Key points

- **Linear equation in one variable:** An equation which can be written in the form ax + b = 0, where a, b are real numbers and $a \ne 0$ is called a linear equation in one variable.
- Linear equation in two variables: An equation which can be written in the form ax + by + c = 0, where a, b and c are real numbers and $a, b \ne 0$, is called a linear equation in two variables.

Linear equation in one variable has a unique solution.

$$ax + b = 0 \Rightarrow x = -\frac{b}{a}$$

- Linear equation in two variables has infinitely many solutions.
- The graph of every linear equation in two variables is a straight line.
- Every point on the line satisfies the equation of the line.
- Every solution of the equation is a point on the line. Thus, a linear equation in two variables is represented geometrically by a line whose points make up the collection of solutions of the equation.

Graph

• The pair of values of x and y which satisfies the given equation is called solution of the linear equation in two variables.

Example: x + y = 4

Solutions of equation x + y = 4 are (0, 4)(1, 3)(2, 2)(4, 0) and many more.

Very Short Answer Questions (1 Mark)

- 1. Which of the following is not a linear equation?
 - (a) 3x + 3 = 5x + 2
- (b) $x^2 + 5 = 3x 5$
- (c) $\frac{7}{3}x 5 = 4x 3$
- (d) $(x+2)^2 = x^2 8$

$ax^2 + by = c$ inear equation in two variables in One solution	(d) $ax + by = c$ as maximum (b) Two solutions
One solution	
	(b) Two solutions
Infinite colutions	(b) Two solutions
Infinite solutions	(d) Four solutions
e graph of $ax + by + c = 0$ is	
a straight line parallel to x-axis	(b) a straight line parallel to y-axis
a general straight line	(d) not a straight line
x = 1, y = 1 is a solution of equal a is:	ation $\partial x + 12ay = 63$, then the value
3	(b) 0
-3	(d) 4
e equation of x-axis is:	
x = k	(b) $x = 0$
y = k	(d) $y = 0$
y point on the line $y = x$ is of the	form:
(4, 0)	(b) $(0, a)$
(a, a)	(d) $(a, -a)$
e equation $x = 0$ represents $=$	
x-axis	(b) y-axis
a line parallel to x-axis	(d) a line parallel to y-axis
nich of the following linear equat	ion has solution $x = 2, y = 3$?
2 + y = 8	(b) $x + 2y = 8$
x + y = 8	(d) $-x + y = 8$
e graph of $2x + 3y = 6$ is a line wh	nich meets the y-axis at the point.
(2,0)	(b) (3, 0)
(0, 2)	(d) (0, 3)
	a general straight line $x = 1, y = 1$ is a solution of equal $x = 1, y = 1$ is a solution of equal $x = 1, y = 1$ is a solution of equal $x = 1, y = 1$ is a solution of equal $x = 1, y = 1, y = 1$ $x = 1, y = 1, y = 1, y = 1$ $x = 1, y = $

2. Which of the following is not a linear equation in two variables?

- 11. At what point, the graph of 3x + 2y = 9, cuts the y-axis?
- 12. Let y varies directly as x. If y = 15 when x = 5, then write a linear equation.
- 13. Write the point of intersection of the lines x = 2 and y = -3
- **14.** What is the distance of the point (3, -7) from x-axis?
- **15.** What is the distance of the point (-5, -4) from y-axis?
- 16. Express the linear equation $\sqrt{2}x 4 = 5y$ in the form of ax + by + c = 0 and thus indicate the values of a, b and c.
- 17. Express x in terms of y for the equation 3x + 4y = 7.
- **18.** Express y in the terms of x.

