Series A2BAB/4

प्रश्न-पत्र कोड Q.P. Code 55/4/1

रोल नं.
Roll No.

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।
Candidates must write the Q.P. Code on the title page of the answer-book.

नोट

(I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं ।
(II) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
(III) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 12 प्रश्न हैं ।
(IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
(V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वान्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।

NOTE

(I) Please check that this question paper contains 15 printed pages.
(II) Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
(III) Please check that this question paper contains 12 questions.
(IV) Please write down the serial number of the question in the answer-book before attempting it.
(V) 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

भौतिक विज्ञान (सैद्धान्तिक)
 PHYSICS (Theory)

निर्धारित समय: 2 घण्टे
अधिकतम अंक : 35
Time allowed : 2 hours
Maximum Marks : 35

सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :
(i) इस प्रश्न-पत्र में कुल 12 प्रश्न हैं / सभी प्रश्न अनिवार्य हैं ।
(ii) यह प्रश्न-पत्र तीन खण्डों में विभाजित है - खण्ड क, ख और ग ।
(iii) खण्ड क - प्रश्न संख्या 1 से 3 तक प्रत्येक प्रश्न 2 अंक का है ।
(iv) खण्ड ख - प्रश्न संख्या 4 से 11 तक प्रत्येक प्रश्न 3 अंक का है ।
(v) खण्ड ग - प्रश्न संख्या 12 प्रकरण अध्ययन-आधारित प्रश्न है / यह प्रश्न 5 अंक का है /
(vi) प्रश्न-पत्र में कोई समग्र विकल्प नहीं है । हालाँकि कुछ प्रश्नों में आंतरिक विकल्प प्रदान किए गए हैं । इनमें से केवल एक ही प्रश्न का उत्तर लिखिए ।
(vii) यदि आवश्यक हो, तो लॉग टेबल का उपयोग कर सकते हैं लेकिन कैल्कुलेटर के उपयोग की अनुमति नहीं है ।

$$
\begin{aligned}
& \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \mathrm{~h}=6.63 \times 10^{-34} \mathrm{Js} \\
& \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1} \\
& \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
& \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}
\end{aligned}
$$

इलेक्ट्रॉन का द्रव्यमान $\left(\mathrm{m}_{\mathrm{e}}\right)=9.1 \times 10^{-31} \mathrm{~kg}$
न्यूट्रॉन का द्रव्यमान $=1.675 \times 10^{-27} \mathrm{~kg}$
प्रोटॉन का द्रव्यमान $=1.673 \times 10^{-27} \mathrm{~kg}$ आवोगाद्रो संख्या $=6.023 \times 10^{23}$ प्रति ग्राम मोल (per gram mole)

बोल्ट्ज़मान नियतांक $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$

General Instructions :

Read the following instructions very carefully and strictly follow them :
(i) This question paper contains 12 questions. All questions are compulsory.
(ii) This question paper is divided into three sections - Section A, B, and C.
(iii) Section A-Questions no. $\mathbf{1}$ to $\mathbf{3}$ are of $\mathbf{2}$ marks each.
(iv) Section B-Questions no. 4 to 11 are of $\mathbf{3}$ marks each.
(v) Section C-Question no. 12 is a Case Study-Based Question of 5 marks.
(vi) There is no overall choice in the question paper. However, internal choice has been provided is some of the questions. Attempt any one of the alternatives in such questions.
(vii) Use of log tables is permitted, if necessary, but use of calculator is not permitted.

$$
\begin{aligned}
& \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \mathrm{~h}=6.63 \times 10^{-34} \mathrm{Js} \\
& \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1} \\
& \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
& \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}
\end{aligned}
$$

Mass of electron $\left(\mathrm{m}_{\mathrm{e}}\right)=9 \cdot 1 \times 10^{-31} \mathrm{~kg}$
Mass of neutron $=1.675 \times 10^{-27} \mathrm{~kg}$
Mass of proton $=1.673 \times 10^{-27} \mathrm{~kg}$
Avogadro's number $=6.023 \times 10^{23}$ per gram mole
Boltzmann constant $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$

खण्ड क

1. किसी ठोस में ऊर्जा बैण्ड अन्तराल का क्या अर्थ है ? किसी चालक, विद्युतरोधी और अर्धचालक के लिए ऊर्जा बैण्ड आरेख खींचिए ।
2. (क) दृश्य क्षेत्र में स्थित हाइड्रोजन परमाणु की स्पेक्ट्रमी श्रेणी का नाम लिखिए । इस श्रेणी की अधिकतम और निम्नतम तरंगदैर्घ्यों का अनुपात ज्ञात कीजिए।

अथवा
(ख) द्रव्य तरंगें क्या हैं ? किसी प्रोटॉन और α-कण को समान विभवान्तर से त्वरित किया गया है । प्रोटॉन और α-कण से संबद्ध दे बॉग्ली तरंगदैर्घ्यों का अनुपात ज्ञात कीजिए ।
3. उस युक्ति का नाम लिखिए जो विद्युत ऊर्जा को प्रकाश ऊर्जा में परिवर्तित करती है। इस युक्ति के तीन लाभ लिखिए।

खण्ड ख

4. (क) नाभिकीय विखण्डन और नाभिकीय संलयन के बीच विभेदन कीजिए ।
(ख) ड्यूटीरियम का संलयन नीचे दी गयी अभिक्रिया के रूप में होता है :

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}+3 \cdot 27 \mathrm{MeV}
$$

100 g ड्यूटीरियम के संलयन द्वारा किसी 500 W के विद्युत बल्ब को कितने समय तक जलाया जा सकता है ?
5. निम्नलिखित के कारण सहित उत्तर दीजिए :
(क) किसी p-n संधि का प्रतिरोध अग्रदिशिक बायस में कम और पश्चदिशिक बायस में अधिक होता है ।
(ख) इलेक्ट्रॉनिक युक्तियों को बनाने के लिए नैज अर्धचालकों का मादन एक अनिवार्यता है।
(ग) फोटोडायोडों को पश्चदिशिक बायस में प्रचालित किया जाता है ।

SECTION A
1．What is meant by energy band gap in a solid？Draw the energy band diagrams for a conductor，an insulator and a semiconductor．

2．（a）Name the spectral series for a hydrogen atom which lies in the visible region．Find the ratio of the maximum to the minimum wavelengths of this series．

OR

（b）What are matter waves ？A proton and an alpha particle are accelerated through the same potential difference．Find the ratio of the de Broglie wavelength associated with the proton to that with the alpha particle．

3．Name the device which converts electrical energy into light energy．Write three advantages of the device．

SECTION B

4．（a）Differentiate between nuclear fission and nuclear fusion．
（b）Deuterium undergoes fusion as per the reaction ：

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}+3 \cdot 27 \mathrm{MeV}
$$

Find the duration for which an electric bulb of 500 W can be kept glowing by the fusion of 100 g of deuterium．

