PRACTICE PAPER 09 (2024-25) CHAPTER 08 SEQUENCE AND SERIES

	BJECT: MATHE	EMATICS	MAX. MARKS: 40					
CLASS: XI DURATION: 1½ hrs								
 General Instructions: (i). All questions are compulsory. (ii). This question paper contains 20 questions divided into five Sections A, B, C, D and E. (iii). Section A comprises of 10 MCQs of 1 mark each. Section B comprises of 4 questions of 2 marks each. Section C comprises of 3 questions of 3 marks each. Section D comprises of 1 question of 5 marks each and Section E comprises of 2 Case Study Based Questions of 4 marks each. (iv). There is no overall choice. (v). Use of Calculators is not permitted 								
SECTION – A Questions 1 to 10 carry 1 mark each.								
	TC 1 11 1 .							
1.	If the third term o (a) 4^3	(b) 4 ⁴	roduct of its first 5 terms (c) 4 ⁵	s is: (d) none of these				
2.	In a G.P, the 3rd	In a <i>G.P</i> , the 3rd is 24 and the 6th term is 192, then the 10th term is:						
	(a) 1084	(b) 3290	(c) 3072	(d) 2340				
3.	Which term of the (a) 11th	e <i>G.P</i> 5, 10, 20, 40, (b) 10 <i>th</i>	is 5120? (c) 6th	(d) 5th				
4.	18th term from th (a) 393216	e end of the sequence (b) 393206	3, 6, 12,25 <i>th</i> term is: (c) 313216	(d) 303216				
5.	The 5th term from the end of the sequence 16, 8, 4, 2 $\frac{1}{16}$ is:							
	(a) 1	(b) 2	(c) 3	(d) 4				
6.	If the 8 <i>th</i> term of (a) 1640	<i>G.P</i> is 192 with a com (b) 2084	amon ratio of 2, then the	e 12th term is: (d) 3126				
7.	If <i>n</i> terms of a <i>G</i> . <i>n</i> (a) 2	P. 3, 32, 33 are need (b) 3	ed to give the sum 120, (c) 4	then the value of n is: (d) 5				
8.	If nth term of a G (a) 126	.P. is 2 ⁿ , then find the (b) 124	sum of its first 6 terms. (c) 190	(d) 154				
For Q9 and Q10, a statement of assertion (A) is followed by a statement of reason (R). Choose the correct answer out of the following choices.								
COL	 (a) Both A and R are true and R is the correct explanation of A. (b) Both A and R are true but R is not the correct explanation of A. (c) A is true but R is false. (d) A is false but R is true. 							
9.	Assertion (A): The ratio are 3 or -3.	ne first term of a <i>GP</i> is	s 1. The sum of third an	d fifth term is 90, then the common				

Reason (R): Common ratio of *GP* a_1 , a_2 , a_3 , is given by $a_2 - a_1 = a_3 - a_2 = \dots$

10. Assertion (A): Sum of 7 terms of the GP 3, 6, 12, . . . is 381.

Reason (R): Sum of first n terms of the G. P is given by $S_n = \frac{a(r^n - 1)}{r - 1}$, where a = first term, r = common ratio and $|\mathbf{r}| > 1$.

 $\frac{SECTION - B}{\text{Questions 11 to 14 carry 2 marks each.}}$

- **11.** If a, b, c, d are in G.P.; prove that, a + b, b + c, c + d are also in G.P.
- **12.** Prove that : $9^{1/3}$. $9^{1/9}$. $9^{1/27}$ = 3
- 13. Express $6.2\overline{45}$ as rational numbers using G.P.
- **14.** Find the values of p, if sum to infinity for the G.P. p, 1, $\frac{1}{p}$, is $\frac{25}{4}$.

 $\frac{\underline{SECTION} - \underline{C}}{\text{Questions 15 to 17 carry 3 marks each.}}$

15. Three numbers are in AP their sum is 15. If 1, 3, 9 be added to them respectively they form a GP. Find the numbers.

Find the value of n, so that $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ may be geometric mean between a and b.

