

JEE Main -2024 Session - 2 Answers & Solutions (Physics, Chemistry and Mathematics)

5-April 2024 Shift - 2

Office : Plot no. 855, Niti Khand I, Indirapuram, Ghaziabad | 072920 77839

www.smartachievers.online

PHYSICS

Sol.
$$P_1 = P_2$$

$$\frac{10}{\frac{\pi}{4}(1.4)^2} = \frac{F}{\frac{\pi}{4}(14)^2}$$
$$F = 1000 \text{ N}$$

5. A hollow sphere is rolling without slipping. Find ratio of rotational kinetic energy to total kinetic energy of sphere

(1)
$$\frac{4}{7}$$
 (2) $\frac{3}{7}$
(3) $\frac{2}{7}$ (4) $\frac{5}{7}$

Answer (3)

Sol.
$$K_{\text{rot}} = \frac{1}{2} \left(\frac{2}{5} M R^2 \right) \omega^2$$

 $K_{\text{total}} = \frac{1}{2} M v^2 + \frac{1}{2} \left(\frac{2}{5} M R^2 \right) \omega^2$
 $v = R \omega$
 $\therefore \quad K_{\text{total}} = \frac{1}{2} \left(\frac{7}{5} M R^2 \right) \omega^2$
 $\frac{K_{\text{rot}}}{K_{\text{total}}} = \frac{2}{7}$

- Shortest wavelength in Lyman series has wavelength of 915 Å. Longest wavelength of Balmer series has a value of?
 - (1) 5296 Å (2) 3647 Å
 - (3) 6588 Å (4) 7294 Å
- Answer (3)

Sol. Lyman : $\frac{1}{915} = RZ^2 \left(\frac{1}{1}\right)^2$

$$RZ^{2} = \frac{1}{915}$$

Balmer : Transition from n = 3 to n = 2

- 7. In sonometer, fundamental frequency changes from 400 Hz to 500 Hz keeping same tension. Find percentage change in length.
 - (1) 5% (2) 10%

Answer (3)

8.

Sol.
$$f = \frac{V}{2I} = 400$$

$$\frac{v}{2l_2} = 500$$

$$\frac{l_2 - l_1}{l_1} \times 100 = \frac{\frac{v}{1000} - \frac{v}{800}}{\frac{v}{800}} \times 100 = \left(\frac{8}{10} - 1\right) \times 100$$

For what boolean values of *A*, *B* & *C* the given logic gate gives output of zero?

Answer (2)

Sol. Putting values gives option (2).

- 20*R* resistance wire is cut into 10 equal parts. Now each part first is connected in series and then in parallel. Find ratio of equivalent resistance in both cases (*R*_{series} : *R*_{parallel})
 - (1) 100:1
 - (2) 50:1
 - (3) 25:1
 - (4) 5:1

Answer (1)

Sol. Series : $R_{eq} = 20R$

Parallel : $R'_{eq} = \frac{R}{5}$

Ratio:
$$R_{eq}$$
: $R'_{eq} = 20R$: $\frac{20R}{100} = 1$: $\frac{1}{100} = 100$: 1

- 10. On vehicles containing inflammable fluid, metallic chains are provided touching of the earth, then correct option is
 - (1) It is custom
 - (2) Alert for another vehicle
 - (3) For discharging the statics charges developed due to friction
 - (4) It is fashion

Answer (3)

- Sol. Because of friction, metallic body gets changed.
- 11. 400 Ω series resistance is required to convert a galvanometer of 100 Ω to a voltameter of range 10 V. To convert same galvanometer, in ammeter of 10A, what should be the shunt resistance
 - (1) 4 Ω
 - (2) 0.4 Ω
 - (3) 0.2 Ω
 - (4) 5Ω

- 12. A particle is moving in circular path of radius 9 m such that it completes 120 rev in 3 minutes. Find centripetal acceleration.
 - (1) $8\pi^2 \text{ m/s}^2$ (2) $16\pi^2 \text{ m/s}^2$

(3)
$$32\pi^2 \text{ m/s}^2$$
 (4) $16\pi \text{ m/s}^2$

Answer (2)

Sol.
$$\omega = \frac{\Delta \theta}{\Delta t} = \frac{120 \times 2\pi}{3 \times 60} = \frac{4\pi}{3}$$
 rad/s
 $a_c = \omega^2 r$
 $= \left(\frac{16}{9}\pi^2\right) \times 9$
 $= 16\pi^2 \text{ m/s}^2$

- 13. The current flowing through an inductor vary with time as i = (3t + 2)A and back emf induced in it is 12 V at an instant. Find inductance
 - (1) 1 H
 - (2) 2 H
 - (3) 4 H
 - (4) 5 H

Sol.
$$\varepsilon = \left| L \frac{di}{dt} \right|$$

12 = L(3)
L = 4 H

14. In thermodynamics adiabatic process, pressure is directly proportional to cube of absolute temperature. Find $\frac{C_p}{C_v}$ for the gas

(1) $\frac{4}{3}$ (2) $\frac{7}{5}$ (3) $\frac{3}{2}$ (4) $\frac{8}{7}$

Answer (3)

Sol.
$$P \propto T^3 \Rightarrow \frac{P^3 V^3}{P} \propto P^2 V^3 \propto P V^{3/2} = P V^{\gamma}$$

15. Find the ratio of power dissipated in 5 Ω and 10 Ω resistor.

Sol.
$$P = i^2 R = \frac{V^2}{R}$$

 \therefore Voltage across 5 Ω and 10 Ω is same

$$P \propto \frac{1}{R}$$
$$\frac{P_1}{P_2} = \frac{R_2}{R_1} \Rightarrow P_1 : P_2 = 10:5$$
$$\boxed{P_1 : P_2 = 2:1}$$

16. Angular momentum of revolving electron of hydrogen atom in a given orbit is dependent on radius *r* as

(1)
$$\frac{1}{r}$$
 (2) $\frac{1}{r^2}$
(3) $\frac{1}{r}$ (4) \sqrt{r}

Answer (4)

Sol.
$$L = \frac{nh}{2\pi}$$
 (i) $r = \frac{n^2}{2} r_0$ (ii)
 $\Rightarrow L \propto \sqrt{r}$.

