

JEE Main - 2024 Session - 2 Answers \& Solutions

(Physics, Chemistry and Mathematics)

> 9-April-Shift-2
www.smartachievers.online

Office : Plot no. 855, Niti Khand I, Indirapuram, Ghaziabad | 07292077839

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. Dimensional formula of Planck's constant is
(1) $\left[\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]$
(2) $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]$
(3) $\left[\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$
(4) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$

Answer (2)

Sol. $E=h \nu$
$[h]=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{~T}^{-1}}$
2. Find the magnitude of force F, if the given system is in equilibrium

(1) 10 N
(2) $\frac{10}{\sqrt{2}} \mathrm{~N}$
(3) 0 N
(4) $\frac{1}{10 \sqrt{2}} \mathrm{~N}$

Answer (2)

Sol. $T=10 \mathrm{~N} ; 7 \sin 45=F$
$F=\frac{10}{\sqrt{2}} \mathrm{~N}$
3. The equivalent resistance between terminal A and B in the network shown.

(1) $\frac{4 R}{3}$
(2) $\frac{8 R}{3}$
(3) $3 R$
(4) $\frac{5 R}{2}$

Answer (2)

Sol.

$R_{A B}=\frac{8 R}{3}$
4. A nuclei at rest breaks into two parts with mass ratio $1: 2$. The ratio of their velocities and direction is
(1) Opposite direction $2: 1$
(2) Same direction $1: 2$
(3) Opposite direction $1: 1$
(4) Same direction $1: 1$

Answer (1)
Sol. By conservation of momentum
$m_{1} v_{1}=m_{2} v_{2}$
$\frac{v_{1}}{v_{2}}=\frac{m_{2}}{m_{1}}=\frac{2}{1}$
5. Two cars A and B are moving towards each other with speed $20 \mathrm{~m} / \mathrm{s}$ each. When 300 m apart, they both apply breaks which causes deceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$. The distance between them when they stop will be :
(1) 100 m
(2) 50 m
(3) 150 m
(4) 200 m

Answer (1)

Sol. $\vec{v}_{A B}=40 \hat{i} \mathrm{~m} / \mathrm{s}$
$\vec{a}_{A B}=-4 \hat{i} \mathrm{~m} / \mathrm{s}$
$\Rightarrow \quad v^{2}=u^{2}+2 a s$
$0=1600-8 s$
$\Rightarrow s=200 \mathrm{~m}$
Distance between them $=300-200=100 \mathrm{~m}$
6. For a wire, original resistance was 50Ω at initial temperature was $27^{\circ} \mathrm{C}$. When temperature is increased, its resistance becomes 62Ω. If the thermal coefficient of resistivity of wire is 2.4×10^{-2} K^{-1}, find final temperature.
(1) $45^{\circ} \mathrm{C}$
(2) $32^{\circ} \mathrm{C}$
(3) $37^{\circ} \mathrm{C}$
(4) $48^{\circ} \mathrm{C}$

Answer (3)
Sol. $R=R_{0}(1+\alpha \Delta T)$
$62=50\left(1+2.4 \times 10^{-2} \Delta T\right)$
$1.24=1+2.4 \times 10^{-2} \Delta T$
$\Delta T=10$
$T=37^{\circ} \mathrm{C}$
7. Find work done by monatomic gas from A to B. Here temperature of gas (1 mole) changes from 330 K to 300 K .

(1) 125 J
(2) 250 J
(3) 500 J
(4) 625 J

Answer (1)

Sol. $w=\frac{\mu R \Delta T}{1-\alpha}=\frac{25}{3} \times \frac{30}{2}=125 \mathrm{~J}$
8. Two bubbles having radii r_{A} and r_{B} are having excess pressure P_{A} and P_{B} in them. If $P_{A}=3 P_{B}$, find r_{A}.
r_{B}
(1) $9: 1$
(2) $1: 9$
(3) $1: 3$
(4) $3: 1$

Answer (3)

Sol. $\Delta P=\frac{4 T}{r}$
$\frac{P_{A}}{P_{B}}=\frac{r_{B}}{r_{A}}$
$\frac{r_{A}}{r_{B}}=\frac{1}{3}$
9. Find the induced emf in the square loop of side 15 cm moving with $2 \mathrm{~cm} / \mathrm{s}$ after 10 seconds.

$$
\text { At } t=0
$$

(1) 0
(2) 0.3 mV
(3) 3 V
(4) 9 V

Answer (1)

Sol. At $t=10$ seconds, $\phi=$ Constant

$$
\Rightarrow \frac{d \phi}{d t}=0
$$

10. A spring exerts force on block $\vec{F}=-50 x^{-b}$ where x is change in length of spring. Find time period of oscillations. ($m=0.5 \mathrm{~kg}$)

(1) 0.63 sec .
(2) 3.14 sec .
(3) 1.57 sec .
(4) 0.31 sec .

