JEE Main - 2024 Session -2
 Answers \& Solutions

(Physics, Chemistry \& Maths)

$$
04 \text { - April-2024-Shift - } 1
$$

Office : Plot no. 855, Niti Khand I, Indirapuram, Ghaziabad | 07292077839
www.smartachievers.online

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. Five identical convex lenses are placed one after the other in close contact. The power of this arrangement is 25 D . Then, power of one such lens is
(1) 10 D
(2) 5 D
(3) 125 D
(4) 20 D

Answer (2)
Sol. $P=\sum \frac{1}{f_{i}}$

$$
=5 \times \frac{1}{f}
$$

$\Rightarrow \frac{5}{f}=25$
$\Rightarrow P=5 \mathrm{D}$
2.

A cubical arrangement of 12 resistors each of R. Each having resistance R is shown. Find I.
(1) $\frac{V_{0}}{3 R}$
(2) $\frac{V_{0}}{6 R}$
(3) $\frac{V_{0}}{4 R}$
(4) $\frac{V_{0}}{8 R}$

Answer (2)
Sol.

$$
\begin{aligned}
& R_{\text {eq }} \equiv 3 R \| R \\
& R_{\text {eq }} \equiv \frac{3 R}{4}
\end{aligned}
$$

$i_{3 R}=\frac{I_{0}}{4}$
$I=\frac{I_{0}}{8}$
$\Rightarrow \quad i=\frac{1}{8}\left\{\frac{V_{0}}{3 R / 4}\right\}=\frac{V_{0}}{6 R}$
3. On a given rough inclined plane, a solid sphere and a hollow cylinder are rolled one by one, with same speed. Ratio of heights attained by solid sphere and hollow cylinder is
(1) $\frac{9}{10}$
(2) $\frac{3}{10}$
(3) $\frac{7}{10}$
(4) $\frac{6}{10}$

Answer (3)

Sol. Conserving energy :

$\frac{1}{2} m \nu^{2}+\frac{1}{2} / \omega^{2}=m g h$
$\Rightarrow \quad \frac{7}{10} m v^{2}=m g h_{1}$
\& $m^{\prime} v^{2}=m m_{2}$
$\Rightarrow \frac{7}{10}=\frac{h_{1}}{h_{2}}$
4. A wooden block is initially at rest. Now a horizontal force is applied on the block which increases linearly with time.

The acceleration - time ($a-t$) graph for the block would be
(1)

(2)

(3)

(4)

Answer (3)

Sol. $\vec{F}=m \vec{a}$
$\Rightarrow a-t$ graph is also linearly increasing.
5. An electron is projected along the axis of solenoid, the trajectory of electron shall be

(1) Circular path
(2) Uniform motion along the axis
(3) Uniform accelerated motion in straight line
(4) Parabolic path

Answer (2)
Sol. $\vec{F}=q(\vec{V} \times \vec{B})$
$\because \vec{V} \| \vec{B} \quad \therefore \vec{F}=0$
And magnetic force can never do work
\Rightarrow Straight line and uniform motion
6. Which graph correctly represents the photocurrent (I) versus stopping potential $\left(V_{s}\right)$ for same frequency but different intensity?
(Here intensity $l_{1}>$ intensity l_{2})
(1)

(2)

(3)

(4)

Answer (2)

Sol. f same \Rightarrow same stopping potential
$I_{1}>I_{2} \Rightarrow$ Saturation current is higher for higher intensity photons.
7. Consider the network shown :

The equivalent resistance of the network is
(1) 12Ω
(2) 36Ω
(3) 20Ω
(4) 6Ω

Answer (4)

Sol. One diode: short
One diode: open
$\Rightarrow \mathrm{R}_{\text {eq }}=\frac{15 \times 10}{15+10} \Omega$
$=6 \Omega$
8. Instantaneous current in a circuit is
$i(t)=\left[6+\sqrt{54} \sin \left(2 \pi t+\frac{\pi}{3}\right)\right]$ A. RMS value of current is
(1) $2 \sqrt{6} \mathrm{~A}$
(2) 7 A
(3) $3 \sqrt{7} \mathrm{~A}$
(4) $6 \sqrt{2} \mathrm{~A}$

Answer (3)
Sol. $i(t)=i_{1}+i_{2} \sin (\omega t+\phi)$

$$
\begin{aligned}
& \Rightarrow \quad i_{R M S}=\sqrt{\frac{\int\left[i_{1}+i_{2} \sin (\omega t+\phi)\right]^{2} d t}{T}} \\
& =\sqrt{i_{1}^{2}+\frac{i_{2}^{2}}{2}}
\end{aligned}
$$

9. The equation of stationary wave is given as $y=2 A \sin \left(\frac{2 \pi}{\lambda} n t\right) \cos \left(\frac{2 \pi}{\lambda} x\right)$, then which of the following is not correct.
(1) Dimension of x is [L]
(2) Dimension of n is [$\left.\mathrm{LT}^{-1}\right]$
(3) Dimension of $\frac{n}{\lambda}$ is [T]
(4) Dimension of $n t$ is [L]

Answer (3)

Sol. From dimensional analyses
$\frac{n t}{\lambda} \Rightarrow M^{0} L^{0} T^{0}$
$\frac{n T}{L}=M^{0} L^{0} T^{0}$
$n=\left[\mathrm{LT}^{-1}\right]$
Again $\frac{x}{\lambda}=\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
$x=[\mathrm{L}]$
10. In magnetic field varying with x-axis as $B(x)=(1+0.2 x) \hat{i}$, a square loop of side 15 cm is placed such that its sides are parallel to $x \& y$ axes and one corner is at $(2,2)$ as shown. Net magnetic force on the loop is

$(2,2)$
(Current in loop is 10 amperes)
(1) 40 mN
(2) 10 mN
(3) Zero
(4) 45 mN

Answer (4)

Sol.

$$
F_{A B}=F_{C D}=0
$$

$$
F_{A D}=i \ell B_{1} \quad B_{1}=(1+0.2 \times 2)=1.4 \mathrm{~T}
$$

$F_{B C}=i \ell B_{2}$
$B_{2}=(1+0.2 \times 2.15)=1.43 \mathrm{~T}$
$\left|F_{\text {net }}\right|=i \ell\left(B_{2}-B_{1}\right)$
$=10 \times \frac{15}{100} \times 0.03$
$=\frac{4.50}{100} \mathrm{~N}=45 \mathrm{mN}$
11. The correct products of the reaction ${ }_{92}^{235} U+{ }_{0}^{1} n \longrightarrow$ are
(1) ${ }_{56}^{141} \mathrm{Ba}+{ }_{36}^{92} \mathrm{Kr}+3{ }_{0}^{1} \mathrm{n}$
(2) ${ }_{56}^{141} \mathrm{Ba}+{ }_{36}^{92} \mathrm{Kr}+4{ }_{0}^{1} \mathrm{n}$
(3) ${ }_{10}^{20} \mathrm{Ne}+{ }_{51}^{122} \mathrm{Sb}+3{ }_{0}^{1} \mathrm{n}$
(4) ${ }_{10}^{20} \mathrm{Ne}+{ }_{51}^{122} \mathrm{Sb}+4{ }_{0}^{1} \mathrm{n}$

Answer (1)
Sol. Conserving charge and mass, we get option (1) as correct
12. A given gas is taken through 3 different processes at 3 different densities ρ_{1}, ρ_{2} and ρ_{3}. The corresponding $P-T$ graphs are given. Then :

(1) $\rho_{3}>\rho_{2}>\rho_{1}$
(2) $\rho_{3}<\rho_{2}>\rho_{1}$
(3) $\rho_{3}<\rho_{2}<\rho_{1}$
(4) $\rho_{3}>\rho_{2}<\rho_{1}$

Answer (1)

Sol. $P M=p R T$

$$
\begin{aligned}
& \Rightarrow \quad \text { Slope } \propto \rho^{1} \\
& \Rightarrow \quad \rho_{3}>\rho_{2}>\rho_{1}
\end{aligned}
$$

