PRACTICE PAPER 03 (2024-25) CHAPTER 03 TRIGONOMETRIC FUNCTIONS

SUBJECT: MATHEMATICS				MAX. MARKS: 40	
CLASS: XI				DURATION: 1½ hrs	
	eneral Instructions:				
(iv	This question paper conSection A comprises of	tains 20 questions divided for 10 MCQs of 1 mark isses of 3 questions of a E comprises of 2 Case ce.	x each. Section B comp 3 marks each. Section	prises of 4 questions of 2 marks D comprises of 1 question of 5	
(v)	. Osc of Calculators is no	-	NON A		
<u>SECTION – A</u> Questions 1 to 10 carry 1 mark each.					
1.	The value of $\frac{1 - \tan^2 15^0}{1 + \tan^2 15^0}$				
	(a) 1	(b) $\sqrt{3}$	(c) $\sqrt{3/2}$	(d) 2	
2.	If $\cos x = -1/2$ and $0 < x$	$< 2\pi$, then the solution	ns are:		
	(a) $x = \pi/3, 4\pi/3$		(c) $x = 2\pi/3, 7\pi/3$	(d) $x = 2\pi/3, 5\pi/3$	
3.	If $\tan A = \frac{1}{2}$ and $\tan B = \frac{1}{2}$	$=\frac{1}{3}$, then $\tan(2A+B)$	is equal to		
	(a) 1	(b) 2	(c) 3	(d) 4	
4.	The value of $\sin 50^{\circ} - \sin 70^{\circ} + \sin 10^{\circ}$ is				
	(a) 1	(b) 0	(c) $\frac{1}{2}$	(d) 2	
5.	If $\alpha + \beta = \frac{\pi}{4}$, then the value of $(1 + \tan \alpha) (1 + \tan \beta)$ is				
	•	(b) 2		(d) none of these	
6.	If $\cos x + \sqrt{3} \sin x = 2$, the (a) $\pi/3$	then the value of x is: (b) $2\pi/3$	(c) 4π/3	(d) $5\pi/3$	
7.	The radius of the circle in 22/7)	n which a central angle	e of 30° intercepts an a	rc of length 22 cm is: (Use π =	
	(a) 43 cm	(b) 41 cm	(c) 42 cm	(d) 40 cm	
8.	The angle in the radian through which a pendulum swings its length is 80 cm and tip describe of length 20 cm is:				
	(a) 1/4	(b) 2/25	(c) 3/25	(d) 4/25	
co	rrect answer out of the fo	ollowing choices.	•	ent of reason (R). Choose the extract explanation of Assertion (A)	

(b) Both Assertion (A) and Reason (R) are true & Reason (R) is not the correct explanation of Assertion (A)

(c) Assertion (A) is true but Reason (R) is false (d) Assertion (A) is false but Reason (R) is true

- **9.** Assertion (A): The value of $\sin (-690^\circ) \cos (-300^\circ) + \cos (-750^\circ) \sin (-240^\circ) = 1$ **Reason** (R): The value of sin and cos is negative in the third and fourth quadrant respectively.
- **10. Assertion (A):** $\sin(x + y) \cos(x y) \cos(x + y) \sin(x y) = \sin 2x$ **Reason (R):** $\sin A \cos B - \cos A \sin B = \sin(A - B)$

$\frac{\underline{SECTION} - \underline{B}}{\text{Questions 11 to 14 carry 2 marks each.}}$

- 11. If the angular diameter of the moon be 30', how far from the eye a coin of diameter 2.2 cm be kept to hide the moon?
- **12.** Find the value of $2\sin^2\frac{3\pi}{4} + 2\cos^2\frac{3\pi}{4} 2\tan^2\frac{3\pi}{4}$.
- **13.** Prove the following : $\sin 10^{\circ} + \sin 20^{\circ} + \sin 40^{\circ} + \sin 50^{\circ} = \sin 70^{\circ} + \sin 80^{\circ}$.
- 14. Find the value of $\tan 22^{\circ} 30'$.