- In a photoelectric effect, stopping potential of photoelectrons does not depend on
 - (1) Intensity of radiation
 - (2) Frequency of radiation
 - (3) Material or metal
 - (4) Kinetic energy of electrons

Answer (1)

Sol.
$$eV_{S} = hv - \phi_{0}$$

$$eV_{S} = KE$$

- If *F*₁ is electrostatic force, *F*₂ is magnetic force on a charge particle of charge *q*, where *E* is electric field,
 B is magnetic field and *v* is velocity of particle. Mark correct option.
 - (1) $\vec{F}_1 = q(\vec{v} \times \vec{E})$
 - (2) $\vec{F}_2 = q\vec{B}$
 - (3) $\vec{F}_1 = \vec{q}(\vec{E} \times \vec{v})$
 - (4) $\vec{F}_2 = q(\vec{v} \times \vec{B})$

Answer (4)

Sol. $\vec{F}_1 = q\vec{E}$

19.

 $\vec{F}_2 = q(\vec{v} \times \vec{B})$

(A)	X-Ray	(P)	λ > 700 nm		
(B)	UV Ray	(Q)	100 nm < λ < 400 nm		
(C)	γ-Ray	(R)	λ < 0.3 nm		
(D)	Infrared	(S)	0.3 nm < λ < 10 nm		
(1) $(A) \rightarrow (S), (B) \rightarrow (Q), (C) \rightarrow (P), (D) \rightarrow (R)$					
(2) (A) \rightarrow (S), (B) \rightarrow (Q), (C) \rightarrow (R), (D) \rightarrow (P)					
(3) (A) \rightarrow (P), (B) \rightarrow (Q), (C) \rightarrow (R), (D) \rightarrow (S)					
(4) $(A) \rightarrow (P), (B) \rightarrow (R), (C) \rightarrow (Q), (D) \rightarrow (S)$					

Answer (2)

- **Sol.** Most energetic gamma rays and less energetic are Infrared.
- 20. A conducting sphere is given a charge Q on it. The ratio of potential at points at a distance $\frac{R}{2}$ and $\frac{3R}{2}$ from the centre of the sphere is

(2)
$$3:2$$

(3) $3:1$
(4) $2:3$
Answer (2)
Sol. $V_1 = \frac{KQ}{R}$
 $V_2 = \frac{2KQ}{3R}$
 $\therefore \frac{V_1}{V_2} = \frac{3}{2}$

(1) 1:3

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. A particle is projected with some speed and it is observed that it achieves a maximum height of 64 m. If the same particle is projected with initial speed half to the first value, then new maximum height achieved by particle will be _____ m.

Answer (16)

Sol.
$$H_{\text{max}} = \frac{u^2}{2g} = 64 \text{ m}$$

 $H'_{\text{max}} = \frac{u^2}{4(2g)} = \frac{64}{4} = 16 \text{ m}$

22. If a body is moving with a momentum. $\vec{P} = \sin kt \hat{i} - \cos kt \hat{j}$, then angle between \vec{F} and

Answer (90)

Sol. We know that
$$\vec{F} = \frac{d\vec{P}}{dt}$$

 $\vec{F} = (\cos kt \times k)\hat{i} - (-\sin kt \times k)\hat{j}$
 $\vec{F} = (k\cos kt)\hat{i} + (k\sin kt)\hat{j}$
 $\therefore \quad \cos\theta = \frac{\vec{F} \cdot \vec{P}}{|\vec{F}||\vec{P}|} = 0$
 $\theta = 90^{\circ}$

23. Electric field due to the dipole at *P* is *E* and at point

Answer (16)

Sol.
$$E_P = \frac{2K_P}{r^3}$$

$$E_{Q} = \frac{K_{P}}{(2r)^{3}}$$
$$\therefore \quad E_{Q} = \frac{1}{16}E_{P}$$

Answer (2)
Sol. 20 VSD = 19 MSD

$$VSD = \frac{19}{20}MSD$$

$$LC = MSD - \frac{19}{20}MSD$$

$$0.1 \text{ mm} = \frac{MSD}{20}$$

$$MSD = 2 \text{ mm}$$
25. Find the current *i* (upto nearest integer), in the circuit.

$$V_{L}=315V$$

$$U_{L}=10 \text{ mH}$$

$$i$$

$$0000$$

$$L = 10 \text{ mH}$$

$$i$$

$$100 \text{ V}, 50 \text{ Hz}$$
Answer (10)
Sol. $V_{L} = i X_{L}$

$$31.5 = (i) \times (\omega L)$$

$$31.5 = i \times 2\pi FL$$

$$i = \frac{31.5}{2\pi \times 50 \times 10^{-2}} = \frac{31.5}{3.14}$$

$$[i \approx 10 \text{ A}]$$
26.
27.
28.
29.

