)$ 

c)  $(0, \pi/3)$  d)  $(\pi/4, \pi/2)$ 

Key. D

Sol. 
$$g^{1}(x) = f^{1}((\tan x - 1)^{2} + 3) \cdot (2\tan x - 2) \sec^{2} x$$

 $\therefore f^{11}(\mathbf{x}) > 0 \Rightarrow f^{1}(\mathbf{x}) \text{ is increase}$  $\Rightarrow f^{1}((\tan x - 1)^{2} + 3) > f^{1}(3) = 0 \forall \mathbf{x} \in (0, \pi/4) \cup (\pi/4, \pi/2)$ Also,  $(\tan x - 1) > 0 \forall \mathbf{x} \in (\pi/4, \pi/2) \therefore g(\mathbf{x})$  is increase in  $(\pi/4, \pi/2)$ 

4. The function 
$$f(x) = \int_{0}^{x} \sqrt{1-t^{4}} dt$$
 is such that  
a) it is defined on the interval  $[-1,1]$   
b) it is an increasing function  
c) it is an odd function  
of inflexion  
d) the point  $(0,0)$  is the point

Key. A,B,C,D

Sol. Find  $f^1(x)$ 

- 5.  $f(x) = \begin{bmatrix} \frac{3-x^2}{2}, & 0 \le x \le 1\\ \frac{1}{x}, & 1 \le x \le 2 \end{bmatrix}$  Then, the value of 'c' in the LMVT over [0,2], is a)  $\frac{1}{2}$  b)  $\frac{1}{3}$  c)  $\frac{3}{2}$  d)  $\sqrt{2}$ Key. A,D Sol. By LMVT for f(x) on [0,1],  $\exists c \in (0,1) \Rightarrow \frac{f(1)-f(0)}{1-0} = \frac{-2c}{2} \Rightarrow c = \frac{1}{2}$ By LMVT for f(X) on [1,2],  $\exists c \in (1,2) \Rightarrow \frac{f(2)-f(1)}{2-1} = \frac{-1}{c^2} \Rightarrow c = \sqrt{2}$ 6. Let f(x) be a twice differentiable function such that  $f^{11}(x) > 0$  in [0,1].
  - Then,

a) f(0) + f(1) = 2f(c) for some  $c \in (0,1)$  b) f(0) + f(1) = 2f(1/2)

c)

$$f(0) + f(1) > 2f\left(\frac{1}{2}\right)$$

Key. A,C

Sol. By IVP,  $\frac{f(0) + f(1)}{2} = f(c), 0 < c < 1$  by

LMVT, 
$$f(1/2) - f(0) = \frac{1}{2}f^{1}(c_{1}), 0 < c_{1} < \frac{1}{2}$$
  
 $f(1) - f(1/2) = \frac{1}{2}f^{1}(c_{2}), \frac{1}{2} < c_{1} < 1$ 

Subtracting, we get,

$$f(1) + f(0) - 2f\left(\frac{1}{2}\right) = \frac{f^{1}(c_{2}) - f^{1}(c_{1})}{2} = \frac{c_{2} - c_{1}}{2}f^{11}(c) > 0 \quad \text{(UsingLMVT)}$$

$$\Rightarrow f(1) + f(0) > 2f\left(\frac{1}{2}\right)$$

7. The function  $f(x) = \int_{0}^{x} \sqrt{1-t^4} dt$  is such that

a) it is defined on the interval  $\begin{bmatrix} -1,1 \end{bmatrix}$ 

- b) it is an increasing function
- c) it is an odd function
- d) the point (0,0) is the point of inflexion
- Key. A,B,C,D

Sol. Find  $f^1(x)$ 

8. Consider the following statements Statement - I: If  $0 < \alpha < \beta < \frac{\pi}{2}$ , then,  $\frac{\tan\beta}{\tan\alpha} > \frac{\alpha}{\beta}$ Statement -II: If  $x \ge 0$ , then  $\frac{x}{1+x} \le \log(1+x) \le x$ . Then a) I is true b) I is false c) II is true d) II is false Key. A,C Sol.  $f(x) = x \tan x \Rightarrow f^{1}(x) = \tan x + x \sec^{2} x > 0$   $\frac{f(\beta) - f(\alpha)}{\beta - \alpha} = f^{1}(c) > 0 \Rightarrow f(\beta) > f(\alpha) \Rightarrow \frac{\tan\beta}{\tan\alpha} > \frac{\alpha}{\beta}$   $f(x) = \log(1+x) \Rightarrow f^{1}(x) = \frac{1}{1+x}$  $\frac{f(x) - f(0)}{x - 0} = f^{1}(c) = \frac{1}{1+x} \Rightarrow \log(1+x) = \frac{x}{1+c}$ 

d)  $f(0) + f(1) < 2f(\frac{1}{2})$ 

$$0 < c < x \Rightarrow 1 < 1 + c < 1 + x \Rightarrow \frac{1}{1 + x} < \frac{1}{1 + c} < 1$$
  

$$\Rightarrow \frac{x}{1 + x} < \frac{x}{1 + c} < x \Rightarrow \frac{x}{1 + x} < \log(1 + x) < x$$
  
Equality holds good for x = 0  
9.  $f(x) = \begin{bmatrix} \frac{3 - x^2}{2}, & 0 \le x \le 1 \\ \frac{1}{x}, & 1 \le x \le 2 \end{bmatrix}$  Then, the value of 'c' in the LMVT over  $[0,2]$ , is  
a)  $\frac{1}{2}$  b)  $\frac{1}{3}$  c)  $\frac{3}{2}$  d)  $\sqrt{2}$   
Key. A,D  
Sol. By LMVT for  $f(x) \text{ on } [0,1], \exists c \in (0,1) \Rightarrow \frac{f(1) - f(0)}{1 - 0} = \frac{-2c}{2} \Rightarrow c = \frac{1}{2}$   
By LMVT for  $f(x) \text{ on } [1,2], \exists c \in (1,2) \Rightarrow \frac{f(2) - f(1)}{2 - 1} = \frac{-1}{c^2} \Rightarrow c = \sqrt{2}$   
10. For the function,  $f(x) = x \cos \frac{1}{x}, x \ge 1$ ,  
a) For atleast one x in  $[1,\infty), f(x+2) - f(x) < 2$   
b)  $\lim_{x \to \infty} t^1 (x) = 1$   
c)  $\forall x \text{ in } [1,\infty), f(x+2) - f(x) > 2$   
d)  $f^1(x)$  strictly decreases in  $[1,\infty)$   
Key. B,C,D  
Sol. b and d are obvious For 'c' using LMVT for  $f(x)$  on  
 $[x,x+2], x \ge 1, \exists c \in (x, x+2) \Rightarrow \frac{f(x+2) - f(x)}{x+2 - x} = 2f^1(c) \Rightarrow f(x+2) - f(x) = 2f^1(c)$   
Q  $\lim_{x \to x} t^1(x) = 1$  and  $f^1(x)$  is strictly decreasing  $\forall x \ge 1, \Rightarrow f^1(c) > 1$  hence  
 $f(x+2) - f(x) > 2\forall x \in (1,\infty)$ 

11. 
$$f(x) = \begin{cases} \left(\sqrt{2} + \sin\frac{1}{x}\right)e^{\frac{-1}{|x|}} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Number of points where f(x) has local extrema when  $x \neq 0$  be  $n_1$ .  $n_2$  be the value of global minimum of f(x) then  $n_1 + n_2 =$ 

Key. 0

Local extremum does not occur at any value of  $x \neq 0$ . But global minimum = f(0)Sol.  $\therefore n_1 = 0, n_2 = 0$  then  $n_1 + n_2 = 0$ 

12. Let 
$$f(x) = \frac{e^x}{1+x^2}$$
 and  $g(x) = f'(x)$  then  
(A)  $g(x)$  has four points of local extremum  
(B)  $g(x)$  has two points of local extremum  
(C)  $g(x)$  has a point of local minimum at  $x = 1$   
(D)  $g(x)$  has a point of local maximum at some  $x \in X$   
Key: B,C,D

$$f(x) = \frac{e^{x}}{1+x^{2}}, g(x) = f'(x) = \frac{(x-1)^{2}e^{x}}{(1+x^{2})^{2}}, g'(x) = \frac{(x-1)(x^{3}-3x^{2}+5x+1)}{(x^{2}+1)^{3}}e^{x}$$

Let  $h(x) = x^3 - 3x^2 + 5x + 1$ ,  $h'(x) = 3x^2 - 6x + 5$ , D < 0 so h(x) has only one real roots. Also g(-1) g(0) < 0. So the root  $\in$  (-1, 0). Clearly g(x) has two points of extremum. Maxima at  $x \in$  (-1, 0) and minima at x = 1.

13. Let 
$$f(x) = x^2 \cdot e^{-x^2}$$
 then

- (A) f(x) has local maxima at x = -1 and x = 1
- (B) f(x) has local minima at x = 0
- (C) f(x) is strictly decreasing on  $x \in R$

(D) Range of 
$$f(x)$$
 is  $\left[0, \frac{1}{e}\right]$ 

## KEY: A,B,D

HINT 
$$f(x) = x^2 \cdot e^{-x^2}$$
  
 $f'(x) = 2x \cdot e^{-x^2} + x^2 \cdot e^{-x^2} (-2x)$   
 $= 2x e^{-x^2} [1 - x^2]$   
 $+ - + - sign of f'(x)$   
 $x$ 

f(x) has local maxima at x = -1 and 1 f(x) has local minima at x = 0Now; f(0) = 0 $f(1) = \frac{1}{R}$  and as  $x \to \infty, f(x) \to 0$ So, Range of f(x) is  $\left[0, \frac{1}{e}\right]$ Let  $f(x) = \begin{cases} 2x - 4 & x \le 2 \\ -x^2 + \frac{k^3(k-1)^2}{k^2 - k - 2} + 4, & x > 2 \end{cases}$ . f(x) attains local maximum at x = 2 if k lies 14. (A) (0,1) (B)  $(3,\infty)$ (C)  $\left(-\infty, -1\right)$ (D) (1,2)KEY : A, C, D HINT : When f(x) is continuous at x = 2 f'(x)DNE at x = 2and f'(x) changes sign from + to –  $\Rightarrow f(x) \text{ attains max. At } x = 2 \text{ if } \frac{k^3 (k-1)^2}{k^2 - k - 2} = 0 \Rightarrow k = 0, 1$ When f(x) is discontinuous at x = 2, f'(x) changes its sign from + to -. f(x) will attain maximum if  $\lim_{x \to 2^+} f(x) < f(2)$  as  $L_{x \to 2^{-}} f(x) = f(2) \text{ i.e if } k \in (-\infty, -1) \cup (0, 1) \cup (1, 2)$  $\Rightarrow$   $k \in (-\infty, -1) \cup [0, 2)$ Which of the following functions will not have absolute minimum value? 15. A)  $\cot(\sin x)$ B)  $\tan(\log x)$ C)  $x^{2005} - x^{1947} + 1$ D)  $x^{2006} + x^{1947} + 1$ KEY: A,B,C SOL : Even degree polynomial with leading coefficient +ve will have absolute minimum.

## 16. More than one option.

$$f(x) = \frac{\sqrt[3]{1-x}; \quad 0 < x < 0}{\sqrt[3]{1-x}; \quad 0 < x < 1}$$
2;  $x = 0$ 
 $\sqrt{x+1}; x \ge 1$ 

Then f(x)

A) has neither maximum nor minimum at x = 0

B) has maximum at x = 0

C) has neither maximum nor minimum at x = 1

D) no global maximum

KEY : B,C,D

17. Which of the following are true for 
$$\forall x \in (0, \infty)$$
  
a)  $\ln(1+x) > x - \frac{x^2}{2}$  b)  $\ln(1+x) > \frac{x}{x+1}$   
c)  $4\cos x + x > 0$  d)  $2\tan^{-1} x < x+1$   
Key: A, B, C  
Hint:  
(a)  $f(x) = \ln(1+x) - x + \frac{x^2}{2}$   
 $f^{+1}(x) = \frac{1}{1+x} - 1 + x = \frac{x^2}{1+x}$   
 $f(0) = 0, f^{+1}(x) > 0 \forall x \in (0, \infty) \Rightarrow f(x) > 0$   
(b)  $f(x) = \ln(1+x) - \frac{x}{1+x}$   
 $f^{+1}(x) = \frac{1}{1+x} - \frac{1}{(x+1)^2} = \frac{x}{(1+x)^2}$   
 $f(0) = 0, f^{+1}(x) > 0 \forall x \in (0, \infty) \Rightarrow f(x) > 0$   
(c)  $y = \cos x, y = -\frac{x}{4}$   
by graphit is clear that  
 $\cos x > \frac{-x}{4}$  is not true  $\forall x \in (0, \infty)$   
(d)  $f(x) = x + 1 - 2\tan^{-1} x$   
 $f(0) = 1$   
 $f^{+1}(x) = \frac{x^2 - 1}{1+x^2} = \frac{(x-1)(x+1)}{x^2 + 1}$   
 $at x = 1$   $f(x) \min ma$   
 $f(1) = 2\left(1 - \frac{\pi}{4}\right) > 0 \Rightarrow f(x) > 0 \forall x \in (0, \infty)$   
18. If  $\log_2\left(\log_{\frac{1}{2}}(\log_2(x))\right) = \log_3\left(\log_{\frac{1}{3}}(\log_3(y))\right) = \log_5\left(\log_{\frac{1}{3}}(\log_5(z))\right) = 0$  for  
positive x, y and z, then which of the following is/ are NOT true?  
(A)  $z < x <$  (B)  $x < y < z$   
(C)  $y < z < x$  (D)  $z < y < x$ 

**Mathematics** B. C. D Key: Solving we get  $x = 2^{1/2}$ ,  $y = 3^{1/3}$ ,  $z = 5^{1/5}$ Hint: Using graph of  $\,x^{1\!/x}$  $\Rightarrow 3^{1/3} > 5^{1/3}$ Also  $2^{1/2} < 3^{1/3}$  as  $2^3 < 3^2 | 2^{1/2} > 5^{1/5}$  as  $2^5 > 5^2$  $\Rightarrow$  y > x > z 2 e 3 5 Hence (b), (c), & (d) are NOT true. For the function  $f(x) = x \cos \frac{1}{x}, x \ge 1$ 19. a) for at least one x in the interval  $[1,\infty)$ , f(x+2)-f(x) < 2b)  $\lim_{x \to \infty} f^1(x) = 1$ c) for all x in the interval  $[1,\infty)$ , f(x+2)-f(x) > 2d)  $f^{1}(x)$  is strictly decreasing in the interval  $[1,\infty)$ Key. B,C,D Sol.  $f(x) = x \cos \frac{1}{x}, x^3$  1  $\int f'(x) = \cos\frac{1}{x} + \frac{1}{x}\sin\frac{1}{x}$  $f(x) = \frac{1}{1+|x|} + \frac{1}{1+|x-1|}$ . Let  $x_1, x_2$  are points where f(x) attains local minimum and 20. global maximum respectively. Let  $k = f(x_1) + f(x_2)$  then 6k - 9Key. Local minimum  $= f\left(\frac{1}{2}\right) = \frac{4}{3}$ Sol.

Global maximum =  $f(0) = f(1) = \frac{3}{2}$   $k = \frac{4}{3} + \frac{3}{2} = \frac{17}{6}$ 

Let g(x) and h(x) be twice differentiable functions on R and 21. f(2) = 8, g(2) = 0, f(4) = 10, g(4) = 8, then a)  $g^{1}(x) > 4f^{1}(x) \forall x \in (2,4)$ b)  $g(x) > f(x) \forall x \in (2,4)$ 

c)  $3g^{1}(x) = 4f^{1}(x)$  for at least one  $x \in (2,4)$ d)  $g^{1}(x) = 4f^{1}(x)$  for at least one  $x \in (2,4)$ Kev. D Let h(x) = g(x) - 4f(x). Verify RT in (2,4) Sol. h(2) = g(2) - 4f(2) = -32h(4) = g(4) - 4f(4) = -32 $\therefore h^{1}(x) = 0$  for at least one  $x \in (2,4) \Rightarrow g^{1}(x) = 4f^{1}(x)$  for at least one  $x \in (2, 4)$ If  $f^{11}(x) > 0 \forall x \in R, f^{1}(3) = 0$  and  $g(x) = f(\tan^{2} x - 2\tan x + 4), 0 < x < \pi/2$ 22. then, g(x) is increasing in b)  $(\pi/6, \pi/3)$ d)  $(\pi/4, \pi/2)$ a)  $(0, \pi/4)$ c)  $(0, \pi/3)$ Key. D  $g^{1}(x) = f^{1}((\tan x - 1)^{2} + 3).(2\tan x - 2)\sec^{2} x$ Sol.  $\therefore f^{11}(x) > 0 \Rightarrow f^{1}(x)$  is increase  $\Rightarrow f^{1}((\tan x - 1)^{2} + 3) > f^{1}(3) = 0 \forall x \in (0, \pi/4) \cup (\pi/4, \pi/2)$ Also,  $(\tan x - 1) > 0 \forall x \in (\pi/4, \pi/2) \therefore g(x)$  is increase in  $(\pi/4, \pi/2)$ If  $f(x) = 2x^3 - 15x^2 + 24x$  and  $g(a) = \int_0^a f(x) dx + \int_0^{5-a} f(x) dx$  (0 < a < 5), then 23. a) g is increasing in  $\left(0, \frac{5}{2}\right)$ b) g is decreasing in  $\left(\frac{5}{2}, 5\right)$ c) g is increasing in (0, 5)d) None of these Key. A.B  $f'(x) = 6x^2 - 30x + 24 = 6(x-4)(x-1)$ Sol. By graph g'(a) = f(a) - f(5-a)If  $a < 5 - a \implies a < \frac{5}{2}$  $g'(a) > 0 \implies g$  is increasing in  $\left(0, \frac{5}{2}\right)$ And if  $a > \frac{5}{2}$ ,  $g'(a) < 0 \implies g$  is decreasing in  $\left(\frac{5}{2},5\right).$ 

Let  $f(x) = \frac{e^x}{1+x^2}$  and g(x) = f'(x) then 24. (A) g(x) has four points of local extremum (B) g(x) has two points of local extremum (C) g(x) has a point of local minimum at x = 1(D) g(x) has a point of local maximum at some  $x \in (-1, 0)$ B.C.D Key.  $f(x) = \frac{e^{x}}{1+x^{2}}, g(x) = f'(x) = \frac{(x-1)^{2}e^{x}}{(1+x^{2})^{2}}, g'(x) = \frac{(x-1)(x^{3}-3x^{2}+5x+1)}{(x^{2}+1)^{3}}e^{x}$ Sol. Let  $h(x) = x^3 - 3x^2 + 5x + 1$ ,  $h'(x) = 3x^2 - 6x + 5$ , D < 0 so h(x) has only one real roots. Also g(-1)g(0) < 0. So the root  $\in (-1, 0)$ . Clearly g(x) has two points of extremum. Maxima at  $x \in (-1, 0)$  and minima at x = 1. The function  $f(x) = a(x^2 - 1)(ax + b) (a \neq 0)$  has 25. (A) a local maxima at certain  $x \in R^+$ (B) a local minima at certain  $x \in R^+$ (C) a local maxima at certain  $x \in R^-$ (D) a local minima at certain  $x \in R^-$ B.C Key.  $f(x) = a^2x^3 + abx^2 - a^2x - ab$ . Coefficient of  $x^3$  is +ve. Sol.  $f'(x) = 3a^2x^2 + 2abx - a^2$ . Product of roots is -ve So, f(x) has two points of maxima/minima and maxima at  $R^-$  and minima at  $R^+$ . 26. If the function  $f(x) = x^3 - 6x^2 + ax + b$  defined in [1,3] satisfies the rolle's theorem for  $C = \frac{2\sqrt{3}+1}{\sqrt{3}}$  then (B) b = 6(A) a = 11 (C)  $a \in R$ (D)  $b \in R$ A,D Key. Sol. Conceptual 27. If f(x) = (x-4)(x-5)(x-6)(x-7) then f'(x) = 0 has roots in (B) (5,6) (C) (6,7) (A) (4,5) (D) (3,4)A.B.C Key. Sol. Conceptual If f(x), g(x) (where x > 1) are non–negative and non–positive functions respectively, 28. such that  $f'(x) \le \alpha f(x), g'(x) \ge \beta g(x)$  for some  $\alpha, \beta > 0$  and f(1) = 0, g(1) = 0, then a)  $\frac{f(e)+f(\pi)}{f^2(e)+f^2(\pi)-4} = 0$ b)  $\frac{f(e) + f(\pi)}{f^2(e) + f^2(\pi) - 4} = -4$ c)  $\frac{g(\sqrt{e}) + g(\sqrt{\pi})}{g(\sqrt[3]{e}) + \sigma(\sqrt[3]{\pi}) - 2} = 0$ d)  $\frac{g(\sqrt{e}) + g(\sqrt{\pi})}{g(\sqrt[3]{e}) + g(\sqrt[3]{\pi}) - 3} = -3$ Key. A,C Sol.  $f(x) \ge 0$  $f'(x) - \alpha f(x) \le 0$ 

$$\Rightarrow \frac{d}{dx} [e^{-xr} f(x)] \le 0 \quad \forall x > 1$$

$$\Rightarrow f(x) \le 0 \quad \forall x > 1 \quad Q \quad f(1) = 0$$

$$\Rightarrow f(x) \le 0 \quad \forall x > 1$$
Similarly,  $g(x) = 0 \quad \forall x > 1$ 
Now  $\frac{f(e) + f(x)}{f^2(e) + f^2(\pi) - 4} = 0$  and  $\frac{g(\sqrt{e}) + g(\sqrt{\pi})}{g(\sqrt{e}) + g(\sqrt{\pi}) - 3} = 0$ 
29. Let  $f(x) = \int_0^1 (u - 1)(u - 2)^2 du$ , then for the function  $f(x)$ 
a)  $(1, -3)$  is a point of minimum
b)  $(2, -4/3)$  is a point of inflexion
c)  $\left(1, -\frac{17}{12}\right)$  is a point of minimum
d)  $\left(\frac{4}{3}, -\frac{112}{81}\right)$  is a point of inflexion.
Key. B,C,D
Sol.  $f^1(x) = (x - 1)(x - 2)^2 \Rightarrow x = 1, 2$ 
Around  $x = 1$ ,  $f'(x)$  changes sign from -ve to +ve  $f(x)$  is minimum at  $x = 1$ ,  $f(1) = -\frac{17}{12}$ 
 $f''(x)$  changes sign around  $x = 2, \frac{4}{3}$ ,
 $x = 2, x = \frac{4}{3}$  are the point of inflexion  $f(2) = -\frac{4}{3}, f\left(\frac{4}{3}\right) = -\frac{112}{81}$ .
30.  $f(x) = ||x + 2| - 2|x - 2|| + |x| (x \in R)$  can never be
a)  $\frac{1}{2}$ 
b)  $\frac{1}{4}$ 
c)  $1$ 
d)  $2$ 
Key. A,B
Sol. Global minimum of  $f(x)$  is  $\frac{2}{3}$ 
31. The function  $f(x) = \frac{x + a}{\sqrt{x^2 + a^2}}, a > 0$  can never be
a)  $\sqrt{2}$ 
b)  $2$ 
c)  $3$ 
d)  $4$ 
Key. B,C,D
Sol. Range of  $f(x) = (-1,\sqrt{2}]$ 

