INORGANIC CHEMISTRY

SALT ANALYSIS

1. In the scheme given below, **X** and **Y**, respectively, are [JEE(Advanced) 2023] Metal halide $\xrightarrow{aq. NaOH}$ White precipitate (**P**) + Filtrate (**Q**) aq.H₂SO $\xrightarrow{\text{PbO}_2(\text{excess})} \mathbf{X} \text{ (a coloured species in solution)}$ $MnO(OH)_{2}$ Conc.H₂SO₄ \rightarrow Y (gives blue-coloration with KI-starch paper) warm (A) $\operatorname{CrO_4}^{2-}$ and Br_2 (B) MnO_4^{2-} and Cl_2 (C) MnO_4^- and Cl_2 (D) MnSO₄ and HOCl 2. A mixture of two salts is used to prepare a solution S, which gives the following results : White S White Dilute NaOH(aq.) Dilute HCl(aq.) $precipitate(s) \leftarrow$ -(aq.solution – \rightarrow precipitate(s) Room temperature Room temperature of the salts) only only The correct option(s) for the salt mixture is(are) [JEE(Advanced) 2021] (B) Pb(NO₃)₂ and Bi(NO₃)₃ (A) $Pb(NO_3)_2$ and $Zn(NO_3)_2$ (C) AgNO₃ and Bi(NO₃)₃ (D) $Pb(NO_3)_2$ and $Hg(NO_3)_2$

Paragraph for Q. No. 3 and 4

The reaction of $K_3[Fe(CN)_6]$ with freshly prepared FeSO₄ solution produces a dark blue precipitate called Turnbull's blue. Reaction of $K_4[Fe(CN)_6]$ with the FeSO₄ solution in complete absence of air produces a white precipitate **X**, which turns blue in air. Mixing the FeSO₄ solution with NaNO₃, followed by a slow addition of concentrated H₂SO₄ through the side of the test tube produces a brown ring.

[JEE(Advanced) 2021]

(D) $[Fe(NO)(H_2O)_5]^{2+}$

3. Precipitate X is

A)
$$Fe_4[Fe(CN)_6]_3$$
 (B) $Fe[Fe(CN)_6]$ (C) $K_2Fe[Fe(CN)_6]$ (D) $KFe[Fe(CN)_6]$

4. Among the following, the brown ring is due to the formation of

```
(A) [Fe(NO)_2(SO_4)_2]^{2-} (B) [Fe(NO)_2(H_2O)_4]^{3+} (C) [Fe(NO)_4(SO_4)_2]
```

5. A colorless aqueous solution contains nitrates of two metals, X and Y. When it was added to an aqueous solution of NaCl, a white precipitate was formed. This precipitate was found to be partly soluble in hot water to give a residue P and a solution Q. The residue P was soluble in aq. NH₃ and also in excess sodium thiosulfate. The hot solution Q gave a yellow precipitate with KI. The metals X and Y, respectively, are [JEE(Advanced) 2020]