- **16.** Find the sum of 'n' terms of the series : $0.5 + 0.55 + 0.555 + \dots n$ terms.
- **17.** If the pth, qth and rth term of a G.P. are a, b, c respectively, prove that : a^{q-r} . b^{r-p} . $c^{p-q} = 1$.

OR

The 5th, 8th and 11th term of a GP are p, q and s, respectively. Show that q2 = ps.

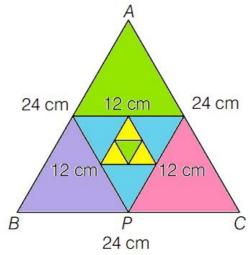
$\frac{\underline{SECTION} - \underline{D}}{\text{Questions 18 carry 5 marks.}}$

18. The sum of two numbers is '6' times their geometric mean, show that the numbers are in the ratio $(3+2\sqrt{2}):(3-2\sqrt{2}).$

OR

If S_n denotes the sum of *n* terms of a G.P., prove that $(S_{10} - S_{20})^2 = S_{10} (S_{30} - S_{20})$.

<u>SECTION – E (Case Study Based Questions)</u> Questions 19 to 20 carry 4 marks each.


19. A sequence of non-zero numbers is said to be a geometric progression, if the ratio of each term, except the first one, by its preceding term is always constant. Rahul, being a plant lover, decides to open a nursery and he bought few plants and pots. He wants to place pots in such a way that the number of pots in the first row is 2, in second row is 4 and in the third row is 8 and so on....

- (a) Find the constant multiple by which the number of pots is increasing in every row (1)
- (b) Find the number of pots in 8th row. (1)
- (c) Find the difference in number of pots placed in 7th row and 5th row (2)

OR

- (c) If Rahul wants to place 510 pots in total , then find the total number of rows formed in this arrangement (2)
- **20.** In Rangoli competition in school, Preeti made Rangoli in the equilateral shape. Each side of an equilateral triangle is 24 cm. The mid-point of its sides are joined to form another triangle. This process is going continuously infinite.

Based on above information, answer the following questions.

- (a) Find the side of the 5th triangle is (in cm) (1)
- (b) Find the sum of perimeter of first 6 triangle is (in cm) (2)

OR

- (b) Find the area of all the triangle is (in sq cm). (2)
- (c) Find the sum of perimeter of all triangle is (in cm). (1)

PRACTICE PAPER 09 (2024-25) CHAPTER 08 SEQUENCE AND SERIES (ANSWERS)

SUBJECT: MATHEMATICS	MAX. MARKS: 40
CLASS: XI	DURATION: 1½ hrs

General Instructions:

- **All** questions are compulsory.
- (ii). This question paper contains 20 questions divided into five Sections A, B, C, D and E.
- (iii). Section A comprises of 10 MCQs of 1 mark each. Section B comprises of 4 questions of 2 marks each. Section C comprises of 3 questions of 3 marks each. Section D comprises of 1 question of 5 marks each and Section E comprises of 2 Case Study Based Questions of 4 marks each.
- (iv). There is no overall choice.
- (v). Use of Calculators is not permitted

$\frac{\underline{SECTION} - \underline{A}}{\text{Questions 1 to 10 carry 1 mark each.}}$

(d) 2340

(d) 5th

1.	If the third term of G.P. is 4, then the product of its first 5 terms is:						
	(a) 4^3	(b) 4 ⁴	(c) 4^5	(d) none of these			
	Ans. $(c) 4^5$						
	Here, $a_3 = 4 \Rightarrow ar^2 = 4$						
	Product of first 5 terms = a . ar . ar^2 . ar^3 . ar^4 = a^5 . $r^{10} = (ar^2)^5 = (4)^5$						

2. In a G.P. the 3rd is 24 and the 6th term is 192, then the 10th term is:

```
(a) 1084
                     (b) 3290
                                              (c) 3072
Ans. (c) 3072
Here, a_3 = 24 and a_6 = 192
So, ar^2 = 24 and ar^5 = 192
On dividing, we get r^3 = 8 \Rightarrow r = 2, a = 6
a_{10} = ar^9 = (6.2^9) = 3072
```

3. Which term of the *G.P* 5, 10, 20, 40,.... is 5120? (b) 10th

Ans. (a) 11th Given sequence 5, 10, 20, 40, is a G.P. Here a = 5, r = 2 and an = 5120As we know that the general term of a GP is given by $a_n = ar^{n-1}$ $\Rightarrow 5120 = 5.\ 2^{n-1} \Rightarrow 2^{n-1} = 5120/5$ $\Rightarrow 2^{n-1} = 1024 \Rightarrow 2^{n-1} = 2^{10} \Rightarrow n-1 = 10 \Rightarrow n = 11$

Hence, 11th term is 5120.