13. The graphical representation of variation of kinetic energy with radius in case of electron revolving around nucleus of atom is correctly represented by
(1)

(2)

(3)

(4)

Answer (4)

Sol. $\frac{k z e^{2}}{r^{2}}=\frac{m v^{2}}{r}$

$$
\frac{1}{2} m v^{2}=\frac{1}{2} \frac{k z e^{2}}{r}
$$

14. In a pipe, speed of ideal liquid is v_{1} at A and v_{2} at B. The correct relations between v_{1}, v_{2} and h is

(g is acceleration due to gravity and ρ is density of liquid)
(1) $v_{2}{ }^{2}=v_{1}{ }^{2}+2 g h$
(2) $v_{1} v_{2}=2 g h$
(3) $v_{1}{ }^{2} v_{2}=\rho g h^{2}$
(4) $v_{2}^{2}-v_{1}^{2}+2 g h=0$

Answer (1)
Sol. $\frac{1}{2} \rho v_{1}{ }^{2}+\rho g h=\frac{1}{2} \rho v_{2}{ }^{2}$

$$
v_{2}^{2}=v_{1}^{2}+2 g h
$$

15. A wire of mass M and length $/$ bent in form of semicircle. A particle of mass m was kept at the centre of the semicircle. Find net gravitational force on particle.
(1) $\frac{2 G M m \pi}{l^{2}}$
(2) $\frac{2 G M m}{l^{2}}$
(3) $\frac{G M m \pi}{l^{2}}$
(4) $\frac{3 G M m \pi}{l^{2}}$

Answer (1)

Sol. $R=\frac{1}{\pi}$
E at centre $=\frac{2 G M}{\pi R^{2}}$
Force on particle $=\frac{2 G M m}{\pi R^{2}}=\frac{2 G M}{\pi \cdot 1^{2}} \times \pi^{2} \cdot m$
$=\frac{2 G M m \pi}{t^{2}}$
16. The circuit in which phase between maximum current $\left(I_{\max }\right)$ and maximum voltage $\left(V_{\max }\right)$ is $\frac{\pi}{2}$
(a) L-circuit
(b) R-circuit
(c) C -circuit
(d) $L C$-circuit
(1) a, b, c
(2) $\mathrm{a}, \mathrm{c}, \mathrm{d}$
(3) b, c
(4) c, d

Answer (2)

Sol. For L-circuit \rightarrow Phase between $I_{\text {max }}$ and $V_{\max }$ is $\frac{\pi}{2}$

For C-circuit \rightarrow Phase between $I_{\max }$ and $V_{\max }$ is $\frac{\pi}{2}$

For $L C$-circuit \rightarrow Phase between $I_{\max }$ and $V_{\max }$ is $\frac{\pi}{2}$
17. For an electromagnetic wave, electric field is given as $\vec{E}=40 i \cos \left(\omega\left(t-\frac{Z}{C}\right)\right)$ where C is speed of light. (symbols have their usual meanings). The variation of magnetic field is given as
(1) $\vec{B}=\frac{40}{C} \hat{j} \cos \left(\omega\left(t+\frac{Z}{C}\right)\right)$
(2) $\vec{B}=40 C \hat{j} \cos \left(\omega\left(t-\frac{Z}{C}\right)\right)$
(3) $\vec{B}=\frac{40}{C} \hat{j} \cos \left(\omega\left(t-\frac{Z}{C}\right)\right)$
(4) $\vec{B}=-40 C \hat{j} \cos \left(\omega\left(t+\frac{Z}{C}\right)\right)$

Answer (3)

Sol.

$\vec{E} \times \vec{B} \uparrow \uparrow \vec{C}$
Also $E=C B$
$\Rightarrow B$ is along $+y$
18. A charged particle is moving in $x-y$ plane where its co-ordinate (x, y) are varying with time t is $x=2+4 t ; y=3 t+8 t^{2}$. The motion of charged particle is
(1) Uniform motion
(2) Uniform accelerated motion along straight line
(3) Non uniform accelerated motion
(4) Uniform accelerated motion in a parabolic path

Answer (4)

Sol. $\vec{r}=(2+4 t) \hat{i}+\left(3 t+8 t^{2}\right) \hat{j}$
$\vec{u}=4 \hat{i}+(3+16 t) \hat{j}$
$\vec{a}=16 \hat{j} \Rightarrow$ Uniform accelerated

At $t=0 \vec{v}=4 \hat{i}+3 \hat{j}$ is not parallel to \vec{a}
\Rightarrow Parabolic
19. u is object distance and v is image distance formed by convex lens of focal length f. The error in focal length shall be. (Error in measuring u \& v are Δu \& $\Delta v)$
(1) $2 f\left(\frac{\Delta v}{v}+\frac{\Delta u}{u}\right)$
(2) $f^{2}\left(\frac{\Delta v}{v^{2}}+\frac{\Delta u}{u^{2}}\right)$
(3) $f\left(\left(\frac{\Delta v}{v}\right)^{2}+\left(\frac{\Delta u}{u}\right)^{2}\right)$
(4) $\frac{\Delta v}{v}+\frac{\Delta u}{u}$

Answer (2)

Sol. $\frac{1}{f}=\frac{1}{v}-\frac{1}{u}$

$$
\begin{aligned}
& \frac{-1}{f^{2}} d f=\frac{-1}{v^{2}} d v+\frac{1}{u^{2}} d u \\
& \Rightarrow \quad(d f)=f^{2}\left\{\frac{|d v|}{v^{2}}+\frac{|d u|}{u^{2}}\right\}
\end{aligned}
$$

20. A rubber ball fall on the floor from height h and bounces back upto height $\frac{h}{2}$. Then percentage loss in energy and velocity of ball just before striking are respectively.
(1) $50 \%, \sqrt{2 g h}$
(2) $40 \%, \sqrt{2 g h}$
(3) $50 \%, \sqrt{g h}$
(4) $40 \%, \sqrt{g h}$

Answer (1)
Sol. $\Delta E=\frac{m g h}{2}$
$\%$ change in $\Delta E=50 \%$
Velocity just before collision $=\sqrt{2 g h}$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. Because of forces (separately) of 3 N and 2 N , elongations in spring are found to be ' a ' and ' b ' unit respectively then $(2 a-3 b)$ is

Answer (0)

Sol. $a=\frac{3}{k}$

$$
b=\frac{2}{k}
$$

$$
\Rightarrow 2 a-3 b=0
$$

22. For a temperature change of $40^{\circ} \mathrm{C}$, the corresponding temperature change in ${ }^{\circ} \mathrm{F}$ is

Answer (72)

Sol. $F=32+\frac{9 C}{5}$
$\Rightarrow \Delta F=\frac{9}{5} \Delta C=72^{\circ} F$
23. A particle covers 102.5 m in $n^{\text {th }}$ second and 115 m in $(n+2)^{\text {th }}$ second. Then the acceleration of the particle is $x \mathrm{~m} / \mathrm{s}^{2}$. Find $4 x$.

Answer (25)
Sol. $s_{n}=u+\frac{a}{2}[2 n-1]$
$\Rightarrow 102.5=u+\frac{a}{2}[2 n-1]$
and $115=u+\frac{a}{2}[2 n+3]$
$\Rightarrow 12.5=\frac{a}{2}(4) \Rightarrow a=\frac{25}{4} \mathrm{~m} / \mathrm{s}^{2}$
24. The resistance of platinum wire at ice point and steam point are 10Ω and 2Ω respectively. After that wire is dipped in hot bath of temperature $400^{\circ} \mathrm{C}$. The resistance of the wire at temperature $400^{\circ} \mathrm{C}$ is \qquad Ω.

Answer (34)

Sol. $\frac{R-R_{M \cdot P}}{R_{B \cdot P}-R_{M \cdot P}}=\frac{T-0}{100-0}$
$R=34 \Omega$
25. A soap bubble has initial radius of 3.5 cm . Work 36960 erg is done on it to blow it. Surface tension = 40 dyne/cm. The new radius is \qquad cm .