30.

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

1. Find out E_{cell}^{o} of the given cell.

M | M²⁺ || X^{2–} | X

$$E^{o}_{M^{2+}|M} = 0.34 V$$

 $E_{X|X^{2-}}^{o} = 0.46 \text{ V}$

(1) 0.80 V
(2) 0.12 V
(3) −0.12 V
(4) −0.80 V

Answer (2)

Sol.
$$\frac{M \longrightarrow M^{2^+} + 2e^-}{M + X \longrightarrow M^{2^+} + X^{2^-}}$$
 (Anode)
$$\frac{X + 2e^-}{M + X \longrightarrow M^{2^+} + X^{2^-}}$$
 (Cathode)

$$E_{cell}^{o} = (E_{M|M^{2+}}^{o}) + (E_{X|X^{2-}}^{o})$$
$$= -0.34 + 0.46$$
$$= 0.12 \text{ V}$$

- 2. Which of the following is true regarding coagulation of egg?
 - (1) 1° structure does not change
 - (2) 2° structure does not change
 - (3) 3° structure does not change
 - (4) Denaturation of protein does not occur

Answer (1)

Sol. Coagulation of egg white on boiling is a common example of denaturation in which primary structure only remains intact.

 Angular momentum of an electron in an orbit of radius R of a hydrogen atom is directly proportional to _____.

A and B products respectively are :

Sol.

Due to partial double bond character between oxygen and carbon atom of phenyl ring bond can't break easily.

5. Find out the value of $\frac{C_P}{C_V}$ for an ideal gas undergoing reversible adiabatic process for which $\boxed{P \propto T^3}$ is given

(1)
$$\frac{4}{3}$$
 (2) $\frac{3}{2}$
(3) $\frac{5}{4}$ (4) $\frac{5}{3}$

Answer (2)

Sol. $PT^{-3} = Constant (C)$

$$P(PV)^{-3} = C$$

 $P^{1}P^{-3}V^{-3} = C$
 $P^{-2}V^{-3} = C$
 $P^{2}V^{3} = C$
 $PV^{\frac{3}{2}} = C$

6. Consider the following reaction.

(i) KMnO₄/KOH/ Δ (ii) H₃O⁺

The product (P) is

- (1) Adipic acid
- (2) Oxalic acid
- (3) Succinic acid
- (4) Benzoic acid

Sol.
$$(i) \xrightarrow{(i) KMnO_4/KOH/\Delta} COOH$$
$$(ii) H_3O^+ Adipic acid$$

- 7. Consider the following two statements :
 - S-I: NH_3 is more polar than NF_3 .

Select the correct option.

- (1) Both statements are correct and Statement-II is not correct explanation of Statement-I
- (2) Both statements are correct and Statement-II is correct explanation of Statement-I
- (3) Statement-I and Statement-II both are incorrect
- (4) Statement-I is correct and Statement-II is incorrect

Answer (2)

Sol. The direction of electric dipole is towards negative pole in case of N – H the negative pole of N while in case of N – F the negative pole is F as order of electronegativity is F > N > H.

8. From the given information, calculate enthalpy of formation of 2 moles of $C_6H_6(I)$ at 25°C.

Given:

 $\Delta_{\rm C} H(C_6 H_6(I)) = -3264.6 \text{ kJ/mol}$

 $\Delta_C H(C(s)) = -393.5 \text{ kJ/mol}$

 $\Delta_{\rm f} H(H_2O(I)) = -285.83 \text{ kJ/mol}$

(1) -124.5 kJ/mol (2) -46.11 kJ/mol

(3) 46.11 kJ/mol (4) 124.5 kJ/mol

Answer (3)

=

Sol. Formation reaction

 $6C(s) + 3H_2(g) \rightarrow C_6H_6(I)$

$$\Delta_{f}H(C_{6}H_{6}) = 6\Delta_{C}H(C(s)) + 3\Delta_{C}H(H_{2}(g)) - \Delta_{C}H(C_{6}H_{6}(I))$$

$$= 6(-393.5) + 3(-285.83) - (-3264.6)$$

$$[:: \Delta_{f}H(H_{2}O(I)) = \Delta_{C}H(H_{2}(g))]$$

= 3264.6 - 2361 - 857.49

= 46.11 kJ/mol

9. Choose the option with correct matching for given molecules

		000100				
		Column	Α		Colun	nn B
	(A)	ICI		(P)	T-shap	be
	(B)	ICl ₃		(Q)	Penta Bipyra	gonal midal
	(C)	CIF₅		(R)	Linear	
	(D)	IF ₇		(S)	Squar	e Pyramidal
	(1)	$A \rightarrow R$,	$B \rightarrow P, C \rightarrow$	Q, D	ightarrow S	
	(2)	$A \rightarrow R$,	$B \rightarrow P, C \rightarrow$	S, D	\rightarrow Q	
	(3)	$A \rightarrow Q$,	$B \rightarrow S, C \rightarrow$	R, D	ightarrow m P	
	(4)	$A \rightarrow P, I$	$B \rightarrow R, C \rightarrow$	• S, D	\rightarrow Q	
Ans	wer	(2)				
Sol.	IF_7	SN =	$\frac{7+7}{2} = 7$	—→P.l	b.p	
	CIF	5 SN	$=\frac{7+5}{2}=6-$		1 lone p	pair
					Squ	uare pyramidal
	ICl₃	SN =	$=\frac{7+3}{2}=5-$	>2	lone p	air
					T – S	hape
	ICI	SN =	$\frac{7+1}{2} = 4$	→3 I	one pa	ir 🗸 🗸
					Linea	r (
	A —	\rightarrow R, B \rightarrow	$P, C \rightarrow S, I$	$D \rightarrow O$	ຊ 🧹	2
10.	The	ratio of	R _f value for	P and	d R is	
					Solver	nt level
			●(R)		т	Î
		_				
	с <i>Б</i>		●(Q)		10	12.5 cm
	0.5		(P) [●]	ľ		
		¥(1			<u>⊔ ∖</u> 0 cm	Ł
		50				