- A) Rolle's theorem can be applied to fB) Rolle's theorem cannot be applied to fC) Lagrange's mean value theorem can be applied to f

D) Lagrange's mean value theorem cannot be applied to f Key. A,C Sol.  $f(x) = e, 2 \le x \le 6$ Consider the function  $f: R - \{0\} \to R$  defined by  $f(x) = x + \frac{1}{x}$ . Then the true 30. statements among the following are A) f is one-one but not onto B) f possesses local extrema but f does not have absolute extrema C) If  $g:(0,1] \to [2,\infty)$  is defined by  $g(x) = x + \frac{1}{x}$ , then  $g^{-1}(x) = \frac{x - \sqrt{x^2 - 4}}{2}$ D) If  $h: (-\infty, -1] \to (-\infty, -2]$  is defined by  $h(x) = x + \frac{1}{x}$ , then  $h^{-1}(x) = \frac{x - \sqrt{x^2 - 4}}{2}$ Key. B,C,D Sol.  $y = f(x) = x + \frac{1}{x}, x \neq 0 |y| \ge 2 \implies x^2 - yx + 1 = 0 \implies x = \frac{y \pm \sqrt{y^2 - 4}}{2}$ g:  $(0,1] \to [2,\infty), g(x) = x + \frac{1}{x} = y$  $0 < x \le 1$  and  $y \ge 2 \Longrightarrow \frac{y}{2} \ge 1$  $x = \frac{y + \sqrt{y^2 - 4}}{2} \ge 1 \text{ but } x \le 1$  $\therefore x = g^{-1}(y) = \frac{y - \sqrt{y^2 - 4}}{2} \Longrightarrow g^{-1}(x) = \frac{x - \sqrt{x^2 - 4}}{2}$  $h: (-\infty, -1] \rightarrow (-\infty, -2], h(x) = x + \frac{1}{x} = y$  $x \le -1$  and  $y \le -2 \Rightarrow \frac{y}{2} \le -1$  $\frac{y-\sqrt{y^2-4}}{2}$  is clearly -ve when  $y \le -2$ Also  $\frac{y - \sqrt{y^2 - 4}}{2} \le -1 \Rightarrow h^{-1}(y) = \frac{y - \sqrt{y^2 - 4}}{2}$ 31.  $f(x) = \begin{cases} 3x^2 + 12x - 1 & , -1 \le x \le 2\\ 37 - x & , 2 < x \le 3 \end{cases}$ , then A) f is increasing on [-1,2]B) f is differentiable at x = 2C) f does not attain absolute minimum in [-1,2] D) Absolute maximum value of f is 35 Key. A,D Sol. Conceptual

32. Consider the curves  $y = f(x) = 1 + \frac{x^2}{a^3}$ ,  $a \neq 0$  and  $y = g(x) = 4\sqrt{x}$ . Then the true statements among the following are:

A) If a < 0 then the curves have a unique point in common.

B) If  $a = \frac{1}{2}$  the curves touch each other C) If  $0 < a < \frac{1}{2}$  then curves intersect at two distinct points D) If  $a > \frac{1}{2}$  then the curves do not meet Key. A,B Sol. y = f(x), a > 0 (0,1) y = f(x), a < 0 (0,1) y = f(x), a < 0 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)Consider y = f(x) and y = g(x) when a > 0Suppose they touch at  $(x_1, y_1)$ Then  $y_1 = f(x_1) = g(x_1)$  and  $f^{(1)}(x_1) = g^{(1)}(x_1)$ Let  $f(x) = \frac{x-1}{x^2}$  then which of the following is correct? 33. (a) f(x) has minima but no maxima (b) f(x) increases in the interval (0, 2) and decreases in the interval  $(-\infty, 0) \cup (2, \infty)$ (c) f(x) is concave down in  $(-\infty, 0) \cup (0,3)$ (d) x = 3 is the point of inflection Key. B,C,D  $f'(x) = \frac{-(x-2)}{x^3}$  and  $f''(x) = \frac{2(x-3)}{x^4}$ Sol. f'(x)f "(x) 3 2 So f increases (0, 2) and 3 is point of inflection. Let g'(x) > 0 and  $f'(x) < 0 \quad \forall x \in \mathbb{R}$ , then 34. (a) g(f(x+1)) > g(f(x-1))(b) g(f(x+1)) < g(f(x-1))(c) f(g(x-1)) > f(g(x+1))(d) f(g(x-1)) < f(g(x+1))B.C Key. Sol. x + 1 > x - 1Now g(x) is increasing and f is decreasing. g(x + 1) > g(x - 1) and f(x + 1) < f(x - 1)

The interval in which  $y = x^3$  increases more rapidly than  $y = 6x^2 + 15x + 5$  is 35. (B)  $(5,\infty)$ (A)  $(-\infty, -1)$ (C) (−1,5) (D)  $(0,\infty)$ Key. B Sol.  $f(x) = x^3$ ;  $f'(x) = 3x^2$  $g(x) = 6x^{2} + 15x + 5; g'(x) = 12x + 15$ f'(x) > g'(x); $\therefore x^2 - 4x - 5 > 0$ x < -1 or x > 5The inequality 1+1 n  $x \le x$  is true in the regions 36. (B) (0, 1) (A)  $(1, \infty)$ (D) None of these (C) (0, *e*) Key. A,B,C Sol. f(x) = 1 + 1nx - x : x > 0 $f'(x) = \frac{1}{x} - 1 \begin{cases} > 0 & if \quad 0 < x < 1 \\ < 0 & if \quad x > 1 \end{cases}$  $f(1) = 0. \therefore f(x) \le 0 \quad \forall x > 0$  $f(x) = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$  decreases in the region 37. (A) (-1, 0)(B) (0, 1) (C) (−∞, −1) (D)  $(-\infty, 1)$ Key. A,C Sol.  $h(x) = \frac{1 - x^2}{1 + x^2}$  $\cos^{-1}$  is a decreasing function f decreases when h increases *i.e.*, when  $x \in (-\infty, 0)$ .

## Maxima & Minima

Assertion Reasoning Type

a) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1

b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

c) Statement-1 is True, Statement-2 is False

d) Statement-1 is False, Statement-2 is True

1. Statement 1:-Let f be a continuous function on the internal  $[0,1] \rightarrow R$ , such that f(0) = f(1). Then, there exists a point C in [0,1/2] such that f(C) = f(C+1/2)

Statement 2:- Let f be a real valued function defined on [a,b] such that, i) f is continuous on [a,b], ii) f is differentiable in [a,b], iii) f(a) = f(b), then, there is at least one value C of x in (a,b) for which  $f^1(c) = 0$ 

Key. B

Key.

Sol. Consider the function 
$$g(x) = f(x) - f(x + \frac{1}{2})$$
.

....

$$g(0) = f(0) - f\left(\frac{1}{2}\right)$$
$$g\left(\frac{1}{2}\right) = f\left(\frac{1}{2}\right) - f(1) = f\left(\frac{1}{2}\right) - f(0)$$
$$\Rightarrow g(0) \text{ and } g\left(\frac{1}{2}\right) \text{ are of opposite signs}$$

Hence, there exists at least are  $c \in \left(0, \frac{1}{2}\right)$ , such that

$$g(c) = 0(or)f(c) - f\left(c + \frac{1}{2}\right) = 0 \Rightarrow f(c) = f\left(1 + \frac{1}{2}\right)$$

2. Statement 1:- let f is a continuous function on [a,b] and differentiable on (a,b) and satisfies  $f^2(a)-f^2(b)=a^2-b^2$ . Then, the equation  $f(x)f^1(x)=x$  has at least one solution in (a,b)

Statement 2:- If f is continuous on [a,b] and  $f(a) \neq f(b)$ , then, for any value  $C \in (f(a), f(b))$ , there is at least one number  $x_0$  in (a,b) for which  $f(x_0) = C$  B

Sol. Let 
$$g(x) = \frac{1}{2} ((f(x))^2 - x^2)$$
  
 $g(a) = \frac{1}{2} [f^2(a) - a^2]$  and  $g(b) = \frac{1}{2} [f^2(b) - b^2]$  by  $g(a) = g(b)$ , so there exists  
at least one  $x \in (a,b) \Rightarrow g^1(x) = 0$  (By RT) i.e.,  $\frac{1}{2} [2f(x)f^1(x) - 2x] = 0$   
 $\Rightarrow f^1(x)f^1(x) = x$ 

| 3.        | Statement 1:- The minimum distance of the fixed point $(0, \alpha)$ , where,                                                                        |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|           | $0 \le \alpha \le \frac{1}{2}$ from the curve $y = x^2$ is $\alpha$                                                                                 |
|           | Statement 2:- Maxima and minima of a function is always a root of the equation $f^{1}(x) = 0$                                                       |
| Key.      | C                                                                                                                                                   |
| Sol.      | Let point be $(t,t^2)$ then, $d^2 = t^2 + (t^2 - \alpha)^2$                                                                                         |
|           | $=t^4+(1-2\alpha)t^2+\alpha^2$                                                                                                                      |
|           | $= z^{2} + (1 - 2\alpha)Z + \alpha^{2}, z \ge 0$                                                                                                    |
|           | Its vertex is at $x = \alpha - \frac{1}{2} < 0$                                                                                                     |
|           | $\therefore$ minimum value of $d^2$ is at z = 0 i.e., $t^2 = 0$                                                                                     |
|           | $\Rightarrow$ d = $\alpha$<br>: Statement L is true                                                                                                 |
|           | Statement II is false because extremum can occur at a point where $f^{1}(x)$                                                                        |
|           | One                                                                                                                                                 |
|           |                                                                                                                                                     |
| 4.        | STATEMENT-1 : If the point (x, y) lies on the curve $2x^2 + y^2 - 24y + 80 = 0$ then the maximum value of $x^2 + y^2$ is 400.                       |
|           | STATEMENT-2 : The point (x, y) is at a distance of $\sqrt{x^2 + y^2}$ from origin.                                                                  |
| Key:      | Α                                                                                                                                                   |
| Hint:     | The given equation represents ellipse $\frac{x^2}{32} + \frac{(y-12)^2}{64} = 1$ . The maximum value of                                             |
|           | $\sqrt{x^2 + y^2}$ is the distance between (0, 0), (0, 20).                                                                                         |
| 5.        | Statement-1: The least value of $x + \frac{9}{x}, x > 0$ is 6.                                                                                      |
|           | Statement-2 : The absolute value of the sum of a non-zero real number and its reciprocal is never less than 2. Also $f(x)$ and $kf(x)$ with $k > 0$ |
| Kev:      | attain their least value simultaneously.<br>A                                                                                                       |
| ,<br>Hint | Rewrite $x + \frac{9}{x} = 3\left(\frac{x}{3} + \frac{3}{x}\right)$                                                                                 |
| 6         | Statement-1: The function $f(x) = x^3 - 3x^2 + 12x$ is increasing on R                                                                              |
| 0.        | Statement 1. The function $f(x) = x^{-1} + 12x$ is increasing on K.                                                                                 |
|           | Statement-2 : If a differentiable function $g(x)$ is increasing implies $g'(x) > 0$ .                                                               |
| Key:      | C                                                                                                                                                   |
| Hint      | Statement 2 is false. Take for counter example $f(x) = x^3$ , $f'(x) = 3x^2$ and so $f'(0) = 0$ .                                                   |
| 7.        | A painting of height 3 m hangs on the wall of a museum with the bottom of                                                                           |

7. A painting of height 3 m hangs on the wall of a museum with the bottom of the painting 6 feet above the floor. The eyes of an observer are 5 feet above the floor.

Statement-1 : In order to maximize his angle of vision the observer must stand at a distance of 2 m from the base of the wall. Statement-2 : Given a line L, and two points A and B ,(not on the line) on the same side of it, the point on the line at which AB subtends the maximum angle is the point at which the circle with AB as a chord touches the line L.

## KEY : D

Sol.



PQ is the painting. Now  $TM^2 = MQ.MP$ 

$$\Rightarrow TM^2 = 1 \times 4 = 4$$
  
$$\therefore TM = 2$$

8. STATEMENT 1: If  $f(x) = \frac{\cos x}{\left[\frac{x}{2\pi}\right] + \frac{1}{2}}$ ,  $x \in (-2\pi, 2\pi)$ , then f(x) is an odd function.

Where [.] denotes greatest integer function.

STATEMENT 2: Odd functions are symmetric about y-axis

KEY : C

HINT

 $f(x) = -2\cos x \qquad -2\pi < x < 0$  $= 2\cos x \qquad 0 \le x < 2\pi$ 

f is symmetric about the origin

9. STATEMENT-1: For  $f(x) = \{x\}$ , every integral point is a point of neither maxima nor minima.

STATEMENT–2: If  $f(n) < f(n^+)$  and  $f(n) < f(n^-)$  then every integer n is a point of minima. KEY : D

SOL :

10. STATEMENT – 1: Between any two roots of  $e^x \cos x = 1$  there exists a root of  $e^x \sin x = 1$ 

STATEMENT – 2: For a differentiable function f(x) between any two roots of f(x) = 0 there exists at least one root of f'(x) = 0.

## Maxima & Minima

## **Mathematics**

KEY: А

2 is according to the Rolle's theorem. So is correct and it correctly explains 1 HINT: Let  $f(x) = \cos x - e^{-x}$ . f(x) = 0 $\Rightarrow \cos x = e^{-x} \Rightarrow e^{x} \cos x = 1$  $f'(x) = -\sin x + e^{-x} = 0 \Longrightarrow e^{-x} = \sin x$  $\Rightarrow e^x \sin x = 1$ 

Let f(x) satisfy the requirement of Lagrange's mean value theorem in [0,2]. If f(0) = 011. and  $|f'(x)| \le \frac{1}{2}$  for all  $x \in [0,2]$ , then which of the following is not true ? (B)  $\left| f(x) \right| \le 2x$ (A)  $f(x) \leq 2$ (C) f(x) = 3, for at least one  $x \in [0,2]$  (D)  $|f(x)| \le 1$ 

KEY : C

HINT : Let  $x \in [0, 2]$ . Since f(x) satisfies the requirements of LMVT in [0, 2], So it also satisfies in [0, x]. Consequently, there exists at least one c in (0, x) such that

$$f'(c) = \frac{f(x) - f(0)}{x - 0} \Longrightarrow f'(c) = \frac{f(x)}{x} \Longrightarrow \left| \frac{f(x)}{x} \right| \le \frac{1}{2} \Longrightarrow \left| f(x) \right| \le \frac{|x|}{2} \Longrightarrow \left| f(x) \right| \le 1 \ (Q |x| \le 2)$$

Let f(x) be a twice differentiable function in [a, e] such that 12. f(a) = 2, f(b) = -2, f(c) = 3, f(d) = -4, f(e) = 4 where a < b < c < d < e then STATEMENT-1: f''(x) = 0 has minimum two zeroes in (a, e)STATEMENT-2: Between any two roots of f'(x) = 0 there lies atleast one root of f''(x) = 0

KEY : A

HINT : f(x) = 0 has at least four roots in (a, e)

f'(x) = 0 has at least three roots in (a, e)

f''(x) = 0 has atleast two roots in (a, e)

Let f be a function such that f(x). f'(x) < 0,  $\forall x \in R$ , then 13.

> STATEMENT-1:  $|\mathbf{f}(\mathbf{x})|$  is decreasing  $\forall \mathbf{x} \in \mathbf{R}$ .

STATEMENT-2: f(x) is not continuous if it is not always of same sign.

Key:

В

If f(x) is positive, f(x) is decreasing and if f(x) is negative, then f(x) is increasing so |f(x)| is Hint: decreasing  $\forall x \in \mathbf{R}$ .

As  $f(x) \neq 0$ 

If f(x) changes its sign then it has been to be discontinuous at some x. *.*..

| 14.  | Statement 1:-Let f be a continuous function on the internal $[0,1] \rightarrow R$ , such that $f(0) = f(1)$ . Then, there exists a point C in $[0,1/2]$ such that $f(C) = f(C+1/2)$        |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Statement 2:- Let f be a real valued function defined on [a,b] such that, i) f                                                                                                             |
|      | is continuous on $[a,b]$ , ii) f is differentiable in $[a,b]$ , iii) f(a) = f(b), then,<br>there is at least one value C of x in $(a,b)$ for which $f^1(c) = 0$                            |
| Key. | В                                                                                                                                                                                          |
| Sol. | Consider the function $g(x) = f(x) - f\left(x + \frac{1}{2}\right)$ .                                                                                                                      |
|      | $g(0) = f(0) - f\left(\frac{1}{2}\right)$                                                                                                                                                  |
|      | $g\left(\frac{1}{2}\right) = f\left(\frac{1}{2}\right) - f\left(1\right) = f\left(\frac{1}{2}\right) - f\left(0\right)$                                                                    |
|      | $\Rightarrow$ g(0) and g $\left(\frac{1}{2}\right)$ are of opposite signs                                                                                                                  |
|      | Hence, there exists at least are $c \in \left(0, \frac{1}{2}\right)$ , such that                                                                                                           |
|      | $g(c) = 0(or)f(c) - f\left(c + \frac{1}{2}\right) = 0 \Longrightarrow f(c) = f\left(1 + \frac{1}{2}\right)$                                                                                |
| 15.  | Statement 1:- let $f$ is a continuous function on $[a,b]$ and differentiable on                                                                                                            |
|      | (a,b) and satisfies $f^{2}(a) - f^{2}(b) = a^{2} - b^{2}$ . Then, the equation $f(x)f^{1}(x) = x$                                                                                          |
|      | has at least one solution in (a,b)                                                                                                                                                         |
|      | Statement 2:- If f is continuous on $[a,b]$ and $f(a) \neq f(b)$ , then, for any value                                                                                                     |
|      | $C \in (f(a), f(b))$ , there is at least one number $x_0$ in $(a, b)$ for which $f(x_0) = C$                                                                                               |
| Key. | B                                                                                                                                                                                          |
| Sol. | Let $g(x) = \frac{1}{2} ((f(x))^2 - x^2)$                                                                                                                                                  |
|      | $g(a) = \frac{1}{2} [f^{2}(a) - a^{2}]$ and $g(b) = \frac{1}{2} [f^{2}(b) - b^{2}]$ by $g(a) = g(b)$ , so there exists                                                                     |
|      | at least one $\mathbf{x} \in (\mathbf{a}, \mathbf{b}) \Rightarrow \mathbf{g}^1(\mathbf{x}) = 0$ (By RT) i.e., $\frac{1}{2} \left[ 2f(\mathbf{x})f^1(\mathbf{x}) - 2\mathbf{x} \right] = 0$ |
| ~    | $\Rightarrow$ $f^{1}(x)f^{1}(x) = x$                                                                                                                                                       |
| 16.  | Statement 1:- The minimum distance of the fixed point $(0, \alpha)$ , where,                                                                                                               |
|      | $0 \le \alpha \le \frac{1}{2}$ from the curve $y = x^2$ is $\alpha$                                                                                                                        |
|      | Statement 2:- Maxima and minima of a function is always a root of the equation $f^{1}(x) = 0$                                                                                              |
| Key. | C $(1 + 1)^2 + (1 + 2)^2 + (1 + 2)^2$                                                                                                                                                      |
| Sol. | Let point be $(t,t^-)$ then, $d^- = t^2 + (t^2 - \alpha)$                                                                                                                                  |
|      | $= t^{-} + (1 - 2\alpha)t^{2} + \alpha^{2}$                                                                                                                                                |
|      | $= z^{2} + (1 - 2\alpha)Z + \alpha^{2}, z \ge 0$                                                                                                                                           |

Its vertex is at  $x = \alpha - \frac{1}{2} < 0$  $\therefore$  minimum value of d<sup>2</sup> is at z = 0 i.e., t<sup>2</sup> = 0  $\Rightarrow$  d =  $\alpha$ : Statement I is true Statement II is false because extremum can occur at a point where  $f^{1}(x)$ One 17. Statement 1:- If f is an increasing function with concave upwards then,  $f^{-1}(x)$  is also concave upwards Statement 2:- If f is decreasing function with concave upwards then  $f^{-1}(x)$  is also concave upwards Key. D Sol. Conceptual Assertion (A): The equation  $3x^5 + 15x - 8 = 0$  has one and only one real root in (-1,1). 18. (R) : If a function y = f(x) is continuous in [a,b] and derivable in (a,b) and Reason f(a) = f(b) then there exists one and only one  $c\hat{1}(a,b)$  such that  $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = 0$ Key. C Using Rolle's theorem for  $f(x) = 3x^5 + 15x - 8$  we have  $f(x_1) = f(x_2) = 0$  if there Sol. are two roots  $x_1, x_2 \in (-1, 1)$ . But  $f'(x) = 15(1 + x^4) \neq 0$  $\therefore$  There is no c value in (-1,1) satisfying Rolle's theorem. Hence our assumption of two distinct roots  $x_1, x_2$  is wrong. So there is a unique root for f(x) = 0 in (-1, 1) as f(1) f(-1) < 0. Statement - I is correct Statement - II is statement of Rolle's theorem. But there exists at least one  $c \in (a,b)$  such that f'(c) = 0. We can't declare that there is one and only one root c such that f'(c) = 0.  $\therefore$  Statement II is wrong Assertion(A):  $f(x) = 1 + 4x - x^2 x^2 \hat{I} R \otimes g(x) = \max$ . 19.  ${f(t); x \pounds t \pounds x+1; 0 \pounds x < 3}$ = min.  $\{x+3:3 \text{ f } x \text{ f } 5\}$  Then g(x) is continuous at x=3 Reason (R): If f(x) is strictly increasing in [a,b] then max.  $\{f(x); a \pounds x \pounds b\} = f(b)$ Key. D  $g(x) = 4 + 2x - x^2 : [0,1)$ Sol. = 5: [1, 2] $=1+4x-x^{2}:(2,3)$ = 6: [1, 2]

is clearly discontinuous at x = 3  $\therefore$  Statement I is false while statement II is true

20. STATEMENT-1 : If  $f(x) = \cos x + 4x^2 - x^3 - 7x + 15$  then  $f(|\sin x|) \ge f(\sin^2 x)$ . because STATEMENT-2 : If a continuous function f(x) is decreasing  $\forall x \in R$  then f(a) < f(b) when a > b.