$\frac{SECTION - C}{\text{Questions 15 to 17 carry 3 marks each.}}$

- **15.** If $\sin x = \frac{3}{5}$, $\cos y = \frac{-12}{13}$ and x, y both lie in the second quadrant, find the values of $\cos (x y)$
- **16.** If $\sin \alpha = k \sin \beta$, prove that, $\tan \left(\frac{\alpha \beta}{2} \right) = \frac{k 1}{k + 1} \tan \frac{\alpha + \beta}{2}$.
- 17. Prove that $\frac{\sin A \cdot \sin 2A + \sin 3A \cdot \sin 6A}{\sin A \cdot \cos 2A + \sin 3A \cdot \cos 6A} = \tan 5A$

OR

Prove that
$$\sqrt{2 + \sqrt{2 + 2\cos 4x}} = 2\cos x, 0 < x < \frac{\pi}{4}$$
.

$\underline{SECTION-D}$

Questions 18 carry 5 marks.

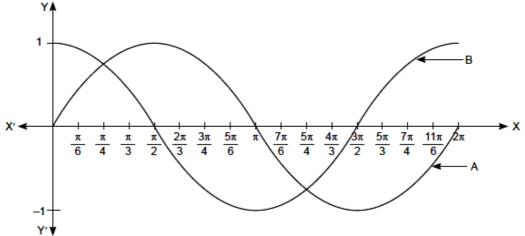
18. If α , β are two distinct roots of the equation $a \tan \theta + b \sec \theta = c$, prove that $\tan (\alpha + \beta) = \frac{2ac}{a^2 - c^2}$.

Prove that:
$$\sin^3 x + \sin^3 \left(\frac{2\pi}{3} + x \right) + \sin^3 \left(\frac{4\pi}{3} + x \right) = -\frac{3}{4} \sin 3x$$
.

<u>SECTION – E (Case Study Based Questions)</u>

Questions 19 to 20 carry 4 marks each.

19. A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66 km/h.



Now, answer the following:

- (i) Find the angle in radians by which it turned in 10 seconds.
- (ii) Find the degree measure of the angle turned by railway train in 10 seconds.
- (iii) How much degree will train turn in 20 seconds?

OR

- (iii) If train changes its speed to 60 km/h then what angle will train turn in 10 seconds.
- 20. Observe the below graph carefully answer the following

- (i) Graph A represent the graph of which trigonometric function.
- (ii) Graph B represent the graph of which trigonometric function.
- (iii) From the above graph write the principal value of x if $\sin x = 1$
- (iv) From the graph find the angle for which the value of sin x and cos x is same.

Page - 3 -

PRACTICE PAPER 03 (2024-25)

CHAPTER 03 TRIGONOMETRIC FUNCTIONS (ANSWERS)

SUBJECT: MATHEMATICS MAX. MARKS: 40 **CLASS: XI DURATION: 1½ hrs**

General Instructions:

- **All** questions are compulsory.
- (ii). This question paper contains 20 questions divided into five Sections A, B, C, D and E.
- (iii). Section A comprises of 10 MCQs of 1 mark each. Section B comprises of 4 questions of 2 marks each. Section C comprises of 3 questions of 3 marks each. Section D comprises of 1 question of 5 marks each and Section E comprises of 2 Case Study Based Ouestions of 4 marks each.
- (iv). There is no overall choice.
- (v). Use of Calculators is not permitted

SECTION – A Questions 1 to 10 carry 1 mark each.

1. The value of
$$\frac{1 - \tan^2 15^0}{1 + \tan^2 15^0}$$

(a) 1

(b) $\sqrt{3}$

(c) $\sqrt{3/2}$

(d) 2

Ans: (c) $\sqrt{3/2}$

Let $\theta = 15^{\circ} \Rightarrow 2\theta = 30^{\circ}$

Now, since we know that,

$$\cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \implies \cos 30^\circ = \frac{1 - \tan^2 15^\circ}{1 + \tan^2 15^\circ} \implies \frac{\sqrt{3}}{2} = \frac{1 - \tan^2 15^\circ}{1 + \tan^2 15^\circ}$$

2. If $\cos x = -1/2$ and $0 < x < 2\pi$, then the solutions are:

(a) $x = \pi/3, 4\pi/3$

(b) $x = 2\pi/3, 4\pi/3$ (c) $x = 2\pi/3, 7\pi/3$ (d) $x = 2\pi/3, 5\pi/3$

Ans: (b) $x = 2\pi/3, 4\pi/3$

3. If $\tan A = \frac{1}{2}$ and $\tan B = \frac{1}{3}$, then $\tan(2A + B)$ is equal to

(a) 1

(c)3

(d) 4

Ans: (c) 3

$$\tan (2A + B) = \frac{\tan 2A + \tan B}{1 - \tan 2A \cdot \tan B}$$

$$= \frac{\frac{2 \tan A}{1 - \tan^2 A} + \tan B}{1 - \left(\frac{2 \tan A}{1 - \tan^2 A}\right) \tan B} = \frac{\frac{2 \times \frac{1}{2}}{1 - \frac{1}{4}} + \frac{1}{3}}{1 - \left(\frac{2 \times \frac{1}{2}}{1 - \frac{1}{4}}\right) \times \frac{1}{3}} = \frac{\frac{4}{3} + \frac{1}{3}}{1 - \frac{4}{3} \times \frac{1}{3}} = \frac{5/3}{5/9} = 3$$

