Chapter-7 TRIANGLES

MIND MAP

Key points

Congruence in different shapes

- Two figures having the same shape and size are called congruent figures.
- Two plane figures are congruent, if each one when superimposed on the other, covers the other exactly.
- Two line segments are congruent, if they have equal lengths.
- Two angles of equal measures are congruent.
- Two circles of the same radii are congruent.
- Two squares of the same sides are congruent.
- Two rectangles are congruent, if they have the same length and breadth.

Congruency Criteria:

- If two triangles ABC and DEF are congruent under the correspondence $A \leftrightarrow D$, $B \leftrightarrow E$ and $C \leftrightarrow F$, then symbolically, it is expressed as $\triangle ABC \cong \triangle DEF$.
- There are four congruent criteria for triangles:
 - (a) Side-Angle-Side (SAS) congruence rule: Two triangles are congruent, if two sides and included angle of one triangle are respectively equal to two sides and the included angle of the other triangle.
 - **(b) Angle-Side-Angle (ASA) congruence rule:** Two triangles are congruent, if two angles and the included side of one triangle are respectively equal to the two angles and the included side of the other triangle.
 - (c) Side-Side (SSS) congruence rule: Two triangles are congruent, if three sides of one triangle are respectively equal to three sides of the other triangle.
 - **(d) Right angle-Hypotenuse-Side (RHS) congruence rule:** Two right triangles are congruent, if the hypotenuse and one side of one triangle are respectively equal to the hypotenuse and one side of other triangle.

Very Short Answer Question (1 Mark)

1.	Which of the following	g is not a criterion for congruency of triangles?
	(-) ggg	(L) DIIC

2. If $AB \cong CD$ then

(a)
$$AB < CD$$
 (b) $AB + CD = 0$ (c) $AB = CD$ (d) $AB > CD$

3. If $\triangle ABC \cong \triangle DEF$ then

(a)
$$AC = DE$$

 (b) $BC = DF$
 (c) $FE = CB$
 (d) $AB = DF$

4. If one angle of a triangle is equal to the sum of the other two angles, then the triangle is

(a) an equilateral triangle(b) an isosceles triangles(c) an obtuse triangle(d) a right triangle

IX – Mathematics

- 5. If AB = QR, BC = PR and CA = PQ, then
 - (a) $\triangle ABC \cong \triangle PQR$
- (b) $\Delta CBA \cong \Delta PRQ$
- (c) $\Delta BAC \cong \Delta RPQ$
- (d) $\Delta PQR \cong \Delta BCA$
- **6.** Two figures are congruent if they have the _____ shape and same _____
- 7. Two circles are congruent if they have _____ radii.
- **8.** Two equilateral triangles are congruent, if they have _____ sides.
- **9.** Two square are congruent if they have _____ sides.
- **10.** If $\triangle PQR \cong \triangle LMN$ then QR = _____
- 11. In $\triangle ABC$, AB = AC and $\angle B = 40^{\circ}$, then find $\angle C$.
- 12. Write correct symbolic form of congruency if AB = QR, BC = PR and CA = PQ.
- 13. In the given figure, AC is bisector of $\angle BAD$. AB = 4 cm and AC = 5 cm, then find AD.

- **14.** Find the diameter of circle O_2 , if circle $O_2 \cong \text{Circle } O_1$ and radius of circle O_1 is 6 cm
- **15.** Write the congruence criteria for triangles $\triangle ABC$ and $\triangle QPR$ where AB = QP, $\angle B = \angle P$ and BC = PR.
- **16.** For right angled triangle $\triangle ABC$, AB = BC, find $\angle A$.
- 17. Write the congruence criteria for the following triangles.

- **18.** Name the side equal to side *NL* if $\Delta PQR \cong \Delta LMN$.
- **19.** Line segment MN = 4 cm and TP = 4.2 cm. Are they congruent?
- 20. What does it mean if two triangles are congruent by SSS criteria?

- **21.** In $\triangle PQR$, $\angle R = \angle P$, QR = 4 cm and PR = 5 cm. Find PQ.
- **22.** In the given figure if a = b = c, then name the angle congruent to $\angle AOC$.

