कोड नं.
कोड न.
Code No.
C 6/4/1

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।
Candidates must write the Code on the title page of the answer-book.

नोट	NOTE
(I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं। (II) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें। (III) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 37 प्रश्न हैं। (IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें। (V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका में कोई उत्तर नहीं लिखेंगे।	(I) Please check that this question paper contains $\mathbf{1 5}$ printed pages. (II) Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate. (III) Please check that this question paper contains 37 questions. (IV) Please write down the Serial Number of the question in the answer-book before attempting it. (V) 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

निर्धारित समय: 3 घण्ट
Time allowed : 3 hours
अधिकतम अंक : 70
.56/4/1.
321A
1
P.T.O.

सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका पालन कीजिए :
(i) प्रश्न-पत्र चार खण्डों में विभाजित है - क, ख, ग और घ । सभी प्रश्न अनिवार्य हैं ।
(ii) खण्ड-क - प्रश्न-संख्या 1 से 20 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न 1 अंक का है । प्रत्येक प्रश्न का उत्तर एक शब्द या एक वाक्य में दीजिए।
(iii) खण्ड-ख - प्रश्न-संख्या 21 से 27 तक लघु-उत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न 2 अंकों का है।
(iv) खण्ड-ग - प्रश्न-संख्या 28 से 34 तक दीर्घ-उत्तरीय प्रकार- 1 के प्रश्न हैं, प्रत्येक प्रश्न 3 अंकों का है।
(v) खण्ड-घ - प्रश्न-संख्या 35 से 37 तक दीर्घ-उत्तरीय प्रकार- 2 के प्रश्न हैं, प्रत्येक प्रश्न 5 अंकों का है।
(vi) कोई समग्र विकल्प नहीं है । तथापि, दो-दो अंकों के दो प्रश्नों में, तीन-तीन अंकों के दो प्रश्नों में तथा पाँच-पाँच अंकों के तीनों प्रश्नों में आंतरिक विकल्प दिया गया है । ऐसे प्रश्नों में केवल एक ही विकल्प का उत्तर दीजिए।
(vii) इसके अतिरिक्त, आवश्यतानुसार, प्रत्येक खण्ड और प्रश्न के साथ यथोचित निर्देश दिए गए हैं । (viii) केलकुलेटर अथवा लॉग टेबल के प्रयोग की अनुमति नहीं है।

खण्ड-क

दिए गए अनुच्छेद को पढ़िए और नीचे दिए प्रश्न 1 से 5 के उत्तर दीजिए :
कोलॉइडी कणों पर हमेशा विद्युत आवेश होता है जो धनात्मक या ऋणात्मक हो सकता है । उदाहरण के तौर पर जब AgNO_{3} विलयन को KI विलयन में मिलाया जाता है तो ऋण-आवेशित कोलॉइडी सॉल बनता है। कोलॉइडी कणों पर बराबर एवं एक जैसे आवेशों की उपस्थिति कोलॉइडी सॉल को स्थायित्व प्रदान करती है और यदि, किसी तरह, आवेश हटा दिया जाए, तो सॉल का स्कंदन हो जाता है। द्रवविरागी सॉल, द्रवरागी सॉल की तुलना में सहज ही स्कंदित हो जाते हैं।

1. सॉल कणों पर आवेश का क्या कारण है ?
2. कोलॉइडी कणों पर बराबर एवं एक जैसे आवेशों की उपस्थिति स्थायित्व क्यों प्रदान करती है ?
3. AgNO_{3} विलयन को KI विलयन में मिलाने पर ऋण-आवेशित सॉल क्यों प्राप्त होता है ?
4. द्रवविरागी सॉल का स्कंदन करने के लिए एक विधि का नाम लिखिए।
5. KI या $\mathrm{K}_{2} \mathrm{SO}_{4}$ में से कौन-सा विद्युत-अपघट्य धनात्मक सॉल के स्कंदन के लिए अधिक अच्छा है ?

General Instructions :

Read the following instructions very carefully and strictly follow them:
(i) Question paper comprises four sections $-A, B, C$ and D.
(ii) There are 37 questions in the question paper. All questions are compulsory.
(iii) Section - $\boldsymbol{A}: Q$. No. 1 to 20 are very short answer type questions carrying one mark each. Answer these questions in one word or one sentence.
(iv) Section - B: Q. No. 21 to 27 are short answer type questions carrying two marks each.
(v) Section - C: Q. No. 28 to 34 are long answer type-I questions carrying three marks each.
(vi) Section - D: Q. No. 35 to 37 are long answer type-II questions carrying five marks each.
(vii) There is NO overall choice in the question paper. However, an internal choice has been provided in 2 questions of two marks, 2 questions of three marks and all the 3 questions of five marks. You have to attempt only one of the choices in such questions.
(viii) However, separate instructions are given with each section and question, wherever necessary.
(ix) Use of calculators and log tables is NOT permitted.

SECTION - A

Read the given passage and answer the questions 1 to 5 that follow :
Colloidal particles always carry an electric charge which may be either positive or negative. For example, when AgNO_{3} solution is added to KI solution, a negatively charged colloidal sol is obtained. The presence of equal and similar charges on colloidal particles provide stability to the colloidal sol and if, somehow, charge is removed, coagulation of sol occurs. Lyophobic sols are readily coagulated as compare to lyophilic sols.

1. What is the reason for the charge on sol particles?
2. Why the presence of equal and similar charges on colloidal particles provide stability?
3. Why a negatively charged sol is obtained on adding AgNO_{3} solution to KI solution?
4. Name one method by which coagulation of lyophobic sol can be carried out.
5. Out of KI or $\mathrm{K}_{2} \mathrm{SO}_{4}$, which electrolyte is better in the coagulation of positive sol?

प्रश्न 6 से 10 एक शब्द उत्तरीय हैं :
6. ऐलुमिनियम के निष्कर्षण में बॉक्साइट अयस्क के सान्द्रण के लिए प्रयुक्त विधि का नाम लिखिए।
7. Cl और $\mathrm{CH}_{2}-\mathrm{Cl}$ में से कौन $\mathrm{S}_{\mathrm{N}} 1$ अभिक्रिया के प्रति अधिक अभिक्रियाशील है ?
8. $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$ का एक समावयव लिखिए जो क्लोरोफॉर्म और एथेनॉलिक NaOH के साथ अभिकृत करने पर दुर्ग्ध्नयुक्त पदार्थ आइसोसायनाइड देता है।
9. निम्नलिखित में से कौन प्रति-अवसादक औषध है ? क्लोरैम्फेनिकॉल, ल्यूमिनल, बाइथायोनॉल
10. जल में स्टार्च के घुलनशील अवयव का नाम लिखिए।

प्रश्न 11 से 15 बहुविकल्पीय प्रश्न हैं :
11. संकुल $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl} \mathrm{l}_{2}$ से विलयन में कितने आयन उत्पन्न होते हैं ?
(a) 4
(b) 2
(c) 3
(d) 5
12. लेड संचायक बैटरी में
(a) कैथोड पर $\mathrm{PbO}_{2}, \mathrm{PbSO}_{4}$ में अपचयित होता है।
(b) ऐनोड पर Pb का PbSO_{4} में ऑक्सीकरण होता है।
(c) दोनों इलेक्ट्रोड $\mathrm{H}_{2} \mathrm{SO}_{4}$ के एक ही जलीय विलयन में डूबे हुए हैं।
(d) उपरोक्त सभी सही हैं।
13. $\ln [R]$ एवं समय के मध्य आलेख में ढाल देता है।
(a) +k
(b) $\frac{+\mathrm{k}}{2.303}$
(c) -k
(d) $\frac{-\mathrm{k}}{2.303}$
(जहाँ $[R]$ अभिकर्मक की अन्तिम सांद्रता है ।)
14. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}$ एवं $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl}_{2}$ का युगल दर्शाएगा
(a) बंधनी समावयवता
(b) हाइड्रेट समावयवता
(c) आयनन समावयवता
(d) उपसहसंयोजन समावयवता
15. α-हेलिक्स संरचनात्मक लक्षण है
(a) सूक्रोस का
(b) पॉलिपेप्टाइडों का
(c) न्यूक्लिओटाइडों का
(d) स्टार्च का

Questions 6 to 10 are one word answers :
6. Name the method applied for the concentration of Bauxite ore in the extraction of Aluminium.
7. Out of $\square-\mathrm{Cl}$ and $\square-\mathrm{CH}_{2}-\mathrm{Cl}$, which one is more reactive towards $\mathrm{S}_{\mathrm{N}} 1$ reaction?
8. Write an isomer of $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$ which gives foul smell of isocyanide when treated with chloroform and ethanolic NaOH .
9. Which one of the following is an antidepressant drug ?

Chloramphenicol, Luminal, Bithional
10. Write the name of component of starch which is water soluble.

Questions 11 to 15 are Multiple Choice Questions :
11. How many ions are produced from the complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ in solution?
(a) 4
(b) 2
(c) 3
(d) 5
12. In a lead storage battery
(a) PbO_{2} is reduced to PbSO_{4} at the cathode.
(b) Pb is oxidised to PbSO_{4} at the anode.
(c) Both electrodes are immersed in the same aqueous solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(d) All the above are true.
13. The slope in the plot of $\ln [R]$ Vs. time gives
(a) +k
(b) $\frac{+\mathrm{k}}{2.303}$
(c) -k
(d) $\frac{-\mathrm{k}}{2.303}$
(where $[R]$ is the final concentration of reactant.)
14. The pair $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl}_{2}$ will show
(a) Linkage isomerism
(b) Hydrate isomerism
(c) Ionization isomerism
(d) Coordinate isomerism
15. An α-helix is a structural feature of
(a) Sucrose
(b) Polypeptides
(c) Nucleotides
(d) Starch

प्रश्न 16 से 20 :
(A) अभिकथन (A) और कारण (R) दोनों सही कथन हैं और कारण (R), अभिकथन (A) की सही व्याख्या है।
(B) अभिकथन (A) और कारण (R) दोनों सही कथन हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं है।
(C) अभिकथन (A) सही है, परन्तु कारण (R) गलत कथन है।
(D) अभिकथन (A) गलत है, परन्तु कारण (R) सही कथन है।
16. अभिकथन (A) : F_{2} एक प्रबल ऑक्सीकारक है।

कारण (R) : फ्लुओरीन की इलेक्ट्रॉन लब्धि एन्थैल्पी कम ऋणात्मक है।
17. अभिकथन (A) : $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$ की HI के साथ अभिक्रिया होने पर $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{I}$ और $\mathrm{CH}_{3} \mathrm{OH}$ प्राप्त होते हैं।
कारण (R) : अभिक्रिया $\mathrm{S}_{\mathrm{N}} 1$ क्रियाविधि द्वारा होती है।
18. अभिकथन (A) : संक्रमण धातुओं के गलनांक निम्न होते हैं।

कारण (R) : अंतरापरमाण्विक धात्विक बंधन में $(\mathrm{n}-1) \mathrm{d}$ और ns के अधिक इलेक्ट्रॉनों की भागीदारी होती है।
19. अभिकथन (A) : एस्टर का जलअपघटन प्रथम कोटि बलगतिकी का पालन करता है।

कारण (R) : अभिक्रिया के दौरान जल की सान्द्रता लगभग स्थिर रहती है।
20. अभिकथन (A) : बेन्ज़ोइक अम्ल फ्रीडेल-क्राफ्ट्स अभिक्रिया प्रदर्शित नहीं करता है।

कारण (R) : कार्बोक्सिल समूह एक सक्रियक समूह है और इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाएँ देता है।
$20 \times 1=20$
खण्ड - ख
21. क्या होता है जब :
(i) यदि अर्धपारगम्य झिल्ली द्वारा विलायक से पृथक किए गए विलयन पर परासरण दाब से अधिक दाब लगाया जाए ?
(ii) शुद्ध एथेनॉल में ऐसीटोन मिलाया जाता है ? $1+1=2$
22. निम्नलिखित परिष्करण विधियों के सिद्धान्त लिखिए :
(a) वाष्प प्रावस्था परिष्करण
(b) वर्णलेखिकी (कोमैटोग्रैफी) $1+1=2$

अथवा
(i) $\mathrm{Cu}_{2} \mathrm{~S}$ से $\mathrm{Cu} \quad$ (ii) संकुल $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$से Ag

को प्राप्त करने से सम्बद्ध रासायनिक समीकरणों को लिखिए।

$$
1+1=2
$$

Questions 16 to 20 :
(A) Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A).
(B) Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A).
(C) Assertion (A) is correct, but Reason (R) is wrong statement.
(D) Assertion (A) is wrong, but Reason (R) is correct statement.
16. Assertion (A) : F_{2} is a strong oxidising agent.

