ORGANIC CHEMISTRY

MISCELLANEOUS

1. Match the compounds in LIST-I with the observation in LIST-II, and choose the correct option.

1		, 1
		[JEE(Advanced) 2022]
LIST-I		LIST-II
(I) Aniline	(P)	Sodium fusion extract of the compound on
		boiling with FeSO ₄ , followed by acidification
		with conc. H ₂ SO ₄ , gives Prussian blue color.
(II) o-Cresol	(Q)	Sodium fusion extract of the compound on
		treatment with sodium nitroprusside gives blood
		red color.
(III) Cysteine	(R)	Addition of the compound to a saturated solution
		of NaHCO ₃ results in effervescence.
(IV) Coprolactam	(S)	The compound reacts with bromine water to give
		a white precipitate.
	(T)	Treating the compound with neutral FeCl ₃
		solution produces violet color.
(A) $I \rightarrow P, Q; II \rightarrow S; III \rightarrow Q, R; IV \rightarrow P$	(B)	$I \rightarrow P$; II $\rightarrow R, S$; III $\rightarrow R$; IV $\rightarrow Q, S$
(C) $I \rightarrow Q, S; II \rightarrow P, T; III \rightarrow P; IV \rightarrow S$	(D)	$I \rightarrow P, S; II \rightarrow T; III \rightarrow Q, R; IV \rightarrow P$
The maximum number of possible isomers	(inclue	ling stereoisomers) which may be formed on

- mono-bromination of 1-methylcyclohex-1-ene using Br₂ and UV light is _____. [JEE(Advanced) 2021] 3. The reaction sequence(s) that would lead to o-xylene as the major product is (are) [JEE(Advanced) 2021] 1. NaNO₂/HCl Me 273 K 1. Mg, CO_2 , H_3O^+ 2. CuCN 2. SOCl₂ 3. H₂, Pd-BaSO₄ NH_2 (A) 3. DIBAL-H (B) then H_3O^+ 4. N₂H₄, KOH heat 1. i. BH₃ H₂O₂, NaOH (C)(D) 2. PBr_2 3. Zn, dil. HCl
- **4.** Correct option(s) for the following sequence of reactions is(are)

2.

[JEE(Advanced) 2021]

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

- Fusion of MnO₂ with KOH in presence of O₂ produces a salt W. Alkaline solution of W upon eletrolytic oxidation yields another salt X. The manganese containing ions present in W and X, respectively, are Y and Z. Correct statement(s) is (are) [JEE(Advanced) 2019]
 - (A) \mathbf{Y} is diamagnetic in nature while \mathbf{Z} is paramagnetic
 - (B) Both \boldsymbol{Y} and \boldsymbol{Z} are coloured and have tetrahedral shape
 - (C) In both Y and Z, π -bonding occurs between p-orbitals of oxygen and d-orbitals of manganese.
 - (D) In aqueous acidic solution, Y undergoes disproportionation reaction to give Z and MnO_2 .
- **6.** Consider the following reactions (unbalanced)
 - $Zn + hot \ conc. \ H_2SO_4 \rightarrow G + R + X$
 - $Zn + conc. NaOH \rightarrow T + Q$
 - $G + H_2S + NH_4OH \rightarrow Z$ (a precipitate) + X + Y
 - Choose the correct option(s).
 - (A) The oxidation state of Zn in T is +1
 - (B) Bond order of Q is 1 in its ground state
 - (C) Z is dirty white in colour
 - (D) R is a V-shaped molecule

Paragraph "X"

Treatment of benzene with CO/HCl in the presence of anhydrous $AlCl_3/CuCl$ followed by reaction with $Ac_2O/NaOAc$ gives compound X as the major product. Compound X upon reaction with Br_2/Na_2CO_3 , followed by heating at 473 K with moist KOH furnishes Y as the major product. Reaction of X with H_2/Pd -C, followed by H_3PO_4 treatment gives Z as the major product.

(There are two questions based on PARAGRAPH "X", the question given below is one of them)

7. The compound Y is :-

Paragraph "X"

Treatment of benzene with CO/HCl in the presence of anhydrous $AlCl_3/CuCl$ followed by reaction with $Ac_2O/NaOAc$ gives compound X as the major product. Compound X upon reaction with Br_2/Na_2CO_3 , followed by heating at 473 K with moist KOH furnishes Y as the major product. Reaction of X with H_2/Pd -C, followed by H_3PO_4 treatment gives Z as the major product.