(1) 0.50 (2) 0.80 (3) 0.65 (4) 2 Answer (1) **Sol.** $(R_f)_P = \frac{5}{12.5}$ $(R_f)_R = \frac{10}{12.5}$ Ratio of Rf value of P and R $=\frac{5}{12.5}\times\frac{12.5}{10}=\frac{1}{2}$ 11. Which of the following molecule is an acidic oxide? (1) N₂O₃ (2) NO (3) CO (4) CaO Answer (1) **Sol.** $N_2O_3 \rightarrow Acidic oxide$ NO and CO \rightarrow Neutral oxide $CaO \rightarrow Basic oxide$ What is the IUPAC name of : 12. OH Ô (1) 3-formylhept-6-enoic acid (2) 3-aldohept-7-enoic acid (3) 3-ketohept-6-enoic acid (4) 3-oxohept-6-enoic acid Answer (1) OH Sol. 7 3-formylhept-6-enoic acid

13. Which of the following metal ions can replace hydrogen ion from an acidic solution?

V⁺², Ti⁺², Cr⁺³

- (1) Only one (2) Only two
- (3) All of these

Answer (3)

Sol. The standard reduction potential values of the given metal ions to their respective metals are negative.

(4) None of these

$$E^{\circ}_{V^{+2}/V} = -1.18 V$$

 $E^{\circ}_{Ti^{+2}/Ti} = -1.63 V$

$$E^{\circ}_{Cr^{+3}/Cr} = -0.74 V$$

Therefore, all of these metal ions will replace hydrogen ion from an acidic solution.

- 14. Equanil drug is used for which disease?
 - (1) Infertility
 - (2) Hypertension and depression
 - (3) Acidity
 - (4) Eye-itching

Answer (2)

- **Sol.** Equanil is a mild tranquilizer used to treat hypertension and depression.
- 15. Consider the following reaction and identify the major product formed in it.

Sol. 1-Bromo-1-methylcyclohexane when treated with alcoholic OH⁻ undergoes dehydrobromination by E₂ mechanism to give 1-methylcyclohexene as the major product

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. How many of the following have zero dipole moment?

H₂S, CH₄, NH₃, BF₃, SO₂, NF₃

Answer (2)

Sol.

CH₄ and BF₃ have zero dipole moment

22. In an atom, how many maximum electrons that can

have (i) n = 4, (ii) m₁ = 1, (iii) m_s =
$$-\frac{1}{2}$$
?

Answer (3)

Sol. In n = 4 shell,

сu

Total orbitals with $m_l = 1 \rightarrow 3$

Total e⁻ with
$$m_s = -\frac{1}{2} \rightarrow 3$$

23.
$$\underbrace{\bigcirc}_{OH^{-}, \Delta}^{V_{3}\Pi_{7}} \xrightarrow{KMnO_{4}} (A) \xrightarrow{H_{3}O^{+}} (B)$$

Number of π bonds present in product B is:

Answer (4)

One coulomb charge is passed through AgNO₃ solution during electrolysis. Find mass of silver (in mg) deposited at the electrode. (nearest integer)

Answer (1)

Sol. Equivalents of charge = $\frac{1}{96500}$

Equivalents of Ag deposited = $\frac{1}{96500}$

Mass of Ag deposited = $\frac{108}{96500}$ g

Nearest integer = 1

25. For the reaction:

$$CH_4 + O_2 \longrightarrow CO_2 + H_2O_2$$

How many moles of methane will be required for formation of 11 g of CO_2 ?

Answer (0.25)

Sol. $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$

1 mole of CH₄ will produce 1 mole of CO₂

So, 11 g of CO₂ will be produced by
$$\frac{11}{44}$$
 moles of

.e.,
$$\frac{1}{4}$$
 moles of CH₄ = 0.25

26. In the following reaction, HCl formed is titrated with 0.2 moles of NaOH. Calculate the mass of C_2H_5 -NH₂ taken initially.

$$C_2H_5 - NH_2 + NaNO_2 \xrightarrow{HCI} A \xrightarrow{H_2O} HCI + Alcohol + N_2$$

Answer (9)

Sol.

$$\begin{array}{c} C_2H_5-NH_2+NaNO_2 \xrightarrow{HCI} C_2H_5-N_2^+CI^- \xrightarrow{H_2O} C_2H_5-OH+HCI+N_2\\ (A) \qquad \qquad (alcohol) \end{array}$$

- 1 mole of C_2H_5 –NH₂ will form 1 mole of $C_2H_5 N_2^+CI^-(A)$ which will further reacts to form 1 mole of HCI.
- : 0.2 moles of NaOH is used. So,

 n_{HCI} formed = 0.2

So, $n_{C_2H_5-NH_2}$ taken initial = 0.2

Mass of $C_2H_5 - NH_2 = 0.2 \times 45 = 9$

 If square planar complex [MXYZL] has all the four unidentate ligand then find out its total number of geometrical isomers.