(a) 11*th*

4. 18th term from the end of the sequence 3, 6, 12,...25th term is:

(a) 393216 (b) 393206 (c) 313216 (d) 303216 Ans. (a) 393216 Here, a = 3, r = 2, m = 18 and n = 25We know that if a sequence has n term then mth term from end is equal to (n - m + 1). $a_{18} = ar^{18-1} = ar^{17}$ $= 3 (2)^{17} = 3 \times 131072 = 393216$

(c) 6*th*

- 5. The 5th term from the end of the sequence 16, 8, 4, 2 ... $\frac{1}{16}$ is:
 - (a) 1 (b) 2 (c) 3 (d) 4

Ans. (a) 1

Given sequence is 16, 8, 4, 2, $\frac{1}{16}$

Here,
$$a = 16$$
 and $r = \frac{1}{2}$

We know that $a_n = ar^{n-1}$

So,
$$n = 5$$
th term $\Rightarrow a_5 = ar^4$

On putting
$$r = \frac{1}{2}$$
 we get $a_5 = 16 \left(\frac{1}{2}\right)^4 = 16 \times \frac{1}{16} = 1$

6. If the 8th term of G.P is 192 with a common ratio of 2, then the 12th term is:

- (a) 1640
- (b) 2084
- (c) 3072

Ans. (c) 3072

Here, $a_8 = 192$ and r = 2

We know that
$$a_n = ar^{n-1}$$

So, $a^8 = ar^{8-1} = ar^7 = 192 \Rightarrow a2^7 = 192$

$$\Rightarrow a = \frac{192}{128} \Rightarrow a = \frac{3}{2}$$

On putting $a = \frac{3}{2}$ and n = 12 in $a_n = ar^{n-1}$, we get

$$a_{12} = ar^{12-1} \Rightarrow a_{12} = ar^{11}$$

$$= \frac{3}{2} \times 2^{11} = 3 \times 2^{10} = 3 \times 1024 = 3072$$

7. If *n* terms of a *G.P.* 3, 32, 33... are needed to give the sum 120, then the value of n is:

- (b) 3
- (d) 5

Ans. (c) 4

Explanation: Here, $S_n = 120$, a = 3 and r = 3

So,
$$S_n = a \left(\frac{r^n - 1}{r - 1} \right) \Rightarrow 20 = 3 \left(\frac{3^n - 1}{3 - 1} \right)$$

$$\Rightarrow 240 = 3(3^{n} - 1) \Rightarrow 80 = 3^{n} - 1 \Rightarrow 81 = 3^{n} \Rightarrow 3^{4} = 3^{n} \Rightarrow n = 4$$

8. If nth term of a G.P. is 2ⁿ, then find the sum of its first 6 terms.

- (a) 126
- (b) 124
- (c) 190
- (d) 154

Ans. (a) 126

Sum of n terms of a GP, $S_n = a \left(\frac{r^n - 1}{r - 1} \right)$

Given that $a_n = 2^n$

- $\Rightarrow a_1 = 2$
- $\Rightarrow a_2 = 4$
- $\Rightarrow a_3 = 8$

Common ratio (r) = $4 \div 2 = 8 \div 4 = 2$

Sum of 6 terms =
$$2\left(\frac{2^6 - 1}{2 - 1}\right) = 2(64 - 1) = 2(63) = 126$$

For Q9 and Q10, a statement of assertion (A) is followed by a statement of reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.

- (d) A is false but R is true.
- **9.** Assertion (A): The first term of a GP is 1. The sum of third and fifth term is 90, then the common ratio are 3 or -3.

