9. RATIONAL NUMBERS

Rational numbers are those numbers, which can be expressed in the form of a p/q, where p and q are integers and $q \neq 0$. The collection of all rational numbers are represented by Q.

$$\therefore \quad Q = \left\{ \frac{p}{q}; p, q \text{ are integers and } q \neq 0 \right\}$$

(i). Equivalent Rational Numbers

Two rational numbers are said to be equivalent, if numerator and denominator of both rational numbers are in proportion.

For example;
$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{10}{20} = \frac{25}{50} = \frac{48}{96}$$
 etc.

(ii). Insertion of Rational Number Between Two Numbers

Methods to find rational number(s) between two numbers can be shown by the following flow chart :

One Rational Number:

Between two numbers x and y, where y > x, a rational number is given by $\frac{x+y}{2}$.

Methods to find Rational Number(s) between two numbers

More than one or *n* rational numbers:

Between two numbers x and y, where y > x, n rational numbers are given by (x + d), (x + 2d), (x + 3d), ..., (x + nd) where

(iii). Terminating Decimals

Every fraction p/q can be expressed as a decimal. If the decimal expression of p/q terminates, i.e., comes to an end, then the decimal so obtained is called a terminating decimal.

(iv). Repeating or Recurring Decimals

A decimal in which a digit or a set of digits repeats periodically, is called a repeating or a recurring decimal.

10. IRRATIONAL NUMBERS

A number, which is not rational is called an irrational number. In other words, number which cannot be expressed in the form of p/q, where p and q are integers, and $q \neq 0$.

For example: π , e, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ etc.

The set of irrational numbers is denoted by S or Q' or I.

Notes:

- 1. π is the ratio of circumference to diameter of a circle and it is an irrational number. $\frac{22}{7}$ or 3.142 is just an approximate value of π .
- 2. An irrational number can neither be expressed as a terminating nor as a repeating decimal.

POLYNOMIALS

1. POLYNOMIAL IN ONE VARIABLE

An algebraic expression of the form

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0, a_n \neq 0$$

where $a_0, a_1, a_2, ..., a_n$ are constants and n is a non-negative integer, is known as a polynomial in one variable x.

> Degree of a Polynomial

It is the highest power of the variable in the polynomial.

For example: $2x^3 + 3x + 4$ is a polynomial in x of degree 3.

> Terms of a polynomial

The parts of a polynomial separated by '+' or '-' sign are called terms of the polynomial.

Coefficients

Numerical factor of term with its sign is called coefficient of that term.

Each term of a polynomial has a coefficient.

For example; In polynomial $7x^3 + 5x^2 - 3x + 2$, the coefficient of x is -3.

> Classification of Polynomials

On the basis of number of terms, a polynomial can be classified as:

Polynomial	Definition	Examples
Monomial	A polynomial containing one non-zero term	$5x,2x^2$
Binomial	A polynomial containing two non-zero terms	$5+7x$, $y^{30}+1$
Trinomial	A polynomial containing three non-zero terms	$8 + 3x + x^2, 7 + 5y + 6y^5$

On the basis of degree of variables, a polynomial can be classified as:

Polynomial	Definition	Examples
Constant polynomial	A polynomial of degree 0	3, 5, -70
Linear polynomial	A polynomial of degree 1	3x + 5, 2y - 9
Quadratic polynomial	A polynomial of degree 2	$x^2 + 5x + 3, 2y^2 - 7y + 9$
Cubic polynomial	A polynomial of degree 3	$4x^3 + 3x^2 - 7x - 1$
Biquadratic polynomial	A polynomial of degree 4	$x^4 - 3x^3 + 2x^2 - 5x + 7$

> Zero Polynomial

The constant polynomial 0 is called zero polynomial. The degree of a zero polynomial is not defined.

> Value of a Polynomial

If p(x) is a polynomial, then value of p(x) at x = a is given by p(a).

2. ZERO OF A POLYNOMIAL

A real number a is called a zero of a polynomial p(x), if p(a) = 0.

Note:

- 1. '0' may be a zero of a polynomial.
- 2. Every linear polynomial in one variable has a unique zero.
- 3. A non-zero constant polynomial has no zero.
- 4. Every real number is a zero of the zero polynomial.
- 5. A polynomials can have more than one zero.

3. DIVISION OF A POLYNOMIAL

If p(x) and g(x) are any two polynomials, such that degree of $p(x) \ge$ degree of g(x) and $g(x) \ne 0$, then we find polynomials q(x) and r(x), such that p(x) = g(x)q(x) + r(x), where r(x) = 0 or degree of r(x) < degree of g(x).

Divide p(x) by g(x), where degree $p(x) \ge$ degree g(x)

If r(x) = 0 or degree of r(x) < degree of g(x), then division is complete.

If degree of $r(x) \ge$ degree of g(x), then divide again.

4. REMAINDER THEOREM

Let p(x) be a polynomial of degree greater than or equal to 1 and a be any real number. If we divide p(x) by (x - a), then the remainder is given by p(a).

5. FACTOR THEOREM

Let p(x) be a polynomial of degree greater than or equal to 1 and a be any real number then,

- (i) If p(a) = 0, then (x a) is factor of p(x).
- (ii) If (x a) is factor of p(x), then p(a) = 0.

6. METHODS OF FACTORISATION

By splitting the middle term

To factorise a polynomial $ax^2 + bx + c$, write b as a sum of two integers, whose product is ac.

Using the Factor Theorem

To factorise a polynomial $ax^2 + bx + c$, first make coefficient of x^2 equal to 1 i.e., $ax^2 + bx + c = a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right) = a g(x)$ (say). Then, find all possible factors of $\frac{c}{a}$. By trial method, find the values of a and b for which g(x) = 0. Then, (x - a) and (x - b) are the factors of g(x) and the given polynomial as well.

Pair of Linear Equations in Two Variables

1. Linear equation in two variables

$$a_1x + b_1y + c_1 = 0$$
 ... (1)

$$a_2x + b_2y + c_2 = 0$$
 ... (2)

2. Substitution Method

$$a_1x + b_1y + c_1 = 0 \dots (1)$$

$$a_2x + b_2y + c_2 = 0 \dots (2)$$

Substituting the value of x from eq. (1) in eq. (2) and finding y and vice versa.

3. Elimination Method

$$a_1x + b_1y = c_1 \dots (1)$$

$$a_2x + b_2y = c_2 \dots (2)$$

Multiplying eq. (1) by a_2 and eq. (2) by a_1 making the coefficient of x same and hence eliminating x and finding y.

4. Cross multiplication method

$$b_{1} \xrightarrow{x} c_{1} \xrightarrow{y} a_{1} \xrightarrow{1} b_{1}$$

$$b_{2} \xrightarrow{x}$$

$$c_{2} \xrightarrow{y} a_{2} \xrightarrow{1} b_{2}$$

$$x = \frac{y}{a_{1}a_{2} - a_{1}c_{2}} = \frac{1}{a_{1}b_{2} - b_{1}a_{2}}$$

$$x = \frac{b_{1}c_{2} - b_{2}c_{1}}{a_{1}b_{2} - b_{1}a_{2}}$$

$$y = \frac{c_{1}a_{2} - a_{1}c_{2}}{a_{1}b_{2} - b_{1}a_{2}}$$

Intersecting lines $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

(intersect at 1 point) one solution

Infinite solutions

(Non-Intersecting) No solution