Key.

D

- Sol.  $f(x) = \cos x + 4x^{2} x^{3} 7x + 15$   $f'(x) = -\sin x + 8x - 3x^{2} - 7.$   $= -\sin x - 1 - (3x^{2} - 8x + 6), -\sin x - 1 \le 0 \& (3x^{2} - 8x + 6) < 0 \forall x \in r$   $\Rightarrow \quad f(x) \text{ is decreasing } \forall x \in r \text{ as } |\sin x| \ge \sin^{2}x.$  $\Rightarrow \quad f(|\sin x|) \le f(\sin^{2}x)$
- 21. Statement-1: The minimum value of  $(x_2 x_1)^2 + (\sqrt{1 x_1^2} \sqrt{4 x_2^2})^2 = 1$

Statement-2 : The expression attains minimum value if one of the perfect squares vanishes. C

Sol. Let 
$$y_1 = \sqrt{1 - x_1^2} \implies x_1^2 + y_1^2 = 1$$
  
 $y_2 = \sqrt{4 - x_2^2} \implies x_2^2 + y_2^2 = 4$ 

The minimum distance between  $(x_1, y_1)$  and  $(x_2, y_2)$  is 1.

STATEMENT-1 : If f '(x) > 0  $\forall x \in (a, b)$  then maximum value of f(x) in [a, b] is f(a).

because

STATEMENT-2 : If f(x) is continuous  $\forall x \in [a, b]$  and f '(x) > 0  $\forall x \in (a, b)$  then f(a) is least and f(b) is greatest value of f(x) in [a, b].

Key.

22.

Sol.

$$\Rightarrow$$
 f(x) is decreasing  $\forall \in (a, b)$ 

if  $f(a) \ge \lim f(x)$ 

then f(a) will be max. value of f(x) in [a, b].



 $f'(x) < 0 \forall x \in (a, b)$ 

- 23. Statement -1: Minimum distance between  $y^2 4x 8y + 40 = 0$  and  $x^2 8x 4y + 40 = 0$  is  $\sqrt{2}$ 
  - Because

Statement -2: Minimum distance between two curves lie along their common normal.

Key. A

Sol. Parabolas are symmetric about y = x

$$2y \frac{dy}{dx} - 4 - 8 \frac{dy}{dx} = 0$$
  

$$\Rightarrow \qquad \frac{dy}{dx} = \frac{2}{y - 4} = 1$$
  

$$y = 6, x = 7$$
  
distance from (7, 6) to the line  $x - y = 0$   

$$= \frac{1}{\sqrt{2}}$$

Shortest distance  $=\frac{2}{\sqrt{2}}=\sqrt{2}$ 

24. STATEMENTS-1: Consider the function f(x),  $\frac{f(x_1 + x_2)}{2} < \frac{f(x_1) + f(x_2)}{2}$ because STATEMENTS-2: f'(x) > 0, f''(x) > 0 where x\_1 < x\_2

)

Key.

А

(

Sol. 
$$f(x_{1}) = f\left(\frac{x_{1} + x_{2}}{2} + \frac{x_{1} - x_{2}}{2}\right)$$
$$= f\frac{(x_{1} + x_{2})}{2} + \frac{x_{1} - x_{2}}{2}f'\frac{(x_{1} - x_{2})}{2} + \frac{(x_{1} + x_{2})^{2}}{2!}f''(x_{1})$$
$$\therefore f(x_{1}) + f(x_{2}) > 2f\left(\frac{x_{1} + x_{2}}{2}\right)$$
$$\Rightarrow f\left(\frac{x_{1} + x_{2}}{2}\right) < \frac{1}{2}(f(x_{1}) + f(x_{2}))$$

25. Statement – 1: The function  $f(x) =\begin{cases} |x|, & 0 < |x| \le 2\\ 1, & x = 0 \end{cases}$  has no local extremum at x = 0 Statement – 2: If  $g^1(a) = 0$  and  $g^{11}(a) \ne 0$  then the function *a* has a local extremum

Statement – 2: If  $g^1(a) = 0$  and  $g^{11}(a) \neq 0$  then the function g has a local extremum at x = a

Key. D

Sol. Conceptual

26. Assertion (A) : If the function  $f:[0,4] \rightarrow R$  is differentiable then

$$f^{2}(4) - f^{2}(0) = 8f'(a)f(b)$$
 for  $a, b \in (0, 4)$ 

Reason (R): For any continuous function f(x) defined on I,  $\frac{f(x_1) + f(x_2)}{2} = f(b)$  for

$$b \in (x_1, x_2)$$
 where  $x_1, x_2 \in I$ 

Key. B

Sol. By Legrange's mean value theorem

$$f'(a) = \frac{f(4) - f(0)}{4}$$
  

$$\Rightarrow 4f'(a) = f(4) - f(0) \rightarrow (1)$$
  
Also  $2f(b) = f(4) + f(0) \rightarrow (2)$   
From (1) & (2) it follows

27. **STATEMENT-1:** 
$$9^8 > 8^9$$
  
**STATEMENT-2:** The function  $f(x) = x^{1/x}$  (x > e) is a decreasing function of x.  
Key. D  
Sol.  $f(x) = x^{1/x}$ 

$$f'(x) = x^{1/x} \frac{1 - \log x}{x^2} < 0 \text{ for } x > e$$
So, f(x) is decreasing function of x  $\forall x > e$ 
So, f(9) < f(8)
$$g^{1/9} < g^{1/8} = g^{9} < g^{9}$$
28. Let f(x) = x^2.  $e^{-x^2}$ 
Statement 1: f(x) has local maxima at x = -1 and x=1 and f(x) has local minima at x = 0
Statement 2: y = f'(x) changes its sign at x = 1, -1, 0
Key. B
Sol. Statement -1 is true as f'(x) < 0 if -1 < x < 0, x > 1 and f'(x) > 0 if 0 < x < 1, x < -1.
Statement 2: explains statement-1.
29. Consider the function  $f(x) = \frac{1}{2(-x)} - \{x\}$ , where  $\{x\}$  is the fractional part of x (x not being integer)
Statement - 1: Least value of f(x) is  $\sqrt{2} - 1$ 
Statement - 2: if the product of two positive numbers is a constant, then the least value of their sum is twice the square root of their product.
Key. B
Sol. Since the function is periodic of period one it is enough to consider the function in (0,1)
 $(-x) = 1 - \{x\}$  for x (0,1).
 $\therefore$  if  $(x) = \frac{1}{2(1-x)} - x$  for all  $x \in (0,1)$ , if  $(x) = \frac{1}{2(1-x)^2} - 1 = 0 \Rightarrow x = \left(1 - \frac{1}{\sqrt{2}}\right)$ ,
f'(x) < 0, for x <  $1 - \frac{1}{\sqrt{2}}$ ,  $\therefore$  minimum at  $x = 1 - \frac{1}{\sqrt{2}}$ .
 $\therefore$  if (x) is minimum at  $x = 1 - \frac{1}{\sqrt{2}}$ .
Statement - 1: brue, statement - 2 is true, but statement-2 does not explain statement-1
30. Statement-1: f': [-1, 1]  $\rightarrow$  R given by  $f(x) = -|x|$  has maximum at  $x = 0$ .
Statement-2: If f(x) increases in  $(a, c)$  and decreases in  $(c, b)$  then f has local maximum at  $x = c$ .
Key. C
Sol.Statement 1 is true
Statement-1:  $0.4 < \tan^{-1} 2 < 2$ .
Statement-2:  $f(x) = \frac{1}{1+x^2}$ ;  $x \in [0, 2]$  has range [0.2, 1].
Key. A
Sol. Statement-2: is true

 $x: 0 \rightarrow 2$ 

 $1+x^2:1\rightarrow 5$ 

 $\therefore f(x): 1 \rightarrow 0.2$ 

Statement 1 is true

By Lagrange's theorem applied to  $g(x) = \tan^{-1} x : x \in [0, 2]$ , we have

 $\frac{g(2) - g(0)}{2 - 0} = g'(c) \text{ for some } c \in ]0, 2[$  $\frac{\tan^{-1} 2}{2} = \frac{1}{1 + c^2} \in (0.2, 1) \text{ as } f(x) = \frac{1}{1 + x^2} \text{ decreases.}$ 

 $\tan^{-1} \in (0.4, 2)$ .

The reason for statement 1 is Lagrange's theorem and statement 2. Statement 2 is not a complete explanation of statement 1.

32. Statement-1:  $303^{202} < 202^{303}$ . Statement-2:  $f(x) = \frac{\ln x}{x}$  is a decreasing function in  $(e, \infty)$ 

Sol.  $g(x) = x^{1/x}$ ;  $f(x) = \ln g(x)$ : x > 0

 $g(x) = e^{f(x)}$  and  $e^x$  is an increasing function.

$$f'(x) = \frac{1 - \ln x}{x^2}; f'(x) \begin{cases} < 0 & if \quad x > e \\ > 0 & if \quad 0 < x < e \\ 0 & if \quad x = e \end{cases}$$

- : statement 2 is true
- : g is a decreasing function
- $\therefore (202)^{\frac{1}{202}} > (303)^{\frac{1}{303}}$
- ∴ statement 1 is true

33. **Statement-1:**  $f(x) = x^{2/3}$  has vertical tangent at x = 0.

Stetement-2: A function to have local extrema at a point need not be differentiable at that point.

Key.D

Sol. Statement 1 is false as at x = 0

 $f'(0-) \equiv -\infty$  and  $f'(0+) \equiv \infty$ Statement 2 is true; e.g., f(x) = |x| at x = 0

**34.** STATEMENT-1 :  $y = x^{1/3}$  has a vertical tangent at x = 0and

|      | STATEMENT-2 : If $y = f(x)$ has left hand and right hand derivative both $\infty$ or both $-\infty$                                           |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Kev  | at $x = a$ then f is continuous at $x = a$ .                                                                                                  |
| Sol  | Statement 1 is true for $a(x) - x^{1/3}$ as $a'(0-) - a'(0+) = \infty$                                                                        |
| 501. | Statement 1 is fulle for $g(x) = x^{-1}$ as $g(0^{-1}) = g(0^{+}) = \infty$ .<br>Statement 2 is false; e.g., $y = \text{sgn}(x)$ at $x = 0$ . |
|      | 1                                                                                                                                             |
| 35.  | STATEMENT-1 : $y = -\frac{1}{x}$ decreases in $R \sim \{0\}$                                                                                  |
|      | and                                                                                                                                           |
|      | STATEMENT-2 : Derivative of $y = \frac{1}{x}$ is negative throughout its domain.                                                              |
| Key. | D                                                                                                                                             |
| Sol. | Statement 1 is false:                                                                                                                         |
|      | $x_1 = -1, x_2 = 1; x_1 < x_2$                                                                                                                |
|      | $f(x_1) = -1, f(x_2) = 1; f(x_1) < f(x_2)$                                                                                                    |
|      | Statement 2 is true                                                                                                                           |
| 36.  | <b>STATEMENT-1</b> : $y = x^3$ has a tangent at $x = 0$ .                                                                                     |
|      | and                                                                                                                                           |
|      | statewient –2 : Tangent at a point $x = a$ is a line having only the point $x = a$ common with the curve.                                     |
| Key. | C                                                                                                                                             |
| Sol. | Statement 1 is true.                                                                                                                          |
|      | Statement 2 is false; e.g., $y = \sin x$ has line $y = 1$ as tangent at infinite points.                                                      |
| 37.  | STATEMENT $-1$ : $f:(0,1) \rightarrow R$ such that $f(x) = x$ has no local extrema.                                                           |
|      | STATEMENT $-2$ : A function f can have local extrema only if its domain is a closed interva                                                   |
| Key. | c                                                                                                                                             |
| Sol. | Statement 1 is true                                                                                                                           |
|      | Statement 2 is false; e.g., $y = \sin x : x \in (0, \pi)$                                                                                     |
|      |                                                                                                                                               |
|      |                                                                                                                                               |
| C    |                                                                                                                                               |
| _    |                                                                                                                                               |

# Maxima & Minima

**Comprehension Type** 

```
Paragraph – 1
```

Let 
$$f(x) = \frac{(x-1)(x-2)}{(x-a)(x-b)}$$

If a < b < 1, then, f(x) has</li>
 a) Neither a maximum nor a minimum b) a maximum



2. If 1 < a < b < 2, then, f(x) has

- a) Neither a maximum nor a minimum b) a maximum
- c) a minimum d) a maximum and a minimum

#### Key. Sol.

С



3. If 1 < a < 2 < b, then, f(x) has





- b) a maximum
- d) a maximum and a minimum

## Paragraph – 2

Let  $\alpha, \beta, \gamma$  be the positive roots of  $x^3 + ax^2 + bx + c = 0$ , then,

| 4.            | If $c = \frac{-1}{64}$ , then the minim                                                                                                                       | um value of $\alpha + \beta$                                     | $+\gamma$ , is     |                         |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------|-------------------------|
|               | a) $\frac{4}{3}$                                                                                                                                              | b) $\frac{3}{4}$                                                 | c) $\frac{5}{6}$   | d) $\frac{6}{5}$        |
| Key.<br>Sol.  | B<br>Conceptual                                                                                                                                               |                                                                  |                    |                         |
| 5.            | If $a = -1$ , then the maximu                                                                                                                                 | im value of $\alpha\beta^2\gamma^3$                              | , is               |                         |
|               | a) $\frac{1}{2.34}$                                                                                                                                           | b) $\frac{1}{324}$                                               | c) $\frac{1}{456}$ | d) $\frac{1}{432}$      |
| Key.          | D                                                                                                                                                             | 011                                                              |                    | $\langle \cdot \rangle$ |
| Sol.          | $\frac{\alpha+\beta+\gamma}{3} \ge \left(\alpha\beta\gamma\right)^{1/3} \Longrightarrow \alpha+\beta$                                                         | $+\gamma \geq \frac{3}{4}$                                       |                    |                         |
|               | $\frac{\alpha + \frac{\beta}{2} + \frac{\beta}{2} + \frac{\gamma}{3} + \frac{\gamma}{3} + \frac{\gamma}{3}}{6} \ge \left(\alpha \cdot \frac{\beta}{2}\right)$ | $\left(\frac{\lambda^2}{2^2}, \frac{\gamma^3}{3^3}\right)^{1/6}$ | (9)                |                         |
|               |                                                                                                                                                               |                                                                  |                    |                         |
| Paragraph – 3 |                                                                                                                                                               |                                                                  |                    |                         |
|               | Let $f(x) = \frac{(x-1)(x-2)}{(x-a)(x-b)}$                                                                                                                    | 45.                                                              |                    |                         |
| 6.            | If $a < b < 1$ , then, $f(x)$ has                                                                                                                             |                                                                  |                    |                         |
|               | b) Neither a maximum nor a minimum b) a maximum                                                                                                               |                                                                  |                    |                         |
|               | c) a minimum                                                                                                                                                  | d)                                                               | a maximum and a m  | inimum                  |
| Key.          | D                                                                                                                                                             |                                                                  |                    |                         |
| Sol.          |                                                                                                                                                               |                                                                  |                    |                         |
|               |                                                                                                                                                               |                                                                  | ,                  |                         |
| 7             |                                                                                                                                                               | b 1                                                              |                    | 12                      |
| ··C           | If $1 < a < b < 2$ , then, $1(x)$                                                                                                                             | r a minimum b)                                                   | o movimum          |                         |
|               | c) a minimum                                                                                                                                                  | d)                                                               | a maximum and a m  | inimum                  |
| Key.          | C                                                                                                                                                             | ,                                                                |                    |                         |

2


Paragraph - 5

For a polynomial function y = f(x)

Points of extrema are obtained at points where

$$f'(x) = 0$$

 $f''(x_1) > 0 \implies x_1 \text{ is a point of minima}$ 

f "( $x_1$ ) < 0  $\Rightarrow$   $x_1$  is a point of maxima

Let 
$$f(x) = x^3 - 3(7 - a)x^2 - 3(9 - a^2)x + 2$$

11. The values of parameter 'a' if f(x) has a negative point of local minimum are

(A) 
$$\phi$$
 (B)  $\left(-\infty, \frac{58}{14}\right)$  (C) (-3, 3) (D) none

of these

Key. A

12. The values of parameter 'a' if f(x) has a positive point of local maxima are

(A) 
$$\phi$$
 (B)  $(-\infty, -3) \cup \left(\frac{58}{14}, \infty\right)$  (C)  $\left(-\infty, \frac{58}{14}\right)$  (D) none

of these

Key. B

13. The values of parameter 'a' if f(x) has points of extrema which are opposite in sign are

(A) 
$$\phi$$
 (B) (-3, 3) (C)  $\left(-\infty, \frac{58}{14}\right)$  (D) none

of these

Key. B

Sol. 11 – 13

$$f(x) = x^{3} - 3(7 - a)x^{2} - 3(9 - a^{2})x + 2$$

$$f'(x) = 3x^{2} - 6(7 - a)x - 3(9 - a^{2})$$
For real root D ≥ 0
$$a \le \frac{58}{14}$$
...(i)
Let f'(x) has two roots x<sub>1</sub> & x<sub>2</sub> (x<sub>2</sub> > x<sub>2</sub>)
Minima at x = x<sub>2</sub>
11. Both roots - ve  $\Rightarrow 2(7 - a) < 0 \Rightarrow a > 7$ 
Not possible
12. Both roots are +ve
Sum of roots > 0  $\Rightarrow a < 7$ ...(ii)
Product of roots > 0  $\Rightarrow a < (-\infty, -3) \cup (3, \infty)$ ...(iii)
From 1, 2, 3, we get  $(-\infty, -3) \cup (\frac{58}{14}, \infty)$ 
13. For points of opposite sign,
Product of roots < 0
$$a \in (-3, 3)$$

| Para                                                                                  | 'aragraph – 6                                                                                         |                                       |                                          |                               |  |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------|-------------------------------|--|
|                                                                                       | Consider the equation $\log_2 x^2 - 4\log_2 x - m^2 - 2m - 13 = 0$ in the variable x, 'm' being a     |                                       |                                          |                               |  |
|                                                                                       | parameter $(m \in R)$ . Let the real roots of the equation be $x_1, x_2$ where $x_1 < x_2$ .          |                                       |                                          |                               |  |
|                                                                                       |                                                                                                       |                                       |                                          |                               |  |
| 14.                                                                                   | The set of all values of                                                                              | 'm' for which the equatio             | n has real roots is                      |                               |  |
|                                                                                       | A) (−∞,0)                                                                                             | B) $(0,\infty)$                       | C) [1,∞)                                 | D) R                          |  |
| 15.                                                                                   | The maximum value o                                                                                   | f x, is                               |                                          | $\sim$                        |  |
|                                                                                       | A) 1/2                                                                                                | B) -1/4                               | <b>C)</b> 1/4                            | D) -1/2                       |  |
|                                                                                       |                                                                                                       |                                       |                                          |                               |  |
| 16.                                                                                   | The minimum value of                                                                                  | $\mathbf{f} \mathbf{X}_2$ is          |                                          | $\langle \cdot \rangle$       |  |
|                                                                                       | A) 32                                                                                                 | B) -28                                | C) 64                                    | D) 48                         |  |
| .,                                                                                    |                                                                                                       |                                       | c.X                                      |                               |  |
| Key:<br>Hint                                                                          | D-C-C<br>Question post $14 - 1$                                                                       | 6                                     |                                          |                               |  |
| THIL.                                                                                 | Put $\log x = t$ or x                                                                                 | $-2^t x > 0$                          |                                          |                               |  |
|                                                                                       | $t^2 - 4t - (m^2 + 2m)$                                                                               | $+13) = 0$ Disc = $4(m^2 + 2)$        | $2m+17>0 \forall m \in \mathbf{P}$       |                               |  |
|                                                                                       | $t -4t - (m + 2m + 13) = 0. \text{ Disc} = 4(m^2 + 2m + 17) > 0 \forall m \in \mathbb{R}$             |                                       |                                          |                               |  |
|                                                                                       | $\therefore \mathbf{v} = 2^{t_1} \text{ and } \mathbf{v} = \mathbf{v}$                                | $\mathbf{D}^{\mathbf{t}_2}$           |                                          |                               |  |
|                                                                                       | $x_1 = 2^{-1}$ and $x_2 = 2^{-1}$                                                                     |                                       |                                          |                               |  |
| Para                                                                                  | Paragraph – 7                                                                                         |                                       |                                          |                               |  |
|                                                                                       | Let $a \in \mathbf{R}$ and $f(x)$                                                                     | $x^{2} = 2x^{3} - 3(a - 3)x^{2} + 6a$ | ax+(a+2)                                 |                               |  |
| 17.                                                                                   | The set of values of '                                                                                | a' for which f has no point           | of extrema is                            |                               |  |
|                                                                                       | a) (1,9)                                                                                              | b) [1,9]                              | c) $\left(-\infty,0 ight)$               | d) $\phi$                     |  |
| 18. The set of values of 'a' for which f has exactly one point of local maxima and on |                                                                                                       |                                       | ima and one point of                     |                               |  |
|                                                                                       | local minima is                                                                                       |                                       |                                          |                               |  |
| -                                                                                     | a) $(-\infty,1) \cup (9,\infty)$                                                                      | b) $(-\infty,1]\cup[9,\infty)$        | c) [1,9]                                 | d) (1,9)                      |  |
|                                                                                       |                                                                                                       |                                       | -, -, -, -, -, -, -, -, -, -, -, -, -, - | - , ( , - ,                   |  |
| 19.                                                                                   | . The set of values of 'a' for which f has a local maximum at some negative real number and           |                                       |                                          | ive real number and a         |  |
|                                                                                       | local minimum at so                                                                                   | me positive real number is            | 5                                        |                               |  |
|                                                                                       | a) (1, 9)                                                                                             | b) [1,9]                              | c) $(-\infty,1)$                         | d) $\left( -\infty, 0  ight)$ |  |
| Key:                                                                                  | B-A-D                                                                                                 |                                       |                                          |                               |  |
| Hint:                                                                                 |                                                                                                       |                                       |                                          |                               |  |
| 17.                                                                                   | f has no point of extrema $\Rightarrow$ $f'(x) = 0$ has no real root or $f'(x) = 0$ has a double root |                                       |                                          |                               |  |
| $\Rightarrow (a-1)(a-9) \le 0 \Rightarrow a \in [1,9]$                                |                                                                                                       |                                       |                                          |                               |  |
|                                                                                       |                                                                                                       |                                       |                                          |                               |  |