Reason (R): Common ratio of *GP* a_1, a_2, a_3, \ldots is given by $a_2 - a_1 = a_3 - a_2 = \ldots$

Ans. Here,
$$a = 1$$
, $a_3 + a_5 = 90 \Rightarrow r^2 + r^4 = 90$

$$\Rightarrow r^4 + r^2 - 90 = 0 \Rightarrow r^4 + 10r^2 - 9r^2 - 90 = 0.$$

$$\Rightarrow r^2 (r^2 + 10) - 9 (r^2 + 10) = 0 \Rightarrow (r^2 + 10)(r^2 - 9) = 0$$

But
$$r^2 + 10 \neq 0 \Rightarrow r^2 - 9 = 0 \Rightarrow r^2 = 9$$

$$\Rightarrow r = \pm 3$$
.

Hence A is true.

- \therefore A is true but R is false.
- **10. Assertion** (A): Sum of 7 terms of the GP 3, 6, 12, . . . is 381.

Reason (R): Sum of first n terms of the G. P is given by $S_n = \frac{a(r^n - 1)}{r - 1}$, where a =first term, r =

common ratio and $|\mathbf{r}| > 1$.

Ans: (a) Both A and R are true and R is the correct explanation of A.

Assertion Given GP 3, 6, 12, . . .

Here,
$$a = 4$$
, $r = 16/4 = 4 > 1$

$$\Rightarrow S_6 = 4 \left(\frac{4^6 - 1}{4 - 1} \right) = \frac{4(4095)}{3} = 5460$$

Hence, Assertion and Reason both are true and Reason is the correct explanation of Assertion.

$\frac{\underline{SECTION} - \underline{B}}{\text{Questions 11 to 14 carry 2 marks each.}}$

11. If a, b, c, d are in G.P.; prove that, a + b, b + c, c + d are also in G.P.

Ans: Let r be common ratio of the G.P. a, b, c, d then b = ar, $c = ar^2$ and $d = ar^3$.

$$a + b = a + ar = a(1 + r)$$
; $b + c = ar + ar^2 = ar(1 + r)$; $c + d = ar^2(r + 1)$

Now,
$$(b+c)^2 = [ar(1+r)]^2 = [a(1+r)][ar^2(1+r)] = (a+b)(c+d)$$

- $\therefore a + b, b + c, c + d$ are in G. P.
- **12.** Prove that : $9^{1/3}$. $9^{1/9}$. $9^{1/27}$ = 3

$$9^{1/3}.9^{1/9}.9^{1/27}... = 9^{(1/3+1/9+1/27+...)} = 9^{\frac{1/3}{1-1/3}} = 9^{1/2} = 3$$

13. Express $6.2\overline{45}$ as rational numbers using G.P.

Ans.
$$6.\overline{245} = 6.2 + 0.045 + 0.00045 + 0.0000045 + \dots$$

Clearly, $0.045 + 0.00045 + 0.0000045 + \dots$ forms GP where a = 0.045 and r = 0.01

$$\therefore 6.2\overline{45} = 6.2 + \frac{a}{1-r}$$

$$= \frac{62}{10} + \frac{0.045}{1 - 0.01} = \frac{62}{10} + \frac{0.045}{0.99} = \frac{62}{10} + \frac{45}{990}$$

$$=\frac{62}{10}+\frac{5}{110}=\frac{682+5}{110}=\frac{687}{110}$$

14. Find the values of p, if sum to infinity for the G.P. p, 1, $\frac{1}{p}$, is $\frac{25}{4}$.

Ans:
$$\frac{p}{1-\frac{1}{p}} = \frac{25}{4} \Rightarrow \frac{p^2}{p-1} = \frac{25}{4}$$

 $\Rightarrow 4p^2 = 25p - 25$
 $\Rightarrow 4p^2 - 25p + 25 = 0$
 $(4p-5)(p-5) = 0 \Rightarrow p = \frac{5}{4}, 5$

$\frac{SECTION - C}{\text{Questions 15 to 17 carry 3 marks each.}}$

15. Three numbers are in AP their sum is 15. If 1, 3, 9 be added to them respectively they form a GP. Find the numbers.

Ans. Let these numbers be a - d, a, a + d (keeping in mind the rule of selection of three numbers in

Given that
$$(a - d) + a + (a + d) = 15$$

$$\Rightarrow 3a = 15 \Rightarrow a = 5$$

 \therefore The numbers are now 5 – d, 5, 5 + d.