(There are two question based on PARAGARAPH "X", the question given below is one of them)

[JEE(Advanced) 2018]

[JEE(Advanced) 2018]

The compound Z is :-

[JEE(Advanced) 2019]

Paragraph "A"

An organic acid P ($C_{11}H_{12}O_2$) can easily be oxidized to a dibasic acid which reacts with ethyleneglycol to produce a polymer dacron. Upon ozonolysis, **P** gives an aliphatic ketone as one of the products. **P** undergoes the following reaction sequences to furnish **R** via **Q**. The compound **P** also undergoes another set of reactions to produce **S**. [JEE(Advanced) 2018]

$$S \leftarrow \begin{array}{c} (1) \ H_2/Pd-C \\ (2) \ NH_3/\Delta \\ (3) \ Br_2/NaOH \\ (4) \ CHCl_3, KOH, \Delta \\ (5) \ H_2/Pd-C \end{array} \qquad S \leftarrow \begin{array}{c} (1) \ H_2/Pd-C \\ (2) \ SOCl_2 \\ (3) \ MeMgBr, \ CdCl_2 \\ (4) \ NaBH_4 \end{array} \qquad Q \leftarrow \begin{array}{c} (1) \ HCl \\ (2) \ Mg/Et_2O \\ (3) \ CO_2(dry \ ice) \\ (4) \ H_3O^+ \end{array} \rightarrow R$$

(There are two questions based on PARAGRAPH "A", the question given below is one of them)

9. The compound **R** is

An organic acid P ($C_{11}H_{12}O_2$) can easily be oxidized to a dibasic acid which reacts with ethyleneglycol to produce a polymer dacron. Upon ozonolysis, P gives an aliphatic ketone as one of the products. P undergoes the following reaction sequences to furnish R via Q. The compound P also undergoes another set of reactions to produce S.

$$(1) H_2/Pd-C$$

$$(2) NH_3/\Delta$$

$$(3) Br_2/NaOH$$

$$(4) CHCl_3,KOH, \Delta$$

$$(5) H_2/Pd-C$$

$$(1) H_2/Pd-C$$

$$(1) HCl$$

$$(2) SOCl_2$$

$$(2) SOCl_2$$

$$(3) MeMgBr, CdCl_2$$

$$(2) Mg/Et_2O$$

$$(3) CO_2(dry ice)$$

$$(4) NaBH_4$$

$$(4) H_3O^+$$

(There are two questions based on PARAGRAPH "A", the question given below is one of them)

[JEE(Advanced) 2018]

The compound S is

10.

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

11.	The desired product X can be prepared by reacting	ig the major product of the reactions in LIST-I with one
	or more appropriate reagents in LIST-II.	[JEE(Advanced) 2018]
	(given, order of migratory aptitude: aryl > aikyl >	O O
	Ph	ОН
	Ph	
	Me	v
	I IST_I	
	Ph	
	HO J	
	P. Ph $Me^{+H_2SO_4}$	1. 1 ₂ , NaOH
	T OH Me	\bigcirc
	Ph	Co:
	H_2N	$2 \left[Ag(NH_2)_2 \right] OH$
	Ph H H H H	2. [16(1013)2]011
	Me	
	Ph	
	R. $\frac{HO}{Ph} + H_2SO_4$	3. Fehling solution
	Ме Кон	
	Me	
	Ph Br.	\sim
	S. $H + AgNO_3$	4. HCHO, NaOH
	ГП ГОН	
	Me	5 NaOPr
	The correct option is	5. NaODI
	(A) $P \rightarrow 1: Q \rightarrow 2.3: R \rightarrow 1.4: S \rightarrow 2.4$	(B) $P \rightarrow 1.5$; $Q \rightarrow 3.4$; $R \rightarrow 4.5$; $S \rightarrow 3$
	(C) $P \rightarrow 1.5$; $Q \rightarrow 3.4$; $R \rightarrow 5$; $S \rightarrow 2.4$	(D) $P \rightarrow 1.5; Q \rightarrow 2.3; R \rightarrow 1.5; S \rightarrow 2.3$
12.	LIST-I contains reactions and LIST-II contains ma	ajor products. [JEE(Advanced) 2018]
	LIST-I	LIST-II
	n Xovi + V	X
	P. ONa \longrightarrow Br \longrightarrow	I OH
		<i>, X</i>
	Q. $OMe + HBr \longrightarrow$	2. Br
7	R. $Arr Br + NaOMe \longrightarrow$	$3.$ \sim_{OMe}
	1	
11	S. \longrightarrow ONa + MeBr \longrightarrow	4.
		0
		5.
	Match each reaction in LIST-I with one or more p	roduct in LIST-II and choose the correct option.
	(A) $P \rightarrow 1.5; Q \rightarrow 2; R \rightarrow 3; S \rightarrow 4$	(B) $P \rightarrow 1,4; Q \rightarrow 2; R \rightarrow 4; S \rightarrow 3$
	(C) $P \rightarrow 1,4; Q \rightarrow 1,2; R \rightarrow 3,4; S \rightarrow 4$	(D) $P \rightarrow 4,5; Q \rightarrow 4; R \rightarrow 4; S \rightarrow 3,4$

