JEE Main - 2024 Session-2 Answers \& Solutions

(Physics, Chemistry and Mathematics)

$$
04 \text { - April - 2024-Shift - } 2
$$

Office : Plot no. 855, Niti Khand I, Indirapuram, Ghaziabad | 07292077839
www.smartachievers.online

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. A massless rod has a point mass attached at one end while the other end is hinged. The rod is released from the position shown. The speed of the mass at bottom-most point is
($R=14 \mathrm{~m}, g=10 \mathrm{~m} / \mathrm{s}^{2}$)

(1) $\sqrt{560} \mathrm{~m} / \mathrm{s}$
(2) $\sqrt{280\left(1+\frac{1}{\sqrt{2}}\right)} \mathrm{m} / \mathrm{s}$
(3) $\sqrt{280} \mathrm{~m} / \mathrm{s}$
(4) $\sqrt{280\left(1+\frac{1}{\sqrt{3}}\right)} \mathrm{m} / \mathrm{s}$

Answer (2)

Sol. Conserving energy,

$$
\begin{aligned}
v & =\sqrt{2 g\left[R+R \sin 45^{\circ}\right]} \\
& =\sqrt{20 \times 14\left(1+\frac{1}{\sqrt{2}}\right)} \\
& =\sqrt{280\left(1+\frac{1}{\sqrt{2}}\right)} \mathrm{m} / \mathrm{s}
\end{aligned}
$$

2. P, Q, R, S are 4 symmetric points on a horizontal circle of radius 4 km . What is displacement when a car moves from P to R along the given circular path?

(1) $4 \sqrt{2} \mathrm{~km}$
(2) $4 \pi \mathrm{~km}$
(3) 8 km
(4) 4 km

Answer (3)
Sol. $P R=2 r$
3. One mole of an monoatomic ideal gas compressed adiabatically from volume 2 V to V . If initial temperature of gas was T then magnitude work done in this process is
(1) $\frac{3}{2} R T\left(2^{\frac{1}{2}}-1\right)$
(2) $\frac{3}{2} R T\left(2^{\frac{2}{3}}-1\right)$
(3) $\frac{2}{3} R T\left(2^{\frac{2}{3}}-1\right)$
(4) $\frac{2}{3} R T(\sqrt{2}-1)$

Answer (2)

Sol. $W=-\frac{n R \Delta T}{P-1}$

$$
W=\frac{R T\left(2^{\frac{2}{3}}-1\right)}{\frac{5}{3}-1}
$$

$$
\Rightarrow \quad T_{i}=T
$$

$$
=\frac{3}{2} R T\left(2^{\frac{2}{3}}-1\right)
$$

4. A 2 kg brick is placed on an inclined plane of inclination 45°. The brick is at rest. The minimum co-efficient of static friction is
(1) 0.5
(2) $\sqrt{3}$
(3) 1
(4) $\frac{1}{\sqrt{3}}$

Answer (3)

Sol. $N=m g \cos 45^{\circ}$
$f_{s}=m g \sin 45^{\circ}$
$\Rightarrow m g \sin 45^{\circ} \leq \mu m g \cos 45^{\circ}$
$\Rightarrow \mu \geq 1$.
5. Correct match for phasors of voltage and current for given elements is
(a) Inductive
(p)

(b) Capacitive
(q)

(c) Resistive
(r)

(1) (a) \rightarrow (p), (b) \rightarrow (q), (c) \rightarrow (r)
(2) (a) \rightarrow (q), (b) \rightarrow (p), (c) \rightarrow (r)
(3) (a) \rightarrow (p), (b) \rightarrow (p), (c) \rightarrow (r)
(4) (a) \rightarrow (q), (b) \rightarrow (q), (c) \rightarrow (r)

Answer (2)

6. With regard to gravitation parameters, the dimensions of T^{2} are same as that of
(1) $\frac{r^{3}}{G M}$
(2) $\frac{G M}{r^{3}}$
(3) $\frac{r^{3 / 2}}{G M}$
(4) $\frac{r^{2}}{G M}$

Answer (1)

Sol. $T^{2}=\frac{4 \pi^{2}}{G M} r^{3}$
7. A point charge q is kept at the centre of the one of the surface of a cube. Flux linked with cube is
(1) $\frac{q}{\varepsilon_{0}}$
(2) $\frac{q}{8 \varepsilon_{0}}$
(3) $\frac{q}{2 \varepsilon_{0}}$
(4) $\frac{q}{4 \varepsilon_{0}}$

Answer (3)
Sol. $\phi=\frac{1}{2} \frac{Q_{\text {in }}}{\varepsilon_{0}}=\frac{q}{2 \varepsilon_{0}}$
8. Which of the following circuits would have the diode in conducting state?
(1)

(2)

(3)

Answer (2)

Sol. For conducting state :
$V_{p}>V_{n}$.
9. A heater of rating of $50 \mathrm{~W}-200 \mathrm{~V}$ is connected with source voltage of 100 V . Power consumed by heater is
(1) 100 W
(2) 25 W
(3) 50 W
(4) 12.5 W

Answer (4)

Sol. $R=\frac{V_{r}^{2}}{P_{r}}=\frac{200 \times 200}{50}=800 \Omega$
$P=\frac{V^{2}}{R}=\frac{100 \times 100}{800}=12.5 \mathrm{~W}$
10. Wavelengths assigned to gamma rays, infra-red rays, UV rays and microwaves are $\lambda_{1}, \lambda_{2}, \lambda_{3} \& \lambda_{4}$ respectively. Then :
(1) $\lambda_{1}<\lambda_{2}<\lambda_{3}<\lambda_{4}$
(2) $\lambda_{1}<\lambda_{3}<\lambda_{2}<\lambda_{4}$
(3) $\lambda_{1}>\lambda_{2}>\lambda_{3}>\lambda_{4}$
(4) $\lambda_{2}<\lambda_{3}<\lambda_{1}<\lambda_{4}$

Answer (2)

Sol.
$\stackrel{\text { Gamma Ray UV Infra Micro }}{\text { Increasing Energy }}$
11. The width of the one slit in YDSE is four times the other slit. Then ratio of maximum to the minimum intensity at screen is
(1) $9: 1$
(2) $16: 1$
(3) $4: 1$
(4) $1: 1$

Answer (1)
Sol. $I_{1}=I_{0}$
$I_{2}=4 I_{0}$

$$
\begin{aligned}
I_{\max } & =\left[\sqrt{I_{0}}+\sqrt{4 I_{0}}\right]^{2} \\
& =9 I_{0} \\
I_{\min } & =I_{0}
\end{aligned}
$$

12. The circuit diagram shown is equivalent to

(1) OR
(2) NOR
(3) AND
(4) NAND

Answer (1)
Sol. $Y=\overline{\bar{A} \cdot \bar{B}}=A+B$
13. Statement 1 : In photoelectric effect, number of photoelectrons emitted are proportional to frequency of incident light.