Answer (1)

Sol. $T=2 \pi \sqrt{\frac{0.5}{50}}=\frac{2 \pi}{10}=\frac{\pi}{5}$ sec.
11. A proton and deuteron, having same kinetic energy, enters a transverse uniform magnetic field. Radius of circular paths for proton and deuteron are in ratio of
(1) $\sqrt{2}$
(2) $\frac{1}{2 \sqrt{2}}$
(3) $\frac{1}{\sqrt{2}}$
(4) $2 \sqrt{2}$

Answer (3)

Sol. $r=\frac{\sqrt{2 m k}}{q B}$
$\frac{r_{p}}{r_{d}}=\sqrt{\frac{m_{p}}{m_{d}}}$

$$
\frac{q_{d}}{q_{p}}=\frac{1}{\sqrt{2}} .
$$

12. A satellite of mass $10^{3} \mathrm{~kg}$ is orbiting in an orbit of radius $2 r$ from centre of the planet of radius r. If satellite is given energy $E=\frac{G M}{6 r}$, then find new radius of orbit in which satellite will revolve.
($\mathrm{M}=$ mass of planet)
(1) $14 r$
(2) $6 r$
(3) $8 r$
(4) $12 r$

Answer (2)

Sol. $E_{1}=-\frac{G M m}{4 r}$
$E_{f}=-\frac{G M m}{4 r}+\frac{G M m}{6 r}=-\frac{G M m}{2 x}$
$-\frac{1}{12 r}=-\frac{1}{2 x}$
$x=6 r$
13. For which of the following is the $l-V$ characteristics shown below is possible?

(1) Transistor
(2) Zener diode
(3) Solar cell
(4) Diode used as rectifier

Answer (2)
Sol. As Zener diode operates in reverse bias, it is for Zener diode.
14. For the circuit shown, the truth table

(1) 0,0
(2) 0,1
(3) 1,0
(4) 1,1

Answer (4)

Sol. $Y=\overline{A B+\bar{A} \bar{B}}$
15. A ball of radius $10^{-4} \mathrm{~m}$ and density $10^{5} \mathrm{~kg} / \mathrm{m}^{3}$ is dropped from a height h into water (viscosity $=9.8 \times 10^{-6} \mathrm{~Pa}-\mathrm{s}$) such that after falling into liquid, its speed does not change. Find the approximate value of h.
(1) 2200 m
(2) 2350 m
(3) 2470 m
(4) 2520 m

Answer (3)

Sol. Velocity just before entering water $=$ Terminal velocity
$\sqrt{2 \times g \times h}=\frac{2}{9} r^{2} g \frac{(\rho-\sigma)}{\eta}$
$\sqrt{2 g \times h}=\frac{2}{9} \times 10^{-8} \times g \times \frac{\left(10^{5}-10^{3}\right)}{9.8 \times 10^{-6}}$

$$
h \approx 2470 \mathrm{~m}
$$

16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. In given ray diagram, find distance u (in cm) between two convex lenses.

Answer (25)

Sol. $f_{1}+f_{2}=L=25 \mathrm{~cm}$
22. Find the work done (in J) by force $F=3 x^{2}+2 x-5$ in moving a particle from $x=2$ to $x=4$.

Answer (58)

Sol. $W=\int_{2}^{4} F \cdot d x$

$$
\begin{aligned}
& =\left[x^{3}+x^{2}-5 x\right]_{2}^{4} \\
& =58 \mathrm{~J}
\end{aligned}
$$

23. There is an imaginary cube of side 2 m where edges are along axes. The electrostatic field varies as $\vec{E}(x)=2 x \hat{i}$, then flux through cube in $\mathrm{Nm}^{2} / \mathrm{C}$ is
\qquad -.

Answer (16)

Sol. $E_{1}=4$
$E_{2}=8$
$\Rightarrow \Delta \phi=(8-4) 2^{2}=16$
24. If work function of a metal is 2.13 eV and energy per photon of incident light is 3.13 eV , then maximum kinetic energy of photoelectrons (in eV) will be \qquad .

Answer (1)

Sol. $\mathrm{KE}_{\max }=\mathrm{hr}-\phi_{0}$

$$
\begin{aligned}
& =(3.13-2.13) \mathrm{eV} \\
& =1 \mathrm{eV}
\end{aligned}
$$

25. A photon of energy of 10.2 eV is incident on hydrogen atom in ground state. Thereafter number of emitted lines will be

Answer (1)

Sol. $\Delta E=10.2 \mathrm{eV}$
e^{-}will be excited to $n=2$
26.
27.
28.
29.
30.

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Correct order of bond angle of following compounds is $\mathrm{BF}_{3}, \mathrm{PF}_{3}, \mathrm{ClF}_{3}$
(1) $\mathrm{BF}_{3}>\mathrm{PF}_{3}>\mathrm{ClF}_{3}$
(2) $\mathrm{PF}_{3}>\mathrm{ClF}_{3}>\mathrm{BF}_{3}$
(3) $\mathrm{CIF}_{3}>\mathrm{PF}_{3}>\mathrm{BF}_{3}$
(4) $\mathrm{BF}_{3}>\mathrm{ClF}_{3}>\mathrm{PF}_{3}$

Answer (1)

Sol. $\mathrm{BF}_{3} \Rightarrow s p^{2} \Rightarrow$ Bond angle $=120^{\circ}$
$\mathrm{PF}_{3} \Rightarrow s p^{3} \Rightarrow$ Bond angle $\approx 109^{\circ} 28^{\prime}$
$\mathrm{ClF}_{3} \Rightarrow s p^{3} d \Rightarrow$ Bond angle $\approx 90^{\circ}$
2. Identify the correct electronic configuration of Einstenium is
(1) $[\mathrm{Rn}] 5 f^{14} 6 d^{11} 7 s^{2}$
(2) $[\mathrm{Rn}] 5 f^{11} 7 s^{2}$
(3) $[\mathrm{Rn}] 5 f^{10} 6 d^{17} 7 s^{2}$
(4) $[\mathrm{Rn}] 5 f^{11} 6 d^{17} 7 s^{1}$

Answer (2)

Sol. Es $(Z=99) \Rightarrow[R n] 5 f^{11} 7 s^{2}$
3. The product obtained in the following reaction is:

(1)

(2)

(3)

(4)

Answer (3)

Sol.