- **23.** What does '*R*' stands for in RHS congruence?
- **24.** In $\triangle BCD$ and $\triangle WXY$, BD = WX and $\angle B = \angle X$. What should be the third possibility to satisfy ASA congruency criterion?
- **25.** If $\triangle ABC \cong \triangle MNO$ then $\angle ABC = ?$

Short Answer type-I questions (2 marks)

26. If $\triangle ABP \cong \triangle KST$ then

(a) $\angle P =$ _____ (b) KT = _____

27. In the following figure, which of the two triangles are congruent? Name them in symbolic form.

- 28. Explain why AAA is not a criteria for congruency of two triangles.
- **29.** In the given, if AB = CD, AD = BC then prove that $\triangle ADC \cong \triangle CBA$

- **30.** If $\triangle ABC$ is an isosceles triangle such that AB = AC, then prove that altitude AD from A on BC bisects it.
- 31. Which criteria of congruence of triangles is satisfied in the given figure.

- **32.** In a $\triangle PQR$, $\angle P = 110^{\circ}$, PQ = PR. Find $\angle Q$ and $\angle R$.
- **33.** In the given figure AB = AC and $\angle ACD = 125^{\circ}$. Find $\angle A$

34. In the given figure, AC bisects $\angle A$ and $\angle C$. If AD = 5 cm find AB.

35. The vertex angle of an isosceles triangle is 80°. Find out the measure of base angles.

Short Answer type-II Questions (3 Marks)

- **36.** ABC is a triangle and D is the mid-point of BC. The perpendicular from D to AB and AC are equal. Prove that triangle is isosceles.
- 37. Prove that angles opposite to equal sides of an isosceles triangles are equal.

38. In the given figure, If AD = BD = CD, find $\angle BAC$

39. In the given figure, if AB = BC and $\angle A = \angle C$ then find the value of x.

40. In the given figure $\angle ABC = \angle BAC$, D and E are points on BC and AG espectively such that DB = AE. If AD and BE intersect at O then prove that OA = OB.

41. In the given figure, if AB = AC, $\angle BAD = \angle CAE$ then prove that $\triangle ADE$ is an isosceles triangle.

- **42.** In $\triangle DEF$, DM is the angle bisector of $\angle EDF$ that intersects EF at M. If DM = MF, and $\angle E = 2\angle F$ then prove that $\angle EDF = 72^{\circ}$
- **43.** Prove that each angle of an equilateral triangle is 60° .

Long Answer Questions (5 Marks)

- **44.** The altitudes AF, BD and CE of $\triangle ABC$ are equal. Prove that $\triangle ABC$ is an equilateral triangle.
- **45.** Two sides AB,BC and median AM of one $\triangle ABC$ are respectively equal to sides PQ, QR and median PN of $\triangle PQR$. Show that.
 - (i) $\triangle ABM \cong \triangle PQN$
 - (ii) $\triangle ABC \cong \triangle PQR$
- **46.** In the given figure, PQR is a triangle in which altitudes QS and RT to sides PR and PQ are equal. Show that.
 - (i) $\Delta PQS \cong \Delta PRT$
 - (ii) PQR is an isosceles triangle

47. In the given figure, AB = AD, $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$. Prove that AP = AQ.

48. Vandana wishes to literate the poor children of the nearby slum area. She makes flash cards for them as shown in the given figure.

- (a) Which two flash cards are congruent.
- (b) Which criteria of congruency is satisfied here?
- (c) Write the third side of both the triangles using *CPCT*.
- **49.** In the given figure AB = CD, CE = BF and $\angle ACE = \angle DBF$. Prove that
 - (i) $\triangle ACE \cong \triangle DBF$
 - (ii) AE = DF

50. Show that the triangles $\triangle ABC$ and $\triangle DEF$ in the given figure are congruent. Hence find the value of x.