4. The value of $\sin 50^{\circ} - \sin 70^{\circ} + \sin 10^{\circ}$ is

(a) 1

(b) 0

(c) $\frac{1}{2}$

(d) 2

Ans: (b) 0

 $\sin 50^{\circ} - \sin 70^{\circ} + \sin 10^{\circ}$

$$= 2 \cos\left(\frac{50^{\circ} + 70^{\circ}}{2}\right) \cdot \sin\left(\frac{50^{\circ} - 70^{\circ}}{2}\right) + \sin 10^{\circ}$$

$$= 2 \cos 60^{\circ} \cdot \sin (-10^{\circ}) + \sin 10^{\circ}$$

$$= -2 \times \frac{1}{2} \times \sin 10^{\circ} + \sin 10^{\circ}$$

$$= -\sin 10^{\circ} + \sin 10^{\circ} = 0$$

- 5. If $\alpha + \beta = \frac{\pi}{4}$, then the value of $(1 + \tan \alpha) (1 + \tan \beta)$ is
 - (a) 1

- (b) 2
- (d) none of these

Ans: (b) 2

Ans: (b) 2
$$\alpha + \beta = \frac{\pi}{4} \quad \text{(given)}$$

$$\Rightarrow \quad \tan(\alpha + \beta) = \tan\frac{\pi}{4} \Rightarrow \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta} = 1$$

$$\Rightarrow \tan\alpha + \tan\beta + \tan\alpha \tan\beta = 1 \quad \dots(i)$$
Now $(1 + \tan\alpha) (1 + \tan\beta)$

$$= 1 + \tan\alpha + \tan\beta + \tan\alpha \tan\beta$$

$$= 1 + 1 \quad \text{\{using (i)\}}$$

$$= 2$$

- **6.** If $\cos x + \sqrt{3} \sin x = 2$, then the value of x is:
 - (a) $\pi/3$

- (b) $2\pi/3$
- (c) $4\pi/3$
- (d) $5\pi/3$

Ans: (a) $\pi/3$

- 7. The radius of the circle in which a central angle of 30° intercepts an arc of length 22 cm is: (Use $\pi =$ 22/7)
 - (a) 43 cm
- (b) 41 cm
- (c) 42 cm
- (d) 40 cm

Ans: (c) 42 cm

- 8. The angle in the radian through which a pendulum swings its length is 80 cm and tip describes an arc of length 20 cm is:
 - (a) 1/4

- (b) 2/25
- (c) 3/25
- (d) 4/25

Ans: (a) 1/4

For Q9 and Q10, a statement of assertion (A) is followed by a statement of reason (R). Choose the correct answer out of the following choices.

- (a) Both Assertion (A) and Reason (R) are true & Reason (R) is the correct explanation of Assertion (A)
- (b) Both Assertion (A) and Reason (R) are true & Reason (R) is not the correct explanation of Assertion (A)
- (c) Assertion (A) is true but Reason (R) is false
- (d) Assertion (A) is false but Reason (R) is true
- **9.** Assertion (A): The value of $\sin (-690^{\circ}) \cos (-300^{\circ}) + \cos (-750^{\circ}) \sin (-240^{\circ}) = 1$ **Reason** (R): The value of sin and cos is negative in the third and fourth quadrant respectively.