4. Ca^{2+} makes which type of complex with EDTA?
(1) Trigonal bipyramidal
(2) Square planar
(3) Tetrahedral
(4) Octahedral

Answer (4)

Sol. Co-ordination number of Ca^{2+} with EDTA is 6
Hybridisation $=s p^{3} d^{2}$
Shape = Octahedral
5. Consider the following reaction and identify the major product P.

(1)

(2)

(3)

(4)

Answer (1)

Sol. The reaction is benzylic oxidation reaction

6. Match the complexes given in List-I with the hybridisation of central metal atom/ion given in List-II and choose the correct option.

	List-I (Complexes)		List-II (Hybridisation)
(A)	$\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$	(I)	$s p^{3}$
(B)	$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$	(II)	$s p^{3} d^{R}$
(C)	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$	(III)	$d s p^{2}$
(D)	$\mathrm{Na}_{3}\left[\mathrm{CoF}_{6}\right]$	(IV)	$d^{2} s p^{3}$

(1) (A)-(I); (B)-(II) (C)-(III); (D)-(IV)
(2) (A)-(III); (B)-(I) (C)-(IV); (D)-(II)
(3) (A)-(IV); (B)-(III) (C)-(II); (D)-(I)
(4) (A)-(I); (B)-(II) (C)-(IV); (D)-(III)

Answer (2)

Sol.

(A)	$\begin{aligned} & \mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right] \\ & \mathrm{Ni}^{2+}: 3 a^{8} \end{aligned}$	$d s p^{2}$ hybridisation as CN^{-}is strong field ligand
(B)	$\begin{aligned} & {\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]} \\ & \mathrm{Ni}^{0}: 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2} \end{aligned}$	$s p^{3}$ hybridisation as CO is strong field ligand
(C)	$\begin{aligned} & {\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}} \\ & \mathrm{Co}^{3+}: 3 \mathrm{~d}^{6} \end{aligned}$	$d^{2} s p^{3}$ hybridisation as NH_{3} is strong field ligand
(D)	$\begin{aligned} & \mathrm{Na}_{3}\left[\mathrm{CoF}_{6}\right] \\ & {\left[\mathrm{CoF}_{6}\right]^{3-} ; \mathrm{Co}^{3+}: 3 d^{6}} \end{aligned}$	$s p^{3} d^{R}$ hybridisation as F^{-}ion is a weak field ligand

7.

(1)

(2)

(3)

Sol.

8. Which of the following is correct for strong electrolyte ($B>0$)
(1) $\lambda_{m}-\lambda_{m}^{0}-B \sqrt{C}=0$
(2) $\lambda_{m}+\lambda_{m}^{0}-B \sqrt{C}=0$
(3) $\lambda_{m}-\lambda_{m}^{0}+B \sqrt{C}=0$
(4) $\lambda_{m}+\lambda_{m}^{0}+B \sqrt{C}=0$

Answer (3)

Sol. $\lambda_{m}=\lambda_{m}^{0}-B \sqrt{C}$

$$
\lambda_{m}-\lambda_{m}^{0}+B \sqrt{C}=0
$$

9. Which one of the following statements regarding glucose is incorrect?
(1) Glucose is one of the monosaccharides of sucrose
(2) Glucose dissolves in water because it has aldehyde group.
(3) Glucose has six carbon atoms in its structure
(4) Glucose is an aldose

Answer (2)

Sol. Glucose is an aldohexose having molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$. It is soluble in water due to number of hydroxyl groups which can form H -bonds with water. $\alpha(\mathrm{D})$ Glucose condenses with $\beta(\mathrm{D})$ fructose to form sucrose.
10.

What is the work done on the gas in cyclic process
ABCA
(1) +773.7 J
(2) -773.7 J
(3) +4762.3 J
(4) -4762.3 J

Answer (1)
Sol. $\mathrm{W}_{\mathrm{AB}}=0$
$W_{B C}=-10(4-2)$

$$
=-20 \mathrm{~atm} . \mathrm{Lit}
$$

$W_{C A}=2.303(40) \log 2$

$$
=27.636 \mathrm{~atm} . \mathrm{Lit}
$$

$\mathrm{W}_{\text {total }}=7.636 \mathrm{~atm}$. Lit

$$
\text { = } 773.7 \text { Joule }
$$

11. Which of the following compounds does not give Tollen's test?
(1) Formaldehyde
(2) Formic acid
(3) Benzaldehyde
(4) Acetone

Answer (4)
Sol. Aldehyde and Formic acid can give Tollen's test with ammoniacal silver nitrate solution.
12. Which of the following will give positive lodoform test?
(1)

(2)

(3)

(4) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$

Answer (2)

Sol. Molecules having

Groups as

gives
positive iodoform test.
13. Match the List and choose correct option.

	List-I		List-II
(i)	Ni-Cd cell	(a)	Rechargeable
(ii)	Fuel cell	(b)	Anode $\left(\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\right.$ $\left.2 \mathrm{e}^{-}\right)$
(iii)	Mercury cell	(c)	Used in hearing aid
(iv)	Leclanche cell	(d)	Combustion energy in to electrical energy

(1) (i)-(a); (ii)-(d); (iii)-(c), (iv)-(b)
(2) (i)-(b); (ii)-(a); (iii)-(c), (iv)-(d)
(3) (i)-(d); (ii)-(a); (iii)-(c), (iv)-(b)
(4) (i)-(a); (ii)-(b); (iii)-(c), (iv)-(d)

Answer (1)

Sol. Ni-Cd cell is secondary cell and are rechargeable mercury cell is used in hearing aid.
14. What is the correct order of C-C bond length of ethane, ethene and ethyne?
(1) Ethane $>$ Ethene $>$ Ethyne
(2) Ethene $>$ Ethane $>$ Ethyne
(3) Ethyne $>$ Ethene $>$ Ethane
(4) Ethyne $>$ Ethane $>$ Ethene

Answer (1)

Sol. Correct order of $\mathrm{C}-\mathrm{C}$ bond length is
Ethane > Ethene > Ethyne
$\mathrm{C}-\mathrm{C}>\mathrm{C}=\mathrm{C}>\mathrm{C} \equiv \mathrm{C}$
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. Fuming sulphuric acid has how many oxygen atoms?