(A) Ag and Pb (B) Ag and Cd (C) Cd and Pb (D) Cd and Zn

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

6.	Choose the correct statement(s) among the following.	[JEE(Advanced)2020]			
	(A) SnCl ₂ .2H ₂ O is a reducing agent.				
	(B) SnO_2 reacts with KOH to form $K_2[Sn(OH)_6]$.				
	(C) A solution of $PbCl_2$ in HCl contains Pb^{2+} and Cl^{-} ions.				
	(D) The reaction of Pb_3O_4 with hot dilute nitric acid to give PbO	D_2 is a redox reaction.			
7.	The green colour produced in the borax bead test of a chromium	(III) salt is due to –			
		[JEE(Advanced) 2019]			
	(A) $Cr(BO_2)_3$ (B) CrB (C) $Cr_2(B_4C_2)_3$	(D) Cr_2O_3			
8.	The correct option(s) to distinguish nitrate salts of Mn^{2+} and Cu	²⁺ taken separately is (are) :-			
		[JEE(Advanced) 2018]			
	(A) Mn^{2+} shows the characteristic green colour in the flame test	0-			
	(B) Only Cu ²⁺ shows the formation of precipitate by passing H ₂ S in acidic medium				
	(C) Only Mn^{2+} shows the formation of precipitate by passing H ₂ S in faintly basic medium				
	(D) Cu^{2+}/Cu has higher reduction potential than Mn^{2+}/Mn (mea	sured under similar conditions)			
9.	The reagent(s) that can selectively precipiate S^{2-} from a mixt	ure of S^{2-} and SO_4^{2-} in aqueous soltuion			
	is(are):	[JEE(Advanced) 2016]			
	(A) $CuCl_2$ (B) $BaCl_2$				
	(C) $Pb(OOCCH_3)_2$ (D) $Na_2[Fe]$	(CN) ₅ NO]			
10.	In the following reaction sequence in aqueous soluiton, the spec	ies X , Y and Z respectively, are –			
		[JEE(Advanced) 2016]			
	$S_2O_3^{2-} \xrightarrow{Ag^+} X \xrightarrow{Ag^+} Y \xrightarrow{With}_{clear}$ solution precipitate	time Z black precipitate			
	(A) $[Ag(S_2O_3)_2]^{3-}$, $Ag_2S_2O_3$, Ag_2S (B) $[Ag(S_2O_3)_2]^{3-}$	$(9_3)_3]^{5-}$, Ag ₂ SO ₃ , Ag ₂ S			
	(C) $[Ag(SO_3)_2]^{3-}$, $Ag_2S_2O_3$, Ag (D) $[Ag(SO_3)_2]^{3-}$	$(3)_3]^{3-}, Ag_2SO_4, Ag_3SO_4, Ag_3SO_5, Ag_3SO_4, Ag_3SO_5, Ag_3SO_5, Ag_3SO_5, Ag_3SO_5, Ag_3SO_5, A$			
11.	The pair(s) of ions where BOTH the ions are precipitated upon	passing H ₂ S gas in presence of dilute HCl			

[JEE(Advanced) 2015]

- is(are) (A) Ba^{2+} , Zn^{2+} (B) Bi^{3+} , Fe^{3+} (C) Cu^{2+} , Pb^{2+} (D) Hg^{2+} , Bi^{3+}
- Among PbS, CuS, HgS, MnS, Ag₂S, NiS, CoS, Bi₂S₃, and SnS₂ the total number of BLACK coloured sulphides is [JEE(Advanced) 2014]

Paragraph for Q. 13 and Q. 14

An aqueous solution of metal ion M_1 reacts separately with reagents Q and R in excess to give tetrahedral and square planar complexes, respectively. An aqueous solution of another metal ion M_2 always forms tetrahedral complexes with these reagents. Aqueous solution of M_2 on reaction with reagent S gives white precipitate which dissolves in excess of S. The reactions are summarized in the sheme given below. [JEE(Advanced) 2014]

SCHEME:

Tetrahedral $\leftarrow \frac{Q}{excess} M_1 - \frac{R}{excess}$ Square planar
Tetrahedral $\leftarrow \frac{Q}{excess} M_2 \xrightarrow{R}$ Tetrahedral
S, stoichiometric amount
White precipitate $\frac{S}{excess}$ precipitate dissolves