5．Answer the following，giving reason ： $3 \times 1=3$
（a）The resistance of a p－n junction is low when it is forward biased and is high when it is reversed biased．
（b）Doping of intrinsic semiconductors is a necessity for making electronic devices．
（c）Photodiodes are operated in reverse bias．
6. (क) किसी गाइगर-मार्सडेन प्रयोग में, $2.56 \times 10^{-12} \mathrm{~J}$ ऊर्जा के किसी α-कण के लिए उपगमन की समीपस्थ दूरी परिकलित कीजिए । यह मानिए कि कण सम्मुख स्थिति में गोल्ड नाभिक $(\mathrm{Z}=79)$ की ओर उपगमन करता है ।
(ख) यदि उपर्युक्त प्रयोग को समान ऊर्जा के प्रोटॉन द्वारा दोहराएँ, तो उपगमन की समीपस्थ दूरी का मान क्या होगा ?
7. यंग के द्विझिरी प्रयोग में पर्दे पर चमकीली और काली फ्रिन्जों के बनने की संक्षेप में व्याख्या कीजिए । इस प्रकार फ्रिन्ज चौड़ाई के लिए व्यंजक व्युत्पन्न कीजिए ।
8. (क) (i) किसी खगोलीय दूरदर्शक द्वारा अनन्त पर प्रतिबिम्ब बनना दर्शाने के लिए नामांकित किरण आरेख खींचिए।
(ii) कोई दूरदर्शक के अभिदृश्यक की फोकस दूरी 150 cm और नेत्रिका की फोकस दूरी 6.0 cm है । यदि अन्तिम प्रतिबिम्ब अनन्त पर बनता है, तो परिकलित कीजिए :
(I) इस समायोजन में नलिका की लम्बाई, और
(II) उत्पन्न आवर्धन ।

अथवा
(ख) (i) किसी संयुक्त सूक्ष्मदर्शी द्वारा स्पष्ट दर्शन की अल्पतम दूरी पर प्रतिबिम्ब बनना दर्शाने के लिए नामांकित किरण आरेख खींचिए।
(ii) कोई लघु बिम्ब 4.0 cm फोकस दूरी के किसी आवर्धक लेंस से 3.0 cm दूरी पर स्थित है । ज्ञात कीजिए :
(I) बनने वाले प्रतिबिम्ब की स्थिति, और
(II) उत्पन्न रैखिक आवर्धन ।
9. (क) आइंस्टाइन के प्रकाश-विद्युत समीकरण का उपयोग करके आवृत्ति (v) के आपतित विकिरण के साथ उत्सर्जित इलेक्ट्रॉनों की अधिकतम गतिज ऊर्जा $\left(\mathrm{E}_{\mathrm{k}}\right)$ के विचरण का चित्रण कीजिए।
6. (a) In Geiger-Marsden experiment, calculate the distance of closest approach for an alpha particle with energy $2.56 \times 10^{-12} \mathrm{~J}$. Consider that the particle approaches gold nucleus ($\mathrm{Z}=79$) in head-on position.
(b) If the above experiment is repeated with a proton of the same energy, then what will be the value of the distance of closest approach ?
7. Briefly explain how bright and dark fringes are formed on the screen in Young's double slit experiment. Hence, derive the expression for the fringe width.
8. (a) (i) Draw a labelled ray diagram showing the formation of the image at infinity by an astronomical telescope.
(ii) A telescope consists of an objective of focal length 150 cm and an eyepiece of focal length 6.0 cm . If the final image is formed at infinity, then calculate :
(I) the length of the tube in this adjustment, and
(II) the magnification produced.

OR

(b) (i) Draw a labelled ray diagram showing the formation of the image at least distance of distinct vision by a compound microscope.
(ii) A small object is placed at a distance of 3.0 cm from a magnifier of focal length 4.0 cm . Find :
(I) the position of the image formed, and
(II) the linear magnification produced.
9. (a) Use Einstein's photoelectric equation to depict the variation of the maximum kinetic energy (E_{k}) of electrons emitted, with the frequency (v) of the incident radiation.
（ख）किसी प्रकाश－सुग्राही पृष्ठ को समान तीव्रता के（i）पीले प्रकाश पुन्ज，और（ii）लाल प्रकाश पुन्ज द्वारा प्रदीप्त किया गया है ।
किस प्रकरण में
（I）फोटोइलेक्ट्रॉनों की E_{k} अधिक होगी？
（II）उत्सर्जित इलेक्ट्रॉनों की संख्या अधिक होगी ？
प्रत्येक प्रकरण में अपने उत्तर की पुष्टि कीजिए ।
10．आरेख में दर्शाए अनुसार कोई प्रकाश किरण किसी प्रिज़्म पर 45° के कोण पर आपतन करती है और प्रिज़्म में सममितत：गमन करती है । परिकलित कीजिए ：

（क）अल्पतम विचलन कोण，
（ख）प्रिज़्म के पदार्थ का अपवर्तनांक，और
（ग）बिन्दु P पर अपवर्तन कोण ।
11．（क）उन विद्युत－चुम्बकीय तरंगों को पहचानिए ：
（i）जिनका उपयोग रेडार प्रणाली में किया जाता है ।
（ii）जो फोटोग्राफिक प्लेटों को प्रभावित करते हैं ।
（iii）शल्यक्रिया में किया जाता है ।
इनका आवृत्ति परिसर लिखिए ।
अथवा
（ख）कोई समतल तरंगाग्र विरल माध्यम से सघन माध्यम में संचरण कर रहा है । हाइगेन्स सिद्धांत का उपयोग करके अपवर्तित तरंगाग्र दर्शाइए और स्नेल के नियम का सत्यापन कीजिए ।
（b）A photosensitive surface is illuminated with a beam of（i）yellow light，and（ii）red light，both of the same intensity．
In which case will
（I）photoelectrons have more E_{k} ？
（II）more numbers of electrons be emitted？
Justify your answer in each case．

10．A ray of light is incident on a prism at an angle of 45° and passes symmetrically as shown in the figure．Calculate ：

（a）the angle of minimum deviation，
（b）the refractive index of the material of the prism，and
（c）the angle of refraction at the point P ．

11．（a）Identify electromagnetic waves which ：
（i）are used in radar system．
（ii）affect a photographic plate．
（iii）are used in surgery．
Write their frequency range．

OR

（b）A plane wavefront is propagating from a rarer into a denser medium．Use Huygens principle to show the refracted wavefront and verify Snell＇s law．

खण्ड ग

12. अपवर्तनांक n_{1} और n_{2} के दो पारदर्शी माध्यम किसी गोलीय पारदर्शी पृष्ठ द्वारा पृथकित हैं । प्रकाश किरणें इस पृष्ठ पर आपतन करके दूसरी ओर के माध्यम में अपवर्तित हो जाती हैं । अपवर्तन के नियम गोलीय पृष्ठ के प्रत्येक बिन्दु पर वैध हैं । कोई लेंस दो पृष्ठों से घिरा कोई प्रकाशिक पारदर्शी माध्यम होता है जिसका कम-से-कम एक पृष्ठ गोलीय होना चाहिए । किसी लेंस की फोकस दूरी का निर्धारण दोनों पृष्ठों की वक्रता त्रिज्या, R_{1} और R_{2} तथा लेंस के प्रतिवेशी माध्यम के सापेक्ष माध्यम का अपवर्तनांक (n) द्वारा होता है । R_{1} और R_{2} के मानों द्वारा ही यह निर्धारित होता है कि कोई लेंस अभिसारी लेंस की भाँति व्यवहार करेगा अथवा अपसारी लेंस की भाँति व्यवहार करेगा । किसी लेंस की आपतित प्रकाश पुन्ज को अभिसरित करने अथवा अपसरित करने की योग्यता उस लेंस की क्षमता को परिभाषित करती है।
(क) कोई बिम्ब आरेख में दर्शाए अनुसार बिन्दु B पर रखा गया है । बिम्ब दूरी (u) और प्रतिबिम्ब दूरी (v) के बीच कौन-सा संबंध सही है ?