| 18.    | $f'(x) = 6(x^2 - (a - 3)x + a)$ . so $f'(x) = 0$ has a pair of real and distinct roots                                                |                                                                          |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
|        | $\alpha$ and $\beta$ ( $\alpha < \beta$ ) if and only if $(a-3)^2 > 4a$ <i>i.e</i> $(a-1)(a-9) > 0(or)$ <i>iff</i> $a < 1$ or $a > 9$ |                                                                          |  |
| 19.    | The roots of $f'(x) = 0$ are given by                                                                                                 |                                                                          |  |
|        | $\alpha = \frac{(a-3) - \sqrt{(a-1)(a-9)}}{2} \text{ and } \beta = \frac{(a-3) + \sqrt{(a-1)(a-9)}}{2}$                               |                                                                          |  |
|        | Since $lpha < eta$ , f has a local                                                                                                    | maximum at $ lpha (<\! 0)$ and a local minimum at $ eta (>\! 0)$ only if |  |
|        | $\alpha\beta = \frac{(a-3)^2 - (a-1)(a-9)}{4} < 0 \text{ i.e only if } a < 0$                                                         |                                                                          |  |
| Paragr | raph – 8                                                                                                                              |                                                                          |  |
|        | Let $f(x) = ax^2 + bx + c;$                                                                                                           | $a, b, c \in \mathbb{R}$                                                 |  |
|        | It is given that $ f(x)  \le 1, \forall  x  \le 1$                                                                                    |                                                                          |  |
| 20.    | The possible value of $\left a + \right $                                                                                             | $ b $ if $4a^2 + 3b^2$ is maximum is                                     |  |
|        | (A) 1 (I                                                                                                                              | B) 0                                                                     |  |
| Kev:   | (C) 2 (I                                                                                                                              |                                                                          |  |
| 21.    | The possible values of $ a $                                                                                                          | $(+b)$ if $\frac{8}{a^2} + 2b^2$ is maximum is given by                  |  |
|        | (A) 1 (I                                                                                                                              | 3                                                                        |  |
|        | (C) 2 (I                                                                                                                              | D) 3                                                                     |  |
| Key:   | С                                                                                                                                     | 0                                                                        |  |
| 22.    | The possible maximum va                                                                                                               | alue of $\frac{6}{3}a^2 + 2b^2$ is given by                              |  |
|        | (A) 32 (I                                                                                                                             | $(3)\frac{32}{3}$                                                        |  |
|        | (C) $\frac{2}{3}$ (I                                                                                                                  | D) $\frac{16}{3}$                                                        |  |
| Key:   | В                                                                                                                                     |                                                                          |  |
| Hint:  | Now $\left  f(1) - f(0) \right  \le 2 \Longrightarrow$                                                                                | $ \mathbf{a}+\mathbf{b}  \le 2 \implies (\mathbf{a}+\mathbf{b})^2 \le 4$ |  |
| C      | $ f(-1)-f(0)  \le 2 \implies  a-b  \le 2 \implies (a-b)^2 \le 4$                                                                      |                                                                          |  |
|        | Now, $4a^2 + 3b^2 = 2(a+b)^2 + 2(a-b)^2 - b^2 \le 16$                                                                                 |                                                                          |  |
|        | $(4a^2 + 3b^2)_{max} = 16$ When b = 0                                                                                                 |                                                                          |  |
|        | $\Rightarrow  \mathbf{a} + \mathbf{b}  =  \mathbf{a} - \mathbf{b}  =  \mathbf{a}  = 2$                                                |                                                                          |  |
|        | Also the possible ordered triplet (a,b,c) are (2,0, -1) or (-2,0,1)                                                                   |                                                                          |  |
|        | Also $\frac{8}{3}a^2 + 2b^2 = \frac{2}{3}(4a^2)$                                                                                      | $(2^{2}+3b^{2}) \le \frac{2}{3} \times 16. \le \frac{32}{3}$             |  |

#### Paragraph – 9

Let f(x)=0 be a polynomial equation with real coefficients. Then between any two distinct real roots of f(x)=0, there exists at least one real root of the equation f'(x)=0.

This result is a consequence of the celebrated Rolle's theorem applied to polynomials. Much information can be extracted about the roots of f(x) = 0 from the roots of f'(x) = 0.

- 23. The range of values of k for which the equation  $x^4 14x^2 + 24x k = 0$  has four unequal real roots is (A) 8 < k < 11 (B) 4 < k < 8 (C) 8 < k < 15 (D) 4 < k < 13
- 24. If the roots of  $x^3 12x + k = 0$  lie in (-4, -3), (0, 1) and (2, 3), then the range of values of k is (A) 4 < k < 11 (B) 9 < k < 11 (C) 8 < k < 13 (D) 4 < k < 13
- 25. The range of values of k for which the equation  $x^4 + 4x^3 8x^2 + k = 0$  has four real and unequal roots is (A) 0 < k < 3 (B) 0 < k < 8 (C) 3 < k < 8 (D) 3 < k < 13
- KEY: A-B-A
- HINT: (23-25)
- 23.  $f(x) = x^4 14x^2 + 24x k$

$$f'(x) = 4x^3 - 28x + 24 = 4(x+3)(x-1)(x-2)$$

$$f'(x) = 0$$
 has two roots -3, 1, 2

$$f\left(-\infty\right) > 0$$

$$(\infty) > 0$$

$$f(-3) = -117 -$$

$$r(1) = 11 - k$$

$$f(2) = 8 - k$$

For the equation f(x) = 0 to have four real and unequal roots we require

$$f(-3) < 0, f(1) > 0$$
 and  $f(2) < 0$ 

We get 8 < k < 11

24. 
$$f(x) = x^3 - 12x + k$$

Note that  $k \neq 0$  otherwise '0' is root of f(x) = 0 which goes against the hypothesis. If k < 0, then f(0) = k and f(1) = -11 + k have the same sign which can't happen because f(x) has a root between 0 and 1. Thus k > 0, now we can complete the solution

$$f(-4) = -16 + k < 0$$
  

$$f(-3) = 9 + k > 0, \quad f(0) = k > 0$$
  

$$f(1) = -11 + k < 0, \quad f(2) = -16 + k < 0$$
  

$$f(3) = -9 + k > 0$$

The range is found by the intersection i.e, 9 < k < 11

$$f'(x) = 4x^3 + 12x^2 - 16x$$

 $f(x) = x^4 + 4x^3 - 8x^2 + k$ 

$$=4x(x+4)(x-1)$$

Then each of the intervals  $(-\infty, -4), (-4, 0)(0, 1)$  and  $(1, \infty)$  contain a root of f(x)=0

$$f(-4) = -128 + k < 0$$
  
 $f(0) = k > 0$ 

$$f(1) = k - 3 < 0$$

The range is found by intersection i.e. 0 < k < 3

#### Paragraph - 10

Let f be a function satisfying  $f\left(\frac{x_1 + x_2}{2}\right) \le \frac{f(x_1) + f(x_2)}{2}$  for all  $x_1, x_2$  in its domain. If we

draw the graph of a continuous function satisfying this inequality, we will notice that the chord joining any two points on the curve will always be above the portion of the curve between those two points. We can also prove that if the given inequality is true, then the similar result follows for four values  $x_1$ ,  $x_2$ ,  $x_3$ ,  $x_4$ . Indeed

$$f\left(\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}\right) = f\left(\frac{\frac{x_{1}+x_{2}}{2} + \frac{x_{3}+x_{4}}{2}}{2}\right) \le \frac{f\left(\frac{x_{1}+x_{2}}{2}\right) + f\left(\frac{x_{3}+x_{4}}{2}\right)}{2}$$
$$\le \frac{f\left(x_{1}\right) + f\left(x_{2}\right)}{2} + \frac{f\left(x_{3}\right) + f\left(x_{4}\right)}{2} \le \frac{f\left(x_{1}\right) + f\left(x_{2}\right) + f\left(x_{3}\right) + f\left(x_{4}\right)}{4}$$

26.

If  $\int \left(\frac{x_1 + x_2}{2}\right) \leq \frac{f(x_1) + f(x_2)}{2}$  then  $\int \left(\frac{x_1 + x_2 + \dots + x_n}{n}\right) \leq \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n}$  for

a) only when n is of type 2<sup>k</sup> b) only when n is even positive integer c) for all d) Nothing can be said

27. The result 
$$f\left(\frac{x_1+x_2+x_3}{3}\right) \le \frac{f(x_1)+f(x_2)+f(x_3)}{3}$$
 follows from  
 $f\left(\frac{x_1+x_2+x_3+x_4}{4}\right) \le \frac{f(x_1)+f(x_2)+f(x_3)+f(x_4)}{4}$  in the later  $x_4$  is replaced by  
a)  $\frac{x_1+x_2+x_3}{2}$  b)  $\frac{x_1+x_2+x_3}{4}$  c)  $\frac{x_1+x_2+x_3}{3}$  d)  $x_1+x_2+x_3$   
28. Which of the following functions satisfy  $f\left(\frac{x_1+x_2}{2}\right) \le \frac{f(x_1)+f(x_2)}{2}$  for all  $x_1, x_2$  in a domain D  
A)  $\sin x, 0 < x < \frac{\pi}{2}$  B)  $\log x, 0 < x < \infty$   
C)  $\tan x, 0 < x < \frac{\pi}{2}$  D) All of the above

## KEY : C,B,C

#### HINT :

- 26. If  $f\left(\frac{x_1 + x_2}{2}\right) \le \frac{f\left(x_1\right) + f\left(x_2\right)}{2}$ , then the function will be convex and the convexity will remain true for any number of variables, Algebraically it can be shown in the following manner : (i) Show that whenever it is true for k it is also true for 2k. (ii) Whenever it is true for k, then it is also true for k - 1.
- 27. We can test one-by-one and determine that  $\frac{x_1 + x_2 + x_3}{3}$  is the correct replacement.
- 28. Only tan x is convex (chord will be above the curve.)

# Paragraph – 11

If f be a twice differentiable function such that 
$$f''(x) > 0 \forall x \in R$$
. Let h(x) is defined by

$$h(x) = f(\sin^{2} x) + f(\cos^{2} x) where |x| < \frac{\pi}{2}$$
29. The number of critical points of h(x) are  
a) 1 b) 2 c) 3 d) more than 3  
Key: C  
Hint: Passage  $f^{11}(x) > 0 \Rightarrow f^{1}(x)$  is an increasing function  
 $f^{1}(x) > f^{1}(x) \Rightarrow x > x = f^{1}(x) \Rightarrow x = x$ 

$$f^{1}(x_{1}) > f^{1}(x_{2}) \Longrightarrow x_{1} > x_{2}, \ f^{1}(x_{1}) = f^{1}(x_{2}) \Longrightarrow x_{1} = x_{2}$$
$$h^{1}(x) = \sin 2x \left( f^{1}(\sin^{2} x) - f^{1}(\cos^{2} x) \right)$$

 $f^{1}(x) = 0 \Longrightarrow \sin 2x = 0 \Longrightarrow x = 0$ or  $f^{1}(\sin^{2} x) = f^{1}(\cos^{2} x) \Longrightarrow \sin^{2} x = \cos^{2} x \Longrightarrow \tan^{2} x = 1 \Longrightarrow x = \pm \frac{\pi}{4}$  $f'(\sin^2 x) < f'(\cos^2 x)$  for  $x \in$ 30. b)  $\left(-\frac{\pi}{2},-\frac{\pi}{4}\right)\cup\left(\frac{\pi}{4},\frac{\pi}{2}\right)$ a)  $\left(-\frac{\pi}{4},\frac{\pi}{4}\right)$ c)  $\left(-\frac{\pi}{4},0\right) \cup \left(\frac{\pi}{4},\frac{\pi}{2}\right)$  d)  $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ Key: А  $f^{1}\left(\sin^{2} x\right) < f^{1}\left(\cos^{2} x\right) \Longrightarrow \sin^{2} x < \cos^{2} x \Longrightarrow \tan^{2} x < 1 \Longrightarrow x \in \left(-\frac{1}{2}\right)$ Hint: h (x) is increasing for  $x \in$ 31. h (x) is increasing for  $x \in$ a)  $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$  b)  $\left(-\frac{\pi}{2}, -\frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ c)  $\left(-\frac{\pi}{4},0\right) \cup \left(\frac{\pi}{4},\frac{\pi}{2}\right)$  d)  $\left(-\frac{\pi}{2},-\frac{\pi}{4}\right) \cup \left(0,\frac{\pi}{4}\right)$ Key: h(x) is increasing  $\Rightarrow h^1(x) > 0$ Hint: Case I (i)  $\sin 2x > 0 \Rightarrow x \in \left(0, \frac{\pi}{2}\right)$ (ii)  $f^{1}\left(\sin^{2} x\right) > f^{1}\left(\cos^{2} x\right) \Rightarrow \tan^{2} x > 1$  $\Rightarrow x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ 

$$Case II(i) \sin 2x < 0 \Rightarrow x \in \left(-\frac{\pi}{2}, 0\right)$$
$$(ii) f^{1}(\sin^{2} x) < f^{1}(\cos^{2} x) \Rightarrow \tan^{2} x < 1 \Rightarrow x \in \left(\frac{-\pi}{2}, -\frac{\pi}{4}\right)$$

Paragraph – 12

If the function f(x) is continuous and has continuous derivatives through order n-1 on the interval [a,b] and has a finite derivative of the n<sup>th</sup> order at every interior point of the interval. Then,

at 
$$\mathbf{x} \in [a,b]$$
,  
 $f(\mathbf{x}) = f(a) + f^{1}(a)f(\mathbf{x}-a) + f^{11}(a)\frac{(\mathbf{x}-a)^{2}}{2!} + \dots + f^{(n-1)}(a)\frac{(\mathbf{x}-a)^{n-1}}{(n-1)!} + f^{n}(\epsilon)\frac{(\mathbf{x}-a)^{n}}{n!}$ 

where  $\in = a + \theta(x - a), 0 < \theta < 1$  is called TAYLOR'S FORMULA of the function f (x).

Put a = 0, we obtain MACLAURIN'S FORMULA!.

The last term in both TAYLOR AND MACLAURINE formulae are called REMAINDER ANSWER THE FOLLOWING

| 32.      | The polynomial $p(x) = x^5 - 2x^4 + x^3 - x^2$                                                            | +2x-1 can be expressed in powers                         |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|
|          | of $(x-1)$ as,                                                                                            |                                                          |  |  |  |
|          | a) $3(x-1)^3 + 3(x-1)^4 + (x-1)^5$                                                                        | b) $5(x-1)^3 + 5(x-1)^4 + (x-1)^5$                       |  |  |  |
|          | c) $6(x-1)^3 + 6(x-1)^4 + (x-1)^5$                                                                        | d) $2(x-1)^3 + 2(x-1)^4 + (x-1)^5$                       |  |  |  |
| Key.     | A                                                                                                         |                                                          |  |  |  |
| Sol.     | Put a = 1 in Taylor series                                                                                |                                                          |  |  |  |
| 33.      | In the expansion of $f(x) = log(1+x)$ , on                                                                | [0,1] the remainder $R_{10}(x)$ in                       |  |  |  |
|          | maclaurin's form, $0 < \epsilon < x$ , is given by                                                        |                                                          |  |  |  |
|          | a) $-x^{10}$ b) $x^{10}$                                                                                  | c) $\frac{x^{10}}{-x^{10}}$ d) $\frac{-x^{10}}{-x^{10}}$ |  |  |  |
|          | a) $\frac{10(1+\epsilon)^{10}}{10(1+\epsilon)^{10}}$ b) $\frac{10(1+\epsilon)^{10}}{10(1+\epsilon)^{10}}$ | $\frac{10}{10(1-\epsilon)^{10}}$                         |  |  |  |
| Key.     | A                                                                                                         |                                                          |  |  |  |
| Sol.     | Conceptual                                                                                                |                                                          |  |  |  |
| Paragr   | aph – 13                                                                                                  |                                                          |  |  |  |
| Let f(x) | $= \frac{e^x}{2}$ and $g(x) = f'(x)$                                                                      |                                                          |  |  |  |
| ( )      | $1+x^2$                                                                                                   |                                                          |  |  |  |
| 34.      | The number of point(s) of local maxima/minima                                                             | of g(x) is (are)                                         |  |  |  |
|          | (A) zero                                                                                                  | (B) one                                                  |  |  |  |
|          | (C) two                                                                                                   | (D) four                                                 |  |  |  |
| Key.     | С                                                                                                         |                                                          |  |  |  |
| 35.      | The point of local extrema of $g(x)$ for $x > 0$ is (are                                                  | e)                                                       |  |  |  |
|          | (A) $x = 1/2$                                                                                             | (B) x = 1                                                |  |  |  |
| Kov      | (C) both (A) and (B)                                                                                      | (D) no such point exists                                 |  |  |  |
| кеу.     | B O                                                                                                       |                                                          |  |  |  |
| 36.      | The tangent line of the curve $y = f(x)$ at $x = 2$                                                       |                                                          |  |  |  |
|          | (A) lies above the curve in the neighborhood of $x = 2$                                                   |                                                          |  |  |  |
|          | (B) lies below the curve in the neighborhood of x = 2                                                     |                                                          |  |  |  |
|          | (C) crosses the curve at $x = 2$                                                                          |                                                          |  |  |  |
| Kan      | (D) can not say                                                                                           |                                                          |  |  |  |
| кеу.     | B                                                                                                         |                                                          |  |  |  |
| Sol.     | 34. $f(x) = \frac{e}{1 + x^2}$ , $g(x) = f'(x)$                                                           |                                                          |  |  |  |
|          | $g'(x) = f''(x) = \frac{e^{x}(x-1)}{1+x^{2}} (x^{3} - 3x^{2} + 5x + 1)$                                   |                                                          |  |  |  |
|          | Let $h(x) = x^3 - 3x^2 + 5x + 1$ , $h'(x) = 3x^2 - 6x + 5$ , $D < 0$                                      |                                                          |  |  |  |
|          | So, h(x) is strictly increasing will exactly have one real root. Product of roots < 0, so the real        |                                                          |  |  |  |
|          | root is negative. So, g'(x) will change sign only a                                                       | t two points.                                            |  |  |  |
|          | 35. For $x > 0$ it is $x = 1$ .                                                                           |                                                          |  |  |  |
|          |                                                                                                           |                                                          |  |  |  |

36. f''(2) = g'(2) > 0, so f(x) is concave upward at x = 2.

