Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Answers \& Solutions

for
JEE Main-2024 Shift -1

(Mathematics, Physics and Chemistry)

IMPORTANT INSTRUCTIONS:

(1) The test is of $\mathbf{3}$ hours duration.
(2) This test paper consists of 90 questions. Each subject (MPC) has 30 questions. The maximum marks are 300.
(3) This question paper contains Three Parts. Part-A is Mathematics, Part-B is Physics and Part-C is Chemistry. Each part has only two sections: Section-A and Section-B.
(4) Section - A : Attempt all questions.
(5) Section - B : Attempt any 05 questions out of 10 Questions.
(6) Section - A ($\mathbf{0 1} \mathbf{- 2 0}$) contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(7) Section-B(21-30) contains 10 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries $\mathbf{+ 4}$ marks for correct answer and -1 mark for wrong answer.

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. If the value of the integral $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{x^{2} \cos x}{1+\pi^{x}}+\frac{1+\sin ^{2} x}{1+e^{\sin x^{2023}}}\right) d x=\frac{\pi}{4}(\pi+a)-2$, then the value of a is
(1) $\frac{3}{2}$
(2) 3
(3) 2
(4) $-\frac{3}{2}$

Answer (2)

Sol. $I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{x^{2} \cos x}{1+\pi^{x}}+\frac{1+\sin ^{2} x}{1+e^{\sin x^{2023}}}\right) d x$

$$
I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{x^{2} \cos x}{1+\pi^{-x}}+\frac{1+\sin ^{2} x}{1+e^{-\sin x^{2023}}}\right) d x
$$

$$
2 I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^{2} \cos x+\sin ^{2} x+1\right) d x
$$

$$
2 I=2 \int_{0}^{\frac{\pi}{2}}\left(x^{2} \cos x+\sin ^{2} x+1\right) d x
$$

$$
I=\int_{0}^{\frac{\pi}{2}}\left(x^{2} \cos x+\frac{1-\cos 2 x}{2}+1\right) d x
$$

$$
=\int_{0}^{\frac{\pi}{2}}\left(x^{2} \cos x+\frac{3}{2}-\frac{\cos 2 x}{2}\right) d x
$$

$=x^{2} \sin x-\int 2 x \sin x d x+\frac{3}{2} x-\frac{\sin 2 x}{4}$
$=x^{2} \sin x-\left[2 x(-\cos x)-\int 2(-\cos x) d x+\frac{3 x}{2}-\frac{\sin 2 x}{4}\right]$
$=\left[x^{2} \sin x+2 x \cos x-2 \sin x+\frac{3 x}{2}-\frac{\sin 2 x}{4}\right]_{0}^{\frac{\pi}{2}}$
$=\frac{\pi^{2}}{4}+\frac{3 \pi}{4}-2$
$\Rightarrow \quad a=3$
2. For $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, if $y(x)$
$=\int \frac{\operatorname{cosec} x+\sin x}{\operatorname{cosec} x \sec x+\tan x \sin ^{2} x} d x$, and $\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} y(x)=0$ then $y\left(\frac{\pi}{4}\right)$ is equal to
(1) $\frac{1}{2} \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
(2) $-\frac{1}{2} \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
(3) $\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
(4) $\frac{1}{\sqrt{2}} \tan ^{-1}\left(-\frac{1}{2}\right)$

Answer (4)
Sol. $y(x)=\int \frac{\operatorname{cosec} x+\sin x}{\operatorname{cosec} x \sec x+\tan x \sin ^{2} x} d x$
$=\int \frac{\frac{1}{\sin x}+\sin x}{\frac{1}{\sin x \cos x}+\frac{\sin ^{3} x}{\cos x}} d x$
$=\int \frac{\frac{1+\sin ^{2} x}{\sin x}}{\frac{1+\sin ^{4} x}{\sin x \cos x}} d x=\int \frac{\left(1+\sin ^{2} x\right) \cos x}{1+\sin ^{4} x} d x$

Put $\sin x=t$
$\therefore \quad \cos x d x=d t$
$\int \frac{1+t^{2}}{1+t^{4}} d t=\int \frac{1+\frac{1}{t^{2}}}{t^{2}+\frac{1}{t^{2}}} d t$
Let $t-\frac{1}{t}=u$

$$
\begin{aligned}
& \left(1+\frac{1}{t^{2}}\right) d t=d u \\
& \text { and }\left(t-\frac{1}{t}\right)^{2}=u^{2} \Rightarrow t^{2}+\frac{1}{t^{2}}=u^{2}+2 \\
& \therefore \quad \int \frac{d u}{u^{2}+2}=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{4}{\sqrt{2}}+c \\
& y(x)=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{\left(\sin x-\frac{1}{\sin x}\right)}{\sqrt{2}}+c \\
& \lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{1}{\sqrt{2}} \tan ^{-1} \frac{\left(\sin x-\frac{1}{\sin x}\right)}{\sqrt{2}}+c=0
\end{aligned}
$$

$$
\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{1}{\sqrt{2}} \tan ^{-1} \frac{\sin ^{2} x-1}{\sqrt{2} \sin x}+c=0
$$

$$
\Rightarrow \quad c=0
$$

$$
\therefore \quad y(x)=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\sin ^{2} x-1}{\sqrt{2} \sin x}\right)
$$

$$
y\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\frac{1}{2}-1}{\sqrt{2} \times \frac{1}{\sqrt{2}}}\right)
$$

$$
=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{-1}{2}\right)
$$

3. In a $\triangle A B C$, suppose $y=x$ is the equation of the bisector of the angle B and the equation of the side $A C$ is $2 x-y=2$. If $2 A B=B C$ and the points A and B are respectively $(4,6)$ and (α, β), then $\alpha+2 \beta$ is equal to
(1) 39
(2) 42
(3) 48
(4) 45

Answer (2)

Sol.

$\because \quad B$ lies on $y=x$
$\therefore \quad \alpha=\beta$
Let coordinate of C be (h, k)
Here $A B: C B=1: 2=A D: C D$
Equation of line $A C: 2 x-y=2$

From (1) and (2) coordinate of $D=(2,2)$
$\because\left(\frac{h+8}{3}, \frac{k+12}{3}\right)=(2,2)$
$\therefore \quad(h, k)=(-2,-6)$
Equation of line $B A^{\prime} C$ is : $y-4=\frac{5}{4}(x-6)$
$\because \quad x=y=\alpha \Rightarrow \alpha=14$
$\therefore \quad \alpha+2 \beta=3 \times 14=42$
4. $\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{1}{\left(x-\frac{\pi}{2}\right)^{2}} \int_{x^{3}}^{\left(\frac{\pi}{2}\right)^{3}} \cos \left(t^{\frac{1}{3}}\right) d t\right)$ is equal to
(1) $\frac{3 \pi}{4}$
(2) $\frac{3 \pi}{8}$
(3) $\frac{3 \pi^{2}}{4}$
(4) $\frac{3 \pi^{2}}{8}$

Answer (4)

Sol. $\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{1}{\left(x-\frac{\pi}{2}\right)^{2}} \int_{x^{3}}^{\left(\frac{\pi}{2}\right)^{3}} \cos \left(t^{1 / 3}\right) d t\right)$
Applying L-H rule

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos \left(\frac{\pi}{2}\right) \times 0-\cos x\left(3 x^{2}\right)}{2\left(x-\frac{\pi}{2}\right)(1)} \text { (by Leibnitz theorem) } \\
& =\lim _{x \rightarrow \frac{\pi}{2}}\left(-\frac{\sin \left(\frac{\pi}{2}-x\right)}{\left(x-\frac{\pi}{2}\right)}\right)\left(\frac{3}{2} x^{2}\right) \\
& =\frac{3}{2}\left(\frac{\pi}{2}\right)^{2} \\
& =\frac{3 \pi^{2}}{8}
\end{aligned}
$$

So, option (4) is correct.
5. Let $P Q R$ be a triangle with $R(-1,4,2)$. Suppose M $(2,1,2)$ is the mid-point of $P Q$. The distance of the centroid of $\triangle P Q R$ from the point of intersection of the lines $\frac{x-2}{0}=\frac{y}{2}=\frac{z+3}{-1}$ and $\frac{x-1}{1}=\frac{y+3}{-3}$ $=\frac{z+1}{1}$ is
(1) $\sqrt{69}$
(2) 69
(3) $\sqrt{99}$
(4) 9

Answer (1)
Sol.

Given two lines are
$\frac{x-2}{0}=\frac{y}{2}=\frac{z+3}{-1}=\lambda($ let $)$
$\frac{x-1}{1}=\frac{y+3}{-3}=\frac{z+1}{1}=\mu($ let $)$
for point of intersection
$x=2, y=2 \lambda, z=-\lambda-3$ (General point of line 1)
$x=\mu+1, y=-3 \mu-3, z=\mu-1$ (General point of line 2)
$2=\mu+1 \Rightarrow \mu=1$
$2 \lambda=-3 \mu-3 \Rightarrow \lambda=-3$
Point of intersection of two lines is $(2,-6,0)$
$\because M$ is the mid point of $P Q$,
$\therefore x_{1}+x_{2}=4, y_{1}+y_{2}=2, z_{1}+z_{2}=4$
Centroid of $\triangle P Q R$
$=\left(\frac{x_{1}+x_{2}-1}{3}, \frac{y_{1}+y_{2}+4}{3}, \frac{z_{1}+z_{2}+2}{3}\right)$
$=(1,2,2)$
\therefore distance between $(1,2,2)$ and $(2,-6,0)$
$=\sqrt{1^{2}+8^{2}+2^{2}}=\sqrt{69}$
6. Let O be the origin and the position vectors of A and B be $2 \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+4 \hat{j}+4 \hat{k}$ respectively. If the internal bisector of $\angle A O B$ meets the line $A B$ at C, then the length of $O C$ is
(1) $\frac{2}{3} \sqrt{34}$
(2) $\frac{3}{2} \sqrt{34}$
(3) $\frac{3}{2} \sqrt{31}$
(4) $\frac{2}{3} \sqrt{31}$

Answer (1)

Sol.