(i) $\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\left(\frac{\mathrm{n}_{2}-\mathrm{n}_{1}}{\mathrm{n}_{1}}\right) \frac{1}{\mathrm{R}}$
(ii) $\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\left(\frac{\mathrm{n}_{1}-\mathrm{n}_{2}}{\mathrm{n}_{2}}\right) \frac{1}{\mathrm{R}}$
(iii) $\frac{\mathrm{n}_{2}}{\mathrm{v}}-\frac{\mathrm{n}_{1}}{\mathrm{u}}=\frac{\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)}{\mathrm{R}}$
(iv) $\frac{\mathrm{n}_{1}}{\mathrm{v}}-\frac{\mathrm{n}_{2}}{\mathrm{u}}=\frac{\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)}{\mathrm{R}}$

SECTION C

12. Two transparent media of refractive indices n_{1} and n_{2} are separated by a spherical transparent surface. The rays of light incident on the surface get refracted into the medium on the other side. The laws of refraction are valid at each point of the spherical surface. A lens is a transparent optical medium bounded by two surfaces, at least one of which should be spherical. The focal length of a lens is determined by the radii of curvature (R_{1} and R_{2}) of its two surfaces and the refractive index (n) of the medium of the lens with respect to the surrounding medium. Depending on R_{1} and R_{2}, a lens behaves as a diverging or a converging lens. The ability of a lens to diverge or converge a beam of light incident on it defines its power.
(a) An object is placed at the point B as shown in the figure. The object distance (u) and the image distance (v) are related as

(i) $\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\left(\frac{\mathrm{n}_{2}-\mathrm{n}_{1}}{\mathrm{n}_{1}}\right) \frac{1}{\mathrm{R}}$
(ii) $\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\left(\frac{\mathrm{n}_{1}-\mathrm{n}_{2}}{\mathrm{n}_{2}}\right) \frac{1}{\mathrm{R}}$
(iii) $\frac{\mathrm{n}_{2}}{\mathrm{v}}-\frac{\mathrm{n}_{1}}{\mathrm{u}}=\frac{\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)}{\mathrm{R}}$
(iv) $\frac{\mathrm{n}_{1}}{\mathrm{v}}-\frac{\mathrm{n}_{2}}{\mathrm{u}}=\frac{\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)}{\mathrm{R}}$
(ख) कोई बिन्दुकित बिम्ब वायु में वक्रता त्रिज्या R के किसी उत्तल गोलीय अपवर्ती पृष्ठ के सामने दूरी ' R ' पर स्थित है । यदि पृष्ठ के दूसरी ओर का माध्यम काँच है, तो बनने वाला प्रतिबिम्ब :
(i) वास्तविक है और काँच में बनता है ।
(ii) वास्तविक है और वायु में बनता है।
(iii) आभासी है और काँच में बनता है ।
(iv) आभासी है और वायु में बनता है ।
(ग) कोई बिम्ब किसी समोत्तल लेंस के सामने 2 F दूरी पर स्थित है । बनने वाला प्रतिबिम्ब है :
(i) वास्तविक और साइज़ में बिम्ब के बराबर ।
(ii) आभासी और साइज़ में बिम्ब के बराबर ।
(iii) वास्तविक और साइज़ में बिम्ब से बड़ा ।
(iv) आभासी और साइज़ में बिम्ब से छोटा ।
(घ) 10 cm फोकस दूरी का कोई पतला अभिसारी लेंस और 20 cm फोकस दूरी का कोई पतला अपसारी लेंस एक-दूसरे के सम्पर्क में समाक्ष रखे हैं । इस संयोजन की क्षमता है :
(i) -5 D
(ii) +5 D
(iii) +15 D
(iv) -15 D
(b) A point object is placed in air at a distance ' R ' in front of a convex spherical refracting surface of radius of curvature R. If the medium on the other side of the surface is glass, then the image is :
(i) real and formed in glass.
(ii) real and formed in air.
(iii) virtual and formed in glass.
(iv) virtual and formed in air.
(c) An object is kept at 2 F in front of an equiconvex lens. The image formed is :
(i) real and of the size of the object.
(ii) virtual and of the size of the object.
(iii) real and enlarged.
(iv) virtual and diminished.
(d) A thin converging lens of focal length 10 cm and a thin diverging lens of focal length 20 cm are placed coaxially in contact. The power of the combination is :
(i) -5 D
(ii) +5 D
(iii) +15 D
(iv) -15 D
(ङ) फोकस दूरी ' f ' के किसी समावतल लेंस को, आरेख में दर्शाए अनुसार, बिन्दुकित रेखा के अनुदिश दो सर्वसम भागों में काटा गया है । इनमें प्रत्येक भाग की फोकस दूरी होगी :

(i) $\frac{\mathrm{f}}{4}$
(ii) $\frac{\mathrm{f}}{2}$
(iii) f
(iv) $2 f$
$5 \times 1=5$
(e) An equiconcave lens of focal length ' f ' is cut into two identical parts along the dotted line as shown in the figure. The focal length of each part will be :

(i) $\frac{\mathrm{f}}{4}$
(ii) $\frac{\mathrm{f}}{2}$
(iii) f
(iv) 2 f
$5 \times 1=5$

Series A2BAB/4

प्रश्न-पत्र कोड Q.P. Code $55 / 4 / 2$

रोल नं.
Roll No.

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।
Candidates must write the Q.P. Code on the title page of the answer-book.

नोट

(I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं ।
(II) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
(III) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 12 प्रश्न हैं ।
(IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
(V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वान्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।

NOTE

(I) Please check that this question paper contains 15 printed pages.
(II) Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
(III) Please check that this question paper contains 12 questions.
(IV) Please write down the serial number of the question in the answer-book before attempting it.
(V) 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

भौतिक विज्ञान (सैद्धान्तिक)
 PHYSICS (Theory)

निर्धारित समय: 2 घण्टे
अधिकतम अंक : 35
Time allowed : 2 hours
Maximum Marks : 35

सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :
(i) इस प्रश्न-पत्र में कुल 12 प्रश्न हैं / सभी प्रश्न अनिवार्य हैं ।
(ii) यह प्रश्न-पत्र तीन खण्डों में विभाजित है - खण्ड क, ख और ग /
(iii) खण्ड क - प्रश्न संख्या 1 से 3 तक प्रत्येक प्रश्न 2 अंक का है ।
(iv) खण्ड ख - प्रश्न संख्या 4 से 11 तक प्रत्येक प्रश्न 3 अंक का है ।
(v) खण्ड ग - प्रश्न संख्या 12 प्रकरण अध्ययन-आधारित प्रश्न है / यह प्रश्न 5 अंक का है /
(vi) प्रश्न-पत्र में कोई समग्र विकल्प नहीं है । हालाँकि कुछ प्रश्नों में आंतरिक विकल्प प्रदान किए गए हैं । इनमें से केवल एक ही प्रश्न का उत्तर लिखिए ।
(vii) यदि आवश्यक हो, तो लॉग टेबल का उपयोग कर सकते हैं लेकिन कैल्कुलेटर के उपयोग की अनुमति नहीं है ।

$$
\begin{aligned}
& \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \mathrm{~h}=6.63 \times 10^{-34} \mathrm{Js} \\
& \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1} \\
& \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
& \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}
\end{aligned}
$$

इलेक्ट्रॉन का द्रव्यमान $\left(\mathrm{m}_{\mathrm{e}}\right)=9.1 \times 10^{-31} \mathrm{~kg}$
न्यूट्रॉन का द्रव्यमान $=1.675 \times 10^{-27} \mathrm{~kg}$
प्रोटॉन का द्रव्यमान $=1.673 \times 10^{-27} \mathrm{~kg}$ आवोगाद्रो संख्या $=6.023 \times 10^{23}$ प्रति ग्राम मोल (per gram mole)

