

सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका पालन कीजिए :
(i) इस प्रश्न-पत्र में कुल 35 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं।
(ii) प्रश्न-पत्र पाँच खण्डों में विभाजित है - खण्ड क, ख, ग, घ तथा ङ।
(iii) खण्ड-क : प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं।
(iv) खण्ड-ख : प्रश्न संख्या 19 से 25 तक अति लघु-उत्तरीय प्रकार के दो-दो अंकों के प्रश्न हैं।
(v) खण्ड-ग : प्रश्न संख्या 26 से 30 तक लघु-उत्तरीय प्रकार के तीन-तीन अंकों के प्रश्न हैं।
(vi) खण्ड-घ : प्रश्न संख्या 31 तथा 32 केस आधारित चार-चार अंकों के प्रश्न हैं।
(vii) खण्ड-ङ : प्रश्न संख्या 33 से 35 तक दीर्घ-उत्तरीय प्रकार के पाँच-पाँच अंकों के प्रश्न हैं।
(viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है । यद्यपि, खण्ड-ख के 2 प्रश्नों में, खण्ड-ग के 2 प्रश्नों में, खण्ड-घ के 2 प्रश्नों में तथा खण्ड-ङ के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
(ix) कैल्कुलेटर का उपयोग वर्जित है ।
खण्ड - क

1. निम्न अणुओं में से किसमें काइरल केन्द्र को तारक चिह्न (*) द्वारा सही तरह से अंकित किया गया है ?
(a) $\mathrm{CH}_{3} \mathrm{C} * \mathrm{HBrCH}_{3}$
(b) $\mathrm{CH}_{3} \mathrm{C} * \mathrm{HClCH}_{2} \mathrm{Br}$
(c) $\mathrm{HOCH}_{2} \mathrm{C} * \mathrm{H}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}$
(d) $\mathrm{CH}_{3} \mathrm{C} * \mathrm{Br}_{2} \mathrm{CH}_{3}$
2. निम्नलिखित ऐल्कोहॉलों में से किसका ऑक्सीकरण नहीं होगा ?
(a) ब्यूटेनॉल
(b) ब्यूटेन-2-ऑल
(c) 2-मेथिलब्यूटेन-2-ऑल
(d) 3-मेथिलब्यूटेन-2-ऑल

56/5/1

2

General Instructions :

Read the following instructions very carefully and follow them :

(i) This question paper contains 35 questions. All questions are compulsory.
(ii) Question paper is divided into FIVE sections - Section A, B, C, D and \boldsymbol{E}.
(iii) In section - A : Question Numbers 1 to 18 are Multiple Choice (MCQ) type Questions carrying 1 mark each.
(iv) In section - B: Question Numbers 19 to 25 are Very Short Answer (VSA) type questions carrying 2 marks each.
(v) In section - C : Question Numbers 26 to 30 are Short Answer (SA) type questions carrying 3 marks each.
(vi) In section - D : Question Numbers 31 and 32 are case based questions carrying 4 marks each.
(vii) In section - E : Question Numbers 33 to 35 are Long Answer (LA) type questions carrying 5 marks each.
(viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section - B, 2 questions in Section - C, 2 questions in Section - D and 2 questions in Section - E.
(ix) Use of calculators is NOT allowed.

SECTION - A

1. Which of the following molecules has a chiral centre correctly labelled with an asterisk (*)?
(a) $\mathrm{CH}_{3} \mathrm{C} * \mathrm{HBrCH}_{3}$
(b) $\mathrm{CH}_{3} \mathrm{C} * \mathrm{HClCH}_{2} \mathrm{Br}$
(c) $\mathrm{HOCH}_{2} \mathrm{C}^{*} \mathrm{H}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}$
(d) $\mathrm{CH}_{3} \mathrm{C} * \mathrm{Br}_{2} \mathrm{CH}_{3}$
2. Which of the following alcohols will not undergo oxidation?
(a) Butanol
(b) Butan-2-ol
(c) 2-Methylbutan-2-ol
(d) 3-Methylbutan-2-ol

P.T.O.
3. निम्न अर्ध अभिक्रियाओं द्वारा निरूपित दो अर्ध सेलों को जोड़कर एक वोल्टीय सेल बनाया गया है :
$\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}_{(\mathrm{s})} \mathrm{E}^{\circ}=-0.14 \mathrm{~V}$
$\mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \mathrm{E}^{\circ}=+0.77 \mathrm{~V}$
इस वोल्टीय सेल के बारे में कौन सा कथन सही है ?
(a) Fe^{2+} ऑक्सीकृत होता है और सेल की वोल्टता -0.91 V है।
(b) Sn ऑक्सीकृत होता है और सेल की वोल्टता 0.91 V है।
(c) Fe^{2+} ऑक्सीकृत होता है और सेल की वोल्टता 0.91 V है।
(d) Sn ऑक्सीकृत होता है और सेल की वोल्टता 0.63 V है।
4. I से IV तक चार अर्ध अभिक्रियाएँ नीचे दर्शाई गई हैं :
I. $2 \mathrm{Cl} l^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
II. $4 \mathrm{OH}^{-} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$
III. $\mathrm{Na}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Na}$
IV. $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$

इनमें से कौन सी दो अभिक्रियाएँ बहुत अधिक संभावनीय हैं जब सांद्र लवण-जल (ब्राइन) का वैद्युत-अपघटन किया जाता है ?
(a) I और III
(b) I और IV
(c) II और III
(d) II और IV
5. संक्रमण धातुओं का कौन सा गुणधर्म इन्हें उत्प्रेरक की भाँति व्यवहार करने योग्य बनाता है ?
(a) उच्च गलनांक
(b) उच्च आयनन एन्थैल्पी
(c) मिश्रातु का निर्माण
(d) परिवर्तनीय ऑक्सीकरण अवस्थाएँ
6. डाइक्रोमेट आयन की दो चतुष्फलकीय संरचनाओं में
(a) $4 \mathrm{Cr}-\mathrm{O}$ आबंधों की तुल्य लम्बाई है।
(b) $6 \mathrm{Cr}-\mathrm{O}$ आबंधों की तुल्य लम्बाई है।
(c) सभी $\mathrm{Cr}-\mathrm{O}$ आबंधों की तुल्य लम्बाई है।
(d) सभी $\mathrm{Cr}-\mathrm{O}$ आबंध तुल्य नहीं हैं।

3. A voltaic cell is made by connecting two half cells represented by half equations below :
$\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}_{(\mathrm{s})} \mathrm{E}^{\circ}=-0.14 \mathrm{~V}$
$\mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \mathrm{E}^{\circ}=+0.77 \mathrm{~V}$
Which statement is correct about this voltaic cell ?
(a) Fe^{2+} is oxidised and the voltage of the cell is -0.91 V
(b) Sn is oxidised and the voltage of the cell is 0.91 V
(c) Fe^{2+} is oxidised and the voltage of the cell is 0.91 V
(d) Sn is oxidised and the voltage of the cell is 0.63 V
4. Four half reactions I to IV are shown below :
I. $2 \mathrm{Cl} l^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
II. $4 \mathrm{OH}^{-} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$
III. $\mathrm{Na}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Na}$
IV. $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$

Which two of these reactions are most likely to occur when concentrated brine is electrolysed?
(a) I and III
(b) I and IV
(c) II and III
(d) II and IV
5. Which property of transition metals enables them to behave as catalysts?
(a) High melting point
(b) High ionisation enthalpy
(c) Alloy formation
(d) Variable oxidation states
6. In the two tetrahedral structures of dichromate ion
(a) $4 \mathrm{Cr}-\mathrm{O}$ bonds are equivalent in length.
(b) $6 \mathrm{Cr}-\mathrm{O}$ bonds are equivalent in length.
(c) All $\mathrm{Cr}-\mathrm{O}$ bonds are equivalent in length.
(d) All $\mathrm{Cr}-\mathrm{O}$ bonds are non-equivalent.

P.T.O.
7. द्रव A का 1 मोल और द्रव B के 2 मोल मिलकर एक विलयन बनाते हैं जिसका कुल वाष्प दाब 40 torr है । शुद्ध A और शुद्ध B के वाष्प दाब क्रमशः 45 torr और 30 torr हैं । उपरोक्त विलयन
(a) एक आदर्श विलयन है।
(b) धनात्मक विचलन दर्शाता है।
(c) ऋणात्मक विचलन दर्शाता है।
(d) एक अधिकतम क्वथनांकी स्थिरक्वाथी है।
8. नाइट्रोबेन्जीन को ऐनिलीन में अपचयित करने के लिए निम्न में से कौन एक अच्छा चुनाव नहीं होगा ?
(a) LiAl_{4}
(b) $\mathrm{H}_{2} / \mathrm{Ni}$
(c) Fe और HCl
(d) Sn और HCl
9. यदि किसी तनु विलयन की मोललता दुगुनी कर दी जाए तो उसके मोलल उन्नयन स्थिरांक $\left(\mathrm{K}_{\mathrm{b}}\right)$ का मान हो जाएगा :
(a) आधा
(b) दुगुना
(c) तिगुना
(d) अपरिवर्तित
10. सुक्रोस का जल-अपघटन कहलाता है :
(a) प्रतिलोमन
(b) जलयोजन
(c) एस्टरीकरण
(d) साबुनीकरण
11. निम्न में से किसका pK_{a} मान न्यूनतम है ?
(a) $\mathrm{CH}_{3}-\mathrm{COOH}$
(b) $\mathrm{O}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}$
(c) $\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{COOH}$
(d) HCOOH
12. निम्न में से कौन सा सेल अपोलो अंतरिक्ष कार्यक्रम में प्रयुक्त किया गया था ?
(a) मर्क्यूरी सेल
(b) डेन्यल सेल
(c) $\mathrm{H}_{2}-\mathrm{O}_{2}$ ईंधन सेल
(d) शुष्क सेल

7. 1 mole of liquid A and 2 moles of liquid B make a solution having a total vapour pressure 40 torr. The vapour pressure of pure A and pure B are 45 torr and 30 torr respectively. The above solution
(a) is an ideal solution.
(b) shows positive deviation.
(c) shows negative deviation.
(d) is a maximum boiling azeotrope.
8. Which of the following would not be a good choice for reducing nitrobenzene to aniline?
(a) LiAlH_{4}
(b) $\mathrm{H}_{2} / \mathrm{Ni}$
(c) Fe and HCl
(d) Sn and HCl
9. If molality of a dilute solution is doubled, the value of the molal elevation constant $\left(\mathrm{K}_{\mathrm{b}}\right)$ will be
(a) halved
(b) doubled
(c) tripled
(d) unchanged
10. Hydrolysis of sucrose is called
(a) inversion
(b) hydration
(c) esterification
(d) saponification
11. Which one of the following has lowest pK_{a} value ?
(a) $\mathrm{CH}_{3}-\mathrm{COOH}$
(b) $\mathrm{O}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}$
(c) $\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{COOH}$
(d) HCOOH
12. Which of the following cell was used in Apollo space programme?
(a) Mercury cell
(b) Daniel cell
(c) $\mathrm{H}_{2}-\mathrm{O}_{2}$ Fuel cell
(d) Dry cell

P.T.O.

13． $25^{\circ} \mathrm{C}$ पर सम्पन्न की गई अभिक्रिया के लिए निम्नलिखित प्रायोगिक वेग आँकड़े प्राप्त हुए ：
$\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightarrow \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})}$

प्रारम्भिक $\left[\mathrm{A}_{(\mathrm{g})}\right] / \mathrm{mol} \mathrm{dm}$		
	प्रारम्भिक $\left[\mathrm{B}_{(\mathrm{g})}\right] / \mathrm{mol} \mathrm{dm}$	
	प्रारम्भिक वेग $/ \mathrm{mol} \mathrm{dm}$	－3 s^{-1}
3.0×10^{-2}	2.0×10^{-2}	1.89×10^{-4}
3.0×10^{-2}	4.0×10^{-2}	1.89×10^{-4}
6.0×10^{-2}	4.0×10^{-2}	7.56×10^{-4}

$\mathrm{A}_{(\mathrm{g})}$ और $\mathrm{B}_{(\mathrm{g})}$ के प्रति कोटि क्या हैं ？

	$\mathrm{A}_{(\mathrm{g})}$ के प्रति कोटि	$\mathrm{B}_{(\mathrm{g})}$ के प्रति कोटि
（a）	शून्य	द्वितीय
（b）	प्रथम	शून्य
（c）	द्वितीय	शून्य
（d）	द्वितीय	प्रथम

14．$\left[\mathrm{NiCl}_{4}\right]^{2-}$ का चुम्बकीय आघूर्ण है ：
（a） 1.82 BM
（b） 2.82 BM
（c） 4.42 BM
（d） 5.46 BM
［परमाणु क्रमांक ： $\mathrm{Ni}=28$ ］

प्रश्न संख्या 15 से 18 के लिए，दो कथन दिए गए हैं－जिनमें एक को अभिकथन（A）तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों（a），（b），（c）और
（d）में से चुनकर दीजिए।
（a）अभिकथन (A) और कारण (R) दोनों सहीं हैं और कारण (R) ，अभिकथन (A) की सही व्याख्या करता है।
（b）अभिकथन (A) और कारण (R) दोनों सहीं हैं，परन्तु कारण (R) ，अभिकथन (A) की सही व्याख्या नहीं करता है।
（c）अभिकथन (A) सही है，परन्तु कारण (R) गलत है।
（d）अभिकथन (A) गलत है，परन्तु कारण (R) सही है।
13. The following experimental rate data were obtained for a reaction carried out at $25^{\circ} \mathrm{C}$:

1
$\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightarrow \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})}$

Initial $\left[\mathrm{A}_{(\mathrm{g})}\right] / \mathrm{mol} \mathrm{dm}$		
3.0×10^{-2}	Initial $\left[\mathrm{B}_{(\mathrm{g})}\right] / \mathrm{mol} \mathrm{dm}$	
	Initial rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$	
3.0×10^{-2}	2.0×10^{-2}	1.89×10^{-4}
6.0×10^{-2}	4.0×10^{-2}	1.89×10^{-4}

What are the orders with respect to $\mathrm{A}_{(\mathrm{g})}$ and $\mathrm{B}_{(\mathrm{g})}$?

	Order with respect to $\mathrm{A}_{(\mathrm{g})}$	Order with respect to $\mathrm{B}_{(\mathrm{g})}$
(a)	Zero	Second
(b)	First	Zero
(c)	Second	Zero
(d)	Second	First

14. The magnetic moment of $\left[\mathrm{NiCl}_{4}\right]^{2-}$
(a) 1.82 BM
(b) 2.82 BM
(c) 4.42 BM
(d) 5.46 BM
[Atomic number : $\mathrm{Ni}=28$]

For questions number 15 to $\mathbf{1 8}$, two statements are given - one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below :
(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
(b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
(c) Assertion (A) is true, but Reason (R) is false.
(d) Assertion (A) is false, but Reason (R) is true.

P.T.O.
15. अभिकथन (A) : प्रोटीन पेप्टाइड आबंध से संयोजित α-ऐमीनों अम्लों के बहुलक होते हैं।

कारण (R) : एक टेट्रापेप्टाइड में चार पेप्टाइड आबंधों से जुड़े चार ऐमीनों अम्ल होते हैं।
16. अभिकथन (A) : एक शून्य कोटि अभिक्रिया के लिए वेग स्थिरांक और अभिक्रिया वेग की इकाई एक समान होती है।

कारण (R) : शून्य कोटि अभिक्रिया के लिए अभिक्रिया वेग अभिक्रियक की सांद्रता पर निर्भरता से स्वतंत्र होता है ।
17. अभिकथन (A) : लाल P और $\mathrm{C} l_{2}$ की उपस्थिति में ऐसीटिक अम्ल का हैलोजनन किया जा सकता है परन्तु फॉर्मिक अम्ल का नहीं।

कारण (R) : फॉर्मिक अम्ल की तुलना में एसीटिक अम्ल दुर्बल अम्ल है।
18. अभिकथन (A) : विपक्ष $\left[\mathrm{Cr} \mathrm{Cl}_{2}(\mathrm{ox})_{2}\right]^{3-}$ ध्रुवण समावयवता दर्शाता है।

कारण (R) : द्विदंतुर लिगंड वाले अष्टफलकीय संकुलों में ध्रुवण समावयवता सामान्य होती है।

खण्ड - ख

19. (a) (i) मानक अवस्था में हो रही किसी स्वत: प्रवर्तित रेडॉक्स अभिक्रिया के लिए E° सेल और $\Delta \mathrm{G}^{\circ}$ के क्या चिह्न (धनात्मक/ऋणात्मक) होने चाहिए ? $2 \times 1=2$
(ii) फैराडे के वैद्युत अपघटन का पहला नियम बताइए।

अथवा

(b) 298 K पर निम्न सेल का emf परिकलित कीजिए :
$\mathrm{Fe}_{(\mathrm{s})}\left|\mathrm{Fe}^{2+}(0.01 \mathrm{M}) \| \mathrm{H}_{(1 \mathrm{M})}\right| \mathrm{H}_{2(\mathrm{~g})}(1 \mathrm{bar}), \mathrm{Pt}_{(\mathrm{s})}$
दिया है E° सेल $=0.44 \mathrm{~V}$.
20. किसी रासायनिक अभिक्रिया का ताप बढ़ाने पर उसके वेग स्थिरांक k और सक्रियण ऊर्जा E_{a} को क्या होता है ? औचित्य सिद्ध कीजिए।
15. Assertion (A) : Proteins are polymers of α-amino acids connected by a peptide bond.
Reason (R): A tetrapeptide contains 4 amino acids linked by 4 peptide bonds.
16. Assertion (A) : For a zero order reaction the unit of rate constant and rate of reaction are same.
Reason (R) : Rate of reaction for zero order reaction is independent of concentration of reactant.
17. Assertion (A) : Acetic acid but not formic acid can be halogenated in presence of red P and Cl_{2}.