Chapter - 7

TRIANGLES

Answers

- **1.** (c) AAA
- **2.** (c) AB = CD
- **3.** (c) FE = CB
- 4. (d) a right triangle
- **5.** (b) $\triangle CBA \cong \triangle PRQ$
- **6.** same, size
- 7. equal
- **8.** equal
- 9. equal
- **10.** QR = MN
- **11.** 40°
- **12.** $\triangle ABC \cong \triangle QRP$
- **13.** AD = 3cm
- **14.** 12 cm
- **15.** SAS
- **16.** $\angle A = 45^{\circ}$
- **17.** ASA
- **18.** NL = RP
- **19.** No
- **20.** It means all three sides of one triangle are respectively equal to three sides of other triangle.
- **21.** PQ = 4 cm
- **22.** ∠*BOD*
- **23.** Right angle
- **24.** $\angle D = \angle W$

- 25. Sides of squares must be equal
- **26.** (a) $\angle T$
- (b) *AP*
- **27.** $\triangle PBD \cong \triangle PCT$ or any correct form
- 28. Becuase many triangles are possible with given three angles.
- **29.** In $\triangle ADC$ and $\triangle CBA$

$$AB = CD$$
 (given)

$$AD = BC$$
 (given)

$$AC = AC$$
 (common)

- $\therefore \Delta ADC \cong \Delta CBA$ (by SSS congruence rule)
- **30.** In $\triangle ABD$ and $\triangle ACD$

$$AB = AC$$
 (given)

$$AD = AD$$
 (common)

$$\angle ADB = \angle ADC$$
 (each 90°)

$$\therefore \Delta ABD \cong \Delta ACD$$
 (By RHS congruence rule)

$$\Rightarrow BD = CD$$
 (by CPCT)

- **31.** SAS
- **32.** $\angle Q = \angle R = 35^{\circ}$
- **33.** $\angle A = 70^{\circ}$
- **34.** AB = 5 cm
- **35.** 50°, 50°
- **36.** In $\triangle BDE$ and $\triangle CDF$

$$BD = CD$$
 (given)

$$DE = DF$$
 (given)

$$\angle 1 = \angle 2 \text{ (each } 90^\circ)$$

By RHS congruence rule

$$\Delta BDE \cong \Delta CDF$$

$$\Rightarrow \angle B = \angle C \text{ (By } CPCT)$$

 \Rightarrow AB =AC (: sides opposite to equal angles are equal)

37. Construction: $AD \perp BC$

In $\triangle ADB$ and $\triangle ADC$

$$AB = AC$$

(given)

$$AD = AD$$

(common)

$$\angle ADB = \angle ADC$$
 (each 90°)

 \therefore $\triangle ADB \cong \triangle ADC$ (By RHS congruence rule)

$$\Rightarrow \angle B = \angle C$$
 (By *CPCT*)

38.

Angles opposite to equal sides are equal

In
$$\triangle ACD$$

$$\angle 1 = \angle 2$$

----(1)

and In
$$\triangle ABD$$

----(2)

$$\angle A + \angle B + \angle C = 180^{\circ}$$

(angles sum property)

$$\angle 2 + \angle 4 + \angle 3 + \angle 1 = 180^{\circ}$$

(using eqⁿ 1, eqⁿ 2)

$$\angle 2 + \angle 4 + \angle 4 + \angle 2 = 180^{\circ}$$

 $\angle 2 + \angle 4) = 12(0^{\circ})$

$$\angle 2 + \angle 4 = \frac{180^{\circ}}{2} = 90^{\circ}$$

$$\angle BAC = 90^{\circ}$$

39. In $\triangle BAD$ and In $\triangle BCE$

$$AB = BC$$
 (given)

$$\angle A = \angle C$$

(given)

$$\angle$$
 $B = \angle B$

(common)

$$\Delta$$
 $BAD \cong \Delta BCE$ (ASA)

$$\angle$$
 $x = 75^{\circ}$

(by CPCT)

40. In
$$\triangle ABE$$
 and $\triangle ABD$

$$AB = AB$$
, $AE = BD$

$$\angle EAB = \angle DBA$$

$$\therefore \Delta ABE \cong \Delta ABD \text{ (By } SAS)$$

$$\Rightarrow \angle ABE = \angle BAD$$
 (By *CPCT*)

In ∠OAB

$$\angle 1 = \angle 2 \Rightarrow OA = OB$$

In $\triangle ABD$ and $\triangle ACE$

$$\angle BAD = \angle CAE, AB = AC, \angle B = \angle C$$

$$\therefore \quad \Delta ABD \cong \Delta ACE(By ASA)$$

$$\Rightarrow$$
 $AD = AE(By CPCT)$

 \therefore ADE is an isosceles triangle.