Adding 1, 3, 9 in the numbers respectively. We get the new numbers i.e.,

$$5 - d + 1$$
, $5 + 3$, $9 + 5 + d$ are in GP

$$\Rightarrow$$
 6 – d, 8, 14 + d form a GP

$$\Rightarrow \frac{8}{6-d} = \frac{14+d}{8}$$

$$\Rightarrow$$
 64 = (6 - d) (14 + d) \Rightarrow 64 = 84 - 14d + 6d - d²

$$\Rightarrow d^2 + 8d - 20 = 0 \Rightarrow d^2 + 10d - 2d - 20 = 0 \Rightarrow (d+10)(d-2) = 0$$

$$\Rightarrow d = -10 \text{ or } d = 2$$

Therefore, the numbers are 15, 5, -5 or 3, 5, 7.

OR

Find the value of n, so that $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ may be geometric mean between a and b.

Ans. $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ is the G.M. between a and b.

$$\Rightarrow \frac{a^{n+1} + b^{n+1}}{a^n + b^n} = \sqrt{ab}$$

$$\Rightarrow a^{n+1} + b^{n+1} = a^{\left(n+\frac{1}{2}\right)} b^{\frac{1}{2}} + a^{\frac{1}{2}} b^{\left(n+\frac{1}{2}\right)}$$

$$\Rightarrow a^{n+1} - a^{\left(n+\frac{1}{2}\right)}b^{\frac{1}{2}} = a^{\frac{1}{2}}b^{\left(n+\frac{1}{2}\right)} - b^{n+1}$$

$$\Rightarrow a^{\left(n+\frac{1}{2}\right)} \left[a^{\frac{1}{2}} - b^{\frac{1}{2}} \right] = b^{\left(n+\frac{1}{2}\right)} \left(a^{\frac{1}{2}} - b^{\frac{1}{2}} \right) \Rightarrow a^{\left(n+\frac{1}{2}\right)} = b^{\left(n+\frac{1}{2}\right)} \left[\because a^{\frac{1}{2}} - b^{\frac{1}{2}} \neq 0 \text{ as } a \neq b \right]$$

$$\Rightarrow \left(\frac{a}{b}\right)^{\left(n+\frac{1}{2}\right)} = 1 \quad \Rightarrow \left(\frac{a}{b}\right)^{\left(n+\frac{1}{2}\right)} = \left(\frac{a}{b}\right)^{0} \Rightarrow \left(n+\frac{1}{2}\right) = 0 \Rightarrow n = \frac{-1}{2}$$

16. Find the sum of 'n' terms of the series : 0.5 + 0.55 + 0.555 + ... n terms.

Ans:
$$S_n = 0.5 + 0.55 + 0.555 + ... n$$
 terms

$$= 5[0.1 + 0.11 + 0.111 + ... n \text{ terms}]$$

$$= \frac{5}{9} [0.9 + 0.99 + 0.999 + \dots n \text{ terms}]$$

$$S_n = \frac{5}{9} [(1 - 0.1) + (1 - 0.01) + (1 - 0.001) + \dots n \text{ terms}]$$

$$= \frac{5}{9} [n - \{0.1 + 0.01 + 0.001 + \dots n \text{ terms}\}]$$

$$= \frac{5}{9} \left[n - \frac{0.1\{1 - (0.1)^n\}}{1 - 0.1} \right]$$

$$= \frac{5}{9} \left[n - \frac{1}{9} \{1 - (0.1)^n\} \right] = \frac{5}{81} [9n - 1 + (0.1)^n]$$

17. If the *p*th, *q*th and *r*th term of a G.P. are *a*, *b*, *c* respectively, prove that : a^{q-r} . b^{r-p} . $c^{p-q} = 1$. Ans: Let A be the first term and R the common ratio of a given G.P.