$$y + 35x = 9$$

- 19. On which axis does the point (9,0) lie?
- **20.** Find a solution of x + y = 5 which lies on y-axis.
- 21. Express the equation 5y = 9 as linear equation in two variables.
- **22.** Write the linear equation which is parallel to x-axis and is at a distance of 2 units from the origin in upward direction.
- **23.** Check whether (1, -2) is a solution of 2x y = 6.
- **24.** Check whether x = 2 and y = 2 is a solution of 2x + y = 6.
- **25.** How many solutions are there for equation y = 5x + 2.
- **26.** Find the value of K, if x = -1 and y = 1 is a solution of equation Kx 2y = 0
- **27.** If the graphs of equation 2x + Ky = 10K intersects x-axis at point (5, 0), find the value of K.
- **28.** The graph of the linear equation 4x = 6 is parallel to which axis?
- **29.** At which point the graph of 2x y = 6, cuts x-axis?
- **30.** The graph of the equation x + 3 = 0 lies on which side of y axis?
- **31.** The graph of the equation 2y-1=0 lie on which side of the x axis?

-:	 4	he			1
	 n t	na.	nı	ıan	KG.
	 		w	ш	No.

- **32.** (a) The equation of a line parallel to x-axis is $\underline{} = a$, where a is any non-zero real number.
 - (b) The equation of a line parallel to y-axis is $\underline{} = a$, where a is any non-zero real number.
- **33.** The graph of every linear equation in two variables is a . .
- **34.** An equation of the form ax + b = 0, where a, b are real numbers and $a \ne 0$, in the variable x, geometrically represents ______.
- **35.** The coefficient of x in the linear equation 2(x + y) x = 7 is _____
- **36.** State whether the following statements are true or false :-
 - (a) The linear equation 7x + 9y = 8 has a unique solution
 - (b) All the points (2, 0), (-3, 0), (4, 2) lie on the x-axis
 - (c) The line parallel to y-axis at a distance of 5 units to the left of y-axis is given by the equation x = -5.
 - (d) The graph of every linear equation in two variables need not be a line.
 - (e) The graph of the linear equation x + 2y = 5 passes through the point (0, 5)

Short Answer Type-I Questions (2 marks)

37. Find any two solutions of equation

$$x + 2y = x + 5$$

- **38.** Find the value of P if x = 2, y = 3 is a solution of equation 5x + 3 Py = 4a
- **39.** If the points A(3, 5) and B(1, 4) lies on the graph of line ax + by = 7, find the value of a.
- **40.** Write the coordinates of the point where the graph of the equation 5x 2y = 10 intersect both the axes.
- **41.** Write the equations of two lines passing through (3, 10).
- **42.** The cost of coloured paper is 7 more than 1/3 of the cost of white paper. Write this statements in linear equation in two variables.
- **43.** Draw the graph of equation x + y = 5.

- **44.** The graph of linear equation 2x y = 6 will pass through which quadrants(s).
- **45.** How many solution of the equations 3x 2 = x 3 are there on the
 - (i) Number line
 - (ii) Cartesian plane.
- **46.** Find the points where the graph of x + y = 4 meets line which is
 - (i) parallel to x-axis at 3 units from origin in positive direction of y-axis.
 - (ii) parallel to y-axis at 2 units on left of origin.

Short Answer Type-II Questions (3 marks)

- **47.** The total number of legs in a herd of goats and hens is 40. Represent this situation in the form of a linear equation in two variables.
- **48.** Find the value of a and b, if the line ax + by = 24 passes through, (2, 0) and (1, 2)
- **49.** Determine the point on the graph of the linear equation 2 + 5y = 19 whose ordinate is $1\frac{1}{2}$ times its abscissa.
- **50.** Find the points where the graph of the following equation cuts the x-axis and y-axis 2x = 1 5y.
- **51.** Write the equation of the line parallel to x-axis at a distance of 4 units above the origin.
- **52.** If the points A(4, 6) and B(1, 3) lie on the graph of ax + by = 8 then find the value of a and b.
- **53.** Find the value of 'a' if (1, -1) is the solution of the equation 2x + ay = 5. Find two more solutions of the equation.
- **54.** Find two solutions of the equation 4 + 5y = 28. Check whether (-2, 10) is solution of the given equation.
- **55.** Write the equation of line passing through (3, -3) and (6, -6).
- **56.** If x = 3k 2, y = 2k is a solution of equation 4k 7y + 12 = 0, then find the value of k.
- **57.** If (m-2, 2m+1) lies on equation 2x + 3y 10 = 0, find m.