Statement 2 : Maximum kinetic energy of photoelectrons is proportional to frequency of incident light.
(1) Statement 1 is true and Statement 2 is true and correct explanation of 1
(2) Statement 1 is true and Statement 2 is true and not correct explanation of 1
(3) Statement 1 is true and Statement 2 is false
(4) Statement 1 is false and Statement 2 is true

Answer (4)

Sol. $h v=h v_{0}+\mathrm{KE}$
$v \uparrow=K E \uparrow$
14. A metallic rod of length 4 m is rotating about perpendicular bisector of the rod with angular velocity of $2 \mathrm{rad} / \mathrm{s}$ in presence of transverse magnetic field of 0.5 T . Potential difference developed across ends of rod is
(1) 16 V
(2) 8 V
(3) 0 V
(4) 32 V

Answer (3)

Sol.

$$
\varepsilon_{A}=\varepsilon_{B}
$$

$\Delta V_{A B}=0$
15. Assertion (A) : The contact angle depends on material of solid and liquid.
Reason (R) : Height of the liquid in a capillary tube is independent of the radius of the tube.
(1) Both (A) and (R) are true and (R) is the correct explanation of (A)
(2) Both (A) and (R) are true but (R) is not the correct explanation of (A)
(3) (A) is true but (R) is false
(4) (A) is false but (R) is true

Answer (3)
Sol. Contact angle is dependent on materials.
Also, $h=\frac{2 s \cos \theta}{\rho g r}$
$\Rightarrow h$ depends on r.
16. A ray of light is incident (just close to) at critical angle on slab of thickness $\frac{4}{\sqrt{3}} \mathrm{~cm}$. Refractive index of slab is $\sqrt{12}$. The lateral displacement of ray when it emerges from air is
(1) $2\left(1+\frac{\sqrt{11}}{\sqrt{143}}\right) \mathrm{cm}$
(2) $2\left(1-\frac{\sqrt{11}}{\sqrt{143}}\right) \mathrm{cm}$
(3) $\left(1+\frac{\sqrt{11}}{\sqrt{143}}\right) \mathrm{cm}$
(4) $4\left(1-\frac{\sqrt{11}}{\sqrt{143}}\right) \mathrm{cm}$

Answer (2)

Sol. $\Rightarrow \quad \ell=(d \sec \theta) \sin \left(\theta_{c}-\theta\right)$

$$
\begin{aligned}
& \ell=(d \sec \theta)=\sin \theta_{c} \cos \theta-d \sec \theta \cos \theta_{c} \sin \theta \\
& =d \sin \theta_{c}-d \tan \theta \cos \theta_{c}
\end{aligned}
$$

$$
\Rightarrow \sin \theta_{c}=\mu \sin \theta
$$

$$
\begin{aligned}
& \frac{1}{\sqrt{12}}=\sqrt{12} \sin \theta \\
& \sin \theta=\frac{1}{12} \quad \cos \theta=\frac{\sqrt{143}}{12} \\
& \text { and } \sin \theta_{c}=\frac{1}{\sqrt{12}} \\
& \cos \theta_{c}=\frac{\sqrt{11}}{\sqrt{12}} \\
& \ell=4 \sqrt{3} \times \frac{1}{\sqrt{12}}-4 \sqrt{3} \times \frac{1}{\sqrt{143}} \frac{\sqrt{11}}{\sqrt{12}} \\
& =2-\frac{2 \sqrt{11}}{\sqrt{143}}
\end{aligned}
$$

17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. Two point mass m and $2 m$ are on straight line. If mass m moves toward centre of mass by distance 2 cm , then the distance must mass $2 m$ should move so that centre of mass does not change \qquad cm .

Answer (1)

Sol. $m(2 m)=2 m(x)$
$x=1 \mathrm{~cm}$
22. A body of mass 4 kg is at a height of R (radius of earth) from surface of earth. The weight of the body is \qquad N.

Answer (10)
Sol. $g^{\prime}=\frac{g}{4}=\frac{5}{2} \mathrm{~m} / \mathrm{s}^{2}$

$$
\Rightarrow \text { Weight }=m g^{\prime}=10 \mathrm{~N}
$$

23. A mass m is in equilibrium (which is connected with a light spring as shown) and energy associated is E. Instead, if these had been mass of $2 m$ then in equilibrium energy associated is E^{\prime}, then $\frac{E^{\prime}}{E}$ is
\qquad _.

Answer (4)
Sol. $\frac{1}{2} k x^{2}-m_{\varepsilon} x=E$
$x=\frac{m \varepsilon}{k}$
$\frac{1}{2} k \frac{m^{2} \varepsilon^{2}}{k^{2}}-m \varepsilon \frac{m \varepsilon}{k}=-\frac{m^{2} \varepsilon^{2}}{2 k}=\varepsilon$
$\varepsilon \propto m^{2}$
24. A bar magnet of magnetic moment $M=0.5 \mathrm{~A} \mathrm{~m}^{2}$ is under the influence of a magnetic field $8 T$. Find the work done (J) to move the magnet from stable to unstable equilibrium position.

Answer (8)

Sol. $W=\Delta U$
$\Rightarrow W=2 \times M \times B$

$$
=8 \mathrm{~J}
$$

25. For methane, translation degrees of freedom is f_{1} while rotational degrees of freedom is f_{2}. Find $f_{1}+f_{2}$.
Answer (6)
Sol. $f_{1}=3$
$f_{2}=3 \quad[\because$ Non-linear $]$
26. Two infinite straight conductor currying current I and $2 /$ separated at distance $2 r$ as shown in figure.

The ratio of magnetic field at point A to that of point C is $\frac{x}{7}$, then find x.

Answer (5)

Sol. $B_{A}=\frac{\mu \mathrm{ol}}{2 \pi r}+\frac{\mu \mathrm{o}(2 I)}{2 n(3 r)}=\frac{\mu \mathrm{ol}}{2 \pi r} \times \frac{5}{3}$
$B_{C}=\frac{\mu \mathrm{o}(2 I)}{2 \pi r}+\frac{\mu \mathrm{o} /}{2 \pi(3 r)}=\frac{\mu \mathrm{o} /}{2 \pi r} \times \frac{7}{3}$
$\frac{B_{A}}{B_{C}}=\frac{5}{7}$
27. The position of particle oscillation on x-axis is given as $x=10 \sin \left(\omega t+\frac{\pi}{3}\right)$. If time period of oscillation is 3.14 second, then displacement of particle at $t=0$ is given as $n \sqrt{3}$ metre, then n is \qquad
Answer (5)
Sol. $T=\frac{2 \pi}{\omega} \Rightarrow \omega=\frac{2 \pi}{T}=2 \mathrm{rad} / \mathrm{sec}$.
then $x=10 \sin \left(2 t+\frac{\pi}{3}\right)$
at $t=0$
$x=10 \sin \left(\frac{\pi}{3}\right)$

$$
=10 \times \frac{\sqrt{3}}{2}=5 \sqrt{3}
$$

28. Two wires A and B of same length and same material ae having radius of cross sections of 2 mm and 4 mm respectively. If resistance of wire B is 2Ω then resistance of wire A is \qquad Ω.

Answer (8)

Sol. $R=\rho \frac{l}{A}=\frac{C}{r^{2}}$
$\frac{R_{A}}{R_{B}}=\frac{4^{2}}{2^{2}} R_{\mathrm{A}}=4 \times 2=8 \Omega$.
29.
30.

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1.

Answer (1)
Sol.

2. Which one of the following has pyramidal shape?
(1) $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$
(2) SO_{4}^{2-}
(3) SO_{3}^{2-}
(4) $\mathrm{S}_{2} \mathrm{O}_{7}^{2-}$

Answer (3)

Sol.