Position vector of $C=\frac{6 \hat{i}+8 \hat{j}+6 \hat{k}}{3}$

$$
\begin{aligned}
\therefore \quad|\overrightarrow{O C}| & =\frac{1}{3} \sqrt{36+64+36} \\
& =\frac{1}{3} \sqrt{136} \\
& =\frac{2}{3} \sqrt{34}
\end{aligned}
$$

7. A function $y=f(x)$ satisfies $f(x) \sin 2 x+\sin x-(1+$ $\left.\cos ^{2} x\right) f^{\prime}(x)=0$ with condition $f(0)=0$. Then, $f\left(\frac{\pi}{2}\right)$ is equal to
(1) -1
(2) 1
(3) 2
(4) 0

Answer (1)

Sol. $y \cdot \sin 2 x+\sin x-\left(1+\cos ^{2} x\right) \frac{d y}{d x}=0$

$$
\begin{aligned}
& \left(1+\cos ^{2} x\right) \frac{d y}{d x}-(\sin 2 x) y=\sin x \\
& \frac{d y}{d x}-\left(\frac{\sin 2 x}{1+\cos ^{2} x}\right) y=\frac{\sin x}{1+\cos ^{2} x}
\end{aligned}
$$

It is of the form : $\frac{d y}{d x}+P(x) y=Q(x)$
I.F $=e^{\int P(x) d x}=e^{-\int \frac{\sin 2 x}{1+\cos ^{2} x} d x}$

Let $I=\int \frac{\sin 2 x}{1+\cos ^{2} x} d x=2 \int \frac{\sin x \cos x}{1+\cos ^{2} x} d x$
$=-\int \frac{2 t d t}{1+t^{2}}\left[\begin{array}{c}\cos x=t \\ -\sin x d x=d t\end{array}\right]$
$=-\int \frac{d u}{u}\left[\begin{array}{l}1+t^{2}=u \\ 2 t d t=d u\end{array}\right]$
$=-\ln u$
$=-\ln \left|1+t^{2}\right|$
$I=-\ln \left|1+\cos ^{2} x\right|$
$\therefore \quad$ I.F $=e^{|n| 1+\cos ^{2} x \mid}=1+\cos ^{2} x$
$\Rightarrow \quad y \cdot(\mathrm{I} . \mathrm{F})=\int Q(x)($ I.F $) d x$
$y\left(1+\cos ^{2} x\right)=\int \frac{\sin x}{\left(1+\cos ^{2} x\right)}\left(1+\cos ^{2} x\right) d x$
$y\left(1+\cos ^{2} x\right)=-\cos x+c$
$\because f(0)=0 ; c=1$
$\Rightarrow y\left(1+\cos ^{2} x\right)=-\cos x+1$
Now, $f\left(\frac{\pi}{2}\right)$ is
$\Rightarrow \quad y\left(1+\cos ^{2} \frac{\pi}{2}\right)=-\cos \frac{\pi}{2}+1$
$\Rightarrow \quad y=1$
8. If $z=\frac{1}{2}-2 i$ is such that $|z+1|=\alpha z+\beta(1+i)$, $i=\sqrt{-1}$ and $\alpha, \beta \in \mathbb{R}$, then $\alpha+\beta$ is equal to
(1) -4
(2) 2
(3) -1
(4) 3

Answer (4)
Sol. $\left|\frac{1}{2}-2 i+1\right|=\alpha\left(\frac{1}{2}-2 i\right)+\beta(1+i)$
$\sqrt{\frac{9}{4}+4}=\alpha\left(\frac{1}{2}-2 i\right)+\beta(1+i)$
$\frac{5}{2}=\alpha\left(\frac{1}{2}\right)+\beta+i(-2 \alpha+\beta)$
$\frac{\alpha}{2}+\beta=\frac{5}{2}$
$-2 \alpha+\beta=0$
Solving (i) and (ii)
$\frac{\alpha}{2}+2 \alpha=\frac{5}{2}$
$\frac{5}{2} \alpha=\frac{5}{2}$
$\alpha=1$ and $\beta=2$
$\therefore \alpha+\beta=3$
9. Consider the function $f:\left[\frac{1}{2}, 1\right] \rightarrow \mathbb{R}$ defined by $f(x)=4 \sqrt{2} x^{3}-3 \sqrt{2} x-1$. Consider the statements
(I) The curve $y=f(x)$ intersects the x-axis exactly at one point.
(II) The curve $y=f(x)$ intersects the x-axis at $x=\cos \frac{\pi}{12}$.
Then
(1) Both (I) and (II) are incorrect.
(2) Only (II) is correct.
(3) Only (I) is correct.
(4) Both (I) and (II) are correct.

Answer (4)
Sol. Let $x=\frac{\pi}{12}$
$\therefore 3 x=\frac{\pi}{4}$
$\cos (3 x)=\frac{1}{\sqrt{2}}$
$\Rightarrow 4 \cos ^{3} x-3 \cos x=\frac{1}{\sqrt{2}}$
$\Rightarrow 4 \sqrt{2} \cos ^{3} x-3 \sqrt{2} \cos x-1=0$
$\therefore \quad x=\left(\frac{\pi}{12}\right)$ is the solution of above equation statement II is correct
$f^{\prime}(x)=12 \sqrt{2} x^{2}-3 \sqrt{2}$
Which is positive for $x \in\left[\frac{1}{2}, 1\right]$
Hence, only one solution in $\left[\frac{1}{2}, 1\right]$
\therefore Statement I is also correct
10. In an A.P., the sixth term $a_{6}=2$. If the product $a_{1} a_{4} a_{5}$ is the greatest, then the common difference of the A.P. is equal to
(1) $\frac{5}{8}$
(2) $\frac{2}{3}$
(3) $\frac{3}{2}$
(4) $\frac{8}{5}$

Answer (4)
Sol. Let first term =a
Common difference $=d$
Given, $a+5 d=2$
Product $(P)=a_{1} a_{5} a_{6}=a(a+4 d)(a+3 d)$

From (1)

$$
\begin{aligned}
& P=(2-5 d)(2-d)(2-2 d) \\
& \frac{d P}{d d}=(2-5 d)(2-d)(-2)+(2-5 d)(2-2 d)(-1) \\
& \quad+(-5)(2-d)(2-2 d) \\
& =-2[(d-2)(5 d-2)+(d-1)(5 d-2)+5(d-1)(d-2)] \\
& =-2\left[5 d^{2}+4-12 d+5 d^{2}+2-7 d+5 d^{2}+10-15 d\right] \\
& =-2\left[15 d^{2}-34 d+16\right]
\end{aligned}
$$

$$
\Rightarrow d=\frac{8}{5} \text { or } \frac{2}{3}
$$

at $\left(\frac{8}{5}\right)$, Product attains maxima
Answer is $\frac{8}{5}$
11. If $\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ is the solution of $4 \cos \theta+5 \sin \theta=$ 1 , then the value of $\tan \alpha$ is
(1) $\frac{10-\sqrt{10}}{6}$
(2) $\frac{\sqrt{10}-10}{12}$
(3) $\frac{\sqrt{10}-10}{6}$
(4) $\frac{10-\sqrt{10}}{12}$

Answer (2)

Sol. $\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ is solution of $4 \cos \theta+5 \sin \theta=1$
So, $4 \cos \alpha+5 \sin \alpha=1$
Divide both sides by $\cos \alpha$

$$
\begin{aligned}
& \left(\text { as } \alpha \neq \frac{\pi}{2},-\frac{\pi}{2}, \text { so we can divide by } \cos \alpha\right) \\
\Rightarrow & 4+5 \tan \alpha=\sec \alpha \\
\Rightarrow & 4+5 \tan \alpha=\sqrt{1+\tan ^{2} \alpha}
\end{aligned}
$$

Square both sides,

$$
\begin{aligned}
& \Rightarrow \quad 16+25 \tan ^{2} \alpha+40 \tan \alpha=1+\tan ^{2} \alpha \\
& \Rightarrow 24 \tan ^{2} \alpha+40 \tan \alpha+15=0 \\
& \Rightarrow \tan \alpha=\frac{-40 \pm \sqrt{1600-4 \times 24 \times 15}}{48} \\
& \Rightarrow \tan \alpha=\frac{-10 \pm \sqrt{10}}{12}
\end{aligned}
$$

So $\tan \alpha=\frac{-10+\sqrt{10}}{12}$
12. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ and $|2 A|^{3}=2^{21}$ where $\alpha, \beta \in \mathbb{Z}$, then a value of α is
(1) 5
(2) 9
(3) 17
(4) 3

Answer (1)
Sol. $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$
$2 A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 2 \alpha & 2 \beta \\ 0 & 2 \beta & 2 \alpha\end{array}\right]$
$|2 A|=2\left(4 \alpha^{2}-4 \beta^{2}\right)$
$|2 A|^{3}=8\left(4 \alpha^{2}-4 \beta^{2}\right)^{3}=2^{21}$ (given)
$\Rightarrow\left(4 \alpha^{2}-4 \beta^{2}\right)^{3}=2^{18}\left(2^{6}\right)^{3}$
$\Rightarrow 4\left(\alpha^{2}-\beta^{2}\right)=2^{6}$
$\Rightarrow \alpha^{2}-\beta^{2}=2^{4}$
$\Rightarrow \alpha^{2}-\beta^{2}=16$
Now as $\alpha, \beta \in Z$
$(\alpha, \beta)=(5,3)$ is a possible pair.
So $\alpha=5$
13. Let \vec{a}, \vec{b} and \vec{c} be three non-zero vectors such that \vec{b} and \vec{c} are non-collinear. If $\vec{a}+5 \vec{b}$ is collinear with $\vec{c}, \vec{b}+6 \vec{c}$ is collinear with \vec{a} and $\vec{a}+\alpha \vec{b}+\beta \vec{c}=\overrightarrow{0}$, then $\alpha+\beta$ is equal to
(1) 35
(2) -30
(3) -25
(4) 30

Answer (1)