Paragraph – 14

If 
$$f(x) = \begin{vmatrix} \sin^2 x & \cos^2 x & 1 \\ \cos^2 x & 1 & \sin^2 x \\ 1 & \sin^2 x & \cos^2 x \end{vmatrix}$$
, where *l* is a root of  $16l^2 - 16l + 7 = 0$  then there  
exists two real numbers  $(a,b) \in \left(0, \frac{\pi}{2}\right)$  and  $a < b$  for which  $f(x) = 0$ . Does there exist  $c \in (a,b)$  for which  $f'(c) = 0$ . Then  
37. The value of 'a' is  
 $a) \frac{\pi}{6}$  b)  $\frac{\pi}{4}$  c)  $\frac{\pi}{3}$  d)  $\frac{\pi}{2}$   
Key. A  
38. The value of 'b' is  
 $a) \frac{\pi}{6}$  b)  $\frac{\pi}{4}$  c)  $\frac{\pi}{3}$  d)  $\frac{\pi}{2}$   
Key. C  
39. The value of 'c' is  
 $a) \frac{\pi}{6}$  b)  $\frac{\pi}{4}$  c)  $\frac{\pi}{3}$  d)  $\frac{\pi}{2}$   
Key. B  
Sol. 37. 38. 39. : obliviously f(x) is a circulant matrix  
 $\therefore - f(x) = (\sin^2 x + \cos^2 x + 1) (\sin^3 x + \cos^4 x + 1^2 - \sin^2 x \cos^2 x - 1 \cos^2 x - 1 \sin^2 x) = (1 + 1)(1^2 + 1 - 3\sin^2 x \cos^2 x - 1)$   
Now f(x)  $= 0 \Rightarrow 1^2 - l + 1 = 3 \sin^2 x \cos^2 x = 0$  as  $1 = -1$   
 $\Rightarrow 1^2 - l + 1 = \frac{3}{4} \sin 2x \Rightarrow \frac{\pi}{16} + 1 = \frac{3}{4} \sin^2 2x$  as *l* is a root of  $16l^2 - 16l + 7 = 0$   
 $\Rightarrow \sin^2 2x = \frac{3}{4} \Rightarrow \sin 2x = \frac{\sqrt{3}}{2}$  as we have to find roots of .  $f(x) = 0in(0, \frac{\pi}{2})$ .  
 $\Rightarrow x = \frac{\pi}{6}, \frac{\pi}{3}$ . Thus  $f(\frac{\pi}{6}) = f(\frac{\pi}{3}) = 0$  further f is a continuous function and  
differentiable  $\forall x \in R$ . Rolle's Theorem assert that  $f'(c) = 0$  for some  $c \in (\frac{\pi}{6}, \frac{\pi}{3})$ .  
 $\therefore f'(x) = \frac{3}{2}(1 + 1)\sin 4x = 0 \Rightarrow x = \frac{\pi}{4}$   
So finally  $a = \frac{\pi}{6}, c = \frac{\pi}{4}, b = \frac{\pi}{3}$ .  
**Paragraph - 15**

Consider the function  $f : R \rightarrow R$  defined by  $f(x) = \frac{x^2 - ax + 1}{x^2 + ax + 1}$ ,  $a \in (0, 2)$ 

| 40.    | Which of the following is true?<br>(A) $(2 + a)^2 \cdot f''(1) + (2 - a)^2 \cdot f''(-1) = 0$<br>(C) $f'(1) f'(-1) = (2 - a)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (B) $(2 - a)^2 f''(1) - (2 + a)^2 f''(-1) = 0$<br>(D) $f'(1) f'(-1) = -(2 + a)^2$ |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Kev.   | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   |  |
| 41.    | Which of the following is true?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                   |  |
|        | (A) $f(x)$ is decreasing on $(-1, 1)$ and has a local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | minimum at x = 1                                                                  |  |
|        | (B) $f(x)$ is increasing on $(-1, 1)$ and has a local r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | maximum at x = 1                                                                  |  |
|        | (C) $f(x)$ is increasing on (-1, 1) but has neither                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a local maximum nor a local minimum at x = 1                                      |  |
|        | (D) $f(x)$ is decreasing on $(-1,1)$ but has neither                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a local maximum nor a local minimum at x = 1                                      |  |
| Key.   | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   |  |
| 42.    | Let $g(x) = \int_{0}^{e^{x}} \frac{f'(t)}{1+t^{2}} dt$ , which of the following is true?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   |  |
|        | (A) g'(x) is positive on ( $-\infty$ , 0) and negative on (0, $\infty$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   |  |
|        | (B) g'(x) is negative on (– $\infty$ , 0) and positive on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0, ∞)                                                                            |  |
|        | (C) g'(x) changes sign on both ( $-\infty$ , 0) and (0, $\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                   |  |
|        | (D) g'(x) does not change sign on $(-\infty, \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                   |  |
| Кеу.   | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   |  |
| Sol.   | 40.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $f(x) = 1 - \frac{2ax}{x^2 - ax + 1}$                                             |  |
|        | $22(x^2 + 2x + 1) = 22x(2x + 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x + dx + 1                                                                        |  |
|        | $\Rightarrow f'(x) = \frac{2a(x + ax + 1) - 2ax(2x + a)}{(x^2 + ax + 1)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $=\frac{2a(x-1)}{(x^2+2x+1)}$                                                     |  |
|        | (x + dx + 1)<br>$(x^2 + dx + 1) = 2gy(y^2 + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (x + dx + 1)                                                                      |  |
|        | $\therefore \qquad f''(x) = \frac{4a(x^2 + ax + 1) - 2ax(x^2 - 1) \cdot 2(x^2 + ax + 1) \cdot (2x + ax)}{(x^2 - 1) \cdot 2(x^2 + ax + 1) \cdot (2x + ax)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                   |  |
|        | $(\mathbf{x} + \mathbf{d}\mathbf{x} + \mathbf$ |                                                                                   |  |
|        | $=\frac{4ax(x^{2}+ax+1)-4a(x^{2}-1)(2)}{(x^{2}-ax+1)^{3}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>(+a)</u>                                                                       |  |
|        | $(x^{-} + ax + 1)^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |  |
|        | $\therefore$ f''(1) = $\frac{4a(2+a)}{(2-a)^3} = \frac{4a}{(2-a)^2}$ ; f''(-1) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $=\frac{-4a(2-a)}{(2-a)^3}=\frac{-4a}{(2-a)^2}$                                   |  |
|        | $(2+a)^{2}$ $(2+a)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(2-a)^{\circ}$ $(2-a)^{-}$                                                       |  |
|        | $\therefore$ (2+a) <sup>2</sup> .f''(1)+(2-a) <sup>2</sup> .f''(-1) = 4a -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4a = 0                                                                            |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                   |  |
| 41.    | In (-1, 1), $f'(x) = \frac{2a(x^2 - 1)}{x^2} \Rightarrow f'(x) = \frac{(+)}{x^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{(-)}{2} < 0$                                                               |  |
|        | $(x^2 + ax + 1)^2$ (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -)                                                                                |  |
|        | $\therefore$ f(x) is decreasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                   |  |
|        | $f'(x) = 0 \Longrightarrow x^2 - 1 = 0 \Longrightarrow x = 1, -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   |  |
|        | :. $f''(1) = \frac{4a}{(2+a)^2} > 0$<br>:. $f(x)$ has local minimum at x = 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                   |  |
| C      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                   |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                   |  |
|        | $da(x) d(e^x) f'(e^x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |  |
| 42.    | Here, $g'(x) = \frac{dg(x)}{d(e^x)} \cdot \frac{d(e^x)}{dx} = \frac{1}{1+e^{2x}} \cdot e^x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   |  |
|        | $a^{x}$ $22(a^{2x} - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   |  |
|        | $=\frac{e}{1+e^{2x}}\cdot\frac{2a(e^{-1})}{(e^{2x}+e^{2x}+1)^2}>0$ when x e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\in$ (0, $\infty$ ) < 0, when x $\in$ ( $-\infty$ , 0)                           |  |
|        | I + e (e + ae + I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |  |
| n      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                   |  |
| Paragr | aph – 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   |  |

# If f(x) is defined in [a,b] and (i) f(x) is continuous on [a,b] (ii) f(x) is derivable on (a,b) (iii) f(a) = f(b). Then f has at least one point $c \in (a,b)$ such that

f'(c) = 0. This is known as Rolle's theorem. This means f(x) is a polynomial then between any two roots of f(x) = 0 there is always lies a root of f'(x) = 043. A twice differentiable function f such that f(a) = f(b) = 0 and f(c) > 0 and for a < c < b. Then there is atleast one value ' $\mathcal{E}$ ' between a and b for which (A)  $f''(\varepsilon) = 0$ (B)  $f''(\varepsilon) > 0$ (C)  $f''(\varepsilon) < 0$ (D)  $f''(\varepsilon) \ge 0$ Key. С 44. If a function f is such that its derivative f' is continuous on [a,b] and derivable on (a,b)then there exists a number 'c' between 'a' and 'b' such that  $f(b) = f(a) + (b-a)f'(a) + (b-a)^2 K$  then K = (C)  $\frac{1}{2}f''(c)$ (A) f''(c)(B) 2*f* "(*c*) Key. С  $\frac{f(b) - f(a)}{b^3 - a^3}$ 45. If f(x) is continuous in [a,b] and differentiable in (a,b) then holds for (A) at least one  $c \in (a, b)$ (B) atmost one  $c \in (a, b)$ (C) exactly one value of c (D) none of these Key. А Sol. 21. Use Legrange's Mean Value Theorem 23. Let  $\phi(x) = f(x) - f(a) + A(x^3 - a^3)$ Where A is constant to be obtained from  $\phi(b) = \phi(a)$ Since  $\phi(b) = 0$ f(h)

$$\Rightarrow A = \frac{-f(b) - f(b)}{b^3 - a^3}$$

Apply rolle's theorem

#### Paragraph – 17

If f(x) is differentiable function wherever it is continuous and  $f'(c_1) = f'(c_2) = 0$ ,  $f''(c_1) \cdot f''(c_2) < 0$ ,  $f(c_1) = 5$ ,  $f(c_2) = 0$  and  $(c_1 < c_2)$ 

46. If f(x) is continuous in  $[c_1, c_2]$  and  $f''(c_1) - f''(c_2) > 0$  then the minimum number of roots of f'(x) = 0 in  $[c_1 - 1, c_2 + 1]$  is (A) 2 (B) 3 (C) 4 (D) 5 Key. C 47. If f(x) is continuous in  $[c_1, c_2]$  and  $f''(c_1) - f''(c_2) < 0$  then the minimum number of roots of f'(x) = 0 in  $[c_1 - 1, c_2 + 1]$  is (B) 2 (A) 1 (C) 3 (D) 4 Key. В 48. If f(x) is continuous in  $[c_1, c_2]$  and  $f''(c_1) - f''(c_2) > 0$  then minimum number of roots of f(x) = 0 in  $[c_1 - 1, c_2 + 1]$  is

(A) 2 (B) 3 (C) 4 (D) 5 Key. A Sol. 46. Since  $f''(c_1) - f''(c_2) > 0$  and  $f''(c_1) \times f''(c_2) < 0$  $\Rightarrow f''(c_1) > 0 f''(c_2) < 0$ It follows that f'(x) = 0 has at least four roots in the given interval 47.  $f''(c_1) < 0 f''(c_2) > 0$ It follows that f'(x) = 0 has at least two roots in the given interval 48.  $f''(c_1) > 0$   $f''(c_2) < 0$  $\Rightarrow f(x) = 0$  has at least two roots Paragraph – 18 If f''(x) < 0(>0) on an interval (a,b) then the curve y = f(x) on this interval is convex (concave) i.e. it is situated below (above) any of its tangent lines. If  $f''(x_0) = 0$  or does not exist but  $f'(x_0)$  does exist and the second derivative changes sign when passing through the point  $x_0$  then the point  $(x_0, f(x_0))$  is the point of inflexion of the curve y = f(x)If  $y = x^4 + x^3 - 18x^2 + 24x - 12$  then 49. b)  $\left(3/2, -8\frac{1}{16}\right)$  is a point of inflexion a) (-2, -24) is a point of inflexion d) y is convex on  $(3/2,\infty)$ c) (-2, 3/2) is a point of inflexion Key. B 50. If  $y = x \sin(\log x)$  then a) y has only two points of inflexion b) y has only 4 points of inflexion d) y has infinite no. of points of inflexion c)  $\pi/4$  is only point of inflexion Key. D  $y = x^4 + ax^3 + \frac{3}{2}x^2 + 1$  is concave along the entire number scale then 51. a)  $|a| \ge 1$ b)  $|a| \leq 1$ c)  $|a| \le 2$ d) |a| > 2Key. C  $y' = 4x^3 + 3x^2 - 36x + 24$ 49. Sol.  $y'' = 12\left(x^2 + \frac{x}{2} - 3\right)$ y'' > 0 on  $(-\infty, -2) \cup (3/2, \infty)$  y'' < 0 on (-2, 3/2)y"0 at  $x_2 = -2 x_2 = 3/2$ (-2, -124) and  $\left(\frac{3}{2}, -8\frac{1}{16}\right)$  are points of inflection y' = sin(log x) + cos(log x)50.  $y'' = \frac{\sqrt{2}\sin(\pi/4 - \log x)}{x}$  $y^{\,\prime\prime}\,{=}\,0$  at  $x_{_{\rm k}}\,{=}\,e^{\pi/4+K\pi}$   $K\,{=}\,0,\,\pm1,\pm2,....$ y" changes sign when passing through each point  $X_k$  $\therefore$  f (x) has infinite no. of points of inflection  $y'' = 12x^2 + 6ax + 3$ 51.

d)  $\frac{1}{16}$ 

d)  $\frac{\pi^{3}}{32}$ 

d) 1144

 $y'' \ge 0 \forall \in R$ ∴ y is concave on entire number scale  $4x^2 + 2ax + 1 \ge 0 \quad \forall x \in \mathbb{R}$  $\therefore 4a^2 - 16 \le 0$  $\Rightarrow |a| \le 2$ Paragraph - 19 Maximum and minimum values of functions are not always found by calculus. At times algebraic and trigonometric methods become very elegant. Some of the results which are frequently used are: i) Arithemtic mean of positive numbers  $\geq$  geometric mean with equality being attained when all numbers are equal ii)  $a\cos x + b\sin x \in \left[-\sqrt{a^2 + b^2}, \sqrt{a^2 + b^2}\right]$  for all real 'x' iii)  $\sqrt{a^2 \sec^2 x + b^2 \csc^2 x}$  (a, b > 0) will have a minimum value (a + b)If a, b > 0, a + b = 1 then minimum value of  $a^4 + b^4$  must be 52. b)  $\frac{1}{4}$ a)  $\frac{1}{2}$ c) Key. C The minimum value of  $(\sin^{-1} x)^3 + (\cos^{-1} x)^3$ ,  $(|x| \le 1)$  must be 53. a)  $\frac{7\pi^3}{8}$ b)  $\frac{\pi^3}{4}$ Key. D If x, y > 0 then maximum value of product xy(72-3x-4y) is 54. b) 1152 a) 1155 c) 1122 Key. B  $AM \ge GM \implies ab \le 1/4$ 52. Sol.  $\Rightarrow a^2 + b^2 = 1 - 2ab \ge \frac{1}{2}$ 

$$\Rightarrow a^4 + b^4 = \left(a^2 + b^2\right)^2 - 2a^2b^2 \ge \frac{1}{8} \Rightarrow a^4 + b^4 \ge 1/8$$

53. Let 
$$\cos^{-}x = t$$
  
 $f(x) = \frac{3\pi}{2} \left(t - \frac{\pi}{4}\right)^{2} + \frac{\pi^{3}}{32}$   
 $Q \ t \in [0, \pi], \left(t - \frac{\pi}{4}\right)^{2}$  is capable of becoming zero  
 $\Rightarrow \min \operatorname{imum} f(x) = \frac{\pi^{3}}{32}$   
54.  $xy(72 - 3x - 4y) = \frac{1}{12}(3x)(4y)(72 - 3x - 4y)$ 

3x, 4y, 72 - 3x - 4y have a constant sum 72 thus we seek values of x and y satisfying 3x = 4y = 72 - 3x - 4y

$$\therefore x = 8 y = 6$$
  
$$\therefore \max xy (72 - 3x - 4y) = 8 \times 6 \times 24 = 1152$$

Paragraph – 20

Let 
$$f$$
 be a function satisfying  $f\left(\frac{x_1 + x_2}{2}\right) \le \frac{f(x_1) + f(x_2)}{2}$ , for all  $x_1, x_2$  in its domain.

If we draw the graph of a continuous function satisfying this inequality, we will notice that the chord joining any two points on the curve always be above the portion of the curve between two points. We can also prove that, if the given inequality is true then the similar result follows for four values  $x_1, x_2, x_3, x_4$ . Indeed

$$f\left(\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}\right) = f\left(\frac{\frac{x_{1}+x_{2}}{2}+\frac{x_{3}+x_{4}}{2}}{2}\right) \le \frac{f\left(\frac{x_{1}+x_{2}}{2}\right)+f\left(\frac{x_{3}+x_{4}}{2}\right)}{2}$$
$$\le \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}+\frac{f\left(x_{3}\right)+f\left(x_{4}\right)}{2} \le \frac{f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)}{4}$$

55. If 
$$f\left(\frac{x_1+x_2}{2}\right) \le \frac{f(x_1)+f(x_2)}{2}$$
 then the result of  
 $f\left(\frac{x_1+x_2+\ldots+x_n}{n}\right) \le \frac{f(x_1)+f(x_2)+\ldots+f(x_n)}{n}$  is true.  
a) for all  $n \in N$  b) Only when  $n$  is even

c) Only when *n* is of the type  $2^k$ 

b) Only when *n* is even positive integerd) Only when *n* is odd positive integer

Key. A

56. The result 
$$f\left(\frac{x_1 + x_2 + x_3}{3}\right) \le \frac{f(x_1) + f(x_2) + f(x_3)}{3}$$
 follows from  
 $f\left(\frac{x_1 + x_2 + x_3 + x_4}{4}\right) \le \frac{f(x_1) + f(x_2) + f(x_3) + f(x_4)}{4}$ , if  $x_4$  in the latter is replaced by  
a)  $x_1 + x_2 + x_3$  b)  $\frac{x_1 + x_2 + x_3}{2}$  c)  $\frac{x_1 + x_2 + x_3}{3}$  d)  $\frac{x_1 + x_2 + x_3}{4}$   
Key. C

57. Which of the following functions satisfy 
$$f\left(\frac{x_1 + x_2}{2}\right) \le \frac{f(x_1) + f(x_2)}{2}$$
  
a)  $\sin x, 0 < x < \frac{\pi}{2}$  b)  $\tan x, 0 < x < \frac{\pi}{2}$  c)  $-x^2, 0 < x < \infty$  d)  $\log x, 0 < x < \infty$ 

Key. B

Sol. 55. If 
$$f\left(\frac{x_1 + x_2}{2}\right) \le \frac{f(x_1) + f(x_2)}{2}$$
, then the function will be convex and the convexity will remain true for any number of variables. Algebraically it can be shown in the following manner:

(i) Whenever it is true for k it is also true for 2k. Whenever it is true for k then it is also true for k-1. (ii) We can test one-by-one and determine that  $\frac{x_1 + x_2 + x_3}{2}$  is the correct replacement. 56. Only  $\tan x$  is convex chord will be above the curve 57. Paragraph – 21  $f(x) = \sin 2\pi x + \{x\} : x \in [0, 10]$ 58. Number of points where f(x) achieves local maximum is (A) 20 (B) 10 (C) 11 (D) None of these Key. В Number of roots of f(x) = 0 in (0, 10) is 59. (B) 30 (A) 20 (C) 31 (D) None of these Key. D 60. Number of points where f(x) achieves local minima is (A) 10 (B) 15 (C) 11 (D) 19 Key. D Sol.58. f(x) is periodic of period 1 Consider  $x \in [0,1)$  $f'(x) = 2\pi\cos 2\pi x + 1$ f'(x) = 0 if  $x = \alpha, \beta$  where f'(x) > 0 if  $x \in [0, \alpha)$  or  $(\beta, 1)$ f'(x) < 0 if  $x \in (\alpha, \beta)$  $f(0) = f(1) = 0; f(\alpha) > 0$ f has local maxima at  $\alpha$ . 59. Use graphical solution. f has one point of local minima in [0, 1) at  $x = \beta$ 60. Number of points of local minima is 10. Paragraph – 22  $f(x) = \left(\tan^{-1} x\right)^2 + \frac{2}{\sqrt{1 + x^2}}$ 61. f increases in the region (A)  $(0,\infty)$ (B) **R** (C)  $(-\infty, 0)$ (D) None of these Key. Α 62. Maximum value of f(B) is  $\frac{\pi^2}{4}$ (A) is  $\pi^2 + 1$ 

| Ke  | (C) is 1<br>y. D                                  | (D) does not exist |
|-----|---------------------------------------------------|--------------------|
| Sol |                                                   |                    |
| 63. | Number of points of local extrema of $f$ is (A) 0 | (B) 1              |

(D) None of these

Key. B

Sol.61. f has domain R and f is even.

$$f'(x) = \frac{2 \tan^{-1} x}{1 + x^2} - \frac{2x}{(1 + x^2)^{3/2}}$$
  
=  $\frac{2}{1 + x^2} g(x)$  where  
 $g(x) = \tan^{-1} x - \frac{x}{\sqrt{1 + x^2}}; \quad x = \tan \theta : \theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) = \theta - \sin \theta$   
 $f'(x) > 0$  if  $g(x) > 0; i.e.,$  if  $\theta \in \left(0, \frac{\pi}{2}\right); x > 0.$   
f is even  $\therefore f'(x) < 0$  if  $x < 0.$   
As  $x \to \infty$ ,  $f(x) \to \frac{\pi^2}{2} + 0 = \frac{\pi^2}{2}$  which is not achieved

62. As 
$$x \to \infty$$
,  $f(x) \to \frac{\pi^2}{4} + 0 = \frac{\pi^2}{4}$  which is not achieved.  
63.  $x = 0$  is the only point of local extrema.

#### Paragraph – 23

$$f(x) = \ln\left(\sqrt{1 - x^2} - x\right)$$

64. f(x) increases in the region

(A) 
$$[0, \frac{1}{\sqrt{2}})$$
  
(C)  $(-1, 0)$   
Key. B  
(B)  $\left(-1, -\frac{1}{\sqrt{2}}\right)$   
(D) None of these  
(B)  $0$   
(C)  $\frac{1}{\sqrt{2}}$   
(D)  $-\frac{1}{\sqrt{2}}$   
(D)  $-\frac{1}{\sqrt{2}}$   
(D)  $-\frac{1}{\sqrt{2}}$   
(E)  $1$   
(C)  $2$   
(C)  $2$   
(D)  $-\frac{1}{\sqrt{2}}$   

Sol.64. 1*n* is an increasing function

$$\sqrt{1-x^2} - x \text{ is defined for } x \in [-1,1]$$
If  $x \in [-1,0], \sqrt{1-x^2} - x > 0$ 
If  $x > 0$ , then  $\sqrt{1-x^2} > x \Rightarrow 1-x^2 > x^2$ 
*i.e.*,  $x \in \left(0, \frac{1}{\sqrt{2}}\right)$ 
Domain of  $f = [-1, \frac{1}{\sqrt{2}})$ 

$$g(x) = \sqrt{1-x^2} - x = \cos \theta - \sin \theta : \theta \in [-\frac{\pi}{2}, \frac{\pi}{4}]; x = \sin \theta$$

$$g(x) = \sqrt{2} \cos\left(\theta + \frac{\pi}{4}\right) : \theta + \frac{\pi}{4} \in [-\frac{\pi}{4}, \frac{\pi}{2}]$$
g increases if  $\theta + \frac{\pi}{4} \in [-\frac{\pi}{4}, \frac{\pi}{2}]$ 
g increases if  $\theta \in [-\frac{\pi}{2}, -\frac{\pi}{4}]$ 
if  $x \in [-1, \frac{-1}{\sqrt{2}}]$ 
f increases in  $[-1, -\frac{1}{\sqrt{2}}) \supseteq \left(-1, \frac{-1}{\sqrt{2}}\right)$ 
f decreases in  $\left(-\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ 
f has local max at  $x = -\frac{1}{\sqrt{2}}$ 
Least value of  $f = \min$  (Range of  $f$ ).
$$f(-1) = 0; \lim_{x \to \frac{\pi}{\sqrt{2}}} f(x) = -\infty \text{ as}$$

$$g(x) \to 0 + \text{ as } x \to \frac{1}{\sqrt{2}} - f$$
has no minima.

Paragraph – 24

65.

66.