Pyramidal shape
3. IUPAC name of Catechol is
(1) Benzene, 1,2-diol
(2) Benzene, 1,3-diol
(3) Benzene, 1,4-diol
(4) 3-Hydroxyphenol

Answer (1)

Sol.

Benzene, 1,2-diol
4. Which one of the following has the most negative (highest -ve) electron gain enthalpy?
(1) Li
(2) Na
(3) F
(4) Cl

Answer (4)
Sol. Chlorine $=-349 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Sodium $=-53 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Fluorine $=-328 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Lithium $=-60 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5. Consider the following statements.

Statement I: The number of emitted photoelectrons increases with increase in frequency of incident light.
Statement II: Kinetic energy of emitted photoelectrons increases with increase in frequency of incident light.
(1) Statement I is true but Statement II is false
(2) Statement I is false but Statement II is true
(3) Both statement I and Statement II are true
(4) Both statement I and Statement II are false

Answer (2)

Sol. The number of emitted photoelectrons independent of the frequency of incident light but kinetic energy of emitted photoelectrons increases with increase in frequency of incident light.
6. Arrange the following in increasing order of first ionization enthalpy: $\mathrm{Al}, \mathrm{Ga}, \mathrm{In}, \mathrm{TI}, \mathrm{B}$
(1) $\mathrm{Tl}<\mathrm{In}<\mathrm{Ga}<\mathrm{Al}<\mathrm{B}$
(2) $\mathrm{In}<\mathrm{Al}<\mathrm{Ga}<\mathrm{Tl}<\mathrm{B}$
(3) $\mathrm{In}<\mathrm{Ga}<\mathrm{Al}<\mathrm{B}<\mathrm{Tl}$
(4) $\mathrm{B}<\mathrm{Al}<\mathrm{Ga}<\mathrm{In}<\mathrm{Tl}$

Answer (2)
Sol. Due to poor shielding by electrons in d-subshell of Ga and f-subshell of Tl , their ionization energy increases than the expected value. So, correct order of IE-
In $<\mathrm{Al}<\mathrm{Ga}<\mathrm{Tl}<\mathrm{B}$
7. Find out number of unpaired electrons in d-subshell for $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$.
(1) 3
(2) 4
(3) 0
(4) 2

Answer (3)
Sol. $\mathrm{Co}^{3+}: 3 d^{6} 4 s^{0}$
Co^{3+} in excited state will undergo pairing with $\mathrm{H}_{2} \mathrm{O}$.

$n=0$
Correct answer is option (3).
8.

What are A and B respectively?
(1) (A) $\mathrm{O}_{3} / \mathrm{Zn}-\mathrm{H}_{2} \mathrm{O}$; (B) $\mathrm{H}_{3} \mathrm{O}^{+}$
(2) (A) $\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}$; (B) $\mathrm{I}_{2} / \mathrm{NaOH}$
(3) (A) $\mathrm{O}_{2} / \mathrm{Zn}-\mathrm{H}_{2} \mathrm{O}$; (B) $\mathrm{I}_{2} / \mathrm{NaOH}$
(4) (A) $\mathrm{KMnO}_{4} / \mathrm{H}^{+}, \Delta$; (B) LiAlH_{4}

Answer (3)
Sol.

9. Which of the following statement is INCORRECT
(1) In homogeneous mixture, Composition is uniform
(2) Compounds are formed when atoms of different elements combine together in any ratio
(3) Atoms of same element have identical atomic mass and properties
(4) In heterogeneous mixture, Composition is not uniform

Answer (2)

Sol. Compounds are formed when atoms of different elements combine together in fixed ratio
10. Match the column I and column II.

	Column I		Column II
(i)	α-Glucose and $\alpha-$ Galactose	(a)	Homologues
(ii)	α-Glucose and $\alpha-$ Fructose	(b)	Epimer
(iii)	α-Glucose and $\beta-$ Glucose	(c)	Anomer
(iv)	α-Ribose and $\alpha-$ Glucose	(d)	Functional isomers

Select the option with correct match.
(1) (i) \rightarrow (b); (ii) \rightarrow (d); (iii) \rightarrow (a), (iv) \rightarrow (c)
(2) (i) \rightarrow (b); (ii) \rightarrow (d); (iii) \rightarrow (c), (iv) \rightarrow (a)
(3) (i) \rightarrow (d); (ii) \rightarrow (b); (iii) \rightarrow (c), (iv) \rightarrow (a)
(4) (i) \rightarrow (a); (ii) \rightarrow (c); (iii) \rightarrow (d), (iv) \rightarrow (b)

Answer (2)

Sol. α-Glucose and α-Galactose are C-4 epimers
α-Glucose is Aldohexose and α-Fructose is ketohexose hence functional isomers
α-Glucose and β-Glucose are different in configuration at $\mathrm{C}-1$ i.e. Anomeric carbon hence are anomers
α-Ribose is pentose while α-Glucose is hexose hence homologues
11. Arrange the following anions in the decreasing order of their stability.

।

II

III

IV
(1) I $>$ II $>$ III $>$ IV
(2) IV $>$ III $>$ II $>$ I
(3) III $>$ II $>$ I $>$ IV
(4) II $>$ IV $>$ III $>$ I

Answer (2)

Sol. Cyclopentadienyl anion (IV) is most stable and cyclopropenyl anion (I) is least stable as (IV) is aromatic and (I) is antiaromatic. Anion (II) is less stable than (III) due to higher angle strain.
\therefore Correct stability order is
IV $>$ III $>$ II $>$ I
12.

What are B and C respectively?
(1) Propan-1-ol and propan-2-ol
(2) Propan-2-ol and propan-1-ol
(3) Both are propan-1-ol
(4) Both are propan-2-ol

Answer (2)

Sol.

13. Spin only magnetic moment of $\mathrm{V}_{2} \mathrm{O}_{5}$ (in BM)
(1) 0
(2) 1
(3) 2
(4) 3

Answer (1)

Sol. $\mathrm{V}_{2} \mathrm{O}_{5} \Rightarrow \mathrm{~V}^{+5}$
$\mathrm{V}^{+5}=[\mathrm{Ar}] 3 d^{\circ} 4 \mathrm{~s}^{0}$
There is no unpaired electron in V^{+5}
So spin only magnetic moment is zero.
14. $\mathrm{KMnO}_{4}+$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{\text { Salt }(\mathrm{X})}$ Greenish yellow gas is produced
Salt (X) contains
(1) F-
(2) Cl^{-}
(3) Br^{-}
(4) I^{-}

Answer (2)

Sol. The reaction/oxidation of F^{-}is not possible by the chemical reagent $\mathrm{KMnO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}$.
The oxidation of other halides produces dihalogen.
Cl_{2} : Greenish yellow
Br_{2} : Red
I_{2} : Violet
Hence that salt contains Cl^{-}.
15. Which of the following represents correct unit of slope of graph between molar conductivity ($\wedge \mathrm{m}$) and (conc) ${ }^{1 / 2}$:
(1) $\mathrm{S} \mathrm{cm}^{1 / 2} \mathrm{~mol}^{-1 / 2}$
(2) $\mathrm{S} \mathrm{cm}^{3 / 2} \mathrm{~mol}^{-2}$
(3) $\mathrm{S} \mathrm{cm}^{7 / 2} \mathrm{~mol}^{-3 / 2}$
(4) $\mathrm{S} \mathrm{cm}^{5 / 2} \mathrm{~mol}^{-3 / 2}$