Sol. $\vec{a}+5 \vec{b}$ is collinear with \vec{c}
$\vec{a}+5 \vec{b}=\lambda \vec{c}$
$\vec{a}=\lambda \vec{c}-5 \vec{b}$
$\vec{b}+6 \vec{c}$ is collinear with \vec{a}
$\vec{b}+6 \vec{c}=\mu \vec{a}$
$\vec{b}+6 \vec{c}=\mu(\lambda \vec{c}-5 \vec{b})$
$\vec{b}+6 \vec{c}=\mu \lambda \vec{c}-5 \mu \vec{b}$
$\vec{b}(1+5 \mu)=\vec{c}(\lambda \mu-6)$
$\Rightarrow 1+5 \mu=0$
$\Rightarrow \mu=-\frac{1}{5}$ and $\lambda \mu-6=0$
$\lambda\left(-\frac{1}{5}\right)=6$
$\lambda=-30$
By equation (i), we get :
$\vec{a}+5 \vec{b}+30 \vec{c}=0$
Compare it with
$\vec{a}+\alpha \vec{b}+\beta \vec{c}=0$
$\alpha=5, \beta=30$
$\Rightarrow \alpha+\beta=35$
14. If $f(x)=\left\{\begin{array}{l}2+2 x,-1 \leq x<0 \\ 1-\frac{x}{3},\end{array} \quad 0 \leq x \leq 3\right.$; $g(x)=\left\{\begin{array}{l}-x, \\ x, \\ x,\end{array} \quad 0<x \leq 10\right.$, , then range of $(f \circ g)(x)$ is
(1) $[0,1]$
(2) $(0,1]$
(3) $[0,1)$
(4) $[0,3)$

Answer (1)
Sol. $f(x)= \begin{cases}2+2 x, & -1 \leq x<0 \\ 1-x / 3 & 0 \leq x \leq 3\end{cases}$
$g(x)=\left\{\begin{array}{cc}-x, & -3 \leq x \leq 0 \\ x & 0<x \leq 1\end{array} \Rightarrow g(x)\right.$ is nothing but a part of $|x|$
$\Rightarrow g(x)=|x|, x \in[-3,1] \Rightarrow g(x) \geq 0 \quad(\because|x| \geq 0)$
$\Rightarrow f(g(x))=\left\{\begin{array}{cc}2+2|x|, & -1<|x|<0 \\ 1-\frac{|x|}{3}, & 0 \leq|x| \leq 3\end{array}\right.$
$\Rightarrow f(g(x))=1-\frac{|x|}{3},|x| \in[0,3]$
Range of $f(g(x))$
$|x| \in[0,3] \Rightarrow-\frac{[x]}{3} \in[-1,0]$
$1-\frac{[x]}{3} \in[0,1]$
Range of $f(g(x))=[0,1]$
15. If in a G.P. of 64 terms, the sum of all the terms is 7 times the sum of the odd terms of the G.P. then the common ratio of the G.P. is equal to
(1) 6
(2) 7
(3) 4
(4) 5

Answer (1)
Sol. Let the G.P. is $a, a r, a r^{2}, \ldots .$.

As given
$\frac{a\left(r^{64}-1\right)}{r-1}=7 \cdot \frac{a\left(\left(r^{2}\right)^{32}-1\right)}{r^{2}-1}$
$\Rightarrow r^{2}-1=7 r-7$
$\Rightarrow r^{2}-7 r+6=0$
$\Rightarrow r=1$ (Rejected) or $r=6$.
16. Suppose $f(x)=\frac{\left(2^{x}+2^{-x}\right) \tan x \sqrt{\tan ^{-1}\left(x^{2}-x+1\right)}}{\left(7 x^{2}+3 x+1\right)^{3}}$.

Then the value of $f(0)$ is equal to
(1) $\frac{\pi}{2}$
(2) $\sqrt{\pi}$
(3) 0
(4) π

Answer (2)

Sol. Let $f(x)=\tan x g(x)$
where $g(x)=\frac{\left(2^{x}+2^{-x}\right) \sqrt{\tan ^{-1}\left(x^{2}-x+1\right)}}{\left(7 x^{2}+3 x+1\right)^{3}}$
$\Rightarrow f(x)=\sec ^{2} x g(x)+\tan x g^{\prime}(x)$
$f(0)=\sec ^{2}(0) g(0)+\tan 0 g^{\prime}(0)$
$=g(0)$
$g(0)=\frac{\left(2^{0}+2^{-0}\right) \sqrt{\tan ^{-1}\left(0^{2}-0+1\right)}}{\left(7(0)^{2}+3(0)+1\right)^{3}}$
$=2 \sqrt{\tan ^{-1} 1}=2 \sqrt{\frac{\pi}{4}}=\sqrt{\pi}$
17. Let A be a square matrix such that $A A^{T}=I$. Then $\frac{1}{2} A\left[\left(A+A^{T}\right)^{2}+\left(A-A^{T}\right)^{2}\right]$ is equal to
(1) $A^{2}+A^{T}$
(2) $A^{2}+I$
(3) $A^{3}+l$
(4) $A^{3}+A^{T}$

Answer (4)

Sol. Let $B=\frac{1}{2} A\left[\left(A+A^{T}\right)^{2}+\left(A-A^{T}\right)^{2}\right]$

$$
B=\frac{1}{2} A\left(A^{2}+\left(A^{\top}\right)^{2}+A A^{T}+A^{\top} A+A^{2}+\left(A^{\top}\right)^{2}-A A^{\top}-A^{\top} A\right)
$$

$B=\frac{1}{2} A\left(2 A^{2}+2\left(A^{T}\right)^{2}\right)=A\left(A^{2}+A^{T} \cdot A^{T}\right)$
$=A^{3}+A A^{T} A^{T}=A^{3}+A^{T}$
18. Let $\left(5, \frac{a}{4}\right)$ be the circumcentre of a triangle with vertices $A(a,-2), B(a, 6)$ and $C\left(\frac{a}{4},-2\right)$. Let α denote the circumradius, β denote the area and γ denote the perimeter of the triangle. Then $\alpha+\beta+\gamma$ is
(1) 62
(2) 60
(3) 30
(4) 53

Answer (4)

Circumcentre lie on perpendicular bisector of $A B \Rightarrow y=2$
$\Rightarrow \frac{a}{4}=2 \Rightarrow a=8$

\Rightarrow Perimeter $=6+8+10=24$
Area $=\frac{6 \times 8}{2}=24$
Circumradius $=$ half of hypotenuse

$$
=\frac{10}{2}=5
$$

$\alpha+\beta+\gamma \Rightarrow 24+24+5=53$
19. Let R be a relation on $\mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) R(c$, d) if and only if $a d-b c$ is divisible by 5 . Then R is
(1) Reflexive and symmetric but not transitive
(2) Reflexive but neither symmetric nor transitive
(3) Reflexive and transitive but not symmetric
(4) Reflexive, symmetric and transitive

Answer (1)
Sol. $(a, b) R(c, d) \Rightarrow a d-b c$ is divisible by 5
$=c b-d a$ is also divisible by 5
$=(c, d) R(a, b)$
$\Rightarrow R$ is symmetric relation
If $(a, b) R(a, b) \Rightarrow a b-b a=0$ is divisible by 5
$\Rightarrow R$ is reflexive
If $(a, b) R(c, d) \Rightarrow(a d-b c)$ is divisible by 5
and $(c, d) R(e, f) \Rightarrow(c f-d e)$ is divisible by 5
$\Rightarrow(a, b) R(e, f)=(a f-b e)$ needs to be multiple of 5
$a d-b c=5 k_{1}$
$c f-d e=5 k_{2}$
afd - bcf $=5 f k_{1}$
$b c f-b d e=5 b k_{2}$
$\Rightarrow d(a f-b e)=5\left(f k_{1}+b k_{2}\right)$
But if $d=0$ then there can be af-be such that it is not divisible by 5
\Rightarrow Not transitive
For example take : $(a, b) \equiv(6,1),(c, d)=(0,0),(e, f)$ $=(1,7)$
20. A fair die is thrown until 2 appears. Then the probability, that 2 appears in even number of throws, is
(1) $\frac{6}{11}$
(2) $\frac{5}{6}$
(3) $\frac{5}{11}$
(4) $\frac{1}{6}$

Answer (3)
Sol. A : 2 appears in even number of throws

B: 2 appears on die

$$
\begin{aligned}
& \Rightarrow P(B)=\frac{1}{6}, \quad P(\bar{B})=\frac{5}{6} \\
& P(A)=P(\bar{B}) P(B)+P(\bar{B}) P(\bar{B}) P(\bar{B}) P(B)+ \\
& P(\bar{B}) P(\bar{B}) P(\bar{B}) P(\bar{B}) P(\bar{B}) P(B)+\ldots \\
& \Rightarrow P(A)=\frac{5}{6} \cdot \frac{1}{6}+\left(\frac{5}{6}\right)^{3} \cdot \frac{1}{6}+\left(\frac{5}{6}\right)^{5} \frac{1}{6}+\ldots \\
& \frac{\frac{5}{36}}{1-\frac{5^{2}}{6^{2}}}=\frac{\frac{5}{36}}{\frac{36-25}{36}}=\frac{5}{11}
\end{aligned}
$$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. Attempt any 5 questions out of 10 . The answer to each question should be rounded-off to the nearest integer.
21. If $\frac{{ }^{11} C_{1}}{2}+\frac{{ }^{11} C_{2}}{3}+\ldots+\frac{{ }^{11} C_{9}}{10}=\frac{n}{m}$ with $\operatorname{gcd}(n, m)=1$, then $n+m$ is equal to \qquad .