बोल्ट्ज़मान नियतांक $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$

General Instructions:

Read the following instructions very carefully and strictly follow them :
(i) This question paper contains 12 questions. All questions are compulsory.
(ii) This question paper is divided into three sections - Section A, B, and C.
(iii) Section A-Questions no. $\mathbf{1}$ to $\mathbf{3}$ are of $\mathbf{2}$ marks each.
(iv) Section B-Questions no. 4 to 11 are of $\mathbf{3}$ marks each.
(v) Section C-Question no. 12 is a Case Study-Based Question of 5 marks.
(vi) There is no overall choice in the question paper. However, internal choice has been provided is some of the questions. Attempt any one of the alternatives in such questions.
(vii) Use of log tables is permitted, if necessary, but use of calculator is not permitted.

$$
\begin{aligned}
& \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \mathrm{~h}=6.63 \times 10^{-34} \mathrm{Js} \\
& \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1} \\
& \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
& \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}
\end{aligned}
$$

Mass of electron $\left(\mathrm{m}_{\mathrm{e}}\right)=9 \cdot 1 \times 10^{-31} \mathrm{~kg}$
Mass of neutron $=1.675 \times 10^{-27} \mathrm{~kg}$
Mass of proton $=1.673 \times 10^{-27} \mathrm{~kg}$
Avogadro's number $=6.023 \times 10^{23}$ per gram mole
Boltzmann constant $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$

खण्ड क

1. किसी ठोस में ऊर्जा बैण्ड अन्तराल का क्या अर्थ है ? किसी चालक, विद्युतरोधी और अर्धचालक के लिए ऊर्जा बैण्ड आरेख खींचिए।
2. उस युक्ति का नाम लिखिए जो किसी ac निवेशी सिग्नल को निर्गत dc सिग्नल में परिवर्तित कर देती है । इस युक्ति का कार्यकारी सिद्धांत लिखिए ।
3. (क) दृश्य क्षेत्र में स्थित हाइड्रोजन परमाणु की स्पेक्ट्रमी श्रेणी का नाम लिखिए । इस श्रेणी की अधिकतम और निम्नतम तरंगदैर्घ्यों का अनुपात ज्ञात कीजिए।

अथवा
(ख) द्रव्य तरंगें क्या हैं ? किसी प्रोटॉन और α-कण को समान विभवान्तर से त्वरित किया गया है । प्रोटॉन और α-कण से संबद्ध दे बॉग्ली तरंगदैर्घ्यों का अनुपात ज्ञात कीजिए।

खण्ड ख

4. (क) नाभिकीय विखण्डन और नाभिकीय संलयन के बीच विभेदन कीजिए ।
(ख) ड्यूटीरियम का संलयन नीचे दी गयी अभिक्रिया के रूप में होता है :

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}+3 \cdot 27 \mathrm{MeV}
$$

100 g ड्यूटीरियम के संलयन द्वारा किसी 500 W के विद्युत बल्ब को कितने समय तक जलाया जा सकता है ?
5. (क) किसी गाइगर-मार्सडेन प्रयोग में, $2.56 \times 10^{-12} \mathrm{~J}$ ऊर्जा के किसी α-कण के लिए उपगमन की समीपस्थ दूरी परिकलित कीजिए । यह मानिए कि कण सम्मुख स्थिति में गोल्ड नाभिक $(\mathrm{Z}=79)$ की ओर उपगमन करता है ।
(ख) यदि उपर्युक्त प्रयोग को समान ऊर्जा के प्रोटॉन द्वारा दोहराएँ, तो उपगमन की समीपस्थ दूरी का मान क्या होगा ?
6. निम्नलिखित के कारण सहित उत्तर दीजिए :
(क) किसी p-n संधि का प्रतिरोध अग्रदिशिक बायस में कम और पश्चदिशिक बायस में अधिक होता है।
(ख) इलेक्ट्रॉनिक युक्तियों को बनाने के लिए नैज अर्धचालकों का मादन एक अनिवार्यता है।
(ग) फोटोडायोडों को पश्चदिशिक बायस में प्रचालित किया जाता है ।

SECTION A

1．What is meant by energy band gap in a solid ？Draw the energy band diagrams for a conductor，an insulator and a semiconductor．

2．Name the device which converts an ac input signal into a dc output signal．Write the principle of working of the device．

3．（a）Name the spectral series for a hydrogen atom which lies in the visible region．Find the ratio of the maximum to the minimum wavelengths of this series．

OR

（b）What are matter waves ？A proton and an alpha particle are accelerated through the same potential difference．Find the ratio of the de Broglie wavelength associated with the proton to that with the alpha particle．

SECTION B

4．（a）Differentiate between nuclear fission and nuclear fusion．
（b）Deuterium undergoes fusion as per the reaction：

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}+3 \cdot 27 \mathrm{MeV}
$$

Find the duration for which an electric bulb of 500 W can be kept glowing by the fusion of 100 g of deuterium．

5．（a）In Geiger－Marsden experiment，calculate the distance of closest approach for an alpha particle with energy $2.56 \times 10^{-12} \mathrm{~J}$ ．Consider that the particle approaches gold nucleus（ $\mathrm{Z}=79$ ）in head－on position．
（b）If the above experiment is repeated with a proton of the same energy，then what will be the value of the distance of closest approach ？

6．Answer the following，giving reason ：
（a）The resistance of a p－n junction is low when it is forward biased and is high when it is reversed biased．
（b）Doping of intrinsic semiconductors is a necessity for making electronic devices．
（c）Photodiodes are operated in reverse bias．
7. (क) जब दो स्रोत S_{1} और S_{2} एक-दूसरे से काफी दूर होते हैं, तो यंग के द्विझिरी प्रयोग में व्यतिकरण पैटर्न का प्रेक्षण नहीं होता है। व्याख्या कीजिए।
(ख) दो स्रोतों के कलासंबद्ध होने के लिए आवश्यक शर्तों का उल्रेख कीजिए।
(ग) व्यतिकरण पैरर्न प्रेक्षण योग्य रखते हुए यंग के द्विझि़ी प्रयोग में यदि तरंगदैर्घ्य λ को तरंगदैर्घ्य 1.5λ के स्रोत द्वारा प्रतिस्थापित कर दिया जाए, तो व्यतिकरण पैटर्न पर क्या प्रभाव पड़ेगा ?
8. किसी कण जिसकी गतिज ऊर्जा E है, से संबद्ध तरंग की तरंगदैर्घ्य λ है। इसकी गतिज ऊर्जा को किस गुणक द्वारा और किस प्रकार परिवर्तित किया जाए जिससे इसकी तरंगदैर्घ्य $\left(\frac{\lambda}{2}\right)$ हो जाए। कण के अंतिम वेग और आरंभिक वेग का अनुपात भी ज्ञात कीजिए।
9. (क) (i) किसी खगोलीय दूरदर्शक द्वारा अनन्त पर प्रतिबिम्ब बनना दर्शाने के लिए नामांकित किरण आरेख खींचिए।
(ii) कोई दूरदर्शक के अभिदृश्यक की फोकस दूरी 150 cm और नेत्रिका की फोकस दूरी 6.0 cm है । यदि अन्तिम प्रतिबिम्ब अनन्त पर बनता है, तो परिकलित कीजिए :
(I) इस समायोजन में नलिका की लम्बाई, और
(II) उत्पन्न आवर्धन ।