- **58.** Given $F = \left(\frac{9}{5}\right)C + 32$, where F is temperature in Fahrenheit and C is temperature in Celsius.
 - (i) If the temperature is 35°C, what is the temperature in Fahrenheit?
 - (ii) If the temperature is 30°C, what is the temperature in Fahrenheit?
- **59.** Draw the graph of the linear equation 2 + 3y = 6. Find out the coordinates of the points where the line intersets x-axis and y-axis.
- **60.** Draw the graph for the linear equation 3x + 4y = 12. If x = 8, find the value of y with the help of graph.
- **61.** Draw the graph of y = x and 2y = -5x on the same graph.
- **62.** Give the geometrical representation of 5x + 7 = 0 as equation:
 - (i) in one variable
 - (ii) in two variables
- **63.** Draw the graph of the linear equation 2y x = 7. With the help of graph check whether x = 3 and y = 2 is the solution of the equation:
- **64.** Draw the graph of linear equation 3x y = 4. From the graph find the value of p and q if the graph passes through (p, -4) and (3, q)
- **65.** Draw the graph of equations 2x + 3y = -5 and x + y = -1 on the same graph. Find the co-ordinate of the point of intersection of two lines.
- **66.** Show that the points A(1,-1), B(2,6) and C(0,-8) lie on the graph of the linear equation 7x y = 8.

Long answer type questions (5 Marks)

- 67. Write 3y = 8x in the form of ax + by + c = 0. Write x in terms of y. Find any two solutions of the equation. How many solutions you can find out?
- **68.** Rohan and Ramita of Class IX decided to colle**₹**25 for class cleanliness. Write it in linear equation in two variables. Also draw the graph.

- **69.** Sarika distributes chocolates on the occasion of children's Day. She gives 5 chocolates to each child and 20 chocolates to adults. If number of children is represented by 'x' and total distributed chocolates as 'y'.
 - (i) Write it in the form of linear equation in two variables.
 - (ii) If she distributed 145 chocolates in total, find number of children?
- **70.** Priyanka and Arti decided to donate₹1600 for the Army widows. Assuming Priyanka's share as 'x' and Arti's share as 'y':
 - (a) Form a linear equation in two variables.
 - (b) If Priyanka donates thrice the amount donated by Arti, then find out the amount donated by both.
- 71. Riya participates in Diwali Mela with her friends for the charity to centre of handicapped children. They donate ₹3600 to the centre from the amount earned in Mela. If each girl donates ₹150 and each boy donates ₹200, they
 - (a) Form the linear equation in two variables.
 - (b) If number of girls are 8, find number of boys.
- **72.** Aftab is driving a car with uniform speed of 60 km/hr. Assuming total distance to be *y* km and time taken as *x* hours, form a linear equation. Draw the graph. From the graph read the following:
 - (i) distance travelled in 90 minutes.
 - (ii) Time taken to cover a distance of 150 km.
- 73. The parking charges of a car in a private parking 3 so 20 for the first hour and 3 for subsequent hours. Taking total parking charges to bey and total parking time as x hours form a linear equation. Write it in standard form and indicate the values of a, b and c. Draw the graph also.
- 74. We know that $C = 2 \pi$, taking $\pi = 22/7$, circumference as yunits, radius as xunits, form a linear equation. Draw the graph. Check whether the graph passes through (0, 0). From the graph read the circumference when radius is 2.8 units.