42.
$$\angle EDM = \angle FDM$$
, $\angle FDM = \angle DFM$.

Using angle sum property in $\triangle DEF$, find $\angle EDF$.

- **43.** All sides of an equilateral triangle are equal,
 - : all angles will be equal (angles opposite to equal sides are equal)

44. In
$$\triangle BDC$$
 and $\triangle BEC$

$$BD = EC$$
, $BC = BC$, $\angle BEC = \angle BDC$ (90°)

$$\therefore \Delta BDC \cong \Delta BEC$$
 (By RHS)

$$\therefore$$
 $\angle B = \angle C$ similarly $\angle A = \angle B \& \angle A = \angle C$

$$\Rightarrow$$
 $\angle A = \angle B = \angle C$

$$\Rightarrow$$
 $AB = BC = AC$

Hence $\triangle ABC$ is an equilateral triangle.

45. $\triangle ABM \cong \triangle PQN$ (By SSS)

$$\Rightarrow$$
 $\angle B = \angle Q \text{ (By } CPCT)$

$$\therefore \quad \Delta ABC \cong \quad \Delta PQR \text{ (By } SAS)$$

46. In $\triangle QTR$ and $\triangle RSQ$,

$$QR = QR, \angle QTR = \angle RSQ, RT = SQ$$

- $\therefore \Delta QTR \cong \Delta RSQ \text{ (By RHS)}$
- $\therefore \angle Q = \angle R \text{ (By } CPCT) \Rightarrow PQ = PR \text{ (It is an isosceles triangle)}$

In ΔPSQ and ΔPTR

$$RT = SQ$$
, $\angle PTR = \angle PSQ$, $PR = PQ$

 $\therefore \Delta PSQ \cong \Delta PTR \text{ (By RHS)}$

47.
$$\angle 1 = \angle 2$$
 eqⁿ...(1)

$$\angle 3 = \angle 4$$
 eqⁿ...(2)

 $eq^{n}(1) + eq^{n}(2)$

$$\Rightarrow \angle 1 + \angle 3 = \angle 2 + \angle 4$$

$$\angle CAB = \angle CAD$$
 --- (3)

$$AC = AC$$
 --- (4)

$$AB = AD \qquad --- (5)$$

using (3), (4), (5)

$$\triangle ADC \cong \triangle ABC \Rightarrow \angle ADC = \angle ABC$$

In $\triangle ADQ \& \triangle ABP$

$$\angle 2 = \angle 1$$
, $AB = AB$, $\angle ABP = \angle ADQ$

$$\angle ADQ = \angle ABP$$

$$\Rightarrow \Delta ADQ \cong \Delta ABP$$
(By ASA)

$$\therefore AP = AQ \text{ (By } CPCT)$$

- **48.** (a) $\triangle ABC \cong \triangle QRP$
 - (b) SAS
 - (c) BC = RP
- **49.** AB = CD

Adding BC on both side then $\triangle ACE \cong \triangle DBF$ (By SAS)

50. 3x = 2x + 20

$$x - 32x = x = 20$$

Chapter-7 Triangles

Practice Test

Time: 1 hr. M.M. 20

- 1. Find the measures of each exterior angle of an equilateral triangle. (1)
- 2. The _____ of an isosceles triangle divides it into two congruent triangles. (1)
- 3. The vertical angles of an isosceles triangle is thrice the one of its base angle. Find the base angle. (2)
- 4. Prove that in an isosceles triangle, the angles opposite to the equal sides are equal. (2)
- 5. In the given figure, AB = AC and side BA is produced to D such that AB = AD. Prove that $\angle BCD = 90^{\circ}$

- **6.** Prove that medians of an equilateral triangle are equal. (3)
- 7. In the given figure C is the midpoint of AB, $\angle DCA = \angle ECB$ and $\angle DBC = \angle EAC$. Prove that DC = EC and BD = AE. (3)

- **8.** In the given figure *ABC* is a right angled triangle, right angle at *C*. *M* is the mid-point of hypotenuse *AB*. C is joined to *M* and produced to a point *D* such that
 - DM = CM. D is joined to B. Show that $CM = \frac{1}{2} AB$.