Reason (R) : Electron gain enthalpy of fluorine is less negative.
17. Assertion (A) : $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$ gives $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{I}$ and $\mathrm{CH}_{3} \mathrm{OH}$ on treatment with HI .
Reason (R) : The reaction occurs by $\mathrm{S}_{\mathrm{N}} 1$ mechanism.
18. Assertion (A) : Transition metals have low melting points.

Reason (R) : The involvement of greater number of ($n-1$)d and ns electrons in the interatomic metallic bonding.
19. Assertion (A) : Hydrolysis of an ester follows first order kinetics.

Reason (R) : Concentration of water remains nearly constant during the course of the reaction.
20. Assertion (A) : Benzoic acid does not undergo Friedal-Crafts reaction.

Reason (R) : The carboxyl group is activating and undergo electrophilic substitution reaction.

SECTION - B

21. What happens when
(i) a pressure greater than osmotic pressure is applied on the solution side separated from solvent by a semipermeable membrane?
(ii) acetone is added to pure ethanol? $\mathbf{1 + 1 = 2}$
22. Write the principle of the following refining methods :
(a) vapour phase refining
(b) chromatography
$1+1=2$
OR
Write chemical equations involved to obtain :
(i) Cu from $\mathrm{Cu}_{2} \mathrm{~S}$
(ii) Ag from $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$complex $\quad 1+1=2$
23. पायरोलुसाइट अयस्क $\left(\mathrm{MnO}_{2}\right)$ से KMnO_{4} के विरचन से सम्बद्ध सन्तुलित रासायनिक समीकरणों को लिखिए।

अथवा

(i) आयरन (II) आयन तथा (ii) टिन (II) आयन पर अम्लीकृत डाइक्रोमेट $\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)$ विलयन की ऑक्सीकारक क्रिया दर्शाने के लिए सन्तुलित आयनिक समीकरण लिखिए । $1+1=2$
24. निम्नलिखित संकुलों के आईयूपीएसी नाम एवं संकरण लिखिए :
(i) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(ii) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(दिया है : परमाणु क्रमांक $\mathrm{Ni}=28, \mathrm{Fe}=26$) $1+1=2$
25. प्रत्येक के लिए उपयुक्त उदाहरण सहित निम्नलिखित पदों को परिभाषित कीजिए :
(i) प्रतिजैविक (एन्टिबॉयोटिक)
(ii) पूतिरोधी
$1+1=2$
26. ग्लूकोस की विवृत संरचना में निम्नलिखित की उपस्थिति दर्शाने के लिए अभिक्रियाएँ लिखिए :
(i) कार्बोनिल समूह
(ii) छः कार्बन परमाणुओं सहित ऋजु शृंखला
$1+1=2$
27. हेनरी नियम लिखिए। 298 K एवं 760 mm Hg दाब पर CO_{2} की जल में विलेयता परिकलित कीजिए। (298 K पर जल में CO_{2} के लिए $\mathrm{K}_{\mathrm{H}}=1.25 \times 10^{6} \mathrm{~mm} \mathrm{Hg}$ है)

खण्ड - ग

28. 5 g बेन्जोइक अम्ल $\left(\mathrm{M}=122 \mathrm{~g} \mathrm{~mol}^{-1}\right) 35 \mathrm{~g}$ बेन्जीन में घोलने पर हिमांक में 2.94 K का अवनमन होता है। यदि यह विलयन में द्वितय बनाता है तो बेन्जोइक अम्ल का संगुणन कितने प्रतिशत होगा ? (बेन्जीन के लिए $\mathrm{K}_{\mathrm{f}}=4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)
29. $\mathrm{N}_{2} \mathrm{O}_{5}$ के प्रथम कोटि अपघटन के लिए वेग स्थिरांक निम्नलिखित समीकरण द्वारा दिया गया है :

$$
\mathrm{k}=\left(2.5 \times 10^{14} \mathrm{~s}^{-1}\right) \mathrm{e}^{(-25000 \mathrm{~K}) / \mathrm{T}}
$$

इस अभिक्रिया के लिए Ea और वेग स्थिरांक की गणना कीजिए यदि इसकी अर्धायु 300 मिनट हो।
30. निम्नलिखित बहुलकों के एकलकों के नाम और संरचनाएँ लिखिए :
(i) नाइलॉन-6
(ii) पी वी सी (PVC)
(iii) निओप्रीन
$1+1+1=3$
23. Write the balanced chemical equations involved in the preparation of KMnO_{4} from pyrolusite ore $\left(\mathrm{MnO}_{2}\right)$.

OR

Write the balanced ionic equations showing the oxidising action of acidified dichromate ($\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$) solution with (i) Iron (II) Ion and (ii) tin (II) ion.
$1+1=2$
24. Write the IUPAC names and hybridisation of the following complexes :
(i) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(ii) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(Given : Atomic number $\mathrm{Ni}=28, \mathrm{Fe}=26$)
$1+1=2$
25. Define the following terms with a suitable example in each :
(i) Antibiotics
(ii) Antiseptics
$1+1=2$
26. Write the reactions showing the presence of following in the open structure of glucose :
(i) a carbonyl group
(ii) Straight chain with six carbon atoms
27. State Henry's law. Calculate the solubility of CO_{2} in water at 298 K under 760 mm Hg .
(K_{H} for CO_{2} in water at 298 K is $1.25 \times 10^{6} \mathrm{~mm} \mathrm{Hg}$)
SECTION - C
28. The freezing point of a solution containing 5 g of benzoic acid ($\mathrm{M}=122 \mathrm{~g}$ mol^{-1}) in 35 g of benzene is depressed by 2.94 K . What is the percentage association of benzoic acid if it forms a dimer in solution?
$\left(\mathrm{K}_{\mathrm{f}}\right.$ for benzene $\left.=4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
29. The rate constant for the first order decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is given by the following equation :

$$
\mathrm{k}=\left(2.5 \times 10^{14} \mathrm{~s}^{-1}\right) \mathrm{e}^{(-25000 \mathrm{~K}) / \mathrm{T}}
$$

Calculate Ea for this reaction and rate constant if its half-life period be 300 minutes.
30. Write the name and structures of monomer(s) in the following polymers :
(i) Nylon-6
(ii) PVC
(iii) Neoprene $1+1+1=3$
31. नीचे कुछ आयन दिए गए हैं :

$$
\mathrm{Cr}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Cu}^{+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Mn}^{3+}
$$

इनमें से उस आयन को पहचानिए जो
(i) एक प्रबल अपचायक है
(ii) जलीय विलयन में अस्थायी है
(iii) एक प्रबल ऑक्सीकारक है।

प्रत्येक के लिए उपयुक्त कारण दीजिए।
32. (i) एथेनॉल में सोडियम एथॉक्साइड के साथ $2,2,3$-ट्राइमेथिल- 3 -ब्रोमोपेन्टेन की β-विलोपन द्वारा

निर्मित मुख्य ऐल्कीन की संरचना लिखिए।
(ii) निम्नलिखित युगलों में कौन-सा एक यौगिक काइरल है ?

(iii) निम्नलिखित में (A) और (B) को पहचानिए :

अथवा
निम्नलिखित परिवर्तन आप कैसे संपन्न करेंगे ?
(i) ब्यूट-1-ईन से 1 -आयोडोब्यूटेन
(ii) बेन्जीन से ऐसीटोफ़ीनोन
(iii) एथेनॉल से प्रोपेन नाइट्राइल
33. दिए गए निर्देश के अनुसार निम्नलिखित यौगिकों को व्यवस्थित कीजिए :
(i) जल में विलेयता के बढ़ते क्रम में :
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(ii) जलीय विलयन में क्षारकीय सामर्थ्य के घटते क्रम में :

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{NH}_{2}
$$

(iii) क्वथनांकों के बढ़ते क्रम में :

$$
\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} \quad \mathbf{1}+\mathbf{1}+\mathbf{1}=\mathbf{3}
$$

34. निम्नलिखित अभिक्रियाओं के उत्पाद/उत्पादों को लिखिए :
(i)

(ii)

(iii)

$$
1+1+1=3
$$

अथवा

31. Following ions are given :

$$
\mathrm{Cr}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Cu}^{+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Mn}^{3+}
$$

Identify the ion which is
(i) a strong reducing agent.
(ii) unstable in aqueous solution.
(iii) a strong oxiding agent.

Give suitable reason in each.
$1+1+1=3$
32. (i) Write the structure of major alkene formed by β-elimination of 2,2 , 3-trimethyl-3-bromopentane with sodium ethoxide in ethanol.
(ii) Which one of the compounds in the following pairs is chiral?

(iii) Identify (A) and (B) in the following :
(A)

 $1+1+1=3$

OR

How can you convert the following?
(i) But-1-ene to 1-iodobutane
(ii) Benzene to acetophenone
(iii) Ethanol to propanenitrile
33. Arrange the following compounds as directed :
(i) In increasing order of solubility in water :

$$
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}
$$

(ii) In decreasing order of basic strength in aqueous solution:

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{NH}_{2}
$$

(iii) In increasing order of boiling point:

$$
\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}
$$

$$
1+1+1=3
$$

34. Write the product(s) of the following reactions :
(i)

(iii)

(ii)

OR

(a) निम्नलिखित $\mathrm{S}_{\mathrm{N}}{ }^{1}$ अभिक्रिया की क्रियाविधि लिखिए :
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br} \xrightarrow{\text { जलीय } \mathrm{NaOH}}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}+\mathrm{NaBr}$
(b) विलियमसन संश्लेषण द्वारा 2 -मेथिल- 2 -मेथॉक्सीप्रोपेन के विरचन के लिए समीकरण लिखिए। $2+1=3$

खण्ड-घ

35. (a) 0.05 M KOH विलयन के कॉलम का विद्युत प्रतिरोध $5 \times 10^{3} \mathrm{ohm}$ है। इसका अनुप्रस्थकाट क्षेत्रफल $0.625 \mathrm{~cm}^{2}$ और लम्बाई 50 cm है। इसकी प्रतिरोधकता, चालकता तथा मोलर चालकता का परिकलन कीजिए।
(b) प्लैटिनम इलेक्ट्रोडों के साथ CuCl_{2} के जलीय विलयन के वैद्युतअपघटन से प्राप्त उत्पादों की प्रागुक्ति कीजिए।
(दिया है : $\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathrm{o}}=+0.34 \mathrm{~V}, \mathrm{E}_{\left(1 / 2 \mathrm{Cl}_{2} / \mathrm{Cl}^{-}\right.}^{\mathrm{o}}$) $=+1.36 \mathrm{~V}$

$$
\left.\mathrm{E}_{\mathrm{H}^{+} / \mathrm{H}_{2}(\mathrm{~g}), \mathrm{Pt}}^{\mathrm{o}}=0.00 \mathrm{~V}, \mathrm{E}_{\left(1 / 2 \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}\right)}^{\mathrm{o}}=+1.23 \mathrm{~V}\right) \quad \mathbf{3 + 2}=\mathbf{5}
$$

अथवा
(a) निम्नलिखित सेल के लिए e.m.f. परिकलित कीजिए :

$$
\mathrm{Zn}(\mathrm{~s}) / \mathrm{Zn}^{2+}(0.1 \mathrm{M}) \|(0.01 \mathrm{M}) \mathrm{Ag}^{+} / \mathrm{Ag}(\mathrm{~s})
$$