Answer (3)

Sol. The given square planar complex has 3 geometrical isomers.

28. If λ_{max} for Lyman series of H-atom is 912 Å, then calculate λ_{min} for Balmer series of H-atom (in Å).

Answer (2736)

Sol. λ_{max} for Lyman series (E = 2 \rightarrow E = 1)

$$\frac{1}{912} = R(1)^2 \left(\frac{1}{1} - \frac{1}{4}\right)$$
$$\frac{1}{912} = R \times \frac{3}{4}$$
$$R = \frac{4}{912 \times 3}$$

 λ_{min} for Balmer series (E = $\infty \rightarrow$ E = 2)

$$\frac{1}{\lambda} = R(1)\left(\frac{1}{4}\right)$$
$$= \frac{4}{912 \times 3} \times \frac{1}{4}$$
$$= \frac{1}{912 \times 3}$$
$$\lambda = 912 \times 3$$

= 2736 Å

29. Chromite ore + Na₂CO₃ $\xrightarrow{air}_{fusion}$ A(s) + B(s) + CO₂

What is the value of sum of magnetic moment (in B.M.) of A and B? (Nearest integer)

Answer (6)

Sol. $4FeCr_2O_4 + 8Na_2CO_3 + 7O_2 \rightarrow$

8Na₂CrO₄ + 2Fe₂O₃ + 8CO₂

A and B are Na_2CrO_4/CrO_4^{2-} and Fe_2O_3 .

Oxidation state of Cr in CrO_4^{2-} is +6, hence it has zero electrons in its ns as well as (n - 1)d. So, the magnetic moment of chromate will be zero.

Oxidation state of Fe in Fe₂O₃ is +3, hence Fe has $(n - 1)d^5 ns^0$ electronic configuration, *i.e.*, five unpaired electron in each Fe. So, the magnetic moment of Fe will be 5.92 B.M.

Nearest integer = 6

30. How many species have zero electron in t₂?

 $TiCl_4$, MnO_4^- , $[FeO_4^-]^2$, $[FeCl_4^-]^-$, $[CoCl_4^-]^-$

Answer (3)

Sol. $TiCl_4 \Rightarrow Ti^{4+} = 3d^\circ 4s^\circ \Rightarrow e^\circ t_2^\circ$ $MnO_4^- \Rightarrow Mn^{+7} = 3d^\circ 4s^\circ \Rightarrow e^\circ t_2^\circ$

 $[FeO_4]^{2-} \Rightarrow Fe^{+6} = 3d^24s^\circ \Rightarrow e^2t_2^0$

 $[\text{FeCl}_4]^- \Rightarrow \text{Fe}^{+3} = 3\text{d}^54\text{s}^\circ \Rightarrow \text{e}^2\text{t}_2^3$

 $[\text{CoCl}_4]^- \Longrightarrow \text{Co}^{\scriptscriptstyle +3} \Longrightarrow 3\text{d}^6 4\text{s}^\circ \Longrightarrow \text{e}^3\text{t}_2^3$

 $\text{TiCl}_{4},\text{MnO}_{4}^{-},[\text{FeO}_{4}]^{2^{-}},$ have zero electron in t_{2} orbital

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

1.	Let image of poir	nt (8, 5, 7) with respect to line
	$\frac{x-1}{2} = \frac{y+1}{2} = \frac{z-1}{5}$	$\frac{2}{2}$ is (α , β , γ). Then α + β + γ is
	equal to	
	(1) 10	(2) 12
	(3) 9	(4) 14

Answer (4)

Sol. Given point (8, 5, 7)

$$\lambda = \frac{57}{38} \Rightarrow \boxed{\lambda = \frac{3}{2}}$$

$$Q = \left(2\left(\frac{3}{2}\right) + 1, 3\left(\frac{3}{2}\right) - 1, 5\left(\frac{3}{2}\right) + 2\right)$$

$$Q = \left(4, \frac{7}{2}, \frac{19}{2}\right)$$

$$\therefore \frac{8+\alpha}{2} = 4, \frac{5+\beta}{2} = \frac{7}{2}, \frac{7+\gamma}{2} = \frac{19}{2}$$

$$\Rightarrow \alpha = 0, \beta = 2, \gamma = 12$$

$$\therefore (\alpha, \beta, \gamma) \equiv (0, 2, 12)$$

$$\therefore \alpha + \beta + \gamma = 0 + 2 + 12 = 14$$
2. The 50th word in the dictionary using the letters B, B, H, J, O is
(1) OBBJH (2) OBBHJ
(3) JHBBO (4) BBHOJ
Answer (1)
Sol. Number of words staring with 'B' = 4!

$$= 24$$
Number of words staring with 'H' = \frac{4!}{2!}
$$= 12$$
Number of words staring with 'J' = 12
Agth word = OBBHJ
50th word = OBBHJ
50th word = OBBJH
3. $\left(\frac{3^{\frac{1}{5}}}{x} + \frac{2x}{5^{\frac{1}{3}}}\right)^{12}$. Find which term is constant.
(1) 4th (2) 5th
(3) 6th (4) 7th

Answer (4)

Sol.
$$\left(\frac{3^{\frac{1}{5}}}{x} + \frac{2x}{5^{\frac{1}{3}}}\right)^{1/2}$$