Answer (3)
Sol. Debye-Hückel-Onsager equation
$\wedge_{m}=\wedge_{m}^{\circ}-A \sqrt{C}$
Slope of \wedge_{m} vs $\sqrt{C}=-A$
Unit of slope $=\frac{\text { Unit of } \wedge_{\mathrm{m}}}{\text { Unit of } \sqrt{\mathrm{C}}}=\frac{\mathrm{Scm}^{2} \mathrm{~mol}^{-1}}{\left(\mathrm{~mol} \mathrm{~cm}^{-3}\right)^{1 / 2}}$
$\mathrm{S} \mathrm{cm}^{7 / 2} \mathrm{~mol}^{-3 / 2}$
16. Which of the following is used as adsorbent in adsorption chromatography?
(1) Silica gel
(2) Alumina
(3) Benzene
(4) Both (1) and (2)

Answer (4)

Sol. Commonly used adsorbents are silica gel and alumina.
17. Identify the correct product formed in the following reaction.

(1)

(2)

(3)

(4)

Answer (3)

(Substitution reaction)

Sol.

18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. What is the sum of number of σ and π bonds present in 2-oxo-hex-4-yn-oic acid?

Answer (18)
Sol.

Number of σ bonds : 14
Number of π bonds $=4$
Total $\sigma+\pi$ bonds $=14+4=18$
22. Find out magnitude of heat (q) for an isothermal irreversible expansion against external pressure of 8 bar if volume increases by 10 L (in joule).

Answer (8000)

Sol. $W=-P_{\text {ext }}(\Delta V)$

$$
\begin{aligned}
& =-8 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \times\left(10 \times 10^{-3} \mathrm{~m}^{3}\right) \\
& =-8 \times 10^{5} \times 10^{-2} \text { joule } \\
& =-8 \times 10^{3} \\
& =-8000 \mathrm{~J}
\end{aligned}
$$

$$
q+W=\Delta E
$$

$q+W=0 \Rightarrow q=-W=+8000 J$
23. What is the maximum amount of acetanilide formed when acetic anhydride in excess is treated with 18 gm of aniline. (nearest integer)

Answer (26)

Sol.

18 gm .
moles of aniline $=\frac{18}{93}$
mass of acetanilide formed $=\frac{18}{93} \times 135$

$$
\begin{aligned}
& =26.129 \\
& =26
\end{aligned}
$$

24. We have a complex of Fe^{3+} ion having electronic configuration according to crystal field theory is $\mathrm{t}_{2 \mathrm{~g}}^{5} \mathrm{e}_{\mathrm{g}}{ }^{\circ}$. If complex is $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{\times}(\mathrm{CN})_{y}\right]$, then value of $(x+y)$ is \qquad

Answer (6)

Sol. Given electronic configuration of Fe^{3+} ion in complex $=t_{29}^{5} \mathrm{e}_{\mathrm{g}}{ }^{\circ}$ then complex should be $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{CN})_{3}\right]$

$$
\begin{aligned}
& x=3, y=3 \\
& x+y=6
\end{aligned}
$$

25. Consider the following reaction at equilibrium at a certain temperature T Kelvin whose $\mathrm{K}_{\mathrm{c}}=3 \times 10^{-13}$
$\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$
The value of $\mathrm{K}_{c^{\prime}}$ for the following reaction is $\mathrm{a} \times$ $10^{+\mathrm{b}}$ (Scientific notation). Find the value of $(a+b)$.

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Answer (26)

Sol. $\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=3 \times 10^{-13}$
The equilibrium constant (K_{c}) for the following reaction
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}^{\prime}=\left(\frac{1}{\mathrm{~K}_{\mathrm{c}}}\right)^{2}$
$\mathrm{K}_{\mathrm{c}}^{\prime}=\left(\frac{1}{3 \times 10^{-13}}\right)^{2}=1.11 \times 10^{25}$
$\mathrm{a}=1.11$ and $\mathrm{b}=25$
$a+b=26.11$
26. Maximum number of orbitals possible when $\mathrm{n}=4$ and $m=0$?

Answer (4)

Sol.

$4 g$ not possible
27. How many of the given statements are true for fuel cell?
(a) It is a type of Galvanic cell
(b) It is used for providing electrical power in space programme.
(c) Hydrogen and oxygen are bubbled through porous carbon electrodes into concentrated NaOH solution
(d) It produces electricity with an efficiency of 40%
(e) It is pollution free cell

Answer (4)

Sol. Fuel cell produces electricity with an efficiency of 70\%
28. An element of d-block (Z) of $4^{\text {th }}$ period has spin only magnetic moment of its Z^{3+} form is 3.9 BM , then find minimum atomic number of element (Z).

Answer (24)

Sol. $\mu=3.9$ BM
It means there must be 3 unpaired electrons in Z^{3+} ion
$\mathrm{Cr}^{+3} \Rightarrow[\mathrm{Ar}] 3 d^{3} 45^{0}$
29. 3 g of acetic acid is dissolved in 500 g of water.

Depression in freezing point of solution is $\mathrm{x} \times 10^{-1} \mathrm{~K}$.
Value of x to the nearest integer.
Given : K_{a} of $\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}$ and

$$
\mathrm{K}_{\mathrm{f}} \text { of water }=1.86 \mathrm{~K} / \mathrm{molal}
$$

Density of water $=1 \mathrm{~g} / \mathrm{mL}$
Answer (2)
Sol. $\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
(Assuming $\alpha \ll 1$)

$$
\begin{aligned}
\alpha=\sqrt{\frac{\mathrm{K}_{\mathrm{a}}}{\mathrm{C}}}=\sqrt{\frac{1.8 \times 10^{-5}}{10^{-1}}} & =\sqrt{1.8 \times 10^{-4}} \\
& =1.3 \times 10^{-2} \\
& =0.013
\end{aligned}
$$

So, $\mathrm{i}=1+(2-1)(0.013)$

$$
=1.013
$$

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{f}} & =1.013 \times 1.86 \times \frac{3 \times 1000}{60 \times 500} \\
& =0.188 \\
& =1.88 \times 10^{-1} \\
& x
\end{aligned}
$$

30.