दिया है : $\mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{\mathrm{o}}=-0.76 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\mathrm{o}}=+0.80 \mathrm{~V}$
[दिया है $: \log 10=1$]
(b) ' X ' और ' Y ' दो वैद्युतअपघट्य हैं । तनुकरण पर ' X ' की मोलर चालकता 2.5 गुना बढ़ जाती है जबकि ' Y ' की 25 गुना बढ़ जाती है । इन दोनों में से कौन दुर्बल वैद्युतअपघट्य है और क्यों $? 3+2=5$
36. (a) एक कार्बनिक यौगिक (A) जिसका आण्विक सूत्र $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ है, 2,4 -डी.एन.पी. अभिकर्मक के साथ नारंगी-लाल अवक्षेप देता है । यह टॉलेन - अभिकर्मक को अपचित नहीं करता लेकिन NaOH और I_{2} के साथ गर्म करने पर आयोडोफॉर्म का पीला अवक्षेप बनाता है। यौगिक (A) NaBH_{4} के साथ अपचित होने पर यौगिक (B) देता है जो सान्द्र $\mathrm{H}_{2} \mathrm{SO}_{4}$ के साथ गर्म करने पर निर्जलन अभिक्रिया द्वारा यौगिक (C) बनाता है। यौगिक (C) ओज़ोनी अपघटन पर ऐथेनैल के दो अणु देता है।
(A), (B) और (C) की पहचान कीजिए तथा उनकी संरचनाएँ लिखिए । यौगिक (A) की (i) $\mathrm{NaOH} / \mathrm{I}_{2}$ और (ii) NaBH_{4} के साथ अभिक्रियाएँ लिखिए।
(b) कारण दीजिए :
(i) प्रोपेनोन की अपेक्षा प्रोपेनैल का ऑक्सीकरण आसान होता है।
(ii) ऐल्डिहाइडों और कीटोनों के α-हाइड्रोजन की प्रकृति अम्लीय होती है। $3+2=5$

अथवा

(a) Write the mechanism of the following $\mathrm{S}_{\mathrm{N}} 1$ reaction :
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br} \xrightarrow{\text { Aq. } \mathrm{NaOH}}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}+\mathrm{NaBr}$
(b) Write the equation for the preparation of 2-methyl-2methoxypropane by Williamson synthesis.
$2+1=3$

SECTION - D

35. (a) The electrical resistance of a column of 0.05 M KOH solution of length 50 cm and area of cross-section $0.625 \mathrm{~cm}^{2}$ is $5 \times 10^{3} \mathrm{ohm}$. Calculate its resistivity, conductivity and molar conductivity.
(b) Predict the products of electrolysis of an aqueous solution of CuCl_{2} with platinum electrodes.

$$
\begin{gathered}
\text { (Given : } \left.\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathrm{o}}=+0.34 \mathrm{~V}, \mathrm{E}_{\left(1 / 2 \mathrm{Cl}_{2} / \mathrm{Cl} l^{-}\right.}^{\mathrm{o}}\right)=+1.36 \mathrm{~V} \\
\left.\mathrm{E}_{\mathrm{H}^{+} / \mathrm{H}_{2}(\mathrm{~g}), \mathrm{Pt}}^{\mathrm{o}}=0.00 \mathrm{~V}, \mathrm{E}_{\left(1 / 2 \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}\right)}^{\mathrm{o}}=+1.23 \mathrm{~V}\right) \\
\mathbf{O R}
\end{gathered}
$$

(a) Calculate e.m.f. of the following cell :

$$
\mathrm{Zn}(\mathrm{~s}) / \mathrm{Zn}^{2+}(0.1 \mathrm{M}) \|(0.01 \mathrm{M}) \mathrm{Ag}^{+} / \mathrm{Ag}(\mathrm{~s})
$$

Given : $\mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{\mathrm{o}}=-0.76 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\mathrm{o}}=+0.80 \mathrm{~V}$
[Given: $\log 10=1$]
(b) X and Y are two electrolytes. On dilution molar conductivity of ' X ' increases 2.5 times while that Y increases 25 times. Which of the two is a weak electrolyte and why? $\quad \mathbf{3 + 2 = 5}$
36. (a) An organic compound (A) having molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ gives orange red precipitate with $2,4-\mathrm{DNP}$ reagent. It does not reduce Tollens' reagent but gives yellow precipitate of iodoform on heating with NaOH and I_{2}. Compound (A) on reduction with NaBH_{4} gives compound (B) which undergoes dehydration reaction on heating with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to form compound (C). Compound (C) on Ozonolysis gives two molecules of ethanal.
Identify (A), (B) and (C) and write their structures. Write the reactions of compound (A) with (i) $\mathrm{NaOH} / \mathrm{I}_{2}$ and (ii) NaBH_{4}.
(b) Give reasons :
(i) Oxidation of propanal is easier than propanone.
(ii) α-hydrogen of aldehydes and ketones is acidic in nature. $\quad \mathbf{3 + 2}=\mathbf{5}$

OR

(a) निम्नलिखित व्युत्पन्नों की संरचनाएँ बनाइए :
(i) साइक्लोब्यूटैनोन का सायनोहाइड्रिन
(ii) ऐथेनैल का हेमीऐसीटैल
(b) निम्नलिखित में मुख्य उत्पाद/उत्पादों को लिखिए :
(i)

(ii) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow{\mathrm{CrO}_{3}}$
(c) आप प्रोपेनैल और प्रोपेनोन के मध्य कैसे विभेद करेंगे ?
$2+2+1=5$
37. (a) निम्नलिखित के लिए कारण दीजिए :
(i) ऑक्सीजन से टेल्यूरियम तक -2 ऑक्सीकरण अवस्था दर्शाने की प्रवृत्ति घटती है।
(ii) HF से HI तक अम्लीय लक्षण बढ़ता है।
(iii) नम SO_{2} गैस अपचायक की तरह व्यवहार करती है।
(b) $\mathrm{S}-\mathrm{O}-\mathrm{S}$ बंध वाले सल्फर के ऑक्सोअम्ल की संरचना बनाइए।
(c) निम्नलिखित समीकरण को पूर्ण कीजिए :

$$
\begin{array}{ll}
\mathrm{XeF}_{2}+ & \mathrm{H}_{2} \mathrm{O} \rightarrow \\
\text { अथवा }
\end{array}
$$

(a) वर्ग 16 के हाइड्राइडों में से उस हाइड्राइड को लिखिए :
(i) जो प्रबल अपचायक है।
(ii) जिसमें आबन्ध कोण अधिकतम है।
(iii) जो सबसे अधिक ताप स्थायी है।

प्रत्येक के लिए उपयुक्त कारण दीजिए।
(b) निम्नलिखित समीकरण पूर्ण कीजिए :

$$
\begin{gathered}
\mathrm{S}+\underset{2}{\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow} \\
\text { (सान्द्र) } \\
\mathrm{Cl} l_{2}+\mathrm{NaOH} \longrightarrow
\end{gathered}
$$

(ठण्डा एवं तनु)
(a) Draw structures of the following derivatives:
(i) Cyanohydrin of cyclobutanone
(ii) Hemiacetal of ethanal
(b) Write the major product(s) in the following :
(i)

(ii) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow{\mathrm{CrO}_{3}}$
(c) How can you distinguish between propanal and propanone? $2+2+1=5$
37. (a) Account for the following :
(i) Tendency to show -2 oxidation state decreases from oxygen to tellurium.
(ii) Acidic character increases from HF to HI .
(iii) Moist SO_{2} gas acts as a reducing agent.
(b) Draw the structure of an oxoacid of sulphur containing $\mathrm{S}-\mathrm{O}-\mathrm{S}$ linkage.
(c) Complete the following equation :

$$
\begin{aligned}
& \mathrm{XeF}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \\
& \text { OR }
\end{aligned}
$$

(a) Among the hydrides of group 16, write the hydride
(i) Which is a strong reducing agent.
(ii) Which has maximum bond angle.
(iii) Which is most thermally stable.

Give suitable reason in each.
(b) Complete the following equations :
$\mathrm{S}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow$
(Conc.)
$\mathrm{Cl}_{2}+\mathrm{NaOH} \longrightarrow$
(Cold and dilute)

回踶

कोड नं.
 Code No.
 56/4/2

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।
Candidates must write the Code on the title page of the answer-book.

别䠰 रसायन विज्ञान (सैद्धान्तिक)
 CHEMISTRY (Theory)

निर्धारित समय: 3 घण्टे
Time allowed : 3 hours

अधिकतम अंक : 70
Maximum Marks : 70

सामान्य निर्देश :
निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका पालन कीजिए :
(i) प्रश्न-पत्र चार खण्डों में विभाजित है - क, ख, ग और घ । सभी प्रश्न अनिवार्य हैं।
(ii) खण्ड-क - प्रश्न-संख्या 1 से 20 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न 1 अंक का है । प्रत्येक प्रश्न का उत्तर एक शब्द या एक वाक्य में दीजिए।
(iii) खण्ड-ख - प्रश्न-संख्या 21 से 27 तक लघु-उत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न 2 अंकों का है।
(iv) खण्ड-ग-प्रश्न-संख्या 28 से 34 तक दीर्घ-उत्तरीय प्रकार- 1 के प्रश्न हैं, प्रत्येक प्रश्न 3 अंकों का है।
(v) खण्ड-घ-प्रश्न-संख्या 35 से 37 तक दीर्घ-उत्तरीय प्रकार- 2 के प्रश्न हैं, प्रत्येक प्रश्न 5 अंकों का है।
(vi) कोई समग्य विकल्प नहीं है। तथापि, दो-दो अंकों के दो प्रश्नों में, तीन-तीन अंकों के दो प्रश्नों में तथा पाँच-पाँच अंकों के तीनों प्रश्नों में आंतरिक विकल्प दिया गया है । ऐसे प्रश्नों में केवल एक ही विकल्प का उत्तर दीजिए।
(vii) इसके अतिरिक्त, आवश्यतानुसार, प्रत्येक खण्ड और प्रश्न के साथ यथोचित निर्देश दिए गए हैं।
(viii) केलकुलेटर अथवा लॉग टेबल के प्रयोग की अनुमति नहीं है।

> खण्ड - क

दिए गए अनुच्छेद को पढ़िए और नीचे दिए प्रश्न 1 से 5 के उत्तर दीजिए :
कोलॉइडी कणों पर हमेशा विद्युत आवेश होता है जो धनात्मक या ऋणात्मक हो सकता है । उदाहरण के तौर पर जब AgNO_{3} विलयन को KI विलयन में मिलाया जाता है तो ऋण-आवेशित कोलॉइडी सॉल बनता है। कोलॉइडी कणों पर बराबर एवं एक जैसे आवेशों की उपस्थिति कोलॉइडी सॉल को स्थायित्व प्रदान करती है और यदि, किसी तरह, आवेश हटा दिया जाए, तो सॉल का स्कंदन हो जाता है । द्रवविरागी सॉल, द्रवरागी सॉल की तुलना में सहज ही स्कंदित हो जाते हैं।

1. सॉल कणों पर आवेश का क्या कारण है ?
2. कोलॉइडी कणों पर बराबर एवं एक जैसे आवेशों की उपस्थिति स्थायित्व क्यों प्रदान करती है ?
3. AgNO_{3} विलयन को KI विलयन में मिलाने पर ऋण-आवेशित सॉल क्यों प्राप्त होता है ?
4. द्रवविरागी सॉल का स्कंदन करने के लिए एक विधि का नाम लिखिए।
5. KI या $\mathrm{K}_{2} \mathrm{SO}_{4}$ में से कौन-सा विद्युत-अपघट्य धनात्मक सॉल के स्कंदन के लिए अधिक अच्छा है ?

General Instructions :

Read the following instructions very carefully and strictly follow them:
(i) Question paper comprises four sections $-A, B, C$ and D.
(ii) There are 37 questions in the question paper. All questions are compulsory.
(iii) Section - $: ~ Q$. No. 1 to 20 are very short answer type questions carrying one mark each. Answer these questions in one word or one sentence.
(iv) Section - B: Q. No. 21 to 27 are short answer type questions carrying two marks each.
(v) Section - C: Q. No. 28 to 34 are long answer type-I questions carrying three marks each.
(vi) Section - D: Q. No. 35 to 37 are long answer type-II questions carrying five marks each.
(vii) There is NO overall choice in the question paper. However, an internal choice has been provided in 2 questions of two marks, 2 questions of three marks and all the 3 questions of five marks. You have to attempt only one of the choices in such questions.
(viii) However, separate instructions are given with each section and question, wherever necessary.
(ix) Use of calculators and log tables is NOT permitted.

SECTION - A

Read the given passage and answer the questions 1 to 5 that follow :
Colloidal particles always carry an electric charge which may be either positive or negative. For example, when AgNO_{3} solution is added to KI solution, a negatively charged colloidal sol is obtained. The presence of equal and similar charges on colloidal particles provide stability to the colloidal sol and if, somehow, charge is removed, coagulation of sol occurs. Lyophobic sols are readily coagulated as compare to lyophilic sols.