Answer (7)
Sol. Fuming sulphuric acid is oleum $\left(\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}\right)$
$\therefore 70$-atoms are present in fuming sulphuric acid.
22. Total sum of number of electrons in π^{*} orbitals of $\mathrm{O}_{2} . \mathrm{O}_{2}^{+}$and O_{2}^{-}is

Answer (6)

Sol. $\mathrm{O}_{2}\left(16 \mathrm{e}^{-}\right)$:
$\sigma_{1 s}^{2} \sigma_{1 s}^{* 2} \sigma_{2 s}^{2} \sigma^{* 2}{ }_{2 s} \sigma_{2 p_{\mathrm{z}}}^{2}\binom{\pi_{2 p_{\mathrm{x}}}^{2}}{\pi_{2 p_{\mathrm{y}}}^{2}}\binom{\pi^{* 1}{ }_{2 p_{\mathrm{x}}}}{\pi^{\star 1}{ }_{2 p_{\mathrm{x}}}} \sigma^{\star}{ }_{2 p_{\mathrm{z}}}$
Total number of e^{-}in π^{*} orbitals of $\mathrm{O}_{2}, \mathrm{O}_{2}^{+}, \mathrm{O}_{2}^{-}$ $=2+1+3=6$
23. How many total number of stereoisomers are possible for the following structure

Sol.

The structure has two stereogenic centres, one geometrical centre and one optical centre. Hence it has total 4 stereoisomers.
$2^{2}=4$
24. Among the elements - Sc, Ti, V, Cr, Mn find magnetic moment of element which have highest ionization enthalpy in +2 oxidation state. [Nearest integer]

Answer (6)

Sol. $\mathrm{Sc}^{+2} \quad \mathrm{Ti}^{+2} \quad \mathrm{~V}+2 \quad \mathrm{Cr}^{+2} \quad \mathrm{Mn}^{+2}$
Mn^{+2} will have highest I.E. due to its stable half filled configuration.
$\mathrm{Mn} \rightarrow[\mathrm{Ar}] 4 s^{2} 3 d^{5} \rightarrow 5$ unpaired e^{ϵ}
$\mu_{\text {spin }}=\sqrt{5(5+2)} \mathrm{BM}$
$=\sqrt{35}$
$\simeq 6$
25. How many of the following compounds will give Friedel Craft's reaction?

Answer (3)

Sol. Friedel Craft's reaction is not given by those aromatic compounds which have strong deactivating groups like $-\mathrm{NO}_{2}$ group. Even aniline does not give Friedel Crafts reaction because the Lewis acid AlCl_{3} will from co-coordinate bond with $-\mathrm{NH}_{2}$ group thus converting it into strongly deactivating group, Friedel Crafts reaction is given
by

and

26.
27.
28.
29.
30.

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. If $\frac{z-2 i}{z+2 i}$ is purely imaginary, then maximum value of $|z+8+6 i|$ is equal to
(1) 6
(2) 8
(3) 10
(4) 12

Answer (4)

Sol. $\left(\frac{x+(y-2) i}{x+(y+2) i}\right) \frac{(x-(y+2) i)}{(x-(y+2) i)}=$ purely imaginary.
$\Rightarrow x^{2}+(y-2)(y+2)=0$
$\Rightarrow x^{2}+y^{2}=4$

Maximum value $=10+2=12$
2. $\int_{\frac{1}{4}}^{\frac{3}{4}} \cos \left(2 \cot ^{-1} \sqrt{\frac{1-x}{1+x}}\right) d x=$
(1) $\frac{-1}{4}$
(2) $\frac{3}{2}$
(3) $\frac{1}{16}$
(4) $\frac{-4}{3}$

Answer (1)
Sol. $\int_{\frac{1}{4}}^{\frac{3}{4}} \cos \left(2 \cot ^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)\right) d x$

$$
x=\cos 2 \theta \quad \Rightarrow d x=(-\sin 2 \theta d \theta) 2
$$

$$
-2 \int_{\alpha}^{\beta} \cos \left(2 \cot ^{-1}|\tan \theta|\right) \sin 2 \theta d \theta
$$

$=-2 \int_{\alpha}^{\beta}-\cos 2 \theta \cdot \sin 2 \theta d \theta$

$$
\begin{aligned}
& =\int_{\alpha}^{\beta} \sin 4 \theta d \theta \\
& =\left.\frac{-\cos 4 \theta}{4}\right|_{\alpha} ^{\beta} \\
& =\left.\frac{-1}{4}\left(2 \cos ^{2} 2 \theta-1\right)\right|_{\alpha} ^{\beta} \\
& =\left.\frac{-1}{4}\left(2 \cdot\left(x^{2}\right)-1\right)\right|_{\frac{1}{4}} ^{\frac{3}{4}} \\
& =\left.\frac{-1}{4}\left(2 x^{2}-1\right)\right|_{\frac{1}{4}} ^{\frac{3}{4}} \\
& \left.=\frac{-1}{4}\left(2 \cdot\left(\frac{9}{16}\right)-1\right)-2\left(\frac{1}{16}\right)+1\right) \\
& =\frac{-1}{4}\left(\frac{18}{16}-1-\frac{2}{16}+1\right) \\
& =\frac{-1}{4}(1)=\frac{-1}{4} \\
\text { 3. } & \lim _{x \rightarrow 0} \frac{e-(1+2 x)^{\frac{1}{2 x}}}{x}
\end{aligned}
$$