Answer (7)
Sol. $W=\Delta U=8 \pi\left[R^{2}-r^{2}\right] \cdot S$

$$
\begin{gathered}
\Rightarrow \frac{36960}{8 \times \frac{22}{7} \times 40}=R^{2}-3.5^{2} \\
\Rightarrow \quad R^{2}=3.5^{2}+\frac{147}{4} \\
\quad=\frac{49+147}{4}=49
\end{gathered}
$$

$$
R=7 \mathrm{~cm}
$$

26. In an experiment to determine internal resistance of battery using potentiometer for external resistance of 10Ω, balancing length is 50 cm and for external resistance of 1Ω, balancing length is 40 cm then internal resistance of battery is x ohms then $7 x$ is \qquad
Answer (2)

Sol.

$$
\begin{aligned}
& \text { ع- } \frac{\varepsilon \gamma}{(R+r)}=\frac{\varepsilon R}{R+r}=V=k l \\
& \frac{\varepsilon R_{1}}{R_{1}+r}=k 50=\frac{10 \varepsilon}{10+r} \\
& \left(\frac{\varepsilon R_{2}}{R_{2}+r}\right) \\
& \Rightarrow \frac{5}{4}=\frac{10}{(10+r)}(1+r) \\
& 50+5 r=40+40 r \\
& 10=35 r \\
& \quad r=\frac{\varepsilon}{7} \Omega
\end{aligned}
$$

27.
28.
29.
30.

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. If EMF of Hydrogen electrode at $25^{\circ} \mathrm{C}$ is zero in pure water then pressure of H_{2} in bar
(1) 10^{-14}
(2) 10^{-7}
(3) 1
(4) 0.5

Answer (1)
Sol. $E_{\text {SHE }}=-\frac{0.0591}{2} \log \frac{P_{\mathrm{H}_{2}}}{\left[\mathrm{H}^{+}\right]^{2}}=0$

$$
\begin{aligned}
& \Rightarrow \mathrm{P}_{\mathrm{H}_{2}}=\left[\mathrm{H}^{+}\right]^{2} \\
& \mathrm{P}_{\mathrm{H}_{2}}=\left(10^{-7}\right)^{2} \\
&=10^{-14} \mathrm{bar}
\end{aligned}
$$

2. For which of the following element only one oxidation state is possible
(1) Sc
(2) Co
(3) Ni
(4) Fe

Answer (1)
Sol. Only +3 oxidation state is possible for Sc
For other options, more than one oxidation states are possible, correct answer is (1)
3. Among the following, decreasing order of basic strength will be
$\mathrm{OH}^{-}, \mathrm{H}^{-}, \mathrm{HCOO}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \overline{\mathrm{O}}^{-}$
(I) (II)
(III)
(IV)
(V)
(1) II $>$ V $>$ III $>$ I $>$ IV
(2) II $>$ V $>$ I $>$ IV $>$ III
(3) III $>$ IV $>$ I $>$ V $>$ II
(4) V $>$ I $>$ IV $>$ II $>$ III

Answer (2)

Sol. Basic strength $\propto \frac{1}{\text { Strength of conjugate acid }}$
Acidic strength:
$\mathrm{HCOOH}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{H}_{2} \mathrm{O}>\mathrm{ROH}>\mathrm{H}_{2}$
Basic strength:
$\mathrm{HCOO}^{-}<\mathrm{CH}_{3} \mathrm{COO}^{-}<\mathrm{OH}^{-}<\mathrm{RO}^{-}<\mathrm{H}^{-}$
4. We are given with the following graph between P and T

Choose the correct option
(1) $\rho_{1}>\rho_{2}>\rho_{3}$
(2) $\rho_{1}<\rho_{2}<\rho_{3}$
(3) $\rho_{1}=\rho_{2}=\rho_{3}$
(4) $\rho_{2}>\rho_{1}>\rho_{3}$

Answer (1)

Sol. $\rho=\frac{\mathrm{P} \times \mathrm{MW}}{\mathrm{RT}}$
$P=\frac{\rho . R . T}{M W}$
$P=\left(\frac{\rho \cdot R}{M W}\right) \cdot T$
Slope $=\frac{\rho \cdot R}{M W}$
Slope $\alpha \rho$ (density)
$\Rightarrow \rho_{1}>\rho_{2}>\rho_{3}$
\Rightarrow Option (1) is correct
5. Which of the following have maximum dipole moment?
(1) NH_{3}
(2) PF_{5}
(3) NF_{3}
(4) PCl_{5}

Answer (1)

Sol.

NH_{3} has greater dipole moment than NF_{3}
6.

(1)

(2)

(3)

(4)

Answer (2)

Sol. This is an example of Clemmensen reduction reaction. In this reaction carbonyl group is reduced to methylene group.
7. Which of the following is the correct order of first ionization enthalpy?
(1) $\mathrm{Be}<\mathrm{B}<\mathrm{O}<\mathrm{F}<\mathrm{N}$
(2) $\mathrm{B}<\mathrm{Be}<\mathrm{O}<\mathrm{N}<\mathrm{F}$
(3) $\mathrm{B}<\mathrm{Be}<\mathrm{N}<\mathrm{F}<\mathrm{O}$
(4) $\mathrm{Be}<\mathrm{B}<\mathrm{N}<\mathrm{O}<\mathrm{F}$

Answer (2)
Sol. Be has more value of first ionization enthalpy than B due to fully filled configuration and N has more value of first ionization enthalpy than O due to half filled configuration
The correct order is $\mathrm{B}<\mathrm{Be}<\mathrm{O}<\mathrm{N}<\mathrm{F}$
8. Statement-1 : Aldol condensation is caused by acidity of α hydrogen
Statement-2 : Cross aldol is not possible between

(1) Both statement-1 and statement-2 are correct
(2) Both statement-1 and statement-2 are incorrect
(3) Statement-1 is correct but statement-2 is incorrect
(4) Statement-1 is incorrect but statement-2 is correct

Answer (3)

Sol. Aldol reaction is given by those carbonyl compounds which have at least one α hydrogen atom because α-hydrogen of carbonyl compounds is acidic. Benzaldehyde and acetaldehyde will form cross aldol because acetaldehyde has α-hydrogen atom.
9. Select the correct structure of L-glucose.
(1)

(2)

(3)

(4)

Answer (2)
Sol.

D-Glucose

L-Glucose
10. Decreasing order of the field strength of the following ligands will be:
co, $\stackrel{\ominus}{\mathrm{CN}}, \stackrel{\ominus}{\mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}}$
(1) $\mathrm{CO}>\stackrel{\ominus}{\mathrm{CN}}>\mathrm{H}_{2} \mathrm{O}>\mathrm{Cl}^{-}$
(2) $\mathrm{CO}>\stackrel{\ominus}{\mathrm{CN}}>\mathrm{Cl}^{-}>\mathrm{H}_{2} \mathrm{O}$
(3) $\stackrel{\ominus}{\mathrm{CN}}>\mathrm{CO}>\mathrm{H}_{2} \mathrm{O}>\mathrm{Cl}^{-}$
(4) $\stackrel{\ominus}{\mathrm{CN}}>\mathrm{CO}>\mathrm{Cl}^{-}>\mathrm{H}_{2} \mathrm{O}$

Answer (1)

Sol. $\mathrm{CO}>\stackrel{\ominus}{\mathrm{C}} \mathrm{N}>\mathrm{H}_{2} \mathrm{O}>\stackrel{\ominus}{\mathrm{C}}$
11. Calculate the molarity of NaCl solution, if 5.85 gm of NaCl is dissolved in 500 ml of solution.
(1) 0.1 M
(2) 0.2 M
(3) 0.32 M
(4) 0.4 M