1. What is the reason for the charge on sol particles?
2. Why the presence of equal and similar charges on colloidal particles provide stability?
3. Why a negatively charged sol is obtained on adding AgNO_{3} solution to KI solution?
4. Name one method by which coagulation of lyophobic sol can be carried out.
5. Out of KI or $\mathrm{K}_{2} \mathrm{SO}_{4}$, which electrolyte is better in the coagulation of positive sol?

प्रश्न 6 से 10 एक शब्द उत्तरीय हैं :
6. झाग प्लवन प्रक्रिया में किसी अयस्क में से PbS से ZnS को पृथक करने के लिए प्रयुक्त अवनमक का नाम लिखिए।
7. $\mathrm{CH}_{2} \mathrm{Cl}$ और $\mathrm{CH}_{2}-\mathrm{Cl}$, में से कौन OH^{-}के साथ $\mathrm{S}_{\mathrm{N}} 1$ अभिक्रिया में अधिक तेजी से अभिक्रिया करेगा ?
8. $\mathrm{CH}_{3} \mathrm{NH}_{2}$ और $\mathrm{CH}_{3} \mathrm{OH}$ में से किसका क्वथनांक उच्चतर होता है ?
9. निम्नलिखित में से कौन स्वापक (नारकोटिक) पीड़ाहारी है ?
पेनिसिलिन, कोडीन, रैनिटिडीन
10. दोमोनो सैकैराइडों को जोड़ने वाले बंध का नाम लिखिए।

प्रश्न 11 से 15 बहुविकल्पीय प्रश्न हैं :
11. संकुल $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ में ‘ Co ' की उपसहसंयोजन संख्या है
(a) 3
(b) 6
(c) 4
(d) 5
12. एक वैद्युतरसायन सेल, वैद्युत-अपघटनी सेल की तरह व्यवहार करने लगता है जब
(a) $\mathrm{E}_{\text {सेल }}=\mathrm{E}_{\text {बाह्य }}$
(b) $\mathrm{E}_{\text {सेल }}=0$
(c) $\mathrm{E}_{\text {बाह्य }}>\mathrm{E}_{\text {सेल }}$
(d) $\mathrm{E}_{\text {बाह्य }}<\mathrm{E}_{\text {सेल }}$
13. शून्य कोटि अभिक्रिया के लिए अर्धायु काल किसके बराबर होता है ?
(a) $\frac{0.693}{\mathrm{k}}$
(b) $\frac{2 \mathrm{k}}{[\mathrm{R}]_{0}}$
(c) $\frac{2.303}{\mathrm{k}}$
(d) $\frac{[\mathrm{R}]_{0}}{2 \mathrm{k}}$
(जहाँ $[\mathrm{R}]_{0}$ अभिकर्मक की प्रारम्भिक सान्द्रता एवं k वेग स्थिरांक है।)
14. अष्टफलकीय $\left(\Delta_{0}\right)$ और चतुष्फलकीय $\left(\Delta_{\mathrm{t}}\right)$ संकुलों के लिए क्रिस्टल क्षेत्र विपाटन ऊर्जा परस्पर किस प्रकार संबंधित है ?
(a) $\Delta_{t}=\frac{2}{9} \Delta_{0}$
(b) $\Delta_{t}=\frac{5}{9} \Delta_{0}$
(c) $\quad \Delta t=\frac{4}{9} \Delta_{0}$
(d) $\Delta_{t}=2 \Delta_{0}$
15. $\alpha-\mathrm{D}(+)$ ग्लूकोस और $\beta-\mathrm{D}(+)$ ग्लूकोस हैं
(a) ज्यामितीय समावयव
(b) प्रतिबिम्बरूप
(c) ऐनोमर
(d) ध्रुवण समावयव

Questions 6 to 10 are one word answers :
6. Name the depressant which is used to separate PbS and ZnS containing ore in froth floatation process.
7. Out of $\longrightarrow-\mathrm{CH}_{2} \mathrm{Cl}$ and reaction with OH^{-}?
8. Out of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$, which has higher boiling point?
9. Which one of the following is a narcotic analgesic ?

Penicillin, Codeine, Ranitidine
10. Write the name of linkage joining two monosaccharides.

Questions 11 to 15 are Multiple Choice Questions:
11. The coordination number of ' Co ' in the complex $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ is
(a) 3
(b) 6
(c) 4
(d) 5
12. An electrochemical cell behaves like an electrolytic cell when
(a) $\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {external }}$
(b) $\mathrm{E}_{\text {cell }}=0$
(c) $\mathrm{E}_{\text {external }}>\mathrm{E}_{\text {cell }}$
(d) $\mathrm{E}_{\text {external }}<\mathrm{E}_{\text {cell }}$
13. The half-life period for a zero order reaction is equal to
(a) $\frac{0.693}{\mathrm{k}}$
(b) $\frac{2 \mathrm{k}}{[\mathrm{R}]_{0}}$
(c) $\frac{2.303}{\mathrm{k}}$
(d) $\frac{[\mathrm{R}]_{0}}{2 \mathrm{k}}$
(where $[\mathrm{R}]_{0}$ is initial concentration of reactant and k is rate constant.)
14. The crystal field splitting energy for octahedral $\left(\Delta_{0}\right)$ and tetrahedral $\left(\Delta_{\mathrm{t}}\right)$ complexes is related as
(a) $\Delta_{t}=\frac{2}{9} \Delta_{0}$
(b) $\Delta_{t}=\frac{5}{9} \Delta_{0}$
(c) $\quad \Delta t=\frac{4}{9} \Delta_{0}$
(d) $\Delta_{t}=2 \Delta_{0}$
15. $\alpha-\mathrm{D}(+)$ glucose and $\beta-\mathrm{D}(+)$ glucose are
(a) Geometrical isomers
(b) Enantiomers
(c) Anomers
(d) Optical isomers

प्रश्न 16 से 20 :
(A) अभिकथन (A) और कारण (R) दोनों सही कथन हैं और कारण (R), अभिकथन (A) की सही व्याख्या है।
(B) अभिकथन (A) और कारण (R) दोनों सही कथन हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं है।
(C) अभिकथन (A) सही है, परन्तु कारण (R) गलत कथन है।
(D) अभिकथन (A) गलत है, परन्तु कारण (R) सही कथन है।
16. अभिकथन (A): Cl_{2} की अपेक्षा F_{2} की आबन्ध वियोजन एन्थैल्पी कम होती है।

कारण (R) : क्लोरीन की अपेक्षा फ्लुओरीन अधिक विद्युत-ऋणात्मक होती है।
17. अभिकथन (A) : एस्टर का जलअपघटन प्रथम कोटि बलगतिकी का पालन करता है।

कारण (R) : अभिक्रिया के दौरान जल की सान्द्रता लगभग स्थिर रहती है।
18. अभिकथन (A) : संक्रमण धातुओं के गलनांक उच्च होते हैं।

कारण (R) : संक्रमण धातुओं में d कक्षक पूर्ण भरित होता है।
19. अभिकथन (A) : $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$ की HI के साथ अभिक्रिया होने पर $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{I}$ और $\mathrm{CH}_{3} \mathrm{OH}$ प्राप्त होते हैं।
कारण (R) : अभिक्रिया $\mathrm{S}_{\mathrm{N}} 1$ क्रियाविधि द्वारा होती है।
20. अभिकथन (A) : बेन्जोइक अम्ल फ्रीडेल-क्राफ्ट्स अभिक्रिया प्रदर्शित नहीं करता है।

कारण (R) : कार्बोक्सिल समूह एक सक्रियक समूह है और इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाएँ देता है।
$20 \times 1=20$
खण्ड : ख
21. पायरोलुसाइट अयस्क $\left(\mathrm{MnO}_{2}\right)$ से KMnO_{4} के विरचन से सम्बद्ध सन्तुलित रासायनिक समीकरणों को लिखिए।

अथवा
(i) आयरन (II) आयन तथा (ii) टिन (II) आयन पर अम्लीकृत डाइकोमेट $\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)$ विलयन की ऑक्सीकारक क्रिया दर्शाने के लिए सन्तुलित आयनिक समीकरण लिखिए। $1+1=2$
22. क्या होता है जब :
(i) यदि अर्धपारगम्य झिल्ली द्वारा विलायक से पृथक किए गए विलयन पर परासरण दाब से अधिक दाब लगाया जाए ?
(ii) शुद्ध एथेनॉल में ऐसीटोन मिलाया जाता है ?

Questions 16 to 20 :
(A) Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A).
(B) Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A).
(C) Assertion (A) is correct, but Reason (R) is wrong statement.
(D) Assertion (A) is wrong, but Reason (R) is correct statement.
16. Assertion (A): F_{2} has lower bond dissociation enthalpy than C_{2}.

Reason (R) : Fluorine is more electronegative than chlorine.
17. Assertion (A) : Hydrolysis of an ester follows first order kinetics.

Reason (R) : Concentration of water remains nearly constant during the course of the reaction.
18. Assertion (A) : Transition metals have high melting point.

Reason (R) : Transition metals have completely filled d-orbitals.
19. Assertion (A) : $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$ gives $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{I}$ and $\mathrm{CH}_{3} \mathrm{OH}$ on treatment with HI.
Reason (R) : The reaction occurs by $\mathrm{S}_{\mathrm{N}} 1$ mechanism.
20. Assertion (A) : Benzoic acid does not undergo Friedal-Crafts reaction.

Reason (R) : The carboxyl group is activating and undergo electrophilic substitution reaction. $\mathbf{2 0} \times \mathbf{1}=\mathbf{2 0}$

SECTION-B

21. Write the balanced chemical equations involved in the preparation of KMnO_{4} from pyrolusite ore $\left(\mathrm{MnO}_{2}\right)$.

OR

Write the balanced ionic equations showing the oxidising action of acidified dichromate $\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)$ solution with (i) Iron (II) Ion and (ii) tin (II) ion. $\mathbf{1 + 1}=\mathbf{2}$
22. What happens when
(i) a pressure greater than osmotic pressure is applied on the solution side separated from solvent by a semipermeable membrane?
(ii) acetone is added to pure ethanol?
23. निम्नलिखित संकुलों का आई यू पी ए सी नाम एवं संकरण लिखिए :
(i) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(ii) $\left[\mathrm{CoF}_{6}\right]^{3-}$
(परमाणु क्रमांक $\mathrm{Ni}=28, \mathrm{Co}=27$)

$$
1+1=2
$$

24. हेनरी नियम लिखिए । 298 K एवं 760 mm Hg दाब पर CO_{2} की जल में विलेयता परिकलित कीजिए। (298 K पर जल में CO_{2} के लिए $\mathrm{K}_{\mathrm{H}}=1.25 \times 10^{6} \mathrm{~mm} \mathrm{Hg}$ है)
25. प्रत्येक के लिए उपयुक्त उदाहरण के साथ निम्नलिखित पदों को परिभाषित कीजिए :
(i) प्रशांतक
(ii) ऋणायनी अपमार्जक
$1+1=2$
26. ग्लूकोस की विवृत संरचना में निम्नलिखित की उपस्थिति दर्शाने के लिए अभिक्रियाएँ लिखिए :
(i) ऐल्डिहाइड समूह
(ii) प्राथमिक ऐल्कोहॉल
$1+1=2$
27. निम्नलिखित परिष्करण विधियों के सिद्धान्त लिखिए :
(a) वाष्प प्रावस्था परिष्करण
(b) वर्णलेखिकी (क्रोमैटोग्रैफी)
$1+1=2$
अथवा
(i) $\mathrm{Cu}_{2} \mathrm{~S}$ से Cu
(ii) संकुल $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$से Ag
को प्राप्त करने से सम्बद्ध रासायनिक समीकरणों को लिखिए। $1+1=2$

खण्ड : ग

28. $\mathrm{N}_{2} \mathrm{O}_{5}$ के प्रथम कोटि अपघटन के लिए वेग स्थिरांक निम्नलिखित समीकरण द्वारा दिया गया है :

$$
\mathrm{k}=\left(2.5 \times 10^{14} \mathrm{~s}^{-1}\right) \mathrm{e}^{(-25000 \mathrm{~K}) / \mathrm{T}}
$$