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. If a, b, c are in A.P. and $a+1, b, c+3$ are in G.P., arithmetic mean of a, b, c is 8 , then the value of cube of geometric mean of a, b, c is
(1) 312
(2) 314
(3) 318
(4) 128

Answer (1)
Sol. a, b, c, \rightarrow A.P.

$$
a+1, b, c+3 \rightarrow \text { G.P. }
$$

$\frac{a+b+c}{3}=8 \quad \Rightarrow a+c=16$
$2 b=a+c$
$c=16-a$
$\Rightarrow b=8$
$64=(a+1)(c+3)$
$64=a c+3 a+c+3$
$64=a(16-a)+3 a+16-a+3$
$64=16 a-a^{2}+2 a+19$
$a^{2}-18 a+45=0$
$(a-15)(a-3)=0$
$\Rightarrow a=15$ or $a=3$
$\Rightarrow c=1$ or $c=13$
$\left((a b c)^{\frac{1}{3}}\right)^{3}=1 \times 15 \times 8$ or $13 \times 3 \times 8$
$=120 \quad$ or 312
2. If $\int_{-1}^{1} \frac{\cos \alpha x}{1+3^{x}}=\frac{2}{\pi}$ then α is
(1) $\frac{\pi}{6}$
(2) $\frac{\pi}{2}$
(3) $\frac{\pi}{3}$
(4) π

Answer (2)

Sol. $I=\int_{-1}^{1} \frac{\cos \alpha x}{1+3^{x}}$

$$
\begin{aligned}
& \Rightarrow I=\int_{0}^{1} \frac{\cos \alpha x}{1+3^{x}}+\frac{\cos \alpha x}{1+3^{-x}} d x \\
&=\int_{0}^{1} \cos \alpha x d x \\
&\left.=\frac{\sin \alpha x}{\alpha}\right]_{0}^{1}=\frac{\sin \alpha}{\alpha}=\frac{2}{\pi} \\
& \Rightarrow \quad \alpha=\frac{\pi}{2}
\end{aligned}
$$

3. If coefficient of x^{4}, x^{5}, x^{6} of $(1+x)^{n}$ are in A.P., then maximum value of n is equal to
(1) 28
(2) 21
(3) 14
(4) 7

Answer (3)

Sol. $(1+x)^{n}={ }^{n} C_{0} 1+{ }^{n} C_{1} x^{1}+{ }^{n} C_{2} x^{2}+{ }^{n} C_{3} x^{3}+$

$$
{ }^{n} C_{4} x^{4}+{ }^{n} C_{5} x^{5}+{ }^{n} C_{6} x^{6}+\cdots
$$

${ }^{n} C_{4},{ }^{n} C_{5}$ and ${ }^{n} C_{6}$ are in A.P.
${ }^{n} C_{5}-{ }^{n} C_{4}={ }^{n} C_{6}-{ }^{n} C_{5}$
$\frac{n!}{5!(n-5)!}-\frac{n!}{4!(n-4)!}=\frac{n!}{6!(n-6)!}-\frac{n!}{(n-5)!5!}$
$\frac{1}{5!(n-5)!}-\frac{1}{4!(n-4)!}=\frac{1}{6!(n-6)!}-\frac{1}{5!(n-5)!}$
$\frac{1}{4!(n-5)!}\left[\frac{1}{5}-\frac{1}{n-4}\right]=\frac{1}{5!(n-6)!}\left[\frac{1}{6}-\frac{1}{n-5}\right]$
$30(n-9)(n-6)=5(n-4)(n-11)$
$30\left[n^{2}-6 n-9 n+54\right]=5\left[n^{2}-11 n-4 n+44\right]$
$30 n^{2}-450 n+1620=5 n^{2}$
$\frac{1}{(n-5)}\left[\frac{1}{5}-\frac{1}{n-4}\right]=\frac{1}{5}\left[\frac{1}{6}-\frac{1}{n-5}\right]$
$\frac{1}{n-5}\left[\frac{n-4-5}{5(n-4)}\right]=\frac{1}{5}\left[\frac{n-5-6}{6(n-5)}\right]$
$\frac{n-9}{5(n-4)}=\frac{1}{5}\left[\frac{n-11}{6}\right]$
$6(n-9)=(n-11)(n-4)$
$\Rightarrow 6 n-54=n^{2}-15 n+44$
$n^{2}-21 n+98=0$
$n_{\text {max. }}=14$
4. Let relation defined as $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right)$
$x_{1} \leq x_{2}, y_{1} \leq y_{2}$ and given that
(a) R is reflexive but not symmetric.
(b) R is transitive.
then
(1) (a) is true, (b) is false
(2) (a) is false, (b) is true
(3) Both are true
(4) Both are false

Answer (3)

Sol. $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right)$
When $x_{1} \leq x_{2}, y_{1} \leq y_{2}$
For reflexive
$\left(x_{1}, y_{1}\right) R\left(x_{1}, y_{1}\right)$
$\Rightarrow x_{1} \leq x_{1} \& y_{1} \leq y_{1}$
so, R is reflexive
For symmetric,
When $\left(x_{1}, y_{1}\right) \mathrm{R}\left(x_{2}, y_{2}\right)$
$\Rightarrow \quad x_{1} \leq x_{2} \& y_{1} \leq y_{2}$
for $\left(x_{2}, y_{2}\right) R\left(x_{1}, y_{1}\right)$
$x_{2} \leq x_{1} \& y_{2} \leq y_{1}$

That is not necessarily true so R is not symmetric For transitive,
If $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right) \Rightarrow x_{1} \leq x_{2} \& y_{1} \leq y_{2}$
$\&\left(x_{2}, y_{2}\right) R\left(x_{3}, y_{3}\right) \Rightarrow x_{2} \leq x_{3} \& y_{2} \leq y_{3}$
For $\left(x_{1}, y_{1}\right) R\left(x_{3}, y_{3}\right) \Rightarrow x_{1} \leq x_{3} \& y_{1} \leq y_{3}$
So, R is transitive
Both (a) \& (b) are true.
5. The value of

$$
\frac{1 \times 2^{2}+2 \times 3^{2}+\ldots+100 \times(101)^{2}}{1^{2} \times 2+2^{2} \times 3+\ldots+100^{2} \times 101}
$$

(1) $\frac{305}{301}$
(2) $\frac{301}{305}$
(3) $\frac{350}{310}$
(4) $\frac{310}{350}$

Answer (1)
Sol. The given problem can be written as

$$
\begin{aligned}
& \sum_{n=1}^{100} n(n+1)^{2} \\
& \sum_{n=1}^{100} n^{2}(n+1) \\
& \Rightarrow \frac{\sum_{n=1}^{100} n^{3}+2 n^{2}+n}{\sum_{n=1}^{100} n^{3}+n^{2}} \\
& =\frac{\left(\frac{100(101)}{2}\right)^{2}+\frac{2.100(101)(201)}{6}+\frac{100(101)}{2}}{\left(\frac{100(101)}{2}\right)^{2}+\frac{100(101)(201)}{6}} \\
& =\frac{\frac{(100)(101)}{4}+\frac{2(201)}{6}+\frac{1}{2}}{\frac{100(101)}{2}+\frac{201}{6}} \\
& =\frac{300(101)+4(201)+6}{300(101)+2(201)}=\frac{15555}{15351}=\frac{5185}{5117}=\frac{305}{301}
\end{aligned}
$$

6. A parabola $y^{2}=12 x$ has a chord $P Q$ with mid-point $(4,1)$ then equation of $P Q$ passes through
(1) $\left(\frac{1}{2},-20\right)$
(2) $\left(\frac{1}{2},-10\right)$
(3) $\left(10, \frac{1}{2}\right)$
(4) $\left(-10, \frac{-1}{2}\right)$

Answer (1)