Answer (2)
Sol. Molarity $=\frac{\text { Number of moles of solute }}{\text { Volume of solution (in L) }}$

$$
=\frac{5.85 \times 1000}{58.5 \times 500}=0.1 \times 2=0.2 \mathrm{M}
$$

12. Which of the following does not give Lassaigne's test?
(1) Urea
(2) Azobenzene
(3) Hydrazine
(4) Phenylhydrazine

Answer (3)
Sol. Hydrazine $\left(\mathrm{NH}_{2}-\mathrm{NH}_{2}\right)$ does not contain carbon. On fusion with sodium metal, it cannot form NaCN . So hydrazine does not show Lassaigne's test.
13. Among the following, species that have one unpaired e^{\ominus} ?
(1) CN^{\ominus}
(2) O_{2}^{2-}
(3) O_{2}^{+}
(4) NO^{\ominus}

Answer (3)
Sol.
Unpaired e^{\ominus}
$\mathrm{CN}^{\ominus} \rightarrow 14 \mathrm{e}^{\ominus} \rightarrow$ zero
$\mathrm{O}_{2}^{2-} \rightarrow 18 \mathrm{e}^{\ominus} \rightarrow$ zero
$\mathrm{O}_{2}^{+} \rightarrow 15 \mathrm{e}^{\ominus} \rightarrow$ one
$\mathrm{NO}^{\ominus} \rightarrow 16 \mathrm{e}^{\ominus} \rightarrow$ two
14. For a given reaction

Relation between the molecules P and B are:
(1) Enantiomer
(2) Diastereomers
(3) Positional isomers
(4) Functional isomers

Answer (3)

Sol. Positional isomers.

15. From the given data, find enthalpy of hydrogenation of ethene in $\mathrm{kJ} / \mathrm{mol}$
(a) B.E. of $\mathrm{C}-\mathrm{C}=350 \mathrm{~kJ} / \mathrm{mol}$
(b) B.E. of $\mathrm{C}=\mathrm{C}=600 \mathrm{~kJ} / \mathrm{mol}$
(c) B.E. of $\mathrm{H}-\mathrm{H}=400 \mathrm{~kJ} / \mathrm{mol}$
(d) B.E. of $\mathrm{C}-\mathrm{H}=410 \mathrm{~kJ} / \mathrm{mol}$
(1) -170
(2) -580
(3) +170
(4) +580

Answer (1)

Sol.

$\Delta_{r} \mathrm{H}=\Delta \mathrm{H}(\mathrm{C}=\mathrm{C})+\Delta \mathrm{H}(\mathrm{H}-\mathrm{H})-\Delta \mathrm{H}(\mathrm{C}-\mathrm{C})$

$$
\begin{align*}
& =600+400-350-2(410) \tag{C-H}\\
& =-170 \mathrm{~kJ} / \mathrm{mol}
\end{align*}
$$

16. Find out wavelength of a photon having frequency equal to $900 \mathrm{sec}^{-1}$.
(1) $3.33 \times 10^{5} \mathrm{~m}$
(2) $3.33 \times 10^{5} \mathrm{~cm}$
(3) $3.33 \times 10^{7} \mathrm{~m}$
(4) $3.33 \times 10^{4} \mathrm{~m}$

Answer (1)

Sol. $v=\frac{C}{\lambda}$
$\lambda=\frac{C}{v}$
$\lambda=\frac{3 \times 10^{8} \mathrm{msec}^{-1}}{900 \mathrm{sec}^{-1}}$
$=\frac{3 \times 10^{8}}{900}$
$=\frac{3 \times 10^{6}}{9}$
$=\frac{1}{3} \times 10^{6}$
$=0.333 \times 10^{6}$
$=3.33 \times 10^{5} \mathrm{~m}$
17. Why $\mathrm{NH}_{4} \mathrm{Cl}$ is added before $\mathrm{NH}_{4} \mathrm{OH}$ for the ppt. of Fe^{3+} ions?
(1) To decrease OH^{-}ion concentration
(2) To increase Cl^{-}ion concentration
(3) To increase NH_{4}^{+}ion concentration
(4) To decrease H^{+}ion concentration

Answer (1)
Sol. $\mathrm{NH}_{4} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
$\mathrm{NH}_{4} \mathrm{Cl} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
Solid $\mathrm{NH}_{4} \mathrm{Cl}$ is added to $\mathrm{NH}_{4} \mathrm{OH}$ solution to decrease the OH^{-}ion concentration due to common ion effect.
18. Consider the following sequence of reactions and identify the unknown reagents (A) and (B) respectively.

(1) (A) :Dil. aq NaOH at $20^{\circ} \mathrm{C}$
(B) : $\mathrm{HBr}, \mathrm{CH}_{3} \mathrm{COOH}$
(2) (A) : Dil. aq NaOH at $20^{\circ} \mathrm{C}$
(B) : $\mathrm{Br}_{2}, \mathrm{CHCl}_{3}$
(3) (A) : Alc. NaOH at $80^{\circ} \mathrm{C}$ (B) : $\mathrm{HBr}, \mathrm{CH}_{3} \mathrm{COOH}$
(4) (A) : Alc. NaOH at $80^{\circ} \mathrm{C}$
(B) : $\mathrm{Br}_{2}, \mathrm{CHCl}_{3}$

Answer (3)
Sol.

19. Match the following

(i)	Nitrobenzene	(a)	+R
(ii)	Aniline	(b)	-R
(iii)		(c)	+E
(iv)		(d)	-E

(1) (i) \rightarrow (b), (ii) \rightarrow (a), (iii) \rightarrow (c), (iv) \rightarrow (d)
(2) (i) \rightarrow (a), (ii) \rightarrow (b), (iii) \rightarrow (c), (iv) \rightarrow (d)
(3) (i) \rightarrow (c), (ii) \rightarrow (b), (iii) \rightarrow (a), (iv) \rightarrow (d)
(4) (i) \rightarrow (d), (ii) \rightarrow (c), (iii) \rightarrow (a), (iv) \rightarrow (b)

Answer (1)
Sol. (i) \rightarrow (b), (ii) \rightarrow (a), (iii) \rightarrow (c), (iv) \rightarrow (d)
20. Which of the following is not possible major product?
(1)

(2) $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NH}_{2} \xrightarrow{\mathrm{NaNO}_{\mathrm{O}}} \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NO}_{2}+\mathrm{N}_{2}$
(3)

(4)

Answer (2)

Sol.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. How many of the following compounds are $s p^{3}$ hybridised?

$$
\mathrm{ClO}_{3}^{-}, \mathrm{ClO}_{2}^{-}, \mathrm{NH}_{3}, \mathrm{NO}_{2}
$$

Answer (3)

Sol.

22. Total number of structural isomers possible for a compound with molecular formula $\mathrm{C}_{7} \mathrm{H}_{16}$ are:

Answer (5)

Sol. $\mathrm{C}_{7} \mathrm{H}_{16}$ has $\mathrm{DoU}=0$
(i) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

23. The de-Broglie wavelength of an electron in $4^{\text {th }}$ orbit of hydrogen atom is \qquad $\pi \mathrm{a}_{0}$ ($\mathrm{a}_{0}=$ Bohr radius).

Answer (8)
Sol. $\because \quad \lambda_{\text {de-Broglie }}=\frac{2 \pi r}{n}=\frac{2 \pi}{n} \times 0.529 \frac{n^{2}}{z} \AA$

$$
\text { or, } \begin{aligned}
\lambda_{\text {de-Broglie }} & =2 \pi \times \mathrm{n} \times \mathrm{a}_{0} \AA \\
& =2 \pi \times 4 \times \mathrm{a}_{0} \AA
\end{aligned}
$$

$$
=8 \pi \mathrm{a}_{0} \AA
$$

24. 50 mL of KMnO_{4} solution is used for titration with 20 mL of 2 M oxalic acid solution in Acidic medium. The molarity of KMnO_{4} solution is $x \times 10^{-2} \mathrm{M}$. The value of x is

Answer (32)

Sol.