इस अभिक्रिया के लिए Ea और वेग स्थिरांक की गणना कीजिए यदि इसकी अर्धायु 300 मिनट हो।
29. नीचे कुछ आयन दिए गए हैं :

$$
\mathrm{Cr}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Cu}^{+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Mn}^{3+}
$$

इनमें से उस आयन को पहचानिए जो
(i) एक प्रबल अपचायक है
(ii) जलीय विलयन में अस्थायी है
(iii) एक प्रबल ऑक्सीकारक है।

प्रत्येक के लिए उपयुक्त कारण दीजिए।
30. 5 g बेन्जोइक अम्ल $\left(\mathrm{M}=122 \mathrm{~g} \mathrm{~mol}^{-1}\right) 35 \mathrm{~g}$ बेन्जीन में घोलने पर हिमांक में 2.94 K का अवनमन होता है। यदि यह विलयन में द्वितय बनाता है तो बेन्जोइक अम्ल का संगुणन कितने प्रतिशत होगा ? (बेन्जीन के लिए $\mathrm{K}_{\mathrm{f}}=4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)
23. Write IUPAC name and hybridization of the following complexes :
(i) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(ii) $\left[\mathrm{CoF}_{6}\right]^{3-}$
(Atomic number $\mathrm{Ni}=28, \mathrm{Co}=27$)
$1+1=2$
24. State Henry's law. Calculate the solubility of CO_{2} in water at 298 K under 760 mm Hg .
(K_{H} for CO_{2} in water at 298 K is $1.25 \times 10^{6} \mathrm{~mm} \mathrm{Hg}$)
25. Define the following terms with a suitable example in each :
(i) Tranquilizers
(ii) Anionic detergent
$1+1=2$
26. Write the reactions showing the presence of following in the open structure of glucose :
(i) an aldehyde group
(ii) a primary alcohol
$1+1=2$
27. Write the principle of the following refining methods :
(a) vapour phase refining
(b) chromatography
$1+1=2$

OR

Write chemical equations involved to obtain :
(i) Cu from $\mathrm{Cu}_{2} \mathrm{~S}$
(ii) Ag from $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$complex

SECTION : C
28. The rate constant for the first order decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is given by the following equation :

$$
\mathrm{k}=\left(2.5 \times 10^{14} \mathrm{~s}^{-1}\right) \mathrm{e}^{(-25000 \mathrm{~K}) / \mathrm{T}}
$$

Calculate Ea for this reaction and rate constant if its half-life period be 300 minutes.
29. Following ions are given :
$\mathrm{Cr}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Cu}^{+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Mn}^{3+}$
Identify the ion which is
(i) a strong reducing agent.
(ii) unstable in aqueous solution.
(iii) a strong oxiding agent.

Give suitable reason in each.

$$
1+1+1=3
$$

30. The freezing point of a solution containing 5 g of benzoic acid ($\mathrm{M}=122 \mathrm{~g}$ mol^{-1}) in 35 g of benzene is depressed by 2.94 K . What is the percentage association of benzoic acid if it forms a dimer in solution?
$\left(\mathrm{K}_{\mathrm{f}}\right.$ for benzene $\left.=4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
31. निम्नलिखित बहुलकों में एकलकों के नाम और संरचनाएँ लिखिए :
(i) नाइलॉन 6,6
(ii) टेरिलीन
(iii) PHBV
$1+1+1=3$
32. दिए गए निर्देश के अनुसार निम्नलिखित यौगिकों को व्यवस्थित कीजिए :
(i) जल में विलेयता के बढ़ते क्रम में :

$$
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}
$$

(ii) जलीय विलयन में क्षारकीय सामर्थ्य के घटते क्रम में :
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{NH}_{2}$
(iii) क्वथनांकों के बढ़ते क्रम में :

$$
\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} \quad 1+1+1=3
$$

33. निम्नलिखित अभिक्रियाओं के उत्पाद/उत्पादों को लिखिए :
(i)

(ii)

(iii)
 $1+1+1=3$

अथवा

(a) निम्नलिखित $\mathrm{S}_{\mathrm{N}}{ }^{1}$ अभिक्रिया की क्रियाविधि लिखिए :

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br} \xrightarrow{\text { जलीय } \mathrm{NaOH}}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}+\mathrm{NaBr}
$$

(b) विलियमसन संश्लेषण द्वारा 2 -मेथिल-2-मेथॉक्सीप्रोपेन के विरचन के लिए समीकरण लिखिए। $2+1=3$
31. Write the name and structures of monomers in the following polymers :
(i) Nylon 6, 6
(ii) Terylene
(iii) PHBV
$1+1+1=3$
32. Arrange the following compounds as directed :
(i) In increasing order of solubility in water :
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(ii) In decreasing order of basic strength in aqueous solution :
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{NH}_{2}$
(iii) In increasing order of boiling point :

$$
\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} \quad 1+1+\mathbf{1}=\mathbf{3}
$$

33. Write the product(s) of the following reactions :
(i)

(ii)

(iii)

$$
1+1+1=3
$$

OR

(a) Write the mechanism of the following $\mathrm{S}_{\mathrm{N}} 1$ reaction
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br} \xrightarrow{\text { Aq. } \mathrm{NaOH}}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}+\mathrm{NaBr}$
(b) Write the equation for the preparation of 2-methyl-2methoxypropane by Williamson synthesis.

$$
2+1=3
$$

34. (i) एथेनॉल में सोडियम एथॉक्साइड के साथ $2,2,3$-ट्राइमेथिल- 3 -ब्रोमोपेन्टेन की β-विलोपन द्वारा निर्मित मुख्य ऐल्कीन की संरचना लिखिए।
(ii) निम्नलिखित युगलों में कौन-सा एक यौगिक काइरल है ?
(iii) निम्नलिखित में (A) और (B) को पहचानिए :

$1+1+1=3$
अथवा
निम्नलिखित परिवर्तन आप कैसे संपन्न करेंगे ?
(i) ब्यूट- 1 -ईन से 1 -आयोडोब्यूटेन
(ii) बेन्जीन से ऐसीटोफ़ीनोन
(iii) एथेनॉल से प्रोपेन नाइट्राइल $1+1+1=3$

खण्ड : घ

35. (a) निम्नलिखित के लिए कारण दीजिए :
(i) ऑक्सीजन से टेल्यूरियम तक -2 ऑक्सीकरण अवस्था दर्शाने की प्रवृत्ति घटती है।
(ii) HF से HI तक अम्लीय लक्षण बढ़ता है।
(iii) नम SO_{2} गैस अपचायक की तरह व्यवहार करती है।
(b) $\mathrm{S}-\mathrm{O}-\mathrm{S}$ बंध वाले सल्फर के ऑक्सोअम्ल की संरचना बनाइए।
(c) निम्नलिखित समीकरण को पूर्ण कीजिए :

$$
\begin{gathered}
\mathrm{XeF}_{2}+\underset{2}{\mathrm{H}_{2} \mathrm{O}} \rightarrow \\
\text { अथवा }
\end{gathered}
$$

$$
3+1+1=5
$$

(a) वर्ग 16 के हाइड्राइडों में से उस हाइड्राइड को लिखिए :
(i) जो प्रबल अपचायक है।
(ii) जिसमें आबन्ध कोण अधिकतम है।
(iii) जो सबसे अधिक ताप स्थायी है।

प्रत्येक के लिए उपयुक्त कारण दीजिए।
(b) निम्नलिखित समीकरण पूर्ण कीजिए :
$\mathrm{S}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow$
(सान्द्र)
$\mathrm{Cl}_{2}+\mathrm{NaOH} \longrightarrow$
(ठण्डा एवं तनु)

$$
3+1+1=5
$$

34. (i) Write the structure of major alkene formed by β-elimination of 2,2 , 3-trimethyl-3-bromopentane with sodium ethoxide in ethanol.
(ii) Which one of the compounds in the following pairs is chiral?

(iii) Identify (A) and (B) in the following :
(A) $\stackrel{\mathrm{Na} / \text { dry ether }}{\rightleftarrows}$
 $1+1+1=3$

OR

How can you convert the following?
(i) But-1-ene to 1-iodobutane
(ii) Benzene to acetophenone
(iii) Ethanol to propanenitrile
$1+1+1=3$

SECTION : D

35. (a) Account for the following :
(i) Tendency to show -2 oxidation state decreases from oxygen to tellurium.
(ii) Acidic character increases from HF to HI .
(iii) Moist SO_{2} gas acts as a reducing agent.
(b) Draw the structure of an oxoacid of sulphur containing $\mathrm{S}-\mathrm{O}-\mathrm{S}$ linkage.
(c) Complete the following equation:
$3+1+1=5$

$$
\begin{gathered}
\mathrm{XeF}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \\
\text { OR }
\end{gathered}
$$

(a) Among the hydrides of group 16, write the hydride
(i) Which is a strong reducing agent.
(ii) Which has maximum bond angle.
(iii) Which is most thermally stable.

Give suitable reason in each.
(b) Complete the following equations :

$$
\begin{gathered}
\mathrm{S}+\underset{2}{\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow} \\
\text { (Conc.) } \\
\mathrm{Cl}_{2}+\mathrm{NaOH} \longrightarrow
\end{gathered}
$$

(Cold and dilute)

$$
3+1+1=5
$$

36. (a) 0.05 M KOH विलयन के कॉलम का विद्युत प्रतिरोध $5 \times 10^{3} \mathrm{ohm}$ है। इसका अनुप्रस्थकाट क्षेत्रफल $0.625 \mathrm{~cm}^{2}$ और लम्बाई 50 cm है। इसकी प्रतिरोधकता, चालकता तथा मोलर चालकता का परिकलन कीजिए।
(b) प्लैटिनम इलेक्ट्रोडों के साथ CuCl_{2} के जलीय विलयन के वैद्युतअपघटन से प्राप्त उत्पादों की प्रागुक्ति कीजिए।
(दिया है : $\left.\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathrm{o}}=+0.34 \mathrm{~V}, \mathrm{E}_{\left(1 / 2 \mathrm{Cl}_{2} / \mathrm{Cl}^{-}\right.}^{0}\right)=+1.36 \mathrm{~V}$
$\left.\mathrm{E}_{\mathrm{H}^{+} / \mathrm{H}_{2}(\mathrm{~g}), \mathrm{Pt}}^{\mathrm{o}}=0.00 \mathrm{~V}, \mathrm{E}_{\left(1 / 2 \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}\right)}^{\mathrm{o}}=+1.23 \mathrm{~V}\right) \quad \mathbf{3 + 2} \mathbf{5}$

अथवा

(a) निम्नलिखित सेल के लिए e.m.f. परिकलित कीजिए :

$$
\mathrm{Zn}(\mathrm{~s}) / \mathrm{Zn}^{2+}(0.1 \mathrm{M})| |(0.01 \mathrm{M}) \mathrm{Ag}^{+} / \mathrm{Ag}(\mathrm{~s})
$$

दिया है : $\mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{\mathrm{o}}=-0.76 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{0}=+0.80 \mathrm{~V}$
[दिया है : $\log 10=1$]
(b) ' X ' और ' Y ' दो वैद्युतअपघट्य हैं । तनुकरण पर ' X ' की मोलर चालकता 2.5 गुना बढ़ जाती है जबकि ' Y ' की 25 गुना बढ़ जाती है। इन दोनों में से कौन दुर्बल वैद्युतअपघट्य है और क्यों ? $3+2=5$
37. (a) एक कार्बनिक यौगिक (A) जिसका आण्विक सूत्र $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ है, 2,4 -डी.एन.पी. अभिकर्मक के साथ नारंगी-लाल अवक्षेप देता है । यह टॉलेन - अभिकर्मक को अपचित नहीं करता लेकिन NaOH और I_{2} के साथ गर्म करने पर आयोडोफॉर्म का पीला अवक्षेप बनाता है । यौगिक (A) NaBH_{4} के साथ अपचित होने पर यौगिक (B) देता है जो सान्द्र $\mathrm{H}_{2} \mathrm{SO}_{4}$ के साथ गर्म करने पर निर्जलन अभिक्रिया द्वारा यौगिक (C) बनाता है । यौगिक (C) ओज़ोनी अपघटन पर ऐथेनैल के दो अणु देता है।
(A), (B) और (C) की पहचान कीजिए तथा उनकी संरचनाएँ लिखिए । यौगिक (A) की (i) $\mathrm{NaOH} / \mathrm{I}_{2}$ और (ii) NaBH_{4} के साथ अभिक्रियाएँ लिखिए।
(b) कारण दीजिए :
(i) प्रोपेनोन की अपेक्षा प्रोपेनैल का ऑक्सीकरण आसान होता है।
(ii) ऐल्डिहाइडों और कीटोनों के α-हाइड्रोजन की प्रकृति अम्लीय होती है।
अथवा
(a) निम्नलिखित व्युत्पन्नों की संरचनाएँ बनाइए :
(i) साइक्लोब्यूटैनोन का सायनोहाइड्रिन
(ii) ऐथेनैल का हेमीऐसीटैल
(b) निम्नलिखित में मुख्य उत्पाद/उत्पादों को लिखिए :
(i)