Reason (R) : Acetic acid is a weaker acid than formic acid.
18. Assertion (A) : Trans $\left[\mathrm{Cr} \mathrm{Cl}_{2}(\mathrm{ox})_{2}\right]^{3-}$ shows optical isomerism.

Reason (R) : Optical isomerism is common in octahedral complexes involving didentate ligands.

SECTION - B

19. (a) (i) What should be the signs (positive/negative) for $\mathrm{E}^{\circ}{ }_{\text {Cell }}$ and $\Delta \mathrm{G}^{\circ}$ for a spontaneous redox reaction occurring under standard conditions?
(ii) State Faraday's first law of electrolysis.

OR

(b) Calculate the emf of the following cell at 298 K :
$\mathrm{Fe}_{(\mathrm{s})}\left|\mathrm{Fe}^{2+}(0.01 \mathrm{M}) \| \mathrm{H}^{+}{ }_{(1 \mathrm{M})}\right| \mathrm{H}_{2(\mathrm{~g})}(1 \mathrm{bar}), \mathrm{Pt}_{(\mathrm{s})}$
Given $\mathrm{E}^{\circ}{ }_{\text {Cell }}=0.44 \mathrm{~V}$.
20. What happens to the rate constant k and activation energy E_{a} as the temperature of a chemical reaction is increased ? Justify.
21. (a) निम्नलिखित में से कौन सी स्पीशीज़ लिगंड की भाँति कार्य नहीं कर सकती है ? कारण दीजिए।

$$
\mathrm{OH}^{-}, \mathrm{NH}_{4}^{+}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{H}_{2} \mathrm{O}
$$

$$
2 \times 1=2
$$

(b) संकुल $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{C} l_{2}$ लाल रंग का है । इसके बंधनी समावयव का आई.यू.पी.ए.सी. नाम दीजिए।
22. क्यों p-डाइक्लोरोबेन्जीन की तुलना में o-डाइक्लोरोबेन्जीन का क्वथनांक उच्चतर होता है परन्तु ऑर्थो समावयव की तुलना में पैरा समावयव का गलनांक उच्चतर होता है ?
23. फ़ीनॉल और साइक्लोहेक्सेनॉल युगल के लिए निम्न के उत्तर दीजिए :
(a) साइक्लोहेक्सेनॉल की तुलना में फ़ीनॉल अधिक अम्लीय क्यों होता है ?
(b) दोनों के मध्य विभेद करने के लिए एक रासायनिक परीक्षण दीजिए ।
24. (a) (i) सल्फैनिलिक अम्ल के लिए ज्विटर (उभयाविष्ट) आयन की संरचना खींचिए। $2 \times 1=2$
(ii) ऐनिलीन में $-\mathrm{NH}_{2}$ समूह के सक्रियण प्रभाव को कैसे नियंत्रित किया जा सकता है ?

अथवा

(b) (i) निर्मित मुख्य उत्पाद देते हुए अभिक्रिया पूर्ण कीजिए :

(ii) ब्रोमोएथेन का प्रोपेनेमीन में रूपान्तरण कीजिए।
25. ग्लूकोस की हाइड्रोजन सायनाइड के साथ अभिक्रिया दीजिए। इस अभिक्रिया से किस समूह की पुष्टि होती है ?
21. (a) Which of the following species cannot act as a ligand? Give reason.
$\mathrm{OH}^{-}, \mathrm{NH}_{4}^{+}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{H}_{2} \mathrm{O}$
$2 \times 1=2$
(b) The complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}_{2}$ is red in colour. Give IUPAC name of its linkage isomer.
22. Why is boiling point of o-dichlorobenzene higher than p-dichlorobenzene but melting point of para isomer is higher than ortho isomer?
23. For the pair phenol and cyclohexanol, answer the following :
(a) Why is phenol more acidic than cyclohexanol?
(b) Give one chemical test to distinguish between the two.
24. (a) (i) Draw the zwitter ion structure for sulphanilic acid. $2 \times 1=2$
(ii) How can the activating effect of $-\mathrm{NH}_{2}$ group in aniline be controlled?

OR

(b) (i) Complete the reaction with the main product formed: $\mathbf{2 \times 1 = 2}$

(ii) Convert Bromoethane to Propanamine.
25. Give the reaction of glucose with hydrogen cyanide. Presence of which group is confirmed by this reaction?

खण्ड - ग

26. (a) 318 K पर अभिक्रिया

$$
1+2=3
$$

$2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$ के लिए अभिक्रिया वेग परिकलित कीजिए यदि $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$ के लोप होने का वेग $1.4 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1}$ है।
(b) एक प्रथम कोटि अभिक्रिया के लिए $\mathrm{t}_{99 \%}=2 \mathrm{t}_{90 \%}$ सम्बन्ध व्युत्पन्न कीजिए ।
27. (a) क्रिस्टल क्षेत्र सिद्धांत के आधार पर d^{5} आयन के लिए प्रबल क्षेत्र लिगंड के साथ इलेक्ट्रॉनिक विन्यास लिखिए जिसके लिए $\Delta_{0}>P$ है।
$1+2=3$
(b) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ की चतुष्फलकीय ज्यामिति है जबकि $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ की वर्ग समतलीय ज्यामिति है, यद्यपि दोनों प्रतिचुम्बकत्व दर्शाते हैं। व्याख्या कीजिए।
[परमाणु क्रमांक : $\mathrm{Ni}=28$]
28. (a) एक समीकरण के साथ सैन्डमायर अभिक्रिया दर्शाइए।
(b) जलीय विलयन में $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ की तुलना में $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ अधिक क्षारकीय है, व्याख्या कीजिए।
29. निम्नलिखित किन्हीं तीन प्रेक्षणों के लिए कारण दीजिए :
(a) ग्लूकोस का पेन्टाऐसीटेट, हाइड्रॉक्सिलऐमीन के साथ अभिक्रिया नहीं करता।
(b) एमीनो अम्ल लवणों की भाँति गुण दर्शाते हैं।
(c) जल में विलेय विटामिनों की पूर्ति हमारे आहार में नियमित रूप से होनी चाहिए।
(d) DNA के दो रज्जुक एक-दूसरे के पूरक होते हैं।
30. (a) (i) फ़ीनॉलों में $\mathrm{C}-\mathrm{O}$ आबंध लम्बाई मेथेनॉल की अपेक्षा कम क्यों होती है ? $3 \times 1=3$
(ii) निम्नलिखित को बढ़ते क्वथनांक के क्रम में व्यवस्थित कीजिए :

एथॉक्सीएथेन, ब्यूटेनैल, ब्यूटेनॉल, n-ब्यूटेन
(iii) ऐनिसोल से फ़ीनॉल कैसे विरचित किया जा सकता है ? अभिक्रिया दीजिए ।

अथवा
(b) (i) निम्नलिखित अभिक्रिया की क्रियाविधि लिखिए : $2+1=3$

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow[413 \mathrm{~K}]{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

(ii) हाइड्रोबोरॉनन - ऑक्सीकरण अभिक्रिया को उदाहरण सहित समझाइए ।

SECTION - C

26. (a) For the reaction
$2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$ at 318 K
calculate the rate of reaction if rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$ is $1.4 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1}$.
(b) For a first order reaction derive the relationship $\mathrm{t}_{99 \%}=2 \mathrm{t}_{90 \%}$
27. (a) On the basis of crystal field theory write the electronic configuration for d^{5} ion with a strong field ligand for which $\Delta_{0}>P . \quad 1+\mathbf{2}=\mathbf{3}$
(b) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ has tetrahedral geometry while $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ has square planar yet both exhibit dimagnetism. Explain.
[Atomic number : $\mathrm{Ni}=28$]
28. (a) Illustrate Sandmeyer's reaction with an equation.
(b) Explain, why $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ is more basic than $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ in aqueous solution.
29. Give reasons for any $\mathbf{3}$ of the following observations:
$3 \times 1=3$
(a) Penta-acetate of glucose does not react with hydroxylamine.
(b) Amino acids behave like salts.
(c) Water soluble vitamins must be taken regularly in diet.
(d) The two strands in DNA are complimentary to each other.
30. (a) (i) Why is the $\mathrm{C}-\mathrm{O}$ bond length in phenols less than that in methanol? $3 \times 1=3$
(ii) Arrange the following in order of increasing boiling point:

Ethoxyethane, Butanal, Butanol, n-butane
(iii) How can phenol be prepared from anisole? Give reaction.

OR

(b) (i) Give mechanism of the following reaction:

$$
2+1=3
$$

(ii) Illustrate hydroboration - oxidation reaction with an example.

P.T.O.

खण्ड - घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं । अनुच्छेद को सावधानीपूर्वक पढ़िए और उसके पश्चात के प्रश्नों का उत्तर दीजिए :
31. नाभिकरागी प्रतिस्थापन

हैलोऐल्केनों में नाभिकरागी प्रतिस्थापन अभिक्रिया $\mathrm{S}_{\mathrm{N}} 1$ और $\mathrm{S}_{\mathrm{N}} 2$ दोनों क्रियाविधियों के अनुसार संचालित की जा सकती हैं । $\mathrm{S}_{\mathrm{N}} 1$ दो चरणों की अभिक्रिया है जबकि $\mathrm{S}_{\mathrm{N}} 2$ एक चरण की अभिक्रिया है । कोई हैलोऐल्केन कौन सी क्रियाविधि अपनाएगा, यह कारकों पर निर्भर करता है जैसे हैलोऐल्केन की संरचना, अवशिष्ट समूह के गुणधर्म, नाभिकरागी अभिकर्मक और विलायक ।

विलायक ध्रुवता के प्रभाव : $\mathrm{S}_{\mathrm{N}} 1$ अभिक्रिया में, अभिकर्मक से संक्रमण स्थिति की ओर निकाय की ध्रुवता में वृद्धि होती है, क्योंकि एक ध्रुवीय विलायक, अभिकर्मक की अपेक्षा संक्रमण स्थिति पर अधिक प्रभाव डालता है, फलस्वरूप सक्रियण ऊर्जा कम होती है और अभिक्रिया तीव्र गति से होती है। $\mathrm{S}_{\mathrm{N}} 2$ अभिक्रिया में, निकाय की ध्रुवता अभिकर्मक से संक्रमण स्थिति की ओर सामान्यत: परिवर्तित नहीं होती है और केवल आवेश परिक्षेपण होता है। इस समय, ध्रुवीय विलायक का संक्रमण स्थिति की अपेक्षा Nu पर बृहत्तर स्थायित्व प्रभाव पड़ता है, जिसके कारण सक्रियण ऊर्जा में वृद्धि होती है और अभिक्रिया वेग को मन्द कर देता है। उदाहरण के लिए $25^{\circ} \mathrm{C}$ पर तृतीयक क्लोरोब्यूटेन का एथेनॉल (परावैद्युतांक 24) की अपेक्षा जल (परावैद्युतांक 79) में विघटन वेग $\left(\mathrm{S}_{\mathrm{N}} 1\right) 300000$ गुना अधिक तीव्र होता है । 2-ब्रोमोप्रोपेन की परिशुद्ध एल्कोहॉल में NaOH के साथ अभिक्रिया वेग $\left(\mathrm{S}_{\mathrm{N}} 2\right)$ की अपेक्षा 40% जल सहित एथेनॉल में NaOH के साथ दुगुना मंद हो जाता है। अत: विलायक की ध्रुवता का स्तर $\mathrm{S}_{\mathrm{N}} 1$ और $\mathrm{S}_{\mathrm{N}} 2$ दोनों अभिक्रियाओं पर प्रभाव डालता है, परन्तु परिणाम भिन्न होते हैं । सामान्यत: हम कह सकते हैं कि दुर्बल ध्रुवीय विलायक $\mathrm{S}_{\mathrm{N}} 2$ अभिक्रियाओं के लिए अनुकूल होते हैं जबकि प्रबल ध्रुवीय विलायक $\mathrm{S}_{\mathrm{N}} 1$ अभिक्रियाओं के लिए अनुकूल होते हैं। सामान्यत: हम कह सकते हैं कि तृतीयक हैलोऐल्केन की प्रतिस्थापन अभिक्रिया प्रबल ध्रुवीय विलायकों में $\mathrm{S}_{\mathrm{N}} 1$ क्रियाविधि पर आधारित है (उदाहरण के लिए जल के साथ एथेनॉल)।

SECTION - D

The following questions are case - based questions. Read the passage carefully and answer the questions that follow :

Nucleophilic Substitution

Nucleophilic Substitution reaction of haloalkane can be conducted according to both $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$ mechanisms. $\mathrm{S}_{\mathrm{N}} 1$ is a two step reaction while $\mathrm{S}_{\mathrm{N}} 2$ is a single step reaction. For any haloalkane which mechanism is followed depends on factors such as structure of haloalkane, properties of leaving group, nucleophilic reagent and solvent.

Influences of solvent polarity : In $\mathrm{S}_{\mathrm{N}} 1$ reaction, the polarity of the system increases from the reactant to the transition state, because a polar solvent has a greater effect on the transition state than the reactant, thereby reducing activation energy and accelerating the reaction. In $\mathrm{S}_{\mathrm{N}} 2$ reaction, the polarity of the system generally does not change from the reactant to the transition state and only charge dispersion occurs. At this time, polar solvent has a great stabilizing effect on Nu than the transition state, thereby increasing activation energy and slow down the reaction rate. For example, the decomposition rate $\left(\mathrm{S}_{\mathrm{N}} 1\right)$ of tertiary chlorobutane at $25^{\circ} \mathrm{C}$ in water (dielectric constant 79) is 300000 times faster than in ethanol (dielectric constant 24). The reaction rate $\left(\mathrm{S}_{\mathrm{N}} 2\right)$ of 2 -Bromopropane and NaOH in ethanol containing 40% water is twice slower than in absolute ethanol. Hence the level of solvent polarity has influence on both $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$ reaction, but with different results. Generally speaking weak polar solvent is favourable for $S_{N} 2$ reaction, while strong polar solvent is favourable for $S_{N} 1$. Generally speaking the substitution reaction of tertiary haloalkane is based on $\mathrm{S}_{\mathrm{N}} 1$ mechanism in solvents with a strong polarity (for example ethanol containing water).