Given
$$a_p = a$$
, $a_q = b$, $a_r = c$,
 $\therefore a = AR^{p-1}$; $b = AR^{q-1}$; $c = AR^{r-1}$
Consider $a^{q-r} b^{r-p} c^{p-q}$
 $= (AR^{p-1})^{q-r} (AR^{q-1})^{r-p} (AR^{r-1})^{p-q}$
 $= A^{q-r} R^{(p-1)} {}^{(q-r)} . A^{r-p} R^{(q-1)} {}^{(r-p)} A^{p-q} R^{(r-1)} {}^{(p-q)}$
 $= A^{q-r} + r^{-p} + p^{-q} R^{(p-1)} {}^{(q-r)} + {}^{(q-1)} {}^{(r-p)} + {}^{(r-1)} {}^{(p-q)}$
 $= A^0 R^{pq-pr-q+r+qr-pq-r+p+pr-qr-p+q}$
 $= A^0 R^0 = 1$

OR

The 5th, 8th and 11th term of a GP are p, q and s, respectively. Show that q2 = ps. Ans. Let 'a' be the first term and 'r' be the common ratio of the given GP.

Here,
$$a_5 = p \Rightarrow ar^4 = p$$
 ...(i)
 $a_8 = q \Rightarrow ar^7 = q$...(ii)
 $a_{11} = s \Rightarrow ar^{10} = s$...(iii)
Squaring both sides of equation (ii), we get
 $q^2 = (ar^7)^2 \Rightarrow q^2 = a^2 r^{14}$
 $\Rightarrow q^2 = (ar^4)(ar^{10})$
 $\Rightarrow q^2 = ps \ [\because p = ar^4 \text{ and } s = ar^{10}]$

SECTION – D

Questions 18 carry 5 marks.

18. The sum of two numbers is '6' times their geometric mean, show that the numbers are in the ratio $(3+2\sqrt{2}):(3-2\sqrt{2})$.

Ans

Let the two numbers be a and b, (a > b)

We have,
$$a+b=6\sqrt{ab}$$
 ...(i)
Also, $(a-b)^2=(a+b)^2-4ab$

$$=(6\sqrt{ab})^2-4ab=32ab$$

$$\Rightarrow a-b=\sqrt{32ab} \qquad (a>b)$$

$$=4\sqrt{2}\sqrt{ab} \qquad ...(ii)$$

From (i) and (ii), we have

$$\frac{a+b}{a-b} = \frac{6\sqrt{ab}}{4\sqrt{2}\sqrt{ab}} = \frac{3}{2\sqrt{2}}$$

Applying componendo and dividendo, we get

$$\Rightarrow \frac{a+b+a-b}{a+b-a+b} = \frac{3+2\sqrt{2}}{3-2\sqrt{2}}$$

$$\Rightarrow \frac{2a}{2b} = \frac{3+2\sqrt{2}}{3-2\sqrt{2}}$$

$$\Rightarrow \frac{a}{b} = \frac{3+2\sqrt{2}}{3-2\sqrt{2}}$$

$$\Rightarrow a: b = 3+2\sqrt{2}: 3-2\sqrt{2}.$$

If S_n denotes the sum of n terms of a G.P., prove that $(S_{10} - S_{20})^2 = S_{10} (S_{30} - S_{20})$. Ans:

$$\begin{split} &(S_{10}-S_{20})^2\\ &=\left\{\frac{a(1-r^{10})}{1-r}-\frac{a(1-r^{20})}{1-r}\right\}^2 = \frac{a^2}{(1-r)^2}\{r^{20}-r^{10}\}^2\\ &=\frac{a^2}{(1-r)^2}(r^{40}+r^{20}-2r^{30}) \qquad ...(i)\\ &S_{10}\left(S_{30}-S_{20}\right)\\ &=\frac{a(1-r^{10})}{1-r}\left\{\frac{a(1-r^{30})}{1-r}-\frac{a(1-r^{20})}{1-r}\right\}\\ &=\frac{a^2}{(1-r)^2}(1-r^{10})(r^{20}-r^{30})\\ &=\frac{a^2}{(1-r)^2}(r^{20}-r^{30}-r^{30}+r^{40})\\ &=\frac{a^2}{(1-r)^2}(r^{40}+r^{20}-2r^{30}) \qquad ...(ii)\\ &From\ (i)\ and\ (ii)\ we\ get\ (S_{10}-S_{20})^2=S_{10}\ (S_{30}-S_{20}) \end{split}$$

<u>SECTION – E (Case Study Based Questions)</u> Questions 19 to 20 carry 4 marks each.