(ii) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow{\mathrm{CrO}_{3}}$
(c) आप प्रोपेनैल और प्रोपेनोन के मध्य कैसे विभेद करेंगे ? $2+2+1=5$
36. (a) The electrical resistance of a column of 0.05 M KOH solution of length 50 cm and area of cross-section $0.625 \mathrm{~cm}^{2}$ is 5×10^{3} ohm. Calculate its resistivity, conductivity and molar conductivity.
(b) Predict the products of electrolysis of an aqueous solution of CuCl_{2} with platinum electrodes.

$$
\begin{aligned}
& \text { (Given : } \mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathrm{o}}=+0.34 \mathrm{~V}, \mathrm{E}_{\left(1 / 2 \mathrm{Cl}_{2} / \mathrm{Cl}^{-}\right)}^{\mathrm{o}}=+1.36 \mathrm{~V} \\
& \left.\mathrm{E}_{\mathrm{H}^{+} / \mathrm{H}_{2}(\mathrm{~g}), \mathrm{Pt}}^{\mathrm{o}}=0.00 \mathrm{~V}, \mathrm{E}_{\left(1 / 2 \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}\right)}^{\mathrm{o}}=+1.23 \mathrm{~V}\right) \\
& \mathbf{O R}
\end{aligned}
$$

(a) Calculate e.m.f. of the following cell :

$$
\begin{gathered}
\mathrm{Zn}(\mathrm{~s}) / \mathrm{Zn}^{2+}(0.1 \mathrm{M})| |(0.01 \mathrm{M}) \mathrm{Ag}^{+} / \mathrm{Ag}(\mathrm{~s}) \\
\text { Given : } \mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{\mathrm{o}}=-0.76 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\mathrm{o}}=+0.80 \mathrm{~V}
\end{gathered}
$$

[Given : $\log 10=1$]
$3+2=5$
(b) X and Y are two electrolytes. On dilution molar conductivity of ' X ' increases 2.5 times while that Y increases 25 times. Which of the two is a weak electrolyte and why?
37. (a) An organic compound (A) having molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ gives orange red precipitate with $2,4-\mathrm{DNP}$ reagent. It does not reduce Tollens' reagent but gives yellow precipitate of iodoform on heating with NaOH and I_{2}. Compound (A) on reduction with NaBH_{4} gives compound (B) which undergoes dehydration reaction on heating with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to form compound (C). Compound (C) on Ozonolysis gives two molecules of ethanal.
Identify (A), (B) and (C) and write their structures. Write the reactions of compound (A) with (i) $\mathrm{NaOH} / \mathrm{I}_{2}$ and (ii) NaBH_{4}.
(b) Give reasons :
(i) Oxidation of propanal is easier than propanone.
(ii) α-hydrogen of aldehydes and ketones is acidic in nature. $\quad \mathbf{3 + 2}=\mathbf{5}$

OR
(a) Draw structures of the following derivatives :
(i) Cyanohydrin of cyclobutanone
(ii) Hemiacetal of ethanal
(b) Write the major product(s) in the following :
$\xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {(i) } \mathrm{DIBAL}-\mathrm{H}}$
(ii) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow{\mathrm{CrO}_{3}}$
(c) How can you distinguish between propanal and propanone? $2+2+\mathbf{1}=\mathbf{5}$

回垵回

कोड नं.
 Codes. $\mathrm{N} .56 / 4 / 3$

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।
Candidates must write the Code on the title page of the answer-book.

नोट	NOTE
(I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं। (II) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें। (III) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 37 प्रश्न हैं। (IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें। (V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका में कोई उत्तर नहीं लिखेंगे।	(I) Please check that this question paper contains 15 printed pages. (II) Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate. (III) Please check that this question paper contains 37 questions. (IV) Please write down the Serial Number of the question in the answer-book before attempting it. (V) 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक)
 CHEMISTRY (Theory)

निर्धारित समय: 3 घण्टे
Time allowed : 3 hours

अधिकतम अंक : 70
Maximum Marks : 70

सामान्य निर्देश :
निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका पालन कीजिए :
(i) प्रश्न-पत्र चार खण्डों में विभाजित है - क, ख, ग और घ। सभी प्रश्न अनिवार्य हैं।
(ii) खण्ड-क - प्रश्न-संख्या 1 से 20 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न 1 अंक का है । प्रत्येक प्रश्न का उत्तर एक शब्द या एक वाक्य में दीजिए।
(iii) खण्ड-ख - प्रश्न-संख्या 21 से 27 तक लघु-उत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न 2 अंकों का है।
(iv) खण्ड-ग-प्रश्न-संख्या 28 से 34 तक दीर्घ-उत्तरीय प्रकार- 1 के प्रश्न हैं, प्रत्येक प्रश्न 3 अंकों का है।
(v) खण्ड-घ-प्रश्न-संख्या 35 से 37 तक दीर्घ-उत्तरीय प्रकार- 2 के प्रश्न हैं, प्रत्येक प्रश्न 5 अंकों का है।
(vi) कोई समग्र विकल्प नहीं है । तथापि, दो-दो अंकों के दो प्रश्नों में, तीन-तीन अंकों के दो प्रश्नों में तथा पाँच-पाँच अंकों के तीनों प्रश्नों में आंतरिक विकल्प दिया गया है । ऐसे प्रश्नों में केवल एक ही विकल्प का उत्तर दीजिए।
(vii) इसके अतिरिक्क, आवश्यतानुसार, प्रत्येक खण्ड और प्रश्न के साथ यथोचित निर्देश दिए गए हैं।
(viii) केलकुलेटर अथवा लॉग टेबल के प्रयोग की अनुमति नहीं है।

SECTION - A

दिए गए अनुच्छेद को पढ़िए और नीचे दिए प्रश्न 1 से 5 के उत्तर दीजिए :
कोलॉइडी कणों पर हमेशा विद्युत आवेश होता है जो धनात्मक या ऋणात्मक हो सकता है । उदाहरण के तौर पर जब AgNO_{3} विलयन को KI विलयन में मिलाया जाता है तो ऋण-आवेशित कोलॉइडी सॉल बनता है। कोलॉइडी कणों पर बराबर एवं एक जैसे आवेशों की उपस्थिति कोलॉइडी सॉल को स्थायित्व प्रदान करती है और यदि, किसी तरह, आवेश हटा दिया जाए, तो सॉल का स्कंदन हो जाता है। द्रवविरागी सॉल, द्रवरागी सॉल की तुलना में सहज ही स्कंदित हो जाते हैं।

1. सॉल कणों पर आवेश का क्या कारण है ?
2. कोलॉइडी कणों पर बराबर एवं एक जैसे आवेशों की उपस्थिति स्थायित्व क्यों प्रदान करती है ?
3. AgNO_{3} विलयन को KI विलयन में मिलाने पर ऋण-आवेशित सॉल क्यों प्राप्त होता है ?
4. द्रवविरागी सॉल का स्कंदन करने के लिए एक विधि का नाम लिखिए।
5. KI या $\mathrm{K}_{2} \mathrm{SO}_{4}$ में से कौन-सा विद्युत-अपघट्य धनात्मक सॉल के स्कंदन के लिए अधिक अच्छा है ?

General Instructions:

Read the following instructions very carefully and strictly follow them :
(i) Question paper comprises four sections $-A, B, C$ and D.
(ii) There are 37 questions in the question paper. All questions are compulsory.
(iii) Section - $\boldsymbol{A}: Q$. No. 1 to 20 are very short answer type questions carrying one mark each. Answer these questions in one word or one sentence.
(iv) Section - B:Q. No. 21 to 27 are short answer type questions carrying two marks each.
(v) Section - C: Q. No. 28 to 34 are long answer type-I questions carrying three marks each.
(vi) Section - D: Q. No. 35 to 37 are long answer type-II questions carrying five marks each.
(vii) There is NO overall choice in the question paper. However, an internal choice has been provided in 2 questions of two marks, 2 questions of three marks and all the 3 questions of five marks. You have to attempt only one of the choices in such questions.
(viii) However, separate instructions are given with each section and question, wherever necessary.
(ix) Use of calculators and log tables is NOT permitted.

SECTION - A

Read the given passage and answer the questions 1 to 5 that follow :
Colloidal particles always carry an electric charge which may be either positive or negative. For example, when AgNO_{3} solution is added to KI solution, a negatively charged colloidal sol is obtained. The presence of equal and similar charges on colloidal particles provide stability to the colloidal sol and if, somehow, charge is removed, coagulation of sol occurs. Lyophobic sols are readily coagulated as compare to lyophilic sols.

1. What is the reason for the charge on sol particles ?
2. Why the presence of equal and similar charges on colloidal particles provide stability?
3. Why a negatively charged sol is obtained on adding AgNO_{3} solution to KI solution?
4. Name one method by which coagulation of lyophobic sol can be carried out.
5. Out of KI or $\mathrm{K}_{2} \mathrm{SO}_{4}$, which electrolyte is better in the coagulation of positive sol?

प्रश्न 6 से 10 एक शब्द उत्तरीय हैं :
6. जिंक के परिष्करण में प्रयुक्त विधि का नाम लिखिए।
7. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ और $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Cl}$ में से कौन $\mathrm{S}_{\mathrm{N}} 1$ अभिक्रिया के प्रति अधिक अभिक्रियाशील है ?
8. $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$ के उस समावयव को लिखिए जो हिन्सबर्ग अभिकर्मक के साथ अभिक्रिया नहीं करता है ?
9. किरेटिन में किस प्रकार का प्रोटीन उपस्थित है ?
10. साबुन में पूतिरोधी गुणधर्म प्रदान करने के लिए मिलाए जाने वाले यौगिक का नाम लिखिए।

प्रश्न 11 से 15 बहुविकल्पीय प्रश्न हैं :
11. निम्नलिखित में से कौन सा सबसे अधिक स्थायी संकुल है ?
(a) $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
(b) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(c) $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
(d) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
12. किसी सेल की स्वतः प्रवर्तिता के लिए निम्नलिखित में से कौन सही है ?
(a) $\Delta \mathrm{G}=-\mathrm{ve} \mathrm{E}^{\mathrm{o}}=+\mathrm{ve}$
(b) $\Delta \mathrm{G}=+\mathrm{ve} \mathrm{E}^{\mathrm{o}}=0$
(c) $\Delta \mathrm{G}=-\mathrm{ve} \mathrm{E}^{\mathrm{o}}=0$
(d) $\Delta \mathrm{G}=+\mathrm{ve} \mathrm{E}^{\mathrm{o}}=-\mathrm{ve}$
13. किसी शून्य कोटि की अभिक्रिया के लिए, समय के साथ $[R]$ के विचरण को दर्शाने वाले ग्राफ के ढाल मान है
(a) $\frac{-\mathrm{k}}{2.303}$
(b) -k
(c) $\frac{+\mathrm{k}}{2.303}$
(d) +k
(जहाँ $[\mathrm{R}]$ अभिकर्मक की अन्तिम सान्द्रता है)
14. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl} 3$ और $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ युगल द्वारा किस प्रकार की समावयवता दर्शाई जाती है ?
(a) आयनन समावयवता
(b) उपसहसंयोजन समावयवता
(c) विलायकयोजन समावयवता
(d) बंधनी समावयवता
15. DNA के एक रज्जुक के साइटोसीन का दूसरे रज्जुक में पूरक क्षारक है
(a) ऐडेनीन
(b) ग्वानीन
(c) थायमीन
(d) यूरेसिल
.56/4/3.