CHAPTER-4

LINEAR EQUATIONS IN TWO VARIABLES

Answers

1. (b)
$$x^2 + 5 = 3x - 5$$

2. (c)
$$ax^2 + by = c$$

6. (d)
$$y = 0$$

9. (b)
$$x + 2y = 8$$

12.
$$y = 3x$$

16.
$$\sqrt{2x-5y-4}=0$$

$$a = \sqrt{2}, b = -5, c = -4$$

17.
$$x = \frac{7 - 4y}{3}$$

18.
$$y = \frac{9-5x}{3}$$

21.
$$0x + 5y = 9$$

22.
$$y = 2$$

26.
$$k = -2$$

27.
$$k = 1$$

37. (1, 4)(0, 5) (or any other possible solutions)

(b) *F*

38.
$$b = \frac{4a-10}{9}$$

39.
$$3a + 5b = 7$$
; $a + 4b = 7$

$$b = 2, a = -1$$

40. The Graph of
$$5x - 2y = 10$$
 will intersect x-axis when $y = 0$ ie

$$x = 2$$
 and point is $(2,0)$

Similarly for y-axis put
$$x = 0 \Rightarrow y = -5$$

Hence points are
$$(2,0)$$
 and $(0,-5)$

41.
$$3x - y + 1 = 0$$
, $x + y = 13$ (or any other possible equation)

42. Let the cost of coloured paper be \mathbb{Z}

Let the cost of white paper be
$$\notin y$$
, then $x = 1/3 y + 7$ or $3y - y = 21$

43. x + y = 5

X	0	5	1
v	5	0	4

44. I, IV, III

45. (i)
$$3x-2=x-3 \implies x=-\frac{1}{2}$$

On number line only one solution i.e.,

(ii) On Cartesian plane infinitely many solutions i.e., $1 \cdot x + 0 \cdot y = -\frac{1}{2}$

х	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$
y	-1	0	1

(A line parallel to y-axis)

- **46.** (i) Parallel to x-axis \Rightarrow abscissa is zero 3 units from origin is opposite direction of y-axis \Rightarrow ordinate in 3 putting n = 0, y = 3 is n + y = 4 $\Rightarrow n = 1$ Hence point is (1,3)
 - (ii) Parallel to y-axis \Rightarrow ordinate is zero 2 units on left of origin \Rightarrow abscissa is -2 putting x = -2, y = 0is x + y = 4 $\Rightarrow y = 6$ Hence point is (-2,6)
- 47. Let number of goats = xNumber of hens = y4x + 2y = 40or 2x + y = 20
- 48. Putting x = 2 and y = 0 = a = 2Now putting x = 1 and a = 2= b = 6

50

49. Let required pt. be (x', y')

$$A/Q$$
, $y' = 1\frac{1}{2}x' = \frac{3}{2}x'$ ----- (1)

---- (2)

(x', y') lies on graph of 2x + 5y = 19

$$x' + 5y' = 19 \qquad 2$$

from (1) and (2)

$$2x' + 5\left(\frac{3}{2}x'\right) = 19$$

$$x' + 15x' = 38 \quad 4 \qquad \Rightarrow x' =$$

$$y' = \frac{3}{2} \times 2 = 3$$

so point will be (x', y') i.e. (2, 3)

- **50.** cuts x-axis at $\left(\frac{1}{2}, 0\right)$, cuts y-axis at $\left(0, \frac{1}{5}\right)$
- **51.** y = 4
- **52.** 4a + 6b = 8 $\Rightarrow 2a + 3b = 4$