C

$$f(x) = \frac{x^3}{(4+x+x^2)^3}$$

67. f(x) has local minimum at x =

(a) 
$$-\frac{1}{2}$$
 (b)  $-2$   
(c)  $0$  (d) none of these  
Key. B  
68.  $f(x)$  has local maximum at  $x =$   
(a)  $1$  (b)  $2$  (d) none of these  
(e)  $2$  (d) none of these  
Key. C  
69. Range of  $f$  is  
(a)  $(-\infty, \infty)$  (b)  $\left[-\frac{1}{3}, \frac{1}{125}\right]$   
(c)  $\left[-\frac{1}{27}, \frac{1}{125}\right]$  (d) none of these  
Key. C  
Sol. 67.  $h(x) = x^3$  increases over  $\mathbf{R}$ .  
 $f(x) = hog(x) : g(x) = \frac{x}{x^2 + x + 4} = \begin{cases} 0 & \text{if } x = 0 \\ \frac{1}{2\left(\alpha + \frac{1}{\alpha} + \frac{1}{2}\right)} & \text{if } x \neq 0; \frac{x}{2} = \alpha \end{cases}$   
 $\alpha : -\infty \rightarrow -1 \rightarrow 0 0 + \rightarrow 1 \rightarrow \infty$   
 $\alpha + \frac{1}{\alpha} : -\infty \rightarrow -2 \rightarrow -\infty$   $0 + \rightarrow \frac{1}{5} \rightarrow 0 +$   
 $g(x)$  has local minimum at  $\alpha = -1; x = -2$   
f has local minimum at  $\alpha = 1; x = 2$   
 $\therefore f$  has local maximum at  $\alpha = 1; x = 2$   
 $\therefore f$  has local maximum at  $\alpha = 2$ .

69. 
$$g_{\min} = g(-2) = -\frac{1}{3}; f_{\min} = -\frac{1}{27}$$
  
 $g_{\max} = g(2) = \frac{1}{5}; f_{\max} = \frac{1}{125}$   
Range of  $f = \left[-\frac{1}{27}, \frac{1}{125}\right]$ 

Paragraph – 25

 $f(x) = \frac{1}{\sin^{-1} 2x\sqrt{1 - x^2}} \, .$ f increases in the region 70.  $\left(-1,-\frac{1}{\sqrt{2}}\right)$ (b)  $\left(\frac{-1}{\sqrt{2}}, 0\right)$ (a) (0, 1)(c) (d) none of these Key. Α 71. Number of critical points of f is (a) 0 (b) 1 (d) 3 (c) 2 Key. С 72. f has local maximum value  $\frac{\pi}{2}$ (a) (b) (d) (c) none of these Key. В 70.  $f(x) = \frac{1}{g(x)}$  has domain  $(-1,1) \sim (0)$ :  $g(x) = \sin^{-1} 2x \sqrt{1-x^2}$ Sol.  $g(x) = \sin^{-1} h(x) : h(x) = 2x\sqrt{1-x^2}$  $\sin^{-1}$  is an increasing function  $h(x) = \sin 2\theta : x = \sin \theta; \theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \sim \{0\}$  $2\theta: -\pi + \rightarrow -\frac{\pi}{2} \rightarrow 0 h(x): 0 \rightarrow -1 \rightarrow 0 g(x): 0 \rightarrow -\frac{\pi}{2} \rightarrow 0 f(x): -\infty \rightarrow -\frac{2}{\pi} \rightarrow -\infty$   $0 + \rightarrow \frac{\pi}{2} \rightarrow 0 +$   $0 + \rightarrow \frac{\pi}{2} \rightarrow 0 +$   $\infty \rightarrow \frac{2}{\pi} \rightarrow \infty$ f increases when  $x \in \left(-1, -\frac{1}{\sqrt{2}}\right)$  or  $x \in \left(\frac{1}{2}, 1\right)$  $f'(x) = \frac{-g'(x)}{(g(x))^2}$  where 71.

$$g(x) = \begin{cases} 2\sin^{-1}x & \text{if } x \in \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] \sim \{0\} \\ \pi - 2\sin^{-1}x & \text{if } x \in \left[-\frac{1}{\sqrt{2}}, 1\right) \\ -\pi - 2\sin^{-1}x & \text{if } x \in (-1, -\frac{1}{\sqrt{2}}] \end{cases}$$
  
*g* is not differentiable at  $x = \pm \frac{1}{\sqrt{2}}$   
*g* '(*x*) is never zero in (-1,1) ~ (0).  
 $\therefore$  *f* has two critical points *viz.*,  $x = \pm \frac{1}{\sqrt{2}}$ .  
72. *f* has local maximum value ' $-\frac{2}{\pi}$ ' at  $x = -\frac{1}{\sqrt{2}}$ .

## Maxima & Minima Integer Answer Type

- 1. From a point perpendicular tangents are drawn to ellipse  $x^2 + 2y^2 = 2$ . The chord of contact touches a circle which is concentric with given ellipse. Then find the ratio of maximum and minimum area of circle.
- Key. 4

Sol. The director circle of ellipse 
$$\frac{x^2}{2} + \frac{y^2}{1} = 1$$
 is  $x^2 + y^2 = 3$   
Let a point  $P(\sqrt{3} \cos\theta, \sqrt{3} \sin\theta)$   
Equation of chord of contact is  
 $x, \sqrt{3} \cos\theta + 2y\sqrt{3} \sin\theta - 2 = 0$   
It touches  $x^2 + y^2 = r^2$   
 $r = \frac{2}{\sqrt{3}\cos^2\theta + 12\sin^2\theta} = \frac{2}{\sqrt{3+9}\sin^2\theta}$   
 $r_{max} = \frac{2}{\sqrt{3}}$  &  $r_{min} = \frac{2}{\sqrt{12}} \Rightarrow \frac{A_{max}}{A_{min}} = 4$ .  
2. The maximum value of the function  $f(x) = 2x^3 - 15x^2 + 36x - 48$  on the set  
 $A = \{x \mid x^2 + 20 \le 9x\}$  is  
Key. 7  
Sol. The given function is  $f(x) = 2x^3 - 15x^2 + 36x - 48$  and  $A = \{x \mid x^2 + 20 \pounds 9x\}$   
 $P = A = \{x \mid x^2 - 9x + 20 \pounds 0\}$   
 $P = A = \{x \mid x^2 - 9x + 20 \pounds 0\}$   
 $P = A = \{x \mid (x - 4)(x - 5) \pounds 0\}$   
 $P = A = [4, 5]$   
Also  
 $f'(x) = 6x^2 - 30x + 36 = 6(x^2 - 5x + 6) = 6(x - 2)(x - 3)$   
Clearly "xÎ A,  $f'(x) > 0$   
 $\setminus f$  is strictly increasing function on  
 $\setminus$  Maximum value of f on A  
 $= f(5) = 2' \cdot 5^3 - 15' \cdot 5^2 + 36' \cdot 5 - 48 = 250 - 375 + 180 - 48 = 7$ 

3. If 
$$a,b,c \in N$$
, and if  $\frac{ax^4 - bx^3 + cx^2 - bx + a}{(x^2 + 1)^2}$  attains minimum value at  $x = 2$  or

1/2 then the A.M of the least possible values of a, b and c is \_\_\_\_\_Key.4

Sol. Put 
$$x + \frac{1}{x} = t$$
 a = 1, b = 4, c = 7,  $\Rightarrow$  AM is  $\frac{1+4+7}{3} = 4$ 

re [ ] denotes the greatest e on the l integer function) ie y ٢, ٢, () e ۱

Key. 3 Sol.

Let, D = (2, -1) be the reflection = xof A in x-axis, and let E = (1, 2) be the reflection in the line y = x. Then AB = BD and AC = CE, so the perimeter of ABC is  $\mathsf{DB} + \mathsf{BC} + \mathsf{CE} \ge \mathsf{DE} = \sqrt{1+9} = \sqrt{10}$ В The minimum value of,  $\frac{\sec^4 \alpha}{\tan^2 \beta} + \frac{\sec^4 \beta}{\tan^2 \alpha}, \alpha, \beta \neq \frac{K\pi}{2}, K \in I$ , is 9. 8 Key. Sol.  $\frac{(a+1)^2}{b} + \frac{(b+1)^2}{a} = \frac{a^2}{b} + \frac{1}{b} + \frac{b^2}{a} + \frac{1}{a} + 2\left(\frac{a}{b} + \frac{b}{a}\right) \ge 4\left[\frac{a^2}{b} \cdot \frac{1}{b} \cdot \frac{b^2}{a} \cdot \frac{1}{a}\right]^{\frac{1}{4}} + 4\left(\frac{a}{b} \cdot \frac{b}{a}\right)^{\frac{1}{2}} \ge 8$ Where  $a = \tan^2 \alpha$ ,  $b = \tan^2 \beta$ 

If one root of  $x^2 - 4ax + a + f(a) = 0$  is three times the other and if minimum 10. value of f(a) is  $\alpha$ , then  $|12\alpha|$  has a value

Key.

 $\theta$  and  $3\theta \Rightarrow 4\theta = 4a \Rightarrow \theta = a$  and  $a - 4a^2 + f(a) = 0$ Sol.

$$\Rightarrow$$
 f(a) = 3a<sup>2</sup> - a  $\Rightarrow$  f<sub>min</sub> is  $\frac{-1}{12}$ 

For a twice differentiable function f(x), a function g(x) is defined as 11.  $g(x) = (f^{1}(x))^{2} + f(x)f^{11}(x)$  on [a,e]. If a < b < c < d < e and f(a) = 0, f(b) = 2, f(c) = -1, f(d) = 2, f(e) = 0, then, the minimum number of roots of the equation g(x) = 0, is/are

Key.

Qf(b)f(c) < 0 and f(c)f(d) < 0Sol.

 $\Rightarrow$  f(x) = 0 has at least four roots,

a,  $c_1, c_2, e$ , Where  $c_1 \in (b, c)$  and  $c_2 \in (c, d)$ . Then, by RT,  $f^1(x) = 0$  has at least three roots in,  $(a,c_1),(c_1,c_2),(c_2,e)$ 

 $\therefore$  f(x)f<sup>1</sup>(x) = 0 has at least 7 roots, by RT and hence,

$$g(x) = \frac{d}{dx} \{f(x)f^{1}(x)\} = 0$$
 has at least 6 roots

12. Let 
$$P(x)$$
 be a polynomial of degree 4 having extremum at  $x = 1,2$  and  
 $\operatorname{Let}_{x \to 0} \left( 1 + \frac{P(x)}{x^2} \right) = 2$ , then, the value of  $P(2)$ , is  
Key. 0  
Sol. Let  $P(x) = a_0 x^4 + \dots + a_4$  by hypothesis,  $P^1(1) = 0$  and  $P^1(2) = 0$   
 $\Rightarrow 4a_0 + 3a_1 + 2a_2 + a_3 = 0$  and  $32a_0 + 12a_1 + 4a_2 + a_3 = 0$   
Also,  $\operatorname{Lt}_{x \to 0} \frac{P(x)}{x^2} = 1 \Rightarrow a_4 = 0$  and  $a_3 = 0$  hence  $\operatorname{Lt}_{x \to 0} (a_0 x^3 + a_1 x + a_2) = 1 \Rightarrow a_2 = 1$   
Solving, we get,  $a_0 = \frac{1}{4}, a_1 = -1, a_2 = 1, a_3 = 0, a_4 = 0$   
 $\therefore P(x) = \frac{1}{4} x^4 - x^3 + x^2 \Rightarrow P(2) = 0$ 

- 13. In the coordinate plane, the region M consists of all points (x, y) satisfying the inequalities  $y \ge 0, y \le x$ , and  $y \le 2-x$  simultaneously. The region N which varies with parameter t, consists of all the points (x, y) satisfying the inequalities  $t \le x \le t+1$  and  $0 \le t \le 1$  simultaneously. If the area of the region  $M \cap N$  is a function of t, i.e.,  $M \cap N = f(t)$  and if  $\alpha$  is the value of t for which this area is maximum, then the numerical value of  $2\alpha$  is
- Key. 1

Sol. 
$$M \cap N = f(t) = -t^2 + t + 1/2$$

$$=\frac{3}{4} - \left(t - \frac{1}{2}\right)^2$$
 f(t) is maximum for t = 1/2 i.e.  $\alpha = \frac{1}{2} \Longrightarrow 2\alpha = 1$ 

- 14. Let M(-1,2) and N(1,4) be two points in a plane rectangular coordinate system XOY. P is a moving point on the x-axis. When  $\angle$ MPN takes its maximum value, the x-coordinate of point P is
- Key. 1
- Sol. The centre of a circle passing through points M and N lies on the perpendicular bisector y = 3- x of MN. Denote the centre by C(a, 3 – a), the equation of the circle is

$$(x-a)^2 + (y-3+a)^2 = 2(1+a^2)$$

Since for a chord with a fixed length the angle at the circumference subtended by the corresponding arc will become larger as the radius of the circle becomes smaller. When  $\angle$ MPN reaches its maximum value the circle through the three points M, N and P will be tangent to the x-axis at P, which means

$$2(1 + a^2) = (a - 3)^2 \implies a = 1 \text{ or } a = -7$$

Thus the point of contact are P(1, 0) or P'(-7,0) respectively.

But the radius of circle through the points M, N and P' is larger than that of circle through points M, N and P.

3

2

6

5

Therefore, ∠MPN > ∠ MP ' N . Thus P = (1, 0) ∴ x-coordinate of P = 1.

15. Put numbers 1, 2, 3, 4, 5, 6, 7, 8 at the vertices of a cube, such that the sum of any three numbers on any face is not less than 10. The minimum sum of the four number on a face is k, then k/2 is equal to

Key. 8

Sol. Suppose that the four numbers on face of the cube is  $a_1$ ,  $a_2$ ,  $a_3$ ,  $a_4$  such that their sum reaches the minimum and  $a_1 < a_2 < a_3 < a_4$ .

Since the maximum sum of any three numbers less than 5 is 9, we have  $a_4 \ge 6$  and  $a_1 + a_2 + 6$ 

 $a_3 + a_4 \ge 16$ . As seen in figure, we have 2 + 3 + 5 + 6 = 16

and that means minimum sum of four numbers on a face is 16.

16. Rolle's theorem holds for the function  $f(x) = x^3 + mx^2 + nx$  on the interval [1,2] and the value of c is  $\frac{4}{3}$ . Then m + n =

Key.

Sol.  $f(1) = f(2) \Longrightarrow 1 + m + n = 8 + 4m + 2n \Longrightarrow 3m + n + 7 = 0.$ 

$$f^{1}(C) = 0 \Rightarrow 3C^{2} + 2mC + n = 0 \Rightarrow \frac{16}{3} + \frac{8m}{3} + n = 0 (C = \frac{4}{3})$$

 $\Rightarrow$  8*m*+3*n*+16=0 on solving we get *m* = -5, *n* = 8 Hence m + n = 3

17. If the greatest value of  $(3 - \sqrt{4 - x^2})^2 + (1 + \sqrt{4 - x^2})^3$  is  $\alpha$ , then the numerical value of  $(\frac{\alpha}{7})$ , is Key. 4

Sol. Let 
$$t = \sqrt{4 - x^2}, 0 \le t \le 2$$
  
 $\therefore F(t) = (3 - t)^2 + (1 + t)^3$  and maximum of  $f(x)$  is 10

- 18. If the graph of  $f(x) = 2x^3 + ax^2 + bx$ ,  $a, b \in N$  cuts the x-axis at three real and distinct points, then the minimum value of  $(a^2 + b^2 4)$ , is
- Key. 6

Sol. 
$$f^{1}(x) = 6x^{2} + 2ax + b \Rightarrow 4a^{2} - 24b \ge 0$$
  
 $\Rightarrow a^{2} \ge 6b$   
 $\Rightarrow a \ge 3, b \ge 1, \Rightarrow a = 3, b = 1$ 

19. The minimum value of,  $\frac{\sec^4 \alpha}{\tan^2 \beta} + \frac{\sec^4 \beta}{\tan^2 \alpha}$ ,  $\alpha, \beta \neq \frac{K\pi}{2}$ ,  $K \in I$ , is Key. 8

Sol.

$$\frac{(a+1)^{2}}{b} + \frac{(b+1)^{2}}{a} = \frac{a^{2}}{b} + \frac{1}{b} + \frac{b^{2}}{a} + \frac{1}{a} + 2\left(\frac{a}{b} + \frac{b}{a}\right) \ge 4\left[\frac{a^{2}}{b} \cdot \frac{1}{b} \cdot \frac{b^{2}}{a} \cdot \frac{1}{a}\right]^{\frac{1}{4}} + 4\left(\frac{a}{b} \cdot \frac{b}{a}\right)^{\frac{1}{2}} \ge 8$$
  
Where  $a = \tan^{2} \alpha, b = \tan^{2} \beta$ 

20. If one root of  $x^2 - 4ax + a + f(a) = 0$  is three times the other and if minimum value of f(a) is  $\alpha$ , then  $|12\alpha|$  has a value

Key. 1

Sol. 
$$\theta$$
 and  $3\theta \Rightarrow 4\theta = 4a \Rightarrow \theta = a$  and  $a - 4a^2 + f(a) = 0$ 

$$\Rightarrow$$
 f(a) = 3a<sup>2</sup> - a  $\Rightarrow$  f<sub>min</sub> is  $\frac{-1}{12}$ 

21. The sum of greatest and least values of  $f(x) = |x^2 - 5x + 6|$  in  $\left[0, \frac{5}{2}\right]$ , is Key. 6

- Sol. Sketch its graph
- 22. If A = (0,2), B = (5,10) are two points. If P is a Point on x-axis, then, the sum of the digits in the minimum value of AP+PB ,is

Key. 4

Sol. If 
$$P = (x,0)$$
, then  $AP + PB = f(x) = \sqrt{x^2 + 2^2} + \sqrt{(x-5)^2 + 10^2}$ 

 $\Rightarrow$  x =  $\frac{5}{6}$  is a point of minima

: minimum value of  $f(x) = \sqrt{\frac{169}{36}} + \sqrt{\frac{625 + 3600}{36}} = \frac{13}{6} + \frac{65}{6} = \frac{78}{6} = 13$ 

- 23. For a twice differentiable function f(x), a function g(x) is defined as  $g(x) = (f^{1}(x))^{2} + f(x)f^{11}(x)$  on [a,e]. If a < b < c < d < e and f(a) = 0, f(b) = 2, f(c) = -1, f(d) = 2, f(e) = 0, then, the minimum number of roots of the equation g(x) = 0, is/are
- Key. 6

Key.

0

Sol. Q f(b)f(c) < 0 and f(c)f(d) < 0

 $\Rightarrow$  f(x) = 0 has at least four roots,

 $a,c_1,c_2,e$ , Where  $c_1 \in (b,c)$  and  $c_2 \in (c,d)$ . Then, by  $RT,f^1(x) = 0$  has at least three roots in,  $(a,c_1),(c_1,c_2),(c_2,e)$ 

 $\therefore f(x)f^{1}(x) = 0$  has at least 7 roots, by RT and hence,

$$g(x) = \frac{d}{dx} \{f(x)f^{1}(x)\} = 0$$
 has at least 6 roots

24. Let f(x) = 0 be an equation of degree six, having integer coefficients and whose one root is  $2\cos\frac{\pi}{18}$ . Then, the sum of all the roots of  $f^1(x) = 0$ , is

Sol. Let 
$$\theta = \frac{\pi}{18} \Rightarrow 6\theta = \frac{\pi}{3} \Rightarrow \cos 6\theta = \frac{1}{2}$$
  
 $\Rightarrow 4\cos^3 2\theta - 3\cos 2\theta = \frac{1}{2} \Rightarrow 8(2\cos^2 \theta - 1)^3 - 6(2\cos^2 \theta - 1) = 1$  let  $2\cos \theta = x$   
 $\Rightarrow 8\left(2.\frac{x^2}{4} - 1\right)^3 - 6\left(2.\frac{x^2}{4} - 1\right) = 1$   
 $\Rightarrow (x^2 - 2)^3 - 3(x^2 - 2) = 1$   
 $\Rightarrow x^6 - 6x^4 + 9x^2 - 3 = 0$   
 $f^1(x) = 6x(x^4 - 4x^2 + 3)$   
 $f^1(x) = 0 \Rightarrow x = 0, \pm 1, \pm \sqrt{3}$ 

Let  $\alpha$  and  $\beta$  respectively be the number of solutions of  $e^x = x^2$  and  $e^x = x^3$ . 25. Then, the numerical value of  $2\alpha + 3\beta$ , is

8 Key.

- Sketch the graphs Sol.
- 26. Let P(x) be a polynomial of degree 4 having extremum at x = 1,2 and Let  $\left(1 + \frac{P(x)}{x^2}\right) = 2$ , then, the value of P(2), is

Key.

0 Let  $P(x) = a_0 x^4 + \dots + a_4$  by hypothesis,  $P^1(1) = 0$  and  $P^1(2) = 0$ Sol.  $\Rightarrow 4a_0 + 3a_1 + 2a_2 + a_3 = 0$  and  $32a_0 + 12a_1 + 4a_2 + a_3 = 0$ 

Also,  $\lim_{x \to 0} \frac{P(x)}{x^2} = 1 \Rightarrow a_4 = 0$  and  $a_3 = 0$  hence  $\lim_{x \to 0} \left(a_0 x^3 + a_1 x + a_2\right) = 1 \Rightarrow a_2 = 1$ 

Solving, we get, 
$$a_0 = \frac{1}{4}, a_1 = -1, a_2 = 1, a_3 = 0, a_4 = 0$$

$$\therefore P(\mathbf{x}) = \frac{1}{4}\mathbf{x}^4 - \mathbf{x}^3 + \mathbf{x}^2 \Rightarrow P(2) = 0$$

27. Let 
$$f(x) = \begin{cases} |x^2 - 3x| + a, & 0 \le x < \frac{3}{2} \\ -2x + 3, & x \ge \frac{3}{2} \end{cases}$$
. If  $f(x)$  has a local maxima at  $x = \frac{3}{2}$ , and the greatest

value of 'a' is k, then |4k| is.....

Key.

9

Sol. 
$$f\left(\frac{3}{2}\right) = 0 \Rightarrow \lim_{x \to \frac{3}{2}} |x^2 - 3x| + a \le 0$$
$$a \le -\frac{9}{4}$$
Hence, 
$$|4k| = 9$$

If a, b, c  $\in$  N, and if  $\frac{ax^4 - bx^3 + cx^2 - bx + a}{(x^2 + 1)^2}$  attains minimum value at x = 2 or 28.