Questions 6 to 10 are one word answers:
6. Name the method used for the refining of Zinc.
7. Out of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ and $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Cl}$, which one is more reactive towards $\mathrm{S}_{\mathrm{N}} 1$ reaction?
8. Write an isomer of $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$ which does not react with Hinsberg reagent.
9. What type of protein is present in keratin?
10. Name the compound which is added to soap to provide antiseptic properties.

Questions 11 to $\mathbf{1 5}$ are Multiple Choice Questions:
11. Which of the following is the most stable complex ?
(a) $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right](\mathrm{b}) \quad\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(c) $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
(d) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
12. Which of the following is correct for spontaneity of a cell ?
(a) $\Delta \mathrm{G}=-\mathrm{ve} \mathrm{E}^{o}=+\mathrm{ve}$
(b) $\Delta \mathrm{G}=+\mathrm{ve} \mathrm{E}^{\mathrm{o}}=0$
(c) $\Delta \mathrm{G}=-\mathrm{ve} \mathrm{E}^{o}=0$
(d) $\Delta \mathrm{G}=+\mathrm{ve} \mathrm{E}^{o}=-\mathrm{ve}$
13. For a zero order reaction, the slope in the plot of $[R]$ Vs. time is
(a) $\frac{-\mathrm{k}}{2.303}$
(b) -k
(c) $\frac{+\mathrm{k}}{2.303}$
(d) +k
(where $[R]$ is the final concentration of reactant)
14. What type of isomerism is shown by the pair $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]$ $\mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$?
(a) Ionization isomerism
(b) Coordination isomerism
(c) Solvate isomerism
(d) Linkage isomerism
15. Which one is the complementary base of cytosine in one strand to that in other strand of DNA?
(a) Adenine
(b) Guanine
(c) Thymine
(d) Uracil

प्रश्न 16 से 20 :
(A) अभिकथन (A) और कारण (R) दोनों सही कथन हैं और कारण (R), अभिकथन (A) की सही व्याख्या है।
(B) अभिकथन (A) और कारण (R) दोनों सही कथन हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं है।
(C) अभिकथन (A) सही है, परन्तु कारण (R) गलत कथन है।
(D) अभिकथन (A) गलत है, परन्तु कारण (R) सही कथन है।
16. अभिकथन (A) : F_{2} की अभिक्रियाशीलता निम्न होती है।

कारण (R) : F-F आबन्ध की वियोजन एन्थैल्पी $\left(\Delta_{\text {bond }} H^{\circ}\right)$ कम है।
17. अभिकथन (A) : बेन्जोइक अम्ल फ्रीडेल-क्राफ्ट्स अभिक्रिया प्रदर्शित नहीं करता है।

कारण (R) : कार्बोक्सिल समूह एक सक्रियक समूह है और इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाएँ देता है।
18. अभिकथन (A) : संक्रमण धातुओं के गलनांक निम्न होते हैं।

कारण (R) : अंतरापरमाण्विक धात्विक बंधन में $(\mathrm{n}-1) \mathrm{d}$ और ns के अधिक इलेक्ट्रॉनों की भागीदारी होती है।
19. अभिकथन (A) : $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$ की HI के साथ अभिक्रिया होने पर $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{I}$ और $\mathrm{CH}_{3} \mathrm{OH}$ प्राप्त होते हैं।
कारण (R) : अभिक्रिया $\mathrm{S}_{\mathrm{N}} 1$ क्रियाविधि द्वारा होती है।
20. अभिकथन (A) : जटिल अभिक्रियाओं के लिए आण्विकता और कोटि एक समान नहीं होती हैं।

कारण (R) : अभिक्रिया की कोटि शून्य हो सकती है। $20 \times 1=20$
खण्ड : ख
21. निम्नलिखित परिष्करण विधियों के सिद्धान्त लिखिए :
(a) वाष्प प्रावस्था परिष्करण
(b) वर्णलेखिकी (क्रोमैटोग्रैफी)
$1+1=2$

अथवा

(i) $\mathrm{Cu}_{2} \mathrm{~S}$ से $\mathrm{Cu} \quad$ (ii) संकुल $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$से Ag
को प्राप्त करने से सम्बद्ध रासायनिक समीकरणों को लिखिए ।

$$
1+1=2
$$

Questions 16 to 20 :
(A) Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A).
(B) Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A).
(C) Assertion (A) is correct, but Reason (R) is wrong statement.
(D) Assertion (A) is wrong, but Reason (R) is correct statement.
16. Assertion (A): F_{2} has low reactivity.

Reason (R) : F-F bond has low $\Delta_{\text {bond }} \mathrm{H}^{\circ}$.
17. Assertion (A) : Benzoic acid does not undergo Friedal-Crafts reaction.

Reason (R) : The carboxyl group is activating and undergo electrophilic substitution reaction.
18. Assertion (A) : Transition metals have low melting points.

Reason (R) : The involvement of greater number of ($\mathrm{n}-1$)d and ns electrons in the interatomic metallic bonding.
19. Assertion (A) : $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$ gives $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{I}$ and $\mathrm{CH}_{3} \mathrm{OH}$ on treatment with HI.
Reason (R) : The reaction occurs by $\mathrm{S}_{\mathrm{N}} 1$ mechanism.
20. Assertion (A) : For complex reactions molecularity and order are not same
Reason (R) : Order of reaction may be zero.

SECTION-B

21. Write the principle of the following refining methods :
(a) vapour phase refining
(b) chromatography

$$
1+1=2
$$

OR

Write chemical equations involved to obtain :
(i) Cu from $\mathrm{Cu}_{2} \mathrm{~S}$
(ii) Ag from $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$complex
22. क्या होता है जब :
(i) यदि अर्धपारगम्य झिल्ली द्वारा विलायक से पृथक किए गए विलयन पर परासरण दाब से अधिक दाब लगाया जाए ?
(ii) शुद्ध एथेनॉल में ऐसीटोन मिलाया जाता है ?
$1+1=2$
23. निम्नलिखित संकुलों के आईयूपीएसी नाम और संकरण लिखिए :
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(ii) $\left[\mathrm{NiCl}_{4}\right]^{2-}$
(दिया है : परमाणु क्रमांक : $\mathrm{Ni}=28, \mathrm{Co}=27$)

$$
1+1=2
$$

24. पायरोलुसाइट अयस्क $\left(\mathrm{MnO}_{2}\right)$ से KMnO_{4} के विरचन से सम्बद्ध सन्तुलित रासायनिक समीकरणों को लिखिए।
(i) आयरन (II) आयन तथा (ii) टिन (II) आयन पर अम्लीकृत डाइक्रोमेट $\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)$ विलयन की ऑक्सीकारक क्रिया दर्शाने के लिए सन्तुलित आयनिक समीकरण लिखिए ।
$1+1=2$
25. ग्लूकोस की विवृत्त संरचना में निम्नलिखित की उपस्थिति दर्शाने के लिए अभिक्रियाएँ लिखिए :
(i) पाँच- OH समूह
(ii) एक कार्बोनिल समूह
$1+1=2$
26. हेनरी नियम लिखिए । 298 K एवं 760 mm Hg दाब पर CO_{2} की जल में विलेयता परिकलित कीजिए। (298 K पर जल में CO_{2} के लिए $\mathrm{K}_{\mathrm{H}}=1.25 \times 10^{6} \mathrm{~mm} \mathrm{Hg}$ है)
27. प्रत्येक के लिये उपयुक्त उदाहरण सहित निम्नलिखित पदों को परिभाषित कीजिए :
(i) प्रतिअम्ल
(ii) कृत्रिम मधुरक
$1+1=2$

खण्ड : ग

28. नीचे कुछ आयन दिए गए हैं :

$$
\mathrm{Cr}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Cu}^{+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Mn}^{3+}
$$

इनमें से उस आयन को पहचानिए जो
(i) एक प्रबल अपचायक है
(ii) जलीय विलयन में अस्थायी है
(iii) एक प्रबल ऑक्सीकारक है।

प्रत्येक के लिए उपयुक्त कारण दीजिए।
29. 5 g बेन्जोइक अम्ल $\left(\mathrm{M}=122 \mathrm{~g} \mathrm{~mol}^{-1}\right) 35 \mathrm{~g}$ बेन्जीन में घोलने पर हिमांक में 2.94 K का अवनमन होता है। यदि यह विलयन में द्वितय बनाता है तो बेन्जोइक अम्ल का संगुणन कितने प्रतिशत होगा ? (बेन्जीन के लिए $\mathrm{K}_{\mathrm{f}}=4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)
22. What happens when
(i) a pressure greater than osmotic pressure is applied on the solution side separated from solvent by a semipermeable membrane?
(ii) acetone is added to pure ethanol?
$1+1=2$
23. Write the IUPAC name and hybridisation of the following complexes :
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(ii) $\left[\mathrm{NiCl}_{4}\right]^{2-}$
(Given : Atomic number : $\mathrm{Ni}=28, \mathrm{Co}=27$)
$1+1=2$
24. Write the balanced chemical equations involved in the preparation of KMnO_{4} from pyrolusite ore $\left(\mathrm{MnO}_{2}\right)$.

OR

Write the balanced ionic equations showing the oxidising action of acidified dichromate $\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)$ solution with (i) Iron (II) Ion and (ii) tin (II) ion. $\mathbf{1 + 1}=\mathbf{2}$
25. Write the reactions showing the presence of following in the open structure of glucose :
(i) five -OH groups
(ii) a carbonyl group $1+\mathbf{1}=\mathbf{2}$
26. State Henry's law. Calculate the solubility of CO_{2} in water at 298 K under 760 mm Hg .
$\left(\mathrm{K}_{\mathrm{H}}\right.$ for CO_{2} in water at 298 K is $1.25 \times 10^{6} \mathrm{~mm} \mathrm{Hg}$)
27. Define the following terms with a suitable example in each :
(i) Antacids
(ii) Artificial Sweetener
$1+1=2$

SECTION : C

28. Following ions are given :

$$
\mathrm{Cr}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Cu}^{+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Mn}^{3+}
$$

Identify the ion which is
(i) a strong reducing agent.
(ii) unstable in aqueous solution.
(iii) a strong oxiding agent.

Give suitable reason in each.

$$
1+1+1=3
$$

29. The freezing point of a solution containing 5 g of benzoic acid ($\mathrm{M}=122 \mathrm{~g}$ mol^{-1}) in 35 g of benzene is depressed by 2.94 K . What is the percentage association of benzoic acid if it forms a dimer in solution?
$\left(\mathrm{K}_{\mathrm{f}}\right.$ for benzene $\left.=4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
30. $\mathrm{N}_{2} \mathrm{O}_{5}$ के प्रथम कोटि अपघटन के लिए वेग स्थिरांक निम्नलिखित समीकरण द्वारा दिया गया है :

$$
\mathrm{k}=\left(2.5 \times 10^{14} \mathrm{~s}^{-1}\right) \mathrm{e}^{(-25000 \mathrm{~K}) / \mathrm{T}}
$$

इस अभिक्रिया के लिए Ea और वेग स्थिरांक की गणना कीजिए यदि इसकी अर्धायु 300 मिनट हो ।
31. निम्नलिखित बहुलकों में एकलकों के नाम और संरचनाएँ लिखिए :
(a) ब्यूना-S
(b) ग्लिप्टल
(c) बैकेलाइट $1+1+1=3$
32. निम्नलिखित अभिक्रियाओं के उत्पाद/उत्पादों को लिखिए :
(i)

(ii)

(iii)

अथवा

(a) निम्नलिखित $\mathrm{S}_{\mathrm{N}}{ }^{1}$ अभिक्रिया की क्रियाविधि लिखिए :
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br} \xrightarrow{\text { जलीय } \mathrm{NaOH}}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}+\mathrm{NaBr}$
(b) विलियमसन संश्लेषण द्वारा 2 -मेथिल-2-मेथॉक्सीप्रोपेन के विरचन के लिए समीकरण लिखिए। $2+1=3$
33. (i) एथेनॉल में सोडियम एथॉक्साइड के साथ $2,2,3$-ट्राइमेथिल- 3 -ब्रोमोपेन्टेन की β-विलोपन द्वारा निर्मित मुख्य ऐल्कीन की संरचना लिखिए।
(ii) निम्नलिखित युगलों में कौन-सा एक यौगिक काइरल है ?