$5 \times \mathrm{M}_{\mathrm{KMNO}_{4}} \times 50=2 \times 20 \times 2$
$\mathrm{M}_{\mathrm{KMnO}_{4}}=\frac{8}{25}=32 \times 10^{-2} \mathrm{M}$
$x=32$
25. A solution having non-volatile solute in water shows elevation in boiling point of $2^{\circ} \mathrm{C}$. Find out vapour pressure of solution (in mm Hg) (Nearest integer) Vapour pressure of pure water $=760 \mathrm{~mm} \mathrm{Hg}$ K_{b} of water $=0.52 \mathrm{~K}^{\mathrm{k}} \mathrm{kg} \mathrm{mole}^{-1}$
Answer (711)
Sol. $\Delta \mathrm{T}_{\mathrm{b}}=\left(\mathrm{K}_{\mathrm{b}}\right)(\mathrm{m})$
$2=(0.52)(m)$
$\mathrm{m}=3.846$
$X_{\text {Solute }}=\frac{m}{m+55.5}=0.0648$
$\frac{760-X}{760}=0.0648$
$\Rightarrow P_{\text {solution }}=710.74 \mathrm{~mm} \mathrm{Hg}$
$\approx 711 \mathrm{~mm} \mathrm{Hg}$
26. $\mathrm{MnO}_{2}+\mathrm{KOH}+\mathrm{O}_{2} \longrightarrow \mathrm{~A}$
' A ' disproportionate into ' B ' and ' C '. Find the sum of magnetic moment (spin only) (in B.M.) of B and C (Nearest integer)

Answer (4)

Sol. $2 \mathrm{MnO}_{2}+4 \mathrm{KOH}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ (A)
$\underset{\text { (A) }}{3 \mathrm{MnO}_{4}^{2-}}+4 \mathrm{H}^{+} \xrightarrow{\text { Disproportionation }} 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(A)

B and C are MnO_{4}^{-}and MnO_{2}
Mn in MnO_{2} has +4 oxidation state hence it has $(n-1) d^{3} n s^{0}$ electronic configuration unpaired $\mathrm{e}=3$
Mag. moment : 3.87 B.M. by $\sqrt{n(n+2)}$
$\mathrm{KMnO}_{4} / \mathrm{MnO}_{4}^{-}$is diamagnetic hence magnetic moment $=0$ because it has no unpaired electron.
Hence, sum of mag. moment $=3.87$ B.M.
Nearest integer $=4$
27. How many of the following coordination compounds have even number of unpaired electrons?
$\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}, \quad\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}, \quad\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$, $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
Answer (3)
Sol. $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow d^{2} s p^{3} \Rightarrow \mathrm{n}=3$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow s p^{3} d^{8} \Rightarrow \mathrm{n}=4$
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow s p^{3} d^{R} \Rightarrow \mathrm{n}=1$
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow s p^{3} d^{2} \Rightarrow \mathrm{n}=2$
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow s p^{3} d^{R} \Rightarrow \mathrm{n}=4$
28. Consider the following reaction sequence :
$A \xlongequal[k_{2}]{\stackrel{k_{1}}{\longrightarrow}} B \xrightarrow{k_{3}} C$
Overall $k=\frac{k_{1} k_{2}}{k_{3}}$
if $E_{a_{1}}=300 \mathrm{~kJ} / \mathrm{mole}$

$$
\mathrm{E}_{\mathrm{a}_{2}}=200 \mathrm{~kJ} / \mathrm{mole}
$$

Overall, $\left(E_{\mathrm{a}}\right)_{\text {eff }}=400 \mathrm{~kJ} / \mathrm{mole}$
Find out $\mathrm{E}_{\mathrm{a}_{3}}$ (in $\mathrm{kJ} /$ mole)

Answer (100)

Sol. $\left(E_{a}\right)_{\text {eff }}=E_{a_{1}}+E_{a_{2}}-E_{a_{3}}$
$400=300+200-E_{a_{3}}$
$\mathrm{E}_{\mathrm{a}_{3}}=100 \mathrm{~kJ} / \mathrm{mole}$
29. xg of ethylamine on reaction with NaNO_{2} and HCl , produces 2.24 L of $\mathrm{N}_{2}(\mathrm{~g})$ at NTP. The value of 2 x will be
Answer (9)
Sol. $\mathrm{NaNO}_{2}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{HNO}_{2}$

Mole of $\mathrm{N}_{2}(\mathrm{~g})$ produced $=\frac{2.24}{22.4}=0.1 \mathrm{~mol}$
So, mole of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ used $=0.1 \mathrm{~mol}$
Mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}=45 \times 0.1=4.5 \mathrm{~g}$
So, $2 \mathrm{x}=2 \times 4.5$

$$
\text { = } 9
$$

30.

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. If $f(x)=\left\{\begin{array}{ll}x-2, & 0<x \leq 2 \\ -2, & -2 \leq x \leq 0\end{array}\right.$ and
$h(x)=f(|x|)+|f(x)|$ then
find $\int_{0}^{k} h(x) d x$ is equal to $(k>0)$
(1) 0
(2) $\frac{k}{2}$
(3) $2 k$
(4) k

Answer (1)

Sol. Graph of $f(x)$

$$
f(|x|)
$$

$\overline{-2 \searrow /^{2}} \Rightarrow f(|x|)= \begin{cases}-2-x, & x<0 \\ x-2, & x>0\end{cases}$

$|f(x)|= \begin{cases}2, & x<0 \\ 2-x, & x>0\end{cases}$
$\Rightarrow h(x)=f(|x|)+|f(x)|= \begin{cases}-x, & x<0 \\ 0, & x>0\end{cases}$
$\Rightarrow \int_{0}^{k} h(x) d x=\int_{0}^{k} 0 d x=0$
2. Let three urn $\mathrm{A}, \mathrm{B}, \mathrm{C}: \mathrm{A}=7$ red, 5 black

$$
\begin{aligned}
& B=5 \text { red, } 7 \text { black } \\
& C=6 \text { red, } 6 \text { black }
\end{aligned}
$$

Urn is selected and black ball is taken. Then the probability that the selected urn is A is equal to
(1) $\frac{7}{18}$
(2) $\frac{5}{17}$
(3) $\frac{7}{19}$
(4) $\frac{5}{18}$

Answer (4)
Sol. Urn A has 7 red, 5 black balls
Urn B has 5 red, 7 black balls.
Urn C has 6 red, 6 black balls
If ball drawn is black then probability that it is chosen from urn A .

$$
\begin{aligned}
& =\frac{\frac{1}{3} \times \frac{5}{12}}{\frac{1}{3} \times \frac{5}{12}+\frac{1}{3} \times \frac{7}{12}+\frac{1}{3} \times \frac{6}{12}} \\
& =\frac{\frac{5}{36}}{\frac{5}{36}+\frac{7}{36}+\frac{6}{36}} \\
& =\frac{\frac{5}{36}}{\frac{18}{36}}=\frac{5}{18}
\end{aligned}
$$

3. $\int_{-\pi / 2}^{\pi / 2} \frac{\sin ^{2} x}{1+2^{x}} d x=$
(1) $\left(\frac{\pi}{4}\right)$
(2) $\frac{\pi}{8}$
(3) 4π
(4) $\frac{\pi}{2}$

Answer (1)

Sol. $I=\int_{0}^{\pi / 2}\left(\frac{\sin ^{2} x}{1+2^{x}}+\frac{\sin ^{2}(x)}{1+2^{-x}}\right) d x$
$I=\int_{0}^{\pi / 2} \sin ^{2} x d x$
$I=\int_{0}^{\pi / 2} \cos ^{2} x d x$
$2 I=\int_{0}^{\pi / 2} 1 d x$
$I=\frac{\pi}{4}$
4. If $f(x)=\frac{2 x^{2}-3 x+8}{2 x^{2}+3 x+8}$ then sum of maximum and minimum values of $f(x)$ is
(1) $\frac{136}{55}$
(2) $\frac{146}{55}$
(3) $\frac{146}{11}$
(4) $\frac{136}{11}$