Ans: (c) Assertion (A) is true but Reason (R) is false

10. Assertion (A): $\sin(x + y) \cos(x - y) - \cos(x + y) \sin(x - y) = \sin 2x$

Reason (R): $\sin A \cos B - \cos A \sin B = \sin(A - B)$

Ans: (d) Assertion (A) is false but Reason (R) is true

 $\frac{\underline{SECTION} - B}{\text{Questions 11 to 14 carry 2 marks each.}}$

11. If the angular diameter of the moon be 30', how far from the eye a coin of diameter 2.2 cm be kept to hide the moon?

Ans:

$$\theta = 30'$$
; $l = 2.2$ cm; $r = ?$

$$\theta = 30' = \frac{30}{60} \times \frac{\pi}{180}$$

$$\therefore \frac{\pi}{360} = \frac{2.2}{r} \Rightarrow r = \frac{22 \times 360 \times 7}{22 \times 10} = 252 \text{ cm}.$$

12. Find the value of $2\sin^2\frac{3\pi}{4} + 2\cos^2\frac{3\pi}{4} - 2\tan^2\frac{3\pi}{4}$.

Ans:

Consider,
$$2 \sin^2 \frac{3\pi}{4} + 2 \cos^2 \frac{3\pi}{4} - 2 \tan^2 \frac{3\pi}{4} ...(i)$$

$$\sin \frac{3\pi}{4} = \sin 135^\circ = \sin (180^\circ - 45^\circ)$$

$$=\sin 45^\circ = \frac{1}{\sqrt{2}}$$

$$\cos \frac{3\pi}{4} = \cos 135^\circ = \cos (180^\circ - 45^\circ)$$

$$=-\cos 45^{\circ} = -\frac{1}{\sqrt{2}}$$

$$\tan \frac{3\pi}{4} = \tan 135^\circ = \tan (180^\circ - 45^\circ)$$
$$= -\tan 45^\circ = -1$$

Substituting in (i), we get

$$= 2\left(\frac{1}{\sqrt{2}}\right)^2 + 2\left(-\frac{1}{\sqrt{2}}\right)^2 - 2(-1)^2$$

$$= 2 \times \frac{1}{2} + 2 \times \frac{1}{2} - 2 \times 1 = 1 + 1 - 2 = 0$$

13. Prove the following : $\sin 10^{\circ} + \sin 20^{\circ} + \sin 40^{\circ} + \sin 50^{\circ} = \sin 70^{\circ} + \sin 80^{\circ}$.

Ans:
$$(\sin 50^{\circ} + \sin 10^{\circ}) + (\sin 40^{\circ} + \sin 20^{\circ})$$

$$= 2 \sin 30^{\circ} \cos 20^{\circ} + 2 \sin 30^{\circ} \cos 10^{\circ}.$$

$$=\cos 20^{\circ} + \cos 10^{\circ}$$

$$= \cos (90^{\circ} - 70^{\circ}) + \cos (90^{\circ} - 80^{\circ})$$

$$= \sin 70^{\circ} + \sin 80^{\circ}.$$

14. Find the value of $\tan 22^{\circ} 30'$.

Ans:

$$\tan\frac{\theta}{2} = \sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$$

$$\therefore \tan \frac{45^{\circ}}{2} = \tan 22^{\circ} 30'$$

$$= \sqrt{\frac{1 - \cos 45^{\circ}}{1 + \cos 45^{\circ}}} = \sqrt{\frac{1 - \frac{1}{\sqrt{2}}}{1 + \frac{1}{\sqrt{2}}}} = \sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}$$

$$=\sqrt{\frac{(\sqrt{2}-1)^2}{2-1}}=\sqrt{2}-1$$

 $\frac{SECTION - C}{\text{Questions 15 to 17 carry 3 marks each.}}$

15. If $\sin x = \frac{3}{5}$, $\cos y = \frac{-12}{13}$ and x, y both lie in the second quadrant, find the values of $\cos (x - y)$

Ans: Given, $\sin x = \frac{3}{5}$, $\cos y = \frac{-12}{13}$ and x, y both lie in the second quadrant.

We know that
$$\cos^2 x = 1 - \sin^2 x = 1 - \left(\frac{3}{5}\right)^2 = \frac{16}{25} \implies \cos x = \pm \frac{4}{5}$$

Since, x lies in 2nd quadrant, $\cos x$ is (–ve).

$$\therefore \cos x = \frac{-4}{5}$$

Also,
$$\sin^2 y = 1 - \cos^2 y = 1 - \left(\frac{-12}{13}\right)^2 = \frac{25}{169} \implies \sin y = \pm \frac{5}{13}$$

Since, y lies in 2nd quadrant, sin y is (+ve)

$$\therefore \sin y = \frac{5}{13}$$

$$\cos(x - y) = \cos x \cdot \cos y + \sin x \cdot \sin y$$

$$= \left(\frac{-4}{5}\right)\left(\frac{-12}{13}\right) + \frac{3}{5} \times \frac{5}{13} = \frac{48}{65} + \frac{15}{65} = \frac{63}{65}$$

16. If $\sin \alpha = k \sin \beta$, prove that, $\tan \left(\frac{\alpha - \beta}{2} \right) = \frac{k-1}{k+1} \tan \frac{\alpha + \beta}{2}$.