Sol. Chord with the given middle point is given by \Rightarrow $T=S_{1}$

$$
\begin{aligned}
\Rightarrow & y y_{1}-6\left(x+x_{1}\right)=y_{1}^{2}-12 x_{1}\left(\left(x_{1}, y_{1}\right) \equiv(4,1)\right) \\
& y-6(x+4)=1-48 \\
\Rightarrow & y-6 x+23=0
\end{aligned}
$$

$$
\left(\frac{1}{2},-20\right) \text { is correct answer. }
$$

7. Let $\vec{a}=2 \hat{i}+\lambda \hat{j}-3 \hat{k}$
$\vec{b}=3 \hat{i}-2 \hat{j}+\hat{k}$
If $\vec{a}+\vec{b}$ is perpendicular to $\vec{a}-\vec{b}$, then λ is
(1) $\sqrt{17}$
(2) 17
(3) 5
(4) $\sqrt{5}$

Answer (1)

Sol. $\vec{c}=\vec{a}+\vec{b}=5 \hat{i}+(\lambda-2) \hat{j}-2 \hat{k}$

$$
\vec{d}=\vec{a}-\vec{b}=-\hat{i}+(\lambda+2) \hat{j}-4 \hat{k}
$$

Now, $\vec{c} \cdot \vec{d}=0$
$(5 \hat{i}+(\lambda-2) \hat{j}-2 \hat{k}) \cdot(-\hat{i}+(\lambda+2) \hat{j}-4 \hat{k})=0$
$-5+\lambda^{2}-4-8=0$
$\lambda=17$
8. If $\underset{x, y \in(-1,1)}{\cos ^{-1} x-\sin ^{-1} y=\alpha} \quad$ if $\alpha \in\left[\frac{-\pi}{2}, \pi\right]$

Then minimum value of $x^{2}+y^{2}+2 x y \sin \alpha$ is
(1) $\frac{-1}{2}$
(2) -1
(3) $\frac{1}{2}$
(4) 0

Answer (4)

Sol. $\cos ^{-1} x-\frac{\pi}{2}+\cos ^{-1} y=\alpha$
$\cos ^{-1} x+\cos ^{-1} y=\frac{\pi}{2}+\alpha$
$\because \quad \alpha \in\left(-\frac{\pi}{2}, \pi\right)$
then $\frac{\pi}{2} \in\left(0, \frac{3 \pi}{2}\right)$
$\cos ^{-1}\left(x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right)=\frac{\pi}{2}+\alpha$
$x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}=-\sin \alpha$
$x y+\sin \alpha=\sqrt{1-x^{2}} \sqrt{1-y^{2}}$
$\frac{x^{2}}{y^{2}}+\sin ^{2} \alpha+2 x y \sin \alpha=1-x^{2}-y^{2}+x^{2} y^{2}$
$\underbrace{x^{2}+y^{2}+2 x y \sin \alpha}_{E}=\cos ^{2} \alpha$
Now min value of E is 0
9. Team A plays 10 matches, probability of winning is $\frac{1}{3}$ and losing is $\frac{2}{3}$. They win x matches and lose y matches. Probability such that $|x-y| \leq 2$ is P then find $3^{9} P$.
(1) 8288
(2) 8381
(3) 8461
(4) 8911

Answer (1)

Sol. Probability of winning matches $=\frac{1}{3}$ and losing matches $=\frac{2}{3}$

We need to find $|x-y| \leq 2$
$x=$ Number of winning matches
$Y=$ Number of losing matches.
As we know $x+y=10$
$|x-y| \leq 2$
So, Case I, $x=4, y=6$
${ }^{10} C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{6}=\frac{210.2^{6}}{3^{10}}$
Case II, $x=5, y=5$
${ }^{10} C_{5}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)^{5}=\frac{252.2^{5}}{3^{10}}$
Case III, $x=6, y=4$
${ }^{10} C_{6}\left(\frac{1}{3}\right)^{6}\left(\frac{2}{3}\right)^{4}=\frac{210.2^{4}}{3^{10}}$
So required probability $=\frac{2^{4}}{3^{10}}\left[2^{2} .210+2.252+210\right]$ $=\frac{1554.2^{4}}{3^{10}}=\frac{518.2^{4}}{3^{9}}$,

Now, $3^{9} P=8288$
10. $f(x)=\left\{\begin{array}{l}\frac{(72)^{x}-9^{x}-8^{x}+1}{\sqrt{2}-\sqrt{1+\cos x}} ; x \neq 0 \\ a \log 2 \log 3 ; x=0\end{array}\right.$
is continuous at $x=0$. Then a^{2} equals to
(1) 1152
(2) 572
(3) 1225
(4) 1005

Answer (1)

Sol. $\lim _{x \rightarrow 0} \frac{\left(9^{x}-1\right)\left(8^{x}-1\right)}{(1-\cos x)}(\sqrt{2}+\sqrt{1+\cos x})$
$\lim _{x \rightarrow 0} \frac{\left(\frac{9^{x}-1}{x}\right)\left(\frac{8^{x}-1}{x}\right)}{\left(\frac{1-\cos x}{x^{2}}\right)} \times 2 \sqrt{2}$
$=4 \sqrt{2} \ln 9 \times \ln 8$
$=24 \sqrt{2} \log 2 \log 2$
$\Rightarrow a=24 \sqrt{2}$

$$
a^{2}=1152
$$

Option (1) is correct
11. For a hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, C_{1}$ is a circle touching hyperbola having centre at origin and C_{2} is circle centred at four and touching hyperbola at vertices, if area of $C_{1}=36 \pi$ and area of $C_{2}=4 \pi$. Find $a^{2}+b^{2}=$?
(1) 40
(2) 43
(3) 64
(4) 56

Answer (3)

Sol.

Radius of $C_{1}=6$
Radius of $C_{2}=2$
$2 a e=16$
$a e=8$
$b^{2}=a^{2} e^{2}-a^{2}$
$\Rightarrow b^{2}+a^{2}=64$

JEE Main-2024 Session-2 (04-04-2024)-Shift - 2
12. $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $X=I+\operatorname{adj}(A)+(\operatorname{adj} A)^{2}+\ldots$ $\operatorname{adj}(A)^{10}$
then sum of elements of X is
(1) 88
(2) -88
(3) 124
(4) 0

Answer (2)

Sol. $(\operatorname{adj} A)=\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]$

$$
\begin{aligned}
& (\operatorname{adj} A)^{2}=\left[\begin{array}{cc}
1 & -4 \\
0 & 1
\end{array}\right] \\
& (\operatorname{adj} A)^{3}=\left[\begin{array}{cc}
1 & -6 \\
0 & 1
\end{array}\right] \\
& (\operatorname{adj} A)^{4}=\left[\begin{array}{cc}
1 & -8 \\
0 & 1
\end{array}\right] \\
& (\operatorname{adj} A)^{r}=\left[\begin{array}{cc}
1 & (-2 r) \\
0 & 1
\end{array}\right] \\
& X=\sum_{r=0}^{10}(\operatorname{adj} A)^{r}=\left[\begin{array}{ll}
\sum_{r=0}^{10} 1 & \sum_{r=0}^{10}(-2 r) \\
\sum_{r=0}^{10}(0) & \sum_{r=0}^{10}(1)
\end{array}\right]
\end{aligned}
$$

$$
X=\left[\begin{array}{cc}
11 & -110 \\
0 & 11
\end{array}\right]
$$

$$
\Rightarrow \text { Sum of elements }=-110+22=-88
$$

13. Find area bounded by $y^{2} \leq 2 x$ and $y \geq 4 x-1$
(1) $\frac{9}{32}$
(2) $\frac{11}{32}$
(3) $\frac{11}{8}$
(4) $\frac{11}{3}$