1/2 then the A.M of the least possible values of a, b and c is \_\_\_\_\_ Key. 4

Sol. Put 
$$x + \frac{1}{x} = t$$
 a = 1, b = 4, c = 7,  $\Rightarrow$  AM is  $\frac{1+4+7}{3} = 4$ 

29. The maximum value of the function  $f(x) = 2x^3 - 15x^2 + 36x - 48$  on the set  $A = \{x | x^2 + 20 \le 9x\}$  is

Key. 7

- Sol. The given function is  $f(x) \Box 2x^3 \Box 15x^2 \Box 36x \Box 48$  and  $A \Box \{x \mid x^2 \Box 20 \Box 9x\}$   $\Box A \Box \{x \mid x^2 \Box 9x \Box 20 \Box 0\} \Box A \Box \{x \mid (x \Box 4)(x \Box 5) \Box 0\} \Box A \Box [4, 5]$ Also  $f'(x) \Box 6x^2 \Box 30x \Box 36 \Box 6(x^2 \Box 5x \Box 6) \Box 6(x \Box 2)(x \Box 3)$ Clearly  $\Box x \Box A$ ,  $f'(x) \Box 0$   $\Box f$  is strictly increasing function on A.  $\Box$  Maximum value of f on A $\Box f(5) \Box 2\Box 5^3 \Box 15\Box 5^2 \Box 36\Box 5\Box 48 \Box 250\Box 375\Box 180\Box 48\Box 7$
- 30. In the coordinate plane, the region M consists of all points (x, y) satisfying the inequalities  $y \ge 0, y \le x$ , and  $y \le 2-x$  simultaneously. The region N which varies with parameter t, consists of all the points (x, y) satisfying the inequalities  $t \le x \le t+1$  and  $0 \le t \le 1$  simultaneously. If the area of the region  $M \cap N$  is a function of t, i.e.,  $M \cap N = f(t)$  and if  $\alpha$  is the value of t for which this area is maximum, then the numerical value of  $2\alpha$  is

Sol. 
$$M \cap N = f(t) = -t^{2} + t + 1/2$$
$$= \frac{3}{4} - \left(t - \frac{1}{2}\right)^{2} f(t) \text{ is maximum for } t = 1/2 \text{ i.e. } \alpha = \frac{1}{2} \Longrightarrow 2\alpha = 1$$

31. Let M(-1,2) and N(1,4) be two points in a plane rectangular coordinate system XOY. P is a moving point on the x-axis. When  $\angle$ MPN takes its maximum value, the x-coordinate of point P is

Key.

1

- Sol. The centre of a circle passing through points M and N lies on the perpendicular bisector y = 3- x of MN. Denote the centre by C(a, 3 – a), the equation of the circle is  $(x - a)^2 + (y - 3 + a)^2 = 2(1 + a^2)$ 
  - Since for a chord with a fixed length the angle at the circumference subtended by the corresponding arc will become larger as the radius of the circle becomes smaller. When  $\angle$  MPN reaches its maximum value the circle through the three points M, N and P will be tangent to the x-axis at P, which means

$$2(1 + a^2) = (a - 3)^2 \implies a = 1 \text{ or } a = -7$$

Thus the point of contact are P(1, 0) or P'(-7,0) respectively.

But the radius of circle through the points M, N and  $\,P^{\,\prime}\,$  is larger than that of circle through points M, N and P.

Therefore,  $\angle$  MPN >  $\angle$  MP ' N . Thus P = (1, 0)  $\therefore$  x-coordinate of P = 1.

32.  $f(x) = \frac{1}{1+|x|} + \frac{1}{1+|x-1|}$ . Let  $x_1, x_2$  are points where f(x) attains local minimum and global

maximum respectively. Let  $k = f(x_1) + f(x_2)$  then 6k - 9

Key. 8

Sol.

Local minimum  $= f\left(\frac{1}{2}\right) = \frac{4}{3}$ 

Global maximum = 
$$f(0) = f(1) = \frac{3}{2}k = \frac{4}{3} + \frac{3}{2} = \frac{17}{6}$$

33.

$$f(x) = \begin{cases} \left(\sqrt{2} + \sin\frac{1}{x}\right)e^{\frac{-1}{|x|}} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Number of points where f(x) has local extrema when  $x \neq 0$  be  $n_1$ .  $n_2$  be the value of global minimum of f(x) then  $n_1 + n_2 =$ 

Key. 0

Sol. Local extremum does not occur at any value of  $x \neq 0$ . But global minimum = f(0) = 0 $\therefore n_1 = 0, n_2 = 0$  then  $n_1 + n_2 = 0$ 

34. A = (- 3,0) and B = (3,0) are the extremities of the base AB of triangle PAB. If the vertex P varies such that the internal bisector of angle APB of the triangle divides the opposite side AB into two segments AD and BD such that AD : BD = 2 : 1, then the maximum value of the length of the altitude of the triangle drawn through the vertex P is

Ans:

4

Hint: The point E dividing  $\overline{AB}$  externally in the ratio 2 : 1 is (9, 0). Since P lies on the circle described on  $\overline{DE}$  as diameter, coordinates of P are of the form  $(5+4\cos\theta, 4\sin\theta)$ 

 $\therefore$  maximum length of the altitude drawn from P to the base  $AB = |4\sin\theta|_{max} = 4$ 

35. Find the maximum value of  $(\log_{2^{1/5}} a) \cdot (\log_{2^{1/2}} b)$ . It is given that coefficient of 2<sup>nd</sup>, 3<sup>rd</sup> and 4<sup>th</sup> term in expansion of  $(a + b)^n$  are in A.P and the value of 3<sup>rd</sup> term is equal to 84 (a, b > 1).

Key: 1

Hint: In expansion of  $(a + b)^n$  the coefficient of  $2^{nd}$ ,  $3^{rd}$  and  $4^{th}$  term are in A.P. which gives n = 7also  ${}^7C_2 a^5 b^2 = 84 \implies a^5b^2 = 4$ 

Now 
$$\frac{\log_2 a^5 + \log_2 b^2}{2} \ge (\log_2 a^5 . \log_2 b^2)^{1/2} \implies k \le \left(\frac{\log_2 a^5 b^2}{2}\right)^2$$

 $k \leq 1 \implies maximum \text{ value of } k \text{ is } 1.$ 

36. From a point perpendicular tangents are drawn to ellipse  $x^2 + 2y^2 = 2$ . The chord of contact touches a circle which is concentric with given ellipse. Then find the ratio of maximum and minimum area of circle.

Ans:

4

Hint: The director circle of ellipse 
$$\frac{x^2}{2} + \frac{y^2}{1} = 1$$
 is  $x^2 + y^2 = 3$   
Let a point P( $\sqrt{3} \cos\theta$ ,  $\sqrt{3} \sin\theta$ )  
Equation of chord of contact is  
 $x. \sqrt{3} \cos\theta + 2y \sqrt{3} \sin\theta - 2 = 0$   
It touches  $x^2 + y^2 = r^2$   
 $r = \frac{2}{\sqrt{3}\cos^2\theta + 12\sin^2\theta} = \frac{2}{\sqrt{3} + 9\sin^2\theta}$   
 $r_{max} = \frac{2}{\sqrt{3}}$   
 $r_{min} = \frac{2}{\sqrt{12}} \implies \frac{A_{max}}{A_{min}} = 4.$ 

37. Let  $f(x) = 30 - 2x - x^3$ , then find the number of positive integral values of x which satisfies f(f(f(x))) > f(f(-x))

Key: 2

Hint: 
$$f(x) = 30 - 2x - x^{3}$$

$$f(x) = -2 - 3x^{2} < 0 \Rightarrow f(x) \text{ is decreasing function}$$
Hence 
$$f(f(f(x))) > f(f(-x)) \Rightarrow f(f(x)) < f(-x)$$

$$\Rightarrow f(x) > -x$$

$$\Rightarrow 30 - 2x - x^{3} > -x \Rightarrow x^{3} + x - 30 < 0 \Rightarrow (x - 3)(x^{2} + 3x + 10) < 0$$

$$\Rightarrow x < 3$$

38. The sum of greatest and least values of  $f(x) = |x^2 - 5x + 6|$  in  $\left[0, \frac{5}{2}\right]$ , is

Key. 6

- Sol. Sketch its graph
- 39. If A = (0,2), B = (5,10) are two points. If P is a Point on x-axis, then, the sum of the digits in the minimum value of AP+PB ,is

Key. 4

Sol. If 
$$P = (x, 0)$$
, then  $AP + PB = f(x) = \sqrt{x^2 + 2^2} + \sqrt{(x-5)^2 + 10^2}$   
 $\Rightarrow x = \frac{5}{6}$  is a point of minima  
 $\therefore$  minimum value of  $f(x) = \sqrt{\frac{169}{36}} + \sqrt{\frac{625 + 3600}{36}} = \frac{13}{6} + \frac{65}{6} = \frac{78}{6} = 13$   
40. If a,b,c  $\in N$ , and if  $\frac{ax^4 - bx^3 + cx^2 - bx + a}{(x^2 + 1)^2}$  attains minimum value at  $x = 2$  or  
 $1/2$  then the A.M of the least possible values of a, b and c is  
Key. 4  
50. Put  $x + \frac{1}{x} = t a = 1, b = 4, c = 7, \Rightarrow AM$  is  $\frac{1+4+7}{3} = 4$   
41. In the coordinate plane, the region M consists of all points  $(x, y)$  satisfying  
the inequalities  $y \ge 0, y \le x$ , and  $y \le 2 - x$  simultaneously. The region N  
which varies with parameter t, consists of all points  $(x, y)$  satisfying the  
inequalities  $t \le x \le t + 1$  and  $0 \le t \le 1$  simultaneously. If the area of the region  
 $M \cap N$  is a function of t, i,e.,  $M \cap N = f(t)$  and if  $\alpha$  is the value of t for which  
this area is maximum, then the numerical value of  $2\alpha$  is  
Key. 1  
Sol.  $M \cap N = f(t) = -t^2 + t + 1/2$   
 $= \frac{3}{4} - \left(t - \frac{1}{2}\right)^2 f(t)$  is maximum for  $t = \frac{1}{2} \ge 2\alpha = 1$   
42. Let  $P = x^3 - \frac{1}{x^3}$ ,  $Q = x - \frac{1}{x}$  and a is the minimum value of  $P/Q^2$ . Then the value of [a] is  
where  $[x]$  = the greatest integer  $\le x$ .  
Key. 3  
Sol.  $Q^3 = P - 3Q$   
 $\Rightarrow \frac{P}{Q^3} = Q + \frac{3}{Q}$   
 $f'(Q) = Q + \frac{3}{Q}$   
 $f'(Q) = 1 - \frac{3}{Q^2} \Rightarrow Q = \pm \sqrt{3}$   
 $f(Q)f$  will be minimum at  $Q = \sqrt{3}$ 

So minimum of  $\begin{bmatrix} P \\ Q^2 \end{bmatrix} = \begin{bmatrix} 2\sqrt{3} \\ = 3 \end{bmatrix}$ 

43. Let f(x) = (x - a)(x - b)(x - c)(x - d); a < b < c < d. Then minimum number of roots of the equation f''(x) = 0 is

Key. 2

f(a) = f(b) = f(c) = f(d) = 0Sol. f(x) = 0 (4 times). Graph of f(x) will intersect 4 times the x-axis. So there will be minimum three turnings. and f'(x) = 0 minimum (3 times). So f''(x) = 0 will be minimum (2 times). If  $f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3) \forall x \in \mathbb{R}$ . Then the value of 44. f'(1) + f''(2) + f'''(3) is Key. 3 Let f'(1) = a, f''(2) = b, f'''(3) = cSol. so  $f'(x) = 3x^2 + 2ax + b$ , f''(x) = 6x + 2aa = 3 + 2a + bb = 12 + 2a and c = 6.  $\Rightarrow$  a = -5, b = 2 and c = 6. so a + b + c = 3 Let f be twice differentiable such that f'(x) = -f(x) and f'(x) = g(x). If h(x) =45.  $(f(x))^{2} + (g(x))^{2}$ , where h(5) = 9. Then the value of h(10) is 9 Key. h'(x) = 2f(x)f'(x) + 2g(x)g'(x)Sol.  $f'(x) = g(x) \Rightarrow f''(x) = g'(x)$  $\Rightarrow$  g'(x) = -f(x)  $\therefore$  h'(x) = 0 h(x) = constant  $h(5) = 9 \implies h(10)$  is also 9.

MART ACHIER HARMING PURI. IT

# Maxima & Minima

### Matrix-Match Type

1. Match the following Column -1 with Column -2

|     | Column – 1                  |     | Column – 2                    |
|-----|-----------------------------|-----|-------------------------------|
| (A) | $f(x) = x^2 \log_e x$       | (p) | f (x) has one point of minima |
| (B) | $f(x) = x \log_e x$         | (q) | f (x) has one point of maxima |
| (C) | $f(x) = \frac{\log_e x}{x}$ | (r) | f (x) increases in 0, e)      |
| (D) | $f(x) = x^{-x}$             | (s) | f (x) decreases in (0, 1/e)   |

Key. (A
$$\rightarrow$$
 p, s), (B $\rightarrow$  p, s), (C $\rightarrow$  q, r), (D $\rightarrow$  q)

Sol. (A) 
$$f(x) = x^2 \log x$$

For 
$$f'(x) = x(2\log x + 1) = 0$$
,  $\Rightarrow x = \frac{1}{\sqrt{e}}$ 

Which is the point of minima as derivative changes sign from negative to positive

Also, the function decreases in 
$$\left(0, \frac{1}{\sqrt{e}}\right)$$

$$(B) y = x \log x$$

$$\Rightarrow \frac{dy}{dx} = x \times \frac{1}{x} + \log x \times 1 = 1 + \log x \text{ and } \frac{d^2y}{dx^2} = \frac{1}{x}$$
For  $\frac{dy}{dx} = 0 \Rightarrow \log x = -1 \Rightarrow x = \frac{1}{e}$   
 $\frac{d^2y}{dx^2} = \frac{1}{1/e} = e > 0 \text{ at } x = \frac{1}{e}$   
 $\Rightarrow y \text{ is min for } x = \frac{1}{e}$   
(C)  $f(x) = \frac{\log x}{x}$   
For  $f'(x) = \frac{1 - \log x}{x^2} = 0$ ,  $x = e$ . Also, derivative changes sign from positive to negative at  $x = e$ , hence it is the point of maxima.  
(D)  $f(x) = x^{-x}$ 

$$f'(x) = -x^{-x}(1 + \log x) = 0 \Longrightarrow x = \frac{1}{e},$$

Which is clearly point of maxima.
### **Mathematics**

| 2. | Match the following                                        |                                 |     |                          |  |  |  |
|----|------------------------------------------------------------|---------------------------------|-----|--------------------------|--|--|--|
|    | Column I                                                   |                                 |     | Column II                |  |  |  |
|    | (A)                                                        | $f(x) = (x-1)^3 (x-2)^5$        | (p) | Has points of maxima     |  |  |  |
|    | (B)                                                        | $f(x) = 3\sin x + 4\cos x - 5x$ | (q) | Has points of minima     |  |  |  |
|    | (C) $f(x) = \sin\left(\frac{\pi x}{2}\right), 0 < x \le 1$ |                                 | (r) | Has points of inflection |  |  |  |
|    |                                                            | $=x^{2}-4x+4, 1 < x < 2$        |     |                          |  |  |  |
|    | (D)                                                        | $f(x) = (x - 1)^{3/5}$          | (s) | Has no points of extrema |  |  |  |

Key. a-qr; b-rs; c-pr; d-rs

Sol. (A) 
$$f(x) = (x - 1)^2(x - 2)^5$$
  
 $f'(x) = (x - 1)^2(x + 2)^4(8x + 1)$   
1 point of minima at  $x = -\frac{1}{8}$   
 $f''(x) = 0$  for  $x = 1, -2$   
Two points of inflection  
(B)  $f(x) = 3\sin x + 4\cos x - 5x$   
 $f'(x) = 3\cos x - 4\sin x - 5 \le 0$   
 $f''(x) = -3\sin x - 4\cos x = 0$  for infinite value of x

(C)



x = 1 point of maxima as well as point of inflection

(D) 
$$f'(x) = \frac{3}{5}(x-1)^{-2/5} \ge 0 \forall x \in \mathbb{R}$$
  
 $f''(x) = \frac{-3}{5} \times \frac{2}{5}(x-1)^{-7/5}$   
which changes sign at x = 1

x = 1 point of inflection

3. Consider the equation in real numbers |x-3|+|x+9|=a,  $a \in R$ .

Match the statements/expressions in column I with those in column II.

Column - IColumn - II(A) As a ranges over R, the maximum possible number  
of integral solutions is(P)2(B) For 
$$a > \log_{27} 81$$
, the number of solutions cannot be  
(C) For a = 13, the number of solutions is(Q)0(C) For a = 13, the number of solutions is  
(D) For at least one solution 'a' cannot take the value(s)(S)1

#### KEY: A-R; B-R, S; C-P; D-P, Q, S

Sol. The line y = k, k < 12 doesn't meet the above curve



k=2 meets the curve at infinite points belonging to [-9, -3]

k > 12 meets the curve at two points

For k = 12, the line y = k meets the curve

y = |x-3| + |x+9| at 13 integral points. Note that  $\log_{27} 81 = 4/3$ 

A) The maximum possible number of integral solutions is 13 which happens when a = 12

B) For 4/3 < a < 12 the number of solutions = 0

a=12, the number of solutions is infinite

a>12, the number of solutions is two.

4.

|                   | Column – 1                                                                                                                                                                                                              |     | Column – 2       |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|
| (A)               | The maximum value of $\sec^{-1}\left(\frac{7-5(x^2+3)}{2(x^2+2)}\right)$ is                                                                                                                                             | (p) | $\frac{\pi}{6}$  |
| (B)               | The minimum value of<br>$\operatorname{cosec}^{-1}\left[3x^{2} + \frac{5}{4}\right] + \operatorname{sec}^{-1}\left[3x^{2} + \frac{1}{4}\right]$                                                                         | (q) | $\frac{\pi}{4}$  |
| (C)               | Points of non-differentiability of the function<br>$f(x) = \min\left\{ \tan\left(x + \frac{\pi}{12}\right), \cot\left(x + \frac{\pi}{12}\right) \right\}$ $\forall x \in \left(0, \frac{3\pi}{2}\right) \text{ is/are}$ | (r) | $\frac{2\pi}{3}$ |
| (D)               | Tangent is drawn to hyperbola $\frac{x^2}{8} - \frac{y^2}{1} = 1$ at $(2\sqrt{2}\sec\theta, \tan\theta); \ \theta \in \left(0, \frac{\pi}{2}\right)$ . The value of                                                     | (s) | $\frac{7\pi}{6}$ |
| Key : (A-r), (B - | $\theta$ such that sum of intercepts on axes made<br>by this tangent is maximum is<br>b), (C -p, r, s), (D -q)                                                                                                          |     |                  |

Sol: (A) 
$$\sec^{-1}\left(\frac{7-5(x^2+3)}{2(x^2+2)}\right) = \sec^{-1}\left(\frac{1}{x^2+2}\right)$$

 $\left(\frac{5}{2}\right)$ 

 $Q\frac{1}{x^2+2} \leq \frac{1}{2}$  $\frac{1}{x^2+2} - \frac{5}{2} \le -2$ (B) minimum value = cosec<sup>-1</sup>2 + sec<sup>-1</sup>1 =  $\frac{\pi}{6}$ when  $\left[3x^2 + \frac{1}{4}\right] = 1$ (C) f(x) is non-differentiable at  $x = \frac{\pi}{6}, \frac{2\pi}{3}, \frac{7\pi}{6}$ . (D) Equation of tangent is  $\frac{x \sec \theta}{2\sqrt{2}} - \frac{y \tan \theta}{1} = 1$ If it cuts the coordinate axes at A and B, then  $\mathbf{A} \equiv \left(2\sqrt{2}\cos\theta, 0\right)$  $\mathbf{B} \equiv (0, -\cot \theta)$  $S = 2\sqrt{2}\cos\theta - \cot\theta$  $\frac{dS}{d\theta} = -2\sqrt{2}\sin\theta + \cos ec^2\theta = 0 = \sin\theta = -\frac{1}{2}e^{-\frac{1}{2}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}e^{-\frac{1}{2}}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^{-\frac{1}{2}}e^$  $\frac{\pi}{4}$  $\frac{\mathrm{d}^2 \mathrm{S}}{\mathrm{d} \mathrm{\theta}^2} < 0$ ... S is maximum For the function  $f(x) = ax^2 - b|x|$ 5. Column – I Column – II (A) f(x) has local max. at x = 0(p) When a > 0, b > 0f(x) has local min at x = 0(B) When a > 0, b < 0(q) f(x) has local extremum at  $x = \frac{b}{2a}$ (C) When a < 0, b < 0 (r) (D) f(x) is not diff. at x = 0When a < 0, b > 0(s) Key : A – P,S, B – Q,R, C – P,R, D – PQRS Sol. When a > 0, b > 0When a > 0, b < 0When a < 0, b > 0When a < 0, b < 0



# 6. Match the following: -

|     | Column – I                                                                                                                               |     | Column – II     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|
| (A) | If a, b > 0 a + b = 1, then minimum value of<br>$\left(a^{2} + \frac{1}{a^{2}}\right)^{2} + \left(b^{2} + \frac{1}{b^{2}}\right)^{2}$ is | (p) | $\frac{3}{2}$   |
| (B) | The perpendicular distance of the image of the point $(3, 4-12)$ in the xy-plane from the z-axis is                                      | (q) | 5               |
| (C) | The area of the quadrilateral whose vertices are 1, i,<br>$\omega$ , i $\omega$ is<br>( $\omega$ is the cube root of unity)              | (r) | 8               |
| (D) | The minimum value of $(\sin^2 x + \cos^2 x + \csc^2 2x)^3$ is                                                                            | (s) | $\frac{289}{8}$ |

 $\mathsf{KEY}: \mathsf{(A)} \to \mathsf{Q},$ 

- (B) →Q,
- (C)  $\rightarrow$  R,
- $(D) \rightarrow (S)$

# 7. Match the following inequalities with intervals given such that inequalities are valid

|   |     | Column I                                                            |     | Column II         |  |  |
|---|-----|---------------------------------------------------------------------|-----|-------------------|--|--|
|   | (A) | $\frac{x}{1+x} < \ln\left(1+x\right)$                               | (P) | $(0,\infty)$      |  |  |
|   | (B) | $x - \frac{x^2}{2} < \ln(1+x)$                                      | (Q) | (-1,0)            |  |  |
|   | (C) | ln(1+x) <x< td=""><td>(R)</td><td><math>(1,\infty)</math></td></x<> | (R) | $(1,\infty)$      |  |  |
| C | (D) | $\frac{1}{\ln(1+x)} - \frac{1}{x} < 1$                              | (S) | $(-1,0)\cup(0,1)$ |  |  |