(1) e
(2) $\frac{e}{4}$
(3) $\frac{e}{8}$
(4) $\frac{11}{24} e$

Answer (1)

Sol. Using expansion

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{e-e\left[1-\frac{2 x}{2}+\frac{11 \times 4 x^{2}}{24}+\cdots\right]}{x} \\
& \lim _{x \rightarrow 0} e-\frac{11 x}{24} e \ldots \\
& =e
\end{aligned}
$$

4. In the given data

x_{f}	f_{i}
C	2
$2 C$	1
$3 C$	1
$4 C$	1
$5 C$	1
$6 C$	1

If $\sigma^{2}=160$. Find the value of $|C|$.
(1) 7
(2) 5
(3) 6
(4) 4

Answer (1)

Sol.

x_{i}	$f\left(x_{i}\right)$	$x f(x)$	$x^{2} f(x)$
C	2	$2 C$	$2 C^{2}$
$2 C$	1	$2 C$	$4 C^{2}$
$3 C$	1	$3 C$	$9 C^{2}$
$4 C$	1	$4 C$	$16 C^{2}$
$5 C$	1	$5 C$	$25 C^{2}$
$6 C$	1	$6 C$	$36 C^{2}$

$$
\sigma^{2}=E\left(x^{2}\right)-[E(x)]^{2}, \quad \Sigma f\left(x_{i}\right)=7
$$

$$
E(x)=\Sigma x f(x)=22 C
$$

$$
E\left(x^{2}\right)=\Sigma x^{2} f(x)=92 C^{2}
$$

$$
\sigma^{2}=160=\frac{92 C^{2}}{7}-\left(\frac{22 C}{7}\right)^{2}
$$

$$
\Rightarrow \quad C= \pm 7
$$

5. $\int_{-1}^{2} \log \left(x+\sqrt{x^{2}+1}\right) d x$
(1) $\log \left[(2+\sqrt{5})^{2}(\sqrt{2}-1)\right]-\sqrt{5}+\sqrt{2}$
(2) $\log \left[(2+\sqrt{5})^{2}(\sqrt{2}-1)\right]+\sqrt{5}-\sqrt{2}$
(3) $\log \left[(2+\sqrt{5})^{2}(\sqrt{2}-1)\right]+\sqrt{5}+\sqrt{2}$
(4) $\log (2+\sqrt{5})^{2}+\sqrt{5}+\sqrt{2}$

Answer (1)

Sol. $\int_{-1}^{2} 1 \cdot \log \left(x+\sqrt{x^{2}+1}\right) d x$

$$
\begin{aligned}
& =x \log \left(x+\sqrt{x^{2}+1}\right)-\int_{-1}^{2}\left(\frac{1+\frac{x}{\sqrt{x^{2}+1}}}{x+\sqrt{x^{2}+1}}\right) x d x \\
& =x \log \left(x+\sqrt{x^{2}+1}\right)-\int_{-1}^{2} \frac{x}{\sqrt{x^{2}+1}} d x \\
& \left.=x \log \left(x+\sqrt{x^{2}+1}\right)-\sqrt{x^{2}+1}\right]_{-1}^{2} \\
& =[2 \log (2+\sqrt{5})-\sqrt{5}]-[-\log (\sqrt{2}-1)-\sqrt{2}] \\
& =\log \left[(2+\sqrt{5})^{2}(\sqrt{2}-1)\right]-\sqrt{5}+\sqrt{2}
\end{aligned}
$$

6. The sum of coefficients of $x^{\frac{2}{3}}$ and $x^{\frac{2}{5}}$ in the binomial expansion of $\left(x^{\frac{2}{3}}+\frac{x^{\frac{-2}{5}}}{2}\right)^{9}$ is
(1) $\frac{{ }^{9} C_{4}}{2^{5}}$
(2) $\frac{{ }^{9} C_{6}}{2^{4}}$
(3) 0
(4) $\frac{63}{8}$

Answer (1)
Sol. $T_{r+1}={ }^{9} C_{r}\left(\frac{x^{\frac{-2}{5}}}{2}\right)^{r}\left(x^{\frac{2}{3}}\right)^{9-r}$

$$
\begin{aligned}
& ={ }^{9} C_{r} \frac{1}{2^{r}} x^{\frac{2}{3}(9-r)+\left(\frac{-2 r}{5}\right)} \\
& ={ }^{9} C_{r} \frac{1}{2^{r}} x^{6-\frac{16 r}{15}}
\end{aligned}
$$

Coefficient of $x^{\frac{2}{3}} \Rightarrow 6-\frac{16 r}{15}=\frac{2}{3}$

$$
\begin{aligned}
& \Rightarrow 90-16 r=10 \\
& \Rightarrow r=5
\end{aligned}
$$

Coefficient of $x^{\frac{2}{5}} \Rightarrow 6-\frac{16 r}{15}=\frac{2}{5}$
$\Rightarrow 90-16 r=6$
$\Rightarrow r=\frac{84}{16} \notin l$
\Rightarrow Sum $={ }^{9} C_{5} \frac{1}{2^{5}}+0$
$\Rightarrow \quad \frac{63}{16}$
7. Dice is thrown 3 times, then find the probability that $x_{1}<x_{2}<x_{3}$. (here $x_{1}, x_{2}, x_{3} \in[1,6]$)
(where x_{1}, x_{2}, x_{3} are outcomes on dice)
(1) $\frac{7}{54}$
(2) $\frac{5}{54}$
(3) $\frac{11}{54}$
(4) $\frac{17}{54}$