अथवा

(ख) (i) किसी संयुक्त सूक्ष्मदर्शी द्वारा स्पष्ट दर्शन की अल्पतम दूरी पर प्रतिबिम्ब बनना दर्शाने के लिए नामांकित किरण आरेख खींचिए ।
(ii) कोई लघु बिम्ब 4.0 cm फोकस दूरी के किसी आवर्धक लेंस से 3.0 cm दूरी पर स्थित है। ज्ञात कीजिए :
(I) बनने वाले प्रतिबिम्ब की स्थिति, और
(II) उत्पन्न रैखिक आवर्धन ।

7. (a) The interference pattern is not observed in Young's double slit experiment when the two sources S_{1} and S_{2} are far apart. Explain.
(b) Mention the conditions for the two sources to be coherent.
(c) What is the effect on the interference pattern in a Young's double slit experiment, if the source of wavelength λ is replaced by another source of wavelength 1.5λ, with the interference pattern still observable?
8. The wavelength of the waves associated with a particle having kinetic energy E is λ. How and by what factor should its kinetic energy be changed so that the wavelength becomes $\left(\frac{\lambda}{2}\right)$? Also, find the ratio of the final to the initial velocity of the particle.
9. (a) (i) Draw a labelled ray diagram showing the formation of the image at infinity by an astronomical telescope.
(ii) A telescope consists of an objective of focal length 150 cm and an eyepiece of focal length 6.0 cm . If the final image is formed at infinity, then calculate :
(I) the length of the tube in this adjustment, and
(II) the magnification produced.

OR

(b) (i) Draw a labelled ray diagram showing the formation of the image at least distance of distinct vision by a compound microscope.
(ii) A small object is placed at a distance of 3.0 cm from a magnifier of focal length 4.0 cm . Find :
(I) the position of the image formed, and
(II) the linear magnification produced.
10. (क) उन विद्युत-चुम्बकीय तरंगों को पहचानिए :
(i) जिनका उपयोग रेडार प्रणाली में किया जाता है ।
(ii) जो फोटोग्राफिक प्लेटों को प्रभावित करते हैं ।
(iii) शल्यक्रिया में किया जाता है ।

इनका आवृत्ति परिसर लिखिए ।
अथवा
(ख) कोई समतल तरंगाग्र विरल माध्यम से सघन माध्यम में संचरण कर रहा है । हाइगेन्स सिद्धांत का उपयोग करके अपवर्तित तरंगाग्र दर्शाइए और स्नेल के नियम का सत्यापन कीजिए।
11. आरेख में कोई जल का स्तम्भ BCFE दर्शाया गया है जो दो माध्यमों (1) और (3) से घिरा हुआ है, जिनका समान अपवर्तनांक $\sqrt{2}$ है । बिन्दु स्रोत S से कोई प्रकाश किरण पृष्ठ BE पर 30° कोण पर आपतन करती है ।

(क) माध्यम (2) और (3) से गमन करती इस प्रकाश किरण का पथ पृष्ठ CG से निर्गत तक आरेखित कीजिए ।
(ख) पृष्ठ CG पर निर्गत कोण ज्ञात कीजिए ।
10. (a) Identify electromagnetic waves which:
(i) are used in radar system.
(ii) affect a photographic plate.
(iii) are used in surgery.

Write their frequency range.

OR

(b) A plane wavefront is propagating from a rarer into a denser medium. Use Huygens principle to show the refracted wavefront and verify Snell's law.
11. The figure shows a water column BCFE surrounded by two media (1) and (3) of the same refractive index $\sqrt{2}$. A ray of light from a point source S is incident on surface $B E$ at an angle of 30°.

(a) Trace the path of ray through media (2) and (3) as it emerges out of face CG.
(b) Find the angle of emergence at face CG.

खण्ड ग

12. अपवर्तनांक n_{1} और n_{2} के दो पारदर्शी माध्यम किसी गोलीय पारदर्शी पृष्ठ द्वारा पृथकित हैं । प्रकाश किरणें इस पृष्ठ पर आपतन करके दूसरी ओर के माध्यम में अपवर्तित हो जाती हैं । अपवर्तन के नियम गोलीय पृष्ठ के प्रत्येक बिन्दु पर वैध हैं । कोई लेंस दो पृष्ठों से घिरा कोई प्रकाशिक पारदर्शी माध्यम होता है जिसका कम-से-कम एक पृष्ठ गोलीय होना चाहिए । किसी लेंस की फोकस दूरी का निर्धारण दोनों पृष्ठों की वक्रता त्रिज्या, R_{1} और R_{2} तथा लेंस के प्रतिवेशी माध्यम के सापेक्ष माध्यम का अपवर्तनांक (n) द्वारा होता है । R_{1} और R_{2} के मानों द्वारा ही यह निर्धारित होता है कि कोई लेंस अभिसारी लेंस की भाँति व्यवहार करेगा अथवा अपसारी लेंस की भाँति व्यवहार करेगा । किसी लेंस की आपतित प्रकाश पुन्ज को अभिसरित करने अथवा अपसरित करने की योग्यता उस लेंस की क्षमता को परिभाषित करती है ।
(क) कोई बिम्ब आरेख में दर्शाए अनुसार बिन्दु B पर रखा गया है । बिम्ब दूरी (u) और प्रतिबिम्ब दूरी (v) के बीच कौन-सा संबंध सही है ?

(i) $\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\left(\frac{\mathrm{n}_{2}-\mathrm{n}_{1}}{\mathrm{n}_{1}}\right) \frac{1}{\mathrm{R}}$
(ii) $\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\left(\frac{\mathrm{n}_{1}-\mathrm{n}_{2}}{\mathrm{n}_{2}}\right) \frac{1}{\mathrm{R}}$
(iii) $\frac{\mathrm{n}_{2}}{\mathrm{v}}-\frac{\mathrm{n}_{1}}{\mathrm{u}}=\frac{\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)}{\mathrm{R}}$
(iv) $\frac{\mathrm{n}_{1}}{\mathrm{v}}-\frac{\mathrm{n}_{2}}{\mathrm{u}}=\frac{\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)}{\mathrm{R}}$

SECTION C

12. Two transparent media of refractive indices n_{1} and n_{2} are separated by a spherical transparent surface. The rays of light incident on the surface get refracted into the medium on the other side. The laws of refraction are valid at each point of the spherical surface. A lens is a transparent optical medium bounded by two surfaces, at least one of which should be spherical. The focal length of a lens is determined by the radii of curvature (R_{1} and R_{2}) of its two surfaces and the refractive index (n) of the medium of the lens with respect to the surrounding medium. Depending on R_{1} and R_{2}, a lens behaves as a diverging or a converging lens. The ability of a lens to diverge or converge a beam of light incident on it defines its power.
(a) An object is placed at the point B as shown in the figure. The object distance (u) and the image distance (v) are related as