 $T_{r+1} = {}^{n}C_{r} \left(\frac{3^{\frac{1}{5}}}{x}\right)^{n-r} \left(\frac{2x}{5^{\frac{1}{3}}}\right)^{r}$
 $\left(\frac{3^{\frac{1}{5}}}{3}\right)^{n-r} x^{r-n} \frac{2^{r} \cdot x^{r}}{5^{\frac{1}{3}}}$
For constant term
 $r-n+r=0$
 $\Rightarrow 2r-n=0$
We have $n = 12$
 $\Rightarrow 2r-12=0$
 $r=6$
So 7th term is constant.
4. Area bounded by $y = -2|x|$ and $y = x|x|$ is
(1) $\frac{2}{3}$ (2) $\frac{1}{3}$
(3) $\frac{1}{2}$ (4) $\frac{4}{3}$
Answer (4)
Sol. $\frac{-2}{\sqrt{2}|x| = y}$
 $Area = \left|\int_{-2}^{0} (-x^{2} - (2x))dx\right|$
 $= \left|\frac{-x^{3}}{3} - x^{2}\right|_{-2}^{0}|_{-2$

5.
$$A = \begin{bmatrix} \alpha & \alpha & \alpha \\ \beta & \alpha & -\beta \\ -\alpha & \alpha & \alpha \end{bmatrix}$$

B is formed by co-factor of *A* matrix, then find out determinant of *AB*.

(1) $4\alpha^{3}(2\alpha + \beta)^{5}$ (2) $12\alpha^{4}(\alpha + \beta)^{2}$

(3)
$$8\alpha^{6}(\alpha + \beta)^{3}$$

(4) $18\alpha^8(\alpha + \beta)^3$

Answer (3)

Sol.
$$A = \begin{bmatrix} \alpha & \alpha & \alpha \\ \beta & \alpha & -\beta \\ -\alpha & \alpha & \alpha \end{bmatrix}$$
$$|A| = \begin{bmatrix} 2\alpha & 0 & 0 \\ \beta & \alpha & -\beta \\ -\alpha & \alpha & \alpha \end{bmatrix}$$
$$= 2\alpha (\alpha^2 + \alpha\beta)$$
$$= 2\alpha^2 (\alpha + \beta)$$
Now, $\beta = (adjA)^T$ Determinant of $A \cdot B = |A \cdot B|$
$$= |A \cdot (adjA)^T|$$
$$= |A| \cdot |A|^2$$
$$= |A|^3$$
$$|A|^3 = 8\alpha^6 (\alpha + \beta)^3$$

6. Consider a equation $P(x) = ax^2 + bx + c = 0$. If $a, b, c \in A$, were $A = \{1, 2, 3, 4, 5, 6\}$. Then the probability that P(x) has real and distinct roots?

(1)
$$\frac{1}{4}$$
 (2) $\frac{1}{16}$

(3)
$$\frac{25}{108}$$
 (4) $\frac{19}{108}$

Answer (4)

Sol.	$b^2 - 4ac > 0$				
	\Rightarrow <i>b</i> < 2 not possible				
	$\Rightarrow b=3 \Rightarrow ac < \frac{9}{4}$				
	$(a, c) \in \{(1, 1), (1, 2), (2, 1)\} \Rightarrow 3 \text{ cases}$				
	$\Rightarrow b = 4 \Rightarrow ac < 4 \Rightarrow ac = \{1, 2, 3\}$				
	$(a, c) \in \{(1, 1), (1, 2), (2, 1), (3, 1), (1, 3)\} = 5$ ways				
	$\Rightarrow b = 5 \Rightarrow ac < \frac{25}{4} \Rightarrow ac = \{1, 2, 3, 4, 5, 6\}$				
	$(a, c) \in \{(1, 1), (1, 2), (2, 1), (3, 1), (1, 3), (2, 2), (4, 1), (1, 4), (3, 2), (2, 3), (5, 1), (1, 5), (1, 6), (6, 1)\} \implies 14 \text{ ways}$				
	$\Rightarrow \textit{b} = 6 \Rightarrow \textit{ac} < 9 \Rightarrow \textit{ac} \in \{1, 2, 3, 4, 5, 6, 7, 8\}$				
	$(a, c) \in \{(1, 1), (1, 2), (2, 1), (3, 1), (1, 3), (2, 2), (4, 1), (1, 4), (3, 2), (2, 3), (5, 1), (1, 5), (1, 6), (6, 1), (2, 4), (4, 2)\} \Rightarrow 16$ ways				
	\Rightarrow 3 + 5 + 14 + 16 = 38 cases				
	\Rightarrow Probability = $\frac{38}{6^3} = \frac{19}{108}$				
7.	If $f: R \to R$ and $g: R \to R$ defined such that				
	f(x) = x - 1				
	$g(x) = \begin{cases} e^x ; x > 0 \\ x - 1 ; x \le 0 \end{cases}$				
	Then,				
	(1) Both <i>f</i> and <i>g</i> is one-one				
	(2) f is one-one and g is many one				
	(3) f is many one and g is one-one				
	(4) f and g both are many one				
Answer (3)					

:. *L*: 2y + x = 5

Parabola and L meets at (13, -4)

Now, distance = $\sqrt{185}$

9. If $S = \{2, 4, 8, 16, ..., 512\}$. If S is broken in 3 equal subsets A, B and C such that $A \cap B = B \cap C = C \cap A = \phi$ and $A \cup B \cup C = S$ then maximum number of ways to break is

(1)
$${}^{9}C_{3}$$
 (2) $\frac{9!}{(3!)3}$
(3) $\frac{9!}{(3!)4}$ (4) $\frac{9!}{(3!)^{2}}$