निम्नलिखित प्रश्नों के उत्तर दीजिए :
(a) $\mathrm{S}_{\mathrm{N}} 1$ में रेसिमीकरण क्यों होता है ?
(b) जल की तुलना में एथेनॉल कम ध्रुवीय क्यों होता है ?
(c) निम्नलिखित प्रत्येक युगलों में से कौन $\mathrm{S}_{\mathrm{N}} 2$ अभिक्रिया के प्रति अधिक अभिक्रियाशील है ?
(i) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{I}$ अथवा $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Cl}$
(ii)
 अथवा

अथवा

(c) निम्नलिखित को $\mathrm{S}_{\mathrm{N}} 1$ अभिक्रियाओं के प्रति उनकी अभिक्रियाशीलता के बढ़ते क्रम में व्यवस्थित कीजिए :
(i) 2 -ब्रोमो- 2 -मेथिलब्यूटेन, 1 -ब्रोमोपेन्टेन, 2 -ब्रोमोपेनेनेन
(ii) 1 -ब्रोमो- 3 -मेथिलब्यूटेन, 2 -ब्रोमो- 2 -मेथिलब्यूटेन, 2 -ब्रोमो- 3 -मेथिलब्यूटेन
32. राहुल ने 298 K पर विभिन्न सांद्रताओं पर जलीय KCl विलयन का प्रतिरोध ज्ञात करने के लिए व्हीटस्टोन ब्रिज से जुड़े हुए एक चालकता सेल को प्रयुक्त करते हुए एक प्रयोग व्यवस्थित किया। उसने श्रव्य आवृत्ति सीमा 550 से 5000 चक्रण प्रति सेकण्ड वाली a.c. शक्ति को व्हीटस्टोन ब्रिज से जोड़ा। शून्य विक्षेप स्थिति से प्रतिरोध का परिकलन करने के पश्चात् उसने चालकता K और मोलर चालकता \wedge_{m} भी परिकलित किया और अपने पाठ्यांकों को सारणी रूप में अभिलिखित किया।

क्रम संख्या	सांद्रता (M)	$\mathbf{k ~ S ~ c m}$	
	$\mathbf{1}$	$\wedge_{\mathbf{m}} \mathbf{S ~ c m}^{\mathbf{2}} \mathbf{~ m o l}^{\mathbf{1}}$	
1.	1.00	111.3×10^{-3}	111.3
2.	0.10	12.9×10^{-3}	129.0
3.	0.01	1.41×10^{-3}	141.0

निम्नलिखित प्रश्नों के उत्तर दीजिए :
(a) तनुकरण के साथ चालकता क्यों घटती है ?
(b) यदि KCl के लिए $\wedge_{\mathrm{m}}{ }^{\circ} 150.0 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ है तो 0.01 M KCl की वियोजन मात्रा परिकलित कीजिए।
(c) यदि राहुल ने KCl के स्थान पर HCl प्रयुक्त किया होता तो आप \wedge_{m} मानों को दी गई सांद्रता के लिए KCl के मानों की अपेक्षा अधिक या कम अपेक्षित करेंगे । औचित्य सिद्ध कीजिए।

अथवा

Answer the following questions :
(a) Why racemisation occurs in $\mathrm{S}_{\mathrm{N}} 1$?
(b) Why is ethanol less polar than water?
(c) Which one of the following in each pair is more reactive towards $\mathrm{S}_{\mathrm{N}} 2$ reaction?
(i) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{I}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Cl}$
(ii)

(c) Arrange the following in the increasing order of their reactivity towards $\mathrm{S}_{\mathrm{N}} 1$ reactions :
(i) 2-Bromo-2-methylbutane, 1-Bromopentane, 2 -Bromopentane
(ii) 1-Bromo-3-methylbutane, 2-Bromo-2-methylbutane, 2-Bromo-3methylbutane
32. Rahul set-up an experiment to find resistance of aqueous KCl solution for different concentrations at 298 K using a conductivity cell connected to a Wheatstone bridge. He fed the Wheatstone bridge with a.c. power in the audio frequency range 550 to 5000 cycles per second. Once the resistance was calculated from null point he also calculated the conductivity K and molar conductivity \wedge_{m} and recorded his readings in tabular form.

S.No.	Conc.(M)	$\mathbf{k ~ S ~ c m}$	
	$\mathbf{N}_{\mathbf{m}} \mathbf{S} \mathbf{c m}^{\mathbf{2}} \mathbf{~ m o l}^{\mathbf{1}}$		
1.	1.00	111.3×10^{-3}	111.3
2.	0.10	12.9×10^{-3}	129.0
3.	0.01	1.41×10^{-3}	141.0

Answer the following questions :
(a) Why does conductivity decrease with dilution?
(b) If $\wedge_{\mathrm{m}}{ }^{0}$ of KCl is $150.0 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, calculate the degree of dissociation of 0.01 M KCl .
(c) If Rahul had used HCl instead to KCl then would you expect the \wedge_{m} values to be more or less than those per KCl for a given concentration. Justify.

OR

P.T.O.
(c) राहुल के सहपाठी अमित ने उसी प्रयोग को KCl विलयन के स्थान पर $\mathrm{CH}_{3} \mathrm{COOH}$ विलयन के साथ दोहराया। राहुल की तुलना में उसके प्रेक्षणों में से एक प्रेक्षण लिखिए जो उसके समान था और एक प्रेक्षण जो उससे भिन्न था।

खण्ड - ङ

33. (a) (i) 1 M ग्लूकोस विलयन की अपेक्षा 1 M NaCl विलयन का क्वथनांक अधिक क्यों होता है ?

$$
1+2+2=5
$$

(ii) एक अवाष्पशील विलेय ' X ' (मोलर द्रव्यमान $=50 \mathrm{~g} \mathrm{~mol}^{-1}$) को जब 78 g बेन्जीन में घोला गया तो इसका वाष्प दाब घटकर 90% रह गया । घोले गए ' X ' का द्रव्यमान परिकलित कीजिए।
(iii) MgCl_{2} के 10 g को 200 g जल में घोलकर बनाए गए विलयन के क्वथनांक में उन्नयन का परिकलन कीजिए, यह मानते हुए कि MgCl_{2} पूर्णत: वियोजित हो गया है। (जल के लिए $\mathrm{K}_{\mathrm{b}}=0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, मोलर द्रव्यमान $\mathrm{MgCl}_{2}=95 \mathrm{~g} \mathrm{~mol}^{-1}$)

अथवा

(b) (i) बेन्जीन में एथेनॉइक अम्ल के लिए वान्ट हॉफ गुणक का मान 0.5 के निकट क्यों होता है ?

$$
1+2+2=5
$$

(ii) 2 लीटर विलयन में $25^{\circ} \mathrm{C}$ पर $\mathrm{K}_{2} \mathrm{SO}_{4}$ के $2.32 \times 10^{-2} \mathrm{~g}$ घोलने पर बनने वाले विलयन का परासरण दाब, यह मानते हुए ज्ञात कीजिए कि $\mathrm{K}_{2} \mathrm{SO}_{4}$ पूर्णत: वियोजित हो गया है।
($\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \mathrm{~K}_{2} \mathrm{SO}_{4}$ का मोलर द्रव्यमान $=174 \mathrm{~g} \mathrm{~mol}^{-1}$)
(iii) 25.6 g सल्फर को 1000 g बेन्जीन में घोलने पर हिमांक में 0.512 K का अवनमन हुआ। सल्फर $\left(\mathrm{S}_{x}\right)$ का सूत्र परिकलित कीजिए।
(बेन्जीन के लिए $\mathrm{K}_{\mathrm{f}}=5.12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, सल्फर का परमाणु द्रव्यमान $=32 \mathrm{~g} \mathrm{~mol}^{-1}$)
34. (a) (i) कैनिज़ारो अभिक्रिया में सम्मिलित अभिक्रिया लिखिए। $1+1+3=5$
(ii) सदृश कार्बोक्सिलिक अम्लों की तुलना में ऐल्डिहाइडों और कीटोनों के क्वथनांक कम क्यों होते हैं ?
(iii) एक कार्बनिक यौगिक ' A ' जिसका अणुसूत्र $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$ है, हाइड्रैजीन के साथ अभिक्रिया करने के पश्चात् NaOH एवं ग्लाइकॉल के साथ गरम करने पर n-पेन्टेन में अपचयित हो गया। ' A ' हाइड्रॉक्सिल एमीन के साथ डाइऑक्सिम बनाता है और धनात्मक आयोडोफॉर्म तथा टॉलेन परीक्षण देता है । ' A ' की पहचान कीजिए और आयडोफॉर्म तथा टॉलेन परीक्षण के लिए अभिक्रिया लिखिए।

अथवा

(c) Amit, a classmate of Rahul repeated the same experiment with $\mathrm{CH}_{3} \mathrm{COOH}$ solution instead of KCl solution. Give one point that would be similar and one that would be different in his observations as compared to Rahul.

SECTION - E

33. (a) (i) Why is boiling point of 1 M NaCl solution more than that of 1 M glucose solution? $\quad \mathbf{1 + 2 + 2 = 5}$
(ii) A non-volatile solute ' X ' (molar mass $=50 \mathrm{~g} \mathrm{~mol}{ }^{-1}$) when dissolved in 78 g of benzene reduced its vapour pressure to 90%. Calculate the mass of X dissolved in the solution.
(iii) Calculate the boiling point elevation for a solution prepared by adding 10 g of MgCl_{2} to 200 g of water assuming MgCl_{2} is completely dissociated.
$\left(\mathrm{K}_{\mathrm{b}}\right.$ for Water $=0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, Molar mass $\left.\mathrm{MgCl}_{2}=95 \mathrm{~g} \mathrm{~mol}^{-1}\right)$
OR
(b) (i) Why is the value of Van't Hoff factor for ethanoic acid in benzene close to 0.5 ?
(ii) Determine the osmotic pressure of a solution prepared by dissolving $2.32 \times 10^{-2} \mathrm{~g}$ of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in 2 L of solution at $25^{\circ} \mathrm{C}$, assuming that $\mathrm{K}_{2} \mathrm{SO}_{4}$ is completely dissociated.
($\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, Molar mass $\mathrm{K}_{2} \mathrm{SO}_{4}=174 \mathrm{~g} \mathrm{~mol}^{-1}$)
(iii) When 25.6 g of Sulphur was dissolved in 1000 g of benzene, the freezing point lowered by 0.512 K . Calculate the formula of Sulphur $\left(\mathrm{S}_{x}\right)$.
$\left(\mathrm{K}_{\mathrm{f}}\right.$ for benzene $=5.12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, Atomic mass of Sulphur $=32 \mathrm{~g}$ mol^{-1})
34. (a) (i) Write the reaction involved in Cannizaro's reaction. $\mathbf{1 + 1 + 3}=\mathbf{5}$
(ii) Why are the boiling point of aldehydes and ketones lower than that of corresponding carboxylic acids?
(iii) An organic compound ' A ' with molecular formula $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$ is reduced to n-pentane with hydrazine followed by heating with NaOH and Glycol. ' A ' forms a dioxime with hydroxylamine and gives a positive Iodoform and Tollen's test. Identify ' A ' and give its reaction for Iodoform and Tollen's test.

OR

P.T.O.
(b) (i) ऐथेनल और एथेनॉइक अम्ल में विभेद करने के लिए रासायनिक परीक्षण लिखिए । $1+1+3=5$
(ii) ऐल्डिहाइडों और कीटोनों के α-हाइड्रोजनों की प्रकृति अम्लीय क्यों होती है ?
(iii) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ अणुसूत्र का एक कार्बनिक यौगिक ' A ' अम्लीय जल-अपघटन द्वारा दो यौगिक ' B ' और ' C ' देता है । ' C ' अम्लीकृत पोटैशियम परमैंगनेट द्वारा ऑक्सीकृत होकर ' B ' उत्पादित करता है। ' B ' का सोडियम लवण, सोडा लाइम के साथ गरम करने पर मेथेन देता है।
(1) 'A', 'B' और ' C ' की पहचान कीजिए।
(2) ' B ' और ' C ' में से किसका क्वथनांक उच्चतर होगा ? कारण दीजिए।
35. (a) लैन्थेनॉयडों की तुलना में ऐक्टिनॉयडों का रसायन जटिल क्यों होता है ?
(b) निम्न अभिक्रिया को पूर्ण कीजिए और औचित्य दीजिए कि यह एक असमानुपातन अभिक्रिया है :
$3 \mathrm{MnO}_{4}{ }^{2-}+4 \mathrm{H}^{+} \rightarrow$ \qquad $+$ \qquad $+2 \mathrm{H}_{2} \mathrm{O}$.
(c) दिया हुआ ग्राफ संक्रमण धातुओं के गलनांकों की प्रवृत्तियाँ दर्शाता है :

कारण की व्याख्या कीजिए कि Cr का उच्चतम गलनांक क्यों है और मैंगनीज़ (Mn) का निम्नतर गलनांक है।
(b) (i) Give a chemical test to distinguish between ethanal acid and ethanoic acid.
(ii) Why is the α-hydrogens of aldehydes and ketones are acidic in nature?
(iii) An organic compound ' A ' with molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ undergoes acid hydrolysis to form two compounds ' B ' and ' C '. Oxidation of ' C ' with acidified potassium permanganate also produces ' B '. Sodium salt of ' B ' on heating with soda lime gives methane.
(1) Identify ' A ', ' B ' and ' C '.
(2) Out of ' B ' and ' C ', which will have higher boiling point? Give reason.
35. (a) Why is chemistry of actinoids complicated as compared to lanthanoids ?

$$
1+2+2=5
$$

(b) Complete the following reaction and justify that it is a disproportionation reaction :
$3 \mathrm{MnO}_{4}{ }^{2-}+4 \mathrm{H}^{+} \rightarrow$ \qquad $+$ \qquad $+2 \mathrm{H}_{2} \mathrm{O}$.
(c) The given graph shows the trends in melting points of transition metals :

Explain the reason why Cr has highest melting point and manganese (Mn) a lower melting point.

सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका पालन कीजिए :
(i) इस प्रश्न-पत्र में कुल 35 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं।
(ii) प्रश्न-पत्र पाँच खण्डों में विभाजित है - खण्ड क, ख, ग, घ तथा ङ।
(iii) खण्ड-क : प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं।
(iv) खण्ड-ख : प्रश्न संख्या 19 से 25 तक अति लघु-उत्तरीय प्रकार के दो-दो अंकों के प्रश्न हैं।
(v) खण्ड-ग : प्रश्न संख्या 26 से 30 तक लघु-उत्तरीय प्रकार के तीन-तीन अंकों के प्रश्न हैं।
(vi) खण्ड-घ : प्रश्न संख्या 31 तथा 32 केस आधारित चार-चार अंकों के प्रश्न हैं।
(vii) खण्ड-ङ : प्रश्न संख्या 33 से 35 तक दीर्घ-उत्तरीय प्रकार के पाँच-पाँच अंकों के प्रश्न हैं।
(viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है । यद्यपि, खण्ड-ख के 2 प्रश्नों में, खण्ड-ग के 2 प्रश्नों में, खण्ड-घ के 2 प्रश्नों में तथा खण्ड-ङ के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
(ix) कैल्कुलेटर का उपयोग वर्जित है।

खण्ड - क

1. निम्न में से किसका pK_{a} मान न्यूनतम है ?
(a) $\mathrm{CH}_{3}-\mathrm{COOH}$
(b) $\mathrm{O}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}$
(c) $\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{COOH}$
(d) HCOOH
2. निम्न में से कौन सा सेल अपोलो अंतरिक्ष कार्यक्रम में प्रयुक्त किया गया था ?
(a) मर्क्यूरी सेल
(b) डेन्यल सेल
(c) $\mathrm{H}_{2}-\mathrm{O}_{2}$ ईंधन सेल
(d) शुष्क सेल
3. निम्नलिखित मानक इलेक्ट्रॉड विभव मानों पर विचार कीजिए :
$\mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \mathrm{E}^{\circ}=+0.77 \mathrm{~V}$
$\mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \mathrm{E}^{\circ}=+1.51 \mathrm{~V}$
रेडॉक्स अभिक्रिया के लिए सेल विभव क्या है ?
(a) -2.28 V
(b) -0.74 V
(c) +0.74 V
(d) +2.28 V

56/5/2

2

General Instructions :

Read the following instructions very carefully and follow them :
(i) This question paper contains 35 questions. All questions are compulsory.
(ii) Question paper is divided into FIVE sections - Section A, B, C, D and E.
(iii) In section - A : Question Numbers 1 to 18 are Multiple Choice (MCQ) type Questions carrying 1 mark each.
(iv) In section - B: Question Numbers 19 to 25 are Very Short Answer (VSA) type questions carrying 2 marks each.
(v) In section - C : Question Numbers 26 to 30 are Short Answer (SA) type questions carrying 3 marks each.
(vi) In section - D : Question Numbers 31 and 32 are case based questions carrying 4 marks each.
(vii) In section - E: Question Numbers 33 to 35 are Long Answer (LA) type questions carrying 5 marks each.
(viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section - B, 2 questions in Section - C, 2 questions in Section - D and 2 questions in Section - E.
(ix) Use of calculators is NOT allowed.

SECTION - A

1. Which one of the following has lowest pK_{a} value ?
(a) $\mathrm{CH}_{3}-\mathrm{COOH}$
(b) $\mathrm{O}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}$
(c) $\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{COOH}$
(d) HCOOH
2. Which of the following cell was used in Apollo space programme ?
(a) Mercury cell
(b) Daniel cell
(c) $\mathrm{H}_{2}-\mathrm{O}_{2}$ Fuel cell
(d) Dry cell
3. Consider the following standard electrode potential values :
$\mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \mathrm{E}^{\circ}=+0.77 \mathrm{~V}$
$\mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(l)} \mathrm{E}^{\circ}=+1.51 \mathrm{~V}$
What is the cell potential for the redox reaction?
(a) -2.28 V
(b) -0.74 V
(c) +0.74 V
(d) +2.28 V

56/5/2

P.T.O.
4. $25^{\circ} \mathrm{C}$ पर सम्पन्न की गई अभिक्रिया के लिए निम्नलिखित प्रायोगिक वेग आँकड़े प्राप्त हुए :
$\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightarrow \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})}$

प्रारम्भिक $\left[\mathrm{A}_{(\mathrm{g})}\right] / \mathrm{mol} \mathrm{dm}$		
3.0×10^{-2}	प्रारम्भिक $\left[\mathrm{B}_{(\mathrm{g})}\right] / \mathrm{mol} \mathrm{dm}$	
-3	प्रारम्भिक वेग $/ \mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{~s}^{-1}$	
3.0×10^{-2}	2.0×10^{-2}	1.89×10^{-4}
6.0×10^{-2}	4.0×10^{-2}	1.89×10^{-4}
	4.0×10^{-2}	7.56×10^{-4}

$\mathrm{A}_{(\mathrm{g})}$ और $\mathrm{B}_{(\mathrm{g})}$ के प्रति कोटि क्या हैं ?