(i) $\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\left(\frac{\mathrm{n}_{2}-\mathrm{n}_{1}}{\mathrm{n}_{1}}\right) \frac{1}{\mathrm{R}}$
(ii) $\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\left(\frac{\mathrm{n}_{1}-\mathrm{n}_{2}}{\mathrm{n}_{2}}\right) \frac{1}{\mathrm{R}}$
(iii) $\frac{\mathrm{n}_{2}}{\mathrm{v}}-\frac{\mathrm{n}_{1}}{\mathrm{u}}=\frac{\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)}{\mathrm{R}}$
(iv) $\frac{\mathrm{n}_{1}}{\mathrm{v}}-\frac{\mathrm{n}_{2}}{\mathrm{u}}=\frac{\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)}{\mathrm{R}}$
(ख) कोई बिन्दुकित बिम्ब वायु में वक्रता त्रिज्या R के किसी उत्तल गोलीय अपवर्ती पृष्ठ के सामने दूरी ' R ' पर स्थित है । यदि पृष्ठ के दूसरी ओर का माध्यम काँच है, तो बनने वाला प्रतिबिम्ब :
(i) वास्तविक है और काँच में बनता है ।
(ii) वास्तविक है और वायु में बनता है।
(iii) आभासी है और काँच में बनता है ।
(iv) आभासी है और वायु में बनता है ।
(ग) कोई बिम्ब किसी समोत्तल लेंस के सामने 2 F दूरी पर स्थित है । बनने वाला प्रतिबिम्ब है :
(i) वास्तविक और साइज़ में बिम्ब के बराबर ।
(ii) आभासी और साइज़ में बिम्ब के बराबर ।
(iii) वास्तविक और साइज़ में बिम्ब से बड़ा ।
(iv) आभासी और साइज़ में बिम्ब से छोटा ।
(घ) 10 cm फोकस दूरी का कोई पतला अभिसारी लेंस और 20 cm फोकस दूरी का कोई पतला अपसारी लेंस एक-दूसरे के सम्पर्क में समाक्ष रखे हैं । इस संयोजन की क्षमता है :
(i) -5 D
(ii) +5 D
(iii) +15 D
(iv) -15 D
(b) A point object is placed in air at a distance ' R ' in front of a convex spherical refracting surface of radius of curvature R. If the medium on the other side of the surface is glass, then the image is :
(i) real and formed in glass.
(ii) real and formed in air.
(iii) virtual and formed in glass.
(iv) virtual and formed in air.
(c) An object is kept at 2 F in front of an equiconvex lens. The image formed is :
(i) real and of the size of the object.
(ii) virtual and of the size of the object.
(iii) real and enlarged.
(iv) virtual and diminished.
(d) A thin converging lens of focal length 10 cm and a thin diverging lens of focal length 20 cm are placed coaxially in contact. The power of the combination is :
(i) -5 D
(ii) +5 D
(iii) +15 D
(iv) -15 D
(ङ) फोकस दूरी ' f ' के किसी समावतल लेंस को, आरेख में दर्शाए अनुसार, बिन्दुकित रेखा के अनुदिश दो सर्वसम भागों में काटा गया है । इनमें प्रत्येक भाग की फोकस दूरी होगी :

(i) $\frac{\mathrm{f}}{4}$
(ii) $\frac{\mathrm{f}}{2}$
(iii) f
(iv) $2 f$
$5 \times 1=5$
(e) An equiconcave lens of focal length ' f ' is cut into two identical parts along the dotted line as shown in the figure. The focal length of each part will be :

(i) $\frac{\mathrm{f}}{4}$
(ii) $\frac{\mathrm{f}}{2}$
(iii) f
(iv) 2 f
$5 \times 1=5$

Series A2BAB/4

रोल नं.
Roll No.

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।
Candidates must write the Q.P. Code on the title page of the answer-book.

नोट

(I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं ।
(II) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
(III) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 12 प्रश्न हैं।
(IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
(V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वान्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।

NOTE

(I) Please check that this question paper contains 15 printed pages.
(II) Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
(III) Please check that this question paper contains 12 questions.
(IV) Please write down the serial number of the question in the answer-book before attempting it.
(V) 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

भौतिक विज्ञान (सैद्धान्तिक)
 PHYSICS (Theory)

निर्धारित समय : 2 घण्टे
अधिकतम अंक : 35
Time allowed : 2 hours
Maximum Marks : 35

सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :
(i) इस प्रश्न-पत्र में कुल 12 प्रश्न हैं / सभी प्रश्न अनिवार्य हैं ।
(ii) यह प्रश्न-पत्र तीन खण्डों में विभाजित है - खण्ड क, ख और ग ।
(iii) खण्ड क - प्रश्न संख्या 1 से 3 तक प्रत्येक प्रश्न 2 अंक का है ।
(iv) खण्ड ख - प्रश्न संख्या 4 से 11 तक प्रत्येक प्रश्न 3 अंक का है ।
(v) खण्ड ग - प्रश्न संख्या 12 प्रकरण अध्ययन-आधारित प्रश्न है / यह प्रश्न 5 अंक का है /
(vi) प्रश्न-पत्र में कोई समग्र विकल्प नहीं है । हालाँकि कुछ प्रश्नों में आंतरिक विकल्प प्रदान किए गए हैं । इनमें से केवल एक ही प्रश्न का उत्तर लिखिए ।
(vii) यदि आवश्यक हो, तो लॉग टेबल का उपयोग कर सकते हैं लेकिन कैल्कुलेटर के उपयोग की अनुमति नहीं है ।

$$
\begin{aligned}
& \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \mathrm{~h}=6.63 \times 10^{-34} \mathrm{Js} \\
& \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1} \\
& \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
& \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}
\end{aligned}
$$

इलेक्ट्रॉन का द्रव्यमान $\left(\mathrm{m}_{\mathrm{e}}\right)=9.1 \times 10^{-31} \mathrm{~kg}$
न्यूट्रॉन का द्रव्यमान $=1.675 \times 10^{-27} \mathrm{~kg}$
प्रोटॉन का द्रव्यमान $=1.673 \times 10^{-27} \mathrm{~kg}$ आवोगाद्रो संख्या $=6.023 \times 10^{23}$ प्रति ग्राम मोल (per gram mole)

बोल्ट्ज़मान नियतांक $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$

General Instructions :

Read the following instructions very carefully and strictly follow them :
(i) This question paper contains 12 questions. All questions are compulsory.
(ii) This question paper is divided into three sections - Section A, B, and C.
(iii) Section A-Questions no. $\mathbf{1}$ to $\mathbf{3}$ are of $\mathbf{2}$ marks each.
(iv) Section B-Questions no. 4 to 11 are of $\mathbf{3}$ marks each.
(v) Section C-Question no. 12 is a Case Study-Based Question of 5 marks.
(vi) There is no overall choice in the question paper. However, internal choice has been provided is some of the questions. Attempt any one of the alternatives in such questions.
(vii) Use of log tables is permitted, if necessary, but use of calculator is not permitted.

$$
\begin{aligned}
& \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \mathrm{~h}=6.63 \times 10^{-34} \mathrm{Js} \\
& \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1} \\
& \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
& \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}
\end{aligned}
$$

Mass of electron $\left(\mathrm{m}_{\mathrm{e}}\right)=9 \cdot 1 \times 10^{-31} \mathrm{~kg}$
Mass of neutron $=1.675 \times 10^{-27} \mathrm{~kg}$
Mass of proton $=1.673 \times 10^{-27} \mathrm{~kg}$
Avogadro's number $=6.023 \times 10^{23}$ per gram mole
Boltzmann constant $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$

खण्ड क

1. (क) दृश्य क्षेत्र में स्थित हाइड्रोजन परमाणु की स्पेक्ट्रमी श्रेणी का नाम लिखिए । इस श्रेणी की अधिकतम और निम्नतम तरंगदैर्घ्यों का अनुपात ज्ञात कीजिए।

अथवा

(ख) द्रव्य तरंगें क्या हैं ? किसी प्रोटॉन और α-कण को समान विभवान्तर से त्वरित किया गया है । प्रोटॉन और α-कण से संबद्ध दे बॉग्ली तरंगदैर्घ्यों का अनुपात ज्ञात कीजिए ।
2. किसी ठोस में ऊर्जा बैण्ड अन्तराल का क्या अर्थ है ? किसी चालक, विद्युतरोधी और अर्धचालक के लिए ऊर्जा बैण्ड आरेख खींचिए ।
3. रोधिका विभव की परिभाषा लिखिए । पश्चदिशिक बायस में वृद्धि होने पर किसी p-n संधि डायोड में ह्रासी स्तर की मोटाई क्यों विचरण करती है ?