$$a + 3b = 8$$

After solving a = -4 and b = 4

53. Putting x = 1 and y = -1 $\Rightarrow a = -3$

any two correct solution

54. Given equation is 4x + 5y = 28

$$LHS = 4 x + 5 y$$

Putting

$$LHS = 42$$

But
$$RHS = 28$$

Hence

$$LHS = RHS$$

 \Rightarrow (-2, 10) is not a solution of equation 4x + 5y = 28

55.
$$x + y = 0$$

56.
$$4[3k-2]-7[2k]+12=0$$

 $\Rightarrow 12k-8-14k+12=0$
 $\Rightarrow k=2$

57.
$$2[m-2] + 3[2m+1] - 10 = 0$$

 $m-24 + 6m + 3 - 10 = 0$
 $m = \frac{11}{8}$

$$m = \frac{\pi}{8}$$
58. (i) $F = \left(\frac{9}{5}\right)C + 32$
when $C = 35$

$$\Rightarrow F = \left(\frac{9}{5}\right)(35) + 32$$

$$\Rightarrow F = 95^{\circ} F$$

(ii)
$$F = \left(\frac{9}{5}\right)(30) + 32$$

= $9 \times 6 + 32$
= 86° F

59.
$$2x + 3y = 6$$

x-axis co-ordinates (3, 0); y-axis co-ordinates (0, 2)

60.
$$y = -3$$

62.
$$x = \frac{-7}{5}$$
 or $x = -1.4$

63. No

64. Similarly
$$(3, q)$$
 lies on this line when $x = 3, y = 5$ $\Rightarrow q = 5$

65.
$$2x + 3y = -5$$

\	-5 - 3y	(1)
$\Rightarrow x =$	2	(1)

Х	-2.5	-4	-1
у	0	1	-1

x + y = -1

х	0	-1	1
v	-1	0	-2

Point of intersection is (2, -3)

67.
$$8x - 3y + 0 = 0$$
; $x = \frac{3y}{8}$

(0,0)(3,8)

Infinitely many solutions.

68. x + y = 25 [where x-Rohan's collection and y-Ramita's collection

54

69. (i)
$$5x + 20 = y$$

(ii) Put
$$y = 145 \text{ in } 5x + 20 = y$$

 $\Rightarrow x = 25$

70. (a)
$$x + y = 1600$$

(b) Priyanka = ₹1200 [:
$$x = 3y$$
]
Arti = ₹400

71. (a) Let number of girl be x and no. of boys be y
$$150x + 200y = 3600$$

(b) Number of boys =
$$12$$

72. Using speed =
$$\frac{\text{distance}}{\text{time}}$$
 \Rightarrow $y = 60x$

(i) 90 km
$$\left[\because x = 90 \text{ min} = \frac{90}{60} \text{hr} = \frac{3}{2} \text{hr}\right]$$

(ii) 2 hours 30 min.

73.
$$20 + 10(x - 1) = y$$

 $\Rightarrow 20 + 10x - 10 = y$
 $\Rightarrow 10x - y + 10 = 0$
so $a = 10, b = -1, c = 10$

74.
$$y = 2 \times \frac{22}{7} \times x$$
 \Rightarrow $7y = 44x$

yes, graph passes through (0,0)

Where
$$r = 2.8$$
 units $c = 17.6$ units

Chapter - 4

Linear Equations in Two Variables

M.M.: 20

Practice Test

۱.	The graph of linear equation $2y = 5$ is parallel to which axis?	(1)
2.	Write the linear equation of the graph which is parallel to y-axis and is distance of 3 units on left from the origin	at a (1)
3.	Find the value of a and b if the line $5bx - 3ay = 30$ passes through $(-1, 0)$ $(0, -3)$.	and (2)
1.	Write two linear equation passing through the points $(2, -3)$	(2)
5.	Write the linear equation $x + \sqrt{3}y = 4$ in the form of $ax + by + c = 0$ a hence write the values of a , b and c . Write also x in terms of y	nd (3)
5.	Find the solutions of linear equation $2x+y=4$ which represents a point which	on/ (3)
	(i) on x-axis	
	(ii) on y-axis	
	(iii) perpendicular distance of 3 units above x-axis	
7.	Give the geometrical representation of $2x + 5 = 0$ as a linear equation in	(3)
	(a) one variable	
	(b) two variables	
3.	A taxi charges ≥ 15 for first kilometer and ≥ 8 each for every subsequent kilometer a distance of x km, an amount of $\ge y$ is paid. Write the linear equal	

representing the above information and draw the graph.

Time: 1 hr.