Answer (2)

Sol. Given condition is $x_{1}<x_{2}<x_{3}$
So, $n(E)={ }^{6} C_{3}$
$n(s)=6^{3}=216$
Then required probability $=\frac{{ }^{6} C_{3}}{216}$
$=\frac{20}{216}=\frac{5}{54}$
8. If $f(x)=3 f(x)+x$ and $f(0)=1$, then $f(x)$ is
(1) $\frac{-x}{3}+\frac{10}{9} e^{-3 x}$
(2) $\frac{-x}{3}-\frac{1}{9}+\frac{10}{9} e^{3 x}$
(3) $\frac{-x}{3}-\frac{10}{9} e^{-3 x}$
(4) $\frac{-x}{2}-\frac{1}{9}+\frac{10}{9} e^{2 x}$

Answer (2)

Sol. $\frac{d y}{d x}=3 y+x$
$\Rightarrow \frac{d y}{d x}-3 y=x$
$\mathrm{IF}=e^{\int-3 d x}=e^{-3 x}$
$y \cdot e^{-3 x}=\int e^{-3 x} \cdot x+c$
$\Rightarrow y \cdot e^{-3 x}=\frac{x \cdot e^{-3 x}}{-3}+\frac{1}{3} \int e^{-3 x} d x+c$
$y \cdot e^{-3 x}=-\frac{1}{3} x e^{-3 x}-\frac{1}{9} e^{-3 x}+c$
$\Rightarrow y=\frac{-1}{3} x-\frac{1}{9}+c \cdot e^{3 x}$
$y(0)=1$
$1=\frac{-1}{9}+c \Rightarrow c=\frac{10}{9}$
$y=\frac{-x}{3}-\frac{1}{9}+\frac{10}{9} e^{3 x}$
9. Find the area bounded by ellipse $x^{2}+3 y^{2}=18$ below the line $y=x$ is (in first quadrant)
(1) $3 \pi+1$
(2) $\sqrt{3} \pi$
(3) $3 \pi-\frac{3}{4}$
(4) $3 \pi+\frac{1}{4}$

Answer (2)

Sol.

$$
\begin{aligned}
& \text { Area }=\int_{0}^{\frac{3}{\sqrt{2}}} x d x+\int_{\frac{3}{\sqrt{2}}}^{3 \sqrt{2}} \sqrt{\frac{18-x^{2}}{3}} d x \\
& =\frac{1}{2}\left(x^{2}\right)_{0}^{\frac{3}{\sqrt{2}}}+\frac{1}{\sqrt{3}}\left[\frac{x}{2} \sqrt{18-x^{2}}+9 \sin ^{-1}\left(\frac{x}{3 \sqrt{2}}\right)\right]_{\frac{3}{\sqrt{2}}}^{3 \sqrt{2}}
\end{aligned}
$$

$=\frac{1}{2}\left(\frac{9}{2}\right)+\frac{1}{\sqrt{3}}\left[9 \sin ^{-1}(1)-\frac{3}{2 \sqrt{2}} \frac{3 \sqrt{3}}{\sqrt{2}}-9 \sin ^{-1}\left(\frac{1}{2}\right)\right]$
$=\frac{9}{4}+\frac{1}{\sqrt{3}}\left(\frac{9 \pi}{2}-\frac{9 \sqrt{3}}{4}-\frac{9 \pi}{6}\right)$
$=\sqrt{3} \pi$
10. $x^{2}-\sqrt{2} x-\sqrt{3}=0$ and $P_{n}=\alpha^{n}+\beta^{n}$. The value of $P_{12}-\sqrt{2} P_{11}-\sqrt{3} P_{10}+P_{11}-\sqrt{2} P_{10}$ is
(1) $\sqrt{3} P_{9}$
(2) $(2+\sqrt{5}) P_{9}$
(3) $\sqrt{5} P_{9}$
(4) $(3+\sqrt{5}) P_{9}$

Answer (1)

Sol. $x^{2}-\sqrt{2} x-\sqrt{3}=0$

$$
\begin{align*}
& \alpha^{2}-\sqrt{2} \alpha-\sqrt{3}=0 \\
& \alpha^{n+2}-\sqrt{2} \alpha^{n+1}-\sqrt{3} \alpha^{n}=0 \tag{i}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& \beta^{n+2}-\sqrt{2} \beta^{n+1}-\sqrt{3} \beta^{n}=0 \tag{ii}\\
& \left(\alpha^{n+2}+\beta^{n+2}\right)-\sqrt{2}\left(\alpha^{n+1}+\beta^{n+1}\right)-\sqrt{3}\left(\alpha^{n}+\beta^{n}\right) \\
& P_{n+2}-\sqrt{2} P_{n+1}-\sqrt{3} P_{n}=0 \tag{iii}
\end{align*}
$$

Put $n=10$
$P_{12}-\sqrt{2} P_{11}-\sqrt{3} P_{10}=0$
Now in the expression
$P_{12}-\sqrt{2} P_{11}-\sqrt{3} P_{10}+P_{11}-\sqrt{2} P_{10}$
$=P_{11}-\sqrt{2} P_{10}$
Put $n=9$ in eq. (iii)
$P_{11}-\sqrt{2} P_{10}-\sqrt{3} P_{9}=0$
$P_{11}-\sqrt{2} P_{10}=\sqrt{3} P_{9}$
11. If range of function $f(x)=\frac{1}{2+\sin 3 x+\cos 3 x}$ is [a, b]. If α and β be arithmetic and geometric mean of a, b then $\left(\frac{\alpha}{\beta}\right)$ is equal to
(1) $\frac{1}{\sqrt{2}}$
(2) $\sqrt{2}$
(3) $\frac{1}{2}$
(4) $\sqrt{3}$