Ans: Given,
$$\sin \alpha = k \sin \beta \Rightarrow \frac{\sin \alpha}{\sin \beta} = \frac{k}{1}$$

Applying componendo and dividendo, we get, $\frac{\sin \alpha + \sin \beta}{\sin \alpha - \sin \beta} = \frac{k+1}{k-1}$

$$\frac{2\sin\frac{\alpha+\beta}{2}\cdot\cos\frac{\alpha-\beta}{2}}{2\cos\frac{\alpha+\beta}{2}\cdot\sin\frac{\alpha-\beta}{2}} = \frac{k+1}{k-1} \Rightarrow \frac{\tan\frac{\alpha+\beta}{2}}{\tan\frac{\alpha-\beta}{2}} = \frac{k+1}{k-1} \Rightarrow \tan\frac{\alpha-\beta}{2} = \frac{k-1}{k+1}\cdot\tan\frac{\alpha+\beta}{2}$$

17. Prove that
$$\frac{\sin A \cdot \sin 2A + \sin 3A \cdot \sin 6A}{\sin A \cdot \cos 2A + \sin 3A \cdot \cos 6A} = \tan 5A$$
Ans: LHS =
$$\frac{\sin A \cdot \sin 2A + \sin 3A \cdot \sin 6A}{\sin A \cdot \cos 2A + \sin 3A \cdot \cos 6A}$$

$$\frac{2 \sin 2A \sin A + 2 \sin 6A \sin 3A}{2 \cos 2A \sin A + 2 \cos 6A \sin 3A}$$

$$= \frac{\cos A - \cos 3A + \cos 3A - \cos 9A}{\sin 3A - \sin A + \sin 9A - \sin 3A}$$

$$= \frac{\cos A - \cos 9A}{\sin 9A - \sin A} = \frac{2 \sin 5A \sin 4A}{2 \cos 5A \sin 4A}$$

$$= \tan 5A = RHS$$

OR

Prove that
$$\sqrt{2 + \sqrt{2 + 2\cos 4x}} = 2\cos x, 0 < x < \frac{\pi}{4}$$
.

Ans: LHS

$$\sqrt{2 + \sqrt{2 + 2\cos 4x}} = \sqrt{2 + \sqrt{2 + 2(2\cos^2 2x - 1)}} \\
= \sqrt{2 + \sqrt{2 + 4\cos^2 2x - 2}} = \sqrt{2 + \sqrt{4\cos^2 2x}} = \sqrt{2 + 2\cos 2x} \\
= \sqrt{2(1 + \cos 2x)} = \sqrt{2 \times 2\cos^2 x} = \sqrt{4\cos^2 x} \\
= 2\cos x = RHS$$

SECTION - D

Questions 18 carry 5 marks.

18. If α , β are two distinct roots of the equation $a \tan \theta + b \sec \theta = c$, prove that $\tan (\alpha + \beta) = \frac{2ac}{a^2 - c^2}$.

Ans: Changing into $\sin \theta$, $\cos \theta$, we get $a \sin \theta + b = c \cos \theta$, α , β are the roots.

 $\Rightarrow a \sin \alpha + b = c \cos \alpha$ and $a \sin \beta + b = c \cos \beta$.

 $\Rightarrow a (\sin \alpha - \sin \beta) = c (\cos \alpha - \cos \beta)$

$$\Rightarrow a \cdot 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$
$$= -c.2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$
$$\Rightarrow \tan \frac{\alpha + \beta}{2} = -\frac{a}{c}$$

$$\Rightarrow \tan{(\alpha+\beta)} = \frac{2\tan{\frac{\alpha+\beta}{2}}}{1-\tan^2{\frac{\alpha+\beta}{2}}} = \frac{-2\frac{a}{c}}{1-\frac{a^2}{c^2}} = \frac{2ac}{a^2-c^2}$$

Prove that: $\sin^3 x + \sin^3 \left(\frac{2\pi}{3} + x \right) + \sin^3 \left(\frac{4\pi}{3} + x \right) = -\frac{3}{4} \sin 3x$.