Answer (2041)

Sol. $(1+x){ }^{11}={ }^{11} C_{0}+{ }^{11} C_{1} x+{ }^{11} C_{2} x^{2}+\ldots+{ }^{11} C_{11} x{ }^{11}$
$\left.\int_{0}^{1}(1+x)^{1 "} d x={ }^{11} C_{0} x+\frac{"{ }^{1 "} C_{1} x^{2}}{2}+\frac{" C_{2} x^{3}}{3}+\ldots+\frac{{ }^{" 1} C_{c^{\prime}} x^{10}}{10}+\frac{" C_{10} x^{1 "}}{11}+\frac{{ }^{11} C_{11} x^{2}}{12}\right]_{0}^{1}$
$\therefore \frac{{ }^{11} C_{1}}{2}+\frac{{ }^{11} C_{2}}{3}+\ldots+\frac{{ }^{11} C_{9}}{10}=\frac{{ }^{12}-1}{12}-1-1-\frac{1}{12}$
$=\frac{2035}{6}=\frac{n}{m}$
$n+m=2041$
22. Let α, β be the roots of the equation $x^{2}-x+2=0$ with $\operatorname{Im}(\alpha)>\operatorname{Im}(\beta)$. Then $\alpha^{6}+\alpha^{4}+\beta^{4}-5 \alpha^{2}$ is equal to \qquad .
Answer (13)
Sol. $x^{2}+2=x$
$\Rightarrow x^{4}+4+4 x^{2}=x^{2}$

SMART ACHIEVERS
 JEE I NEET I FOUNDATION

So,
$x^{4}=-4-3 x^{2}$
$\Rightarrow x^{6}=-4 x^{2}-3 x^{4}$
$\Rightarrow x^{6}=12+5 x^{2}$
Now,
$\alpha^{6}-5 \alpha^{2}=12$
So $\alpha^{4}+\beta^{4}+12$
$=4-3\left(\alpha^{2}+\beta^{2}\right)$
$=4-3[1-4]$
$=13$
23. A line with direction ratios $2,1,2$ meets the lines $x=y+2=z$ and $x+2=2 y=2 z$ respectively at the points P and Q. If the length of the perpendicular from the point $(1,2,12)$ to the line $P Q$ is I, then R is
\qquad -

Answer (65)

Sol.

$x=y+2=z=\lambda$
$x+2=2 y=2 z=\mu$
Now $P Q$ is proportional to $<2,1,2>$
$\therefore \frac{\lambda-\mu+2}{2}=\frac{\lambda-2-\frac{\mu}{2}}{1}=\frac{\lambda-\frac{\mu}{2}}{2}$
$\therefore \mu=4, \lambda=6$
$\therefore P(6,4,6)$ and $Q(2,2,2)$
$L_{P Q}=\frac{x-2}{2}=\frac{y-2}{1}=\frac{z-2}{2}=K$
Point of $P Q:(2 K+2, K+2,2 K+2)$
$<2 K+1, K, 2 K-10>$
$2(2 K+1)+K+2(2 K-10)=0$
$9 K-18=0 \Rightarrow K=2$
\therefore Point on $P Q \equiv(6,4,6)$
$P=(6-1)^{2}+(4-2)^{2}+(12-6)^{2}$
$=25+4+36=65$
24. All the letters of the word "GTWENTY" are written in all possible ways with or without meaning and these words are written as in a dictionary. The serial number of word "GTWENTY" is \qquad -.

Answer (553)

Sol. GTWENTY
(1) $E: \frac{6!}{2!}=360$
(2) $\overline{G E}: \frac{5!}{2!}, \overline{G N}: \frac{5!}{2!}$
(3) GTE : 4!, GTN : 4!, GTT : 4!
(4) GTWENTY = 1
$\Rightarrow 360+60+60+24+24+24+1=553$
25. The area (in sq. units) of the part of the circle $x^{2}+$ $y^{2}=169$ which is below the line $5 x-y=13$ is $\frac{\pi \alpha}{2 \beta}-\frac{65}{2}+\frac{\alpha}{\beta} \sin ^{-1}\left(\frac{12}{13}\right)$, where α, β are coprime numbers. Then $\alpha+\beta$ is equal to \qquad -

Answer (171)

Sol.

Area $=\frac{\pi(13)^{2}}{2}-\left[\frac{1}{2} \times 25 \times 5+\int_{12}^{13} \sqrt{169-y^{2}} d y\right]$
$\frac{169 \pi}{4}-\frac{65}{2}+\frac{169}{2} \sin ^{-1} \frac{12}{13}$
$\Rightarrow \alpha=169$
$\beta=2$
$\therefore \alpha+\beta=171$
26. If the mean and variance of the data $65,68,58,44$, $48,45,60, \alpha, \beta, 60$ where $\alpha>\beta$ are 56 and 66.2 respectively, then $\alpha^{2}+\beta^{2}$ is equal to \qquad -.

Answer (6344)

Sol. $56=\frac{65+68+58+44+48+45+60+60+\alpha+\beta}{10}$
$\Rightarrow \alpha+\beta=112$
$66.2 \times 10=(65-56)^{2}+(68-56)^{2}+(58-56)^{2}+$
$(44-56)^{2}+(48-56)^{2}+(45-56)^{2}+(60-56)^{2}$
$+(60-56)^{2}+(\alpha-56)^{2}+(\beta-56)^{2}$
$662=81+144+4+144+64+121+16+16+2$
$\times(56)^{2}+\alpha^{2}+\beta^{2}-112(\alpha+\beta)$
$\Rightarrow \alpha^{2}+\beta^{2}=6344$
27. If the solution curve $y=y(x)$ of the differential equation $\left(1+y^{2}\right)\left(1+\log _{e} x\right) d x+x d y=0, x>0$ passes through the point $(1,1)$ and $y(e)=\frac{\alpha-\tan \left(\frac{3}{2}\right)}{\beta+\left(\frac{3}{2}\right)}$ then $\alpha+2 \beta$ is

Answer (3)

Sol. $\left(1+y^{2}\right)(1+\ln x) d x+x d y=0$
Put $1+\ln x=t \Rightarrow \frac{1}{x} d x=d t$
$\left(1+y^{2}\right) t d t+d y=0$
$t d t=-\frac{d y}{1+y^{2}}$
$\frac{t^{2}}{2}=-\tan ^{-1}(y)+C$

$$
\begin{aligned}
\Rightarrow & \frac{(1+\ln x)^{2}}{2}=-\tan ^{-1} y+C \text { passes through }(1,1) \\
\Rightarrow & C=\frac{1}{2}+\frac{\pi}{4} \\
\Rightarrow & (1+\ln x)^{2}=-2 \tan ^{-1} y+1+\frac{\pi}{2} \\
& \text { Put } x=e \\
\Rightarrow & 4=-2 \tan ^{-1}(y(e))+1+\frac{\pi}{2} \\
& \tan ^{-1}(y(e))=\frac{\pi}{4}-\frac{3}{2} \\
& y(e)=\frac{1-\tan \left(\frac{3}{2}\right)}{1+\tan \left(\frac{3}{2}\right)} \\
\Rightarrow & \alpha+2 \beta=3
\end{aligned}
$$

28. Equations of two diameters of a circle are $2 x-3 y=$ 5 and $3 x-4 y=7$. The line joining the points $\left(-\frac{22}{7},-4\right)$ and $\left(-\frac{1}{7}, 3\right)$ intersects the circle at only one point $P(\alpha, \beta)$. Then $17 \beta-\alpha$ is equal to
\qquad .

Answer (2)

Sol. Intersection point of diameters $2 x-3 y=5$ and $3 x-$ $4 y=7$ is centre of circle $C(1,-1)$
Equation of line joining $\left(-\frac{22}{7}, 4\right)$ and $\left(-\frac{1}{7}, 3\right)$ is $y=\frac{7}{3} x+\frac{10}{3} \Rightarrow 7 x-3 y+10=0$

Radius of circle is $\frac{20}{\sqrt{58}}$
\Rightarrow Equation of circle is $(x-1)^{2}+(y+1)^{2}=\frac{400}{58}$

$$
x^{2}+y^{2}-2 x+2 y-\frac{142}{29}=0
$$

\Rightarrow Tangent at $P(\alpha, \beta)$ is

$$
\begin{aligned}
& \alpha x+\beta y-(\alpha+x)+(\beta+y)-\frac{142}{29}=0 \\
\Rightarrow & \frac{\alpha-1}{7}=\frac{\beta+1}{-3}=\frac{-\alpha+\beta-\frac{142}{29}}{10} \\
\Rightarrow & \alpha=-\frac{41}{29}, \beta=\frac{1}{29} \\
\Rightarrow & 17 \beta-\alpha=\frac{17}{29}+\frac{41}{29}=2
\end{aligned}
$$

29. If the points of intersection of two distinct conics $x^{2}+y^{2}=4 b$ and $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ lie on the curve $y^{2}=$ $3 x^{2}$ then $3 \sqrt{3}$ times the area of the rectangle formed by the intersection points is \qquad -

Answer (432)

Sol. $x^{2}+y^{2}=4 b$

$$
\begin{equation*}
\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1 \tag{i}
\end{equation*}
$$

$y^{2}=3 x^{2}$
From (i) and (iii)
$x^{2}=b, y^{2}=3 b$
From (ii)
$\frac{b}{16}+\frac{3 b}{b^{2}}=1$
$\frac{b}{16}+\frac{3}{b}=1$
$b^{2}-16 b+48=0$
$b=12, b=4$
(i) \& (ii) are distinct $\Rightarrow b \neq 4, b=12$

$$
\begin{aligned}
& \Rightarrow \quad x= \pm 2 \sqrt{3}, y= \pm 6 \\
& \Rightarrow \quad 3 \sqrt{3} A=3 \sqrt{3} \times 4 \sqrt{3} \times 12=432
\end{aligned}
$$

30. Let $f(x)=2^{x}-x^{2}, x \in R$. If m and n are respectively the number of points at which the curves $y=f(x)$ and $y=f^{\prime}(x)$ intersect the x-axis then the value of $m+n$ is \qquad
Answer (5)
Sol. $f(x)=2^{x}-x^{2}$
$f(x)=2^{x} \ln 2-2 x$
When $f(x)=0$

When $f^{\prime}(x)=0$
$2^{x} \ln 2-2 x=0$
$2^{x}=\frac{2}{\ln 2} x$

$\Rightarrow m+n=5$

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

31. The deflection in moving coil galvanometer falls from 25 divisions to 5 division when a shunt of 24Ω is applied. The resistance of galvanometer coil will be :
(1) 100Ω
(2) 12Ω
(3) 96Ω
(4) 48Ω

Answer (3)
Sol. $i \propto$ number of divisions
$\therefore 5\left(R_{G}\right)=(25-5)(24)$

$$
R_{G}=96 \Omega
$$

32. Match List-I with List-II

a. \begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ List-I } \& \& \multicolumn{1}{|c|}{ List-II }

\hline b. $\vec{B} \cdot \overrightarrow{d l}=\mu_{0} i_{C}+\mu_{0} \varepsilon_{0} \frac{d \phi_{E}}{d t}$ \& (i) \& | Gauss' law |
| :--- |
| for |
| electricity |