13. M_1 , Q and R, respectively are

(A) Zn²⁺, KCN and HCl

- (C) Cd^{2+} , KCN and HCl
- 14. Reagent S is

(A) $K_4[Fe(CN)_6]$

(B) Na₂HPO₄

(B) Ni²⁺, HCl and KCN
(D) Co²⁺, HCl and KCN

(C) K₂CrO₄

(D) KOH

4

SOLUTIONS

	SOLUTIONS
1.	Ans. (C)
Sol.	$MnCl_{2} + NaOH \rightarrow Mn(OH)_{2} \downarrow + NaCl (P) (Q)(white ppt.) (Filterate)$
	$Mn(OH)_{2} \xrightarrow{PbO_{2}+H^{+}(H_{2}SO_{4})}_{heat} \rightarrow MnO_{4}^{-} + Pb^{2+}_{Purple}$
	$CI^{-} \xrightarrow{MnO(OH)_2/conc. H_2SO_4/D} CI_2$ $\downarrow 2I^{-}$
	$\underbrace{(\text{Starch} + l_2)}_{\text{blue coloration}} + 2Cl$
2.	Ans. (A, B)
Sol.	$Pb(NO_3)_2 \xrightarrow{dil.HCl} PbCl_2 \downarrow$ White PPt.
	$\operatorname{Bi}(\operatorname{NO}_3)_3 \xrightarrow{\operatorname{dil}.\operatorname{HCl}} \operatorname{BiCl}_3_{\operatorname{Water}}_{\operatorname{Soluble}}$
	$Hg(NO_3)_2 \xrightarrow{\text{dil.HCl}} HgCl_2 \\ \xrightarrow{\text{Water} \\ Soluble}}$
	$\operatorname{AgNO}_{3} \xrightarrow{\operatorname{dil}.HCl} \operatorname{AgCl} \downarrow_{\operatorname{White PPt.}}$
	$\operatorname{Zn}(\operatorname{NO}_3)_2 \xrightarrow{\operatorname{dil}.\operatorname{HCl}} \operatorname{ZnCl}_2_{\operatorname{Water So lub le}}$
	$Pb(NO_3)_2 \xrightarrow{NaOH(dil.)} Pb(OH)_2 \downarrow$ White PPt.
	$\operatorname{Zn}(\operatorname{NO}_3)_2 \xrightarrow{\operatorname{NaOH(dil.)}} \operatorname{Zn}(\operatorname{OH})_2 \downarrow$ White PPt.
	$\operatorname{Bi}(\operatorname{NO}_3)_3 \xrightarrow{\operatorname{NaOH}(\operatorname{dil}.)} \operatorname{Bi}(\operatorname{OH})_3 \downarrow$ white PPt.
	$AgNO_{3} \xrightarrow{\text{NaOH(dil.)}} Ag_{2}O_{\text{Brown PPt.}}$
	$\operatorname{Hg}(\operatorname{NO}_{3})_{2} \xrightarrow{\operatorname{NaOH}(\operatorname{dil}.)} \operatorname{HgO}_{\operatorname{Yellow PPt.}} \downarrow_{\operatorname{Yellow PPt.}}$
3.	Ans. (C)
Sol.	$K_{4}[Fe(CN)_{6}] \xrightarrow{FeSO_{4}} K_{2}Fe[Fe(CN)_{6}]$
1	White precipitate
	air V
	$Fe_4[Fe(CN)_6]_3$
	(Prussian Blue)

4. Ans. (D) $| Fe(H_2O)_5 NO] SO_4$ Sol. FeSO₄ slow addition of conc. H₂SO₄ (Brown Ring Complex) 5. Ans. (A) Sol. X : AgP: AgClY: Pb $Q : PbCl_2$ AgNO₃ $PbCl_2 \downarrow$ white ppt white ppt $Pb(NO_3)_2$ Aqueous suspension is heated and then filtered Residue Filtrate $AgCl \downarrow (P)$ $PbCl_2$ (Q) Hot solution white ppt AgCl + 2NH₃ solution \rightarrow [Ag(NH₃)₂]Cl (P) (excess) clear solution $AgCl + 2Na_2S_2O_3$ solution $\rightarrow Na_3 [Ag(S_2O_3)_2] + NaCl$ clear solution (P) (excess) PbCl₂ +2KI $PbI_2 \downarrow$ 2KCl \rightarrow (yellow ppt) Hot solution (Q) 6. Ans. (A, B)**Sol.** (A) $SnCl_2.2H_2O$ is a reducing agent since Sn^{2+} tends to convert into Sn^{4+} . $\text{SnO}_2 + 2\text{KOH}_{(aq.)} + 2\text{H}_2\text{O} \longrightarrow \text{K}_2[\text{Sn(OH)}_6]$ (B) (Amphoteric) (C) First group cations (Pb^{2+}) form insoluble chloride with HCl that is $PbCl_2$ however it is slightly soluble in water and therefore lead +2 ion is never completely precipitated on adding hydrochloric

acid in test sample of Pb^{2+} , rest of the Pb^{2+} ions are quantitatively precipitated with H₂S in acidic medium.