Answer (1)

Sol. Given region is

Area $=\int_{-1 / 2}^{1}\left(\frac{y+1}{4}-\frac{y^{2}}{2}\right) d y$
$=\left[\frac{y^{2}}{8}+\frac{y}{4}-\frac{y^{3}}{6}\right]_{-1 / 2}^{1}$
$=\left(\frac{1}{8}+\frac{1}{4}-\frac{1}{6}\right)-\left(\frac{1}{32}-\frac{1}{8}+\frac{1}{48}\right)$
$=\frac{5}{24}-\left(\frac{3-12+2}{96}\right)$
$=\frac{5}{24}+\frac{7}{96}$
$=\frac{27}{96}=\frac{9}{32}$
14. $\left(x^{2}+1\right)^{2} d y+\left(y\left(2 x^{3}+x\right)-2\right) d x=0, y(0)=0$, then $y(2)$ is equal to
(1) $\frac{2}{5} \tan ^{-1} 2$
(2) $\frac{3}{5} \tan ^{-1} 2$
(3) $\frac{2}{5} \tan ^{-1} 3$
(4) $\frac{3}{5} \tan ^{-1} 3$

Answer (1)
Sol. $\frac{d y}{d x}=\frac{2-y\left(2 x^{3}+x\right)}{\left(x^{2}+1\right)^{2}}$

$$
\frac{d y}{d x}+\frac{2 x^{3}+x}{\left(x^{2}+1\right)^{2}} y=\frac{2}{\left(x^{2}+1\right)^{2}}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { I.F. }=e^{\int \frac{2 x^{3}+x}{\left(x^{2}+1\right)^{2}} d x} \\
=x^{2}+1 \\
y \cdot\left(x^{2}+1\right)=\int \frac{2}{\left(x^{2}+1\right)} d x+c \\
y\left(x^{2}+1\right)=2 \tan ^{-1} x+c \\
y(0)=0 \quad \Rightarrow c=0 \\
\Rightarrow \quad y=\frac{2 \tan ^{-1} x}{x^{2}+1} \\
y(2)=\frac{2 \tan ^{-1} 2}{5}
\end{array}
\end{aligned}
$$

15. If $f(x)=\int_{0}^{x}\left(t+\sin \left(1-e^{t}\right)\right) d t$ then $\lim _{x \rightarrow 0} \frac{f(x)}{x^{3}}$ is equal to
(1) $\frac{1}{6}$
(2) $\frac{1}{24}$
(3) $\frac{-1}{6}$
(4) $\frac{1}{2}$

Answer (3)
Sol. $\lim _{x \rightarrow 0}\left(\frac{f(x)}{x^{3}}\right), \lim _{x \rightarrow 0} f(x)=0 \quad\left(\frac{0}{0}\right.$ form $)$
\Rightarrow Using L^{\prime} Hopital rule

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 0}\left(\frac{f^{\prime}(x)}{3 x^{2}}\right), f^{\prime}(x)=x+\sin \left(1-e^{x}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{x+\sin \left(1-e^{x}\right)}{3 x^{2}}\right)=\lim _{x \rightarrow 0} \frac{1+\cos \left(1-e^{x}\right)\left(-e^{x}\right)}{6 x}
\end{aligned}
$$

$$
=\lim _{x \rightarrow 0} \frac{\left(e^{x}\right) \sin \left(-e^{x}\right)\left(-e^{x}\right)+\cos \left(1-e^{x}\right)\left(-e^{x}\right)}{6}
$$

$=\frac{-1}{6}$
16. If a, b, c are in increasing A.P. and $a+1, b, c+3$ are in G.P. If A.M. of a, b, c is 8 . Find cube of G.M. of a, b, c.
(1) 123
(2) 312
(3) 415
(4) 213

Answer (2)
Sol. $2 b=a+c$
$b^{2}=(a+1)(c+3)$
$\frac{a+b+c}{3}=8$
$\Rightarrow \frac{3 b}{3}=8$
$b=8$
$\Rightarrow a c+3 a+c+3=64$
$3 a+c+a c=61$
$a+c=16$
$c=16-a$
from equation (4)
$3 a+16-a+a(16-a)=61$
$2 a+16+16 a-a^{2}=61$
$a^{2}-18 a+45=0$
$(a-15)(a-3)=0$
$a=15, b=8, c=1 \rightarrow$ rejected
$a=3, b=8, c=13$
$\left((a \cdot b \cdot c)^{1 / 3}\right)^{3}=3 \times 8 \times 13=312$
17. The radius of a circle is $\sqrt{10} . x+y=4$ is the line intersecting the circle at $P \& Q$. A chord $M N$ is of length 2 m having slope -1 . Find perpendicular distance between the two chords $P Q$ and $M N$.
(1) 2
(2) 3
(3) 4
(4) 5

Answer (2)

Sol. Radius of circle $=\sqrt{10}$

In $\triangle M P O$,
$\sqrt{1^{2}+d^{2}}=r$
$1+d^{2}=10[\because r=\sqrt{10}]$
$d^{2}=9$
$d= \pm 3$
Since, distance is positive, distance between chord is 3 .
18. If $f(x)=\frac{2 x}{\sqrt{1-9 x^{2}}}$ and (fofo $\left.\ldots f(x)\right) \ldots 10$ times $=\frac{2 x}{\sqrt{1-9 \alpha x^{2}}}$ then $\sqrt{3 \alpha+1}$ is equal to
(1) 1024
(2) 512
(3) 240
(4) 108

Answer (1)
Sol. $f(x)=\frac{2 x}{\sqrt{1-9 x^{2}}}$

$$
\begin{aligned}
& f(f(x))=\frac{\frac{2 x}{\sqrt{1-9 x^{2}}}}{\sqrt{1-9\left(\frac{4 x^{2}}{1-9 x^{2}}\right)}}=\frac{2 x}{\sqrt{1-9 x^{2}-36 x^{2}}}=\frac{2 x}{\sqrt{1-45 x^{2}}} \\
& f\left(f(f(x))=\frac{\frac{2 x}{\sqrt{1-9 x^{2}}}}{\sqrt{\frac{1-45\left(4 x^{2}\right)}{\left(1-9 x^{2}\right)}}}=\frac{2 x}{\sqrt{1-189 x^{2}}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow f_{K}(x)=\frac{2 x}{\sqrt{1-a_{K} x^{2}}} \\
& a_{1}=9 \\
& a_{2}=9 \times 4+9=4 a_{1}+9 \\
& a_{3}=4 a_{2}+9 \ldots \text { so on } \\
& \Rightarrow a_{n}=4 a_{n-1}+9 \\
& \Rightarrow a_{K}=9,9 \times 5,9 \times 21,9 \times 85 \ldots \\
& b_{K}=\frac{a_{K}}{9}=1,5,21,85 \ldots
\end{aligned}
$$

Notice that b_{K} is first difference G.P.

$$
\begin{aligned}
& (S-1)=4,(21-5)=16,(85-21)=64 \\
& S_{K}=1+5+21+85+\ldots+b_{10} \\
& b_{K}=1+5+21+\ldots+b_{9}+b_{10} \\
& O=1+4+16+64+\ldots+\ldots b_{10} \\
& \Rightarrow b_{10}=1+4+16+64+\ldots \\
& b_{10}=1 \cdot\left(\frac{4^{10}-1}{4-1}\right)=\left(\frac{4^{10}-1}{3}\right) \\
& a_{10}=\frac{9\left(4^{10}-1\right)}{3}=3\left(4^{10}-1\right) \\
& f_{10}(x)=\frac{2 x}{\sqrt{1-3\left(4^{10}-1\right) x^{2}}} \\
& \Rightarrow 9 \alpha=3\left(4^{10}-1\right) \\
& \Rightarrow 3 \alpha=4^{10}-1 \\
& \Rightarrow \sqrt{3 \alpha+1}=4^{5}=2^{10} \\
& \quad=1024
\end{aligned}
$$

19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. In a group A there are 4 men and 5 women and in group B there are 5 men and 4 women, if 4 people are selected from each group. Find number of ways to select 4 men and 4 women.