\hline$\oint \vec{E} \cdot \overrightarrow{d l}=\frac{d \phi_{B}}{d t}$ \& (ii) \& | Gauss' law |
| :--- |
| for |
| magnetism |

c. \& $\oint \vec{E} \cdot \overrightarrow{d A}=\frac{Q}{\varepsilon_{0}}$ \& (iii)

d. | Faraday |
| :--- |
| law |

\hline$\oint B \cdot \overrightarrow{d A}=0$ \& (iv) \& | Ampere - |
| :--- |
| Maxwell las |

\hline
\end{tabular}

Choose the correct answer from the options given below :
(1) $a(i v), b(i i i), c(i), d(i i)$
(2) $a(i i), b(i i i), c(i), d(i v)$
(3) a(iv), b(i), c(iii), d(ii)
(4) $a(i), b(i i), c(i i i), d(i v)$

Answer (1)

Sol. $\oint \vec{E} \cdot \overrightarrow{d x}=\frac{Q}{\varepsilon_{0}}$
(Gauss's law)
Similarly,
$\oint \vec{E} \cdot \overrightarrow{d l}=\frac{d \phi_{B}}{d t}$
(Faraday law)
$\therefore \quad \mathrm{a}(\mathrm{iv}), \mathrm{b}(\mathrm{iii}), \mathrm{c}(\mathrm{i}), \mathrm{d}(\mathrm{ii})$
33. At what distance above and below the surface of the earth a body will have same weight. (take radius of earth as R.)
(1) $\frac{\sqrt{5} R-R}{2}$
(2) $\sqrt{5} R-R$
(3) $\frac{R}{2}$
(4) $\frac{\sqrt{3} R-R}{2}$

Answer (1)
Sol. $g \frac{R^{2}}{(R+h)^{2}}=g\left(1-\frac{h}{R}\right)$
$h=\left(\frac{\sqrt{5}-1}{2}\right) R$
34. A biconvex lens of refractive index 1.5 has a focal length of 20 cm in air. Its focal length when immersed in a liquid of refractive index 1.6 will be :
(1) +16 cm
(2) +160 cm
(3) -160 cm
(4) -16 cm

Answer (3)
Sol. $\frac{1}{f_{\text {air }}}=(1.5-1)\left(\frac{2}{R}\right) \Rightarrow R=20 \mathrm{~cm}$
$\frac{1}{f_{\text {iq }}}=\left(\frac{1.5}{1.6}-1\right)\left(\frac{2}{20}\right)$
$f_{\text {liq }}=-160 \mathrm{~cm}$
35. Two vessels A and B are of the same size and are at same temperature. A contains 1 g of hydrogen and B contains 1 g of oxygen. P_{A} and P_{B} are the pressure of the gases in A and B respectively, then $\frac{P_{A}}{P_{B}}$ is:
(1) 4
(2) 32
(3) 8
(4) 16

Answer (4)
Sol. $\because \quad P V=n R T$

$$
n_{A}=\frac{1}{2}, n_{B}=\frac{1}{32}
$$

$\therefore \quad \frac{P_{A}}{P_{B}}=\frac{32}{2}=16$
36. The explosive in a hydrogen bomb is a mixture of ${ }_{1} \mathrm{H}^{2},{ }_{1} \mathrm{H}^{3}$ and ${ }_{3} \mathrm{Li}^{6}$ in some condensed form. The chain reaction is given by
${ }_{3} \mathrm{Li}^{6}+{ }_{0} \mathrm{n}^{1} \longrightarrow{ }_{2} \mathrm{He}^{4}+{ }_{1} \mathrm{H}^{3}$
${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{3} \longrightarrow{ }_{2} \mathrm{He}^{4}+{ }_{0} \mathrm{n}^{1}$
During the explosion the energy released is approximately
[Given : $M(\mathrm{Li})=6.01690 \mathrm{amu}, \mathrm{M}\left(\mathrm{H}^{2}\right)=2.01471 \mathrm{amu}$, $\mathrm{M}\left({ }_{2} \mathrm{He}^{4}\right)=4.00388 \mathrm{amu}$, and $\left.1 \mathrm{amu}=931.5 \mathrm{MeV}\right]$
(1) 22.22 MeV
(2) 16.48 MeV
(3) 28.12 MeV
(4) 12.64 MeV

Answer (1)
Sol. Q value = energy released

$$
\begin{aligned}
& =c^{2}\left[\begin{array}{l}
m\left({ }_{3} \mathrm{Li}^{6}\right)+m\left({ }_{0} \mathrm{n}^{1}\right)-m\left({ }_{2} \mathrm{He}^{4}\right)-m\left({ }_{1} \mathrm{H}^{3}\right) \\
+m\left({ }_{1} \mathrm{H}^{2}\right)+m\left({ }_{1} \mathrm{H}^{3}\right)-m\left({ }_{2} \mathrm{He}^{4}\right)-m\left({ }_{0} \mathrm{n}^{1}\right)
\end{array}\right] \\
& =22.22 \mathrm{MeV}
\end{aligned}
$$

37. If the radius of curvature of the path of two particles of same mass are in the ratio $3: 4$, then in order to have constant centripetal force, their velocities will be in the ratio of :
(1) $\sqrt{3}: 1$
(2) $2: \sqrt{3}$
(3) $\sqrt{3}: 2$
(4) $1: \sqrt{3}$

Answer (3)

Sol. $\frac{m v_{1}^{2}}{R_{1}}=\frac{m v_{2}^{2}}{R_{2}}$
$\Rightarrow \frac{v_{1}}{v_{2}}=\sqrt{\frac{R_{1}}{R_{2}}}=\frac{\sqrt{3}}{2}$
38. A block of mass 100 kg slides over a distance of 10 m on a horizontal surface. If the co-efficient of friction between the surface is 0.4 , then the work done against friction (in J) is :
(1) 4200
(2) 4000
(3) 4500
(4) 3900

Answer (2)
Sol. $W_{f}=|\mu m g x|$

$$
\begin{aligned}
& =0.4 \times 100 \times 10 \times 10 \\
& =4000 \mathrm{~J}
\end{aligned}
$$

39. The de-Broglie wavelength of an electron is the same as that of a photon. If velocity of electron is 25% of the velocity of light, then the ratio of K.E. of electron and K.E. of photon will be
(1) $\frac{1}{8}$
(2) $\frac{1}{1}$
(3) $\frac{1}{4}$
(4) $\frac{8}{1}$

Answer (1)

Sol. $\frac{v_{e}}{v_{p}}=\frac{1}{4}$ and $p_{e}=p_{p}$
$\therefore \quad \frac{\mathrm{KE}_{e}}{\mathrm{KE}_{p}}=\frac{\frac{1}{2}\left(p_{e}\right) v_{e}}{\left(p_{p}\right) v_{p}}=\frac{1}{8}$
40. A galvanometer having coil resistance 10Ω shows a full scale deflection for a current of $3 m A$. For it to measure a current of $8 A$, the value of the shunt should be :
(1) $3 \times 10^{-3} \Omega$
(2) $4.85 \times 10^{-3} \Omega$
(3) $3.75 \times 10^{-3} \Omega$
(4) $2.75 \times 10^{-3} \Omega$

Answer (3)
Sol. $i_{G}(G)=\left(i-i_{G}\right) s$
$\therefore \quad s=3.75 \times 10^{-3} \Omega$
41. The resistance $R=\frac{V}{l}$ where $V=(200 \pm 5) V$ and I $=(20 \pm 0.2) \mathrm{A}$, the percentage error in the measurement of R is
(1) 3.5%
(2) 3%
(3) 5.5%
(4) 7%

Answer (1)

Sol. $\frac{\Delta R}{R}=\frac{\Delta V}{V}+\frac{\Delta l}{l}$
$\therefore \quad \frac{\Delta R}{R} \times 100=3.5 \%$
42. Two charges of $5 Q$ and $-2 Q$ are situated at the points $(3 a, 0)$ and $(-5 a, 0)$ respectively. The electric flux through a sphere of radius ' $4 a$ ' having center at origin is
(1) $\frac{2 Q}{\varepsilon_{0}}$
(2) $\frac{3 Q}{\varepsilon_{0}}$
(3) $\frac{7 Q}{\varepsilon_{0}}$
(4) $\frac{5 Q}{\varepsilon_{0}}$

Answer (4)

Sol. $\phi=\frac{q_{\text {enclosed }}}{\varepsilon_{0}}$
$=\frac{5 Q}{\varepsilon_{0}}$
43. Given below are two statements:

Statement I: If a capillary tube is immersed first in cold water and then in hot water, the height of capillary rise will be smaller in hot water.
Statement II: If a capillary tube is immersed first in cold water and then in hot water, the height of capillary rise will be smaller in cold water.
In the light of the above statements, choose the most appropriate from the options given below
(1) Statement I is false but Statement II is true
(2) Both Statement I and Statement II are true
(3) Both Statement I and Statement II are false
(4) Statement I is true but Statement II is false

Answer (4)

Sol. As temperature increases, surface tension decreases. And [$h \propto$ surface tension]
44. A thermodynamic system is taken from an original state A to an intermediate state B by a linear process as shown in the figure. It's volume is then reduced to the original value from B to C by an isobaric process. The total work done by the gas from A to B and B to C would be:

(1) 1200 J
(2) 2200 J
(3) 600 J
(4) 33800 J

Answer (None)

Sol. Work done $=\frac{1}{2}(4)(4000) \times 10^{-1} \mathrm{~J}$

$$
=800 \mathrm{~J}
$$

No option is matching.
45. A convex mirror of radius of curvature 30 cm forms an image that is half the size of the object. The object distance is
(1) 15 cm
(2) 45 cm
(3) -45 cm
(4) -15 cm

Answer (4)

Sol. $m=\frac{1}{2}=\frac{-v}{u}$

$$
\Rightarrow \quad v=-\frac{u}{2}
$$

Now
$\frac{1}{v}+\frac{1}{u}=\frac{1}{15}$
$\frac{-2}{u}+\frac{1}{u}=\frac{1}{15}$
$u=-15 \mathrm{~cm}$
46. A body starts moving from rest with constant acceleration covers displacement S_{1} in first ($p-1$) seconds and S_{2} in first p seconds. The displacement $S_{1}+S_{2}$ will be made in time:
(1) $\left(2 p^{2}-2 p+1\right) s$
(2) $(2 p+1) s$
(3) $\sqrt{\left(2 p^{2}-2 p+1\right) s}$
(4) $(2 p-1) s$