खण्ड ख

4. निम्नलिखित के कारण सहित उत्तर दीजिए :
(क) किसी p-n संधि का प्रतिरोध अग्रदिशिक बायस में कम और पश्चदिशिक बायस में अधिक होता है ।
(ख) इलेक्ट्रॉनिक युक्तियों को बनाने के लिए नैज अर्धचालकों का मादन एक अनिवार्यता है ।
(ग) फोटोडायोडों को पश्चदिशिक बायस में प्रचालित किया जाता है ।

SECTION A

1. (a) Name the spectral series for a hydrogen atom which lies in the visible region. Find the ratio of the maximum to the minimum wavelengths of this series.

OR

(b) What are matter waves ? A proton and an alpha particle are accelerated through the same potential difference. Find the ratio of the de Broglie wavelength associated with the proton to that with the alpha particle.
2. What is meant by energy band gap in a solid ? Draw the energy band diagrams for a conductor, an insulator and a semiconductor.
3. Define barrier potential. Why does the thickness of the depletion layer in a p-n junction diode vary with increase in reverse bias?2

SECTION B

4. Answer the following, giving reason :
(a) The resistance of a p-n junction is low when it is forward biased and is high when it is reversed biased.
(b) Doping of intrinsic semiconductors is a necessity for making electronic devices.
(c) Photodiodes are operated in reverse bias.
5. (क) नाभिकीय विखण्डन और नाभिकीय संलयन के बीच विभेदन कीजिए ।
(ख) ड्यूटीरियम का संलयन नीचे दी गयी अभिक्रिया के रूप में होता है :

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}+3 \cdot 27 \mathrm{MeV}
$$

100 g ड्यूटीरियम के संलयन द्वारा किसी 500 W के विद्युत बल्ब को कितने समय तक जलाया जा सकता है ?
6. संक्षेप में व्याख्या कीजिए कि किसी एकल झिरी पर विवर्तन के कारण किसी पर्दे पर चमकीली और काली फ्रिन्जें किस प्रकार बनती हैं । इस प्रकार व्याख्या कीजिए कि फ्रिन्जों की कोटि (n) में वृद्धि होने पर चमकीली फ्रिन्जों पर तीव्रता तेज़ी से क्यों घटती है ।
7. (क) (i) किसी खगोलीय दूरदर्शक द्वारा अनन्त पर प्रतिबिम्ब बनना दर्शाने के लिए नामांकित किरण आरेख खींचिए।
(ii) कोई दूरदर्शक के अभिदृश्यक की फोकस दूरी 150 cm और नेत्रिका की फोकस दूरी 6.0 cm है । यदि अन्तिम प्रतिबिम्ब अनन्त पर बनता है, तो परिकलित कीजिए :
(I) इस समायोजन में नलिका की लम्बाई, और
(II) उत्पन्न आवर्धन ।

अथवा

(ख) (i) किसी संयुक्त सूक्ष्मदर्शी द्वारा स्पष्ट दर्शन की अल्पतम दूरी पर प्रतिबिम्ब बनना दर्शाने के लिए नामांकित किरण आरेख खींचिए ।
(ii) कोई लघु बिम्ब 4.0 cm फोकस दूरी के किसी आवर्धक लेंस से 3.0 cm दूरी पर स्थित है। ज्ञात कीजिए :
(I) बनने वाले प्रतिबिम्ब की स्थिति, और
(II) उत्पन्न रैखिक आवर्धन ।
5. (a) Differentiate between nuclear fission and nuclear fusion.
(b) Deuterium undergoes fusion as per the reaction :

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}+3 \cdot 27 \mathrm{MeV}
$$

Find the duration for which an electric bulb of 500 W can be kept glowing by the fusion of 100 g of deuterium.
6. Briefly explain how bright and dark fringes are formed on a screen due to the diffraction at a single slit. Hence, explain why the intensity at the bright fringes decreases sharply as their order (n) increases.
7. (a) (i) Draw a labelled ray diagram showing the formation of the image at infinity by an astronomical telescope.
(ii) A telescope consists of an objective of focal length 150 cm and an eyepiece of focal length 6.0 cm . If the final image is formed at infinity, then calculate :
(I) the length of the tube in this adjustment, and
(II) the magnification produced.

OR

(b) (i) Draw a labelled ray diagram showing the formation of the image at least distance of distinct vision by a compound microscope.
(ii) A small object is placed at a distance of 3.0 cm from a magnifier of focal length 4.0 cm . Find :
(I) the position of the image formed, and
(II) the linear magnification produced.
8. किसी प्रोटॉन को विभवान्तर V से त्वरित किया जाता है । त्वरित होने पर इससे संबद्ध दे ब्रॉग्ली तरंगदैर्घ्य λ है । यदि प्रोटॉन को α-कण से प्रतिस्थापित कर दिया जाए, तो यदि इसे भी समान विभवान्तर V से त्वरित किया गया है, तो इससे संबद्ध दे ब्रॉग्ली तरंगदैर्घ्य ज्ञात कीजिए। इस α-कण का संवेग क्या होगा ?
9. (क) किसी गाइगर-मार्सडेन प्रयोग में, $2.56 \times 10^{-12} \mathrm{~J}$ ऊर्जा के किसी α-कण के लिए उपगमन की समीपस्थ दूरी परिकलित कीजिए । यह मानिए कि कण सम्मुख स्थिति में गोल्ड नाभिक $(\mathrm{Z}=79)$ की ओर उपगमन करता है ।
(ख) यदि उपर्युक्त प्रयोग को समान ऊर्जा के प्रोटॉन द्वारा दोहराएँ, तो उपगमन की समीपस्थ दूरी का मान क्या होगा ?
10. (क) उन विद्युत-चुम्बकीय तरंगों को पहचानिए :
(i) जिनका उपयोग रेडार प्रणाली में किया जाता है ।
(ii) जो फोटोग्राफिक प्लेटों को प्रभावित करते हैं ।
(iii) शल्यक्रिया में किया जाता है ।

इनका आवृत्ति परिसर लिखिए ।

अथवा

(ख) कोई समतल तरंगाग्र विरल माध्यम से सघन माध्यम में संचरण कर रहा है । हाइगेन्स सिद्धांत का उपयोग करके अपवर्तित तरंगाग्र दर्शाइए और स्नेल के नियम का सत्यापन कीजिए।
11. कोई गोताखोर पानी $\left(\mu=\frac{4}{3}\right)$ से होकर बाहरी दुनिया को पानी के पृष्ठ पर वृत्ताकार क्षेत्र में समाया हुआ देखता है । यदि गोताखोर के नेत्र पानी के पृष्ठ से $\sqrt{7} \mathrm{~m}$ नीचे हैं, तो इस वृत्त का क्षेत्रफल परिकलित कीजिए।
8. A proton is accelerated through a potential difference V. After acceleration, the de Broglie wavelength associated with it is λ. If the proton is replaced by an alpha particle, then find the de Broglie wavelength associated with it if it were accelerated through the same potential difference V . What will be the momentum of the alpha particle?
9. (a) In Geiger-Marsden experiment, calculate the distance of closest approach for an alpha particle with energy $2.56 \times 10^{-12} \mathrm{~J}$. Consider that the particle approaches gold nucleus ($\mathrm{Z}=79$) in head-on position.
(b) If the above experiment is repeated with a proton of the same energy, then what will be the value of the distance of closest approach ?
10. (a) Identify electromagnetic waves which :
(i) are used in radar system.
(ii) affect a photographic plate.
(iii) are used in surgery.