Answer (2)

Sol. $S = \{2^1, 2^2, 2^3, \dots, 2^9\}$

$$\bigcirc$$

$$A \cap B = B \cap C = A \cap C = \phi$$

and = $A \cup B \cup C$ = S

 \Rightarrow *A*, *B*, *C* are disjoint mutually exhaustive and exclusive

$$\Rightarrow {}^{9}C_{3} \cdot {}^{6}C_{3} \cdot {}^{3}C_{3} = \frac{9!}{6!3!} \times \frac{6!}{3!3!} \times (1)$$
$$= \frac{9!}{3!3!3!} = 1680$$

10. If $y = \frac{2\cos 2\theta + \cos \theta}{\cos 3\theta + \cos^2 \theta + \cos \theta}$

Then value of y'' + y' + y is

- (1) $\sec\theta(1 \tan^3\theta)$
- (2) $tan\theta(sec^{3}\theta + 2tan^{2}\theta)$
- (3) $\sec\theta(2\sec^2\theta + \tan\theta)$
- (4) $\cot\theta(\sec^3\theta + 2\tan\theta)$
- Answer (3)

Sol.
$$y = \frac{2\cos 2\theta + \cos \theta}{\cos 3\theta + \cos^2 \theta + \cos \theta}$$

 $y = \frac{2\cos 2\theta + \cos \theta}{2\cos 2\theta \cdot \cos \theta + \cos^2 \theta}$

$$y = \frac{2\cos 2\theta + \cos \theta}{\cos \theta (2\cos 2\theta + \cos \theta)}$$

$$y = \frac{1}{\cos \theta}$$

$$y = \sec \theta$$

$$y' = \sec \theta$$

$$y' = \sec \theta$$

$$y' = \sec \theta \tan \theta$$

$$y'' = \sec^{3}\theta + \sec \tan^{2}\theta$$

$$y'' + y' + y = \sec^{3}\theta + \sec \theta \tan^{2}\theta + \sec \theta \tan \theta + \sec \theta$$

$$= \sec \theta (\sec^{2}\theta + 1) + \sec \theta \tan \theta (\tan \theta + 1)$$

$$= \sec \theta (\sec^{2}\theta + 1) + \sec \theta \tan \theta (\tan \theta + 1)$$

$$= \sec \theta (\sec^{2}\theta + 1 + \tan^{2}\theta + \tan \theta)$$

$$= \sec \theta (2\sec^{2}\theta + 1 + \tan^{2}\theta + \tan \theta)$$

$$= \sec \theta (2\sec^{2}\theta + 1 + \tan^{2}\theta + \tan \theta)$$

$$= \sec \theta (2\sec^{2}\theta + 1 + \tan^{2}\theta + \tan \theta)$$

$$= \sec \theta (2\sec^{2}\theta + 1 + \tan^{2}\theta + \tan \theta)$$

$$= \sec \theta (2\sec^{2}\theta + 1 + \tan^{2}\theta + \tan \theta)$$

$$= \sec \theta (2\sec^{2}\theta + 1 + \tan^{2}\theta + \tan \theta)$$

$$= \sec \theta (2\sec^{2}\theta + 1 + \tan^{2}\theta +$$

$$f(x) = \frac{x^2}{2} \qquad \dots (1)$$

Given y = x ...(2)

 \therefore Area bounded between (1) and (2)

$$\therefore A = \int_{0}^{2} \left(x - \frac{x^{2}}{2} \right) dx$$
$$= \left(\frac{x^{2}}{2} - \frac{x^{3}}{6} \right)_{0}^{2}$$
$$= \left(\frac{4}{2} - \frac{8}{6} \right)$$
$$= 2 - \frac{4}{3}$$
$$\Rightarrow \frac{2}{3}$$

Option (1) is correct.

13. Find the differential equation of circle whose centre lies on y = x and passes through (0, 1).

(1)
$$-x^{2} + y^{2} - 2xy + 2x - 1 + \frac{dy}{dx}(x^{2} + y^{2} - 2 + 2y) = 0$$

(2) $-x^{2} - y^{2} - 2xy + 2x - 1 + \frac{dy}{dx}(x^{2} + y^{2}) = 0$
(3) $-x^{2} - y^{2} - 2xy + 2x - 1 + \frac{dy}{dx}(x^{2} - y^{2}) = 0$
(4) $x^{2} + y^{2} - 2xy + 2x - 1 + \frac{dy}{dx}(x^{2} + y^{2} - 2) = 0$

Answer (1)

Sol. The centre lies on y = x

- \therefore Centre of circle is of form (*a*, *a*)
- ∴ It passes through (0, 1)
- :. The equation of circle will be

$$(x-a)^2 + (y-a)^2 = a^2 + (a-1)^2$$

$$\Rightarrow x^2 + y^2 - 2ax - 2ay = -2a + 1$$
 ...(1)

Differentiating w.r.t. x & eliminating 'a',

$$a = \frac{x + y \frac{dy}{dx}}{1 + \frac{dy}{dx}}$$

Putting value of 'a' in equation (1), we get

$$-x^{2} + y^{2} - 2xy + 2x - 1 + \frac{dy}{dx}(x^{2} + y^{2} - 2 + 2y) = 0$$

14.
$$\beta(m, n) = \int_{0}^{1} x^{m} (1 - x^{m})^{n-1} dx$$
$$a \times \beta(-b, c) = \int_{0}^{1} (1 - x^{10})^{20} dx$$