Answer (2)

Sol. $y=\frac{2 x^{2}-3 x+8}{2 x^{2}+3 x+8}, \quad 2 x^{2}+3 x+8>0 \forall x \in R$
$\Rightarrow x^{2}(2 y-2)+x(3 y+3)+8 y-8=0$
Since $x \in R$, the equation has real roots
\Rightarrow Discriminant is greater than or equal to 0
$\Rightarrow(3 y+3)^{2}-4(2 y-2)(8 y-8) \geq 0$
$\Rightarrow 9(y+1)^{2}-64 y(y-1)^{2} \geq 0$
$\Rightarrow(3 y+3)^{2}-(8 y-8)^{2} \geq 0$
$\Rightarrow(11 y-5)(-5 y+11) \geq 0$
$\Rightarrow\left(y-\frac{5}{11}\right)\left(y-\frac{11}{5}\right) \leq 0$
$\Rightarrow y \in\left[\frac{5}{11}, \frac{11}{5}\right]$

$$
\begin{aligned}
\Rightarrow \text { Sum of } y_{\max } \text { and } y_{\min } & =\frac{5}{11}+\frac{11}{5} \\
& =\frac{121+25}{55} \\
& =\left(\frac{146}{55}\right)
\end{aligned}
$$

5. The coefficient of x^{7} in
$\left(1-x-x^{2}+x^{3}\right)^{6}$ equals to
(1) 132
(2) 144
(3) -132
(4) -144

Answer (4)

Sol. Coefficient of x^{7} in $(1-x)^{6}\left(1-x^{2}\right)^{6}$
${ }^{6} C_{1}{ }^{6} C_{3}-{ }^{6} C_{3}{ }^{6} C_{2}+{ }^{6} C_{5}{ }^{6} C_{1}$
$120-15 \times 20+6 \times 6$
$120-300+36$
$=-144$
6. If $(\bar{z})^{2}+|z|=0$ and if α is sum of roots and β is product of non-zero roots, then $4\left(\alpha^{2}+\beta^{2}\right)$ is
(1) $\frac{1}{4}$
(2) 1
(3) 4
(4) 2

Answer (3)
Sol. $(\bar{z})^{2}+|z|=0$
Let $z=x+i y$
$\Rightarrow(x-i y)^{2}+\sqrt{x^{2}+y^{2}}=0$
$\Rightarrow\left(x^{2}-y^{2}\right)+\sqrt{x^{2}+y^{2}}-2 x y i=0$
$\Rightarrow x^{2}-y^{2}+\sqrt{x^{2}+y^{2}}=0$ and $2 x y=0$
$\Rightarrow x=0$ and $y \neq 0$

Case I

$\Rightarrow-y^{2}+|y|=0 \Rightarrow|y|=y^{2} \Rightarrow y= \pm 1$

Cas II

$x \neq 0$ and $y=0$
$\Rightarrow x^{2}+|x|=0 \Rightarrow x=0$ only not possible
$\Rightarrow x=0, y=0$ satisfies
$\Rightarrow z=i,-i, 0$ are solution
$\alpha=i-i=0$
$\beta=(1)(-1)=-1 \Rightarrow 4\left(\alpha^{2}+\beta^{2}\right)=4$
7. If $\alpha \& \beta$ are roots of $a x^{2}+b x+c=0$ then equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}$ is
(1) $c x^{2}+b x+a=0$
(2) $b x^{2}+a x+c=0$
(3) $a x^{2}+b x+c=0$
(4) $c x^{2}+a x+b=0$

Answer (1)

Sol. $a x^{2}+b x+c=0<\beta$
$\alpha+\beta=\frac{-b}{a}$
$\alpha \beta=\frac{c}{a}$
Now $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=-\frac{b}{c}$
$\frac{1}{\alpha \beta}=\frac{a}{c}$
$x^{2}-\left(\frac{1}{\alpha}+\frac{1}{\beta}\right) x+\frac{1}{\alpha \beta}=0$
$x^{2}+\frac{b}{c} x+\frac{a}{c}=0$
$c x^{2}+b x+a=0$
8. Let $f(x)= \begin{cases}\frac{1-\cos \alpha x}{x^{2}} ; & x<0 \\ 2^{2} ; & x=0 \\ \frac{\beta \sqrt{1-\cos x}}{x} ; & x>0\end{cases}$
is continuous at $x=0$. Then $\alpha^{2}+\beta^{2}$ equals to
(1) 10
(2) 12
(3) 13
(4) 9

Answer (2)

Sol. Given $f(x)$ is continuous at $x=0$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=f(0)=\lim _{x \rightarrow 0^{+}} f(x)$
When $x<0, x=0-h$
$\therefore \lim _{h \rightarrow 0} \frac{1-\cos (\alpha(0-h))}{(0-h)^{2}}$
$=\lim _{h \rightarrow 0} \frac{1-\cos (h \alpha)}{h^{2}}$
$=\lim _{h \rightarrow 0}\left(\frac{1-\cos (\alpha h)}{\alpha^{2} \cdot h^{2}}\right) \alpha^{2}$
$=\alpha^{2} \lim _{h \rightarrow 0} \frac{1-\cos (\alpha h)}{(\alpha h)^{2}}$
$=\frac{\alpha^{2}}{2}$

When $x>0$
$x=0+h$
$\lim _{h \rightarrow 0} \frac{\beta \sqrt{1-\cos h}}{h}=\lim _{h \rightarrow 0} \frac{\beta \sqrt{\frac{1-\cosh }{h^{2}} \cdot h^{2}}}{h}$

$$
\begin{equation*}
=\frac{\beta}{\sqrt{2}} \tag{2}
\end{equation*}
$$

as $f(0)=2$
\therefore From (1), (2) and (3)
$\frac{\alpha^{2}}{2}=2, \quad \frac{\beta}{\sqrt{2}}=2$
$\alpha=2, \quad \beta=2 \sqrt{2}$
$\alpha^{2}+\beta^{2}=4+8=12$
9. If the length of focal chord of $y^{2}=12 x$ is 15 and if the distance of the focal chord from origin is P then $10 P^{2}$ is equal to
(1) 36
(2) 25
(3) 72
(4) 144

Answer (3)

Sol.
$\Rightarrow A B=15$
$\left(3 t^{2}-\frac{3}{t^{2}}\right)^{2}+\left(6 t+\frac{6}{t}\right)^{2}=225$
$\Rightarrow 9\left(t^{2}-\frac{1}{t^{2}}\right)^{2}+36\left(t+\frac{1}{t}\right)^{2}=225$
$\Rightarrow 9\left(t+\frac{1}{t}\right)^{2}\left[\left(t-\frac{1}{t}\right)^{2}+4\right]=225$
$\Rightarrow 9\left(t+\frac{1}{t}\right)^{2}\left(t+\frac{1}{t}\right)^{2}=225$
$\Rightarrow t+\frac{1}{t}=\left(\frac{225}{9}\right)^{1 / 4}=(25)^{1 / 4}=\sqrt{5}$
Equation of $A B \equiv(y-0)=\frac{2}{\left(t-\frac{1}{t}\right)}(x-3) \Rightarrow\left|t-\frac{1}{t}\right|=1$
$\Rightarrow y=2 x-6 \Rightarrow y-2 x+6=0$
Distance from origin $\Rightarrow P=\frac{6}{\sqrt{5}} \Rightarrow 10 P^{2}=\frac{10 \times 36}{5}$ $=72$
10. Numbers $-3,4,7,-6, \alpha, \beta$

Mean $=2$, Variance $=23$, then
Mean deviation about mean equals to
(1) $\frac{13}{8}$
(2) $\frac{13}{3}$
(3) $\frac{13}{7}$
(4) $\frac{13}{9}$

Answer (2)