		$\mathrm{A}_{(\mathrm{g})}$ के प्रति कोटि
(a)	$\mathrm{B}_{(\mathrm{g})}$ के प्रति कोटि	
(b)	शून्य	द्वितीय
	प्रथम	शून्य
(c)	द्वितीय	शून्य
(d)	द्वितीय	प्रथम

5. $\left[\mathrm{NiCl}_{4}\right]^{2-}$ का चुम्बकीय आघूर्ण है :
(a) 1.82 BM
(b) 2.82 BM
(c) 4.42 BM
(d) 5.46 BM
[परमाणु क्रमांक : $\mathrm{Ni}=28$]
6. निम्नलिखित आयनों में से किसका इलेक्ट्रॉनिक विन्यास $3 \mathrm{~d}^{6}$ है ? (परमाणु क्रमांक : $\mathrm{Mn}=25$, $\mathrm{Co}=27, \mathrm{Ni}=28$)
(a) Ni^{3+}
(b) Co^{3+}
(c) Mn^{2+}
(d) Mn^{3+}

7. The following experimental rate data were obtained for a reaction carried out at $25^{\circ} \mathrm{C}$:

1
$\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightarrow \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})}$

Initial $\left[\mathrm{A}_{(\mathrm{g})}\right] / \mathrm{mol} \mathrm{dm}$		
	Initial $\left[\mathrm{B}_{(\mathrm{g})}\right] / \mathrm{mol} \mathrm{dm}^{-3}$	Initial rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~S}^{-1}$
3.0×10^{-2}	2.0×10^{-2}	1.89×10^{-4}
3.0×10^{-2}	4.0×10^{-2}	1.89×10^{-4}
6.0×10^{-2}	4.0×10^{-2}	7.56×10^{-4}

What are the orders with respect to $\mathrm{A}_{(\mathrm{g})}$ and $\mathrm{B}_{(\mathrm{g})}$?

	Order with respect to $\mathrm{A}_{(\mathrm{g})}$	Order with respect to $\mathrm{B}_{(\mathrm{g})}$
(a)	Zero	Second
(b)	First	Zero
(c)	Second	Zero
(d)	Second	First

5. The magnetic moment of $\left[\mathrm{NiCl}_{4}\right]^{2-}$
(a) 1.82 BM
(b) 2.82 BM
(c) 4.42 BM
(d) 5.46 BM
[Atomic number : $\mathrm{Ni}=28$]
6. Which of the following ions has the electronic configuration $3 \mathrm{~d}^{6}$? (Atomic number : $\mathrm{Mn}=25, \mathrm{Co}=27, \mathrm{Ni}=28$)
(a) Ni^{3+}
(b) Co^{3+}
(c) Mn^{2+}
(d) Mn^{3+}

P.T.O.
7. निम्नलिखित जलीय विलयनों में से किसका क्वथनांक उच्चतम होगा ?
(a) 1.0 M KCl
(b) $1.0 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$
(c) 2.0 M KCl
(d) $\quad 2.0 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$
8. निम्न अर्ध अभिक्रियाओं द्वारा निरूपित दो अर्ध सेलों को जोड़कर एक वोल्टीय सेल बनाया गया :
$\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}_{(\mathrm{s})} \mathrm{E}^{\circ}=-0.14 \mathrm{~V}$
$\mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \mathrm{E}^{\circ}=+0.77 \mathrm{~V}$
इस वोल्टीय सेल के बारे में कौन सा कथन सही है ?
(a) Fe^{2+} ऑक्सीकृत होता है और सेल की वोल्टता -0.91 V है।
(b) Sn ऑक्सीकृत होता है और सेल की वोल्टता 0.91 V है।
(c) Fe^{2+} ऑक्सीकृत होता है और सेल की वोल्टता 0.91 V है।
(d) Sn ऑक्सीकृत होता है और सेल की वोल्टता 0.63 V है।
9. ऐमाइडों का ऐमीनों में रूपान्तरण निम्न में से किस नामित अभिक्रिया द्वारा किया जा सकता है ?
(a) हॉफमान निम्नीकरण
(b) ऐमीनो अपघटन
(c) कार्बिलऐमीन
(d) डाइऐज़ोकरण
10. ग्लूकोस के विषय में निम्न कथनों में से कौन सा सत्य नहीं है ?
(a) यह एक ऐल्डोहैक्सोस है।
(b) HI के साथ गरम किए जाने पर यह n -हैक्सेन निर्मित करता है।
(c) यह पाइरनोस रूप में उपस्थित होता है।
(d) यह 2, 4 DNP परीक्षण देता है।
11. निम्नलिखित ऐल्कोहॉलों में से किसका ऑक्सीकरण नहीं होगा ?
(a) ब्यूटेनॉल
(b) ब्यूटेन-2-ऑल
(c) 2-मेथिलब्यूटेन-2-ऑल
(d) 3-मेथिलब्यूटेन-2-ऑल

56/5/2

7. Which of the following aqueous solution will have highest boiling point?
(a) 1.0 M KCl
(b) $1.0 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$
(c) 2.0 M KCl
(d) $\quad 2.0 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$
8. A voltaic cell is made by connecting two half cells represented by half equations below :
$\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}_{(\mathrm{s})} \mathrm{E}^{\circ}=-0.14 \mathrm{~V}$
$\mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \mathrm{E}^{\circ}=+0.77 \mathrm{~V}$
Which statement is correct about this voltaic cell?
(a) Fe^{2+} is oxidised and the voltage of the cell is -0.91 V .
(b) Sn is oxidised and the voltage of the cell is 0.91 V .
(c) Fe^{2+} is oxidised and the voltage of the cell is 0.91 V .
(d) Sn is oxidised and the voltage of the cell is 0.63 V .
9. Amides can be converted into amines by the reaction named
(a) Hoffmann degradation
(b) Ammonolysis
(c) Carbylamine
(d) Diazotisation
10. Which of the following statements is not true about glucose ?
(a) It is an aldohexose.
(b) On heating with HI it forms n -hexane.
(c) It is present in pyranose form.
(d) It gives 2, 4 DNP test.
11. Which of the following alcohols will not undergo oxidation?
(a) Butanol
(b) Butan-2-ol
(c) 2-Methylbutan-2-ol
(d) 3-Methylbutan-2-ol

56/5/2

P.T.O.
12. I से IV तक चार अर्ध अभिक्रियाएँ नीचे दर्शाई गई हैं :
I. $2 \mathrm{Cl} l^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
II. $4 \mathrm{OH}^{-} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$
III. $\mathrm{Na}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Na}$
IV. $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$

इनमें से कौन सी दो अभिक्रियाएँ बहुत अधिक संभावनीय हैं जब सांद्र लवण-जल (ब्राइन) का वैद्युत-अपघटन किया जाता है ?
(a) I और III
(b) I और IV
(c) II और III
(d) II और IV
13. संक्रमण धातुओं का कौन सा गुणधर्म इन्हें उत्प्रेरक की भाँति व्यवहार करने योग्य बनाता है ?
(a) उच्च गलनांक
(b) उच्च आयनन एन्थैल्पी
(c) मिश्रातु का निर्माण
(d) परिवर्तनीय ऑक्सीकरण अवस्थाएँ
14. नाइट्रोबेन्जीन को ऐनिलीन में अपचयित करने के लिए निम्न में से कौन एक अच्छा चुनाव नहीं होगा?
(a) LiAlH_{4}
(b) $\mathrm{H}_{2} / \mathrm{Ni}$
(c) Fe और HCl
(d) Sn और HCl

प्रश्न संख्या 15 से 18 के लिए, दो कथन दिए गए हैं - जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (a), (b), (c) और
(d) में से चुनकर दीजिए।
(a) अभिकथन (A) और कारण (R) दोनों सहीं हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
(b) अभिकथन (A) और कारण (R) दोनों सहीं हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
(c) अभिकथन (A) सही है, परन्तु कारण (R) गलत है।
(d) अभिकथन (A) गलत है, परन्तु कारण (R) सही है।
12. Four half reactions I to IV are shown below :
I. $2 \mathrm{Cl} l^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
II. $4 \mathrm{OH}^{-} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$
III. $\mathrm{Na}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Na}$
IV. $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$

Which two of these reactions are most likely to occur when concentrated brine is electrolysed?
(a) I and III
(b) I and IV
(c) II and III
(d) II and IV
13. Which property of transition metals enables them to behave as catalysts ?
(a) High melting point
(b) High ionisation enthalpy
(c) Alloy formation
(d) Variable oxidation states
14. Which of the following would not be a good choice for reducing nitrobenzene to aniline?
(a) LiAlH_{4}
(b) $\mathrm{H}_{2} / \mathrm{Ni}$
(c) Fe and HCl
(d) Sn and HCl

For questions number 15 to 18, two statements are given - one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below :
(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
(b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
(c) Assertion (A) is true, but Reason (R) is false.
(d) Assertion (A) is false, but Reason (R) is true.

P.T.O.
15. अभिकथन (A) : विटामिन C हमारे शरीर में भंडारित नहीं किया जा सकता है।

कारण (R) : विटामिन C वसा विलेय है और मूत्र के साथ उत्सर्जित हो जाता है।
16. अभिकथन (A) : किसी अभिक्रिया में अभिक्रियक की प्रारंभिक सांद्रता के आधे होने में लगने वाला समय अभिक्रिया का अर्धायु होता है।

कारण (R) : प्रथम कोटि बलगतिकी में जब अभिक्रियक की सांद्रता दुगुनी की जाती है, इसकी अर्धायु दुगुनी हो जाती है।
17. अभिकथन (A) : बेन्जोइक अम्ल का ब्रोमीनन करने पर m-ब्रोमोबेन्जोइक अम्ल बनता है।

कारण (R) : कार्बोक्सिल समूह मेटा स्थिति पर इलेक्ट्रॉन घनत्व बढ़ा देता है।
18. अभिकथन (A) : EDTA षट्दंतुर लिगन्ड है।

कारण (R) : EDTA में 2 नाइट्रोजन और 4 ऑक्सीजन दाता परमाणु होते हैं।

```
खण्ड - ख
```

19. (a) निम्नलिखित में से कौन सी स्पीशीज़ लिगंड की भाँति कार्य नहीं कर सकती है ? कारण दीजिए।
$\mathrm{OH}^{-}, \mathrm{NH}_{4}^{+}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{H}_{2} \mathrm{O}$
(b) संकुल $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{C} l_{2}$ लाल रंग का है । इसके बंधनी समावयव का आई.यू.पी.ए.सी. नाम दीजिए।
20. फ़ीनॉल और साइक्लोहेक्सेनॉल युगल के लिए निम्न के उत्तर दीजिए :
(a) साइक्लोहेक्सेनॉल की तुलना में फ़ीनॉल अधिक अम्लीय क्यों होता है ?
(b) दोनों के मध्य विभेद करने के लिए एक रासायनिक परीक्षण दीजिए।

56/5/2

15. Assertion (A) : Vitamin C cannot be stored in our body.

Reason (R) : Vitamin C is fat soluble and is excreted from the body in urine.
16. Assertion (A) : The half life of a reaction is the time in which the concentration of the reactant is reduced to one half of its initial concentration.

Reason (R) : In first order kinetics when concentration of reactant is doubled, its half life is doubled.
17. Assertion (A) : Bromination of benzoic acid gives m-bromobenzoic acid.

Reason (R) : Carboxyl group increases the electron density at the meta position.
18. Assertion (A) : EDTA is a hexadentate ligand.

Reason (R): EDTA has 2 nitrogen and 4 oxygen donor atoms.

SECTION - B

19. (a) Which of the following species cannot act as a ligand? Give reason.

$$
\mathrm{OH}^{-}, \mathrm{NH}_{4}^{+}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{H}_{2} \mathrm{O} \quad 2 \times 1=2
$$

(b) The complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}_{2}$ is red in colour. Give IUPAC name of its linkage isomer.
20. For the pair phenol and cyclohexanol, answer the following :
(a) Why is phenol more acidic than cyclohexanol?
(b) Give one chemical test to distinguish between the two.

56/5/2

P.T.O.
21. (a) (i) सल्फैनिलिक अम्ल के लिए ज्विटर (उभयाविष्ट) आयन की संरचना खींचिए। $2 \times 1=2$
(ii) ऐनिलीन में $-\mathrm{NH}_{2}$ समूह के सक्रियण प्रभाव को कैसे नियंत्रित किया जा सकता है ?

अथवा
(b) (i) निर्मित मुख्य उत्पाद देते हुए अभिक्रिया पूर्ण कीजिए :

(ii) ब्रोमोएथेन का प्रोपेनेमीन में रूपान्तरण कीजिए।
22. निम्नलिखित के लिए समीकरण लिखिए :
(a) वायु एवं प्रकाश द्वारा क्लोरोफॉर्म का ऑक्सीकरण
(b) क्लोरोबेन्जीन की $\mathrm{CH}_{3} \mathrm{Cl} /$ निर्जल AlCl_{3} के साथ अभिक्रिया
23. किसी रासायनिक अभिक्रिया का ताप बढ़ाने पर उसके वेग स्थिरांक k और सक्रियण ऊर्जा E_{a} को क्या होता है ? औचित्य सिद्ध कीजिए।
24. (a) (i) मानक अवस्था में हो रही किसी स्वत: प्रवर्तित रेडॉक्स अभिक्रिया के लिए E° सेल और $\Delta \mathrm{G}^{\circ}$ के क्या चिह्न (धनात्मक/ऋणात्मक) होने चाहिए ? $2 \times 1=2$
(ii) फैराडे के वैद्युत अपघटन का पहला नियम बताइए।

अथवा

(b) 298 K पर निम्न सेल का emf परिकलित कीजिए :
$\mathrm{Fe}_{(\mathrm{s})}\left|\mathrm{Fe}^{2+}{ }_{(0.01 \mathrm{M})} \| \mathrm{H}_{(1 \mathrm{M})}^{+}\right| \mathrm{H}_{2(\mathrm{~g})}(1 \mathrm{bar}), \mathrm{Pt}_{(\mathrm{s})}$
दिया है E° सेल $=0.44 \mathrm{~V}$.
25. ग्लूकोस की ऐसीटिक ऐनहाइड्राइड के साथ अभिक्रिया दीजिए। यह अभिक्रिया किस समूह की उपस्थिति की पुष्टि करती है ?
21. (a) (i) Draw the zwitter ion structure for sulphanilic acid.
(ii) How can the activating effect of $-\mathrm{NH}_{2}$ group in aniline be controlled?

OR

(b) (i) Complete the reaction with the main product formed:

(ii) Convert Bromoethane to Propanamine.
22. Write equations for the following :
(a) Oxidation of chloroform by air and light
(b) Reaction of chlorobenzene with $\mathrm{CH}_{3} \mathrm{Cl} /$ anhyd. $\mathrm{AlCl} l_{3}$
23. What happens to the rate constant k and activation energy E_{a} as the temperature of a chemical reaction is increased ? Justify.
24. (a) (i) What should be the signs (positive/negative) for $\mathrm{E}^{\circ}{ }_{\text {Cell }}$ and $\Delta \mathrm{G}^{\circ}$ for a spontaneous redox reaction occurring under standard conditions?
(ii) State Faraday's first law of electrolysis.