Then (a + b + c) is equal to

- (1) 210
- (2) 230
- (3) 250
- (4) 270

Answer (1)

Sol.
$$I = \int_{0}^{1} (1 - x^{10})^{20} dx$$

Applying integration by parts

$$I = \int_{0}^{1} (1 - x^{10})^{20} dx$$

Applying integration by parts
$$I = \left[x (1 - x^{10})^{20} \right]_{0}^{1} + 200 \int_{0}^{1} x^{10} (1 - x^{10})^{19} dx$$
$$I = 200 \int_{0}^{1} x^{10} (1 - x^{10})^{19} dx = a \times \beta(-b, c)$$
$$\Rightarrow a = 200$$
$$b = -10$$
$$c = 20$$
$$(200 - 10 + 20) = 210$$

15. If
$$|\vec{a}| = 2$$
, $|\vec{b}| = 3$ and $\vec{a} = \vec{b} \times \vec{c}$ then minimum value
of $|\vec{c} - \vec{a}|^2$ is
(1) 13 (2) 5
(3) $\frac{40}{9}$ (4) $\frac{20}{9}$
Answer (3)
Sol. $|\vec{a}| = 2$, $|\vec{b}| = 3$
Also, $\vec{a} = \vec{b} \times \vec{c}$
 $\Rightarrow \vec{a} \cdot \vec{b} = 0$ and $\vec{a} \cdot \vec{c} = 0$
 $|\vec{a} - \vec{c}|^2 = |\vec{a}|^2 + |\vec{c}|^2 - 2\vec{a} \cdot \vec{c}$
 $= 4 + |\vec{c}|^2$
 $|\vec{a}| = |\vec{b} \times \vec{c}| = |\vec{b}|\sin\theta|\vec{c}|$
 $\Rightarrow (\sin\theta)|\vec{c}| = \frac{2}{3}$
 $\Rightarrow \sin^2 \theta = \frac{4}{9|\vec{c}|^2}$
 $\Rightarrow |\vec{c}|^2 = \frac{4}{9\sin^2 \theta}$
 $|\vec{a} - \vec{c}|^2 = 4 + \frac{4}{9\sin^2 \theta}$
For $|\vec{a} - \vec{c}|^2$ to be minimum
 $\Rightarrow \sin\theta = 1$
 $\Rightarrow 4 + \frac{4}{9} = (\frac{40}{9})$
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. Let $4^{1+x} + 4^{1-x}$, $\frac{K}{2}$, $16^x + 16^{-x}$ are in AP then least value of K is Answer (10) **Sol.** $4^{1+x} + 4^{1-x}$, $\frac{K}{2}$, $16^x + 16^{-x}$ $2 \times \frac{K}{2} = 4^{1+x} + 4^{1-x} + 16^x + 16^{-x}$ $K = \underbrace{4.4^{x} + \frac{4}{4^{x}}}_{\geq 8} + \underbrace{4^{2x} + 4^{-2x}}_{\geq 2}$ $\Rightarrow K \ge 10 \Rightarrow K = 10$ 22. The number of real solution x|x + 5| + 2|x + 7| - 2 = 0 is Answer (03.00) **Sol.** x|x+5|+2|x+7|-2=0(i) $dx \ge -5 \Rightarrow x(x+5)+2(x+7)-2=0$ $x^2 + 7x + 12 = 0 \Longrightarrow x = -3, -4$ (ii) $x \in (-7, -5)$ x(-x-5)+2(x+7)-2=0 $-x^2 - 3x + 12 = 0$ $\Rightarrow x^2 + 3x - 12 = 0$ $\Rightarrow x = \frac{-3 - \sqrt{57}}{2}$ satisfy (iii) $x \leq -7$ $\Rightarrow x(-x-5)+2(-x-7)-2=0$ $-x^2 - 7x - 16 = 0 \Rightarrow x^2 + 7x + 16 = 0$ No solution

23. If
$$f(t) = \int_{0}^{\pi} \frac{2x}{1 - \cos^2 t \sin^2 x} dx$$
, then the value of
$$\int_{0}^{\pi} \frac{\pi^2}{f(t)} dt$$
 is equal to

Answer (2)

Sol.
$$f(t) = \int_{0}^{\pi} \frac{2x}{1 - \cos^{2} t \sin^{2} x} dx$$

 $f(t) = 2\int_{0}^{\pi} \frac{(\pi - x)}{1 - \cos^{2} t \sin^{2} x} dx$
 $2f(t) = 2\int_{0}^{\pi} \frac{\pi}{1 - \cos^{2} t \sin^{2} x} dx$
 $f(t) = \pi \int_{0}^{\pi} \frac{\sec^{2} x}{\sec^{2} x - \cos^{2} t \tan^{2} x} dx$
 $\tan x = k$
 $\sec^{2} x \, dx = dk$
 $f(t) = \pi \int \frac{dk}{1 + \sin^{2} t k^{2}}$
 $f(t) = \pi \times \frac{1}{\sin t} \left[\tan^{-1}(\sin t \times \tan x) \right]_{0}^{\pi/2}$
 $+ \left[\tan^{-1}(\sin t \tan x) \right]_{0}^{\pi}$
 $= \frac{\pi}{\sin t} (\pi) = \frac{\pi^{2}}{\sin t}$
 $\Rightarrow \int_{0}^{\pi} \frac{\pi^{2}}{\pi^{2}} dt = \int_{0}^{\pi} \sin t \, dt = 2$
24.
24.
25.
26.
27.
28.
29.
30.