Ans: LHS =
$$\sin^3 x + \sin^3 \left(\frac{2\pi}{3} + x\right) + \sin^3 \left(\frac{4\pi}{3} + x\right)$$

= $\frac{3\sin x - \sin 3x}{4} + \frac{3\sin \left(\frac{2\pi}{3} + x\right) - \sin(2\pi + 3x)}{4}$
+ $\frac{3\sin \left(\frac{4\pi}{3} + x\right) - \sin(4\pi + 3x)}{4}$
= $\frac{1}{4} \left[3 \left\{ \sin x + \sin \left(\frac{2\pi}{3} + x\right) + \sin \left(\frac{4\pi}{3} + x\right) \right\} \right]$
 $-\left\{ \sin 3x + \sin 3x + \sin 3x \right\}$
 $\left[\because \sin(2\pi + x) = \sin x \right]$
= $\frac{1}{4} \left[3 \left\{ \sin x + 2 \cdot \sin(\pi + x) \cos \left(\frac{\pi}{3}\right) \right\} - 3\sin 3x \right]$
= $\frac{1}{4} \left[3 \left\{ \sin x - 2 \cdot \sin x \cdot \left(\frac{1}{2}\right) \right\} - 3\sin 3x \right]$
[$\because \sin(\pi + x) = -\sin x$]
= $\frac{1}{4} \left[3 \left\{ \sin x - \sin x \right\} - 3\sin 3x \right]$
= $-\frac{3}{4} \sin 3x = \text{RHS}$

<u>SECTION – E (Case Study Based Questions)</u> Questions 19 to 20 carry 4 marks each.

Now, answer the following:

- (i) Find the angle in radians by which it turned in 10 seconds.
- (ii) Find the degree measure of the angle turned by railway train in 10 seconds.
- (iii) How much degree will train turn in 20 seconds?

OR

(iii) If train changes its speed to 60 km/h then what angle will train turn in 10 seconds. Ans:

Speed of train = 66 km/h
$$= \frac{66 \times 5}{18} \text{ m/sec}$$

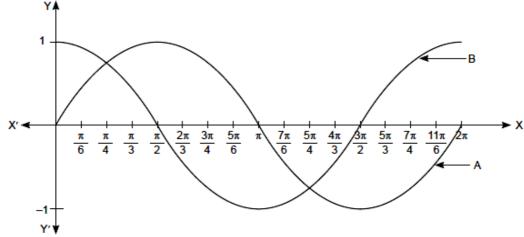
$$= \frac{55}{3} \text{ m/sec}$$
Distance = speed × time
$$= \frac{55 \times 10}{3} \text{ m}$$
Now angle = $\frac{\text{arc}}{\text{radius}} = \frac{55 \times 10}{3 \times 1500}$

$$= \frac{11}{90} \text{ radian}$$

$$= \frac{11\pi}{90} \times \frac{7}{22}$$

$$= \frac{7\pi^{c}}{180}$$

(ii) Degree measure =
$$\frac{7\pi}{180} \times \frac{180^{\circ}}{\pi} = 7^{\circ}$$


(iii) Distance in 20 sec =
$$\frac{55}{3} \times 20$$
 m
From (ii)

degree measure in 10 sec = 7°

:. degree measure in 20 sec 14°

(iii) If speed = 60 km/h
=
$$60 \times \frac{5}{18}$$
 m/sec
= $\frac{50}{3}$ m/sec
Distance in 10 sec = $\frac{500}{3}$ m
Angle = $\frac{500}{3 \times 1500}$ = $\frac{1}{9}$ radian
= $\frac{1}{9}\pi \times \frac{7}{22} = \frac{7\pi^c}{198}$

20. Observe the below graph carefully answer the following

- (i) Graph A represent the graph of which trigonometric function.
- (ii) Graph B represent the graph of which trigonometric function.
- (iii) From the above graph write the principal value of x if $\sin x = 1$
- (iv) From the graph find the angle for which the value of sin x and cos x is same.

Ans: (i) Graph A is of $y = \sin x, x \in [0, 2\pi]$

- (ii) Graph B is of $y = \cos x$, $x \in [0, 2\pi]$
- $(iii)\sin x = 1$

 $x = \frac{\pi}{2}$, Principal solution, as principal solution lies in [0, 2π] and only for $x = \frac{\pi}{2}$, $\sin x = 1$.

(iv)From graph angles are $\frac{\pi}{4}$ and $\frac{5\pi}{4}$