4

Answer Q.13, Q.14 and Q.15 by appropriately matching the information given in the three columns of the following table. [JEE(Advanced) 2017]

Columns 1, 2 and 3 contains starting materials, reaction conditions, and type of reactions, respectively.

Column-1	Column-2	Column-3
(I) Toluene	(i) NaOH/Br ₂	(P) Condensation
(II) Acetophenone	(ii) Br ₂ / hv	(Q) Carboxylation
(III) Banzaldehyde	(iii) (CH ₃ CO) ₂ O/CH ₃ COOK	(R) Substitution
(IV) Phenol	(iv) NaOH/CO ₂	(S) Haloform

13. For the synthesis of benzoic acid, the only CORRECT combination is

$$(A) (III) (iv) (R) (B) (IV) (ii) (P) (C) (I) (iv) (Q)$$

- 14. The only CORRECT combination in which the reaction proceeds through radical mechanism is (A) (I) (ii) (R) (B) (II) (iii) (R) (C) (III) (ii) (P) (D) (IV) (i) (Q)
- 15. The only CORRECT combination that gives two different carboxylic acids is (A) (IV) (iii) (Q) (B) (III) (iii) (P) (C) (II) (iv) (R) (D) (I) (i) (S)
- Compound P and R upon ozonolysis produce Q and S, respectively. The molecular formula of Q and S is 16. C₈H₈O. Q undergoes Cannizzaro reaction but not haloform reaction, whereas S undergoes haloform reaction but not Cannizzaro reaction. [JEE(Advanced) 2017]

(i)
$$P \xrightarrow{i) O_3/CH_2Cl_2} Q$$

(ii) $R \xrightarrow{i) O_3/CH_2Cl_2} S$
(C₈H₈O) (C₈

$$(C_8H_8O)$$

(D) (II) (i) (S)

The option(s) with suitable combination of P and R, respectively, is(are)

17

In dilute aqueous H_2SO_4 , the complex diaquodioxalatoferrate(II) is oxidized by MnO_4^- . For this reaction, 18. the ratio of the rate of change of $[H^+]$ to the rate of change of $[MnO_4^-]$ is -[JEE(Advanced) 2015]

the total number of

Paragraph for Question No. 19 and 20

Schemes 1 and 2 describe sequential transformation of alkynes M and N. Consider only the major products formed in each step for both the schemes. [JEE(Advanced) 2014]

6

					JELTIN VILLOU CHAMBELY TO THIS TOPPONSE QUELLOUD WILL COMMON
(R)				(3)	Scheme III
	V				(i) red hot iron, 873 K (ii) fuming HNO ₃ , H ₂ SO ₄ , heat (iii) H ₂ S.NH ₃ (iv) NaNO ₂ , H ₂ SO ₄ (v) hydrolysis $C_6H_5NO_3$
(8)		D ₂		(4)	Scheme IV
Co	de :				(i) conc. H_2SO_4 , 60°C (ii) conc. HNO_3 , conc. H_2SO_4 (iii) dil. H_2SO_4 , heat $C_6H_5NO_4$
(A) (B)	P) 1) 3	Q 4 1	R 2 4	S 3 2	
(C) (D)) 3) 4	4 1	2 3	1 2	
					C C C C C C C C C C C C C C C C C C C
			1	Z	
		3	2	Ť	
4	2				
2					

3. Ans. (A, B)

Sol.

10

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

15. Ans. (B)

(B) Product of ozonolysis of R is having 9 carbon.

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

20. Ans. (C)

Sol.

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