So that we can say that filtrate of first group contain solution of $PbCl_2$ in HCl which contains Pb^{2+} and Cl^- However in the presence of conc. HCl or excess HCl it can produce H₂[PbCl₄]

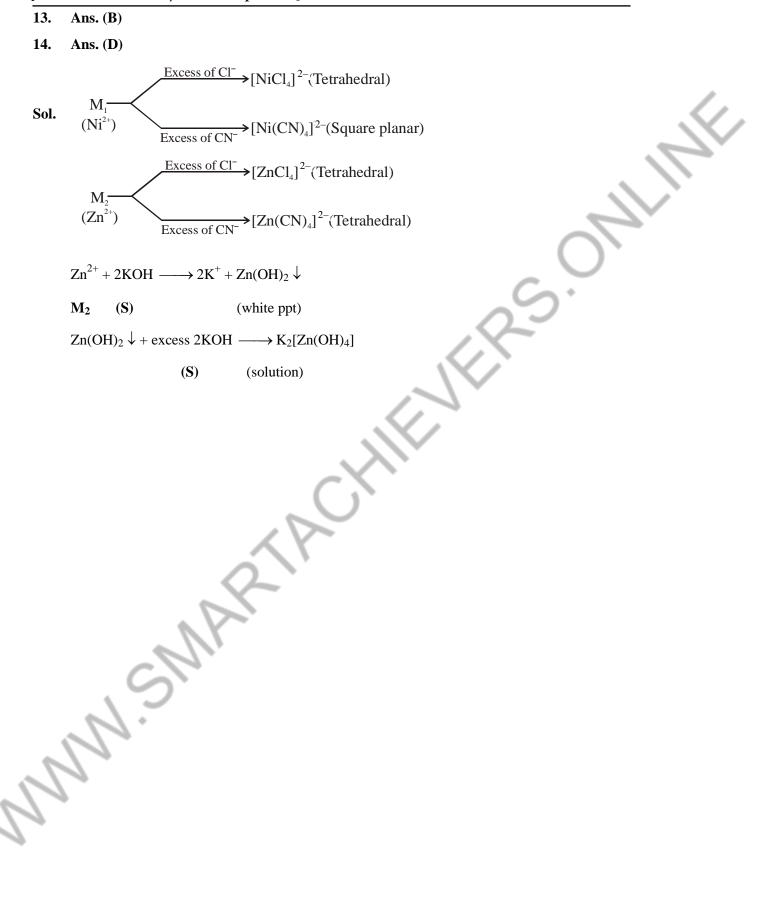
So, we can conclude A, B or A,B,C should be answers.

(D)
$$Pb_3O_4 + 4HNO_3 \longrightarrow PbO_2(\downarrow) + 2Pb(NO_3)_2 + 2H_2O$$

(mixture of oxides)

It is not a redox reaction.