Answer (2)

Sol. $f(x)=\frac{1}{2+\sin (3 x)+\cos 3 x}$
$\sin (3 x)+\cos (3 x) \in[-\sqrt{2}, \sqrt{2}]$
$2+\sin (3 x)+\cos (3 x) \in[2-\sqrt{2}, 2+\sqrt{2}]$
$\Rightarrow \frac{1}{2+\sin (3 x)+\cos (3 x)} \in\left[\frac{1}{2+\sqrt{2}}, \frac{1}{2-\sqrt{2}}\right]$
$\Rightarrow a=\frac{1}{2+\sqrt{2}}=\frac{(2-\sqrt{2})}{2}$
$b=\frac{1}{2-\sqrt{2}}=\frac{2+\sqrt{2}}{2}$
$\alpha=\frac{a+b}{2}=\frac{1}{2} \cdot \frac{1}{2} \cdot 4=1$
$\beta=\sqrt{a b}=\sqrt{\frac{1}{4}(2-\sqrt{2})(2+\sqrt{2})}=\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}}$
then, $\frac{\alpha}{\beta}=\sqrt{2}$
12. If $\int_{0}^{x} \sqrt{1-\left(y^{\prime}(t)\right)^{2}} d t=\int_{0}^{x} y^{\prime}(t) d t$ and $0 \leq x \leq 3, y \geq 0$, $y(0)=0$, then find $y^{\prime \prime}+1+y$.
(1) $\frac{x}{\sqrt{2}}-1$
(2) $\frac{x}{\sqrt{2}}+1$
(3) $\frac{x}{2}+1$
(4) $\frac{x}{2}-1$

Answer (2)

Sol. $\sqrt{1-\left(y^{\prime}(x)\right)^{2}}=y^{\prime}(x)$

$$
\begin{aligned}
\Rightarrow & 1-\left(y^{\prime}(x)\right)^{2}=\left(y^{\prime}(x)\right)^{2} \\
\Rightarrow & 2\left(y^{\prime}(x)\right)^{2}=1 \\
\Rightarrow & y^{\prime}(x)=\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}} \\
& y(x)=\frac{1}{\sqrt{2}} x, \frac{-1}{\sqrt{2}} x \\
\therefore \quad & y=\frac{1}{\sqrt{2}} x
\end{aligned}
$$

13. If $y=e^{3 \sin ^{-1} x}$, then value of
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-\frac{x d y}{d x}$ at $x=\frac{1}{2}$ equals to
(1) $9 e^{\frac{\pi}{6}}$
(2) $3 e^{\frac{\pi}{6}}$
(3) $3 e^{\frac{\pi}{2}}$
(4) $e^{\frac{\pi}{6}}$

Answer (3)

Sol. $y=e^{3 \sin ^{-1} x}$

$$
\begin{aligned}
& \frac{d y}{d x}=e^{3 \sin ^{-1} x} \cdot \frac{3}{\sqrt{1-x^{2}}} \\
& \sqrt{1-x^{2}} \frac{d y}{d x}=3 y
\end{aligned}
$$

Differentiating
$\sqrt{1-x^{2}} \frac{d^{2} y}{d x^{2}}-\frac{2 x}{2 \sqrt{1-x^{2}}} \frac{d y}{d x}=\frac{3 d y}{d x}$
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-\frac{x d y}{d x}=3 y$
\therefore At $x=\frac{1}{2}$
$3 y=3 e^{\frac{\pi}{2}}$
Option (3) is correct
14. If A is 2×2 matrix such that $A B^{-1}=A^{-1}$ where $B=\left[\begin{array}{ll}1 & 5 \\ 3 & 1\end{array}\right]$. If $C=B A B^{-1}$ and C satisfy $C^{4}+\beta C^{2}+$ $\alpha /=0$ then $(2 \beta-\alpha)$ is equal to
(1) 12
(2) 8
(3) 10
(4) 14

Answer (3)
Sol. $A B^{-1}=A^{-1}$ and $C=B A B^{-1}=B A^{-1} \Rightarrow B A^{-1}=A$
$C^{4}+\beta C^{2}+\alpha l=0$
$C^{2}=B A^{-1} B A^{-1}=A^{2}$
$\Rightarrow A^{2} B^{-1}=I \Rightarrow A^{2}=B$

$$
A^{2}=B \Rightarrow B \text { satisfy characteristic eq. }
$$

$(1-\lambda)(1-\lambda)-15=0 \Rightarrow \lambda^{2}-2 \lambda-14=0$
$B^{2}-2 B-14 I=0 \quad \Rightarrow A^{4}-2 A^{2}-14 I=0$
$\Rightarrow C^{4}-2 C^{2}-14 I=0$
$\Rightarrow \beta=-2, \alpha=-14$
$\Rightarrow 2 \beta-\alpha=-4+14=10$
15. If $\frac{1}{\alpha+1}+\frac{1}{\alpha+2}+\frac{1}{\alpha+3}+\ldots+\frac{1}{\alpha+1012}-$
$\left(\frac{1}{2 \times 1}+\frac{1}{4 \times 3}+\frac{1}{6 \times 5}+\ldots+\frac{1}{2024} \times \frac{1}{2023}\right)=\frac{1}{2024}$,
then α is equal to
(1) 2012
(2) 1012
(3) 1011
(4) 506