OR

(b) Calculate the emf of the following cell at 298 K :
$\mathrm{Fe}_{(\mathrm{s})}\left|\mathrm{Fe}^{2+}(0.01 \mathrm{M}) \| \mathrm{H}^{+}{ }_{(1 \mathrm{M})}\right| \mathrm{H}_{2(\mathrm{~g})}(1 \mathrm{bar}), \mathrm{Pt}_{(\mathrm{s})}$
Given $\mathrm{E}^{\circ}{ }_{\text {Cell }}=0.44 \mathrm{~V}$.
25. Give the reaction of glucose with acetic anhydride. Presence of which group is confirmed by this reaction?
26. (a) (i) फ़ीनॉलों में $\mathrm{C}-\mathrm{O}$ आबंध लम्बाई मेथेनॉल की अपेक्षा कम क्यों होती है ? $3 \times 1=3$
(ii) निम्नलिखित को बढ़ते क्वथनांक के क्रम में व्यवस्थित कीजिए :

एथॉक्सीएथेन, ब्यूटेनैल, ब्यूटेनॉल, n-ब्यूटेन
(iii) ऐनिसोल से फ़ीनॉल कैसे विरचित किया जा सकता है ? अभिक्रिया दीजिए।

अथवा

(b) (i) निम्नलिखित अभिक्रिया की क्रियाविधि लिखिए :
$2+1=3$

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow[413 \mathrm{~K}]{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

(ii) हाइड्रोबोरॉनन - ऑक्सीकरण अभिक्रिया को उदाहरण सहित समझाइए।
27. (a) क्रिस्टल क्षेत्र सिद्धांत के आधार पर d^{5} आयन का दुर्बल लिगन्ड के साथ इलेक्ट्रॉनिक विन्यास लिखिए जिसके लिए $\Delta_{0}<\mathrm{P}$ है।
(b) व्याख्या कीजिए कि $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ एक आंतरिक कक्षक संकुल है जबकि $\left[\mathrm{FeF}_{6}\right]^{3-}$ एक बाह्य कक्षक संकुल है।
[परमाणु क्रमांक : $\mathrm{Fe}=26$]
28. निम्नलिखित किन्हीं तीन प्रेक्षणों के लिए कारण दीजिए :
(a) ग्लूकोस का पेन्टाऐसीटेट, हाइड्रॉक्सिलऐमीन के साथ अभिक्रिया नहीं करता।
(b) एमीनो अम्ल लवणों की भाँति गुण दर्शाते हैं।
(c) जल में विलेय विटामिनों की पूर्ति हमारे आहार में नियमित रूप से होनी चाहिए।
(d) DNA के दो रज्ञुक एक-दूसरे के पूरक होते हैं।
29. (a) 318 K पर अभिक्रिया $1+2=3$
$2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$ के लिए अभिक्रिया वेग परिकलित कीजिए यदि $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$ के लोप होने का वेग $1.4 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1}$ है।
(b) एक प्रथम कोटि अभिक्रिया के लिए $\mathrm{t}_{99 \%}=2 \mathrm{t}_{90 \%}$ सम्बन्ध व्युत्पन्न कीजिए ।
30. (a) एक समीकरण के साथ सैन्डमायर अभिक्रिया दर्शाइए।
(b) जलीय विलयन में $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ की तुलना में $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ अधिक क्षारकीय है, व्याख्या कीजिए।

SECTION - C

26. (a) (i) Why is the $\mathrm{C}-\mathrm{O}$ bond length in phenols less than that in methanol ?

$$
3 \times 1=3
$$

(ii) Arrange the following in order of increasing boiling point : Ethoxyethane, Butanal, Butanol, n-butane
(iii) How can phenol be prepared from anisole ? Give reaction.

OR
(b) (i) Give mechanism of the following reaction :

(ii) Illustrate hydroboration - oxidation reaction with an example.
27. (a) On the basis of crystal field theory write the electronic configuration for d^{5} ion with a weak ligand for which $\Delta_{0}<\mathrm{P}$.
(b) Explain $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is an inner orbital complex whereas $\left[\mathrm{FeF}_{6}\right]^{3-}$ is an outer orbital complex.
[Atomic number : $\mathrm{Fe}=26$]
28. Give reasons for any $\mathbf{3}$ of the following observations:
(a) Penta-acetate of glucose does not react with hydroxylamine.
(b) Amino acids behave like salts.
(c) Water soluble vitamins must be taken regularly in diet.
(d) The two strands in DNA are complimentary to each other.
29. (a) For the reaction
$2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$ at 318 K
calculate the rate of reaction if rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$ is
$1.4 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1}$.
(b) For a first order reaction derive the relationship $t_{99 \%}=2 t_{90 \%}$
30. (a) Illustrate Sandmeyer's reaction with an equation.
(b) Explain, why $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ is more basic than $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ in aqueous solution.

P.T.O.

```
खण्ड - घ
```

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं। अनुच्छेद को सावधानीपूर्वक पढ़िए और उसके पश्चात के प्रश्नों का उत्तर दीजिए :
31. राहुल ने 298 K पर विभिन्न सांद्रताओं पर जलीय KCl विलयन का प्रतिरोध ज्ञात करने के लिए व्हीटस्टोन ब्रिज से जुड़े हुए एक चालकता सेल को प्रयुक्त करते हुए एक प्रयोग व्यवस्थित किया। उसने श्रव्य आवृत्ति सीमा 550 से 5000 चक्रण प्रति सेकण्ड वाली a.c. शक्ति को व्हीटस्टोन ब्रिज से जोड़ा । शून्य विक्षेप स्थिति से प्रतिरोध का परिकलन करने के पश्चात् उसने चालकता K और मोलर चालकता \wedge_{m} भी परिकलित किया और अपने पाठ्यांकों को सारणी रूप में अभिलिखित किया।

क्रम संख्या	सांद्रता (M)	$\mathbf{k ~ S ~ c m}$	
	$\mathbf{1}$	$\wedge_{\mathbf{m}} \mathbf{S ~ c m}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{1}}$	
1.	1.00	111.3×10^{-3}	111.3
2.	0.10	12.9×10^{-3}	129.0
3.	0.01	1.41×10^{-3}	141.0

निम्नलिखित प्रश्नों के उत्तर दीजिए :
(a) तनुकरण के साथ चालकता क्यों घटती है ?
(b) यदि KCl के लिए $\wedge_{\mathrm{m}}{ }^{\circ} 150.0 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ है तो 0.01 M KCl की वियोजन मात्रा परिकलित कीजिए।
(c) यदि राहुल ने KCl के स्थान पर HCl प्रयुक्त किया होता तो आप \wedge_{m} मानों को दी गई सांद्रता के लिए KCl के मानों की अपेक्षा अधिक या कम अपेक्षित करेंगे । औचित्य सिद्ध कीजिए।

अथवा

(c) राहुल के सहपाठी अमित ने उसी प्रयोग को KCl विलयन के स्थान पर $\mathrm{CH}_{3} \mathrm{COOH}$ विलयन के साथ दोहराया। राहुल की तुलना में उसके प्रेक्षणों में से एक प्रेक्षण लिखिए जो उसके समान था और एक प्रेक्षण जो उससे भिन्न था।

SECTION - D

The following questions are case-based questions. Read the passage carefully and answer the questions that follow :
31. Rahul set-up an experiment to find resistance of aqueous KCl solution for different concentrations at 298 K using a conductivity cell connected to a Wheatstone bridge. He fed the Wheatstone bridge with a.c. power in the audio frequency range 550 to 5000 cycles per second. Once the resistance was calculated from null point he also calculated the conductivity K and molar conductivity \wedge_{m} and recorded his readings in tabular form.

S.No.	Conc.(M)	$\mathbf{k ~ S ~ c m}$	
1.	1.00	111.3×10^{-3}	$\wedge_{\mathbf{m}} \mathbf{S ~ c m}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{1}}$
2.	0.10	111.3	
3.9×10^{-3}	129.0		
	0.01	1.41×10^{-3}	141.0

Answer the following questions :
(a) Why does conductivity decrease with dilution?
(b) If $\wedge_{\mathrm{m}}{ }^{0}$ of KCl is $150.0 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, calculate the degree of dissociation of 0.01 M KCl .
(c) If Rahul had used HCl instead to KCl then would you expect the \wedge_{m} values to be more or less than those per KCl for a given concentration. Justify.

OR

(c) Amit a classmate of Rahul repeated the same experiment with $\mathrm{CH}_{3} \mathrm{COOH}$ solution instead of KCl solution. Give one point that would be similar and one that would be different in his observations as compared to Rahul.

हैलोऐल्केनों में नाभिकरागी प्रतिस्थापन अभिक्रिया $\mathrm{S}_{\mathrm{N}} 1$ और $\mathrm{S}_{\mathrm{N}} 2$ दोनों क्रियाविधियों के अनुसार संचालित की जा सकती हैं। $\mathrm{S}_{\mathrm{N}} 1$ दो चरणों की अभिक्रिया है जबकि $\mathrm{S}_{\mathrm{N}} 2$ एक चरण की अभिक्रिया है। कोई हैलोऐल्केन कौन सी क्रियाविधि अपनाएगा, यह कारकों पर निर्भर करता है जैसे हैलोऐल्केन की संरचना, अवशिष्ट समूह के गुणधर्म, नाभिकरागी अभिकर्मक और विलायक।

विलायक ध्रुवता के प्रभाव : $\mathrm{S}_{\mathrm{N}} 1$ अभिक्रिया में, अभिकर्मक से संक्रमण स्थिति की ओर निकाय की ध्रुवता में वृद्धि होती है, क्योंकि एक ध्रुवीय विलायक, अभिकर्मक की अपेक्षा संक्रमण स्थिति पर अधिक प्रभाव डालता है, फलस्वरूप सक्रियण ऊर्जा कम होती है और अभिक्रिया तीव्र गति से होती है। $\mathrm{S}_{\mathrm{N}} 2$ अभिक्रिया में, निकाय की ध्रुवता अभिकर्मक से संक्रमण स्थिति की ओर सामान्यतः परिवर्तित नहीं होती है और केवल आवेश परिक्षेपण होता है। इस समय, ध्रुवीय विलायक का संक्रमण स्थिति की अपेक्षा Nu पर बृहत्तर स्थायित्व प्रभाव पड़ता है, जिसके कारण सक्रियण ऊर्जा में वृद्धि होती है और अभिक्रिया वेग को मन्द कर देता है । उदाहरण के लिए $25^{\circ} \mathrm{C}$ पर तृतीयक क्लोरोब्यूटेन का एथेनॉल (परावैद्युतांक 24) की अपेक्षा जल (परावैद्युतांक 79) में विघटन वेग $\left(\mathrm{S}_{\mathrm{N}} 1\right) 300000$ गुना अधिक तीव्र होता है । 2-ब्रोमोप्रोपेन की परिशुद्ध एल्कोहॉल में NaOH के साथ अभिक्रिया वेग $\left(\mathrm{S}_{\mathrm{N}} 2\right)$ की अपेक्षा 40% जल सहित एथेनॉल में NaOH के साथ दुगुना मंद हो जाता है। अत: विलायक की ध्रुवता का स्तर $\mathrm{S}_{\mathrm{N}} 1$ और $\mathrm{S}_{\mathrm{N}} 2$ दोनों अभिक्रियाओं पर प्रभाव डालता है, परन्तु परिणाम भिन्न होते हैं । सामान्यत: हम कह सकते हैं कि दुर्बल ध्रुवीय विलायक $\mathrm{S}_{\mathrm{N}} 2$ अभिक्रियाओं के लिए अनुकूल होते हैं जबकि प्रबल ध्रुवीय विलायक $\mathrm{S}_{\mathrm{N}} 1$ अभिक्रियाओं के लिए अनुकूल होते हैं । सामान्यतः हम कह सकते हैं कि तृतीयक हैलोऐल्केन की प्रतिस्थापन अभिक्रिया प्रबल ध्रुवीय विलायकों में $\mathrm{S}_{\mathrm{N}} 1$ क्रियाविधि पर आधारित है (उदाहरण के लिए जल के साथ एथेनॉल)।

Nucleophilic Substitution reaction of haloalkane can be conducted according to both $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$ mechanisms. $\mathrm{S}_{\mathrm{N}} 1$ is a two step reaction while $\mathrm{S}_{\mathrm{N}} 2$ is a single step reaction. For any haloalkane which mechanism is followed depends on factors such as structure of haloalkane, properties of leaving group, nucleophilic reagent and solvent.

Influences of solvent polarity : $\operatorname{In} \mathrm{S}_{\mathrm{N}} 1$ reaction, the polarity of the system increases from the reactant to the transition state, because a polar solvent has a greater effect on the transition state than the reactant, thereby reducing activation energy and accelerating the reaction. In $\mathrm{S}_{\mathrm{N}} 2$ reaction, the polarity of the system generally does not change from the reactant to the transition state and only charge dispersion occurs. At this time, polar solvent has a great stabilizing effect on Nu than the transition state, thereby increasing activation energy and slow down the reaction rate. For example, the decomposition rate $\left(\mathrm{S}_{\mathrm{N}} 1\right)$ of tertiary chlorobutane at $25^{\circ} \mathrm{C}$ in water (dielectric constant 79) is 300000 times faster than in ethanol (dielectric constant 24). The reaction rate $\left(\mathrm{S}_{\mathrm{N}} 2\right)$ of 2 -Bromopropane and NaOH in ethanol containing 40% water is twice slower than in absolute ethanol. Hence the level of solvent polarity has influence on both $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$ reaction, but with different results. Generally speaking weak polar solvent is favourable for $\mathrm{S}_{\mathrm{N}} 2$ reaction, while strong polar solvent is favourable for $\mathrm{S}_{\mathrm{N}} 1$. Generally speaking the substitution reaction of tertiary haloalkane is based on $\mathrm{S}_{\mathrm{N}} 1$ mechanism in solvents with a strong polarity (for example ethanol containing water).

P.T.O.

निम्नलिखित प्रश्नों के उत्तर दीजिए ：
（a） $\mathrm{S}_{\mathrm{N}} 1$ में रेसिमीकरण क्यों होता है ？
（b）जल की तुलना में एथेनॉल कम ध्रुवीय क्यों होता है ？
（c）निम्नलिखित प्रत्येक युगलों में से कौन $\mathrm{S}_{\mathrm{N}} 2$ अभिक्रिया के प्रति अधिक अभिक्रियाशील है ？
（i） $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{I}$ अथवा $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Cl}$
（ii）

अथवा

（c）निम्नलिखित को $\mathrm{S}_{\mathrm{N}} 1$ अभिक्रियाओं के प्रति उनकी अभिक्रियाशीलता के बढ़ते क्रम में व्यवस्थित कीजिए ：
（i） 2 －ब्रोमो－ 2 －मेथिलब्यूटेन， 1 －ब्रोमोपेन्टेन， 2 －ब्रोमोपेन्टेन
（ii） 1 －ब्रोमो－ 3 －मेथिलब्यूटेन， 2 －ब्रोमो－ 2 －मेथिलब्यूटेन， 2 －ब्रोमो－ 3 －मेथिलब्यूटेन

खण्ड－ङ

33．（a）（i）कैनिज़ारो अभिक्रिया में सम्मिलित अभिक्रिया लिखिए।
（ii）सदृश कार्बोक्सिलिक अम्लों की तुलना में ऐल्डिहाइडों और कीटोनों के क्वथनांक कम क्यों होते हैं ？
（iii）एक कार्बनिक यौगिक＇ A ＇जिसका अणुसूत्र $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$ है，हाइड्रैजीन के साथ अभिक्रिया करने के पश्चात् NaOH एवं ग्लाइकॉल के साथ गरम करने पर n －पेन्टेन में अपचयित हो गया ।＇A＇हाइड्रॉक्सिल एमीन के साथ डाइऑक्सिम बनाता है और धनात्मक आयोडोफॉर्म तथा टॉलेन परीक्षण देता है।＇ A ＇की पहचान कीजिए और आयडोफॉर्म तथा टॉलेन परीक्षण के लिए अभिक्रिया लिखिए।

अथवा

（b）（i）फथेनल और एथेनॉइक अम्ल में विभेद करने के लिए रासायनिक परीक्षण लिखिए।

$$
1+1+3=5
$$

（ii）ऐल्डिहाइडों और कीटोनों के α－हाइड्रोजनों की प्रकृति अम्लीय क्यों होती है ？
（iii） $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ अणुसूत्र का एक कार्बनिक यौगिक＇ A ＇अम्लीय जल－अपघटन द्वारा दो यौगिक＇ B ＇ और＇ C ＇देता है।＇ C ＇अम्लीकृत पोटैशियम परमैंगनेट द्वारा ऑक्सीकृत होकर＇ B ＇उत्पादित करता है।＇ B ＇का सोडियम लवण，सोडा लाइम के साथ गरम करने पर मेथेन देता है।
（1）＇A＇，＇B＇और＇C＇की पहचान कीजिए।
（2）＇ B ＇और＇ C ＇में से किसका क्वथनांक उच्चतर होगा ？कारण दीजिए।

Answer the following questions :
(a) Why racemisation occurs in $\mathrm{S}_{\mathrm{N}} 1$?
(b) Why is ethanol less polar than water?
(c) Which one of the following in each pair is more reactive towards $\mathrm{S}_{\mathrm{N}} 2$ reaction?
(i) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{I}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Cl}$
(ii)

OR
(c) Arrange the following in the increasing order of their reactivity towards $\mathrm{S}_{\mathrm{N}} 1$ reactions :
(i) 2-Bromo-2-methylbutane, 1-Bromopentane, 2 -Bromopentane
(ii) 1-Bromo-3-methylbutane, 2-Bromo-2-methylbutane, 2-Bromo-3methylbutane

SECTION - E

33. (a) (i) Write the reaction involved in Cannizaro's reaction. $\mathbf{1 + 1 + 3}=\mathbf{5}$
(ii) Why are the boiling point of aldehydes and ketones lower than that of corresponding carboxylic acids ?
(iii) An organic compound ' A ' with molecular formula $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$ is reduced to n-pentane with hydrazine followed by heating with NaOH and Glycol. 'A' forms a dioxime with hydroxylamine and gives a positive Iodoform and Tollen's test. Identify 'A' and give its reaction for Iodoform and Tollen's test.

OR

(b) (i) Give a chemical test to distinguish between ethanal and ethanoic acid.
$1+1+3=5$
(ii) Why is the α-hydrogens of aldehydes and ketones are acidic in nature?
(iii) An organic compound ' A ' with molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ undergoes acid hydrolysis to form two compounds ' B ' and ' C '. Oxidation of ' C ' with acidified potassium permanganate also produces ' B '. Sodium salt of ' B ' on heating with soda lime gives methane.
(1) Identify ' A ', ' B ' and ' C '.
(2) Out of ' B ' and ' C ', which will have higher boiling point? Give reason.