(iii) निम्नलिखित में (A) और (B) को पहचानिए :
(A) $\stackrel{\mathrm{Na} / \text { शुष्क ईथर }}{\longleftarrow}$

$$
\begin{equation*}
1+1+1=3 \tag{B}
\end{equation*}
$$

अथवा

निम्नलिखित परिवर्तन आप कैसे संपन्न करेंगे ?
(i) ब्यूट-1-ईन से 1 -आयोडोब्यूटेन
(ii) बेन्जीन से ऐसीटोफ़ीनोन
(iii) एथेनॉल से प्रोपेन नाइट्राइल $1+1+1=3$
30. The rate constant for the first order decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is given by the following equation :

$$
\mathrm{k}=\left(2.5 \times 10^{14} \mathrm{~s}^{-1}\right) \mathrm{e}^{(-25000 \mathrm{~K}) / \mathrm{T}}
$$

Calculate Ea for this reaction and rate constant if its half-life period be 300 minutes.
31. Write the names and structures of monomers in the following polymers:
(a) Buna-S
(b) Glyptal
(c) Bakelite $\mathbf{1 + 1 + 1 = 3}$
32. Write the product(s) of the following reactions :
(i)

(ii)

(iii)

OR

(a) Write the mechanism of the following $\mathrm{S}_{\mathrm{N}} 1$ reaction
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br} \xrightarrow{\text { Aq. } \mathrm{NaOH}}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}+\mathrm{NaBr}$
(b) Write the equation for the preparation of 2 -methyl-2methoxypropane by Williamson synthesis. $2+1=3$
33. (i) Write the structure of major alkene formed by β-elimination of 2, 2, 3-trimethyl-3-bromopentane with sodium ethoxide in ethanol.
(ii) Which one of the compounds in the following pairs is chiral?

(iii) Identify (A) and (B) in the following :
(A) $\stackrel{\mathrm{Na} / \mathrm{dry} \text { ether }}{\rightleftarrows}$
 $1+1+1=3$

OR
How can you convert the following?
(i) But-1-ene to 1-iodobutane
(ii) Benzene to acetophenone
(iii) Ethanol to propanenitrile
34. दिए गए निर्देश के अनुसार निम्नलिखित यौगिकों को व्यवस्थित कीजिए :
(i) जल में विलेयता के बढ़ते क्रम में :

$$
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}
$$

(ii) जलीय विलयन में क्षारकीय सामर्थ्य के घटते क्रम में :

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{NH}_{2}
$$

(iii) क्वथनांकों के बढ़ते क्रम में :

$$
\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} \quad \mathbf{1}+\mathbf{1}+\mathbf{1}=\mathbf{3}
$$

खण्ड: घ

35. (a) एक कार्बनिक यौगिक (A) जिसका आण्विक सूत्र $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ है, 2,4 -डी.एन.पी. अभिकर्मक के साथ नारंगी-लाल अवक्षेप देता है। यह टॉलेन - अभिकर्मक को अपचित नहीं करता लेकिन NaOH और I_{2} के साथ गर्म करने पर आयोडोफॉर्म का पीला अवक्षेप बनाता है । यौगिक $(\mathrm{A}) \mathrm{NaBH}_{4}$ के साथ अपचित होने पर यौगिक (B) देता है जो सान्द्र $\mathrm{H}_{2} \mathrm{SO}_{4}$ के साथ गर्म करने पर निर्जलन अभिक्रिया द्वारा यौगिक (C) बनाता है। यौगिक (C) ओज़ोनी अपघटन पर ऐथेनैल के दो अणु देता है।
(A), (B) और (C) की पहचान कीजिए तथा उनकी संरचनाएँ लिखिए । यौगिक (A) की (i) $\mathrm{NaOH} / \mathrm{I}_{2}$ और (ii) NaBH_{4} के साथ अभिक्रियाएँ लिखिए।
(b) कारण दीजिए :
(i) प्रोपेनोन की अपेक्षा प्रोपेनैल का ऑक्सीकरण आसान होता है।
(ii) ऐल्डिहाइडों और कीटोनों के α-हाइड्रोजन की प्रकृति अम्लीय होती है। $3+2=5$

अथवा

(a) निम्नलिखित व्युत्पन्नों की संरचनाएँ बनाइए :
(i) साइक्लोब्यूटैनोन का सायनोहाइड्रिन
(ii) ऐथैनैल का हेमीऐसीटैल
(b) निम्नलिखित में मुख्य उत्पाद/उत्पादों को लिखिए :

(ii) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow{\mathrm{CrO}_{3}}$
(c) आप प्रोपेनैल और प्रोपेनोन के मध्य कैसे विभेद करेंगे ?

$$
2+2+1=5
$$

34. Arrange the following compounds as directed :
(i) In increasing order of solubility in water :

$$
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}
$$

(ii) In decreasing order of basic strength in aqueous solution :

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{NH}_{2}
$$

(iii) In increasing order of boiling point:

$$
\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} \quad \mathbf{1}+\mathbf{1}+\mathbf{1}=\mathbf{3}
$$

SECTION : D

35. (a) An organic compound (A) having molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ gives orange red precipitate with $2,4-\mathrm{DNP}$ reagent. It does not reduce Tollens' reagent but gives yellow precipitate of iodoform on heating with NaOH and I_{2}. Compound (A) on reduction with NaBH_{4} gives compound (B) which undergoes dehydration reaction on heating with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to form compound (C). Compound (C) on Ozonolysis gives two molecules of ethanal.
Identify (A), (B) and (C) and write their structures. Write the reactions of compound (A) with (i) $\mathrm{NaOH} / \mathrm{I}_{2}$ and (ii) NaBH_{4}.
(b) Give reasons :
(i) Oxidation of propanal is easier than propanone.
(ii) α-hydrogen of aldehydes and ketones is acidic in nature. $\quad \mathbf{3 + 2}=\mathbf{5}$

OR

(a) Draw structures of the following derivatives:
(i) Cyanohydrin of cyclobutanone
(ii) Hemiacetal of ethanal
(b) Write the major product(s) in the following :
(i)

(ii) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow{\mathrm{CrO}_{3}}$
(c) How can you distinguish between propanal and propanone? $2+2+1=5$
36. (a) निम्नलिखित के लिए कारण दीजिए :
(i) ऑक्सीजन से टेल्यूरियम तक -2 ऑक्सीकरण अवस्था दर्शाने की प्रवृत्ति घटती है।
(ii) HF से HI तक अम्लीय लक्षण बढ़ता है।
(iii) नम SO_{2} गैस अपचायक की तरह व्यवहार करती है।
(b) $\mathrm{S}-\mathrm{O}-\mathrm{S}$ बंध वाले सल्फर के ऑक्सोअम्ल की संरचना बनाइए।
(c) निम्नलिखित समीकरण को पूर्ण कीजिए :

$$
\mathrm{XeF}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow
$$

अथवा
(a) वर्ग 16 के हाइड्राइडों में से उस हाइड्राइड को लिखिए :
(i) जो प्रबल अपचायक है ।
(ii) जिसमें आबन्ध कोण अधिकतम है।
(iii) जो सबसे अधिक ताप स्थायी है।

प्रत्येक के लिए उपयुक्त कारण दीजिए।
(b) निम्नलिखित समीकरण पूर्ण कीजिए :
$\mathrm{S}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow$
(सान्द्र)
$\mathrm{Cl}_{2}+\mathrm{NaOH} \longrightarrow$
(ठण्डा एवं तनु)
37. (a) 0.05 M KOH विलयन के कॉलम का विद्युत प्रतिरोध $5 \times 10^{3} \mathrm{ohm}$ है। इसका अनुप्रस्थकाट क्षेत्रफल $0.625 \mathrm{~cm}^{2}$ और लम्बाई 50 cm है। इसकी प्रतिरोधकता, चालकता तथा मोलर चालकता का परिकलन कीजिए।
(b) प्लैटिनम इलेक्ट्रोडों के साथ CuCl_{2} के जलीय विलयन के वैद्युतअपघटन से प्राप्त उत्पादों की प्रागुक्ति कीजिए।
(दिया है : $\left.\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathrm{o}}=+0.34 \mathrm{~V}, \mathrm{E}_{\left(1 / 2 \mathrm{Cl}_{2} / \mathrm{Cl}^{-}\right.}^{0}\right)=+1.36 \mathrm{~V}$

$$
\left.\mathrm{E}_{\mathrm{H}^{+} / \mathrm{H}_{2}(\mathrm{~g}), \mathrm{Pt}}^{\mathrm{o}}=0.00 \mathrm{~V}, \mathrm{E}_{\left(1 / 2 \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}\right)}^{\mathrm{o})}=+1.23 \mathrm{~V}\right) \quad \mathbf{3 + 2}=\mathbf{5}
$$

अथवा
(a) निम्नलिखित सेल के लिए e.m.f. परिकलित कीजिए :

$$
\mathrm{Zn}(\mathrm{~s}) / \mathrm{Zn}^{2+}(0.1 \mathrm{M}) \|(0.01 \mathrm{M}) \mathrm{Ag}^{+} / \mathrm{Ag}(\mathrm{~s})
$$

दिया है : $\mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{0}=-0.76 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{0}=+0.80 \mathrm{~V}$
[दिया है : $\log 10=1$]
(b) ' X ' और ' Y ' दो वैद्युतअपघट्य हैं । तनुकरण पर ' X ' की मोलर चालकता 2.5 गुना बढ़ जाती है जबकि ' Y ' की 25 गुना बढ़ जाती है । इन दोनों में से कौन दुर्बल वैद्युतअपघट्य है और क्यों $? 3+2=5$
36. (a) Account for the following :
(i) Tendency to show -2 oxidation state decreases from oxygen to tellurium.
(ii) Acidic character increases from HF to HI .
(iii) Moist SO_{2} gas acts as a reducing agent.
(b) Draw the structure of an oxoacid of sulphur containing $\mathrm{S}-\mathrm{O}-\mathrm{S}$ linkage.
(c) Complete the following equation :

$$
\mathrm{XeF}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \quad 3+1+1=5
$$

OR
(a) Among the hydrides of group 16, write the hydride
(i) Which is a strong reducing agent.
(ii) Which has maximum bond angle.
(iii) Which is most thermally stable.

Give suitable reason in each.
(b) Complete the following equations :

$$
\begin{gathered}
\mathrm{S}+\underset{2}{\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow} \\
\text { (Conc.) } \\
\mathrm{Cl}_{2}+\mathrm{NaOH} \longrightarrow
\end{gathered}
$$

(Cold and dilute)

$$
3+1+1=5
$$

37. (a) The electrical resistance of a column of 0.05 M KOH solution of length 50 cm and area of cross-section $0.625 \mathrm{~cm}^{2}$ is 5×10^{3} ohm. Calculate its resistivity, conductivity and molar conductivity.
(b) Predict the products of electrolysis of an aqueous solution of CuCl_{2} with platinum electrodes.
(Given : $\left.\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathrm{o}}=+0.34 \mathrm{~V}, \mathrm{E}_{\left(1 / 2 \mathrm{Cl}_{2} / \mathrm{Cl}^{-}\right.}^{0}\right)=+1.36 \mathrm{~V}$

$$
\left.\mathrm{E}_{\mathrm{H}^{+} / \mathrm{H}_{2}(\mathrm{~g}), \mathrm{Pt}}^{\mathrm{o}}=0.00 \mathrm{~V}, \mathrm{E}_{\left(1 / 2 \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}\right)}^{\mathrm{o}}=+1.23 \mathrm{~V}\right) \quad \mathbf{3 + 2}=\mathbf{5}
$$

OR
(a) Calculate e.m.f. of the following cell :

$$
\mathrm{Zn}(\mathrm{~s}) / \mathrm{Zn}^{2+}(0.1 \mathrm{M})| |(0.01 \mathrm{M}) \mathrm{Ag}^{+} / \mathrm{Ag}(\mathrm{~s})
$$

Given : $\mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{\mathrm{o}}=-0.76 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\mathrm{o}}=+0.80 \mathrm{~V}$
[Given : $\log 10=1$]
(b) X and Y are two electrolytes. On dilution molar conductivity of ' X ' increases 2.5 times while that Y increases 25 times. Which of the two is a weak electrolyte and why?

$$
3+2=5
$$

回垵回