Write their frequency range.

OR

(b) A plane wavefront is propagating from a rarer into a denser medium. Use Huygens principle to show the refracted wavefront and verify Snell's law.
11. A diver looking up through water $\left(\mu=\frac{4}{3}\right)$ sees the outside world contained in a circular area on the surface of water. If the diver's eyes are $\sqrt{7} \mathrm{~m}$ below the surface of water, then calculate the area of the circle.

खण्ड ग

12. अपवर्तनांक n_{1} और n_{2} के दो पारदर्शी माध्यम किसी गोलीय पारदर्शी पृष्ठ द्वारा पृथकित हैं । प्रकाश किरणें इस पृष्ठ पर आपतन करके दूसरी ओर के माध्यम में अपवर्तित हो जाती हैं । अपवर्तन के नियम गोलीय पृष्ठ के प्रत्येक बिन्दु पर वैध हैं । कोई लेंस दो पृष्ठों से घिरा कोई प्रकाशिक पारदर्शी माध्यम होता है जिसका कम-से-कम एक पृष्ठ गोलीय होना चाहिए । किसी लेंस की फोकस दूरी का निर्धारण दोनों पृष्ठों की वक्रता त्रिज्या, R_{1} और R_{2} तथा लेंस के प्रतिवेशी माध्यम के सापेक्ष माध्यम का अपवर्तनांक (n) द्वारा होता है । R_{1} और R_{2} के मानों द्वारा ही यह निर्धारित होता है कि कोई लेंस अभिसारी लेंस की भाँति व्यवहार करेगा अथवा अपसारी लेंस की भाँति व्यवहार करेगा । किसी लेंस की आपतित प्रकाश पुन्ज को अभिसरित करने अथवा अपसरित करने की योग्यता उस लेंस की क्षमता को परिभाषित करती है ।
(क) कोई बिम्ब आरेख में दर्शाए अनुसार बिन्दु B पर रखा गया है । बिम्ब दूरी (u) और प्रतिबिम्ब दूरी (v) के बीच कौन-सा संबंध सही है ?

(i) $\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\left(\frac{\mathrm{n}_{2}-\mathrm{n}_{1}}{\mathrm{n}_{1}}\right) \frac{1}{\mathrm{R}}$
(ii) $\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\left(\frac{\mathrm{n}_{1}-\mathrm{n}_{2}}{\mathrm{n}_{2}}\right) \frac{1}{\mathrm{R}}$
(iii) $\frac{\mathrm{n}_{2}}{\mathrm{v}}-\frac{\mathrm{n}_{1}}{\mathrm{u}}=\frac{\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)}{\mathrm{R}}$
(iv) $\frac{\mathrm{n}_{1}}{\mathrm{v}}-\frac{\mathrm{n}_{2}}{\mathrm{u}}=\frac{\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)}{\mathrm{R}}$

SECTION C

12. Two transparent media of refractive indices n_{1} and n_{2} are separated by a spherical transparent surface. The rays of light incident on the surface get refracted into the medium on the other side. The laws of refraction are valid at each point of the spherical surface. A lens is a transparent optical medium bounded by two surfaces, at least one of which should be spherical. The focal length of a lens is determined by the radii of curvature (R_{1} and R_{2}) of its two surfaces and the refractive index (n) of the medium of the lens with respect to the surrounding medium. Depending on R_{1} and R_{2}, a lens behaves as a diverging or a converging lens. The ability of a lens to diverge or converge a beam of light incident on it defines its power.
(a) An object is placed at the point B as shown in the figure. The object distance (u) and the image distance (v) are related as

(i) $\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\left(\frac{\mathrm{n}_{2}-\mathrm{n}_{1}}{\mathrm{n}_{1}}\right) \frac{1}{\mathrm{R}}$
(ii) $\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\left(\frac{\mathrm{n}_{1}-\mathrm{n}_{2}}{\mathrm{n}_{2}}\right) \frac{1}{\mathrm{R}}$
(iii) $\frac{\mathrm{n}_{2}}{\mathrm{v}}-\frac{\mathrm{n}_{1}}{\mathrm{u}}=\frac{\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)}{\mathrm{R}}$
(iv) $\frac{\mathrm{n}_{1}}{\mathrm{v}}-\frac{\mathrm{n}_{2}}{\mathrm{u}}=\frac{\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)}{\mathrm{R}}$
(ख) कोई बिन्दुकित बिम्ब वायु में वक्रता त्रिज्या R के किसी उत्तल गोलीय अपवर्ती पृष्ठ के सामने दूरी ' R ' पर स्थित है । यदि पृष्ठ के दूसरी ओर का माध्यम काँच है, तो बनने वाला प्रतिबिम्ब :
(i) वास्तविक है और काँच में बनता है ।
(ii) वास्तविक है और वायु में बनता है।
(iii) आभासी है और काँच में बनता है ।
(iv) आभासी है और वायु में बनता है ।
(ग) कोई बिम्ब किसी समोत्तल लेंस के सामने 2 F दूरी पर स्थित है । बनने वाला प्रतिबिम्ब है :
(i) वास्तविक और साइज़ में बिम्ब के बराबर ।
(ii) आभासी और साइज़ में बिम्ब के बराबर ।
(iii) वास्तविक और साइज़ में बिम्ब से बड़ा ।
(iv) आभासी और साइज़ में बिम्ब से छोटा ।
(घ) 10 cm फोकस दूरी का कोई पतला अभिसारी लेंस और 20 cm फोकस दूरी का कोई पतला अपसारी लेंस एक-दूसरे के सम्पर्क में समाक्ष रखे हैं । इस संयोजन की क्षमता है :
(i) -5 D
(ii) +5 D
(iii) +15 D
(iv) -15 D
(b) A point object is placed in air at a distance ' R ' in front of a convex spherical refracting surface of radius of curvature R. If the medium on the other side of the surface is glass, then the image is :
(i) real and formed in glass.
(ii) real and formed in air.
(iii) virtual and formed in glass.
(iv) virtual and formed in air.
(c) An object is kept at 2 F in front of an equiconvex lens. The image formed is :
(i) real and of the size of the object.
(ii) virtual and of the size of the object.
(iii) real and enlarged.
(iv) virtual and diminished.
(d) A thin converging lens of focal length 10 cm and a thin diverging lens of focal length 20 cm are placed coaxially in contact. The power of the combination is :
(i) -5 D
(ii) +5 D
(iii) +15 D
(iv) -15 D
(ङ) फोकस दूरी ' f ' के किसी समावतल लेंस को, आरेख में दर्शाए अनुसार, बिन्दुकित रेखा के अनुदिश दो सर्वसम भागों में काटा गया है । इनमें प्रत्येक भाग की फोकस दूरी होगी :

(i) $\frac{\mathrm{f}}{4}$
(ii) $\frac{\mathrm{f}}{2}$
(iii) f
(iv) $2 f$
$5 \times 1=5$
(e) An equiconcave lens of focal length ' f ' is cut into two identical parts along the dotted line as shown in the figure. The focal length of each part will be :

(i) $\frac{\mathrm{f}}{4}$
(ii) $\frac{\mathrm{f}}{2}$
(iii) f
(iv) 2 f
$5 \times 1=5$