Sol. Mean $=\frac{-3+4+7+(-6)+\alpha+\beta}{6}=2$

$$
\begin{aligned}
& =2+\alpha+\beta=2 \times 6 \\
& \Rightarrow \alpha+\beta=10
\end{aligned}
$$

$$
\text { Variance }=\frac{\Sigma x i^{2}}{n}-\left(\frac{\bar{x}}{n}\right)^{2}=23
$$

$$
=\frac{\Sigma x i^{2}}{n}=23+4
$$

$$
=\Sigma x i^{2}=27 \times 6
$$

$$
=9+16+49+36+\alpha^{2}+\beta^{2}=162
$$

$$
\Rightarrow \alpha^{2}+\beta^{2}=52
$$

\Rightarrow We get α and β as 4 and 6
So, mean deviation about mean
$=\frac{|-3-2|+|4-2|+|7-2|+|-6-2|+|4-2|+|6-2|}{6}$
$=\frac{5+2+5+8+2+4}{6}$
$=\frac{26}{6}=\frac{13}{3}$
11. If $\frac{d y}{d x}=\frac{2 x^{2}+2 x+3}{x^{4}+2 x^{3}+3 x^{2}+2 x+2}$
and $y(-1)=-\frac{\pi}{4}$
then $y(0)$ is
(1) $\frac{\pi}{3}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{2}$
(4) $\frac{\pi}{6}$

Answer (2)

Sol. $\int d y=\int \frac{2 x^{2}+2 x+3}{x^{4}+2 x^{3}+3 x^{2}+2 x+2} d x$
$=\int \frac{2 x^{2}+2 x+3}{\left(x^{2}+1\right)\left(x^{2}+2 x+2\right)} d x$
$=\int \frac{1}{x^{2}+2 x+2} d x+\int \frac{1}{x^{2}+1} d x$
$=\int \frac{1}{1+(x+1)^{2}} d x+\tan ^{-1} x+C$
$y=\tan ^{-1}(x+1)+\tan ^{-1} x+C$
$y(-1)=-\frac{\pi}{4}$
$-\frac{\pi}{4}=0-\frac{\pi}{4}+C$
$\Rightarrow C=0$
$\therefore \quad y=\tan ^{-1}(x+1)+\tan ^{-1}(x)$
Now $y(0)=\tan ^{-1}(1)+\tan ^{-1}(0)=\frac{\pi}{4}$
12. If \vec{c} is a variable unit vector and \vec{c} makes angle of 45° with \vec{b} and 60° with \vec{a} with $\vec{b}=\hat{i}-\hat{k}$ and $\vec{a}=2 \hat{i}+2 \hat{j}-\hat{k}$ then $|\vec{c}+2 \vec{a}-3 \vec{b}|$ is
(1) 19
(2) 20
(3) $\sqrt{19}$
(4) $\sqrt{20}$

Answer (3)

Sol. \vec{c} is unit vector

$$
\begin{aligned}
& \vec{b}=\hat{i}-\hat{k} \\
& \vec{a}=2 \hat{i}+2 \hat{j}-\hat{k} \\
& |\vec{a}|=3,|\vec{b}|=\sqrt{2},|\vec{c}|=1 \\
& |\vec{c}+2 \vec{a}-3 \vec{b}|^{2}=|\vec{c}|^{2}+4|\vec{a}|^{2}+9|\vec{b}|^{2}+4 \vec{a} \cdot \vec{c}
\end{aligned}
$$

$$
-12 \vec{a} \cdot \vec{b}-6 \vec{b} \cdot \vec{c}
$$

$=1+36+18+4|\vec{a}||\vec{c}| \cos 60^{\circ}-12[3]$
$-6|\vec{b}||\vec{c}| \cos 45^{\circ}$
$=55+12 \times \frac{1}{2}-36-6 \sqrt{2} \times \frac{1}{\sqrt{2}}$

$$
\begin{aligned}
& =55+6-36-6 \\
& =19
\end{aligned}
$$

$$
|\vec{c}+2 \vec{a}-3 \vec{b}|=\sqrt{19}
$$

13. If the system of equations
$A+\sqrt{2} \sin x B+\sqrt{2} \cos x C=0$
$A+\sin x B-\cos x C=0$
$A+\cos x B+\sin \times C=0$ has non-trivial solution then the value of $x, x \in\left(0, \frac{\pi}{2}\right)$ is
(1) $\frac{5 \pi}{12}$
(2) $\frac{\pi}{12}$
(3) $\frac{5 \pi}{24}$
(4) $\frac{\pi}{8}$

Answer (3)

Sol. For non-trivial solution

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & \sqrt{2} \sin x & \sqrt{2} \cos x \\
1 & \sin x & -\cos x \\
1 & \cos x & \sin x
\end{array}\right| \text { is zero } \\
& \Rightarrow \quad 1-1\left(\sqrt{2} \sin ^{2} x-\sqrt{2} \cos ^{2} x\right)+1(-2 \sqrt{2} \sin x \cos x)=0 \\
& \Rightarrow \quad 1+\sqrt{2}(\cos 2 x)-\sqrt{2} \sin 2 x=0 \\
& \Rightarrow \quad \sqrt{2}(\cos 2 x-\sin 2 x)=-1 \\
& \Rightarrow \quad \cos \left(2 x+\frac{\pi}{4}\right)=\frac{-1}{2} \\
& x \in\left(0, \frac{\pi}{2}\right) \\
& 2 x \in(0, \pi) \\
& 2 x+\frac{\pi}{4} \in\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right) \\
& \Rightarrow \quad \cos \left(2 x+\frac{\pi}{4}\right)=\frac{-1}{2} \Rightarrow 2 x+\frac{\pi}{4}=\frac{2 \pi}{3} \\
& \Rightarrow \quad x=\frac{5 \pi}{24}
\end{aligned}
$$

14. A line L_{1} having equation $y=x+3$. A square is inscribed in a circle $x^{2}+y^{2}-10 x-6 y+30=0$ such that one side of square is parallel to L_{1}. Find $\sum_{i=1}^{4}\left(x_{i}^{2}+y_{i}^{2}\right)$ where $\left(x_{i}, y_{i}\right) \quad i \in\{1,2,3,4\}$ are the vertices of square.
(1) 152
(2) 162
(3) 172
(4) 182

Answer (1)

Sol.

Distance of $(5,3)$ to the line $y=x+c$ is $\sqrt{2}$

$$
\begin{aligned}
& \Rightarrow \frac{|3-5-c|}{\sqrt{2}}=\sqrt{2} \\
& |c+2|=2 \\
& \Rightarrow c=0 \\
& \quad c=-4
\end{aligned}
$$

So, the lines are $y=x$ and $y=x-4$
Now, solving these lines with the circle
$y=x$ and $x^{2}+y^{2}-10 x-6 y+30=0$
$2 x^{2}-16 x+30=0$
$x^{2}-8 x+15=0$
$x=3, y=3$
$x=5, y=5$
$y=x-4$ and $x^{2}+y^{2}-10 x-6 y+30=0$
$2 x^{2}-24 x+70=0$
$x^{2}-12 x+35=0$
$x=5, y=1$
$x=7, y=3$
$\sum_{i=1}^{4} x_{i}^{2}+y_{i}^{2}=9+9+25+25+25+1+49+9=152$
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. The number of rational numbers in the expansion of $\left(2^{1 / 5}+5^{1 / 3}\right)^{15}$ is
Answer (02)
Sol. $T_{r+1}={ }^{15} C_{r}\left(5^{1 / 3}\right) r\left(2^{1 / 5}\right)^{15-r}, r \in\{0,1, \ldots .15\}$
$={ }^{15} C_{r} 5^{\left(\frac{r}{3}\right)} \cdot 2^{\left(3-\frac{r}{5}\right)}$,

$$
r \in\{0,1, \ldots .15\}
$$

For rational terms,
$\frac{r}{3} \in$ integer and $\frac{r}{5} \in$ integer
$\Rightarrow 3$ and 5 divides $r \Rightarrow 15$ divides r
$\Rightarrow r=0$ and 15
\Rightarrow only 2 rational terms.
22. In $\triangle A B C$ there are 18 points, on side $A B$ there are $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ points, on $B C$ there are P_{6}, P_{7} ... P_{11} points and on $C A P_{12} \ldots P_{18}$ points. By joining any three points from $P_{1}, P_{2} \ldots P_{18}$ form a triangle. Then number of triangles possible are