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions


7.	Ans.	(A)
Sol.	Chro	$\operatorname{omium}(\operatorname{III}) \operatorname{salt} \xrightarrow{\Delta} \operatorname{Cr}_2\operatorname{O}_3$
	Bora	$x \xrightarrow{\Delta} B_2O_3 + NaBO_2$
	2Cr ₂	$O_3 + 6B_2O_3 \longrightarrow 4 Cr(BO_2)_3$
8.	Ans.	(B, D)
Sol.	(A) (Cu ⁺² and Mn ⁺² both gives green colour in flame test and cannot distinguished.
	(B) (Cu ⁺² belongs to group-II of cationic radical will gives ppt. of CuS in acidic medium.
	(C) (Cu^{+2} and Mn^{+2} both form ppt. in basic medium.
	(D) ($Cu^{+2}/Cu = +0.34 V (SRP)$
		$Mn^{+2}/Mn = -1.18 V (SRP)$
9.	Ans.	(A or A, C)
Sol.	(A)	$\operatorname{CuCl}_2 + S^{2-} \longrightarrow \operatorname{CuS}_{\downarrow} + 2\operatorname{Cl}_{-}$
		(Sol ⁿ) (Sol ⁿ) (Black ppt.) (Sol ⁿ)
		$\operatorname{CuCl}_2 + \operatorname{SO}_4^{2-} \longrightarrow \operatorname{No} \operatorname{ppt.}$
		(Sol^n) (Sol^n)
	(B)	$BaCl_2 + S^{2-} \longrightarrow BaS + 2Cl^{-}$
		(Sol^n) (Sol^n) $(No ppt.)$ (Sol^n)
		$BaCl_2 + SO_4^{2-} \longrightarrow BaSO_4 \downarrow + 2Cl^-$
		(Sol^n) (Sol^n) (White ppt.) (Sol^n)
	(C)	$Pb(OOCCH_3)_2 + S^{2-} \longrightarrow PbS \downarrow + 2CH_3COO^{-}$
		(Sol^n) (Sol^n) $(Black ppt.)$ (Sol^n)
		$Pb(OOCCH_3)_2 + SO_4^{2-} \longrightarrow PbSO_4 \downarrow + 2CH_3COO^-$
		(Sol ⁿ) (Sol ⁿ) (White ppt.) (Sol ⁿ)
	(D)	$Na_2[Fe(CN)_5NO] + S^{2-} \longrightarrow Na_4[Fe(CN)_5NOS]$
	0	(Sol ⁿ) (Sol ⁿ) (Purple colour solution)
	\sim	$Na_{2}[Fe(CN)_{5}NO] + SO_{4}^{2-} \longrightarrow No ppt.$ $(Sol^{n}) \qquad (Sol^{n})$
2	-	
7	Note	• : PbSO ₄ Ksp = 2.5×10^{-8} Which are not given in question
		PbS Ksp = 3×10^{-28}
	As ii	n question selective precipitation is asked PbS will be precipitate much easier than PbSO ₄ though both

As in question selective precipitation is asked PbS will be precipitate much easier than PbSO₄ though both are insoluble. Hence answer should be (C) also alongwith (A)

2

10. Ans. (A) $S_2O_3^{2-} \xrightarrow{Ag^+} [Ag(S_2O_3)_2]^{3-} \xrightarrow{Ag^+} Ag_2S_2O_3 \downarrow$ Sol. (Y) white precipitate clear solution with time (\mathbf{Z}) black precipitate So, X, Y and Z are $[Ag(S_2O_3)_2]^{3-}$, $Ag_2S_2O_3$ and Ag_2S respectively. 11. Ans. (C, D) **Sol.** (A) $Ba^{+2} \xrightarrow{H^+/H_2S} No ppt$ [because BaS is soluble in water] $Zn^{+2} \xrightarrow{H^+/H_2S} No \text{ ppt}$ [because Zn^{+2} form ZnS in ammonical solution (IV group) (large K_{sp} of ZnS)] (B) $Bi^{3+} \xrightarrow{H^+/H_2S} Bi_2S_3 \downarrow [Bi^{3+} is II group cation]$ Brown/black ppt $Fe^{+3} \xrightarrow{H^+/H_2S} Fe^{+2} + S$ [because in acidic solution Fe^{+3} show redox reaction with H_2S] (C) $\operatorname{Cu}^{+2} \xrightarrow{\operatorname{H}^+/\operatorname{H}_2S} \operatorname{CuS} \downarrow [\operatorname{Cu}^{+2} \text{ is II group cation}]$ black ppt → PbS↓ [Pb²⁺ is also II group cation] Ph^{2+} – H^+/H_2S black ppt → HgS↓ [Hg²⁺ is II group cation] (D) black ppt $Bi_2S_3\downarrow$ [Bi³⁺ II group cation] black/brown ppt Ans. (6) / (7) 12. Sol. PbS, CuS, HgS, Ag₂S, NiS, CoS are black MnS - dirty pink/Buff $SnS_2 - yellow$ Bi_2S_3 – brown / black (brownish black) 7

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