Key:  $(A) \rightarrow (PQRS)$ 

 $(\mathsf{B}) \to (\mathsf{PR})$ 

(C)  $\rightarrow$  (PQRS)

 $(\mathrm{D}) \rightarrow (\mathrm{PQRS})$ 

Sol. Conceptual

| Math                                                                                                           | iemat                                                                                                                                                                                                           | tics                                                               |                       | Maxima & Minima                             |                                     |  |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------|---------------------------------------------|-------------------------------------|--|
| 8.                                                                                                             | Let                                                                                                                                                                                                             | $f(x) = (2^{x} - 1)(2^{x} - 2)$ and $g(x) = 2 \sin x + 1$          |                       |                                             |                                     |  |
|                                                                                                                | Colu                                                                                                                                                                                                            | ımn I                                                              | Colu                  | ımn II                                      |                                     |  |
|                                                                                                                |                                                                                                                                                                                                                 |                                                                    |                       |                                             |                                     |  |
|                                                                                                                | (A)                                                                                                                                                                                                             | f increases on                                                     | (P)                   | $(\pi,\infty)$                              |                                     |  |
|                                                                                                                |                                                                                                                                                                                                                 |                                                                    |                       |                                             |                                     |  |
|                                                                                                                | (B)                                                                                                                                                                                                             | f decreases on                                                     | (Q)                   | $(-\infty, 0)$                              |                                     |  |
|                                                                                                                |                                                                                                                                                                                                                 |                                                                    |                       | ( - 5 - )                                   |                                     |  |
|                                                                                                                | (C)                                                                                                                                                                                                             | g decreases on                                                     | (R)                   | $\left(\frac{\pi}{2},\frac{5\pi}{6}\right)$ |                                     |  |
|                                                                                                                |                                                                                                                                                                                                                 |                                                                    |                       | $(2 \ 0)$                                   | $\langle \rangle$                   |  |
|                                                                                                                |                                                                                                                                                                                                                 |                                                                    |                       | (π π)                                       |                                     |  |
|                                                                                                                | (D)                                                                                                                                                                                                             | g increases on                                                     | (S)                   | $\left(\frac{\pi}{6},\frac{\pi}{2}\right)$  |                                     |  |
|                                                                                                                |                                                                                                                                                                                                                 |                                                                    |                       |                                             |                                     |  |
| Key:                                                                                                           | A-F                                                                                                                                                                                                             | R, B-Q, C-S, D-R                                                   |                       |                                             | $Q \sim$                            |  |
| Hint:                                                                                                          | f '(                                                                                                                                                                                                            | $(x) = 2^{x} (2^{x+1} - 3) \log 2$                                 |                       |                                             | <u></u>                             |  |
|                                                                                                                | Sind                                                                                                                                                                                                            | $x = 2^{x} > 0$ and $\log 2 > 0$ so $f'(x) > 0$ . If 2             | x <sup>+1</sup> – 3 : | $>0 \Rightarrow x > 10$                     | $g_{2}3 - 1$                        |  |
|                                                                                                                | The                                                                                                                                                                                                             | e neriod of g is $2\pi$ so it is enough to cons                    | ider o (              | on [0, 2π]                                  | .02                                 |  |
|                                                                                                                | σ'(                                                                                                                                                                                                             | $(x) = 2\cos x - 2\sin 2x = 2\cos x (1-2)$                         | $\sin x$ )            | 511 [0, 24].                                |                                     |  |
|                                                                                                                | $g(x) = 2\cos x - 2\sin 2x = 2\cos x(1 - 2\sin x)$                                                                                                                                                              |                                                                    |                       |                                             |                                     |  |
|                                                                                                                | $g'(x) > 0 \Rightarrow \cos x > 0$ and $1 - 2\sin x > 0$ or $\cos x < 0$ and $1 - 2\sin x < 0$                                                                                                                  |                                                                    |                       |                                             |                                     |  |
|                                                                                                                | $\Rightarrow x \in \left(0, \frac{\pi}{2}\right) \cup \left(\frac{3\pi}{2}, 2\pi\right),  \sin x < \frac{1}{2}  \text{or}  x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \text{ and }  \sin x > \frac{1}{2}$ |                                                                    |                       |                                             |                                     |  |
| $\Rightarrow x \in \left(0, \frac{\pi}{6}\right) \text{ or } x \in \left(\frac{\pi}{2}, \frac{5\pi}{6}\right)$ |                                                                                                                                                                                                                 |                                                                    |                       |                                             |                                     |  |
|                                                                                                                |                                                                                                                                                                                                                 |                                                                    |                       |                                             |                                     |  |
| 9.                                                                                                             |                                                                                                                                                                                                                 | COLUM – I                                                          |                       |                                             | COLUMN – II                         |  |
|                                                                                                                | a)                                                                                                                                                                                                              | $f(x) = \begin{cases} 4x - x^3 + \log_e(a^2 - 3a + 3) \end{cases}$ | ,if 0≤                | $x \le 3$                                   | p) $(-\infty, -2) \cup (2, \infty)$ |  |
|                                                                                                                | ,                                                                                                                                                                                                               | $x - 18$ , if $x \ge 3$                                            |                       |                                             |                                     |  |
|                                                                                                                |                                                                                                                                                                                                                 | Then, the complete set of values                                   | of 'a'                |                                             |                                     |  |
|                                                                                                                | <ul> <li>such that f(x) has a local maxima at</li> <li>x = 3 lie in the interval</li> <li>b) The equation x + cos x = a has exactly a</li> </ul>                                                                |                                                                    |                       |                                             |                                     |  |
| C                                                                                                              |                                                                                                                                                                                                                 |                                                                    |                       |                                             | q) [1,2]                            |  |
|                                                                                                                | positive root, then, complete set of values<br>of a lie in the interval<br>c) If $f(x) = \begin{cases} 3+ x-k , x \le k \\ \sin(x-k) \end{cases}$                                                               |                                                                    |                       | ues                                         |                                     |  |
|                                                                                                                |                                                                                                                                                                                                                 |                                                                    |                       |                                             |                                     |  |
|                                                                                                                |                                                                                                                                                                                                                 |                                                                    |                       |                                             | r)(-20,-16)                         |  |
|                                                                                                                | ,                                                                                                                                                                                                               | $a^2 - 2 + \frac{344(1-1-2)}{x-k}, x > k$                          | 2                     |                                             |                                     |  |
|                                                                                                                | has minimum at $x = k$ , then, the complete                                                                                                                                                                     |                                                                    |                       | olete                                       |                                     |  |
|                                                                                                                |                                                                                                                                                                                                                 | set of values of 'a' lie in the inte                               | erval                 |                                             |                                     |  |
|                                                                                                                | d)                                                                                                                                                                                                              | If $f(x) = x^3 - 9x^2 + 24x + a$ has the                           | nree re               | eal                                         | s) (1,∞)                            |  |
|                                                                                                                |                                                                                                                                                                                                                 | and distinct roots, then, possible                                 | e valu                | es of                                       |                                     |  |

a lie in the interval Look at,  $f(x) = x^4 + 32x + K, K \in \mathbb{R}$  $A \rightarrow Q; B \rightarrow S;$ Key.  $C \rightarrow P; D \rightarrow R$ A. F is decreasing for x < 3 and increasing for x > 3Sol. : for x = 3 to be point of local maximum,  $f(3) \ge f(3-0)$  $\Rightarrow -15 \ge 12 - 27 + \log_e \left(a^2 - 3a + 3\right)$  $\Rightarrow 0 < a^2 - 3a + 3 \le 1$  $f(x) = x + \cos x - a \Rightarrow f^{1}(x) = 1 - \sin x \ge 0 \forall x \in R$ В.  $\Rightarrow$  f is increasing on R For positive root, f(0) = 1 - a < 0 $\frac{dy}{dx} = 3x^2 - 18x + 24 = 3(x^2 - 6x + 8)$ D.  $= 3(x-2)(x-4) \Rightarrow f(2).f(4) < 0$ COLUMN - II 10. COLUMN - I a) The function  $f(x) = (x-1)^2 + (x-2)^2 + (x-3)^2$ p) 0 has a minimum for x =b) The least value of the function q) 2  $f(x) = 2.3^{3X} - 3^{2X}.4 + 2.3^{X}$  in [-1,1] is c) Let  $f(x) = \frac{4}{2}x^3 - 4x, 0 \le x \le 2$ , then the global r)  $\frac{8}{27}$ minimum value of the function is s)  $\frac{-8}{2}$ d) Let  $f(x) = 6 - 12x + 9x^2 - 2x^3$ ,  $x \in [1, 4]$ , then absolute maximum value of f (x) is  $A \rightarrow Q; B \rightarrow P;$ Key.  $C \rightarrow S; D \rightarrow R$ Sol. A)  $f(x) = 3x^2 - 12x + 14$  $f^{1}(x) = 0 \Rightarrow 6x - 12 = 0 \Rightarrow x = 2$ B) Put  $3^{x} = t \Rightarrow f(t) = 2t^{3} - 4t^{2} + 2t, t \in [1/3,3]$  $f^{1}(t) < 0$  in (1/3,1) and  $f^{1}(t) > 0$  in (1,3) f(t) minimum = f(1) = 0 $f^{1}(x) = 4(x^{2}-1) \Rightarrow f$  is decreasing for 0 < x < 1 and f is increasing for  $1 \le x \le 2$ : f minimum is f(1) = 4/3 - 4 = -8/3D)  $f^{1}(x) = -12x + 18x - 6x^{2} = -6(x-1)(x-2)$ F is increasing in (1,2) and decreasing in (2,4) $\therefore$  absolute maximum = maximum  $\{f(1), f(2)\} = \max \operatorname{imum} \{1, 2\} = 2$ 

### **Mathematics**

| 11.  | Match t  | he following: -                                                                                                                                                                                                                                |     |                  |
|------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|
|      |          | Column – 1                                                                                                                                                                                                                                     |     | Column – 2       |
|      | (A)      | The maximum value of $\sec^{-1}\left(\frac{7-5(x^2+3)}{2(x^2+2)}\right)$ is                                                                                                                                                                    | (p) | $\frac{\pi}{6}$  |
|      | (B)      | The minimum value of<br>$\csc^{-1}\left[3x^2 + \frac{5}{4}\right] + \sec^{-1}\left[3x^2 + \frac{1}{4}\right]$                                                                                                                                  | (q) | $\frac{\pi}{4}$  |
|      | (C)      | Points of non-differentiable of the function<br>$f(x) = \min\left(\tan\left(x + \frac{\pi}{12}\right), \cot\left(x + \frac{\pi}{12}\right)\right)$ $\forall x \in \left(0, \frac{3\pi}{2}\right) \text{ is/are}$                               | (r) | $\frac{2\pi}{3}$ |
|      | (D)      | Tangent is drawn to hyperbola $\frac{x^2}{8} - \frac{y^2}{1} = 1$ at $(2 \sec \theta, \tan \theta); \ \theta \in \left(0, \frac{\pi}{2}\right)$ . The value of $\theta$ such that sum of intercepts on axes made by this tangent is maximum is | (s) | $\frac{7\pi}{6}$ |
| Key. | A - (r); | B - (p); C - (p, r, s); D - (q)                                                                                                                                                                                                                |     |                  |
| Sol. | (A) sec  | $\int_{-1}^{-1} \left( \frac{7 - 5(x^2 + 3)}{2(x^2 + 2)} \right) = \sec^{-1} \left( \frac{1}{x^2 + 2} - \frac{5}{2} \right)$                                                                                                                   |     |                  |
|      | $0^{-1}$ | $-<\frac{1}{2}$                                                                                                                                                                                                                                |     |                  |

$$Q \frac{1}{x^2 + 2} \le \frac{1}{2}$$

$$\frac{1}{x^2 + 2} - \frac{5}{2} \le -2$$
(B) minimum value = cosec<sup>-1</sup>2 + sec<sup>-1</sup>1 =  $\frac{\pi}{6}$ 
when  $\left[ 3x^2 + \frac{1}{4} \right] = 1$ 
(C) f(x) is non-differentiable at  $x = \frac{\pi}{6}, \frac{2\pi}{3}, \frac{7\pi}{6}$ .
(D) Equation of tangent is  $\frac{x \sec \theta}{2\sqrt{2}} - \frac{y \tan \theta}{1} = 1$ 
If it cuts the coordinate axes at A and B, then
$$A = \left( 2\sqrt{2} \cos \theta, 0 \right)$$

$$B = (0, -\cot \theta)$$

$$S = 2\sqrt{2} \cos \theta - \cot \theta$$

$$\frac{dS}{d\theta} = -2\sqrt{2} \sin \theta + \cos ec^2 \theta = 0 = \sin \theta = \frac{1}{\sqrt{2}} \Longrightarrow \theta = \frac{\pi}{4}$$

$$\frac{d^2S}{d\theta^2} < 0$$

: S is maximum

22. Given that 
$$(x-2)^2 + (y-2)^2 = 1$$
  
a) Maximum value of  $x + y$  is p)  $4 + \sqrt{2}$   
b) Maximum value of  $x - y$  is q)  $\frac{9 + 4\sqrt{2}}{2}$   
c) Maximum value of  $x - y$  is q)  $\frac{9 + 4\sqrt{2}}{2}$   
d) Maximum value of  $xy$  is r)  $\frac{4 + \sqrt{7}}{3}$   
d) Maximum value of  $\frac{x}{y}$  is s)  $\sqrt{2}$   
Key. a) p; b) s; c) q; d) r  
Sol. Let  $x = 2 + \cos\theta$  and  $y = 2 + \sin\theta$   
 $x + y = 4 + \sin\theta + \cos\theta \Rightarrow$  maximum of  $(x + y)$  is  $4 + \sqrt{2}$   
 $x - y = \cos\theta - \sin\theta \Rightarrow$  maximum of  $x - y$  is  $\sqrt{2}$   
 $f(\theta) = 2(\cos\theta - \sin\theta) + \cos\theta \ge 1 \sin\theta = 1$  or  $2 + \sin\theta + \cos\theta = 0$  rejected  
 $f(\frac{\pi}{4}) = 4 + 2\sqrt{2} + \frac{1}{2}$   
 $g(\theta) = \frac{x}{y} = \frac{2 + \cos\theta}{2 + \sin\theta} \Rightarrow g'(\theta) = \frac{(2 + \sin\theta)(-\sin\theta) - (2 + \cos\theta) \times \cos\theta}{(2 + \sin\theta)^2}$   
 $g'(\theta) = 0 \Rightarrow 2\sin\theta + \sin^2\theta + 2\cos\theta + \cos^2\theta = 0 \Rightarrow \sin\theta + \cos\theta = -\frac{1}{2}$   
 $\theta = \frac{\pi}{4} - \cos^{-1}\left(\frac{-1}{2\sqrt{2}}\right)$ , Let  $\alpha = \cos^{-1}\left(\frac{-1}{2\sqrt{2}}\right)$   
 $\cos\left(\frac{\pi}{4} - \alpha\right) = \frac{\sqrt{7} - 1}{4}$  and  $\sin\left(\frac{\pi}{4} - \alpha\right) = \frac{-\sqrt{7} - 1}{4}$   
Maximum value of  $\frac{x}{y}$  is  $\frac{7 + \sqrt{7}}{7 - \sqrt{7}} = \frac{4 + \sqrt{7}}{4}$   
20. Match the following List  
Column II (number of critical points)  
(A)  $f(x) = \sin \frac{1}{x}$  (q) 1  
(C)  $f(x) = \frac{|x^2 - 2|}{x^2}$  (r) 0  
(D)  $f(x) = \frac{1}{x^2 - x}$  (s) infinite

Key. A-s; B-s; C-p; D-q

 $f'(x) = 0 \quad \forall x \neq 0$ Sol. (a) f has vertical tangent at x = 0 Infinite number of critical points.  $f'(x) = -\frac{1}{r^2}\cos\frac{1}{r}; f'(x) = 0$  when  $\frac{1}{r} = (2n+1)\frac{\pi}{2}; n \in I$ (b) f'(0) does not exist Infinite number of critical points.  $f'(x) = \begin{cases} \frac{4-x}{x^3} & \text{if} & x > 2\\ \frac{x-4}{x^3} & \text{if} & x \in (-\infty, 2) \sim (0) \end{cases}$ (c) f'(x) = 0 at x = 4; f'(2) does not exist x = 0 is not a point in domain. Two critical points. (d)  $f(x) = \frac{1}{x-1} - \frac{1}{x}$  $f'(x) = \frac{1}{x^2} - \frac{1}{(x-1)^2} = \frac{1-2x}{(x^2-x)^2}$ f'(x) = 0 if  $x = \frac{1}{2}$ One critical point. Match the following List 21. Column I Column II Equation of tangent to  $y = xe^{-|x|}$  at the point where the curve achieves y = x + 2(p) (A) local maxima (q)  $2y = 2 - \sqrt{5}$ Common to  $y^2 = 8x$  and xy = -1. (B) to  $y = x^2$  at the point where its slope is abscissa of (r)  $y = \frac{1}{a}$ (C) the point to  $(1+x^2)y = 2-x$ : x > 0, which tangent is (D) (s) y = 0parallel to x-axis A-r; B-p; C-s; D-q Key.

Sol. (a)  $f(x) = \begin{cases} xe^{-x} & \text{if } x \ge 0\\ xe^{x} & \text{if } x \le 0 \end{cases}$ 

. 9

$$f'(x) = \begin{cases} (1-x)e^{-x} & \text{if } x > 0\\ (1+x)e^{x} & \text{if } x < 0\\ 1 & \text{if } x = 0 \end{cases}$$
  
$$f'(x) > 0 & \text{if } x \in (0,1) \text{ or } x \in (-1,0)$$
  
$$< 0 & \text{if } x > 1 & \text{or } x < -1 \end{cases}$$
  
$$f \text{ has local maxima at } x = 1$$
  
$$f'(1) = 0; f(1) = \frac{1}{e}$$
  
Tangent :  $y = \frac{1}{e}$ .  
(b)  $y = mx + \frac{2}{m}$  is tangent to  $y = -\frac{1}{x}$   
Solving the 2 equations  
 $x(mx + \frac{2}{m}) = -1$  has unique sol. for  $x$   
 $m^{2}x^{2} + 2x + m = 0$  has discriminant  $= 0$   
 $m = 1$   
Tangent :  $y = x + 2$ .  
(c)  $P(x_{0}, x_{0}^{2})$  is the corresponding point  
 $2x_{0} = x_{0}; P(0,0)$   
Tangent :  $y = 0$   
(d)  $P(x_{0}, y_{0})$  is the point of tangency  
 $(1 + x^{2})y = 2 - x$   
 $2xy + (1 + x^{2})\frac{dy}{dx} = -1$   
 $\frac{dy}{dx}\Big|_{p} = 0 \Rightarrow 2x_{0}y_{0} + 1 = 0$   
 $y_{0} = -\frac{1}{2x_{0}} \& (1 + x_{0}^{2})y_{0} = 2 - x_{0}$   
 $x_{0}^{2} - 4x_{0} - 1 = 0; x_{0} = 2 + \sqrt{5}; y_{0} = 1 - \frac{\sqrt{5}}{2}$   
Tangent :  $y = 1 - \frac{\sqrt{5}}{2}$ 

|      | meace |                                                                                                                                      |       |                                |
|------|-------|--------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------|
| 22.  | Mato  | ch the following List                                                                                                                |       |                                |
|      | Colu  | mn I (curve)                                                                                                                         | Colun | nn II (Angle of inter section) |
|      | (A)   | $y^2 = x \& x^2 = y : x > 0$                                                                                                         | (p)   | $\tan^{-1} 3$                  |
|      | (B)   | $y^2 = 4x \& xy = 16$                                                                                                                | (q)   | $\tan^{-1} 2\sqrt{2}$          |
|      | (C)   | $y = \sin x \& y = \cos x$                                                                                                           | (r)   | $\pi/2$                        |
|      | (D)   | $x^3 - 3xy^2 + 2 = 0 \& 3x^2y - y^3 = 2$                                                                                             | (s)   | $\tan^{-1}\frac{3}{4}$         |
| Key. | A-s;  | B-p; C-q; D-r                                                                                                                        |       |                                |
| Sol. | (a)   | P(1,1): point of intersection                                                                                                        |       | K.Y                            |
|      |       | Slopes of tangents $\frac{1}{2}$ , 2                                                                                                 |       |                                |
|      |       | $\tan \theta = \frac{2 - \frac{1}{2}}{1 + 2 \cdot \frac{1}{2}}$                                                                      | 0     |                                |
|      |       | $\theta = \tan^{-1} \frac{3}{4}$                                                                                                     |       |                                |
|      | (b)   | Point of intersection : P(4, 4)                                                                                                      |       |                                |
|      |       | Slopes of tangents : $\frac{1}{2}$ , -1<br>$\tan \theta = \frac{\frac{1}{2} + 1}{1 + \frac{1}{2}(-1)}$                               |       |                                |
|      |       | $\theta = \tan \beta$                                                                                                                |       |                                |
|      | (c)   | Sufficient to consider $x \in [0, 2\pi)$                                                                                             |       |                                |
| 2    | J     | Points of intersection : $P_1\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$ ; $P_2\left(\frac{5\pi}{4}, \frac{-1}{\sqrt{2}}\right)$ |       |                                |
|      |       | Slopes of tangents at $P_1: \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}$                                                                 |       |                                |
|      |       | Slopes of tangents at $P_2:-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}$                                                                   |       |                                |
|      |       | $\tan \theta = 2\sqrt{2}$ in each case                                                                                               |       |                                |
|      |       | $\theta = \tan^{-1} 2\sqrt{2}$                                                                                                       |       |                                |
|      |       |                                                                                                                                      |       |                                |

**Mathematics** 

(d) For the curve  $x^3 - 3xy^2 + 2 = 0$ ,  $\frac{dy}{dx} = \frac{x^2 - y^2}{2xy}$ 

For the curve 
$$3x^2y - y^3 = 2$$
,  $\frac{dy}{dx} = -\frac{2xy}{x^2 - y^2}$ 

Product of slopes = –1 at any point of intersection. P(1,1) is one point of intersection Angle of intersection =  $\frac{\pi}{2}$