Answer (751)

Sol. Total ways to select three points out of 18 points $=$ ${ }^{18} \mathrm{C}_{3}$

Total ways to select 3 points from $P_{1} \ldots P_{5}={ }^{5} C_{3}$
Total ways to select 3 points from $P_{6} \ldots P_{11}={ }^{6} C_{3}$
Total ways to select 3 points from $P_{12} \ldots P_{18}={ }^{7} C_{3}$
Total number of triangles possible

$$
\begin{aligned}
& ={ }^{18} C_{3}-{ }^{5} C_{3}-{ }^{6} C_{3}-{ }^{7} C_{3} \\
& =751
\end{aligned}
$$

23. If $\operatorname{limit}_{x \rightarrow 1} \frac{(5 x+1)^{1 / 3}-(x+5)^{1 / 3}}{(2 x+3)^{1 / 2}-(x+4)^{1 / 2}}=\frac{m(5)^{1 / 2}}{n(2 n)^{2 / 3}}$

Then $8 m+12 n$ is

Answer (100)

Sol. $\operatorname{limit}_{x \rightarrow 1} \frac{(5 x+1)^{1 / 3}-(x+5)^{1 / 3}}{(2 x+3)^{1 / 2}-(x+4)^{1 / 2}}$
$\operatorname{limit}_{x \rightarrow 1} \frac{\frac{1}{3}(5 x+1)^{-2 / 3} \cdot 5-\frac{1}{3}(x+5)^{-2 / 3}}{2 \times \frac{1}{2}(2 x+3)^{-1 / 2}-\frac{1}{2}(x+4)^{-1 / 2}}$
$=\frac{\frac{1}{3} \times \frac{5}{(6)^{2 / 3}}-\frac{1}{3} \times \frac{1}{(6)^{2 / 3}}}{\frac{1}{2} \times \frac{2}{(5)^{1 / 2}}-\frac{1}{2} \times \frac{1}{(5)^{1 / 2}}}$
$=\frac{\frac{4}{3 \times(6)^{2 / 3}}}{\frac{1}{2 .(5)^{1 / 2}}}=\frac{8(5)^{1 / 2}}{3(6)^{2 / 3}}=\frac{m(5)^{1 / 2}}{n(2 n)^{2 / 3}}$
$\Rightarrow m=8, n=3$
$8 m+12 n=64+36=100$
24. In a G.P. $T_{1}=2, T_{2}=P, T_{3}=Q$, these are also terms of A.P ($7^{\text {th }}, 8^{\text {th }}$ and $13^{\text {th }}$ term $)$.
If $5^{\text {th }}$ term of G.P $=n^{\text {th }}$ term of A.P3. Then n is
Answer (27)
Sol. $T_{1}=2$

$$
a=2
$$

$T_{2}=P \quad 2 r=P \Rightarrow r=\frac{P}{2}$
$T_{3}=Q \quad 2 r^{2}=Q \Rightarrow r^{2}=\frac{Q}{2}$
$a^{\prime}+6 d=2$
$a^{\prime}+7 d=P$
$a^{\prime}+12 d=Q$
$d=2(r-1)$
$2 r(r-1)=5 d$
$\frac{5 d}{d}=\frac{-2 r(r-1)}{2(r-1)}$
$r=5 \Rightarrow d=8$
$a+48=2$
$a=-46$
$2.3^{4}=-46+(n-1) \times 8$
$\Rightarrow n=27$
25. Domain of $\sin ^{-1}\left(\frac{3 x-22}{2 x-19}\right)+\log _{e}\left(\frac{3 x^{2}-8 x+5}{x^{2}-3 x-10}\right)$
is $(\alpha, \beta]$. Then $3 \alpha+10 \beta$ equals to

Answer (97)

Sol. $-1 \leq \frac{3 x-22}{2 x-19} \leq 1$

$\frac{3 x-22-2 x+19}{2 x-19} \leq 0$
$\frac{x-3}{2 x-19} \leq 0$
$+\quad-\quad+$
3

$\left[3, \frac{19}{2}\right)$
$\frac{3 x-22+2 x-19}{2 x-19} \geq 0$
$\frac{5 x-41}{2 x-19} \geq 0$

$\left(-\infty, \frac{41}{5}\right] \cup\left(\frac{19}{2}, \infty\right)$
Taking intersection

Taking intersection of individual domains

$\left(5, \frac{41}{5}\right]$
$3 \alpha+10 \beta=3 \times 5+10 \times \frac{41}{5}$
$=15+82=97$
26. If $a=\frac{1}{2!}+\frac{{ }^{2} C_{2}}{3!}+\frac{{ }^{3} C_{2}}{4!}+\frac{{ }^{4} C_{2}}{5!}+\ldots$.
$b=1+\frac{{ }^{1} C_{0}+{ }^{1} C_{1}}{1!}+\frac{{ }^{2} C_{0}+{ }^{+2} C_{1}+{ }^{2} C_{2}}{2!}+\ldots$.
Then $\frac{2 b}{a^{2}}$ equals to

Answer (8)

Sol. $a=\frac{1}{2}+\sum_{n=2}^{\infty} \frac{{ }^{n} C_{2}}{(n+1)!}$

$$
=\frac{1}{2}+\sum_{n=2}^{\infty} \frac{\frac{n(n+1)}{2}}{(n+1)!}
$$

$$
\begin{aligned}
& =\frac{1}{2}+\sum_{n=2}^{\infty} \frac{1}{2} \times \frac{1}{(n-1)!} \\
& =\frac{1}{2}+\frac{1}{2}(e-1) \\
& =\frac{e}{2} \\
& b=1+\frac{2^{1}}{1!}+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+\ldots . . \\
& b=e^{2} \\
& \frac{2 b}{a^{2}}=\frac{2 \times e^{2}}{\frac{e^{2}}{4}}=8
\end{aligned}
$$

27. If $A=\left[\begin{array}{lll}1 & 2 & \alpha \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$ and $\operatorname{Det}\left(\operatorname{Adj}\left(A-2 A^{\top}\right) \operatorname{Adj}(2 A-\right.$
$\left.\left.A^{\top}\right)\right)=2^{8}$ then $\operatorname{det}(A)^{2}$ is

Answer (16.00)

Sol. $\left|\operatorname{Adj}\left(A-2 A^{T}\right) \operatorname{Adj}\left(2 A-A^{T}\right)\right|=2^{8}$
$P=A-2 A^{T}$
$Q=2 A^{T}-A \Rightarrow Q^{T}=2 A^{T}-A=-P$
$\mid \operatorname{adj}(P)$ adj $Q\left|=2^{8}, \Rightarrow\right| Q^{\top}|=|-P| \Rightarrow| Q|=-|P|$
$|P|^{2}|Q|^{2}=2^{8} \Rightarrow|P Q|=-2^{4}$
$\Rightarrow|P|(-|P|)=-2^{4} \Rightarrow|P|=4$ and $|Q|=-4$
$\left|A-2 A^{T}\right|=4$
$A-2 A^{T}=\left[\begin{array}{lll}1 & 2 & \alpha \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]-2\left[\begin{array}{lll}1 & 1 & 0 \\ 2 & 0 & 1 \\ \alpha & 1 & 2\end{array}\right]=\left[\begin{array}{ccc}-1 & 0 & \alpha \\ -3 & 0 & -1 \\ -2 \alpha & -1 & -2\end{array}\right]$
$\Rightarrow\left|A-2 A^{\top}\right|=1+3 \alpha=4 \Rightarrow \alpha=1 \Rightarrow|A|=-4 \Rightarrow$ $|A|^{2}=16$
28.
29.
30.