19. A sequence of non-zero numbers is said to be a geometric progression, if the ratio of each term, except the first one, by its preceding term is always constant. Rahul, being a plant lover, decides to open a nursery and he bought few plants and pots. He wants to place pots in such a way that the number of pots in the first row is 2, in second row is 4 and in the third row is 8 and so on....

(a) Find the constant multiple by which the number of pots is increasing in every row (1)

- (b) Find the number of pots in 8th row. (1)
- (c) Find the difference in number of pots placed in 7th row and 5th row (2)

(c) If Rahul wants to place 510 pots in total, then find the total number of rows formed in this arrangement (2)

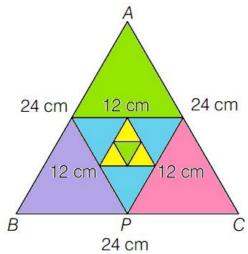
Ans. (a) The number of pots in each row is 2, 4, 8...

: This forms a geometric progression,

Where
$$a = 2$$
, $r = 4/2 = 2$

Hence, the constant multiple by which the number of pots is increasing in every row is 2.

- (b) Number of pots in 8th row = $a_8 \Rightarrow a_8 = ar^{8-1} = 2(2)^7 = 2^8 = 256$ (c) Number of pots in 7th row, $a_7 = 2(2)^{7-1} = 2 \cdot 2^6 = 2^7 = 128$


Number of pots in 5th row, $a_5 = 2(2)^{5-1} = 2.2^4 = 2^5 = 32$

Required answer = 128 - 32 = 96

OR

(c) Let there be *n* number of rows.

20. In Rangoli competition in school, Preeti made Rangoli in the equilateral shape. Each side of an equilateral triangle is 24 cm. The mid-point of its sides are joined to form another triangle. This process is going continuously infinite.

Based on above information, answer the following questions.

- (a) Find the side of the 5th triangle is (in cm) (1)
- (b) Find the sum of perimeter of first 6 triangle is (in cm) (2)

OR

- (b) Find the area of all the triangle is (in sq cm). (2)
- (c) Find the sum of perimeter of all triangle is (in cm). (1)

Ans: (a) Side of first triangle is 24.

Side of second triangle is 24/2 = 12

Similarly, side of second triangle is 12/2 = 6

$$\therefore$$
 a = 24, r = 12/24 = 1/2

∴ Side of the fifth triangle,
$$a_5 = ar^4 = 24 \times \left(\frac{1}{2}\right)^4 = \frac{24}{16} = 1.5cm$$

(b) Perimeter of first triangle = $24 \times 3 = 72$

Perimeter of second triangle = 72/2 = 36

Similarly, perimeter of third triangle = 36/2 = 18

$$\therefore$$
 a = 72 r = 36/72 = 1/2

∴ Sum of perimeter of first 6 triangle,
$$S_6 = \frac{a(1-r^6)}{1-r} = \frac{72\left(1-\left(\frac{1}{2}\right)^6\right)}{1-\frac{1}{2}} = \frac{72\times63\times2}{2^6} = \frac{567}{4}cm$$

OR

(b) Area of first triangle =
$$\frac{\sqrt{3}}{4}(24)^2$$

Area of second triangle = $\frac{\sqrt{3}}{4}(12)^2$

Similarly, Area of third triangle = $\frac{\sqrt{3}}{4}(6)^2$

$$\therefore a = \frac{\sqrt{3}}{4}(24)^2, r = 1/4$$

Sum of the areas of all triangles
$$=\frac{a}{1-r} = \frac{\frac{\sqrt{3}}{4}(24)^2}{1-\frac{1}{4}} = \frac{\sqrt{3}}{3}(24)^2 = 192\sqrt{3}cm$$

(c) The sum of perimeter of all triangle 3(24 + 12 + 6 +) is

$$3\left(\frac{a}{1-r}\right) = 3\left(\frac{24}{1-\frac{1}{2}}\right) = 144cm$$