Answer (3)

Sol. $S_{1}=\frac{1}{2} a(p-1)^{2}$
$S_{2}=\frac{1}{2} a(p)^{2}$
$\therefore S_{1}+S_{2}=\frac{1}{2} a\left(p^{2}+1-2 p+p^{2}\right)$
$=\frac{1}{2} a t^{2}$
$\therefore t=\sqrt{2 p^{2}-2 p+1}$
47. A capacitor of capacitance $100 \mu \mathrm{~F}$ is charged to a potential of 12 V and connected to a 6.4 mH inductor to produce oscillations. The maximum current in the circuit would be:
(1) 2.0 A
(2) 1.2 A
(3) 1.5 A
(4) 3.2 A

Answer (3)

Sol. $i=\mathrm{Q} \omega$

$$
\begin{aligned}
& =C V \sqrt{\frac{1}{L C}} \\
& =\sqrt{\frac{C}{L}} V \\
& =\sqrt{\frac{10^{-4}}{64 \times 10^{-4}}} \\
& =1.5 \mathrm{~A}
\end{aligned}
$$

48. The potential energy function (in J) of a particle in a region of space is given as $U=\left(2 x^{2}+3 y^{2}+2 z\right)$. Hare x, y and z are in meter. The magnitude of x component of force (in M) acting on the particle at point $P(1,2,3) m$ is:
(1) 6
(2) 8
(3) 2
(4) 4

Answer (4)

Sol. $F_{X}=\frac{-\partial u}{-\partial x}=-4 x$
$\therefore \quad$ magnitude $=4 \mathrm{~N}$
49. The electric current through a wire varies with time as $I=10+\beta t$, where $I_{0}=20 \mathrm{~A}$ and $\beta=3 \mathrm{~A} / \mathrm{s}$. The amount of electric charge crossed through a section of the wire in 20 s is:
(1) 800 C
(2) 1600 C
(3) 80 C
(4) 1000 C

Answer (4)
Sol. $\Delta_{q}=\int i d t$

$$
\begin{aligned}
& =\int_{0}^{20}(20+3 t) d t \\
& =\left[20 t+\frac{3 t^{2}}{2}\right]_{0}^{20} \\
& =1000 \mathrm{C}
\end{aligned}
$$

50. In the given circuit, the breakdown voltage of the Zener diode is 3.0 V . What is the value of I_{z} ?

(1) 7 mA
(2) 5.5 mA
(3) 3.3 mA
(4) 10 mA

Answer (2)
Sol.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. Attempt any 5 questions out of 10 . The answer to each question should be rounded-off to the nearest integer.
51. In a test experiment on a model aeroplane in wind tunnel, the flow speeds on the upper and lower surfaces of the wings are $70 \mathrm{~ms}^{-1}$ and $65 \mathrm{~ms}^{-1}$ respectively. If the area is $2 \mathrm{~m}^{2}$, the lift of the wing is \qquad N.
(Given density of air $=1.2 \mathrm{~kg} \mathrm{~m}^{-3}$)

Answer (810)

Sol. $F=\Delta P(A)$

$$
\begin{aligned}
& =\frac{1}{2} \rho\left(v_{u}^{2}-v_{L}^{2}\right)(A) \\
& =\frac{1}{2} \times 1.2\left(70^{2}-65^{2}\right) 2 \\
& =810 \mathrm{~N}
\end{aligned}
$$

52. A cylinder is rolling down on an inclined plane of inclination 60°. It's acceleration during rolling down will be $\frac{x}{\sqrt{3}} \mathrm{~m} / \mathrm{s}^{2}$, where $x=$ \qquad (use $g=$ $10 \mathrm{~m} / \mathrm{s}^{2}$)

Answer (10)

Sol. $a=\frac{g \sin \theta}{1+\frac{l}{m R^{2}}}$
$\left(\because I=\frac{m R^{2}}{2}\right)$
$=\frac{2 g \sin 60^{\circ}}{3}$
$=\frac{10}{\sqrt{3}} \mathrm{~m} / \mathrm{s}^{2}$
53. A ball rolls off the top of a stairway with horizontal velocity u. The steps are 0.1 m high and 0.1 m wide. The minimum velocity u with which that ball just hits the step 5 of the stairway will be $\sqrt{x} \mathrm{~ms}^{-1}$ where $x=$ \qquad [use $g=10 \mathrm{~m} / \mathrm{s}^{2}$].

Answer (2)

Sol. To hit $5^{\text {th }}$ step it should just cross the $4^{\text {th }}$ step.
\therefore Range $=0.4 \mathrm{~m}$, Height $=0.4 \mathrm{~m}$.
$\therefore R=u \sqrt{\frac{2 H}{g}}$
$0.4=u \sqrt{\frac{2(0.4)}{10}}$
$u=\sqrt{2} \mathrm{~m} / \mathrm{s}$.
54. The magnetic potential due to a magnetic dipole at a point on its axis situated at a distance of 20 cm from its center is $1.5 \times 10^{-5} \mathrm{~T} \mathrm{~m}$. The magnetic moment of the dipole is \qquad A m${ }^{2}$. (Given: $\frac{\mu_{0}}{4 \pi}$ $\left.=10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}{ }^{-1}\right)$

Answer (6)

Sol. $V_{\text {axial }}=\frac{\mu_{0}}{4 \pi} \frac{M}{r^{2}}$

$$
\therefore 1.5 \times 10^{-5}=10^{-7} \frac{M}{\left(20 \times 10^{-2}\right)^{2}}
$$

$$
\Rightarrow M=6 \mathrm{~A} \mathrm{~m}^{2}
$$

55. A electron is moving under the influence of the electric field of a uniformly charged infinite plane sheet S having surface charge density $+\sigma$. The electron at $t=0$ is at a distance of 1 m from S and has a speed of $1 \mathrm{~m} / \mathrm{s}$. The maximum value of σ if the electron strikes S at $t=1 \mathrm{~s}$ is $\alpha\left[\frac{m \in_{0}}{e}\right] \frac{C}{m^{2}}$, the value of α is \qquad .

Answer (8)

Sol. e^{-}should be thrown away from sheet.
$\because s=u t+\frac{1}{2} a t^{2}$
$-1=1(1)+\frac{1}{2}\left(\frac{-\sigma e}{2 \in_{0} m}\right)(1)^{2}$
$\therefore \sigma=\frac{8 \epsilon_{0} m}{e}$
56. When the displacement of a simple harmonic oscillator is one third of its amplitude, the ratio of total energy to the kinetic energy is $\frac{x}{8}$, where $x=$
\qquad -
Answer (9)
Sol. $\frac{\text { T.E }}{\mathrm{K} \cdot \mathrm{E}}=\frac{\frac{1}{2} K A^{2}}{\frac{1}{2} K\left(A^{2}-x^{2}\right)}=\frac{9}{8}$
57. In a double slit experiment shown in figure, when light of wavelength 400 nm is used, dark fringe is observed at P. If $D=0.2 \mathrm{~m}$, the minimum distance between the slits S_{1} and S_{2} is \qquad mm .

Answer (0.2)

Sol. $\Delta x=\frac{\lambda}{2} \quad($ for $\min . d)$

$$
\begin{aligned}
& 2\left[\sqrt{D^{2}+d^{2}}-D\right]=200 \times 10^{-9} \\
& D\left(1+\frac{d^{2}}{2 D^{2}}\right)-D=10^{-7} \\
& \frac{d^{2}}{20}=10^{-7} \\
& \Rightarrow d^{2}=2 \times(0.2) \times 10^{-7}=4 \times 10^{-8} \mathrm{~m} \\
& d=2 \times 10^{-4} \mathrm{~m}=0.2 \mathrm{~mm}
\end{aligned}
$$

58. A 16Ω wire is bend to form a square loop. A 9 V battery with internal resistance 1Ω is connected across one of its sides. If a $4 \mu \mathrm{~F}$ capacitor is connected across one of its diagonals, the energy stored by the capacitor will be $\frac{x}{2} \mu \mathrm{~J}$. where $x=$
\qquad .

Answer (81)

Sol. $i_{\text {battery }}=\frac{9}{3+1}=\frac{9}{4} \mathrm{~A}$
$(\Delta V)_{\text {cap. }}=\frac{9}{4}\left(\frac{1}{4}\right)(8)=\frac{9}{2} \mathrm{~V}$
$\Delta U=\frac{1}{2} C V^{2}$
$=\frac{1}{2}(4)\left(\frac{9}{2}\right)^{2} \mu \mathrm{~J}=\frac{81}{2} \mu \mathrm{~J}$
$x=81$
59. When a hydrogen atom going from $n=2$ to $n=1$ emits a photon, its recoil speed is $\frac{X}{5} \mathrm{~m} / \mathrm{s}$. Where x
$=$ \qquad . (Use mass of hydrogen atom = 1.6 $\times 10^{-27} \mathrm{~kg}$)

Answer (17)

Sol. $\Delta E=13.6\left(1-\frac{1}{4}\right)=\frac{3(13.6)}{4} \mathrm{eV}$
now, $v=\frac{p}{m}=\frac{E}{m C}$

$$
=\frac{\frac{3}{4}(13.6) \times 1.6 \times 10^{-19}}{3 \times 10^{8} \times 1.6 \times 10^{-27}}=\frac{17}{5} \mathrm{~m} / \mathrm{s}
$$

60. A square loop of side 10 cm and resistance 0.7Ω is placed vertically in east-west plane. A uniform magnetic field of 0.20 T is set up across the plane in north east direction. The magnetic field is decreased to zero in 1 s at a steady rate. Then magnitude of induced emf is $\sqrt{x} \times 10^{-3} \mathrm{~V}$. The value of x is \qquad .