Answer (5626)

Sol.

Total	4M 5W	5 M 4 W
	A	B
	0M, 4W	4M, OW $\rightarrow{ }^{5} \mathrm{C}_{4} \times{ }^{5} \mathrm{C}_{4}$
	1M, 3W	$\begin{aligned} & 3 \mathrm{M}, 1 \mathrm{~W} \rightarrow{ }^{4} C_{1} \times{ }^{5} C_{3} \times{ }^{5} C_{3} \times \\ & { }^{4} C_{1} \end{aligned}$
	2M, 2W	$2 \mathrm{M}, 2 \mathrm{~W} \rightarrow\left({ }^{4} \mathrm{C}_{2}\right)^{2} \times\left({ }^{5} \mathrm{C}_{2}\right)^{2}$
	3M, 1W	$\begin{aligned} & 1 \mathrm{M}, 3 \mathrm{~W} \rightarrow{ }^{4} C_{3} \times{ }^{5} C_{1} \times{ }^{5} C_{1} \times \\ & { }^{4} C_{3} \end{aligned}$
	4M, 0W	OM, 4W $\rightarrow{ }^{4} \mathrm{C}_{4} \times{ }^{4} \mathrm{C}_{4}$

$\left({ }^{4} C_{0}\right)^{2}\left({ }^{5} C_{4}\right)^{2}+\left({ }^{4} C_{1}\right)^{2} \times\left({ }^{5} C_{3}\right)^{2}+\left({ }^{4} C_{2}\right)^{2} \times\left({ }^{5} C_{2}\right)^{2}$
$+\left({ }^{4} C_{3}\right)^{2} \times\left({ }^{5} C_{1}\right)^{2}+\left({ }^{4} C_{4}\right)^{2} \times\left({ }^{5} C_{0}\right)^{2}$
$=5626$
22. If $f(x)=3 \sqrt{x-2}+\sqrt{4-x}$

If minimum value $=\alpha$
Maximum value $=\beta$
find $\alpha^{2}+\beta^{2}$

Answer (22)

Sol. $3 \sqrt{x-2}+\sqrt{4-x}$
Let $x=2 \sin ^{2} \theta+4 \cos ^{2} \theta$

$$
\begin{aligned}
& =3 \sqrt{2 \sin ^{2} \theta+4 \cos ^{2} \theta-2}+\sqrt{4-2 \sin ^{2} \theta-4 \cos ^{2} \theta} \\
& =3 \sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}
\end{aligned}
$$

$=3 \sqrt{2}|\cos \theta|+\sqrt{2}|\sin \theta|$
$=3 \sqrt{2}|\cos \theta|+\sqrt{2}|\sin \theta|$
$=3 \sqrt{2} \cos \theta+\sqrt{2} \sin \theta \leq \sqrt{18+2}$
$3 \sqrt{2} \cos \theta+\sqrt{2} \sin \theta \leq \sqrt{20}$
Minimum value exist when $\theta=\frac{\pi}{2}$
So minimum value $=\sqrt{2}$
$\Rightarrow \alpha^{2}+\beta^{2}=20+2=22$
23. $\int(\operatorname{cosec} x)^{5} d x=-\alpha \operatorname{cosec} x \cot x\left(\operatorname{cosec}^{2} x+\frac{3}{2}\right)$

$$
+\frac{\beta}{2} \log \left|\tan \frac{x}{2}\right|+C
$$

Find $\alpha+\beta$.
Answer (1)
Sol. Take,

$$
\begin{aligned}
& I=\int(\operatorname{cosec} x)^{5} d x \\
& \Rightarrow \int \operatorname{cosec}^{3} x \cdot \operatorname{cosec}^{2} x d x \\
& \Rightarrow \operatorname{cosec}^{3} x \cdot \int \operatorname{cosec}^{2} x d x-
\end{aligned}
$$

$$
\int\left(3 \operatorname{cosec}^{2} x(-\operatorname{cosec} x \cot x) \int \operatorname{cosec}^{2} x d x\right.
$$

$$
\Rightarrow \quad \operatorname{cosec}^{3} x(-\cot x)-
$$

$$
\int 3 \operatorname{cosec}^{2} x(-\operatorname{cosec} x \cot x)(-\cot x) d x
$$

$$
I=-\operatorname{cosec}^{3} x \cot x-3 \int \operatorname{cosec}^{3} x \cdot \cot ^{2} x d x
$$

$$
=-\operatorname{cosec}^{3} x \cot x-3 \int \operatorname{cosec}^{3} x\left(\operatorname{cosec}^{2} x-1\right) d x
$$

$$
=-\operatorname{cosec}^{3} x \cot x-3 \int \operatorname{cosec}^{5} d x+3 \int \operatorname{cosec}^{3} x d x
$$

$$
\Rightarrow \quad I=-\operatorname{cosec}^{3} x \cot x-3 I+3 \int \operatorname{cosec}^{3} x d x
$$

$$
4 I=-\operatorname{cosec}^{3} x \cot x+3 \int \operatorname{cosec}^{3} x d x
$$

$\therefore \quad 4 I=-\operatorname{cosec}^{3} x \cot x$

JEE Main-2024 Session-2 (04-04-2024)-Shift - 2

$$
\begin{aligned}
& +3\left\{-\frac{1}{2} \operatorname{cosec} x \cot x-\frac{1}{2} \log \left|\tan \frac{x}{2}\right|+C\right\} \quad \alpha=\frac{1}{4}, \beta=\frac{3}{4} \\
& I=-\frac{1}{4} \operatorname{cosec}^{3} x \cot x-\frac{3}{8} \operatorname{cosec} x \cot x \\
& +\frac{3}{8} \log \left|\tan \frac{x}{2}\right|+C \\
& \Rightarrow \quad-\frac{1}{4} \operatorname{cosec} x \cot x\left[\operatorname{cosec}^{2} x+\frac{3}{2}\right] \\
& +\frac{1}{2}\left(\frac{3}{4}\right) \log \left|\tan \frac{x}{2}\right| \\
& \alpha+\beta=\frac{1}{4}+\frac{3}{4}=1 \\
& 24 . \\
& 25 . \\
& 26 . \\
& 27 . \\
& 28 . \\
& 29 . \\
& 30 .
\end{aligned}
$$