P.T.O.
34. (a) (i) 1 M ग्लूकोस विलयन की अपेक्षा 1 M NaCl विलयन का क्वथनांक अधिक क्यों होता है ?

$$
1+2+2=5
$$

(ii) एक अवाष्पशील विलेय ' X ' (मोलर द्रव्यमान $=50 \mathrm{~g} \mathrm{~mol}^{-1}$) को जब 78 g बेन्जीन में घोला गया तो इसका वाष्प दाब घटकर 90% रह गया । घोले गए ' X ' का द्रव्यमान परिकलित कीजिए।
(iii) MgCl_{2} के 10 g को 200 g जल में घोलकर बनाए गए विलयन के क्वथनांक में उन्नयन का परिकलन कीजिए, यह मानते हुए कि MgCl_{2} पूर्णत: वियोजित हो गया है।
(जल के लिए $\mathrm{K}_{\mathrm{b}}=0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, मोलर द्रव्यमान $\mathrm{MgCl}_{2}=95 \mathrm{~g} \mathrm{~mol}^{-1}$)

अथवा

(b) (i) बेन्जीन में एथेनॉइक अम्ल के लिए वान्ट हॉफ गुणक का मान 0.5 के निकट क्यों होता है ?

$$
1+2+2=5
$$

(ii) 2 लीटर विलयन में $25{ }^{\circ} \mathrm{C}$ पर $\mathrm{K}_{2} \mathrm{SO}_{4}$ के $2.32 \times 10^{-2} \mathrm{~g}$ घोलने पर बनने वाले विलयन का परासरण दाब, यह मानते हुए ज्ञात कीजिए कि $\mathrm{K}_{2} \mathrm{SO}_{4}$ पूर्णत: वियोजित हो गया है । $\left(\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \mathrm{~K}_{2} \mathrm{SO}_{4}\right.$ का मोलर द्रव्यमान $=174 \mathrm{~g}$ mol^{-1})
(iii) 25.6 g सल्फर को 1000 g बेन्जीन में घोलने पर हिमांक में 0.512 K का अवनमन हुआ। सल्फर $\left(\mathrm{S}_{x}\right)$ का सूत्र परिकलित कीजिए।
(बेन्जीन के लिए $\mathrm{K}_{\mathrm{f}}=5.12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, सल्फर का परमाणु द्रव्यमान $=32 \mathrm{~g} \mathrm{~mol}^{-1}$)
35. (a) किसी संक्रमण तत्त्व का इलेक्ट्रॉनिक विन्यास $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{3}$ है । इसकी संभावित ऑक्सीकरण अवस्थाओं की प्रागुक्ति कीजिए ।
(b) सभी निर्मित उत्पादों का उल्लेख करते हुए अभिक्रिया पूर्ण कीजिए :
$2 \mathrm{KMnO}_{4} \xrightarrow{\Delta}$
(c) निम्नलिखित के लिए कारण दीजिए :
(i) 3 d संक्रमण श्रेणी में जिंक की कणन एन्थैल्पी न्यूनतम होती है।
(ii) जलीय विलयन में Cu^{+}आयन अस्थायी होता है।
(iii) लैन्थेनॉयडों की तुलना में ऐक्टिनॉयडें अधिक संख्या में ऑक्सीकरण अवस्थाएँ दर्शाते हैं।
34. (a) (i) Why is boiling point of 1 M NaCl solution more than that of 1 M glucose solution? $\quad \mathbf{1 + 2 + 2 = 5}$
(ii) A non-volatile solute ' X ' (molar mass $=50 \mathrm{~g} \mathrm{~mol}{ }^{-1}$) when dissolved in 78 g of benzene reduced its vapour pressure to 90%. Calculate the mass of X dissolved in the solution.
(iii) Calculate the boiling point elevation for a solution prepared by adding 10 g of MgCl_{2} to 200 g of water assuming MgCl_{2} is completely dissociated.
$\left(\mathrm{K}_{\mathrm{b}}\right.$ for Water $=0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, Molar mass $\left.\mathrm{MgCl}_{2}=95 \mathrm{~g} \mathrm{~mol}^{-1}\right)$

OR

(b) (i) Why is the value of Van't Hoff factor for ethanoic acid in benzene close to 0.5 ? $\mathbf{1 + 2 + 2 = 5}$
(ii) Determine the osmotic pressure of a solution prepared by dissolving $2.32 \times 10^{-2} \mathrm{~g}$ of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in 2 L of solution at $25^{\circ} \mathrm{C}$, assuming that $\mathrm{K}_{2} \mathrm{SO}_{4}$ is completely dissociated.
($\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, Molar mass $\mathrm{K}_{2} \mathrm{SO}_{4}=174 \mathrm{~g} \mathrm{~mol}^{-1}$)
(iii) When 25.6 g of Sulphur was dissolved in 1000 g of benzene, the freezing point lowered by 0.512 K . Calculate the formula of Sulphur $\left(\mathrm{S}_{x}\right)$.
$\left(\mathrm{K}_{\mathrm{f}}\right.$ for benzene $=5.12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, Atomic mass of Sulphur $\left.=32 \mathrm{~g} \mathrm{~mol}^{-1}\right)$
35. (a) A transition element X has electronic configuration [Ar] $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{3}$. Predict its likely oxidation states.
(b) Complete the reaction mentioning all the products formed:
$2 \mathrm{KMnO}_{4} \xrightarrow{\Delta}$
(c) Account for the following :
(i) In the 3d transition series, zinc has the lowest enthalpy of atomisation.
(ii) Cu^{+}ion is unstable in aqueous solution.
(iii) Actinoids show more number of oxidation states than lanthanoids.

सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका पालन कीजिए :
(i) इस प्रश्न-पत्र में कुल 35 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं ।
(ii) प्रश्न-पत्र पाँच खण्डों में विभाजित है - खण्ड क, ख, ग, घ तथा ङ।
(iii) खण्ड-क : प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं।
(iv) खण्ड-ख : प्रश्न संख्या 19 से 25 तक अति लघु-उत्तरीय प्रकार के दो-दो अंकों के प्रश्न हैं।
(v) खण्ड-ग : प्रश्न संख्या 26 से 30 तक लघु-उत्तरीय प्रकार के तीन-तीन अंकों के प्रश्न हैं।
(vi) खण्ड-घ : प्रश्न संख्या 31 तथा 32 केस आधारित चार-चार अंकों के प्रश्न हैं।
(vii) खण्ड-ङ : प्रश्न संख्या 33 से 35 तक दीर्घ-उत्तरीय प्रकार के पाँच-पाँच अंकों के प्रश्न हैं ।
(viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है । यद्यपि, खण्ड-ख के 2 प्रश्नों में, खण्ड-ग के 2 प्रश्नों में, खण्ड-घ के 2 प्रश्नों में तथा खण्ड-ङ के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
(ix) कैल्कुलेटर का उपयोग वर्जित है ।

खण्ड - क

1. $\left[\mathrm{NiCl}_{4}\right]^{2-}$ का चुम्बकीय आघूर्ण है :
(a) 1.82 BM
(b) 2.82 BM
(c) 4.42 BM
(d) 5.46 BM
[परमाणु क्रमांक : $\mathrm{Ni}=28$]

56/5/3

2

General Instructions :

Read the following instructions very carefully and follow them :

(i) This question paper contains 35 questions. All questions are compulsory.
(ii) Question paper is divided into FIVE sections - Section A, B, C, D and \boldsymbol{E}.
(iii) In section - A : Question Numbers 1 to 18 are Multiple Choice (MCQ) type Questions carrying 1 mark each.
(iv) In section - B : Question Numbers 19 to 25 are Very Short Answer (VSA) type questions carrying 2 marks each.
(v) In section - C : Question Numbers 26 to 30 are Short Answer (SA) type questions carrying 3 marks each.
(vi) In section - D : Question Numbers 31 and 32 are case based questions carrying 4 marks each.
(vii) In section $-\boldsymbol{E}:$ Question Numbers 33 to 35 are Long Answer (LA) type questions carrying 5 marks each.
(viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section - B, 2 questions in Section - C, 2 questions in Section - D and 2 questions in Section - E.
(ix) Use of calculators is NOT allowed.

SECTION - A

1. The magnetic moment of $\left[\mathrm{NiC}_{4}\right]^{2-}$
(a) 1.82 BM
(b) 2.82 BM
(c) 4.42 BM
(d) 5.46 BM
[Atomic number: $\mathrm{Ni}=28$]

P.T.O.
2. $25^{\circ} \mathrm{C}$ पर सम्पन्न की गई अभिक्रिया के लिए निम्नलिखित प्रायोगिक वेग आँकड़े प्राप्त हुए :
$\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightarrow \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})}$

प्रारम्भिक $\left[\mathrm{A}_{(\mathrm{g})}\right] / \mathrm{mol} \mathrm{dm}$		
3.0×10^{-2}	प्रारम्भिक $\left[\mathrm{B}_{(\mathrm{g})}\right] / \mathrm{mol} \mathrm{dm}$	
	प्रारम्भिक वेग $/ \mathrm{mol} \mathrm{dm}$	
$3 \mathrm{~s}^{-1}$		
3.0×10^{-2}	2.0×10^{-2}	1.89×10^{-4}
6.0×10^{-2}	4.0×10^{-2}	1.89×10^{-4}

$\mathrm{A}_{(\mathrm{g})}$ और $\mathrm{B}_{(\mathrm{g})}$ के प्रति कोटि क्या हैं ?

	$\mathrm{A}_{(\mathrm{g})}$ के प्रति कोटि	$\mathrm{B}_{(\mathrm{g})}$ के प्रति कोटि
(a)	शून्य	द्वितीय
(b)	प्रथम	शून्य
(c)	द्वितीय	शून्य
(d)	द्वितीय	प्रथम

3. निम्नलिखित मानक इलेक्ट्रोड विभव मानों पर विचार कीजिए :
$\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}_{(\mathrm{s})} \mathrm{E}^{\circ}=-0.14 \mathrm{~V}$
$\mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \mathrm{E}^{\circ}=+0.77 \mathrm{~V}$
होने वाली स्वत: प्रवर्तित अभिक्रिया के लिए सेल अभिक्रिया और विभव क्या है ?
(a) $2 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{Sn}_{(\mathrm{s})} \mathrm{E}^{\circ}=-0.91 \mathrm{~V}$
(b) $2 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{Sn}_{(\mathrm{s})} \rightarrow 2 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})} \mathrm{E}^{\circ}=+0.91 \mathrm{~V}$
(c) $2 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{Sn}_{(\mathrm{s})} \mathrm{E}^{\circ}=+0.91 \mathrm{~V}$
(d) $2 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{Sn}_{(\mathrm{s})} \rightarrow 2 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})} \mathrm{E}^{\circ}=+1.68 \mathrm{~V}$
4. निम्न में से कौन सा सेल अपोलो अंतरिक्ष कार्यक्रम में प्रयुक्त किया गया था ?
(a) मर्क्यूरी सेल
(b) डेन्यल सेल
(c) $\mathrm{H}_{2}-\mathrm{O}_{2}$ ईंधन सेल
(d) शुष्क सेल
5. निम्नलिखित ऐल्कोहॉलों में से किसका ऑक्सीकरण नहीं होगा ?
(a) ब्यूटेनॉल
(b) ब्यूटेन-2-ऑल
(c) 2-मेथिलब्यूटेन-2-ऑल
(d) 3-मेथिलब्यूटेन-2-ऑल

6. The following experimental rate data were obtained for a reaction carried out at $25^{\circ} \mathrm{C}$:
$\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightarrow \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})}$

Initial $\left[\mathrm{A}_{(\mathrm{g})}\right] / \mathrm{mol} \mathrm{dm}$		
3.0×10^{-2}	Initial $\left[\mathrm{B}_{(\mathrm{g})}\right] / \mathrm{mol} \mathrm{dm}$	
	Initial rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$	
3.0×10^{-2}	2.0×10^{-2}	1.89×10^{-4}
6.0×10^{-2}	4.0×10^{-2}	1.89×10^{-4}

What are the orders with respect to $\mathrm{A}_{(\mathrm{g})}$ and $\mathrm{B}_{(\mathrm{g})}$?

	Order with respect to $\mathrm{A}_{(\mathrm{g})}$	Order with respect to $\mathrm{B}_{(\mathrm{g})}$
(a)	Zero	Second
(b)	First	Zero
(c)	Second	Zero
(d)	Second	First

3. Consider the following standard electrode potential values :
$\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}_{(\mathrm{s})} \quad \mathrm{E}^{\circ}=-0.14 \mathrm{~V}$
$\mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \quad \mathrm{E}^{\circ}=+0.77 \mathrm{~V}$
What is the cell reaction and potential for the spontaneous reaction that occurs?
(a) $2 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{Sn}_{(\mathrm{s})} \mathrm{E}^{\circ}=-0.91 \mathrm{~V}$
(b) $2 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{Sn}_{(\mathrm{s})} \rightarrow 2 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})} \mathrm{E}^{\circ}=+0.91 \mathrm{~V}$
(c) $2 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{Sn}_{(\mathrm{s})} \mathrm{E}^{\circ}=+0.91 \mathrm{~V}$
(d) $2 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{Sn}_{(\mathrm{s})} \rightarrow 2 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})} \mathrm{E}^{\circ}=+1.68 \mathrm{~V}$
4. Which of the following cell was used in Apollo space programme?
(a) Mercury cell
(b) Daniel cell
(c) $\mathrm{H}_{2}-\mathrm{O}_{2}$ Fuel cell
(d) Dry cell
5. Which of the following alcohols will not undergo oxidation?
(a) Butanol
(b) Butan-2-ol
(c) 2-Methylbutan-2-ol
(d) 3-Methylbutan-2-ol

P.T.O.
6. मोलर चालकता की इकाई है
(a) $\mathrm{S} \mathrm{cm}^{-2} \mathrm{~mol}^{-1}$
(b) $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$
(c) $\mathrm{S}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(d) $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}$
7. निम्नलिखित 1.0 M जलीय विलयनों में से कौन अधिकतम हिमांक अवनमन दर्शाएगा ?
(a) NaCl
(b) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
(c) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(d) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
8. निम्न अणुओं में से किसमें काइरल केन्द्र को तारक चिह्न (*) द्वारा सही तरह से अंकित किया गया है ?
(a) $\mathrm{CH}_{3} \mathrm{C} * \mathrm{HBrCH}_{3}$
(b) $\mathrm{CH}_{3} \mathrm{C} * \mathrm{HClCH}_{2} \mathrm{Br}$
(c) $\mathrm{HOCH}_{2} \mathrm{C}^{*} \mathrm{H}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}$
(d) $\mathrm{CH}_{3} \mathrm{C} * \mathrm{Br}_{2} \mathrm{CH}_{3}$
9. अभिक्रिया
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{CHCl}_{3}+3 \mathrm{KOH} \rightarrow \mathrm{A}+3 \mathrm{~B}+3 \mathrm{C}$ में उत्पाद A है
(a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCH}_{3}$
10. प्रोटीनों में β-प्लीटेड शीट संरचना निम्न में से किसको दर्शाती है ?
(a) प्राथमिक संरचना
(b) द्वितीयक संरचना
(c) तृतीयक संरचना
(d) चतुष्क संरचना
11. I से IV तक चार अर्ध अभिक्रियाएँ नीचे दर्शाई गई हैं :
I. $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
II. $4 \mathrm{OH}^{-} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$
III. $\mathrm{Na}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Na}$
IV. $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$

इनमें से कौन सी दो अभिक्रियाएँ बहुत अधिक संभावनीय हैं जब सांद्र लवण-जल (ब्राइन) का वैद्युत-अपघटन किया जाता है ?
(a) I और III
(b) I और IV
(c) II और III
(d) II और IV

56/5/3

6. The unit of molar conductivity is
(a) $\mathrm{S} \mathrm{cm}^{-2} \mathrm{~mol}^{-1}$
(b) $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$
(c) $\mathrm{S}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(d) $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}$
7. Out of the following 1.0 M aqueous solutions, which one will show largest freezing point depression?
(a) NaCl
(b) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
(c) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(d) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
8. Which of the following molecules has a chiral centre correctly labelled with an asterisk (*) ?