Answer (3)
Sol. $\sum_{r=1}^{1012} \frac{1}{(2 r)(2 r-1)}=\sum_{r=1}^{1012}\left(\frac{1}{(2 r-1)}-\frac{1}{2 r}\right)$

$$
=\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots .+\left(\frac{1}{2023}-\frac{1}{2024}\right)
$$

$$
=\left(1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2023}\right)
$$

$$
-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\ldots+\frac{1}{2024}\right)
$$

$$
=\left(1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2023}\right)-\frac{1}{2}
$$

$$
\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots \frac{1}{1012}\right)
$$

$$
=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{2023}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\ldots+\frac{1}{2022}\right)
$$

$$
-\frac{1}{2}\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3} \ldots+\frac{1}{1012}\right)
$$

$$
=\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{2023}\right)-\frac{1}{2}\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots \frac{1}{1011}\right)
$$

$$
-\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3} \ldots+\frac{1}{1012}\right)
$$

$$
=\frac{1}{1012}+\frac{1}{1013}+\ldots+\frac{1}{2023}-\frac{1}{2024}
$$

$$
\Rightarrow \frac{1}{\alpha+1}+\frac{1}{\alpha+2}+\ldots+\frac{1}{\alpha+1012}=\frac{1}{2024}
$$

$$
+\left(\frac{1}{1012}+\frac{1}{1013}+\ldots \frac{1}{2023}\right)-\frac{1}{2024}
$$

$$
=\frac{1}{1012}+\ldots+\frac{1}{2023}
$$

$\alpha+1012=2023 \Rightarrow \alpha=1011$
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. Sum of infinite terms of $a, a r, a r^{2} \ldots$ and $a^{3} r^{3}, a^{3} r^{6}$, $a^{3} r^{9} \ldots$ is 57 and 9747 respectively, then $a+18 r$ is

Answer (31)

Sol. a, ar, $a r^{2}, \ldots$
$\frac{a}{1-r}=57$
$a^{3} r^{3}, a^{3} r^{6}, a^{3} r^{9} \ldots$
$\frac{a^{3}}{1-r^{3}}=9747$
Equation $\frac{(1)^{3}}{(2)}$ given,
a^{3}
$\frac{(1-r)^{3}}{a^{3}}=\frac{57^{3}}{9747}$
$1-r^{3}$
$\Rightarrow \frac{1-r^{3}}{(1-r)^{3}}=19$
$\frac{(1-r)\left(1+r^{2}+r\right)}{(1-r)^{3}}=19 \quad(r \neq 1)$
$1+r^{2}+r=19+19 r^{2}-38 r$
$18 r^{2}-39 r+18=0$
$\Rightarrow r=\frac{2}{3}$ and $\left(\frac{3}{2}\right)$ rejected
$\therefore r=\frac{2}{3}$ and $a=19$
Now $a+18 r=19+12=31$
22. The number of numbers between 100 to 1000 such that sum of their digits is 14 , is
Answer (70.00)
Sol. Number in this range will be 3 -digit number.
$N=\overline{a b c}$ such that $a+b+c=14$
Also, $a \geq 1, \quad a, b, c \in\{0,1,2, \ldots 9\}$
Case I
All 3-digit same
$\Rightarrow 3 a=14$ not possible

Case II

Exactly 2 digit same:
$\Rightarrow 2 a+c=14$
$(a, c) \in\{(3,8),(4,6),(5,4),(6,2),(7,0)\}$
$\Rightarrow\left(\frac{3!}{2!}\right)$ ways $\Rightarrow 5 \times 3-1$
= $15-1=14$

Case III

All digits are distinct

$$
a+b+c=14
$$

without losing generality $a>b>c$

$$
\begin{aligned}
& (a, b, c) \in\left\{\begin{array}{l}
(9,5,0),(9,4,1),(9,3,2) \\
(8,6,0),(8,5,1),(8,4,2) \\
(7,6,1),(7,5,2),(7,4,3) \\
(6,5,3)
\end{array}\right. \\
& \Rightarrow 8 \times 3!+2(3!-2!)=48+8=56 \\
& =0+14+56=70
\end{aligned}
$$

23. Find the number of solutions of $3 \sin ^{-1} x+2 \cos ^{-1} x$ $=\frac{2 \pi}{5}$.

Answer (0)

Sol. $\sin ^{-1} x=\frac{2 \pi}{5}-\pi=\frac{-3 \pi}{5}$

$$
\frac{-3 \pi}{5}<\frac{-\pi}{2}
$$

\therefore No real solution
24. If $f(x)=2(2-p) x-\left(p^{2}-6 p+8\right) \cos 4 x+7$, then for what values of p, does $f(x)$ not have a vertical point?

Answer (4)

Sol. $f(x)=2(2-p)+4 \cdot \sin 4 x(p-2)(p-4)$
$=(p-2)((4 \sin 4 x)(p-4)-2), p \neq 2$
$4 \sin 4 x(p-4)-2 \neq 0$
$\Rightarrow \sin 4 x(p-4) \neq \frac{1}{2}$
$\sin 4 x \neq \frac{1}{2(p-4)}$
$\frac{1}{2(p-4)} \geq 1$
$\frac{1}{2(p-4)}-1>0 \Rightarrow y \in\left(4, \frac{9}{2}\right)$
$\frac{1}{2(p-4)}<-1 \Rightarrow p \in\left(\frac{7}{2}, 4\right)$
$\therefore \quad p \in \phi$
$\therefore \quad p=4$ is the only required value
25.
26.
27.
28.
29.
30.