Answer (2)

Sol. $\varepsilon_{\text {ind }}=\frac{\Delta \phi}{\Delta t}=\frac{B A \cos 45^{\circ}-0}{\Delta t}$

$$
\begin{aligned}
& =\frac{0.2\left(10^{-2}\right)\left(\frac{1}{\sqrt{2}}\right)}{1} \\
& =\sqrt{2} \times 10^{-3} \mathrm{~V} \\
& x=2
\end{aligned}
$$

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

61. Match List I with List II.

List I
 (Substances)

A. Ziegler catalyst
B. Blood pigment
C. Wilkinson catalyst
D. Vitamin B_{12}

Choose the correct answer from the options given below.
(1) A-II, B-IV, C-I, D-III
(2) A-III, B-II, C-IV, D-I
(3) A-II, B-III, C-IV, D-I
(4) A-IV, B-III, C-I, D-II

Answer (4)
Sol. Ziegler catalyst
$-\mathrm{TiCl}_{4} \cdot \mathrm{Al}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$
Blood pigment - Compound containing iron
Wilkinson catalyst - [RhCl($\left.\left.\mathrm{PPh}_{3}\right)_{3}\right]$
Vitamin $\mathrm{B}_{12} \quad$ - Compound containing cobalt
$\therefore \quad$ Correct match is A-IV, B-III, C-I, D-II.
62. Given below are two statements :

Statement I : The electronegativity of group 14elements from Si to Pb , gradually decreases.
Statement II : Group 14 contains non-metallic, metallic, as well as metalloid elements.
In the light of the above statements, choose the most appropriate from the options given below.
(1) Both Statement I and Statement II are true
(2) Both Statement I and Statement II are false
(3) Statement I is true but Statement II is false
(4) Statement I is false but Statement II is true

Answer (4)

Sol. Statement-I is false because electronegativity of Group-14 elements from Si to Pb is almost constant, i.e., 1.8.
Statement-II is correct because Group-14 contains non-metals, metalloids as well as metals.

Carbon	-
Non-metal	
Silicon	-
Metalloid	
Germanium	-
Metalloid	
Tin	-
Lead	-

63. In chromyl chloride test for confirmation of Cl^{-}ion, a yellow solution is obtained. Acidification of the solution and addition of amyl alcohol and $10 \% \mathrm{H}_{2} \mathrm{O}_{2}$ turns organic layer blue indicating formation of chromium pentoxide. The oxidation state of chromium in that is
(1) +6
(2) +10
(3) +5
(4) +3

Answer (1)

Sol. The reactions involved in chromyl chloride test and subsequent formation of chromium pentaoxide are as follows :

$$
\begin{aligned}
& \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{H}^{+}+4 \mathrm{Cl}^{-} \longrightarrow \underset{\text { (Red) }}{2 \mathrm{CrO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CrO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})+4 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \\
& \underset{\text { (Yellow) }}{\mathrm{Na}_{2} \mathrm{CrO}_{4}(\mathrm{aq})}+2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O} \\
& \underset{\text { (Yellow) }}{2 \mathrm{Na}_{2} \mathrm{CrO}_{4}(\mathrm{aq})}+2 \mathrm{H}^{+} \longrightarrow \\
& \underset{\text { (Orange) }}{\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{aq})}+2 \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+4 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+} \longrightarrow \\
& \underset{\begin{array}{c}
\text { (Blue in } \\
\text { amyl alcohol) }
\end{array}}{2 \mathrm{CrO}_{5}}+5 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Na}^{+}
\end{aligned}
$$

Oxidation state of chromium in CrO_{5} is +6 .
64. Identify the incorrect pair from the following.
(1) Cryolite

- $\mathrm{Na}_{3} \mathrm{AlF}_{6}$
(2) Fluoroapatite
- $3 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{CaF}_{2}$
(3) Fluorspar
- BF_{3}
(4) Carnallite
$-\mathrm{KCl} \cdot \mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

Answer (3)

Sol. The correct pairs are

1. Cryolite

- $\mathrm{Na}_{3} \mathrm{AlF}_{6}$

2. Fluorapatite

- $3 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{CaF}_{2}$

3. Fluorspar

- CaF_{2}

4. Carnallite

- $\mathrm{KCl} \cdot \mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

65. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : Aryl halides cannot be prepared by replacement of hydroxyl group of phenol by halogen atom.

Reason R : Phenols react with halogen acids violently.
In the light of the above statements, choose the most appropriate from the options given below.
(1) \mathbf{A} is false but \mathbf{R} is true
(2) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}
(3) \mathbf{A} is true but \mathbf{R} is false
(4) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}

Answer (3)

Sol. Assertion is true because aryl halides cannot be prepared by replacement of OH group of phenol by halogen atom.
Reason is false because phenols do not react with halogen acids.
66. Type of amino acids obtained by hydrolysis of proteins is :
(1) β
(2) γ
(3) δ
(4) α

Answer (4)
Sol. Hydrolysis of proteins results in the formation of α-amino acids only.
67. The final product A formed in the following multistep reaction sequence is

(1)

(2)

(3)

(4)

Answer (1)

Sol.

68. Appearance of blood red colour, on treatment of the sodium fusion extract of an organic compound with FeSO_{4} in presence of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ indicates the presence of element/s
(1) N and S
(2) N
(3) Br
(4) S

Answer (1)
Sol. Appearance of blood red colour on treatment of sodium fusion extract of an organic compound with FeSO_{4} in presence of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is due to the formation of $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$
$\mathrm{Na}+\mathrm{C}+\mathrm{N}+\mathrm{S} \rightarrow \mathrm{NaSCN}$
$\mathrm{Fe}^{3+}+\mathrm{SCN}^{-} \rightarrow[\mathrm{Fe}(\mathrm{SCN})]^{2+}$ (Blood red)
This indicates the presence of both N and S in the organic compound.
69. The difference in energy between the actual structure and the lowest energy resonance structure for the given compound is
(1) hyperconjugation energy
(2) electromeric energy
(3) resonance energy
(4) ionization energy

Answer (3)

Sol. The difference in energy between the actual structure and the lowest energy resonance structure of the given compound is resonance energy.
70. In alkaline medium, MnO_{4}^{-}, oxidises I^{-}to
(1) IO^{-}
(2) I_{2}
(3) IO_{3}^{-}
(4) IO_{4}^{-}

Answer (3)
Sol. In alkaline medium, MnO_{4}^{-}oxidises I^{-}to IO_{3}^{-}.

$$
2 \mathrm{MnO}_{4}^{-}+\mathrm{I}^{-}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{MnO}_{2}+\mathrm{IO}_{3}^{-}+2 \mathrm{OH}^{-}
$$

71. In which one of the following metal carbonyls, CO forms a bridge between metal atoms?
(1) $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$
(2) $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$
(3) $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$
(4) $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$

Answer (2)

Sol. Among the given metal carbonyls, only $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ shows bridging CO ligands between two metal atoms.

Structures of other metal carbonyls are

72. Chlorine undergoes disproportionation in alkaline medium as shown below :
$\mathrm{aCl}_{2(\mathrm{~g})}+\mathrm{bOH}_{(\mathrm{aq)}}^{-} \rightarrow \mathrm{cClO}_{(\mathrm{aq})}^{-}+\mathrm{dCl}_{(\mathrm{aq)}}^{-}+\mathrm{eH}_{2} \mathrm{O}_{(\mathrm{l})}$
The values of a, b, c and d in a balanced redox reaction are respectively :
(1) 2, 4, 1 and 3
(2) 1, 2, 1 and 1
(3) 2, 2, 1 and 3
(4) 3, 4, 4 and 2

Answer (2)
Sol. The balanced disproportionation reaction of Cl_{2} in alkaline medium is
$\mathrm{Cl}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{ClO}^{-}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$
$\therefore \quad a=1, b=2, c=1, d=1$
73. Identify product A and product B :

(1) A :

B :

(2) A :

B :

(3) A :

B :

(4)

B :

Answer (1)

(B)
74. The arenium ion which is not involved in the bromination of Aniline is \qquad .
(1)

(2)

(3)

(4)

Answer (4)
Sol. Bromination of aniline results in the formation of 2, 4, 6-tribromoaniline because NH_{2} group strongly activates the benzene ring particularly at the ortho and para positions. So, arenium ion will be formed when Br_{2} attacks the ortho and para positions but not the meta position. Therefore arenium ion having Br atom at the meta position will not be involved in the given reaction.

75. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R

Assertion A: The first ionisation enthalpy decreases across a period.

Reason R: The increasing nuclear charge outweighs the shielding across the period.

In the light of the above statements, choose the most appropriate from the options given below :
(1) \mathbf{A} is true but \mathbf{R} is false
(2) \mathbf{A} is false but \mathbf{R} is true
(3) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}
(4) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}

Answer (2)

Sol. Assertion is false because the first ionisation enthalpy generally increases across a period barring few exceptions.

Reason is true because the increase in first ionisation enthalpy across a period is due to the increasing nuclear charge outweighs the shielding effect.
76. The major product (P) in the following reaction is

(1)

(2)

(3)

(4)

Answer (4)

Sol.