1
(a) $\mathrm{CH}_{3} \mathrm{C} * \mathrm{HBrCH}_{3}$
(b) $\mathrm{CH}_{3} \mathrm{C} * \mathrm{HClCH}_{2} \mathrm{Br}$
(c) $\mathrm{HOCH}_{2} \mathrm{C} * \mathrm{H}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}$
(d) $\mathrm{CH}_{3} \mathrm{C} * \mathrm{Br}_{2} \mathrm{CH}_{3}$
9. In the reaction
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{CHCl}_{3}+3 \mathrm{KOH} \rightarrow \mathrm{A}+3 \mathrm{~B}+3 \mathrm{C}$ the product A is
(a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCH}_{3}$
10. β-pleated sheet structure in proteins refers to

1
(a) primary structure
(b) secondary structure
(c) tertiary structure
(d) quaternary structure
11. Four half reactions I to IV are shown below :
I. $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
II. $4 \mathrm{OH}^{-} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$
III. $\mathrm{Na}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Na}$
IV. $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$

Which two of these reactions are most likely to occur when concentrated brine is electrolysed?
(a) I and III
(b) I and IV
(c) II and III
(d) II and IV

P.T.O.
12. संक्रमण धातुओं का कौन सा गुणधर्म इन्हें उत्प्रेरक की भाँति व्यवहार करने योग्य बनाता है ?
(a) उच्च गलनांक
(b) उच्च आयनन एन्थैल्पी
(c) मिश्रातु का निर्माण
(d) परिवर्तनीय ऑक्सीकरण अवस्थाएँ
13. नाइट्रोबेन्जीन को ऐनिलीन में अपचयित करने के लिए निम्न में से कौन एक अच्छा चुनाव नहीं होगा?
(a) LiAlH_{4}
(b) $\mathrm{H}_{2} / \mathrm{Ni}$
(c) Fe और HCl
(d) Sn और HCl
14. निम्न में से किसका pK_{a} मान न्यूनतम है ?
(a) $\mathrm{CH}_{3}-\mathrm{COOH}$
(b) $\mathrm{O}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}$
(c) $\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{COOH}$
(d) HCOOH

प्रश्न संख्या 15 से 18 के लिए, दो कथन दिए गए हैं - जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (a), (b), (c) और
(d) में से चुनकर दीजिए।
(a) अभिकथन (A) और कारण (R) दोनों सहीं हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
(b) अभिकथन (A) और कारण (R) दोनों सहीं हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
(c) अभिकथन (A) सही है, परन्तु कारण (R) गलत है ।
(d) अभिकथन (A) गलत है, परन्तु कारण (R) सही है।
15. अभिकथन (A) : DNA और RNA अणुओं की रीढ़ विषमचक्रीय क्षारक, पेन्टोस शर्करा और फॉस्फेट समूह से मिलकर बनी होती है।
कारण (R) : न्यूक्लिओटाइडें और न्यूक्लिओसाइडें फॉस्फेट समूह की उपस्थिति में परस्पर भिन्नता दर्शाती हैं।

56/5/3

12. Which property of transition metals enables them to behave as catalysts ?

1
(a) High melting point
(b) High ionisation enthalpy
(c) Alloy formation
(d) Variable oxidation states
13. Which of the following would not be a good choice for reducing nitrobenzene to aniline?
(a) LiAlH_{4}
(b) $\mathrm{H}_{2} / \mathrm{Ni}$
(c) Fe and HCl
(d) Sn and HCl
14. Which one of the following has lowest pK_{a} value ?
(a) $\mathrm{CH}_{3}-\mathrm{COOH}$
(b) $\mathrm{O}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}$
(c) $\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{COOH}$
(d) HCOOH

For questions number 15 to 18, two statements are given - one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below :
(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
(b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
(c) Assertion (A) is true, but Reason (R) is false.
(d) Assertion (A) is false, but Reason (R) is true.
15. Assertion (A) : The backbone of DNA and RNA molecules is a chain consisting of heterocyclic base, pentose sugar and phosphate group.

Reason (R): Nucleotides and nucleosides mainly differ from each other in presence of phosphate group.

P.T.O.
16. अभिकथन (A) : अभिक्रिया की कोटि प्राथमिक एवं जटिल दोनों प्रकार की अभिक्रियाओं पर लागू होती है।
कारण (R) : जटिल अभिक्रियाओं के लिए आण्विकता का कोई अर्थ नहीं होता।
17. अभिकथन (A) : ऐल्डोल संघनन में अंतिम उत्पाद सदैव α, β-असंतृप्त कार्बोनिल यौगिक होता है।

1
कारण (R) : संयुग्मन के कारण α, β-असंतृप्त कार्बोनिल यौगिक स्थायी हो जाते हैं।
18. अभिकथन (A) : $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Cl}$, सिल्वर नाइट्रेट विलयन के साथ सफेद अवक्षेप देता है। $\mathbf{1}$ कारण (R) : संकुल वियोजित होकर Cl^{-}और $\mathrm{SO}_{4}{ }^{2-}$ आयन देता है।

खण्ड - ख

19. फ़ीनॉल और साइक्लोहेक्सेनॉल युगल के लिए निम्न के उत्तर दीजिए :
(a) साइक्लोहेक्सेनॉल की तुलना में फ़ीनॉल अधिक अम्लीय क्यों होता है ?
(b) दोनों के मध्य विभेद करने के लिए एक रासायनिक परीक्षण दीजिए।
20. (a) निम्नलिखित में से कौन सी स्पीशीज़ लिगंड की भाँति कार्य नहीं कर सकती है ? कारण दीजिए।
$\mathrm{OH}^{-}, \mathrm{NH}_{4}^{+}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{H}_{2} \mathrm{O}$
(b) संकुल $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}_{2}$ लाल रंग का है । इसके बंधनी समावयव का आई.यू.पी.ए.सी. नाम दीजिए।
21. किसी रासायनिक अभिक्रिया का ताप बढ़ाने पर उसके वेग स्थिरांक k और सक्रियण ऊर्जा E_{a} को क्या होता है ? औचित्य सिद्ध कीजिए।
22. नाभिकरागी प्रतिस्थापन अभिक्रिया के प्रति हैलोऐरीन अभिक्रियाशील क्यों नहीं होते हैं ? दो कारण दीजिए।

16．Assertion（A）：Order of reaction is applicable to elementary as well as complex reactions．
Reason（R）：For a complex reaction molecularity has no meaning．

17．Assertion（A）：The final product in Aldol condensation is always α, β－ unsaturated carbonyl compound．
Reason（R）：α, β－unsaturated carbonyl compounds are stabilised due to conjugation．

18．Assertion（A）：$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Cl}$ gives a white precipitate with silver nitrate solution．

Reason（R）：The complex dissociates to give Cl^{-}and $\mathrm{SO}_{4}{ }^{2-}$ ions．

SECTION－B

19．For the pair phenol and cyclohexanol，answer the following ： $2 \times 1=2$
（a）Why is phenol more acidic than cyclohexanol？
（b）Give one chemical test to distinguish between the two．

20．（a）Which of the following species cannot act as a ligand？Give reason．
$\mathrm{OH}^{-}, \mathrm{NH}_{4}^{+}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{H}_{2} \mathrm{O}$
$2 \times 1=2$
（b）The complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}_{2}$ is red in colour．Give IUPAC name of its linkage isomer．

21．What happens to the rate constant k and activation energy E_{a} as the temperature of a chemical reaction is increased ？Justify．

22．Why haloarenes are not reactive towards nucleophilic substitution reaction？Give two reasons．
23. (a) (i) मानक अवस्था में हो रही किसी स्वत: प्रवर्तित रेडॉक्स अभिक्रिया के लिए E° सेल और $\Delta \mathrm{G}^{\circ}$ के क्या चिह्न (धनात्मक/ऋणात्मक) होने चाहिए ? $2 \times 1=2$
(ii) फैराडे के वैद्युत अपघटन का पहला नियम बताइए।

अथवा

(b) 298 K पर निम्न सेल का emf परिकलित कीजिए :
$\mathrm{Fe}_{(\mathrm{s})}\left|\mathrm{Fe}^{2+}(0.01 \mathrm{M}) \| \mathrm{H}_{(1 \mathrm{M})}^{+}\right| \mathrm{H}_{2(\mathrm{~g})}(1 \mathrm{bar}), \mathrm{Pt}_{(\mathrm{s})}$
दिया है E° सेल $=0.44 \mathrm{~V}$.
24. (a) (i) सल्फैनिलिक अम्ल के लिए ज्विटर (उभयाविष्ट) आयन की संरचना खींचिए। $2 \times 1=2$
(ii) ऐनिलीन में $-\mathrm{NH}_{2}$ समूह के सक्रियण प्रभाव को कैसे नियंत्रित किया जा सकता है ?

अथवा

(b) (i) निर्मित मुख्य उत्पाद देते हुए अभिक्रिया पूर्ण कीजिए :

(ii) ब्रोमोएथेन का प्रोपेनेमीन में रूपान्तरण कीजिए।
25. ग्लूकोस को हाइड्रॉक्सिलऐमीन के साथ गरम करने की अभिक्रिया दीजिए। इस अभिक्रिया से किस समूह की उपस्थिति की पुष्टि होती है ?

खण्ड - ग

26. निम्नलिखित किन्हीं तीन प्रेक्षणों के लिए कारण दीजिए :
(a) ग्लूकोस का पेन्टाऐसीटेट, हाइड्रॉक्सिलऐमीन के साथ अभिक्रिया नहीं करता।
(b) एमीनो अम्ल लवणों की भाँति गुण दर्शाते हैं।
(c) जल में विलेय विटामिनों की पूर्ति हमारे आहार में नियमित रूप से होनी चाहिए।
(d) DNA के दो रज्नुक एक-दूसरे के पूरक होते हैं।

56/5/3
23. (a) (i) What should be the signs (positive/negative) for $\mathrm{E}^{\circ}{ }_{\text {Cell }}$ and $\Delta \mathrm{G}^{\circ}$ for a spontaneous redox reaction occurring under standard conditions?
(ii) State Faraday's first law of electrolysis.

OR

(b) Calculate the emf of the following cell at 298 K :
$\mathrm{Fe}_{(\mathrm{s})}\left|\mathrm{Fe}^{2+}(0.01 \mathrm{M}) \| \mathrm{H}^{+}{ }_{(1 \mathrm{M})}\right| \mathrm{H}_{2(\mathrm{~g})}(1 \mathrm{bar}), \mathrm{Pt}_{(\mathrm{s})}$
Given $\mathrm{E}^{\circ}{ }_{\text {Cell }}=0.44 \mathrm{~V}$.
24. (a) (i) Draw the zwitter ion structure for sulphanilic acid.
$2 \times 1=2$
(ii) How can the activating effect of $-\mathrm{NH}_{2}$ group in aniline be controlled?

OR

(b) (i) Complete the reaction with the main product formed: $\mathbf{2 \times 1 = 2}$

(ii) Convert Bromoethane to Propanamine.
25. Give the reaction of heating glucose with hydroxylamine. Presence of which group is confirmed by this reaction?

SECTION - C

26. Give reasons for any $\mathbf{3}$ of the following observations:
(a) Penta-acetate of glucose does not react with hydroxylamine.
(b) Amino acids behave like salts.
(c) Water soluble vitamins must be taken regularly in diet.
(d) The two strands in DNA are complimentary to each other.

P.T.O.
27. (a) क्रिस्टल क्षेत्र सिद्धांत के आधार पर d^{4} के लिए प्रबल क्षेत्र लिगंड के साथ इलेक्ट्रॉनिक विन्यास लिखिए जिसके लिए $\Delta_{0}>P$ है।

$$
1+2=3
$$

(b) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ का विलयन हरा होता है परन्तु $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ का विलयन रंगहीन । व्याख्या कीजिए।
[परमाणु क्रमांक : $\mathrm{Ni}=28$]
28. (a) (i) फ़ीनॉलों में $\mathrm{C}-\mathrm{O}$ आबंध लम्बाई मेथेनॉल की अपेक्षा कम क्यों होती है ?
(ii) निम्नलिखित को बढ़ते क्वथनांक के क्रम में व्यवस्थित कीजिए :

एथॉक्सीएथेन, ब्यूटेनैल, ब्यूटेनॉल, n-ब्यूटेन
(iii) ऐनिसोल से फ़ीनॉल कैसे विरचित किया जा सकता है ? अभिक्रिया दीजिए।

अथवा

(b) (i) निम्नलिखित अभिक्रिया की क्रियाविधि लिखिए :

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow[413 \mathrm{~K}]{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

(ii) हाइड्रोबोरॉनन - ऑक्सीकरण अभिक्रिया को उदाहरण सहित समझाइए।
29. (a) एक समीकरण के साथ सैन्डमायर अभिक्रिया दर्शाइए।
(b) जलीय विलयन में $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ की तुलना में $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ अधिक क्षारकीय है, व्याख्या कीजिए।
30. (a) 318 K पर अभिक्रिया
$2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$ के लिए अभिक्रिया वेग परिकलित कीजिए यदि $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$ के लोप होने का वेग $1.4 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1}$ है।
(b) एक प्रथम कोटि अभिक्रिया के लिए $\mathrm{t}_{99 \%}=2 \mathrm{t}_{90 \%}$ सम्बन्ध व्युत्पन्न कीजिए ।
27. (a) On the basis of crystal field theory, write the electronic configuration for d^{4} with a strong field ligand for which $\Delta_{0}>\mathrm{P}$.
(b) A solution of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is green but a solution of $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is colourless. Explain.
[Atomic number : $\mathrm{Ni}=28$]
28. (a) (i) Why is the $\mathrm{C}-\mathrm{O}$ bond length in phenols less than that in methanol ?

$$
3 \times 1=3
$$

(ii) Arrange the following in order of increasing boiling point :

Ethoxyethane, Butanal, Butanol, n-butane
(iii) How can phenol be prepared from anisole? Give reaction.

OR

(b) (i) Give mechanism of the following reaction :
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow[413 \mathrm{~K}]{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$
(ii) Illustrate hydroboration - oxidation reaction with an example.
29. (a) Illustrate Sandmeyer's reaction with an equation.
(b) Explain, why $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ is more basic than $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ in aqueous solution.
30. (a) For the reaction
$2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$ at 318 K
calculate the rate of reaction if rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$ is $1.4 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1}$.
(b) For a first order reaction derive the relationship $t_{99 \%}=2 t_{90 \%}$

P.T.O.

खण्ड-घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं । अनुच्छेद को सावधानीपूर्वक पढ़िए और उसके पश्चात के प्रश्नों का उत्तर दीजिए :
31.

नाभिकरागी प्रतिस्थापन

हैलोऐल्केनों में नाभिकरागी प्रतिस्थापन अभिक्रिया $\mathrm{S}_{\mathrm{N}} 1$ और $\mathrm{S}_{\mathrm{N}} 2$ दोनों क्रियाविधियों के अनुसार संचालित की जा सकती हैं । $\mathrm{S}_{\mathrm{N}} 1$ दो चरणों की अभिक्रिया है जबकि $\mathrm{S}_{\mathrm{N}} 2$ एक चरण की अभिक्रिया है । कोई हैलोऐल्केन कौन सी क्रियाविधि अपनाएगा, यह कारकों पर निर्भर करता है जैसे हैलोऐल्केन की संरचना, अवशिष्ट समूह के गुणधर्म, नाभिकरागी अभिकर्मक और विलायक।

विलायक ध्रुवता के प्रभाव : $\mathrm{S}_{\mathrm{N}} 1$ अभिक्रिया में, अभिकर्मक से संक्रमण स्थिति की ओर निकाय की ध्रुवता में वृद्धि होती है, क्योंकि एक ध्रुवीय विलायक, अभिकर्मक की अपेक्षा संक्रमण स्थिति पर अधिक प्रभाव डालता है, फलस्वरूप सक्रियण ऊर्जा कम होती है और अभिक्रिया तीव्र गति से होती है। $\mathrm{S}_{\mathrm{N}} 2$ अभिक्रिया में, निकाय की ध्रुवता अभिकर्मक से संक्रमण स्थिति की ओर सामान्यतः परिवर्तित नहीं होती है और केवल आवेश परिक्षेपण होता है । इस समय, ध्रुवीय विलायक का संक्रमण स्थिति की अपेक्षा Nu पर बृहत्तर स्थायित्व प्रभाव पड़ता है, जिसके कारण सक्रियण ऊर्जा में वृद्धि होती है और अभिक्रिया वेग को मन्द कर देता है। उदाहरण के लिए $25^{\circ} \mathrm{C}$ पर तृतीयक क्लोरोब्यूटेन का एथेनॉल (परावैद्युतांक 24) की अपेक्षा जल (परावैद्युतांक 79) में विघटन वेग $\left(\mathrm{S}_{\mathrm{N}} 1\right) 300000$ गुना अधिक तीव्र होता है । 2 -ब्रोमोप्रोपेन की परिशुद्ध एल्कोहॉल में NaOH के साथ अभिक्रिया वेग $\left(\mathrm{S}_{\mathrm{N}} 2\right)$ की अपेक्षा 40% जल सहित एथेनॉल में NaOH के साथ दुगुना मंद हो जाता है। अत: विलायक की ध्रुवता का स्तर $\mathrm{S}_{\mathrm{N}} 1$ और $\mathrm{S}_{\mathrm{N}} 2$ दोनों अभिक्रियाओं पर प्रभाव डालता है, परन्तु परिणाम भिन्न होते हैं । सामान्यत: हम कह सकते हैं कि दुर्बल ध्रुवीय विलायक $\mathrm{S}_{\mathrm{N}} 2$ अभिक्रियाओं के लिए अनुकूल होते हैं जबकि प्रबल ध्रुवीय विलायक $\mathrm{S}_{\mathrm{N}} 1$ अभिक्रियाओं के लिए अनुकूल होते हैं। सामान्यत: हम कह सकते हैं कि तृतीयक हैलोऐल्केन की प्रतिस्थापन अभिक्रिया प्रबल ध्रुवीय विलायकों में $\mathrm{S}_{\mathrm{N}} 1$ क्रियाविधि पर आधारित है (उदाहरण के लिए जल के साथ एथेनॉल)।

SECTION - D

The following questions are case-based questions. Read the passage carefully and answer the questions that follow :

Nucleophilic Substitution

Nucleophilic Substitution reaction of haloalkane can be conducted according to both $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$ mechanisms. $\mathrm{S}_{\mathrm{N}} 1$ is a two step reaction while $\mathrm{S}_{\mathrm{N}} 2$ is a single step reaction. For any haloalkane which mechanism is followed depends on factors such as structure of haloalkane, properties of leaving group, nucleophilic reagent and solvent.

Influences of solvent polarity : In $\mathrm{S}_{\mathrm{N}} 1$ reaction, the polarity of the system increases from the reactant to the transition state, because a polar solvent has a greater effect on the transition state than the reactant, thereby reducing activation energy and accelerating the reaction. In $\mathrm{S}_{\mathrm{N}} 2$ reaction, the polarity of the system generally does not change from the reactant to the transition state and only charge dispersion occurs. At this time, polar solvent has a great stabilizing effect on Nu than the transition state, thereby increasing activation energy and slow down the reaction rate. For example, the decomposition rate $\left(\mathrm{S}_{\mathrm{N}} 1\right)$ of tertiary chlorobutane at $25^{\circ} \mathrm{C}$ in water (dielectric constant 79) is 300000 times faster than in ethanol (dielectric constant 24). The reaction rate $\left(\mathrm{S}_{\mathrm{N}} 2\right)$ of 2 -Bromopropane and NaOH in ethanol containing 40% water is twice slower than in absolute ethanol. Hence the level of solvent polarity has influence on both $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$ reaction, but with different results. Generally speaking weak polar solvent is favourable for $\mathrm{S}_{\mathrm{N}} 2$ reaction, while strong polar solvent is favourable for $\mathrm{S}_{\mathrm{N}} 1$. Generally speaking the substitution reaction of tertiary haloalkane is based on $\mathrm{S}_{\mathrm{N}} 1$ mechanism in solvents with a strong polarity (for example ethanol containing water).

निम्नलिखित प्रश्नों के उत्तर दीजिए :
(a) $\mathrm{S}_{\mathrm{N}} 1$ में रेसिमीकरण क्यों होता है ?
(b) जल की तुलना में एथेनॉल कम ध्रुवीय क्यों होता है ?
(c) निम्नलिखित प्रत्येक युगलों में से कौन $\mathrm{S}_{\mathrm{N}} 2$ अभिक्रिया के प्रति अधिक अभिक्रियाशील है ?
(i) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{I}$ अथवा $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Cl}$
(ii)

अथवा

(c) निम्नलिखित को $\mathrm{S}_{\mathrm{N}} 1$ अभिक्रियाओं के प्रति उनकी अभिक्रियाशीलता के बढ़ते क्रम में व्यवस्थित कीजिए :
(i) 2 -ब्रोमो- 2 -मेथिलब्यूटेन, 1 -ब्रोमोपेन्टेन, 2 -ब्रोमोपेन्टेन
(ii) 1-ब्रोमो-3-मेथिलब्यूटेन, 2 -ब्रोमो-2-मेथिलब्यूटेन, 2 -ब्रोमो-3-मेथिलब्यूटेन
32. राहुल ने 298 K पर विभिन्न सांद्रताओं पर जलीय KCl विलयन का प्रतिरोध ज्ञात करने के लिए व्हीटस्टोन ब्रिज से जुड़े हुए एक चालकता सेल को प्रयुक्त करते हुए एक प्रयोग व्यवस्थित किया। उसने श्रव्य आवृत्ति सीमा 550 से 5000 चक्रण प्रति सेकण्ड वाली a.c. शक्ति को व्हीटस्टोन ब्रिज से जोड़ा । शून्य विक्षेप स्थिति से प्रतिरोध का परिकलन करने के पश्चात् उसने चालकता K और मोलर चालकता \wedge_{m} भी परिकलित किया और अपने पाठ्यांकों को सारणी रूप में अभिलिखित किया।

क्रम संख्या	सांद्रता (M)	$\mathbf{k ~ S ~ c m}^{\mathbf{- 1}}$	$\wedge_{\mathbf{m}} \mathbf{S ~ c m}^{\mathbf{2}} \mathbf{~ m o l}^{\mathbf{1}}$
1.	1.00	111.3×10^{-3}	111.3
2.	0.10	12.9×10^{-3}	129.0
3.	0.01	1.41×10^{-3}	141.0

निम्नलिखित प्रश्नों के उत्तर दीजिए :
(a) तनुकरण के साथ चालकता क्यों घटती है ?
(b) यदि KCl के लिए $\wedge_{\mathrm{m}}{ }^{\circ} 150.0 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ है तो 0.01 M KCl की वियोजन मात्रा परिकलित कीजिए।
(c) यदि राहुल ने KCl के स्थान पर HCl प्रयुक्त किया होता तो आप \wedge_{m} मानों को दी गई सांद्रता के लिए KCl के मानों की अपेक्षा अधिक या कम अपेक्षित करेंगे। औचित्य सिद्ध कीजिए।

अथवा

(c) राहुल के सहपाठी अमित ने उसी प्रयोग को KCl विलयन के स्थान पर $\mathrm{CH}_{3} \mathrm{COOH}$ विलयन के साथ दोहराया। राहुल की तुलना में उसके प्रेक्षणों में से एक प्रेक्षण लिखिए जो उसके समान था और एक प्रेक्षण जो उससे भिन्न था।

Answer the following questions :
(a) Why racemisation occurs in $\mathrm{S}_{\mathrm{N}} 1$?
(b) Why is ethanol less polar than water?
(c) Which one of the following in each pair is more reactive towards $\mathrm{S}_{\mathrm{N}} 2$ reaction?
(i) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{I}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Cl}$
(ii)

OR
(c) Arrange the following in the increasing order of their reactivity towards $\mathrm{S}_{\mathrm{N}} 1$ reactions :
(i) 2-Bromo-2-methylbutane, 1-Bromopentane, 2 -Bromopentane
(ii) 1-Bromo-3-methylbutane, 2-Bromo-2-methylbutane, 2-Bromo-3methylbutane
32. Rahul set-up an experiment to find resistance of aqueous KCl solution for different concentrations at 298 K using a conductivity cell connected to a Wheatstone bridge. He fed the Wheatstone bridge with a.c. power in the audio frequency range 550 to 5000 cycles per second. Once the resistance was calculated from null point he also calculated the conductivity K and molar conductivity \wedge_{m} and recorded his readings in tabular form.

S.No.	Conc.(M)	$\mathbf{k ~ S ~ c m}$	
	$\mathbf{1}_{\mathbf{m}} \mathbf{S ~ c m}^{\mathbf{2}} \mathbf{~ m o l}^{\mathbf{1}}$		
1.	1.00	111.3×10^{-3}	111.3
2.	0.10	12.9×10^{-3}	129.0
3.	0.01	1.41×10^{-3}	141.0

Answer the following questions :
(a) Why does conductivity increase though the conductivity decrease with dilution?

1
(b) If $\wedge_{\mathrm{m}}{ }^{0}$ of KCl is $150.0 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, calculate the degree of dissociation of 0.01 M KCl .
(c) If Rahul had used HCl instead to KCl then would you expect the \wedge_{m} values to be more or less than those per KCl for a given concentration. Justify.

OR

(c) Amit a classmate of Rahul repeated the same experiment with $\mathrm{CH}_{3} \mathrm{COOH}$ solution instead of KCl solution. Give one point that would be similar and one that would be different in his observations as compared to Rahul.

P.T.O.

खण्ड — ङ

33. (a) (i) कैनिज़ारो अभिक्रिया में सम्मिलित अभिक्रिया लिखिए।
(ii) सदृश कार्बोक्सिलिक अम्लों की तुलना में ऐल्डिहाइडों और कीटोनों के क्वथनांक कम क्यों होते हैं ?
(iii) एक कार्बनिक यौगिक ' A ' जिसका अणुसूत्र $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$ है, हाइड्रैजीन के साथ अभिक्रिया करने के पश्चात् NaOH एवं ग्लाइकॉल के साथ गरम करने पर n -पेन्टेन में अपचयित हो गया । ' A ' हाइड्रॉक्सिल एमीन के साथ डाइऑक्सिम बनाता है और धनात्मक आयोडोफॉर्म तथा टॉलेन परीक्षण देता है। 'A' की पहचान कीजिए और आयडोफॉर्म तथा टॉलेन परीक्षण के लिए अभिक्रिया लिखिए।

अथवा

(b) (i) ऐथेनल अम्ल और एथेनॉइक अम्ल में विभेद करने के लिए रासायनिक परीक्षण लिखिए।

$$
1+1+3=5
$$

(ii) ऐल्डिहाइडों और कीटोनों के α-हाइड्रोजनों की प्रकृति अम्लीय क्यों होती है ?
(iii) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ अणुसूत्र का एक कार्बनिक यौगिक ' A ' अम्लीय जल-अपघटन द्वारा दो यौगिक ' B ' और ' C ' देता है। ' C ' अम्लीकृत पोटैशियम परमैंगनेट द्वारा ऑक्सीकृत होकर ‘ B ' उत्पादित करता है। ' B ' का सोडियम लवण, सोडा लाइम के साथ गरम करने पर मेथेन देता है।
(1) ' A ', ' B ' और ' C ' की पहचान कीजिए।
(2) ' B 'और ' C ' में से किसका क्वथनांक उच्चतर होगा ? कारण दीजिए।
34. (a) (i) 1 M ग्लूकोस विलयन की अपेक्षा 1 M NaCl विलयन का क्वथनांक अधिक क्यों होता है ?

$$
1+2+2=5
$$

(ii) एक अवाष्पशील विलेय ' X ' (मोलर द्रव्यमान $=50 \mathrm{~g} \mathrm{~mol}^{-1}$) को जब 78 g बेन्जीन में घोला गया तो इसका वाष्प दाब घटकर 90% रह गया । घोले गए ' X ' का द्रव्यमान परिकलित कीजिए।
(iii) MgCl_{2} के 10 g को 200 g जल में घोलकर बनाए गए विलयन के क्वथनांक में उन्नयन का परिकलन कीजिए, यह मानते हुए कि MgCl_{2} पूर्णत: वियोजित हो गया है।
(जल के लिए $\mathrm{K}_{\mathrm{b}}=0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, मोलर द्रव्यमान $\mathrm{MgCl}_{2}=95 \mathrm{~g} \mathrm{~mol}^{-1}$)

अथवा

33. (a) (i) Write the reaction involved in Cannizaro's reaction. $\mathbf{1 + 1 + 3}=\mathbf{5}$
(ii) Why are the boiling point of aldehydes and ketones lower than that of corresponding carboxylic acids?
(iii) An organic compound ' A ' with molecular formula $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$ is reduced to n-pentane with hydrazine followed by heating with NaOH and Glycol. 'A' forms a dioxime with hydroxylamine and gives a positive Iodoform and Tollen's test. Identify 'A' and give its reaction for Iodoform and Tollen's test.

OR

(b) (i) Give a chemical test to distinguish between ethanal acid and ethanoic acid.
$1+1+3=5$
(ii) Why is the α-hydrogens of aldehydes and ketones are acidic in nature?
(iii) An organic compound ' A ' with molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ undergoes acid hydrolysis to form two compounds ' B ' and ' C '. Oxidation of ' C ' with acidified potassium permanganate also produces ' B '. Sodium salt of ' B ' on heating with soda lime gives methane.
(1) Identify ' A ', ' B ' and ' C '.
(2) Out of 'B' and 'C', which will have higher boiling point ? Give reason.
34. (a) (i) Why is boiling point of 1 M NaCl solution more than that of 1 M glucose solution? $\quad 1+2+2=5$
(ii) A non-volatile solute ' X ' (molar mass $=50 \mathrm{~g} \mathrm{~mol}{ }^{-1}$) when dissolved in 78 g of benzene reduced its vapour pressure to 90%. Calculate the mass of X dissolved in the solution.
(iii) Calculate the boiling point elevation for a solution prepared by adding 10 g of MgCl_{2} to 200 g of water assuming MgCl_{2} is completely dissociated.
$\left(\mathrm{K}_{\mathrm{b}}\right.$ for Water $=0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, Molar mass $\left.\mathrm{MgCl}_{2}=95 \mathrm{~g} \mathrm{~mol}^{-1}\right)$

OR

(b) (i) बेन्जीन में एथेनॉइक अम्ल के लिए वान्ट हॉफ गुणक का मान 0.5 के निकट क्यों होता है ?

$$
1+2+2=5
$$

(ii) 2 लीटर विलयन में $25{ }^{\circ} \mathrm{C}$ पर $\mathrm{K}_{2} \mathrm{SO}_{4}$ के $2.32 \times 10^{-2} \mathrm{~g}$ घोलने पर बनने वाले विलयन का परासरण दाब, यह मानते हुए ज्ञात कीजिए कि $\mathrm{K}_{2} \mathrm{SO}_{4}$ पूर्णत: वियोजित हो गया है । $\left(\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \mathrm{~K}_{2} \mathrm{SO}_{4}\right.$ का मोलर द्रव्यमान $=174 \mathrm{~g}$ mol^{-1})
(iii) 25.6 g सल्फर को 1000 g बेन्जीन में घोलने पर हिमांक में 0.512 K का अवनमन हुआ। सल्फर $\left(\mathrm{S}_{x}\right)$ का सूत्र परिकलित कीजिए।
(बेन्जीन के लिए $\mathrm{K}_{\mathrm{f}}=5.12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, सल्फर का परमाणु द्रव्यमान $=32 \mathrm{~g} \mathrm{~mol}^{-1}$)
35. (a) Cr^{3+} में अयुगलित इलेक्ट्रॉनों की संख्या लिखिए।
$1+2+2=5$
$(\mathrm{Cr}$ का परमाणु क्रमांक $=24)$
(b) निर्मित उत्पादों का उल्लेख करते हुए अभिक्रिया पूर्ण कीजिए :
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+3 \mathrm{H}_{2} \mathrm{~S}+8 \mathrm{H}^{+} \rightarrow$
(c) निम्नलिखित के कारण दीजिए :
(i) +3 अवस्था में ऑक्सीकरण के प्रति Fe^{2+} की तुलना में Mn^{2+} अधिक स्थायी होता है।
(ii) कॉपर का असाधारण रूप से धनात्मक $\mathrm{E}_{\mathrm{M}}{ }^{2+} / \mathrm{M}$ मान होता है।
(iii) $[\mathrm{Xe}] 4 \mathrm{f}^{7} 6 \mathrm{~s}^{2}$ इलेक्ट्रॉनिक विन्यास सहित Eu^{2+} एक प्रबल अपचायक है।
(b) (i) Why is the value of Van't Hoff factor for ethanoic acid in benzene close to $0.5 ? \quad 1+\mathbf{2 + 2}=\mathbf{5}$
(ii) Determine the osmotic pressure of a solution prepared by dissolving $2.32 \times 10^{-2} \mathrm{~g}$ of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in 2 L of solution at $25^{\circ} \mathrm{C}$, assuming that $\mathrm{K}_{2} \mathrm{SO}_{4}$ is completely dissociated.
($\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, Molar mass $\mathrm{K}_{2} \mathrm{SO}_{4}=174 \mathrm{~g} \mathrm{~mol}^{-1}$)
(iii) When 25.6 g of Sulphur was dissolved in 1000 g of benzene, the freezing point lowered by 0.512 K . Calculate the formula of Sulphur $\left(\mathrm{S}_{x}\right)$.
$\left(\mathrm{K}_{\mathrm{f}}\right.$ for benzene $=5.12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, Atomic mass of Sulphur $=32 \mathrm{~g}$ mol^{-1})
35. (a) Write the number of unpaired electrons in Cr^{3+}.
(Atomic number of $\mathrm{Cr}=24$)
$1+2+2=5$
(b) Complete the reaction mentioning all the products formed:
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+3 \mathrm{H}_{2} \mathrm{~S}+8 \mathrm{H}^{+} \rightarrow$
(c) Account for the following :
(i) Mn^{2+} is more stable than Fe^{2+} towards oxidation to +3 state.
(ii) Copper has exceptionally positive $\mathrm{E}_{\mathrm{M}}{ }^{2+}{ }_{/ \mathrm{M}}$ value.
(iii) Eu^{2+} with electronic configuration $[\mathrm{Xe}] 4 \mathrm{f}^{7} 6 \mathrm{~s}^{2}$ is a strong reducing agent.