77. Which of the following is not correct?
(1) ΔG is negative for a spontaneous reaction
(2) ΔG is positive for a non-spontaneous reaction
(3) $\Delta \mathrm{G}$ is zero for a reversible reaction
(4) ΔG is positive for a spontaneous reaction

Answer (4)
Sol. $\Delta \mathrm{G}$ is negative for a spontaneous process, zero for a reversible process and positive for a non- spontaneous process.
78. The correct set of four quantum numbers for the valence electron of rubidium atom $(Z=37)$ is:
(1) $5,0,0,+\frac{1}{2}$
(2) $5,0,1,+\frac{1}{2}$
(3) $5,1,0,+\frac{1}{2}$
(4) $5,1,1,+\frac{1}{2}$

Answer (1)

Sol. The electronic configuration of Rb-atom ($Z=37$) is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 5 s^{1}$
The values of four quantum numbers of the valence electron of Rb-atom are
$\mathrm{n}=5, \mathrm{l}=0, \mathrm{~m}=0, \mathrm{~s}=+\frac{1}{2}$
79. KMnO_{4} decomposes on heating at 513 K to form O_{2} along with
(1) $\mathrm{K}_{2} \mathrm{MnO}_{4} \& \mathrm{MnO}_{2}$
(2) $\mathrm{K}_{2} \mathrm{MnO}_{4} \& \mathrm{Mn}$
(3) $\mathrm{MnO}_{2} \& \mathrm{~K}_{2} \mathrm{O}_{2}$
(4) $\mathrm{Mn} \& \mathrm{KO}_{2}$

Answer (1)

Sol. KMnO_{4} decomposes on heating at 513 K as per the following reaction
$2 \mathrm{KMnO}_{4} \xrightarrow{513 \mathrm{~K}} \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}$
Therefore, $\mathrm{K}_{2} \mathrm{MnO}_{4}$ and MnO_{2} are formed alongwith O_{2}.
80. The interaction between π bond and lone pair of electrons present on an adjacent atom is responsible for
(1) Hyperconjugation
(2) Inductive effect
(3) Resonance effect
(4) Electromeric effect

Answer (3)

Sol. The interaction between π bond and lone pair of electrons present on adjacent atom is responsible for 'Resonance effect'.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. Attempt any 5 questions out of 10 . The answer to each question should be rounded-off to the nearest integer.
81. The osmotic pressure of a dilute solution is 7×10^{5} Pa at 273 K . Osmotic pressure of the same solution at 283 K is \qquad $\times 10^{4} \mathrm{Nm}^{-2}$.
Answer (73)
Sol. P_{1}, osmotic pressure at $273 \mathrm{~K}=7 \times 10^{5} \mathrm{~Pa}$
P_{2}, osmotic pressure at 283 K is given by

$$
\begin{aligned}
& \frac{P_{2}}{P_{1}}=\frac{T_{2}}{T_{1}} \\
& P_{2}=7 \times 10^{5} \times \frac{283}{273}=72.56 \times 10^{4} \mathrm{~Pa} \\
& \simeq 73 \times 10^{4} \mathrm{Nm}^{-2}
\end{aligned}
$$

82. The mass of zinc produced by the electrolysis of zinc sulphate solution with a steady current of 0.015 A for 15 minutes is \qquad $\times 10^{-4} \mathrm{~g}$.
(Atomic mass of zinc $=65.4 \mathrm{amu}$)

Answer (46)

Sol. $I=0.015 \mathrm{amp}$

$$
\left.\begin{array}{rl}
\mathrm{t}= & 15 \times 60=900 \mathrm{sec} \\
\mathrm{Q}= & \mathrm{I} \times \mathrm{t} \\
& =0.015 \times 900 \mathrm{C}=13.5 \mathrm{C} \\
& =\frac{13.5}{96500} \mathrm{~F}
\end{array}\right] \begin{aligned}
& \mathrm{Zn}^{2+}+2 \mathrm{e} \longrightarrow \mathrm{Zn}
\end{aligned}
$$

Number of moles of Zn produced $=\frac{13.5}{2 \times 96500}$

$$
\begin{aligned}
\text { Mass of } \mathrm{Zn} \text { produced } & =\frac{13.5 \times 65.4}{2 \times 96500} \mathrm{~g} \\
& =45.75 \times 10^{-4} \mathrm{~g} \\
& \simeq 46 \times 10^{-4} \mathrm{~g}
\end{aligned}
$$

83. Number of compounds among the following which contain sulphur as heteroatom is \qquad .
Furan, Thiophene, Pyridine, Pyrrole, Cysteine, Tyrosine

Answer (2)

Sol. The structures of the given compounds are

Furan Thiophene Pyridine Pyrrole

Tyrosine
Number of compounds containing S-atom $=2$
84. From the compounds given below, number of compounds which give positive Fehling's test is
\qquad .

Benzaldehyde, Acetaldehyde, Acetone, Acetophenone, Methanal, 4-nitrobenzaldehyde, cyclohexane carbaldehyde.

Answer (3)

Sol. Fehling's test is given by aliphatic aldehydes only. The following compounds give positive Fehling's test.
Acetaldehyde, Methanal, Cyclohexane carbaldehyde
85. For a reaction taking place in three steps at same temperature, overall rate constant $\mathrm{K}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{3}}$. If Ea1, Ea2 and Еаз are 40,50 and $60 \mathrm{~kJ} / \mathrm{mol}$ respectively, the overall Ea is \qquad $\mathrm{kJ} / \mathrm{mol}$.

Answer (30)

Sol. The rate constant of a three steps reaction is
$K=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{3}}$
If $E a_{1}, \mathrm{Ea}_{2}$ and Ea_{3} are activation energies of three steps respectively then
$E a_{1}=40 \mathrm{~kJ} \mathrm{~mol}^{-1}, \mathrm{Ea}_{2}=50 \mathrm{~kJ} \mathrm{~mol}^{-1}, \mathrm{Ea}_{3}=60 \mathrm{~kJ}^{2}$ mol^{-1}
Using Arrhenius equation,

$$
\begin{aligned}
\mathrm{K}= & \mathrm{Ae}-\mathrm{E} a \mathrm{RT} \\
\mathrm{Ea} & =\mathrm{Ea}_{1}+\mathrm{Ea}_{2}-\mathrm{Ea}_{3} \\
& =40+50-60=30 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

86. Number of compounds with one lone pair of electrons on central atom amongst following is
\qquad
$\mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{SF}_{4}, \mathrm{CIF}_{3}, \mathrm{NH}_{3}, \mathrm{BrF}_{5}, \mathrm{XeF}_{4}$
Answer (4)

Sol. The structures of the given compounds are

\therefore No. of compounds with one lone pair of electrons on central atom $=4$
87. For the reaction $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \rightleftarrows 2 \mathrm{NO}_{2(\mathrm{~g})}, \mathrm{K}_{\mathrm{p}}=0.492$ atm at $300 \mathrm{~K} . \mathrm{K}_{\mathrm{c}}$ for the reaction at same temperature is \qquad $\times 10^{-2}$.
(Given : $\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$)

Answer (2)

Sol. $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \mathrm{K}_{\mathrm{p}}=0.492 \mathrm{~atm}$ at 300 K
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}$
$0.492=\mathrm{K}_{\mathrm{c}}(0.082 \times 300) \quad\left(\because \Delta \mathrm{n}_{g}=1\right)$
$\mathrm{K}_{\mathrm{c}}=\frac{0.492}{24.6}=2 \times 10^{-2}$
88. A solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is $31.4 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by mass and has a density of $1.25 \mathrm{~g} / \mathrm{mL}$.
The molarity of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution is \qquad M (nearest integer)
[Given molar mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=98 \mathrm{~g} \mathrm{~mol}^{-1}$]
Answer (4)
Sol. Density of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution $=1.25 \mathrm{gmol}^{-1}$
Mass percentage of $\mathrm{H}_{2} \mathrm{SO}_{4}=31.4 \%$
Mass of $1 \mathrm{~L} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution $=1250 \mathrm{~g}$
Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 1 L solution $=\frac{1250 \times 31.4}{100} \mathrm{~g}$

Molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution $=\frac{1250 \times 31.4}{98 \times 100}$

$$
=4.00 \mathrm{M}
$$

89. The number of species from the following which are paramagnetic and with bond order equal to one is
\qquad .
$\mathrm{H}_{2}, \mathrm{He}_{2}^{+}, \mathrm{O}_{2}^{+}, \mathrm{N}_{2}^{2-}, \mathrm{O}_{2}^{2-}, \mathrm{F}_{2}, \mathrm{Ne}_{2}^{+}, \mathrm{B}_{2}$

Answer (1)

Sol. According to M.O. theory electronic configurations of the given species are

			Bond order	
H_{2}	$:$	$\sigma_{1 s}^{2}$	1	Diamagnetic
He_{2}^{+}	$:$	$\sigma_{1 s}^{2} \sigma_{1 s}^{* 1}$	0.5	Paramagnetic
O_{2}^{+}	$:$	$\sigma_{1 s}^{2} \sigma_{1 s}^{* 2} \sigma_{2 s}^{2}$ $\sigma_{2 s}^{* 2} \sigma_{2 p_{z}}^{2} \pi_{2 p_{x}}^{2}$ $\pi_{2 p_{y}}^{2} \pi_{2 p_{x}}^{* 1}$	2.5	
$\mathrm{~N}_{2}^{2-}$	$:$	$\sigma_{1 s}^{2} \sigma^{* 2}{ }_{1 s} \sigma_{2 s}^{2}$ $\sigma_{2 s}^{* 2} \sigma_{2 p_{z}}^{2} \pi_{2 p_{x}}^{2}$ $\pi_{2 p_{y}}^{2} \pi^{* 1}{ }_{2 p_{x}}{ }^{* 1}{ }_{2 p_{y}}$	2.0	Paramagnetic
$\mathrm{F}_{2}, \mathrm{O}_{2}^{2-}$	$:$	$\sigma_{1 s}^{2} \sigma^{* 2}{ }_{1 s}^{2} \sigma_{2 s}^{2}$ $\sigma_{2 s}^{* 2} \sigma_{2 p_{z}}^{2} \pi_{2 p_{x}}^{2}$	1.0	Diamagnetic

		$\begin{aligned} & \pi_{2 p_{y}}^{2} \pi^{* 2} 2 p_{x} \\ & \pi^{* 2} 2 p_{y} \end{aligned}$		
Ne_{2}^{+}	:	$\begin{aligned} & \sigma_{1 s}^{2} \sigma^{* 2}{ }_{1 s} \sigma_{2 s}^{2} \\ & \sigma^{* 2}{ }_{2 s} \sigma_{2 p_{z}}^{2} \pi_{2 p_{x}}^{2} \\ & \pi_{2 p_{y}}^{2} \pi^{* 2}{ }_{2 p_{x}} \\ & \pi^{* 2}{ }_{2 p_{y}} \sigma^{* 1}{ }_{2 p_{z}} \end{aligned}$	0.5	Paramagnetic
B_{2}	:	$\begin{aligned} & \sigma_{1 s}^{2} \sigma_{1 s}^{* 2} \sigma_{2 s}^{2} \\ & \sigma^{* 2}{ }_{2 s} \pi_{2 p_{x}}^{1} \pi_{2 p_{y}}^{1} \end{aligned}$	1.0	Paramagnetic

No. of compounds which are paramagnetic and with bond order equal to one is 1
90.

(ii) $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{O}$ Product

Consider the given reaction. The total number of oxygen atom/s present per molecule of the product (P) is \qquad .

Answer (1)
Sol.

(P)

No. of O-atom present per molecule of $(\mathrm{P})=1$

